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FOREWORD

The Cambridge Combinatorial Conference was held at Trinity College from 12
to 14 May 1977, under the auspices of the Department of Pure Mathematics and
Mathematical Statistics. Twenty two of the participants, many from abroad, were
invited to give talks. This volume consists of most of the papers they presented,
together with two additional articles which are closely connected with the themes
of the conference. The opportunity was taken, where necessary, to revise and
amend the papers, each of which has been thoroughly refereed. It is a pleasure to
acknowledge the rapid and efficient work of both referees and authors.

This volume is dedicated to Professor W.T. Tutte in acknowledgement of his
great contributions to graph theory and combinatorics. Professor Tutte had spent
two months in Cambridge, with the financial support of the Science Research
Council, and the date of the conference was arranged to coincide with his sixtieth
birthday. On Friday 13 May a celebration dinner was held in Trinity College.
Professor P.W. Duff, Regius Professor of Civil Law Emeritus, who was Professor
Tutte’s tutor while he was a student at Trinity, proposed a most memorable toast
which received an equally memorable reply.

Several of the papers were quickly and efficiently retyped by Mrs. J.E. Scutt.
The editorial burden was greatly relieved by the excellent work of Mr. A.G.
Thomason.

Béla Bollobas
Cambridge
3 August, 1977
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LINEAR SEPARATION OF DOMINATING SETS
IN GRAPHS*

C. BENZAKEN
Université Scientifique et Medicale de Grenoble, Mathématiques Appliquées et Informatique,
38041 Grenoble, France

P.L. HAMMER

Upniversity of Waterloo, Department of Combinatorics and Optimization, Waterloo, Ontario N2L
3G1, Canada

The class of finite undirected graphs G having the property that there exist real positive
numbers associated to their vertices so that a set of vertices is dominating if and only if the sum
of the corresponding weights exceeds a certain threshold 8 is characterized: (a) by forbidden
induced subgraphs; (b) by the linearity of a certain partial order on the vertices of G; (c) by the
global structure of G. The class properly includes that of threshold graphs and is properly
included in that of perfect graphs.

1. Introduction, notations, main results

We shall consider in this paper only finite, simple, loopless, undirected graphs
G =(V, E) (where V is the vertex set of G, and E is the edge set of G). The
terminology follows that in [1] or [5].

For any x € V, we shall denote by N(x) the set of vertices adjacent to x and by
M(x) the set of vertices of G not belonging to x U N(x) (for simplicity we shall
usually put x instead of {x}).

The edgeless graph on k vertices will be denoted by I,. The complete graph
with k vertices will be denoted by K. The complement of the perfect matching of
2k vertices will be denoted by J,,. (Note that I,=K,=J,=0, I, =K, I,=1,.)

Following Zykov’s terminology [8], for two graphs G,=(Vy, E;) and G,=
(V,, E,), with V,NV,=0@, we shall define their direct sum G;+ G, as being
(V,UV,, E,UE,) and their direct product G,X G, as being (V,UV,,
E,UE,UE,,), where E,, is the set of all edges linking points in V; to points in
V..

A subset S of the vertex set V of a graph G is called a dominating set of G (in
abbreviation $ dom G) if any vertex x£ S is adjacent to at least one vertex y € S.
A vertex v is called universal (or dominating) if {v} dom G. Every set containing a
dominating set is dominating.

A subset S of V is called an independent set of G when the induced subgraph
Gs is edgeless. Every subset of an independent set is independent.

*This research has been carried out at the University of Waterloo (December 1976) and completed
at the University of Grenoble (March 1977).



2 C. Benzaken, P.L. Hammer

A maximal independent set of G is a minimal dominating set of G. The
converse is generally not true. A domistable graph is a graph such that every
minimal dominating set is independent.

A domishold graph is a graph having the property that there exist positive real
numbers associated to their vertices so that S is dominating if and only if the sum
of the corresponding “weights” of vertices of S exceeds a certain threshold 6.

Examples and counterexamples. Both I, and K, are domishold and domistable
graphs. Each weight is 1, and the thresholds 6 are n (for I,) and 1 (for K,). For
p>1, the graph J,, is domishold (each weight is 1, and the threshold 6 is 2), but
not domistable.

Let H, = K, +K,, let H, be the simple path on 4 vertices, and let Hy= I, x I,
H,=(I,+K;) X I, Hs=(I,+ K,) x (I, + K,) (see Fig. 1). It is easy to notice that
none of the graphs in Fig. 1 are domishold.

N

H

1 2
H, H, H;
Fig. 1.

Let us define now a binary relation 85 on the vertex set V of G, by putting
x8gy (x,ye V)iff

(Sdom G, x£S,ye S)=> ((S\y)Ux)dom G.

We shall say that “x is at least as dominating as y”’, or that ““x can replace y”.
Lemma 1.1. 85 is a reflexive and transitive relation (i.e. a preorder).

Proof. The refiexivity is obvious. Assume idg] and jégk (i, j, k —distinct), and let
S be a dominating set of G, containing k, but not i. If j& S, then ((S\ k)Uj)dom G
(because jésk) and does not contain i; therefore ((S\ k)U i) dom G because i can
replace j. If jeS then ((S\j)Ui)dom G, contains k but not j. So ((((S\jHU
D\ k)Ujydom G, i.e. ((S\ k)Ui)dom G. In both cases idsk.

The main results of this paper are the following:

Theorem 1.2. The following properties are equivalent:

(i) G is domishold.
(ii} The preorder 8 is linear.
(iii) G has no induced subgraph isomorphic to H,, H,, H,, H, or Hs.
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(iv) G is built from the empty graph by the repeated application of G'— G”
where

G"=(G'+ L)X K, x J,, (p+q+r#0).

Corollaries. (a) Every induced subgraph. of a domishold graph is domishold (be-
cause of (iti)).

(b) Every domishold graph is perfect (follows from [6] where it is proved that a
graph without any induced subgraphs isomorphic to H, is perfect).

Theorem 1.3. G is a domishold graph iff, the vertex set V of G can be partitioned
into three (possibly empty) subsets Vi, V,, V3 (|V,] being even) inducing respec-
tively the graphs Iy, K,y,, J|v, with the following properties:

Any vertex of V, is adjacent to any vertex of V.

For any i€ V;, N(i)N V; induces the complement of a perfect matching J,, with
2k = N(i))N V3.

The elements of V| can be indexed so that

N(i;)2N(iy) 2 - - 2 N(ijy,)-

The proofs of these results are given in Section 2.

Section 3 deals with connections between threshold and domishold graphs.
Consider an arbitrary threshold graph G, and let L be an arbitrary subset of
vertices, inducing a complete subgraph in G. A one to one correspondence is
established between the set of all pairs (G, L) (taken for all threshold graphs G
and all their complete subsets L) and the set of all domishold graphs.

Section 4 deals with Boolean aspects of the previously obtained results and with
algorithms for recognizing domishold graphs.

2. Proof of the main results

Proposition 2.1. If G is domishold, then 84 is a linear preorder.

Proof. Indeed, if G is domishold and g; are the weights associated to its vertices,
then it is obvious that for any pair of vertices j, k one of the relations jégk (if
a; = a,) or kdsj (if a, = a;) must hold.

A vertex m of G is called maximal if it is maximal with respect to
36 (mdgi, Vie Vi)

Remarks. (1) Any dominating vertex is maximal.
(2) If a graph has a dominating vertex, then every maximal vertex is
dominating.

Lemma 2.2. Let G be a graph such that the corresponding preorder 8 is linear and
let m be a maximal vertex of it.
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If m is neither an isolated nor a dominating vertex then every pair {x, y} with
xeN(m), ye M(m) is a dominating set of G and every vertex yec M(m) is
dominating in Gy .

Proof. Let S be a maximal independent set of G not containing m (its existence
is guaranteed by the fact that m is not isolated). Thus S dom G. Let i be any
element of S. Since m& S and mési we must have (S\i)Um dom G; i is not
adjacent to any vertex of S\ i, hence it must be adjacent to m. So S< N(m).

Now, if {x, y} is such that x € N(m), y € M(m) then x is adjacent to y (otherwise
{x, y} is included in a maximal independent set of G not containing m and not
included in N(m)). This means that {x, y} dom G (every x'e N(m) is adjacent to y,
every y'e M(m) is adjacent to x and m is adjacent to x).

But m can replace x and {m, y} dom G. Hence every y' in M(m) is adjacent to
y, proving the Lemma.

Lemma 2.3. If 85 is linear, m is a maximal vertex of G and G,, the subgraph
induced by V\ m, then the preorder 55_ is also linear.

Proof. Let i, je V\m and assume i85j. Let S be a dominating set of G,,
containing j but not i. Assume first that m is isolated in G. Then SUm dom G
contains j but not i. Hence ((SUm)\j)Uidom G and by deleting m, (S\j)U
i dom G,, showing that i8; j. If m is a dominating vertex of G then S dom G and
(S\ j)Uidom G,, showing that ids_j. Finally let us consider the case where m is
neither isolated nor dominating. If i or j belongs to M(m) then i8;_j (or jbg_i)
because by Lemma 2.2 i(resp. j) is dominating and so maximal in G,,. If i and j
belong to N{m) then S dom G and (S\ j)Uidom G does not contain m so that
(S\j)Uidom G,,. Hence id; j.

Lemma 2.4. If é; is linear, m is a nonisolated vertex of it, and i, j€ V\ m such that
ie M(m)N M(j), then m is not a maximal vertex of G.

Proof. Otherwise (by Lemma 2.2) i€ M(m) must be dominating in Gy, which
is impossible since i is not adjacent to j (j# m).

Lemma 2.5. If 85 is linear, me V, i and j are adjacent vertices in M(m) and if
h, k, le N(m) are such that l € M(h) N M(k), then m is not a maximal vertex of G.

Proof. Assume m is maximal. Since it is neither isolated nor dominating, it
follows from Lemma 2.2 that {h, i} and {k, j} are dominating sets of G. However
{i,j} and {k, h} are not dominating (because me M(i)NM(j) and le M(h)N
M(k)). Hence neither jSgh nor hdgj hold, in contradiction with the assumed
linearity of 8.

Proposition 2.6. A graph G having the property that the preorder 8¢ is linear,
cannot have any induced subgraph isomorphic to H,, H,, Hs, H, or Hs.
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Proof. Assume that G with linear preorder 8; has an induced subgraph H
isomorphic to an H, (t=1,...,5).

By removing a maximal vertex m¢& H (if possible) and continuing this process as
many times as possible, we shall eventually arrive (by Lemma 2.3) to a graph G'
(with linear preorder) having a maximal vertex m in its induced subgraph H.

If t=1,2 or 3 then we can find two vertices n (# m) and p such that
pe M(m)N M(n). By Lemma 2.4, m is not maximal (a contradiction). If r=4 or 5
then H= (I, + K,) X H' (where H' = I,(t=4) or H = I, + K,(t=5)).

By the same argument as above m£ K,. Similarly, if H' = I;, m¢ I;. So we may
suppose m = I;. Then K, < M(m) while H' is a subset of N(m). It follows now,
from Lemma 2.5, that m is not maximal. In any case, we have a contradiction.

Lemma 2.7. (Wolk [7].) If G is a connected graph without a dominating vertex,

then the complementary graph G contains an induced subgraph isomorphic to H, or
H2.

Lemma 2.8. If G has no isolated or dominating vertex and no induced subgraph
isomorphic to H, (t=1,2,...,5) then its complement G has an isolated edge (i.e.
an edge which is not adjacent to any other edge).

Proof.! G has no dominating vertex. If G is connected then by Lemma 2.7, G
contains a subgraph isomorphic to H, or H, (a contradiction). If G is not
connected then every connected component has at least two vertices (G has no
dominating vertex). If one component has exactly two vertices the lemma is
proved. Otherwise each component contains a subgraph isomorphic to one of the
following

Hence, G contains a subgraph isomorphic to L, X L, where the L; (i=1, 2) are I
or I; + K,. Thus G contains a subgraph isomorphic to H, (t=3 or 4 or 5).

Lemma 2.9. If G is not empty and has no induced subgraph isomorphic to H,
(t=1,2,...,5) then G has one of the forms

G=G'+1,,
G=G'xXKj,
G= G,sz,

where G’ has no induced subgraph isomorphic to any H, (t=1,...,5).

! The use of Wolk’s result in the present proof was recommended by Ch.Payan and has produced a
substantial simplification over our original proof.
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Proof. The decomposition follows from Lemma 2.8; the fact that G’ has no
induced subgraph isomorphic to H, is obvious.

Proposition 2.10. If G has no induced subgraph isomorphic to H, (t=1,2,...,5)
then G is built from the empty graph by the repeated application of G' = G" where

G"=(G'+L)XK,XJ, with p+q+I#0.

Proof. Obvious from the repeated application of Lemma 2.9, from the associativ-
ity and commutativity of + and X, and from the following relations:

L=L+L+1,+---+1, (ptimes),
K,=K;XK;XK;X---xK,; (qtimes),
]21=J2XJZXJZX' M ‘XJz (l times).

Proposition 2.11. If G is built from the empty graph by the repeated application of
G’ — G" defined above then G is domishold.

Proof. The empty graph is obviously domishold. Assume now that G=
(G'+ L)X K, X J,, and that G’ is domishold. Let w; represent the weight of the
vertices [€ Vg, and w, the threshold for G'. Let w* =3min, w,, We can always
assume that 2w* =< w,), since otherwise G'= K, and we could take all weights w,
(l€ Vg, as well as wy, equal to 1 (in which case again 2w* < w,). Let us also put
W=1+Y,.v, w and let us define Ww,= wy+pW and

w; iE VG’?
N w iel,
w; = )

wy+ pW icK,

wo+pW—w* iel,,

-

The “weights” w; and the “‘threshold” wy of G characterize the dominating sets
of G. Indeed, any minimal dominating set D of G is of one of the following three
types: (i) D={k}, ke K,; (ii) D ={j, e}, with jeJ,, j#e, and ecJ,, UL, U V5;
(ii) D= D'U I, where D’ is a minimal dominating set of G'.

Proof of Theorem 1.2. Follows from Propositions 2.1, 2.6, 2.10, 2.11.

Proof of Theorem 1.3. Necessity. From property (iv) of Theorem 1.2, we can
define G,, G4, ..., G, with

Go=0 G =G
and

Gi+I:(Gi+Ipi)XinX]2r,v (1:07 1)“’7[_1)'
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Putting
vi=U I, V.=U K, Vi= U Joro

it is clear by induction that this partition has the desired properties.
Sufficiency. By induction. If G has the prescribed properties it is obvious that if
V, # @ then iy, is either isolated (and after its elimination we get a graph G’ with
the same properties), or is adjacent to a vertex k in V, (k is dominating and its
elimination leads to a graph G’ with the same properties), or is adjacent to a
non-adjacent pair {j, j'} of V; so that G=G'XxJ, with G’ having the same
properties.

If V,=@ then every k€ V, (in case of V,# @) is dominating and Gy _, has the
same properties.

If V,=0 then G =1J,, is domishold.

3. Threshold and domishold graphs

We shall recall that, as in [2], by a threshold graph we shall mean a graph such
that real non negative numbers can be associated to its vertices so that two
vertices are adjacent iff the sum of their weights exceeds a certain threshold.
Alternatively, a graph is threshold iff there exist real numbers associated to its
vertices so that the sum of these numbers associated to vertices belonging to an
independent set (a dependent set) is<<(is=) than a certain threshold. Several
characterizations of such graphs can be found in [2].

We recall also that, as in [3], by a split graph we shall mean a graph whose
vertex set V can be partitioned in two (possibly empty) subsets V;, V, such that
V, induces Iy, and V, induces Ky,

Theorem 3.1. Every threshold graph is domishold and has all the following
properties:

(a) It has no induced square [I,x I,).
(b) It is split.

(c) It is domistable.

(d) It is an interval graph.

Conversely a domishold graph having any one of the mentioned properties is
threshold.

Proof. It has been proved in [2] that a threshold graph is characterized by the
absence of induced subgraphs isomorphic to H,, H, and I, X I,. From this, it
follows that it has no subgraph isomorphic to H, (t=1,2,...,5). Hence it is
domishold and satisfies (a).

In [2] it is proved that a threshold graph is split (b). Moreover if i and j are two
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adjacent vertices of a threshold graph, we have:

N@E<EN(G{Uj or NG N®GHUI
Therefore a minimal dominating set will never contain both i and j, and hence it is
independent, proving (c).

Finally it has been proved [2] that in a threshold graph (having split structure
V,U V,) one can index the elements of V, in such a way that N(i;))c N(i,) <
-+ +€ N(ijy,). Associate to each element i, € V, the interval [«, «] and to each
element k € V, the interval [m,, |V;|+ 1] where m, is the least integer such that
ke N(i,, ) (if any), and otherwise m, =|V |+ 1. It is easy to see that the corres-
ponding interval graph is isomorphic to the original one, proving (d).

Conversely a domishold graph without an induced square I, X I, (and of course
without H,, H,) is threshold. A split graph has no square and if it is domishold, it
is threshold.

If a graph G is domishold and domistable then a maximal vertex m (for 85) is
either dominating or isolated. Otherwise by Lemma 2.2 any set {x, y} with
x € N(m), ye M(m) is minimal dominating (the minimality follows from the fact
that y is obviously not dominating, and neither is x, otherwise m should be
dominating). Hence by removing m, we get again a domistable and domishold
graph. By induction it follows that the original graph is threshold.

Finally if an interval graph is domishold then it does not contain a square.
Indeed assume there exists a square and [a, b], [c, d] are the corresponding
intervals associated to two opposite vertices of this square. We have [q, b]N
[c, d]=@. Obviously, the two intervals [e, f], [g h] associated to the other two
vertices of the square must intersect both [a, b] and [¢, d] and therefore intersect
each other (a contradiction).

Definition. Let i be a vertex of a graph G. The i-duplication of G is the graph G’
obtained by adding a new vertex i’ to Vs with N(i') = N(i). Conversely, we shall
say that G is the (i, i')-fusion of G'.

We can extend this definition to W-duplication of G (W < V) by duplicating
sequentiaily each vertex of W (this operation does not depend on the order of
duplications).

Also if Ug Vg, induces the complement of a perfect matching (Jy;) and if
every pair (i,i’) of non adjacent vertices in U have the same neighbourhood
(N(i)= N(i"), by the U-fusion of G, we mean the graph obtained by the
sequential repetition of all the (i, i")-fusions of G.

Theorem 3.2. If G is a domsihold graph and S a maximal subset of Vg inducing a
subgraph Jg then the S-fusion of G is threshold.

Conversely if G is threshold and L a subset of a maximal subset of Vg inducing a
clique of G then the L-duplication of G is a domishold graph.
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Proof. A direct consequence of Theorem 1.3.

Remark. Despite the fact that the class of domishold graphs includes properly
that one of threshold graphs, this theorem seems to point to a (to us) surprising
similarity between threshold and domishold graphs.

4. Boolean aspects and algorithms

4.1. Recognizing domishold graphs

It is easy now to construct a procedure for the recognition of domishold graphs;
the time needed by this procedure will be polynomial in the number n of vertices.
The procedure can start by searching for isolated vertices and eliminating them.
When no more isolated vertices can be found, the procedure could search for
dominating vertices. After repeating the above two steps as many times as
possible we shall obtain a graph without isolated or dominating vertices; in this
graph we shall look for two non-adjacent vertices, both of which are linked to
every other vertex. The graph is domishold if and only if the above three steps can
be repeated until the total exhaustion of the vertex set.

4.2. Recognizing the linear separator of a domishold graph

A linear inequality
Zw,-xiZWO, x;€{0, 1} i=1,...,n)
i=1

is called domigraphic if there exists a domishold graph of n vertices such that the
w;’s are the weights of the vertices, and w, is the threshold. In other words, the
inequality holds if and only if (x,,...,x,) is the characteristic vector of a
dominating set. We can obviously assume that w, =---=w,,

The condition

o1s

w; = w,

i=1
is obviously necessary for a linear inequality to be domigraphic. In the case n =1,
it is sufficient too. For n =2, this condition along with (w, < wg) > (w; < w,) are

again sufficient.

Theorem 4.1. The inequality >, wx; = wy (n=3) is domigraphic if and only if
one of the following conditions hold:

(1) w,=wqy and Y, wx; = w, is domigraphic;
(i) wi<wg, 2ls wi<wy and Yi-, wx; = wy— wy is domigraphic;
(iil) w,<wg, wo+w,=w, and Y 5 wx; = w, is domigraphic.
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The proof is based on Theorem 1.2 and is omitted here.

4.3. Boolean functions associated to domishold graphs

A monotone Boolean function f(x, ..., x,) is called domigraphic if there exists
a graph with n vertices such that the set of characteristic vectors X of all its

dominating sets is the same as the set of solutions to the equation f(x,,...,x,)=
1.

Theorem 4.2. f(x,...,x,) is a domigraphic Boolean function if and only if it has
one of the forms

f(x17x21"'7xn):xlvg(x27"~,xn)

fX1; %o, 0, %) = X0 8%, 0, %)

flxy, Xay .0, x,)= x1x2V(x1VX2)<_\_/3 xi)\/ glxs, ..., x,),

where g is a domigraphic Boolean function.

Noticing that the preorder &g introduced in Section 1 is the same as the
Winder-type preorder defined on the set of variables of a Boolean function,
Theorem 1.2 will have the following.

Corollary. A domigraphic Boolean function is threshold if and only if it is
2-monotonic.
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REGULARISABLE GRAPHS

Claude BERGE
University of Paris 4 Pl Jussieu, 75230 Paris, Cédex 06, France

1. Introduction

A graph G is said to be regularisable if a regular multigraph can be obtained
from G by adding edges parallel to the edges of G. In this paper, we give several
characterisations of regularisable graphs; in particular, a connected non-bipartite
graph has a unique optimal fractional transversal (with all coordinates equal to %)
if and only if it is regularisable.

This class of graphs contains the edge-critical graphs with no isolated vertex and
the line-graphs of graphs with no pendent edge. The Fulkerson—Hoffman theorem
(Corollary 2.5 to Theorem 2.2) and a property of the edge-critical graphs due to
Hajnal (Corollary 4.1 to Theorem 3.1) follow immediately from the main results.

2. Optimal k-transversals of a graph

In this paper, G always denotes a simple graph (with no loops and no multiple
edges), but the results and concepts are also valid for a multigraph with no loops.
The vertex-set of G is denoted by X, and the edge-set by E.

Let G =(X, E) be a graph. For x € X write I';x or I'x for the set of neighbours
of x. For Ac X put I'A = x4 I'x. Also, for A< X, Bc X write mg(A, B) or
m(A, B) for the number of edges of G having one endvertex in A and the other
in B.

A fractional transversal of G is a non-negative function p(x), defined for x € X,
such that

[x,yle E>p(x)+p(y)=1.
A k-transversal of G is a function p(x) on X such that:
(i) p(x)e{0,1,2,...,k},
(i1) p(x)+p(y)= k for every edge xy.

7.{(G) denotes the minimum of ) _xp(x) when p ranges over all the k-
transversals of G. Thus 7,(G) is the usual transversal number 7(G), i.e. the
minimum cardinality of a set T'< X which meets all the edges.

Let kG denote the multigraph obtained from G by multiplying each edge by k.

11
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A vpartial H of kG is called a k-matching if at each vertex x, the degree dy(x)
does not exceed k.

Denote by 1.(G) the maximum number of edges in a k-matching. Thus
v,(G)=v(G) is the usual matching number.

It is well-known that max (v, (G)/k)=min (7,(G)/k). The common value, called
the fractional transversal number of G and denoted by 7*(G), satisfies the
following inequalities (see Berge, and Simonovits [5], Lovasz [10]):

Lemma 2.1. For every hypergraph G we have

k( ) < max 2~ m(G') Vk(G)
k G'<G A(G) k
7.(G) n(G) _

= 1 =
mkln A m:lx % 7(G).

v(G)= m1 =1%(G)

Theorem 2.2. Let G be a connected graph. Then there exists an optimal 2-
matching H of G such that each connected component of H is either a single vertex
or a pair of parallel edges (‘“‘double edge”) or an odd cycle.

For every 2-matching, there exists and optimal 2-transversal p(x) with values as
follows: O if x belongs to a singleton of H, (0,2) or (1,1) for the two vertices
belonging to a double edge of H, and 1 for each vertex belonging to an odd cycle of
H.

Proof. Let H=2G be a maximum 2-matching. Every connected component of H
which is a path or a cycle of even length can be replaced by a set of pairwise
disjoint double edges without changing m(H). No component of H is an odd path
(i.e. a path of odd length) since m(H) is maximum. Thus H is now of the type
described by the theorem.

We shall label each vertex with 0, 1 or 2, by an iterative procedure described by
the following rules:

(1) Label with O each vertex which is a singleton of H.

(2) Label with 2 each vertex which is adjacent in G to a vertex previously
labelled with 0.

(3) Label with 0 every vertex which 1s adjacent in H to a vertex previously
labelled with 2.

(4) Every vertex which cannot be labelled by the iterative procedure described
by rules 1, 2, and 3, will be labelled 1.

No odd chain, starting from a singleton of H and consisting alternately of edges
of G-H and of double edges of H, ends with a singleton because such a chain
would constitute a connected component of a 2-matching H' with m(H')> m(H).
Similarly no odd chain of that kind can end in an odd cycle of H. No odd chain of
that kind can cross itself at a vertex labelled with O (because there would be a
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better 2-matching having as connected components an odd cycle and a set of
double edges).
Thus a unique label t(x) can be given t0o a vertex x by the above rules,
t{x)=0 if x 1s a singleton of H,
t(x)=2 and t(y)=0 (or vice versa) if xy is a double edge connectable to a
singleton (otherwise t(x)=1t(y)=1), t(x)=1 if x belongs to an odd cycle of H.
The rules show also that #(x) is a 2-transversal of G. Furthermore, we have

sm(H) =50y(G)<tH(G)<iro(G)= ), t(x)=3m(H).

So these inequalities hold as equalities; hence t{x) is an optimal 2-transversal.

Corollary 2.3. [11, 15]. For a multigraph G,
(G) =3v,(G) = 375(G).

Corollary 2.4. (Koénig). For a bipartite graph G = (X, Y, E), the maximum number
of edges in a matching equals

min (X —A|+{T5(A)).

AcX

Proof. Let M =min, - (|A — A|+|I'5(A)|) and let N be the maximum number of
edges in a matching. Clearly M= N. Let H be the maximum 2-matching given by
Theorem 2.2, and let X< X be the set of singletons of H in X. Further let
X, < X—X be the set of remaining elements of X labelled i, 0=<i=2. Since the
double edges of H define a matching of G, and as H has no odd cycles, we have
N=Y¥7_,]X;|. However the only vertices of X labelled with 2 are in I4(X;), and
so I'5(X,U X)=TI(X,). Hence

M<|X —(XoU X)|+|I5(X,U X))
= | X, |+ 12X + | T (X))
=1X,|+ X+ X0/ <N,

and the corollary is proved.

Corollary 2.5. (Fulkerson et al. [7]). Let G be a regular connected graph such that
every pair of vertex-disjoint odd cycles is joined by an edge (‘‘semi-bipartite graph”,
like the Peterson graph). Then there exists a matching which has at most one
unsaturated vertex.

Proof. As above, the 2-matching H has no singleton. If two connected compo-
nents are odd cycles, they can be replaced by double edges. If only one odd cycle
remains, it can be replaced by one singleton and a set of double edges, so that the
double edges constitute a matching with at most one unsaturated vertex.
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Remark. Theorem 2.2 shows that an optimal fractional tranversal of a graph G
can easily be obtained; we first construct a maximum 2-matching (as a maximum
flow in a bipartite transportation network), and then we apply the algorithm
described in Theorem 2.2 to get a minimum 2-transversal. This shows also the
fact, quoted by several authors, that the linear programming which describes the
maximum stable sets of a graph always has a solution with coordinates 0, 1 or 3.

3. Regularisable graphs

From Lemma 2.1, it follows immediately that a regular graph G satisfies
7*(G)=3n, and therefore, the vector 1 =(1,1,..., 1) is an optimal 2-transversal.
In this section, we shall first consider the problem of the uniqueness of the
optimal 2-transversal; more precisely, for which graphs is 1 the unique optimal
2-transversal?

Let G=(X, Y, E) be a bipartite graph; then, from Theorem 2.2, we have
7,(G)=n if and only if G possesses a perfect matching. In this case, there exist at
least three optimal 2-transversals: one with all weights equal to 1, and two with
weights equal to 0 in one vertex-class, and to 2 in the other vertex class (since
|X|=1Y]. So, if a graph G has 1 as an unique optimal 2-transversal, no connected
component of G is a bipartite graph.

Theorem 3.1. Let G be a connected graph which is not bipartite. Then the following
conditions are equivalent:

(1) G is regularisable,

(2) «x)=1 is the only optimal 2-transversal,

(3) for every non-empty stable (‘“‘independent”) set S of vertices, |['S|>|S]|.

Proof. (1) implies (2). Let G be a graph and let H be a regular multigraph
obtained from G by edge-multiplication. Then

n(H)_Zn(H)_
AH) ~ 2 "

7.(G) =27¥(G)=27*(H)=2

Thus, t(x)=1 is an optimal 2-transversal for G.
Now, assume that there exists another optimal 2-transversal t'(x), and for
s=0,1,2, put

A, ={x:xe X, '(x)=s}.

Then |Ay=]|A,|#0. The set A, is stable (otherwise #'(x) would not be a
2-transversal), and 'A,< A,. We have I'A,= A, (otherwise, t'(x) would not be
optimal; a better 2-transversal can be obtained from #'(x) by replacing a 2-value
by a 1-value).
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Since H is regular,
A(H) |A0| =my (Ao, Ay)
<) my(x, A)<|A;| A(H) = A(H) |Ao|.

xeA

Hence my(x, Ay) = A(H), and no edge goes out of A,U A,. Since G is connected,
its vertex set is AqU A, and G is a bipartite graph having two vertex classes with
the same cardinality. This contradicts the hypothesis.

(2) implies (3). Let S#@ be a stable set, and let Hc2G be an optimal
2-matching as described in Theorem 2.2.

Since t(x)=1 is an optimal 2-transversal, we have 7,(G) = n, so the connected
components of H are either double edges or odd cycles. Hence

[IGS|= TS| =S].

If |[I';S|=1S/, it would follow that all the components of H meeting S are double
edges. We can then define a 2-transversal t'(x) by putting

fix)=0 if xeb,
2 if xel§,
1 if xeX-—(SUIS).

Since t'(x) would also be an optimal 2-transversal of G, this contradicts the
uniqueness of the optimal 2-transversal. Thus |I'S|>|S]|.

(3) implies (1). Now assume that |I'S|>|S| for every non-empty stable set S of
G. Let H be a bipartite graph whose vertex-classes are two copies X and X of the
vertex set of G, the vertices x € X and y € X being joined by an edge in H if and
only if x and y are adjacent in G.

Let B X, B#{, B# X, be a set such that the subgraph Gz has no isolated
vertex. Then I',(B)> B. Now let S< X be a set such that G has only isolated
vertices. Then S is a stable set of G, and by (3),

|[eS| = [TaS|>1S].
So, for everyset A=BUS<c X, A#@, A# X, we have
ITwAl>]A]

noting that I;;SN B =¢ if there are no edges between B and S.

First, we shall show that each edge ab of H belongs to at least one perfect
matching, that is the subgraph H' of H induced by (X U X)—{a, b} has a perfect
matching. For every A « X —{a},

|FH,A|=|FHA—{b_}IBIFHAI—IBlA|.

Thus, by Konig’s theorem, H has such a matching.
Consequently, for each edge ab of G, there exists a 2-matching which saturates
all the vertices and which uses the edge ab. The union of all these possible
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2-matchings defines a regular multigraph, which arises from G by edge-
multiplications. Thus G is regularisable.

