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Preface to the second edition

This is the second edition of Invitation to Discrete Mathematics.
Compared to the first edition we have added Chapter 2 on partially
ordered sets, Section 4.7 on Turdn’s theorem, several proofs of the
Cauchy—Schwarz inequality in Section 7.3, a new proof of Cayley’s
formula in Section 8.6, another proof of the determinant formula for
counting spanning trees in Section 8.5, a geometric interpretation of
the construction of the real projective plane in Section 9.2, and the
short Chapter 11 on Ramsey’s theorem. We have also made a number
of smaller modifications and we have corrected a number of errors
kindly pointed out by readers (some of the errors were corrected in
the second and third printings of the first edition). So readers who
decide to buy the second edition instead of hunting for a used first
edition at bargain price should rest assured that they are getting
something extra. ..

Prague J. M.
November 2006 J. N
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Preface

Why should an introductory textbook on discrete mathematics have
such a long preface, and what do we want to say in it? There are many
ways of presenting discrete mathematics, and first we list some of the
guidelines we tried to follow in our writing; the reader may judge
later how we succeeded. Then we add some more technical remarks
concerning a possible course based on the book, the exercises, the
existing literature, and so on.

So, here are some features which may perhaps distinguish this
book from some others with a similar title and subject:

e Developing mathematical thinking. Our primary aim, besides
teaching some factual knowledge, and perhaps more importantly
than that, is to lead the student to understand and appreciate
mathematical notions, definitions, and proofs, to solve problems
requiring more than just standard recipes, and to express math-
ematical thoughts precisely and rigorously. Mathematical habits
may give great advantages in many human activities, say in pro-
gramming or in designing complicated systems.! It seems that
many private (and well-paying) companies are aware of this.
They are not really interested in whether you know mathemat-
ical induction by heart, but they may be interested in whether
you have been trained to think about and absorb complicated
concepts quickly—and mathematical theorems seem to provide
a good workout for such a training. The choice of specific mat-
erial for this preparation is probably not essential—if you're en-
chanted by algebra, we certainly won’t try to convert you to
combinatorics! But we believe that discrete mathematics is esp-
ecially suitable for such a first immersion into mathematics, since
the initial problems and notions are more elementary than in
analysis, for instance, which starts with quite deep ideas at the
outset.

1On the other hand, one should keep in mind that in many other human
activities, mathematical habits should better be suppressed.
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e Methods, techniques, principles. In contemporary university cur-

ricula, discrete mathematics usually means the mathematics of
finite sets, often including diverse topics like logic, finite aut-
omata, linear programming, or computer architecture. Our text
has a narrower scope; the book is essentially an introduction to
combinatorics and graph theory. We concentrate on relatively
few basic methods and principles, aiming to display the rich var-
iety of mathematical techniques even at this basic level, and the
choice of material is subordinated to this.

Joy. The book is written for a reader who, every now and
then, enjoys mathematics, and our boldest hope is that our
text might help some readers to develop some positive feelings
towards mathematics that might have remained latent so far.
In our opinion, this is a key prerequisite: an aesthetic pleasure
from an elegant mathematical idea, sometimes mixed with a tri-
umphant feeling when the idea was difficult to understand or
to discover. Not all people seem to have this gift, just as not
everyone can enjoy music, but without it, we imagine, studying
mathematics could be a most boring thing.

All cards on the table. We try to present arguments in full and
to be mathematically honest with the reader. When we say that
something is easy to see, we really mean it, and if the reader
can’t see it then something is probably wrong—we may have
misjudged the situation, but it may also indicate a reader’s prob-
lem in following and understanding the preceding text. When-
ever possible, we make everything self-contained (sometimes we
indicate proofs of auxiliary results in exercises with hints), and
if a proof of some result cannot be presented rigorously and
in full (as is the case for some results about planar graphs,
say), we emphasize this and indicate the steps that aren’t fully
justified.

CS. A large number of discrete mathematics students nowadays
are those specializing in computer science. Still, we believe that
even people who know nothing about computers and computing,
or find these subjects repulsive, should have free access to dis-
crete mathematics knowledge, so we have intentionally avoided
overburdening the text with computer science terminology and
examples. However, we have not forgotten computer scientists
and have included several passages on efficient algorithms and
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their analysis plus a number of exercises concerning algorithms
(see below).

e Other voices, other rooms. In the material covered, there are sev-
eral opportunities to demonstrate concepts from other branches
of mathematics in action, and while we intentionally restrict the
factual scope of the book, we want to emphasize these connec-
tions. Our experience tells us that students like such applica-
tions, provided that they are done thoroughly enough and not
just by hand-waving.

Prerequisites and readership. In most of the book, we do not
assume much previous mathematical knowledge beyond a standard
high-school course. Several more abstract notions that are very com-
mon in all mathematics but go beyond the usual high-school level are
explained in the first chapter. In several places, we need some con-
cepts from undergraduate-level algebra, and these are summarized
in an appendix. There are also a few excursions into calculus (enc-
ountering notions such as limit, derivative, continuity, and so on),
but we believe that a basic calculus knowledge should be generally
available to almost any student taking a course related to our book.

The readership can include early undergraduate students of math-
ematics or computer science with a standard mathematical prepa-
ration from high school (as is usual in most of Europe, say), and
more senior undergraduate or early graduate students (in the United
States, for instance). Also nonspecialist graduates, such as biologists
or chemists, might find the text a useful source. For mathematically
more advanced readers, the book could serve as a fast introduction
to combinatorics.

Teaching it. This book is based on an undergraduate course we
have been teaching for a long time to students of mathematics and
computer science at the Charles University in Prague. The second
author also taught parts of it at the University of Chicago, at the
University of Bonn, and at Simon Fraser University in Vancouver.
Our one-semester course in Prague (13 weeks, with one 90-minute
lecture and one 90-minute tutorial per week) typically included mat-
erial from Chapters 1-9, with many sections covered only partially
and some others omitted (such as 3.6, 4.5 4.5, 5.5, 8.3-8.5, 9.2).
While the book sometimes proves one result in several ways, we
only presented one proof in a lecture, and alternative proofs were



x Preface

occasionally explained in the tutorials. Sometimes we inserted two
lectures on generating functions (Sections 12.1-12.3) or a lecture on
the cycle space of a graph (13.4).

To our basic course outline, we have added a lot of additional (and
sometimes more advanced) material in the book, hoping that the
reader might also read a few other things besides the sections that are
necessary for an exam. Some chapters, too, can serve as introductions
to more specialized courses (on the probabilistic method or on the
linear algebra method).

This type of smaller print is used for “second-level” material, namely
things which we consider interesting enough to include but less essential.
These are additional clarifications, comments, and examples, sometimes
on a more advanced level than the basic text. The main text should
mostly make sense even if this smaller-sized text is skipped.

We also tried to sneak a lot of further related information into the
exercises. So even those who don’t intend to solve the exercises may
want to read them.

On the exercises. At the end of most of the sections, the reader will
find a smaller or larger collection of exercises. Some of them are only
loosely related to the theme covered and are included for fun and
for general mathematical education. Solving at least some exercises
is an essential part of studying this book, although we know that
the pace of modern life and human nature hardly allow the reader to
invest the time and effort to solve the majority of the 478 exercises
offered (although this might ultimately be the fastest way to master
the material covered).

Mostly we haven’t included completely routine exercises requiring
only an application of some given “recipe”, such as “Apply the al-
gorithm just explained to this specific graph”. We believe that most
readers can check their understanding by themselves.

We classify the exercises into three groups of difficulty (no star,
one star, and two stars). We imagine that a good student who has
understood the material of a given section should be able to solve
most of the no-star exercises, although not necessarily effortlessly.
One-star exercises usually need some clever idea or some slightly
more advanced mathematical knowledge (from calculus, say), and
finally two-star exercises probably require quite a bright idea. Almost
all the exercises have short solutions; as far as we know, long and
tedious computations can always be avoided. Our classification of
difficulty is subjective, and an exercise which looks easy to some
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may be insurmountable for others. So if you can’t solve some no-star
exercises don’t get desperate.

Some of the exercises are also marked by ©°, a shorthand for
computer science. These are usually problems in the design of effi-
cient algorithms, sometimes requiring an elementary knowledge of
data structures. The designed algorithms can also be programmed
and tested, thus providing material for an advanced programming
course. Some of the ©° exercises with stars may serve (and have
served) as project suggestions, since they usually require a combi-
nation of a certain mathematical ingenuity, algorithmic tricks, and
programming skills.

Hints to many of the exercises are given in a separate chapter
of the book. They are really hints, not complete solutions, and al-
though looking up a hint spoils the pleasure of solving a problem,
writing down a detailed and complete solution might still be quite
challenging for many students.

On the literature. In the citations, we do not refer to all sources
of the ideas and results collected in this book. Here we would like
to emphasize, and recommend, one of the sources, namely a large
collection of solved combinatorial problems by Lovész [8]. This book
is excellent for an advanced study of combinatorics, and also as an
encyclopedia of many results and methods. It seems impossible to
ignore when writing a new book on combinatorics, and, for exam-
ple, a significant number of our more difficult exercises are selected
from, or inspired by, Lovész’ (less advanced) problems. Biggs [1] is a
nice introductory textbook with a somewhat different scope to ours.
Slightly more advanced ones (suitable as a continuation of our text,
say) are by Van Lint and Wilson [7] and Cameron [3]. The beautiful
introductory text in graph theory by Bollobds [2] was probably writ-
ten with somewhat similar goals as our own book, but it proceeds
at a less leisurely pace and covers much more on graphs. A very rec-
ent textbook on graph theory at graduate level is by Diestel [4]. The
art of combinatorial counting and asymptotic analysis is wonderfully
explained in a popular book by Graham, Knuth, and Patashnik [6]
(and also in Knuth’s monograph [41]). Another, extensive and mod-
ern book on this subject by Flajolet and Sedgewick [5] should go to
print soon. If you're looking for something specific in combinatorics
and don’t know where to start, we suggest the Handbook of Combi-
natorics [38]. Other recommendations to the literature are scattered
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throughout the text. The number of textbooks in discrete mathe-
matics is vast, and we only mention some of our favorite titles.

On the index. For most of the mathematical terms, especially those
of general significance (such as relation, graph), the index only refers
to their definition. Mathematical symbols composed of Latin letters
(such as C,,) are placed at the beginning of the appropriate letter’s
section. Notation including special symbols (such as X \Y, G = H)
and Greek letters are listed at the beginning of the index.

Acknowledgments. A preliminary Czech version of this book was
developed gradually during our teaching in Prague. We thank our
colleagues in the Department of Applied Mathematics of the Charles
University, our teaching assistants, and our students for a stimulating
environment and helpful comments on the text and exercises. In
particular, Pavel Socha, Eva Matouskova, Tom&s Holan, and Robert
Babilon discovered a number of errors in the Czech version. Martin
Klazar and Jifi Otta compiled a list of a few dozen problems and
exercises; this list was a starting point of our collection of exercises.
Our colleague Jan Kratochvil provided invaluable remarks based on
his experience in teaching the same course. We thank Tomas Kaiser
for substantial help in translating one chapter into English. Adam
Dingle and Tim Childers helped us with some comments on the
English at early stages of the translation. Jan Nekovaf was so kind
as to leave the peaks of number theory for a moment and provide
pointers to a suitable proof of Fact 12.7.1.

Several people read parts of the English version at various stages
and provided insights that would probably never have occurred to
us. Special thanks go to Jeff Stopple for visiting us in Prague, care-
fully reading the whole manuscript, and sharing some of his teaching
wisdom with us. We are much indebted to Mari Inaba and Helena
Nesetfilova for comments that were very useful and different from
those made by most of other people. Also opinions in several rep-
orts obtained by Oxford University Press from anonymous referees
were truly helpful. Most of the finishing and polishing work on the
book was done by the first author during a visit to the ETH Zurich.
Emo Welzl and the members of his group provided a very pleasant
and friendly environment, even after they were each asked to read
through a chapter, and so the help of Hans-Martin Will, Beat Tra-
chsler, Bernhard von Stengel, Lutz Kettner, Joachim Giesen, Bernd



Preface xiii

Gértner, Johannes Blémer, and Artur Andrzejak is gratefully ack-
nowledged. We also thank Hee-Kap Ahn for reading a chapter.

Many readers have contributed to correcting errors from the first
printing. A full list can be found at the web page with errata men-
tioned below; here we just mention Mel Hausner, Emo Welzl, Hans
Mielke, and Bernd Bischl as particularly significant contributors to
this effort.

Next, we would like to thank Karel Horak for several expert sug-
gestions helping the first author in his struggle with the layout of
the book (unfortunately, the times when books used to be typeset
by professional typographers seem to be over), and Jana Chlebikova
for a long list of minor typographic corrections.

Almost all the figures were drawn by the first author using the
graphic editor Ipe 5.0. In the name of humankind, we thank Otfried
Cheong (formerly Schwarzkopf) for its creation.

Finally, we should not forget to mention that Sénke Adlung has
been extremely nice to us and very helpful during the editorial pro-
cess, and that it was a pleasure to work with Julia Tompson in the
final stages of the book preparation.

A final appeal. A long mathematical text usually contains a sub-
stantial number of mistakes. We have already corrected a large num-
ber of them, but certainly some still remain. So we plead with readers
who discover errors, bad formulations, wrong hints to exercises, etc.,
to let us know about them.?

2Please send emails concerning this book to matousek@kam.mff.cuni.cz. An
Internet home page of the book with a list of known mistakes can currently be
accessed from http://kam.mff.cuni.cz/ matousek/.
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1

Introduction and basic
concepts

In this introductory chapter, we first give a sample of the problems
and questions to be treated in the book. Then we explain some basic
notions and techniques, mostly fundamental and simple ones com-
mon to most branches of mathematics. We assume that the reader
is already familiar with many of them or has at least heard of them.
Thus, we will mostly review the notions, give precise formal defini-
tions, and point out various ways of capturing the meaning of these
concepts by diagrams and pictures. A reader preferring a more det-
ailed and thorough introduction to these concepts may refer to the
book by Stewart and Tall [9], for instance.

Section 1.1 presents several problems to be studied later on in
the book and some thoughts on the importance of mathematical
problems and similar things.

Section 1.2 is a review of notation. It introduces some common
symbols for operations with sets and numbers, such as U for set
union or ) for summation of a sequence of numbers. Most of the
symbols are standard, and the reader should be able to go through
this section fairly quickly, relying on the index to refresh memory
later on.

In Section 1.3, we discuss mathematical induction, an important
method for proving statements in discrete mathematics. Here it is
sufficient to understand the basic principle; there will be many oppo-
rtunities to see and practice various applications of induction in sub-
sequent chapters. We will also say a few words about mathematical
proofs in general.

Section 1.4 recalls the notion of a function and defines special
types of functions: injective functions, surjective functions, and bije-
ctions. These terms will be used quite frequently in the text.
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Sections 1.5 and 1.6 deal with relations and with special types of
relations, namely equivalences and orderings. These again belong to
the truly essential phrases in the vocabulary of mathematics. How-
ever, since they are simple general concepts which we have not yet
fleshed out by many interesting particular examples, some readers
may find them “too abstract”—a polite phrase for “boring”—on first
reading. Such readers may want to skim through these sections and
return to them later. (When learning a new language, say, it is not
very thrilling to memorize the grammatical forms of the verb “to
be”, but after some time you may find it difficult to speak fluently
knowing only “I am” and “he is”. Well, this is what we have to do in
this chapter: we must review some of the language of mathematics.)

1.1 An assortment of problems

Let us look at some of the problems we are going to consider in this
book. Here we are going to present them in a popular form, so you
may well know some of them as puzzles in recreational mathematics.
A well-known problem concerns three houses and three wells.
Once upon a time, three fair white houses stood in a meadow in
a distant kingdom, and there were three wells nearby, their water
clean and fresh. All was well, until one day a seed of hatred was sown,
fights started among the three households and would not cease, and
no reconciliation was in sight. The people in each house insisted that
they have three pathways leading from their gate to each well, three
pathways which should not cross any of their neighbors’ paths. Can
they ever find paths that will satisfy everyone and let peace set in?
A solution would be possible if there were only two wells:

&

IS

But with three wells, there is no hope (unless these proud men and
women would be willing to use tunnels or bridges, which sounds quite
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unlikely). Can you state this as a mathematical problem and prove
that it has no solution?

Essentially, this is a problem about drawing in the plane. Many
other problems to be studied in this book can also be formulated in
terms of drawing. Can one draw the following picture without lifting
the pencil from the paper, drawing each line only once?

And what about this one?

If not, why not? Is there a simple way to distinguish pictures that
can be drawn in this way from those that cannot? (And, can you
find nice accompanying stories to this problem and the ones below?)

For the subsequent set of problems, draw 8 dots in the plane in
such a way that no 3 of them lie on a common line. (The number 8 is
quite arbitrary; in general we could consider n such dots.) Connect
some pairs of these points by segments, obtaining a picture like the
following:

What is the maximum number of segments that can be drawn so that
no triangle with vertices at the dots arises? The following picture has
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13 segments:

Can you draw more segments for 8 dots with no triangle? Probably
you can. But can you prove your result is already the best possible?

Next, suppose that we want to draw some segments so that any
two dots can be connected by a path consisting of the drawn seg-
ments. The path is not allowed to make turns at the crossings of the
segments, only at the dots, so the left picture below gives a valid
solution while the right one doesn’t:

What is the minimum number of segments we must draw? How many
different solutions with this minimum number of segments are there?
And how can we find a solution for which the total length of all the
drawn segments is the smallest possible?

All these problems are popular versions of simple basic questions
in graph theory, which is one of main subjects of this book (treated
in Chapters 4, 5, and 6). For the above problems with 8 dots in the
plane, it is easily seen that the way of drawing the dots is immaterial;
all that matters is which pairs of dots are connected by a segment
and which are not. Most branches of graph theory deal with problems
which can be pictured geometrically but in which geometry doesn’t
really play a role. On the other hand, the problem about wells and
houses belongs to a “truly” geometric part of graph theory. It is
important that the paths should be built in the plane. If the houses
and wells were on a tiny planet shaped like a tire-tube then the
required paths would exist:



1.1 An assortment of problems 5

Another important theme of this book is combinatorial counting,
treated in Chapters 3 and 12. The problems there usually begin with
“How many ways are there...” or something similar. One question
of this type was mentioned in our “8 dots” series (and it is a nice
question—the whole of Chapter 8 is devoted to it). The reader has
probably seen lots of such problems; let us add one more. How many
ways are there to divide n identical coins into groups? For instance,
4 coins can be divided in 5 ways: 1+ 1+ 1+ 1 (4 groups of 1 coin
each), 1+ 1+ 2,143,242, and 4 (all in one group, which is not
really a “division” in the sense most people understand it, but what
do you expect from mathematicians!). For this problem, we will not
be able to give an exact formula; such a formula does exist but its
derivation is far beyond the scope of this book. Nonetheless, we will
at least derive estimates for the number in question. This number is
a function of n, and the estimates will allow us to say “how fast” this
function grows, compared to simple and well-known functions like n?
or 2. Such a comparison of complicated functions to simple ones is
the subject of the so-called asymptotic analysis, which will also be
touched on below and which is important in many areas, for instance
for comparing several algorithms which solve the same problem.

Although the problems presented may look like puzzles, each of
them can be regarded as the starting point of a theory with numerous
applications, both in mathematics and in practice.

In fact, distinguishing a good mathematical problem from a bad one
is one of the most difficult things in mathematics, and the “quality” of

a problem can often be judged only in hindsight, after the problem has
been solved and the consequences of its solution mapped. What is a good
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problem? It is one whose solution will lead to new insights, methods,
or even a whole new fruitful theory. Many problems in recreational
mathematics are not good in this sense, although their solution may
require considerable skill or ingenuity.

A pragmatically minded reader might also object that the problems
shown above are useless from a practical point of view. Why take a
whole course about them, a skeptic might say, when I have to learn so
many practically important things to prepare for my future career? Ob-
jections of this sort are quite frequent and cannot be simply dismissed, if
only because the people controlling the funding are often pragmatically
minded.

One possible answer is that for each of these puzzle-like problems,
we can exhibit an eminently practical problem that is its cousin. For
instance, the postal delivery service in a district must deliver mail to all
houses, which means passing through each street at least once. What is
the shortest route to take? Can it be found in a reasonable time using a
supercomputer? Or with a personal computer? In order to understand
this postal delivery problem, one should be familiar with simple results
about drawing pictures without lifting a pencil from the paper.

Or, given some placement of components of a circuit on a board, is
it possible to interconnect them in such a way that the connections go
along the surface of the board and do not cross each other? What is
the most economical placement of components and connections (using
the smallest area of the board, say)? Such questions are typical of VLSI
design (designing computer chips and similar things). Having learned
about the three-wells problem and its relatives (or, scientifically speak-
ing, about planar graphs) it is much easier to grasp ways of designing
the layout of integrated circuits.

These “practical” problems also belong to graph theory, or to a
mixture of graph theory and the design of efficient algorithms. This
book doesn’t provide a solution to them, but in order to comprehend
a solution in some other book, or even to come up with a new good
solution, one should master the basic concepts first.

We would also like to stress that the most valuable mathematical
research was very seldom directly motivated by practical goals. Some
great mathematical ideas of the past have only found applications quite
recently. Mathematics does have impressive applications (it might be
easier to list those human activities where it is not applied than those
where it is), but anyone trying to restrict mathematical research to the
directly applicable parts would be left with a lifeless fragment with most
of the creative power gone.

Exercises are unnecessary in this section. Can you solve some of
the problems sketched here, or perhaps all of them? Even if you try
and get only partial results or fail completely, it will still be of great
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help in reading further.

So what 4s this discrete mathematics they’re talking about, the
reader may (rightfully) ask? The adjective “discrete” here is an oppo-
site of “continuous”. Roughly speaking, objects in discrete mathematics,
such as the natural numbers, are clearly separated and distinguishable
from each other and we can perceive them individually (like trees in
a forest which surrounds us). In contrast, for a typical “continuous”
object, such as the set of all points on a line segment, the points are
indiscernible (like the trees in a forest seen from a high-flying airplane).
We can focus our attention on some individual points of the segment
and see them clearly, but there are always many more points nearby
that remain indistinguishable and form the totality of the segment.

According to this explanation, parts of mathematics such as algebra
or set theory might also be considered “discrete”. But in the common
usage of the term, discrete mathematics is most often understood as
mathematics dealing with finite sets. In many current university curric-
ula, a course on discrete mathematics has quite a wide range, including
some combinatorics, counting, graph theory, but also elements of math-
ematical logic, some set theory, basics from the theory of computing
(finite automata, formal languages, elements of computer architecture),
and other things. We prefer a more narrowly focussed scope, so perhaps
a more descriptive title for this book would be “Invitation to combina-
torics and graph theory”, covering most of the contents. But the name
of the course we have been teaching happened to be “Discrete mathe-
matics” and we decided to stick to it.

1.2 Numbers and sets: notation

Number domains. For the set of all natural numbers, i.e. the set
{1,2,3,...}, we reserve the symbol N. The letters n,m, k, 1, j, p and
possibly some others usually represent natural numbers.

Using the natural numbers, we may construct other well-known
number domains: the integers, the rationals, and the reals (and also
the complex numbers, but we will seldom hear about them here).

The integer numbers or simply integers arise from the natural
numbers by adding the negative integer numbers and 0. The set of
all integers is denoted by Z.

The rational numbers are fractions with integer numerator and
denominator. This set is usually denoted by Q but we need not
introduce any symbol for it in this book. The construction of the
set R of all real numbers is more complicated, and it is treated in
introductory courses of mathematical analysis. Famous examples of
real numbers which are not rational are numbers such as v/2, some
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important constants like 7w, and generally numbers whose decimal
notation has an infinite and aperiodic sequence of digits following
the decimal point, such as 0.12112111211112.. . ..

The closed interval from a to b on the real axis is denoted by [a, 0],
and the open interval with the same endpoints is written as (a, b).

Operations with numbers. Most symbols for operations with
numbers, such as + for addition, v for square root, and so on, are
generally well known. We write division either as a fraction, or some-
times with a slash, i.e. either in the form § or as a/b.

We introduce two less common functions. For a real number z,
the symbol |x] is called! the lower integer part of x (or the floor
function of x), and its value is the largest integer smaller than or
equal to x. Similarly [z], the upper integer part of = (or the ceiling
function), denotes the smallest integer greater than or equal to x.
For instance, [0.999] = 0, [-0.1] = -1, [0.01] = 1, [¥] = 6,
V3| =1

Later on, we will introduce some more operations and functions
for numbers, which have an important combinatorial meaning and
which we will investigate in more detail. Examples are n! and
Q).

Sums and products. If ai,as,...,a, are real numbers, their sum
a; +az + -+ + a,, can also be written using the summation sign >_,
in the form

n
E a;.
=1

This notation somewhat resembles the FOR loop in many program-
ming languages. Here are a few more examples:

n the older literature, one often finds [z] used for the same function.
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n n

Di+4)=> (((+1)+E+2)+- -+ (i+n))
i=1 j=1 i=1
:an(m+(1+2+---+n))
i=1

n
= n<Zz) +n(l+2+-+n)
i=1
=2n(14+2+---+n).
Similarly as sums are written using » . (which is the capital Greek
letter “sigma”, from the word sum), products may be expressed using
the sign [] (capital Greek “pi”). For example,

n+ 1.

ﬂi—l—l_Q 3 n+1l
i 127 N

i=1 "
Sets. Another basic notion we will use is that of a set. Most likely
you have already encountered sets in high school (and, thanks to
the permanent modernization of the school system, maybe even in
elementary school). Sets are usually denoted by capital letters:

AB,....X,Y,...,M,N,...

and so on, and the elements of sets are mostly denoted by lowercase
letters: a,b,..., z,y,..., m,n,....

The fact that a set X contains an element x is traditionally writ-
ten using the symbol €, which is a somewhat stylized Greek letter
e—"“epsilon”. The notation z € X is read “x is an element of X7,
“r belongs to X7, “x is in X”, and so on.

Let us remark that the concept of a set and the symbol € are
so-called primitive notions. This means that we do not define them
using other “simpler” notions (unlike the rational numbers, say, which
are defined in terms of the integers). To understand the concept of a set,
we rely on intuition (supported by numerous examples) in this book. It
turned out at the beginning of the 20th century that if such an intuitive
notion of a set is used completely freely, various strange situations, the
so-called paradoxes, may arise.? In order to exclude such paradoxes, the

2The most famous one is probably Russell’s paradox. One possible formulation
is about an army barber. An army barber is supposed to shave all soldiers who
do not shave themselves—should he, as one of the soldiers, shave himself or not?
This paradox can be translated into a rigorous mathematical language and it
implies the inconsistency of notions like “the set of all sets”.
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theory of sets has been rebuilt on a formalized basis, where all proper-

ties of sets are derived formally from several precisely formulated basic

assumptions (axioms). For the sets used in this text, which are mostly
finite, we need not be afraid of any paradoxes, and so we can keep
relying on the intuitive concept of a set.

The set with elements 1, 37, and 55 is written as {1,37,55}. This,
and also the notations {37,1,55} and {1, 37,1, 55,55, 1}, express the
same thing. Thus, a multiple occurrence of the same element is ign-
ored: the same element cannot be contained twice in the same set!
Three dots (an ellipsis) in {2, 4, 6,8, ...} mean “and further similarly,
using the same pattern”, i.e. this notation means the set of all even
natural numbers. The appropriate pattern should be apparent at
first sight. For instance, {2!,22 23 ...} is easily understandable as
the set of all powers of 2, while {2,4,8,...} may be less clear.

Ordered and unordered pairs. The symbol {z,y} denotes the
set containing exactly the elements z and y, as we already know. In
this particular case, the set {z,y} is sometimes called the unordered
pair of  and y. Let us recall that {z,y} is the same as {y,x}, and
if z =y, then {x,y} is a 1-element set.

We also introduce the notation (z,y) for the ordered pair of
x and y. For this construct, the order of the elements = and y is
important. We thus assume the following;:

(z,y) = (2,t) if and only if x = z and y = ¢. (1.1)

Interestingly, the ordered pair can be defined using the notion of
unordered pair, as follows:

(z,y) = {{z}, {z, y}}-

Verify that ordered pairs defined in this way satisfy the condition (1.1).
However, in this text it will be simpler for us to consider (z, y) as another
primitive notion.

Similarly, we write (z1, z2, ..., xy) for the ordered n-tuple consist-
ing of elements z1, 2o, ..., T,. A particular case of this convention is
writing a point in the plane with coordinates z and y as (z,y), and
similarly for points or vectors in higher-dimensional spaces.

Defining sets. More complicated and interesting sets are usually
created from known sets using some rule. The sets of all squares of
natural numbers can be written

{i%: i e N}
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or also
{n € N: there exists k € N such that k% = n}
or using the symbol 3 for “there exists”:
{neN: Ik e N(k* =n)}.

Another example is a formal definition of the open interval (a,b)
introduced earlier:

(a,b) ={z e R: a <z < b}.

Note that the symbol (a,b) may mean either the open interval, or
also the ordered pair consisting of a and b. These two meanings must
(and usually can) be distinguished by the context. This is not at all
uncommon in mathematics: many symbols, like parentheses in this case,
are used in several different ways. For instance, (a,b) also frequently
denotes the greatest common divisor of natural numbers a and b (but
we avoid this meaning in this book).

With modern typesetting systems, it is no problem to use any kind
of alphabets and symbols including hieroglyphs, so one might think of
changing the notation in such cases. But mathematics tends to be rather
conservative and the existing literature is vast, and so such notational
inventions are usually short-lived.

The empty set. An important set is the one containing no element
at all. There is just one such set, and it is customarily denoted by ()
and called the empty set. Let us remark that the empty set can be
an element of another set. For example, {(} is the set containing the
empty set as an element, and so it is not the same set as (!

Set systems. In mathematics, we often deal with sets whose ele-
ments are other sets. For instance, we can define the set

M = {{17 2}7 {17 2, 3}7 {273a 4}7 {4}}7

whose elements are 4 sets of natural numbers, more exactly 4 subsets
of the set {1,2,3,4}. One meets such sets in discrete mathematics
quite frequently. To avoid saying a “set of sets”, we use the notions
set system or family of sets. We could thus say that M is a system of
sets on the set {1,2,3,4}. Such set systems are sometimes denoted
by calligraphic capital letters, such as M.

However, it is clear that such a distinction using various types of let-

ters cannot always be quite consistent—what do we do if we encounter
a set, of sets of sets?
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The system consisting of all possible subsets of some set X is
denoted by the symbol® 2% and called the power set of X. Another
notation for the power set common in the literature is P(X).

Set size. A large part of this book is devoted to counting various
kinds of objects. Hence a very important notation for us is that for
the number of elements of a finite set X. We write it using the same
symbol as for the absolute value of a number: | X|.

A more general notation for sums and products. Sometimes it
is advantageous to use a more general way to write down a sum than
using the pattern ;" | a;. For instance,

>

i€{1,3,5,7}

means the sum 12 + 32 4+ 52 + 72. Under the summation sign, we
first write the summation variable and then we write out the set of
values over which the summation is to be performed. We have a lot
of freedom in denoting this set of values. Sometimes it can in part
be described by words, as in the following;:

Z i=24+3+5+7.

i 1<i<10
1 a prime
Should the set of values for the summation be empty, we define the
value of the sum as 0, no matter what appears after the summation
sign. For example:

=1 1€{2,4,6,8}
i odd
A similar “set notation” can also be employed for products. An
empty product, such as [] 27, is always defined as 1 (not
0 as for an empty sum).

§i2<j<1

Operations with sets. Using the primitive notion of set member-
ship, €, we can define further relations among sets and operations

3This notation may look strange, but it is traditional and has its reasons.
For instance, it helps to remember that an n-element set has 2" subsets; see
Proposition 3.1.2.
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with sets. For example, two sets X and Y are considered identical
(equal) if they have the same elements. In this case we write X =Y.

Other relations among sets can be defined similarly. If XY are
sets, X C Y (in words: “X is a subset of Y”) means that each
element of X also belongs to Y.

The notation X C Y sometimes denotes that X is a subset of ¥V
but X is not equal to Y. This distinction between C and C is not quite
unified in the literature, and some authors may use C synonymously
with our C.

The notations X UY (the union of X and Y) and X NY (the
intersection of X and Y') can be defined as follows:

XUY={z:z€XorzeY}, XnNY={z:z€XandzeY}.

If we want to express that the sets X and Y in the considered union
are disjoint, we write the union as XUY. The expression X \ Y is the
difference of the sets X and Y, i.e. the set of all elements belonging
to X but not to Y.

Enlarged symbols U and N may be used in the same way as the
symbols > and []. So, if X7, Xo,..., X, are sets, their union can be
written

Ux (1.2)

and similarly for intersection.

Note that this notation is possible (or correct) only because the
operations of union and intersection are associative; that is, we have

Xn(Ynz)=(XnYy)nZz

and
Xuuz)=(Xuy)uz

for any triple X,Y, Z of sets. As a consequence, the way of “parenthe-
sizing” the union of any 3, and generally of any n, sets is immaterial,
and the common value can be denoted as in (1.2). The operations U
and N are also commutative, in other words they satisfy the relations

XNY=YnX,

XUuY =YUX.

The commutativity and the associativity of the operations U and N are
complemented by their distributivity. For any sets X,Y. Z
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we have
XNYuz)=XnY)u(Xn2z),
XUulnzZ)y=(XUuY)Nn(XU2).
The validity of these relations can be checked by proving that any
element belongs to the left-hand side if and only if it belongs to the right-

hand side. The relations can be generalized for an arbitrary number of
sets as well. For instance,

n n

AN <UX1) = U(AmXi);

=1 i=1

Au(ﬂX) ﬁ (AU X;).

Such relations can be proved by induction; see Section 1.3 below. Other
popular relations for sets are

X\(AUB) = (X\A)N(X\B) and X\(ANB)=(X\A)U(X\B)

(the so-called de Morgan laws), and their generalizations

1 (Ua) =N

X\ (ﬂA) U 4).
=1
The last operation to be introduced here is the Cartesian product,
denoted by X x Y, of two sets X and Y. The Cartesian product of X
and Y is the set of all ordered pairs of the form (z,y), where z € X
and y € Y. Written formally,

XxY={(z,y): e X, yeY}.

Note that generally X xY is not the same as Y x X, i.e. the operation
is not commutative.

The name “Cartesian product” comes from a geometric interpreta-
tion. If, for instance, X =Y = R, then X X Y can be interpreted as all
points of the plane, since a point in the plane is uniquely described by
an ordered pair of real numbers, namely its Cartesian coordinates*—
the x-coordinate and the y-coordinate (Fig. 1.1a). This geometric view
can also be useful for Cartesian products of sets whose elements are not
numbers (Fig. 1.1b).

4These are named after their inventor, René Descartes.
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Y XxY
3e ‘e ° ° °
(a,b) (a,3) (b,3)
ad-e °
20 ° ° ° °
(c,2)
le ) ° ° ()
] ° ° ° o X
b a b c d

(a) (b)

Fig. 1.1 Hlustrating the Cartesian product: (a) R xR; (b) X x Y for finite
sets X,Y.

The Cartesian product of a set X with itself, i.e. X x X, may

also be denoted by X?2.

Exercises

1.

Which of the following formulas are correct?
() 5] = 5] +n.

(b) 245 = 5] + L5],
(¢) [(lz])] = [=] (for a real number x),
(d) [(Le] + DT = Lz] + L]

. *Prove that the equality |\/z| = |[+/|z]] holds for any positive real

number z.

. (a) Define a “parenthesizing” of a union of n sets |J;_; X;. Similarly,

define a “parenthesizing” of a sum of n numbers > | a;.

(b) Prove that any two parenthesizings of the intersection (), X;
yield the same result.

(¢) How many ways are there to parenthesize the union of 4 sets
AuBUCUD?

(d) **Try to derive a formula or some other way to count the number
of ways to parenthesize the union of n sets U?:l X;.

. True or false? If 2X = 2Y holds for two sets X and Y, then X =Y.

. Is a “cancellation” possible for the Cartesian product? That is, if

X xY = X x Z holds for some sets X,Y, 7, does it necessarily fol-
low that Y = 27

. Prove that for any two sets A, B we have

(A\B)U(B\ A) = (AUB)\ (AN B).
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7. *Consider the numbers 1,2,...,1000. Show that among any 501 of
them, two numbers exist such that one divides the other one.

8. In this problem, you can test your ability to discover simple but “hid-
den” solutions. Divide the following figure into 7 parts, all of them con-
gruent (they only differ by translation, rotation, and possibly by a mir-
ror reflection). All the bounding segments in the figure have length 1,
and the angles are 90, 120, and 150 degrees.

N
N

1.3 Mathematical induction and other proofs

Let us imagine that we want to calculate, say, the sum 1+ 2 4 2% +
23+ ... 427 = Y1 2¢ (and that we can’t remember a formula
for the sum of a geometric progression). We suspect that one can
express this sum by a nice general formula valid for all the n. By
calculating numerical values for several small values of n, we can
guess that the desired formula will most likely be 2"+ — 1. But even
if we verify this for a million specific values of n with a computer, this
is still no proof. The million-and-first number might, in principle, be
a counterexample. The correctness of the guessed formula for all n
can be proved by so-called mathematical induction. In our case, we
can proceed as follows:

1. The formula Y1 ;2" = 2""! — 1 holds for n = 1, as one can
check directly.

2. Let us suppose that the formula holds for some value n = ny.
We prove that it also holds for n = ng + 1. Indeed, we have

no+1 no
Y 2= <22> 4 gnotl,
=0 1=0

The sum in parentheses equals 2™ +! — 1 by our assumption (the
validity for n = ng). Hence

no+1
Z 21 — 2TLO+1 14+ 2n0+1 —9. 2n0+l 1= 2n0+2 _1.
i=0

This is the required formula for n = ng + 1.
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This establishes the validity of the formula for an arbitrary n: by
step 1, the formula is true for n = 1, by step 2 we may thus infer
it is also true for n = 2 (using step 2 with ng = 1), then, again by
step 2, the formula holds for n = 3. .., and in this way we can reach
any natural number. Note that this argument only works because
the value of ng in step 2 was quite arbitrary. We have made the
step from ng to ng+ 1, where any natural number could equally well
appear as ng.

Step 2 in this type of proof is called the inductive step. The ass-
umption that the statement being proved is already valid for some
value n = nyg is called the inductive hypothesis.

One possible general formulation of the principle of mathematical
induction is the following:

1.3.1 Proposition. Let X be a set of natural numbers with the
following properties:

(i) The number 1 belongs to X.
(ii) If some natural number n is an element of X, then the number
n + 1 belongs to X as well.

Then X is the set of all natural numbers (X = N).

In applications of this scheme, X would be the set of all numbers
n such that the statement being proved, S(n), is valid for n.

The scheme of a proof by mathematical induction has many vari-
ations. For instance, if we need to prove some statement for all n > 2,
the first step of the proof will be to check the validity of the state-
ment for n = 2. As an inductive hypothesis, we can sometimes use
the validity of the statement being proved not only for n = ng, but
for all n < ng, and so on; these modifications are best mastered by
examples.

Mathematical induction can either be regarded as a basic property of
natural numbers (an axiom, i.e. something we take for granted without

a proof), or be derived from the following other basic property (axiom):

Any nonempty subset of natural numbers possesses a smallest element.

This is expressed by saying that the usual ordering of natural numbers

by magnitude is a well-ordering. In fact, the principle of mathematical

induction and the well-ordering property are equivalent to each other,?
and either one can be taken as a basic axiom for building the theory of
natural numbers.

5 Assuming that each natural number n > 1 has a unique predecessor n — 1.
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Proof of Proposition 1.3.1 from the well-ordering property. For
contradiction, let us assume that a set X satisfies both (i) and (ii), but
it doesn’t contain all natural numbers. Among all natural numbers n
not lying in X, let us choose the smallest one and denote it by nyg.
By condition (i) we know that ng > 1, and since ny was the smallest
possible, the number ny — 1 is an element of X. However, using (ii) we
get that ng is an element of X, which is a contradiction. m|

Let us remark that this type of argument (saying “Let ng be the
smallest number violating the statement we want to prove” and deriv-
ing a contradiction, namely that a yet smaller violating number must
exist) sometimes replaces mathematical induction. Both ways, this one
and induction, essentially do the same thing, and it depends on the
circumstances or personal preferences which one is actually used.

We will use mathematical induction quite often. It is one of our
basic proof methods, and the reader can thus find many examples
and exercises on induction in subsequent chapters.

Mathematical proofs and not-quite proofs. Mathematical proof
is an amazing invention. It allows one to establish the truth of a
statement beyond any reasonable doubt, even when the statement
deals with a situation so complicated that its truth is inaccessible to
direct evidence. Hardly anyone can see directly that no two natural
numbers m,n exist such that ' = V2 and yet we can trust this
fact completely, because it can be proved by a chain of simple logical
steps.

Students often don’t like proofs, even students of mathematics.
One reason might be that they have never experienced satisfaction
from understanding an elegant and clever proof or from making a
nice proof by themselves. One of our main goals is to help the reader
to acquire the skill of rigorously proving simple mathematical state-
ments.

A possible objection is that most students will never need such
proofs in their future jobs. We believe that learning how to prove math-
ematical theorems helps to develop useful habits in thinking, such as
working with clear and precise notions, exactly formulating thoughts
and statements, and not overlooking less obvious possibilities. For ins-
tance, such habits are invaluable for writing software that doesn’t crash
every time the circumstances become slightly non-standard.

The art of finding and writing proofs is mostly taught by exam-
ples,® by showing many (hopefully) correct and “good” proofs to the

SWe will not even try to say what a proof is and how to do one!
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student and by pointing out errors in the student’s own proofs. The
latter “negative” examples are very important, and since a book is
a one-way communication device, we decided to include also a few
negative examples in this book, i.e. students’ attempts at proofs with
mistakes which are, according to our experience, typical. These int-
entionally wrong proofs are presented in a special font like this. In the
rest of this section, we discuss some common sources of errors. (We
hasten to add that types of errors in proofs are as numerous as grains
of sand, and by no means do we want to attempt any classification.)

One quite frequent situation is where the student doesn’t under-
stand the problem correctly. There may be subtleties in the problem’s
formulation which are easy to overlook, and sometimes a misunder-
standing isn’t the student’s fault at all, since the author of the prob-
lem might very well have failed to see some double meaning. The only
defense against this kind of misunderstanding is to pay the utmost
attention to reading and understanding a problem before trying to
solve it. Do a preliminary check: does the problem make sense in the
way you understand it? Does it have a suspiciously trivial solution?
Could there be another meaning?

With the current abundance of calculators and computers, errors are
sometimes caused by the uncritical use of such equipment. Asked how
many zeros does the decimal notation of the number 50! = 50-49-48-. . .-1
end with, a student answered 60, because a pocket calculator with an
8-digit display shows that 50! = 3.04140-1054. Well, a more sophisticated
calculator or computer programmed to calculate with integers with ar-

bitrarily many digits would solve this problem correctly and calculate
that

50!=30414093201713378043612608166064768844377641568960512000000000000

with 12 trailing zeros. Several software systems can even routinely solve
such problems as finding a formula for the sum 12-21422.22432.234.. .+
n?2", or for the number of binary trees on n vertices (see Section 12.4).
But even programmers of such systems can make mistakes and so it’s
better to double-check such results. Moreover, the capabilities of these
systems are very limited; artificial intelligence researchers will have to
make enormous progress before they can produce computers that can
discover and prove a formula for the number of trailing zeros of n!, or
solve a significant proportion of the exercises in this book, say.

Next, we consider the situation where a proof has been written
down but it has a flaw, although its author believes it to be satisfac-
tory.
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In principle, proofs can be written down in such detail and in such
a formal manner that they can be checked automatically by a com-
puter. If such a completely detailed and formalized proof is wrong,
some step has to be clearly false, but the catch is that formalizing
proofs completely is very laborious and impractical. All textbook
proofs and problem solutions are presented somewhat informally.

While some informality may be necessary for a reasonable pre-
sentation of a proof, it may also help to hide errors. Nevertheless,
a good rule for writing and checking proofs is that every statement
in a correct proof should be literally true. Errors can often be det-
ected by isolating a specific false statement in the proof, a mistake
in calculation, or a statement that makes no sense (“Let ¢1, {2 be two
arbitrary lines in the 3-dimensional space, and let p be a plane contain-
ing both of them...” etc.). Once detected and brought out into the
light, such errors become obvious to (almost) everyone. Still, they
are frequent. If, while trying to come up with a proof, one discovers
an idea seemingly leading to a solution and shouts “This must be
IT!”, caution is usually swept aside and one is willing to write down
the most blatant untruths. (Unfortunately, the first idea that comes
to mind is often nonsense, rather than “it”, at least as far as the
authors’ own experience with problem solving goes.)

A particularly frequent mistake, common perhaps to all mathe-
maticians of the world, is a case omission. The proof works for some
objects it should deal with, but it fails in some cases the author over-
looked. Such a case analysis is mostly problem specific, but one keeps
encountering variations on favorite themes. Dividing an equation by
x — y is only allowed for x # y, and the x = y case must be treated
separately. An intersection of two lines in the plane can only be used
in a proof if the lines are not parallel. Deducing a? > b? from a > b
may be invalid if we know nothing about the sign of a and b, and so
on and so on.

Many proofs created by beginners are wrong because of a confused
application of theorems. Something seems to follow from a theorem
presented in class or in a textbook, say, but in reality the theorem
says something slightly different, or some of its assumptions don’t
hold. Since we have covered no theorems worth mentioning so far, let
us give an artificial geometric example: “Since ABC' is an isosceles
triangle with the sides adjacent to A having equal length, we have
|AB|? + |AC|? = |BC|? by the theorem of Pythagoras.” Well, wasn’t
there something about a right angle in Pythagoras’ theorem?
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A rich source of errors and misunderstandings is relying on unp-
roved statements.

Many proofs, including correct and even textbook ones, contain un-
proved statements intentionally, marked by clauses like “obviously...”.
In an honest proof, the meaning of such clauses should ideally be “I,
the author of this proof, can see how to prove this rigorously, and since
I consider this simple enough, I trust that you, my reader, can also fill
in all the details without too much effort”. Of course, in many mathe-
matical papers, the reader’s impression about the author’s thinking is
more in the spirit of “I can see it somehow since I’ve been working on
this problem for years, and if you can’t it’s your problem”. Hence omit-
ting parts of proofs that are “clear” is a highly delicate social task, and
one should always be very careful with it. Also, students shouldn’t be
surprised if their teacher insists that such an “obvious” part be proved
in detail. After all, what would be a better hiding place for errors in a
proof than in the parts that are missing?

A more serious problem concerns parts of a proof that are omitted
unconsciously. Most often, the statement whose proof is missing is
not even formulated explicitly.” For a teacher, it may be a very chal-
lenging task to convince the proof’s author that something is wrong
with the proof, especially when the unproved statement is actually
true.

One particular type of incomplete proof, fairly typical of students’
proofs in discrete mathematics, could be labeled as mistaking the par-
ticular for the general. To give an example, let us consider the following
Mathematical Olympiad problem:

1.3.2 Problem. Let n > 1 be an integer. Let M be a set of closed

intervals. Suppose that the endpoints u,v of each interval [u,v] € M

are natural numbers satisfying 1 < u < v < n, and, moreover, for any

two distinct intervals I, I’ € M, one of the following possibilities occurs:

INI =0,or I C I',or I' C I (i.e. two intervals must not partially

overlap). Prove that | M| <n — 1.

An insufficient proof attempt. In order to construct an M as large
as possible, we first insert as many unit-length intervals as possible, as in
the following picture:

"Even proofs by the greatest mathematicians of the past suffer from such
incompleteness, partly because the notion of a proof has been developing over
the ages (towards more rigor, that is).
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These [n/2] intervals are all disjoint. Now any other interval in M must
contain at least two of these unit intervals (or, for n odd, possibly the
last unit interval plus the point that remains). Hence, to get the maximum
number of intervals, we put in the next “layer” of shortest possible intervals,
as illustrated below:

y
1

1 2 ... 13

We continue in this manner, adding one layer after another, until we finally
add the last layer consisting of the whole interval [1,n]:

1 2 ... 13

It remains to show that the set M created in this way has at most n — 1
intervals. We note that every interval I in the kth layer contains a point of
the form 7+ % 1 <4 < n—1, that was not contained in any interval of the
previous layers, because the space between the two intervals in the previous
layer was not covered before adding the kth layer. Therefore, |[M| <n—1
as claimed. O

This “proof” looks quite clever (after all, the way of counting the
intervals in the particular M constructed in the proof is quite elegant).
So what’s wrong with it? Well, we have shown that one particular M
satisfies |M| < n — 1. The argument tries to make the impression of
showing that this particular M is the worst possible case, i.e. that no
other M may have more intervals, but in reality it doesn’t prove any-
thing like that! For instance, the first step seems to argue that an M
with the maximum possible number of intervals should contain |n/2|
unit-length intervals. But this is not true, as is witnessed by M = {[1, 2],
[1,3], [1,4],...,[1,n]}. Saving the “proof” above by justifying its various
steps seems more difficult than finding another, correct, proof. Although
the demonstrated “proof” contains some useful hints (the counting idea
at the end of the proof can in fact be made to work for any M), it’s
still quite far from a valid solution.

The basic scheme of this “proof”, apparently a very tempting one,
says “this object X must be the worst one”, and then proves that this
particular X is OK. But the claim that nothing can be worse than X is
not substantiated (although it usually looks plausible that by construct-
ing this X, we “do the worst possible thing” concerning the statement
being proved).

Another variation of “mistaking the particular for the general” often
appears in proofs by induction, and is shown in several examples in
Sections 5.1 and 6.3.
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Exercises

1.

Prove the following formulas by mathematical induction:
(a) 1+2434+---+n=n(n+1)/2
(b) S -2 = (n—1)27+ 4+ 2.

. The numbers Fy, Fy, F, ... are defined as follows (this is a definition

by mathematical induction, by the way): Fy = 0, F} = 1, F,10 =
Foi1+ F, forn=20,1,2,... Prove that for any n > 0 we have F}, <
(1 ++/5)/2)""! (see also Section 12.3).

(a) Let us draw n lines in the plane in such a way that no two are
parallel and no three intersect in a common point. Prove that the
plane is divided into exactly n(n + 1)/2 + 1 parts by the lines.

(b) *Similarly, consider n planes in the 3-dimensional space in gen-
eral position (no two are parallel, any three have exactly one point in
common, and no four have a common point). What is the number of
regions into which these planes partition the space?

Prove de Moivre’s theorem by induction: (cos a+isina)™ = cos(na) +
isin(na). Here i is the imaginary unit.

. In ancient Egypt, fractions were written as sums of fractions with nu-

merator 1. For instance, % = % + %. Consider the following algorithm

for writing a fraction 7% in this form (1 < m < n): write the fraction

ﬁ, calculate the fraction > — W7 and if it is nonzero repeat the
same step. Prove that this algorithm always finishes in a finite number

of steps.

*Consider a 2™ x 2" chessboard with one (arbitrarily chosen) square
removed, as in the following picture (for n = 3):

H |

Prove that any such chessboard can be tiled without gaps or overlaps
by L-shapes consisting of 3 squares each.

Let n > 2 be a natural number. We consider the following game. Two
players write a sequence of Os and 1s. They start with an empty line
and alternate their moves. In each move, a player writes 0 or 1 to
the end of the current sequence. A player loses if his digit completes
a block of n consecutive digits that repeats itself in the sequence for
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10.

11.
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the second time (the two occurrences of the block may overlap). For
instance, for n = 4, a sequence produced by such a game may look
as follows: 00100001101011110011 (the second player lost by the last
move because 0011 is repeated).

(a) Prove that the game always finishes after finitely many steps.

(b) *Suppose that n is odd. Prove that the second player (the one who
makes the second move) has a winning strategy.

(¢) *Show that for n = 4, the first player has a winning strategy.
Unsolved question: Can you determine who has a winning strategy for
some even n > 47

. *On an infinite sheet of white graph paper (a paper with a square

grid), n squares are colored black. At moments ¢t = 1,2,..., squares
are recolored according to the following rule: each square gets the color
occurring at least twice in the triple formed by this square, its top
neighbor, and its right neighbor. Prove that after the moment ¢t = n,
all squares are white.

. At time 0, a particle resides at the point 0 on the real line. Within 1

second, it divides into 2 particles that fly in opposite directions and
stop at distance 1 from the original particle. Within the next second,
each of these particles again divides into 2 particles flying in opposite
directions and stopping at distance 1 from the point of division, and so
on. Whenever particles meet they annihilate (leaving nothing behind).
How many particles will there be at time 2! + 17

*Let M C R be a set of real numbers, such that any nonempty subset
of M has a smallest number and also a largest number. Prove that M
is necessarily finite.

We will prove the following statement by mathematical induction: Let
l1,4s,...,¢, be n > 2 distinct lines in the plane, no two of which are
parallel. Then all these lines have a point in common.

1. For n = 2 the statement is true, since any 2 nonparallel lines intersect.

2. Let the statement hold for n = ng, and let us have n = ng + 1
lines ¢1,...,¢, as in the statement. By the inductive hypothesis, all these
lines but the last one (i.e. the lines ¢1,¢s,...,¢,_1) have some point
in common; let us denote this point by z. Similarly the n — 1 lines
by, 0o, ..., 0y_o,L, have a point in common; let us denote it by y. The
line £ lies in both groups, so it contains both x and y. The same is true
for the line £,,_5. Now #1 and ¢, _ intersect at a single point only, and
so we must have x = y. Therefore all the lines ¢y, ..., ¢, have a point in
common, namely the point z.

Something must be wrong. What is it?
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12. Let nq,ns9,...,n; be natural numbers, each of them at least 1, and let
ni+ng—+---+ng = n. Prove that n+n3+---+n? < (n—k+1)>+k—1.

“Solution”: In order to make Zle n? as large as possible, we must set
all the n; but one to 1. The remaining one is therefore n — k + 1, and in
this case the sum of squares is (n — k + 1)% + k — 1.

Why isn’t this a valid proof? *Give a correct proof.
13. *Give a correct proof for Problem 1.3.2.

14. *Let n > 1 and k£ be given natural numbers. Let Iy, 1s,..., I, be
closed intervals (not necessarily all distinct), such that for each interval
I; = [uj,v;], u; and v; are natural numbers with 1 < u; < v; < n,
and, moreover, no number is contained in more than & of the intervals
Ii,...,I,,. What is the largest possible value of m?

1.4 Functions

The notion of a function is a basic one in mathematics. It took a long
time for today’s view of functions to emerge. For instance, around
the time when differential calculus was invented, only real or com-
plex functions were considered, and an “honest” function had to be
expressed by some formula, such as f(z) = 22 + 4, f(z) = /sin(x/7),
f(z) = [ (sint/t)dt, f(z) = Yo" (" /n!), and so on. By today’s stan-
dards, a real function may assign to each real number an arbitrary real
number without any restrictions whatsoever, but this is a relatively
recent invention.

Let X and Y be some quite arbitrary sets. Intuitively, a function f is
“something” assigning a unique element of Y to each element of X.
To depict a function, we can draw the sets X and Y, and draw an
arrow from each element x € X to the element y € Y assigned to it:

(0% .7

B 8

v 15
X 6 Y

Note that each element of X must have exactly one outgoing
arrow, while the elements of Y may have none, one, or several ingoing
arrows.

Instead of saying that a function is “something”, it is better to
define it using objects we already know, namely sets and ordered
pairs.
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1.4.1 Definition. A function f from a set X into a set Y is a set
of ordered pairs (z,y) with x € X and y € Y (in other words, a
subset of the Cartesian product X x Y ), such that for any x € X, f
contains exactly one pair with first component x.

Of course, an ordered pair (z,y) being in f means just that the
element z is assigned the element y. We then write y = f(z), and
we also say that f maps = to y or that y is the image of x.

For instance, the function depicted in the above picture consists
of the ordered pairs (a, 8), (3,8), (7,15) and (9, 8).

A function, as a subset of the Cartesian product X x Y, is also
drawn using a graph. We depict the Cartesian product as in Fig. 1.1,
and then we mark the ordered pairs belonging to the function. This
is perhaps the most usual way used in high school or in calculus. The
following picture shows a graph of the function f: R — R given by
flo)=a—az+1:

1

/-1 1

The fact that f is a function from a set X into a set Y is written
as follows:

fr X->Y.

And the fact that the function f assigns some element y to an ele-
ment x can also be written

frax—uy.

We could simply write y = f(x) instead. So why this new notation?
The symbol — is advantageous when we want to speak about some
function without naming it. (Those who have programmed in LISP,
Mathematica, or a few other programming languages might recall the
existence of unnamed functions in these languages.) For instance, it is
not really correct to say “consider the function z2”, since we do not say
what the variable is. In this particular case, one can be reasonably sure
that we mean the function assigning 22 to each real number z, but if we
say “consider the function zy? 4+ 523y”, it is not clear whether we mean
the dependence on y, on z, or on both. By writing y — 2zy? + 523y, we
indicate that we want to study the dependence on y, treating z as some
parameter.
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Instead of “function”, the words “mapping” or “map” are used with

the same meaning.®

Sometimes we also write f(X) for the set {f(x): z € X} (the
set of those elements of Y that are images of something). Also other
terms are usually introduced for functions. For example, X is called
the domain and Y is the range, etc., but here we try to keep the
terminology and formalism to a minimum.

We definitely need to mention that functions can be composed.

1.4.2 Definition (Composition of functions). If f: X — Y and
g: Y — Z are functions, we can define a new function h: X — Z by

h(z) = g(f(x))

for each x € X. In words, to find the value of h(x), we first apply f
to x and then we apply g to the result.

The function h (check that h is indeed a function) is called the
composition of the functions ¢ and f and it is denoted by go f. We
thus have

(9 o f) () = g(f(x))
for each x € X.

The composition of functions is associative but not commutative.
For example, if g o f is well defined, f o g need not be. In order that
two functions can be composed, the “middle set” must be the same.

Composing functions can get quite exciting. For example, consider
the mapping f: R? — R? (i.e. mapping the plane into itself) given by

fi(z,y)— <sin(ax) + bsin(ay), sin(cz) + dsin(cy))

with a = 2.879879, b = 0.765145, ¢ = —0.966918, d = 0.744728. Except
for the rather hairy constants, this doesn’t look like a very complicated
function. But if one takes the initial point p = (0.1,0.1) and plots
the first several hundred thousand or million points of the sequence p,

f), f(f®), f(f(f())),..., a picture like Fig. 1.2 emerges.® This is

8In some branches of mathematics, the word “function” is reserved for func-
tion into the set of real or complex numbers, and the word mapping is used for
functions into arbitrary sets. For us, the words “function” and “mapping” will
be synonymous.

9To be quite honest, the way such pictures are generated by a computer is
actually by iterating an approximation to the mapping given by the formula,
because of limited numerical precision.
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Fig. 1.2 The “King’s Dream” fractal (formula taken from the book by C.
Pickover: Chaos in Wonderland, St Martin’s Press, New York 1994).

one of the innumerable species of the so-called fractals. There seems
to be no universally accepted mathematical definition of a fractal, but
fractals are generally understood as complicated point sets defined by
iterations of relatively simple mappings. The reader can find colorful
and more sophisticated pictures of various fractals in many books on
the subject or download them from the Internet. Fractals can be not
only pleasant to the eye (and suitable for killing an unlimited amount of
time by playing with them on a personal computer) but also important
for describing various phenomena in nature.

After this detour, let us return to the basic definitions concerning

functions.

1.4.3 Definition (Important special types of functions). A
function f: X — Y is called
e a one-to-one function if x # y implies f(z) # f(y),
e a function onto if for every y € Y there exists x € X satisfying
f(z) =y, and
e a bijective function, or bijection, if f is one-to-one and onto.

A one-to-one function is also called an injective function or an
injection, and a function onto is also called a surjective function or
a surjection.
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In a pictorial representation of functions by arrows, these types
of functions can be recognized as follows:

e for a one-to-one function, each point y € Y has at most one
ingoing arrow,

e for a function onto, each point y € Y has at least one ingoing
arrow, and

e for a bijection, each point y € Y has exactly one ingoing arrow.

The fact that a function f: X — Y is one-to-one is sometimes
expressed by the notation
[ XY

The — symbol is a combination of the inclusion sign C with the map-
ping arrow —. Why? If f: XY is an injective mapping, then the set
Z = f(X) can be regarded as a “copy” of the set X within Y (since f
considered as a map X — Z is a bijection), and so an injective map-
ping f: X<—Y can be thought of as a “generalized inclusion” of X in
Y. This point can probably be best appreciated in more abstract and
more advanced parts of mathematics like topology or algebra.

There are also symbols for functions onto and for bijections, but
these are still much less standard in the literature than the symbol for
an injective function, so we do not introduce them.

Since we will be interested in counting objects, bijections will be
especially significant for us, for the following reason: if X and Y are sets
and there exists a bijection f: X — Y, then X and Y have the same
number of elements. Let us give a simple example of using a bijection
for counting (more sophisticated ones come later).

1.4.4 Example. How many 8-digit sequences consisting of digits 0
through 9 are there? How many of them contain an even number of
odd digits?

Solution. The answer to the first question is 10%. One easy way of
seeing this is to note that each eight-digit sequence can be read as the
decimal notation of an integer number between 0 and 10% — 1, and
conversely, each such integer can be written in decimal notation and, if
necessary, padded with zeros on the left to produce an 8-digit sequence.
This defines a bijection between the set {0,1,...,10% — 1} and the set
of all 8-digit sequences.

Well, this bijection was perhaps too simple (or, rather, too custom-
ary) to impress anyone. What about the 8-digit sequences with an even
number of odd digits? Let E be the set of all these sequences (E for
“even”), and let O be the remaining ones, i.e. those with an odd num-
ber of odd digits. Consider any sequence s € FE, and define another
sequence, f(s), by changing the first digit of s: 0 is changed to 1, 1 to
2,...,8t09,and 9 to 0. It is easy to check that the modified sequence
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f(s) has an odd number of odd digits and hence f is a mapping from
E to O. From two different sequences s, s’ € F, we cannot get the same
sequence by the described modification, so f is one-to-one. And any
sequence t € O is obtained as f(s) for some s € E, i.e. s arises from
t by changing the first digit “back”, by replacing 1 by 0, 2 by 1,...,
9 by 8, and 0 by 9. Therefore, f is a bijection and |E| = |O|. Since
|E| + |O| = 108, we finally have |E| =5 -107. O

In the following proposition, we prove some simple properties of
functions.
Proposition. Let f: X — Y and g: Y — Z be functions. Then
(i) If f,g are one-to-one, then g o f is also a one-to-one function.
(ii) If f, g are functions onto, then g o f is also a function onto.
(iii) If f, g are bijective functions, then g o f is a bijection as well.
(iv) For any function f: X — Y there exist a set Z, a one-to-one func-
tion h: Z—Y , and a function onto g: X — Z, such that f = hog.
(So any function can be written as a composition of a one-to-one
function and a function onto.)

Proof. Parts (i), (ii), (iii) are obtained by direct verification from the
definition. As an example, let us prove (ii).

We choose z € Z, and we are looking for an « € X satisfying
(g o f)(z) = z. Since g is a function onto, there exists a y € Y such that
g(y) = z. And since f is a function onto, there exists an z € X with
f(z) = y. Such an z is the desired element satisfying (g o f)(z) = z.

The most interesting part is (iv). Let Z = f(X) (so Z C Y). We
define mappings g: X — Z and h: Z — Y as follows:

g(x) = f(z) forzeX
h(z) ==z for z € Z.
Clearly g is a function onto, A is one-to-one, and f = h o g. O

Finishing the remaining parts of the proof may be a good exercise
for understanding the notions covered in this section.

Inverse function. If f: X — Y is a bijection, we can define a
function g: Y — X by setting ¢g(y) = = if = is the unique element
of X with y = f(z). This g is called the inverse function of f, and
it is commonly denoted by f~!. Pictorially, the inverse function is
obtained by reversing all the arrows. Another equivalent definition
of the inverse function is given in Exercise 4. It may look more com-
plicated, but from a certain “higher” mathematical point of view it
is better.
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Exercises

1. Show that if X is a finite set, then a function f: X — X is one-to-one
if and only if it is onto.

2. Find an example of:
(a) A one-to-one function f: N<—N which is not onto.
(b) A function f: N — N which is onto but not one-to-one.

3. Decide which of the following functions Z — Z are injective and which
are surjective: x — 1+, z— 1422, 2 — 1+ 23, 2 — 1+ 22 + 23
Does anything in the answer change if we consider them as functions
R — R? (You may want to sketch their graphs and/or use some
elementary calculus methods.)

4. For aset X, let idx: X — X denote the function defined by idx(x) =
x for all z € X (the identity function). Let f: X — Y be some func-
tion. Prove:

(a) A function g: Y — X such that go f = idx exists if and only if f
is one-to-one.

(b) A function g: Y — X such that f o g =idy exists if and only if f
is onto.

(¢) A function g: Y — X such that both fog=1idy and go f =idx
exist if and only if f is a bijection.

(d) If f: X — Y is a bijection, then the following three conditions are
equivalent for a function g: Y — X:

(i) g=f"
(ii) go f = idy, and
(iii) fog=idy.

5. (a) If go f is an onto function, does g have to be onto? Does f have
to be onto?

(b) If go f is a one-to-one function, does g have to be one-to-one? Does
f have to be one-to-one?

6. Prove that the following two statements about a function f: X — Y
are equivalent (X and Y are some arbitrary sets):
(i) f is one-to-one.
(ii) For any set Z and any two distinct functions ¢;: Z — X and
go: Z — X, the composed functions fog; and f o go are also distinct.
(First, make sure you understand what it means that two functions
are equal and what it means that they are distinct.)

7. In everyday mathematics, the number of elements of a set is under-
stood in an intuitive sense and no definition is usually given. In the
logical foundations of mathematics, however, the number of elements
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is defined via bijections: |X| = n means that there exists a bijection
from X to the set {1,2,...,n}. (Also other, alternative definitions of
set size exist but we will consider only this one here.)

(a) Prove that if X and Y have the same size according to this defini-
tion, then there exists a bijection from X to Y.

(b) Prove that if X has size n according to this definition, and there
exists a bijection from X to Y, then Y has size n too.

(¢c) *Prove that a set cannot have two different sizes m and n, m # n,
according to this definition. Be careful not to use the intuitive notion
of “size” but only the definition via bijections. Proceed by induction.

1.5 Relations

It is remarkable how many mathematical notions can be expressed using
sets and various set-theoretic constructions. It is not only remarkable
but also surprising, since set theory, and even the notion of a set itself,
are notions which appeared in mathematics relatively recently, and some
100 years ago, set theory was rejected even by some prominent mathe-
maticians. Today, set theory has entered the mathematical vocabulary
and it has become the language of all mathematics (and mathemati-
cians), a language which helps us to understand mathematics, with all
its diversity, as a whole with common foundations.

We will show how more complicated mathematical notions can
be built using the simplest set-theoretical tools. The key notion of a
relation,'® which we now introduce, is a common generalization of such
diverse notions as equivalence, function, and ordering.

1.5.1 Definition. A relation is a set of ordered pairs.!' If X and
Y are sets, any subset of the Cartesian product X x Y is called a
relation between X and Y. The most important case is X = Y;
then we speak of a relation on X, which is thus an arbitrary subset
RC X x X.

If an ordered pair (x,y) belongs to a relation R, i.e. (z,y) € R,
we say that x and y are related by R, and we also write zRy.

We have already seen an object which was a subset of a Cartesian
product, namely a function. Indeed, a function is a special type of
relation, where we require that any € X is related to precisely one

10As a mathematical object; you know “relation” as a word in common lan-
guage.

HTn more detail, we could say a binary relation (since pairs of elements are
being related). Sometimes also n-ary relations are considered for n # 2.
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N W

1 2 3 4

Fig. 1.3 A graphic presentation of the relation R = {(1,2), (2,4), (3,2),
(4,2), (4,4)} on the set {1,2,3,4}.

y € Y. In a general relation, an z € X can be related to several
elements of Y, or also to none.