Corollary 3.2. Let G be a connected regularisable graph which is not bipartite: then
the graph G’ obtained from G by adding a new edge is also regularisable.

Proof. Let S’ be a stable set of G'=(X, I'’). Since §' is also stable for G =(X, I,
|I'S'|=|S$'I+1, and

\r's|=\I'S'|=|8'|+ 1.
Hence G' is regularisable.

{Note that Corollary 3.2 does not hold for bipartite graphs; the quadrilateral C,
is regularisable, but the graph obtained by adding a diagonal is not regularisable.)

Corollary 3.3. If, for every vertex x of a graph G =(X, I'), there exists a maximum
stable set T, such that x¢ T, I'x¢ T,, then G is regularisable.

Proof. Clearly, we may assume that G is connected without loss of generality; we
shall show, by induction on |S], that |I'S|>|S| for every stable set S.

First, let S={x} be a singleton. Then x is not an isolated vertex (because
T, U{x} would be a stable set larger than T,). Also, x is not incident to only one
edge, say [x, y], because x¢ T, hence y € T,, hence I'ct = T,, which is a contradic-
tion.

Thus, |I'S|>]S|.

Now, assume that every stable set S with cardinality <p — 1 satisfies |['S|>1S|,
and consider a stable set S, with cardinality p. Let a € §;; we have

IFSeN T,|=|Se— T,| (1)

Otherwise, |I'SoN T,|<|So—T,|, and T, —(I'SeN T,) U (So— T,) would be a stable
set larger than T,, which is a contradiction.
Case 1: S,NT,=9. Then, by eq. (1),

!Fsolzlrsom Ta1+lFa— Ta|>1rsom Ta'ZISO—TaI :IS()I-

Case 2: SoNT,#Y. Then SoN T, is a stable set with cardinality <p -1, and by
the induction hypothesis, |I'(S,N T,)|>|S,N T,|. Hence

|FSOl>lF(som Ta)l+irs()n Ta|>lsﬂm Ta|+lSO—Ta| :1S0l

Thus, in each case, |I'So| > |S,|, and this is true for every stable set S,. Hence G
is not bipartite, and, by Theorem 3.1, G is regularisable.
4. Application to a-edge-critical graphs

Let G be a graph with stability number (or ‘“independence number””) a(G) = k.
An edge e of G is said to be a-critical if the subgraph G — e satisfies a(G —e)> k.
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The graph G is a-edge-critical (for short, a-critical or edge-critical} if every edge
is a-critical. Edge-critical graphs have been extensively studied, in particular by
Plummer [13], Erdos and Gallai [6], Hajnal [9], Berge [3], Wessel [16], George
[8], Andrasfai [1], Surdnyi [(14], Lovasz [12], and Zykov [17].

Generalizing a result of Hajnal, we can show the following as an immediate
application of Corollary 3.3.

Corollary 4.1. Every edge-critical graph with no isolated vertex is regularisable.

Proof. We may assume without loss of generality that the edge-critical graph G is
of order larger than 2 (because K, is regularisable). It is easy to see that G has no
pendent vertex. Every vertex x is incident to an edge, say [, y], and the removal
of this edge creates a stable set S, , with cardinality «(G)+1. Thus, S, , —{x}=T,
fulfils the conditions of Corollary 3.3, and consequently G is regularisable.

5. Application to line-graphs

Jeager and Payan [12] have shown that the line-graph L(H) of a connected
graph H with no pendent edge is regularisable. We prove here the following result:

Theorem 5.1. If H is an r-uniform hypergraph with no vertex of degree one, such
that each edge meets at least r other edges, then L(H) is regularisable.

Let E be the edge-set of H, or the vertex set of L(H); let F< E be a matching
of H, or a stable set of L(H). Let G be the bipartite graph obtained by removing
from L(H) the edges which are not incident to F. The degree in G of a vertex
ec E is denoted by dg(e).

For e€ E—F, we have ds(e)<r, because in H the edge e has only r elements.
For fe F, we have dg(f)=r, because in H the edge f meets at least r other edges.
Hence

rifl<y do(H=mg(F,E-F)= Y dgle)<|I,Fl.
feF eclGF
Thus, |I'zF|=|F|. If the equality never occurs, then the graph L(H) is regularisa-
ble by Theorem 3.1. If the equality holds for some stable set F,, then

ds(H=r, (feF,)
dsle)=r, (eelyxF,)

It follows that G is a regular bipartite graph, and E — F,=I';F, (because in H an
edge ee IF, is covered by r edges of the matching F, so any edge in E—F,
which meets e meets also an edge of F, and consequently belongs to I';F;). Thus
|E — Fy| =|Fy|. If H has no vertex of degree 1, U;cr, f= Uecp-r, & and L(H) =G
which is a regular graph. This completes the proof.
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6. Index of regularisability

We shall now consider the index of regularisability k(G); this is a number equal
to +oo if G is not regularisable, and otherwise equal to the least k for which a
k-regular multigraph can be obtained from G by edge-multiplication.

Theorem 6.1. Let G be a simple graph, and denote by Q the set of all pairs (S, T),
where

S is a non-empty stable set,

T is a stable set (possibly empty) disjoint from S and satisfying 'T< S, |T|<|S]|.
Put

m(S, X—T)
G)= max ———
wl@)= max = o T

(This maximum takes into account the value p/0=+w, but not the undetermined
value 0/0.)
Then k(G)= u(G).

Proof. Ciearly, O#@, because ({x},9)ec Q. If k(G)=+x then k(G)=u(G)
(trivially). If k(G)<+oo, then there exists a k-regular multigraph H mini-
mum degree obtained from G by edge-multiplication. Let (S, T)€ Q. Then

k|S|—k | T|=mg(S, X —8)—my (S, T) =my(S, X —T)=ms(S, X—T).
Since this is true for all (S, T)e Q, we have k(G)=k= u(G).

For bipartite graphs, we have a more precise result, which is a straightforward

application of the Theorem of Berge and Hoffman [4] for unimodular hyper-
graphs:

Theorem 6.2. (reformulation of [4, Theorem 3.2]). Let G=(X, Y, E) be a bipar-
tite graph; then k(G)=[u(G)]*. In other words, G is regularisable if and only if
n(G)<+oo; in this case, the least degree for a regular multigraph H is the least
integer =u(G).
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HAMILTONIAN DECOMPOSITIONS OF GRAPHS,
DIRECTED GRAPHS AND HYPERGRAPHS

J.-C. BERMOND
C.M.S., 54 Bd. Raspail, 75006 Paris, Cédex 06, France

0. Definitions

Definitions not given here can be found in [3].

We will say that a graph G (undirected or directed) can be decomposed into
Hamiltonian cycles or paths if we can partition its edges (arcs in the directed case)
into hamiltonian cycles or paths (directed cycles or directed paths in the directed
case). Our notation is as follows:

K, — the complete graph on n vertices;

K% — the complete symmetric directed graph on n vertices;

K,., — the complete r-partite graph whose vertex set is the disjoint union of r
sets of n elements, two vertices being joined iff they belong to two different sets;

C, (resp. C,)—a cycle (resp. directed cycle) of length r;

S, — an independent set of n vertices;

G, X G, — the cartesian sum (also called product) of two graphs G, =(X,, E,)
and G, =(X,, E,) is the graph with vertex set X, X X, in which (x,, x,) is joined to
(v, ¥2) whenever x; = y; and x, is joined to y, in G,, or x, =y, and x, is joined to
yy in Gy;

G,® G, — the lexicographic product (also called composition) of two graphs G,
and G, is the graph with vertex set X, X X, in which (x;, x,) is joined to (y,, y,)
whenever x, is joined to y, in G, or x, =y, and x, is joined to y, in G,:

G, - G, — the cartesian product (also called conjunction) of two graphs G, and
G, is the graph with vertex set X; XX, in which (x,, x,) is joined to (y,, y,)
whenever x, is joined to y, in G, and x, is joined to y, in G,.

1. Hamiltonian decompositions of graphs
The first two results are folklore.

1.1. Theorem. K., can be decomposed into n hamiltonian paths.

1.2. Theorem. K, ., can be decomposed into n hamiltonian cycles and K,,, ., can
be decomposed into n hamiltonian cycles and a perfect maiching (or 1-factor).

21
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1.3. Theorem (Auerbach and Laskar [2]). K,., can be decomposed inio hamil-
tonian cycles iff n(r—1) is even. If n(r—1) is odd K., can be decomposed into
hamiltonian cycles and a perfect matching.

We will now give a survey of hamiltonian decompositions of the three products
defined in Section 0 and pose some problems concerning them.

1.4. Theorem (Kotzig [12]). C, X C, can be decomposed into 2 hamiltonian cycles.
1.5. Remark. The case r=n is also proved in Myers [15].

1.6. Corollary. If each of G, and G, can be decomposed into p hamiltonian cycles,
then G, X G, can be decomposed into 2p hamiltonian cycles.

1.7. Theorem (Myers [15]). K, X K,, can be decomposed into (n—1) hamiltonian
cycles.

1.8. Conjecture (Kotzig [12]). C. < C, x C,, can be decomposed into hamiltonian
cycles.

1.9. Remarks on Conjecture 1.8. G.Koester (personal communication, 1977) has
proved that C,x C,x C, can be decomposed into hamiltonian cycles. In fact he
informed me that the problem of the existence of a decomposition of C,x C,x
-+ X C, (n times) was posed by Ringel [16, Problem 2] as the existence of a
decomposition of the 2n-cube (2n-dimensional Wiirfel) into hamiltonian cycles.
Ringel [16] proved this conjecture for n a power of 2; this also follows from
Theorem 1.4 with r=n=4 and Corollary 1.6.

Very recently I learned that the existence of a decomposition of C;X Cy X Cy

into hamiltonian cycles was proved by M. Foregger (personal communication of
R. Brualdi, 1977).

1.10. Conjecture. K,, X K, can be decomposed into 3(n+ m —2) hamiltonian cycles
iff n+m is even and into 3(n+ m —3) hamiltonian cycles and a perfect matching if
n+m is odd.

1.11. Conjecture. If G, can be decomposed into p, hamiltonian cycles and if G,
can be decomposed into p, hamiltonian cycles, then G, X G, can be decomposed

into p, + p, hamiltonian cycles.

1.12. Theorem (Laskar [13]). C,®S, can be decomposed into n hamiltonian
cycles.

1.13. Remark. Theorem 1.12 can be used to give a short proof of Theorem 1.3 since
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K,..=K®S,. If ris odd, then by Theorem 1.2 K can be decomposed into
hamiltonian cycles, that is K, = J; C'” (where {J means the edge-disjoint union
and 1<i=<r) and K,,, = U, C"®S, = J,;C%” by Theorem 1.12. If r is even,
then Kj,., is the graph obtained from K, by deleting a perfect matching and so
can be decomposed into hamiltonian cycles by Theorem 1.2. Finally K,,,, =
(Kx:)®S, =1, C5)RS,=,; C5). And thus if n(r—1) is even K,,, can be
decomposed into hamiltonian cycles.

1.14. Theorem (Laskar [13]). C,® C, can be decomposed into n+1 hamiltonian
cycles if n is odd or r is even.

1.15. Conjecture. C,Q C, can always be decomposed into n+1 hamiltonian
cycles.

1.16. Conjecture. If G, can be decomposed into p, hamiltonian cycles and if G,
can be decomposed into p, hamiltonian cycles, then G,® G, can be decomposed
into p,n,+ p, hamiltonian cycles (where n, is the number of vertices of G,).

1.17. Remark. I can prove that Conjecture 1.15 implies the truth of Conjecture
1.16 for p,=p,.

1.18. Theorem. C, - C, can be decomposed into 2 hamiltonian cycles.

Proof. We can suppose r= n; let the vertex set be Z, X Z,, (where Z, denotes the
additive group of residues mod #n). Then two hamiltonian cycles are
X0 X1s -+ s Xy @D Yo, Y15 -« oy Yy WheTe iy = (4, ) and yy, ;= (=i}, ),
O=si=sr-1,0=sj=sn-1. U

1.19. Corollary. If G, and G, can be decomposed into hamiltonian cycles, then
G, - G, also can be decomposed into hamiltonian cycles.

Proof. This follows from the distributivity of the product - with respect to the
edge disjoint union of graphs (a property not holding for the cartesian sum and
the lexicographic product). O

1.20. Many other problems similar to those above can be considered; in particu-
lar we can consider decompositions into cycles of given length (see [6]). We
mention also that Huang and Rosa [9] have considered “‘orthogonal’” hamiltonian
decompositions, and finally we give the following conjecture of Kotzig [11].

1.21. Conjecture (Kotzig [11]). K,, can be decomposed into perfect matchings, i.e.
has a 1 factorisation, in such a manner that the unign of any two perfect matchings
is a hamiltonian cycle.
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Partial results have been obtained on this problem, see for example Anderson

[1].

2. Hamiltonian decompositions of directed graphs

The same problems can be asked for the directed graphs, but they are more
difficult. Many of the known results are obtained in the following easy way;
associate with a hamiltonian decomposition of G a hamiltonian decomposition of
the directed graph G* (obtained from G by associating to each edge of G two
opposite arcs) by associating with each hamiltonian cycle two opposite directed
hamiltonian cycles. For example Theorem 1.2 gives the following.

2.1. Theorem. K¥ ., can be decomposed into 2n directed hamiltonian cycles.

The problem of the existence of a hamiltonian decomposition of K} has been
solved only recently.

2.2. Theorem (Tillson {17]). If 2n=8, then K%, can be decomposed into 2n—1
directed hamiltonian cycles.

2.3. For 2n=4 and 2n =06, such a decomposition is impossible. The problem
seems to have been asked first by Strauss for hamiltonian paths (see Mendelsohn
[14]). In [14] Mendelsohn showed how the existence of sequenceable groups
implies the existence of a hamiltonian decomposition of K%, and that gives the
result for 2n =22 [14], 28 [10], 40, 56, 58 [18]. By computer the existence of a
hamiltonian decomposition of K%, for 8<<2n <18 was obtained (see [5]). With
Faber we proposed Theorem 2.2 as conjecture in [5] and [4]. After that A.
Bouchet (personal communication, 1976) showed that if K%, can be decomposed
into directed hamiltonian cycles, then so can K%, .

2.4. Conjecture. One can easily ask many other problems, for example the directed
versions of the results or problems of Section 1. But there are also problems peculiar
to the directed case like Kelly’s conjecture that every regular tournament can be
decomposed into directed hamiltonian cycles.

3. Hamiltonian decompositions of hypergraphs

3.1. For hypergraphs the number of problems grows quickly, because one can
give different definitions of a hamiltonian cycle. 1 will restrict myself to a
definition and a problem considered in [7]. If H is a hypergraph with n vertices
then a hamiltonian cycle is a sequence x,E,x, - - ;Ex;,, « -+ x,E,x; such that
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(i) the n vertices x; are all different (and thus are the n vertices of the
hypergraph),

(ii) the n edges E; are all different,

(i) {x, x; ;. E;(1<is=n-—1) and {x,, x,,} < E,.

Let K| denote the complete h-uniform hypergraph; its edges are all the
h-subsets of a set X of cardinality n.

In [7] we conjectured that K} can be decomposed into hamiltonian cycles if and
only if (})/n is an integer and proved this conjecture for n a prime.

Here I want to prove two theorems concerning the case h = 3.

3.2. Theorem. If K can be decomposed into hamiltonian cycles then K3, also can
be decomposed into hamiltonian cycles.

Proof. (This proof was obtained with D. Sotteau.) In order to shorten the writing, I
will write a hamiltonian cycle as E,, ... E, ..., E, where E,=(x, y, xm}. Let the
vertex set of K3, be XU X’ with |X|=|X'| = n. With each hamiltonian cycle of the
decomposition of K; we associate 4 hamiltonian cycles of K3, in the following
manner:

(i) if n is even, we associate with (x;y,%,)(X,¥2%3), . - ., (X, ¥.%,) the following
(1 y102)(X2Y2%3) =+ (o1 Y1 6) (VX 1)
(x1y1%2) * * * (Xnea Yno1 X (X YuXy),
(X1 Y100 x2 Y2530 (X3 Y3%0) * + + (K1 Yo 1 X (X0 VnX 1)
(x1Y162)(X2¥243) =+ + (Ko Va1 6 )XYk )s

and the two cycles obtained by exchanging the vertices of X and those of X';
(ii) if n is odd we associate with (x,y,x,)(X,y5%3), . . ., (x,y.x,) the following:

(1 Y122)(X2Y2X3) (K3 V2 X — ) (K1 Ve 1 X)) (X Y X 1)
(X1 Y1 x2)(x5y2x5) =+ (X paYna X (X 1Y e 1) (X, Y X),

(xiy1x2)(x5y5%3) - - - (xr’wzyr/rrzxrll—l)(xr’;ﬁyr,l—lxr’l)(x:‘yrllxl)
(Y122 (x2¥5203) =+ (Ko Yn2 X D) (K1 Y1 5)(, Y R X 1),
(X Y1 22)(x5Y223) * - (Ko Y2 X X Vo1 X (X Y XF)

(X1Y1%2)(X2¥253) (X p2Vn—2Xn— N Kot Ve 1 X (X0 Vi X),
and

(XY 1X2)(X2¥2%3) * (Ko Y2 X ) (K1 Yoo 1 6 (X, V0 X 1)

’

(Y1 22)(x2¥5%3) (X2 Y2 X)) (Ko Y1 X (X Y X ).

Thus we have obtained a decomposition of the edges of K3, not of the form
(x, x",y) or (x,x',y"). We will use Theorems 2.1 and 2.2 to decompose these
remaining triples. Indeed with the directed hamiltonian cycle x,,...,x, of a
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decomposition of K¥ we associate the following hamiltonian cycle of K3:
(0 {2 )(X2%2%3) = =+ (X1 X1 %) (XX X 1)
(xhxyx5) -+ - (X1 %o X)X X X))

Thus the proof is complete. One can check that we have found [(n—1)(n —2)]+
n—1=¢2n—1)(2n—2) hamiltonian cycles in K3,. [

3.3. Theorem. If n=2 mod (3) K. can be decomposed into hamiltonian cycles.

We are grateful to A.E. Brouwer (personal communication, 1976) for the
following idea on which the proof is based.

3.4. A choice design of order n is a system of representatives of the triples of K}
such that:

(i) each point is chosen equally often as a representative;

(ii) among the n —2 triples containing a given pair {a, b}, a is chosen 3(n—?2)
times and b i(n—2) times also.

For example, when n =5, we have underlined the element chosen.

012; 013; 014; 023; 024; 034; 123; 124; 134; 234.
3.5. Theorem. A choice design of order n exists if and only if n=2(mod 3).

Proof. The necessary condition is obvious as 4(n —2) must be an integer. We will
prove that the condition is sufficient by induction. Suppose there exists a choice
design of order n. Let the elements of K7, be {1,2,... n}U{e, 8, v}. For a triple
of elements of {1, 2, ..., n} we choose the element defined by the choice design of
order n. For the triples we choose

(L j,a) (G,5,B) (iLjv) withi<j,

i i vy if {+j=0 (mod 3),
J B8 i if i+j=1 (mod 3),
@ i i if i+j=2 (mod 3).

For the triples we choose

(Lo, B) (ha,y) (5B y)

i Y Y if i=0 (mod 3),
B @ i if i=1 (mod 3),
«@ i B if i=2 (mod 3).

For the triple (a, 8, y) we choose Y.

We leave to the reader the care of checking that we obtain a choice design of
order n+3; the only non-immediate part is to check property (ii) for the triples
containing a pair (i, ) or (i, 8) or (i,vy). O
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3.6. Proof of Theorem 3.3. If n is odd, there exists a decomposition of K,, into
1(n—1) hamiltonian cycles. To each of these cycles (x;, x,, ..., X,) we associate
the following 3(n—2) hamiltonian cycles of K32:(xy, yi, X:)(Xs, y4, X3) -+
(Xp—1s Yio1s X)X, Y5, X1), where i=1,2,...,3(n—2), yi# y% for i#k and where
the y}are defined according to the existence of a choice design of order n (by Theorem
3.5). The set {y;:i=1,2,...,3(n—2)} consists of the }(n—2) elements repre-
sentatives of the 3(n—2) triples (x;, x;, ;, y) containing the pair {x;, x;,,} and where
neither x; nor x;,; has been chosen. Thus we have constructed {n-1)(n-2)
hamiltonian cycles of K? and it suffices to verify that no triple (edge)
appears twice, but that follows from the definition of a choice design of order
n.

3.7. Example. Let (0, 1,2, 3,4) and (0, 2, 4, 1, 3) be two hamiltonian cycles of Kj;
by using the choice design of the example we obtain the two hamiltonian cycles of
Kz:

(0,3, 1)(1,4,2)2,0,3)3, 1,4)4,2,0),
(0,1,2)2,3,4)4,0, 1)1, 2,3)(3, 4, 0).

If n is even the proof is similar. We use a decomposition of K7 into n —1 directed
hamiltonian cycles (Theorem 2.2). To each of these directed cycles (x;, x5, ..., X,)
we associate $(rn —2) hamiltonian cycles of K;:

(xl’ yll’ x2)(x2’ Yzlv x3) Tt (xnfl’ Yi—x, xn)(xru y:n xl),

where i=1,2,...,5(n—2); yi#y5 for iZk and where the set {yi:i=
1,2,...,4(n—=2) is determined as follows. Consider the 3(n—2) elements rep-
resentative of the triples (x;, x;.,, y) containing the pair {x;, x;.,} and where
neither x; nor x,., has been chosen. Then split these elements into two sets of
cardinality g(n—2): Yy, .., and Y’ . . Then the set {yj:i=1,2,...,3(n—2)}
is either the set Y|, . , or Y’ . , according as the arc (x; x;,,) or the arc
(x;41, %;) appears in the directed hamiltonian cycle. [J

Note added in proof

M.F. Foregger has proved Conjecture 1.8 (Hamiltonian Decompositions of
Product of Cycles).
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The theory of extremal graphs without a fixed set of forbidden subgraphs is well developed.
However, rather little is known about extremal graphs without forbidden subgraphs whose
orders tend to « with the order of the graph. In this note we deal with three problems of this
latter type. Let L be a fixed bipartite graph and let L + E™ be the join of L with the empty
graph of order m. As our first problem we investigate the maximum of the size e(G") of a
graph G" (i.e. a graph of order n) provided G"2 L +El"], where ¢>0 is a constant. In our
second problem we study the maximum of e(G") if G"2 K,(r,en) and G"2 K3, The third
problem is of a slightly different nature. Let C*(f) be obtained from a cycle C* by multiplying
each vertex by t. We shall prove that if ¢>0 then there exists a constant [(c) such that if
G"»C*(1) for k=3, 5,...,2l(c)+1, then one can omit [cn?] edges from G" so that the
obtained graph is bipartite, provided n > ny(c, t).

Our notation is that of [1]. Thus G" is an arbitrary graph of order n, K” is a
complete graph of order p, E? is a null graph of order p (that is one with no
edges), C™ is a cycle of length m, G,(n,,...,n,) is an r-partite graph with n,
vertices in the ith class, K,(n,,...,n,) is a complete r-partite graph. C™(¢) is a
graph obtained from C™ by multiplying it by ¢, that is by replacing each vertex by
t independent vertices. We use H™, $™, T™, U™ to denote graphs of order m
with properties specified in the text. We write |A| for the cardinality of a set A,
|G| for the order of a graph G and e(G) for the number of edges (the size) of G.
The set of neighbours of a vertex x is denoted by I'(x) and d(x)=|I"(x)| is the
degree of x. The minimum degree in G is 6(G).

Let & be a family of graphs, called the family of forbidden graphs. Denote by
EX(n, #) the set of graphs of order n with the maximal number of edges that does
not contain any member of . The graphs in EX(n, ) are the extremal graphs of
order n for . Write ex(n, ¥} for the size of the extremal graphs: ex(n, ¥) = e( H),
where H e EX(n, %). The problem of determining ex(n, ) or EX(n, %) may be
called a Turan type extremal problem. We shall prove some Turan type extremal
results in which the forbidden graphs depend on n. The first deep theorem of this
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kind was proved by Erdos and Stone {8] in 1946. This theorem is the basis of the
theory of extremal graphs without forbidden subgraphs (see [1, Ch. VI]). Consid-
erable extensions of it were proved by Bollobas and Erdos [2] and by Bollobés,
Erdos and Simonovits [3].

For fixed r and t the extremal graphs EX(n, K5(2, r, t)) were studied by Erdos
and Simonovits [7). Our first aim in this note is to describe EX(n, K5(2, r, cn)),
where r=2 and ¢>0. In fact, we prove the following somewhat more general
result.

Theorem 1. Let L be a bipartite graph. Put

qg(n, L)y=max {nn,+ex(n,, L)+ex(n,, L):n, +n,=n}. (1)
There exist ¢ >0 and n, such that if n>ny and

e(G")>q(n, L), )

then G" contains an L+ E'""\. If in addition for every m there exists an extremal
graph S™ e EX (m, L) with maximum degree <3 cm, then

ex (n, L+ E“")=¢q(n, L) 3

and every extremal graph U™ e EX (n, L+ E"") can be obtained from an S™e
EX(m, L) and an S" ™" cEX(n—m,L) as S™+S" ™.

Remarks. (i) If L =K,(2, r), then the maximum degree of any S™" e EX (m, L) is
o(m) and the same holds if L is not a tree, but there exists a vertex ve L for
which L —v is a tree. Thus Theorem 1 gives

ex (n, K5(2, r,{cn])) = q(n, K52, 1)).

It also gives information on the structure of the extremal graphs.

(ii) Theorem 1 states that q(n, L) is an upper bound for ex (n, L +E™“"l). A
lower bound for ex(n, L+ E'")) can be obtained by observing that if S™e
EX (n, L), then S"+E" ™2 +E“" 5o

ex(n, L+ E““YY=max {n,n,+ex(n,, L):n,+n,=n}. (4)

In some cases, for instance if L consists of independent edges, (4) is sharp.

(iii) The essential part of Theorem 1 states that a graph G" not containing an
L + E*"! can not have more edges than S”+S"°, where SPe EX (p,L), $" P ¢
EX(n—p,L) and p is suitably chosen. It is unfortunate that $”+S"° may
contain an L+ E!'! and we need an additional condition to exclude this
possibility.

The proof of Theorem 1 is based on five lemmas.

Lemma 2. q(n+1,L)—q{n, L)=n/2.
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Proof. Let q(n, L)=n,n,+ex(n,, L) +ex(n,, L), where n,<n,. Then
qgn+1,L)=(n,+ny+ex(n,+1, L) +ex(n,, L)=q(n, L)+ n/2.

The next lemma is an immediate consequence of Lemma 2 and the straightfor-
ward Lemma V.3.2 of [1].

Lemma 3. Given c¢,>0 there exists ¢,>0 such that if e(G")>q(n, L) then G"
contains a subgraph G* satisfying p=c,n, e(G*)>qlp, L) and 8(G)>(E—c)p.

Lemma 4. There exists a constant ¢, >0 such that if §(G")=G—1o)n and
K =K,9r,9r,9r)= G", where r=|L|, then G" contains an L+E" with t=c, n.

Proof. Put H=G" - K. Since at least 27r - 5551 — (27 r)* edges join K to H, at
least 55n vertices of H are joined to at least 11r vertices of K. Let ¢, =55-2727".
Then H contains ¢ = ¢, n vertices that are joined to the same set of at least 11r
vertices of K. The subgraph of K = K;(9r, 9r, 9r) spanned by this set of vertices
contains a K,(r,r) so K,(r,r)+E‘c G". Since L<K,(r,r) we have L+E'c
G . O

The first part of the next lemma is a weak form of Theorem V.2.2 in [1], the
second part is an immediate consequence of the first part.

Lemma 5. (i) If G = G,(m, n) does not contain a K,(s, t) whose first class is in the
first class of G then

e(G)<t*mn''* +sn.

(i) Given d and R, there exist € >0 and n, such that if n=n, and if in
G =Gy(n,n,...,n) atleast (1—¢e)n® edges join any two classes then G contains a
Kd(R’ R, LR ] R)

The last lemma needed in the proof of Theorem 1 is a slight extension of some
results proved by Erdds and Simonovits [5, 6, 10].

Lemma 6. Given ¢, 0<c<1, and natural numbers d and R, there exist M = M(c,
d,R), 8=8(c,d,R)>0, and ny=nl(c,d,R) such that if n>n, e(G")>
(1-1/d—8);n* and K,(R,...,R)ZG", then the vertices of G can be
divided into d classes, say A, A,, ..., A, such that the following conditions are
satisfied.

(i) |n;,—nld|< cn, where n, =|A,|.
. (ii) The subgraph G, = G"[A.] of G", spanned by A, satisfies
e(G;) < cn?

(iii) Call a pair {x, y} of vertices a missing edge if x and y do not belong 1o the

same class A, and xy is not an edge of G™. The number of missing edges is less than

cn’.
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(iv) Let B; be the set of vertices in A, joined to at least cn vertices of the same class
A,. Then |Bj<M.

Proof. Let M,=R and choose natural numbers M, <M, <...<M, such that
M/M, <3 Put M =M, Pick 5 such that 0<n<(ic)™.

By Lemma 5 (ii) we can choose €, 0 <& <, and n, such that if N={nn], n=n,
and in H=Gy(N, N, ..., N) at most en’ edges are missing between any two
classes then H containsa K;(R, R, ..., R).

The above mentioned theorem of Erdos and Simonovits (see Theorem V.4.2 in
[1]) implies that there exist n,= n, and 8 >0 with the following properties. If G
is as in our lemma and A,, A,,..., A, is a partition with the minimal number
of missing edges (cf. condition (iii) of the lemma) then (i), (i) and (iii) hold.

Suppose (iv) fails, say |B;| =M. Then by the minimality of the partition each
vertex of B, is joined to at least cn vertices in each A,. Since

M, cn> (qn) ™M, n' ™ + Min,

t

repeated applications of Lemma 5 (i) imply that there are sets BcB,, A, cA,
i=1,2,...,d, such that |[B|=R, |A,|=N and each vertex of B is joined to each
vertex of A =J¢ A,. Now it follows from (iii) and the choice of £ that G[A]
contains a K,(R, R, ..., R). Hence G[A U B] contains a K, ,,(R, R,...,R). U

Proof of Theorem 1. It is easy to see that if G, H are graphs containing no L and
no K,(1, cm/2), then G+ H contains no L+ E“™l, Hence the second assertion of
Theorem 1 is trivial. To prove the first assertion assume indirectly that G"
contains no L +E“" and e(G™)> q(n, L). We shall show that this is impossible if
¢ >0 is sufficiently small. By Lemma 3 and Lemma 4 we may and will assume
that §(G")=G—3%&r Yn, R=gr, and G"# K;(9r,9r,9r). Applying Lemma 6
with d =2, we obtain a partition (A, A,), satisfying (i)—(iv) of Lemma 6. For the
sake of convenience in the sequel a subset H of the vertices of G" and the
corresponding spanned subgraph may be denoted by the same letter. Clearly, if m
is the number of missing edges, then

e(G")=e(A))+e(Ay)+nn,—m, (5)
where n, =|A;|. Trivially, if neither A, nor A, contain L, then
e(G")=ex(n,, L)+ex(n,, L)+ nn,<gq(n, L).

Thus L < A, may be assumed.

Let us assume that A;— B, contains a subgraph L, isomorphic to L. To each
x € L, we find 1n(1—1r ") or more vertices in A, — B, joined to this x: since x is
joined to cn or less vertices of A;, it is joined to at least 3 —35r Y)n —qonr™!
vertices of A,. Thus at least n,—r - inr~*>1n vertices of A,— B, are completely

joined to L, yielding an L + E* for t ={sn]. This proves that L& A, — B,. Hence
e(A)=<e(A,-B)+ |Bi| m<ex(m, L)+ IBII n;.
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Now we fix some constants and give the basic ideas of the proof. The details are
given afterwards.