Many symbols well known to the reader can be interpreted as rela-
tions in this sense. For instance, = (equality) and > (nonstrict inequal-
ity) are both relations on the set N of all natural numbers. The first
one consists of the pairs (1,1),(2,2),(3,3),..., the second one of the
pairs (1,1), (2,1), (2,2), (3,1), (3,2), (3,3), (4,1),... We could thus
also write (5,2) € > instead of the usual 5 > 2, which we usually don’t
do, however. Note that we had to specify the set on which the relation
>, say, is considered: as a relation on R it would be a quite different
set of ordered pairs.

Many interesting “real life” examples of relations come from various
kinds of relationships among people, e.g. “to be the mother of”, “to be
the father of”, “to be a cousin of” are relations on the set of all people,
usually well defined although not always easy to determine.

A relation R on a set X can be captured pictorially in (at least)
two quite different ways. The first way is illustrated in Fig. 1.3. The
little squares correspond to ordered pairs in the Cartesian product,
and for pairs belonging to the relation we have shaded the corre-
sponding squares. This kind of picture emphasizes the definition of
a relation on X and it captures its “overall shape”.

This picture is also very close in spirit to an alternative way of

describing a relation on a set X using the notion of a matrix.'? If R
is a relation on some n-element set X = {z1,22,...,2,} then R is

12An n x m matrix is a rectangular table of numbers with n rows and m
columns. Any reader who hasn’t met matrices yet can consult the Appendix for
the definitions and basic facts, or, preferably, take a course of linear algebra or
refer to a good textbook.
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completely described by an n x n matrix A = (a;;), where

Qi; = 1 if (xi,xj) €ER
[£27] =0 if (Z’i,l’j) gR

The matrix A is called the adjacency matriz of the relation R. For
instance, for the relation in Fig. 1.3, the corresponding adjacency matrix

would be
0 1 0 0
0 0 0 1
0 1 0 0
0 1 0 1

Note that this matrix is turned by 90 degrees compared to Fig. 1.3. This
is because, for a matrix element, the first index is the number of a row
and the second index is the number of a column, while for Cartesian
coordinates it is customary for the first coordinate to determine the
horizontal position and the second coordinate the vertical position.

The adjacency matrix is one possible computer representation of a
relation on a finite set.

Another picture of the same relation as in Fig. 1.3 is shown below:

e 30

Here the dots correspond to elements of the set X. The fact that
a given ordered pair (z,y) belongs to the relation R is marked by
drawing an arrow from x to y:

x Y

and, in the case x = y, by a loop:
)
A relation between X and Y can be depicted in a similar way:
X R
R

'l
—/
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This way was suggested for drawing functions in Section 1.4.

Composition of relations. Let X,Y, Z be sets, let R C X XY be a
relation between X and Y, and let S C Y X Z be a relation between
Y and Z. The composition of the relations R and S is the relation
T C X x Z defined as follows: for given x € X and z € Z, Tz holds
if and only if there exists some y € Y such that xRy and ySz. The
composition of relations R and S is usually denoted by Ro S.

The composition of relations can be nicely illustrated using a draw-
ing with arrows. In the following picture,

(o)
X R ’
(O .
~ ¥
— e
o« .
\_/ \_/

a pair (x,z) is in the relation R o S whenever one can get from x to z
along the arrows (i.e. via some y € ).

Have you noticed? Relations are composed in the same way as func-
tions, but the notation is unfortunately different! For relations it is cus-
tomary to write the composition “from left to right”, and for functions
it is usually written “from right to left”. Soif f: X - Y andg: Y — Z
are functions, their composition is written g o f, but if we understood
them as relations, we would write fog for the same thing! Both ways of
notation have their reasons, such a notation has been established his-
torically, and probably there is no point in trying to change it. In this
text, we will talk almost exclusively about composing functions.

Similarly as for functions, the composition is not defined for arbi-
trary two relations. In order to compose relations, they must have the
“middle” set in common (which was denoted by Y in the definition).
In particular, it may happen that R o S is defined while S o R makes
no sense! However, if both R and S are relations on the same set X,
their composition is always well defined. But also in this case the result
of composing relations depends on the order, and R o S is in general
different from S o R—see Exercise 2.

Exercises
1. Describe the relation R o R, if R stands for
(a) the equality relation “=” on the set N of all natural numbers,

(b) the relation “less than or equal” (“<”) on N,
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(c) the relation “strictly less” (“<”) on N,
(d) the relation “strictly less” (“<”) on the set R of all real numbers.

2. Find relations R, S on some set X such that Ro S # So R.

3. For a relation R on a set X we define the symbol R™ by induction:
R'=R, R""!' = Ro R".
(a) Prove that if X is finite and R is a relation on it, then there exist
r,s € N, r < s, such that R" = R?®.
(b) Find a relation R on a finite set such that R™ # R"*! for every
n € N.

(c) Show that if X is infinite, the claim (a) need not hold (i.e. a relation
R may exist such that all the relations R™, n € N, are distinct).

4. (a) Let X = {z1,29,...,z,} and Y = {y1,¥2,...,ym} be finite sets,
and let R C X x Y be a relation. Generalize the definition of the
adjacency matrix of a relation to this case.

(b) *Let X,Y, Z be finite sets, let R C X xY and S CY X Z be rel-
ations, and let Ar and Ag be their adjacency matrices, respectively.
If you have defined the adjacency matrix in (a) properly, the matrix
product ArAg should be well defined. Discover and describe the con-
nection of the composed relation Ro S to the matrix product AgAg.

5. Prove the associativity of composing relations: if R,S,T are relations
such that (RoS)oT is well defined, then Ro(SoT) is also well defined
and equals (Ro S)oT.

1.6 Equivalences and other special
types of relations

Each language has its peculiarities. Some languages favor wovels, others
love consonants. Some have a simple grammar, others have an easy
pronunciation. The situation in mathematics is similar. The language
of mathematics in itself has its essential properties (it is exact and
details matter very much in it, perhaps even too much), but the various
branches of mathematics differ by style and language. For example, a
typical feature of algebra seems to be a large number of definitions
and notions, which usually appear at the beginning, before anything
begins to “really happen”. However, many of these algebraic notions
show up in other subfields as well and they belong to the vocabulary
of mathematics in general. Here we present an example of how such
notions can be introduced. This section essentially belongs to algebra
and it concerns various special kinds of relations.

We recall that functions are regarded as relations of a special
kind. Now we are going to define four properties that a relation may
or may not have. They are so useful that each deserves a name, and
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they will in turn be used for defining equivalences and orderings,
which together with functions are arguably the most important spe-
cializations of the general concept of relation.

1.6.1 Definition. We say that a relation R on a set X is

e reflexive if xRx for every x € X;

e symmetric if xRy implies yRx, for all x,y € X;

e antisymmetric!? if, for every x,y € X, xRy and yRx never hold
simultaneously unless r = y;

e transitive if t Ry and yRz imply xRz, for all x,y,z € X.

In a drawing like that in Fig. 1.3, a reflexive relation is one con-
taining all squares on the diagonal (drawn by a dotted line). In draw-
ing using arrows, a reflexive relation has loops at all points.

For a symmetric relation, a picture of the type in Fig. 1.3 has
the diagonal as an axis of symmetry. In a picture using arrows, the
arrows between two points always go in both directions:

<

In contrast, this situation is prohibited in an antisymmetric

relation:
O

The condition of transitivity can be well explained using arrows.
If there are arrows * — y and y — z, then the x — z arrow is present

as well:

T Y z

The pictures for reflexivity, symmetry, antisymmetry, and transi-
tivity using arrows emphasize the fact that these properties are easy
to verify (in principle), since they are defined using two-element and
three-element subsets.

3Sometimes this is called weakly antisymmetric, while for a strongly antisym-
metric relation xRy and yRx never happen at the same time, i.e. xRz is also
excluded.
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These properties can also be described using the operation of
composing relations (see Section 1.5) plus the following two notions:

The inverse relation R~! to a given relation R is given by R~ =
{(y,z): (z,y) € R}. It arises by “reversing arrows” in R.

The symbol A x denotes the smallest reflexive relation on a set X:

Ax ={(z,z): z € X}.

The relation Ax is called the diagonal (on the set X). The name
is motivated by the matrix-like picture of a relation discussed in
Section 1.5.

With these tools, Definition 1.6.1 can be concisely reformulated
as follows:

(1) R is reflexive if Ax C R.

(2) R is symmetric if R = R™L.

(3) R is antisymmetric if RN R~! C Ay.
(4) R is transitive if Ro R C R.

Now we can define equivalences, orderings, and linear orderings.

1.6.2 Definition.

e A relation R on a set X is called an equivalence on X (or some-
times an equivalence relation) if it is reflexive, symmetric, and
transitive.

e A relation R on a set X is called an ordering on X if it is reflexive,
antisymmetric, and transitive.

e A relation R on a set X is called a linear ordering on X if it is
an ordering and moreover, RUR™' = X x X (or in other words,
for every two elements x,y € X we have xRy or yRzx).

It may seem at first sight that the differences between the three
notions just defined are minor and insignificant. This impression is
quite misleading, though, and it illustrates a general rule: One has
to watch every word in a mathematical definition. The notions of
equivalence and of ordering are in fact quite remote from each other,
so remote that they are usually studied separately. This is how we
will also proceed: Equivalences will be discussed in the rest of the
present section, while orderings will be covered later, in Chapter 2.

For a quick illustration we present initial examples; some of them
will be discussed later in more detail. We consider three relations on
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the set N of all natural numbers:

e The relation R defined by xRy if x — y is an even integer is an
equivalence (but not an ordering).

e The relation | given by x|y if x divides y, i.e. if there exists a
natural number ¢ such that gx = y, is an ordering (but neither
an equivalence nor a linear ordering).

e The relation <, where z < y has the usual meaning, i.e. that the
number z is less or equal to y, is a linear ordering (and thus an
ordering as well, but not an equivalence).

The reader is now welcome to check that the just defined relations
satisfy the appropriate conditions in Definition 1.6.2.

Equivalences. Informally, an equivalence on a set X is a relation
describing which pairs of elements of X are “of the same type” in
some sense. The notion of equivalence is a common generalization of
notions expressing identity, isomorphism, similarity, etc. Equivalence
relations are often denoted by symbols like =, =, ~, ~, =, and so
on. The reader may want to contemplate for a while why the prop-
erties defining an equivalence in general (reflexivity, symmetry, and
transitivity) are natural for a relation that should express something
like “being of the same type”.

Let us consider some geometric examples. Let X be the set of
all triangles in the plane. By saying that two triangles are related if
and only if they are congruent (i.e. one can be transformed into the
other by translation and rotation), we have defined one equivalence
on X. Another equivalence is defined by relating all pairs of similar
triangles (two triangles are similar if one can be obtained from the
other one by translation, rotation, and scaling; in other words, if
their corresponding angles are the same). And a third equivalence
arises by saying that each triangle is only related to itself.

Although an equivalence R on a set X is a special type of relation
and we can thus depict it by either of the two methods considered
above for relations in general, more often a picture similar to the one
below is used:
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The key to this type of drawing is the following notion of equiv-
alence class. Let R be an equivalence on a set X and let x be an
element of X. By the symbol R[x], we denote the set of all elements
y € X that are equivalent to x; in symbols, R[x] = {y € X: xRy}.
RJz] is called the equivalence class of R determined by x.

1.6.3 Proposition. For any equivalence R on X, we have
(i) R[z] is nonempty for every x € X.
(ii) For any two elements z,y € X, either R[x] = R[y] or R[z] N
Rly] = 0.
(iii) The equivalence classes determine the relation R uniquely.

Before we start proving this, we should explain the meaning of
(iii). It means the following: if R and S are two equivalences on X
and if the equality R[x] = S[z] holds for every element = € X, then
R=25.

Proof. The proof is simple using the three requirements in the
definition of equivalence.

(i) The set R[z]| always contains z since R is a reflexive relation.
(ii) Let 2,y be two elements. We distinguish two cases:

(a) If xRy, then we prove R[z] C R[y| first. Indeed, if z € R|x],
then we also know that zRx (by symmetry of R) and there-
fore zRy (by transitivity of R). Thus also z € R[y]. By using
symmetry again, we get that Ry implies R[x] = R[y].

(b) Suppose that xRy doesn’t hold. We show that R[z]NR[y] =
(). We proceed by contradiction. Suppose that there exists
z € R[z] N R[y]. Then zRz and zRy (by symmetry of R),
and so xRy (by transitivity of R), which is a contradiction.

(iii) This part is obvious, since the equivalence classes determine R
as follows:
xRy if and only if {z,y} C R[z].

|

The above proposition explains the preceding picture. It guaran-
tees that the equivalence classes form a partition of the set X; that
is, they are disjoint subsets of X whose union is the whole X. Con-
versely, any partition of X determines exactly one equivalence on X.
That is, there exists a bijective mapping of the set of all equivalences
on X onto the set of all partitions of X.
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Exercises

1.

Formulate the conditions for reflexivity of a relation, for symmetry of
a relation, and for its transitivity using the adjacency matrix of the
relation.

. *Prove that a relation R on a set X satisfies Ro R~! = Ax if and only

if R is reflexive and antisymmetric.

. Prove that a relation R is transitive if and only if Ro R C R.
. (a) Prove that for any relation R, the relation 7 = RURoRURo Ro

RU... (the union of all multiple compositions of R) is transitive.

(b) Prove that any transitive relation containing R as a subset also
contains T'.

(c) Prove that if | X| =n,then T=RURoRU---URoRo---0R.
—_—
(n—1)x

Remark. The relation T as in (a), (b) is the smallest transitive relation
containing R, and it is called the transitive closure of R.

. Let R and S be arbitrary equivalences on a set X. Decide which of

the following relations are necessarily also equivalences (if yes, prove;
if not, give a counterexample).

(a) RNS
(b) RUS
(c) R\ S
(d) Ro S.

. Describe all relations on a set X that are equivalences and orderings

at the same time.

Let R and S be arbitrary orderings on a set X. Decide which of the
following relations are necessarily orderings:

a) RNS

b) RUS

c) R\ S

d) RoS.

a) Suppose that R is a transitive relation on the set Z of all integers,
and we know that for any two integers a,b € Z, if |a — b| = 2 then
aRb. Is every R satisfying these conditions necessarily an equivalence?

(Note that a pair of elements can perhaps be in R even if it is not
enforced by the given conditions!)

(
(
(
(
(

(b) Suppose that R is a transitive relation on Z, and we know that for
any two integers a,b € Z, if |a — b| € {3,4} then aRb. Is R necessarily
an equivalence?
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9. Call an equivalence ~ on the set Z (the integers) a congruence if the
following condition holds for all a,z,y € Z: if x ~ y then also a + = ~
a+y.

(a) Let ¢ be a nonzero integer. Define a relation =, on Z by letting
x =4 y if and only if ¢ divides  — y. Check that =, is a congruence
according to the above definition.

(b) *Prove that any congruence on Z is either of the form =, for some
q or the diagonal relation Ag.

(¢) Suppose we replaced the condition “a+x ~ a+y” in the definition
of a congruence by “ax ~ ay”. Would the claim in (a) remain true for
this kind of “multiplicative congruence”? *And how about the claim
in (b)?



2
Orderings

The reader will certainly be familiar with the ordering of natural
numbers and of other number domains by magnitude (the “usual”
ordering of numbers). In mathematics, such an ordering is considered
as a special type of a relation, i.e. a set of pairs of numbers. In the
case just mentioned, this relation is usually denoted by the symbol
“<” (“less than or equal”). Various orderings can be defined on other
sets too, such as the set of all words in a language, and one set can
be ordered in many different and perhaps exotic ways.

The general notion of ordering has already been introduced in
Definition 1.6.1: A relation R is called an ordering if it is reflexive,
antisymmetric, and transitive. Let us also add that if X is a set and
R is an ordering on X, the pair (X, R) is called an ordered set.

Ordered sets have numerous interesting properties. We mention
some of them in this chapter, and we will encounter a few others
later on, most notably in Chapter 7.

2.1 Orderings and how they can be depicted

We begin with several remarks concerning the notion of ordering.
Orderings are commonly denoted by the symbols < or <. The first
of them is useful, e.g. when we want to speak of some ordering of the
set of natural numbers other than the usual ordering by magnitude,
or if we consider some arbitrary ordering on a general set.

If we have some ordering <, we define a derived relation of “strict
inequality”, <, as follows: a < b if and only if a < b and a # b.
Further, we can introduce the “reverse inequality” >, by lettinga > b
if and only if b < a.

Linear orderings and partial orderings. Let us recall that a
relation R is called a linear ordering if it is an ordering, and moreover,
for every x,y we have Ry or yRx.
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In order to emphasize that we speak of an ordering that is not
necessarily linear, we sometimes use the longer term partial ordering.
A partial ordering thus means exactly the same as ordering (without
further adjectives), and so a partial ordering may also happen to be
linear. Similarly, instead of an ordered set, one sometimes speaks of
a partially ordered set. To abbreviate this long term, the artificial
word poset is frequently used.

Examples. We have already mentioned several examples of ordered
sets—these were (N, <), (R, <), and similar ones, where < denotes
the usual ordering, formally understood as a relation.

As is easy to check, if R is an ordering on a set X, and Y C X is
some subset of X, the relation R NY? (the restriction of R on Y) is
an ordering on Y. Intuitively, we order the elements of Y in the same
way as before but we forget the others. This yields further examples
of ordered sets, namely various subsets of real numbers with the usual
ordering. This turns out to be a rather general example of a linearly
ordered set; see Exercise 2.3.6.

The idea of alphabetic order of words in a dictionary is formally
captured by the notion of lexicographic ordering . Let us first consider
a particular case: Let X = N x N be the Cartesian product of two
copies of the natural numbers, that is, the set of all ordered pairs
(a1,az), where a; and ag are natural numbers. We define the relation
<jex Of lexicographic ordering on X as follows: (a1, as) <jex (b1,b2) if
either a; < ag, or a; = ag and ag < be. More generally, if (X1, <;),
(X2,<9),..., (X, <,) are arbitrary linearly ordered sets, we define
the relation <y, of lexicographic ordering of the Cartesian product
X1 x Xg x -+ x X, in the following way:

(a17a27 cee ,(In) Slex (b17b2a .. 7bn)

holds if (a1, az,...,an) = (b1,ba,...,by), or if there exists an index
i€{1,2,...,n} such that a; = b; for all j < i and a; <; b;. It is easy
to see that the alphabetic ordering of words is an example of a lexico-
graphic ordering in our sense, although at a closer look, we discover
various complications: for example, words have various lengths, not
speaking of fine points such as “van Beethoven” occurring under B
in encyclopedias.

Examples of partially ordered sets. What do orderings that
are not linear look like? One example is the relation Ax = {(z,z):x
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€ X} (the diagonal). It satisfies the definition of an ordering, but for
|X| > 1 it is not a linear ordering.

Let us describe more interesting examples of partially ordered
sets.

2.1.1 Example. Let us imagine we intend to buy a refrigerator. We
simplify the complicated real situation by a mathematical abstrac-
tion, and we suppose that we only look at three numerical parameters
of refrigerators: their cost, electricity consumption, and the volume
of the inner space. If we consider two types of refrigerators, and if
the first type is more expensive, consumes more power, and a smaller
amount of food fits into it, then the second type can be considered
a better one—a large majority of buyers of refrigerators would agree
with that. On the other hand, someone may prefer a smaller and
cheaper refrigerator, another may prefer a larger refrigerator even if
it costs more, and someone expecting a sharp rise of electricity costs
may even buy an expensive refrigerator if it saves power.

The relation “to be clearly worse” (denote it by <) in this sense
is thus a partial ordering on refrigerators or, mathematically re-
formulated, on the set of triples (¢, p, v) of real numbers (¢ stands for
cost, p for power consumption, and v for volume), defined as follows:

(c1,p1,v1) = (c2,p2,v9) if and only if

2.1
€1 > ¢2, p1 = p2, and vy < vg. (2.1)

The following example has already been mentioned, but let us
recall it here:

2.1.2 Example. For natural numbers a, b, the symbol a|b means “a
divides b”. In other words, there exists a natural number ¢ such that
b = ac. The relation “|” is a partial ordering on N (as the reader has
already been invited to verify).

2.1.3 Example. Let X be a set. Recall that the symbol 2% denotes
the system of all subsets of the set X. The relation “C” (to be a
subset) defines a partial ordering on 2%,

Drawing partially ordered sets. Orderings of finite sets can be
drawn using arrows, as with any other relations. Typically, such
drawings will contains lots of arrows. For instance, for a 10-element
linearly ordered set we would have to draw 104+ 9+ --- 4+ 1 = 55
arrows and loops. A number of arrows can be reconstructed from
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transitivity, however: if we know that z < y and y < z, then also
x = z, so we may leave out the arrow from z to z. Similarly, we
need not draw the loops, since we know they are always there. For
finite ordered sets, all the information is captured by the relation of
“immediate predecessor”, which we are now going to define.

Let (X, =) be an ordered set. We say that an element z € X is
an immediate predecessor of an element y € X if

e r <y, and
e there is no ¢t € X such that x <t < y.

Let us denote the just-defined relation of immediate predecessor
by <.
The claim that the ordering < can be reconstructed from the relation
<1 may be formulated precisely as follows:

2.1.4 Proposition. Let (X, <) be a finite ordered set, and let < be
the corresponding immediate predecessor relation. Then for any two
elements x,y € X, x < y holds if and only if there exist elements
X1,Ta,...,2x € X such that x <x1 <--- <Qxp <y (possibly with k = 0,
i.e. we may also have x < y).

Proof. One implication is easy to see: if we have x <x1 <+ < x) <y,
then also * < 1 < -+ = xp =X y (since the immediate predecessor
relation is contained in the ordering relation), and by the transitivity
of <, we have z < y.

The reverse implication is not difficult either, and we prove it by
induction. We prove the following statement:

Lemma. Let z,y € X, x <y, be two elements such that there exist
at most n elements t € X satisfyingx <t <y (i.e. “between” x and y).
Then there exist x1,x2,...,xr € X such that x <z <--- <z <y.

For n = 0, the assumption of this lemma asserts that there exists no ¢
with z < t < y, and hence = <y, which means that the statement holds
(we choose k = 0).

Let the lemma hold for all n up to some ng, and let us have x < y
such that the set M,, = {t € X: © <t < y} has n = ng + 1 clements.
Let us choose an element u € My, and consider the sets M, = {t €
X: x <t < u} and M,, defined similarly. By the transitivity of < it
follows that My, C My, and M,, C My,. Both M, and M,, have at
least one element less than My, (since u & My, u & M,,), and by the
inductive hypothesis, we find elements x1, ...,z and y1,...,y, in such
a way that r <21 <--- <z <u and u<y; <--- <yy <y. By combining
these two “chains” we obtain the desired sequence connecting z and y.

O
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By the above proposition, it is enough to draw the relation of
immediate predecessor by arrows. If we accept the convention that
all arrows in the drawing will be directed upwards (this means that
if z < y then y is drawn higher than z), we need not even draw the
direction of the arrows—it is enough to draw segments connecting
the points. Such a picture of a partially ordered set is called its Hasse

diagram. The following figure shows a 7-element linearly ordered set,
such as ({1,2,...,7},<):

The next drawing depicts the set {1,2,...,10} ordered by the divis-
ibility relation (see Example 2.1.2):

8 10
4

q 5 7
2

1

The following figure is a Hasse diagram of the set {1,2,3} x {1,2,3}
with ordering =< given by the rule (aj,b1) < (ag,b2) if and only if
ai § a9 and bl § b2:

(3,3)
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Finally, here is a Hasse diagram of the set of all subsets of {1, 2, 3}
ordered by inclusion:

{1,2,3}

U<

{1} {3}

{2,3}

Exercises

1. Verify that the relation (2.1) in Example 2.1.1 indeed defines a partial
ordering.

2. *Let R be a relation on a set X such that there is no finite sequence
of elements x1, o, ...,z of X satisfying x1 Rxo, zoRx3,. .., xp_1 Rxy,
xpRxy (we say that such an R is acyclic). Prove that there exists an
ordering < on X such that R C <. You may assume that X is finite if
this helps.

3. Show that Proposition 2.1.4 does not hold for infinite sets.

4. Let (X, <), (Y, =) be ordered sets. We say that they are isomorphic
(meaning that they “look the same” from the point of view of ordering)
if there exists a bijection f: X — Y such that for every z,y € X, we
have z < y if and only if f(z) < f(y).

(a) Draw Hasse diagrams for all nonisomorphic 3-element posets.

(b) Prove that any two n-element linearly ordered sets are isomorphic.
(¢)* Find two nonisomorphic linear orderings of the set of all natural
numbers.

(d)** Can you find infinitely many nonisomorphic linear orderings
of N7 Uncountably many (for readers knowing something about the
cardinalities of infinite sets)?

2.2 Orderings and linear orderings

Each linear ordering is also a (partial) ordering. The converse state-
ment (“each partial ordering is linear”) is obviously false, as we have
seen in several examples. On the other hand, the following important
theorem holds:

2.2.1 Theorem. Let (X, <) be a finite partially ordered set. Then
there exists a linear ordering < on X such that ¢ = y implies x < y.
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Each partial ordering can thus be extended to a linear ordering.
The latter is called a linear extension of the former.

Before the proof of Theorem 2.2.1 we introduce yet another imp-
ortant notion.

2.2.2 Definition. Let (X, <X) be an ordered set. An element a € X
is called a minimal element of (X, <) if there is no x € X such that
x < a. A maximal element a is defined analogously (there exists no
T - a).

The following holds:

2.2.3 Theorem. Every finite partially ordered set (X, =) has at
least one minimal element.

Proof. Let us choose x¢g € X arbitrarily. If xy is minimal, we are
done. If, on the other hand, ¢ is not minimal in (X, <), then there
exist some x1 < xg. If x1 is minimal, we are done now, and else, we
find some xo < x1, and so on. After finitely many steps we arrive
at a minimal element, for otherwise, X would have infinitely many
different elements zg, x1, 22, ... . O

Let us remark that Theorem 2.2.3 is not valid for infinite sets.
For instance, the set (Z, <) of integers with the natural ordering has
no minimal element.

The reader may find the (algorithmically motivated) proof of The-
orem 2.2.3 suspicious. Instead of explaining it in more detail, we add
another, more usual version of the proof.

Second proof. Let us consider the ordered set (X, =), and let
us choose an x € X such that the set L, = {y: y < x} has the
smallest possible number of elements. If |L,| = 1, then we are done,
since x is necessarily a minimal element: We have |L,| = {z}. We
prove that |L,| > 1 is impossible. Namely, in this case there exists a
y € L,y # x, and then we have |L,| < |L;|, which contradicts the
choice of the element z. O

We apply the existence of a minimal element (Theorem 2.2.3) in
the next proof.

Proof of Theorem 2.2.1 (existence of linear extensions). We
proceed by induction on |X|. For |X| = 1 there is nothing to prove:
there is only one ordering of X and it is already linear. Thus, let
us consider an ordered set (X, <) with |X| > 1. Let g € X be a
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minimal element in (X, <). We set X’ = X \ {z0}, and we let <’
be the relation < restricted to the set X’. We already know that
(X', =) is an ordered set, and hence by the inductive hypothesis,
there exists a linear ordering <’ of X’ such that xz =<’ y implies
x <" y for all z,y € X'. We define a relation < on the set X as

follows:
g <y foreach ye€X;

r <y whenever z <'y.

Obviously, z = y implies z < y. The reader is invited to verify that
< is indeed a linear ordering. O

The existence of linear extensions is important and useful in many
applications. In computer science one often needs to compute a linear
extension of a given partial ordering. This algorithmic problem known
as topological sorting.

Theorem 2.2.1, the existence of linear extensions, is also valid for
infinite sets. But it cannot be proved that easily. Actually, in a sense, it
cannot be proved at all, since it can be regarded as one of the axioms
of set theory (similar to the so-called axiom of choice, to which it is
closely related).

Let us conclude this section with a linguistic warning. A notion
seemingly very similar to minimal element is a smallest element
(sometimes also called a minimum element). But this similarity is
only in the language and the notion itself is quite different, as the
following definition shows.

2.2.4 Definition. Let (X, <) be an ordered set. An element a € X
is called a smallest element of (X, =X) if for every x € X we have
a < z. A largest element (sometimes also called a maximum element )
is defined analogously.

A smallest element is obviously minimal as well. For example, in
the set of all natural numbers ordered by the divisibility relation, i.e.
(N,]), 1 is both a smallest element and a minimal element. But a
minimal element need not always be a smallest element: For exam-
ple, if we consider any set X with at least two elements, and no
two distinct elements are comparable (thus, we deal with the poset
(X,Ax)), then every element is minimal but there is no smallest
element. Another example is (N \ {1}, ]), that is, the natural num-
bers greater than 1 ordered by the relation of divisibility. It has no
smallest element, while there are infinitely many minimal elements;
see Exercise 7.
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Exercises

1.

(a) Show that a largest element is always maximal.

(b) Find an example of a poset with a maximal element but no largest
element.

(c) Find a poset having no smallest element and no minimal element
either, but possessing a largest element.

. (a) Consider the set {1,2,...,n} ordered by the divisibility relation

| (see Example 2.1.2). What is the maximum possible number of ele-
ments of aset X C {1,2,...,n} that is ordered linearly by the relation
| (such a set X is called a chain)?

(b) Solve the same question for the set 2{12"} ordered by the rela-
tion C (see Example 2.1.3).

Let le(X, <) denote the number of linear extensions of a partially ord-
ered set (X, <). Prove:

(a) le(X, <) =11if and only if < is a linear ordering;
(b) le(X, =) < nl, where n = |z| (you may want to read Chapter 3
first).

Prove that a smallest element, if it exists, is determined uniquely.

Prove that for a linearly ordered set, a minimal element is also the
smallest element.

. Prove or disprove: If a partially ordered set (X, <) has a single minimal

element, then it is a smallest element as well.

. (a) Prove that the partially ordered set (N'\ {1},]) has infinitely many

minimal elements. What are they usually called?

(b) How many minimal elements are there in the ordered set (X, |),
for X = {4k + 2: k > 2}7 Let us remark that the analogous question
for the set {4k+1: k > 2} ordered by divisibility is considerably more
difficult.

. Let (X, R) be a partially ordered set. Prove:

(a) Then (X, R™1!) is also a partially ordered set.

(b) An element x € X is maximal in (X, R) if and only if  is minimal
in (X,R71).

(¢) An element z € X is the largest element of (X, R) if and only if
is the smallest element of (X, R™1).

Since (R™')™! = R, we can see that notions for ordered sets come
in symmetric pairs, such as minimal element and maximal element,
smallest element and largest element, etc. We can thus often consider
definitions and proofs for only one notion in such a pair. For example,
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it suffices to prove Theorem 2.2.3 (existence of a minimal element), and
the analogous theorem about the existence of a maximal element fol-
lows automatically—the proof can easily be “translated”. This method
is called, somewhat imprecisely, the duality principle for ordered sets.

9. Let (X, <) be a poset and let A C X be a subset. An element s € X
is called a supremum of the set A if the following holds:

e g <X sforeachac€ A,
e if ¢ < s’ holds for all a € A, where s’ is some element of X, then
s=<s.
The infimum of a subset A C X is defined analogously, but with all
inequalities going in the opposite direction.

(a) Check that any subset A C X has at most one supremum and
at most one infimum. (The supremum of A, if it exists, is denoted by
sup A. Similarly inf A denotes the infimum.)

(b) What element is the supremum of the empty set (according to the
definition just given)?

(c) Find an example of a poset in which every nonempty subset has
an infimum, but there are nonempty subsets having no supremum.
(d) *Let (X, =) be a poset in which every subset (including the empty
one) has a supremum. Show that then every subset has an infimum as
well.

10. Consider the poset (N, |) (ordering by divisibility).
(a) Decide whether each nonempty subset of N has a supremum.
(b) Decide whether each nonempty finite subset of N has a supremum.

(c) Decide whether each nonempty subset has an infimum.

2.3 Ordering by inclusion

In Section 1.4 we have shown how an equivalence on a set X can
be described by a partition of the set. This correspondence is one-
to-one; we can also say that partitions constitute just a different
representation of equivalences. Does anything similar exist for partial
orderings?

The answer seems to be no. The notion of ordering appears to be
much richer and more complex than that of equivalence, and this is
also why we have devoted a special chapter to orderings. However,
in this section we show that we can imagine every partial ordering
as being defined by inclusion, i.e., in a (seemingly) simple way. This
result will be formulated using the following notion.
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2.3.1 Definition. Let (X,=<) and (X', =’) be ordered sets. A
mapping f: X — X' is called an embedding of (X, <) into (X', =X’)
if the following conditions hold:

(i) f is an injective mapping;

(ii)) f(x) =" f(y) if and only if x < y.

Let us add a few remarks. If f is an embedding that is also surjec-
tive (onto), then it is an isomorphism, which we have already consid-
ered in Exercise 2.1.4. While isomorphism of ordered sets
expresses the fact that they “look the same”, an embedding of (X, <)
into (X', =<’) means that some part of (X', <’), namely, the part
determined by the set {f(x): x € X}, “looks the same” as (X, <).

The next drawing illustrates two posets:

z
2 T Yy
3e  ———
1 v u
P w
t
P

Examples of embeddings of P; into P, are the mappings f: 1 — v,
22— 2,3~ yand f': 1~ t,2 — 2,3 — w, while, for example,
neither g: 1 — ¢t,2 — v,3 — ymnor ¢: 1 — 2,2 — w,3 — u are
embeddings.

2.3.2 Theorem. For every ordered set (X, <) there exists an embed-
dings into the ordered set (2%, C).

Proof. We show that, moreover, the embedding as in the theorem
is very easy to find. We define a mapping f: X — 2% by f(z) =
{y € X: y = x}. We verify that this is indeed an embedding.

1. We check that f is injective. Let us assume that f(x) = f(y).
Since z € f(z) and y € f(y), the definition of f yields z < y as
well as y < z, and hence z = y (by the antisymmetry of <).

2. We show that if x < y, then f(x) C f(y). If z € f(z), then
z = x, and transitivity of < yields z < y. The last expression
means that z € f(y).

3. Finally, we show that if f(z) C f(y), then z <y. If f(z) C f(y),
then = € f(y), and hence x < y.

O
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Actually, we have already met the definition of the mapping f in
the proof of Theorem 2.2.3, where the set f(z) was denoted by L,.
It is no problem that we have denoted the same thing differently in a
different context. The construction of the sets L, is quite frequent in
mathematics and it appears under various names (e.g., a lower ideal or
a down-set).

Note that the theorem above holds for infinite sets as well.
The ordered sets (2%,C) are thus universal in the sense that

they contain a copy of every ordered set. No wonder that they have
been studied very intensively and that there are special notions and
notation defined for them. In particular, for X = {1,2,...,n} the
set (2%, C) is often denoted by B,. Hasse diagrams of Bj, B, and

B3

are drawn below:

Q

Bl BQ BS

When additional properties of the ordered set B, are consid-

ered, then one speaks of a Boolean algebra, a Boolean lattice, an
n-dimensional cube, etc.

Exercises

1.

2.

How many linear extensions of By are there, and what about B3?

Modify the proof of Theorem 2.3.2 using up-sets, that is, sets of the
form U, = {y: zRy}.

Find an example of an ordered set that can be embedded into B,, for
some n < |X]|.

*Prove that every finite poset can be embedded into (N, |).

. *Prove that not every finite poset admits an embedding into the ord-

ered set of triples of real numbers as in Example 2.1.1.

(a) Describe an embedding of the set {1,2} x N with the lexicographic
ordering into the ordered set (Q, <), where Q denotes the set of all
rational numbers and < is the usual ordering.

(b) Solve the analog of (a) with the set N x N (ordered lexicographi-
cally) instead of {1,2} x IN.
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(¢)* Prove that every countable linearly ordered set admits an
embedding into (Q, <).

7. *Prove that every subset of the poset B, has both supremum and
infimum (see Exercise 2.2.9 for the definitions).

8. Count the number of embeddings of P; into P5, where P, and P> are
the partially ordered sets in the picture above Theorem 2.3.2.

2.4 Large implies tall or wide

Let (X, <) be a finite partially ordered set. For brevity, let us denote
it by the letter P. In most of this section we will consider only one
(but arbitrary) ordered set. The notions that we will explore are
introduced by the following definitions.

2.4.1 Definition. A set A C X is called independent in P if we
never have x < y for two distinct elements x,y € A.

An independent set is also referred to as an antichain.

The definition can be rephrased using the following terminology.
Let us say that two distinct elements z and y are incomparable if
neither x <y, nor y < x. So a set is independent if every two of its
elements are incomparable.

Let a(P) denote the maximum size of an independent set in P.
In symbols, this can be written

a(P) = max{|A|: A independent in P}.

2.4.2 Example. For the following ordered sets P; and Ps

Pl P2
we have a(P)) = 3, a(P) = 4.

2.4.3 Observation. The set of all minimal elements in P is ind-
ependent.

2.4.4 Definition. A set A C X is called a chain in P if every two
of its elements are comparable (in P).
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Equivalently, the elements of A form a linearly ordered subset of
P. Let w(P) denote the maximum number of elements of a chain
in P. For the ordered sets P; and P, above we have w(P;) = 3,
w(PQ) = 2.

It is easy to check that w(B,,) = n+ 1. Determining «(B,,) is con-
siderably more complicated; we answer this question in Chapter 7.

The above examples indicate that the number a(P) can be thou-
ght of as a kind of abstract “width” of the ordered set P, while w(P)
corresponds to its “height”.

The following theorem, with an innocent-looking proof, actually
has quite powerful consequences.

2.4.5 Theorem. For every finite ordered set P = (X, <) we have
a(P)-w(P) > |X|.

(The reader may first want to check that the examples above
fulfill the conclusion of the theorem.)

Proof. We define sets X1, Xo, ..., X; inductively: Let X7 be the set
of all minimal elements of the ordered set P. In an inductive step,
let X1,..., X, be already defined, and let X; = X \ Ule X, denote
the set of all elements belonging to none of the sets Xi,..., X,. If X
is the empty set, then we put t = £ and the construction is finished.
Otherwise, for X # (), we let <’ stand for the ordering < restricted
to the set X é, and we define Xy, as the set of all minimal elements in
(X}, ='). The proof will be finished as soon as we verify the following
claims:

(1) The sets X,...,X; form a partition of X.
(2) Each X; is an independent set in P.
(3) w(P) > t.
Claims (1) and (2) follow immediately from the definition of the
sets X1, Xo,..., X and from Observation 2.4.3. Thus, it suffices to

prove (3).
By backward induction, for k =t,t—1,...,2,1, we find elements
x; € X such that the set {x1,z2,...,2:} constitutes a chain. Let us

choose x; € X arbitrarily. Since x; ¢ X;_1, there necessarily exists
T1_1 € X¢_1 so that zy_1 < xy. This argument is a basis of the
whole proof: Having already constructed elements z; € X;, 241 €
Xi—1y- &1 € Xgy1, then xp1q ¢ Xi, and hence there exists
xr € X with zp < T41.
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The set {z1,...,x;} thus constructed is a chain. Therefore, w(P)
> t. (Actually we have w(P) = t; we do not need this and we leave
it as a simple exercise.) O

Theorem 2.4.5 has a number of nice connections, as is illustrated
by the following celebrated application:

2.4.6 Theorem (Erd&s—Szekereslemma). An arbitrary sequence
(x1,...,2,241) of real numbers contains a monotone subsequence of
length n + 1.

Let us first define the notions in this theorem explicitly. A subse-
quence of length m is determined by indices i1, ..., %m, 11 < io < ---
< im, and it has the form (z;,,x4,,...,2;,). Such a sequence is
monotone if we have either x;, < x;, < --- < x;,, or T, > T, >
-+« > x; . For example, the sequence (3,5,6,2,8,1,4,7) contains the
monotone subsequence (3,5,6,8) (with i1 = 1, ia = 2, i3 = 3 and
i4 = b), or the monotone subsequence (6,2, 1) (with i; = 3, is = 4,
i3 = 6), as well as many other monotone subsequences.

Proof of Theorem 2.4.6. Let a sequence (x1,...,2,2, ) of n? +1

real numbers be given. Let us put X = {1,2,...,n2 + 1}, and let us
define a relation < on X by

¢ = j if and only if both ¢ < j and z; < x;.

It is not difficult to verify that the relation < is a (partial) order-
ing of the set X. So we have a(X, <) - w(X, <) > n?+ 1, and hence
a(X, =) > nor w(X, =) >n. Now it is easily checked that a chain
1] < 13 < + -+ < iy, in the ordering < corresponds to a nondecreasing

subsequence z;, < x;, < --- < x; (note that iy < ia < -+ < ip),
while an independent set {i1, 2, ..., %, } corresponds to a decreasing
subsequence (if we choose the notation so that i1 < iy < -+ < iy,
then we get x;, > x4, > --- > x;, , since for example, z;, < x;, and
i1 < iz would mean i; < i2). O
Exercises

1. (a) Let =;, ¢ = 1,...,k, be orderings on some set X. Prove that
ﬂle =; is again an ordering on X (recall that <; is a relation, and
thus a subset of X x X).

(b) *Prove that every partial ordering < on a set X can be expressed
as the intersection of linear orderings of X.
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. Prove that w(B,) =n+ 1.

Find a sequence of real numbers of length 17 that contains no mono-
tone subsequence of length 5.

Prove the following strengthening of Theorem 2.4.6: Let k, ¢ be nat-
ural numbers. Then every sequence of real numbers of length k¢ + 1
contains an nondecreasing subsequence of length k+ 1 or a decreasing
subsequence of length £+ 1.

. (a) Prove that Theorem 2.4.5, as well as the preceding exercise, are

optimal in the following sense: For every k and £ there exists a partially
ordered P with n elements such that n = kf, a(P) = k, and w(P) = .

(b) *Given k, £ > 1, construct a sequence of real numbers of length k¢
with no nondecreasing subsequence of length k£ + 1 and no decreasing
subsequence of length ¢ + 1.

(a) Let us consider two sequences a = (aq,...,a,) and b = (by,...,by)
of distinct real numbers. Show that indices i1,...,i;, 1 <i; < -+ <
ir < n, always exist with k& = [n'/%] such that the subsequences

determined by them in both a and b are increasing or decreasing (all
4 combinations are allowed, e.g. “increasing in a, decreasing in b”,
“decreasing in a, decreasing in b”, etc.).

(b) *Show that the bound for & in (¢) cannot be improved in general.

**(Dilworth’s theorem) Let (X, <) be a finite partially ordered set.

Show that X can be expressed as a (disjoint) union of at most a =
a(X, =) chains.
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Combinatorial counting

In this chapter, we are going to consider problems concerning the
number of various configurations, such as “How many ways are there
to send n distinct postcards to n friends?”, “How many mappings
of an n-element set to an m-element set are there?”, and so on. We
begin with simple examples that can usually be solved with common
sense (plus, maybe, some cleverness) and require no special know-
ledge. Later on, we will come to somewhat more advanced techniques.

3.1 Functions and subsets

As promised, we begin with a simple problem with postcards.

Problem. Professor X. (no real person meant), having completed
a successful short-term visit at the School of Mathematical Contem-
plation and Machine Cleverness in the city of Y., strolls around one
sunny day and decides to send a postcard to each of his friends Alice,
Bob, Arthur, Merlin, and HAL-9000. A street vendor nearby sells 26
kinds of postcards with great sights of Y.’s historical center. How
many possibilities does Professor X. have for sending postcards to
his 5 friends?

Since the postcard for each friend can be picked in 26 ways, and
the 5 selections are independent (making some of them doesn’t in-
fluence the remaining ones), the answer to this problem is 26°. In a
more abstract language, we have thereby counted the number of all
mappings of a 5-element set (Prof. X.’s friends) to a 26-element set
(the postcard types). Here is another closely related problem:

Problem. How many distinct 5-letter words are there (using
the 26-letter English alphabet, and including meaningless words
such as ywizp*)?

"Who can tell which words are meaningless? It might mean something in
Tralfamadorian, say.
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Since each of the 5 letters can be picked independently in 26 ways, it
is not hard to see that the answer is again 26°. And, indeed, a 5-letter
word can be understood as a mapping of the set {1,2,...,5} to the
set {a,b,...,z} of letters: for each of the 5 positions in the word,
numbered 1,2,...,5, we specify the letter in that position. Finding
such simple transformations of counting problems is one of the basic
skills of the art of counting.

In the next proposition, we count mappings of an n-element set
to an m-element set. The idea is exactly the same as for counting
the ways of sending the postcards, but we use this opportunity to
practice more rigorous mathematical proofs in a simple situation.

3.1.1 Proposition. Let N be an n-element set (it may also be
empty, i.e. we admit n = 0,1,2,...) and let M be an m-element
set, m > 1. Then the number of all possible mappings f: N — M
is m™.

Proof. We can proceed by induction on n. What does the proposi-
tion say for n = 07 In this case, we consider all mappings f of the
set N = () to some set M. The definition of a mapping tells us that
such an f should be a set of ordered pairs (z,y) with z € N =0
and y € M. Since the empty set has no elements, f cannot possibly
contain any such ordered pairs, and hence the only possibility is that
f is the empty set (no ordered pairs). On the other hand, f = () does
indeed satisfy the definition of a mapping in this case: the definition
says that for each x € N something should be true, but there are no
x € N. Therefore, exactly 1 mapping f: () — M exists. This agrees
with the formula, because m® = 1 for any m > 1. We have verified
the n = 0 case as a basis for the induction.

Many would object that a mapping of the empty set makes no sense
and so it is useless to consider it, and we could really start the induction
with n = 1 without any difficulty. But, in mathematical considerations,
it often pays to clarify such “borderline” cases, to find out what exactly
the general definition says about them. This allows us to avoid various
exceptions and special cases later on, or missing cases and mistakes in
proofs. It is similar to the usefulness of defining an empty sum (with no
addends) as 0, etc.

Next, suppose that the proposition has been proved for all n < ng
and for all m > 1. We set n = ng+1 and we consider an n-element set
N and an m-element set M. Let us fix an arbitrary element a € N.
To specify a mapping f: N — M is the same as specifying the value
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f(a) € M plus giving a mapping f': N\ {a} — M. The value f(a)
can be chosen in m ways, and for the choice of f’ we have m"~! ways
by the inductive hypothesis. Each choice of f(a) can be combined
with any choice of f’, and so the total number of possibilities for
f equals m - m"~! = m™. Here is a picture for the more visually
oriented reader:

m possibilities
to map a

the rest can,
be mapped in

m"~! ways

O

3.1.2 Proposition. Any n-element set X has exactly 2™ subsets
(n>0).

This is another simple and well-known counting result. Let us
give two proofs.

First proof (by induction). For X = (), there exists a single
subset, namely (), and this agrees with the formula 20 = 1.

Having an (n + 1)-element set X, let us fix one element a € X,
and divide the subsets of X into two classes: those not containing a
and those containing it. The first class are exactly all the subsets of
the n-element set X \ {a}, and their number is 2" by the inductive
hypothesis. For each subset A of the second class, let us consider the
set A" = A\ {a}. This is a subset of X \ {a}. Clearly, each subset
A" C X \ {a} is obtained from exactly one set A of the second class,
namely from A’ U {a}. In other words, there is a bijection between
all subsets of the first class and all subsets of the second class. Hence
the number of subsets of the second class is 2" as well, and altogether
we have 2" + 2" = 21 gubsets of the (n + 1)-element set X as it
should be. a

Second proof (reduction to a known result). Consider an ar-
bitrary subset A of a given n-element set X, and define a mapping
fa: X — {0,1}. For an element z € X we put

1 ifxed
fA(x):{o ifz ¢ A.
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(This mapping is often encountered in mathematics; it is called the
characteristic function of the set A.) Schematically,

fa 0 1.0 0 1 1 0

Distinct sets A have distinct mappings f4, and conversely, any given
mapping f: X — {0,1} determines a subset A C X with f = fa.
Hence the number of subsets of X is the same as the number of all
mappings X — {0, 1}, and this is 2" by Proposition 3.1.1. a

Now, a somewhat more difficult result:

3.1.3 Proposition. Let n > 1. Each n-element set has exactly 2"
subsets of an odd size and exactly 2! subsets of an even size.

Proof. We make use of Proposition 3.1.2. Let us fix an element
a € X. Any subset A C X \ {a} can be completed to a subset
A’ C X with an odd number of elements, by the following rule: if
|A| is odd, we put A" = A, and for |A| even, we put A" = AU {a}.
It is easy to check that this defines a bijection between the system
of all subsets of X \ {a} and the system of all odd-size subsets of X.
Therefore, the number of subsets of X of odd cardinality is 2"~
For subsets of an even size, we can proceed similarly, or we can
simply say that their number must be 2" minus the number of odd-
size subsets, i.e. 2% — 271 = n—1, O

Later on, we will examine several more proofs.

Injective mappings.

Problem. Professor X., having spent some time contemplating the
approximately 12 million possibilities of sending his postcards,
returned to the street vendor and wanted to buy his selection. But
the vendor had already sold all the postcards and was about to close.
After some discussion, he admitted he still had one sample of each of
the 26 postcards, and was willing to sell 5 of them to Professor X. for
$5 apiece. In this situation, Professor X. has to make a new decision
about which postcard is best for whom. How many possibilities does
he have now?

As Professor X. (and probably the reader too) recognized, one has
to count one-to-one mappings from a 5-element set to a 26-element
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set. This is the same as counting 5-letter words with all letters dis-
tinct.

3.1.4 Proposition. For given numbersn, m > 0, there exist exactly

n—1

m(m—1)...(m—=n+1) = [[(m —1)

=0

one-to-one mappings of a given n-element set to a given m-element
set.

Proof. We again proceed by induction on n (and more concisely this
time). For n = 0, the empty mapping is one-to-one, and so exactly
1 one-to-one mapping exists, and this agrees with the fact that the
value of an empty product has been defined as 1. So the formula
holds for n = 0.

Next, we note that no one-to-one mapping exists for n > m,
and this again agrees with the formula (since one factor equal to 0
appears in the product).

Let us now consider an n-element set N, n > 1, and an m-element
set M, m > n. Fix an element a € N and choose the value f(a) € M
arbitrarily, in one of m possible ways. It remains to choose a one-to-
one mapping of the set N\ {a} to the set M\{f(a)}. By the inductive
assumption, there are (m —1)(m —2)...(m —n+ 1) possibilities for
the latter choice. Altogether we have m(m—1)(m—2)...(m—n+1)
one-to-one mappings f: N — M. (Where is the picture? Well, these
days, you can’t expect to have everything in a book in this price
category.) O

As we have noted for the postcards and 5-letter words, choosing a
one-to-one mapping of an n-element set to an m-element set can also be
viewed as selecting n objects from m distinct objects, where the order of
the selected objects is important (i.e. we construct an ordered n-tuple).
Such selections are sometimes called variations of n elements from m
elements without repetition.

Exercises

1. Let X = {x1,29,...,2,} be an n-element set. Describe how each sub-
set of X can be encoded by an n-letter word consisting of the letters
a and b. Infer that the number of subsets of X is 2". (This is very
similar to the second proof of Proposition 3.1.2.)
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2. Determine the number of ordered pairs (A, B), where A C B C
{1,2,...,n}.

3. Let N be an n-element set and M an m-element set. Define a bijection
between the set of all mappings f: N — M and the n-fold Cartesian
product M™.

4. Among the numbers 1,2,...,10'%, are there more of those containing
the digit 9 in their decimal notation, or of those with no 97

5. (a) How many n X n matrices are there with entries chosen from the
numbers 0,1,...,¢q— 17

(b) *Let ¢ be a prime. How many matrices as in (a) have a determinant
that is not divisible by ¢? (In other words, how many nonsingular
matrices over the g-element field are there?)

6. *Show that a natural number n > 1 has an odd number of divisors
(including 1 and itself) if and only if y/n is an integer.

3.2 Permutations and factorials

A bijective mapping of a finite set X to itself is called a permutation
of the set X.

If the elements of X are arranged in some order, we can also imag-
ine a permutation as rearranging the elements in a different order.
For instance, one possible permutation p of the set X = {a,b,¢,d}
is given by p(a) = b, p(b) = d, p(c) = ¢, and p(d) = a. This can also
be written in a two-row form:

a b ¢ d
( b d ¢ a ) '

In the first row, we have listed the elements of X, and under each
element x € X in the first row, we have written the element p(x) into
the second row. Most often one works with permutations of the set
{1,2,...,n}. If we use the convention that the first row always lists
the numbers 1,2, ..., n in the natural order, then it suffices to write
the second row only. For example, (2 4 3 1) denotes the permutation

p with values p(1) =2, p(2) =4, p(3) =3, and p(4) = 1.
In the literature, permutations of a set X are sometimes understood
as arrangements of the elements of X in some order, i.e. as linear order-
ings on the set X. This may be a quite useful point of view, but we will

mostly regard permutations as mappings. This has some formal advan-
tages. For instance, permutations can be composed (as mappings).
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Yet another way of writing permutations is to use their so-called
cycles. Cycles are perhaps easiest to define if we depict a permuta-
tion using arrows, in the way we depicted relations using arrows in
Section 1.5. In the case of a permutation p: X — X, we draw the ele-
ments of the set X as dots, and we draw an arrow from each dot z to
the dot p(z). For example, for the permutationp = (483529617)
(this is the one-line notation introduced above!), such a picture looks
as follows:

O

1 4 6 7

Each point has exactly one outgoing arrow and exactly one ingo-
ing arrow. It is easy to see that the picture of a permutation con-
sists of several disjoint groups of dots, where the dots in each group
are connected by arrows into a cycle. One can walk around such a
cycle in one direction following the arrows. The groups of elements
connected together by these cycles are called the cycles of the con-
sidered permutation. (Any reader who is not satisfied with this pic-
torial definition can find a formal definition of a cycle in Exercise 2.)
Using the cycles, the depicted permutation p can also be written
p = ((1,4,5,2,8)(3)(6,9,7)). In each of the inner parentheses, the
elements of one cycle are listed in the order along the arrows, start-
ing with the smallest element in that cycle.

What can permutations be good for? They are studied, for instance,
in the design and analysis of various sorting algorithms. Certain efficient
algorithms for problems with graphs, or with geometric objects, start
by rearranging the input objects into a random order, i.e. by performing
a random permutation with them. In the so-called group theory, which
is extremely important in almost all mathematics and also in many
areas of modern physics, groups of permutations (with composition as
the group operation) are one of the basic objects of study. An ultimate
reason for the impossibility of a general algebraic solution of algebraic
equations of degree 5 is in the properties of the group of all permutations
on the 5-element set. Rubik’s Cube, a toy which used to be extremely
popular at the beginning of the 1980s, provides a pretty example of
a complicated permutation group. Surprisingly involved properties of
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permutations are applied in a mathematical analysis of card shuffling.

This is just a small sample of areas where permutations play a role.

According to Proposition 3.1.4, the number of permutations of
an n-element set is n(n — 1) -...-2- 1. This number, regarded as a
function of n, is denoted by n! and is called n factorial. Hence we
have

n—1 n
nl=nn-1)-...-2:-1=[[(n-j) =]]i
j=0 i=1

In particular, for n = 0 we have 0! = 1 (because 0! is defined as the
empty product).

Exercises
1. How many permutations of {1,2,...,n} have a single cycle?

2. For a permutation p: X — X, let p* denote the permutation arising
by a k-fold composition of p, i.e. p! = p and p¥ = p o p*~1. Define a
relation ~ on the set X as follows: ¢ ~ j if and only if there exists a
k > 1 such that p¥(i) = j. Prove that ~ is an equivalence relation on
X, and that its classes are the cycles of p.

3. Let p be a permutation, and let p* be defined as in Exercise 2. By
the order of the permutation p we mean the smallest natural number
k > 1 such that p* = id, where id denotes the identity permutation
(mapping each element onto itself).

(a) Determine the order of the permutation (23154789 6).

(b) Show that each permutation p of a finite set has a well-defined
finite order, and *show how to compute the order using the lengths of
the cycles of p.

4. ¢S Write a program that lists all permutations of the set {1,2,...,n},
each of them exactly once. Use a reasonable amount of memory even
if n!, the number of permutations, is astronomically large. *Can you
make the total number of operations of the algorithm proportional to
n!, if the operations needed for the output (printing the permutations,
say) are not counted?

5. (This is an exercise for those who are getting bored by the easy material
covered in the first two sections of this chapter.) Let p be a permuta-
tion of the set {1,2,...,n}. Let us write it in the one-line notation, and
let us mark the increasing segments in the resulting sequence of num-
bers, for example, (45726 8 3 1). Let f(n,k) denote the number of
permutations of an n-element set with exactly k increasing segments.
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(a) *Prove that f(n,k) = f(n,n+ 1 — k), and derive that the aver-
age number of increasing segments of a permutation is (n + 1)/2 (the
average is taken over all permutations of {1,2,...,n}).

(b) *Derive the following recurrent formula:

(c) Using (b), determine the number of permutations of {1,2,...,n}
with 2 increasing segments, with 3 increasing segments, and *with &
increasing segments.

(d) *For a randomly chosen permutation 7 of the set {1,2,...,n}, cal-
culate the probability that the first increasing segment has length k.
Show that for n large, the average length of the first increasing seg-
ments approaches the number e — 1.

Remark. These and similar questions have been studied in the analysis
of various algorithms for sorting.

6. Let 7 be a permutation of the set {1,2,...,n}. We say that an ordered
pair (i,7) € {1,2,...,n} x {1,2,...,n} is an inversion of 7 if i < j
and (i) > 7(j).

(a) Prove that the set I(m) of all inversions, regarded as a relation on
{1,2,...,n}, is transitive.
(b) Prove that the complement of I(7) is transitive too.

(c) €S Consider some sorting algorithm which rearranges n input num-
bers into a nondecreasing order, and in each step, it is only allowed to
exchange two neighboring numbers (in the current order). Prove that
there are input sequences whose sorting requires at least cn? steps of
this algorithm, where ¢ > 0 is some suitable constant.

(d) »¢% Can you design an algorithm that calculates the number of
inversions of a given permutation of {1,2,...,n} using substantially
less than n? steps? (See e.g. Knuth [41] for several solutions.)

7. (a) *Find out what is the largest power of 10 dividing the number 70!
(i.e. the number of trailing zeros in the decimal notation for 70!).
(b) *Find a general formula for the highest power k such that n! is
divisible by p*, where p is a given prime number.

8. Show that for every k,n > 1, (k!)™ divides (kn)!.

3.3 Binomial coefficients

Let n > k be nonnegative integers. The binomial coefficient (Z) (read
“n choose k”) is a function of the variables n, k defined by the formula

n _n(n—l)(n—2)...(n—k+1)_Hfz—l(n_z.)
<k>_ Wk—1)-...-2-1 === (3D
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The reader might know another formula, namely

<Z> - k:'(nnik)‘ (3:2)

In our situation, this is equivalent to (3.1). Among these two possible
definitions, the first one, (3.1), has some advantages. The numerical
value of (Z) is more easily computed from it, and one also gets smaller
intermediate results in the calculation. Moreover, (3.1) makes sense for

an arbitrary real number n (more about this in Chapter 12), and, in

particular, it defines the value of (Z) also for a natural number n < k;

in such cases, (Z) =0.

The basic combinatorial meaning of the binomial coefficient (Z)
is the number of all k-element subsets of an n-element set. We prove
this in a moment, but first we introduce some notation.

3.3.1 Definition. Let X be a set and let k be a nonnegative integer.

By the symbol
X
k

we denote the set of all k-element subsets of the set X.

For example, ({a,g,c}) = {{a, b}, {a, c},{b, c}}. The symbol (}) has
two meanings now, depending on whether x is a number or a set.
The following propositions put them into a close connection:

3.3.2 Proposition. For any finite set X, the number of all k-
element subsets equals (I)kfl)'

In symbols, this statement can be written

X\ _ (1X]
()= (5)
Proof. Put n = |X|. We will count all ordered k-tuples of elements of
X (without repetitions of elements) in two ways. On the one hand, we
know that the number of the ordered k-tuplesis n(n—1)...(n—k+1)
by Proposition 3.1.4 (see the remark following its proof). On the
other hand, from one k-element subset M € ()k(), we can create k!

distinct ordered k-tuples, and each ordered k-tuple is obtained from
exactly one k-element subset M in this way. Hence

()]

nn—1)...(n—k+1) = k!
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Another basic problem leading to binomial coefficients. How
many ways are there to write a nonnegative integer m as a sum of r
nonnegative integer addends, where the order of addends is impor-
tant? For example, for n = 3 and r = 2, we have the possibilities
3=0+3,3=142,3=2+1, and 3 = 0+ 3. In other words, we want
to find out how many ordered r-tuples (i1, 12,...,%,) of nonnegative
integers there are satisfying the equation

i i+ e+ iy =m. (3.3)
The answer is the binomial coefficient (m;L_Tl_ 1). This can be proved
in various ways. Here we describe a proof almost in the style of a
magician’s trick.

Imagine that each of the variables i1,149,...,4, corresponds to
one of r boxes. We have m indistinguishable balls, and we want to
distribute them into these boxes in some way (we assume that each
box can hold all the m balls if needed). Each possible distribution
encodes one solution of Eq. (3.3). For example, for m = 7 and r = 6,
the solution 0+14+0+3+ 142 = 7 corresponds to the distribution

So we are interested in the number of distributions of the balls into
boxes. We now let the bottoms and the leftmost and rightmost walls
of the boxes disappear, so that only m balls and r—1 walls separating
the boxes remain:

(we have also moved the balls and walls for a better aesthetic impres-
sion). This situation still contains full information about the distri-
bution of the balls into boxes. Hence, choosing a distribution of the
balls means selecting the position of the internal walls among the
balls. In other words, we have m + r — 1 objects, balls and internal
walls, arranged in a row, and we determine which positions will be
occupied by balls and which ones by walls. This corresponds to a
selection of a subset of r — 1 positions from m +r — 1 positions, and

this can be done in (™" 1) ways. O

Simple properties of binomial coefficients. One well-known for-

mula is
O-(2) e
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Its correctness (for n > k > 0) can immediately be seen from the
already-mentioned formula (}) = ﬁlw Combinatorially, Eq. (3.4)
means that the number of k-element subsets of an n-element set is
the same as the number of subsets with n — k elements. This can be
verified directly without referring to binomial coefficients—it suffices
to assign to each k-element subset its complement.

Here is another important formula, attributed to Pascal:

n—1 n—1 n

()= () =) 6
One elegant proof is based on a combinatorial interpretation of both
sides of Eq. (3.5). The right-hand side is the number of k-element
subsets of some n-element set X. Let us fix one element a € X
and divide all k-element subsets of X into two groups depending
on whether they contain a or not. The subsets not containing a are
exactly all k-element subsets of X'\ {a}, and so their number is (";1)
If A is some k-element subset of X containing a, then we can assign
the (k — 1)-element set A’ = A\ {a} to A. It is easy to check that
this assignment is a bijection between all k-element subsets of X
containing the element a and all (k — 1)-element subsets of X \ {a}.
The number of the latter is (z:}) Altogether, the number of all
k-element subsets of X equals (";1) + (Z:}) O

The identity (3.5) is closely related to the so-called Pascal

triangle:
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1

Every successive row in this scheme is produced as follows: under each
pair of consecutive numbers in the preceding row, write their sum, and
complement the new row by 1s on both sides. An induction using (3.5)
shows that the (n 4 1)-st row contains the binomial coefficients (g),

() G-
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Binomial theorem. Equation (3.5) can be used for a proof of
another well-known statement involving binomial coefficients: the
binomial theorem.

3.3.3 Theorem (Binomial theorem). For any nonnegative
integer n, we have
n
(1+2)" = kzo <Z> o (3.6)

(this is an equality of two polynomials in the variable x, so in par-
ticular it holds for any specific real number x).

From the binomial theorem, we can infer various relations among
binomial coefficients. Perhaps the simplest one arises by substituting
x =1, and it reads

@ N <1> ) @ . () _on, (3.7)

Combinatorially, this is nothing else than counting all subsets of an
n-element set. On the left-hand side, they are divided into groups
according to their size.

Second proof of Proposition 3.1.3 (about the number of odd-
size subsets). By substituting z = —1 into the binomial theorem,
we arrive at

(- () () - kzi:o(_l)k@ 0. ()

Adding this equation to Eq. (3.7) leads to

[6)-()+(0) ]

The brackets on the left-hand side contain the total number of even-
size subsets of an n-element set. Therefore, the number of even-
size subsets equals 2”7 1. The odd-size subsets can be counted as a
complement to 2". O

Further identities with binomial coefficients. Literally thou-
sands of formulas and identities with binomial coefficients are known
and whole books are devoted to them. Here we present one more for-
mula with a nice combinatorial proof. More formulas and methods on
how to derive them will be given in the exercises and in Chapter 12.
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3.3.4 Proposition.

> (1) -(%)

Proof. The first trick is to rewrite the sum using the symmetry of
binomial coefficients, (3.4), as

> ()02

Now we show that this sum expresses the number of n-element sub-
sets of a 2n-element set (and so it equals the right-hand side in the
formula being proved). Consider a 2n-element set X, and color n of
its elements red and the remaining n elements blue. To choose an
n-element subset of X now means choosing an i-element subset of
the red elements plus an (n —i)-element subset of the blue elements,
where i € {0,1,...,n}:

For a given 4, there are (7) possibilities to choose the red sub-
set and, independently, ( " ) possibilities for the blue subset. Al-

n—i

n blue

X

together, an n-element subset of X can be selected in > (7)(,",)

n—i
ways. a

Multinomial coefficients and the multinomial theorem. Here is
one of the favorite problems of American textbooks: how many distinct
words, including nonsense ones, can be produced using all the letters
of the word MISSISSIPPI? In other words, how many distinct ways are
there to rearrange these letters? First, imagine that the letters in the
name are distinguished somehow, so that we have 4 different Ss, etc. In
our text, we distinguish them by indices: M111S1S515S3S413P1P2I4. So
we have 11 distinct letters, and these can be permuted in 11! distinct
ways. Now consider one (arbitrary) word produced from a “nonindexed”
MISSISSIPPI, such as STPISMSIPIS. From how many “indexed” words
do we get this word by deleting the indices? The indices of the 4 letters
S can be placed in 4! ways, the indices of the 4 letters I can be arranged
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(independently) in 4! ways, for the 2 letters P we have 2! possibilities,
and finally for the single M we have 1 (or 1!) possibility. Thus, the word
SIPISMSIPIS, and also any other word created from MISSISSIPPI, can
be indexed in 4!4!2!1! ways. The number of nonindexed words, which is
the answer to the problem, is 11!/(414!2!1!).

The same argument leads to the following general result: if we have
objects of m kinds, k; indistinguishable objects of the ith kind, where
k1 + ko + -+ + ky, = n, then the number of distinct arrangements of
these objects in a row is given by the expression

n!
klko! .. k)

This expression is usually written

n
k17k2a-~-akm

and is called a multinomial coefficient. In particular, for m = 2 we get a
binomial coefficient, i.e. ( P k) denotes the same thing as (Z) Why the
name “multinomial coefficient”? It comes from the following theorem:

3.3.5 Theorem (Multinomial theorem).  For arbitrary real
numbers x1,Ta,..., T, and any natural number n > 1, the following
equality holds:
n k1 k km
(z1taztotam)t = Y (kl,km...,km)xllx; et

k14 Fhkm=n
K1reerkm >0

The right-hand side of this formula usually has fairly many terms
(we sum over all possible ways of writing n as a sum of m nonnega-
tive integers). But the theorem is most often applied to determine the
coefficient of some particular term. For example, it tells us that the
coefficient of 22y32° in (z +y + 2)'0 is (2713075) = 2520.

The multinomial theorem can be proved by induction on n (see
Exercise 26). A more natural proof can be given by the methods we

discuss in Chapter 12.