We fix a constant T such that |B;|<T(i=1,2). Lemma 6 guarantees the
existence of such a T. A constant ¢; >0 is fixed so that for a; = r*" ‘¢, we have
a,<(10T)2. Given a set W< A, denote by F(W) the set of vertices of A;_; not
joined to at least one vertex of W. Observe that if W has at least ¢, n vertices,
then F(W) represents each L < A;_,, for otherwise there would be an L com-
pletely joined to W and therefore L+ E“" < G" and we are home. Thus we may
assume that F(W) represents all the L’s in A; ;. Let

k= (e(A)—ex (n, L)).

Clearly, to represent all the L’s in A; we need vertices, the omission of which
diminishes e(A;) by at least e(A;)—ex (n, L), hence we have to omit at least k;
vertices: F(W) has at least k; vertices. This is the basic idea of the proof, but this
in itself will not be enough. We shall prove the existence of a set Q; of O(1)
vertices in A; such that the number of missing edges incident with this Q, is at
least k;n, +5<nT* if L < A,. We have already checked the case, when no L occurs
in A, and A,. Let us consider the case, when A, o L but A, ? L. By (5) we have

e(GM)<=ex(n,, L)+ k,n,+ex(n, LY+nn,— (kln1 +§5E?> <q(n, L).
If A;>L, A,> L, then the number of missing edges is estimated by the sum of
the missing edges incident with Q; and Q, minus the number of missing edges
between Q, and Q,, which is only O(1). Hence

25T

t

e(GM) = Z(ex (n, LY+ k;n; — <k,—ni +L)> +0(1)<g(n, L).

This completes the sketch of the proof.

Let us see now how the argument above can be made precise. Recall that
LcA,. Let L,...,L, ... be subgraphs of A, isomorphic to L. For any
W=W,cA, and We W,, IW,|=an, |W\=c.n F(W) represents all the L,’s,
among them L, hence for at least a,n — ¢, n vertices of W, there exists a vertex in
L, not joined to it. Hence there exists an x, € L, and a W, < W,, |W,|= a,n, such
that x, is not joined to W, at all. If x, does not represent all the L,’s, we may
assume that x, & L,. Iterating this argument we find an x,€ L, not joined to a
W,<= W, at all, where |Ws|=a;n, and if x;, x, do not represent all the L,’s, we
define x5 and W, in the same way.

Generally, if x, and W,,, are already defined, we check whether the set
X, ={x:,..., x,} represents all the L < A,. If it does or if p =27, the procedure
stops, otherwise we find an L,,, and an x,., in it and a

W, Wy, |Wp+2|2ap+2n
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so that x,,, is not joined to W,,, at all. At the end of the procedure we have an
X=X, and a W =W, not joined at all to each other.

Let B’ < B, be the class of vertices of degree at least sn —7snT ' in A,. Let D
be the set of vertices of A, joined to B’ completely. D is relatively large. Indeed,
by the minimum property of the partition (A,, A,) any x € B’ is joined to at least
n(z—1,T ") vertices of A,, hence at least n(3+¢&)— Tn({sT '+ ¢) vertices of A,
are joined to B’ completely. Thus |D|=in if e <55T %

Now we define another procedure, in each step of which the above procedure is
applied to a set W, < A, yielding a pair of sets W) and X; not joined to each other

at all: |W;|=a,n, |Wi=c.n, |X|<2T. Let
W,=D (|D|za,n),

W,=D-U W, until |[W,]|<ayn,

i<y

then

W, =A,-U W.
i<j

The corresponding sets in A, are X,,..., X, The procedure stops if for W;=
A,— Ui, W we have |W)|<a,n. By |Wi|=c¢n this will happen for some
i=c ' Let X={J X, Clearly, | X|<2T/c. =O(1). We shall show that there exist
at least k;n, +2snT ' missing edges joining X to A,. This will complete the proof.

We need a lower bound for the number of missing edges joining a W/ to X: this
lower bound is |X;|. By the definition of D, if W, < D, then each vertex of
X, < A,— B’ has degree <in—15nT ' in A,. These vertices represent all the L’s
in A,, hence they represent at least k,n, edges:

if n is sufficiently large, ¢ sufficiently small and k,=2. If k, <2, we use | X||=1,
|T|=1 (which can be assumed). Thus

1
1=k +—
|Xl| kl 6T

again. In the other case, when W;Z D, we use a weaker lower bound. Since
|Wi|= ¢, n and no x€ X, is joined to Wi, such an x is joined to at most n,—¢;n
vertices of A,, and consequently, to at most n,- ¢, n =3n—c, n+en vertices of
A,, we obtain now that

iXiIZkl+k1CL>kl'
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Thus the number of missing edges incident to X can be estimated from below by

n 1\ n 1

Nk +—=\+=-k,~(a,+ ki+—].

3( 1 6T) 6 k,—(a, 3)”( 1 6T>
Here the third term stands for the vertices not belonging to any W; and for the
difference between n, and 3n. If ¢ is sufficiently small, T large, then by k;=< T and
a,<(10T)"? we obtain that at least k,n, +55nT ' missing edges are between X
and A,. Thus the proof is complete. [

Remark. Theorem 1 can be generalized to higher chromatic numbers, that is, an
analogous theorem holds for L + K,_,(r, . . ., r, cn). The proof of this generalization
is essentially the same as for the particular case considered above.

Our second theorem concerns ex (n, K>, K,(r,[¢n])) and, more generally, ex (n,
C%*(1), K,(r, [cn])). An interesting feature of the result is that the value does not
really depend on j and .

Theorem 7. Let j, r, t be natural numbers, let k =2j+1 and let ¢>0. If e(G")=
cn?® and G" does not contain a C*(t), then G" contains a K,(r, m), where

m=2*"1c'n+o(n).

Proof. We shall show first that if instead of a C*(¢) (and so a fortiori a C*) we
prohibit all odd cycles, then G" contains a K,(r, m) with

m=2*"'c"n+o(n),
but if €>0 then G" need not contain a K,(r, m’) with
m' =(> ‘e’ +e)n+o(n).

(This will show that the value of m given in the theorem is as large as possible and
that the main thrust of the theorem is that the condition “G" is bipartite” can be
replaced by the much weaker condition “G" does not contain a C*(¢)” without
decreasing the value of m we can guarantee.)

The first assertion is an immediate consequence of L.emma 5. Instead of the
second we prove the following stronger assertion.

Let n be even and let G™ be a random subgraph of K,(3n,3n) obtained by
taking ap edge of K,(3n, 3n) with probability 4c. Then, with probability tending to
1, G" has cn?+o0(n?) edges and if t=¢(G") is the maximal number for which G"
contains a K,(r, ) then, again with probability tending to 1, we have

t=2""'c"n+o(n).
In order to prove this assertion, we denote by A and B the two classes of
K,(in,in). We say that a vertex xe B forms a cap withaset U if Uc A, [U|=r
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and x is joined to every vertex in U. The expected number of vertices forming a
cap with a given r-set in A is 2> "'¢’n and the variance of the event that an x€ B
forms a cap with U is dj=4c(1—4c). By the well known Bernstein inequality for
binomial distributions (see p. 387 in [9]) the probability that U is joined to more
than 2>"'¢'n+n*? or to less than 2%" '¢c'n—n?> vertices x € B completely is
O (exp (—¢,n"?)). Hence with probability tending to 1 on each U there is a
K,(r, 1) for t=2""'¢'n—n?> but on no U for t=2%"'¢'n+n??, since
n
(r) - Ofexp (— ;') =o(1).

A similar application of Bernstein’s inequality yields that |e(G")— cn?|=< n””* with
probability tending to 1.

Exactly the same argument gives that if G" is a random subgraph of K, of size
[cn]? (or is obtained from K,, by choosing each edge with probability 2¢) then G
will contain a K,(r, ) for t =2"c'n —n*? with probability tending to one, but for
t=2'c"n+n?? only with probability tending to 0. This shows that prohibiting the
odd cycles results in an increase of the constant from 2'c” to 2”7 ’¢” and that the
main point of our theorem is that the same result can be obtained by prohibiting
just one odd cycle.

The proof of our theorem is based on the following result of Szemerédi [11].

Lemma 8 (Uniform Density Lemma). Given two subsets U, V of the vertex set of a
graph G", denote by e(U, V) the number of edges joining U to V and put

e(U, V)
ulivy

d(U, V)=

There exists for a given constant B> 0 an integer M(B) such that for any G" the
vertices of G" can be divided into disjoint classes V,, ..., V, for some k <M(B) so
that |Vi|=|V,| if i#0, j#0, |V,|<Bn if i=0, 1,..., k and for all but Bk* pairs
(i, j) the following condition holds.

(*) Whenever U,= V,, U;< V, and |U,|>B|V,|,|U]|>B |V, then

Let us turn now to the main body of the proof of Theorem 7.

(A) Let e(G")=cn’> and let B8>0 be an arbitrarily small constant, much
smaller than c. Applying the Uniform Density Lemma to G" we obtain the
classes Vi, Vi,..., V.. Let m=|V,|(i=1,..., k). Instead of G" we consider a
graph G’ of n—|V,| vertices, obtained from G"— V, by omitting all the edges

(1) joining vertices from the same V; (i=1,...,k);
(i) joining a V; to a V, for an “‘exceptional pair”, that is, (*) does not hold;
(iii) joining a V, to a V,, when d(V,, V,)<B'.
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Clearly,
n—pn<|G'lsn,
and
0=<e(G")—e(G)=2B"*n?

If B is sufficiently small. Therefore instead of proving Theorem 7 for G" it is
sufficient to prove it for G'. Hence we may and shall assume that G'= G".

(B) Let R* be the graph whose vertices are the classes V, (i=1,...,k) and
V., is joined to V; in R* if there exists an edge (u, v) in G" joining V; to V,. We
prove that R* does not contain a triangle (K®). Let us assume that V,, V, and
V, from a triangle in R*. Put

U+:{x € V3: d(x7 Vl)sﬁ}’
U ={xe V5 d(x, V,)<pl

For any xe U=V,—~U"-U"" there exist a U,, and a U,, in V, and V,
respectively, joined to x completely, where |U,,|= Bm. Hence the number of
edges joining U, to U, is at least

(Bm)*(B'>—B)>p*m>.

This is a lower bound on the number of triangles on x, with the other two vertices
in V, and V,. Hence the total number of triangles (K>’s) of form (x, y, z), x € V3,
yeV,, ze V,is at least (1-28)B8*m>: by (*) |U*|<Bm, |U""|< Bm. A theorem
of Erdos [4] asserts, that if in an r-uniform hypergraph H of n vertices there are
at least cn”~"~Y* hyperedges, then H contains a subgraph of the following form:
C,, ..., C, are vertex-disjoint ¢-tuples and we take all the r-tuples ( = hyperedges)
of form (x,,...,x,), x,€C, for i=1,...,r. Applying this theorem to the system
of K¥s obtained above we get a C,c V, (i=1,2,3) with |C,|=1t and such that
each K® of the form (x,y,z), xeC;, yeC,, ze C, belongs to G". Thus
Ki(1, t, 1) = C*(t) = G™. This contradiction proves the assertion of (B) for k =3. In
the general case we apply the theorem with kt instead of ¢ and observe that K;(kt,
kt, kt) > C*(t), again completing the proof of (B).

(C) Now we fix a ¢, (0, ¢) and assume indirectly that
e(G")=cn?, G"2C*(1) and G"2K,(2* 'cin,r).

Let d,=d(V,, V- V,), where V is the vertex set of G". We may assume that
d,=max d; =d. Let us permute the indices of V, so that V,,..., V_,, are the
classes joined to V,, the others are independent of it. Clearly, V,,..., V., form
a set of ms independent vertices. Hence

k

e(GY=< Y (dnym+(dn)ym<(dn)(n—a). (6)

i=s+2
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where

U Vv

I=si<s+1

a= =(s+1)m.

To obtain an upper bound of d in terms of a, we apply Lemma 5 to the bipartite
graph determined by the classes | Joo;o 1 Vi (=first class) and V|, (=second
class). We find that

G"2oKy(r,t) witht=(1—-0o))d'n'a " ". 7N
By the assumption G2 K,(r, 2> '¢in) and by (7)
d'n la " Vs (1+0(1))2% el (8)

Let us assume that d >2¢, (this will be shown later). From (8) and c¢| <}idc™' we
obtain d <(1+0(1))4c,(a/n). This and (6) yield

cn’se(GY)<sdn(n—a)<(1+o(1)n?- 4c, %(1 —%) <c,n?,

which is a contradiction.
To prove d>2c, observe that “‘essentially, dn is the maximum degree’’:

anse(G")=% Z d(V,V-Vm(n—m)<km - din—m)=dn(n—m).
’ ©)

Until now B and ¢, were independent, now we may agree that $ is chosen
depending on ¢, and it is so small that 1 — 3> (c,/¢). This, (m/n)<<B and (9) yield
the desired inequality d > 2¢,. [

Remark. The method used to prove Lemma 6 and the method used to prove that
K? does not occur in the graph R* are equivalent: both can be used in both cases.
The proof becomes slightly shorter if we consider only the case r=1.

Theorem 9. Let t be a natural number and let ¢ > 0. Then there exists an n, such
that if n>n, and G"Z C™(t) for m=3, 5,...,2l(c)+1, where 2l(c)+1>c¢7',
then G" can be made bipartite by the omission of not more than cn? edges.

Remark. Theorem 9 is sharp, apart from the value of l(c)} which is probably
O(c "'?). This I{c)=O(c™ "?) would be sharp if true. To see this put n=(2[+3),
and G" = C*"*(m). If ¢ = (21 +4)72, then more than cn? edges must be omitted to
turn G" into a bipartite graph and C" does not contain C* if k is odd and smaller
than 2[+3.

Proof. Our proof consists of two parts. We shall give two versions of the second
part.
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Part I. Let ¢’ <c be fixed. We shall say that the edges are regularly distributed,
if for every partition V(G")=AUB we have d(A, B)=2c". If we have an
arbitrary G", we shall find a G™ in it, in which the edges are regularly distributed
and h(G™)= cm?, m > n}, also hold, where h(G) denotes the minimum number of
edges one has to omit to change G into a bipartite graph. Therefore it will be
enough to prove the theorem for the case, when the edges are regularly distri-
buted and this will be just Part II. Let us assume that the edges are not regularly
distributed in G"; V(G")= AU B and d(A, B)<2c¢'. Clearly,

h(G™)<h(G[A])+h(G[B]) +d(A, B) |A|B|,
therefore we may assume that

h(G[AD)>c|AP+(c—c')|A | B|. (10)
Hence

ilAP>(c=c) A | B,

that is, |[A|> ¢”|B| for ¢"=4(c—c'). This also shows that [A[>(1+¢") 'n. Fur-
thermore, by (10),

h(G[AT)> 2 = —c —'ﬂ

ci |AF for ¢;=c+(c C)|A|'

Put Gy, = G", ¢,=c¢, G,= G[A] and repeat the step above until either we arrive at
a G; in which the edges are regularly distributed or to a G; with Vn or less
vertices (and use always ¢;=¢; —(c —c)). It is easy to show that if n is sufficiently
large, then G; cannot go below \/n, otherwise ¢;>1 would occur. Hence the
procedure will always stop with a graph G; in which the edges are regularly
distributed. This was to be proved.

Part II (First version). (A) We start with a graph G™ for which h(G™)= cn?, fix
a ¢"<c and then a ¢'€(c¢”, ¢) and a 8> 0, which is much smaller than ¢”. Using
the first part we may assume that the edges are regularly distributed. We may
repeat part (A) of the proof of Theorem 7 replacing e( ) by k() and ¢ by ¢’
Then we may assume that G’ = G", but have to decrease ¢': replace the original
condition by condition h(G")=c"n>. How we define the graph R* as in the
beginning of (B) of the proof of Theorem 7.

(B) We prove that if n is sufficiently large and R* = C’, then G™ > C’(1), where
t is fixed, but arbitrarily large. Exactly as in the proof of Theorem 7, we can prove
that G" contains at least ¢, n’ cycles C', where ¢,>0 is a constant. Applying the
theorem of Erdoés on hypergraphs [4], we obtain j sets X,,..., X, with |X;|=
T—ce, such that if x,€ X,,...,x;€ X, then some permutation (x;, ... ,xi') is a
cycle of G™ (we consider here the hypergraph whose hyperedges are the j-sets of
vertices of j-cycles in G"). Unfortunately the cycles will not determine a C'(T),
since the permutation i,, ..., j; may differ from j-tuple to j-tuple. However, let us
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apply the Erdods theorem again, now to the hypergraph whose vertices are in
X,UX,U... UX; and the hyperedges of which are some cycles of G" of form
(Xi,» . - -» X)), %, € X, where we choose only one permutation i, ..., i, for which
the number of cycles is at least T'/j!. If T is large enough, we obtain j subsets
Y, © X; such that whenever x; € Y,, then (x;,...,x;) defines a cycle in G" and
| Y,| =t Thus we obtained a C'(t)= G™.

(C) Clearly, the only thing to prove is, that R* > C**! for some 2s+1=<(c¢’)"".
If e.g. Vi,...,V, define a shortest odd cycle in R¥, by the assumption that the
edges are regularly distributed in G", there must be a V,, ¢ > j, which is joined to
at least 2¢'j of the classes V,,..., V,. If V_ is joined to a V; and V,. for some i’
farther from i than 2, then the arc V,V,_V, will create a shorter odd cycle. Hence
either C?< R* or 2¢"j<2, and, consequently, j<(c')"".

Part 11 (Second version). The difference between the two proofs is above all,
that here we shall not use the Uniform Density Lemma.

(A) By the first part we may assume that the edges are regularly distributed.
Let A, be an arbitrary set of Vn vertices. By d(A,, V—A,)=¢’ (where V is the
vertex set of G") and by Lemma 5 we can find a B, © A, for which |B,|=T=1>,
and a set B,< V— A, for which |B,|= bn with b=(c')", so that B, and B, are
completely joined. B; is recursively defined:

I§,~ = {x: x£|J B; and d(x, J Bi)>c’},
i<<j i<j
B;=B,—- U B.
Clearly,

|Bj|= ¢’

v-us|

i<<j

Hence for any fixed >0 we can find a I, = lo(c, 8) such that

v-U Bi1<Bn it =1,

i<j

Omitting all the edges between |J,., B;, and the rest of the graph we omit at
most Bn” edges. If now we omit all the edges (x, y) for which xe B, ye B, ,,, for
some i and p then we change the graph into a bipartite one. Hence there exists a
pair (i, p) for which at least (¢'n*— Bn?)/Ij edges were omitted between B; and
B;..,. Hence there exists a K,(7, T) joining B; to B,,,, in the sense that the first
(second) class of it is contained in B, (B;,,,). Let these classes be denoted by D,
and E,,,,, respectively. If D, is already defined, D;_, can also be defined as
follows: |D;| = T, we find ¢ vertices in D; and 2T vertices in B;_, joined to each
other completely. By Lemma 5 this can be done if n is sufﬁaently large. The class
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D,_, contains T of these 2T vertices, E;_, is obtained from E; in the same way,

but here we have to choose the T vertices outside of D;_,. Finally we obtain a
C2%+2p-1(y) in G", whose classes are E, in By, E,, ..., Ei sy, Dy Dy, ..., D, in
this cyclic order. This proves the theorem, except for the upper bound on the
length of the cycle, which is very similar to that of the first version. We only
sketch it here; if we already know the existence of a C***'(¢) for any t and s<1,,
then we take a C?**1(¢?) for some very large t and find ¢ vertices outside joined to
the same c'(2s+1)t? vertices of this subgraph. If ¢ is sufficiently large, at least
c'(2s+1) classes are joined to each of the considered t vertices by ¢ or more
edges. Thus we can find a shorter C>*™'(1) if 2s+1>(c")™'. O

Remark. With essentially the same effort we could prove the existence of a
C>*Yt,cn, t,cn, t,cn, . .., t cn, t) instead of the existence of a C**'(¢), where
C*(m,, ..., m,) is the graph obtained from the cycle C* by replacing its ith
vertex by m; new independent vertices. In other words, we can guarantee that
every second class of our graph contains cn vertices.
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Dirac [4] proved over 20 years ago that if in a graph of order n every vertex has
degree at least 3n then the graph contains a Hamiltonian cycle. This theorem of
Dirac was the first in a long line of results (see (2, 3, 5, 9, 11, 12], etc.) concerning
forcibly Hamiltonian degree sequences, that is degree sequences all whose realiza-
tions are Hamiltonian. The conditions given in these results are such that if a
sequence (d, )7 satisfies them then so does every sequence (d}); majorizing (d;)f,
that is satisfying di=d,, k=1,2,...,n In fact, Chvatal [3] proved the best
possible result of this kind.

Very little is known about graphic sequences that together with some other
restrictions on the graph force the graph to be Hamiltonian, and which are such
that not every sequence majorizing them has that property. Szekeres raised the
question whether a two-connected (m —k)-regular graph G of order 2m is
Hamiltonian if k (= 1) is sufficiently small. It is clear that if instead of regularity
we ask only that the mimmal degree is m—1 then the answer is negative.
Similarly one can not discard the condition that the graph is two-connected. Erdos
and Hobbs {7, 8] proved that the answer to the question of Szekeres is in the
affirmative if k=1,2 or k<cvVm, where ¢ is a positive constant. On the other
hand, if m =3k —4 and k=3 then G need not contain a Hamiltonian cycle. An
example showing this can be obtained by omitting some edges from K™ *U
2 K™~**1 and suitably joining these three components to two vertices (see Fig. 1).

The aim of this paper is to show that the order of k in the example above is
best possible: the graph has to be Hamiltonian if k <c¢,m —c, for some positive
constants c,, ¢,. It seems very likely that the best value of c, is 1, but we can not
prove this. '

Throughout the paper we use the terminology and notation of [1].

Theorem 1. Let k and m be natural numbers satisfying m=9k. Let G be a
2-connected (m — k)-regular graph of order 2m — ¢, e €{0, ¥}. Then G is Hamil-
tonian.

Proof. In order to reduce the number of symbols floating around, we shall take
g€ =0. The case € =1 can be treated in exactly the same way.

43
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Fig. 1. A two-connected 4-regular non-Hamiltonian graph of order 16, k =4, m =8§.

Let us assume that G does not contain a Hamiltonian cycle. Our aim is to
arrive at a contradiction. We prepare the ground by proving five lemmas about
the structure of G; the first three lemmas were proved in [8].

Let L be a longest cycle in G. Give L an orientation. Put R = V(G)— V(L) and
r=|R|. By a theorem of Dirac [4] (see also [1; Theorem IIL.4.10]) we have
|IL|=2(m—k) so 1=r=2k.

Let v e R. Let C be the set of vertices of L adjacent to v. Denote by B the set
of vertices of L immediately preceding vertices in C (‘“‘before”) and denote by A
the set of vertices of L immediately following vertices in C (“‘after”). As L is a
longest cycle, we have BNC=CNA =§.

Lemma 2. A U{v} and BU{v} are independent sets. Furthermore, if we R —{v}
then w is joined to at most one vertex of A and at most one vertex of B.

Proof. If one of the assertions of the lemma failed to hold, the graph G would
contain a cycle longer than L, as shown in Fig. 2.

Lemma 3. The set R consists of independent vertices.

Proof. Let P be a longest path in G[R] and suppose p =|P}=2. Let a, and a, be
the endvertices of P. Then each a; (i =1, 2) is joined to at most p— 1 vertices of R
and so at least 2(m —~k—p+1) edges join {ay, a,} to L.

If x; and x, are vertices of L at distance d on L and 1=<d < p, then either x, is
not adjacent to a; or x, is not adjacent to a,, since otherwise there is a cycle
longer than L, as shown in Fig. 3. Hence at most two edges join any set of p+1
consecutive vertices of L to the set {a;, a,}. Consequently at most 2/(p+1)x
{(2m —r) edges join {a,, a,} to L so

2m—k—p+1)<2@2m—r)/(p+1).

Fig. 2. The vertices of L are on a circle, x; € C, y, € A and y; follows x;, i = 1,2. The cycles in the thick
line are longer than L.
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Fig. 3. The case p=5,d =5.

Noting that p<r=<2k, we see that
m<k(p+1/(p—H+p—1/(p-1),

contradicting the assumption on the relation between m and k. Ul

Remark 4. The last inequality shows that the lemma holds if instead of m=9k
we require only that m=3k+2 (or m=3k+1 if e=1).

Let D=V(G)-AUBUCUR and put s =|A—B|=|B—A|. Since |A|=|B|=
|Cl=m—k and |[AUBUC|=2(m—k)+s=2m—r—|D|, we have |D|=2k —r—s.
In particular, r+s=2k. Let D, be the subset of D whose elements are adjacent
to no vertices in A N B.

Lemma 5. |Dy|=k—s—3r.

Proof. We may assume that r+2s=2k—1 since otherwise there is nothing to
prove. Suppose s =0. Then ANB=A so AUC= V(L) and the vertices of A
and C alternate around L. However, this is impossible since then r=
2m—-2(m—k)=2k. Thus s=1.

For each vertex b, € B— A there is an interval on L consisting of vertices b,, ¢,
fio €2 by o5 fi1s G Gy, Where ¢, €C, f,€e AN B and a,€ A — B. There are s such
intervals and so the vertices of D also form S intervals, some of which may be
empty. Let [, be the length of the ith interval. Then Y3_,l =|D|=2k—r—s. The
set D — D, does not contain adjacent vertices since otherwise G contains a longer
cycle than L, as shown in Fig. 4. Consequently

> 1
][)()I2 Z I.%L‘JZE Z (L-1)= k—s——%r. H
i=1

i=1

4
d X2 v
v
*2

Fig. 4. d;e D— D, and f,€ AN B. The cycle in the thick line is longer than L.
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Let W= V(G)—A. By Lemma 3 we have |A|=m—k and so |W|=m+ k. Put
G, = G[W]. Order the vertices in W as wy, w,, . . ., so that degy, (w,)=degy, (w;)
whenever i <j. Put M ={w;: degy, (w;)=m —3k}.

Lemma 6.

M| =k, that is degy (w,)=m —3k.

Proof. By Lemma 2 every vertex of R has degree at least m—k—1 in W.
Furthermore no vertex of (B—A)U D, is joined to any vertex of A N B. Hence
each vertex of (B—A)U D, has degree at least m—~k—s=zm—k-Q2k—r)=
m—=3k+r in W. Thus RU(B-A)UD,=M and, by Lemma S5,
IRU(B-AYUDy=k O

Let now p=max{t: degy (w,.,)=m—3k and G[w,, w,, ..., w, ] contains 2¢
independent edges}. Lemma 6 implies that p=0. Since 2p independent edges
have 4p vertices, we have 4p<k+p so 0sp<3k. Put Wy={wy, w,, ..., Wi, }.

Lemma 7. There is an x, — x, path P of length 2k in G, such that W< V(P) and
X1, X2¥,€ E(G) for some y,, y,€ A, y, #y,.

Proof. Choose a set S of 2p independent edges in G[W,]. Let T be the set of
vertices w;, 1 = I=< K+ P, not incident with edges in S. Since degyw (w,,,) < m — 3k,
for I1=si<j=sk-+p we have

IFw(w) O Mg (W)= 2(m—3k—1)—(m+k—-2)=m~Tk=2k.

This implies that we can connect the edges in S and the vertices in T in any order
to form a path P', using a vertex of W— W, between each two elements of SU T.
The path P’ has length 2k —2 and its endvertices have degrees at least m —3k in
W. Extend P’ by one edge at each end to a path P so that the new endvertices x;,
x, have as small degrees in W as possible. Since W does not contain m —4k
vertices of degree at least m —k —1 in W, each endvertex x; of P is adjacent fo at
least two vertices of A. Therefore we can select y,, y,€ A, y, # ¥,, such that x; is
adjacent to y, i=1,2. U

Armed with our lemmas, we shall show now that G does contain a Hamiltonian
cycle.

Let P be the x, —x, path whose existence is guaranteed by Lemma 7. Omit
V(P) from G together with every edge joining vertices in W and add a new
vertex x' to the remainder. Join x’ to y, and y,. Denote by G’ the graph
constructed in this way. By construction G' is a bipartite graph with vertex classes
A and Z =(W - V(P))U{x'}. We shall show that G’ contains a Hamiltonian cycle.
Since x; is adjacent to y, and x, to y,, a Hamiltonian cycle of G’ can be pulled
back to a Hamiitonian cycle of G: all we have to do is replace the path x,x'x, by
X1 Px>.
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In order to show that G’ is Hamiltonian we make use of a result of Moon and
Moser [10] (see also [1, Corollary I11.4.7]). Somewhat unnaturally we state this
result as an assertion about the graph G' at hand. Let d,<d,=<--d,, ; be the
degree sequence of the vertices in Z and let djsds<---=<d),_; be the degree
sequence of the vertices in A. If d,;<I<m-—k implies d,,_,_, ., =m—k—1+1
then G’ is Hamiltonian.

Suppose A contains m—k+1+1 vertices of degree at most m—k—1 in G’.
Then the set of these vertices is joined to {w;, w,,...,w,,,} by at least
(I-(k+1))(m—k—1+1) edges. Since each w, 1=<i<k-+p, is joined to at most
2k vertices of A,

(I-—k+p-1D(m—k—-1+1)<2k(k+p).
This in equality implies
I<$k+1.

Hence it suffices to check that the condition of Moon and Moser is satisfied for
every | less than $k+1.

Suppose d, <1 for some [, 1<1<%k+1. In G’ every vertex has degree at least
2,50 1=2. Put W, ={w,, w,,..., Wi ,,;_1}. Then, by the choice of P and [, we
have

degw (w))=m—~k—1 forevery w,e W, D
In particular, each vertex of W, has degree at least m—3k in W. Hence the
definition of p implies that G[ W] has at most 2p +1 independent edges where

Wi = WoU{w,,,.,} < W,. In turn, a theorem of Erd6s and Gallai [6] (see also [1,
Corollary 11.1.10]) gives

e(twid=max {(* T2 (C17) (¥ )]

Consequently
o=l (1) ()

On the other hand, eq. (1) implies that some of the k(m —k) edges of G[ W]
must join vertices of W,. More precisely,

e(GIW D=(k+p+I-1)(m—k—-D—k(m—k). 3)

Putting (2) and (3) together, we see that

(557 (4214
g(k+p+1—1

5 >~(k+p+l—1)(m—k—l)+k(m—k). 4)
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To complete the proof of the theorem we shall show that (4) can not hold.
(a) Assume first that

(k;p)s<k+p;"1)-(k+p+l~1)(m—k—l)+k(m—k).

Rearranging it we obtain
2(p+1—1)m=U6k+31-5)+p(6k+4]—-4)—4k+2.

Since 6k +4[—3 <m, this inequality has to hold when we put p=0. In turn, one
sees it has to hold for the minimal value of I, for [=2. However, then the
inequality becomes

2m=8k+4

and this does not hold.
(b) Assume now that

(k+§+1>‘(4p2+3)$(k+p;l_1)*(k+p+l—1)(m—k—l)+k(m—k)_

Rearranging it we obtain
2Ap+I-1)m=1(6k+4p+31-5)+p2k+16p+16)—6k+8.

Since [ <%k +1 and p=|ik] we see that the inequality must hold with =2 and
p =0. However, in that case we get the inequality

2m=6k+10
which contradicts the assumption of the theorem. We have proved that (4) does
not hoid and so the proof of the theorem is complete. [
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THE CHROMATIC INDEX OF THE GRAPH OF THE
ASSIGNMENT POLYTOPE*

Richard A. BRUALDI
Department of Mathematics, University of Wisconsin, Madison, WI 53706, U.S.A.