Exercises

1.

Formulate the problem of counting all k-element subsets of an n-
element set as a problem with sending or buying postcards.

. Prove the addition formula (3.5) by using the definition (3.1) of bino-

mial coefficients and by manipulating expressions.
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10.

11.
12.
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(a) Prove the formula

O+ (7)) ()-(1l) o

by induction on n (for r arbitrary but fixed). Note what the formula
says for r = 1.

(b) *Prove the same formula combinatorially.

*For natural numbers m < n calculate (i.e. express by a simple formula

not containing a sum) > ,_ (7];) ().

. Calculate (i.e. express by a simple formula not containing a sum)

(@) Yhey (0) 1
(b) * Yo (F)k.

> (-0

*How many functions f: {1,2,...,n} — {1,2,...,n} are there that
are monotone; that is, for ¢ < j we have f(i) < f(j)?

. **Prove that

. How many terms are there in the sum on the right-hand side of the

n

formula for (1 + -+ + ;)™ in the multinomial theorem?

*How many k-element subsets of {1,2,...,n} exist containing no two
consecutive numbers?

(a) Using formula (3.9) for r = 2, calculate the sums > ,i(i —1) and
i i

(b) Using (a) and (3.9) for r = 3, calculate >, *.

(¢) *Derive the result of (b) using Fig. 3.1 (the figure is drawn for the
case n = 4).

Prove the binomial theorem by induction on n.

For a real number x and a natural number n, let the symbol 2 denote
z(x—1)(x—2)...(x —n+1) (the so-called nth factorial power of x).
Prove the following analog of the binomial theorem:

(x+y)2= g (?) xlyn=t,

Proceed by induction on n.
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Fig. 3.1 A graphical derivation of the formula for 13 + 23 4 --. 4+ n3.

13.

14.

15.

16.

17.

Prove the so-called Leibniz formula for the differentiation of a product.
Let u, v be real functions of a single real variable, and let f*) denote
the kth derivative of a function f. Then

()™ = (Z) 49 (n—k)

k=0

(supposing that all the derivatives in the formula exist). The case n = 1
is the formula for differentiating a product, (uv)’ = u'v + wv’, which
you may assume as being known.

CS Write a computer program that lists all k-element subsets of the
set {1,2,...,n}, each of them exactly once. Use a reasonable amount
of memory even if (2), the number of such subsets, is very large. *Can
you make the total number of operations of the algorithm proportional
to (Z), if the operations needed for the output are not counted?

Let p be a prime and let n, k be natural numbers.

(a) Prove that for k < p, (¥) is divisible by p.

(b) Prove that (;‘) is divisible by p if and only if |n/p| is divisible
by p.

(a) *Using the binomial theorem, derive a formula for the number of
subsets of cardinality divisible by 4 of an n-element set.

(b) *Count the subsets of size divisible by 3 of an n-element set.

We have n kinds of objects, and we want to determine the number of

ways in which a k-tuple of objects can be selected. We consider vari-
ants: we may be interested in selecting ordered or unordered k-tuples,
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18.

19.

20.

21.
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and we may have either just 1 object of each kind or an unlimited
supply of indistinguishable objects of each kind. Fill out the formulas
in the following table:

Only 1 object | Arbitrarily many
of each kind objects of each kind

Ordered k-tuples

Unordered k-tuples

We have k balls, and we distribute them into n (numbered) bins. Fill
out the formulas for the number of distributions for various variants
of the problem in the following table:

At most 1 ball | Any number of balls
into each bin |into each bin

Balls are distinguishable
(have distinct colors)
Balls are
indistinguishable

*How many ways are there to arrange 7 elves and 5 goblins in a row
in such a way that no goblins stand next to each other?

A table is set with 13 large plates. We have 5 lobsters (indistinguishable
ones) and 8 stuffed snails (also indistinguishable). We are interested
in the number of ways to serve the snails and lobsters on the plates.
The order of serving is important. Imagine we were writing a script
for a movie: “Put a snail on plate no. 3, then serve a lobster on plate
no. 11...”7. Only one item is served at a time. How many ways are
there if

(a) if there are no restrictions, everything can come on the same plate,
say, and

(b) if at least 1 item should come on each plate?

Draw a triangle ABC'. Draw n points lying on the side AB (but dif-
ferent from A and B) and connect all of them by segments to the

vertex C. Similarly, draw n points on the side AC' and connect them
to B.

(a) How many intersections of the drawn segments are there? Into how
many regions is the triangle ABC' partitioned by the drawn segments?
(b) *Draw n points also on the side BC' and connect them to A. Assume
that no 3 of the drawn segments intersect at a single point. How many
intersections are there now?

(¢) *How many regions are there in the situation of (b)?



22.

23.

24.

25.

26.

27.
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Consider a convex n-gon such that no 3 diagonals intersect at a single
point. Draw all the diagonals (i.e. connect every pair of vertices by a
segment).

(a) *How many intersections do the diagonals determine?

(b) *Into how many parts is the polygon divided by the diagonals?
(Cayley’s problem) *Consider a regular convex n-gon P with vertices
Ay, As, ..., A,. How many ways are there to select k of these n vertices,
in such a way that no two of the selected vertices are consecutive
(in other words, if we draw the polygon determined by the selected

vertices, it has no side in common with P)? Hint: First, calculate the
number of such selections including Aj.

*Consider a regular n-gon. We divide it by nonintersecting diagonals
into triangles (i.e. we triangulate it), in such a way that each of the
resulting triangles has at least one side in common with the original
n-gon.

(a) How many diagonals must we draw? How many triangles do we
get?

(b) *How many such triangulations are there?

(a) What is the coefficient of #2y3z in the polynomial (22 — y? + 32)5?
What about the coefficient of z2y?2z?

(b) Find the coefficient of 22y82 in (22 + y? — 52)7.

(c) What is the coefficient of u?v3z3 in (3uv — 2z + u +v)7?

(a) Prove the equality

n - n—1
<k1,k2,...,km) B <k:1—1,k:2,k3,...,km)
n—1
+(k1,k21,k3,...,km>

4ot n—1
klkaa-“akm—lakm_l

(b) Prove the multinomial theorem by induction on n.

Count the number of linear extensions for the following partial order-
ings:

(a) X is a disjoint union of sets X1, Xo, ..., Xi of sizes r1,79,..., 7,

respectively. Each X; is linearly ordered by =, and no two elements
from the different X; are comparable.

(b) *The Hasse diagram of (X, <) is a tree as in the following picture.
The root has k sons, the ith son has r; leaves.
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3.4 Estimates: an introduction

If we are interested in some quantity and we ask the question “How
much?”, the most satisfactory answer seems to be one determining the
quantity exactly. A millionairess may find some fascination in knowing
that her account balance is 107,343,726.12 doublezons? at the moment.
In mathematics, an answer to a counting problem is usually considered
most satisfactory if it is given by an exact formula. But quite often we
do not really need an exact result; for many applications it is enough to
know a quantity approximately. For instance, many people may find it
sufficient, although perhaps not comforting, to learn that their account
balance is between 4000 and 4100 doublezons. Often even a one-sided
inequality suffices: if we estimate that a program for finding an optimal
project schedule by trying all possibilities would run for at least 100
days, we probably need not put further effort into determining whether
it would actually run for more than 102 days or less than that.
Exact results may be difficult to find. Sometimes computing an exact
result may be possible but laborious, and sometimes it is beyond
our capabilities no matter how hard we try. Hence, heading for an
estimate instead of the exact result may save us lots of work and
considerably enlarge the range of problems we are able to cope with.
Another issue is that an exact answer may be difficult to grasp
and relate to other quantities. Of course, if the answer is a single
number, it is easy to compare it to other numbers, but the situation
is more delicate if we have a formula depending on one or several
variables. Such a formula defines a function, say a function of n, and
we would like to understand “how big” this function is. The usual
approach is to compare the considered function to some simple and
well-known functions. Let us give a nontrivial example first.

3.4.1 Example (Estimating the harmonic numbers). The fol-
lowing sum appears quite often in mathematics and in computer
science:

1 1 1 |
Hy=1+ -4 -4t ==Y =
n=ltgt ot z;z

2Doublezon is a currency unit taken from the book L "Ecume des jours (English
translation: Froth on the Daydream) by Boris Vian.
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Fig. 3.2 Partitioning the sequence (%, %, %7 ...) into groups.

This H,, is called the nth harmonic number. It turns out that there
is no way to simplify this sum (it has no “closed form”). We want
to get some idea about the behavior of H,, for n growing to co. In
particular, we want to decide whether H,, — oo for n — oo.

A simple estimate. The idea is to divide the terms of the sequence
%, %, %, ... into groups, each group consisting of numbers that are
roughly of the same magnitude. That is, we let the kth group G

consist of the numbers % with

1 1 < 1
2% 7S Rl
(see Fig. 3.2).
Hence G, contains the 25~ numbers

1 1 1 1
k=17 ok—1 1 17 ok=1 4 97" "7 ok _ "

Therefore, the sum of the terms in each Gy satisfies

1
Z z < |Gplmax Gy, =281 —— =1,

2k—1
z€Gy,

and similarly

1 1
z€Gy
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A given term % belongs to the group Gy, with 2871 < i < 2% ie.
with k = |logyi] + 1. Therefore, H,, is no bigger than the sum of
numbers in the first |logy n| + 1 groups, and we get

"1 [logg n]+1
anzgg Z 1 <loggn + 1.
i=1 k=1

Similarly we can derive a lower bound

—_
—_

> - lloggn).
k=1

We may conclude that H, does grow to infinity but quite slowly,
about as slowly as the logarithm function. Even for very large values
of n, we can estimate the value of H, by computing the logarithm.
If n is large, the ratio of the upper and lower bounds is close to 2.

For somewhat more sophisticated and more precise estimates of
H,, see Exercise 3.5.13.

In this example, we seem to have been lucky. We could approxi-
mate the considered function H,, quite closely by suitable multiples of
the logarithm function. But experience shows, and certain theoretical
results confirm, that this is not exceptional luck, and that functions

(of a single variable n) occurring in natural problems can usually be

estimated fairly accurately by everyday functions like n, n?, n3%/13 27

3.26"™, 3”2/2, Inn, %n(ln n)?, etc. But finding such estimates may often
be quite tricky. In the subsequent sections, we will demonstrate several
techniques which may be helpful in such an effort.

Asymptotic comparison of functions. In the above example,
we have shown that the function H,, is “smaller” than the function
logy n + 1, meaning that the inequality H,, < logsn + 1 holds for all
n € N. But if we consider the functions f(n) = 5n and g(n) = n?,
then neither is smaller than the other, strictly speaking, since, for
example, f(1) = 5 > ¢g(1) = 1 but f(6) = 30 < ¢(6) = 36, so
neither of the inequalities f(n) < g(n) and f(n) > g(n) is correct
for all n. Yet we feel that g “grows much faster” than f: after some
initial hesitation for small values of n, g(n) exceeds f(n) and remains
above it for all the larger n.

In mathematics and in theoretical computer science, functions
defined on the natural numbers are usually compared according to
their behavior as n tends to infinity, while their behavior for small
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values n are ignored. This approach is usually called the asymptotic
analysis of the considered functions. We also speak of the asymptotic
behavior or asymptotics of some function, meaning its comparison to
some simple functions for n — oo.

If f and g are real functions of a single variable n, we may introduce
the symbol f = g, meaning that there exists some number ng such that
the inequality f(n) < g(n) holds for all n > ng; that is, “g ultimately
outgrows f”. So, for the example in the preceding paragraph, we can
write 5n < n2.

It is useful to think a bit about the relation < just introduced. It
can be viewed as a “soft” inequality between the considered functions.
If f < g holds, we are sure that g outgrows f for large enough n but
we generally do not know how large n must be. The notation < thus
suppresses some information. This often makes it much easier to de-
rive the < inequality between two functions than to prove the “hard”
inequality < (which should hold for all n). But it may also make the <
inequality treacherous for the “end-user”. Suppose that someone sells
us a black box that, for each input number n, computes and displays
some value f(n). We also get a guarantee that f(n) < n. We can never
really prove that the guarantee is invalid. No matter how many of the
n we find with f(n) > n, the seller can always claim that the number
no implicit in the guarantee is still much bigger than our examples.

The notation f < ¢ is not common in the literature (although we
believe it has some didactical value for understanding the other nota-
tions to come). Instead, several other notations are used that suppress
still somewhat more information, and thus may make the estimates yet
more convenient to derive.

The “‘big-Oh” notation. The following notation is used quite
often; for instance, it appears frequently in the analysis of algorithms.

3.4.2 Definition. Let f,g be real functions of a single variable
defined on the natural numbers (most often we assume that the
values attained by both f and g are nonnegative). The notation

f(n) = O(g(n))

means that there exist constants ng and C such that for all n > ny,
the inequality |f(n)| < C - g(n) holds. If one has to read f(n) =
O(g(n)) aloud one usually says “f is big-Oh of g”.

Here the information suppressed by the notation f(n) = O(g(n))
is the value of the constant C. It may be 0.1, 10, or 10'°—we only
learn that some constant C' exists. The notation f(n) = O(g(n))
can intuitively be understood as saying that the function f doesn’t
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grow much faster than g, i.e. that f(n)/g(n) doesn’t grow to infin-
ity. Instead of f(n) and g(n), specific formulas may appear in this
notation. For example, we may write 10n? + 5n = O(n?).

We should warn that f(n) = O(g(n)) says that f(n) is not too
big, but it does not say anything about f(n) not being very small.
For example, n+5 = O(n?) is a true statement, although perhaps not
as helpful as n +5 = O(n). Let us also emphasize that although the
notation contains the equality sign “=", it is asymmetric (essentially,
it is an inequality); one shouldn’t write O(f(n)) = g(n)!

The O( ) notation often allows us to simplify complicated expres-
sions wonderfully. For example, we have

(7n? + 6n + 2)(n® — 3n + 2%) = O(n®). (3.10)

Why? We note the following two simple rules concerning the O()
notation: if we have fi(n) = O(gi1(n)) and fa(n) = O(g2(n)) then
fi(n) + fa(n) = O(g1(n) + g2(n)), and similarly for multiplication,
fi(n) f2(n) = O(g1(n)ga(n)) (Exercise 6). Since obviously n = O(n?)
and 1 = O(n?), by a repeated application of the addition and multi-
plication rules we get 7n? + 6n + 2 = O(n? + n? + n?) = O(n?), and
similarly n® —3n+28 = O(n?). A final application of the multiplica-
tion rule gives Eq. (3.10). A nice thing in this derivation is that we
didn’t need to multiply out the parentheses first!

After some practice, one can write estimates/simplifications like
(3.10) right away without too much thinking, by quickly spotting the
“main term” in an expression (the one that grows fastest) and letting
all others disappear in the O( ) notation. Such insight is usually based
on a (maybe subconscious) use of the following simple rules:

3.4.3 Fact (Useful asymptotic inequalities). In the following,

let C,a,a,3 > 0 be some fixed real numbers independent of n. We

have

(i) n® = O(n?) whenever a < 3 (“a bigger power swallows a smaller

one” ),

(ii) n® = O(a™) for any a > 1 (“an exponential swallows a power”),

(iii) (Inn)¢ = O(n®) for any a > 0 (“a power swallows a logarithm”).
(In fact, in all the inequalities above, we can write the < symbol

instead of the O() notation.)

Part (i) is trivial, proving part (ii) is a simple exercise in calculus,
and part (iii) can be easily derived from (ii) by taking logarithms.
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Using the symbol O( ), we can also write a more exact comparison
of functions. For example, the notation f(n) = g(n)+ O(y/n) means
that the function f is the same as g up to an “error” of the order
V/n, i.e. that f(n) — g(n) = O(y/n). A simple concrete example is
(5) =n(n—1)/2 = In? + O(n).

The next example shows how to estimate a relatively complicated
sum.

3.4.4 Example. Let us put f(n) = 13 +23 + 3% + ... + n3. We want

to find good asymptotic estimates for f(n).

In this case, it is possible to find an exact formula for f(n) (see
Exercise 3.3.10), but it is quite laborious.?> But we can get reasonable
asymptotic estimates for f(n) in a less painful way. First, we may note
that f(n) < n-n® = n* On the other hand, at least % addends in
the sum defining f(n) are bigger than (n/2)3, and so f(n) > (n/2)* =
n*/16. As a first approximation, we thus see that f(n) behaves like the
function n*, up to small multiplicative factors.

To get a more precise estimate, we can employ the summation for-
mula (3.9) (Exercise 3.3.3) with r = 3:

3 n 4 n 5 T n\ (n+1
3 3 3 3) 4 )
Set g(k) = (’;) We find that g(k) = 2k=D*=2) _ %3 + O(k?). Hence

31
we have

f(n)=§k3=§69 Z P —6g(k
6("11) +O(Zk2) - %4-1-0(713).

k=1

In this derivation, we have used the following fact: if f, g are some

functions such that f(n) = O(g(n)), then >7_, f(k) =0 (X 1_, 9(k)).

It is a simple but instructive exercise to prove it.

A few more remarks. A similar “big-Oh” notation is also used for
functions of several variables. For instance, f(m,n) = O(g(m,n)) means
that for some constants mg,ng, C' and for all m > mg and all n > ng,
we have |f(n,m)| < C - g(m,n).

In the literature, one frequently encounters several other symbols for
expressing “inequality” between the order of magnitude of functions.
They can be quite useful since once one gets used to them, they provide
a convenient replacement for complicated phrases (such as “there exists

3At least by hand; many computer algebra systems can do it automatically.
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a constant ¢ > 0 such that for all n € N we have ...” etc.). We will
not discuss them in detail, but we will at least list the definitions of the
most common symbols in the table below.

Notation Definition Meaning

f grows much more slowly

_ ] M —
f(n) =o(g(n))  limy o0 575 =0 than ¢

fn)=Q(g(n)) gn)=0(f(n)) f grows at least as fast as ¢

. f(n) = O(g(n)) and f and g have about the
F(n) =©(g(n) f(n) =Q(g(n)) same order of magnitude

~ i fn) _
f)~g(n)  Timge 20 =1

N

f(n) and g(n) are almost
the same

So, finally, it is natural to ask—what is a bound f(n) = O(g(n))
good for? Since it doesn’t say anything about the hidden constant,
we cannot deduce an estimate of f(n) for any specific n from it!
There are several answers to this question. In some mathematical
considerations, we do not really care about any particular n, and it
is enough to know that some function doesn’t grow much faster than
another one. This can be used, for example, to prove the existence of
some object without actually constructing it (see Chapter 10 for such
a proof method). A more practically oriented answer is that in most
situations, the constant hidden in the O() notation can actually be
figured out if needed. One just has to go through a computation done
with the O() notation very carefully once more and track the con-
stants used in all the estimates. This is usually tedious but possible.
As a general rule of thumb (with many many exceptions), one can
say that if a simple proof leads to an O( ) estimate then the hidden
constant is usually not too large, and so if we find that f(n) = O(n)
and g(n) = Q(n?) then typically f(n) will be smaller than g(n) even
for moderate n. We add more remarks concerning the O( ) notation
in connection with algorithms in Section 5.3.

Exercises

1. Check that the relation < introduced in the text is a transitive relation
on the set of all functions f: N — R. Find an example of functions f
and ¢ such that neither f < g nor g < f.
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2. Find positive and nondecreasing functions f(n), g(n) defined for all
natural numbers such that neither f(n) = O(g(n)) nor g(n) = O(f(n))
holds.

3. Explain what the following notations mean, and decide which of them
are true.

(a) 72 = O(n* nn)

(b) n? = o(n?Inn)

(c) n* +5nlnn =n?(1+o(1)) ~n?

(d) n? + 5nlnn =n? + O(n)

(e) o5y 1 = O(n?)

(£) iy Vi=0(n/?).

4. What is the meaning of the following notations: f(n) = O(1), g(n) =
Q(1), h(n) = n°M? How can they be expressed briefly in words?

f

5. *Order the following functions according to their growth rate, and
express this ordering using the asymptotic notation introduced in this

section: nlnn, (Inlnn)2" (Inn)nn n. eV (Inp)nn p. oo

n1+1/(1nlnn), n1+1/ lnn7 n2.

6. Check that if we have fi(n) = O(g1(n)) and fa2(n) = O(g2(n)

1(n) 2(n)) then
fi(n) + fo(n) = O(g1(n) + g2(n)) and fi(n)f2(n) = O(g1(n)ga(n

))-

3.5 Estimates: the factorial function

In this section, we are going to consider estimates of the function
n! (n factorial). At the first sight, it might seem that the definition
of the factorial itself, i.e. the formula n! =n(n —1)-...-2-1, tells
us everything we may ever need to know. For small values of n, n!
can be very quickly evaluated by a computer, and for larger n, one
might think that the values of the factorial are too large to have any
significance in the “real world”. For example, 70! > 10190, as many
owners of pocket calculators with the button may know. But in
various mathematical considerations, we often need to compare the
order of magnitude of the function n! to other functions, even for
very large values of n. For this purpose, the definition itself is not
very suitable, and also an evaluation of n! by a computer sometimes
won’t be of much help. What we need are good estimates that bound
n! by some “simpler” functions.

When approaching a problem, it is usually a good strategy to start
looking for very simple solutions, and only try something complicated
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if simple things fail. For estimating n!, a very simple thing to try is

the inequality
n n
n!:Hz’SHn:n".
i=1 i=1

As for a very simple lower bound, we can write

n n
n!:HizHQZQ”—l.

Hence, n! is somewhere between the functions 2"~! and »n". In many
problems, this may be all we need to know about n!. But in other
problems, such as Example 3.5.1 below, we may start asking more
sophisticated questions. Is n! “closer” to n™ or to 2"~ 1? Does the
function ’ZL—? grow to infinity, and if so, how rapidly?

To some extent, this can be answered by still quite simple consid-
erations (similar to the first part of the solution to Example 3.4.4). If
n is even, then § of the numbers in the set {1,2,...,n} are at most
5, and § of them are larger than 5. Hence, for n even, we have, on
the one hand,

nl > ﬁ i> f[ Z:(Z)n/2=< Z)n (3.11)

i=n/2+1 i=n/2+1
and on the other hand,

n/2 n

nl < <HZ>< I1 n> :2’71—72. (3.12)

i=1 i=n/2+1

For n odd, one has to be slightly more careful, but it turns out that
n
both the formulas n! > (x/n/2> and n! < n"/2"/? can be derived

for all odd n > 3 as well (Exercise 1). So, from Eq. (3.11) we see
that n! grows considerably faster than 2"; in fact, sooner or later it
outgrows any function C™ with a fixed number C. Eq. (3.12) tells us
that n™ grows still faster than n!.
Here is a simple example where the question of comparing n” and
n! arises naturally.

3.5.1 Example. Each of n people draws one card at random from a
deck of n cards, remembers the card, and returns it back to the deck.
What is the probability that no two of the people draw the same card?
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Is there some “reasonable chance”, or is it a very rare event? Mathe-
matically speaking, what is the probability that a mapping of the set
{1,2,...,n} to itself chosen at random is a permutation?

The number of all mappings is n™, the number of permutations is n!,
and so the required probability is n!/n™. From the upper bound (3.12),
we calculate

nt o /27 2 "/2,
n" n

Therefore, the probability is no more than 2-"/2, and for n not too
small, the considered event is extremely unlikely. From more precise
estimates for n! derived later on, we will see that the probability in

question behaves roughly as the function e™".

A simple estimate according to Gauss. We show an elegant way of
deriving estimates similar to (3.11) and (3.12) but a bit stronger. This
proof is of some historical interest, since it was invented by the great
mathematician Gauss (or, written in the German way, Gauf}), and we
also learn an important and generally useful inequality.

3.5.2 Theorem. For every n > 1,

n? < nl < (n;—l) .

We begin the proof with an inequality between the arithmetic and
geometric mean of two numbers. For positive real numbers a, b, we define
the arithmetic mean of a and b as 22, and the geometric mean® of a

R
and b as Vab.

3.5.3 Lemma (Arithmetic—geometric mean inequality). For any
pair of positive real numbers a, b, the geometric mean is no bigger than
the arithmetic mean.

Proof. The square of any real number is always positive, and so
(v/a — v/b)? > 0. By expanding the left-hand side we have a—2vab+b >
0, and by adding 2v/ab to both sides of this inequality and dividing by
2 we get Vab < aT'H’. This is the desired inequality. O

Proof of Theorem 3.5.2. The idea is to pair up each number i €
{1,2,...,n} with its “cousin” n+1—i and estimate each of the products
i(n+1—1) from above and from below. If ¢ runs through the values 1,
2, ..., nthen n+ 1 — 4 runs through n, n — 1, ..., 1. The product

4If g denotes the geometric mean of a and b then the ratio a : g is the same
as g : b. From the point of view of the ancient Greeks, g is thus the appropriate
segment “in the middle” between a segment of length a and a segment of length
b, and that’s probably why this mean is called geometric.
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ﬁszrlfz

i=1
thus contains each factor j € {1,2,...,n} exactly twice, and so it equals
(n!)2. Therefore we have

~[[ Vi1, (3.13)

If we choose a =i and b =n + 1 — ¢ in the arithmetic—geometric mean
inequality, we get
i+n+1—-79 n+1

. 17 < _
iln+1—1) < 5 5

and by (3.13)

n n n
_ e n—|—1:<n—|—1> ,
11;[1 ( : i1 2 2

which proves the upper bound in Theorem 3.5.2.

In order to prove the lower bound for n!, it suffices to show that
iln+1—i)>nforalli=1,2,...,n. For i =1 and i = n we directly
calculate that i(n+1—i) = n. For 2 < i < n—1, we have a product of two
numbers, the larger one being at least 5 and the smaller one at least 2,

and hence i(n + 1 —4) > n holds for all i. Therefore, n! > /n™ = n"/2
as was to be proved. O

Of course, not everyone can invent such tricks as easily as Gauss
did, but at least the arithmetic—geometric mean inequality is worth
remembering.

Having learned some estimates of n!, we may keep asking more
and more penetrating questions, such as whether ("+1) /n! grows
to infinity, and if so how fast, etc. We will now skip some stages of
this natural evolution and prove bounds that estimate n! up to a
multiplicative factor of only n (note that in the preceding estimates,
our uncertainty was still at least an exponential function of n). In
these more sophisticated estimates, we encounter the so-called Euler
number e = 2.718281828 ..., the basis of the natural logarithms.
The reader may learn much more about this remarkable constant in
calculus. Here we need the following:

3.5.4 Fact. For every real number x,
1+x<e”
holds (see Fig. 3.3).
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Fig. 3.3 The functions y = 1 + z and y = e” in the vicinity of the origin.

This fact is something which should be marked in large bold-faced
fluorescent letters in the notebook of every apprentice in asymptotic
estimates. Here we use it to prove

3.5.5 Theorem. For every n > 1, we have

n\" n\n"
e<7) gn!gen<7> .
e e

First proof (by induction). We only prove the upper bound n! <
en(n/e)", leaving the lower bound as Exercise 9. For n = 1, the right-
hand side becomes 1, and so the inequality holds. So we assume that
the inequality has already been proved for n — 1, and we verify it for
n. We have

e

by the inductive assumption. We further transform the right-hand

side to [en (%)"] | (";1>ne,

In the brackets, we have the upper bound for n! we want to prove. So
it suffices to show that the remaining part of the expression cannot
exceed 1. By an algebraic manipulation and by using Fact 3.5.4 with

L we obtain
n

e(n;1>n:e<1—i)nge(e_l/“)n:e-e_l:l.

r = —
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y=Inzx
y=In|z]

0 1 2 3 4 5 6

Fig. 3.4 Estimating the area below the step function by integration.

Let us note that Fact 3.5.4 is the only property of the number e
that was used in the proof; for example, the numerical value of e hasn’t
played any role. It so happens that e is characterized by Fact 3.5.4: If a is
a real number such that 1+x < a” for all z € R, then necessarily a = e.
The existence and uniqueness of a real number e with this property has
to be established by the means of mathematical analysis (a task which
we don’t consider here).

Second proof of Theorem 3.5.5 (using an integral). We again
do the upper bound only. We begin with a formula for the factorial,
nl=1-2-...-n, and we take natural logarithms on both sides. In this
way, we get

Inn!=Inl4+In2+---+Inn

(the function In is the logarithm with base e). The expression on the
right-hand side can be thought of as the area enclosed between the
x-axis and the step function z +— In|z| on the interval [1,n + 1]; see
Fig. 3.4.

Since In |z] < Inz on this interval, the area in question is no bigger
than the area below the graph of the function x — Inx on the interval
[1,n + 1]. We express this latter area as an integral:

n+1
lnnlg/ lnzde=(n+1)Inn+1) —n,
1
as one can calculate as a simple exercise in integration. This estimate

can be further manipulated into

nl < e(n+1) In(n+1)—n _ (’I’L + 1)n+1 .
> on

This is not yet the expression we want. But we can use this inequality
for n — 1 instead of n, and this gives the formula in the theorem:
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n

n
n!:n~(n—1)!§n-ez_1 =en<%> .

O

A curious reader might want to discover how the number e enters
the second proof. It might seem that we inserted it artificially, since
we started with taking the natural logarithm of n!, that is, logarithm
base e. However, it turns out that if we start with logarithm with any
other base, e appears in the final bound as well, only the calculation
becomes more complicated.

For the reader’s interest, let us mention a considerably more precise
estimate for n!, known by the name Stirling’s formula: If we define the
function

f(m)=vam ()",

e

where m = 3.1415926535... is the area of the unit disk, we have
f(n) ~ nl. Recall that this means

lim M

n—oo nl

=1

So if we estimate n! by f(n) then the relative error of this estimate
tends to 0 for n tending to infinity. For example, for n = 8, the error
is about 1%. Let us note that Stirling’s formula is approximately “in
the middle” of the estimates from Theorem 3.5.5 (see also Exercise 10).
Proving Stirling’s formula requires somewhat more advanced tools from
calculus and it doesn’t quite fit into this book, so we omit it (see Knuth
[41] for a proof).

Exercises

1. (a) Check that the formula n! > (\/n/2) is valid for all odd n > 1,
by a consideration similar to Eq. (3.11).
(b) Check that also n! < n™/2"/2 holds for all odd n > 3.

2. Using Fact 3.5.4, prove that

(a) 1+ 1) <eforalln>1,and

(b) * (14 L)t >eforall n > 1.

(¢) Using ( ) and (b), conclude that lim, (1 4+ £)" =e.

(d) Prove (1—3)m <1 <(1-1)m=L

(Calculus required) *Prove Fact 3.5.4.

4. Show that {/n tends to 1 for n — oo, and *use Fact 3.5.4 to prove
that ¥/n—1> IHT” for all n > 1.
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. Decide which of the following statements are true:

a) nl~ ((n+1)/2)"
b) n! ~ ne(n/e)™
c) nt=0((n/e)")
d) In(n!) = Q(nlnn)
e) In(n!) ~ nlnn.
a) For which pairs (a,b), a,b > 0, does the equality vab = (a + b)/2
hold?
(b) The harmonic mean of positive real numbers a, b is defined by the
expression 2ab/(a + b). Based on examples, suggest a hypothesis for

the relation (inequality) of the harmonic mean to the arithmetic and
geometric means, and *prove it.

/\/\/\r\/—\/\

Let 21, 23, ..., 2, be positive reals. Their arithmetic mean equals (z1+
Ty +---+xy,)/n, and their geometric mean is defined as /x1x3 .. 2.
Let AG(n) denote the statement “for any n-tuple of positive reals
T1,%2,...,Ty, the geometric mean is less than or equal to the arith-
metic mean”. Prove the validity of AG(n) for every n by the following
strange induction:

(a) Prove that AG(n) implies AG(2n), for each n.
(b) *Prove that AG(n) implies AG(n — 1), for each n > 1.

(c) Explain why proving (a) and (b) is enough to prove the validity of
AG(n) for all n.

. (Computation of the number 7) *Define sequences {ag, a1, as, ...} and

{bo,b1,ba,...} as follows: ag = 2, bg = 4, ant1 = Vapbn, buy1 =
2y 4+1bn /(an4+1 + by). Prove that both sequences converge to 7. Hint:
Find a relation of the sequences to regular polygons with 2" sides
inscribed in and circumscribed to the unit circle.

Remark. This method (of Archimedes) of calculation of 7 is not very
efficient. Here is an example of a much faster algorithm: z; = 273/4 +
2_5/47 Y1 = 21/4; o =2+ \/57 Tn = anl(wn + 1)/(yn + 1); Yn+1 =
(Yn/Tn +1/3/Z0)/(Yn + 1), Tpny1 = (VTn + 1/\/Zy)/2. Then the m,
converge to m extremely fast. This and other such algorithms, as well
as the remarkable underlying theory, can be found in Borwein and
Borwein [16].

. Prove the lower bound n! > e(n/e)"™ in Theorem 3.5.5

(a) by induction (use Fact 3.5.4 cleverly),
(b) via integration.

(Calculus required) *Prove the following upper bound for the fac-
torial function (which is already quite close to Stirling’s formula):
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n! < ey/n(n/e)™. Use the second proof of Theorem 3.5.5 as a starting
point, but from the area below the curve y = Inx, subtract the areas
of suitable triangles.

11. Prove Bernoulli’s inequality: for each natural number n and for every
real z > —1, we have (1 + )" > 1+ nz.

12. Prove that for n = 1,2,..., we have

11
2Wn+1-2<14—=+—=+--

1
ARV +%§2\/ﬁ—1.

13. Let H, be as in Example 3.4.1: H, =5 1

i=17"
(a) *Prove the inequalities Inn < H,, <Inn+1 by induction on n (use
Fact 3.5.4).

(b) Solve (a) using integrals.
3.6 Estimates: binomial coefficients

Similar to the way we have been investigating the behavior of the
function n!, we will now consider the function

n 7n(n—1)...(n—k+1)7k_1n_i
<k>_ k(k—1)-...-2-1 _gk—i' (3.14)

From the definition of (Z), we immediately get

()=

and for many applications, this simple estimate is sufficient. For
k > 5, one should first use the equality (Z) = (nf k)

In order to derive some lower bound for (Z’), we look at the def-
inition of the binomial coefficient written as a product of fractions,
as in (3.14). For n > k >4 > 0 we have 7= > 7, and hence

(1)= ("

Quite good upper and lower bounds for ( kl) can be obtained from

Stirling’s formula, using the equality (}) = ﬁlk), These bounds are
somewhat cumbersome for calculation, however, and also we haven’t
proved Stirling’s formula. We do prove good but less accurate estimates
by different methods (the main goal is to demonstrate these methods,
of course).



94 Combinatorial counting

3.6.1 Theorem. For every n > 1 and for every k, 1 < k < n, we have
n en\k
< (%)
k k

Proof. We in fact prove a stronger inequality:

(g)+(§)+(g)+...+(g) < ()",

We start from the binomial theorem, which claims that

(Z) . (v;)H (7;)352 I (Z)x" =(1+a)"

for an arbitrary real number z. Let us now assume 0 < x < 1. Then by
omitting some of the addends on the left-hand side, we get

()¢ (e (e

and dividing this by z* leads to

R

Each of the binomial coefficients on the left-hand side is multiplied by
a coefficient that is at least 1 (since we assume z < 1), and so if we
replace these coefficients by 1s the left-hand side cannot increase. We

obtain (g) ) (’f) . (Z) . (11:7;’)"

The number z € (0,1) can still be chosen at will, and we do it in such

a way that the right-hand side becomes as small as possible. A suitable

value, which can be discovered using some elementary calculus, is x = %

By substituting this value into the right-hand side, we find

n+n+ +n<1+ﬁn<ﬁ)k
0 1 k) — n k/ -
Finally, by using Fact 3.5.4 we arrive at
(1+ k) < (ek/n>” _ ok,
n
and the inequality in Theorem 3.6.1 follows. O

The trick used in this proof is a small glimpse into the realm of
perhaps the most powerful known techniques for asymptotic estimates,
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using the so-called generating functions. We will learn something about
generating functions in Chapter 12, but to see the full strength of this
approach for asymptotic bounds, one needs to be familiar with the
theory of functions of a complex variable.

The binomial coefficient (\_n?QJ)' From the definition of the
binomial coefficients, we can easily get the following formula:

<Z> :n_llzﬂ<ki1>'

Therefore, for k& < n/2 we have (Z) > (kfl), and conversely, for

k > n/2 we obtain (}) > (kil) Hence for a given n, the largest

among the binomial coefficients (Z) are the middle ones: for n even,
(n%) is bigger than all the others, and for n odd, the two largest

binomial coefficients are (Ln72 j) and ([n%]).

The behavior of the binomial coefficient (Z) as a function of k, with
n fixed as some large number and for k close to n/2, is illustrated in
Fig. 3.5(a). The graph of the function (}) isn’t really a continuous curve
(since (Z) is only defined for an integer k), but if n is very large, there
are so many points that they visually blend into a curve. The “height”
of this bell-shaped curve is exactly (Ln72 j)’ and the “width” of the bell

shape approximately in the middle of its height is about 1.5y/n. The
scales on the vertical and horizontal axes are thus considerably different:
the horizontal axis shows a range of k of length 3+/n, while the vertical
range is (I_n72j) (which is nearly 2" as we will soon see).

If you plot the function x +— e~/ 2, you get a curve which looks
exactly the same as the one we have plotted for binomial coefficients,
up to a possibly different scaling of the axes. This is because the e~ ’/2
curve, called the Gauss curve, is a limit of the curves for binomial co-
efficients for n — oo (in a suitably defined precise sense). The Gauss
curve is very important in probability theory, statistics, and other ar-
eas. For example, it describes a typical distribution of errors in physical
measurements, the percentage of days with a given maximal tempera-
ture within a long time period, and so on. In statistics, the distribution
given by the Gauss curve is called the normal distribution. The Gauss
curve is one of the “ubiquitous” mathematical objects arising in many
often unexpected contexts (another such omnipresent object is the Eu-
ler number e, and we will meet some others later in this book). You
can learn more about the Gauss curve and related things in a prob-
ability theory textbook (Grimmett and Stirzaker [20] can be highly
recommended).
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Fig. 3.5 A graph of (}) as a function of k in the vicinity of % (a), or
perhaps a hat, or maybe a gigantic boa constrictor which has swallowed an
elephant (b) (see [28]).

How large is the largest binomial coefficient (L /2 j)? A simple but
often accurate enough estimate is

a1 < () <7

The upper bound is obvious from the equality Y ;_, ( ) = 2" and
the lower bound follows from it as well, because (L n)2 J) is largest
among the n + 1 binomial coefficients (Z) whose sum is 2".

We prove a considerably more precise estimate. For convenient
notation, we will only work with even values of n, and so we write
n = 2m.

3.6.2 Proposition. For all m > 1 we have

22m m 22m
()
2v/m m Vom
Proof. Both inequalities are proved similarly. Let us consider the

number
1-3-5-...-(2m—1)

2:4-6-...-2m
(the whole idea of the proof is hidden in this step). Since

1-3-5-...-(2m—1) 2-4-...-(2m)  (2m)!

P =

P= 6 am 24 om) P
we get
()
Thus, we want to prove
1 1
v == e
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For the upper bound, consider the product

O

which can be rewritten as

() (). (500) <

Since the value of the product is less than 1, we get (2m + 1)P? < 1,
and hence P < 1/v/2m.
For the lower bound we consider the product

(-3)(-8) ()

and we express it in the form

() (%) - (28) - rmr e

which gives P > 1/2\/m. O

Let us remark that by approximating both (2m)! and m! using
Stirling’s formula, we get a more precise result

2m 22m
m Vrm'
Such estimates have interesting relations with number theory, for

example. One of the most famous mathematical theorems is the follow-
ing statement about the density of primes:

3.6.3 Theorem (Prime number theorem). Let 7(n) denote the
number of primes not exceeding the number n. Then

n

m(n) ~ i —

Inn
(ie. lim, oo m(n)Inn/n=1).
Several proofs of this theorem are known, all of them quite difficult
(and a quest for interesting variations and simplifications still contin-

ues). Within the 19th century, Tschebyshev found a simple proof of the
following weaker result:

n
7 =6 ()
ie.cyn/Inn < w(n) < con/Inn holds for all n and for certain constants

ca > ¢y > 0. Part of the proof is based on the estimates 23;:1 < (2::) <
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22m (see Exercise 2). Tschebyshev also proved the so-called Bertrand
postulate: For every n > 1, there exists a prime p with n < p < 2n.
Perhaps the simplest known proof uses, among others, the estimates in
Proposition 3.6.2. The reader can learn about these nice connections in
Chandrasekhar [35], for example.

Exercises

1

2.

a) Prove the estimate () < (en/k)* by induction on k.

-
(b) Prove the estimate in (a) directly from Theorem 3.5.5.
(

Tschebyshev estimate of m(n))
a) Show that the product of all primes p with m < p < 2m is at most
2m

(
)

(b) *Using (a), prove the estimate w(n) = O(n/Inn), where 7(n) is as
in the prime number theorem 3.6.3.

(¢) *Let p be a prime, and let m, k be natural numbers. Prove that if
p* divides (2::) then p* < 2m.
(d) Using (c), prove 7(n) = Q(n/Inn).

3.7 Inclusion—exclusion principle

We begin with a simple motivating example. As many authors of exam-
ples with finite sets have already done, we resort to a formulation with
clubs in a small town.

3.7.1 Example. The town of N. has 3 clubs. The lawn-tennis club has
20 members, the chandelier collectors club 15 members, and the mem-
bership of the Egyptology club numbers 8. There are 2 tennis players
and 3 chandelier collectors among the Egyptologists, 6 people both play
tennis and collect chandeliers, and there is even one especially eager per-

son participating in all three clubs. How many people are engaged in
the club life in N.?

As a warm-up, let us count the combined membership of tennis and
Egyptology. We see that we have to add the number of tennis players
and the Egyptology fans and subtract those persons who are in both
these clubs, since they are accounted for twice in the sum. Written in
symbols, we have [T UE| = |T|+ |E| — |[TNE| =20+ 8 —2 = 26. The
reader who isn’t discouraged by the apparent silliness of the whole prob-
lem® can probably find, with similar but more complicated considera-
tions, that the answer for the 3 clubs is 33. To find the answer, it may
be helpful to draw a picture:

SWhich may indicate mathematical inclinations.
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T

E

The inclusion—exclusion principle mentioned in the section’s title is
a formula which allows us to solve problems of a similar type for an
arbitrary number of clubs. It is used in situations where we want to
compute the size of the union of several sets, and we know the sizes
of all possible intersections of these sets. For 2 sets, T' and FE, such
a formula has been given above, and for 3 sets C, T, E' it reads

|CUTUE| = |C|+|T|+|E|—|CNT|—|CNE|—=|TNE|+|CNTNE].

Expressed in words: in order to get the size of the union, we first add
up the sizes of all the sets, then we subtract the sizes of all pairwise
intersections, and finally we add the size of the intersection of all
the 3 sets. As will be shown in a moment, such a method also works
for an arbitrary number n of finite sets Aj, Ao, ..., A,. The size of
their union, i.e. |[A; U A U---U A,]|, is obtained as follows: we add
up the sizes of all the sets, then we subtract the sizes of all pairwise
intersections, add the sizes of all triple intersections, subtract the
sizes of all 4-wise intersections, etc.; as the last step, we either add
(for n odd) or subtract (for n even) the size of the intersection of all
the n sets.
How do we write this in a formula? One attempt might be

|Aj U Ay U---UA,| = |A1] + [Aa] + - + Ay
—|A1NAg|— AN As| = —|A1 N A | —[A2NAg| = - — |41 N Ay
+]A; N Ag N Ag| + [A1 N Ax N Ayl
+"‘+(—1)n71‘A1 NAsN---N A,

This is a cumbersome and not very clear way of expressing such a
simple rule. Slightly better is a notation using sums:

AU AU UA =) Al = D A N A
i=1

1<ii <ig<n
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+ Z |Ai; N Ay N A13|

1<i1<i9<iz<n
— e (D" AI N AN N Ay

If we recall the notation ()k() for the set of all k-element subsets of
a set X, and if we use a notation similar to ) also for multiple
intersections and unions, we can write the same formula still more
elegantly:

3.7.2 Theorem (Inclusion—exclusion principle). For any collec-
tion A1, As, ..., A, of finite sets, we have

SICIEDS

k=1 Ie({l,Q,I;,n})

n

U4

=1

(A

iel

. (3.15)

In case you cannot see why this formula expresses the rule we
have formulated in words, you may want to devote some time to it
and work out the case n = 3 in detail. Many students have problems
with this notation (or any mathematical notation) for the inclusion—
exclusion principle, confusing numbers with sets and vice versa, and
this makes a clean solution of more complicated problems very hard.

Finally, the shortest and almost devilish way of writing the inclusion—
exclusion principle is

U

i=1

- >y

0AIC{1,2,...,n}

N Ai‘. (3.16)

el

First proof of the inclusion—exclusion principle: by induction.
The induction is on n, the number of sets. There is a small subtlety
here: for the inductive step, we need the formula for the case n = 2,
and so we use n = 2 as the basis for induction. For 2 sets, as we
know, the formula holds. Assume its validity for arbitrary n — 1 sets.
We have

n

U4

i=1

n—1
= U A;
i=1

| ({a)en

i=1

n—1
i=1

(here we used inclusion-exclusion for 2 sets, i.e. the equality
|JAUB| = |A|+ |B|—|ANB|with A=A, U---UA,_1, B=A,)

n—1 n—1
= Al +14n - [ JAin 4y)
=1 =1
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(distributivity of the intersection: X N (YU Z) = (XNY)U(XNZ);
now we use the inductive hypothesis twice, once for |[A;U---UA,,_1]
and once for |[A] U---U A _,|, where A, = A, N A,)

= <:§(_1)k—1 IE({L%”_H) QIAi > + |4y
)

n—1
_ ( (—1)k1 Z ﬂ A
re(ft2m=1y lielun}
We are nearly done. In the first sum, we add, with the proper signs,
the sizes of all intersections not involving the set A,. In the second
sum, the sizes of all the intersections involving A, appear, and the
intersection of k + 1 sets (i.e. some k sets among Aj,..., A,_1 plus
Ay) has the sign —(—1)*=1 = (=1)*. The second sum doesn’t inc-
lude the term |A,|, but this appears separately between both sums.
Altogether, the size of the intersection of any k-tuple of sets among
Aq,..., A, appears exactly once in the expression, with the sign
(—1)k=1. This agrees with Eq. (3.15), and the proof by induction is
finished. Without a reasonable notation, we would easily get lost in
this proof. O

i

Second proof of the inclusion—exclusion principle: by count-
ing. Let us consider an arbitrary element x € A1 U---U A,. It
contributes exactly 1 to the size of the union on the left-hand side
of (3.15). Let us look at how much x contributes to the various in-
tersection sizes on the right-hand side. Let j be the number of sets
among the A; that contain x. We can rename the sets so that z is

contained in A, Ay, ..., Aj.
The element & now appears in the intersection of every k-tuple
of sets among A, Ag,...,4; and in no other intersections. Since

there are (}) k-element subsets of a j-element set, = appears in (7)
intersections of k-tuples of sets. The sizes of k-wise intersections are
counted with the sign (—1)*~!, and so = contributes the quantity

N

to the right-hand side of the inclusion—exclusion formula (3.15). By
the formula (3.8) for the sum of binomial coefficients with alternat-
ing signs, the above expression equals 1. The contribution of each
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element = to both sides of the inclusion—exclusion formula (3.15) is
thus 1, and the formula is proved. O

And one more proof. If one looks at the inclusion—exclusion prin-
ciple in a proper way, it is a consequence of the following formula for
expanding a product:

A4zl ta).. . (Itz)= > (Hsci). (3.17)

IC{1,2,....,n} “i€l

Contemplate what this formula says (write it out for n = 1,2, 3, say)
and why it holds.

In order to prove the inclusion—exclusion principle, let us denote
A=A UAU---UA,, and let f;: A — {0,1} be the characteristic
function of the set A;, which means that f;(a) = 1 for a € A; and
fi(a) = 0 otherwise. For every a € A, we have [[_,(1 — fi(a)) = 0
(don’t we?), and using (3.17) with x; = —f;(a) we get

S )] fila) =0,

IC{1,2,...,n} iel

By adding all these equalities together for all @ € A, and then by inter-
changing the summation order, we arrive at

0->( ¥ o)

ac€A NIC{1,2,...,n} iel
= Y (=M ( > Hfi(a)). (3.18)
I1C{1,2,...,n} acAiel

Now it suffices to note that the [];.; fi(a) is the characteristic func-
tion of the set (;c; A;, and therefore Y., [T;c; fi(a) = |Mies Ai]- In

particular, for I = 0, J[;4 fi(a) is the empty product, with value 1
by definition, and so Y, 4 [L;cq fi(a) = > ,ca 1 = |A|. Hence (3.18)

VIED SR Pt

0£IC{1,2,...,n} i€l

:O7

and this is exactly the inclusion—exclusion principle. An expert in algebra
can thus regard the inclusion—exclusion principle with mild contempt:
a triviality, she might say. O

Bonferroni inequalities. Sometimes we can have the situation where
we know the sizes of all the intersections up to m-fold ones, but we
do not know the sizes of intersections of more sets than m. Then we
cannot calculate the size of the union of all sets exactly. The so-called
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Bonferroni inequalities tell us that if we leave out all terms with k& > m
on the right-hand side of the inclusion—exclusion principle (3.15) then
the error that we make in this way in the calculation of the size of the
union has the same sign as the first omitted term. Written as a formula,
for every even q we have

q n
St 3 N4l < | U A (3.19)
k=1 re({ 2, mh) el i=1
and for every odd g we have
q n
S(=pt Y 4| >[4 (3.20)

k=1 re((2y )il i=1

This means, for instance, that if we didn’t know how many diligent
persons are simultaneously in all the three clubs in Example 3.7.1, we
could still estimate that the total number of members in all the clubs
is at least 32. We do not prove the Bonferroni inequalities here.

Exercises
1. Explain why the formulas (3.15) and (3.16) express the same equality.

2. *Prove the Bonferroni inequalities. If you cannot handle the general
case try at least the cases ¢ =1 and ¢ = 2.

3. (Sieve of Eratosthenes) How many numbers are left in the set
{1,2,...,1000} after all multiples of 2, 3, 5, and 7 are crossed out?

4. How many numbers n < 100 are not divisible by a square of any integer
greater than 17

5. *How many orderings of the letters A, B, C, D, E, F, G, H, I, J, K,
L, M, N, O, P are there such that we cannot obtain any of the words
BAD, DEAF, APE by crossing out some letters? What if we also forbid
LEADING?

6. How many ways are there to arrange 4 Americans, 3 Russians, and 5
Chinese into a queue, in such a way that no nationality forms a single
consecutive block?

3.8 The hatcheck lady & co.

3.8.1 Problem (Hatcheck lady problem). Honorable gentlemen,
n in number, arrive at an assembly, all of them wearing hats, and
they deposit their hats in a cloak-room. Upon their departure, the
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hatcheck lady, maybe quite absent-minded that day, maybe even al-
most blind after many years of service in the poorly lit cloak-room,
issues one hat to each gentleman at random. What is the probability
than none of the gentlemen receives his own hat?

As stated, this is a toy problem, but mathematically it is quite
remarkable, and a few hundred years back, it occupied some of the
best mathematical minds of their times. First we reformulate the
problem using permutations. If we number the gentlemen (our apolo-
gies) 1,2,...,n, and their hats too, then the activity of the hatcheck
lady results in a random permutation 7 of the set {1,2,...,n},
where 7(i) is the number of the hat returned to the ith gentle-
man. The question is, what is the probability of 7 (i) # i holding
for all i € {1,2,...,n}? Call an index i with (i) = i a fized point
of the permutation 7. So we ask: what is the probability that a ran-
domly chosen permutation has no fixed point? Each of the n! possible
permutations is, according to the description of the hatcheck lady’s
method of working, equally probable, and so if we denote by D(n)
the number of permutations with no fixed point® on an n-element
set, the required probability equals D(n)/n!.

Using the inclusion—exclusion principle, we derive a formula for
D(n). We will actually count the “bad” permutations, i.e. those
with at least one fixed point. Let S,, denote the set of all permu-
tations of {1,2,...,n}, and for i = 1,2,...,n, we define A; = {m €
Sp: m(i) = i}. The bad permutations are exactly those in the union
of all the A;.

Here we suggest that the reader contemplate the definition of the
sets A; carefully—it is a frequent source of misunderstandings (their
elements are permutations, not numbers).

In order to apply the inclusion—exclusion principle, we have to
express the size of the k-fold intersections of the sets A;. It is easy
to see that |A;| = (n—1)!, because if 7(i) = i is fixed, we can choose
an arbitrary permutation of the remaining n — 1 numbers. Which
permutations lie in A1 N As? Just those with both 1 and 2 as fixed
points (and the remaining numbers can be permuted arbitrarily), and
so |[A1NAs| = (n—2)!. More generally, for arbitrary i; < iy < --- <y
we have [4;; N A;, N---NA;, | = (n—k)!, and substituting this into
the inclusion—exclusion formula yields

5Such permutations are sometimes called derangements.
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IAj U UA,| = i(—1)k—1<z> an 1”'.

k=1 k=1

We recall that we have computed the number of bad permutations
(with at least one fixed point), and so

| | n! n! o
which can still be rewritten as
1 1 1
D(n) =n! (1 T + o + (—1)”n!> ) (3.21)

As is taught in calculus, the series in parentheses converges to e~ !

for n — oo (where e is the Euler number), and it does so very
fast. So we have the approximate relation D(n) =~ n!/e, and the
probability in the hatcheck lady problem converges to the constant
e~ =0.36787.... This is what also makes the problem remarkable:
the answer almost doesn’t depend on the number of gentlemen!

The Euler function ¢. A function denoted usually by ¢ and named
after Leonhard Euler plays an important role in number theory. For a
natural number n, the value of ¢(n) is defined as the number of natural
numbers m < n that are relatively prime to n; formally

en)={me {1,2,...,n}: ged(n,m)=1}.

Here ged(n, m) denotes the greatest common divisor of n and m; that is,
the largest natural number that divides both n and m. As an example
of application of the inclusion—exclusion principle, we find a formula
which allows us to calculate ¢(n) quickly provided that we know the
factorization of n into prime factors.

The simplest case is when n = p is a prime. Then every m < p is
relatively prime to p, and so p(p) =p — 1.

The next step towards the general solution is the case when n = p
(a € N) is a prime power. Then the numbers not relatively prime to
p® are multiples of p, i.e. p,2p,3p,...,p* 'p, and there are p®~! such
multiples not exceeding p* (in general, if d is an any divisor of some
number n, then the number of multiples of d not exceeding n is n/d).
Hence, there are p(p®) = p* — p®~! = p®(1 — 1/p) remaining numbers
that are relatively prime to p®.

An arbitrary n can be written in the form

(0%

o a1,Q2 o
n=p; Py ...p.",

where p1, pa, ..., p- are distinct primes and a; € N. The “bad” m < n,
i.e. those not contributing to ¢(n), are all multiples of some of the
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primes p;. Let us denote by A; = {m € {1,2,...,n}: p;m} the set
of all multiples of p;. We have p(n) =n —|A; U A2 U---U A,|. The
inclusion—exclusion principle commands that we find the sizes of the
intersections of the sets A;. For example, the intersection A; N Ay con-
tains the numbers divisible by both p; and ps, which are exactly the
multiples of p1ps, and hence |A; N As| = n/(p1p2). The same argument

gives
n
|[A;, N A, N NA, | = ————.
PiyDiy - - - Piy,
Let us look at the particular cases r = 2 and r = 3 first. For n = p{"* p5?
we have

@(n) =n—|A1 U As| =n — |Ar] — |Ag] + |A1 N Ay

n n n 1 1
=n—-——-—+ =n|{l—-— 1-—.
b1 P2 P1P2 P1 P2
Similarly, for n = p{'p32p5® we get

n n n n n n n n n
b1 P2 P3  pipP2  pPiP3  P2P3  P1P2pP3

(25

This may raise a suspicion concerning the general formula.

3.8.2 Theorem. Forn = p{*p5?...por, we have

w(n):n<1_pll> (1_;2)...(1_;). (3.22)

Proof. For an arbitrary r, the inclusion—exclusion principle (we use,
to our advantage, the short formula (3.16)) gives

f=n— Y ety GO0
Hie[pi Hielpi

0£IC{1,2,...,7} IC{1,2,...,r}

We claim that this frightening formula equals the right-hand side of
Eq. (3.22). This follows from the formula (3.17) for expanding the prod-
uct (14z1)(14+z2)(1+x3) ... by substituting ; = —1/p;, i =1,2,...,7.

O

Exercises

1. There are n married couples attending a dance. How many ways are
there to form n pairs for dancing if no wife should dance with her
husband?
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. (a) Determine the number of permutations with exactly one fixed
point.

(b) Count the permutations with exactly k fixed points.

. What is wrong with the following inductive “proof” that D(n) =
(n—1)! for all n > 27 Can you find a false step in it? For n =2,
the formula holds, so assume n > 3. Let m be a permutation of
{1,2,...,n— 1} with no fixed point. We want to extend it to a per-
mutation 7’ of {1,2,...,n} with no fixed point. We choose a number
i€{1,2,...,n— 1}, and we define 7’'(n) = w (i), #'(i) = n, and 7' (j) =
7(g) for j # i,n. This defines a permutation of {1,2,...,n}, and it is easy
to check that it has no fixed point. For each of the D(n — 1) = (n — 2)!
possible choices of 7, the index i can be chosen in n — 1 ways. Therefore,
Dn)=n-2)!-(n—1)=(n—-1)L

. *Prove the equation

n

D(n) =n! —nD(n—1) — <;‘>D(n—2)—.-.— ( )D(l)—l.

n—1

. (a) *Prove the recurrent formula D(n) = (n—1)[D(n—1)+ D(n—2)].
Prove the formula (3.21) for D(n) by induction.

(b) *Calculate the formula for D(n) directly from the relation derived
in (a). Use an auxiliary sequence given by a,, = D(n) —n D(n — 1).

. How many permutations of the numbers 1,2, ..., 10 exist that map no
even number to itself?

. (Number of mappings onto) Now is the time to calculate the number
of mappings of an n-element set onto an m-element set (note that we
have avoided it so far). Calculate them

(a) for m =2

(b) for m = 3.

(c) *Write a formula for a general m; check the result for m =n = 10
(what is the result for n = m?). Warning: The resulting formula is a
sum, not a “nice” formula like a binomial coefficient.

(d) *Show, preferably without using part (c), that the number of map-
pings onto an m-element set is divisible by m/!.

. (a) *How many ways are there to divide n people into k groups (or:
how many equivalences with k classes are there on an n-element set)?
Try solving this problem for k£ = 2,3 and k = n — 1,n — 2 first. For a
general k, the answer is a sum.

(b) What is the total number of equivalences on an n-element set?
(Here the result is a double sum.)
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10.

11.

12.

13.

14.

(c) *If we denote the result of (b) by B,, (the nth Bell number), prove
the following (surprising) formula:

;1

1 7
Bn:gZﬁ'

=0

*Prove the formula (3.22) for the Euler function in a different way.
Suppose it holds for n = p* (a prime power). Prove the following
auziliary claim: if m,n are relatively prime, then p(mn) = p(m)e(n).

“For an arbitrary natural number n, prove that »_, ., ¢(d) = n (the
sum is over all natural numbers d dividing n).

(a) How many divisors does the number n = p{"p5?...p%" have
(p1,pa, - .., pr are distinct primes)?
(b) Show that the sum of all divisors of such a number n equals

r

pai+1 -1

i Pl
(¢) **Call a number n perfect if it equals the sum of all its divisors
(excluding itself). For example, 6 = 1 4+ 2 + 3 is perfect. Prove that
every even perfect number has the form 29(2¢%1 — 1), where ¢ > 1 is
a natural number and 29! — 1 is a prime.

Remark. No odd perfect numbers are known but no one can show that
they don’t exist.

(a) *For a given natural number N, determine the probability that
two numbers m,n € {1,2,..., N} chosen independently at random
are relatively prime.

(b) *Prove that the limit of the probability in (a) for N — oo equals
the infinite product [],(1 —1/ p?), where p runs over all primes. (Let

us remark that the value of this product is 6/7%; this can be proved
from Fact 12.7.1.)

(a) Determine the number of graphs with no vertices of degree 0 on a
given n-element vertex set V' (see Sections 4.1 and 4.3 for the relevant
definitions).

(b) Determine the number of all graphs with at least 2 vertices of
degree 0 on V', and with exactly 2 vertices of degree 0.

*How many ways are there to seat n married couples at a round table
with 2n chairs in such a way that the couples never sit next to each
other?
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Graphs: an introduction

4.1 The notion of a graph; isomorphism

Many situations in various practically motivated problems and also
in mathematics and theoretical computer science can be captured by
a scheme consisting of two things:

e a (finite) set of points, and
e lines joining some pairs of the points.

For example, the points may represent participants at a birthday
party and the joins correspond to pairs of participants who know
each other. Or the points can represent street crossings in a city and
the joins the streets. Also a municipal transport network or a railway
network is usually displayed as a scheme of this type (see Fig. 4.1),
and electrotechnical schemes often have a similar character as well.
In such cases, the points are commonly called vertices (or also nodes)
and the joins are called edges.'

If we disregard the length, shape, and other properties of the
joins and we only pay attention to which pairs of points are joined
and which are not, we arrive at the mathematical notion of a graph.
Although very simple, a graph is one of the key concepts in discrete
mathematics. This is also illustrated in the subsequent sections.

4.1.1 Definition. A graph? G is an ordered pair (V, E), where V is
some set and FE is a set of 2-point subsets of V. The elements of the

set V' are called vertices of the graph G and the elements of E edges
of G.

!The origins of this terminology are mentioned in Section 6.3.

2What we simply call a graph here is sometimes more verbosely called a simple
undirected graph, in order to distinguish it from other, related notions. Some of
them will be mentioned later.
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Fig. 4.1 A scheme of part of the Czech railway network in a region of about
150 x 100 km around Prague.

In this book, we almost always consider graphs with finite vertex
sets. The few cases where we deal with infinite graphs too will be
mentioned explicitly.

If we want to point out that some graph G has V' as the vertex
set and E as the edge set we write G = (V, E). If we talk about some
known graph G and we want to refer to its vertex set, we denote it
by V(G). Similarly we write E(G) for the edge set of G. A useful
notation is also (‘2/) for the set of all 2-element subsets of V' (see
Section 3.3.1 for a motivation of this symbol). We can briefly say
that a graph is a pair (V, E), where E C (g)

The following terminology is fairly self-explanatory: if {u,v} is
an edge of some graph G, we say that the vertices u and v are
adjacent in G or that w is a neighbor of v (and v is a neighbor
of u).

Graphs are usually depicted by drawings in the plane. The ver-
tices of a graph are assigned points in the plane (drawn as dots,
bullets, little circles, etc.) and the edges are expressed by connect-
ing the corresponding pairs of points by straight or variously curved
lines (these lines are called arcs in this context). In this way, we get
pictures like this:
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The word graph itself perhaps comes from the possibility of such
a drawing. (We should emphasize that the word graph is used here
with a different meaning than in “graph of a function” —we sincerely
hope that the reader has noticed this by now.)

The role of the drawing of a graph is auxiliary, however. A graph
can also be represented in many other ways, and, for instance, in a
computer memory it is certainly not stored as a picture. One graph
can be drawn in many different ways. For example, the first two of
the above pictures show the same graph with vertex set {1,2,3,4,5}
and edges {1,2}, {2,3}, {3,4}, {4,5}, {5,1}.

In a visually well-arranged drawing of a graph, the arcs should
“cross” as little as possible. Crossings could possibly be mistaken
for vertices, and also in some schemes of electronic circuits and in a
number of other situations crossings are inadmissible. This leads to
the study of an important class of the so-called planar graphs (see
Chapter 6).

Drawing graphs is an important aid in the theory of graphs. Draw
pictures for yourself whenever possible! Many notions are motivated
“pictorially” and drawings can make such notions much more intu-
itive.

The railway scheme in Fig. 4.1 also illustrates that the notion of

a graph is a nontrivial abstraction and simplification of real life situa-
tions. The arcane and historically developed railway network shown in
the figure resembles a graph drawing, but, for example, there are few
places where tracks branch outside of railway stations. Also, there are
plenty of other types of information one might want to associate with
a railway network scheme (track quality and number for each connec-
tion, which tracks go straight through a station and which form a side
branch, station distances, train schedules, and so on). If one should make
a mathematical model of a railway network and didn’t know the notion
of a graph, one would probably come up with something much more
complex. In applications, graphs are indeed often augmented by further
information. But the notion of a graph is very useful as a “skeleton”
of such mathematical models, and once we use a graph as a significant
part of the model, we immediately have a well-developed mathematical
theory at our disposal, suggesting further notions, properties, and effi-
cient algorithms to consider.
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Important graphs. We introduce several types of specific graphs,
which are quite often encountered in graph theory and for which
standard notation and terminology have become customary.

The complete graph K, :
V={12,...,n}, E=(}).

Kg K4 K5 K6

Mainly for aesthetic reasons, we also include a drawing of Koz with
all of its 253 edges:

The cycle Cy:
V={12...,n}, E={{i,i+1}: i=1,2,...,n—1} U {{l,n}}.
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A OO U

The path P,:
V={0,1,...,n}, E={{i—1,i}: i=1,2,...,n}.

/\'/P\\\/

7

The complete bipartite graph K, -
V=Au,...,un} U{v1,...,on},
E = {{uz,v]} i=1,2,...,n,7=1,2,.

I\/\VW@%

Ky

A small explanation seems appropriate here. The word “bipartite”
means “consisting of two parts”. In general, a graph G is called
bipartite if the set V(G) can be divided into two disjoint sets V; and
V5 in such a way that each edge of G connects a vertex from Vi to
a vertex from V5. Written in symbols, F(G) C {{v,v'}: v e Vi, €
Va}. Such sets Vi and Vs are sometimes called the classes of G, but
not “partites”, however tempting this neologism may be.

Graph isomorphism. Two graphs G and G’ are considered iden-
tical (or equal) if they have the same set of vertices and the same
set of edges, i.e. G = G’ means V(G) = V(G') and E(G) = E(G").
But many graphs differ “only” by the names of their vertices and
edges and have the same “structure”. This is captured by the notion
of isomorphism.

4.1.2 Definition. Two graphs G = (V,E) and G' = (V',E’) are
called isomorphic if a bijection f:V — V' exists such that

{z,y} € E ifand only if {f(z),f(y)} € E'

holds for all x,y € V, x # y. Such an f is called an isomorphism
of the graphs G and G'. The fact that G and G’ are isomorphic is
written G = G'.
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An isomorphism is thus required to map adjacent vertices to adj-
acent vertices and nonadjacent vertices to nonadjacent vertices, and
it can be thought of as “renaming the vertices” of a graph. The

relation 2 (“to be isomorphic”) is an equivalence, on any set of
graphs (see Exercise 7).

Problem. The following three pictures show isomorphic graphs.
Show this by finding suitable isomorphisms!

0 d e f ® X

Solution. All the three graphs are isomorphic to K33. An isomor-
phism of the first graph to the second graph: for instance, 1 — a,
2—d,3—b,4—e,5+ ¢, 61— f (several other possibilities exist!).
The others are left to the reader.

Warning. The definition of isomorphism looks easy but many students
tend to mess it up. They often think that an isomorphism of G to G’ is
any bijection between E and E’, etc. As a precaution, it is best to try
writing the definition down without looking in the textbook.

Testing isomorphism. For small pictures, it is usually not too diffi-
cult to find out whether they correspond to isomorphic graphs or not
(although the preceding problem indicates that the pictures need not
look the same at all). But the problem of deciding whether two given
graphs are isomorphic or not is difficult in general, and no efficient alg-
orithm is known for it (i.e. one working fast in all cases). It is even
suspected that no such efficient algorithm exists. Roughly speaking, the
difficulty lies in showing that two given graphs on n vertices are not iso-
morphic. To check this according to the definition, we must verify that
none of the possible n! bijections of the vertex sets is an isomorphism.
Of course, often we can use a shortcut and exclude the possibility of an
isomorphism right away. For instance, if the numbers of edges differ, the
graphs cannot be isomorphic because isomorphism preserves the num-
ber of edges. More generally, if we can assign some number, vector, etc.,
to a graph in such a way that isomorphic graphs are always assigned
the same value, we can sometimes use this to distinguish nonisomorphic
graphs (examples will be discussed later). But so far no fast method has
been found that would always succeed in distinguishing nonisomorphic
graphs.
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Number of nonisomorphic graphs. Let V be the set {1,2,...,n}.
To choose a graph with vertex set V' means choosing an arbitrary subset
E C (‘2/) The set (‘2/) has (g) elements, and thus the number of different

graphs on V is exactly 2(5). However, there are considerably fewer than

n

2() pairwise nonisomorphic graphs with n vertices. For example, for
3
V ={1,2,3} we get the following 8 = 2(2) distinct graphs:

3 3 3 3
AL AN
r 2 1 2 T2 1 2

3 3 3 3

Te ey e s

1 2 1 2 1 2 1 2

Among these 8 possibilities, only 4 nonisomorphic ones can be found:

A Lo S

How many pairwise nonisomorphic graphs on n vertices exist for a
general n? In other words, how many classes of the equivalence rela-
tion 2 on the set of all graphs with vertex set V' = {1,2,...,n} are
there? Determining this number exactly is not easy (see, e.g. Harary
and Palmer [21]), but we can at least get a reasonable estimate by
a simple (but clever!) trick. On the one hand, the number of noniso-
morphic graphs on n vertices is certainly not larger than the number of
all distinct graphs on the set V, i.e. 2(5). On the other hand, consider
a particular graph G with vertex set V. How many distinct graphs G’
on V are isomorphic to it? For instance, if G is the graph

3

1/02

on the vertex set {1,2,3}, there are 3 such isomorphic graphs. By def-
inition, if G’ is such a graph isomorphic to G, there exists a bijection
f:V — V that is an isomorphism of G and G’. The number of all pos-
sible bijections f: V — V is n!, and hence G is isomorphic to at most n!
distinct graphs on the set V. (We may be overcounting! For our specific
example for n = 3, we had 3! = 6 bijections but only 3 distinct graphs
isomorphic to G—can you explain why?) In other words, each class of
the equivalence = on the set of all graphs with vertex set V' consists of
no more than n! graphs, and therefore the number of equivalence classes
is at least
2(%)

n!

Consequently, there is a collection of at least this many pairwise non-
isomorphic graphs on n vertices.
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We claim that this function of n doesn’t grow much more slowly

than 2(3). To see this, we take the logarithms of both functions and
manipulate the resulting expressions somewhat. We use the obvious
estimate n! < n™:

o 19]- ()5 - 2).

1 1
= <n> —logy n! > 5712 —gn- nlogy n

n? L 2log, n
2 n n '

We see that for large n, the logarithms of both functions behave “roughly
as” the function %nz: the relative error we would make by replacing their
logarithms by %nz goes to 0 for n — oo. (Section 3.4 says more about
estimating the growth of functions.) In particular, if n is sufficiently
large, the number of nonisomorphic graphs on n vertices is much much
larger than 27, say.

In the consideration just made, we have only shown that many non-
isomorphic graphs exist, but, remarkably, we have constructed no spe-
cific collection of such graphs. Similar methods will be discussed more
systematically in Chapter 10. Constructing many nonisomorphic graphs
explicitly is not so easy—see Exercise 8.

—
o
a0
)
|

Exercises

1. (a) Find an isomorphism of the following graphs:

(b) *Show that both the graphs above are isomorphic to the following
graph: the vertex set is ({1’2""’5}) (unordered pairs of numbers), and
two vertices {4, j} and {k, ¢} (i,4,k,¢ € {1,2,...,5}) form an edge if

and only if {i,5} N {k, £} = 0.
Remark. This graph is called the Petersen graph and it is one of

the most remarkable small graphs (being a counterexample to numer-
ous conjectures, an exceptional case in many theorems, etc.). It is the
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smallest nontrivial member of a family of the so-called Kneser graphs,
which supplies many more examples of graphs with interesting proper-
ties. The vertex set of a Kneser graph is ({1’2’,'6"”}) for natural numbers
n >k > 1, and edges correspond to empty intersections.

2. Which of the following statements about graphs G and H are true?
Substantiate your answers!

(i) G and H are isomorphic if and only if for every map f: V(G) —
V(H) and for any two vertices u,v € V(G), we have {u,v} €
B(G) & {f(u, f(v)} € V(H).

(i) G and H are isomorphic if and only if there exists a bijection
f: E(G) — E(H).

(iii) If there exists a bijection f: V(G) — V(H) such that every ver-
tex u € V(G) has the same degree as f(u), then G and H are
isomorphic.

(iv) If G and H are isomorphic, then there exists a bijection f: V(G) —
V(H) such that every vertex u € V(G) has the same degree as
)

(v) If G and H are isomorphic, then there exists a bijection f: E(G) —

(vi) G and H are isomorphic if and only if there exists a map f: -
V(G) — V(H) such that for any two vertices u,v € V(G), we
have {u,v} € E(G) < {f(u), f(v)} € E(H).

(vii) Every graph on n vertices is isomorphic to some graph on the
vertex set {1,2,...,n}.

(viii) Every graph on n > 1 vertices is isomorphic to infinitely many
graphs.

3. An automorphism of a graph G = (V, E) is any isomorphism of G
and G, i.e. any bijection f: V — V such that {u,v} € E if and only
if {f(u), f(v)} € E. A graph is called asymmetric if its only automor-
phism is the identity mapping (each vertex is mapped to itself).

(a) Find an example of an asymmetric graph with at least 2 vertices.
(b) Show that no asymmetric graph G exists with 1 < |V(G)| < 5.

4. Show that a graph G with n vertices is asymmetric (see Exercise 3) if
and only if n! distinct graphs on the set V(G) are isomorphic to G.

5. Call a graph G = (V, E) vertez-transitive if for any two vertices v, v’ €
V an automorphism f: V — V of G exists (see Exercise 3) with f(v) =
v'. Similarly, G is edge-transitive if for any two edges e,¢’ € E an
automorphism f: V — V exists with f(e) = ¢’ (if e = {u, v} then the
notation f(e) stands for the set {f(u), f(v)}).

(a) Prove that the graph in Exercise 1 is vertex-transitive.

(b) Decide whether each vertex-transitive graph is edge-transitive as
well.
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(c) Find a graph that is edge-transitive but not vertex-transitive.
(d) *Show that any graph as in (c) is necessarily bipartite.

6. How many graphs on the vertex set {1,2,...,2n} are isomorphic to
the graph consisting of n vertex-disjoint edges (i.e. with edge set

(11,2}, (3,4}, ... . {2n — 1,2n}}?

7. *Let V be a finite set. Let G denote the set of all possible graphs with
vertex set V. Verify that 2 (“to be isomorphic”) is an equivalence
relation on G.

8. *Construct as many pairwise nonisomorphic graphs with vertex set

{1,2,...,n} as possible (suppose that n is a very large number). Can
you find more than n? of them? At least 2"/10, or even substantially
more?

n

9. (a) “S Plot the logarithms of the functions 2(3) and 2(2)/n! in a suit-
able range.
(b) ¢ Write a computer program for calculating the number of non-
isomorphic graphs on n vertices for a given n. (Warning: Unless you
devise a clever method, you will only be able to deal with very small
values of n!). For the values of n you can handle, draw the actual
numbers on the plot made in (a).
(¢c) *If you were able to solve (b) cleverly, the numbers should indicate
that the lower bound 2(3) /n! for the number of nonisomorphic graphs
is much closer to the truth than the upper bound 2(3). The upper
bound was gained by a quite trivial method anyway; can you improve
it?

4.2 Subgraphs, components, adjacency matrix

The next definition captures the intuitive notion of “one graph being
contained in another graph”. It turns out there are at least two ways
of making this precise.

4.2.1 Definition. Let G and G’ be graphs. We say that G is a
subgraph of G' if V(G) C V(G') and E(G) C E(G").

We say that G is an induced subgraph of G’ if V(G) C V(G’) and
B(G) = B(@)n (V).

This definition can also be rephrased as follows: an induced sub-
graph of a graph G’ arises by deleting some vertices of G’ and all
edges containing a deleted vertex. To get a subgraph, we can also
delete some more edges although none of their end-vertices has been
deleted. Figure 4.2(a) shows a graph and its subgraph isomorphic
to the path P, drawn by a thick line. This subgraph is not induced
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a

(a) (b)

Fig. 4.2 An example of a subgraph (a), and of an induced subgraph (b).

(because of the edge {a,b}). Figure 4.2(b) shows an induced sub-
graph, isomorphic to the cycle Cs; this is a subgraph as well, of
course.

Paths and cycles. A subgraph of a graph G isomorphic to some
path P, is called a path in the graph G; see Fig. 4.2(a). A path in a
graph G can also be understood as a sequence

(v, €1, V1, ..., €1,0),

where wvg,v1,...,v; are mutually distinct vertices of the graph G,
and for each i = 1,2,...,t we have ¢; = {v;_1,v;} € E(G). This is
like the log of a traveler who followed the path from one end to the
other end and recorded the visited vertices and edges.®> We also say
that the path (vg, e1,v1,..., e, ve) is a path from vy to v, of length t.
Let us remark that we also allow ¢t = 0, i.e. a path of zero length
consisting of a single vertex.

Similarly, a subgraph of G isomorphic to some cycle C; (¢ > 3) is
called a cycle in the graph G; see Fig. 4.2(b). (An alternative name
used in the literature is a circuit.) A cycle in a graph G can also be
understood as a sequence

(vo,e1,v1,€2, ..., €-1,Vi—1, €4, Vo)

(the initial and final points coincide), where vy, v1, ..., v4—1 are pair-
wise distinct vertices of the graph G, and e; = {v;_1,v;} € E(G)
fori=1,2,...,t — 1, and also ¢; = {v;_1,v9} € E(G). The number
t > 3 is the length of the cycle.

3Since we only consider simple graphs, recording the edges is not really nec-
essary, as they can be reconstructed from the sequence of vertices. The definition
we use is advantageous if multiple edges connecting two vertices are allowed.
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Connectedness, components. We say that a graph G is connected
if for any two vertices z,y € V(G), G contains a path from x to y.
Diagram (a) shows an example of a connected graph,

(a) (b)

while (b) is a drawing of a disconnected graph.

The notion of connectedness can also be defined slightly differ-
ently. First we define a notion similar to a path in a graph. Let
G = (V,E) be a graph. A sequence (v, €1, v1, €2, ..., €, V) is
called a walk in G (more verbosely, a walk of length t from vy to vy)
if we have e; = {v;_1,v;} € F for all i = 1,...,t. In a walk some
edges and vertices may be repeated, while for a path this was for-
bidden. A walk is the log of a leisurely traveler who doesn’t mind
visiting edges or vertices several times.

Next, we define a relation ~ on the set V(G) by letting = ~ y
if and only if there exists a walk from x to y in G. It is a fairly
easy exercise to check that ~ is an equivalence relation. Let V =
ViUVoU--- UV}, be a partition of the vertex set V into classes of the
equivalence ~. The subgraphs of G induced by the sets V; are called
the components of the graph G. The following observation relates the
definition of components to the previous definition of a connected
graph.

4.2.2 Observation. Fach component of any graph is connected,
and a graph is connected if and only if it has a single component.

Proof. Clearly, a connected graph has a single component. On the
other hand, any two vertices x,y in the same component of a graph
G can be connected by a walk. Any walk from x to y of the shortest
possible length must be a path. O

Why did we choose the somewhat roundabout definition of compo-
nents using walks, rather than using paths? We could define the com-
ponents using the relation ~’, where z ~' y if a path from z to y exists.
The above considerations show that ~' is in fact the same relation as
~. But showing directly that ~’ is an equivalence is a bit messy, and
the approach via walks seems cleaner.
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It is relatively easy to decide whether a given graph is connected,
or to find the components. We aren’t going to describe such algorithms
here; they can be found in almost any textbook on algorithms. They
are usually presented as algorithms for searching a graph, or a maze.
One such algorithm is the so-called depth-first search.

Distance in graphs. Let G = (V, E) be a connected graph. We
define the distance of two vertices v,v" € V(G), denoted by dg(v,v’),
as the length of a shortest path from v to v’ in G.

Hence dg is a function, dg: V xV — R, and it is called the distance
function or the metric of the graph G. The metric of G has the following
properties:

1. dg(v,v") > 0, and dg(v,v") = 0 if and only if v = v';
2. (symmetry) dg(v,v’) = dg(v',v) for any pair of vertices v, v';
3. (triangle inequality) dg(v,v”) < dg(v,v')+dg(v',v") for any three
vertices v, v, v" € V(G).
The validity of these statements can be readily checked from the defi-
nition of the distance function dg(v,v’). Each mapping d: V xV — R
with properties 1-3 is called a metric on the set V, and the set V' to-
gether with such a mapping d is called a metric space. The distance
function dg of a graph has, moreover, the following special properties:
4. dg(v,v') is a nonnegative integer for any two vertices v, v';
5. if dg(v,v”) > 1 then there exists a vertex v/, v # v’ # v”, such
that dg(v,v") + dg(v',v") = dg(v,0v").

Conditions 1-5 already characterize functions arising as distance

functions of graphs with vertex set V' (see Exercise 7).

Graph representations. We have seen representations of graphs
by drawings, and also by writing out a list of vertices and edges.
Graphs can also be represented in many other ways. Some of them
become particularly important if we want to store and manipulate
graphs in a computer. A very basic and very common representation
is by an adjacency matrix:

4.2.3 Definition. Let G = (V, E) be a graph with n vertices. Denote
the vertices by vy, va, . . ., v, (in some arbitrary order). The adjacency
matrix of G, with respect to the chosen vertex numbering, is an nxn
matrix Ag = (aij);;— defined by the following rule:

e = 1 if{’ui,vj}EE
Y10 otherwise.

This is very similar to the adjacency matrix of a relation defined
in Section 1.5. The adjacency matrix of a graph is always a symmetric
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square matrix with entries 0 and 1, with Os on the main diagonal.
Conversely, each matrix with these properties is the adjacency matrix
of some graph.

Example. The graph G =

1
4 2
6 5
has the adjacency matrix

01 1.1 00
101 0 10
1101 11
Ae=110100 1
01 1 0 01
001 110

Let us emphasize that the adjacency matrix also depends on the
chosen numbering of the vertices of a graph!

It might seem that we gain nothing new by viewing a graph as
a matrix since the graph and the adjacency matrix both encode the
same information. To illustrate that we can profit from this alterna-
tive representation, let us show a simple connection between matrix
multiplication and the graph metric.

4.2.4 Proposition. Let G = (V, E) be a graph with vertex set V =
{v1,v2,...,v,} and let A = Ag be its adjacency matrix. Let A* denote
the kth power of the adjacency matrix (the matrices are multiplied
as is usual in linear algebra, ie. if we put B = A?, we have b;; =
> or_q airag;). Let agf) denote the element of the matrix A* at position
(i,7). Then a,gf) is the number of walks of length exactly k from the
vertex v; to the vertex v; in the graph G.

Proof. This is easy but very instructive. We proceed by induction
on k. A walk of length 1 between two vertices means exactly that these
vertices are connected by an edge, and hence for k = 1 the proposition
just reformulates the definition of the adjacency matrix.

Next, let £ > 1, and let v;,v; be two arbitrary vertices (possibly
identical). Any walk of length k from v; to v; consists of an edge from
v; to some neighbor v, of v; and a walk of length k£ — 1 from v, to v;:
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By the inductive hypothesis, the number of walks of length k — 1 from

Vg to v; is a§§71). Hence the number of walks of length & from v; to v;

is
Z (k 1) _ Zama(k 1

{vi,ve }€E(G)

But this is exactly the element at position (7, ) in the product of the

matrices A and A1, ie. a(k) |

4.2.5 Corollary. The distance of any two vertices v;,v; satisfies
d(vi,vj) = min{k > 0: al(-;-c) # 0}.

This result has surprising applications. For instance, if one wants
to find the distance for all pairs of vertices in a given graph, one can
apply sophisticated algorithms for matrix multiplication (some of them
are described in Aho, Hopcroft, and Ullman [11]) and some other ideas
and get unexpectedly fast methods for computing the function dg. Ex-
ercises 10 and 11 indicate other algorithmic applications.

Let us remark that the adjacency matrix is not always the best

computer representation of a graph. Especially if a graph has few
edges (much fewer than (g)), it is usually better to store the list
of neighbors for every vertex. For a fast implementation of certain
algorithms, other, more complicated representations are used as well.

Exercises

1.

Prove that the complement of a disconnected graph G is connected.
(The complement of a graph G = (V, E) is the graph (V, ( Y\ E).)

. What is the maximum possible number of edges of a graph with n

vertices and k components?

€S Design an algorithm that finds the decomposition of a given graph
G into its components. (Try to get an algorithm which needs at most
O(n 4+ m) steps for a graph with n vertices and m edges.)

*Prove that a graph is bipartite if and only if it contains no cycle of
odd length.

. *Describe all graphs containing no path (not necessarily induced!) of

length 3.

*Having solved the preceding exercise, describe all graphs containing
no path of length 4.
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10.

11.

12.

Show that if a function d: V x V' — {0,1,2,...} satisfies conditions
1-5 above then a graph G = (V, E) exists such that dg(v,v') = d(v,v")
for any pair of elements of V.

Define the “diameter” and “radius” of a graph (in analogy with the
intuitive meaning of these notions).

(a) Find a connected graph of n vertices for which each of the powers
AL, A%, ... of the adjacency matrix contains some zero elements.

(b) Let G be a graph on n vertices, A = Ag its adjacency matrix, and
I, the n x n identity matrix (with 1s on the diagonal and Os elsewhere).
Prove that G is connected if and only if the matrix (I,, + A)"~! has
no 0s.

(c) Where are the Os in the matrix (I,, + A)"~! if the graph G is not
connected?

Show that a graph G contains a triangle (i.e. a K3) if and only if there
exist indices 7 and j such that both the matrices Ag and A% have the
entry (4, j) nonzero, where A¢g is the adjacency matrix of G.

Remark. In connection with algorithms for fast matrix multiplication,
this observation gives the fastest known method for deciding whether
a given graph contains a triangle, substantially faster than the obvious
O(n?) algorithm.

*Let G be a graph. Prove the following formula for the number of
cycles of length 4 in G (not necessarily induced):

;<trace(A‘5) —2|E(G)| -4 ) (degg(v)».

veV(Q)

Here A, is the 4th power of the adjacency matrix, and trace(A¢)
denotes the sum of the elements on the main diagonal of A‘é. For the
definition of degg(v), see the next section. Note that this gives an
O(n?) algorithm for counting the number of cycles of length 4, or even
a faster algorithm using algorithms for fast matrix multiplication.

Prove that G and G’ are isomorphic if and only if a permutation matrix
P exists such that

Ag = PAGPT.
Here Ag is the adjacency matrix of G and P” denotes the transposed

matrix P. A matrix P is called a permutation matriz if its entries are
0 and 1 and each row and each column contain precisely one 1.
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4.3 Graph score

Let G be a graph, and let v be a vertex of G. The number of edges
of G containing the vertex v is denoted by the symbol degq(v). The
number degq(v) is called the degree of v in the graph G.

Let us denote the vertices of G by vy, v2,...,v, (in some arbi-
trarily chosen order). The sequence

(degg(v1), degg(v2), . . ., degg(vn))

is called a degree sequence of the graph G, or a score of G. By choosing
different numberings of the vertices of the same graph, we usually
obtain several different sequences of numbers differing by the order
of their terms. Thus, we will not distinguish two scores if one of
them can be obtained from the other by rearranging the order of the
numbers. We will usually write scores in nondecreasing order, with
the smallest degree coming first.

It is easy to see that two isomorphic graphs have the same scores,
and thus two graphs with different scores are necessarily noniso-
morphic. On the other hand, graphs with the same score need not
be isomorphic! For example, the graphs

JAWAN

both have score (2,2,2,2,2,2), but they cannot be isomorphic since
one of them is connected while the other one is not. All the three
graphs in Fig. 4.3 have score (3, 3, 3, 3, 3, 3, 3, 3, 3, 3) but no two of
them are isomorphic (to prove this is a bit harder; see Exercise 1).
In spite of these negative examples, the score is an important and
easily computable characteristic of a graph, and it can often help to
distinguish nonisomorphic graphs in practice.

RS

Fig. 4.3 Three connected nonisomorphic graphs with the same score.
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A problem studied in graph theory, although not really one of
the most important ones, is to characterize sequences of numbers
that can appear as scores of graphs. One such basic and often quite
significant property is a consequence of the following observation:

4.3.1 Proposition. For each graph G = (V, E) we have

S degg(v) = 211,

veV

Proof. The degree of a vertex v is the number of edges containing v.
Each edge contains 2 vertices, and hence by summing up all degrees
we get twice the number of edges. O

4.3.2 Corollary (Handshake lemma). The number of odd-
de-gree vertices is even, in any graph. (Or: the number of partici-
pants at a birthday party who shook hands with an odd number of
other participants is always even—for any finite party.)

Let us remark that the handshake lemma is not true for infinite
parties. A one-sided infinite path has a single odd-degree vertex:

/\/\/W

The handshake lemma (Corollary 4.3.2), and some other simple
necessary conditions, are not sufficient to characterize sequences that
can show up as graph scores (see Exercise 2). A full characterization
of scores is not quite simple, and it is related to so-called network
flows which are not treated in this book. Here we explain a simple
algorithm for deciding whether a given sequence of integers is a graph
score or not. The algorithm is an easy consequence of the following
result.

4.3.3 Theorem (Score theorem). Let D = (dy,ds,...,d,) be a
sequence of natural numbers, n > 1. Suppose that d; < dy < --- <

dy, and let the symbol D’ denote the sequence (d,...,d,_,), where

J — d; fori<n—d,
T d; =1 fori>n—d,.

For example, for D = (1,1,2,2,2,3,3), we have D' = (1,1,2,1,1,2).
Then D is a graph score if and only if D' is a graph score.
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Proof. One implication is easy. Suppose that D’ is a score of a
graph G’ = (V' E'), where V' = {v1, v, ...,v,—1} and degq(v;) = d;

K
for all : = 1,2,...,n — 1. Fix a new vertex v, distinct from all of

V1,...,Un—1, and define a new graph G = (V, E) where

V =V U{v,}
E=FEU{{viv}:i=n—dy,n—d,+1,...,n—1}.

Expressed less formally, the new vertex v, is connected to the d,
last vertices of the graph G’. Clearly G has score D. (Remembering
this construction is the best way to remember the statement of the
theorem.)

It is more difficult to prove the reverse implication, i.e. if D is a
score then D’ is a score. So assume that D is a score of some graph.
The trouble is that in general, we cannot reverse the construction
by which we passed from D’ to D, i.e. to tear off a largest-degree
vertex, since such a vertex can be connected to other vertices than
we would need. An example is shown in the following picture:

v U2

‘%‘ U7

We thus consider the set G of all graphs on the vertex set
{v1,...,v,} in which the degree of each vertex v; equals d;, i =
1,2,...,n. We prove the following:

Claim. The set G contains a graph Gy in which the vertex v, is
adjacent exactly to the vertices vy,—g, , Un—d,+1;---,Un—1, i.€. to the
last d,, vertices.

Having a graph Gy as in the claim, it is already clear that the
graph G' = ({v1,...,vp-1}, E'), where E' = {e € E(Gy): v, & e},
has score D’ (i.e. we can remove the vertex vy, in Gg), and this proves
the score theorem. It remains to establish the claim.

If d, = n—1, i.e. v, is connected to all other vertices, then
any graph from G satisfies the claim. So suppose d,, < n — 1 and
define, for a graph G € G, a number j(G) as the largest index j €
{1,2,...,n — 1} such that {v;,v,} € E(G). Let Gy € G be a graph
with the smallest possible value of j(G). We prove that j(Go) =
n — d, — 1, and from this one can already see that G satisfies the
claim.
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the last vertex not connected to v,

Fig. 4.4 Nlustration for the proof of the score theorem.

For contradiction, let us suppose that j = j(Go) > n—d, —1. The
vertex v, has to be adjacent to d, vertices, and at most d,, —1 of them
can have a larger index than v;. Hence there exists some index i < j
such that v; is adjacent to vy, and so we have {vj,v,} & E(Gy),
{vi,vn} € E(Go) (refer to Fig. 4.4). Since degq, (v;) < degg, (v)),
there exists a vertex vy, adjacent to v; but not to v;. In this situation,
we consider a new graph G’ = (V, E’), where

E = (E(GO) \ {{U%UN}v {Ujvvk‘}}) U {{vjvvn}) {Uiavk}}'

It is easy to check that the graph G’ has score D too, and at the
same time j(G') < j(Go) — 1, which contradicts the choice of Gy.
This proves the claim, and hence also Theorem 4.3.3 is proved. O

As we have said, the theorem just proved gives an easy method
for deciding whether a given sequence is a graph score. We illustrate
the procedure with a concrete example.

Problem. Decide whether there exists a graph with score (1, 1, 1,
2,2,3,4,5,5).

Solution. We reduce the given sequence by a repeated use of the
score theorem 4.3.3:

(1,1,1,2,2,3,4,5,5)

(1,1,1,1,1,2,3,4)

(1,1,1,0,0,1, 2); rearranged nondecreasingly (0,0,1,1,1,1,2)

(0,0,1,1,0,0); rearranged (0,0,0,0,1,1)

(0,0,0,0,0).

Since the last sequence is a graph score (of the graph with 5
vertices and no edges), we get that the original sequence is a score
of some graph as well. Construct an example of such a graph!
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Exercises

1.
2.

10.

11.

12.

13.

14.
15.

Prove that the three graphs in Fig. 4.3 are pairwise nonisomorphic.

Construct an example of a sequence of length n in which each term is
some of the numbers 1,2,...,n — 1 and which has an even number of
odd terms, and yet the sequence is not a graph score.

Where was the assumption d; < dy < --+ < d,, used in the proof of
the score theorem? Show that the statement is not true if we omit this
assumption.

Find a smallest possible example (with the smallest number of vertices)
of two connected nonisomorphic graphs with the same score.

. Draw all nonisomorphic graphs with score (6,3, 3,3, 3, 3, 3). Prove that

none was left out!

Find an example, as small as possible, of a graph with 6 vertices of
degree 3, other vertices of degree < 2, and with 12 edges.

Let G be a graph with 9 vertices, each of degree 5 or 6. Prove that it
has at least 5 vertices of degree 6 or at least 6 vertices of degree 5.

(a) Decide for which n > 2 there exists a graph whose score consists
of n distinct numbers.
(b) *For which n does there exist a graph on n vertices whose score has

n — 1 distinct numbers (i.e. exactly 2 vertices have the same degree)?

Let G be a graph in which all vertices have degree at least d. Prove
that G contains a path of length d (not necessarily an induced one).

*Let G be a graph with maximum degree 3. Prove that its vertices can
be colored by 2 colors (each vertex gets one color) in such a way that
there is no path of length two whose 3 vertices all have the same color.

**Let G be a graph with all vertices of degree at least 3. Show that G
contains a cycle which is not induced (i.e. it has a “diagonal”).

A graph G is called k-regular if all its vertices have degree exactly k.
Determine all pairs (k,n) such that there exists a k-regular graph on
n vertices.

Draw all nonisomorphic 3-regular graphs on 6 vertices.
Find a 3-regular asymmetric graph (see Exercise 4.1.3).

(a) Show that the following graph and the graph in Fig. 9.3 are
isomorphic:
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(b) *Prove that any 3-regular graph with 14 vertices containing no
cycle of length 5 or smaller is isomorphic to the graph in (a) (this
graph is called the Heawood graph). Reading Chapter 9 first might
help.

16. *Let G be a connected graph in which any two distinct vertices u, v
have either 0 or 5 common neighbors. Prove that G is k-regular for
some k.

17. **Prove that each graph with an even number of vertices has two
vertices with an even number of common neighbors.

4.4 Eulerian graphs

Here is one of the oldest problems concerning graph drawing.

Problem. Draw a given graph G = (V, F) with a single closed line,
without lifting the pencil from the paper (and drawing each edge only
once).

Mathematically, this can be formalized as follows: find a closed
walk (vg, €1, 01, -+, €m—1, Um—1, €m, Vo) containing all the vertices and
all the edges, each edge exactly once (while vertices can be repeated).
(Note that the first vertex and the last vertex coincide.) Such a walk
is called a closed Eulerian tourin G, and a graph possessing a closed
Eulerian tour is called Fulerian.

Here is an example of drawing a graph with a single line:

D
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and here is another one:

It turns out that Eulerian graphs can be characterized nicely by
a “local” condition, using vertex degrees.

4.4.1 Theorem (Characterization of FEulerian graphs). A
graph G = (V, E) is Eulerian if and only if it is connected and each
vertex has an even degree.

First proof. It is rather easy to show that the condition is necessary
for G to be Eulerian. Clearly, an Eulerian graph must be connected.
The reason for each degree being even is that whenever a closed
Eulerian tour enters a vertex it must also leave it. In more detail: if we
fix some direction of traversing the closed Eulerian tour and consider
some vertex v € V(G), the edges incident to v can be classified as
either ingoing or outgoing, and the tour defines a bijection between
the set of the ingoing edges and the set of the outgoing edges.

Proving that a connected graph with all degrees even has a closed
FEulerian tour is a bit more demanding. For brevity, define a tour in
G as a walk in which no edge is repeated (vertices can be repeated,
though). Consider a tour T" = (vg,e1,v1,...,€m,Vy) in G of the
largest possible length, m. We prove that

(i) vo = v, and
(ii) {e;: i=1,2,...,m} =E.

Ad (i). If vy # vy, then the vertex vy is incident to an odd number
of edges of the tour 7. But since the degree degq(vg) is even, there
exists an edge e € E(G) not contained in 7. Hence we could extend
T by this edge—a contradiction.
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Ad (ii). So, assume that vy = vy,. Write V(T') for the set of vertices
occurring in 7' and E(T) for the set of edges in T. First assume
V(T) # V. Thanks to the connectedness of G, an edge exists of the
form e = {vg,v'} € E(G), where vy, € V(T) and v' ¢ V(7). In this
case, the tour

/
(’U y €, Vky €41, Vk+1y- -+ 5 Um—1,€m,V0,€1,701, .. ‘7ekavk)

has length m + 1 and thus leads to a contradiction. Pictorially:

-

If V(T) =V and E(T) # E, consider an edge e € E'\ E(T), and
write e = {vk, ve}. Analogously to the previous case, a new tour

(Uk‘a €k+1Vk+1y-++9yUm—1,€Em,V0,€1,V1,...,€L, VL, 6,1)@)

leads to a contradiction. Pictorially:

This proves Theorem 4.4.1. O

Note that the main trick in the proof is to look at the longest
possible tour; the rest is more or less routine. This trick is worth
remembering, since similar twists occur in numerous graph theory
proofs (in this book see e.g. Exercise 4.3.11 or Lemma 5.1.3).

Second proof of Theorem 4.4.1. We prove only that every con-
nected graph with all degrees even has a closed Eulerian tour; the
reverse implication is easy and one proof suffices for it. The first step
is the following lemma:

4.4.2 Lemma. If a graph G = (V, E) has all degrees even, then the
edge set £ can be partitioned into disjoint subsets F1, Eo, ..., E} so
that each E; is the edge set of a cycle.

Proof of the lemma. We proceed by induction on |E|. For E = {)
the lemma holds. In the induction step it suffices to show that G
contains at least one cycle. Indeed, if we denote the edge set of such
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a cycle by E1, then the graph (V, E'\ E1) has again all degrees even,
and so its edge set can be partitioned into cycles by the inductive
hypothesis.

Thus, we look for a cycle in G assuming E # (). We are going
to construct a path in G. We pick an arbitrary vertex vg of nonzero
degree, we choose e; as one of the edges having vy as an endpoint, and
we take (vp, e1,v1) as the initial path. Having already constructed a
path (vg,e1,...,vi—1,e;,v;), we look whether v; is adjacent to any of
the vertices v; of the path constructed so far, 0 < j <14 — 2. If yes,
then the edge {v;,v;} together with the segment of the constructed
path between v; and v; constitutes the desired cycle. If v; is not
adjacent to any v;, 0 < j <1 — 2, then we can extend the path by
an edge e;4+1 = {v;, viy1}, because v;_1 is not the only neighbor of v;
(for otherwise, v; would have degree 1, which is not an even number).

In a finite graph a path cannot have infinite length, and therefore,
the described procedure sooner or later finds a cycle. O

Now we finish the proof of Theorem 4.4.1. Given a connected
graph G = (V, E) with all degrees even, we decompose F into disjoint
edge sets of cycles Fi, Es, ..., Ep as in the lemma just proved. We
are going to connect these cycles into a closed Eulerian tour, adding
one at a time. More precisely, we prove the following: Let G = (V, E)
be a connected graph, and let E& be expressed as a disjoint union of
sets B, Eo, ..., Ey, £ > 1, where each E; can be traversed by a single
closed tour. Then there exists an index i # 1 such that F1 U E; can
also be traversed by a single closed tour.

By using this statement repeatedly, we can convert the initial k
cycles into a closed Eulerian tour. In order to prove the statement,
let us denote by V; the set of all vertices that are contained in at
least one edge of E;. It suffices to verify that there exists i # 1 such
that V1 N'V; # 0 (then the closed tours traversing F; and FE; can be
glued together into a single closed tour as in the next picture).

\
s

So let us assume the contrary: V; N (Vo U V3 U---U V) = 0. But
this means that there is no edge connecting V3 to Vo U Vs U --- UV}
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(we recall that each edge of G belongs to some E;), and so G is not
connected—a contradiction. O

Remark about multiple edges. So far we have defined an edge of
a graph as a 2-point set of vertices, and we will stick to this definition
in most of the rest of this book. This means, among other things,
that two vertices can be connected by at most one edge. In some
applications, it is natural to admit two vertices to be connected by
several distinct edges. We thus get graphs with multiple edges, also
called multigraphs. Mathematically, this notion can be formalized in
several different ways, some of them being more handy than others.
For instance, we could assign a nonnegative integer m(u,v) to each

pair {u, v} of vertices. This m(u,v) would be the multiplicity of the edge

{u,v}. Hence m(u,v) = 0 would mean that the edge is not present in

the graph, m(u,v) = 1 would denote an “ordinary” (simple) edge, and

m(u,v) > 1 would say that the graph contains m(u,v) “copies” of the

edge {u,v}. A multigraph would then be an ordered pair (V, m), where

m: (4) —{0,1,2,...}.

Another common way of introducing multiple edges, a more ele-
gant one from a certain point of view, is to consider edges as “abs-
tract” objects, i.e. to take E as some finite set disjoint from the
vertex set V. For each edge e € E, we then determine the pair of
end-vertices of e. The same pair of vertices can occur for several
edges. Formally, a graph with multiple edges is an ordered triple
(V,E,¢), where V and F are disjoint sets and e: £ — (g) is a map-
ping determining the end-vertices of edges. Imagine that we have a
graph-building kit with a supply of vertices and edges; then the map-
ping ¢ tells us how to assemble a particular graph from the vertices
and edges:
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Sometimes it is useful also to admit loops in a graph, i.e. edges
beginning and ending in the same vertex. Formally, loops can again
be introduced in a number of ways. The simplest way is to represent
a loop attached to a vertex v as the 1-element set {v} in the edge
set E/ (while the ordinary edges are 2-element sets). If multiple edges
are introduced using the mapping ¢, loops can be added by letting
€ be a mapping into the set (‘2/) UV, and a loop e is mapped by ¢
to its single end-vertex.

Yet another modification of the notion of a graph, the so-called
directed graphs, will be discussed in Section 4.5.

For simple applications, the formal way of introducing multiple
edges and loops doesn’t really matter a great deal, provided that we
choose a single way and keep to it consistently, and if this chosen
way is not too clumsy.

Exercises

1. The following sketch of a city plan depicts 7 bridges:

(a) Show that one cannot start walking from some place, cross each
of the bridges exactly once, and come back to the starting place (no
swimming please). Can one cross each bridge exactly once if it is not
required to return to the starting position?

This is a historical motivation for the notion of the Eulerian graphs.
The scheme (loosely) corresponds to a part of the city of Konigsberg,
Kralovec, Krélewiec, or Kaliningrad—that’s what it was variously
called during its colorful history—and the problem was solved by Euler
in 1736. Can you find the city on a modern map?

(b) How many bridges need to be added (and where) so that a closed
tour exists?

Remark. Many people, not armed with the notion of a graph, might
try to solve the Konigsberg bridges practically, by actually walking



136 Graphs: an introduction

through the city. If you have ever tried to find your way in a foreign
city, you will probably agree that the chance of finding the negative
solution in this way is negligible. From this point of view, one can
appreciate Euler’s genius and the simplicity of the graph model of the
situation.

2. Characterize graphs that have a tour, not necessarily a closed one,
covering all edges.

3. Draw the following graphs with a single line:

4. (a) Formulate an algorithm for finding a closed Eulerian tour in a given
graph, based on the first proof of Theorem 4.4.1.

(b)“® How fast can you implement it (i.e. how many steps are needed
for a graph with n vertices and m edges in the worst case)?

(c)¢“ Solve the analogy of (a) and (b) for the second proof. Which of
the resulting bounds is better?

5. Check that Theorem 4.4.1 also holds for graphs with loops and multiple
edges (what is the correct way to define the degree of a vertex for such
graphs?).

6. Characterize the sequences of nonnegative integers that can appear
as scores of graphs possibly with loops and multiple edges. (A loop
increases the vertex degree by 2.)

7. A Hamiltonian cyclein a graph G is a cycle containing all vertices of G.
This notion may seem quite similar to an Eulerian tour but it turns out
that it is much more difficult to handle. For instance, no efficient algo-
rithm is known for deciding whether a graph has a Hamiltonian cycle
or not. This and the next two exercises are a microscopic introduction
to this notion (another nice result is mentioned in Exercise 5.3.3).

(a) Decide which of the graphs drawn in Fig. 6.1 has a Hamiltonian
cycle. Try to prove your claims!

(b) Construct two connected graphs with the same score, one with and
one without a Hamiltonian cycle.

8. For a graph G, let L(G) denote the so-called line graph of G, given by
L(G) = (B, {{e,¢'}: e,¢' € E(G),ene # 0}). Decide whether the
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following is true for every graph G:
(a) G is connected if and only if L(G) is connected.

(b) G is Eulerian if and only if L(G) has a Hamiltonian cycle (see
Exercise 7 for a definition).

(a) *Prove that every graph G with n vertices and with all vertices
having degree at least % has a Hamiltonian cycle (see Exercise 7 for a
definition).

(b) *Is it sufficient to assume degrees at least [n/2] in (a)?

We say that a graph G = (V, E) is randomly Eulerian from a vertex vy
if every maximal tour starting at vy is already a closed Eulerian tour
in G. That is, if we start at vy and draw edges one by one, choosing
a continuation arbitrarily among the yet unused edges, we can never
get stuck. (It would be nice if art galleries or zoos were randomly
Eulerian, but unfortunately they seldom are. The result in part (c)
below indicates why.)

(a) Prove that the following graphs are randomly Eulerian:

e

(b) Show that the graphs below are not randomly Eulerian:

SN
57 &y

(c) *Prove the following characterization of randomly Eulerian graphs.
A connected graph G = (V, E) all of whose vertices have even deg-
ree is randomly Eulerian from a vertex vg if and only if the graph
(V\{vo},{e € E: vy ¢ e}) contains no cycle.
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4.5 Eulerian directed graphs

All graphs considered so far were “undirected”—their edges were
unordered pairs of vertices. Many situations involve one-way streets
and schemes similar to the following ones:

MULTI-PURPOSE TRAIL

TRAVEL AT A SAFE SPEED.

To reflect such situations, one introduces directed graphs, where
every edge has a direction.

4.5.1 Definition. A directed graph G is a pair (V, E), where E is a
subset of the Cartesian product V x V. The ordered pairs (z,y) € E
are called directed edges. We say that a directed edge e = (x,y) has
head y and tail =, or* that e is an edge from x to .

Further we could introduce directed graphs with multiple edges,
and also for each notion or problem for undirected graphs, we could
look at its directed analogy. Sometimes the results for directed graphs
are simple modifications of the results for undirected graphs. In some
other problems, the directed and undirected cases differ substan-
tially, and as a rule, the directed version is then more difficult to
handle. In this book, we deal almost exclusively with undirected
graphs. Let us make an exception here and introduce Eulerian di-
rected graphs and describe one of their cute applications.

An attentive reader might have noticed that a directed graph G =

(V, E) is the same object as a relation on the set V. Nevertheless, both

these notions are introduced, since directed graphs are investigated in
different contexts than relations.

4Here is some alternative terminology. The artificial word digraph is often used
for a directed graph. A directed edge is sometimes called an arrow, a (directed)
arc, etc. An oriented graph is a special type of directed graph, where we do not
admit directed edges (z,y) and (y,x) simultaneously.
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It is quite natural to define a directed tour in a directed graph
G = (V, E) as a sequence

(’Uanlavlye% .. 'aemavm)

such that e; = (v;_1,v;) € E for each i = 1,2,...,m and, moreover,
e; # ej whenever ¢ # j. Similarly we can define a directed walk,
directed path, and directed cycle.’

We say that a directed graph (V, E) is Eulerian if it has a closed
directed tour containing all vertices and passing each directed edge
exactly once. Eulerian directed graphs can again be characterized
nicely. Before stating the theorem, we should add a few more notions.

For a given vertex v in a directed graph G = (V| E), let us denote
the number of directed edges ending in v (i.e. having v as the head)
by degl(v). Similarly, degy(v) stands for the number of directed
edges originating in v. The number degg(v) is called the indegree of
v, and deg(v) is the outdegree of v.

Each directed graph G = (V, E) can be assigned an undirected
graph sym(G) = (V, E), where

E={{z,y}: (z,y) € Eor (y,z) € E}.

The graph sym (G) is called the symmetrization of the graph G.
Now we can formulate the promised characterization of Eulerian
directed graphs.

4.5.2 Proposition. A directed graph is Eulerian if and only if its
symmetrization is connected® and degg,(v) = degg,(v) holds for each
vertex v € V(G).

A proof of this proposition is very similar to the proof of Theo-
rem 4.4.1, and we leave it as an exercise.

An application. A wheel has a sequence of n digits 0 and 1 written
along its circumference. We can read k consecutive digits through a
slot:

5A directed cycle is sometimes simply called a cycle in the literature, or the
neologism dicycle is also occasionally used, which may sound more like a name
for some obscure vehicle.

A directed graph whose symmetrization is connected is called weakly connec-
ted (a policeman who can ignore one-way street signs can get from any vertex to
any other one). On the other hand, in a strongly connected directed graph, any
two vertices can be connected by a directed path, in both directions.
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L7

The sequence of n digits should be such that the position of the wheel
can always be detected unambiguously from the k digits in the slot,
no matter how the wheel is rotated. (Imagine a device for controlling
the angular position of a radar or something else your fantasy can
envisage.) For a given k, we want to manufacture a wheel with n
as large as possible (so that the angular position can be controlled
fairly precisely). A mathematical formulation of the problem is the
following:

Problem. Find a cyclic sequence of digits 0 and 1, as long as pos-
sible, such that no two k-tuples of consecutive digits coincide (here
a cyclic sequence means positioning the digits on the circumference
of a circle).

Let ¢(k) denote the maximum possible number of digits in such
a sequence for a given k. We prove the following surprising result:

Proposition. For each k > 1 we have {(k) = 2*.

Proof. Since the number of distinct k-digit sequences made of digits

0 and 1 is 2%, the length of the cyclic sequence cannot be longer than

2k Tt remains to construct a cyclic sequence of length 2* with the

required property. The case k = 1 is easy, so let us assume k > 2.
Define a graph G = (V, E) in the following manner:

e V is the set of all sequences of Os and 1s of length £ — 1 (so

V| =251,
e The directed edges are all pairs of (k — 1)-digit sequences of the
form

((al, coyag—1), (ag, . .. ,ak)).
Directed edges are in a bijective correspondence with k-digit
sequences

(al, agz, ..., ak),
and hence |E| = 2*. For brevity, let us denote the directed edge
((al, coyag—1), (ag,. .. ,ak)) by (ai,as,...,ax). No confusion should

arise.



4.5 Eulerian directed graphs 141

000

01

Fig. 4.5 The directed graphs in the wheel problem.

The reader will probably agree that degg(v) = degf,(v) = 2 for
each vertex v € V. The symmetrization of G is connected, because
by repeatedly omitting the last term of a (k — 1)-digit sequence and
adding Os to its beginning we can convert any sequence to the seq-
uence of 0s. Hence G is an Eulerian directed graph. Examples for
k =2 and k = 3 are shown in Fig. 4.5.

Set |E| = 2F = K, and let (e!,...,e’) be the sequence of edges
in some directed Eulerian tour in G. Each edge e’ has the form
e' = (al,...,a}). The desired cyclic sequence of digits 0 and 1 of
length K for our wheel can be defined as (al, a?, ..., alf). That is, we
take the first element from each e’. Each subsequence of k consecutive
digits in this sequence corresponds to traversing one directed edge
of the Eulerian tour, and since no directed edge is repeated in the
tour, no two k-digit segments coincide. This proves £(k) = 2¥.

For example, for k = 2, from the graph in Fig 4.5 we can find a
tour 00, 01, 11, 10 and the corresponding cyclic sequence 0011, and
for £ = 3 we get a tour 000, 001, 011, 111, 110, 101, 010, 100 and
the corresponding cyclic sequence 00011101. O

Let us remark that the noteworthy graphs constructed in the pre-
ceding proof are called the De Bruijn graphs. Although they are exp-
onentially large in k, the neighbors of a given vertex can be found
quickly. They are sometimes used as interconnecting networks in parallel
computing. Other graphs with similar properties are the k-dimensional
cubes: the vertex set is again all sequences of Os and 1s of length k,
and two sequences are adjacent if and only if they differ in exactly one
coordinate.
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Exercises

1.
2.

Prove Proposition 4.5.2.

Design an algorithm for finding an Eulerian directed tour in a directed
graph.

When can a directed graph be drawn with a single line (not necessarily
a closed one)? Each directed edge must be drawn exactly once and in
the direction from its tail to its head.

Let G = (V, E) be a graph. An orientation of G is any oriented graph
G’ = (V, E') arising by replacing each edge {u,v} € F either by the
directed edge (u,v) or by the directed edge (v, u).

(a) Prove that if all degrees of G are even then an orientation H of G
exists with deg};(v) = degy; (v) for all vertices v € V(G).

(b) Prove that a directed graph G satisfying degg; (v) = deg (v) for all
vertices v is strongly connected if and only if it is weakly connected.

. *Let G = (V, E) be a directed graph, and let w: E — R be a function

assigning a real number to each edge. A function p: V' — R defined
on vertices is called a potential for w if w(e) = p(v) — p(u) holds for
every directed edge e = (u,v). Prove that a potential for w exists if
and only if the sum of the values of w over the edges of any directed
cycle in G is 0.

*Prove that the following two conditions for a strongly connected dir-
ected graph G are equivalent:

(i) G contains a directed cycle of an even length.

(ii) The vertices of G can be colored by 2 colors (each vertex receives
one color) in such a way that for each vertex u there exists a directed
edge (u,v) with v having the color different from the color of w.

**Knights from two enemy castles are sitting at a round table and
negotiating for peace. The number of knights with an enemy sitting
on their right-hand side is the same as the number of knights with an
ally on their right-hand side. Prove that the total number of knights
is divisible by 4.

*A tournament is a directed graph such that for any two distinct ver-
tices u, v, exactly one of the directed edges (u,v) and (v,u) is present
in the graph. Prove that each tournament has a directed path passing
through all vertices (such a path is called Hamiltonian,).

*Prove that in any tournament (see Exercise 8 for a definition), there
exists a vertex v that can be reached from any other vertex by a
directed path of length at most 2.
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4.6 2-connectivity

A graph G is called k-vertez-connected if it has at least k + 1 vertices
and it remains connected after removing any k—1 vertices. A graph G is
called k-edge-connected if we obtain a connected graph by deleting any
k —1 edges of G. The maximum k such that G is k-vertex-connected is
called the vertex connectivity of G, and similarly for edge connectivity.
If a graph is a scheme of a city public transport network, a railway
network, telephone cables, etc., its higher connectivity gives hope for a
reasonable functioning of the network even in critical conditions, when
one or several nodes or connections of the network fail. The notions of
vertex connectivity and edge connectivity are theoretically and prac-
tically quite important in graph theory. They are related to so-called
network flows, which are not treated in this book. Here we restrict our
attention to 2-vertex-connectivity, which will be needed in a chapter
on planar graphs, and which will also serve as an illustration for some
proof methods and constructions.
Instead of 2-vertex-connectivity we will briefly say 2-connectivity.
To be on the safe side, let us give the definition once more:

4.6.1 Definition (2-connectivity). A graph G is called 2-connec-
ted if it has at least 3 vertices, and by deleting any single vertex we
obtain a connected graph.

It is easy to check that a 2-connected graph is also connected
(here we need the assumption that a 2-connected graph has at least
3 vertices—we recommend the reader to think this over). In this
section we give alternative descriptions of 2-connected graphs. Before
we begin with this, we introduce the notation for several graph-
theoretic operations. It simplifies formulas considerably and will also
be useful later on.

4.6.2 Definition (Some graph operations). Let G = (V, E) be a
graph. We define various new graphs created from G':

e (Edge deletion)
G—e=(V.E\{e}),

where e € F is an edge of G;
e (Adding a new edge)

G+te=(V,EU{&)),

where € € (g) \ E is a pair of vertices that is not an edge of G;
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Fig. 4.6 Examples of graph operations.

G+¢é

e (Vertex deletion)

G-v=(V\{o}{c€B: vie}),

where v € V' (we delete the vertex v and all edges having v as
an endpoint);
e (Edge subdivision)

Gtie = (VU h B\ [l DU {121 201} ),

where e = {z,y} € E is an edge, and z ¢ V Is a new vertex (we
“draw a new vertex z” on the edge {x,y}).

We say that a graph G’ is a subdivision of the graph G if G’ is
isomorphic to a graph created from G by successive operations of
edge subdivision.

Examples of the operations just defined are shown in Fig. 4.6.
Let us go back to 2-connectivity. Here is the first remarkable
equivalent characterization:

4.6.3 Theorem. A graph G is 2-connected if and only if there exi-
sts, for any two vertices of G, a cycle in G containing these two
vertices.

Let us remark that this theorem is a particular case of a very imp-
ortant result called Menger’s theorem, which says the following. If x
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and y are two vertices in a k-vertex-connected graph, then there exist
k paths from z to y that are mutually disjoint except for sharing the
vertices = and y.

Proof. The given condition is, no doubt, sufficient, since if two
vertices v, v’ lie on a common cycle then there exist two paths con-
necting them having no common vertices except for the end-vertices,
and so v and v’ can never fall into distinct components by removing
a single vertex.

We now prove the reverse implication. The existence of a com-
mon cycle for v, v’ will be established by induction on dg(v,v’), the
distance of the vertices v and v’.

First let dg(v,v’) = 1. This means that {v,v'} = e € E(G).
By 2-connectivity of G, the graph G — e is connected (if it were
disconnected, at least one of the graphs G — v, G — v’ would also be
disconnected). Therefore there exists a path from v to v’ in the graph
G —e, and this path together with the edge e forms the required cycle
containing both v and v'.

Next, suppose that any pair of vertices at distance less than & lies
on a common cycle, for some k > 2. Consider two vertices v,v' € V
at distance k. Let P = (v = v, e1,v1,...,€k, v = V') be a shortest
path from v to v'. Since dg(v,vk_1) = k—1, a cycle exists containing
both v and wvi_1. This cycle consists of two paths, P; and P», from
v to vip_1. Now consider the graph G — vi_1. It is connected, and
hence it has a path P from v to v’. This path thus doesn’t contain
vp_1. Let us look at the last vertex on the path P (when going from
v to v’) belonging to one of the paths Pj, P, and denote this vertex
by w, as in the illustration:

Piv B

Without loss of generality, suppose that w is a vertex of P;. Then
the desired cycle containing v and v’ is formed by the path P, by
the portion of the path P; between v and w, and by the portion of
the path P between w and v’ (drawn by a thick line). O
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4.6.4 Observation. A graph G is 2-connected if and only if any
subdivision of GG is 2-connected.

Proof. It is enough to show that, for any edge e € E(G), G is
2-connected if and only if G%e is 2-connected. If v € V(G) is a
vertex of G, it is easy to see that G — v is connected if and only if
(G%e)—wv is connected. Therefore, if G%e is 2-connected then so is G.
For the reverse implication, it remains to show that for a 2-connected
G, the graph (G%e) — z is connected, where z is the newly added
vertex. This follows from the fact (observed in the previous proof)
that G — e is connected for a 2-connected G. O

The next characterization of 2-connected graphs is particularly
suitable for proofs. We show how 2-connected graphs are built from
simpler graphs.

4.6.5 Theorem (2-connected graph synthesis). A graph G is
2-connected if and only if it can be created from a triangle (i.e. from
K3) by a sequence of edge subdivisions and edge additions.

Such a synthesis is illustrated below:

@ G

0 +
SubR e Rte)
3
+
3 J\_,\, %:l A
3

$ %

E

Proof. Every graph that can be produced from K3 by the above-
mentioned operations is obviously 2-connected. So, we need to prove
that we can construct each 2-connected graph.




4.6 2-connectivity 147

Actually, we show the possibility of creating any 2-connected
graph by a somewhat different construction. We start with a cy-
cle Gg, and if a graph G;_1 has already been built, a graph G; arises
by adding a path P; connecting two vertices of the graph G;_1. The
path P; only shares its end-vertices with G;_1, while all edges and
all inner vertices are new. As illustrated in the following drawing,

we successively glue “ears” to the graph G (and, indeed, the decom-
position is commonly called an ear decomposition).

Since adding a path can be simulated by an edge addition and
edge subdivisions,” it suffices to show that every 2-connected graph
G can be produced by a repeated ear addition.

Let us pick a cycle Gg in the graph G arbitrarily. Suppose that
graphs G; = (F;,V;) for j < i have already been defined, with
properties as described above. If G; = G the proof is over, so let us
assume that E; # F(G). Since G is connected, there exists an edge
e € E(G) \ E; such that eNV; # 0.

If both vertices of e lie in V; then we put G;11 = G; + e. In the
other case, let e = {v,v'}, where v € V;, v/ & V;:

Uy

v

Consider the graph G —v. This is connected (since G is 2-connected),
and therefore a path P exists connecting the vertex v’ to some vertex
v"” € V;, where v is the only vertex of the path P belonging to V;

"One has to be careful here: if v,v’ € V(G;—1) are already connected by an
edge and if we want to connect them by a new path, we cannot start by adding
the edge {v, v’} (at least if we do not allow multiple edges). We have to subdivide
the edge {v, v’} first, then again add the edge {v,v'}, and then continue extending
the path by subdivisions if needed.
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(to this end, take the shortest path joining v’ to V; in the graph
G —v). Then we can define the graph G;11 by adding the edge e and
the path P to Gy, i.e. Viy1 = V;UV(P), by = EiU{e} UE(P) O

Exercises

1. Prove that for any two edges of a 2-connected graph, a cycle exists
containing both of them.

2. Let G be a critical 2-connected graph; this means that G is 2-connected
but no graph G — e for e € E(G) is 2-connected.

(a) Prove that at least one vertex of G has degree 2.

(b) For each n, find an example of a critical 2-connected graph with a
vertex of degree at least n.

(¢) *For each n, give an example of a critical 2-connected graph with a
vertex of degree > n, which is at distance at least n from each vertex
of degree 2.

3. (a) Is it true that any critical 2-connected graph (see Exercise 2) can be
obtained from a cycle by successive gluing of “ears” (paths) of length
at least 27

(b) Is it true that any critical 2-connected graph can be obtained from
a cycle by a successive gluing of “ears” in such a way that each of the
intermediate graphs created along the way is also critical 2-connected?

4. Prove that any 2-connected graph has a strongly connected orientation
(see Section 4.5 for these notions).

5. *Determine the vertex connectivity of the k-dimensional cube. The
k-dimensional cube was defined at the end of Section 4.5.

6. *Let d > 3 be an integer, and let G be a d-regular graph (every vertex
has degree d) which is d-edge-connected. Prove that such a G is tough,
meaning that removing any k vertices disconnects G into at most k
connected components (for all & > 1).

7. (Mader’s theorem) **Let G be a graph on n vertices such that |[E(G)| >
(2k —3)(n — k 4+ 1) + 1, where k is natural number with 2k — 1 < n.
By induction on n, prove that G has a k-vertex-connected subgraph.

4.7 Triangle-free graphs: an extremal problem

Let us consider a graph G with n vertices. What can be said about
the number of its edges? This is an easy question and we already
know the answer: the number of edges can be any integer between
0 and (}). The maximum (“extremal”) number of edges of a graph
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with n vertices thus equals (g), and any graph with this number of
edges is isomorphic to the complete graph K.

In this section we are going to solve a more challenging, “real”
extremal problem. How many edges can a graph with n vertices have
if we know that it doesn’t contain a triangle (that is, a subgraph iso-
morphic to the graph K3)? Again we are interested in the mazimum
possible number of edges of such a graph. Let us denote this number
by T'(n).

Clearly T'(1) = 0, T'(2) = 1, and T'(3) = 2. It is also easy to check
that T'(4) = 4: the inequality T'(4) > 4 is witnessed by the cycle Cy
of length 4, and the inequality 7'(4) < 5 can be verified, for example,
by showing that a graph with 4 vertices and 5 edges is determined
uniquely up to isomorphism and it contains a triangle.

What is T'(5)7 The cycle Cs of length 5 shows that 7'(5) > 5.
This graph might seem to be the best possible, because adding any
edge to it creates a triangle. But appearances can be deceptive: we
actually have T'(5) > 6, as is witnessed by the following graph:

As we will see, this graph really is the best possible. In the next
theorem we show that 7'(5) = 6, and we even determine 7'(n) exactly
for all n.

n2

4.7.1 Theorem. For every natural number n we have T'(n) = | %-|.

We recall that |x| denotes the largest integer smaller or equal to
a real number z.

Proof. First we establish the (considerably easier) inequality 7'(n) >
L%ZJ For this it suffices to find suitable triangle-free graphs. We will
formulate the description slightly more generally than necessary; this
will pay off later. For disjoint sets X and Y, let Kxy denote the
graph with vertex set X UY and edge set {{z,y}: v € X,y € Y}.
The graph Ky y is called a complete bipartite graph and if we set
a = |X|and b = |Y|, then Kx y is isomorphic to K, as introduced
in Section 4.1. A complete bipartite graph contains no triangle, and
the graph K, has ab edges. Let us note that the graph in the above
picture witnessing 7'(5) > 6 is isomorphic to K3 3.
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For our proof it suffices to find values a, b so that a + b = n and
a-b= {%j We check that a = || and b = n — a will do. We
distinguish two cases, n odd and n even. First, let n be odd; i.e.,
n =2k + 1. In this case a = k, b = k+ 1, and ab = k> + k. On
the other hand, |%] = [ ) — k2 4 k4 1] = k2 + & = ab.
The second, easier case of even n is left to the reader. We have thus
shown T'(n) > |2 ].

Now we prove the harder inequality T'(n) < L%QJ Since T'(n)
is integral, it suffices to show T'(n) < "72. We will establish this
statement by a somewhat unusual induction on n. We already know
that the statement holds for n < 4. In the inductive step we prove
the following implication:

n? (n+2)2

T(n)< 5 = T+2)<—

So let G = (V, E) be any graph with n + 2 vertices containing no
triangle. We aim at showing |F| < %. Let us choose an edge
ep = {z,y} € E arbitrarily, let us set V! = V \ {z,y}, and let
G' = (V',E’) be the subgraph of G induced by the set V’. The
graph G’ is triangle-free, and so by the inductive hypothesis we have
B <2

Let E, be the set of edges of G that are incident with the vertex
x; formally B, = {e € E: © € e € E,e # ep}. We define the set
E, analogously for y. We thus have E = E' U (E, U E;) U {eg} and
|E| = |E'| 4+ |Ez U Ey| + 1. A key step in the proof is the inequality
|Ey U Ey| < n, which follows from the fact that no edge of E, has a
common vertex with any edge of £,.

X € y

Altogether we thus get |E| < %2 +n+1= ("22)2. O

We can extract even more from the above proof. We introduce
the following notion: we say that a graph G = (V, E) with n vertices
is extremal if it contains no triangle and has L”;J edges. We already
know that K|, /2| n—|n/2 18 extremal.
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4.7.2 Theorem. For every n each extremal graph is isomorphic to

the graph K,p, witha = 5|, b=n— [§].

So the appropriate complete bipartite graph is the only extremal
graph. This is a remarkable fact, which was one of the main inspira-
tions of an entire theory—the extremal theory. Other examples will
be mentioned in Section 7.3. Sperner’s theorem discussed in Sec-
tion 7.2 can also be considered as a result of extremal theory.

Proof of Theorem 4.7.2. We proceed as in the proof of Theo-
rem 4.7.1, and since we’re more or less copying that proof, we only
stress the extra arguments needed to show the uniqueness of the ext-
remal graph. The statement again holds for n = 1,2, 3, since we can
easily consider all extremal graphs. In the inductive step we assume
the uniqueness of the extremal graph with n vertices, and our goal
is to show uniqueness for n + 2 vertices.

So let G = (V, E) be a triangle-free graph with n + 2 vertices and
L%J edges. We choose an edge ey = {z,y} arbitrarily and we
consider the graph G' = (V', E') with V' =V \ {z,y} and E' = EN
(%). Since |E| = | % | +n+1 and since |F| < || and |E,UE,| < n
(all according to the proof of Theorem 4.7.1), we obtain that |E’|

must be even equal to L"TQJ So G’ is extremal and thus isomorphic

to Kqp, where a = 5| and b = n — a. Hence ' = Kxy for a
suitable partition of V' into two sets X and Y, |X| = a, |Y| = b.
We note that  cannot be connected to both X and Y, and similarly
for y. But since we also have |E;| + |E,| = n, we see that one of
the following two possibilities has to occur: either x is connected
to all vertices of X and y is connected to all vertices of Y, or =
is connected to all of Y and y is connected to all of X. These two
possibilities may look different but actually they yield isomorphic
graphs. O

We conclude this section with a short presentation of another proof
of Theorem 4.7.1. Actually, we prove a somewhat different theorem:

4.7.3 Theorem. Let G = (V, E) be a triangle-free graph. Then there
exists a partition of V into two subsets X and Y such that for every
vertex v € V we have dg(r) < di , ().

First we show how Theorem 4.7.3 implies Theorem 4.7.1. It is easy.
From the inequality in Theorem 4.7.3 we get that the number of edges
of G is no larger than the number of edges of Kx y (since the number
of edges of a graph is twice the sum of all degrees), and so it is enough
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to verify that the maximum possible number of edges of a graph K,
with @ + b = n equals L"sz — see Exercise 1.

Proof of Theorem 4.7.3. Let G = (V, E) be a triangle-free graph.
We pick a vertex zy € V whose degree in G is maximum. We set ¥ =
{y: {x0,y} € E} and X = V\Y. Clearly ¢ € X, and for every z € X
we have dg , (z) = |Y| = dg(x9) > dg(x), and hence the inequality
in the theorem holds for all x € X. Next, we note that no two vertices
of Y are adjacent, because all vertices of Y are neighbors of zy and G
contains no triangles. So all neighbors of each y € Y lie in X and we
have dG(y) < |X| < dKX.Y(y)' O

Exercises

1. Determine natural numbers a and b with a + b = n for which the
expression « - b is maximized.

2. For natural numbers k and n, determine all values of natural numbers
ai,...,ay satisfying Zle a; = n and such that the product a; - as -
... ag is maximized.

3. A complete k-partitne graph K(V1,Va,..., Vi) on a vertex set V is
determined by a partition Vi,...,V} of the set V, and its edges are
the pairs {z,y} of vertices such that  and y lie in different classes
of the partition. Formally K(V1,...,V;) = (V, E), where {z,y} € E
exactly if  # y and |[{z,y} NV;| < 1 for all @ = 1,...,k. Prove
(using Exercise 2) that the maximum number of edges of a complete
k-partite graph on a given vertex set corresponds to a partition with

almost equal parts, i.e. one with ‘|VZ\ - |Vj|‘ < 1 for all 4,j. What is
the number of edges of such a graph K(Vi,...,Vi)?

4. *Prove that for every k > 1 and for every graph G = (V, E) containing
no K41 as a subgraph there exists a partition Vp,...,V; of V' such
that the degree of every vertex x in G is no larger than the degree of
x in K(Vq,..., Vi) (this is an analogy of Theorem 4.7.3). In this way,
one can obtain a generalization of Theorem 4.7.1,replacing the triangle
K3 by K, for arbitrary k, which is the celebrated Turan theorem.



5
Trees

5.1 Definition and characterizations of trees

Even very abstract and elusive concepts in mathematics are often
given names from common language. Similarly as mathematical def-
initions are not at all arbitrary, the name for a notion may be
quite important. Sometimes the name helps to communicate, on
an intuitive level, some key property of the object which is not
easy to notice behind the formal definition. Other names may sound
quite illogical in today’s context without knowing their often convo-
luted history. For example, fields in mathematics are neither green
fields nor strawberry fields nor any other kind of fields most peo-
ple may be used to, and it is hard to imagine why something in
the plane should be called a vertex (see Chapter 6 for the origin
of this name). And, an unfitting name may lead one completely
astray. In this chapter, the reader can judge how well mathemati-
cians succeeded in choosing a name for a simple and fundamental
graph-theoretic concept—a tree. While trees in mathematics perhaps
cannot match those in nature for beauty or diversity, they still form
quite a rich area in graph theory, and closely related concepts of trees
appear in other branches of mathematics and of computer science
as well.

In graph theory, a tree is a graph similar to the ones in the
following drawings:
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From these nature-inspired pictures, one may get quite a good
idea of what is meant by a tree in graph theory. But how do we define
this notion rigorously? Try it by yourself before reading further!

Perhaps the most usual definition is the following:

5.1.1 Definition. A tree is a connected graph containing no cycle.

Don’t worry if your definition doesn’t match ours. A tree can be
defined in several rather different ways. Soon we will give even four
more equivalent definitions.

Why should one define a tree in several different ways? First of all,
the definition just given is somewhat unsuitable from several points of
view. For instance, it is not clear from it how we can check whether
a given graph is a tree or not. The connectedness can be verified by a
simple algorithm, but deciding the existence of a cycle seems to be a
problem. The alternative descriptions given below give very straight-
forward algorithmic ways of recognizing trees, and they tell us several
interesting properties of trees which may be useful in applications.

Second, while a proof of the equivalence of the various definitions
is probably not very exciting reading, it provides good exercise mate-
rial for students’ own proofs (according to our experience). The various
implications in the proof are not formidably difficult, but they are not
completely easy either, and a student trying to prove one such implica-
tion has plenty of opportunities to make and discover errors or gaps in
the proof. The proof given below also illustrates how one can proceed
in proving the equivalence of several statements.

Third, the equivalent characterizations of trees below are simple
but they show samples of “good” characterizations of a mathematical
object one should look for; difficult major theorems in several areas have
a formally similar pattern.

Here are the promised equivalent definitions of a tree. The most
remarkable of them is perhaps the one saying that among connected
graphs, a tree can be recognized simply by counting its edges and
vertices.

5.1.2 Theorem (Tree characterizations). The following condi-
tions are all equivalent for a graph G = (V, E):

(i) G is a tree.

(ii) (Path uniqueness)

For every two vertices x, y € V, there exists exactly one path
from x to y.