1. Introduction

Let n be a positive integer, and let S, denote the set of permutations of
{1,..., n}. We define a graph G, as follows. The set of vertices of G, is §,. Two
vertices o, T€ S, are joined by an edge in G, if and only if the permutation o'+
has exactly one non-trivial cycle (that is, a cycle of length at least two). Let (2,
denote the n™ assignment polytope. Thus 2, is the (n — 1)*-dimensional polytope
in R™ consisting of all n X n non-negative doubly stochastic matrices. It is proved
in [1] and [3] that the vertex-edge graph of (2, is isomorphic to G,. It is readily
verified that G, is the complete graph K, for n =1, 2, 3. As shown in [3], the

,,,,,

properties of G.,.

Property 1.1. G, has n! vertices.
Property 1.2. G, is a vertex-transitive graph.

Property 1.3. G, is a regular graph of degree A, where

n

4,= Y (Z)(k— .

k=2

Property 1.4 [3]. For n=3, the ginth of G, is 3. Indeed each edge is an edge of a
cycle of length 3.

Property 1.5 [1, 3]. The diameter of G, is 2 for n=4. (It is, of course, 1 forn=1,
2,3)

Property 1.6 [3]. G, is a hamilton-connected graph.

* Research performed while the author was visiting the Université de Paris VI and was partially

supported by a grant from the Wisconsin Alumni Research Foundation and a grant from the National
Science Foundation.

49



50 R.A. Brualdi

Since a hamilton-connected graph with at least three vertices has a hamilton
cycle, it follows from Property 1.6 that G, has a hamilton cycle for n=3. As was
pointed out by Balinski and Russakoff [ 1], the fact that G, has a hamilton cycle is
an immediate consequence of a well-known algorithm for generating the permu-
tations in S,.

Property 1.7 [4]. For n=2 the connectivity of G, is A,.

Property 1.8 [3]. For n=3 the vertices of G, can be partitioned into n'/6 cliques
(maximal complete subgraphs) each having six vertices.

For more information on these and other theorems concerning G, one can
consult [3].

2. The chromatic index of G,.

Let G be a graph and let A be the largest degree of a vertex of G. A matching
of G is a subset F of the edges of G such that no two edges of G have a common
vertex. If the matching F has the property that each vertex of G meets an edge of
F, then F is called a perfect matching or 1-factor of G. The chromatic index q(G)
of G is the smallest integer ¢ such that the edges of G can be partitioned into ¢
matchings. By a theorem of Vizing the chromatic index of the graph G is either A
or A+1. If G is a regular graph of degree A, then q(G)=A4 if and only if the
edges of G can be partitioned into 1-factors. A partitioning of the edges of G into
1-factors is called a 1-factorization of G.

The graphs G,, G,, and G; being the complete graphs K,, K,, and K¢
and a 1-factorization is readily found. One is naturally lead to conjecture that the
graph G, has a 1-factorization for each n=2. The purpose of this note is to prove
that q(G,) = 4, (n=2). The following two lemmas are well known (see e.g. [2, p.
249]).

Lemma 2.1. The complete graph K, has a 1-factorization for each positive even
integer n.

Using the property that K,, is an induced subgraph of K, ., one quickly obtains
the following.

Lemma 2.2. For each positive odd integer n, the edges of the complete graph K,, can
be partitioned into n sets each being a matching with (n—1)/2 edges.

Let H be a subgroup of the symmetric group S, with index ¢ Let H, =
H,H,, ..., H be an enumeration of the right cosets of S, with respect to H. Let
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G, (H,) denote the subgraph of G, induced by the vertices in H; (1=<i=<1). For
distinct integers i and j with 1<, j<t, let G,(H,, H;) denote the partial subgraph
of G,, where the set of vertices is H; U H; and where two vertices are joined by an
edge if and only if one is in H, the other is in H, and they are joined by an edge
in G,. In particular G,(H,, H;) is a bipartite graph with bipartition H;, H;

Lemma 2.3. The graphs G,(H;), i=1,...,1, are isomorphic regular graphs.

Proof. Let H, = Ho, (1<i=<t). Then it is readily verified that the correspondence
between H and H, defined by 7— 70, (7€ H) is an isomorphism between G,,(H)
and G, (H,). Let o be an element of H. Then the correspondence between H and
itself defined by p— op (p€ H) is an automorphism of G, (H) which takes the
identity ¢ to p. The conclusions now follow.

Lemma 2.4. G,(H,, H)) is a regular graph (1=<i,j<t, i#])

Proof. Let o,7€H; and let peH. Then 70 'eH and 7o 'peH, Since
Y7o 'p)=0o"!p, there is an edge joining o and p if and only if there is an edge
joining T and 7o' p. Hence the correspondence p — 7o~ 'p (p € H;) shows that the
degree of o in G,(H, H,) equals the degree of 7 in G, (H, H,), and we conclude
that all vertices of H, have the same degree in G,(H;, H;). Similarly, all vertices of
H, have the same degree in G,(H, H,). Since |H,|=|H,|, G,(G,, H)) is a regular
graph.

The collection of permutations ¢ of S, such that o(n)=n form a subgroup of
S, which is isomorphic to S,_,, and we identify this subgroup with S,_;. Let

S:._.l = Sn—l’ ﬁ:i = Sngl(n s 1, n), PRV 'll_l = Sn—1(17 n)

be an enumeration of the right cosets of S, with respect to S, ;.

Lemma 2.5. The graph G,(S.,_,, S!,_,) is a regular graph of degree v,_, where

A,—4A,_, "F/n-2
T S ( )t! (1<i,j<n, i#)).
n—1 t=0 £

Proof. According to Lemma 2.4 the graphs in question are regular graphs. Let i
be an integer with 1<i<n-—1 and consider the graph G,(S,_;, S,_.(i, n)). Let
o €8S, ;. Then there is an edge of this graph joining the identity £ and o (i, n) if
and only if o (i, n) has exactly one non-trivial cycle. Since o(n)= n,‘the latter is
true if and only if o =g, or ¢ has exactly one non-trivial cycle and o (i) # i. Hence
the degree of regularity of G,(S,_,, S,_,(i, n)) is the number of cycles of S,_, of
the form (i, k,,. .., k) where 0<t=n—2. Hence the degree of regularity is

"2 in—2
;)< t )“'
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Now let / and j be integers with 1=<i, j<n—1 and i#j, and consider the graph
G,(Si_,5,_)). Let o€ S,_,. Then there is an edge joining (i, n) and o(j, n) in
this graph if and only if (i, n)o(j, n) has exactly one non-trivial cycle. Since o
varies over all permutations in S, ;, it follows that the graphs G, (S._,, S/_)),
(1=i,j=sn—1,i#j) have the same degree of regularity v,_,. Since the degree of
regularity of each of the graphs G,(S!_)(1<i<sn)is A it now follows that

n—2 _"
A=A =(n-1) Y (" t “)n
t=0

n—1s

and

-8, = 3 (" )i -2s

Hence

and each of the graphs G, (S, _;, S\ ;) (1<ij<n, i#j) is a regular graph of
degree v, ,=(4, —A4,.,)/n—1. The lemma now follows.

Lemma 2.6. 4, =, for n=3.

Proof. By definition,
n n n n___l
A, = ( )(k—l)!, = ( )k—l)!.
kgz k y kgl k_l (

Direct calculation shows that

<Z>(k_1)!2<z:i)(k_1)! (k=2,...,n)

with equality if and only if k = n. Since the first term (k = 1) in the summation for
v, is 1 and all terms in both summations are integers, it follows that for n=3,
4,29,

We are now ready to state and prove the main result.

Theorem 2.7. The graph G, admits a 1-factorization and consequently
q(G,) =4, (n=2).
Proof. We prove the theorem by induction on n. We have aiready observed that

G, has a 1-factorization for n =2 and 3. Let n=4. It {ollows from Lemma 2.3
that the graphs G, (S,_)(i=1,...,n) are isomorphic to G,_; and hence by
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the inductive hypothesis each of these graphs has a 1-factorization. Since
G.(S'_,, 8§/ _,)is a regular bipartite graph of degree v, { by Lemma 2.5 (1<i,j<
n, i#j), it follows from Konig’s theorem that each of these graphs has a 1-
factorization into v,_, 1-factors.

First suppose that n is even. Then the edges of G, which are edges of one of
the graphs G, (S,_;) (1<i=<n) can be partitioned into 4, ; 1-factors. Since n is
even, the complete graph K, has a 1-factorization, and it now follows that the
edges of G, which are edges of one of the graphs G, (S!,_, St ) (1<i,j<mn, i#})
can be partitioned into (n—1)y,_, 1-factors. Hence in this case G, has a
1-factorization.

Now suppose that n is odd. Then the edges of K, can be partitioned into n sets
each being a matching with (n —1)/2 edges. Hence it follows that the edges of G,
which are edges of one of the graphs G, (S._,, 8! ) (1=ij<n,i#j) can be
partitioned into nvy,_; matchings each with (n—1)!(n—1)/2 edges. Each of these
matchings coupled with a 1-factor of one of the graphs G,_,(S._,) gives a
1-factor of G,. By Lemma 2.6, A,_, —vy,_,=0. Hence these ny,_, matchings of
G, and v,_, 1-factors of a 1-factorization of each G, (S} _,) can be paired to give
ny,_, 1-factors of G,. The remaining A,_, - v,_, 1-factors of the 1-factorization
of G.(S._)) (I<i<n) give A,_;—v,_, l-factors of G, completing a 1-
factorization of G,. Hence in this case G, also has a 1-factorization, and the
theorem follows.
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LOOPY GAMES

JJH. CONWAY

Department of Pure Mathematics and Mathematical Statistics, University of Cambridge, Cam-
bridge CB2 1SB, England

0. Introduction

Two players, Left and Right, play the sum
A+B+C+---

of a finite number of games A, B, C, . .. as follows. They move alternately and the
player whose turn it is to move selects at will just one of the component games A,
B, C,... and makes a move legal for him in that component. If our games are of
the sort discussed in [1] then every sum of this kind necessarily ends after finitely
many moves, and the winner is therefore completely determined by the normal
play convention that a player who does not move when it is his turn to do so loses.
But in this paper, we consider also games that might continue indefinitely,
perhaps because they contain repetitive cycles of moves, or loops.

To specify a game G formally, we require to know its set of positions, one of
which, usually given the same name as G, is called the initial position, and we shall
also need to know the rules which determine what changes of position correspond
to legal moves for Left or Right. When the number of positions is small, this
information can conveniently be conveyed on a graph like that of Fig. 1, in which
the nodes represent positions (the heavy node representing the initial position),
and an arrow P—_ Q denotes a legal move from P to Q for Left, while P—z Q
would denote one for Right.

A play of G is then a finite or infinite sequence G—,H—>y K—, - - - (each of
X, Y, Z,...=L or R) of legal moves between positions of G, starting from the
initial position. It is called an alternating play if the sequence X, Y, Z,... is
alternating, either L, R, L, R, ... or R, L, R, L,....

To complete the definition of G, we may add rules which say who wins for
various infinite plays. To some of the infinite plays we shall attach the sign +,
meaning that Left wins, to others the sign — (Right wins), and to all the rest the
ambiguous sign +, meaning that the game is declared drawn. G is called fixed if
none of the infinite plays are drawn, free if all of them are.

If G is any game, we shall write G* for the modified game in which all infinite
plays that are draws in G are redefined to be wins for Left, and G~ for that in
which these plays are called wins for Right. G(on) denotes the game obtained
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Fig. 1

from G by making all infinite plays wins for Left, and G(off) that for which all are
wins for Right. For free games

G"=G(on) and G~ = G(off),
while for fixed ones
G'=G=G".
As a matter of notation, we shall write
G={A,B,C,...|D,E,F,...}

to indicate that from the position G the legal moves for Left are to A, B, C,. ..
only, while those for Right are to D, E, F,... only. Thus in Fig. 1,

a={a,v|B), B={v| } v={a]a}

In these circumstances A, B, C, ... are called the Left options of G, and G*
denotes a typical one of them, while D, E, F, ..., and typically G¥, are called the
Right options of G. So in Fig. 1, o’ denotes either a or vy, a® denotes only g, B~
denotes v, while B® has no meaning, and either y- or y® denotes a.

In this notation, the Left options of G+ H are all the games of the form

G*+H or G-+HY,
while its Right options are
GR+H or G+HE,
so that we can write
G+H={G"“"+H, G+H"|G*+H, G+ HY}.
An end position, usually given the name 0, is one that has neither Left nor Right
options
{|}=0.
It follows from the normal play convention that the player whose turn it is to

move from an end position loses, and so of course a player who reaches an end
position wins.
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1. Enders and stoppers

A play in the sum of a number of games determines plays in the individual
components in an obvious manner, for instance the play

G+H—, G+H"—»4x G+ H"®— G-+ H"R >y G*+ H** -, G-
+HLRR_)R. ..

determines the component plays
G-, G-, G"—> -+ and H- H" - HR S HR®R .. ..

Notice that the play in the sum might be alternating even when (as here) the
component plays are not—it is for this reason that we cannot afford to restrict
ourselves to alternating plays only.

The game of Fig. 2 satisfies the ending condition: it has no infinite play,
alternating or not. In such a game, called an ender, if the players keep on making
moves, even in non-alternate fashion, they will necessarily arrive at an end
position after a finite number of turns. A sum of games which individually satisfy
the ending condition also satisfies that condition.

Fig. 2 Fig. 3

The game of Fig. 3 is not an ender, but satisfies the weaker stopping condition,
that there is no infinite alternating play from any position. Such games we call
stoppers — if Left and Right play alternately in a stopper the game is sure to come
to a stop, with the player whose turn it is unable to move, but it need not have
ended, because there might be moves available to the player whose turn it isn’t. A
sum of components that are stoppers need not itself be a stopper — for example
the games on and off of Fig. 4 are individually stoppers in which no alternating
play has more than one move, but their sum is the third game of the figure, called
dud, in which both Left and Right always have pass moves.

L R L R
on off dud

Fig. 4
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2. Outcomes and order-relations for sums

To complete the definition of a sum, we shall need to say which infinite plays
are wins for Left or Right, and which are drawn.

Any infinite play in the sum G+ H+ K+ - - determines plays in the compo-
nents, at least one of which is infinite. If all the component plays that are infinite
give wins for the same player, we shall say that that player wins the sum, and
otherwise will agree that the sum is drawn. A play is drawn when some
component is drawn, or when some two of the components are won by different
players.

We shall define the negative, —~G, of a game G by reversing the roles of Left
and Right throughout — moves that were legal for one player in G become legal
for the other in —G, and a player wins —G just when his opponent would win G.
We shall write G — H for G +(—H), even though in this theory there is no useful
sense in which G — G is equivalent to 0.

If A and B are fixed games (no draws) we shall define A = B to mean that,
supposing that Right starts, Left has a strategy which guarantees him either a
draw or a win in the difference game A —B. We shall abbreviate this whole
phrase, including the understanding that Right starts, to “Left can survive in
A—-B”.

Theorem 2.1.
A= B implies (A+C)"=(B+ )",
A =B implies (A+C)y " =(B+O)".

Proof. Suppose X is the given survival strategy for A — B. We shall construct from
it a strategy 1 which enables Left to survive in both

(A+O)"—(B+O)'=(A+O)"+(—B-C) =4,
and
(A+Cy —(B+C) =(A+C)y —(—-B-O)"=4,,

as follows.

In the compound game A + C— B — C Left responds to any Right move in A or
—B with the response provided by X, and to a Right move in C or —C with the
mirror image move in —C or C. To see that this avoids loss (supposing Right
starts), consider in Table 1 the signs of the resulting plays in all components
(writing O for finite play).

If the play in C and —C is finite (line 1 in Table 1), then

sign (A + C)” =sign (A + )™ =sign (A)
and
sign (—B — C)” =sign (—B — C)" =sign (—B),
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Table 1
Line A +C -B -C (A+C)Y (-B-C) (A+C)y (-B-C)
1 X 0 Y 0 X Y X Y
2 + + ? - + 99
3 0 -+ 9 — } + _{ + ?a)
4 - + + - - +
5 ? - + + i +
6 ? - 0 + 79 + }— +
7 + - - + + -

%) Here the ? signs in a given line need not be identical.

so since Left avoids loss in A — B, he does so in 4, and A,. Otherwise either
sign (C) = +, sign (—C)=— (lines 2, 3, 4 in Table 1)

or
sign (C) = —, sign (—C)=+ (lines 5, 6, 7 in Table 1).

In the former case sign (A + C)" =+ so that Left has avoided loss in A4,. In the
latter case, if sign (—B)=+ or 0, then sign (—B — C)” =+ (lines 5 and 6 in Table
1), while otherwise sign(—B)=—, so sign(A)=+ (since X ensures that Left
survives in A — B), and we can deduce that sign (A + C)* =+ showing that Left
has avoided loss in A, once again. The argument for A, is similar (see the
right-hand portion of the table).

So far we have only defined inequalities between fixed games. If we define for
more general games A = B to mean that both A*=B" and A~= B~, then we can
generalise the statement of Theorem 2.1 to read:

Theorem 2.2. For all games, A = B implies A+ C=B+C.

Proof. This is deduced immediately from the above definition and the formulae
(X+Y)Y =(X"+Y"", (X+Y)y =X+Y",

which are obviously valid for all X, Y.
Theorem 2.3. A =B = C implies A=C.

Proof. The theorem need only be proved for fixed games A, B, C. The proof is
rather subtle, and Left must employ one of the servants, Mr. read, to help in
constructing the desired strategy for A — C from the given ones X for A — B, 2 for
B-C

[Footnote on footmen: their names are spelt with lower case letters (eg., 1), to
distinguish them from the real players Left and Right, for whom we use L and R.]
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read
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Fig. S

Left should set up games —B and B on the upper table (Fig. 5) across which he
faces Mr. read, and A and —C on the lower one, where his opponent is Right,
and should sit on a swivel-chair between these two tables. He should then respond
to a move made by either read or Right with the response given by the
appropriate strategy X or 2, and instruct Mr. read always to reply to a move in
either —B or B with the mirror-image move in B or —B.

We assert that the moves played by Left across the lower table will then
constitute a loss-avoiding strategy for him in A —C, Right starting.

If the total play is finite, then since Left makes the last move in each of the
pairs A — B and B —C, he does so in the pair A — C, which he therefore wins (line
1 of Table 2). If not, but the play in —B and B is finite, then one of the signs x
and y of A and —C must be +, so that Left survives in A — C as desired (line 2 of
Table 2).

Table 2
Line A -B +B —C A -C
i 0 0 0 0 0 0 (and Left wins)
2 x 0 0 y X y
3 -+ — + ? ~+ ?
4 ? + — + 9 +

In the cases when play in —B and B is infinite (lines 3 and 4 of Table 2), we
must ensure that Left makes infinitely many moves against his real opponent,
Right, rather than entering an infinite huddle with the servant.

But if
sign (B) = +, sign (—B)=— (line 3 of Table 2),
then N ensures that sign (A) =+, while conversely if
sign (B) = —, sign (—B)=+ (line 4 of Table 2),

then 21 forces sign (—C) =+, so that in each case infinitely many moves are made
in A —C, and Left has avoided loss therein.
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3. Some results from the theory of ending games

In the next few sections, we outline the theory of ending games, as developed in
[1]. For such games the relation G= H means that, supposing Right starts, Left
has a strategy which wins G — H for him, since now no drawn games are possible.
In terms of this, we can define four atomic relations

G =Hmeansthat G=Hand H=G (G and H have the same value),
G>Hmeansthat G2 Hbut HZ G  (G’s value exceeds H’s),
G<Hmeansthat G=Hbut GZH (G’s value is less than H’s),

G | G means that G# H and HZ G (the values are incomparable).

The assertion that G = H means that Left can win G — H if Right starts, while
Right can win if Left starts, so that G — H is a second-player-win. The reason why
we say that G and H have the same value in this case is that it turns out that then
G can be replaced by H in any sum of games without affecting the outcome. Since
we often drop the distinction between games and their values, we shall often drop
the dot from above the equality sign =.

More generally, if G = H, then a term H in any sum may be replaced by G
without destroying the existence of a strategy for Left, so that G is at least as
valuable to Left as H is.

The basic idea of the theory is that from inequalities on the components of a
sum we can derive inequalities for the total, and if we can deduce enough to
decide its order-relation with 0, then we know who wins:

G=0 if and only if G is a second-player-win,

G >0 if and only if G is a win for Left (no matter who starts),
G <0 if and only if G is a win for Right (no matter who starts),
G| 0 if and only if G is a first-player-win.

4. Simplifying ending games

There are many alterations we can make to the structure of a game which do
not affect its value, or change it only in a restricted way:

The value of G is unaltered or increased when we

(a) increase the value of any option,

(B) insert a new option for Left,

() delete one of the options for Right.
We examine (8) more closely — if the proposed new option H for Left satisfies
H = G, then the value of G is strictly increased, but if not, i.e., H<1| G (this means
H < G or H|| G), then the value of G is unchanged. This latter fact is called the
gift-horse principle, and the new option H, when H <1|G, is called a gift-horse for
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Left. Similarly, if H < G, then G’s value will be strictly decreased by adding H as
a new Right option, and otherwise (H|t> G), H will be a gift-horse for Right and
leave the value unaltered.

If G and G are two different Left options of G that satisfy G- < G'», then
we say that G© is dominated by G, and in this case G’s value will be unaffected
when we delete G- provided that we retain G™. In general, we may omit many
dominated options simultaneously, provided that we retain enough options to
dominate them. For Right options, we say that G® dominates G®: provided we
have the reversed inequality G® = G®, and once again we can omit dominated
options provided we retain enough to dominate them.

If G is an ending game with only finitely many positions, we can repeatedly
apply these ideas until every position is free from dominated options. The
finiteness restriction is necessary, because in the game

0={0,1,2,3,...|}

every option is dominated, and they plainly cannot all be omitted, although of
course infinitely many can — for instance

w=1{0,1,4,9,16,25,36,...|}=11,2,4,8,16,32,64, .. .| }.

Despite its infinitude of positions, w is an ending game — its tree is sketched in
Fig. 6.

The following kind of simplification is both more subtle, and more generally
applicable. If a particular Left option G' of G has itself a Right option G™F»
which satisfies G1®< G, then we say that the move to G™ is reversible (through
G™*®). In these circumstances we can, without affecting the value of G, replace
G" as a Left option of G by all the Left options G™Re" of G'®o. This is called’
bypassing G, and is illustrated in Fig. 7. Similarly, the Right option G® is
reversible (through G®&) if GR' = G, and is bypassed by replacing it by all the
GR,L‘R.

It is legitimate to bypass a number of reversible moves at once, and in this way
we can arrange that any ending game, whether finite or infinite, can be completely
freed of positions with reversible moves. If G has only finitely many positions, we

(All these moves are
for Left)

Fig. 6
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Fig. 7

can also free these from any dominated options, and so arrive at the simplest form
of G. The point of this concept is illustrated by the following theorem.

Theorem 4.1. If G and H are ending games in which no positions have either
dominated or reversible options, and G and H have the same value, then G and H

are isomorphic.

This theorem provides us with an efficent way to work with sums of games with
only finitely many positions. By eliminating dominated options and bypassing
reversible moves we first find the simplest form, which is an exact invariant for the
value. The value, by our earlier theorems, contains exactly that information about
a game which is relevant in computing the outcome of sums involving it.

5. On numbers and games

Certain ending games can be identified with numbers. (For games with only
finitely many positions only the dyadic rational numbers m/2" arise.) The num-
bers naturally form a tree, as shown in Fig. 8, and we say that x is simpler than y if
the path from O to y includes x. (0 is the simplest number of all.) Each number y

-2 z
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has a canonical form in which the options are all the numbers that precede y
along this path, for example:

1={0]}, 2={0,1}, Le={0,1,2,...[},
-0=0, ~-1={]0}, -2={]0,-1}, -3={|0,~1,-2}...,~w={]0,—-1,..},

3={0]1}, i={0]1,4, #={0|L53...,=={0]1,34. ..},

2={0.511}, 2={0,3]L3, H={0,%3|L3,....3={0,5% .. |13 ..}
and it may also have a simplest form obtained by omitting the dominated options:
0={}, 1={0]} 2={1]}, 3={2]h...,0+1={0]},

_1={|0}, _2:{|_1}, _3:{|d2}‘43_w_1:{|~w}5

=101, 4=, §=01, . 5o= (12}

=611 §=4l3 B=&Ia 1%={1|2}~

It can be shown that @ has no simplest form.

When the value of every position in G is a number, these numbers can be
computed using the rule:

If every option of G is a number, and every Left option is strictly less than every
Right option, then G is itself a number, namely the SIMPLEST number greater than
every Left option and less that every Right one.

2.3 y={m|17h=4, {1|ep={15]}=2, {-1[}=0, {[3=2.

This rule generalises to give the simplicity principle, which sometimes assigns a
numerical value to a position which has non-numerical options:

If there is some number, z say, that satisfies
every G-<1|z <i|every G®,
then the value of G is a number, namely the simplest such z.

To apply this, of course, we need techniques enabling us to compare games with
numbers.

For every ending game G there are two Dedekind sections L{G) and R(G) of
the number-line with the following properties:

X>1(G) if and only if x = G,

x<R(@) if and only if x=G,

L{G)> x> R(G) if and only if x| G.

When G is a number, z say, then L(G) is the section between z and all smaller

numbers, R(G) that between z and all larger ones, as in Fig. 9. But usually we
have R(G)<L(G), as in Fig. 10.
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L(Q‘ R(z) R(G) L(G)

x<z ; x>z x<G x|G x=G

Fig. 9 Fig. 10

To compute these sections, let Left and Right play G “intelligently”, stopping
play when the value first equals a number, z say, with player Y (Y=L or R)
about to move. Then if player X started, we have

X(G)=Y(z).
Thus

L({5]4h) =R(5), R({5]4})=L(#),

L{7 |{5|4}}) =R(7), R({7 [{5]4}) =R(S).
It is important to realise that the only case when G is a number is when
L(G)<R(G) as sections, and that then its value is to be found by the simplicity
rule. For instance if G={4{5|4}} the above rules suggest L(G)=R(4) and

R(G)=R(5) and so L(G)<R(G). In fact, G is a number, namely the simplest
number z satisfying

R(4) < z<R(5),

namely 5 itself, and so L(G)=L(5), R(G)=R(5), and we should have stopped
play at G itself.

6. Other ending games

Ending games can have many other values besides numbers, and we can afford
here only to give a few simple examples:

(o) Switches. These are games {x |y} for which x and y are numbers with
x =y. When playing a sum of switches and numbers, move in that switch with the
largest value of x—y.

(B) Nim-numbers or nimbers. These are defined inductively

*0=0={|},
*1=*=1{0| 0},
¥2=10,%[0.7%},

*3=1{0,%,%210,%*2},

*p = [*0,*1, ..., *(n—1)|*0,*1, ..., *(n—1)},
o= (%0,%1,%2, ... |%0,%1,%2, .. },
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and in fact for all ordinals
*a={*B(B<a)|*B(B<a)}.

The sum of two nimbers is another (use binary notation without carry —e.g.
*3+*5="6), and we can say that G will certainly have a nimber value *n
provided that
(i) every G-<|*n<|every G®, and
every *m(m <n) appears as both a Left and a Right option of G.
These observations contain the Sprague-Grundy theory of impartial games.
(y) Small games. Nimbers are particular examples of games that are greater
1-
than every negative number (even ——), and less than every positive one. There
w
even exist positive games of this kind, notably 1 ={0|*} (pronounced “up”).

7. Sums of free loopy games

We return to the topic of loopy games, more particularly the free games, in
which infinite play is always declared a draw. What information do we need about
the individual components G, H, K, ... of asum G+ H+ K +- - - of such games if
we are to compute the outcome of the total?

We answer this as follows. If we want to see whether Left can at least draw, we
might as well redefine all draws as wins for Left, so obtaining the game

(G+H+K+--) =(G"+H" +K"+- )",

and so we need only know the values of G*, H", K*,.... If, on the other hand,
we want to know whether Left can win, we might as well redefine all draws as
losses for Left, when we are considering the game

(G+H+K+--y =(G +H +K +---),

and so need only know the values of G7, H, K, ....

To indicate that a game G has G of value A and G~ of value B, we shall write
merely G=A & B.

For free games G, we have of course

G* = G(on), G~ = G(off),
and so A and B in this case are often called the onside and offside of G.

The answer to our question is therefore this — we can work out the outcomes
of sums of open games in terms only of the onsides and offsides of the individual
components. Since it often happens that the two sides of G have values that are
equal to ending games, and maybe to numbers, this is a very real simplification.

Consider for instance the following familiar little game from our infancy (Fig.
11). Left may say ‘“tis” and then Right may respond with ‘“tisn”’, and Left
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L
R

Fig. 11

follow with *“’tis” again, and so on alternately. Formally, the game has just two
positions, tis and tisn, with a Left move from tis to fisn and a Right one back from
tisn to tis.

We assert that

tis=1&0, tisn =0 &—1,

and so we can predict the outcomes of all sums of these games together with other
open games whose onsides and offsides are numbers. The reader is recommended
to check the equality tis'=1 by the only method we have given him so
far — showing that Left has survival strategies in both the differences tis* —1 and
1—1tis™, Right starting.

8. The iteration method

We can of course always check any asserted inequality or equality about values
of games by investigating suitably defined difference games. But we need a
method for finding such equations as G = A & B, as well as for checking them.
Here is a method that often works, and is informative even if it does not.

Take the graph that defines the game, and against each node mark an upper
bound for the game obtained by taking that node as the initial position. We shall
use [G] for the game marked at the node G. Now at any node H ={H"| HY} we
can if we like replace our present upper bound by the possibly better one given by
the formula {{H“]|[H®]}.

It might well happen that by repeated use of such improvements, or possibly
some more powerful techniques, that we eventually arrive at a system of upper
bounds {H] that satisfy the equations

[H]={[H"]|[H*]}

for all positions H of G. We assert that then we have found the onsides of these
positions [H]= H(on).

What shall we use for the initial upper bounds? Here we have a simple choice:

on™ is an upper bound for every game G,
and so if we like we can start with [H]=on™ for every position H.

We might remark at this point that it is this property that prompted our choice
of name for on. On has now become the standard set-theoretical name for the
class of all ordinal numbers (the initial letters provide the reason), which in von
Neumann’s sense is also the largest ordinal number. We might call it The
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Burali-Forti Number since the Burali-Forti paradox is customarily resolved by
declaring that on is a Proper Class, rather than a proper set! In our language the
Burali-Forti paradox corresponds to the assertion that on is an option of itself.

To prove our assertion about on*, observe that Left certainly avoids defeat in
on*— G by the simple strategy of always playing in the component on™.

Before we prove that the answer given by the iteration process is correct, we
shall discuss a few examples to show how it works. In these examples, we
abbreviate on” to on.

The games tis and tisn. Here the equations to be solved are

tis ={tisn | }, tisn ={| tis}.
We start with the initial approximations
[tis]=[tisn]=on
and find as our next approximations
[as]={on|},  [dsn]={]on},
which we evaluate as
[tis]= on (again), tisn =0,

using obvious generalisations of the simplest number rule. From these approxima-
tions in turn we derive further ones:

[tis]={0]}=1, tisn ={| on}=0 (again),
but now the process finishes, since the next approximations are
[tis]={0|}=1 (again), [tisn]={|1}=0 (again).

Our theorem now asserts that the final approximations really are the respective
onsides:

tis(on)y =1, tisn(on) = 0.

(It also explains why we use the notations G(on) and G(off).) We leave it to the
reader to compute in a similar way the offsides

tis(off) =0, tisn(off) = —1,

which are derived by starting at the universal lower bound off = off.
For our next example we take the games «, B, v, 8 shown in Fig. 12 so that we
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Table 3
{0]8}=a {a|}=8 {a|Bt=v {v[}=8
on on on on
{0|on}=1
{1[}=2
{1{2t=1;
{13]}=2
{0[2}=1, so the process has converged.
off off off off
{off[}=0
{off | 0}=~1
{-1]}=0
{o]oy=*
{*[}=0
cloy=1
{l1=0

have to solve the equations:

a={0]8}, B={a

Looy={alB)  s={yv[}

In Table 3, a single entry on a line indicates a new approximation and this
process has converged as well.