(iii) (Minimal connected graph)
The graph G is connected, and deleting any of its edges gives
rise to a disconnected graph.
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(iv) (Maximal graph without cycles)
The graph G contains no cycle, and any graph arising from G by
adding an edge (i.e. a graph of the form G +e, where e € (‘2/) \E)
already contains a cycle.

(v) (Euler’s formula)
G is connected and |V| = |E| + 1.

Note that this theorem not only describes various properties of
trees, such as “any tree on n vertices has n — 1 edges”, but also lists
properties equivalent to Definition 5.1.1, so for instance it says “A
graph on n vertices is a tree if and only if it is connected and has
n — 1 edges”.

Proving equivalences of various pairs of statements in Theorem 5.1.2
seems far from trivial for beginners, and all sorts of shortcomings ap-
pear in attempts at such proofs. Here is a (hypothetical) example. Con-
sider the following implication: “If G is a tree, then any two vertices
of G can be connected by exactly one path.” Most people quickly no-
tice that since G is connected, any two vertices can be connected by
at least one path. Then, if the proof is being created from the inter-
action of a student with the teacher, dialog of the following sort often
develops:

S.: “We proceed by contradiction. If u and v are two vertices in G that

can be connected by two different paths, then G contains a cycle.

Hence the implication holds.”

T.: “But why must there be a cycle in G if u and v are connected by

two distinct paths?”

S.: “Well, the two paths together contain a cycle.”

For the teacher, this is not at all easy to argue with, in particular
because it’s true and, moreover, “obvious from a picture”.

T: “But why? Can you prove it rigorously? In your picture, there is
indeed a cycle, and I can’t show you a graph with no cycle and with
two paths between u and v either, but isn’t it possible that some
extraterrestrians, much more clever than me and you and all other
people together, can construct such a graph?”

(Suggestions of didactically more convincing ways of arguing are wel-
come.) In fact, a rigorous proof is not entirely trivial, but it seems that
the message most difficult to get through is that there really is some-
thing to prove. As you will see, in our proof of Theorem 5.1.2 below we
preferred to avoid this direct argument.

We now begin with the proof of Theorem 5.1.2. Since there are
many implications to prove, it is important to organize the proof
suitably. The basic idea in all steps is to proceed by induction on
the number of vertices of the considered graph, and to “tear oft”
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a vertex of degree 1 in the inductive step. In a few simple lemmas
below, we prepare the ground for this method.

Let us call a vertex of degree 1 in a graph G an end-vertez of G or
a leaf of G. We begin with the following almost obvious observation:

5.1.3 Lemma (End-vertex lemma). Each tree with at least 2 ver-
tices contains at least 2 end-vertices.

Proof. Let P = (vg,e1,v1,...,€,v:) be a path of the maximum
possible length in a tree T' = (V, E). Clearly the length of the path
P is at least 1, and so in particular vy # v;. We claim that both v
and v; are end-vertices. This can be shown by contradiction: if, for
example, v is not an end-vertex, then there exists an edge e = {vg, v}
containing the vertex vg and different from the first edge e; = {vg, v1}
of the path P. Then either v is one of the vertices of the path P, i.e.
v = v;, ¢ > 2 (in this case the edge e together with the portion of
the path P from vy to v; form a cycle), or v & {vp, ..., v }—in that
case we could extend P by adding the edge e. In both cases we thus
get a contradiction. a

Let us remark that the end-vertex lemma does not hold for infinite
trees (the proof just given fails because a path of the maximum length
need not exist). For instance, the “one-sided infinite path” has only one
end-vertex

/\/\/\M

and the “two-sided infinite path” has none:

\/-\/\/\/\/

We only consider finite graphs here, however.

Next, we recall a notation from Section 4.6: if G = (V,E) is a
graph and v is a vertex of G, then G — v stands for the graph arising
from G by deleting the vertex v and all edges containing it. In case
v is an end-vertex of a tree T', the graph T'— v arises by deleting the
vertex v and the single edge containing v.

5.1.4 Lemma (Tree-growing lemma). The following two state-
ments are equivalent for a graph G and its end-vertex v:

(i) G is a tree
(ii)) G — v is a tree.
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Proof. This is also quite easy. First we prove the implication (i) = (ii).
The graph G is a tree, and we want to prove that G — v is a tree as
well. Consider two vertices x,y of G —v. Since G is connected, z and
y are connected by a path in G. This path cannot contain a vertex
of degree 1 different from both x and y, and so it doesn’t contain v.
Therefore it is completely contained in G — v, and we conclude that
G — v is connected. Since G has no cycle, obviously G — v cannot
contain a cycle, and thus it is a tree.

It remains to prove the implication (ii) = (i). Let G — v be a tree.
By adding the end-vertex v back to it, no cycle can be created. We
must also check the connectedness of GG, but this is obvious too: any
two vertices distinct from v were connected already in G — v, and
a path to v from any other vertex z is obtained by considering the
(single) neighbor v’ of v in G, connecting it to = by a path in G — v,
and extending this path by the edge {v’, v}. a

This lemma allows us to reduce a given tree to smaller and smaller
trees by removing end-vertices successively. Now we are going to
apply this device.

Proof of Theorem 5.1.2. We prove that each of the statements
(ii)—(v) is equivalent to (i). This, of course, proves the mutual equiva-
lence of all the statements. The proofs go by induction on the number
of vertices of GG using the tree-growing lemma 5.1.4. As for the in-
duction basis, we note that all the statements are valid for the graph
with a single vertex.

First let us see that (i) implies all of (ii)—(v). To this end, let G
be a tree with at least 2 vertices, let v be one of its end-vertices, and
let v’ be the single neighbor of v in G. Suppose that the graph G —v
already satisfies (ii)—(v); this is our inductive hypothesis.

In this situation, the validity of (ii), (iii), and (v) for G can be
considered obvious (we leave a detailed argument to the reader).

As for (iv), we do not even need the inductive hypothesis for G—v.
Since G is connected, any two vertices z,y € V(G) can be connected
by a path, and if {z,y} ¢ E(G) then the edge {z,y} together with
the just-mentioned path creates a cycle. This proves the implication
(i) = (iv).

Let us now prove that each of the conditions (ii)—(v) implies (i).
In (ii) and (iii) we already assume connectedness. Moreover, a graph
satisfying (ii) or (iii) cannot contain a cycle. For (ii), this is because
two vertices in a cycle can be connected by two distinct paths, and
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for (iii), the reason is that by omitting an edge in a cycle we obtain
a connected graph. Thus we have already proved the equivalence of
(i)—(iii).

In order to verify the implication (iv)=-(i), it suffices to check
that G is connected. For this, we can use the argument by which
we have proved (i)=-(iv) turned upside down. If z,y € V(G) are two
vertices, either they are connected by an edge, or the graph G+{x, y}
contains a cycle, and removing the edge {z,y} from this cycle gives
a path from z to y in G.

Finally the implication (v)=-(i) is again proved by induction on
the number of vertices. Let us consider a connected graph G satisfy-
ing |V| = |E| 4+ 1 > 2. The sum of the degrees of all vertices is thus
2|V| — 2 (why?). This means that not all vertices can have degree 2
or larger, and since all the degrees are at least 1 (by connectedness!),
there exists a vertex v of degree exactly 1, i.e. an end-vertex of the
graph G. The graph G’ = G — v is again connected and it satisfies
|[V(G")| = |E(G")|+ 1. Hence it is a tree by the inductive hypothesis,
and thus G is a tree as well. O

Exercises

1. Draw all trees with vertex set {1,2,3,4}, and all pairwise noniso-
morphic trees on 6 vertices.

2. Prove that any graph G = (V,E) having no cycles and satisfying
|V|=|E|+1is a tree.

3. *Let n > 3. Prove that a graph G on n vertices is a tree if and only if
it is not isomorphic to K,, and adding any edge (on the same vertex
set) not present in G creates exactly one cycle.

4. Prove that a graph on n vertices with ¢ components has at least n — ¢
edges.

5. Suppose that a tree contains a vertex of degree k. Show that it has at
least k end-vertices.

6. Let T be a tree with n vertices, n > 2. For a positive integer i, let p;
be the number of vertices of T' of degree i. Prove
pr—ps—2ps— - —(n=3)pp_1 =2.
(This provides an alternative proof of the end-vertex lemma.)

7. King Uxamhwiashurh had 4 sons, 10 of his male descendants had 3
sons each, 15 had 2 sons, and all others died childless. How many male
descendants did King Uxamhwiashurh have?
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8. Cousider the following two conditions for a sequence (dy, da, ..., d,) of
(strictly) positive integers (where n > 1):

(i) There exists a tree with score (d,ds, ..., d,).
(i) >, di=2n—2.
The goal is to show that these conditions are equivalent (and so there

is a very simple way to tell sequences that are scores of trees from
those that aren’t).

(a) Why does (i) imply (ii)?

(b) Why is the following “proof” of the implication (ii)=-(i) insufficient
(or, rather, makes no sense)? We proceed by induction on n. The base
case n = 1 is easy to check, so let us assume that the implication holds
for some n > 1. We want to prove it for n + 1. If D = (dy,da,...,d,) is
a sequence of positive integers with Z?zl d; = 2n — 2, then we already
know that there exists a tree T' on n vertices with D as a score. Add
another vertex v to T and connect it to any vertex of T by an edge,
obtaining a tree T” on n+ 1 vertices. Let D’ be the score of T". We know
that the number of vertices increased by 1, and the sum of degrees of
vertices increased by 2 (the new vertex has degree 1 and the degree of
one old vertex increased by 1). Hence the sequence D’ satisfies condition
(ii) and it is a score of a tree, namely of T”. This finishes the inductive
step.

(c) *Prove (ii)=(i).

9. Suppose we want to prove that any connected graph G = (V, E) with
|V| = |E|+1is a tree, i.e. the implication (v)=-(i) in Theorem 5.1.2.
What is wrong with the following proof?

We already assume that the considered graph is connected, so all we need
to prove is that it has no cycle. We proceed by induction on the number
of vertices. For |V| = 1, we have a single vertex and no edge, and the
statement holds. So assume the implication holds for any graph G =
(V,E) on n vertices. We want to prove it also for a graph G’ = (V', E’)
arising from G by adding a new vertex. In order that the assumption
|V’ = |E’|4+1 holds for G’, we must also add one new edge, and because
we assume G’ is connected, this new edge must connect the new vertex
to some vertex in V. Hence the new vertex has degree 1 and so it cannot
be contained in a cycle. And because G has no cycle (by the inductive
hypothesis), we get that neither does G’ have a cycle, which finishes the
induction step.

5.2 Isomorphism of trees

As we have mentioned in Section 4.1, no fast algorithm is known for de-
ciding whether two given graphs are isomorphic or not. For some special
classes of graphs efficient algorithms exist, however. One of these classes
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is trees. In fact, many (perhaps most) algorithmic problems which are
intractable for general graphs can be solved relatively easily for trees.
In this section we demonstrate a fast and simple algorithm for test-
ing the isomorphism of two given trees T and T”. For a given tree
T, the algorithm computes a sequence of Os and 1s of length 2n,
called the code of the tree T. Isomorphic trees yield identical se-
quences, while nonisomorphic ones receive distinct sequences. In this
way, the testing for isomorphism is reduced to a simple sequence
comparison.
Next, we introduce a number of specialized notions, each with a
particular name. This is quite usual in algorithmic graph theory, where

many notions arose from various applications and where the terminology
is quite diverse.

A rooted tree is a pair (T, 1), where T is a tree and r € V(T) is a
distinguished vertex of T' called the root. If {x,y} € E(T) is an edge
and the vertex z lies on the unique path from y to the root, we say
that x is the father of y (in the considered rooted tree) and y is a
son of z.

A planted tree is a rooted tree (T, r) plus a drawing of 7" in the
plane. In this drawing, the root is marked by an arrow pointing
downwards, and the sons of each vertex lie above that vertex.

For those who don’t like this definition, note that a planar drawing
of a tree is fully described, up to a suitable continuous deformation of
the plane, by the left-to-right order of the sons of each vertex. A planted
tree is thus a rooted tree in which every vertex v is assigned a linear
ordering of its sons. Thus, we can formally write a planted tree as a
triple (7, r,v), where v is a collection of linear orderings, one linear
ordering for the set of sons of each vertex.

For each of the above-defined types of trees, an isomorphism is
defined in a slightly different way. Let us recall that a mapping
f:V(T) — V(T') is an isomorphism of trees T and 7" if f is a
bijection (i.e. it is one-to-one and onto) satisfying {z,y} € E(T)
if and only if {f(z), f(y)} € E(T’). The existence of such an iso-
morphism is written T" = T". An isomorphism of rooted trees (T, 1)
and (7”,7") is an isomorphism f of the trees 7" and T” for which we
have, moreover, f(r) = r’. This is denoted by (T,r) &' (T’,r'). An
isomorphism of planted trees is an isomorphism of rooted trees that
preserves the left-to-right ordering of the sons of each vertex. The
fact that two planted trees are isomorphic in this sense is denoted
by (T,r,v) =" (T',7",V/).
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The definitions of =, &/, and =" are successively stronger and
stronger. This can be best understood in the following small

examples:
The definition of the isomorphism of planted trees is most re-
strictive, and thus the coding of these trees is easiest. The following

method assigns a certain code to each vertex of a planted tree. The
code of the whole tree is then defined as the code of the root.

K1. Each end-vertex distinct from the root is assigned 01.

K2. Let v be a vertex with sons vy, ve,...,v; (written in the left-to-
right order). If A; is the code of the son v;, then the vertex v

receives the code 041 A, ... Asl.

The process of a successive building of a code is illustrated below:

01 01 o1 01
01 01
001011
01
01 01

000101101011
0000101101011011

Clearly, isomorphic planted trees have been assigned the same codes,
because in the code construction, we only used properties of a planted
tree preserved by the isomorphism of planted trees.
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Now we show how the original planted tree can be reconstructed
from the resulting code. In this way, we prove that nonisomorphic
planted trees are assigned distinct codes. We proceed by induction
on the length of the code.

The shortest possible code, 01, corresponds to the planted tree
with a single vertex. In an induction step, suppose that we are given
a code k of length 2(n 4 1). This code has the form 0 A1, where
A= A1A,y...A; is a concatenation of codes of several planted trees.
The part A; can be identified as the shortest initial segment of the
sequence A containing the same number of Os and 1s. Similarly, Ao
is the next shortest segment with the number of 0Os and 1s balanced,
and so on. By the inductive hypothesis, each A; corresponds to a
unique planted tree. The planted tree coded by the code k has a
single root r, and this root has as sons the roots ry, 73, ..., of the
planted trees coded by Ay, As, ..., A, respectively (in the left-to-
right order). Hence the code uniquely determines a planted tree.

Decoding by the arrow method. We present an intuitive (pictorial)
procedure for reconstructing a planted tree from its code.

In a given code sequence, we replace every 0 by the arrow “7” and
every 1 by the arrow “]”. Next, we take this sequence of arrows as
instructions for drawing a tree. When encountering an “|”, we draw
an edge from the current point upwards (and to the right of the parts
already drawn from that point). For a “|”, we follow an already drawn
edge downwards. The whole procedure is illustrated in the following
picture:

0000101101011011

!

T —

(The procedure draws the root’s arrow as well, since a one-point tree

has the code 01.)

We have studied the isomorphism of planted trees in some detail,
since the algorithm for planted trees easily leads to an algorithm for
rooted trees. For a rooted tree (7', 7), we build its code in a similar
way to the method for planted trees, but the rule K2 is replaced by
the following modification:
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K2'. Suppose that each son w of a vertex v has already been
assigned a code A(w). Let the sons of v be denoted by

wi,Wwa, ..., W, in such a way that A(w;) < A(wy) < --- <
A(wy). The vertex v receives the code 0 A; Ag ... Ay 1, where

Here A < B means that the sequence A is less than or equal to
the sequence B in some fixed linear ordering of all finite sequences
of 0Os and 1s. For definiteness, we can use the so-called lexicographic
ordering. Two (distinct) sequences A = (aj,as,...,a,) and B =
(b1,ba,...,by) are compared as follows:

e If A is an initial segment of B then A < B. If B is an initial
segment of A then B < A. (For example, we have 0010 < 00100
and 0 < 0111.)

e Otherwise, let j be the smallest index with a; # b;. Then if
a; < bj welet A < B, and if a; > b; we let A > B. (For
example, we have 011 < 1 and 10011 < 10110.)

We have to check that two rooted trees are isomorphic if and only
if they have the same codes. This can be done quite similarly as for
planted trees, and we leave it to the reader.

We now turn our attention to coding trees without a root.! Our
task would be greatly simplified if we could identify a vertex which
would play the role of the root, and which would be preserved by
any isomorphism. For trees, such a distinguished vertex can indeed
be found (well, not always, but the exceptional cases can be char-
acterized and they can be handled slightly differently). The relevant
definitions can be useful also in other contexts, so we formulate them
for general graphs rather than just for trees.

For a vertex v of a graph G, let the symbol exg(v) denote the
maximum of the distances of v from other vertices of G. The number
exg(v) is called the excentricity of the vertex v in the graph G. We
can imagine the vertices with a large excentricity as lying on the
periphery of G.

Now let C(G) denote the set of all vertices of G with the minimum
excentricity. The set C(G) is called the center? of G. The example

Tn the literature, the term free tree is sometimes used if one speaks about a
tree and wants to emphasize that it is not considered as a rooted tree.

2The excentricity of the vertices of the center is called the radius of the
graph G.
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of a cycle (and many other graphs) shows that sometimes the center
may coincide with the whole vertex set. However, for trees, we have

Proposition. For any tree T', C(T') has at most 2 vertices. If C(T")
consists of 2 vertices x and y then {z,y} is an edge.

Proof. We describe a procedure for finding the center of a tree. Let
T = (V, E) be a given tree. If T has at most 2 vertices, then its center
coincides with the vertex set and the proposition holds. Otherwise
let T = (V' E’) be the tree arising from T by removing all leaves.
Explicitly,

V' ={zeV: degp(z) > 1},
E' = {{z,y} € E: degy(z) > 1 and degy(y) > 1}.

We clearly have V(T") # (), since not all vertices of T’ can be leaves.
Further, for any vertex v, the vertices most distant from v are nec-
essarily leaves, and hence for each v € V' we get

exp(v) = expr(v) + 1.

In particular, we have C(T") = C(T). If T” has at least 3 vertices we
repeat the construction just described, otherwise we have found the
center of T O

We can now specify the coding of a tree T'.

o If the center of T is a single vertex, v, then we define the code
of T to be the code of the rooted tree (7', v).

e If the center of T' consists of an edge e = {x1,22}, we con-
sider the graph T' — e. This graph has exactly 2 components 71
and T; the notation is chosen in such a way that x; € V(T;).
Let the letter A denote the code of the rooted tree (7%,x1)
and the letter B the code of the rooted tree (To,xz2). If A < B
in the lexicographic ordering, the tree T' is coded by the code of
the rooted tree (T, x1), and for A > B it is coded by the code of
(T, LL’Q) .

This finishes the coding procedure for trees.

The decoding is done in exactly the same way as for planted trees
(we then obtain a “canonical” drawing of the considered tree). Since
an isomorphism maps a center to a center and since we have already
seen that the coding works properly for rooted trees, it is easy to see
that two trees have the same code if and only if they are isomorphic.
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The algorithms for the isomorphism of various types of trees exp-
lained in this section can be implemented in such a way that the number
of elementary steps (computer instructions, say) is bounded by a linear
function of the total number of vertices of the input trees.

Several more classes of graphs are known for which the isomorphism
problem can be solved efficiently. Perhaps the most important examples
are the class of all planar graphs and the class of all graphs with maxi-
mum degree bounded by a small constant. Here the known algorithms
for isomorphism testing are fairly complicated.

Exercises
1. (a) Find an asymmetric tree, i.e. a tree with a single (identical) auto-
morphism (see Exercise 4.1.3), with at least 2 vertices.
(b) Find the smallest possible number of vertices a tree as in (a) can
have (i.e. prove that no smaller tree can be asymmetric).

2. Find two nonisomorphic trees with the same score.

3. A rooted tree is called binary if each nonleaf vertex has exactly 2 sons.
(a) Draw all nonisomorphic binary trees with 9 vertices.
(b) Characterize the codes of binary trees.

4. Prove in detail that isomorphic trees (not rooted) receive the same

code by the explained procedure, and nonisomorphic trees get distinct
codes.

5. %S Let Aj,...,A; be sequences of 0s and 1s (possibly of different
lengths). Let n denote the sum of their lengths. Devise an algorithm
that sorts these sequences lexicographically in O(n) steps. One step
may only access one term of some A;; it is not possible to manipulate
a whole sequence of 0s and 1s at once.

6. Prove that there exist at most 4™ pairwise nonisomorphic trees on n
vertices.

7. Let T = (V, E) be a tree and v some vertex of T'. Put
7(v) = max(|V(T0), [V(T2)l, - ... [V(Tw)]),

where 17, ..., T are all the components of the graph T'— v. The cen-
troid of the tree T is the set of all vertices v € V with the minimum
value of 7(v).

(a) *Prove that the centroid of any tree is either a single vertex or 2
vertices connected by an edge.

(b) Is the centroid always identical to the center?
(c) Prove that if v is a vertex in the centroid then 7(v) < 2[V/(T)|.
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5.3 Spanning trees of a graph

A spanning tree is one of the basic graph constructions:

5.3.1 Definition. Let G = (V,E) be a graph. An arbitrary tree
of the form (V, E'), where E' C E, is called a spanning tree of the
graph G. So a spanning tree is a subgraph of G that is a tree and
contains all vertices of G.

Obviously, a spanning tree may only exist for a connected graph G.
It is not difficult to show that every connected graph has a spanning
tree. We prove it by giving two (fast) algorithms for finding a span-
ning tree of a given connected graph. In the subsequent sections we
will need variants of these algorithms, so let us study them carefully.

5.3.2 Algorithm (Spanning tree). Let G = (V,E) be a graph
with n vertices and m edges. We order the edges of G arbitrarily into
a sequence (e, €, . .. €y). The algorithm successively constructs sets
of edges Ey, F1,... C E.

We let Ey = (). If the set E;_; has already been found, the set E;
is computed as follows:

o E;1U{e;} if the graph (V| E;_1 U {e;}) has no cycle
T By otherwise.

The algorithm stops either if E; already has n — 1 edges or if i = m,
i.e. all edges of the graph G have been considered. Let E; denote
the set for which the algorithm has stopped, and let T be the graph
(V, Ey).

5.3.3 Proposition (Correctness of Algorithm 5.3.2). If Algo-
rithm 5.3.2 produces a graph T' with n—1 edges then T is a spanning
tree of G. If T" has k < n — 1 edges then G is a disconnected graph
with n — k components.

Proof. According to the way the sets E; are created, the graph G
contains no cycle. If k = |E(T)| = n — 1 then T is a tree according
to Exercise 5.1.2, and hence it is a spanning tree of the graph G. If
k < n —1, then T is a disconnected graph whose every component
is a tree (such a graph is called a forest). It is easy to see that it has
n — k components.

We prove that the vertex sets of the components of the graph T
coincide with the vertex sets of the components of the graph G. For
contradiction, suppose this is not true, and let x and y be vertices
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lying in the same component of G but in distinct components of T'.
Let C denote the component of T containing the vertex z, and con-
sider some path (z = xg, €1, 1,€2,...,er,xy =y) from x to y in the
graph G, as in the following picture:

el

D

Let ¢ be the last index for which z; is contained in the component C.
Obviously i < ¢, and hence z;11 ¢ C. The edge e = {x;, zj+1} thus
does not belong to the graph T', and so it had to form a cycle with
some edges already selected into 1" at some stage of the algorithm.
Therefore the graph T+ e also contains a cycle, but this is impossible
as e connects two distinct components of T'. This provides the desired
contradiction. a

Complexity of the algorithm. We have just shown that Algorithm
5.3.2 always computes what it is supposed to compute, i.e. a spanning
tree of the input graph. But if we really needed to find spanning trees
for some large graphs, should we choose this algorithm and spend our
time programming it, or our money by buying some existing code?

To answer such a question is no simple matter, and algorithms are
compared according to different, and often contradictory, criteria. For
instance, it is important to consider the clarity and simplicity of the
algorithm (a complicated or obscure algorithm easily leads to program-
ming errors), the robustness (how do rounding errors or small changes
in the input data influence the correctness of the output?), memory
requirements, and so on. Perhaps the most common measure of com-
plexity of an algorithm is its time complexity, which means the number
of elementary operations (such as additions, multiplications, compar-
isons of two numbers, etc.) the algorithm needs for solving the input
problem. Most often the worst-case complexity is considered, i.e. the
number of operations needed to solve the worst possible problem, one
expressly chosen to make the algorithm slow, for a given size of input.
For computing a spanning tree, the input size can be measured as the
number of vertices plus the number of edges of the input graph. Instead
of “worst-case time complexity” we will speak briefly of “complexity”,
since we do not discuss other types of complexity.

The complexity of an algorithm can seldom be determined precisely.
In order that we could even think of doing it, we would have to deter-
mine exactly what the allowed primitive operations are (so, in principle,
we would restrict ourselves to a specific computer), and also we would
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have to describe the algorithm in the smallest details including various
routine steps; that is, essentially look at a concrete program. Even if
we did both these things, determining the precise complexity is quite
laborious even for very simple algorithms. For these reasons, the com-
plexity of algorithms is only analyzed asymptotically in most cases. We
could thus say that some algorithm has complexity O(n3/ 2), another
one O(nlogn), and so on (here n is a parameter measuring the size of
the input).

For a real assessment of algorithms, it is usually necessary to com-
plement such a theoretical analysis by testing the algorithm for various
input data on a particular computer. For example, if the asymptotic
analysis yields complexity O(n?) for one algorithm and O(nlog?n) for
another then the second algorithm looks clearly better at first sight
because the function nlog4 n grows much more slowly than n2. But if
the exact complexity of the first algorithm were, say, n2 —5n and of the
second one 20n(log, n)*, the superiority of the second algorithm will
only show for n > 5-10°, and such a superiority is quite illusory from
a practical point of view.

Let us try to estimate the asymptotic complexity of Algorithm 5.3.2.
We have described the algorithm on a “high level”, however. This
doesn’t refer to a prestigious social position but to the fact that we
have used, for instance, a test of whether a given set of edges contains
a cycle, which cannot be considered an elementary operation even with
a very liberal approach. The complexity of the algorithm will thus dep-
end on our ability to realize such a complex operation by elementary
operations.

For our Algorithm 5.3.2, we may note that it is not necessary to store
all the edge sets E;, and that all of them can be represented by a single
variable (say, a list of edges) which successively takes values Ey, F1, .. ..
The only significant question is how to test efficiently whether adding
a new edge e; creates a cycle or not. Here is a crucial observation: a
cycle arises if and only if the vertices of the edge e; belong to the same
connected component of the graph (V, E;_1). Hence we need to solve
the following problem:

5.3.4 Problem (UNION-FIND problem). Let V = {1,2,...,n}
be a set of vertices. Initially, the set V is partitioned into 1-element
equivalence classes; that is, no distinct vertices are considered equiva-
lent. Design an algorithm which maintains an equivalence relation on
V' (in other words, a partition of V into classes) in a suitable data
structure, in such a way that the following two types of operations can
be executed efficiently:

(i) (UNION) Make two given nonequivalent vertices i,j € V equiva-
lent, i.e. replace the two classes containing them by their union.
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(ii) (Equivalence testing—FIND) Given two vertices ¢,j € V, decide
whether they are currently equivalent.

A new request for an operation is input to the algorithm only after it

has executed the previous operation.

Our Algorithm 5.3.2 for finding a spanning tree needs at most n — 1
operations UNION and at most m operations FIND.

We describe a quite simple solution of Problem 5.3.4. In the beg-
inning, we assign distinct marks to the vertices of V, say the marks
1,2,...,n. During the computation, the marks will always be assigned
so that two vertices are equivalent if and only if they have the same
mark. Thus, equivalence testing (FIND) is a trivial comparison of marks.
For replacing two classes by their union, we have to change the marks
for the elements of one of the classes. So, if the elements of each class are
also stored in a list, the time needed for the mark-changing operation
is proportional to the size of the class whose marks are changed.

For a very rough estimate of the running time, we can say that no
class has more than n elements, so a single UNION operations never
needs more than O(n) time. For n — 1 UNION operations and m FIND
operations we thus get the bound O(n? 4+ m). One inconspicuous imp-
rovement is to maintain also the size of each class and to change marks
always for the smaller class. For such an algorithm, one can show a much
better total bound: O(n log n+m) (Exercise 1). The best known solution
of Problem 5.3.4, due to Tarjan, needs time at most O(na(n) +m) for
m FIND and n — 1 UNION operations (see e.g. Aho, Hopcroft, and
Ullman [11]), where a(n) is a certain function of n. We do not give the
definition of «(n) here; we only remark that a(n) does grow to infinity
with n — oo but extremely slowly, much more slowly than functions like
loglog n, loglog log n, etc. For practical purposes, the solution described
above (with re-marking the smaller class) may be fully satisfactory.

Let us present one more algorithm for spanning trees, perhaps
even a simpler one.

5.3.5 Algorithm (Growing a spanning tree). Let a given graph
G = (V, E) have n vertices and m edges. We will successively con-
struct sets V, V1, Vo, ... C V of vertices and sets Fy, F1, Fs,... C E
of edges. We let Ey = () and Vy = {v}, where v is an arbitrary vertex.

Having already constructed V;_; and FE;_1, we find an edge e; =
{zi,y;} € E(G) such that z; € V;_1 and y; € V \ V;_1, and we
set V; = Vi_1 U{y}, E;i = E;i—1 U {e;}. If no such edge exists, the
algorithm finishes and outputs the graph constructed so far, T' =
(Vi, Et).

5.3.6 Proposition (Correctness of Algorithm 5.3.5). If the
algorithm finishes with a graph T with n vertices, then T is a spanning
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tree of G. Otherwise G is a disconnected graph and T is a spanning
tree of the component of G containing the initial vertex v.

Proof. The graph T is a tree because it is connected and has the
right number of edges and vertices. If T has n vertices, it is a spanning
tree, so let us assume that T has n < n vertices. It remains to show
that V(T') is the vertex set of a component of G.

Let us suppose the contrary: let there be an = € V(T') and a
y € V(T) connected by a path in the graph G. As in the proof of
Proposition 5.3.3, we find an edge e = {z;,y;} € E(G) on this path
such that x; € V(T) and y; € V '\ V(T'). The algorithm could thus
have added the edge e and the vertex y; to the tree, and should
not have finished with the tree T'. This contradiction concludes the
proof. a

Remark. The details of the algorithm just considered can be designed
in such a way that the running time is O(n + m) (see Exercise 2).

Exercises

1. Prove that if Problem 5.3.4 is solved by the described method (always
changing the marks for the smaller class), then the total complexity of
n — 1 UNION operations is at most O(nlogn).

2. *CS Design the details of Algorithm 5.3.5 is such a way that the run-
ning time is O(n + m) in the worst case. (This may require some
knowledge of simple list-like data structures.)

3. From Exercise 4.4.7, we recall that a Hamiltonian cycle in a graph G
is a cycle containing all vertices of GG. For a graph G and a natural
number k > 1, define the graph G*) as the graph with vertex set V(G)
and two (distinct) vertices connected by an edge if and only if their
distance in G is at most k.

(a) *Prove that for each tree T', the graph T®) has a Hamiltonian
cycle.

(b) Using (a), conclude that G®) has a Hamiltonian cycle for any
connected graph G.

(c) Find a connected graph G such that G® has no Hamiltonian cycle.

5.4 The minimum spanning tree problem

Imagine a map of your favorite region of countryside with some 30—40
villages. Some pairs of villages are connected by gravel roads, in such
a way that each village can be reached from any other along these
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roads. The county’s council decides to modernize some of these roads
to highways suitable for fast car driving, but it wants to invest as
little money as possible under the condition that it will be possible
to travel between any two villages along a highway. In this way, we
arrive at a fundamental problem called the minimum spanning tree
problem. This section is devoted to its solution.
Of course, you may object that your favorite part of the countryside
was full of first-class expressways a long time ago. So you may consider

some less advanced country, or find another natural formulation of the
underlying mathematical problem.

We also assume that the existing roads have no branchings outside
the villages, and that the new roads can only be built along the old
ones (because of proprietary rights, say). Otherwise, it may be cheaper
for instance to connect four places like this

instead of like this

If we allowed the former kind of connection, we would arrive at a differ-

ent algorithmic problem (called the Steiner tree problem), which turns

out to be much less tractable than the minimum spanning tree problem.

A mathematical formulation of the minimum spanning tree prob-
lem requires that the notion of graph is enriched a bit: we will con-
sider graphs with weighted edges. This means that for every edge
e € E we are given a number w(e), called the weight of the edge e.
The weight of an edge is usually a nonnegative integer or real num-
ber. A graph G = (V, E) together with a weight function w on its
edges, w: E — R, is sometimes called a network.

Let us formulate the above road-building problem in graph-
theoretic terms:

Problem. Given a connected graph G = (V, E) with a nonnegative
weight function w on the edges, find a spanning connected subgraph
(V, E') such that the sum
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w(E) =" w(e) (5.1)

has the minimum possible value.

It is easy to see that there is always at least one spanning tree
of G among the solutions of this problem. If the weights are strictly
positive, each solution must be a spanning tree. For instance, if all
edges have weight 1, then the solutions of the problem are exactly the
spanning trees of the graph, and the expression (5.1) has minimum
value |V| — 1.

Hence, it suffices to deal with the following problem:

5.4.1 Problem (Minimum spanning tree problem). For a con-
nected graph G = (V, E) with a weight function w on the edges,
find a spanning tree T' = (V, E’) of the graph G with the smallest
possible value of w(E").

An attentive reader might have observed that here we do not assume
nonnegativity of the weights. Indeed, the algorithms we are going to dis-
cuss solve even this more general problem with arbitrary weights. There
is more to this remark than meets the eye: many graph problems that
are easy for nonnegative weights turn into algorithmically intractable
problems if we admit weights with arbitrary signs. An example of such
a problem is finding the shortest path in a network, where the length
of a path is measured as the sum of the edge weights.

A given graph may have very many spanning trees (see Chapter 8)
and it may seem difficult to find the best one. It is not really so
difficult, and nowadays it can be done by an easy modification of the
algorithms from the previous section. We present several algorithms.
A simple and very popular one is the following:

5.4.2 Algorithm (Kruskal’s or the ‘“‘greedy’’ algorithm). The
input is a connected graph G = (V, E) with edge weight function w.
Let us denote the edges by ej,eo, ..., e, in such a way that

w(er) <w(ez) < - <w(ep).

For this ordering of edges, execute Algorithm 5.3.2.

Before proving the correctness of Kruskal’s algorithm, which is
not completely easy, let us illustrate the algorithm with a small
example.
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Example. Let us apply Kruskal’s algorithm for the following
network:

Y T

One possible execution of the algorithm is shown in the next diagram:

& = & &

5.4.3 Proposition (Correctness of Kruskal’s algorithm). Alg-
orithm 5.4.2 solves the minimum spanning tree problem.

Proof. This proof is not really deep but it seems to require concen-
trated attention, for otherwise it is very easy to make a mistake in
it (both the authors have a rich experience of it by presenting it in
lectures).

Let T be the spanning tree found by the algorithm, and let T
be any other spanning tree of the graph G = (V| E). We need to
show that w(E(T)) < w(E(T)). Let us denote the edges of T by
ey, eh, ... el 1 in such a way that w(e]) < w(e)) < --- < w(el,_;)
(the edge €] has been denoted by some e; in the algorithm, so that
it now has two names!). Similarly let éi,...,¢,_1 be the edges of T
ordered increasingly by weights.

We show that for ¢ = 1,...,n — 1, we even have

w(el) < w(&;). (5.2)

This of course shows that 7" is a minimum spanning tree. For contra-
diction, let us assume that (5.2) is not true, and let ¢ be the smallest
index for which it is violated, i.e. w(e}) > w(¢&;). We consider the sets

The graphs (V,E’) and (V,E) contain no cycles and, moreover,
|E|=i—-1, |E|=i.
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For the desired contradiction it suffices to show that there exists
an edge e € E for which the graph (V, E’ U {e}) contains no cycle.
Then we obtain w(e) < w(é;) < w(e]) and this means that at the
moment the edge e was considered in the algorithm we made a mis-
take. There was no reason to reject e, and we should have selected
it instead of the edge € or earlier.

Therefore it is enough to show the following: If ', E C (V) are
two sets of edges, such that the graph (V, E) has no cycle and |E'| <
|E|, then some edge e € E connects vertices of distinct components of
the graph (V, E'). This can be done by a simple counting argument.
Let Vi,...,Vs be the vertex sets of the components of the graph

(V, E’). We have
o () e

and by summing these inequalities over j we get |E'| > n —s. On
the other hand, since E has no cycles, we get

’Em(‘é)‘qw

and therefore at most n — s edges of E are contained in some of the
components V;. But since we assumed |E| > |E’|, there is an edge
e € F going between two distinct components. O

Kruskal’s algorithm is a prototype of the so-called greedy algorithm.
At every step, it selects the cheapest possible edge among those allowed
by the restrictions of the problem (here “the graph should contain no
cycle”). In general, “greedy algorithm” is a term for a strategy trying
to gain as much as possible at any given moment, never contemplating
the possible disadvantages such a choice may bring in the future.? For
numerous problems, this short-sighted strategy may fail completely. For
instance, a greedy strategy applied for a chess game would mean (in
the simplest form) that a player would always take a piece whenever
possible, and always the most valuable one. And by following such a
naive play he would lose very soon.

3In the minimum spanning tree problem, a “parsimonious algorithm” would
perhaps be a more appropriate name, since we always take the cheapest possible
edge. But “greedy algorithm” is a universally accepted name. It is derived from
situations where one tries to maximize something by grabbing as much as possible
in each step. Since the minimizing and maximizing problems aren’t conceptually
very different, it seems better to stick to the single term “greedy algorithm” in
both situations.
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In this context, it seems somewhat surprising that the greedy alg-
orithm finds a minimum spanning tree correctly. The greedy strategy
may be useful also for many other problems (especially if we have no
better idea). Often it at least yields a good approximate solution. Prob-
lems for which the greedy algorithm always finds an optimal solution
are studied in the so-called matroid theory. The reader can learn about
it in Oxley [26], for instance.

Exercises

1.

Analogously to the minimum spanning tree problem, define the mazx-
mmum spanning tree problem. Formulate a greedy algorithm for this
problem and show that it always finds an optimal solution.

. Prove that if T = (V, E’) is a spanning tree of a graph G = (V, E)

then the graph T + e, where e is an arbitrary edge of E'\ E’, contains
exactly one cycle.

Prove that if T is a spanning tree of a graph G then for every e €
E(G) \ E(T) there exists an ¢/ € E(T) such that (T —¢') + e is a
spanning tree of G again.

. Let G be a connected graph with a weight function w on the edges,

and assume that w is injective. Prove that the minimum spanning tree
of G is determined uniquely.

. *Let G be a connected graph with a weight function w on the edges.

Prove that for each minimum spanning tree 1" of G, there is an initial
ordering of the edges in Kruskal’s algorithm such that the algorithm
outputs the tree 7.

Let w and w’ be two weight functions on the edges of a graph G =
(V,E). Suppose that w(e;) < w(ez) holds if and only if w'(e;) <
w’(ez), for any two edges ey, es € E. Prove that (V, E’) is a minimum
spanning tree of G for the weight function w if and only if (V, E’) is a
minimum spanning tree of G for the weight function w’. (This means:
the solution to the minimum spanning tree problem only depends on
the ordering of edge weights.)

CS Using the discussion of Algorithm 5.3.2 in the preceding section,
design the details of Kruskal’s algorithm in such a way that its time
complexity is O((n 4+ m)logn).

Consider an n-point set V' in the plane. We define a weight function on
the edge set of the complete graph on V: the weight of an edge {z,y}
is the distance of the points x and y.

(a) *Show that no minimum spanning tree for this network has a vertex
of degree 7 or higher.
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10.

11.

12.

(b) *Show that there exists a minimum spanning tree whose edges do
not cross.

*Let V be a set of n > 1 points in the unit square in the plane. Let T be
a minimum spanning tree for V' (i.e. for the complete graph with edge
weights given by distances as in Exercise 8). Show that the total length
of the edges of T is at most 104/n. (The constant 10 can be improved
significantly; the best known estimate is about 1.4y/n + O(1).)

Let G = (V, E) be a graph and let w be a nonnegative weight function
on its edges.

(a) *Each set E’ C E of pairwise disjoint edges (i.e. sharing no vertices)
is called a matching in the graph G. Let v, (G) denote the maximum
possible value of w(E’) for a matching ' C E. A greedy algorithm
for finding a maximum matching works similar to Kruskal’s algorithm
for a maximum spanning tree, i.e. it considers edges one by one in the
order of decreasing weights, and it selects an edge if it has no common
vertex with the previously selected edges. Show that this algorithm
always finds a matching with weight at least $1,(G).

(b) Show that the bound in (a) cannot be improved; that is, for any
constant o > % there exists an input for which the greedy algorithm
finds a matching with weight smaller than o v, (G).

A set C C E in a graph G = (V, E) is called an edge cover if each
vertex v € V is contained in at least one edge e € C. Let us look for a
small edge cover by a greedy algorithm: if there is an edge containing 2
uncovered vertices take an arbitrary such edge, otherwise take any edge
covering some yet uncovered vertex, and repeat until all is covered.
Show that the number of edges in a cover thus found is

(a) at most twice the size of the smallest possible cover,

(b) **and (even) at most 2 of the size of the smallest possible cover.

*Aset D C V in a graph G = (V, E) is called a dominating set if
Ueck- enD£) € = V. Let us look for a small dominating set by a greedy
algorithm: we always select a vertex connected to the maximum pos-
sible number of yet uncovered vertices. Show that for any number C'
there exists a graph for which |Dg| > C|Dyy|, where D¢ is a domi-
nating set selected by the greedy algorithm and Dj; is a dominating
set of the smallest possible size. (Start by finding examples for small
specific values of C.)

5.5 Jarnik’s algorithm and Boruvka’s algorithm

What we call “Jarnik’s algorithm” is mostly known under the name
“Prim’s algorithm”. However, since Prim’s paper is dated 1957 while
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Jarnik* already described the same algorithm in an elegant and precise

way in 1930 (continuing the work of Bortuvka who published the first

documented algorithm for the minimum spanning tree problem in 1928),

we believe it is appropriate to use the name of the first inventor.
Nowadays, Jarnik’s algorithm can be viewed as a simple extension
of Algorithm 5.3.5.

5.5.1 Algorithm. [Jarnik’s algorithm| Proceed according to Alg-
orithm 5.3.5, and always choose the newly added edge e; as an edge
of the smallest possible weight from the set {{z,y} € E(G): = €
Viet,y & Viea }

5.5.2 Proposition (Correctness of Jarnik’s algorithm).
Jarnik’s algorithm finds a minimum spanning tree for every
connected network.

Proof. Let T = (V, E’) be the spanning tree resulting from Jarnik’s
algorithm, and suppose that the edges of £’ are numbered e; through
en—1 in the order they were added to T'. For contradiction, suppose
that 7" is not a minimum spanning tree.

Let T’ be some minimum spanning tree. Let k(7”) denote the
index k for which all the edges e1,es,..., e, belong to E(T') but
ext+1 € E(T'). Among all minimum spanning trees, select one which
has the maximum possible value of k and denote it by T = (V, E).
Write k = k(7).

Now consider the moment in the algorithm’s execution when the
edge e11 has been added to T'. Let T}, = (Vi, E}) be the tree formed
by the edges ei,...,e;. Then epiq has the form {z,y}, where x €
V(Ty) and y € V(T}). Consider the graph T + egy;. This graph
contains some cycle C (since it is connected and has more than n—1
edges), and such a C necessarily contains the edge eri1 (see also
Exercise 5.4.2).

The cycle C' consists of the edge exy1 = {z,y} plus a path P
connecting the vertices = and y in the spanning tree 7. At least one
edge of the path P has one vertex in the set V; and the other vertex
outside Vj. Let e be some such edge. Obviously e # ey41, and further
we know that e € F and e, ¢ E; see Fig. 5.1. Both the edges e
and egy1 connect a vertex of Vj, with a vertex not lying in Vi, and
by the edge selection rule in the algorithm we get w(ex+1) < w(e).

4An approximate pronunciation is YAR-neekh, and for Bortvka it is BOH-
roof-kah.
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Fig. 5.1 Illustration for the correctness proof of Jarnik’s algorithm.

Now consider the graph T’ = (T + ej41) — e. This graph has n— 1
edges and, as is easy to check, it is connected; hence it is a spanning
tree. We have w(E(T")) = w(E) —w(e) + w(egpy1) < w(E), and thus
T’ is a minimum spanning tree as well, but with k(7”) > k(7). This
contradiction to the choice of 7" proves Proposition 5.5.2.

Warning. This is another proof of a slippery nature: make one step
slightly differently and the whole thing falls apart. O

Bortvka’s algorithm. In conclusion, let us mention the historically
first algorithm for minimum spanning tree computation due to Boruvka.
As is usual in science, the first method discovered was not the simplest—
both Kruskal’s and (in particular) Jarnik’s algorithm are conceptually
simpler. But yet it was Boruvka’s algorithm that recently became a
starting point for the theoretically fastest known algorithm for the min-
imum spanning tree problem (Karger, Klein, and Tarjan [40]). This lat-
ter algorithm is fairly complicated and uses a number of other ideas
(which we will not pursue here) to make the computation fast.

5.5.3 Algorithm (Boravka’s algorithm). The input is a graph G =
(V, E) with edge weight function w. We need to assume, moreover,
that distinct edges get distinct weights, i.e. that the weight function is
one-to-one. This assumption is not particularly restrictive. Each weight
function can be converted into a one-to-one function by arbitrarily small
changes of the weights, which changes the weight of a minimum span-
ning tree by an arbitrarily small amount. (Alternatively, the algorithm
can be modified to work with arbitrary weight functions, by adding a
simple tie-breaking rule outlined in Exercise 6 below.)

The algorithm successively constructs sets Ey, F1,... C E of edges,
beginning with Eq = (.

Suppose that the set E; 1 has already been computed, and let
(Vi,..., Vi) be the partition of the vertex set according to the
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components of the graph (V,E;_1). Strictly speaking, this partition
should also have the index ¢ since it is different in each step, but we
omit this index in order to make the notation simpler. For each set
V; of this partition we find the edge e; = {z;,y;} (where z; € Vj,
y; ¢ V;) whose weight is minimum among all edges of the form {z,y},
z € Vj, y € V\Vj (it may happen that e; = ej for j # j'). We put
E; =E;_1U{e1,...,e:}. The algorithm finishes when the graph (V, E;)
has a single component.

The algorithm could also be called a “bubbles algorithm”. The graph
G is covered by a collection of “bubbles”. In each step, we merge each
bubble with its nearest neighboring bubble.

We will not prove the correctness of this algorithm. We only show
that the constructed graph has no cycle (which, unlike the previous
algorithms, is not quite obvious). So suppose for contradiction that a
cycle arose in some step ¢. This means that there are pairwise distinct
indices j(1),4(2),...,7(k) for which

z51) € Vi) Yiq) € Vi)
Ti(2) € Vj2), Yi2) € Vi)
Tik-1) € V1), Yitk—1) € Vi)
Tik) € Vitkys Yik) € Vi)

Here is an illustration:

Since distinct edges have distinct weights, the edge e;(,) always has the
smallest weight among the edges leaving the component V), and in
particular, we get

w(ejn)) < wleje) < - <wlejmy) <wlej))

This chain of strict inequalities cannot hold and so Boruvka’s algorithm
finds some spanning tree of G. With some more effort, it can be proved
that it finds the minimum spanning tree. O

Example. Consider the following network (the weights are given as
labels of the edges):
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8 2 16
4 10 6

9 17 3 11
1 15 14

Jarnik’s algorithm started in the upper left corner proceeds as follows:

Kruskal’s algorithm needs 17 steps (but only in 10 of them is a new
edge added). Boruvka’s algorithm, on the other hand, is quite short:

But in each step we have to do much more work.

Exercises

1. (General spanning tree algorithm) Consider the following algorithm for
the minimum spanning tree problem. The input is a connected graph
G = (V,E) with weight function w. We put Ey = (). Suppose that
FE;_1 has already been defined. Choose an arbitrary component V; of
the graph (V, E;_1), select an edge e; of the minimum weight among
the edges with one vertex in V; and the other vertex not in V;, and set
E; = E;_1 U{e;}. Prove that (V, E,,_1) is a minimum spanning tree.
(Imitate the correctness proof for Jarnik’s algorithm.)

Check that this proves the correctness of both Kruskal’s and Jarnik’s
algorithm.

2. (“Inverse” greedy algorithm) Consider the following algorithm for the
minimum spanning tree problem. The input is a connected graph G =
(V, E) with weight function w. Label the edges e,..., e, in such a
way that w(e) > -+ > w(en). Put Ey = E, and

B _ E;_1\{e;} if the graph (V,E;_1 \ {e;}) is connected
v i otherwise.

Prove that (V, E,;,) is a minimum spanning tree of G.
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. *Prove the correctness of Boruvka’s algorithm.

. @3 Design the details of Jarnik’s algorithm in such a way that its
time complexity is O((m+n)logn) (this probably requires some basic
knowledge of data structures).

. (a) Prove that Boruvka’s algorithm has at most O(logn) phases, i.e.
the graph (V, F;) is connected already for some i = O(logn).

(b) ¢% Design the details of Bortivka’s algorithm in such a way that
its time complexity is at most O((m + n)logn).

. (Tie-breaking in Boruvka’s algorithm) Given an arbitrary weight func-
tion on edges of a graph G = (V, E), we choose an arbitrary ordering
€1,€2,...,6ny of the edges once and for all, and we define e; < e; if
either w(e;) < w(e;) or both w(e;) = w(e;) and ¢ < j.

(a) Formulate Boruvka’s algorithm with edges ordered by the linear
ordering < (instead of the usual ordering < on the weights).

(b) Check that the algorithm in (a) computes a spanning tree of G.

(¢) Prove that the algorithm in (a) computes a minimum spanning
tree of G with respect to the weight function w (modify the proof in
Exercise 3).



6
Drawing graphs in the plane

6.1 Drawing in the plane and on other surfaces

Often it is advantageous to draw graphs. As you can see, most of
the graphs in this book are specified by a picture (instead of a list of
vertices and edges, say). But so far we have been studying properties
of graphs not related to their drawings, and the role of drawings was
purely auxiliary. In this chapter the subject of analysis will be the
drawing of graphs itself and we will mainly investigate graphs that
can be drawn in the plane without edge crossings. Such graphs are
called planar.

From the numerous pictures shown so far and from the informal
definition given in Section 4.1, the reader might have gained a quite
good intuition about what is meant by a drawing of a graph. Such an
intuition is usually sufficient if we want to show, say, that some graph
is planar—we can simply draw a suitable picture of the graph with no
edge crossings. However, if we want to prove, in a strictly logical way,
that some graph is not planar, then we cannot do without a math-
ematical definition of the notion of a drawing, based on other exact
mathematical notions. Today’s mathematics is completely built from a
few primitive notions and axioms of set theory—or at least the majority
of mathematicians try to ensure it is. So, for instance, the notion of a
“plane” is being modeled as the Cartesian product R x R. Each real
number is defined as a certain subset of the rationals, the rational num-
bers are created from natural numbers, and finally the natural numbers
are defined as certain special sets produced from the empty set. (This
is seldom apparent in everyday mathematics, but if you look at a book
on the foundations of mathematics you can find it in there.)

In order to introduce the notion of a drawing formally, we define an
arc first: this is a subset « of the plane of the form o = ~([0,1]) =
{y(x): = € [0,1]}, where v: [0,1] — R? is an injective continuous
map of the closed interval [0, 1] into the plane. The points v(0) and
v(1) are called the endpoints of the arc a.
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This definition, frightening as it may look, is very close to the int-
uitive notion of drawing. The interval [0, 1] can be thought of as a time
interval during which we draw a line from the point v(0) to the point
7(1). Then «(t) is the position of the pencil’s tip at time ¢. The con-
tinuity of the mapping v means a continuous motion on the paper’s
surface in time, and the injectivity says that the line being drawn never
intersects itself.

6.1.1 Definition. By a drawing of a graph G = (V, E) we mean
an assignment as follows: to every vertex v of the graph G, assign a
point b(v) of the plane, and to every edge e = {v,v'} € E, assign an
arc a(e) in the plane with endpoints b(v) and b(v'). We assume that
the mapping b is injective (different vertices are assigned distinct
points in the plane), and no point of the form b(v) lies on any of the
arcs a(e) unless it is an endpoint of that arc. A graph together with
some drawing is called a topological graph.!

A drawing of a graph G in which any two arcs corresponding to
distinct edges either have no intersection or only share an endpoint
is called a planar drawing. A graph G is planar if it has at least one
planar drawing.

We have given the above formal definition of a graph drawing a bit
“for show”, in order to illustrate that the notion of a drawing can be
included in the logical construction of mathematics. We will not con-
tinue building the subsequent theory of planar graphs in a strictly logical
way, though. We would have to use notions and results concerning pla-
nar curves. These belong to a branch of mathematics called topology.
Only very little from topology is usually covered in introductory math-
ematical courses, and we would have to introduce quite complicated
machinery in order to do everything rigorously. Moreover, proofs of cer-
tain “intuitively obvious” statements are surprisingly difficult. For these
reasons, we will sometimes rely on the reader’s intuition in the subse-
quent text, and we will ask the reader to believe in some (valid!) state-
ments without a proof. A rigorous treatment can be found, for example,
in the recent book by Mohar and Thomassen [24]. Fortunately, in the
theory of graph drawing, the basic intuition about drawing seldom leads
one astray.

A planar drawing is advantageous for a visualization of a graph
(edge crossings in a nonplanar drawing could be mistaken for ver-
tices), and in some applications where the drawing has a physical

LA planar graph with a given planar drawing, i.e. a topological planar graph,
is sometimes called a plane graph.
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meaning, edge crossings can be inadmissible (for instance, in the
design of single-layer integrated circuits).

Faces of a graph drawing. Let G = (V, E) be a topological planar
graph, i.e. a planar graph together with a given planar drawing.
Consider the set of all points in the plane that lie on none of the arcs
of the drawing. This set consists of finitely many connected regions
(imagine that we cut the plane along the edges of the drawing):

Ok

(We say that a set A C R? is connected if for any two points x,y € A
there exists an arc @« C A with endpoints x and y. “Being con-
nected”? is an example of a topological notion.) These regions will
be called the faces of the considered topological planar graph. The
region spreading out to infinity, such as Fj in the picture, is called
the outer face (or the unbounded face) of the drawing, and all the
other faces are called inner faces (or bounded faces).

Let us stress that faces are defined for a given planar drawing.
Faces are usually not defined for a nonplanar drawing, and also we
should not speak about faces for a planar graph without having a
specific drawing in mind.

Drawing on other surfaces. A graph can also be drawn on other
surfaces than the plane. Let us list some examples of interesting surfaces.

Everyone knows the sphere (i.e. the surface of a ball). The surface
of a tire-tube is scientifically called the torus:

2What we called a “connected set” is usually called an arc-connected set in
topology. A connected set is defined as follows. A set A C R? is connected
if no two disjoint open sets A;, A C R? exist such that A C A; U A and
A1 NA # 0 # Ay N A. For sets considered in this chapter, such as faces of a
graph, both these notions of being connected coincide, and so we use the shorter
name.

3People with a US-centered worldview might want to speak about the surface
of a doughnut, but since doughnuts in other countries (Australia, United King-
dom) are often spherical, we don’t consider this name 100% politically correct.
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If we take a long strip of paper, turn one of its ends by 180 degrees,
and glue it to the other end, we obtain an interesting surface called the
Mobius band:

Other examples are a sphere with two handles:

(after a suitable deformation, this is also the surface of a “fat figure 8”),
or the so-called Klein bottle:

Each of these surfaces can be created from a planar polygon by
“gluing” and a suitable deformation. In the above examples, with the
exception of the sphere with two handles, we would always start from
a planar rectangle, and we would identify (glue) some its edges in a
suitable way. We have already introduced the Mébius band using such
a procedure, and this method is also a basis for a rigorous definition of
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such surfaces (which we do not present here). For example, the torus
can be made as follows:
d C

P —
— 2

/

That is, we identify the opposite edges of the rectangle abed, in such a
way that the edge ab is glued to the edge dc and the edge ad is glued
to the edge bc. The orientation of edges for gluing is usually marked by
arrows. The arrows in the following picture mean that when gluing the
edge ad to the edge bc, the point a goes to the point b and the point d
goes to c.

d c

a b

The following picture once again indicates how to manufacture the
Mobius band:

(we only identify the two edges marked by arrows in such a way that
the arrow directions are the same on the glued edge). The Klein bottle
is produced by following the instructions of the next picture:

In fact, these are not quite honest directions for producing your own
Klein bottle, since the Klein bottle cannot be realized in the 3-
dimensional Euclidean space. The indicated gluing cannot be done in
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R? unless the rectangle intersects itself (as it does in the picture show-
ing the Klein bottle). Nevertheless, the definition of the Klein bottle
by gluing makes good sense mathematically, and the surface can be
realized in R?, say.

There is a general theorem saying that any closed surface (having no
“boundary points” and not “running to infinity” anywhere; a scholarly
term is “a compact 2-manifold without boundary”) can be created by a
suitable gluing and deformation from a regular convex polygon. More-
over, if the resulting surface is two-sided (note that both the Mdbius
band and the Klein bottle only have one side!) then it can be continu-
ously deformed into a sphere with finitely many handles. The basics of
this theory and a number of related topics are beautifully explained in
the book by Stillwell [29].

Graphs can be classified according to the surfaces they can be drawn
on. As will be shown in the next section, neither the graph Kj, the
complete graph on 5 vertices, nor K3 3, the complete bipartite graph on
3+ 3 vertices, is planar. But K5 can be drawn on the torus, for instance:

and K33 on the Mobius band:

As we said above, these surfaces can be obtained by a suitable gluing
of the edges of a rectangle. In order that our spatial imagination is not
overstrained, we can convert drawing on surfaces into a modified planar
drawing, where edges can “jump” among the glued rectangle edges. The
drawings just shown can thus be recast as follows:
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Let us remark that even the graph K4 4 can be drawn on the torus:

(K7 can be so drawn as well; see Exercise 2). In general, we have

6.1.2 Proposition. Any graph can be drawn without edge crossings
on a sphere with sufficiently many handles.

(This proposition must be taken informally, since we gave no exact
definition of a sphere with handles.)

Informal proof. Let us draw the given graph G = (V, E) on the sphere,
possibly with edge crossings. Let ej,eo,...,e, be all edges having a
crossing with another edge. For each edge e;, add a handle serving as
a “bridge” for that edge to avoid the other edges, in such a way that
the handles are disjoint and the edges drawn on handles do not cross
anymore:

Since we deal with finitely many edges only, it is easy to find such
handles. m|

Hence the following definition makes sense.

6.1.3 Definition. The smallest number of handles that must be
added to the sphere so that a graph G can be drawn on the
resulting surface without edge crossings is called the genus* of the
graph G.

“The notion of genus is primarily used for surfaces. For example, the genus
of a sphere with handles is the number of handles. Interestingly, 2-dimensional
surfaces were first systematically studied in connection with algebraic equations!
The set of all complex solutions of a polynomial equation in 2 variables is typically
a 2-dimensional surface, and its genus is crucial for various properties of the
equation. The (difficult) area of mathematics studying algebraic equations in
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In conclusion of this section, let us show that planar graphs are
exactly graphs of genus 0, i.e. ones that can be drawn on the sphere. This
becomes quite obvious if we use the stereographic projection. We place
the sphere in the 3-dimensional space in such a way that it touches the
considered plane p. Let o denote the point of the sphere lying farthest
from p (the “north pole”):

Then the stereographic projection maps each point = # o of the sphere
to a point 2’ in the plane, where 7’ is the intersection of the line ox
with the plane p. (For the point o, the projection is undefined.) This
defines a bijection between the plane and the sphere without the point
o. Given a drawing of a graph G on the sphere without edge crossings,
where the point o lies on no arc of the drawing (which we may assume
by a suitable choice of 0), the stereographic projection yields a planar
drawing of G. Conversely, from a planar drawing we get a drawing on
the sphere by the inverse projection.

Exercises

1. Find
(a) a planar graph all of whose vertices have degree 5,
(b) *connected graphs as in (a) with arbitrarily many vertices.

2. (a) Check that the picture shown in the text indeed gives a drawing
of K44 on the torus.
(b) Find a drawing of K¢ on the torus.
(c) *Draw K7 on the torus.

3. *Let G be a planar Eulerian graph. Consider some planar drawing of
G. Show that there exists a closed Eulerian tour that never crosses

itself in the considered drawing (it may touch itself at vertices but it
never “crosses over to the other side”).

4. Try to invent some suitable definition of a closed 2-dimensional surface.
Then look up what the usual definition is in a book on topology.

this spirit is called algebraic geometry (Cox, Little, and O’Shea [18] is a nice
introduction to the subject).
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6.2 Cycles in planar graphs

We will investigate various combinatorial properties of planar graphs.
Among others, it turns out that the notion of a planar graph itself
can be equivalently defined by purely combinatorial means, without
using topological properties of the plane or intuition about graph
drawing.

Should the geometric definition of planar graphs be converted into
a combinatorial definition, we have to use some property of the plane
connecting geometry to combinatorics. Such a property is expressed
by the Jordan curve theorem below. First, a definition: a Jordan
curve® is a closed curve without self-intersections. More formally, a
Jordan curve is defined as an arc whose endpoints coincide, i.e. a
continuous image of the interval [0,1] under a mapping f that is
one-to-one except for the equality f(0) = f(1).

6.2.1 Theorem (Jordan curve theorem). Any Jordan curve k
divides the plane into exactly two connected parts, the “interior”
and the “exterior” of k, and k is the boundary of both the interior
and the exterior. (Both the interior and exterior will be called the
regions of k.) This means that if we define a relation ~ on the set
R?\ k by setting x ~ y if and only if x and y can be connected by
an arc disjoint from k, then = is an equivalence with 2 classes, one
of them being a bounded set and the other one an unbounded set.

This theorem is intuitively obvious, but its proof is by no means
simple, although significant simplifications have been found recently by
Thomassen [47]. For some Jordan curves in the plane, the statement is
very evident,

5 Another common name for this object is a simple closed curve.



6.2 Cycles in planar graphs 191

but for others it is perhaps less obvious (try finding an arc connecting
the points o and e and not intersecting the curve):

In order to illustrate that intuition is not always reliable for such
“obvious” statements, let us mention a related theorem. An extension of
the Jordan curve theorem, the Jordan—Schénflies theorem, tells us that
for any Jordan curve, the interior can be continuously deformed onto
the interior of the (usual geometric) circle. More precisely, there exists
a continuous mapping whose inverse mapping is continuous as well, a
so-called homeomorphism, between the (closed) region bounded by any
Jordan curve and the ordinary circular disk. Similarly, one would expect
that if we define a “topological sphere” as the image of the usual geo-
metric sphere by an injective continuous map, such a thing will bound
a region that can be continuously deformed onto the ordinary ball. But
this is false—a counterexample is known under the name “Alexander’s
horned sphere” (see e.g. the excellent but somewhat more advanced
book by Bredon [17]).

Let us remark that the difficulties with proving the Jordan curve the-
orem mainly stem from the considerable generality of the notion of an
arc. We admit an arbitrary injective continuous mapping of the unit in-
terval in the definition of an arc, and such mappings can be quite “wild”.
A simpler way to build a logically precise theory of planar graphs is to
permit only arcs consisting of a finite number of straight segments—Ilet
us call them polygonal arcs. We can thus call a graph polygonally planar
if it can be drawn without edge crossings using polygonal arcs. To prove
the Jordan curve theorem for polygonal arcs only is reasonably easy (see
Exercise 7). And it is not too difficult to verify that any planar graph is
polygonally planar too;% for this one needs some topology but very little.

SEven a much stronger statement holds: any planar graph can be drawn with-
out edge crossings in such a way that every edge is a straight segment! But this
is not an easy theorem.
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Therefore, allowing for general nonpolygonal arcs achieves nothing new

in graph drawing—only complications with the Jordan curve theorem.

As was announced earlier, we prefer to rely on intuition at some
points in deriving results about planar graphs. At the price of longer
and more complicated proofs, such imperfections could be removed,
and everything could be derived from the Jordan curve theorem and
its variations.

Let us begin with a proof of nonplanarity of the graph Kj5. Later
on, we will prove it again by other means.

6.2.2 Proposition. Kj5 is not planar.

Proof. Proceed by contradiction. Let b1, b, b3, bg, b5 be the points
corresponding to the vertices of K5 in some planar drawing. The arc
connecting the points b; and b; will be denoted by a(i, j).

Since by, be, and bz are vertices of a cycle in the graph Ks, the
arcs «(1,2), a(2,3), and «(3,1) form a Jordan curve k, and hence
the points by and bs lie either both inside or both outside k, for
otherwise the arc a(4,5) would cross k. First suppose that by lies
inside k, as in the following picture:

b3

=\,

Then b5 lies inside the Jordan curve formed by the arcs «(1,4),
a(2,4), and «(1,2), or in the Jordan curve made up by «(2,3),
a(3,4), and «(2,4), or inside the Jordan curve consisting of a(1, 3),
«(3,4), and «(1,4).” In the first of these cases, the arc a(3,5) has
to intersect the Jordan curve formed by the arcs a(1,4), a(2,4), and
a(1,2), however, and similarly in the remaining two cases.

If the points by and b5 lie both outside k, we proceed quite anal-

b1 2

ogously. a

Faces and cycles in 2-connected graphs. If e1,...,¢, are the
edges of a cycle in a topological planar graph G, then the arcs
aler),...,a(e,) form a Jordan curve. By the Jordan curve theorem,

"We haven’t proved that the interiors of these Jordan curves together cover
the interior of k, and so this is one of the points where we rely on intuition
somewhat.
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we get that each face of G lies either inside or outside this Jordan
curve. For brevity, let us call this Jordan curve a cycle of G too (so
a cycle of G may now mean either a cycle in the graph-theoretic
sense, i.e. a subgraph of G, or the Jordan curve corresponding to a
graph-theoretic cycle of G in some drawing of G).

For some topological planar graphs, each face is the interior or
the exterior of some cycle of G. But it need not always be so. For ins-
tance, a planar drawing of a tree has only one face. Another example
might look as follows:

F: F
’ — ¢ 2

/. F4 F1

It turns out that the bad examples are exactly the graphs that are
not 2-connected.

6.2.3 Proposition. Let G be a 2-vertex-connected planar graph.
Then every face in any planar drawing of G is a region of some cycle
of G.

Proof. We proceed by induction, making use of Proposition 4.6.5
(characterization of 2-connected graphs). If the graph G is a triangle,
the statement we are proving follows from the Jordan curve theorem.

Let G = (V,E) be a connected topological planar graph with
at least 4 vertices. By Proposition 4.6.5, either there exists an edge
e € F such that the graph G’ = G — e is 2-connected, or there are
a 2-connected graph G’ = (V' E’) and an edge e € E’ such that
G = G'%e, where % denotes the operation of edge subdivision.

Since G is a topological planar graph, G’ is a topological planar
graph as well, in both cases. Since G’ is 2-connected, we can use the
inductive hypothesis. Each face of the topological graph G’ is thus a
region of some cycle of G.

Let us consider the first case, where G’ = G —e, e = {v,v'}. The
vertices v and v’ are connected by the arc a(e) corresponding to the
edge e, and hence they both lie on the boundary of a face F' of G.
Let kg be the cycle bounding the face F. As the following picture
indicates, the arc a(e) divides F' into two new faces F’ and F”:

v

Qg

v
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(This is one of the points where we rely on pictorial intuition and
omit a rigorous proof, but see Exercise 7.) The faces F’ and F" are
regions of the cycles a; U a(e) and aa U a(e), where ay and g are
the two arcs connecting v and v’ and together forming the cycle kp.
Hence the faces of G are all bounded by cycles as claimed. This
finishes the inductive step in the first case, where G = G’ + e.

The remaining second case is easier: if G = G'%e and each face
of G’ is a region of some cycle of G’, then G has the same property,
as follows immediately from the definition of edge subdivision. This
concludes the proof of the proposition. a

Proposition 6.2.3 shows that 2-connected planar graphs behave, in
some sense, more nicely than arbitrary planar graphs. But it turns out
that a still much nicer behavior results by requiring that the consid-
ered planar graphs be 3-vertex-connected. Such graphs have an essen-
tially unique drawing on the sphere (up to a continuous deformation of
the sphere and mirror reflection), and in many ways they are easier to
work with (see Section 6.3). When proving theorems or designing alg-
orithms concerning planar graphs, it is usually advisable to deal with
3-connected planar graphs first, and then try to handle the general case
by decomposing a given graph into 3-connected pieces. Here we will not
pursue this matter any further.

A combinatorial characterization of planar graphs. Let us
remark that the following clearly holds: A graph G is planar if and
only if each subdivision of G is planar. This property can be used for a
combinatorial characterization of planar graphs—a characterization
purely in graph-theoretic notions, using no geometric notions at all.
It is the following celebrated result:

6.2.4 Theorem (Kuratowski’s theorem). A graph G is planar
if and only if it has no subgraph isomorphic to a subdivision of K33
or to a subdivision of K.

It is easy to prove one of the implications in this theorem (if G is
planar then it cannot contain a subdivision of a nonplanar graph),
but the reverse implication is more demanding and we will not prove
it in this book.

This theorem shows that the nonplanarity of any nonplanar graph
can be certified by finding a subdivision of K33 or K5 in it. From a
computational point of view, i.e. if we want to really test graph pla-
narity by a computer and perhaps also look for a planar drawing, this
method is not very efficient. Algorithms are known for testing whether
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a given graph contains a subdivision of a fixed (small) graph, but these
algorithms are fairly complicated and impractical. For planarity test-
ing and finding “nice” planar drawings, a number of fast (although
also complicated) methods have been invented. Such methods can, for
instance, test planarity of a given graph on n vertices in time O(n).
Concerning “nice” drawings, it is known that, for example, any pla-
nar graph on n vertices can be drawn in such a way that the vertices
have integer coordinatesbetween 1 and n and the edges are straight seg-
ments. Recent results in this direction, as well as further references, can
be found in Kant [39]. There are also many interesting problems related
to graph drawing which remain open. For instance, it is not known (at
the time of writing this book) whether every planar graph has a pla-
nar drawing where all edges are straight segments with integer lengths.
(This is an example of how easily one can sometimes formulate even
difficult problems in discrete mathematics.)

Kuratowski’s theorem characterizes planar graphs by specifying 2
“obstacles to planarity”, namely the presence of a subdivision of Kj
or of a subdivision of K3 3. Recently, many theorems in a similar spirit
have been found, characterizing various classes of graphs by finite sets of
“obstacles”. The obstacles are usually not forbidden subdivisions of cer-
tain graphs but rather so-called forbidden minors (see Exercise 6.4.11).
Many outstanding problems in graph theory, including numerous ques-
tions about efficient algorithms, have been solved by this approach and
related ideas, and currently this area (called the structural graph the-
ory) constitutes one of the most dynamic and successful parts of mod-
ern graph theory. A sample of recent progress in this area is Robertson,
Seymour, and Thomas [44], where a long-standing open problem has
been resolved by related methods.

Exercises

1. Show that the graph K33 is not planar, in a manner similar to the
proof of nonplanarity of K5 given in the text.

2. (a) Find a subdivision of either K33 or K3 in the graph on the left in

b) Is the graph in the middle in Fig. 4.3 planar?

¢) Is the graph in Fig. 9.3 planar?

3. The complete k-partite graph Ky, n,..n, has vertex set V =
ViUVaU - - - UV, where Vi, ...,V are disjoint sets with |V;| = n;, and
each vertex v € V; is connected to all vertices of V\V;, i =1,2,... k.
Describe all k-tuples (ny,na, . ..,ny) of natural numbers, k =1,2,...,
such that Ky, n,,. .n, iS a planar graph.
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4. In the proof of Proposition 6.2.3, we proceeded by induction, but ind-
uction on what? (There was no explicitly mentioned natural number
as an induction parameter.)

5. Prove that if each face of a topological planar graph G is a region of
some cycle of G then G is 2-connected.

6. *Consider an arbitrary drawing (not necessarily planar) of the com-
plete graph K,,. Prove that at least %(2) pairs of edges have to cross.
(Use the nonplanarity of Kj.)

7. The goal of this exercise is to give a rigorous proof, without relying on
geometric intuition.

(a) *Let k be a Jordan curve consisting of finitely many segments (i.e.
a polygon). Define two points of R? \ k to be equivalent if they can
be connected by a polygonal arc not intersecting k. Prove that this
equivalence has at most two classes.

(b) *Show that in the situation as in (a) there are at least two classes.
Hint: define an “interior point” as one for which a vertical semiline
emanating upwards from it has an odd number of intersections with k.

(c) Let k be a polygonal Jordan curve as in (a), let p, ¢ be two distinct
points of k, let k1, ko be the two polygonal arcs into which k is divided
by the points p and ¢, and let r € k1, s € ko be points inside these arcs.
Let ¢ be a polygonal arc connecting p and ¢ and lying completely in
the interior of k (except for its endpoints). Prove that any polygonal
arc connecting r to s and lying in the interior of k (except for the
endpoints) must intersect £.

6.3 Euler’s formula

There exists essentially only one basic quantitative formula for planar
graphs. One can say that all other results use this formula to some
extent. At the same time, it is the oldest formula. It was known to Euler
in 1752, and sometimes it is asserted that it was known to Descartes in
1640 as well; the original statement was about convex polytopes rather
than about planar graphs.

6.3.1 Proposition (Euler’s formula). Let G = (V, E) be a con-
nected planar graph, and let f be the number of faces of some planar
drawing of G. Then we have

VI-1E[+f=2

In particular, the number of faces does not depend on the particular
way of drawing.
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Proof. We proceed by induction on the number of edges of the
graph G. If E = () then |V| =1 and f = 1, and the formula holds.
So let |E| > 1. We distinguish two cases:

1. The graph G contains no cycle. Then G is a tree and hence
V| = |E| + 1; at the same time we have f = 1 since a planar
drawing of a tree has only one (unbounded) face.

2. Some edge e € F is contained in a cycle. In this case the graph
G — e is connected. Hence by the inductive hypothesis, Euler’s
formula holds for it (we consider the drawing arising from the
given drawing of G by removing the edge e). The edge e in
the considered drawing of G is adjacent to two distinct faces
F and F’, by the Jordan curve theorem. These faces become a
single face after deleting e. Hence both the number of faces and
edges increases by 1 by adding e back to the drawing, and the
number of vertices is unchanged; hence Euler’s formula is true
for G too.

O

Application: Platonic solids. A Greek school of thinkers associated
with Plato’s name used to attribute a particular significance to highly
regular geometric solids, the so-called regular polytopes, looking for them
even in the foundations of the structure of the universe. (Besides, Kepler
also regarded as one of his most important discoveries a theory, most
likely a mistaken one, according to which the spacing among the plan-
ets’ orbits is determined by the geometry of the regular polytopes.) A
regular polytope is a 3-dimensional convex body® bounded by a finite
number of faces. All faces should be congruent copies of the same regu-
lar convex polygon, and the same number of faces should meet at each
vertex of the body. One reason for the above-mentioned great interest
in these objects is most likely their exceptionality. There are only 5
types of regular polytopes: the regular tetrahedron, the cube, the regu-
lar octahedron, the regular dodecahedron, and the regular icosahedron
(surely the reader will know which is which):

dodud

8 Convezity means that whenever x and y are two points of the considered
body, then the whole segment xy is a part of the body, i.e. the surface has no
“dips” in it.
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d=3, k=5 d=5k=3

Fig. 6.1 Graphs of the Platonic solids.

This fact was already known to the ancient Greeks. Let us remark
that if we relax the conditions on regularity a little (we do not insist
on convexity, or we allow for two types of faces, etc.), or if we go to
higher dimensions, we can meet many more interesting and beautiful
geometric shapes. Research in this area is still quite active.

Using Euler’s formula, we will show that no other regular poly-
topes than the 5 Platonic ones exist. (The actual existence of these reg-
ular polytopes must be checked geometrically, which we do not consider
here.) The first step in proving the non-existence of other regular poly-
topes is converting a convex polytope into a planar graph. We place
the considered polytope inside a sphere, in such a way that the center
of the sphere lies inside the polytope. Then we project the polytope
onto the sphere (imagine that the edges of the polytope are made from
wire and we place a tiny lamp in the center). This yields a graph drawn
on the sphere without edge crossings, and as we know from Section 6.1,
such a drawing can be metamorphosed into a planar drawing using the
stereographic projection. The vertices, edges, and faces of the polytope
become the vertices, edges, and faces of this planar drawing, respec-
tively. This is where the terms “vertex” and “edge” for graphs and
“face” for planar graphs come from. For the 5 regular solids, we thus
obtain the graphs in Fig. 6.1.
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For a regular polytope, the resulting topological planar graph has
the same degree, d, of each vertex (where d > 3), and each face has the
same number, k > 3, of vertices on its boundary. The nonexistence of
any other regular polytopes is thus a consequence of the following:

6.3.2 Proposition. Let G be a topological planar graph in which each
vertex has degree d and each face is adjacent to k vertices, for some
integers d > 3 and k > 3. Then G is isomorphic to one of the graphs in
Fig. 6.1.

Proof. Let us denote the number of vertices of the considered graph
G = (V,E) by n, the number of edges by m, and the number of
faces by f. First we use the equation ) . degs(v) = 2|E| (Propos-
ition 4.3.1), which in our case specializes to

dn = 2m.
Similarly we obtain the equality
2m =kf.

We double-count the number of ordered pairs (e, F'), where F' is a face
of G and e € FE is an edge lying on the boundary of F. Each edge
contributes 2 such pairs (as each face is bounded by a cycle), and each
face k pairs.

Next, we express both n and f in terms of m using the just derived
equations, and we substitute the results into Euler’s formula:

2m 2m
2 - — = — — _
n—m+ f ;" + 3
By adding m and dividing by 2m, we obtain
1 1 1 1

RN R
Hence if both d and k are known, the other parameters n, m, and f
are already determined uniquely. Obviously min(d, k) = 3, for otherwise
%—i—% < % . For d = 3 we get %—% = % > 0, and therefore k € {3,4,5}.
Similarly for & = 3 we derive d € {3,4,5}. Hence one of the following

possibilities must occur:

d k n m f
3 3 4 6 4
3 4 8 12 6
3 5 20 30 12
4 3 6 12 8
5 3 12 30 20

Now it is easy to check that in each of these cases the graph is completely
determined by the values d, k,n, m, f, and it is isomorphic to one of the
graphs in Fig. 6.1. O
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Let us remark that the connection between planar graphs and
3-dimensional convex polytopes is closer than it might seem. As we have
seen, we obtain a planar graph from each convex polytope. A quite diffi-
cult theorem, due to Steinitz, asserts that any vertex 3-connected planar
graph (i.e. a planar graph that remains connected even after deleting
any 2 vertices) is the graph of some 3-dimensional convex polytope. A
delightful account of the theory of convex polytopes is Ziegler [31].

A very important property of planar graphs is that they can only
have relatively few edges: a planar graph on n vertices has O(n)
edges. Here is a precise formulation of this property:

6.3.3 Proposition (Planar graph has O(n) edges).

(i) Let G = (V, E) be a planar graph with at least 3 vertices. Then
|E| < 3|V|—6. Moreover, equality holds for any maximal planar
graph; that is, a planar graph such that adding any new edge
(while preserving the same vertex set) makes it nonplanar.

(ii) If, moreover, the considered planar graph contains no triangle
(i.e. K3 as a subgraph) and has at least 3 vertices, then |E| <
2|V —4.

(We do not admit graphs with multiple edges in this proposition,
of course!)

Proof of (i). If the graph G is not maximal planar we keep adding
edges until it becomes maximal planar. Hence part (i) will be proved
as soon as we show that |E| = 3|V| — 6 is true for any maximal
planar graph with at least 3 vertices.

As a first step, we want to show that each face (including the
outer one) of a maximal planar graph with at least 3 vertices is a
triangle,” i.e. it is bounded by a cycle of length 3.

If G is disconnected, we can clearly connect its two distinct com-
ponents by a new edge. If G is connected but not 2-connected, it
has some vertex v whose removal disconnects the graph, creating
components Vi, Va, ..., Vi, k > 2 (note that we’re using the assump-
tion of G having at least 3 vertices at this moment!). Choose two
edges e and €’ connecting v to two distinct components V;, V; such
that e and e’ are drawn next to each other. Their endpoints can be
connected by a new edge e without destroying planarity:

9For this reason, a maximal topological planar graph is also called a triangul-
ation.
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Hence a maximal planar graph with at least 3 vertices is necessarily
2-connected, and by Proposition 6.2.3, each face is bounded by a
cycle of the graph. For contradiction, assume that the bounding cycle
of some face F' contains t > 4 vertices vy, ..., v;. If the vertex v; is not
connected by an edge with the vertex vs then we can draw the edge
{v1,v3} inside the face F. On the other hand, if {vi,v3} € E(G),
this edge must be drawn outside the face F', and therefore {vg, v4}
cannot be an edge, for otherwise {v1,v3} and {vs,v4} would have to
Cross:

Hence we can safely draw the edge {v2,v4} inside the face F.

Thus, each face of a maximal planar graph is a triangle as was
asserted above. From this we get, similar to the proof of Proposi-
tion 6.3.2, the equality 3f = 2|E|, where f is the number of faces.
Expressing f from Euler’s formula and substituting into the just
derived equation, we obtain

2
VI~ Bl + 5|B| =2

The desired equality |E| = 3|V| — 6 follows by a simple algebraic
manipulation. This proves part (i).

Proof of (ii). We proceed likewise. After adding some edges if neces-
sary, we may suppose that our graph is an edge-maximal triangle-free
planar graph, meaning that by adding any new edge we create a tri-
angle or make the graph nonplanar (or both). We can again assume
that the graph is connected.

If G is not (vertex) 2-connected then it has a vertex v whose
deletion splits G into components Vi, ..., Vi, k > 2. Certainly we can
add some edge going between distinct components in such a way that
G remains planar, but for some edges we could introduce a triangle



202 Drawing graphs in the plane

(this happens in case we connect two vertices both adjacent to v),
and so we have to proceed more carefully. If each of the components
V; consists of a single vertex then G is a tree and the formula being
proved holds for it. So let us suppose |Vi| > 2, and consider a face
F having both a vertex of V; and a vertex of some other V; on its
boundary, as in the picture:

The component V; must have at least one edge, {vi,v2}, on the
boundary of F', and since GG has no triangle, it is not possible that
both v; and ve are adjacent to v. Hence v, or vo can be connected
to a vertex of V; within F' without possibly creating a triangle.
Therefore, we may assume that G is 2-connected. In this case,
each face is bounded by a cycle in G. Each such cycle has length at
least 4, and by double-counting we get 2|E| > 4f this time. Using
Euler’s formula we finally arrive at |E| < 2|V| — 4. O

A typical wrong proof. Suppose we want to prove that any topolog-
ical planar graph with n > 3 vertices such that each face is bounded by
3 edges has 3n —6 edges. Students sometimes give an (incorrect) answer
of the following type. We proceed by induction on n. For n = 3 we have
a single triangle with 3 edges and 3 vertices, so the claim holds. Next, let
us assume the statement holds for any topological planar graph G with n
vertices. For any such GG, we add a vertex into some face and connect it to
the 3 vertices of that face as in the following picture:

This yields a graph G’ with n + 1 vertices. The number of edges of G
is 3n — 6 by the inductive hypothesis, and we have added 3 new edges.
Hence G’ has 3(n + 1) — 6 edges and the statement holds for graphs
with n + 1 vertices as well. Well, the problem is that not all possible
topological planar graphs G’ on n + 1 vertices with triangular faces can
arise from some G by the operation described. For instance, the graph
of the regular octahedron (drawn in Fig. 6.1) has all degrees 4, while
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any graph produced from a smaller graph by the operation has at least

one vertex of degree 3.

Part (i) of Proposition 6.3.3 has an important and often applied
consequence, namely that every planar graph has some vertex of
degree at most 5. Similarly part (ii) guarantees that a planar graph
without triangles contains a vertex of degree no more than 3.

Part (i) also shows that K3 is not planar, because it has 10 edges,
while a planar graph on 5 vertices has at most 9 edges. Similarly
(ii) implies the nonplanarity of K3 3, since a triangle-free graph on 6
vertices has at most 8 edges.

We prove yet another proposition, giving us more information about
possible scores of planar graphs.

6.3.4 Proposition. Let G = (V,E) be a 2-connected planar graph
with at least 3 vertices. Let n; be the number of its vertices of deg-
ree i, and let f; be the number of faces (in some fixed planar drawing)
bounded by cycles of length i. Then we have

D 6—in;=124+2> (j—3)f;,
i>1 §>3
or, rewritten differently,
5ny+4ns+3n3+2n4+ns—ny—2ng—--- =124 2f4 +4f5+6fc+-- - .

Hence 5n1 +4ng + 3ng 4+ 2n4 +ns > 12, and so every planar graph with
at least 3 vertices contains at least 3 vertices of degree no larger than 5.

Proof. Clearly |V|=>",n;, f =), fi. By substituting for |V| and f
from these equations into Euler’s formula we have

AB[=2(V|+ f—2) =) 2ni+ Y 2f; —4. (6.1)
i J

By a double-counting similar to that in previous proofs we obtain
further relations: -, in; = 2[E| = }_,jf;. By expressing 2|E| using
(6.1), these equalities are transformed into

S G-2)f+4=> 2m; ZQf]szf2)m+4
J i i
We multiply the first of these equalities by 2 and we subtract the second
one from it. The result is

> (6 — i) —4_223— )f + 8.

9

This already gives the proposition. 0O
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Exercises

1.

Prove that the bound |E| < 2|V| — 4 for triangle-free planar graphs is
the best possible in general. That is, for infinitely many n construct
examples of triangle-free planar graphs with n vertices and 2n—4 edges.

. (a) Show that a topological planar graph with n > 3 vertices has at

most 2n — 4 faces.
(b) Show that a topological planar graph without triangles has at most
n — 2 faces.

Prove that a planar graph in which each vertex has degree at least 5
must have at least 12 vertices.

. For which values of k can you prove the following statement? There

exists an ng such that any planar graph on at least ng vertices contains
at least k vertices of degree at most 5. Could it hold for every k7

. *Consider a maximal triangle-free planar graph G = (V,E), i.e. a

triangle-free planar graph such that any graph of the form G + e,
where e € (‘2/) \ E, contains a triangle or is nonplanar. Prove that each
face in any drawing of such a graph is a quadrilateral or a pentagon.

Find an example, other than the Platonic solids, of a convex polytope
in the 3-dimensional space such that all faces are congruent copies of
the same regular convex polygon. *Can you list all possible examples?

(Game “Sprouts”) The following game has been invented by J. H.
Conway and M. S. Paterson. Initially, n dots are drawn on a sheet
of paper (the game is already interesting for small n, say for n = 5).
The players alternate their moves, and the player with no legal move
left loses. In each move, a player connects two dots with an arc and
draws a new dot somewhere on the newly drawn arc. A dot can be
used as an endpoint of a new arc only if there are at most 2 other arc
ends leading into that dot, and a new arc must not cross any other
arcs already drawn. (So at each moment we have a planar drawing of
a graph with maximum degree at most 3; the dot on the newly added
arc initially has degree 2.) An example:

REAReRC D

0

(a) Prove that a game with n initial dots lasts no more than 3n — 1
moves (for any strategy of the players).

(b) *Prove that a game with n initial dots lasts at least 2n moves (for
any strategy of the players).
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(¢) *(“Brussels sprouts”) We modify the game as follows. Instead of
dots we draw little crosses, and the ends of new arcs are connected to
the arms of the crosses (thus, the vertices can have maximum degree
4 this time). On each new arc, a new cross is drawn by crossing the
arc with a short segment, as in the following example:

o DA AT
T & S

Prove that this game always has exactly 5n — 2 moves (and so it is
easy to determine who wins).

. Consider a set L consisting of n lines in the plane. No two of them
are parallel but many can pass through a single point. By drawing
these lines we create vertices (intersection points of the lines), edges
(parts of the lines between intersections and semiinfinite rays extend-
ing from the first and last intersections on a line to infinity), and faces
(connected parts of the plane after removing the lines from it).

(a) *Express the number of edges in terms of the number of vertices
and faces.

(b) Prove that unless all the lines pass through a single point, there
exist at most n faces bounded by 2 (semiinfinite) edges.

(c) *Prove that unless all lines pass through a single point, there exists
at least one intersection with only 2 lines passing through it. (This is
the famous Sylvester’s problem.)

. **Consider an arbitrary topological planar graph. Suppose that every
edge has one of the two colors red, blue. Show that there exists a vertex
of the following type:

blue edges red edges

(red edges form a contiguous segment when going around the vertex,
and similarly for blue edges; one of the two groups can be empty).
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Fig. 6.2 An example of a map for the four-color problem.

6.4 Coloring maps: the four-color problem

Consider a political map showing the boundaries of states as in
Fig. 6.2. Suppose that each state is a connected region (that’s why we
haven’t drawn islands like Britain, Ireland, Sardinia, Sicily, Corsica,
etc., on our schematic map, and we also had to leave out Russia—a
disconnected state in AD 1997!). We consider two regions neighbors
if they have at least a small piece of border in common, so it is not
sufficient if the boundaries touch in one or several points (but such
situations are very rare on maps anyway). We want to color each
state in such a map by some color, and no two neighboring states
should get the same color, as is usual on political maps. What is the
minimum necessary number of colors? For the map shown, 4 colors
are sufficient (try finding such a coloring!).
Here is one of most celebrated combinatorial problems:

6.4.1 Problem (Four-color problem). Can each planar map be
colored by at most 4 colors?
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Four is certainly the minimum number of colors coming into con-
sideration for coloring all planar maps. This is illustrated by the
map shown above (consider Austria or Luxembourg, say) or by the
following examples:

Here we prove that any planar map can be colored by 5 colors. Al-
though this result has been known for more than 100 years, the four-
color problem was only solved (positively) in the late 1970s. Known
proofs of the fact that any planar map can be colored by 4 colors are
difficult and they substantially depend on analyzing a large number
of cases by computer. So far nobody has managed to do the proof
by hand, although the original proof was greatly simplified in 1995
(Robertson et al. [43]). In 2004 Gonthier [37] managed to create a
proof fully verifiable by computer. He expressed the theorem in a
certain formal language, and in the same language he generated a
proof, whose correctness can be checked fully automatically, using
a simple relatively general-purpose program. Only the fact that the
formal statement truly expresses the desired theorem still has to be
checked by humans.

Some of the basic ideas of these complicated proofs appear in two
proofs of the “five-color theorem” given below.

The four-color problem looks like a geometric question, but it can
be reformulated in a purely combinatorial manner. Coloring regions
of a map can be translated to coloring vertices of a planar graph.
First we define the notion of coloring for an arbitrary graph.

6.4.2 Definition (Chromatic number of a graph). Let G =
(V, E) be a graph, and let k be a natural number. A mapping c: V —
{1,2,...,k} is called a coloring of the graph'® G if c(z) # c(y) holds
for every edge {x,y} € E. The chromatic number of G, denoted by

10Sometimes this is called a proper coloring of G.
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X(G), is the minimum k such that there exists a coloring c¢: V(G) —

1,2,....k}.

The chromatic number of a graph belongs among the most imp-
ortant combinatorial notions. However, in this book we mention it
only in this section.

Mathematically, a map can be regarded as a drawing of a planar
graph. The states on the map are faces of the graph, the vertices of
the graph are the points lying on borders of 3 or more states, and the
edges of the graph are the portions of the borders between vertices:

Note that multiple edges may arise in the graph corresponding to
a map.

In order to convert the map-coloring problem (i.e. coloring the
faces of a topological planar graph) to a problem of coloring graph
vertices in the sense of the definition just given, we introduce the
notion of the so-called dual graph. Imagine that we mark the capital
city of each state in the considered map by a dot, and that the
capitals of each two neighboring states are connected by a highway
lying in the territory of these two states and crossing their common
boundary. The vertices of the dual graph are the capitals and the
edges are the highways.

For defining the dual graph formally, we need also multiple edges
and loops, so let us recall one possible way of introducing them. A
graph with multiple edges and loops can be represented as a triple
(V,E,¢), where V and E are disjoint sets and ¢: F — (‘2/) UVisa
mapping assigning to each edge its two endpoints and to each loop
its single endpoint (see Section 4.4 for a more detailed discussion).
Now we can give a mathematical definition of the dual graph:



6.4 Coloring maps: the four-color problem 209

6.4.3 Definition (Dual graph). Let G be a topological planar
graph, i.e. a planar graph (V,E) with a fixed planar drawing. Let
F denote the set of faces of G. We define a graph, possibly with
loops and multiple edges, of the form (F, E, ), where ¢ is defined by
e(e) = {F;, F;} whenever the edge e is a common boundary of the
faces F; and F; (we also permit F; = F}, in the case when the same
face lies on both sides of a given edge). This graph (F, E, ¢) is called
the (geometric) dual of G, and it is denoted by G*.

An example:

& (P

The dual graph G* can be drawn together with the drawing of the
graph G, as was already suggested in the above informal explanation
with capitals and highways. We choose a point b inside each face
F of G, and for each edge e of G we draw an arc crossing e and
connecting the points bp and bps, where F' and F’ are the faces
adjacent to the edge e. This arc lies completely in the faces F and F’.
In this way, we obtain a planar drawing of G*:

This way of drawing the dual graph witnesses its planarity. Further
examples of dual graphs can be found in Fig. 6.1. The graphs of the
cube and of the regular octahedron are dual to each other, similarly
the graphs of the regular dodecahedron and icosahedron are mutu-
ally dual, and finally the graph of the tetrahedron (i.e. Ky4) is dual
to itself.
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Consider a planar map, and regard it as a drawing of a planar
graph GG in the manner indicated above. The colorability of this map
by k colors is then equivalent to the colorability of the vertices of
the dual graph G* by k colors.

On the other hand, any planar graph can be obtained as a sub-
graph of a suitable dual graph. We indicate a proof by a picture only:
for example, the graph

is contained in the dual of

(Alternatively, one can argue that any topological planar graph is
isomorphic to the dual of its dual.) Hence problems of map colorabil-
ity can be reformulated as problems concerning the colorability of
planar graphs. In particular, we can rephrase:

6.4.4 Problem (Four-color problem again). Does x(G) < 4 hold
for every planar graph G?7

We prove a weaker result:

6.4.5 Proposition (Five-color theorem). Any planar graph G
satisfies x(G) < 5.

First proof. We proceed by induction on the number of vertices of
the graph G = (V, E). For |V| < 5, the statement holds trivially.
By the results of Section 6.3 we know that any planar graph has
a vertex v of degree at most 5. If we even have deg,(v) < 5 then
consider the graph G — v, and apply the inductive hypothesis on it.
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Assuming that the graph G—w is colored by colors 1,2, ...,5, then
we color the vertex v by some color i € {1,2,...,5} not occurring
among the (at most 4) colors used on the neighbors of v. In this way,
we get a coloring of G by 5 colors.

A very similar argument already shows that the chromatic number
of every planar graph is at most 6, so in the rest of the proof we work
on improving this 6 to 5.

Also, it may be instructive to formulate an algorithm for coloring
every planar graph by at most 6 colors (or, with the improvement below,
by at most 5 colors) based on this proof. Note that such an algorithm
colors the low-degree vertex v last, after all other vertices have been
colored!

It remains to investigate the case when degg(v) = 5. Let us con-
sider the graph G with some fixed planar drawing, and let ¢, u, x,
z, y be the vertices connected to v by an edge, listed in the order
the corresponding edges emanate from the vertex v (in the clockwise
direction, say).

T

Let us again consider a coloring c¢: V(G —v) — {1,2,...,5} of
the graph G —v by 5 colors guaranteed by the inductive assumption.
If at most 4 colors occur at the neighbors of v then the vertex v
can be assigned a color distinct from the colors of all its neighbors.
Thus, we suppose that the neighbors of v have all the 5 distinct
colors. Consider the vertices x and y, and define V, , as the set of
all vertices of the graph G — v having color ¢(z) or ¢(y). Clearly z,
y € Vi 4. It may be that there exists a path from z to y in the graph
G — v using only the vertices of the set V;, ,, or such a path need not
exist. We distinguish these two cases.

1. No such path exists. Let V; be the set of all the vertices s €
V(G — v) that can be reached from z by a path using only the
vertices from V, ,. In particular, we have y ¢ Vx”y. We define a
new coloring ¢’ of the graph G — v:
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c(s) ifs¢gVy,
d(s) =14 cly) ifseV,, and c(s) = c(z)
c(x) ifseV;, and c(s) = c(y)

(this means that we exchange the colors on the set V; ). It
is easy to see that ¢ is a coloring of G — v again, and since
d(z) = d(y) = c(y), we can set ¢/(v) = ¢(x), obtaining a valid
coloring of G by 5 colors in this way.

. Next, suppose that there exists a path P from x to y with all

vertices in V, ,. In this case, we consider the pair of vertices ¢
and z and we define a set V;, as the set of vertices of G — v
colored by the colors ¢(t) and c¢(z). The sets V,, and V; . are
disjoint. The drawing of the path P forms, together with the
edges {v,z} and {v,y}, a cycle:

One of the points z,t lies inside this cycle and the other one
outside, and hence any path from z to ¢ has to use some vertex
of the cycle. Hence there is no path from z to ¢ only using vertices
of the set V. ;, and so we can construct a coloring of G by 5 colors
in the same way as in case 1, only with z and ¢ in the role of x
and y.

This finishes the first proof of the five-color theorem. O

Edge contraction. Before commencing a second proof, let us int-
roduce one more important graph operation. Let G = (V, E) be a
graph (not necessarily planar at this moment) and let e € E be one
of its edges. The contraction of e means that we “glue together” both
vertices of e into a single new vertex, and then we remove multiple
edges that may have arisen by this gluing. The resulting graph is
denoted by G.e, and formally it is defined as follows:

G.e= (V',E),
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where e = {z,y} and

V= (V\{z,y}) Uiz}
E ={ecE: en{x,y} =0}

U{{z,t}: t e V\{z,y}, {t,z} € Eor {t,y} € E};

here z ¢ V' denotes a new vertex.

Lemma. If G is a planar graph and e € E(G) is an edge then the
graph G'.e is planar as well.

Informal proof. By a picture:

O

Second proof of Proposition 6.4.5. We again work by induction
on the number of vertices of the considered planar graph G = (V, E).
We begin as in the first proof. So we may assume that G = (V, E) is a
planar graph with at least 6 vertices in which each vertex has degree
at least 5. Let us choose a vertex v of degree 5. Since the graph G
is planar, it contains no K5 as a subgraph, and hence there exists
a pair of neighbors of v not connected by an edge. Let us denote
the vertices in some such pair by x and y, and let ¢, u, and z be
the remaining 3 neighbors. We look at the graph G’ produced from
G by contracting the edges {x,v} and {y,v} (i.e. the triple z,y,v
of vertices is replaced by a single new vertex w; this generalizes the
definition of contraction of a single edge in an obvious manner). This
graph is planar and has fewer vertices than G. Hence some coloring ¢/
of G’ by 5 colors exists by the inductive hypothesis. In this situation,
we define a coloring c of the graph G as follows:

c'(s) if s ¢ {w,y,v}
c(s) =4 d(w) ifs=xzors=y
ie{l,....5} \{d(w),d(u),d(t),d(z)} ifs=nwo.
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The picture below illustrates this definition:

w\3

5
situation in G’ situation in G

It is not difficult to check that the ¢ thus defined is a valid coloring
of the graph G. a

Yet another proof is outlined in Exercise 13.

Let us remark that the question of colorability can also be studied
for graphs that can be drawn on other types of surfaces. This question
is completely solved by now: the maximum possible chromatic number
of a graph of genus k equals

{7+\/12+748ICJ.

It is remarkable that the case of genus 0, i.e. of planar graphs, is by far
the most difficult one. For larger genus, this result (Heawood’s formula)
was proved much earlier than the four-color theorem.

Exercises

1.

Prove that x(G) < 1+ max{deg,(z): x € V} holds for every (finite)
graph G = (V, E).

. For a graph G, put 6(G) = min{degs(v): v € V} (the minimum

degree of G). Prove x(G) < 1+ max{§(G'): G' C G}, where G' C G
means that G’ is a subgraph of G.

*Call a graph G outerplanar if a drawing of G exists in which the
boundary of one of the faces contains all the vertices of G (we can
always assume the outer face has this property). Prove that every
outerplanar graph has chromatic number at most 3.

Let G be a planar graph containing no K3 as a subgraph. Prove
x(G) < 4. (A difficult theorem due to Grotsch asserts that, actually,
X(G) < 3 holds for all planar triangle-free graphs.)

. ©3 Based on one of the proofs of the five-color theorem, design an

algorithm for coloring a given planar graph by at most 5 colors. Assume
that a planar drawing of the graph is given in the following form: for
each vertex of G, we have a circular list of the neighbors of v, listed in
the order of the corresponding outgoing edges in the drawing.



6.4 Coloring maps: the four-color problem 215

6. cs

(a) Cousider a greedy algorithm for graph coloring. Pick one of the yet
uncolored vertices arbitrarily and color it with the smallest color (the
colors are natural numbers 1,2, ...) not used on any of its already col-
ored neighbors. For each number K, find a graph G having a coloring
by 2 colors (i.e. bipartite) but such that the algorithm just described
sometimes colors G by at least K colors.

(b) Can you find a planar G as the example in (a)?

(c) The algorithm can be made more sophisticated as follows: among
the yet uncolored vertices, pick one with the largest degree, and color
it as in (a). Show that graphs G as in (a) still exist.

(d) This can be continued as a game. Participants propose versions of
the greedy algorithm for graph coloring, and others try to find graphs
for which the algorithm performs badly.

Remark. It is known that no polynomial-time algorithm can do appr-
oximate coloring very well, for instance to color all 3-colorable graphs
on n vertices by at most K colors for some constant K, unless poly-
nomial-time algorithms for exact coloring and many other difficult
problems exist, which is considered very unlikely.

7. Consider a map M where each state has at most k connected regions
(a more realistic model of the world situation). Using Exercise 2, show
that the chromatic number of every such map is no larger than 6k (for
each state, we insist that all its regions be colored by the same color).

8. The following picture is an example of a map where each state has 2
regions:

Prove that the chromatic number of this map is 12.

9. Prove that each graph G has at least (X(QG )) edges.
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10.

11.

12.

13.

Drawing graphs in the plane

(a) *Consider a planar graph G with all degrees even. Prove that the
map arising from (any) planar drawing of G can be colored by 2 colors.

(b) *Using (a), prove that there exists no topological planar graph
with all degrees even such that all the inner faces are triangles (i.e.
bounded by cycles of length 3) and the outer face is a pentagon.

*Let us say that a graph H is a minor of a graph G if a graph iso-
morphic to H can be obtained from G by a repeated application of
the following operations: deleting an edge, deleting an isolated vertex,
contracting an edge. Deduce the following result from Kuratowski’s
theorem: A graph G is planar if and only if neither K5 nor Kz 3 is a
minor of G.

(List chromatic number) Let G = (V, E) be a graph, and suppose that
a finite list L(v) of natural numbers is given for each vertex v € V. A
mapping c¢: V — N is called a list coloring (with respect to the given
lists L(v), v € V) if ¢(v) € L(v) holds for all v € V and ¢(v) # ¢(v')
whenever {v,v'} € E. The list chromatic number of G, denoted by
X¢(@), is the smallest number k such that G has a list coloring for any
collection of lists L(v) with |L(v)| > k for allv € V.

(a) Find an example of a graph with x¢(G) > x(G).
(b) *For each integer k, construct a bipartite graph G with x,(G) > k.
Remark. There exists a planar graph G with x¢(G) = 5.

*The notion of list coloring from the previous exercise is used in a short
and remarkable proof of the five-color theorem 6.4.5 due to Thomassen.
To reconstruct that proof, establish the following statement by induc-
tion on the number of vertices:

Let G = (V, E) be a topological planar graph and let L(v), v € V, be
lists with the following properties:

e The boundary of the unbounded face is a cycle C' with vertices
V1,Va, ...,V (numbered along the circumference).

All bounded faces are triangles.

L(v) = {1}, L(vs) = {2}.

|L(v;)| =3 for i =3,4,...,k.

|L(v)| = 5 for all vertices distinct from the v; (i.e. lying in the
interior of the bounding cycle C).

Then G has a list coloring with respect to the lists L(v).

This proof uses neither Euler’s formula nor the existence of a low-
degree vertex, and it is an example of mathematical induction par
excellence.



7
Double-counting

In pre-computer ages, double-counting was used by accountants.
When adding up the numbers in a table, they first found the sum of
the row totals and then they compared it to the sum of the column
totals. If their computation was correct, both results were the same.
Put mathematically, if A is an n X m matrix then

n m m n
E E aij = E E CLZ']"
=1 j=1 7j=11i=1

Pictorially,

In other words, the order of summation in a double sum like this may
be changed. This simple idea underlies many mathematical tricks
and proofs; in more complex cases it is accompanied by other ideas,
of course. The main difficulty is usually in figuring out what exactly
should be double-counted.

7.1 Parity arguments

In Section 4.3, we encountered the handshake lemma: Any graph
has an even number of odd-degree vertices. The proof was in fact a
typical double-counting (we double-counted “ends of edges”). Using
this claim, we were able to exclude some vectors as possible graph
scores—for instance, the vector (3,3,3,3,3). But there are much
more interesting ways to use the handshake lemma. For instance,
we can sometimes prove the existence of a certain object. To this
end, we reformulate the claim slightly: If we know that a graph G
has at least one vertex of an odd degree, then it must have at least
two such vertices. Next, we demonstrate a nice application.
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Let us draw a big triangle in the plane with vertices Ay, Ao, As.
We divide it arbitrarily into a finite number of smaller triangles, as
in the following picture:

No triangle may have a vertex inside an edge of any other small tri-
angle, so that if we consider the resulting picture as a drawing of a
planar graph, all inner faces are triangular. Let us assign the labels
1, 2, 3 to the vertices of the big and the small triangles, under the
following rules: the vertex A; gets the label 4, ¢ = 1,2, 3, and all ver-
tices lying on the edge A;A; of the big triangle may be assigned only
the label ¢ or j. Otherwise the assignment is completely arbitrary.

7.1.1 Proposition (Sperner’s lemma—a planar version). In
the situation described above, a small triangle always exists whose
vertices are assigned all the three labels 1, 2, 3.

Proof. We define an auxiliary graph Gj; see Fig. 7.1. Its vertices
are the faces of our triangulation, i.e. all small triangles plus the
outer face. In the figure, the vertices are depicted as little black
triangles inside the corresponding faces. The vertex for the outer face
is denoted by v. Two vertices, i.e. faces of the original drawing, are
joined by an edge in G if they are neighboring faces and the endpoints
of their common edge have labels 1 and 2. This also concerns the
outer face vertex v: it is connected to all small triangles adjacent to
the circumference of the big triangle by a side labeled 12.

A small triangle can be connected to some of its neighbors in
this graph G only if one of its vertices is labeled by 1 and another
by 2. If the remaining vertex is labeled 1 or 2, the considered small



7.1 Parity arguments 219

Fig. 7.1 Hlustration for the proof of Sperner’s lemma.

triangle is adjacent to exactly two of its neighbors. If the remaining
vertex has label 3, then the considered triangle is adjacent to exactly
one neighbor, and this is the only case where the degree of a small
triangle in the graph G is odd. We now show that the vertex v (the
outer face) has an odd degree in G. Then, by the handshake lemma,
there exists at least one other vertex of odd degree in GG, and this is
the desired small triangle labeled 1, 2, 3.

The edges of the graph G incident to v can obviously only cross
the side A;As of the big triangle. By the rules of the labeling, this
side only contains vertices labeled by 1 or 2. Let us write down
the sequence of these labels, starting at A; and ending at As. The
number of neighbors of v is just the number of alterations between 1
and 2 in this sequence (the number of times a segment of 1s ends and
a segment of 2s starts or the other way round). Since the sequence
begins with 1 and ends with 2, the number of such alterations must
be odd. Hence v has an odd degree in G. O

Sperner’s lemma is not a toy problem only; it is a crucial step in the
proof of a famous theorem. Before we state this theorem, let us mention
a simpler theorem of a similar kind as a warm-up.

7.1.2 Proposition (One-dimensional fixed point theorem). For
any continuous function f: [0,1] — [0,1], there exists a point x € [0, 1]
such that f(x) = .

Such an z is called a fized point of the function f. The proposition

can be proved by considering the function g(x) = f(z) — z. This is a
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continuous function with g(0) > 0 and g(1) < 0. Intuitively it is quite
clear that the graph of such a continuous function cannot jump across
the z-axis and therefore it has to intersect it, and hence g is 0 at some
point of [0, 1]. Proving the existence of such a point rigorously requires
quite some work. In analysis, this result appears under the heading
“Darboux theorem?”.

Fixed point theorems generally state that, under certain circum-
stances, some function f must have a fixed point, i.e. there exists
an = such that f(x) = z. Such theorems belong to the key results
in many areas of mathematics. They often serve as a tool for prov-
ing the existence of solutions to equations of various types (differen-
tial equations, integral equations, etc.). They even play a role in the
theory of the meaning of computer programs, the so-called program
semantics.

In Brouwer’s fixed point theorem, the 1-dimensional interval from
Proposition 7.1.2 is replaced by a triangle in the plane, or by a tetrahe-
dron in the 3-dimensional space, or by their analogs in higher dimensions
(simplices). Here we prove only the 2-dimensional version since we have
only proved Sperner’s lemma in 2 dimensions (but see Exercise 5). The
proof belongs more to mathematical analysis. However, we will try to
present it using a minimum of facts and notions from analysis, and we
will recall the necessary facts as we go along.

Let A denote a triangle in the plane. For simplicity, let us take the
triangle with vertices A; = (1,0), A; = (0,1), and Az = (0,0):

As =(0,1)

A3 = (0,0) Ar = (1,0)

A function f: A — A is called continuous if for every a € A and for
every € > 0 there exists 6 > 0 such that if b € A is a point at distance
at most 0 from a then the distance of f(a) and f(b) is at most . Briefly,
f maps close points to close points.

7.1.3 Theorem (Planar Brouwer’s fixed point theorem). Every
continuous function f: A — A has a fixed point.

Proof. We define three auxiliary real-valued functions 31, (2, and (3
on the triangle A. For a point @ € A with coordinates (z,y), we set

ﬂl(a):xa 52(0’):3/5 53(@):171‘*y.

Geometrically, the §; are as in the following illustration:
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Az
s £ a
Prla) Ba(a)
Az i Aq

The key properties of these functions are: 3;(a) > 0 and 51 (a)+ B2(a)+
B3(a) =1 for all a € A.
Further we define sets M7, My, M3 C A:

M; ={a € A: Bi(a) > Bi(f(a)},

1 =1,2,3. Thus, M; consists of the points that are not moved farther
apart from the side opposite to A; by the function f.

Note that every point p € M; N Ms N Mj is a fixed point of the
function f, for if p is not fixed then f must move it away from some of
the sides. In more detail, if p € M7 N My N M3 then we have §;(p) >
Bi(f(p)) for all i = 1,2,3, and since >, B;i(p) = >, Bi(f(p)) = 1 we get
Bi(p) = Bi(f(p)) for all ¢, which implies p = f(p). Our goal now is to
find a point in the intersection M; N My N Ms.

Consider a sequence of successively refining triangulations of the
triangle A:

In each of these triangulations, we label all vertices of the triangles by
1, 2, or 3. We require that a vertex labeled ¢ belongs to the set M;, and,
moreover, that the assignment satisfies the rules of Sperner’s lemma.
We have to make sure this can always be arranged.

The vertex A; has the largest possible distance from its opposite
side; hence this distance cannot increase under f. Therefore A, € M,
and we can label A; by 1; similarly for A and As. A point a lying on
the side A;As has (1(a) 4+ B2(a) = 1, which implies that f(a) cannot
satisfy both 31(f(a)) > B1(a) and Ba2(f(a)) > Ba(a). Thus a € M1 UM,
and so we can label all vertices on the side A;As only by 1s and 2s.
A similar argument works for the other sides. Finally, each point of A
belongs to at least one of the sets M; since it cannot be moved farther
from all three sides at once. (This time we leave a detailed verification
to the reader.)
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Now Sperner’s lemma 7.1.1 implies that each of the successively
refining triangulations has a triangle labeled 1, 2, 3. Let us denote the
vertices of some such triangle in the jth triangulation by a; 1, a; 2, and
a;3 in such a way that a;; belongs to M; for i =1,2,3.

Consider the infinite sequence of points (a1,1, a2,1,a3.,1, . ..). We need
to choose an infinite convergent subsequence from it. This is always pos-
sible; in fact, any infinite sequence of points inside the triangle contains a
convergent infinite subsequence. (This property of the triangle—shared,
for instance, by any closed and bounded subset of the plane—is called
the compactness.) So suppose that we have chosen a convergent subse-
quence (aj,,1,0j,,1,0j5,1,---)s J1 < j2 < js < ..., and let us denote its
limit point by p.

We claim that p € M;. Indeed, by the definition of M;, we have
B1(aj,.1) > P1(f(aj, 1)) for all ji, and taking a limit on both sides yields
B1(p) > B1(f(p)), because taking a limit preserves nonstrict inequalities
between continuous functions.

Since the diameter of triangles in the successive triangulations tends
to 0, the sequences of the other vertices, i.e. (aj, 2,aj,2,j;,2,--.) and
(@j,.3,05,,3, a4y 3, . ..), also converge to the point p. This implies that
p € My and p € Ms as well. Thus p is the desired fixed point of the
function f. m|

A number of more complicated results similar to Brouwer’s fixed
point theorem are known. For example, under any continuous mapping
of the surface of a 3-dimensional ball to the plane, some two points at
opposite ends of a diameter of the ball are mapped to the same point
(the so-called Borsuk—Ulam theorem). Such theorems are proved in a
branch of mathematics called algebraic topology. The proofs typically
employ fairly complex techniques, but deep down they are often based
on parity arguments similar to Sperner’s lemma.

Let us present another example illustrating the use of the hand-
shake lemma. We will analyze a game similar to the game called
HEX. It takes place on a board like the one shown in Fig. 7.2 (but
the triangulation inside the outer square may be arbitrary). The
players take turns. Each player in turn marks an unmarked node
with her symbol. For example, the first player (Alice) paints nodes
gray and the second player (Betty) black (boring colors but we can
illustrate them in a black-and-white book). In the starting position,
Alice has the nodes a and ¢ marked, and Betty has b and d. Alice
wins if she manages to mark all nodes of a path from a to ¢, and
Betty’s goal is a path from b to d. If a player is supposed to make a
move and has no more nodes to mark, the game ends in a draw.
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Fig. 7.2 A game board.

7.1.4 Proposition. On a board of the given type (the outer face is
a square, all inner faces are triangles), a draw is impossible.

Proof. Assume for contradiction that a draw has occurred. Let A
be the set of nodes marked by Alice and let B be the set of nodes
marked by Betty.

Let us assign labels 1, 2, 3 to nodes according to the following
rules. A node in A is labeled by 1 if it can be connected to a by a
path with all vertices belonging to A. Similarly, nodes in B connected
to b by a path lying entirely in B are labeled by 2. The remaining
nodes get label 3. By the hypothesis, both ¢ and d are labeled by 3,
otherwise one of the players would have won.
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We will show that there is an inner triangular face T" labeled 1,
2, 3. This leads to a contradiction, since the node of T labeled 3 (call
it ) can belong neither to A nor to B. Indeed, if x belongs to A,
we consider the node y of the triangle T' labeled by 1. By definition
of the labeling, there is a path from a to y using only nodes of A,
and this path could be extended to x, since y is adjacent to x. For
a similar reason x does not belong to B, which is a contradiction.
This reasoning is illustrated by the following picture:

How do we prove the existence of a triangle labeled 1, 2, 37 Exa-
ctly like Sperner’s lemma. We leave it to the reader. Another very
similar proposition is presented in Exercise 1. O

Let us remark that this proof makes substantial use of the fact
that all inner faces of the board are triangular and the outer face has
just the 4 vertices a,b,c,d. If we allow, for instance, quadrilateral
inner faces, the game might possibly end in a draw.

Various games from a mathematical point of view are investigated
in the interesting book by Berlekamp, Conway, and Guy [14].

Exercises

1. Consider a drawing of a planar graph all of whose faces, including
the outer one, are triangular (i.e. have 3 vertices). To each vertex we
assign, quite arbitrarily, one of the labels 1, 2, 3. Prove that there are
an even number of faces whose vertices get all 3 labels.

2. A well-known problem about a tourist climbing a mountain also rel-
ates to fixed points. A tourist starts climbing a mountain at 6 in the
morning. He reaches the summit at 6pm and spends the night there
(in a shelter built there especially for that purpose). At 6 the next
morning he starts descending along the same trail. He often pauses to
contemplate the view, and so he reaches the starting point at 6 in the
evening again. Prove that there is a place on the trail that he passed
through at the same time on both days.

3. A building engineer is standing in a freshly finished apartment and
holding a floor plan of the same apartment. Prove that some point in
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the plan is positioned exactly above the point on the apartment’s floor
it corresponds to.

. Decide for which of the various sets X listed below is an analog of
Brouwer’s fixed point theorem 7.1.3 valid (i.e. every continuous func-
tion f: X — X has a fixed point). If it is valid, derive it from Theo-
rem 7.1.3, and if not, describe a function f witnessing it.

(a) X is a circle in the plane (we mean the curve, not the disk bounded
by it);

(b) X is a circular disk in the plane;
(¢) X is a triangle in the plane with one interior point removed;
(d) X is a sphere in the 3-dimensional space (a surface);

(e) X is a sphere in the 3-dimensional space with a small circular hole
punctured in it;

(f) X is the torus (see Section 6.1);
(g) X is the Klein bottle (see Section 6.1).

. (Sperner’s lemma in dimension 3)

(a) *Consider a tetrahedron T' = A; A3 A3 A4 in the 3-dimensional space
and some subdivision of T" into small tetrahedra, such that each face
of each small tetrahedron either lies on a face of the big tetrahedron or
is also a face of another small tetrahedron. Let us label the vertices of
the small tetrahedra by labels 1, 2, 3, 4, in such a way that the vertex
A; gets i, the edge A;A; only contains vertices labeled i and j, and
the face A;A; Ay has only labels 7, j, and k. Prove that there exists a
small tetrahedron labeled 1, 2, 3, 4.

(b) Formulate and prove a 3-dimensional version of Brouwer’s fixed
point theorem (about continuous mappings of a tetrahedron into
itself).

. Consider a game as in Proposition 7.1.4.

(a) Prove that on any board meeting the condition of Proposition 7.1.4,
either Alice or Betty has a winning strategy (i.e. if she does not make
a mistake she wins, regardless of how the other player plays).

(b) Find an example of a game board (meeting the condition again)
such that Betty has a winning strategy.

(c) *Show that if the board is symmetric with respect to rotation by
90 degrees about the center (i.e. if it looks the same from both players’
points of view), then Alice always has a winning strategy.
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7. The real game HEX, as the reader might know, was invented by Piet
Hein and it is played on a board like this:

Alice’s side

Betty’s side

Betty’s side

Alice’s side

Alice’s goal is to connect her two sides by a contiguous chain of fields
occupied by her pieces, and Betty wants to connect her sides.

(a) Discover and explain the connection of this game to the version
discussed in the text.

(b) Having no HEX game board at hand, Alice and Betty started
playing HEX on an ordinary chessboard. Alice tried to connect two
opposite sides and Betty the other two sides, with two squares consid-
ered adjacent if they share a side. Soon they found the game pretty
boring. Can you guess why?

7.2 Sperner’s theorem on independent systems

Yes, this is the second time that we meet the name Sperner in this
chapter, but Sperner’s theorem, which we consider next, deals with
something quite different than Sperner’s lemma of the previous sec-
tion. It is about an n-element set X and a system M of its subsets.
We call the system M independent if it contains no two different sets
A, B such that A C B. Before reading further, you may want to try
finding an independent set system on a 4-element set with as many
sets as possible. How many sets can you get?

7.2.1 Theorem (Sperner’s theorem). Any independent system
of subsets of an n-element set contains at most (LT:}? J) sets.

This is in fact a theorem on partially ordered sets (posets). Con-
sider the set system 2% consisting of all subsets of the set X. The
relation C, “to be a subset of”, is a partial ordering on 2% (it is
even one of the most important examples of a partial ordering; see
Chapter 2). An independent system of sets is exactly a set of pair-
wise incomparable elements in the poset (2%, C). A set of pairwise
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incomparable elements in a poset is commonly called an antichain,
and so Sperner’s theorem gives an upper bound on the size of any
antichain in (2%, Q).

Before we start proving Sperner’s theorem, we should remark
that the upper bound in that theorem is certainly the best possible,
because all subsets of X of size |n/2] constitute an independent
system of size exactly (Ln% J)'

Proof of Theorem 7.2.1. We first say what a chain of subsets
of X is: it is any set {A1, Ag,..., A} of subsets of X such that
Ap C Ay C -+ C Ag. In the language of ordered sets, it is simply a
linearly ordered subset of the poset (2%, C).

The key observation is that any chain has at most one element in
common with any antichain. For example, if we succeeded in proving
that the whole poset in question can be expressed as a union of at
most r chains, then no antichain would have more than r elements.
Our proof uses this simple observation in a more sophisticated way;,
however.

We consider the mazimal chains in (2X,C), where a maximal
chain is a chain such that if we add to it any other set of 2%, the
result is no longer a chain. It is easy to see what the maximal chains
look like: they contain one subset of X of each of the possible sizes;
that is, they have the form

0 Cc{x1} C {x1, 22} C {x1, 20,23} C -+ C{x1,22,..., 2}, (7.1)

where z1,x9,...,x, are all elements of X written out in some arbi-
trary order. Every maximal chain therefore induces a linear order-
ing of elements of X, and, on the other hand, every linear ordering
yields exactly one maximal chain. As a result, the number of maxi-
mal chains equals the number of permutations of X, i.e. nl.

Let M be an antichain (an independent system of subsets). Form
all ordered pairs (R, M), where M € M is a set and R is a maximal
chain containing M. We count such pairs in two ways.

First, by the observation mentioned above, every chain contains
at most one M € M (because M is an antichain), so the number of
pairs (R, M) is less than or equal to the number of maximal chains,
which is n!.

On the other hand, we can take a set M € M and ask how
many maximal chains contain it. A maximal chain of the form (7.1)
contains M if and only if {z1,z9,...,2x} = M, where k = |M]|.



228 Double-counting

Hence we ask how many linear orderings of X there are such that
the first k elements are just the elements of M. We can still order
the elements of M in k! ways, thus determining the first k sets of the
chain, and the elements outside M can be ordered in (n — k)! ways,
which determines the rest of the chain. Altogether M is contained in
E!(n — k)! maximal chains. So the number of ordered pairs (R, M)
is equal to
> 1M — [ M),
MeM

while according to the first way of counting, it is at most n!. Dividing
the resulting inequality by n!, we obtain

DL | S

MeM nt wicia (i)

We use the fact that (LT;}?J) is at least as large as any binomial
coefficient of the form (}), k = 0,1,...,n. Therefore

12 Y e > M
MeM (IMI) (Ln/ZJ)
and hence |[M| < (LnT/LzJ)' O

The remarkable inequality (7.2) is called the LYM inequality, after
its (independent) discoverers Lubell, Meshalkin, and Yamamoto.

Another proof of Sperner’s theorem. As with many other impor-
tant theorems, Sperner’s theorem can be proved in several essentially
different ways. From each of the various proofs one can learn something
new, or just enjoy the beautiful ideas. We will describe two more proof
methods. The first one cleverly covers 2% with chains of a special type.

Let us consider a chain in the poset (2%, C), i.e. a sequence of sets
in inclusion: M; C My C --- C M,. Call such a chain symmetric if it
contains one set of size k, one set of size k + 1, one set of size k+2, ...,
one set of size n—k, and no other sets (for some number k). For example,
for n = 3, the chain consisting of the sets {2} and {2,3} is symmetric,
as well as the chain {0, {3},{2,3},{1,2,3}}, but the chains {{1}} and
{0,{1,2,3}} are not symmetric in this sense. A partition into symmetric
chains is a way of expressing 2% as a union of several disjoint symmetric
chains.

Any partition into symmetric chains (if it exists at all) has to con-
sist of exactly (Ln72 j) symmetric chains, because each symmetric chain
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contains exactly one set of size |n/2]. Each chain has at most one set in
common with any independent set system (this was the basic observa-
tion in the first proof of Sperner’s theorem). Hence Sperner’s theorem
is a consequence of the following:

Claim. For any finite set X, the system 2% has a partition into sym-
metric chains.

Proof of the claim. We may assume that X = {1,2,...,n}. The proof
is based on the following construction:

To each set M C X, we assign a sequence “mims...my,
of left and right parentheses by the rule

[ ifieM
mz - 44)77 le ¢ M

b

consisting

For example, for n = 7 and the set M = {2,6}, we get the sequence
“mimg...m7"= “)()))()”. The resulting sequence of parentheses is
quite general, and certainly it need not be a “correct” parenthesizing,
i.e. the left and right parentheses need not match. We can get a “partial
pairing of parentheses” from it, however. First, we pair up all pairs “()”
of adjacent parentheses. Then we ignore these already paired parenthe-
ses, and we continue pairing up the remaining parentheses according to
the same rule. Here are two examples:

) ()) ) (O)

—~ —~
(

) ) ) ) 0))(
~———

After finishing this pairing procedure, some parentheses may remain
unmatched. But the rule of the pairing implies that the sequence of the
remaining unmatched parentheses has only closing parentheses at the
beginning and then, from some position on, only opening parentheses.

We say that two sequences of parentheses have the same partial
pairing if the paired parentheses are the same in both sequences (also
in the same positions). This is the case for the sequences corresponding
to the 3 sets below (the sets are regarded as subsets of {1,2,...,11}):

My ={4,56,811} ... ) ) ) ((() () ) (
My ={56,811} ... ) ) ) ) (()(C))(
Mz = {5,6,8} o)) ) C0)

The only way two sequences with the same partial pairing may differ
is that one has either more unmatched right parentheses on the left,
or more unmatched left parentheses on the right, than the other. From
this it is easy to see that two sets with the same partial pairing of the
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corresponding sequences of parentheses have to be in inclusion (one is
a subset of the other).

We now define an equivalence ~ on the set 2%, by letting M ~ M’
hold if and only if both M and M’ have the same partial pairing of their
sequences. We claim that each class of this equivalence is a symmetric
chain. We leave the verification as an easy exercise. So we have proved
Sperner’s theorem once more. O

Finally we demonstrate one more proof of Sperner’s theorem. It is
remarkably different from the previous two proofs, and it uses the highly
symmetric structure of the poset (2%, C).

We begin with a general definition (which has already been men-
tioned in Exercise 2.1.4). Let (X, <) and (Y, =) be some posets. A
mapping f: X — Y is called an isomorphism of posets if f is a bi-
jection and for any two elements xz,y € X, x < y holds if and only
if f(x) = f(y). An isomorphism of a poset (X, <) onto itself is called
an automorphism of (X, <). An automorphism preserves all properties
which can be defined in terms of the ordering relation <. For example,
x is the largest element of some subset A C X if and only if f(x) is the
largest element of the set f(A), and so on.

Third proof of Sperner’s theorem. Let X be a given n-element set.
BEach permutation f: X — X induces a mapping f#: 2% — 2% (ie.
sending subsets of X to subsets of X) given by f#(A) = {f(z): = € A}.
It is clear that f# is a bijection! 2X — 2%, and even an automorphism
of the poset (2%, C).

Let us now consider a system M of subsets of the set X. For each
permutation f of the set X, we get the set system {f#(M): M € M};
that is, the system of images of the sets from M under the mapping
f#. In this way, we have defined a new mapping

7 92" _, 92"
(assigning set systems to set systems) by the formula
JFEM) = {f#(M): M € M}.

The mapping f## is again a bijection.

In Section 1.4, we adopted a convention according to which one can write
the image of a set under some mapping in the same way as for the image of
an element. That is, in our case we could write the set {f(z): = € A} simply
as f(A). In the present proof, however, it is better to distinguish more exactly
between the image of an element and the image of a set. That is why we have
introduced a different symbol, f#, for the mapping of sets.
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We introduce a relation < on the set of all set systems on X (i.e. on
the set 22X):

M<IN & for each M € M there exists an N € N with M C N.

Note that the relation < is something different than the inclusion be-
tween set systems. It is a possibly larger relation than inclusion (hence
M C N implies M <1 ). The reader is invited to check that the rela-
tion < is reflexive and transitive, but that it need not be antisymmetric
(find an example on a 3-element set X).

Let the letter = stand for the set of all independent set systems on
the set X (so = C 22X). We claim that the relation < restricted to =
is already antisymmetric, and consequently it is a partial ordering on
=. Indeed, if M and N are independent systems of sets such that both
M<AN and N <<M, we consider an arbitrary set M € M. The system N
has to contain some set M’ O M, and then M contains some M"” O M’
too. Thus we get M, M" € M with M C M"”, and by the independence
of M it follows that M = M" = M’, and hence M € N. This shows
that M C N, and symmetrically we obtain N' C M, whence M = N.
Thus (=, <) is an ordered set.

Further we claim that for any permutation f, the mapping f## is
an automorphism of the poset (2, <)—we leave the verification to the
reader (this is a good way to a real understanding of the notions like =
and f##).

The proof of Sperner’s theorem is based on the following lemma:

Lemma. Let =y C = denote the set of the independent set systems
with the largest possible number of sets. The set = has a largest element
Ny with respect to the ordering by <1. This means M <1 Ny for all
M € Ey.

Proof of the lemma. Since there are only finitely many set systems on
X, it suffices to prove that for any two set systems M, M’ € 2, there
exists a set system N € Z; that is larger than both M and M’, i.e.
M<IN and M’ <N

So we consider some M, M’ € Z;, and we form a new set system
M = M UM’ Since both M and M’ are independent, the longest
chain in M, with respect to the ordering of M by inclusion, has at
most two sets. Next, let M,,;, be the system of all sets from M for
which M contains no proper subset, or in other words the system of
all sets of M minimal with respect to inclusion. Similarly we introduce
the system Mnax as the system of all inclusion maximal sets of M. We
want to check that the system A = M., belongs to Zy and satisfies
both M <t Mpmax and M’ <4 Mpax.

Both the systems Muin and M. are independent, and we have

M = Mpin U Mpax. Clearly also Mpa > M and My > M. Tt
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remains to verify that M., has the largest possible number of sets,
i.e. [Mupax| = | M]|. Let us note that by the independence of M and M/,
we get M N M’ C Muin N Muax (check!). Hence |[Mpin| + [Muax| =
[ Munin UM max| +Mumin WMMmax| > [MUM |+ MOM'| = | M|+ M|,
and so if we had [Mpax| < M| = |[M’| then we would get |Muyin| >
| M| and the systems M and M’ would not have the maximum possible
size. This proves the lemma.

It remains to finish the third proof of Sperner’s theorem. Let us con-
sider the largest element Ny of the set (Zg,<1). For each permutation
f of the set X, the corresponding induced automorphism f## maps
the set Z¢ (independent systems of maximum size) onto itself, and so
it must map its unique largest element Ny onto itself: f##(Ny) = No.
This implies, however, that if Ay contains at least one k-element set
then it already contains all k-element sets! In other words, ()k() -
Np. Tt is impossible to add any set to the system ()k() so that it re-
mains independent, and thus Ny = ()k() The maximality of the bi-
nomial coefficients (LnT/Lz J) and ((nT/Lﬂ) then implies that Ny =

O

Exercises

1.

Let us call a system A of subsets of X semiindependent if it contains
no three sets A, B,C such that A C B C C.

(a) Show by a method similar to the first proof of Sperner’s theorem

that [NV| < 2<Ln72j)7 where n = |X]|.

(b) Show that for odd n, the estimate from (a) cannot be improved.

. (a) Determine the number of maximal chains in the set {1,2,...,10!}

ordered by the divisibility relation.
(b) Count the number of maximal antichains in the set {1,2,...,5!}
ordered by the divisibility relation.

*Show that the set systems (Ln)/(Z j) and (M}/{ﬂ) are the only indepen-
dent set systems on an n-element set X with the largest possible num-
ber of sets.

Determine the number of automorphisms of the poset (2%, C).

. By modifying the third proof of Sperner’s theorem, show that for any

finite poset (P, <) there exists an antichain of maximum possible size
that is mapped to itself by all automorphisms of (P, <) (i.e. it is a
“fixed point” of all automorphisms).
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6. Let a1,as,...,a, be real numbers with |a;| > 1. Let p(ay,...,a,) be
the number of vectors (e1,¢€2,...,,), where ; = £1, such that

n
—-1< Zsiai <1
i=1

(a) *Prove that for any aj,as,...,a, we have p(ay,...,a,) < (Ln72J)'
(This is one of the first applications of Sperner’s theorem—the so-
called Littlewood—Offord problem.)

(b) Find a1, as,...,a, with p(ai,...,a,) = (Ln72J)'

7. Let n be a natural number that is not divisible by the square of any
integer greater than 1. Determine the maximum possible size of a set
of divisors of n such that no divisor in this set divides another (i.e.
max | M|, where x € M = z|n and z,y € M, x # y = x doesn’t divide

Y).

7.3 An extremal problem: forbidden four-cycles

In Section 4.7 we investigated the maximum possible number of edges of
a graph on n vertices that contains no triangle as a subgraph. Here we
are going to inverstigate a rather similar-looking question: what is the
maximum possible number of edges of an n-vertex graph that contains
no subgraph isomorphic to Ks o (in other words, a cycle of length 4)?
A subgraph is considered in the non-induced sense here, and so for
example, the complete graph K4 on 4 vertices does contain a K 5.

One might expect that forbidding a K » will have an effect similar to
forbiding a K3, but surprisingly, the answers are principially different. A
graph containing no triangle can have as many as |n?/4| edges, which
is approximately half of (g) (this is the maximum possible number
of edges of a graph on n vertices with no restrictions whatsoever). In
contrast to this, forbidding K5 » makes the maximum number of edges
much smaller—roughly n3/2, as we will see. This number, for large n,
is negligible compared to (3) (or to [n?/4] ).

Both of these problems belong to extremal graph theory, which in
general studies the maximum possible number of edges of a graph on n
vertices that doesn’t contain a given forbidden graph as a subgraph, or
more generally, doesn’t contain a subgraph from a given set of forbidden
graphs. We also met a (simple) problem of this kind in the chapter on
trees: we saw that an m-vertex graph containing no cycle (that is, a
forest) has no more than n — 1 edges.

Now we proceed with the main result of this section.

7.3.1 Theorem. If a graph G on n vertices contains no subgraph
isomorphic to Ks o then it has at most %(n?’/ 24 n) edges.
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As we will see later (Theorem 9.4.1), the bound in Theorem 7.3.1
is nearly the best possible for large n.

Proof. Let us write V = V(G). We will double-count the size of
the set M of all pairs ({u,u'},v), where v € V, {u,u'} € (‘2/), and v
is connected by an edge to both u and u/. In other words, we count
(noninduced) subgraphs of the form
u
v <
u/

For a fixed pair {u,u'}, only one vertex v € V may exist joined to
both u and «’'. If there were two such vertices, v and v/, they would
together with v and u' form a subgraph isomorphic to K» 2. Hence
M| < (3).