We conclude that
a=1&%* B=2&0, vy=1 &\, §=2&0.

It might help the reader if we remark that * is incomparable with O, and that |
(pronounced ‘“‘down”), being the negative of 71, is a negative infinitesimal. So the
simplicity principle, in its generalised form, tells us that {*|}={} |}=0. Since
tis=1 & 0, we have actually shown that 8 =& = tis + tis.

For our last example, we take the game

dud = {dud | dud}

of Fig. 4. Here from the initial approximation on we derive {on | on}=on, and
from off we similarly find {off | off} = off. So in the “&’ notation:

dud = on & off.

9. The approximation theorem

When the iteration process converges, it produces games [ H] that satisfy
(H1={[H"]|[H*}}

for all positions H of G. We shall call these equations the equations defining G.
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We are about to prove the Approximation Theorem, which asserts that any
solution of them lies between the on and offsides:

H(off)<[H]= H{on)

for every position H of G. There is actually a slight generalisation:

Theorem 9.1. If the games [H] form a subsolution of the equations defining G, in
the sense that

[HI={{H"]|[H"}}
for all positions H of G, then they also satisfy
[H]=< H(on)

for all such positions.

Proof. It will not harm us to suppose that the games [H] are fixed, for we can
replace them by the [H]" if not, and we can also suppose that H = H(on). Then
the hypotheses tell us that Left can survive in each of the games

{{H"]|[H*}-[H],

while the conclusion requires him to survive in H—[{H]. We need only produce a
strategy for G—[G].

Since this strategy is quite hard to find, we shall suppose that Right kindly
places a potential infinity of his more mathematically inclined servants, Messrs.
rado (ry), radon (ry), ..., rademacher (r,,), ... at the disposal of Left, and allows
him to use the Great Hall, and various furnishings, of The Wright House, which is
a rather grand establishment.

On the far table in Fig. 13 is set up the real game G —[ G}, which Left is to play
against his real opponent, Right. But even before play starts, Left instructs r, to
bring in an additional table on which is set up the difference game

{{G"]] (G*—{[G"] ' [GR]} =X, X0,

and a chair labelled R, to be placed near the games {{G"]|[G®]} and —[G].
Left has, by the hypotheses of the theorem, a survival strategy, which we also

call R, for the sum of these two games. The chair marked 2, which was already in
the hall, is placed near the games G ={G-| G®} and —{{G']|[G*}]}.

Fig. 13
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As the game proceeds, Left occasionally instructs a new footman (r;) to bring in
a new chair (X;), and a new table on which is set up a position of the form X; — X..
Footman r, is detailed from then on to respond to a Left move in either X or —X;
with the mirror image move in the other. In Fig. 14 we show a number of these
tables, all marked with the positions in which they were originally set up.

The chairs Ry, X;,..., X, and 2 are placed between adjacent tables, and each
corresponds to a strategy, of sorts, for playing the two games nearest to it. The
strategies X; are easiest to describe. When chair X; was first brought in, the games
it was put next to were in a position of the form

{{H"]|[H*} - [H]

for some position H of G — strategy X, is Left’s survival strategy for this game
given by our hypotheses.
The two games nearest to chair J will usually have the form

H={H"|H"} and —{[H"]|[H"]}

for some position H of G. The “‘strategy” 2 is then the following sequence of
actions. If Right makes a move in either of these games, Left is to make the
corresponding move in the other, making the compound position have the form
K '—[K] for some position K = H- or H® of G. He then instructs a new footman,
r,.+1, to bring in a new table on which is set up the difference game

{1 [K*T—{K"1| [K*T,

and a new chair, X,,,, to be placed near to the games {{K*]|[K®]} and —[K] for
whose sum he has a survival strategy we shall also call X,,, ;.
The chair 1 is then repositioned next to

K={K“|K®} and —{[K“]|[K*].

Left’s total strategy is therefore this. To any move, whether played by his real
opponent Right, or one of the footmen r,, ry,... he replies with the response
given by the strategy corresponding to the nearest chair. The strategies R, are
those for various differences X —Y with X= Y that are given us by the hypoth-
eses, while the strategy 2 requires just one “‘imitation”” move, and a call for a new
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table and chair to be inserted. It is plain that this compound strategy always gives
Left a reply in a game somewhere in the Hall, but not entirely clear that he will
eventually respond to any move in the real game with another move in that game,
and perhaps even less clear that he avoids loss in that game if it continues
indefinitely. We now proceed to establish these facts.

If infinitely many tables are brought in in the course of play, both results are
easy. Each new table was only brought in after a move in G had been made by
either Left or Right, so infinitely many moves have been made in G, and since
G = G(on), all infinite plays in G count as wins for Left, who therefore wins or
draws the compound game G —[G]. So we shall suppose that only the finitely
many tables shown in Fig. 14 were brought in.

In this case the total play in G and —X,, has been finite (sign 0) as must have
been that in X, if footman r, has correctly obeyed his orders. Let i be the
greatest number, if any, for which the play in X; was infinite. Then strategy X,
avoids loss in X, , — X, so that the sign of the play in —X; must be +, whence sign
(X;)=—. To have avoided the threatened loss for Left in X;—X,_,, strategy R,
must have given the sign + for —X, ,, whence sign (X;_;)=—, and so on.
Eventually, we see that strategy N, forces the sign of the play in —[G] to be +,
showing both that Left made infinitely many moves in the real game G —[G] and
that he avoided loss in that game.

In the final case, the total play was finite, and Left’s strategies X, ... X, ensure
that he made the last move in it. This cannot have been against any of the
footmen r,, . .., r, since they have always the mirror-image reply to make, and so
it must have been played in the real game against Right, who has not replied and
therefore loses, by the normal play convention. The approximation theorem is
therefore established.

In any convergent case of the iteration process, the Approximation Theorem
tells us that the upper bounds [H] it gives for the games H(on) are also lower
bounds, and therefore are the correct answers.

10. Some results about stoppers

Stoppers have some special properties which make them particularly easy to
handle.

Theorem 10.1. If G is a stopper, then
(a) Glon)= H(off) if and only if G(off)= H(off),
(B) G(offyf<H/(on) if and only if G(on)=< H(on).

Proof. We need only prove (a), by symmetry. In the difference game G — H the
condition that G is a stopper ensures that if there is infinite play in G, there must
be infinite play in —H. Since —H/{off) = (—H)(on) this will count as a win in either
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of G(on)— H(off) and G(off)— H(off). If there has only been finitely much play in
G, then of course the signs attached to infinite plays in it are irrelevant.

Corollary 10.2. If G and H are both stoppers, then the inequalities
Gloff)=H(off),  G(on)=H(off),  G(on)=H(on)
are all equivalent, and any one of them suffices to prove G = H.

It can also be shown that

Theorem 10.3. Any stopper can be put into a form free of reversible moves, and, if
it has only finitely many positions, can also be freed of dominated options, and so
has a simplest form.

We do not give the proof here, since it follows closely the corresponding result
for enders, which is given in {1]. The condition that G is a stopper prevents the
possibility of a non-terminating sequence of bypasses of reversible options. It also
justifies the omission of dominated options, which is not quite so obvious as it is
for enders.

Theorem 10.4. If G and H are fixed stoppers in simplest form, and G = H, then G
and H are isomorphic games.

Proof. (Patterned on the corresponding proof for enders, in [1].) Left has a
survival strategy in G — H. If Right moves in this, say to G® — H, what can Left’s
reply be? Plainly not G®~— H, for this requires G®*"= H = G, showing that G had
a reversible option. So Left’s reply is to some game G®—H®, showing that for
every G® there must be some H®< GR. But for similar reasons there must be
some G®'<HX, and so G¥<GR. Since G has no dominated options, this
entails that G® = H® = G®, and we have shown that for every Right option of
either game there is an equal Right option of the other.

Since a similar statement holds of Left options, we have established a 1-1
correspondence between the options of G and those of H. We can now proceed
to establish similar correspondences between options of these options, and so on,
identifying the entire set of positions of one game with those of the other. The
argument also shows that the only way to survive in the difference game G—H is
to play the “‘mirror-image” strategy.

We must now show that the signs attached to infinite plays of G and H also
correspond. But if, say, a certain play of H were given the sign + while the
corresponding play of G received —, then Right, starting in G — H, could play so
that both components received the sign —, so forcing Left to lose, and showing
that G# H. This concludes the proof.

The value of these results follows from the fact that very many free games can
be written in the form A & B, where A and B are stoppers, for which Corollary
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10.2 shows us we need not distinguish between various notions of inequality.
(This was why we allowed ourselves to abbreviate on™ to on in an earlier section.)
If this happens for a game G with only finitely many positions, then we can put A
and B into simplest form, by Theorem 10.3 and by Theorem 10.4, the resulting
pair of graphs is a complete invariant for G.

Unfortunately, not everything in the garden is quite so lovely. Bach has
produced the game G shown in Fig. 15 (the carousel) which has a number of
disturbing features:

(1) Its onside and offside are not equivalent to stoppers. This can be proved by
a method like that of Theorem 10.4.)

(i)) The Left option O of G is dominated by H, but cannot be omitted. (The
reason, roughly, is that Left always arrives at a better position by taking another
trip round the carousel than he does by stepping off to 0 now. But there are
circumstances in which he can win by stepping off sometime, but will not win by
going round and round forever.)

(iti) If in G— G, the first player always moves round the carousel, then the
second player cannot afford to do anything but make the corresponding move in
the other component. (This is proved by case-by-case analysis.)

Question. Is there a wider notion than that of stopper which will allow us to find
a simplest form theorem for all free games with finitely many positions?
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HAMILTON CIRCUITS AND LONG CIRCUITS

G.A. DIRAC
Matematisk Institut, Ny Munkegade, 8000 Aarhus C, Denmark

1. Introduction and terminology

In this paper the term graph will denote an undirected graph without loops or
multiple edges which may be finite or infinite. The set of vertices of a graph I' will
be denoted by ¥(I'), the set of its edges by €(I'), and |%(I')] will be denoted by
nr. The length of a path or a circuit A is the number of edges it contains and is
denoted by I(A). If Y is a path and X, Y€ ¥(Y), then the unique (X, Y)-path
contained in Y, will be denoted by Y(X,Y). If A and B are two non-empty
disjoint subgraphs of a graph (for example, sets of vertices), then a path of the
graph which has a vertex of A and a vertex of B as its end-vertices and has
nothing else in common with A U B will be called an (A, B)-path. The number of
(A, B)-paths of length 1 will be denoted by e(A, B; I'). A path of a graph will be
called terminated in the graph if no path of the graph contains it as a proper
subgraph. If I' is a graph and V € ¥(I'), then the set of those vertices of I" which
are joined by an edge to V in I' will be denoted by N(V), and |[N(V)| is the
valency of V in I, denoted by v(V). A graph will be called k-connected, where
k>0, if corresponding to each pair of distinct vertices V and W the graph
contains a set of k or more (V, W)-paths such that each pair of them have nothing
except V and W in common. If A is a subgraph of the graph I'" then I'(A) denotes
r—(r-a.

The main purpose of this paper is to establish weak necessary conditions for the
existence of a Hamilton circuit in a graph, partly in terms of the valencies of the
vertices, and for any given integer f >3 to establish weak necessary conditions for
the existence of a circuit of length = f in a 2-connected graph which may be finite
or infinite, also partly in terms of the valencies of the vertices.

2. A theorem of Menger type

It is convenient to prefix a Menger type result which will be used later. It holds
also for graphs with multiple edges.

Theorem 2.1. Suppose that I is a graph, o and B are disjoint sets of vertices of I,
Aesd and Be B and I contains an (A4, B)-path whose end-vertices are A and B,
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and I contains a set P of two or more pairwise disjoint (s, B)-paths. Then there
exists a subset P, of P and a set P, of (o, B)-paths of I' such that |P,|=|P,|<2,
PNP,=0, and (P —P)U P, is a set of pairwise disjoint paths of I' whose union
includes A and B.

Proof. Let Y denote an (o, B)-path of I whose end-vertices are A and B and II
the union of all paths of ?. Suppose {A, B}Z II and IIN Y # @ (otherwise there is
nothing to prove).
As Y is followed from A to B let A’ denote the first vertex in IT and B’ the
last, and let Y,., Yy, respectively, denote the paths of 2 to which A’, B’ belong.
If Y, =Yy then Theorem 2.1 holds with #, ={Y,.} and

P, ={Y(A, A)UY,(A', BYU Y(B', B)}.

If Yo#Yg, then put 4NYz =X and BNY, =Y. Now Theorem 2.1 holds
with #,={Y,,, Yg '} and

P,={Y(A, A)U YA(A", Y), Yg(X, B)U Y(B', B)}.

3. Hamilton circuits in graphs

Notations. The edge joining two distinct vertices V and W will be denoted
(V, W). If I' is a graph and Ve ¥(I'), then the set of all vertices U# V of I with
the property that I' contains a circuit @ such that U, V€ @ and at least one of the
two (U, V)-paths whose union is @ has length 2, will be denoted by €(V), and
the set of all vertices U of €(V) such that v (U)<op(V) by €' (V). If Wis a
vertex of I other than V, then the set of all vertices of €(V) other than W which
are not joined to W by an edge will be denoted by €(V, W). |4(V)|, |€'(V),
|[€(V, W)| and |€'(V)N €(V, W)| will be denoted by c(V), ¢'(V), ¢(V, W) and
c'(V, W), respectively. Let Y denote any path of length =1 in I' and V an
end-vertex of Y. Then if V,,..., V, denote the vertices of Y in order from end
to end with V,; =V, the set of all vertices V; of Y such that 2=<i=n-—1 and
(V, Vi, ) eI will be denoted by J(V, Y), and |T(V, Y)| by t(V, Y). If n =2 then
J(V,Y)=40.
The following statement follows from the definitions of €(V) and J(V, Y):

(1)(A) Let I" denote a graph, Y any path of length =2 in I, and V and W the
end-vertices of Y. Then T(V, Y)c €(V) and F(W, Y)c €(W).

(B) Let U denote the vertex of Y such that I{(Y(U, V))=2. Suppose that X is any
vertex of Y=V such that (V,X)eI. Then YYe V(Y(V,X))—V: Ye€b(V) if
and only if T contains a (V, Y)-path of length 2 (which is the case if e.g.
(X, Y)el, in particular if Ue €(V).
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(C) 1, in addition, (Y(V, X)=X)NN-(W)#@, then VY e ¥V (Y)—V: Ye 4(V)
if and only if I' contains a (V, Y)-path of length 2 (which is the case if e.g.
(X, Y)el).

The following easily proved statement follows from a result of the writer [2]:

(2) A circuit of a connected graph is a Hamilton circuit of the graph if and only if it
includes all the vertices of a longest path of the graph.

Next, an observation due to Ore [4].

(3) If I' is a graph and Y is a path of length =2 in I and V and W are the
end-vertices of Y, then each vertex X of F(V, Y) is the end-vertex of an (X, W)-
path of I which includes every edge of Y except one, and whose vertex-set is V(Y).
Furthermore,

NeWINT(V,Y)£ABSN(VINT(W, Y)#0,

and if this is the case then I' contains a circuit which includes every edge of Y except
possibly one intermediate edge, and whose vertex-set is V(Y).

The following will also be used:

(4) If I' is a graph and Y is any terminated path of I" with two distinct end-vertices
V and W, then t(V,Y)=v(V)—1 and (W, Y)=vp(W)—1.

Proof of (4). N (VIUN(W)< V(Y) since Y is terminated in I. One of the
vertices of N(V) is the vertex first after V on Y (this vertex exists because
V# W), the other vertices of N-(V), if any, are each preceded (as Y is followed
from V to W) by a vertex of J(V,Y). Thus #(V,Y)=v(V)—1. Similarly
(W, Y)=0p(W)—1.

We now come to a simple necessary and sufficient condition for a graph to
contain a Hamilton circuit.

Theorem 3.1. Any graph I' with =3 vertices contains a Hamilton circuit if and
only if it is connected, and there exists a longest path Y of I such that if V and W
denote the end-vertices of Y, then N.(W)NJ(V, Y)#Q (which is equivalent to
Ne(VINT (W, Y)# ).

Proof. If I' contains a Hamilton circuit, then I' is connected, and any path
obtained from a Hamilton circuit of I" by deleting one of its edges clearly has the
property required.
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To prove the converse suppose that I' is connected and n-=3 and Y is a
longest path of I' as described in the theorem. ny =3 because n-=3 and I is
connected. Therefore by (3), I' contains a circuit which includes every vertex of Y.
By (2) this circuit is a Hamilton circuit of I.

The symmetry mentioned exists by (3). Now Theorem 3.1 is proved.

Theorem 3.2. Any graph I' with =3 vertices contains a Hamilton circuit if and
only if it is connected and there exists a longest path Y of I" such that if V and W
denote the end-vertices of Y, then either (V, W)eTI or vp(V)+v(W)=ny or
c(V, W)=so(V)—=2 or c(W, V)< p(W)—-2.

Proof. If I" contains a Hamilton circuit then the condition stated in the theorem
clearly hoids.

To prove the converse, suppose that I' is connected and n-=3 and Y is a
longest path of I' with end-vertices V and W and with the property stated in
Theorem 3.2. ny =3 because I' is connected and ny= 3. Therefore if (V, W)e I
then YU{(V, W)} is a Hamilton circuit of I by (2).

In what follows assume that (V, W)g T

Suppose now that v-(V)+o(W)=ny. Because Y is a longest path of T,
Ne(VYUN(W) = V(Y). Therefore the number of vertices of ¥ — W not joined by
an edge to W in I' 1s ny—1—ov(W). Since v(V)+ v(W)= n, this number is
<pp(V)~—1. Therefore the number of vertices of Y—V—W not joined by an
edge to W is <op(V)—2 since (V, W)gI. Now J(V,Y)c¥(Y)—-V—-W by
definition and #(V, Y)=v-(V)—1 by (4). From the last two statements it follows
that Np(W)N J(V, Y)# . Therefore by Theorem 3.1 I' contains a Hamilton
circuit.

Suppose next that for example c(V, W)<vp(V)—2. Because Y is a longest
path of I, t(V, Y)=0v(V)—1 by (4). From this ¥-(W)NF(V, Y) # 9, for other-
wise by (1A) J(V,Y)c €(V, W), from which and «(V, Y)=v(V)—1 it follows
that ¢(V, W)=our(V)—1, which is contrary to hypothesis. Since Np(W)N

J(V,Y)#0, by Theorem 3.1 I" contains a Hamilton circuit. Now Theorem 3.2 is
proved.

From Theorem 3.2 a result can be deduced in which connectedness is not
assumed.

Theorem 3.3. If a graph I' is finite and contains =3 vertices, and for each pair of
distinct vertices V and W such that each of them is the end-vertex of some
terminated path in I' (but not necessarily of the same one) either (V, W)eT or
vr(V)+op(W)=np or ¢(V, W)y (V)—2 or ¢(W, V) o (W)—2, then I con-
tains a Hamilton circuit.

Proof. Show that I' is connected, and then apply Theorem 3.2.
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The following Theorem can be used to deduce that a given graph contains a
Hamilton circuit.

Theorem 3.4. If a graph I' is finite and connected and contains =3 vertices, and
for each pair of distinct vertices V, and V, of I' such that (V, V,)g I either
(V) +op(Vy) = npor (Vi Vo) <op(Vy) =2 or ¢'(V,, Vi) <vp(Vay)—2 or fori=1
or2

X, Xote NMr(V)):
VX e (N (X)UNH(X)NE(V, Vio): vp(X)>op(V)),

then I' contains a Hamilton circuit.

Proof. The proof will be based on a method first used by Pésa [6]. Suppose that I”
does not contain a Hamilton circuit (reductio ad absurdum). Among the longest
paths of I' let Y be one such that the sum of the valencies of its end-vertices in I’
is maximum, and let V; and V, denote the end-vertices of Y. ny =3 because I is
connected and n;=3.

Since the sum of the valencies of the end-vertices of Y is maximum, it follows
from (3) that I(V, Y)c €'(V;) for i=1,2.

From Theorem 3.1 (V,, V,)¢ I and

TV, Y)ON(Vo) =T (V,, Y)NN(V)=0.

From this and the above we have that 9(V,, Y)c €'(V,, V,) and J(V,,Y)<c
%'(V,, Vy). Hence, by (4), ¢'(V{, V)= op(V)—1 and ¢'(V,, V)= v (V,)—1.
By Theorem 3.2, v (V )+ v (V,)<nr—1.
Therefore the last alternative of Theorem 3.4 holds. Let the notation be chosen
so that X,, X, e N-(V,) and

VX e (N (X)) UNHX))NE'(Vy, Vo) op(X) > op(Vy).

Np(V)e V(YY) because Y is a longest path of I, so X,, X, ¥(Y). Let the
notation be chosen so that I(Y(V,, X,))=2. A Y is followed from V, to V, let Z
be the last vertex before X,. Then Ze N (X,)NT(V,,Y), therefore Ze
Ne(X,)N €'(V,, V,), so by hypothesis v-(Z)>ov-(V;). But since among the
longest paths of I, Y is one, the sum of the valencies of whose end-vertices is
maximum, v-(Z)<v(V,). This contradiction proves Theorem 3.4.

Note. The proof shows that I contains a Hamilton circuit if a pair of vertices
V1, V, exist which are not joined by an edge and are joined by a longest path of I
and have the property stated in the theorem. However, to apply this stronger
form of the theorem would require checking which pairs of vertices are joined by
longest paths.
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It is easy to deduce Chvéital’s theorem on Hamilton circuits [3]:

Suppose that a graph I' is finite and contains = 3 vertices, and s(=<j) and s(=j)
denote the number of vertices with valency <j and =j in I, respectively. If for
each integer i with 1<i<}(n—1) either s(si)si—1lors(=n—i)=i+1,then I
contains a Hamilton circuit. For suppose that this is note true, then it may be
assumed that adding any new edge to I' creates a Hamilton circuit. But then
clearly I' is connected, and if V; and V/, are any two independent vertices the sum
of whose valencies in I’ is maximal, then this sum is =<nr—1, and also
c'(Vy, Vo)=or(V))—1 and ¢ (V,, V)=ov(V,)—1 and by assuming w.l.g. that
vr(Vy) <= v(V,) we arrive at a contradiction.

Unlike Chviaral’s theorem and Pésa’s theorem [5], Theorems 3.1-3.4 set no
upper bound for any i>0 on the number of vertices having valency =i in the
graph.

4. Long circuits in 2-connected graphs

The only 2-connected graphs which contain no circuit of length >3 are the
3-circuits, as may be easily verified. Also, in any graph each circuit is contained in
a 2-connected spanned subgraph. In this section some sufficient conditions will be
established for any integer f= 4 that a finite or infinite 2-connected graph with > f
vertices should contain a circuit of length = f. In addition the graphs which satisfy
such conditions and contain no circuit of length > f will be classified. For this
purpose some special results will be proved. We require some more.

Definition 4.1. A graph which contains x vertices, and each pair of distinct
vertices are joined by one edge, where x may be finite or infinite, will be denoted
by {(x). A graph which consists of an {(x), and of y further vertices each of them
joined by an edge only to every vertex of the {(x), where x and y may be finite or
infinite, will be denoted by {{x), y), and the {(x) will be called the core. If y>1 and
a new edge is added to a {({x), y), the resulting graph will be denoted by {{(x), y +)
and the (x) will be called the core. (The new edge is not incident with any vertex
of the core.) If @ is a circuit and Y is any path of length =1 such that YN &
consists of the two end-vertices of Y, then Y will be called a chord of 6.

It is easy to verify the following two results (5) and (6).

(5) Suppose that I is any graph and @ is any longest circuit of I' and Y is any chord
of O with end-vertices M and N. Let Y, and Y, denote the two (M, N)-paths whose
union is . Then:

(A) (M, N)2 60 and (Y)=I(Y)), (Y)).

(B) If R, is an interior vertex of Y, and R, is an interior vertex of Y,, and

I(Y(M, R))+I(Y5(N, R;))<I(Y) +g,
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where g is an integer =1, then I" does not contain any (R;, R,)-chord of © which
has length = g and is disjoint with Y. In particular, if

I(Y1(M, R)+I(Y5(N, Ry))=<1(Y),
then I does not contain any (R,, R,)-chord of O disjoint with Y, so (R, R,)£T.

(6) Suppose that I is a connected graph and a longest circuit of T’ has the same
length as a longest path of I. Then if @ is any longest circuit of I', I — @ consists of
one or more isolated vertices, and if two vertices are joined by an edge of ©, then at
least one of them is joined to no vertex of '— @ in I.

Theorem 4.2. Suppose that I is a graph and @ is a longest circuit of I' and ng = f,
where f is even. Then

VVeV(I)-V(O): e(V, @; N <if.

Suppose that Ve V(I')—¥(0) and e(V, ®;I')=3f. Then the notation can be
chosen so that the vertices of © are in cyclic order Vi, W, ..., Vy,, Wy, and V is
joined to W, ..., Wy,. If in addition I is 2-connected, then I' < ((3f), np—3f), the
vertices of the core being Wi, ..., Wy,.

Proof. It follows at once from (5A) that e(V, @; I')<1if and that if e(V, ©; N =1f
then V is joined to every other vertex of @ and the notation can be chosen as
described. Suppose now that this is the case, and that I' is 2-connected. Then:

(i) The only (V, @)-paths in I' are in the 3f paths of length 1 which join V to
Wit Wy,

For by (5A) no (V, @)-path ends in Vj,..., Vj, and no (V, @)-path of length
>1ends in Wy, ..., Wp,.

(i) No chord of @ joins two of V;,..., Vj,.

For suppose that a chord of @ joins V, and V, By (i) this chord does not
contain V. But then we have a contradiction to (5B) with ¥(Y)={W,, V, W,}.
Now (ii) is proved.

(iii) No chord of ©® of length =2 joins one of V;,...,Vy, to one of
Wi, ..., Wy

For suppose that such a chord joins V; and W, Then i#1,if from the
maximality of @, and V does not belong to the chord by (i). But then we have a
contradiction to (5B) with ¥(Y)={W,;, V, W;}. Now (iii) is proved.

(iv) No chord of © of length =3 joins two of Wy, ..., W,.

For suppose that such a chord joins W, and W, Then 3=<i=<if—1 from the
maximality of @, and V does not belong to the chord by (i). But then we have a
contradiction to (SB) with ¥(Y)={W,, V, W, ;}. Now (iv) is proved.

(v) No two vertices of ¥(I')— W, — - - - — W,,, are joined by an edge.

For suppose on the contrary that X and Y are to such vertices and (X, Y)e I

X# V and X# V. For if e.g. X=V then Y€ © by (i). Therefore, since I' is
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2-connected, I'— V contains a (Y, @)-path of length =1. Consequently I' con-
tains a (V, @)-path of length = 2. But this is contrary to (i), therefore X# V and
Y#V.

X# © and Y& @. For if e.g. X € @ then by (ii) and the above, Y& V(O)U{V}. It
may be assumed that X = V. I'= X contains a (Y, @)-path of length =1 since I'
is 2-connected. Consequently I” contains a chord of @ of length =2 with V, as an
end-vertex. But this is not the case by (ii) and (iii), so X¢ ® and Y& 6.

Since {X, Y}IN(OU{VH =0 and (X, Y)e I and I' is 2-connected, there exists a
chord of @ containing (X, Y), and this has length = 3. But by (ii), (iii) and (iv) no
chord of @ has length =3. This contradiction proves (v).

By (v), I'c{G&f), nr—3f). Now Theorem 4.2 is proved.

If the longest circuit of the graph has odd length, then there are more
alternatives:

Theorem 4.3. Suppose that I' is a graph and O is a longest circuit of I' and ng = f,
where f is odd. Then

VVe¥(IN-Y(O): e(V, @;N<i(f-1).

Suppose that Ve V(I)— V(@) and e(V, @; I'y=53(f—1). Then the notation may be
chosen so that the vertices of © in cyclic order are V,, W1, ..., Vi 1y, Wi 1y,
Vis+1y2 and V is joined to W, .. ., Wy, If in addition I is 2-connected, then

either ['< (G(f = 1), np=2(f = 1) +),

or f=5 and I' is a subgraph of a graph obtained from a ((3(f—1)), m) with
(f-1)ysm=<np—3(f+3) by selecting one vertex in the core and one vertex not in
the core, and taking two or more new vertices and joining each of them to just the
two selected vertices,

or f=7 and I is a subgraph of a graph obtained from a {((3(f—1)), m) with
Hf—3)<m=<np—3(f—1)—4 by selecting two distinct vertices W, and W;_,, in its
core, and taking two or more trees, each consisting of a vertex joined to =1 others
(pairwise disjoint and disjoint with the (G(f—1)), m)), and if such a tree has just 2
vertices then joining both of them to W, and to W_y),,, while if a tree has =3
vertices then joining the vertex having valency >1 in the tree to both W, and
W _1y2 and joining all the vertices having valency 1 in the tree to just one of W,
and Wi _ .

If in addition I' is 3-connected or contains at most one vertex of valency <3, then

relG(f-1), nr=3(f—1+).

Proof. From (5A) it follows that e(V, @;I)<3(f—1) and that if e(V,0;1)=
3(f—1), then the notation may be chosen as described. Suppose now that this is
the case. Then

(i) The only (V, @)-paths in I' are the 3(f — 1) paths of length 1 which join V to
Wi oo Wiy
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The reason is the same as in the proof of Theorem 4.2.
(i) No chord of @ joins two of Vi,..., Vi, qyp.

For suppose that such a chord joins V; and V. By (i) it does not contain V. If
i=1 then 2<j=<}(f-1), therefore (5B) with ¥(Y)={W,, V, W} is contradicted,
therefore i#1, and similarly j#1. But then (5B) with ¥(Y)={W, V, W} is
contradicted. Now (ii) is proved.

(iii) No chord of @ of length =2 joins one of Vy,..., V4,4, to one of
Wi, ..., Wi_yy2 except possibly when f=5, (V, W(;_y),)-chords of length 2 or
(V(s+1y2, Wi)-chords of length 2, and if I contains a (V;, W_,),)-chord of @ of
length 2 then no chord of @ has V., as an end-vertex, and if I" contains a
(Vs+1y2» Wi)-chord of @ of length 2 then no chord of @ has V, as an end-vertex.

For suppose that a chord of @ of length =2 joins V; and W, Then f=35,
(V, W;)€ 0 by (5A). By (i) the chord does not contain V.

i=1 or i=3(f+1). For suppose that 2<i<4(f—1). Then if i>j we have a
contradiction to (5B) with ¥(Y)={W,,,, V, W} and if i <j we have a contradic-
tion to (5B) with ¥(Y)={W,_,, V, W,_,}. Hence i=1 or i=3(f+1).

If i=1, then j=i(f—1). For if 2=<j=i(f—3), then (5B) with ¥(Y)=
{W,, V, W} is contradicted. Similarly, if i=4f+1), then j=1.

All (V,, W;_,,»)-chords of @ and all (Vi,,,,, W;)-chords of @ (if any) have
length <2 by (5A).

It has now been proved that no chord of @ of length =2 joins one of
Vi,ooow Vigsyz to one of W, ..., W, ;,, except possibly when f=35
(V1, Wi_1y2)-chords of length 2 or (Vs.y, W;)-chords of length 2.

Suppose that I' contains a (V,;, W;_,),)-chord of @ of length 2, and let U
denote the intermediate vertex of any such chord. Then no chord of @ has
V12 as an end-vertex. For suppose on the contrary that Y’ is such a chord of
6. By (5A) U2 Y’ and the other end-vertex of Y’ is neither V| nor Wy_;),.
Therefore by (ii) the other end-vertex of Y’ is one of Wy,..., Wy_s3),, say W,
But then the union of the pafh whose vertices in order are V,, U, W;_yy»,
Vi—iyzr oo Wisr, V, Wi, Vo0, W, and of Y’ and (Vy, Vigiqy2) is a circuit in I
of length > f by (i) and since U& Y. But this is contrary to the maximality of ©.
Thus if I" contains a (V, W_,,5)-chord of length 2 of @ then no chord of @ has
Vi1 as an end-vertex. Similarly, if I contains a (V11y, W;)-chord of @ of
length 2 then no chord of ® has V; as an end-vertex. Now (iii) is proved.

(iv) No chord of @ of length =3 joins two of W,,..., W_,,,, except possibly
when f=7, (W,;, W;_,,»)-chords of length 3, and if I" contains such a chord then
no chord of @ has V, as an end-vertex except possibly (V,, W(_,),)-chords of
length <2, and no chord of ® has V., as an end-vertex except possibly
(Vis+1y2, Wh)-chords of length <2.

For suppose that a chord of @ of length =3 joins W; and W, where i <j. By (i)
it does not contain V. Then by (SA), f=7 and j—i=2. i=1, because if i# 1 then
2=<i=<j-2, and therefore (5B) with ¥(Y)={W._,, V, W,_;} is contradicted.
Similarly j=3(f—1). Then the length of the chord is 3 by (5A).
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Suppose that I" contains a (W;, W;_,),,)-chord of © having length 3, and let S
and T denote the two intermediate vertices of any such chord. No chord of @ has
V, as an end-vertex except possibly (V;, W_,),,)-chords of length <2. For if this
is false, then by (5A) and (ii) there is a (V;, W;)-chord of @ with 2<i<3(f—-3),
say Y'. By (5A), V, S, T¢ Y'. Therefore the union of Y’ and of the path whose
vertices are W, Vv, ..., Wi a0, VWi, Vi, o0 WL ST, W gy0, Viganye 18
a circuit in I" with length >f. But this is contrary to the maximality of @. Thus no
chord of @ has V; as an end-vertex except possibly (V;, W, )2)-chords of length
=<2. Similarly no chord of @ has V., as an end-vertex except possibly
(Vis+1y2> Wy)-chords of length <2. Now (iv) is proved.

Suppose now that I' is 2-connected.

If I' contains neither a (V;, Wi_;y5)-chord of @ of length 2, nor a
(Vs+1y2> W1)-chord of @ of length 2, nor a (W,, W;_,),)-chord of © of length 3,
then by a reasoning similar to that used to establish (v) in the proof of Theorem
4.2 it is seen that

EI-wW;—---— W(f—l)/Z) ={( Vi, V(f+1)/2)}-
From this it follows that in this case
re{(f-10), np—3(f-1+),

the vertices of the core being Wy, ..., Wi_qy.

Suppose that I' contains one or more (V;, W;_,,,,)-chords of ® of length 2, but
no (W,, W_,)»)-chord of length 3. Then by (i), (ii), (iii) and (5B) V., is joined
only to V; and to W(;_,,,; in I', and the same is true for the intermediate vertex of
each (V,, W;_,),)-chord of @ of length 2. Therefore in this case the second
alternative of Theorem 4.3 holds. Similarly, if I’ contains one or more
(V4132 Wi)-chords of @ of length 2 but no (W;, W(_,,,5)-chord of length 3,
then the second alternative of Theorem 4.3 holds. The vertices of the core are
Wi, Weonye

Suppose that I" contains one or more (W), W(_;),;)-chords of @ of length 3.
Let Y, be any such chord, and the vertices of Y in order W;, V', V', W(;_,,». By
considering the circuit (I'— V, — V., ,,,,) UY, in place of @ it is seen that (i)}-(iv)
with V' in place of V, and V" in place of V.,), apply to it. It follows that either
the connected component of I'— W, — W, containing V' and V" is a {(2) and
V', V" are joined to no vertex of I' other than W, and W;_,,,, or this connected
component is a tree with >3 vertices in which V' is joined to all the other
vertices, and in I' V' is joined only to W, and perhaps to W;_;,, as well, while
the other vertices of the tree are joined only to W;_,,, or we have the situation
just described but with V' replaced by V” and W(_,,, by W,. The same applies
to the connected component of I'— W, —W,_,,, containing V; and V., of
course. Thus in this case the third alternative of Theorem 4.3 holds, the vertices
of the core being again W,,..., Wy_,».

It is easy to see that if the second or the third alternative of Theorem 4.3 holds,
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then I' is not 3-connected, and contains two or more vertices having valency <3.
Now Theorem 4.3 is proved.

It is worth mentioning that:

(7) If T is a graph and © is a longest circuit of I’ and V and W are two vertices of
I' - © such that I' — O contains a (V, W)-path of length p and e(V, ©®; ') >0 and
e(W,0;I)>0, then

e(V,0:N+e(W,0; N <3ne—p.

The next theorem is concerned with longest paths and circuits, with particular
attention to the extreme cases.

Theorem 4.4. Let f be any integer > 4. Suppose that I is a (finite or infinite) graph,
and nr>f, and Y is a longest path of I' such that if A and B denote the
end-vertices of Y and a and b denote v-(A) and vr(B), respectively, then a+b={.
As Y is followed from A to B let A’ denote the last vertex which belongs to Nr(A)
and B’ the first vertex which belongs to N(B).

(A) If a=f—1 or b=f—1, then I' contains a circuit of length =f.

(B) If A'= B’ and I' is 2-connected, then I contains a circuit of length =f+1.

(C) If Y(A,AYNY(B, B'Y=0 and I is 2-connected, then I contains a circuit of
length =f+2.

(D) If Y(A, A") and Y(B, B') have more than one vertex in common, then I'(Y)
contains a circuit of length = f. Moreover if I' contains no circuit of length > f and
I is 2-connected, then I'(Y) contains a circuit @ of length f such that @NY =
Y(A, P)U Y(B, Q) with P#A,B and Q# A, B and I(Y(P, Q)=2, and either

(1) f=UY) and (6) holds for I, or

(2) 8<f and 3=sU(Y(P,Q)<UHY(A, B)+1, (Y(B,AY)+1, Y(P,Q) is a
longest (P, Q)-path of T—(®—P—Q) and I'— O contains no circuit of length
=21(Y(P, Q))—3, and I'(®) contains circuits of all lengths from 3 to f, and either

(2.1) P=B'and Q=A"and I'=J;., I, where |$|=3, Yie $:T is a subgraph
of I" such that P, QeI and I',—P— Q is connected and non-empty, and

Vi, #i,e $:V(I',NT,)={P, Q}

and if Y(A,P), Y(B,Q), Y(P,Q) belong to I, I',, I
LW#L#i#L and ['(O@)=T, UI';, or

(2.2) {A",B}#{P,Q} and I'=I;UTI,, where Iy and I, are subgraphs of
I,vir,nry)={P,Q}, Iy—P—Q and I',— P—-Q are connected, and I'=T(0)
and Y(P, Q)c I,.

If in addition I contains no circuit of length > f and I is 3-connected, then (1) is
the case. Then if I' contains a vertex with valency [3f] which does not belong to
every longest circuit of I', then

(G, nr—3f)

respectively, then

3



86 G.A. Dirac

if f is even, and
re{Gf—1), np—3(f—1)+)

if f is odd.
In all four cases (A), (B), (C), (D), I contains circuits of = f—2 different lengths.

Proof. [(Y(A, A"))=a and I(Y(B,B’)=b, since Y is a longest path and so
Nr(AYUN(B)S Y.

(A) This is obvious.

(B) Suppose that A’=B’ and I' is 2-connected. Then a,b=2. I'-A’ is
connected because I' is 2-connected. Hence I'— A’ contains a (Y(A, A')—
A’, Y(B, B'Y— B’)-path. Let Y, be any such path in I'- A’ and let A” denote
the end-vertex of Y, on Y(A, A’) and B” the other end-vertex of Y,, and
as we follow Y from A to A’ let A, denote the first vertex after A” which belongs
to N-(A), and similarly define the vertex B; on Y{(B, B’). Clearly A, and B, exist.
Then

Y(A", A)U{(A, AP}V Y(A,, A)UY(A', B,) U{(B, B)}U Y(B, B)U Y,

is a circuit of I of length =f+1. Now (B) is proved.

(C) Suppose that Y(A, AVNY(B, B'Y= and I is 2-connected. Then a, b= 2.
So, since I' is 2-connected, I' contains two disjoint (Y (A, A"), Y(B, B’))-paths. In
addition I' contains Y(A', B'). Therefore by Theorem 2.1, I" contains two disjoint
(Y(A, A", Y(B, B'))-paths whose union includes A’ and B’. Let Y, and Y,
be any two such paths, and put (Y;UY,)NY(A A)={A", A"} and
(Y,UY,)NY(B,B')={B’, B"}. As we follow Y from A to A’ let A, denote the
first vertex after A” which belongs to N-(A), and as we follow Y from B to B’ let
B, denote the first vertex after B” which belongs to A(B). Clearly A, and B,
exist. Then

Y(A", A)U{(A, ANV Y(A,, AU Y(B", B)
U{(B,B)}u Y(B,,BYUY,UY,

is a circuit of I" with length =f+2. Now (C) is proved.

(D) Suppose that Y(A, A)N Y (B, B') contains more than one vertex. Then
clearly

(i) a=2 and b=2.

If Nr(AYNTB,Y)#P, ie. if Np(BYNT(A,Y)#@0 (which is the case if
(A, B)eTI), then I'(Y) contains a Hamilton circuit of I by Theorem 3.1, and such
a circuit has length np> f. Therefore from now on suppose that:

(i) (A,B)¢TI and Nr(A)NIT(B,Y)=N(B)NT(A, Y)=0.

Among all ordered pairs [X, Y] ¥(Y) such that Xe Y(A,Y) and (A, Y),
(B, X)eTI and

(Y(X, )= X-Y)N(N(A)UN(B)) =0
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let [P, Q] be one such that [(Y(P, Q)) is a minimum. [P, Q] exists because
B'eY(A,LA)—A". If Y is followed from A to B let P’ denote the first vertex
after P and Q’ the last vertex before Q. From the definition of P and Q and (ii)
there follows:
(iii) A, P, P', Q, B are five distinct vertices of Y and occur on Y in this order,
similarly for A, P, Q’, Q, B, furthermore [(Y(P, Q))=2 and
(Nr(AYUN(BYNY(P', Q)=0.
Now put
Y(A, P)UY(B, Q)U{(A, Q),(B, P)}=0,
then @ is a circuit of I'. Since
WNr(AYUN))N Y (P, Q) =9,
we have
(iv) {AYUN(A)U{B}U(J(B,Y)-P)c 7(0),
{B}UN(B)U{A}U(J (A, Y)-Q)c ¥(0).
From (ii) and (iv) we have that [(@)=a+b={.
It has now been proved that I'(Y) contains a Hamilton circuit of I" or the circuit
@ of length =f.
Suppose that I'" contains no circuit of length > f. Then (ii), (iii) and (iv) hold,
and O is a longest circuit of I' and I(®) = f. Therefore
vy  {AYUN(A)U{B}U(F (B, Y)—P)=Y(0),
{B}UN(B)U{A}U(J(A, Y)-Q)=7(@).
For convenience put I(Y(P, Q))=r. r<I(Y(A,B")+1 and r<[(Y(B, A"))+1
because @ is a longest circuit of I
The alternatives (1) r=2, (2) r=3 will be considered in turn.
(1) Suppose that r=2. Then {(®)=I(Y) and (6) applies to I.
(2) Suppose that r=3. Since Y is a longest path of I’ there is no (P, Q)-path in

I'-(®@—P— Q) longer than Y(P, Q).
Next it will be shown that

(vii B'eY(A,P)—A, (A,B"eT;
VYVe¥(Y(A,B)Y)-A—-B": (A Vel and (B, V)€T;
if P# B' then
YVe¥V(Y(B, P))-B'" (A, V)eéTI' and (B, V)eT;
A'eY(Q,B)—-B, (B, A)eT;
VYVe¥V(Y(B,A)—-B-—A"(B,V)eI' and (A, V)£T;
if Q# A’ then
VYVeV(Y(A',Q)—A" (B, V)¢I' and (A, V)eT.
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For B'e Y(A, P)— A from the definition of B’ and P and since (A, B)¢T.
From (v),

VVe¥V(®)—A—-B: (A, VeI’ or VeJ(B,Y).

If Ve¥(Y(A,B)— A, then V£€J(B,Y) from the definition of B’, hence
(A, V)eT. From this and (ii),

VVe¥V(Y(A, B")—-B" (B, V)eT.

The first two statements if (vi) are now proved.

Suppose that P# B" If Y is followed from A to B let C denote the first vertex
after B’ and D the first vertex after C. (A, C)2 I by (ii). If C=P, then (B, C)eI'
of course. If C# P, then D € O, hence by (v), (A, D)eTl or De J(B, Y). There-
fore if (B, C)£ 1T, then (A, D)eI. Butif (A, C)¢ I and (B, C)¢T and (A, D)eT,
then, since (B, B')e I, the definition of [P, Q] is contradicted. This proves that
(B,C)eT. Thus (A, O)¢ I and (B, C)eI. From this and (ii} (A, D)¢TI'. If D# P,
then the above argument with B’ replaced by C and C by D shows that
(B, D)eI. Repeating this step by step until P is reached proves the third
statement of (vi).

The remaining statements of (vi) follow by symmetry.

It follows from (vi) that I'(®) contains circuits of all lengths from 3 to f.

We will now consider the two cases (2.1) P=B"and Q= A’, and (2.2) P# B’ or
Q#A'

(2.1) Suppose that P=B’ and Q= A’ and I' is 2-connected.

We will first show that:

(vii) Y(A, P)—P, Y(B,Q)—Q and Y(P, Q)— P— Q belong to three different
connected components of I'~ P — Q, and each connected component of '~ P—Q
is in I’ joined to P and to Q.

Proof of (vii). I'- P~ Q contains no (6, Y(P, Q))-path. For suppose that Y’ is
such a path. It may be assumed that the end-vertices of Y’ are Ve Y(A, P)—P
and We Y(P, Q)— P— Q. When Y is followed from A to B let V' denote the first
vertex after V. By (vi), I' contains the circuit

Y(V, A)U{(A, VIIUY(V', P)U{(B,P)}UY(B, W)U Y’

and this circuit contains V(@) and W, therefore it is longer than @, which is
contrary to hypothesis. Hence I'— P~ Q contains no (0, Y(P, Q))-path.

I'- P - Q contains no (Y(A, P),Y(B, Q))-path. For suppose that Y” is such a
path and let X and Y denote the end-vertices of Y”, where Xe Y(A,P)—P. As Y
is followed from A to B let X' denote the first vertex after X and Y’ the last
vertex before Y. Then, since Y(P, Q)N Y" =@ from what has just been proved, by
(vi),

Y(X, A)U{(A, XNUY(X', YIU{Y',BlUY(B, Y)U Y"

is a circuit of I' which contains ¥(Y) and is therefore longer than @. This is
contrary to hypothesis, therefore I'— P — Q contains no (Y(A, P),Y(B, Q))-path.
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This shows that Y(A, P)—P, Y(B, Q)— Q and Y(P, Q)— P— Q belong to three
different connected components of I'— P — Q. Since I'— P — Q is disconnected and
I' is 2-connected, each connected component of I'— P — Q is joined by an edge to
P and to Q. Now (vii) is proved.

Let the set of connected components of '-P—Q be {I'/:ie #} and suppose
that Y(A,P)-PcI?, Y(B,Q)—-QcI’ and Y(P,Q)-P-QcT7. Then
iy #Zi,#i;# iy from (vii). Also, Y(A, P)—P=1T", for otherwise I'/ contains a
vertex Z such that ZeY and Z is joined to a vertex Z' of Y(A, P)—P by an
edge, but by (vi) either Z'= A or Z'¢ (A, Y), from which it follows by (3) that
Y is not a longest path of I', which is contrary to hypothesis. Similarly Y(B, Q)—
Q=T.Now put I'(I""U{P, Q) =T, Vie 4, and it is seen that (2.1) of (D) holds.

(2.2) Suppose that P# B’ or Q# A’, and I is 2-connected.

We will first show that:

(viii) I'-P— Q has exactly two connected components, one of them is @ — P —
Q, and the other contains Y(P', Q'), where P’ is the first vertex after P and Q' is
the last vertex before Q as Y is followed from A to B.

Proof of (viii). ® — P— Q is connected, because if P# B’, then B’ Y(A, P)—P,
and therefore @ — P— Q contains

(Y(A, P)-P)U(Y(B, Q)—Q)U{(B, B")},

which is a connected graph containing V(®)— P — Q, and similarly if Q# A’.

®—P-0Q and Y(P, Q) belong to two different connected components of
I'-P—-Q. For if not, then I'—P—Q contains a (0, Y(P', Q"))-path Y'. The
notation can be chosen so that the end-vertices of Y’ are X and Y, where
XeY(P,Q)and YeY(B,Q)— Q. As Y is followed from A to B let Y' be the
last vertex before Y. If Ye Y(Q, A")— Q then by (vi),

Y'UY(Y,B)U{B,P)lJUY(A, P)U{(A Y)NHUY(X Y

is a circuit in I which contains ¥(®) and X, which contradicts the extremal
property of @. If on the other hand Ye Y(B, A")— A’ then by (vi),

Y'UY(Y,B)U{B, YZUY(Y' K QU{(Q A}V YA, X)

is a circuit of I" longer than @, contrary to hypothesis. These contradictions prove
that ® —P—Q and Y(P’, Q') belong to two different connected components of
r-p-Q.

At most one of P, Q is joined to a vertex €Y in I'. For if P# B’', then by (vi),
Pe 9(B, Y), and therefore P is not joined to a vertex £ Y by (3), since Y is a
longest path of I'. Similarly if O# A’, then Q is not joined to a vertex € Y. But by
hypothesis P# B’ or Q# A'. This proves the statement.

It follows that I'— P— Q has exactly two connected components, the one which
contains @ — P— Q, say I'{, and the one which contains Y(P’, Q’), say I';. For any
other connected component of I'—P— Q would contain no vertex of ¥, and it
would be joined to P and to Q since I' is 2-connected.
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I'' = ® - P— Q. For otherwise there exists a vertex Z£€ Y in I'{ joined by an
edge to a vertex Z' of @ — P— Q. In this case if Z'= A’, then A’e Y(B, Q)— Q, so
if A” is the last vertex before A’ when Y is followed from A to B, then by (vi),

{Z,Z2'(Z,Z")}VY(A’, B)U{(B, P} U Y(P, A")U{(A, A)}U Y(A, P)- P

is a path of I" which contains ¥(Y) and Z. But this is contrary to the definition of
Y, therefore Z'# A’. Similarly Z'# B'.

Since Z'#A',B’, by (vi), Z’=A or Z’=B or Z'eJ(A,Y) or Z'€¢J(B, Y),
and therefore by (3) again Y is not a longest path in I". This contradiction proves
that I' = @ — P— Q. Now (viii) is proved.

From (viii) it follows that (2.2) of (D) holds with I'y=I'-TI% and I',=T'—1T}.

In both cases, (2.1) and (2.2), if @ is any circuit of I'—©, then @ is in a
connected component of I'— @ which is joined by an edge to P and to Q and to
no other vertex of I. It follows from this, since I' is 2-connected by hypothesis,
that I' contains a (&P, P)-path Y, and a (&, Q)-path Y, such that Y,NY,=40.
Clearly Y,U® U Y, contains a (P, Q)-path of length =3l(®)+2. Therefore
{P)<2r-2.

In case (2), I'— P— Q is disconnected. Therefore if I' is 3-connected then (1) is
the case. The last but one statement of Theorem 4.4 follows directly from
Theorems 4.2 and 4.3. The last statement is easily verified.

There follows a theorem giving necessary conditions, involving aiso the valen-
cies of the vertices, for a finite or infinite 2-connected graph to contain a circuit of
prescribed minimal length.

Theorem 4.5. Let f denote an integer =4 and I any 2-connected graph such that
ni->f, and for each pair of distinct vertices V; and V, of I such that (V,, V)¢ I’
either v (V) +op(Vy)=f, or ¢'(Vy, Vo)< op(V)—=2, or ¢'(V,, V)<uv(V,)—-2, or
fori=1 or 2,

X, X N(V) VX e (W (XDUN(X)NE'(V,, Vi) vr(X) > op(V)).

Then either I' contains arbitrarily long circuits, or I' contains a Hamilton circuit, or
there exist longest paths in I" and if Y is one such that the sum of the valencies of its
end-vertices is maximum and = d, then d = {. In the latter case I' contains circuits of
= f—2 different lengths, and I contains a circuit of length > f except if d = f and we
have the extreme situation of Theorem 4.4(D). If in addition I' is 3-connected and
contains >f vertices of valency =[if] or some vertex of valency =[if]# the
intersection of all longest circuits, then I' contains a circuit of length >f, or f is even
and

I ={GhH, nr—3f)
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or f is odd and
FeG(f-D) np=3(f-1+).

Proof. Either I' contains arbitrarily long paths, or I' contains a longest path. In
the first case I' contains arbitrarily long circuits because it is 2-connected [1,
Theorem 1]. In what follows suppose that I' contains neither arbitrarily long
circuits nor a Hamilton circuit. Then among the longest paths of I' let ¥ be one
such that the sum of the valencies of its end-vertices is maximum; let this sum be
denoted by d. Obviously I(Y)>1.

We prove that d = f. Suppose that d < f (reductio ad absurdum). Let V, and V,
denote the two end-vertices of Y. v(V,)=2 and v (V,)=2 since I' is 2-
connected. (V, V,)¢I' by Theorem 3.1 because I' is assumed not to contain a
Hamilton circuit. vp(Vy) +vr(V,)=d <f by hypothesis. From the definition of Y
and (3) we have J(V,, Y)c €'(V,) for i=1,2. From Theorem 3.1,

T(Vy, Y)NN(V,)=9, g(vz, Y)N N (V) =9.

Thus J(V,,Y)<€'(V,V,) and T(V, Y)c¥€'(V, V). Hence by (4),
c'(Vy, Vy)=o(V,)—1 and c'(V,, V,)=v-(V,)— 1. Therefore I has the last of the
list of alternative properties assumed in the theorem. From here a contradiction is
obtained in the same way as in the proof of Theorem 3.4. Consequently d =f.

Since d =f, by Theorem 4.4, contains a circuit of length >f, and in fact circuits
of =f-2 different lengths.

If I' contains no circuit of length > f then d = f and Theorem 4.4(D) applies to
TI.

If I' is also 3-connected and contains no circuit of length > f, then by Theorem
4.4, f=1(Y) and (6) applies to I'. If in addition more than f vertices have valency
=[4f], so if there is a vertex of valency =[3f] which is not contained in every
longest circuit of I, then if f is even

(G, ne—3f)
by Theorem 4.2, and if f is odd

reGf-D), ne—3(f-D+).

Now Theorem 4.5 is proved.

Theorem 4.5 implies some results of Pdsa [6] and of the author [1] on the
existence of circuits of given minimum length f in 2-connected graphs in terms of
fixed bounds on the number of vertices with valencies <1if, however Theorem 4.5
makes no such restrictions.
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1. Introduction

Simplicial decompositions were used the first time by Wagner [19, 20] in his
beautiful characterizations of all (finite) maximal graphs not contractible onto K,
and, respectively, onto K, ;. Later Wagner and the writer [21, 6, 7, 10] deter-
mined the homomorphism-bases (i.e. the elementary brickstones in the decom-
positions of the maximal graphs in question) for several other graphs, or classes of
graphs. But the determination of the homomorphism base of a graph seems to be
only possible if the latter is relatively small (so far, no bases are known of graphs
with more than 6 vertices). Nevertheless this form of decomposition is attractive
by itself, and therefore the writer tried again and again to investigate its general
properties and to apply it to other problems in graph theory. Surprisingly,
especially in the case of infinite graphs, simplicial decompositions turn out to be a
useful tool. It was shown in [11, 12] that under rather general assumptions an
uncountable graph G has a simplicial decomposition whose members are all of
“small” cardinality. This made it for instance possible to tackle a generalization of
Hadwiger’s conjecture to graphs with infinite chromatic number [12].

In the present paper we summarize and extend the previous methods and
results. A general decomposition theorem is proved and applied to several
problems. For example we get insight in the structure of the graphs which do not
contain a subdivision of a complete graph of a given uncountable order. Further it
will be shown that an n-connected graph of regular order a >R, contains a
subdivision of a K, , (n a positive integer); this generalizes a result of Dirac [1].
Also we obtain the following: If G has uncountable regular order a and does not
contain a subdivision of an infinite complete graph, then there is a finite subgraph
F of G such that G—F has a components. Finally it is shown that every
connected graph which does not contain a subdivision of an infinite complete
graph has a normal rooted (spanning) tree in the sense of Jung.

2. Terminology, notation

In general we follow the standard notation as it is used, or at least understood,
by all graph-theorists.

* This paper was written while the author was visiting the University of Aarhus, Denmark.
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The order of a graph G is |V(G))|, denoted briefly by |G|. By G[T] we denote
the subgraph of G induced by some T< G or < V(G). By > we always indicate
proper inclusion. Most times we simply write ve G instead of ve V(G).

In this context we find it more convenient to say ‘‘simplex” instead of
“complete graph™; S(a) denotes a simplex of order a. In general the letter S is
reserved to denote simplices.

G > H means that G contains H as a subgraph of a contraction (more precisely,
that there is a bijection of V(H) to a family of disjoint connected subgraphs Z, of
G (he V(H)) such that [h, h']e E(H) implies the existence of an edge (in G)
between Z, and Z,..); we then say G is homomorphic to H. If G contains a
subdivision of H, we write G>,H. Mind that for a>¥,, a regular

G>S@)eG>,S)

(Jung [14)).

If P is a path, say connecting the vertices a, b, by P we denote its “inner part”,
i.e. the graph P—a—b, and if u, ve V(P), by P,, we denote the (unique)
u, v-path contained in P.

We write a- T-b(G) if T separates a, b in G (i.e. if the vertices a, b are notin T
and every a, b-path in G meets T).

For T G and ve V(G —T) we define the connection graph G(v— T) from v
to T (in G) as the subgraph of G induced by the union of all paths P in G starting
in v and having PNT=¢. (Thus G(v—T) is the subgraph induced by the
connected component C of G—T which contains v plus all the vertices of T
which are adjacent to a vertex of C.) T is called an inward subgraph of G if there
is a ve G—T such that Glv—>T)NT=T (i.e. if every te V(T) can be reached
from v by a path P with PNT=0).

If x, y are distinct vertices of G, their Menger number p5(x, y) is the maximum
number of internally disjoint x, y-paths in G. (Here, as throughout in this paper,
“number”’ is used in the sense of “‘cardinal.) If a is a cardinal, a* denotes its
immediate successor. w(a) is the initial ordinal of cardinality a; for an ordinal o,
W (o) denotes the set of ordinals <o. The axiom of choice is assumed throughout.

If M is a set with a relation < which is irreflexive, asymmetric and transitive
(i.e. it is the irreflexive kernel of a partial order) such that for every x € M, the set
of y e M with y < x is a chain with respect to < (that means: if y, z<x, then y = z,
y<z or z<y), then M with < is called an order-theoretical tree.

3. Simplicial decompositions
Let G be a graph, and let G, (A <o) be a family of subgraphs of G, where o> 0

is an ordinal number (and A runs through all ordinals smaller than o). We say
these G, form a simplicial decomposition of G if G is the union of the G, and for
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every 1, 0<7r<g, holds:

U GNG,. =S,
A<t
is a simplex properly contained in both |J,_..G, and G..

Thus G is built up from the G, by a transfinite process (if ¢ is infinite), in each
step of which G, is pasted to the part constructed before, along a simplex, like an
infinite cactus is composed of its branches.

The subgraphs G’:= |J, .. G, are called partial sums of the above decomposi-
tion. An S, may be the empty graph §), but no G, can be empty if G# @ (which
will be assumed throughout).

Further, each G, and each G/ (0<71<¢) must be an induced subgraph of G,
and G is connected if and only if all G, are connected and no S, is empty. One
has

a-S, b(G) (*)

for every ac G.—S,, be G, — S, (see [8, (1.1)].

To every simplicial decomposition there is associated a tree structure which
reflects the manner G is composed of the G,: For ve G, let A, denote the
smallest A such that v belongs to G,. Then for A, k <o we set A <k if A <k and
there is a vertex v € G, such that A, = A. < is an asymmetric relation in W(o). Let
« denote its transitive closure, i.e. A < k if and only if there is a finite chain

A=Ay<DA, < - AN, =k
Proposition 3.1. W(o) is an order-theoretical tree with respect to <.

Proof. Since A « x implies A <k, « is asymmetric and irreflexive, hence, as it is
transitive, a partial order (more precisely, the irreflexive kernel of such a relation).
Assume that « does not define an order theoretical tree. Then there is a smallest
7 and A, « such that A « 7, k €« 7 but A, k are not comparable with respect to «.
There exist chains A=A,<AA, < <A, =7, k=kodk;<<-- <k, =71
(n, m>0). By definition there are a, be S, with A,_, = A, k,,_{ =A,; say A, <A,
Since [a, b]e E(G) and G4, ,, is an induced subgraph containing a, b, it follows
[a, b]le E(G,,), i.e. a€ G,,; therefore A, = A, or A, <IA,. Thus A, k K A, =K, <T
and A, « not comparable under «, which contradicts the minimal choice of 7.

If for 7, 0<7<g, S, is contained in some G,, A <7, then we can replace the
above tree structure by a graph theoretical tree (on W(o)): Namely let then 7~
denote the smallest A of that kind, and draw all the edges [A, A7)

Especially if all the S, are finite, each S, is contained in a G,, A<<7, and 7~ is
the largest A such that A <{7. Then the simplicial decomposition gives good insight
in the structure of the graph G; for instance the chromatic number x(G) of G is
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the supremum of all the x(G,). This is, however, not the case in general. For
instance several of the S, (or parts of them) may sum up to form an S(X,) though
all the G, are at most countable. The tree structure associated with the simplicial
decomposition then cannot be described by a graph; we then face extreme
difficulties if we want to carry over the methods which apply in the case of finite
S,

4. Separation-invariant subgraphs

Every (induced) subgraph H of G which occurs as a member in some simplicial
decomposition of G is called a simplicial summand of G. In our next proposition
we characterize the simplicial summands of G by separation properties.

A subgraph H of G is called separation invariant in G if forany x, ye H, Tc H

x - T-y(H)=> x-T-y(G).

Of course every simplex in G is separation invariant in G, though it need not be a
simplicial summand. But we have (see [11, Section 2]):

Proposition 4.1. Let H be an induced subgraph of G and not a simplex. Then the
following statements are equivalent:

(1) H is a simplicial summand of G;

(1) H is separation-invariant in G;

(iii) For every ac G—H, Gla— H)NH is a simplex;

(iv) If P is a path in G connecting vertices a, b of H with POHZQ, then
[a. ble E(G).

Proof. Is not difficult to show that each of the statements (ii) and (iii) is equivalent
with (iv). If (iii) holds we get a simplicial decomposition with H and the graphs
G(a— H) as members, thus (iii))=> (i). — Assume (i). Then there is a simplicial
decomposition G,(A <o) of G such that H occurs as some G,. If (iv) does not
hold there is a path P connecting non-adjacent a, b of H such that PNH=9. Let
{(r<{ <o) be the smallest cardinal such that {J,., G, contains such a path P.
¢ > 7 by the definition of simplicial decomposition. P has a first vertex f and a last
vertex | in common with G,, f= l. It follows f, [€ S, by the relation (*) above.
Now replacing P, by [f, [] shows that there is a path of the kind in question in a
sum J, <, G, for some ¢’ < ¢, which contradicts the choice of £. Hence (i) implies

(iv).