Now let us see how many elements of the form ({u, v}, v) are con-
tributed to the set M by a fixed vertex v € V. For each pair {u,u}
of its neighbors, v contributes one element of M, so if v has degree d
it contributes (g) elements. Therefore, if we denote by di,ds,...,d,

the degrees of the vertices of V, we obtain |M| =7, (dg)
Combining this with the previous estimate, we get

i(i) < (Z) (7.3)

At the same time, the number of edges of the considered graph is
% >, d;. The rest of the proof is just a manipulation of inequalities
which can be done in many different ways.

Here we show one proof, and another is sketched in Exercise 5
(the latter proof is a bit more complicated but it can be generalized
more easily). First, we need a famous and generally useful inequality:

7.3.2 Proposition (Cauchy—Schwarz inequality). For arbitr-
ary real numbers x1,xo, ..., %, and y1,Y2, ..., Y, we have

n n n
i=1 i=1 i=1

The Cauchy—Schwarz inequality has a nice geometric meaning. If
we interpret x = (z1,...,2,) and y = (y1,...,yn) as vectors in the
n-dimensional Euclidean space, the left-hand side of the inequality is
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the scalar product of x and y, while the right-hand side is the product
of the lengths of the vectors (check this for n = 2, i.e. in the plane,
provided you know at least a little about vectors). A well-known
formula for vectors says that the cosine of the angle of two vectors
equals their scalar product divided by the product of their lengths.
The Cauchy—Schwarz inequality thus amounts to saying that this
cosine is never greater than 1!

The Cauchy—Schwarz inequality is usually treated in courses of cal-
culus, but why shouldn’t we present two elegant proofs?

First proof: from the AG inequality. Let us write X = Z? 1 x?

and Y =30 | y2. If X =0, then all z; are 0 and the inequality holds
and similarly for Y = 0. Let us now assume X > 0 and Y > 0, and let
us define a; = 2?/X, b; = y?/Y . The inequality between the arithmetic
mean and the geometric mean, see the proof of Theorem 3.5.2, tells us
that va;b; < (a; +b;)/2. By adding these inequalities for i = 1,2,...,n
together we obtain on the left-hand side

n

Z@ Z \l‘zyz

while the right-hand side yields

( ZQ+ Zy) S(1+41) =1
Hence Y7, 12

\/?LS/' < 1, and after multiplying by the expression v XY

we arrive at the Cauchy—Schwarz inequality. O

Second proof: magic with a discriminant. We fix the numbers z;
and y;, and we define a function p of a new variable ¢ by

n

p(t) =Y (i +ty)*.

=1

By multiplying out the brackets and collecting terms that contain the
same power of ¢, we see that p(t) is a quadratic function of the form
p(t) = at?+bt+c, wherea =" y2,b=>"  2z;y;,andc =Y . x2.
On the other hand, p(t) is a sum of squares, and therefore nonnegative
for all real numbers t.

If the quadratic equation at? 4+ bt + ¢ = 0 had a positive discrimi-
nant, then it would have two real solutions, and thus the function p(t)
would take negative values on a part of the real axis. Therefore, the
discriminant is nonpositive, i.e., b> — 4ac < 0. By substituting a, b,
and c¢ by their expressions in terms of x; and y;, we obtain exactly the
Cauchy—Schwarz inequality. a
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By far this doesn’t exhaust proofs of the Cauchy—Schwarz
inequality—some others are indicated in Exercise 4, for instance.

Finishing the proof of Theorem 7.3.1. Obviously, we can assume
that our graph has no isolated vertices, and hence d; > 1 for all 4.

Then we have (dzl) > 1(d; —1)%, and so we obtain from (7.3) that

n

D (di—1)* <n®.

=1
We now apply the Cauchy—Schwarz inequality with x; = d; — 1,
y; = 1. We get

n

D (di-1)<

=1

n

S (di — 12 < Vv =0,

=1

so |B(G)] = 3 X1y di < 5(n*? +n). O

The intuition. In the proof, we have derived an upper bound for
the sum > | (d;), and we ask how large the sum ) ;" | d; can be. For
d; not too small, (dzl) behaves roughly like %df Given that de is
about n?, the way to make > d; largest is to choose all the d; equal,
which in our case means each should be /n. Then Y d; is about
n3/2. Of course, this is not a proof, but such a rough calculation can
often give us a good idea about what is going on. The above proof
with the Cauchy—Schwarz inequality is a polished version of the same
idea.

Exercises

1. Prove that for any ¢ > 2, the maximum number of edges of a graph
on n vertices containing no K ; as a subgraph is at most

%(mnw tn).

2. Let X be an n-element set, and let S1, Ss, ..., .S, be subsets of X such
that |S; NS;] < 1 whenever 1 < ¢ < j < n. Prove that at least one
of the sets S; has size at most Cy/n, for some absolute constant C
(independent of n).

3. Let G be a bipartite graph with vertex classes of size n and m. Suppose
that G contains no K2 as a subgraph. Prove that G' has at most
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O(m+/n+n) edges. (Note that for n much larger than m, this is better
than the bound from Theorem 7.3.1.)

. (a) Prove the Cauchy—Schwarz inequality by induction on n (square
both sides first).

(b) Prove the Cauchy—Schwarz inequality directly, starting from the
inequality sz=1(l’iyj —z;y;)* > 0.

. (a) Let f: R — R be a convex function, i.e. for any z,y € R and
A € [0,1] we have f(Az+(1-N)y) < Af(z)+(1-X)f(y). Geometrically,
this means that if we connect any two points on the graph of f by a
segment, then no part of this segment reaches below the graph of f:

x Az + (1= Ny y

Prove (by induction) that for f convex, the inequality
fpa+qae+ ot pwn) < o f(@) + g flae) + 4 5 fan) (74)
holds for any real numbers 1, zs,...,2, (this is sometimes called

Jensen’s inequality).
(b) Define a function f by the formula

0 forx <1
f(@) {x(x—l)/Q for x > 1.

Prove that f is convex.

(¢) Prove Theorem 7.3.1 from (7.3) using (a) and (b). First derive
n-f(2) < (3), where m = |E(G)|.

. *In a way similar to the method in Exercise 5, deduce that if a graph
on n vertices does not contain K3 3 as a subgraph then it has O(n°/3)
edges.

. (a) *Let L be a set of n (distinct) lines in the plane and P a set of n
(distinct) points in the plane. Prove that the number of pairs (p, ),
where p € P, £ € L, and p lies on £, is bounded by O(n?/2).

Remark. Tt is known that the right bound is O(n*/?); see Pach and
Agarwal [27].
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(b) *Show that the bound in (a) remains valid if lines are replaced by
circles of unit radius. Use Exercise 1.

Remark. Here the best known upper bound is O(n4/ 3) as well, but
it is suspected that the number of incidences is actually bounded by
O(n'*e) for an arbitrarily small constant ¢ > 0 (with the constant
hidden in the O(.) notation depending on ¢). Proving or disproving
this is a very challenging open problem.



8

The number of spanning
trees

8.1 The result

For a given graph G, let T(G) denote the number of all spanning
trees of G. For example, we have T(K3) = 3 (so we really count
all possible spanning trees, not just nonisomorphic ones). In this
chapter, we present several proofs of the following result:

8.1.1 Theorem (Cayley’s formula). For each n > 2, the number
T(K,), i.e. the number of trees on given n vertices, equals n" 2.

Although T'(K,,) can be expressed in such a nice and simple way,
no completely straightforward method is known for deriving the for-
mula. In the course of time, many proofs have been discovered. Their
basic ideas differ substantially, but each of them involves a clever
trick or follows from a nontrivial theory. We have collected several
of these proofs into this chapter (by far not all known ones!), mainly
as an illustration of the richness of mathematical thought.

The proof in Section 8.2 counts the number of spanning trees with
a given score by a clever induction. Section 8.3 presents an elegant
argument constructing a bijection between the set of all spanning
trees of K, with two marked vertices and the set of all mappings
{1,2,...,n} — {1,2,...,n}. Section 8.4 is a classical proof with
encoding trees by sequences of length n — 2. Finally the method of
Section 8.5 is the most advanced one and it gives perhaps the best
insight into the problem. It expresses the number of spanning trees
of an arbitrary graph as a certain determinant. Yet another proof is
sketched in Exercise 8.2.2.

By no means do we want to claim that Theorem 8.1.1 belongs among

the most fundamental results in mathematics. On the other hand, the
number of spanning trees of a graph (and the related theory) has many
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theoretical and practical applications, and it was first studied in con-
nection with electrical circuits.

As an illustration, let us mention without a proof an “electrotechni-
cal” meaning of the number of spanning trees of a graph. Imagine that
a given graph G is an electrical circuit, where each edge is a wire of
unit resistance and the vertices are simply points where the wires are
connected together. If x and y are vertices connected by an edge, then
the resistance we would measure between = and y in this circuit equals
the number of spanning trees of G containing the edge {z,y} divided
by the total number of spanning trees, T(G). This result is not too
useful directly for applications because the resistances are seldom all
identical, but a generalization exists for graphs with weights on edges.
More about the subject of this chapter can be found in Lovész [8] or
Biggs [15].

In the whole chapter, we assume that the vertex set V of the
considered graph G is the set {1,2,...,n}.

Exercises

1. Prove that the number of nonisomorphic trees on n vertices is at least
e"~1/n3 (see also Exercise 5.2.6!).

2. *Assume the validity of Theorem 8.1.1, and determine the number of
spanning trees of the complete graph on n vertices minus one edge.

3. Put T,, = T(K,). Prove the recurrent formula

(n—1)T), = ni k(n — k) <Z B 1>Tan_k.

k=1

Remark. Theorem 8.1.1 can be derived from this recurrence too, but
it’s not so easy.

4. *Let G be a connected topological planar graph, and let G* denote its
dual (as in Definition 6.4.3). Prove that T(G) = T(G*). If convenient,
you may assume that G is such that G* has no loops and no multiple
edges.

8.2 A proof via score
First we count the number of trees with a given score:

8.2.1 Proposition. Let di,ds,...,d, be positive integers summing
up to 2n — 2. Then the number of spanning trees of the graph K, in
which the vertex ¢ has degree exactly d; for all i = 1,2,...,n equals

(n —2)!
(dy — D)(do — D!+ (dp, — 1)V
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Proof. By induction on n. For n = 1,2, the proposition holds
trivially, so let n > 2. Since the sum of the d; is smaller than 2n,
there exists an ¢ with d; = 1. We now do the proof assuming that
d, = 1. This is just for notational convenience; exactly the same
argument works for any other d; = 1 (or, put differently, the number
of the spanning trees of the required type obviously doesn’t change
by exchanging the values of d,, and d; so we may assume d,, = 1
without loss of generality).

Let 7 be the set of all spanning trees of K,, with the given degrees
(i.e. in which each vertex ¢ has degree d;). Classify the trees of 7 into
n—1groups 71, ...,7,—1: the set 7; consists of all trees of 7" in which
the vertex n is connected to the vertex j. Next, we consider a tree
from 7;, and we delete the vertex n together with its (single) edge.
We obtain a spanning tree of K,,_1, whose degree at the vertex ¢ is d;
for 7 # j and d; —1 for i = j. It is easy to see that in this way, we get
a bijection between the set 7; and the set ’]}’ of all spanning trees
of K,,—1 with degrees di,ds,...,dj—1,dj — 1,dj11,...,dp—1 (since
distinct trees of 7; give rise to distinct trees of ’]}’ , and from each
tree of ’Z}’ we can get a tree of 7; by adding the vertex n back and
connecting it to the vertex j).

By the inductive hypothesis, we have

(n—3)!
(di—=1)! - (dj—1—1)U(d;j—2)Y(dj41—1)! - - - (dp—1—1)!
(n—3)1(d; — 1)
(dy — D(dy — 1)+ (dp—1 — 1)

T3] = 1751 =

This formula also holds when d; = 1—then it gives 0 which agrees
with the fact that no spanning tree with degree d; — 1 = 0 at the
vertex j exists.

Therefore, the total number of spanning trees on n vertices with
degrees di,do,...,d,, where d, = 1, is

n n—1
_ L (n—3)I(d; — 1)
1= ; Tl= Z (dy — 1)!(dz — 1)! - (dp—1 — 1)

Jj=1

n—1
B ' (n—3)!
- (X6 g e

j=1
B (n—2)(n—3)!
~(di—D!(da = D) (dyqg — 1)
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Since d, = 1, we can multiply the denominator by the factor
(d, — 1)! = 0! = 1 with no harm, and this finishes the inductive
step. d

Next, we prove Theorem 8.1.1. We will sum over all possible scores
of spanning trees, and we will use the multinomial theorem 3.3.5:

B (n—2)!
T(Kn) B dq dgzdn>1 (dl - 1)!(d2 - 1)! T (d” - 1)!

di+do+--+dn=2n—2

Z (n —2)!

N kilkol -k |

kq+kg+ e +kn=n—2 k1!ko! k!
E1seeokn >0

=141+ F1)"2=n""2
—_——

nx

Exercises

1. (a) *Find the number of trees (on given n vertices) in which all vertices
have degree 1 or 3.

(b) *What if we allow degrees 1, 2, or 37

2. (Yet another proof of Theorem 8.1.1) Let Nj denote the number
of spanning trees of K, in which the vertex n has degree k, k =

1,2,.. — 1 (recall that we assume V(K,,) ={1,2,...,n}).

(a) *Prove that (n — 1 — k)N = k(n — 1) Ng11.

(b) Using (a), derive Ny = (fo) (n—1)n"1=k

(c) Prove Theorem 8.1.1 from (b).

8.3 A proof with vertebrates

Consider a spanning tree of the complete graph K,,. Mark one of its
vertices by a circle, and one vertex by a square, as in Fig. 8.1(a). We
do not exclude the case that the same vertex is marked by both a
circle and a square. Each object that can arise in this way from some
spanning tree on K, is called a vertebrate. Let V denote the set of
all vertebrates (for the considered value of n).

From each given spanning tree, we can create n* vertebrates.
Therefore the number of all spanning trees equals |V|/n?. We now
show

2
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Fig. 8.1 (a) A vertebrate on 19 vertices; (b) the corresponding mapping.

Lemma. There exists a bijection F' between the set V of all verte-
brates and the set of all mappings of the vertex set V to itself.

Since the number of all mappings of an n-element set to itself
is n", the number of vertebrates is the same by the lemma, and
therefore the number of spanning trees is n” 2.

Proof of the lemma. We demonstrate the definition of the bijection
F on the example in Fig. 8.1. We start from the vertebrate W drawn
in Fig. 8.1(a). The marked vertices O and () are connected by a
unique path, which we call the chord. Let us write out the numbers
of vertices of the chord ordered by magnitude. Then, we write these
numbers again on the next line, in the order as they appear along
the chord from () to O:
3 4 7
8 4
We define an auxiliary directed graph P: the vertex set consists of
the vertices of the chord, and we make an arrow (directed edge)
from each vertex written in the first line to the vertex below it in the
second line. Since there is exactly one arrow going from each vertex
and also exactly one arrow entering it, the graph P is a disjoint union
of directed cycles (including possibly also isolated vertices with a
directed loop). We can also say that the chord defines a permutation
of its vertices, and P consists of the cycles of this permutation (see
Section 3.2). In our example, these cycles are (3,8,9), (4), (7,14),
and (15).
We now look back at the whole vertebrate W. If we remove the
edges of the chord from it, it splits into components (which are trees
again). We direct the edges of the components so that they point to
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the (single) vertex of the chord contained in that component. This
gives rise to one more set of directed edges on the set V. We now
define a directed graph with vertex set V: its edges are all directed
edges of the components, plus the edges of the graph P. In the figure,
this is very intuitive. We draw the cycles of the graph P, and then we
draw to each vertex (originally coming from the chord) the tree that
was hanging by that vertex on the chord of the considered vertebrate;
see Fig. 8.1(b).

We claim that the resulting directed graph, G, is a graph of a
mapping, i.e. there is exactly one arrow going from each vertex. For
the vertices of the chord, this has already been mentioned. For the
other vertices, the reason is that there is a unique path to the chord
from each vertex in the vertebrate W. Using the graph G, we can
finally define a mapping f: {1,2,...,n} — {1,2,...,n}: for each
i €V, we set f(i) = j, where j is the vertex of G that the arrow
emanating from ¢ ends in. In our specific example, we get the map-
pingl—7,2—153—8 4— 45— 26— 5, 7+— 14, 8§ — 9,
9+— 3,10 — 4, 11 — 10, 12 — 4, 13 — 12, 14 — 7, 15 — 15,
16 — 7, 17 — 16, 18 — 1, and 19 — 8. In this way, each vertebrate
W determines a mapping F(W).

It remains to prove that the original vertebrate W can be re-
constructed from the mapping f produced as above, and that every
mapping can be obtained from some vertebrate. This is left as an
exercise. O

Exercises

1. For a mapping f: V — V, where V is a finite set, we define the
(directed) graph of f as the directed graph with vertex set V' and edge
set {(¢, f(4)): @ € V} (such a graph was used in the proof above).
Prove that each (weakly connected) component of such a graph is a
directed cycle, possibly with some trees hanging at the vertices of the
cycle, with edges directed towards the cycle.

2. Given a mapping f: {1,2,...,n} — {1,2,...,n} of the form F(W)
for some vertebrate W, describe how the vertebrate W can be recon-
structed from the knowledge of f. Prove that any mapping f can be
obtained as F'(W) for some vertebrate W (use Exercise 1).

3. OS5 Let f:{1,2,...,n} — {1,2,...,n} be a mapping. For each i €
{1,2,...,n}, the sequence (i, f(¢), f(f(¢)),...) must be eventually
periodic. Design an algorithm that finds the shortest period of this
sequence for a given i. That is, in the language of the directed graph
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of the mapping f, we want to find the length of the directed cycle in
the component containing the vertex . The algorithm should use only
an amount of memory bounded by some constant independent of n. It
has a subroutine (black box) at its disposal for evaluating the function
f for any given 1.

4. ©5 (a) Design the details of an algorithm for producing a vertebrate
from a mapping. How many steps does it need in the worst case? *Can
you make it run in O(n) time?

(b) *Program the algorithm from (a), and use it to generate random
spanning trees of the complete graph from randomly generated map-
pings. Using this program, experimentally estimate the average (expec-
tation) of the maximum degree and the diameter of a random spanning
tree on a given number of vertices (104, say).

8.4 A proof using the Priifer code

We show how each spanning tree of the complete graph K, can be
encoded by an (n — 2)-term sequence such that each term is one of
the numbers 1,2,...,n. This coding will define a bijection between
all spanning trees and all sequences of the type just described. Since
the number of such sequences is obviously n”~2, this will establish
Theorem 8.1.1.

Consider a spanning tree T'; our running example on 8 vertices
is drawn in Fig. 8.2(a). We explain how to construct a sequence
p=P(T) = (p1,p2,---,Pn—2), the so-called Priifer code of the tree T'.
The basic idea! is to tear off the leaves of T one by one until the
tree is reduced to a single edge. We will thus construct an auxiliary
sequence 1o = T,11,T5,...,T,_o = Ky of trees, and produce the
sequence p simultaneously. Suppose that the tree T;_1 has already
been constructed for some 4 (initially we have Ty = T'). As we know,
this T;_1 has at least one leaf (i.e. a vertex of degree 1). We take
the smallest of the leaves of T;_; (recall that the vertices of T are
the numbers 1,2,...,n), and we form 7; by removing this leaf from
T;_1 together with the edge incident to it. At the same time, we also
define the ith term, p;, of the constructed sequence as the neighbor
of the leaf just torn off from 7;_;. This is the main trick: we do
not record the leaf but its neighbor! By doing this successively for
i=1,2,...,n—2, we have defined the whole sequence p = P(T).

Now we derive how to reconstruct the original tree T = P~!(p)
from the sequence p = (p1, pa, - . ., Pn—2). More exactly, we give a rule

1A somewhat vandalic one.
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3
step 2
3 9 |
8 1 o K step 3
6 i 7

Fig. 8.2 (a) A spanning tree with code (5,1,1,4,5,1); (b) the procedure
of its reconstruction from the code.

creating a spanning tree from each given sequence p, and we proceed
in such a way that if p arose from some spanning tree 1" then our rule
gives us back the tree T'. This will show that the coding of spanning
trees by sequences indeed defines a bijection as we claimed.

So let us suppose that a given sequence p arose by the above-
described construction from some (as yet unknown) spanning tree 7'.
Let ¢; denote the leaf of T that was removed first. How can we
tell £1 from the sequence p? This ¢; cannot occur anywhere in the
sequence p (since we wrote only vertices still present in the current
tree into the sequence p). Further, any vertex not contained in the
set {p1,p2,...,Pn—2} has to be a leaf of the tree Tp, for otherwise we
would sooner or later tear off a leaf hanging from it, and it would
appear in the sequence p at that moment. According to the rule for
removing leaves, £1 must thus be the minimum element of the set
{1,2,...,n} \ {p1,p2,-..,Pn—2}. Now we can draw the vertices ¢,
and p; and connect them by an edge (see Fig. 8.2b).

Further, we proceed similarly. Having found the leaves (1, £o, ...,
¢;_1 removed from T in the steps 1 through ¢ — 1, we determine the
leaf ¢;. It cannot be any of the vertices p;, pi+1, - - ., Pn—2, and neither
any one of £1,...,0;_1, of course—therefore ¢; is the minimum of the
set {1,2,...,n}\{pi, Pit1s---,Pn—2,01,02,...,0;—1}. We connect this
£; by an edge to the vertex p;; if £; has not been drawn yet, we draw
it as well, and similarly for p;. The first 5 steps of this construction
are depicted in Fig. 8.2(b). In the 6th step, we would draw the edge
{1,5}.

After n — 2 steps, we have drawn n — 2 edges of the spanning tree
T, namely all the edges that have been removed in the construction
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of p. It remains to deduce which edge was the last remaining one.
One of its endpoints must be p,_o, i.e. the neighbor of the last leaf
torn off, and the other endpoint is the vertex not occurring among
the removed leaves /1, ..., ¢, o and distinct from p,_o. In Fig. 8.2,
this edge is {1, 8}.

This finishes the description of the reconstruction procedure, but
the proof is not finished yet. It is easy to check that for any input
sequence p, the algorithm executes properly and returns some sub-
graph G of K,, with n — 1 edges, and we also know that if p was
obtained by encoding some spanning tree T', then G = T'. It remains
to prove that (1) G is always a tree, and (2) that the encoding pro-
cedure applied to G always yields the original p.

Let G; = ({1,2,...,n},{ei,€it1,...,en_1}), where eq,ea,...,ep_1
are the edges of G in the order as they are generated by the decoding
algorithm. One can check that none of the edges €;41,...,e,-1 can
be incident to the vertex ¢;, and therefore /; is a leaf in G;. Thus
G is a tree by the tree-growing lemma (Lemma 5.1.4), and more
generally, G; is a tree plus ¢ + 1 isolated vertices.

As for (2), it suffices to verify that ¢; is always the smallest leaf in
Gy, 1 <i < n—2. By the definition of ¢;, a smaller leaf could occur
only among /1,...,¢;_1 or among {p;,...,pp—2}. The first group is
out of question, since #1,...,#;_1 are isolated in G;. Let us consider
a vertex pg, ¢ < k < n — 2. In the graph Gy, pr is a neighbor of
the leaf /i, and it has yet another neighbor since it lies in the single
connected component of G1 with at least 2 vertices. O

Exercises

1. Let T be a spanning tree of K,,, and let p = P(T) be its Priifer code.
Let m; be the number of times the vertex ¢ appears in the sequence p,
i=1,2,...,n. Prove that deg; (i) = m; + 1 holds for all :.

2. ©5 (a) Design the details of an algorithm for producing a spanning
tree of K, from its Priifer code. How many steps does it need in the
worst case? *Can you make it run in O(nlogn) time, or even faster?

(b) *Program the algorithm from (a). Use it as in part (b) of Exer-
cise 8.3.4. Which of the two algorithms runs faster?

8.5 Proofs working with determinants

Two proofs of Theorem 8.1.1 given in this section are based on
linear algebra, and they illustrates a nice combinatorial meaning of
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the determinant (the definition and facts about determinants we
need can be found in the Appendix). They are somewhat more dif-
ficult than the previous proofs and require basic results concerning
determinants, but they provide a formula for the number of spanning
trees of an arbitrary graph.

Let G be an arbitrary graph with vertices 1,2,...,n, n > 2, and
with edges eq, €9, ..., e,. We introduce an n X n matrix @), called the
Laplace matriz of the graph G, whose elements ¢;; are determined
by the following formula:

qii = degg(i) i=1,2,...,n
G = {—1 for {i,j} € E(G)
i =

1,7 =1,2,... —ay
0 otherwise tJ » 45 N, 8 FE g

Soon we will find useful the observation that the sum of the rows of
the Laplace matrix is the zero vector.

Further, let Q;; denote the (n — 1) x (n — 1) matrix arising from
the matrix @ by deleting the ith row and the jth column.

The following remarkable theorem holds:

8.5.1 Theorem. For every graph G, we have T(G) = det Q1.

Let us remark that also T'(G) = | det Q;;| holds for any two indices
i,7 €{1,2,...,n}. We do not prove this here; a proof is indicated in
Exercise 1.

Before we start proving Theorem 8.5.1, we calculate the num-
ber of spanning trees of a complete graph (Theorem 8.1.1) from
it. For G = K,, the Laplace matrix has the number n — 1 every-
where on the diagonal, and —1 everywhere else. If we delete the first
row and the first column, we obtain an (n — 1) x (n — 1) matrix of
the form

n—-1 -1 -1 ... -1
-1 n-1 -1 ... -1
-1 -1 -1 ... n-1

We calculate the determinant by suitable row and column operations.
We subtract the first row from all rows except for the first one, and
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then we replace the first column by the sum of all columns. We get
a matrix having the numbers 1,n,n,n,...,n on the main diagonal
and zeros everywhere below the main diagonal. The determinant is
then the product of all diagonal elements, i.e. n" 2.

We prove Theorem 8.5.1 in two ways. The first one is shorter and
more graph-theoretic. The second one uses more of linear algebra,
and probably it better explains why the theorem is true.

First proof of Theorem 8.5.1. We proceed by induction, and to
make it work, we strengthen the inductive hypothesis and show that
the theorem also holds for multigraphs, i.e., for graphs with multiple
edges. These were already mentioned in Section 4.4: Any two ver-
tices may be joined by an arbitrary number of edges (none, one, or
several). If two vertices u and v are joined by several edges, then we
count each spanning tree in which v and v are adjacent the corre-
sponding number of times, in other words, we distinguish between
spanning trees that use different edges. The following multigraph,
for instance, has 6 spanning trees:

=

We do not allow our graphs to have loops, since these have no
effect on the number of spanning trees. What does the Laplacian of a
multigraph look like? If two vertices u and w are joined by m edges,
then ¢,, = —m. The diagonal entry g, is the degree of the vertex
u, where the incident edges are counted with multiplicity (e.g. the
middle vertex in the preceding figure has degree 5).

Further, we will rely on the formula

TG)=T(G—-e)+T(G:e), (8.1)

where e is an arbitrary edge of the graph G, G — e denotes the
graph obtained by deleting that edge, and G : e the one obtained by
contracting the edge. The latter means that we remove the edge e
from the graph G and its endvertices are merged into one. By doing
this, we may introduce new multiple edges—this is the difference to
the kind of edge contraction considered in Section 6.4. However, if
the endvertices of e are joined in G by edges other than e, then these
edges will be deleted (they could become loops at the vertex created
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by the merging, but we do not consider loops here). The following
drawing shows an example of a contraction:

e
1 - g
>
3
4
G G:e
In order to see why Eq. (8.1) holds, we divide the spanning trees
of G into two classes. The spanning trees of the first class are those
that do not contain the edge e. But these are exactly the spanning
trees of the graph G—e, and there are T'(G—e) of these. The spanning
trees of the second class are those that do contain the edge e, and

these are in one-to-one correspondence with the spanning trees of
G : e, as indicated in the following picture

N A

and as the reader can conclude at his own leisure. Thus, there are
T(G : e) trees of this kind.

Now we still have analyze how the operations of edge deletion and
edge contraction affect the Laplacian. More precisely, assume that
the edge e has endvertices 1 and 2 and let us consider how the matrix
Q11 changes. For edge deletion, this is very simple: If we denote by
@’ the Laplacian of G — e, then @ arises from Q11 by subtracting 1
from the element in the upper left corner (because deleting the edge
e only affects the elements in the positions (1,1), (1,2), (2,1), and
(2,2) in the Laplacian matrix, and we are interested in the Laplacian
with the first row and first column deleted).

When contracting the edge e, the vertices 1 and 2 disappear, and
a new vertex, which arises from their merging, appears in their stead.
Let us number the vertices of G : e in such a way that the new vertex
gets the label 1 and an old vertex that used to have the number ¢ > 3
now gets the label i—1, and let " denote the Laplacian of G : e with
this numbering of the vertices. It is easy to see that QY; = Q11,22,
which is the matrix obtained from @ by deleting both the first and
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second rows and the first and second columns. For instance, for the
graph in the two pictures above, we have

) 0o -1 -1 0

0 2 -1 0
Qu=| _; 1 3 o |- =1 -1 3 0
1 0 1

-1 0 0

Now we are ready to proceed with the actual inductive proof. We
will show by induction on m that T(G) = det Q11 holds for every
multigraph G with at most m edges.

If in a multigraph G the vertex number 1 is not incident to any
edge, then we have T'(G) = 0. The first row of the Laplacian matrix
consists only of zeros, and since the rows of a Laplacian always sum
up to zero, the sum of the rows of ()11 is also zero. Thus, det Q11 = 0,
i.e, the statement we want to show holds true. In particular, we have
established the validity of our claim for the base case m = 0.

The second case is more interesting: If the vertex number 1 is
incident to at least one edge, then we fix one such edge, let us call
it e, and we choose a numbering of the vertices such that the other
endvertex of e is labeled by 2. If we denote by @Q, @', and Q" the
Laplacian matrices of the graphs G, G —e, and G : ¢, respectively, as
above, then by Eq. (8.1) and by the inductive assumption, we have

T(G) =T(G—e)+T(G : e) = det Q1 +det QF; = det Q' +det Q11,22

As we know, the determinant of a matrix is a linear function of
each row, and the matrix @1; arises from @), by adding the vector
e1 = (1,0,0,...,0) to the first row. Thus, det Q11 = det Q}; +det R,
where R has the vector e; as its first row and agrees with @11 in
the remaining rows. By expanding the determinant of along the first
row, we see that det R = det Q11,22, and hence det Q1 +det Q11,22 =
det @}, + det R = det Q1. This completes the inductive step and
hence the first proof of Theorem 8.5.1. We conclude by remarking
that we only needed a very special case of the row expansion formula
for determinants, where the row in question contains a single 1 and
otherwise only zeros, and this case is immediate from the definition
of the determinant. a

Second proof of Theorem 8.5.1. First we fix some arbitrarily
chosen orientation G of the graph G, i.e. for each edge e, we select
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one of its endpoints as the head and the other one becomes the tail
(see Section 4.5 for the terminology of directed graphs). This directed
edge will be denoted by €}. Interestingly, we need some orientation
for the proof, although the conclusion is independent of the particular
orientation, and only depends on G! We define an auxiliary matrix
D = Dg, called the incidence matriz for the chosen orientation G.
This matrix has n rows, corresponding to the vertices of (_j, and m
columns, corresponding to the edges of G , and it is defined as follows:

—1 if 7 is the tail of €,
dip =< 1 if 7 is the head of €},
0 otherwise

(recall that the edges are numbered ey, .. ., €,,). Note that the matrix
D has exactly one entry 1 and one entry —1 in each column, the other
entries are 0, and the sum of all rows is the zero vector.

Let us recall that if A is a matrix, the symbol A7 denotes the
transposed matrix A; that is, AT has the element aj; at position
(i,7). Next, let D denote the matrix arising from D by deleting the
first row. Here is a connection between the matrix D and the Laplace
matrix of G.

8.5.2 Lemma. For any orientation G of the graph G, the equalities
DD"T = @Q and DD = Q1 hold, where D = Dg.

Proof. By the definition of matrix multiplication, the element at
position (i,5) in the product DDT equals Y ", dirdjy. For i = j,
the product d;rdj; = dfk is 1 if 7 is the head or the tail of the edge
€k, and it is 0 otherwise, and therefore the considered sum is just the
degree of the vertex i in G. For i # j, the product d;,d; is nonzero
only if €, = (i,7) or €, = (j,7), and in this case it equals —1. By
comparing this with the definition of the Laplace matrix, we see that
DDT = Q. The second equality claimed in the lemma is a simple
consequence of the definition of matrix multiplication. a

The following key lemma connects spanning trees to determi-
nants:

8.5.3 Lemma. Let T be a graph on the vertex set {1,2,...,n} with
n —1 edges (n > 2), and let T' be an orientation of T. Let C = Dz

be the incidence matrix of the directed graph f, and let C' denote
the square matrix obtained from C by deleting its first row. Then
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det C' has one of the values 0, 1, —1, and it is nonzero if and only if
T is a tree (this means it is a spanning tree of the complete graph
on vertex set {1,2,...,n}).

Proof. We proceed by induction on n. For n = 2, the situation
is simple: T has one edge, so it is a spanning tree, and the single
element of the matrix C is either 1 or —1.

Let us consider an arbitrary n > 2, and let us distinguish two
cases, depending on whether any of the vertices 2,3,...,n has de-
gree 1 in T

First, suppose that such a vertex of degree 1 exists among the
vertices 2,3, ...,n. Without loss of generality, we may assume that
it is the vertex n (should it be another vertex, we simply renumber
the vertices). The vertex n belongs to a single edge, €. This means
that the matrix C has a single nonzero element in the last row (equal
to 1 or —1), namely in the kth column.

We expand the determinant of the matrix C' according to the row
corresponding to the vertex n (this is the (n — 1)st row of C):

n—1
det C = Z(—l)n_l—’—jénfl’j det C’nfl,j,
j=1

where C’ij denotes the matrix C after deleting the ith row and the jth
column. Since the (n—1)st row has only one nonzero element, namely
Cn1k, We get detC = (71)”_1‘”‘36”_17;9 det Cp,—1 1, and therefore
|det C| = | det Cp—1 1.

Let 1" be the directed graph obtained from T by deleting the
vertex n and the edge €. The matrix C' arising from C’ = Dz, by
deleting the first row is just C,_1 ;. By the inductive assumption,
we thus know that |det C’| is 1 or 0 depending on whether 7" (the
undirected version of T" ) is a spanning tree on its vertex set or not.
Since we have removed a degree 1 vertex from 7', T' is a spanning tree
if and only if 7" is a spanning tree. This concludes the inductive step

for the case when at least one of the vertices 2,3,...,n has degree
1linT.
Let us discuss the second case, when none of the vertices 2,3,...,n

has degree 1 in T'. First we observe that T has an isolated vertex in
this case (if it were not so, the vertex 1 would have degree at least
1 and the other vertices degrees at least 2, and hence the sum of
degrees would be greater than 2|FE(T)| = 2(n— 1)—a contradiction).
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Because of an isolated vertex, T is disconnected, and hence it
is not a spanning tree. To finish the proof we need to show that
det C = 0. If there is an isolated vertex among 2,3,...,n then it
corresponds to a zero row in the matrix C. If the vertex 1 is isolated
then the sum of all rows of C is the zero vector because the incidence
matrix Dz has zero row sum. In both cases we have det C=0. O

By the lemma just proved, we know that the number of spanning
trees of the graph G equals the number of square (n — 1) x (n — 1)
submatrices with nonzero determinant of the matrix D. For finish-
ing the proof of Theorem 8.5.1, we use an algebraic result about
determinants.

8.5.4 Theorem (Binet—Cauchy theorem). Let A be an arbi-
trary matrix with n rows and m columns. Then

det(AAT) = Zdet (A7)?,

where the sum is over all n-element subsets I € ({1’2’5’"’”}) , and where
A7 denotes the matrix obtained from A by deleting all columns whose
indices do not lie in I.

We give a proof of this theorem for completeness, but first let us
look at how the Binet—Cauchy theorem implies Theorem 8.5.1. With
the preparation we have made, this is actually quite straightforward.
By Lemma 8.5.2 and then by Theorem 8.5.4 we get

det Q11 = det(DDT) = Y det(D;)?,
({1 32,00 m})

n—1

and by Lemma 8.5.3, we see that the last expression is exactly the
number of spanning trees of G. O

Proof of the Binet—Cauchy theorem 8.5.4. Let us denote M =
AAT. We expand the determinant of M according to the definition
of a determinant, i.e.

det M = Z sgn(m H M (i)

TESH

where the sum is over all permutations 7 of the set {1,2,...,n},
and where sgn(7) stands for the sign of the permutation = (for any
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permutation, the sign is +1 or —1). We will not need the definition of
the sign of a permutation directly, and so we only recall the following:

8.5.5 Fact. For any permutation m of the set {1,2,...,n} and for
indices ¢,7, 1 < 1 < j < n, let the symbol m;_.; denote the per-
mutation whose value at i is w(j), the value at j is 7(i), and the
values for all other numbers agree with those of m. Then we have

sgn(m) = —sgn(mi;).

Now we substitute the values of the elements m;; of the matrix M,
namely m;; = > ;' a;xajk, into the above expansion of the deter-
minant of M. Then we multiply out each of the products. This leads
to

det M = Z sgn() H < Z aikaw(i)k)
7r i=1 k=1

= Z sgn(7) Z H ki A (1), ks -

k1 ka,... ken=1i=1

Let us change the notation in this last formula to a more suit-
able one. The choice of the n-tuple ki,...,k, of the summation
indices in the inner sum can be understood as a choice of a map-
ping f: {1,2,...,n} — {1,2,...,m} defined by f(i) = k;. With this
new fancy notation, we thus have

n

det M = Z sgn(m) Z H @, f(3) Do (d), £ (4) -

™ f:{1,2,...,n}—{1,2,....m} i=1

In this sum, we exchange the order of summation: we sum according
to the permutation 7 (inner sum) and then according to the function
f (outer sum). For a yet more convenient notation, we introduce the
symbols

P(f,7) = [ aipy@n(iy. )5
=1

S(f) = sen(m)P(f,7),
and then we have

det M = > S(f).

f: {1727"'7,”}_){1727'"7’”1}
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A key lemma for the whole proof is the following one:

8.5.6 Lemma. If a function f: {1,2,...,n} — {1,2,...,m} is not
injective, then we have S(f) =0 (for any choice of the matrix A).

Proof of the lemma. Let i,j be indices such that f(i) = f(j). Then
for any permutation 7, the products P(f,7) and P(f,m;..;) are the
same (the notation is as in Fact 8.5.5). If 7 runs through all permu-
tations, then also m;; runs through all permutations (although in
a somewhat different order), and therefore we have

S(f) = sen(micj)P(f,micy) = Y —sen(m) P(f, ) = =S(f);

hence S(f) = 0 as the lemma claims.

By the lemma, we can write
det(4AT) = > S(f).
f:4{1,2,....n}—{1,2,...;m}
where the summation is over all injective functions {1,2,...,n}—
{1,2,...,m}.
Our goal now is to show that the right-hand side of the last equa-

tion equals Y, det(Ar)?, where the sum runs over I € ({172%.,7”})_

Let us choose some [ € ({1’2’7'1'"7”}), and calculate
det(A7)? = det(Aj) det(AT) = det(A;AT).

This determinant can be expanded in exactly the same manner as
we did for the determinant of AA”. This time we get

det(4;A7) = > S(f)
f:A{12,..,n}—I
We thus have

S det(ani= Y > s

]e({l»l;,m}) Ie({1’2’h'"m}) f:{1,2,....,n}—I
= > S(f) = det(AAT);
f:{12,...,n}—={1,2,...,m}

the second equality follows from the fact that any injective function
f+A{L2,...,n}—={1,2,...,m} uniquely determines the n-element
set I of its values. This proves the Binet—Cauchy theorem 8.5.4. O
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z
area(P)? = area(Py,)?
+ area(P,, )%+ area (P, )?
P,. Py,
P
x
Ppy

)

Fig. 8.3 Illustration for the geometric meaning of the Binet—Cauchy theo-
rem.

Let us mention a geometric interpretation of the Binet—Cauchy the-
orem in terms of volumes. We omit all proofs, since these, although
elementary, would lead us farther into geometry than we want to go in
this book. Let us consider an n X m matrix A as in the theorem, and let
us interpret its n rows as n vectors ai,as, ..., a, in the m-dimensional
space R"™. These n vectors span an n-dimensional parallelotope P in
R™; Fig. 8.3 illustrates this for m = 3 and n = 2 (about the only
nontrivial case where a picture can be drawn). It can be shown that
| det(AAT)] is the square of the n-dimensional volume of P (in the fig-
ure, it is simply the squared area of P). Choosing an n X n submatrix B
corresponds to projecting the vectors aq,as,...,a, to a n-dimensional
subspace of R™ spanned by some n coordinate axes. In the figure, there
are 3 possible 2 x 2 submatrices corresponding to the projections into
the 3 coordinate planes. The quantity | det(BBT)| is the squared volume
of the corresponding projection of P, and the Binet—Cauchy theorem
asserts that the squared volume of P equals the sum of the squared
volumes of the n-dimensional projections of P. Actually, for n = 1 and
m = 2, the reader may want to check that this is just the theorem of
Pythagoras!

Exercises

1. In this exercise, G is a graph on n vertices, @ is its Laplace matrix,
and @Q* denotes the matrix whose element at position (7,j) equals
(—1)7'+] det QU

(a) Prove that det Q@ = 0.
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(b) Prove that if the graph G is connected then its Laplace matrix has
rank n — 1.

(¢) *Prove that the rank of the Laplace matrix of a disconnected graph
is at most n — 2. Derive that for a disconnected G, Q* is the zero
matrix.

(d) Show that if G is connected and & € R"™ is an arbitrary vector, then
Qz = 0 holds if and only if x is a multiple of the vector (1,1,...,1).

(e) *Prove that the product QQ* is a zero matrix. Using (d), infer that
all the elements of the matrix Q* are identical.

2. Solve Exercise 8.1.2 using Theorem 8.5.1.

3. *Calculate T'(K,, ) (the number of spanning trees of the complete
bipartite graph).

4. *Let G be an (undirected) graph and M its incidence matrix; if G has
n vertices v, va, ..., v, and m edges ey, ea, ..., e, then M is an n xm

matrix with
1 if v; € e
mik =

0  otherwise.

Prove that the following two conditions are equivalent:
(i) G is bipartite.

(ii) Any square submatrix of M (arising by deleting some rows and
columns) has determinant 0, 1, or —1. A matrix M with this property
is called totally unimodular.

8.6 The simplest proof?

Which proof of Cayley’s formula is the simplest? This depends on
personal preferences, of course. However, the following one, recently
found by Jim Pitman, a probabilist from the University of California
at Berkeley, is a good candidate. It illustrates vividly that there is
always a chance to discover something new even in areas of mathe-
matics that are considered well-understood.

This proof is a sophisticated example of double counting (which
was discussed in Chapter 7). We will not count just trees (or verte-
brates and similar species), but rather PARTS, or Plans of Assembly
of a Rooted Tree. What is a PART? Formally it is a triple (7', /),
where T is a tree with vertex set V = {1,2,...,n} (n is fixed pos-
itive integer), r € V is a root, and ¢ is a labeling of the edges of T
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by the numbers 1,2,...,n — 1. That is, ¢ is a bijection ¢: E(T) —
{1,2,...,n — 1}. Here is an example of a PART:

root 3

We can imagine that we start with the empty graph on the vertex
set V' and we make a rooted tree by adding edges one by one. The
labeling ¢ encodes the order in which the edges are added.

Given a tree T', we can select the root in n ways, and then we can
choose the labeling ¢ in (n — 1)! ways. Hence the number of PARTs
equals n(n — 1) k(Ky).

We now count the number of PARTSs in a different way. To this
end, we first interpret a rooted tree as an oriented tree in which all
edges are directed towards the root (such a tree is sometimes called
an in-branching).

root

We note that the root is the unique vertex that is not the tail of any
arrow (directed edge); in other words, the unique vertex of outdegree
0. Moreover, any orientation of a tree with exactly one vertex of
outdegree 0 corresponds to a (unique) rooted tree in this way.

Now we consider PARTS in this oriented interpretation and we
want to count the number of PARTSs that can be obtained from
empty graph on V' by successive addition of n — 1 arrows.

The first arrow has to join two different vertices, and thus it can
be chosen in n(n—1) ways. The second arrow has to be different from
the first, and it has to satisfy an extra condition: Since all arrows
point towards the root, every vertex has outdegree at most 1, and
hence the tail of the second arrow has to be different from the tail of
the first one. The head of the second arrow can be chosen arbitrarily,
and so we have n(n — 2) possibilities for the second arrow.
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What are the restrictions for selecting the kth arrow? We have to
obey the following two rules:

(A) We must not create a cycle (in the corresponding undirected
graph; i.e. disregarding the orientation of the edges). Thus, each
newly selected arrow has to connect two different components
of the graph created so far (by components we again mean the
components of the underlying undirected graph).

(B) At the end of this process every vertex, with the single exception
of the root, has to be the tail of exactly one of the selected arrows.
Since we have only n — 1 arrows at disposal, we must not waste
any of them and thus no two arrows may have the same tail.

Here is a key observation: Fvery component of the current graph at
every step has exactly one verter of outdegree 0. This is because a
component with m vertices has exactly m—1 arrows (since it is a tree
by (A)), and because each vertex always has outdegree at most 1.
It follows that if we select k arrows respecting rules (A) and (B),
then the current graph has n — k components (we leave the verifica-
tion to the reader). The next picture illustrates the situation after
selecting the first kK = 4 arrows of the PART from the previous pic-

ture:
4 1
® @//
2
Ca=aral

3

The next arrow, with label k£ 4+ 1, can terminate in an arbitrary
vertex. The tail has to be chosen as a root of one of the components,
and this component must be different from the one containing the
head. Hence we have n(n — k — 1) possibilities for choosing the kth
arrow.

After n — 1 steps of this procedure we arrive at a PART, and
every PART is obtained exactly once in this way. Thus the number
of PARTS is

n—2
[[ntn—k—1)=®m-1)n""
k=0

Comparing this with the expression n(n — 1)! k(n) derived earlier,
we arrive at Cayley’s formula: x(K,,) = n" 2.
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Finite projective planes

Mathematicians are often interested in objects that are highly reg-
ular in some sense. A good example is the regular Platonic solids
we have seen in Section 6.3. They are scarce, beautiful, and also
very useful. For instance, symmetry groups related to them play an
important role in physics.

In this chapter, we will consider certain very regular families
of finite sets, the so-called finite projective planes. As the name
suggests, this notion has a geometric inspiration. Finite projective
planes are highly symmetric and also somewhat rare. Appreciating
their mathematical usefulness, and maybe also their beauty, requires
learning something about them first. Let us remark that the study
of regular configurations of sets with a flavor somewhat similar to
finite projective planes is an extensive branch of combinatorial math-
ematics (we will say a little more about such objects in Chapter 13).
Suitable further reading for the present chapter is Van Lint and
Wilson [7].

9.1 Definition and basic properties

A finite projective plane is a system of subsets of a finite set with
certain properties.

9.1.1 Definition (Finite projective plane). Let X be a finite set,
and let £ be a system of subsets of X. The pair (X, L) is called a
finite projective plane if it satisfies the following axioms:

(P0) There exists a 4-element set F' C X such that |[LNF| < 2
holds for each set L € L.

(P1) Any two distinct sets Li,Ls € L intersect in exactly one
element, i.e. |L1 N Lo| = 1.

(P2) For any two distinct elements x1, zo € X, there exists exactly
one set L € L such that x1 € L and zo € L.
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If (X, L) is a finite projective plane, we call the elements of X
points and the sets of L lines. If x € X is a point and L € L a line
and x € L, we say that “the point x lies on the line L” or also that
“the line L passes through the point #” and similarly.

If we express the axioms (P0)—(P2) in this new language, they
start resembling familiar geometric statements. Axiom (P1) says that
any two distinct lines meet at exactly one point (of course, in the
usual planar geometry, this is not quite true—there is the exception
of parallel lines!). Axiom (P2) tells us that there is exactly one line
passing through any two distinct points. Axiom (P0) then requires
the existence of 4 points such that no 3 of them are collinear. This
axiom is of a somewhat auxiliary nature and it serves just for ex-
cluding a few “degenerate” types of set systems that satisfy (P1) and
(P2) but are rather uninteresting.

If a,b € X are two distinct points of a finite projective plane,
the unique line L. € £ containing both ¢ and b will be denoted by
the symbol ab. If L, L' € L are distinct lines, the unique point of
L1 N Ly is called their intersection (although, strictly speaking, the
intersection of L1 and Ls in the usual sense is a one-point set).

Finite projective planes are a finite analogy of the so-called pro-
jective plane (more exactly, real projective plane) studied in geometry.
The terminology introduced above (“points”, “lines”, etc.) follows this
analogy. Thus, we make a short detour and mention what a real projec-
tive plane is. First, we should perhaps remark that the adjective “real”
indicates that the real projective plane is constructed from the set of
real numbers, and not that the other kinds of projective planes would
be somehow faked.

In the usual (Euclidean) plane, any two lines intersect at a single
point, but with an exception: parallel lines do not intersect at all. In
many geometric considerations, such an exception is unpleasant, since it
may require treating many special cases, both in proofs and in analytic
calculations. The real projective plane is a suitable extension of the
Fuclidean plane by a set of additional points called the points at infinity.

Roughly speaking, each direction of lines in the plane corresponds
to one point at infinity, and all the lines parallel to that direction are
defined to intersect at this point. All the points at infinity lie on a single
line at infinity. In this way, one achieves that now every two distinct
lines intersect at a single point (which can lie at infinity, of course), and
hence all the axioms (P1), (P2), and (P0) hold in the real projective
plane.

The points at infinity are no philosophical mystery here. The pro-
jective plane is a mathematical construction of a similar kind as, for
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example, producing rational numbers from the integers or real num-
bers from the rationals, i.e. a kind of completion. Readers interested
in a detailed construction of the real projective plane will find it in
Section 9.2.

We still owe the reader an explanation of the adjective “projective”
in the term projective plane. First, we should indicate what is a pro-
jective transform. Consider two planes p and ¢ in the 3-dimensional
FEuclidean space and a point ¢ lying neither on p nor on ¢, and project
each point of p from the point ¢ into the plane o. This defines a map-
ping, called a projective transform, of p into o. Or does it? Well, not
quite: if x € p is a point such that the segment cx is parallel to the plane
o then, in the usual Euclidean geometry, the image of x is undefined.
But if we complement both p and o by lines at infinity so that they
become projective planes, then this projective transform is a bijection
between these two projective planes. If both p and o are considered
as copies of the same plane, we can regard this mapping as a bijec-
tive mapping of the projective plane onto itself. The projective plane
is thus an appropriate domain for doing projective geometry, a branch
of geometry concerned with properties of geometric objects and con-
figurations that are preserved by projective transforms. For example,
projective transforms map conic sections (circles, ellipses, hyperbolas,
and parabolas) to conic sections, but an ellipse can be transformed to a
hyperbola, etc., and an elegant unified theory of conic sections can be
built in the projective geometry.

The analogy of the finite projective planes with the real projec-
tive plane is useful as a motivation for various notions, and often also
for intuition (we can draw geometric pictures). Geometric considera-
tions made in the real projective plane and using axioms (P0), (P1),
and (P2) only can be carried out in finite projective planes as well. It
should not be forgotten, though, that a finite projective plane is only
a system of finite sets with properties (P0)—(P2) and nothing else, and
hence other geometric notions cannot be transferred to it automatically.
For instance, there is no good notion of distance in a finite projective
plane, and hence it is not clear what a “circle” should mean. Another
important difference is that in the “usual” geometric plane, the points
of each line are naturally ordered “along” that line, but no such ordering
can be reasonably introduced in finite projective planes.

As was remarked above, finite projective planes are rare creatures,
and, given only the definition, it is not easy to discover any example
at all (try it if you don’t believe). Even the smallest example is
interesting.

9.1.2 Example. The smallest possible example of a finite projective
plane has 7 points and 7 lines, each line with 3 points, and it is called
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Fig. 9.1 The Fano plane.

the Fano plane. It is shown in Fig. 9.1; the points are marked by
dots labeled 1-7, and the three points of each line are connected by
a segment, in one case by a circle arc.! These connecting lines are
labeled by a—¢g in the figure.

The Fano plane, although small, is a useful mathematical object (see
Section 9.4 for one application), and it can also appear as a solution to
various puzzles or even totally serious problems, such as the following
one. Seven policemen were transferred to the 87th precinct from various
districts. A good opportunity for them to get acquainted with each
other is to watch the Plano Bar on Southwest C Drive, which otherwise
is a simple and somewhat boring duty as the bar’s patrons are mostly
computer criminals, digital money counterfeiters, and the like. A shift
of three men is required for that service, seven days a week. How can a
weekly schedule of shifts be arranged in such a way that every two of
the seven men have a common shift? The Fano plane provides a good
solution (points correspond to policemen and the shifts are the lines,
arranged in some order); see Fig. 9.2. Everyone has the same number
of shifts, no one has more than two consecutive days, but on the other
hand, every shift has one man who was also present the previous day
and knows what was going on, etc.2 We are not aware of such a schedule
actually being used by police forces, but, for instance, some motorcycle
races are organized according to a scheme based on an affine plane of
order four (an affine plane is a concept closely related to projective
planes; see Exercise 10 for a definition).

Tt can be shown that 7 points cannot be drawn in the Euclidean plane in
such a way that each triple corresponding to a line in the Fano plane lies on a
Euclidean straight line—see Exercise 11.

2A quiz for aficionados of classical detective stories: can you recall where the
seven policemen in Fig. 9.2 come from, and the names of their more famous rivals
or partners, the great detectives?
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Weekly schedule for location: Plano Bar

Mon | Cramer  Hoong Japp

Tue Cramer Holcomb Lestrade

Wed | Holcomb Hoong Janvier

Thu | Cramer Janvier Parker

Fri Holcomb Japp Parker
Sat | Janvier Japp Lestrade
Sun | Hoong Lestrade Parker

Officer’s signature: ookl

Fig. 9.2 Allocating 7 persons to 7 shifts by 3.

We now prove several propositions showing that in a construction
of a finite projective plane, our freedom is much more restricted than
might appear at first sight.

9.1.3 Proposition. Let (X, £) be a finite projective plane. Then all
its lines have the same number of points; that is, |L| = |L’| for any
two lines L, L' € L.

Proof. Choose two lines L, L' € L arbitrarily. First we prove an
auxiliary claim: There exists a point z € X lying neither on L nor
on L.

Proof of the auxiliary claim. Consider a set F' C X as in the axiom
(P0). We have |[LNF| <2 and |[L'NF| < 2. If F is not contained in
LUL' we are done. The only remaining possibility is that L intersects
F at 2 points (call them a,b) and L’ intersects F' at the 2 remaining
points (denote them by ¢, d). Then we consider the lines L; = ac
and Ly = bd. Let z be the intersection of L; and L.

The following geometric picture illustrates the situation:
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Of course, we have to be very careful to use only conditions (P0)—

(P2), rather than some extra geometric information from the picture.

In many respects, finite projective planes “look” quite different from

the geometric (Euclidean) plane.

We assert that z ¢ LUL'. The lines L and L; intersect at a single
point, namely at a, and so if z € L, we would get z = a. But this is
impossible since then the line Ly would contain the points z = a, b,
and d, which are 3 points of F'. This is forbidden by the condition
(P0). Therefore z ¢ L, and analogously one can show that z ¢ L'.
This finishes the proof of the auxiliary claim.

Now we show that the lines L and L’ have the same size. To this
end, we define a mapping ¢: L — L’; it will turn out that it is a
bijection. We fix a point z ¢ L U L’ and define the image ¢(x) of
a point # € L as the intersection of the lines zZ and L', as in the
following picture:

By axioms (P1) and (P2), the point ¢(x) is well defined. Next, we
check that ¢ is a bijection. If y € L’ is an arbitrary point, we consider
the line zy, and let x be its intersection with the line L. Then the
lines Zy and zT coincide, and hence we have y = ¢(z). The mapping
¢ is a bijection as claimed and so |L| = |L/]. O

9.1.4 Definition (Order of a projective plane). The order of a
finite projective plane (X, L) is the number |L| — 1, where L € L is
a line (according to the proposition just proved, the order doesn’t
depend on the choice of the line L).

For example, the Fano plane has order 2 (the lines have 3 points),
and it can be shown that it is the only projective plane of order 2 (up
to renaming of the points, i.e. up to an isomorphism). Subtracting 1
from the line size in the definition of the order may seem odd, but
this definition of order is very natural in other connections, e.g. for
affine planes (Exercise 10) or for Latin squares (Section 9.3).

We continue proving properties of finite projective planes.
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9.1.5 Proposition. Let (X, L) be a projective plane of order n.
Then we have

(i) Exactly n + 1 lines pass through each point of X.
(i) | X|=n?+n+1.
(iii) |£]| =n®+n+ 1.

Proof of (i). Consider an arbitrary point x € X. First we observe
that there exists a line L that doesn’t contain x. That is, if F is the
4-point configuration as in (P0) and a,b,c € F are points distinct
from z, then at least one of the lines ab and ac doesn’t contain x, as
is very easy to check.

Fix such a line L, x ¢ L. For each point y € L, we consider the
line Ty; these are n 4 1 lines passing through x. On the other hand,
any line containing x intersects L at some point y € L and hence it is
counted among the above-mentioned n + 1 lines. Therefore, exactly
n + 1 lines pass through =z.

Proof of (ii). We choose some L = {zg,x1,22,...,2,} € L and a
point a € L, as in the following picture:

T1

GN 14

o LO
Let L; denote the line az;, i = 0,1, ..., n. According to (P1), any two
of these lines, L; and Lj, intersect at a single point, and this is the
point a. The lines Lg, L1, ..., L, each have n more points besides a,
and hence they together contain (n + 1)n + 1 = n? +n + 1 distinct
points. It remains to show that any point z € X \ {a} already lies
on some of the lines L;. By (P1), the line az intersects the line L at

some point, z;, and by (P2), the line az must thus coincide with L.
This proves part (ii).

We omit the proof of part (iii) for now. In the sequel, we will
learn an important principle, and from it we will see that (iii) follows
immediately from what we have already proved. O

Duality. The meaning of duality in projective planes is “exchanging
the roles of points and lines”. In order to formulate this exactly, we
first introduce the so-called incidence graph of a finite projective
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Fig. 9.3 The Fano plane and its incidence graph.

plane. In fact, the incidence graph can be defined for an arbitrary
system S of subsets of a set X. The incidence graph is a bipartite
graph with vertex set X U S, where each set S € § is connected
by an edge to all points x € S. Consequently, each point x € X is
connected to all the sets containing it. Briefly, we can say that the
edges of the incidence graph correspond to the membership relation
“e”. The incidence graph of the Fano plane is shown in Fig. 9.3; the
vertices are labeled by the labels of the corresponding points and
lines. (By the way, the resulting graph is a pretty and important
graph, although the drawing in our figure is rather ugly, and it even
has a name: the Heawood graph.)

Given a finite projective plane (X, L), the dual of (X,L) is
obtained by taking the incidence graph of (X, L) and interpreting
as lines the vertices that were understood as points, and conversely,
vertices that used to be sets start playing the role of points. In
Fig. 9.3, we could just flip the graph upside down. Hence £ is now
thought of as a point set, and for each point x € X, the set of lines
{L € L: z € L} is interpreted as a line. For the Fano plane example,
the points of the dual are thus {a,b, ..., g}, and the lines of the dual
are {a,c,e} (for the point 1 in the Fano plane), {a,d, g} (for the
point 2), and so on.

Proposition. The dual of a finite projective plane is itself a finite
projective plane.

Proof. Let (X, £) be a finite projective plane. The dual of (X, £) is a
pair (£, A), where A is a system of subsets of £, each of these subsets
corresponding to some point of X. (Note that distinct points always
yield distinct subsets of L, since two points share only
one line.)
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We have to verify conditions (P0)—(P2) for (£, A). We begin with
the condition (P0). If this condition is translated into the language
of the original set system (X, £), it means that we should find 4 lines
L1, Loy, L3, Ly € L such that no 3 of them have a point in common. To
this end, let us consider a 4-point configuration F' = {a,b,c,d} C X
as in the condition (P0), and define L; = ab, Ly = cd, L3 = ad,
L, = be. If we look at any 3 of these 4 lines, any two of them share
one point of F, and this point is not contained in the third one.
Hence any 3 of the lines Ly, ..., L4 have an empty intersection, and
we have confirmed the validity of the condition (P0) for the dual set
System.

The condition (P1) formulated for the dual (£, A) requires the fol-
lowing: if z, 2’ € X are two distinct points, then there exists exactly
one line L € L containing both 2 and z’. This is exactly condition
(P2) for (X, £)! Similarly, we find that (P2) for the dual is a conse-
quence of (P1) for the original projective plane (X, £). O

Now we can call the dual of a finite projective plane the dual
projective plane. Proposition 9.1.5(i) implies that the dual projective
plane has the same order as the projective plane we started with.
Also, one can see that parts (ii) and (iii) of Proposition 9.1.5 are
dual to each other, and if we prove one of them, the other one must
be valid too.

In general, if we have some valid statement about finite projective
planes of order n, and if we interchange the words “point” and “line”
everywhere in it, we get a valid statement again. To get a meaningful
sentence, we may have to rephrase other parts as well. For instance,
if the original statement said “lines L1, Lo intersect at the point z”,
we should say “points x1,x2 are connected by the line L” in the
dual statement, etc. Hence, we have a “recipe for producing new
theorems” which gives us about half of the theorems in projective
geometry for free! It is sometimes called the duality principle, and
it was noted by geometers studying the real projective plane a long
time ago.

Exercises

1. Prove that the Fano plane is the only projective plane of order 2 (i.e.
any projective plane of order 2 is isomorphic to it—define an isomor-
phism of set systems first).
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2. *Construct a projective plane of order 3 (before reading the next sec-
tion!).

3. (a) Find an example of a set system (X, £) on a nonempty finite set
X that satisfies conditions (P1) and (P2) but doesn’t satisfy (P0).

(b) Find an X and £ as in (a) such that |X| > 10, |£] > 10, and each
L € L has at least 2 points.

(c) *Describe all set systems (X, £) as in (a).

4. Let X be a finite set and let £ be a system of subsets of X satisfying
conditions (P1), (P2), and the following condition (P0’):

There exist at least distinct lines L1, Ly € £ having at least 3
points each.

Prove that any such (X, £) is a finite projective plane.
5. Prove part (iii) of Proposition 9.1.5 directly, without using duality.

6. Show that the number of sets in a set system consisting of 3-element
sets on a 9-point set, such that no two sets share more than one point,
is at most 12. *Find an example with 12 sets.

7. *Is it possible to arrange 8 bus routes in a city so that

(i) if any single route is removed (doesn’t operate, say) then any stop
can still be reached from any other stop, with at most one change, and

(ii) if any two routes are removed, then the network becomes discon-
nected?

8. *Let X be a set with n? +n+1 elements, n > 2, and let £ be a system
consisting of n? 4+ n + 1 subsets of X of size n + 1 each. Suppose that
any two distinct sets of £ intersect in at most one point. The goal is to
prove that (X, £) is a finite projective plane of order n. The following
sequence of auxiliary statements give one possible way of arranging
the proof.

(a) Prove that each pair or points of X is contained in exactly one set
of L (use double-counting).

(b) Prove that at most n + 1 sets contain any given point.
(c) Prove that each point is contained in exactly n + 1 sets.
(d) Prove that any two sets of £ intersect.
(e) Verify that (X, £) is a projective plane of order n.
9. *Let (X, L) be a projective plane of order n, and let A C X be a set

with no 3 points lying on a common line. Prove that |A| < n + 2 (for
n odd, it can even be shown that |4] <n + 1).
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10. (Affine planes) Let us define an affine plane as a pair (X, A), where X
is a set and A is a collection of subsets of X (called lines) satistying
the following axioms: there exist 3 points not contained in a common
line, any two distinct points are contained in exactly one line, and for
any point p and line A € A with p € A, there exists exactly one line
A with ANA=0andpe A’

(a) Check that the axioms of an affine plane are valid for the usual
Euclidean plane. Find out how to construct a finite affine plane from
a finite projective plane.

(b) Define relation || on A by letting A; || Az if and only if A4; = Ay
or A; N As = (. Prove that || is an equivalence.

(c) *Analogously to our treatment of projective planes, prove that all
lines in a finite affine plane have the same cardinality n, and that such
an affine plane has n% +n lines and n? points, with n 4 1 lines passing
through each point.

(d) *Show that from any affine plane of order n, one can construct a
projective plane of order n.

11. Show that the Fano plane cannot be embedded into the Euclidean
plane. That is, there exist no 7 points and 7 lines in the Euclidean
plane such that each pair of the points lies on one of the lines and each
pair of the lines intersects at one of the points. Use Exercise 6.3.8.

9.2 Existence of finite projective planes

Projective planes of orders 2, 3,4, and 5 exist. But there is no projec-
tive plane of order 6! (Proving this is not easy; see e.g. Van Lint and
Wilson [7].) Projective planes of orders 7, 8, 9 again exist, but none
of order 10. Is there any regularity in this? It turns out that a projec-
tive plane of order n exists whenever a field with n elements exists.
Here a field is meant in the algebraic sense; that is, it is a set with
operations of addition, subtraction, multiplication, and division that
satisfy certain axioms—check the Appendix if you are not sure about
the definition. As algebra teaches us, an n-element field exists if and
only if n is a power of a prime number. This means, in particular,
that projective planes of arbitrarily large orders exist.

For an n divisible by at least two distinct primes, no n-element
field exists, but nevertheless it is not known whether a projective
plane of order n may exist in some such cases or not. There are some
partial negative results; for instance, if the number n divided by 4
gives remainder 1 or 2 and it cannot be written as a sum of two
squares of integers then no projective plane of order n exists (this
is not an easy theorem). This rules out the existence of projective
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planes of orders 6, 14, and many others, but it doesn’t by far cover
all possible orders. For instance, it says nothing about orders n = 10
or 12.

The existence of a projective plane of order 10 has also been
excluded. These results have an interesting history, For order 6, a
proof was already attempted by Euler, but only Tarry gave a convinc-
ing argument around 1900. For order 10, a proof was done recently
using enormous computer calculations. For the next higher order,
12, the existence of a projective plane remains an open problem. It
is clear that this problem can be solved by checking a finite number
of configurations, but the number of configurations seems to be too
gigantic for contemporary computing technology.

An algebraic construction of a projective plane. For readers with
an interest in the subject and with a little background in introductory
algebra, we explain how does one construct a projective plane from a
field. We are particularly interested in finite projective planes, but the
construction works in exactly the same way for the real projective plane
(and, in general, for any field).

may look slightly complicated, since the points of the resulting pro-
jective plane are certain equivalence classes on a set of ordered triples.
However, once one gets used to the definitions, verifying the axioms of
a projective plane is straightforward. In the case where the field is R,
the real numbers, the construction has a quite intuitive geometric inter-
pretation, which we present in the end. For some people the geometric
interpretation may help in orientation in the formal construction, but
for others it might perhaps cause even more confusion, so we leave it to
the reader’s taste how much emphasis should be put on the geometric
intuition.

The construction starts with some field K. For the real projective
plane (i.e. a suitable extension of the usual Euclidean plane by points
at infinity), we take the field R of all real numbers for K. If we choose
an n-element field for K, the construction results in a finite projective
plane of order n. Our running example is the 3-element field K, i.e. the
set {0,1,2} with arithmetic operations modulo 3.