Proposition 4.2. Let G, (i€ I) be a family of separation-invariant subgraphs of G.
Then also H: = () ,.; G, is separation-invariant in G.
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Proof. Assume H to be not separation-invariant in G. Let P be a path of minimal
length such that

(i) P connects non-adjacent vertices a, b of H,

(i) PNH=0.

(Of course P#¢ by (i)).

Let v e V(P). There exists an i € I such that v G,. Let x, y be the first vertex of
G; on P, P,, respectively. Then x, ye G(v— G;)N G, hence [x, y]€ E(G) since
G; is separation-invariant. By replacing P,, in P by [x, y] we get a shorter
a, b-path P’ with P'N H =, which is a contradiction.

Since G is trivially separation-invariant in itself, we can form, for every H < G,
the separation-invariant closure C;(H) of H in G, defined as the intersection of
all separation-invariant subgraphs of G containing H.

Now we give an estimate of the order of Cg;(H) in terms of the Menger
numbers of non-adjacent vertices in G, which is crucial for what follows.

Theorem 4.3. Let a be a regular cardinal >R, such that for every pair x, y of
non-adjacent vertices of G holds p(x, y)<a. Then for any H< G with |H|<a we
have

|CG(H>|<°-

Proof. Let H,:= G[H]. Assume then that, for some neN, H,_, < G is already
defined. For every pair x, y of distinct non-adjacent vertices in H, _, choose a
maximal (with respect to inclusion) system 2., of us(x, y) internally disjoint
x, y-paths in G and let H, be the subgraph of G induced by H, _, and the union
of all these ?,,. If |H,_,|<a then there are less than a systems %, each with less
than a elements, hence also |H,|<a by the regularity of a.

In this way we get a sequence

G[H]|=H,«H,cH,< - -

of induced subgraphs of G with |H,|<a. Let H*:=|J%_, H,. Again by the
regularity of a and a >R, we conclude |H*|<a. H* is separation-invariant (hence
contains Cg(H)). Otherwise there were a path P in G connecting non-adjacent
vertices a, b of H* with PN H* = @. There exists n €N such that a, be H,_,. But
then the system 2, added to H,_; in the nth step would not have been maximal,
with contradiction.

Let us denote by @(G) the supremum of all the cardinals us(x, y) where x, y
run through all pairs of non-adjacent vertices of G. (If G is a simplex then we set
a(G)=0.)

Thus, if pug(x, y)> a(G), then x, y must be adjacent in G.
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By the same argument as in the proof of Theorem 4.3 we obtain:

Theorem 4.4. For H< G the inequality holds
|Co (H)| < max (|H|, 2(G), Ry).

Further we get

Corollary 4.5. If G is uncountable and ((G)<|G|, then G has a separating
simplex of order < max (1(G),R,), unless G itself is a simplex.

Proof. If G is not a simplex, let H consist of two non-adjacent vertices and set
a =max (i(G), Xy)*. The resuit follows from Theorem 4.3 and Proposition 4.1.

5. The decomposition theorem
We can now prove

Theorem 5.1. Let G be a graph and a a regular cardinal with |G|=a > R,. Assume
that us(x, y)<a for every pair of non-adjacent vertices x, y in G and that G does
not contain an S(a). Then G has a simplicial decomposition G, (A <o), where o is
the initial ordinal of |G, in which all G, have cardinality less than a.

In addition this decomposition can be chosen in such a way that every S, is an
inward simplex in G,, moreover such that G, — S, is connected for every A < o.

Proof. Let V(G) be well-ordered according to o
V(G)={x,: v<o}.

G is not complete by hypothesis. Choose non-adjacent y’, y” in G and set
Go:=Cslx0, ¥, ¥

Then by Theorem 4.3
|Gyl <a.

Now let 0<<7 < ¢ and assume that separation-invariant subgraphs G, of order less
than a for all { <7 are already defined such that these G, from a simplicial
decomposition of their union, further the following conditions hold:

(1) Each x,(v<{) is in U,~, V(G,),

(2) Each G,— S, is connected,

(3) For at least one (then by (2) for all) ve V(G,—S,) there holds

s<=G<u—> U GA>O<U GA>.

A< A<



Simplicial decompositions of infinite graphs 99

We shall now construct G,.. First we state that G.= [, .. G, Is separation-
invariant in G.

Otherwise there are non-adjacent a, b in G’ such that there is an a, b-path
Pc G with PNG.=0. Let A, A, be the smallest A with a € G,, respectively
be G,; without loss of generality A, <A, If A,=A, then G, were not
separation-invariant; hence A, <A,.

Since a€ G(b—> U<y, Gy), a€ U,<,, G, we have by (3)

aes$, <G,
which would imply
PN G, ={a, b},

contradicting the separation-invariance of G,,.

Now, to construct G, let x be the x, with smallest v such that x, & G’ (it exists
because of |G!|<|G)). By Proposition 4.1, G(x— G/)NG.=:S, is a simplex;
|S.| < a by hypothesis, and S, # G’ since y’, y” are non-adjacent vertices of G~.

For every se V(S,) choose an x, s-path P, in G with P,NS_={s}. Let now
G, =Cs(S,U U,es, P.). Then G, has the required properties (i.e. it also fulfills
the conditions stated for the G, above).

In this way, by transfinite induction a sequence of G, (A <o) is constructed
which has the desired properties.

6. The a-saturation of a graph

We want to apply Theorem 5.1 to study the structure of graphs which do not
contain a given graph (or any member of a given class of graphs) as a homomor-
phic image or as a subdivision. At this point, in actually establishing a simplicial
decomposition, the condition on the Menger numbers may cause difficulties.
These are taken care of by the considerations of this section.

We say that a graph G is a-saturated (a a cardinal) if pg(a, b)=a implies
[a, b]e E(G). The a-saturation [G], of a graph G is the graph arising from G by
adding all the edges [a, b] where a, b are non-adjacent vertices of G with
we(a, By=a. (If |G|<a, then [G],=G.)

Proposition 6.1. For any Tc G with |T|<a and a, be G we have
a-T-b(G)oa T -b{((G],).

Especially, the non-adjacent pairs of vertices a, b with Menger number <a are the
same in G and [G], and we have

ei(a, b)<a

for all non-adjacent a, b in [G],.
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Proof. Assume a-T-b(G), |T|<a, and let C denote the component of G—T
which contains a. If there were an a, b-path in [ G], avoiding T, on this path there
had to occur an edge [x, y] with x € C, y£ C; hence [x, y]£ E(G), which implies
o (x, y)=a. But x-T-y(G) because x, y belong to different components of
G —T, hence ug(x, y)=<|T|<a, with contradiction.

The other direction of the asserted equivalence is trivial.

Proposition 6.2. Let H be a graph of order <a, a a cardinal >X,. Then for any
graph G

[Gl.>.H&G> H
[Gl,>HSG>H.

Proof. If [G],>,H or >H then there is also a subgraph H* <[G], with H*>_H,
or H*> H respectively, such that |[H*|<max (|H|,R,)<a. If [x, y] is an edge of
H* which is not in G, then wg(x, y)=a; hence, by reasons of cardinality, there is
an x, y-path P in G with PN H*=¢, and we can replace [x, y] by P. By a routine
application of Zorn’s lemma we can carry through this replacing procedure “‘step
by step” for all the edges of H* not in G, and we find a subdivision of H* in G.

If we choose H as a simplex, we can prove the last proposition also for |[H|=a.
In fact we have

Proposition 6.3. Let a be an infinite cardinal and G be an arbitrary graph. Then
the following statements are equivalent:
() [Gl.=2S(a),
(i) [G, >, S(),
(iii) G>,S(a).

Proof. (i)<>(ii) follows from Proposition 6.1, and (ii)=> (iii) by a standard applica-
tion of Zorn’s lemma onto the set of all those subdivisions of simplices in G which
have their branch vertices in V(H®), where H™ is the subdivision of S(a)
contained in [ G], by hypothesis. The other assertions of Proposition 6.3 are clear.

Let H be a graph and a >0 be a cardinal. Replace each edge [x, y] of H by a
system &, of a internally disjoint x, y-paths such that no two paths of any two
?,, have internal points in comnon. We call the graph arising in this way a
subdivision of H of strength a; we denote such a configuration by U,(H). By
routine methods (see [12, (15)]) we find:

Proposition 6.4. Let A< V(G) with |A|=a such that ug(x, y)=b>a =R, for any
distinct x, y € A holds. Then there is a Up{S(a)) which has A as its set of branch
vertices.
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Proposition 6.5. Assume [G1.-2S8(a), a=R,. Then G2 SR,) or G2 U,.(S(a)),
and if especially a = b* = 2b for some cardinal b, then G = S(a) or G 2 U,-(S(a)).

Proof. E(S(a)) decomposes into two disjoint classes, namely into the class of
edges which are also in G and the class of edges [ x, y] with non-adjacent x, y of G
and pg(x, y)=a*. The assertion follows from Proposition 6.4 together with [5,
Theorem 3(i) and Theorem 4(iii)].

7. Graphs without forbidden configurations

For some class € of graphs, by € we denote the class of maximal elements of €,
i.e. the class of those G € for which GU[x, y]£ €, for any pair of vertices x, y
which are not adjacent in G. € may be empty (but only if € does not contain a
finite graph).

Let I' be a non-empty class of finite graphs; if I" consists of one element A
only, which will be the most important special case, we identify I" with A. By the
homomorphism-class $*I" we denote the class of all graphs G with G»* H for all
H T Similarly, by the subdivision-class 9*I'" we denote the class of all graphs G
with G¥_,H for all He .

O*I' and H*I" then denote the class of maximal elements of $§*I', and H*T,
respectively. Thus G€§Q*F (or Q’,‘ff } if and only if G is not > (or >, respec-
tively) to a member of I', but becomes > (or >,, respectively) to some He I if
any new edge to G is added. Mind that S(1)e H*I" for every t< ming  |H|.

Proposition 7.1. Every graph Ge9*I" (or € 9*I") can be extended, by adding
edges, to an element G e H*I" (or € O*I, respectively).

Proof. Routine application of Zorn’s lemma onto the set of all graphs GUE’
where E’ is any set of new edges to G such that GU E’ is still in §*I" (in T,
respectively).

Let us call a graph G prime if there is not a separating simplex in G, i.e. if there
is no proper simplicial decomposition of G. A simplicial decomposition G, (A <o)
of G is called a prime-graph decomposition if all the G, are prime; it is called
reduced if no G, is contained in a G, with A# k. By [8, Satz 3], a prime-graph
decomposition of G is reduced if and only if all its members are maximal prime
(induced) subgraphs of G. In [8] it was shown:

Theorem 7.2. Every graph G without an infinite simplex has a reduced prime-
graph decomposition G, (A <o). The G, are uniquely determined; they are just all
maximal prime (induced) subgraphs of G.
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In [8] also an example is given that a graph containing infinite simplices need
not have a prime graph decomposition.

If I' is a class of finite graphs, every element of $*I' has a prime-graph
decomposition, by Theorem 7.2. The class of all prime graphs, occurring in the
prime-graph decomposition of any Ge$*TI', is called the base of ©*I' and
denoted by BH*I'. One has BH*I'= H*T, but not necessarily <H*I'. Analogously
the base BOHFI" (of H*I') is defined. It is clear that for the knowledge of the
graphs in $*I" or, respectively, *I" it is decisive to know the base-elements of
these classes. (The way how these base-elements have to be composed in order to
give maximal elements of H*I" or H*TI’, follows certain rules whose determination
is of minor difficulty and which is omitted here). In [11] the following estimate for
the order of the base elements was given:

Theorem 7.3. If I is a class of finite graphs then every element of the base of $*T"
or ©*I' is finite or countable.

Proof. Let G be an element of *I" or T Since G2 S(X,), G has, by Theorem
7.2, a prime-graph decomposition P, (A < o). What we have to show is that each
P, has order <R,. By Proposition 6.2, [Gls, € D™I" (respectively e $¥I), which
means G =[G}, by the maximality of G. Especially we conclude u(x, y) <X, for
all non-adjacent x, y in G, and this property carries over to each P,, since each P,
is an induced subgraph of G. Hence by Theorem 5.1 each P, has a simplicial
decomposition in which all members are finite or countable. But since each P, is
prime, each such decomposition has only one member, namely P,, which there-
fore itself must be finite or countable.

By Theorem 7.3 it was possible to extend the known characterizations of the
(maximal) graphs G not homomorphic to some given graph H, by means of
determining BH*(H), also to infinite graphs G. Wagner’s theorem [20], for
instance, extends in the following way:

Theorem 7.4. The base BH*S(5) consists of the non-planar graph W (see Fig. 1)
and all prime maximal planar graphs (which may be finite or countable).

The maximal countable planar graphs form an interesting class of graphs onto
which apparently almost no research has been done so far. In [11] some basic
properties of these graphs were proved. It was shown that such a graph must be
2-connected but is not necessarily 3-connected and that it is prime if and only if it
is 4-connected. It does not necessarily contain triangles. Its connectivity is finite
but may be arbitrarily great, which was observed by Mader [18]. Each such graph
contains one-way infinite paths, which follows for instance from [13, Satz 6]. (An
independent proof was orally communicated to the writer by Dirac). Further it
can be deduced from [9, Satz 3]: If G is maximal planar and countable and if G



Simplicial decompositions of infinite graphs 103

Fig. 1.

does not contain a two-way infinite path, then G has an edge which is contained
in infinitely many separating triangles.

Also the characterization of all (finite) graphs not homomorphic to a 4-
connected graph [10, Satz 6] easily carries over to infinite graphs. We have:

Theorem 7.5. Let I', denote the class of (finite) 4-connected graphs. Then 58&?)*1" "
consists of S(v), v<4, and the graphs W and P, of Figs. 1 and 2.

Py

Fig. 2.

We saw that every graph G, which is not > (or > ) to some finite graph H, can
be extended by adding edges to a graph G with the same property such that G
has a simplicial decomposition with members of “small” (i.e. finite or countable)
order. It is remarkable that this statement remains, in a modified version, valid if
H is infinite, though in this case it makes no sense to consider maximal graphs
with respect to the forbidden configuration.

Theorem 7.6. Let G, H be graphs with |G|>|H|=X, and assume G*_ H (or
G*} H). Then G can be extended, by adding new edges, to a graph G which is also
+ . H (or }H, respectively) and which has a simplicial decomposition G, (A <o =
w{(|G)) in which all members have order not greater than |H|. It may be chosen
G =[G, with a=|H|".

The proof follows from Theorem 5.1 in connection with Propositions 6.1 and
6.2.

A sharper result can be proved if especially H is an uncountable simplex.
Theorem 7.7. Let a be a regular, uncountable cardinal, and let G be a graph with
G *,S(a). Then [G], is }.S(a) and has a simplicial decomposition in which each

member has order smaller than a.

This follows from Theorem 5.1 in connection with Propositions 6.1 and 6.3.
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8. Application to colouring problems

Erdos and Hajnal [4] define the colouring number {(G) of a graph G as the
smallest ordinal v such that there exists a well-ordering < of V(G) with respect to
which each ve V(G) is adjacent to less than v predecessors. The colouring
number is related to the chromatic number of a graph by the inequality

{G)=x(G). (%)

1t is natural to ask which configurations must be contained in G if Z(G) is great.
By Erdo6s and Hajnal [4, Theorem 7.1] it was shown that {(G)> R, implies the
existence of an infinite path in G. In [12] the following stronger result is proved:

Theorem 8.1. If {(G)=NX,, then for every a <({(G) there is a subdivision of S(a)
contained in G.

Proof. Assume first {(G)>R, and that G3},S(a) for some a <{(G). Then, by
Theorem 7.6, [G], *},S(a) and [G],. has a simplicial decomposition G, (A<
o(|G))) with |G, |=<a for all A. Let <, be a well-ordering of G, — S, of order type
@ (G, —S,]). (Here S,=¢ is to be understood). For xe V(G) let A, be the
smallest A such that x € G,. Now for x, y € V(G) we set x <y if either A <A, or
if A, =A,=:A and x <, y. In this way a well-ordering of V(G) is defined such that
each vertex is adjacent to less than a predecessors; this contradicts the hypothesis
(G)>a.

If £(G) =R, the assertion is deduced from a result of Mader [17], using the fact
that from {(G)=2n—2 (n e N) it follows the existence of a finite subgraph F of G
with {(F)=n (Erdos and Hajnal [4, Theorem 9.1]).

It cannot be shown that under the assumptions of Theorem 3.1 there must be a
subdivision of S({(G)) in G, also if {(G) is not a limit cardinal. Namely, the
complete bipartite graph K. has colouring number a* but does not contain a
subdivision of S(a'). But it can easily be shown that, under the aforesaid
assumptions, G must contain {(G) disjoint subdivisions of S(a), since the deletion
of less than {(G) such configurations results in a graph which, by cardinality
reasons, has again colouring number {(G).

Hadwiger’s famous conjecture asserts the implication

x(Gy=a= G > S(a) (5 4 %)

for a e N. It makes sense to consider this statement also for infinite cardinals a.
From the inequality (**) and Theorem 3.1 we get immediately:

Corollary 8.2. If x(G)=X,, then G> S(a) for every a < x(G).

The stronger implication (* * x) is of course wrong if a is a limit cardinal, since
then the disjoint union of all S$(b)., b <a, has chromatic number a. without
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containing S(a) as a homomorphic image. It is, however, hopelessly difficult to
decide (*=*#) if a is of the form b* (see [12]).

Proposition 6.5 can be used to refine Theorem 8.1 and Corollary 8.2 (see [12,
Satz 6]).

9. Connectivity and separability of uncountable graphs

Dirac [1, Theorem 10]t proved the interesting result that every 2-connected
graph G of uncountable regular order contains a pair of vertices a, b such that
te(a, b)=|G| holds. The assertion is equivalent to G>,K, 5. In this form
Dirac’s theorem can be generalized as follows:

Theorem 9.1. Let G be an n-connected graph (n e N) of uncountable regular order
a. Then G contains a subdivision of the complete bipartite graph K, .

Proof. If [G], 2 S(a), then by Proposition 6.3 we have G>,S(a)2K,,,. There-
fore let us assume [G], $ S(a). By Proposition 6.1, pg(x, y)<a for all x, ye G
with [x, y]€ E((G].). Thus the hypotheses of Theorem 5.1 are fulfilled with
respect to [G),. Therefore there exists a simplicial decomposition G, (A <o) of
[G],; 0 =wla). Since G is n-connected one easily shows that also every G, is
n-connected and every S, has order at least n. For each A, 0 <A <g, choose an
x,€G,—S, and n paths P,,,..., P, <G, such that (i) each P, connects x,
with a vertex of S,, (i) B, NS, =, and (iii) for i#j, P, and P, have only x, in
common. This choice is possible, by well-known properties of n-connected
graphs. Let F, denote the union of P,,,..., P,, and set [, NS, =T,; |T,|=n by
the choice of the P,.

For any A, 0<A <o, let f(A) be the minimum of all ordinals « such that
T, < G.; f(A\)<A by the finiteness of T,.

By a theorem of Dushnik [3]+ there is a A, such that |f~}(A,)|=a. For A,
k€ f Y (Ag), say A < k, we have

FNF,cGNG.NF.cS.NF, =T, +)

Because the set of n-element subsets of V(G,) has cardinality at most
max (X, | V(G, ))), there exist a ordinals A € f~'(A,) such that all the correspond-
ing T, coincide. Any two of the corresponding F, have only elements of T, in
common, by (+). Hence [G],>, K, , from which the assertion follows by the same
kind of argument as (ii)=> (iii) in Proposition 6.3.

It is clear that Theorem 9.1 does not hold if |G| is a singular cardinal. This is
evident even in the case n=1. All what we can say in this case is Theorem 9.4
below.

1 See also [2] for a proof.

1 We could also apply the well-known result that every uncountable connected graph of regular
order a contains a vertex of valency a, onto the graph with vertex set W(w(a)) and the edges [A, f(1)].
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Proposition 9.2. If G is n-connected (n finite) and H < G, then there exists an
n-connected subgraph H* of G which contains H and has order at most
max (|H|, o).

Proof. Set H,= H. Assume H,, to be already constructed. Then let H,, ., be the
graph arising from H,, by adding n internally disjoint a, b~paths for every pair aq,
b of vertices of H,, with w, (a, b)<n. Then it is easy to see that -, H, = H*
is n-connected, and its order has the asserted bound.

From Proposition 9.2 we conclude,

Proposition 9.3. If G is n-connected and infinite, then to every infinite cardinal
a<|G)| there exists an n-connecied subgraph H of G with |H|=aq.

From Proposition 9.3 and Theorem 9.1 we find,

Theorem 9.4. If |G|=a>R, is singular and G is n-connected, then there is a
subdivision of K, in G for every b <a.

Especially we have (for n <X):

Corollary 9.5. Every uncountable n-connected graph contains a subdivision of a
finite n-connected graph.

It is interesting that the analogous statement is not true for countable graphs
and n=6. For there are 6-connected countable planar graphs G; every finite
graph H with G>_,H or G> H must have connectivity at most 5, by Euler’s
formula.

Next we investigate the alternative between the existence of a subdivision of an
infinite simplex and of a finite set of vertices with high separation index. Again
our result is obviously wrong for countable graphs.

Theorem 9.6. Let G be a graph of uncountable regular order ¢ and G3*,S(X,).
Then there exists a finite T< G such that G—T has a connected components.

Proof. By Propositions 6.1 and 6.2 in connection with Theorem 5.1 we find a
simplicial decomposition G, (A <w(a)) of [Gl, in which all G, are finite or
countable; especially all the S, must be finite. For A >0, let f(A) denote the
smallest ordinal « such that S, = G,. As in the proof of Theorem 9.1 there must
be a A, such that f~'(A,) has cardinality a, and there is a finite T < V(G) such that
V(S,)=T for a of the A in f'(A;). For these A, all G, — S, belong to different
components of [Gl,— T, by the separation-property (*) stated in Section 3.
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For the case of singular order we get by the same ideas as in the last proof:

Theorem 9.7. Let G be a graph of uncountable singular order a and G} ,S(R,).
Then for every b <a there exists a finite T< G such that G—T has at least b
connected components.

The existence of a T with the separation properties stated in Theorems 9.6 and
9.7 cannot be asserted if it is only stipulated G2 S(X;). This is shown by the
minimal block that is obtained if every edge of an uncountable simplex is
subdivided {(at least) once.

By application of Proposition 6.5 we obtain the following sharpening of
Theorem 9.6:

Theorem 9.8. Let G be a graph of uncountable regular order a. Then {at least) one
of the following statements holds:
(i) G2SX®y),
(i) G2 Uy (S(R)),
(iii) There is a finite T such that G—T has a components.

(If |G|>R, is singular, (iii) has to be replaced by the statement: To every
b <|G]| there is a finite T such G—T has = b components).

10. Normal rooted trees

Jung {15, 16] studied the following interesting concept: Let G be a connected
graph. Then a rooted spanning tree T of G is called normal (with respect to G) if
any two vertices which are adjacent in G are comparable with respect to the
partial order of V(G) determined by T and its roott.

A subset D of V(G) is called dispersed (verstreut) if to every one-way infinite
path U there exists a finite F< G such that in G — F there is no path connecting a
d € D with a vertex ue U. Jung [16, Satz 6'] proved that a necessary and sufficient
condition for a connected graph G to have a normal rooted spanning tree (with
given root) is that V(G) is the union of a countable system of dispersed sets.
Surprisingly, thus the choice of the root has no influence onto the existence or
non-existence of such a spanning tree since the term “dispersed” is independent
of the given root. It follows that, if G has a normal rooted spanning tree, then
every connected subgraph of G has such a tree too. By Jung [ 16] every connected
countable graph and every connected graph without an infinite system of two-way
infinite paths has a normal rooted spanning tree. Using the preceding results we
can sharpen the latter criterion.

T If r is the root, this partial order is defined by: x <y if and only if the r, y-path in T contains x.
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Theorem 10.1. Every connected graph G which does not contain a subdivision of
an infinite simplex has a normal rooted spanning tree.

Proof. As in the proof of Theorem 9.6 we find a simplicial decomposition G,
(A<w(/G]) of [Gls, where all |G,|<R, and all S, are finite. In addition, by
Theorem 5.1, each S, can be chosen in such a way that every G, — S, is connected
and S, is an inward simplex of G,.

By Jung's result, we can select a normal rooted spanning tree T, of G, (with
respect to any given root r € G).

Now assume 0 <7< w(|G|) and suppose that for every A <7 there are already
determined T,, r, such that the following conditions are fulfilled:

(1) n,esl,, if A>0,

(3) T, is a normal rooted spanning tree of G, —(S, —r,), with respect to the
root r,,

(3) U,=aT, =:T{,, is a normal rooted spanning tree of G, =1J,<,G, (with
root r,).

Then UJ,..T, = UJ,.. T, =: T is a normal rooted spanning tree of G’. (For it
is a tree, as the union of a chain of trees; it covers V(G’); and finally, if there
were adjacent x, y in G/ which are not comparable under the partial order < of T
with respect to r,, the same situation would already occur in some T,,, A <7,
contradicting (3).)

Since S, is a simplex and V(S,)< V(T), any two vertices of S, are comparable
under =, hence form a finite chain under =<. Let r, be the maximum of this chain.
By construction of G, G, — (S, —r,} is connected and at most countable; hence by
Jung’s theorem we can choose a normal rooted spanning tree T, of G, — (S, —r,)
with root r.

We assert that | J,..T,=TUT,=:T’,, is a normal rooted spanning tree of
G’ ., with root r,.

First of course T’ ., is a tree spanning G’_,. Let now [x, yle E(G’_,). If x, y
are both in G’ or both in G, —(S, —r,), it follows from the normality of T and
from the choice of T,, respectively, that x, y are comparable under the partial
order = of T2, determined by the root r,. If x€ G, S,, y € G, then necessarily
yeS,, hence y=<r =<zx, and again x, y must be comparable under =.

In this way we get T,, r, for every A <w(|GJ) such that conditions (1), (2), (3)
are fulfilled, and we easily show (by the same argumentation as above concerning
the union of the T,, v <) that the union of all T, form a normal rooted spanning
tree of (G with respect to r,.

By application of Proposition 6.5 we get the somewhat stronger result:

Theorem 10.2. Every connected graph without an SR} and without a Uyg (S(X,))
has a normal rooted spanning tree.
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It would be interesting to characterize the connected graphs which possess
normal rooted spanning trees, in terms of forbidden configurations. We conclude
with the following.

Conjecture 10.3. A connected graph G has a normal rooted spanning tree if and
only if there is not an uncountable subset X = V(G) such that us(x, y)=X, for
any x#y of X holds.
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COMBINATORIAL COMPLETIONS*

Marshall HALL Jr.
Department of Mathematics, California Institute of Technology, Pasadena, CA, U.S.A.

1. Introduction

In combinatorial constructions, it is a matter of great interest to know when a
partial system can be completed to a full one. Thus rows forming a Latin rectangle
can always be completed to a full Latin square [4]. This and the related topic of
completing nets to affine planes, studied by Bruck [1] are the subject of Section 2.

It has been shown by the writer and Ryser [8] that for rational matrices A
satisfying either!

AAT=mI (1)
or
AAT=(k—MI+AJ, AJ=kJ, )

providing that some rational solution exists, any set of r initial rows satisfying the
trivially necessary conditions will have a rational completion to a full matrix.
These results are discussed in Section 3.

The more difficult question as to finding integral completions for (1) or (2) is
discussed in Section 4. For (1) in results due to the writer [6] and to Verheiden
[11] at least the last 7 rows may be added, but not in every case the last 8. For (2)
it is shown in this paper for the first time that at least the last 4 rows may be
added, but again an example shows that not in every case can the last 8 be added.

2. Completions of Latin squares and nets

It was shown by the writer [4] that a Latin rectangle can always be completed to
a Latin square. An r by n Latin rectangle R on n letters x,,. .., x, is a matrix of r
rows and n columns such that each letter occurs exactly once in every row and no
letter occurs twice in a column. The method of proof depends on considering the
sets Sy, ..., S, which are subsets of {x,, ..., x,} such that x; € S; if and only if x; is
not in the ith column of R. A further row which can be added to R to make an

* This research was supported in part by NSF Grant MPS-72-05035 A02.

! Equation (2) is satisfied by the incidence matrix of a symmetric block design. Equation (1) includes
Hadamard matrices as special cases, and the case (2) with A =0 may also be thought of as a “null
design”.
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r+1 by n Latin rectangle R’ will consist of distinct representatives of §;,..., S,
and conversely distinct representatives of S,, ..., S, may be used to form such a
row. The method of proof shows that such a row can be added in at least (n —r)!
ways. Then a further row can be added to R’ in at least (n — 1—r)! ways. Hence if
n—r=s, R can be completed to a Latin square in at least s!(s—1)! - - - 211! ways.
In particular, even aliowing for equivalence by permuting the last s rows arbitrar-
ily, there are at least (s —1)!(s—2)! - - - 2!1! completions of R to a Latin square L.

The situation is quite different if we are given entries in a square not complete
rows, such that no row or column contains a repeat. For example if the first row
contains X,;,...,X,_; in its first n—1 cells and the second row contains x, in its
last cell, then no completion exists. For the only possible entry in the nth cell of
the first row is x,, and this yields a conflict in the last column. But a conjecture of
Trevor Evans asserts that any start with no repeat in a row or column and at most
n—1 entries can be completed. There is some information on this conjecture but
it remains an open question.

Let L be a Latin square of order n. Let us take each of the n? cells of L as a
point. From L we can define three families of parallel lines, each line containing n
points. A line of the first family will be the points in a row of L. A line of the
second family will be the points in a column of L. In the third family the ith line
will consist of the cells of L containing x;. Viewed in this way a Latin square is a
3-net N.

A k-net N is a system of points and lines such that

(i) N has at least one point;

(ii) the lines of N are partitioned into k disjoint, nonempty “parallel classes”
such that

(a) each point of N is incident with exactly one line of each class;

(b) to two lines belonging to distinct classes there corresponds exactly one point
of N which is incident with both lines.

Here we shall always suppose k =3 and that the number of points in N is finite.
To avoid trivial cases we also assume that every line has at least two points.

With these assumptions there is a positive integer n such that

(1) N has n? points;

(2) N has exactly kn distinct lines. These fall into k parallel classes of n lines
each. Distinct lines of the same parallel class have no points in common. Two
lines of different classes have exactly one common point.

(3) Every line of N contains exactly n points.

If we take two parallel classes and let the first correspond to the rows and the
second to the columns of an n by n square, then let K, ..., K, be the lines of a
third parallel class. If we place x; in the cells corresponding to points of K,
i=1,...,n, we have a Latin square L. If there is a further parallel class
corresponding to a Latin square L*, then L and L* are orthogonal which is to say
that the pairs (ay, b;) with g;; the entry in the cell of the ith row and jth column of
L and b, the entry from L*, then (ay, by) i=1,...,n;j=1,...,n gives all n®
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pairs (x, x;) i=1,...,n; j=1,..., n. Conversely k—2 Latin squares any two of
which are orthogonal yield a k-net.

A k-net on n? points can have k at most n+ 1 since there is at most one line
joining two distinct points. An (n+ 1)-net on n? points is an affine plane of order
n, designated E(2, n), and conversely an affine plane of order n is an (n + 1)-net
on n” points. Thus a k-net N on n” points can be extended to an affine plane
provided that n+1— k = d further parallel classes can be adjoined to N to form a
larger net N*. Bruck [1] has considered the completion problem of extending a
k-net to an affine plane. Here d = n+1—k is called the deficiency of the net. His
main results show that the completion is possible provided that d is small
compared to n.

Theorem 2.1 (Bruck). If n>(d —1)? and if N can be completed at all, then it can
be completed uniquely.

Theorem 2.2 (Bruck). If n>p(d—1), N can always be completed where p(x)=
Ixt+x3+x2+3x.