First we consider the set T = K3\ {(0,0,0)}; that is, the set of all
ordered triples (z,y,t) where z,y,t € K and z,y,t are not all simulta-
neously equal to 0. On this 7', we define an equivalence relation ~ as
follows: (z1,y1,t1) = (x2,ys2,t2) if and only if a nonzero A € K exists
such that o = Az, yo = Ay, and to = Aty (it is not at all difficult
to check that this is indeed an equivalence). Points of the constructed
projective plane are the classes of this equivalence. The projective plane
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thus produced? is usually denoted by PK? in the literature, where one
may write the specific field being used instead of K. For instance, the
real projective plane is usually denoted by PR2.

In order to gain a better intuition about the projective plane, we
select one representative triple from each class of the equivalence ~. For
these representatives, we choose the triples whose last nonzero compo-
nent equals 1. Hence, the representatives are triples of the types (z,y, 1),
(2,1,0) (for some z,y € K), and the triple (1,0,0). It is easy to
convince oneself that any other triple is equivalent to a triple of the
above-mentioned form, and also that no two of the triples chosen as
representatives are equivalent under .

It would be cumbersome to keep speaking about equivalence classes
all the time. Thus, we will say “a point (z,y,t)” in the sequel, meaning
the whole equivalence class containing (z,y,t).

If K is an n-element field, we can now count how many points we ob-
tain. The number of points of the form (z,y, 1) is n?, there are n points
of the form (z,1,0), and, moreover, we have the one point (1,0,0)—
altogether n?2 + n 4 1 as it should be. For n = 3, all the points with
their labels are drawn in the following diagram:

010110 210 100

2. e o

le o o
Oe e o
01 2

The points with the last coordinate equal to 1 are arranged into a
natural 3 x 3 grid pattern.

Now it is time to define the lines. For each triple (a,b,c) € K3\
{(0,0,0)}, we define a line L(a,b,c) as the set of all points (z,y,t) of
our projective plane satisfying the equation

ar + by +ct = 0. (9.1

Obviously, two equivalent triples (x,y,t) and (Ax, Ay, At) either both
satisfy this equation or none does, and hence we have indeed defined a
certain set of points of the projective plane. Also, one can see that for
all nonzero A € K, the triples (Aa, A\b, Ac) define the same line as the
triple (a, b, c). Hence, on the triples that define lines we have exactly

3For a finite field, we haven’t yet proved that we obtain a finite projective
plane in the sense of Definition 9.1.1, and we haven’t even defined what the lines
are, so strictly speaking, we shouldn’t yet call the object being constructed a
projective plane. But, being (hopefully) among friends, there is no reason for
such a total strictness, is there?
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the same equivalence relation as on the triples that define points. We
can select the same representative triples as we did for the points, i.e.
triples whose last nonzero component is 1. In the following picture, we
have drawn all the lines passing through the point (0,0,1) labeled by
their representative triples. We have omitted the labels of most of the
points (they are as in the preceding diagram):

100 210 110 010

001

In order to show that for an n-element field, we have really constructed
a finite projective plane of order n, we must check conditions (P0)—(P2).
We begin with the condition (P1) (any two distinct lines intersect at a
single point). So let (a1,b1,¢1) and (ag,bs, c2) be two triples that are
not equivalent, i.e. one is not a multiple of the other.

We could now directly calculate the point of intersection of the two
considered lines (this is a solution of a small system of linear equations)
and verify its uniqueness. We give another proof relying on some basic
results of linear algebra. A reader who tries to do the proof by a direct
calculation may gain a certain new appreciation of linear algebra.

Let us regard the triples (a1,b1,c1) and (as, ba, c2) as 3-dimensional
vectors over the field K. Both are nonzero vectors, and the fact that one
is not a multiple of the other means that they are linearly independent.

Hence, the matrix
al b1 C1
an b2 Co

has rank 2 (linear independence and rank are over the field K). Let
us now view the columns of this matrix as 2-dimensional vectors. We
know that 3 vectors in a 2-dimensional space must necessarily be linearly
dependent, which means that there exist 3 numbers z,y,t € K, not all
of them simultaneously 0, and such that

x(al,ag) +y(b1,b2) —|—t(61702) = (0,0) (92)

If we rewrite this for each coordinate separately, we obtain that the
point (z,y,t) lies on both the considered lines.

On the other hand, since the rank of the considered matrix is 2, two
linearly independent columns have to exist. Suppose, for instance, that
they are (aj,as) and (by, ba). This means that for any vector (u,v), the
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Fig. 9.4 The real projective plane in moonlight.

equation z(a1,as) + y(b1,b2) = (u,v) has a unique solution. In other
words, if we prescribe the value of ¢ in Eq. (9.2), the values of x and y
are already determined uniquely, and so all solutions to this equation
are multiples of a single vector. This means that the two considered
lines intersect at a single point.

This argument can be expressed in a somewhat more learned and
more concise way. The linear mapping sending a vector (x,y,t) € K>
to the vector z(ay,az) + y(b1,bs) + t(c1,c2) € K? has rank 2, hence it
is onto and its kernel is 1-dimensional.

We have proved (P1). The condition (P2) could be proved in a simi-
lar way, or we can say right away that the roles of the triples (a, b, ¢) and
(z,y,z) in Eq. (9.1) are completely symmetric, and so we have (again)
a duality between lines and points. Finally, verification of the condition
(PO) is left to the reader. O

Geometric interpretation. As we mentioned in the beginning of this
chapter, the basic idea of the construction of the real projective plane
is to extend the usual Euclidean plane by points at infinity, so that for
each direction of lines in the Euclidean plane there is one corresponding
point at infinity (not two!), where all of these parallel lines intersect.
So points at infinity can be imagined as points “on the horizon” in a
drawing of the Euclidean plane in perspective; see Fig. 9.4, where circles
correspond to points with integer coordinates.

In order to make this kind of picture more formal, we consider
the three-dimensional space with Cartesian coordinate system (x,y,t),
where the t-axis is vertical. The Euclidean plane is placed in this
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three-dimensional space as the horizontal plane with equation ¢t = 1,
shown gray in the next picture:
51 EQ

v

Each point a of this plane corresponds to a line £ = Oa passing through
the origin of the three-dimensional space. For example, the point a; in
the picture is assigned the line ¢;. Conversely, each line through the
origin of the three-dimensional space corresponds to exactly one point
of the gray plane, except, of course, for horizontal lines, such as /3.

We note that when we start tilting the line ¢; towards the position /5
and further towards the horizontal position /3, the corresponding point
in the gray plane recedes to infinity along the dashed line. So it is not
unnatural to think that horizontal lines such as ¢3 correspond to points
at infinity, to those which we would like to add to the Euclidean plane.
And here we use one of the typical tricks of modern mathematics—
instead of explaining what are the points at infinity that correspond to
the horizontal lines, we forget about the original Euclidean plane, and
we say that the points of the projective plane are lines in the three-
dimensional space passing through the origin. We haven’t quite said so
in the formal construction of PK? described above, but a point of the
projective plane was a set of the form {(Ax, Ay, At): A € K\{0}}, which
geometrically is exactly a line in K3 passing through the origin, except
that we have removed the origin for technical convenience.

Lines of the projective plane correspond to planes in the three-
dimensional space passing through the origin; this we leave to the reader
as food for thought.

Declaring that lines are points might sound strange, but readers who
have gone through a proper course of mathematical analysis probably
got used to oddities of this kind, for example, when told that a real
number is really a set of rational numbers, or that a rational number is
an equivalence class on the set of all pairs of integers, and so on. See,
for example, Gowers [19] for an excellent explanation the merits of this
approach.

Remark. The construction presented above might give the impression
that some points of the projective plane, those at infinity, are some-
what special, different from the others. This is not so; no points have
any special significance, and the “infinity” can in some sense be imag-
ined wherever convenient—the projective plane looks “locally every-
where the same”. This should be intuitively clear from the geometric
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1 2 3 1 2 3
2 3 1 3 1 2
3 1 2 2 3 1

Fig. 9.5 Two orthogonal Latin squares of order 3.

interpretation above, where we identify the real projective plane with
the set of all lines through the origin in the three-dimensional space.
Then the horizontal lines, corresponding to the points at infinity, have
no privileged position among the other lines.

Exercises

1. *»¢S Prove the nonexistence of a projective plane of order 6. Write a
computer program for checking and excluding all configurations com-
ing into consideration. One has to proceed cleverly, since searching all
systems of 43 7-tuples on 43 points would take way too long. (Clever
proofs are known that do not need any case analysis but these are not
easy to discover.)

9.3 Orthogonal Latin squares

A Latin square of order n is a square table with n rows and n
columns. Each entry is a number from the set {1,2,...,n}, and each
number in this set occurs exactly once in each row and also in each
column. Two 3 x 3 Latin squares are depicted in Fig. 9.5.

Now we say what it means when two Latin squares of the same
order are orthogonal. Imagine that one of the squares is printed on a
transparency and that we lay it over the other square in such a way
that the corresponding entries lie above one another. For example,
the squares from Fig. 9.5 overlaid produce

1 2 3
1 2 3

2 1
3 31 2

3 1 2
2 3 1

In this way, we get n? ordered pairs, each pair being formed by an
entry of the square on the transparency and the corresponding entry
of the underlying square. The considered squares are orthogonal if no
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ordered pair appears twice. Since the number of all possible ordered
pairs of numbers from 1 to n is n? too, each pair has to appear
exactly once.

9.3.1 Theorem. Let M be a set of Latin squares of order n, such
that each two of them are orthogonal. Then |[M| <n — 1.

Proof. We begin with the following observation. Let A and B be
orthogonal Latin squares of order n, and let m be some permutation
of the numbers 1,2, ..., n. Let us make a new Latin square A’, whose
entry at position (¢, j) is the number 7(a;;), where a;; is the entry at
position (7, j) of the square A. By the definition of orthogonality, it is
not hard to see that A" and B are also orthogonal Latin squares. This
observation can be summarized by the phrase “the orthogonality of
Latin squares doesn’t change by renaming the symbols in one of
them” .4

To prove the theorem, imagine we have Latin squares Ay, As,...,
A, each two of them being orthogonal. For each A;, permute its
symbols (i.e. the numbers 1,2,...,n) in such a way that the first
row of the resulting Latin square A} is (1,2,...,n). By the above
observation, the Latin squares A}, ..., A} are still pairwise orthogo-
nal. Let us look at which numbers can occupy the position (2, 1) of
the square A. First of all, this entry must not be 1, because the first
column already has a 1 in the first row. Further, no two squares A
and A;- may have the same numbers at position (2, 1): if they did, by
overlaying A; and A’ we would get a pair of identical numbers, say
(k, k), at the position (2,1), but this pair has already appeared at
the kth entry of the first row! Hence each of the numbers 2,3,...,n
can only stand at the position (2,1) in one of the Af, and therefore
t<n-—1. O

A reader who has been wondering why we, suddenly, started talk-
ing about Latin squares in a chapter on projective planes may per-
haps be satisfied by the next theorem:

4In fact, one is not really obliged to fill Latin squares only with numbers
1,2,...,n. Equally well, one can use n distinct letters, n different kinds of Cognac
glasses, and so on. This is also perhaps the appropriate place to address the
somewhat puzzling question: why are Latin squares called Latin? It seems that
in some traditional problems, the symbols written in the considered square tables
used to be Latin letters (while some other squares were filled with Greek letters
and called—what else?—Greek squares).
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9.3.2 Theorem. For any n > 2, a projective plane of order n exists
if and only if there exists a collection of n — 1 mutually orthogonal
Latin squares of order n.

Proof of Theorem 9.3.2. We will not do it in detail. We only describe
how to construct a projective plane from orthogonal Latin squares and
vice versa. Given n—1 orthogonal Latin squares S1, ..., .S,_1 of order n,
we will produce a projective plane of order n.

First we define the point set X of the constructed plane. It has n+1

points “at infinity” denoted by r, ¢, and s1, 82, ..., 5,1, and n? points
(4,7), 4,7 = 1,2,...,n. Next, we introduce the lines in several steps.
One line B = {r,c,s1,...,8,—1} consists of the points “at infinity”.

Then we have the n lines Ry, Ry, ..., R,, where

R, ={r,(4,1),(:,2),...,(n)},

and the n lines

Ci = {C’(laj)’(Q?j),'"a(n>j)}'

These are all drawn in the following picture (for n = 3):

B 2 c
S1
Ry
Ry
/[7\
R3
;. Cy (O3

The points and lines of the projective plane we have drawn and
labeled so far must look exactly the same in any projective plane of
order n (we also haven’t yet used any information from the given n — 1
orthogonal Latin squares). The squares will now specify the lines of the
projective plane passing through the points s1, $2, . .., $,—1 (besides the
line B). As the chosen notation suggests, the Latin square Sy determines
the lines passing through the point s. If (S;)i; denotes the entry of Sy
in the ith row and jth column, we define the lines

Lim = {sx} U{(i,4): (Sk)ij =m}

form=1,2,...,nand k =1,2,...,n— 1. For instance, if S; were the
Latin square in Fig. 9.5 on the left, then the line L1 corresponding to
the number 1 in the square would be L1y = {s1,(1,1),(2,3),(3,2)}.
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This finishes the description of the finite projective plane corre-
sponding to the collection of n — 1 orthogonal Latin squares. It remains
to verify the axioms of the projective plane. It is easy to calculate that
the total number of both lines and points is n2+n+1. By Exercise 9.1.8,
it is now sufficient to check that any two lines intersect in at most one
point. For this, one has to use both the facts that each Sy is a Latin
square and that any two of the Latin squares are orthogonal. We leave
this as an exercise.

To prove the equivalence in Theorem 9.3.2, we should also show how
to construct n — 1 orthogonal Latin squares from a projective plane of
order n. This construction follows the same scheme as the converse one.
In the projective plane, we choose two distinct points 7 and ¢ arbitrarily,
and we fix the notation further as in the above construction. Then the
kth Latin square Sy is filled out according to the lines passing through
the point sg. So much for the proof of Theorem 9.3.2. m]

Remark. The proof actually becomes more natural when it is done with
finite affine planes (see Exercise 9.1.10).

Exercises

1.

Go through the construction in the proof of Theorem 9.3.2 for n = 2
(when only one Latin square exists, up to a permutation of the num-
bers). Check that we obtain the Fano plane in this way.

. Verify that any two lines constructed in the proof of Theorem 9.3.2

intersect in at most one point (do not forget the lines R, and C;!).
Distinguish where one uses the definition of a Latin square and where
the orthogonality.

Show that the construction sketched at the end of the proof of Theo-
rem 9.3.2 indeed produces n — 1 orthogonal Latin squares.

Define a liberated square of order n as an n X n table with entries
belonging to the set {1,2,...,n}. Orthogonality of liberated squares
is defined in the same way as for Latin squares. For a given number ¢,
consider the following two conditions:

(i) There exist ¢ mutually orthogonal Latin squares of order n.

(ii) There exist t + 2 mutually orthogonal liberated squares of order n.
(a) Prove that (i) implies (ii).

(b) *Prove that (ii) implies (i).

. Let T be a finite field with n elements. Denote its elements by t,

t1, ..., tp—1, where tp =0 and t; = 1. For k = 1,2,...,n — 1, define
an n x n matrix S®*), where the entry of the matrix S*) at position
(i,7) equals t;ty 4+ t; (the multiplication and addition in this formula
are in the field T'). Prove that S, §@) . §(=1 ig a collection of
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mutually orthogonal Latin squares of order n. (Using Theorem 9.3.2,
this gives an alternative construction of a projective plane of order n.)

6. For natural numbers m < n, we define a Latin m X n rectangle as a
rectangular table with m rows and n columns with entries chosen from
the set {1,2,...,n} and such that no row or column contains the same
number twice. Count the number of all possible Latin 2 x n rectangles.

9.4 Combinatorial applications

In combinatorial mathematics, finite projective planes often serve as
examples of set systems with various remarkable properties. One can
say that if we have some hypothesis about finite set systems and look
for a counterexample to it, or if we want an example of a set system
with some prescribed properties, then it may be a good idea to try
a finite projective plane among the first candidates.

Trying to document the usefulness of projective planes in math-
ematics and its applications resembles explaining the usefulness of
noodles, say, in the kitchen. Certainly one can do lots of great cooking
without them. Wonderful foods can also be prepared from noodles,
but it’s a question of a good recipe (and cook) and of adding various
subtle ingredients, spices, etc. Noodles by themselves probably seem
exciting to specialists only. Here we haven’t accumulated enough
mathematical ingredients and spices to prepare a nice but compli-
cated recipe—example, and so we will offer two simple combinatorial
dishes only.

Just at the time this section was being written, newspapers reported
on the first Swiss bank to introduce on-line banking over the Internet
(in the US, it had been around for more than a year). Of course, safety
of the information being interchanged over the public network is of ut-
most importance in such a case. The supposedly indecipherable codes
by which the banks expect to achieve safety® are based on the so-called
elliptic curves over finite fields. The theory of elliptic curves has been
developed for a long time in number theory and algebraic geometry, tra-
ditionally considered absolutely pure mathematics without any applica-
bility whatsoever. And these elliptic curves are inhabitants (or subsets
if you prefer) of finite projective planes. So it goes.

The book by Koblitz [22] can serve both as an introduction to num-
ber theory and a gate to the world of mathematical cryptography. But
let us return to our combinatorial applications.

5Software products using some of these codes are also subject to US export
restrictions, just like high-tech weapons.
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Coloring set systems by two colors. Let X be a finite set, and
let M be a system of subsets of X. We say that the set system M
is 2-colorable if it is possible to color each of the points of X by one
of two given colors, say red or white, in such a way that each set
M € M contains points of both colors (2-colorablility is often called
property B in the literature.)

For example, if X = {1,2,3} and M = {{1,2},{1,3},{2,3}} then
M is not 2-colorable. More generally, if all the sets of M have exactly
2 elements, then we can regard (X, M) as a graph, and here being
2-colorable means exactly the same thing as being bipartite. What if
the sets of M have more than 2 points each? For instance, what can
be said if all the sets of M have exactly 3 points? It turns out that
the situation with 2-colorability becomes much more complicated
than for graphs. For instance, the question of whether a given M is
2-colorable or not becomes algorithmically difficult.

Let us consider the following natural question: what is the small-
est number of sets of a set system M consisting of 3-point sets that is
not 2-colorable? It turns out that the answer is 7, and the Fano plane
provides one-half of this answer: it has 7 sets consisting of 3 points
each, and it is not 2-colorable (we leave a proof as Exercise 1). And,
in fact, it is the only set system with 7 triples that is not 2-colorable!
We will deal with the second half of the answer, i.e. methods for
showing that all systems with 6 or fewer triples are 2-colorable, in
Section 10.1 (Theorem 10.1.5).

One could talk much longer about 2-colorability, as it is a quite
important concept in combinatorics, but here we only wanted to
point out a little problem in this area where the projective planes,
surprisingly, come into play.

More on graphs without K5 > with many edges. Theorem 7.3.1
tells us that if G is a graph on m vertices containing no Kao as
a subgraph, then G has at most %(m3/ 2 +m) edges. Using finite
projective planes, we show that this bound is nearly the best possible
in general:

9.4.1 Theorem. For infinitely many values of m, there exists a
K9 o-free graph on m vertices with at least 0.35 m?/? edges.

Proof. Take a projective plane of order n, and consider its incidence
graph (as in the part concerning duality in Section 9.1). The number
of vertices of this graph is m = 2(n? 4+ n+1). Each of the n? + n +1
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lines has n+ 1 points, and this means that the total number of edges
is (N2 4+n+1)(n+1)>n>+n+1)3%2 = (%)3/2 ~ 0.35m3/2,

What would it mean if the incidence graph contained a Kz 2 as a
subgraph? Well, in the language of the projective plane, it would say
that there exist two points z, 2’ and two lines L, L' such that z € L,
' € L, x € L', and 2’ € L'. This cannot happen in a projective

plane. O

Remark. The constant 0.35 in Theorem 9.4.1 can still be improved
somewhat. The optimal value is 0.5; see Exercise 2.

Exercises
1. Prove that the Fano plane is not 2-colorable.

2. (Better Ky o-free graphs) Let n be a prime power, and let K be an
n-element field. Consider the equivalence classes of the equivalence
relation ~ on the set of triples K3 \ {(0,0,0)} (introduced in
Section 9.2). Let these classes be vertices of a graph G, and two
vertices (a,b,c¢) and (z,y,z) are connected by an edge if and only
if ax + by 4+ cz = 0. Prove that

(a) the edges are well defined,
(b) *the graph G contains no K32 as a subgraph,
(c) each vertex has degree at least n, and
(d) if m = n? +n+1 denotes the number of vertices, then the number
of edges is at least %m3/2 —m.
3. Let G be a bipartite graph with both vertex classes of sizes n and
containing no Ks o as a subgraph.
(a) *By the method of Section 7.3, prove that G has at most

%n(l + V4dn — 3)

edges.

(b) *Prove that such a G with precisely this number of edges exists if
and only if a projective plane of order ¢ exists with n = ¢® + ¢ + 1.
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Probability and probabilistic
proofs

The reader will most likely know various problems about determining
the probability of some event (several such problems are also scat-
tered in the other chapters). Textbooks often contain such problems
taken “from real life”, or at least pretending to be real life problems.
They speak about shuffling and drawing cards, tossing coins or even
needles, or also about defunct lightbulbs, defunct phone lines, or
decaying radioactive atoms—depending on the author’s inclinations
and fantasy. In this chapter we want to show a remarkable mathe-
matical application of probability, namely how mathematical state-
ments can be proved using elementary probability theory, although
they don’t mention any probability or randomness.

Alon and Spencer [12] is an excellent book for studying proba-
bilistic methods in combinatorics in more depth, and Grimmett and
Stirzaker [20] can be recommended as a probability theory textbook.

10.1 Proofs by counting

In two introductory examples, probability will not be mentioned; we
use a simple counting instead.

10.1.1 Example. Consider a new deck of 52 cards (in such a deck,
cards go in a certain fixed order). We will shuffle the cards by so-
called dowvetail shuffling: we divide the deck into two parts of equal
size, and we interleave the cards from one part with the cards from
the other part, in such a way that the order of cards from each
part is unchanged (see Fig. 10.1). We prove that if this procedure is
repeated at most 4 times, we cannot get all possible orderings of the
cards, and hence 4 rounds of dovetail shuffling certainly won'’t yield
a random order of the cards.
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b
/}>>>>>/\

Fig. 10.1 Dovetail shuffling.

Proof. There are 52! possible orderings of the cards. We count how
many different orderings can be obtained by the described shuffling
procedure. How many ways are there to intermix the two separate
parts of the deck (let us refer to them as the left part and the right
part)? If we know the ordering in both the left and the right parts,
and if we specify which cards in the intermixed deck come from the
left part and which from the right part, we can already reconstruct
the ordering of the deck after the parts are intermixed. Hence, after
the first dividing and interleaving there are (32 possible orderings,
and by 4 repetitions of this procedure we can thus obtain at most
(22)4 orderings. A pocket calculator, or the estimates in Chapter 3,
can tell us that this number is smaller than 52!, and hence there
exists some ordering that cannot be obtained by 4 rounds of dovetail
shuffling. O

~—

The result just proved doesn’t say that we could get all possible
orderings by 5 rounds. The question of how many random dovetail
shuffles are needed to obtain an ordering reasonably close to a ran-
dom one is considerably more difficult. A very sophisticated paper
on the subject is Bayer and Diaconis [33].

Difficult Boolean functions. A Boolean function of n variables is a
mapping f: {0,1}" — {0, 1}, i.e. assigning either 0 or 1 to each possible
combination of n Os and 1s. (Here 1 represents the logical value “true”
and 0 the logical value “false”.) A Boolean function can be specified by
a table of values, but also in many other ways. For example, a computer
program that reads n bits of input and computes a YES/NO answer
defines a certain Boolean function of n variables. Similarly, an inte-
grated circuit with n input wires and one output wire defines a Boolean
function of n variables, assuming that the inputs and the output each
have only two possible states.
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We want to show that there exist Boolean functions that require a
very large description, i.e. a very long program, or a circuit with a huge
number of components, etc. Technically, this is probably simplest to do
for yet another way of describing Boolean functions, namely by logical
formulas.

The reader may know logical formulas from predicate calculus, say.
A logical formula in n variables is a string made up of symbols z1,
Zg, ..., T, for the variables (each of them can be repeated several
times), parentheses, and the following symbols for the logical connec-
tives: A (conjunction), V (disjunction), = (implication), < (equiva-
lence), and — (negation). Not every sequence of these symbols is a
logical formula, of course; a formula has to satisfy simple syntactical
rules, such as proper parenthesizing, etc. The details of these rules are
not important for us here. One possible formula in 3 variables is, for
example, (z1 A z3) V (23 A —z1). Each logical formula in n variables
defines a Boolean function of n variables: for given values of the variables
T1,Ta,...,T,, substitute these values into the formula and evaluate the
truth value of the formula by the rules for the various connectives. For
example, we have 0 A0 = 0A1 = 1A0 =0and 1A1 =1, and
so on. It is not too difficult to show that any Boolean function can be
defined by a formula. The question now is: how long does such a formula
have to be?

We show

10.1.2 Proposition. There exists a Boolean function of n variables
that cannot be defined by any formula with fewer than 2" /log,(n + 8)
symbols. For example, for 23 variables we may already need a formula
with more than a million symbols.

Proof. The number of all Boolean functions of n variables is 22", while
the number of formulas in n variables written by at most m symbols is
no more than (n + 8)™, because each of the m positions in the formula
can be filled in by one of the n + 7 possible symbols, or maybe by
a space. In this way, we have also counted lots of nonsense strings of
symbols, but a rough upper bound is fully sufficient. If 22" > (n+8)™,
there exists a Boolean function that cannot be expressed by a formula
with at most m symbols. By taking logarithms in the inequality, we get
m > 2" /logy(n + 8). O

Similarly, one may consider Boolean functions defined by computer
programs in some fixed programming language, or by integrated circuits
consisting of some given set of components, and so on. In each such case,
a counting similar to the above proof shows the existence of functions of
n variables that cannot be defined by a program or circuit of size smaller
than roughly 2™. (We did the proof for formulas since their definition
and counting seems simplest.)
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The two examples just given have a common scheme. We have a
set of objects, and we want to show that there exists some “good”
object among them (with some required property; in Example 10.1.1,
good objects were card orderings unattainable by 4 dovetail shuffles).
We count how many objects there are in total, and we upper-bound
the number of bad objects. If we can show that the number of bad
objects is smaller than the number of all objects, this means that
some good object has to exist. Typically, we even show that most of
the objects must be good.

A remarkable feature of this method is that we do not construct any
particular good object, and we don’t even learn anything about what it
might look like—we only know that it exists. In Example 10.1.1, we have
shown that some ordering of cards cannot be obtained, but we have not
exhibited any specific such ordering. In the proof of Proposition 10.1.2
we have not found out how to get a “difficult” Boolean function (with
no short formula). This situation is quite usual for proofs of this type.
It might look fairly paradoxical, since we are usually in the situation of
searching for a piece of hay in a haystack with at most a few needles
in it, i.e. we can prove that a large majority of the objects are good.
But avoiding the needles proves enormously hard in many situations.
For many interesting combinatorial objects, there are relatively easy
existence proofs but none or only very difficult explicit constructions
are known.

The argument about good and bad objects can be reformulated
in the language of probability. Imagine that we choose an object
from the considered set at random. If we show that with a nonzero
probability, we choose a good object, this means that at least one
good object must exist. In more complicated problems, the language
of probability becomes simpler than counting the objects, and one
can apply various more advanced results of probability theory whose
formulation in terms of object counting would be immensely cum-
bersome. We will use the language of probability in the subsequent
example. Any reader who should feel uneasy about some of the
notions from probability theory can first read the next section.

Two-coloring revisited. Let X be a finite set and let M be a
system of subsets of X. From Section 9.4, we recall the definition of
2-colorability: we say that M is 2-colorable if each of the points of X
can be colored either red or white in such a way that no set of M has
all points red or all points white. Here we will discuss the following
problem (a particular case has been considered in Section 9.4).
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10.1.3 Problem. Suppose that each set of M has exactly k ele-
ments. What is the smallest number, m(k), of sets in a system M
that is not 2-colorable?

It is easy to find out that m(2) = 3, since we need 3 edges to make
a graph that is not bipartite. But the question for k = 3 is already
much more difficult. In Section 9.4, we met a system of 7 triples that
is not 2-colorable, namely the Fano plane, and so m(3) < 7. In fact,
m(3) = 7; to prove this, we have to show that all systems with 6 or
fewer triples can be 2-colored. We begin with a general statement
which gives a weaker bound for k = 3. Then, with some more effort,
we will improve the result for the particular case k = 3.

10.1.4 Theorem. We have m(k) > 2¥~1, i.e. any system consisting
of fewer than 2~ sets of size k admits a 2-coloring.

Proof. Let M be a system of k-element subsets of some set X, and
let | M| = m. We color each point of X red or white by the following
random procedure. For each point x € X, we toss a fair coin. If we
get heads we color x white and if we get tails we color x red.

Let M € M be one of the k-tuples in the considered system.
What is the probability that all the points of M get the same color
in a random coloring? The probability that all the k points are si-
multaneously white is obviously 27%, and also the probability that
all the points of M turn out red is 2. Altogether, the probability of
M ending up monochromatic is 2-27% = 2'=%_ Hence the probability
that at least one of the m sets in M is monochromatic is at most
m 217k If this number is strictly smaller than 1, i.e. if m < 281,
then our random coloring is a 2-coloring for the system M with a
nonzero probability. Hence, at least one 2-coloring exists. Definitely
and certainly, no probability is involved anymore! Theorem 10.1.4 is
proved. O

How good is the bound on m(k) in the theorem just proved? It is
known that for large k, the function m(k) grows roughly as 2* (more
exactly, we have m(k) = Q(2k'/3) and m(k) = O(2"k?); see [12]),
and so the theorem gives quite a good idea about the behavior of
m(k). On the other hand, for k£ = 3 we only get the estimate m(k) >
4, which is still quite far from the correct value 7. We improve the
bound with two more tricks.

10.1.5 Theorem. m(3) > 7.
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We have to show that any system of 6 triples on a finite set X
is 2-colorable. We distinguish two cases depending on the number of
points of X: | X| <6 and | X| > 6. Only the first case will be handled
by a probabilistic argument.

Lemma. Let X be a set with at most 6 elements, and let M be a
system of at most 6 triples on X. Then M is 2-colorable.

Proof. If needed, we add more points to X so that it has exactly
6 points. We choose 3 of these 6 points at random and color them
white, and the remaining 3 points are colored red. Hence, we have
(g) = 20 possibilities for choosing such a coloring. If M is any triple
from M, there are only 2 among the possible colorings that leave M
monochromatic: either M is colored red and the remaining 3 points
are white, or M is white and the other points are red. Hence the
probability that M is monochromatic is %. The probability that
some of the 6 triples of M become monochromatic is thus no more

than % < 1, and hence a 2-coloring exists. O

The same proof shows that also any 9 triples on 6 points can be
2-colored.

For the second step, we need the following definition. Let (X, M) be
a system of sets, and let x,y be two elements of X. We say that x and
y are connected if there exists a set M € M containing both x and y. If
x and y are points that are not connected, we define a new set system
(X', M) arising by “gluing” x and y together. The points x and y are
replaced by a single point z, and we put z into all sets that previously
contained either z or y. Written formally, X' = (X \ {z,y}) U {z},
M ={M e M: Mn{z,y} = 0 U{(M\ {z,y}) U{z}: M € M,
M n{z,y} #0}.

Let us note that if points = and y are not connected and M is a
system of triples, then (X', M’) is again a system of triples, and the
set X’ has one point fewer than X. Further we claim that if (X', M)
is 2-colorable then (X, M) is 2-colorable too. To see this, consider a
2-coloring of the set X', and color X in the same way, where both x
and y receive the color the “glued” point z had. It is easy to see that no
monochromatic set can arise in this way. Hence, for finishing the proof
of Theorem 10.1.5, it suffices to prove the following:

Lemma. Let (X, M) be a system of 6 triples with |X| > 7. Then X
contains two points that are not connected in M.

Proof. One triple M € M makes 3 pairs of points connected. Hence
six triples yield at most 3-6 = 18 connected pairs. But the total number
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of pairs of points on a 7-element set is (;) = 21, and hence some pair is
not connected (even at least 3). O

Let us remark that the exact value of m(4) is already unknown (and
similarly for all the larger k). It is also easy to see that m(4) can in
principle be computed by considering finitely many configurations (sys-
tems of 4-tuples). But the number of configurations appears sufficient
to resist the power of all kinds of supercomputers, at least if that power
is not accompanied by enough human ingenuity.

Exercises

1. (a) Prove that any Boolean function of n variables can be expressed
by a logical formula.

(b) Show that the formula in (a) can be made of length at most Cn2™
for a suitable constant C. *Can you improve the order of magnitude
of this bound, say to O(2™) or even better?

2. (a) Prove that m(4) > 15, i.e. that any system of 14 4-tuples can
be 2-colored. Proceed similarly as in the proof of Theorem 10.1.5,
distinguishing two cases according to the total number of points.

(b) *Give as good an upper bound on m(4) as you can! Can you get
below 507 Below 307

3. We have 27 fair coins and one counterfeit coin, which looks like a fair
coin but is a bit heavier. Show that one needs at least 4 weighings to
determine the counterfeit coin. We have no calibrated weights, and in
one weighing we can only find out which of two groups of some & coins
each is heavier, assuming that if both groups consist of fair coins only
the result is an equilibrium.

4. *In the following diagram, a train with n cars is standing on the rail
track labeled A. The cars are being moved to the track B. Each car
may or may not be shifted to some of the side tracks I-1II but it should
visit each side track at most once and it should go through tracks C
and D only once.

I |1 : 111

D D U

Prove that if n is large enough then there is some order of the cars
that cannot be achieved on track B.
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10.2 Finite probability spaces

Now it is time to talk about the basic notions of mathematical prob-
ability theory. We will restrict ourselves to things we will need for
our examples. By no means do we intend to provide a substitute for
a proper course in probability theory. Anyone educated in mathe-
matics or in theoretical computer science should know considerably
more about probability than what is said here.

Probability is a notion that can appear both in mathematics and
outside it: “in real life”, “in practice”, or whatever else one can call
this. Defining the “real” probability is difficult, and it is a philosoph-
ical problem. Mathematics avoids its solution, though: it constructs a
certain model of the “real” probability, and this model is a purely math-
ematical object. At its fundamental level, several simple properties of
probability derived from knowledge about the real world are built in
as axioms, such as the fact that the probability of some event occur-
ring plus the probability of its not occurring add up to 1. But once
the axioms are accepted, one works with the mathematical notion of
probability as with any other mathematical object, and all its proper-
ties and all rules for calculating with probabilities are logically derived
from the axioms. This model is very useful and its predictions agree
with the behavior of probability in practice, but this doesn’t mean that
the mathematical probability and the “real” probability are the same
notions. In the sequel, we will speak of probability in the mathemat-
ical sense, but we will employ examples with “real” probability as a
motivation of the notions and axioms.

A basic notion in probability theory is a probability space. Here
we restrict ourselves to finite probability spaces.

10.2.1 Definition. By a finite probability space we understand a
pair (Q, P), where Q is a finite set and P: 2 — [0,1] is a function
assigning a number from the interval [0, 1] to every subset of €2, such
that

(i) P(0) =0,
(ii)) P(Q) =1, and
(iii) P(AU B) = P(A) + P(B) for any two disjoint sets A, B C (.

The set €2 can be thought of as the set of all possible outcomes
of some random experiment. Its elements are called the elemen-
tary events. For instance, if the experiment is rolling one fair die,
the elementary events would be “1 was rolled”, “2 was rolled”,. ..,
“6 was rolled”. For brevity, we can denote these elementary events
by wi,ws,...,ws. Subsets of 2 are called events. An example of an
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event is “an even number was rolled”, in other words {wa,ws, wg}.
Beware: An elementary event is not an event, since events are sets
of elementary events!

Probability theory has its names for various set-theoretic notions
and operations with events. For instance, “w € A” can be read as
“the event A occurred”, “w € AN B” can be interpreted as “both
the events A and B occurred”, “ANB = (" can be expressed as “the
events A and B are incompatible”, and so on.

If A C Qis an event, the number P(A) is called the probability of
the event A. Axioms (i)—(iii) express properties which we naturally
expect from probability. From condition (iii), it is easy to see that
it suffices to specify the values of the function P on all one-element
events (sets), since the probability of any event equals the sum of
probabilities of all its elementary events (more precisely, the sum of
probabilities of all its one-element subsets, but we allow ourselves
the abbreviated formulation).

Concerning axiom (iii) in the definition of a finite probability
space, let us remark that for any two events A, B C €1, not necessarily
disjoint ones, we have the inequality P(A U B) < P(A) + P(B)
(Exercise 1).

The simplest finite probability space, and perhaps also the most
important one, is that in which all the elementary events have the
same probability, i.e. the function P is given by

_ Al

P& =g

for all events A.

Such a probability space reflects the so-called classical definition of
probability. In this definition, formulated by Laplace, one assumes that
all possible outcomes of some random experiment are equally likely
(such an assumption can be based on some symmetry and/or homo-
geneity in the experiment). If the number of all outcomes (elementary
events) of the experiment is n, and, among these, there are m outcomes
favorable for some event A, then the probability of the event A is defined
as m/n. This is sometimes expressed by the phrase that probability is
the number of favorable outcomes divided by the number of possible
outcomes. For defining what probability is, the classical definition is
not really satisfactory (the catch is in the term “equally likely”) and,
moreover, it doesn’t include infinite probability spaces, but in many
specific cases it is at least a useful hint for probability calculation.
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On infinite probability spaces. By restricting ourselves to finite
probability spaces we have simplified the situation considerably from a
mathematical point of view. (A true probability theorist would probably
say that we have also excluded everything interesting.) But for mod-
eling many interesting events, it is more natural to work with infinite
probability spaces, whose definition is technically more complicated. For
example, if we choose 5 points at random in the interval [0, 1], what is
the probability that some two of them lie at distance at most 1—10? We
can ask thousands of questions of a similar type. We would need to
define what a “random point from the interval [0, 1]” means in the first
place. The elementary events should naturally be all the points in [0, 1].
And the probability of all individual points should be the same, at least
if we want the points to be “uniformly distributed”, and because there
are infinitely many points, the probability of each point—elementary
event must be 0. Therefore, it is not possible to specify the probability
function P by defining it for the one-element events only (as in the
finite case). The probability of an event A has to be a “measure” of A
in a suitable sense. This is a more complicated notion, which is closely
related to integration and other questions of mathematical analysis.
Other examples of infinite probability spaces are used, without calling
them so, in Sections 12.5 and 12.6.

Next, we list several important species of finite probability spaces.

10.2.2 Definition (A random sequence of n Os and 1s). The
elementary events of this probability space are all n-term sequences
of Os and 1s, i.e. elements of the set {0, 1}", and all elementary events
have the same probability. Since the number of elementary events
is 2", the probability of any event A equals |A|/2". We denote this
probability space by C,.

This probability space models a sequence of n coin tosses, for
instance (assuming the coin is symmetric and heads and tails occur
with the same probability). If the ith toss yields heads we write 1 in
the ith position in the sequence, and for tails we write 0. An example
of an event is A =“Heads appear exactly 10x”, whose probability is

(10)/2"

10.2.3 Definition (A random permutation). Elementary events
of this probability space are all permutations of the set {1,2,...,n},
and the probability of an event A equals |A|/n!. The set of all
permutations of the set {1,2,...,n} is traditionally denoted by S,
and we denote the probability space by Sy,.
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This space is a model for arranging some n distinct elements in
a random order, e.g. for a well-shuffled card deck.

Problem. What is the probability that in a random ordering of a
bridge card deck, the ace of spades precedes the king of hearts?

Reformulated in our probability model, what is the probability of
the event A = {m € S52: 7(1) < w(2)}7? We could, of course, honestly
count the permutations with (1) < m(2), but we can also determine
the probability in question by a simple consideration: by symmetry, it
is impossible that one of the events “w(1) < w(2)” and “n(1) > 7(2)”
would be more likely than the other, and so the required probability
is % More precisely, such a reasoning should perhaps be formulated
as follows. We can construct a bijection between the set A and the
set A’ = {7 € Ss2: 7(1) > 7(2)}. To a permutation m € A, we assign
the permutation 7’ with 7/(1) = 7(2), 7/(2) = 7(1), and 7' (i) = 7 (i)
for i > 2. Hence |A] = |A’|, and since A and A’ are disjoint and

together cover the whole probability space, we have P(A) = %

To revive the reader’s attention, we now include a problem with a
surprising solution.

Problem. We play the following game. Our rival has 100 blank cards,
and on each of them he writes some quite arbitrary number at will.
Then he shuffles the cards (or, a neutral third party should better do
it), and the shuffled card deck is laid on a table face down so that the
numbers are not visible. We start removing cards from the top one by
one and look at their numbers. After turning any of the cards, we can
end the game. We win if the last card we turned has the largest number
among all the cards (those already turned but also those still lying on
the table). If we win we take 40 doublezons, and if we lose we pay 10
doublezons. Can we expect to gain on this game?

At first sight it may seem that this game is not advantageous for
us at all. Let us keep the following strategy, though: turn the first 50
cards no matter what, and remember the largest number we saw there;
let it be M. Then turn the remaining cards, and finish as soon as we
turn a card with a number greater than or equal to M. If we encounter
no such card we finish with the last card.

We claim that the probability of winning is greater than i for this
strategy. Therefore, we can expect to win at least 1 game out of 4 on
the average, and so our expected gain in a long series of games will be
positive, at least about % <40 — % - 10 = 2.50 doublezons per game—no
fortune but enough for a beer. For simplicity, let us suppose that all the
numbers on the cards are distinct (an interested reader can consider the
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modification for the case of arbitrary numbers). The strategy described
surely leads to winning if

e the largest number is among the last 50 cards, and

e the second largest number is among the first 50 cards.
Obviously, for our strategy, the game depends solely on the ordering
of the numbers and not on their actual values, and so we can imagine
that the cards contain numbers 1,2, ..., 100, and their random ordering
is thus an elementary event from the probability space Sigp. We are
interested in the event A = {7 € S1go: 7(100) > 50 and 7(99) < 50}.
Here it is useful to think of a permutation as a linear ordering. The
position of the number 100 can be chosen in 50 ways, the position of 99
can be chosen in 50 ways independently of the placement of 100, and
the remaining numbers can be arranged in 98! ways. Hence

P(A) = 50-50-98! 5050
o 100! © 99100

1
=0.2525 > - .
02525 >

Let us finish this example with a few remarks. The event A is not the

only situation in which our strategy wins, and hence the probability of

A is only a lower bound for the probability of winning. The number

50 used as a threshold in our strategy optimizes the probability of the

event A (meaning the event that 100 comes after the threshold and 99

before it). But if we also take other possibilities of winning into account,

a somewhat better winning chance is obtained for a different threshold.

We will not continue a detailed analysis of the game here; we leave it

as a challenge for the reader.

Next, we are going to consider the notion of a “random graph”.
As we will see later, there are several ways a random graph can be
reasonably defined. Here we consider the simplest way. A simple,
undirected graph on the vertex set V' = {1,2,...,n} is specified by
deciding, for each pair {i,j} € (‘2/), whether this pair is an edge or

not. Hence there are 2(3) graphs (many of them are isomorphic, of
course, but this doesn’t concern us here). If we select a random graph
G on the vertex set V, in such a way that all possible graphs have
the same probability, we can view this as (g) symmetric coin tosses.
That is, for each pair of vertices we toss a coin to decide whether it
becomes an edge or not. This is reflected in the following definition.

10.2.4 Definition (A random graph). This probability space, de-
noted by G, has all the possible graphs on vertex set {1,2,...,n} as
elementary events, and all of them have the same probability, equal
to 2*(721).
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As examples of events in the probability space G,, we can study all
sorts of natural graph properties, such as S = “the graph G is connec-
ted”, B = “the graph G is bipartite”, and so on. Computing the prob-
ability of such events exactly is often very difficult, but we are usually
interested in a very rough estimate. For the two mentioned examples of
events, it turns that for n — oo, P(S) rapidly tends to 1 while P(B)
approaches 0 very quickly. This is sometimes expressed by saying that
“a random graph is almost surely connected, and almost surely it is not
bipartite”. We prove the second of these two claims, by an approach
typical also for many other assertions of this type.

10.2.5 Proposition. A random graph almost surely isn’t bipartite, i.e.
lim,,,, P(B) = 0.

Proof. As we know, the vertex set V of a bipartite graph can be
partitioned into two parts, U and W, in such a way that all edges go
between U and W only. For a given subset U C V, let By denote the
event that all edges of the random graph G go between vertices of U
and vertices of W = V \ U only. If k¥ = |U|, we have k(n — k) pairs
{u,w} with u € U and w € V'\ U, and so the event (set) By consists of
2k(n=k) graphs. Therefore P(By) = 25(n=k)=(3) It is not hard to check
that the function k — k(n — k) attains its maximum for k = %, and the
value of this maximum is n?/4; hence k(n — k) < n?/4 for all k. So we
have, for any U,

P(BU) < 2n2/47(g) _ 2—n(n—2)/4.

Each bipartite graph belongs to some By (for a suitable choice of the
set U). For different choices of U, the events By need not be disjoint,
but in any case, the probability of a union of events is always at most
the sum of their probabilities, and so

P(B)< Y P(By) <2m-27n(nm/4 — gmnn=0/4 g
Ucv

O

In this problem, we were interested in a certain qualitative property
of a “big” random graph. This somewhat resembles the situation in var-
ious areas of physics (such as thermodynamics or solid-state physics)
where macroscopic properties of a large collection of microscopic parti-
cles are studied. It is assumed that the individual particles behave ran-
domly in a suitable sense, and the macroscopic properties are a result
of their random interactions. Also mathematical methods in the study
of ferromagnetism and other properties of the solid-state matter are
similar to methods for random graphs. Analogous approaches are also
applied in social sciences, for instance in modeling epidemics, etc.
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In Definition 10.2.4, we suppose that all graphs have the same prob-
ability, or in other words, that the edge probability is % In interesting
problems and applications, the edge probability is usually chosen as a

parameter p generally distinct from % This means that a random graph

is constructed by (’;) coin tosses, one toss for each pair of vertices (heads
means an edge and tails no edge), but the coin has the probability of
heads equal to p and the probability of tails equal to 1 — p. The proper-
ties of the random graph are often investigated in dependence on this p.
For instance, if p grows from 0 to 1, for which value does the random
graph typically start to be connected? This is again conceptually not too
far from physics questions like: at what temperature does this crystal
start to melt?

Independent events. We have to cover one more key notion. Two
events A, B in a probability space (2, P) are called independent if
we have

P(ANB) = P(A)P(B).

Independence means that if Q is divided into two parts, A and its
complement, the event B “cuts” both these parts in the same ratio.
In other words, if an elementary event w were chosen at random
not in the whole 2 but among the elementary events from A, the
probability of w € B would be exactly equal to P(B) (assuming
P(A) #0).

Independence does not mean that AN B = () as some might perhaps

think.

Most often, we encounter independent events in the following sit-
uation. The elements of €2, i.e. the elementary events, can be viewed
as ordered pairs, so {2 models the possible results of a “compound”
experiment consisting of two experiments. Let us assume that the
course and result of the first of these two experiments cannot possi-
bly influence the result of the second experiment and vice versa (the
experiments are separated by a thick enough wall or something). If
A C Qis an event depending on the outcome of the first experiment
only (i.e if we know this outcome we can already decide whether A
occurred or not), and similarly if B only depends on the outcome of
the second experiment, then the events A and B are independent.

The space C,, (a random n-term sequence of Os and 1s) is a typi-
cal source of such situations. Here we have a compound experiment
consisting of n subsequent coin tosses, and we assume that these do
not influence one another in any way; for instance, the coin is not
deformed or stolen during the first experiment. So, for example, if
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an event A only depends on the first 5 tosses (“heads appeared at
least 3 times in the first 5 tosses”) and an event B only depends on
the 6th and subsequent tosses (“heads appeared an odd number of
times in tosses number 6 through 10”), such events are independent.
Similarly, in the probability space G,, (a random graph), the edges
are independent, and so for example the events “the graph G has
at least one triangle on the vertices 1,2,...,10” and “the graph G
contains an odd-length cycle with vertices among 11,12,...,20” are
independent.

A subtler situation can be demonstrated in the probability space
S, (a random permutation). The events A = {n(1) = 1} and B =
{m(2) = 1} are clearly not independent because P(A) > 0 and
P(B) > 0, but AN B = () and thus P(AN B) = 0. If we define
another event C' = {m(2) = 2}, it is equally easy to see that B and
C aren’t independent either. But maybe it is not so obvious anymore
that even A and C are not independent: we have P(A) = P(C) = £
but P(ANC) = m # P(A)P(C). Intuitively, if we know that
A occurred, i.e. that (1) = 1, we have also excluded one of the
n possibilities for the value of 7(2), and hence 7(2) has a slightly
bigger chance of being equal to 2. On the other hand, the events A
and D = {m(2) < m(3)} are independent, as one can check by com-
puting the relevant probabilities. One has to be careful about such
subtleties. (Perhaps the most frequent source of error in probabilistic
proofs is that some events are assumed to be independent although
in reality they are not.)

The notion of independence can also be extended to several events
Ay, As, . A,

10.2.6 Definition. Events A1, Ao, ..., A, C Q are called indepen-

dent if we have, for each set of indices I C {1,2,...,n},
P<ﬂAi> =[] 4.
icl iel

In particular, this definition requires that each two of these events
be independent, but we have to warn that the independence of each
pair doesn’t in general imply the independence of all events!

In the probability spaces C,, (random 0/1 sequence) and G,, (ran-
dom graph) we have typical situations with many independent events.
Let us define an event A; in the probability space C,,, consisting of all
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sequences with 1 in the 7th position. Then the events Ay, As, ..., A,
are independent (we omit a proof—it is not difficult).

In various probabilistic calculations and proofs, the probability
spaces are usually not described explicitly—one only works with
them without saying. Nevertheless, it is important to clarify these
basic notions.

We conclude this section with a nice probability proof (histori-
cally, it is one of the first proofs by this method).

Let us consider a tournament of n players, say a tennis tour-
nament, in which each player plays against everyone else and each
match has a winner. If there are big differences among the play-
ers’ strength, we may expect that the best player beats everyone,
the second best beats all but the first one, etc., so that the tour-
nament determines the order of players convincingly. A tournament
with a more leveled strength of players can give a more complicated
outcome. Of course, it can happen that every player is beaten by
someone. And, mathematicians wouldn’t be mathematicians if they
didn’t ask the following generalization:

Problem. Is it possible that in some tournaments, every two play-
ers are both beaten by some other player? And, more generally, for
which numbers k& can there be a tournament in which for every k
players there exists another player who has beaten them all?

For £k = 2, one can construct such a tournament “by hand”.
But for larger values of k, the construction of such tournaments
seemed difficult, and a solution has been sought in vain for quite
some time. But the method using probability shows the existence of
such tournaments (with many players) quite easily. For simplicity, we
show the solution for £ = 3 only, so we want a tournament outcome
in which every 3 players x, ¥, z are all beaten by some other player, w.

Let us consider a random tournament, where we imagine that the
result of each match is determined by lot, say by tossing a fair coin.
Let us look at some fixed triple {z,y, z} of players. The probability
that some other player, w, wins against all of them is 273 = %.
Hence the probability that w loses against at least one of z,y, z is
%. What is the probability that each of the n — 3 players who can
appear in the role of w loses against at least one among x,y, 27
For distinct players w, the results of their matches with x, vy, z are
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mutually independent, and so the desired probability is (%)"‘3. The

triple {z,y, z} can be selected in (g) ways, and hence the probability
that for at least one of the triples {z,y, z}, no player beats z, y, and
z simultaneously, is at most (g)(%)"_3 Using a pocket calculator
we can check that for n > 91, this probability is smaller than 1.
Therefore, there exists at least one result of a tournament of 91
players in which any 3 players are simultaneously beaten by some

other player. This is the desired property. O

Exercises

1. Prove that for any two events A, B in a (finite) probability space, we
have P(AUB) < P(A)+ P(B). Generalize this to the case of n events.

2. (Probabilistic formulation of inclusion—exclusion)

(a) Formulate the inclusion—exclusion principle (Theorem 3.7.2) in the
language of probability theory. Let Aq, Ag, ..., A, be events in some
finite probability space. Assuming that all elementary events in this
probability space have the same probability, express the probability
P(A; U ---U A,) using the probabilities of various intersections of
the Al

(b) Show that the formula as in (a) holds for events in an arbitrary
finite probability space. (The finiteness is not really needed here.)

3. Prove that a random graph in the sense of Definition 10.2.4 almost
surely contains a triangle (this provides another proof for Proposi-
tion 10.2.5).

4. *Show that a random graph is almost surely connected.

5. Find an example of 3 events in some probability space, such that each
2 of them are independent but all 3 are not independent.

6. Show that if A, B are independent events then also their complements,
Q\ A and Q\ B, are independent.

7. Let (2, P) be a finite probability space in which all elementary events
have the same probability. Show that if |2| is a prime number then no
two nontrivial events (distinct from () and Q) can be independent.

8. (a) Show that the events Ay, As,..., A, in the probability space C,
defined in the text following Definition 10.2.6 are really independent.

(b) *Let (€2, P) be a finite probability space. Suppose that n indepen-
dent events Aj, As,..., A, C Q exist such that 0 < P(4;) < 1 for
each i. Show that then |Q| > 2™.
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9. For simplicity, assume that the probabilities of the birth of a boy and
of a girl are the same (which is not quite so in reality). For a certain
family, we know that they have exactly two children, and that at least
of them is a boy. What is the probability that they have two boys?

10. (a) €S Write a program to generate a random graph with a given
edge probability p and to find its connected components. For a given
number n of vertices, determine experimentally at which value of p the

random graph starts to be connected, and at which value of p it starts

to have a “giant component” (a component with at least % vertices,

2
say).
(b) **Can you find theoretical explanations for the findings in (a)? You
may want to consult the book [12].

10.3 Random variables and their expectation

10.3.1 Definition. Let (2, P) be a finite probability space. By a
random variable on €2, we mean any mapping f: Q2 — R.

A random variable f thus assigns some real number f(w) to each
elementary event w € . Let us give several examples of random
variables.

10.3.2 Example (Number of 1s). If C, is the probability space of
all n-term sequences of 0s and 1s, we can define a random variable
f1 as follows: for a sequence s, fi(s) is the number of 1s in s.

10.3.3 Example (Number of surviving rabbits). Each of n hunt-
ers selects a rabbit at random from a group of n rabbits, aims a gun
at it, and then all the hunters shoot at once. (We feel sorry for
the rabbits but this is what really happens sometimes.) A random
variable fs is the number of rabbits that survive (assuming that no
hunter misses). Formally, the probability space here is the set of all
mappings a: {1,2,...,n} — {1,2,...,n}, each of them having the
probability n™", and fa(a) = |{1,2,...,n}\ a({1,2,...,n})|.

WAL
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10.3.4 Example (Number of left maxima). On the probability
space S, of all permutations of the set {1,2,...,n}, we define a
random variable f3: f3(m) is the number of left mazima of a permu-
tation 7, i.e. the number of the i such that 7 (i) > 7(j) for all j < 1.
Imagine a long-jump contest, and assume for simplicity that each
competitor has a very stable performance, i.e. always jumps the same
distance, and these distances are different for different competitors
(these, admittedly unrealistic, assumptions can be relaxed signifi-
cantly). In the first series of jumps, n competitors jump in a random
order. Then f3 means the number of times the current longest jump
changes during the series.

10.3.5 Example (Sorting algorithm complexity). This random
variable is somewhat more complicated. Let A be some sorting algo-
rithm, meaning that the input of A is an n-tuple (z1,z9,...,x,) of
numbers, and the output is the same numbers in a sorted order. Sup-
pose that the number of steps made by algorithm A only depends on
the ordering of the input numbers (so that we can imagine that the
input is some permutation 7 of the set {1,2,...,n}). This condition
is satisfied by many algorithms that only use pairwise comparisons
of the input numbers for sorting; some of them are frequently used
in practice. We define a random variable f; on the probability space
Sp: we let fy(m) be the number of steps made by algorithm A for the
input sequence (7(1),7(2),...,m(n)).

10.3.6 Definition. Let (2, P) be a finite probability space, and let

f be a random variable on it. The expectation of f is a real number
denoted by E [f] and defined by the formula

E[f]=) P{w})f(w).

weN

In particular, if all the elementary events w € §2 have the same
probability (as is the case in almost all of our examples), then the
expectation of f is simply the arithmetic average of the values of f
over all elements of €2:

E(f] = @Zg}f«u).

The expectation can be thought of as follows: if we repeat a random
choice of an elementary event w from 2 many times, then the average
of f over these random choices will approach E [f].
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Example 10.3.2 (Number of 1s) continued. For an illustration,
we compute the expectation of the random variable fi, the num-
ber of 1s in an n-term random sequence of Os and 1s, according to
the definition. The random variable f; attains a value 0 for a sin-
gle sequence (all 0s), value 1 for n sequences, ..., value k for (Z)
sequences from C,,. Hence

E[fi] = 2% > fils)
se{0,1}"
1 « (n
k=0
As we will calculate in Example 12.1.1, the final sum equals n2" 1,
and so E[fi] = 5. Since we expect that for n coin tosses, heads
should occur about 5 times, the result agrees with intuition.
The value of E[f1] can be determined in a simpler way, by the
following trick. For each sequence s € C,, we consider the sequence §
arising from s by exchanging all Os for 1s and all 1s for 0s. We have

fi(s) + f1(s) = n, and so

Blfl=5 > Al =gy O (ls)+ ()

se{0,1}n se{0,1}n

— gl = 0

We now describe a method that often allows us to compute the
expectation in a surprisingly simple manner (we saw that the calcu-
lation according to the definition can be quite laborious even in very
simple cases). We mneed a definition and a simple
theorem.

10.3.7 Definition. Let A C € be an event in a probability space
(Q, P). By the indicator of the event A we understand the random
variable I4: Q — {0, 1} defined in the following way:

Ia(w) = 1 forwe A
AW=90 forw ¢ A.

(So the indicator is just another name for the characteristic function
of A.)
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10.3.8 Observation. For any event A, we have E[I4] = P(A).

Proof. By the definition of expectation we get

E[l4] =) Li(w)P({w}) = ) P({w}) = P(4).

weN wEA

O

The following result almost doesn’t deserve to be called a theorem
since its proof from the definition is immediate (and we leave it to
the reader). But we will find this statement extremely useful in the
sequel.

10.3.9 Theorem (Linearity of expectation). Let f,g be arbi-
trary random variables on a finite probability space (2, P), and let
a be a real number. Then we have E [af] = aE[f] and E[f + ¢] =
E(f] + E|g). 0

Let us emphasize that f and g can be totally arbitrary, and need
not be independent in any sense or anything like that. (On the other
hand, this nice behavior of expectation only applies to adding ran-
dom variables and multiplying them by a constant. For instance, it
is not true in general that E[fg] = E[f] E [g]!) Let us continue with
a few examples of how 10.3.7-10.3.9 can be utilized.

Example 10.3.2 (Number of 1s) continued again. We calculate
E [f1], the average number of 1s, in perhaps the most elegant way.
Let the event A; be “the ith coin toss gives heads”, so A; is the
set of all n-term sequences with a 1 in the ith position. Obviously,
P(4;) = % for all i. We note that for each sequence s € {0,1}" we
have fi(s) = Ia,(s) + 1a,(s) + -+ + I4,(s) (this is just a rather
complicated way to write down a trivial statement). By linearity of
expectation and then using Observation 10.3.8 we obtain

E(fi] =E[s]+E[l4a]+ - +E[l4,]
= P(A41) + P(A2) +--+ P(A,) = &
O

Example 10.3.3 (Number of surviving rabbits) continued.
We will compute E[f2], the expected number of surviving rabbits.
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(i), 7(i — 1),..., w(1) are still in/_N

m(i+1) w(n—1) ©(n)
[ || | [ J\!l \!l\!l
1 2 ) 1+1 n—1

Fig. 10.2 A procedure for selecting a random permutation.

This time, let A; be the event “the ith rabbit survives”; formally, A;
is the set of all mappings « that map no element to ¢. The proba-
bility that the jth hunter shoots the ith rabbit is %, and since the
hunters select rabbits independently, we have P(4;) = (1 — 1/n)".
The remaining calculation is as in the preceding example:

:gE[IAi]ZgP(Ai): (1_;)"72%2

(since (1 — 1/n)" converges to e~! for n — oo; see Exercise 3.5.2).
About 37% of the rabbits survive on the average. O

Example 10.3.4 (Number of left maxima) continued. Now we
will calculate the expected number of left maxima of a random per-
mutation, E[fs]. Let us define A; as the event “i is a left max-
imum of 7", meaning that A; = {7 € S,: 7(i) > 7(j) for j =
1,2,...,i—1}. We claim that P(A;) = 1. Perhaps the most intuitive
way of deriving this is to imagine that the random permutation 7 is
produced by the following method. We start with a bag containing
the numbers 1,2, ...,n. We draw a number from the bag at random
and declare it to be 7(n). Then we draw another random number
from the bag which becomes m(n — 1) etc., as in Fig. 10.2. The value
of (1) is selected at the moment the bag contains exactly ¢ numbers.
The probability that we choose the largest one of these ¢ numbers
for m(i) (which is exactly the event A;) thus equals 7. The rest is
again the same as in previous examples:

. - 1 1 1
3]:ZE[IAZ,]:ZP(Ai):1+§+§+...+ﬁ_

The value of the sum of reciprocals on the right-hand side is roughly
In n; see Section 3.4. O
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Exercises

1.

Show with examples that if f and g are arbitrary random variables
then none of the following equalities must necessarily hold: E [fg] =

E[f]E[g, E[f?] =E[f°, E[1/f] = 1/E[f].

. Prove that E [f?] > E [f]2 holds for any random variable f.

Let f(m) be the number of fixed points of a permutation 7 (see Sec-
tion 3.8). Compute E [f] for a random permutation 7 in the space Sy,.

. Let 7 be a random permutation of the set {1,2,...,n}.

(a) *Determine the expected length of the cycle of 7 containing the
number 1 (see Section 3.2 for the definition of a cycle).

(b) *Determine the expected number of cycles of .

. A bus route connects downtown Old Holstein with the local university

campus. Mr. X., a student at the university, takes the bus from down-
town every weekday after he wakes up, which happens at a random
time of the day (24 hours). According to his records, he has to wait
for the bus for 30 minutes on the average. At the same time, the bus
company claims that the average interval between two buses during
the day (over the period of 24 hours) is 15 minutes. Can you construct
a schedule such that both Mr. X. and the bus company are right?

. *We toss a fair coin n times. What is the expected number of “runs”?

Runs are consecutive tosses with the same result. For instance, the
toss sequence HHHTTHTH has 5 runs.

. (Markov inequality) Let X be a random variable on some probability

space attaining nonnegative values only. Let 1 = E [X] be its expecta-
tion, and let £ > 1 be a real number. Prove that the probability that
X attains a value > tpu is at most %; in sympols,

P ({w e Q: X(w)ztu})g%.

(This is a simple but quite important inequality. It is often used if we
want to show that the probability of some quantity getting too big is
small.)

. (a) What is the expected number of surviving rabbits in Example 10.3.3

if there are m rabbits and n hunters?

(b) *Using Exercise 7 and suitable estimates, show that if we have
n > m(Inm + 5) then with probability at least 0.99, no rabbit survives.
(In other words, most of the mappings from an n-element set into an
m-element set are onto.)

(¢) *Solve part (b) differently: use the derivation of the formula for the
number of mappings onto via inclusion—exclusion (Exercise 3.8.7) and
the Bonferroni inequality (3.20) with ¢ = 1.
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10.4 Several applications

In this section, we have collected examples of using the probabilistic
method and the linearity of expectation in particular. They are not
routine examples but rather small mathematical gems.

Existence of large bipartite subgraphs. Given a graph G =
(V,E), we would like to partition the vertex set into two parts in
such a way that as many edges as possible go between these parts.
Moreover, we often need that the parts have an approximately equal
size. The following theorem shows that we can always make at least
half of the edges go between the parts, and, moreover, that the parts
can be chosen with an equal size (if the number of vertices is even).

10.4.1 Theorem. Let G be a graph with an even number, 2n, of
vertices and with m > 0 edges. Then the set V = V(G) can be
divided into two disjoint n-element subsets A and B in such a way
that more than 73 edges go between A and B.

Proof. Choose A as a random n-element subset of V, all the (25)
n-element subsets having the same probability, and let us put B =
V \ A. Let X denote the number of edges of G going “across”, i.e.
edges {a,b} with a € A and b € B. We calculate the expectation
E [X] of the random variable X. For each edge e = {u,v} € E(G),
we define the event C, that occurs whenever the edge e goes between
A and Bj; formally, C. = {A € (Z) |ANe| = 1}. Then we have
X =2 cep()lc., and hence E[X] = 3~ p) P(Ce). So we need
to determine the probability P(C).

Altogether, there are (277) possible choices of A. If we require that
u € Aand v ¢ A, the remaining n — 1 elements of A can be selected
in (277:2) ways. Similar reasoning works for the symmetric situation

1
ug A, ve A Thus

_2(271—2)_ n >1
- (2n) Coam—1" 2

From this we get E[X] =} 5 P(Ce) > 5. The expectation of
X is the arithmetic average of the values of X over all choices of the
set A. An average cannot be greater than the maximum of all these
values, and therefore a choice of A exists with more than half of the
edges going across. O
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Independent sets. In Section 4.7 we investigated the maximum
possible number of edges of an n-vertex graph that contains no tri-
angle. More generally, for given k£ > 3, we can ask for the maximum
possible number of edges of an n-vertex graph with no subgraph iso-
morphic to K, that is, the complete graph on k vertices. This ques-
tion is answered by Turan’s theorem, one of the celebrated results of
extremal graph theory. This theorem can be formulated in various
ways. The strongest version, which we proved for k = 3 in Section 4.7
(for arbitrary k see Exercise 4.7.4), describes exactly how a graph
with the maximum possible number of edges looks. Here we demon-
strate a very cute probabilistic proof. We only give the bound on
the maximum number of edges. With some more work, one can also
derive the structure of the graph with the maximum possible number
of edges, but we omit that part.

Turan’s theorem is most often applied in a “reverse” form: if a
graph on n vertices has more than a certain number of edges then it
has to contain a Kj. If we consider the complement of the graph G,
i.e. edges in the new graph are exactly at the positions where G has
no edges, Turdn’s theorem says if a graph on n vertices has fewer
than a certain number of edges then it contains an independent set
of size at least k (an independent set is a set of vertices such that
no two of them are connected by an edge). This is perhaps the most
useful version for applications, and it is also the one we state and
prove here.

10.4.2 Theorem (Turan’s theorem). For any graph G on n ver-

tices, we have

n?

)2 FE@

where a(G) denotes the size of the largest independent set of vertices
in the graph G.

The probabilistic method is used in the proof of the next lemmas:
Lemma. For any graph G, we have

1
(@) z Z deggo(v) + 1

veV(QG)

(where degg(v) denotes the degree of a vertex v in the graph G).
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Proof. Suppose that the vertices of G are numbered 1,2,...,n,
and let us pick a random permutation 7 of the vertices. We define
aset M = M(m) C V(G) consisting of all vertices v such that all
neighbors u of v satisfy w(u) > m(v); that is, the vertex v precedes
all neighbors in the ordering given by the permutation 7. Note that
the set M () is an independent set in G, and so |M(7)| < a(G) for
any permutation 7. Hence also E [|[M]|] < a(G). We now calculate
the expected size of M in a different way.

For a vertex v, let A, be the event “v € M(w)”. If N, denotes
the set of all neighbors of the vertex v, then all the orderings of the
set N, U {v} by the permutati