With a k-net N of order n (N has n” points) Bruck associates a graph G,. The
vertices of G, are the points of N and the (undirected) edges of G, are arcs
joining P; and P; if and only if P, and P; are on a line of N. Let G, be the
complementary graph of G,. If G, can be shown to be the graph of a d-net N,
then N and N, together form an affine plane. He can describe abstractly the
properties of G, and define this as a pseudo-net graph. His proof consists in
determining conditions so that G, will indeed be the graph of a d-net.

A transversal of a k-net N is a set of n points of N no two of which are on a
line of N. He is able to prove that if n>(d —1)? two distinct transversals have at
most one point in common. This proves his Theorem 2.1 above. The proof of
Theorem 2.2 is more complicated.

3. Rational completions

The problems considered here can be described in terms of matrices. Let A be
a rational matrix of order n such that for a positive integer m

AAT=ml 3)

Here AT is the transpose of A. A necessary condition for the existence of
a rational A satisfying (3) is given by

(1) If n is odd, m is a square.

(2) If n=2 (mod 4), =a”+ b? for integers a, b.

(3) If n=0 (mod 4), m is positive.
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These necessary conditions for existence of a rational A are sufficient for the
existence of an integral A satisfying (3).
For the second equation let » > k> >0 be integers satisfying

k(k~1)=A(v—1). (4)
Let A be a matrix of order v satisfying
AAT=(k—\)T+AJ=B, (5)

where J is the matrix of order v with every entry a 1. This is the incidence
equation satisfied by the incidence matrix A of a symmetric v, k, A block design
D. An incidence matrix A satisfies the further relations

AJ=klJ, JA = kJ. (6)
ATA = (k—A)I+AJ. (7

The following theorem due to Ryser may be found in the writer’s book [5, p.
104].

Theorem 3.1. A non-singular matrix A of order v satisfying either (5) or (7) and
either of the relations in (6) will satisfy all four relations. Furthermore k(k—1)=
Av—1) will also be a consequence.

As AAT= ATA we shall refer to a matrix A satisfying all four equations as a
normal matrix satisfying its incidence equations.

Necessary and sufficient conditions for the existence of a rational solution to the
incidence equation (5) depend on the deep Hasse-Minkowski theory of quadratic
forms. They are, however, easy to state and may be found in [5, p. 107].

Theorem 3.2 (Bruck, Ryser, Chowla [2, 3]). Necessary and sufficient conditions for
the existence of a rational matrix A satisfying (5) are

(1) If v is even, k~ A is a square.

(2) Ifvis odd, z° = (k — A)x>+(—=1)®"Y"2Ay? has a solution in integers X, y, z not
all zero.

The completion problem of interest here is to be given an r by n (or r by v)
matrix X to decide whether or not there is a square matrix A having X as its first
r rows which satisfies (3) or (5). We shall treat the cases separately, though they
have much in common.

For (3) X clearly must satisfy the condition

XX"'=ml,. (8)

Two theorems are relevant here. The first comes directly from Hall and Ryser

[8].
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Theorem 3.3 (Hall and Ryser). Suppose that A is a non-singular square matrix
such that

D,| 0

AAT=
515

] = D1® D27

where D, is of order r, D, or order s and r+s = n. Let X be an arbitrary matrix of
size r by n, such that XX" = D;. Then there is an n by n matrix Z having X as its
first r rows such that ZZ" = D@ D,. This result holds for all fields F of characteris-
tic not 2.

Corollary 3.4. An r by n matrix X such that XX* = mlI, can be completed to an n
by n matrix Z with X as its first r rows satisfying ZZ™ = mlI providing that some
matrix A exists with AAT=mlL

Thus providing that the neccessary existence conditions hold for AAT=mlI
then any initial r rows X satisfying XXT = ml, can be completed to a solution Z
of ZZ"=ml,.

The second theorem, a slight generalization of one in Hall and Ryser [8] may
be found in [6].

Theorem 3.5. Suppose that AA™ = D,@® D, where A is of order n and nonsingular
and D, and D, are of order r and s =n—r and are nonsingular. Suppose further
that X and Y are r by n matrices such that XX* = YY" = D,. Then there exists an
orthogonal matrix U of order n such that XU =Y. This result holds for all fields F of
characteristic different from 2.

Here an orthogonal matrix U is one satisfying UUT=UTU=1
For the incidence equation (5) we shall assume that X and r by v matrix
satisfies the two conditions

XXT= (k=0 + M, &)

XJ =k, (10)

Here J, and J,, are respectively matrices of sizes r by r and r by v in which every
entry is 1.

Theorem 3.6 (Hall and Ryser). Suppose that the conditions of Theorem 3.2 for the
existence of a rational solution to (3) are satisfied. Then given an r by v matrix X the
conditions of (9) and (10) are both necessary and sufficient for the existence of a
rational v by v matrix Z with X as its first r rows which is a normal matrix satisfying
the incidence equations (5), (6) and (7).

Thus over the rational field providing (3) or {5) has any rational solution a
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matrix X of r rows satisfying the appropriate conditions (8) or (9) and (10) has a
rational completion.

The key theorem is Theorem 3.3 whose proof depends on the Witt ““subtraction
theorem” for quadratic forms. This is given on p. 276 of (5).

4. Integral completions

Given an integral matrix X of size r by n (or r by v) satisfying the appropriate
conditions (8) or (9) and (10), we ask here about the existence of an integral
matrix Z satisfying (3) or (5), (6), (7), where X is the matrix of the first r rows of
Z.

In these cases the completion can be shown to exist for small values of s=n—r
(or s =v—r). It may be true that, as in Bruck’s results, the completion will exist if
s is small compared to n (or v).

It was shown by the writer [6] that for (3) the solution exists providing s =1 or
2. This result has been improved by one of the writer’s students, Verheiden [11].

Theorem 4.1 (Verheiden). Let r+s=n. If X is an integral r by n matrix such that
XXT = ml, and if some rational n by n matrix exists with AAT = ml, then providing
s=<7 there exists a rational n by n matrix Z having X as its first r rows such that
ZZ"=ml.

This depends upon deep theorem on integral quadratic forms, in particular the
result that an integral quadratic form which is positive definite and has determin-
ant 1 will be integrally equivalent to a sum of squares if the dimension (number of
variables) is at most 7.

For s =8 the conclusion of Theorem 4.1 is false. Suppose X is the 1 by 9 matrix
consisting of 9 ones. Then there is no 9 by 9 matrix Z with its first row consisting
of all 1’s such that ZZ™ =91. If there were such a matrix the sum of the squares of
the elements in the second row would be 9 and so the sum of these elements
would be odd, conflicting with the fact that the inner product with the first row

must be zero.
The results of Theorem 4.1 were obtained later independently by Hsia [9].

Using further deep properties of quadratic forms Verheiden proved the further
interesting result.

Theorem 4.2 (Verheiden). Under the hypotheses of Theorem 4.1 there exists, for
any s, an n by n matrix Z having X as its first r rows such that ZZ" = ml and such
that there is some power of 2, say 2°¢ so that 2°Z is integral.
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In the case of 9 by 9 matrices in which the first row consists of 9 1’s there is a
completion Z such that 2Z is integral.

[ 2 2 2 2 2 2 2 2]
3 3 -3 -3 0 0 0 0 0
3 -3 3 -3 0 0 0 0 0
3 -3 -3 3 0 0 0 0 0
2Z=lo0 o o o 3 3 -3 -3 90f. an

0 0 0 0 3 -3 3 -3

6 0 0o 0 3 -3 -3 3

2 2 2 2 -1 -1 -1 -1 -4
1 1 1 1 -2 -2 -2 -2 4]

This example also shows that 2 cannot be replaced by any other prime in
Theorem 4.2 since the same difficulty remains when Z is multiplied by any odd
number.

Now let us suppose that X is an integral matrix of size r by v satisfying the
conditions of (9) and (10). Let s = v —r and let Z be a rational normal completion
of X

X1 x[v_
X21 X240
SER o
Y1 " Y
Lysl Tt y,w__

Here, being a rational normal solution, Z satisfies

ZZT=Z"Z=(k—MNI+AJ (13)
and

2] =JZ=kJ. (14)

Here (14) asserts that every row or column of Z has sum k while (13) asserts that
the inner product of a row (or column) with itself is k and the inner product of
two different rows (or columns) is A.

Considering the ith column of Z we have

Xyt Xg v Xyt oty =k,

(15
Wbty ek )
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Let us write

Vit ye=u, YL+t yi=w (16)

Then subtracting the first equation of (15) from the second we have
Z(x,—zi—xﬁ)+ w;, —u; = 0. a7
ji=1

As the x; are rational integers we have x};— x; =0 with equality only when x; =0

or 1. Thus

i =W (18)

with equality only when every x; =0 or 1. On the other hand

Tu=3 Yy=% Yy=Th=sk 19)

i=1j=1 j=1i=1

Similarly
Sm- % Lot £ - fresk &
From (18), (19) and (20) it now follows that

w=w, i=1,...,p, x3=0o0rl, j=1,...,n, i=1,..., 0 1)

Theorem 4.3. Let us suppose that (5) has a rational solution and let X be an r by v
integral matrix satisfying (9) and (10) and let

)

be a normal rational completion of X satisfying (5), (6) and (7). Then every x; =0
or 1 where X =[x;] and in a column of Y (where r+s =v)
Vit oty =yt Y=y

and 0<u;<s, j=1,...,v and )], u;= sk.

Proof. All parts of this theorem have already been proved except for the
inequalities 0 =< u; <s. Trivially 0= u; with equality only when every y; = 0. From
the Cauchy-Schwartz inequality (y,+ - +y)?<s(yi+::-+y?) with equality
only when y;=y,=---=y. But in our case y2+---+y>=y,+---+y, so that

(yit- - +y)<slyi+---+y,)

and y,+---+y,<s or y;<s with equality only when y,=y,--- =y, =1.
We note that since every x is 0 or 1, that an integral completion, if it exists, will
be a 0-1 matrix and so an incidence matrix.

We can now prove our main result on this subject.
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Theorem 4.4. Suppose that v>k>A>0 are integers satisfying k(k—1)=A(v—1)
and that there exists a rational matrix A of order v satisfying AAT = (k —A)I+AJ.
Suppose also that we are given an integral r by v matrix X such that

XXT=(k— AL +AJ,, (22)
XJ=kJ,,. (23)

Then with s=v—r, if 1<s<4 there exists an integral v by v matrix W with X as its
first rows such that

WWT=WTW=(k—-A)I+AJ, (24)
WJ=JW=kl. (25)

This conclusion is false if s =8.

o[

is a rational normal completion of X whose existence is assured by Theorem 3.6,
then aiso

“° [L;(Y]

is a rational normal solution providing that U is an s by s rational matrix
satisfying

uuT=U'U=1, (,...,0)U=(,...,1)=e, (26)

It

the vector e, being a vector of s 1’s. This last condition is necessary so that
JZ,=kJ. If ¢;=[yy,..., ys,-]T is a column of Y then Ug; is the corresponding
column of UY. Hence by Theorem 3.5 if e], ¢;, ¢ , ¢ are linearly indepen-

220+ 3 Cim
dent columns we can choose U so that Ue; = e], U, Uc,, Uc;, are any rational

T2 12

columns with the same inner products as the original ones.
From (12), (13) and (14) we have the following relations on the columns of Z

XijtXy+ o tx;+y i+ oty =k,
X33t A x3+yi4 e Hyi=k, (27)

XXyt XXt A XXy T YY1 YV = A, JjFL

As the x’s are integers it follows that the inner products of the columns of Y are
all integers. We also recall from Theorem 4.3 that

Vit yz+-- '+YSj:y%j+y§j+” ’+)’?j:uj- (28)

Proof of theorem 4.4.
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Case s =1. Here from (28) y,; = u; is an integer in every case and the theorem
holds.

Cases=2. 0suy;<2,j=1m..., v from Theorem 4.3. If u; =0 the jth column
is [0, 01", while if u; =2 the jth column is [1, 1]7. Hence if no u; =1 the last two
rows are identical, which is a conflict since they are linearly independent. Hence
some u;=1 and permuting the columns we may assume u,=1. Choosing U
appropriately for the 1st column c,,

= [(1)] (29)

Here

Lygorryg-e )’1u] (30)

v-| .
0y " ¥a " Yau
As the inner product of the first and jth column is an integer A; we have
(c1, ¢)=y1; = Ay; is integral and as y;;+y,; = u; is an integer then y,; is also an
integer. Hence in (30) Y is an integral completion for X making

X
W=
v]
a full integral normal completion of X. This proves our theorem for s =2.

Case s=3. 0suy;<3. If u;=0,¢;=[0,0,0]", while if u;=3, ¢;=[1,1,1]".
Since the last three rows are not identical there must be some ;=1 or some

u; = 2. Suppose some y; =1, and we may take u, = 1 so that with an appropriate
U

¢, =]0]. (31)

Hence for the 1st and jth columns A;; =(cy, ¢;) = yy; and so the first row of Y is
integral. Adjoining this integral row to X we are reduced to the case s =2 and our
result holds. Suppose that no u; =1 but that some u; =2. We may take u, =2 and
with an appropriate U the column ¢; becomes

1
=1} (32)
0

Here if ¢ = [yl,-, Yop Y3j]T then

/\ijz(cl9cj)=y1j+Y2j’ U =Yy1;t Y25+ Y3 (33)
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It now follows that y,; is an integer for j=1, ..., v. Adjoining this integral row to
X we are reduced to the case s =2 already proved.
This completes the proof for s =3.

Case s=4. O0suy;<4. If u;=0, ¢;=[0,0,0,0]". If u;=4, ¢;=[1,1,1,1]". If
some u; =1 take u; =1, ¢, =[1,0,0, 0]". Then Ay =(cy, ¢;) = yq; is an integer and
adjoining this integral row to X we are reduced to the case s =3. If some u; =3
take u; =3, ¢;=[1,1,1,0]". Then with ¢; ={yy;, Y2, ¥35 ¥4;]' We have

/\1,' =(cy, Cj) =¥ty tys;

and

U = y1;t yz; T y3t+ Yaye

Hence y,; is integral for j=1,...,v. Adjoining this integral row to X we are
reduced to the case s =3.

Thus we need consider only cases where u; takes on only the values 0, 2, 4.
There must be some cases with u;=2. Take u,=2 and ¢, =[1, 1, 0, o]". If a
further column has ;=2 then ¢;=[a, b, ¢ d]' with a+b+c+d=
a’+b*+c?+d*>=2 and Ay;=a+b. If A,;=3 then a’+b*=(3)*+(3)*>=3, a con-
flict. If A;;<—1 then ¢+d =3 and ¢®>+d?>3 a conflict. Hence A,; =0, 1, or 2. If
Ay;=2 then ¢;=[1, 1, 0, O]" and is identical with ¢,. As Y is of rank 4 there must
be 4 linearly independent columns. Thus there must be at least three columas
with u =2, and besides u, =2 two others with 4;=2 and A,;=0 or 1.

Suppose first that there are three columns with u=2 and A;=1 in all three
cases. Then Y, taking u; =2, u,=2, us=2, A;5=1, A;3=1, A,;=1 will have the
shape

1 10 Yij
10 1 -y,
Y= i
01 1 -+ yy (34)
000 Yai

If ;=4 then ¢;=[1, 1,1, 1]" which is integral. If ; =0, ¢; =[0,0,0,0T". If y; =2
then

A=yt y2p Ay =yt Y A3i = Y2 T V3 (35)
y1j+y21' -I\—y?’j +y4]. =2.

Hence
Ay Ayt A, :2(Y1j+)’2j+)/'3j)- (36)

If Aj;+Ay+A5; is odd, then each of y,;, y,;, y;; and so also y,; is half an odd
integer. But with odd integers a, b, ¢, d then

2 2 2 2
(g) +<§> +<§) +(g> =2,  a*+b’+c*+d*=8, (37)
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which is impossible with odd a, b, ¢, d. Hence A; +A,; + A5, is even and vy, y,;, ¥s;
and y,; are all integers. Thus in this case Y is integral and our theorem holds.

There remains to be considered the cases in which there are two u’s equal to 2
and the A; =0. Here Y has the shape

o

Y= (38)

— - OO
Qo R

1
1
0
0

For a column ¢; with w, =2 different from ¢, and c, we have A,;=a+b,
Ayy=c+d, Ayj+Ay;;=u,=2 With A;; =00r 1 and A,; =0 or 1 the only possibility
is A;;=1, A,; =1 and taking j =3 we may put Y in the shape

(39)

a6 o8

If u;=4 then ¢[1, 1, 1, 1J"=c¢, +¢, so that a further independent column ¢; must have &, =2 and
A =1 A5 =1,4;5;=0or 1. Thus with this j =4, Y has the shape

)

1010 a -]
1 00 1 b .-

Y= Ay =0 40
0110 c 34 (40)
01 0 1 d -]

or
W
101 1 a ]
1 000 b

Y= =1
0110 ¢ Az =1 1)
01 0 1 d -

With A;, =0 we have y,,+y3,=0, y,s +y,s=2 and so y3,+y%,=2 but as u, =2
this gives ¢, =[0, 1, 0, 1]" as in (40) above. But here ¢, +c,=c;+c, and so ¢, is
not an independent column and we must have Y in the shape (41) with A,,=1.
Here for a further column ¢; we have ¢; ={0,0,0,0]"if ;=0 and ¢; =[1, 1, 1, 1]"
if u; = 4. For any further column ¢; =[a, b, ¢, d]" we will have u; =2, A;;=a+b=
1, Ayy=c+d=1, A;;=a+c and A;;=a+d. Hence Ay +A,;—A,=2a is an
integer. If a is half an odd integer, so is b, ¢, and d and as in (37) this leads to a
conflict. Thus a is an integer and so are b, ¢, and d.

This covers the final possibility with s =4 and we conclude that Y can be taken
as integral in this case.
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For s =8 in the case v =11, k=5, A =2 the initial rows

(42)

[ e
(= ]
- O

1
0
0

[l =]
O = O

1 00
1 00
1 11

(=

cannot be integrally completed because an integral completion would be a
symmetric 11, 5, 2 design and any two columns would also have inner product 2,
which is not possible here for the first two columns. But there is a rational normal
completion of denominator 2.

2 2 2 2 0 0 0 0 0 0
2 0 0 0 2 2 2 0 0 0
2 0 0 0o 0o 0 0 2 2 2
2 - 2 0 1 2 0 1 2 o0 1
2 -1t 0 2 1 0 2 1 0 2 1
W=3l0 1 2 2 -1 0o 1 2 1 0 2
0 1 2 o0 1 2 1 0 -1 2 2
0 1 2 0o 1 0 2 1 2 2 -1
6 1 0 2 1 2 -1 2 1 2 0
0 1 o0 2 1 2 2 -1 2 0 1
o 1 0 0o 3 0 1 2 1 0 2]
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A CLASS OF REGULARISABLE GRAPHS

F. JAEGER and C. PAYAN

LRM.A., B.P. 53, 38041, Grenoble, Cédex, France

1. Introduction

In this volume Berge [1] gives a generalization to hypergraphs of the following
result on line graphs: the line-graph of a graph with no pendent vertex is
regularisable.

In this note we characterise regularisable graphs without an induced subgraph
isomorphic to K, ;, a star with three edges. Since no line-graph contains an
induced K, ;, this is another extension of the result above.

Throughout the note we use the notation of [1].

2. A class of non-regularisable graphs

Definition 2.1. A graph will be said to be of class C whenever it can be obtained
by the following two operations:

(i) take an elementary cycle of even length together with a (proper) colouring
of its vertices with colours a and 8;

(i1) add some edges (at least one) whose endvertices are coloured « and are at
distance 2 on the cycle.

For example, omitting an edge of K, we obtain a graph of class C. Clearly, a
graph of class C has no induced subgraph isomorphic to K, ;.

Lemma 2.2. A graph G of class C is not regularisable.

Proof. G is connected, it is not bipartite and the set S of vertices of G coloured 8
is a non-empty independent set of G such that |I'S|=|S|. The result now follows
from the [1 Theorem 3.1].

3. A class of regularisable graphs

Theorem 3.1. A connected graph G with no pendent vertex and with no induced
subgraph isomorphic to K, 5 is regularisable if and only if it is not of class C.
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Proof. By Lemma 2.2 it is sufficient to prove the “if” part of this theorem.

Let then G be a connected graph with no pendent vertex, with no induced
subgraph isomorphic to K, 5, which is not regularisable. We shall show that G is
of class C.

G is not bipartite (otherwise G would be an elementary cycle of even length).
Hence by [1, Theorem 3.1], there exists a non-empty stable § of G such that
|[I's|=<|S].

Every vertex of § is adjacent to at least 2 vertices of I'S since G has no pendent
vertex. Moreover, every vertex of I'S is adjacent to at most 2 vertices of S since G
has no induced subgraph isomorphic to K| ;.

Let m be the number of edges connecting a vertex of S to a vertex of I'S. It
follows from the above that

21Sl=sm=2{rs|=2]s|.

Hence |S|=|I'S| and every vertex of S (respectively I'S) is adjacent to exactly 2
vertices of I'S (respectively S). Furthermore, there is no edge connecting a vertex
of I'S to a vertex of V(G)—(SUIS) (otherwise we could find an induced
subgraph of G isomorphic to K, ;); since G is connected, V(G)=SUTS.
Consider now the subgraph G[I'S]of G induced by I'S; G[I'S] has at least one
edge (since G is not bipartite). Moreover, for every edge ¢ ={x, y} of G[I'S] there
exists z€ S such that {z, x}€ E(G) and {z, y}e E{(G) otherwise the subgraph
induced by y, x and the 2 vertices of $§ adjacent to x would be isomorphic to K, ;.
This, together with the fact that G is connected, shows that G is of class C.

4. An application to line graphs of graphs

Definition 4.1. A graph will be said to be of class K whenever it can be obtained
by the following three operations:

(i) take an elementary cycle of length [=3;

(ii) choose a non-empty subset S of the vertices such that if |S|=1, then [ is
odd, and if |§]=2, there is no chain of even length with its two endvertices in §
and its other vertices outside S;

(iii) for every s€ S add an edge joining s to a (new) pendent vertex.

Lemma 4.2. A graph is of class C if and only if it is isomorphic to the line-graph of
a graph of class K.

We leave the proof to the reader.

Theorem 4.3. The line-graph of a connected graph which is not of class K and with
no edge adjacent to exactly one other edge is regularisable.
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Proof. Let G be a connected graph which is not of class K and with no edge
adjacent to exactly one other edge. By a theorem of Whitney [2] L(G) is not
isomorphic to the line-graph of a graph of class K; by Lemma 4.2, L(G) is not of
class C. Moreover, L(G) has no induced subgraph isomorphic to K;; and no
pendent vertex. The result now follows from Theorem 3.1.
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ON MAXIMAL CIRCUITS IN FINITE GRAPHS
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1. Introduction

If the valency d(v) of each vertex v of a graph G is at least 3n(G), where n(G) is
the number of vertices of G and n(G)>2, then G allows a hamiltonian circuit,
i.e. a circuit which contains every vertex of G. This result is due to Dirac [5]. It
stimulated investigations of many authors (e.g. [2, 3, 7, 8, 9 and 10}).

In this paper we concentrate on the following refinement by Ore [9]:

If d(v)+d(w)=n(G)>2 for any two different, non-adjacent vertices v, w of
G, then G contains a hamiltonian circuit.

It turns out that the main obstacle to a further improvement in this direction is
given by the graphs in class #. We say that G belongs to class ¥ if for some k=1,
there exist vertices x;,...,x, such that G—x,—---—x, has at least k+1
components. Obviously no G e ¥ allows a hamiltonian circuit (cf. [4]).

The results of this investigation have the following main application:

Let n(G)=11 and G£¥. If d(v)+d(w)=n(G)—4 for any two different, non-
adjacent vertices v, w of G then G contains a hamiltonian circuit.

We note that there exist infinitely many graphs Gg X without hamiltonian
circuits such that d(v)+d{(w)=n(G)—-5 for any two different, non-adjacent
vertices v, w of G.

For graphs with constant valency related results were obtained by Erdos and
Hobbs [6] and by Bollobas and Hobbs [1].

2. Notations and auxiliary results

Given a subgraph H of G, let V(H) denote the set of vertices of H and
G — V(H) the maximal subgraph of G with vertex set V(G)— V(H).

Circuits and paths in a graph G are considered as subgraphs of G. A circuit C
in G is called maximal if there exists no circuit C’' such that V(C') > V(C).

Given a circuit C together with a direction of traversing let Cl[a, b] (C [a, b))
denote the path obtained by running on C from a to b in the given (resp.
opposite} direction of C. Similarly C(a, b], C (a, b}, (C(a, b) and C (a, b)) are
obtained from C[a, b], C[a, b] respectively by deletion of a (and b).

In Section 2 and 3 a maximal circuit C with a direction of transversing and a
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component H of G—(C) are fixed. An H-avoiding arc or simply arc is a path Q
joining vertices v, v'€ V(C) such that

VQ)N(V(C)U V(H)) ={v, v'}.

Given two subgraphs H,, H, of G, let N(H,, H,) denote the set of v,e V(H,)
such that some edge has terminal vertices v, € V(H,) and v,.

Let a maximal circuit C and a component H of G—C be fixed. Then
m=m(H, C) denotes the minimum number s such that there exists a path
P=Pla, b} with N(H, C)c V(P), V(P)NV(H)=§, |V(C)— V(P)|=s, a#b and
a, be N(H, C). A path P of this form can be enlarged to a circuit by adding a path
from b to a with inner vertices in H. We note

Lemma 2.1. m(H, C)=1 and n(Cla, b))=m(H, C)+2 for all a, be N(H, C) such
that a#b.

In the following we construct paths P by putting together arcs and subpaths of
C. For a vertex x on C and a subpath L of C let N, (x, L) denote the set of
ve V(L)—{x} such that there exists an H-avoiding arc Q = Q[x, v]. Note that
N(x, LY N_(x, L). We denote

N, (x,L)= V(L)—{x}— N,(x, L).

Lemma 2.2. Let L, =Cla, b,) (i=1,2) be different components of C—N(H, C)
and Q an arc joining z, on Clay, b;] 10 z, on Cla, b;]. If z, # a, and z, # a, then

n(C(ay, z,)) + n(Cla,, z,)) = m. (1)
If z,#b, and z,# b, then

n(C(zq, by))+n(C(z,, by)) = m. (1"
If z,e V(L,) and z,€ V(L,) then

n(L)+n(Ly)=2m+2. (1)

Proof. If z,# a, and z,# a, then C{a,, z;], Q and C[z,, a,] define a path P.
Now a,, a,e€ N(H, C) implies |V(C)— V(P)|=m(H, C) and hence (1). Similarly
(1) is obtained. (1”) follows from (1) and (1').

In the following lemma L, z; (i=1,2) and Q are given as in Lemma 2.2.

Lemma 2.3. Let Q, be an arc joining x, on Cla,, zy) to y, on C(z,, b,].
If x,# a, and z,# a, then

n(Clay, x1))+ n(C(zy, y1)) + n(C(ay, z,)) = m. (2)
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If y,# b, and z,# b, then

n(C(xy, z1)) + n(C(ys, by)) + n(C(z, by)) = m. (2)
If x,, y,€ V(L,) and z,e V(L,) then
n(L,)+n(L,)=2m+4. 2"

Proof. If V(Q)N V(Q,) # @ then QU Q, contains an arc Q' from 2, to x;. In this
case (2) follows from (1) with respect to Q'. If V(Q)N V(Q,)=@ and x, # a4,
2, # a, then we obtain a path P by running through C7[a,, y,], Q,, Cl[x,, z,], Q
and C(z,, a;]. Now (2) is equivalent to |V(C)— V(P)|= m. (2") follows from (2)
and (2).

Let L, = Cla;, b;], z; (i=1,2) and Q be given as in Lemma 2.2.

Lemma 2.4. Let Q; be an arc joining x, on Cla, z;) to y; on C(z, b] (i=1,2).
If x,# a, and x, # a, then

n(C(ay, x1)) + n(C(z4, y1)) + n(C(a,, x,)) + n(C(z,, y,)) = m. 3)
If y,#b, and y,# b, then

n(Clxq, 21)) + n(Clyy, by)) + n{C(xz, 22)) + n(Clys, b)) = m. (3"
If x,, y,€ V(L) and x,, y,€ V(L,) then

n(L)+n(L,)=2m+6. (3"

Proof. If V(Q,)N V(Q)# { then there exists an arc Q' from x, to z;. In this case
(3) follows from (2) with respect to Q', Q;. The case V(Q)N V(Q)#@ is
symmetric. If V(Q,)N V(Q,)# @ is symmetric. If V(Q,)N V(Q,) # @ then there
exists an arc Q' from x, to x, in which case (3) follows from (1). Now let x, # a;,
X, # a, and Q, Q,, Q, pairwise disjoint. We obtain a path P by running through
Clay, y1l, Qy, Clxy, 211, Q, C [z, x5], Q, and Cly,, a,]. In this case |V(C)—
V(P)|= m yields (3). Finally (3") is a consequence of (3) and (3').

Iiemma 2.5. Let a;€ N(H, C) and u; successor of a; on C (i=1,2; a,# a,). Then
I\_Ia(ul, C) contains the first m successors of a,. For z€ N, (u,, C(a,, a,)) the set
N,(u,, C) contains the first m successors of z.

Proof. The first assertion is a special case of (1). Now let Q, be an arc joining u,
to z on C(a,, a;) and Q, an arc joining u, to z' on C(z, a;]. Then V(Q;)N
V(Q,) = @ since u,e N, (u,;, C). We obtain a path by running through C[a,, u,],
Q,, C{z, u,}, Q, and C[z’, a,]. Hence n(C(z, z'))= m. Since N, (u,, C) contains
the first m successors of uy, the second assertion follows.

Analogous statements can be made for the predecessors w; of a;€ N(H, C)
(i=1,2).
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The following observation is often used in the proofs to come.

Lemma 2.6. Let a, be N(H, C) such that a# b and C(a, b)= C[u, w]. Let Q, Q'
be arcs joining u to z and w to 2’ respectively where z, z' are different vertices of
some component of C— N(H, C)— C(a, b). Then z, z' have distance at least m on
C[b, a] or V(Q)N V(Q")—{u, w}# . In either case z, z' are not neighbours on C.

Proof. If Q, Q' have inner vertices in common then Q U Q’ contains a non-trivial
arc from z to z’. In this case z, z’ are not neighbours on C since C is maximal.
Now let V(Q)N V(Q')={u, w}. If z is on C(z’, a] then C{a, z], Q, Clu, w], Q'
and C7[z', b] define a path, while if z’ on C(z, a] then C[a, z'], Q’, C[w, u], Q
and C [z, b] define a path.

3. Maximal circuits

As in the previous section, a maximal circuit C of G and a component H of
G - V(C) are fixed throughout Section 3. We use the abbreviations m = m(H, C)
and k=|N(H, C)|.

Proposition 3.1. Let L,=Clu,w,] (i=1,2) be different components of
C—-N(H, C) and w,e€ N_(u,, L,). Further let
IN,(v, O)|<(k—1)m+3 for all ve V(C)— N(H, C).

Then n(C)<k(m+1)+3 and w,e N, (u,, L,).
Moreover there exists different vertices x, x'€ V(C)~ N(H, C) such that x'€
N,(x, C) and

IN,(x, O)|+|N,(x', C)|= n(C)+ (k —2)(m ~ 1)+ min (2, k —2).

Proof. Let
L= C(a;, b)=Clu, w] (I1<i<k)
be all components of C—~ N(H, C) and let Q be an arc joining w, to u,. Then
n{L)=m+1 (i=1,2) by (1) and (1').
(I) Let a,#b,. For w; on C[b,, a,] the set N (w, C) contains b,, w, and m

predecessors of w, by Lemma 2.6, moreover a, and m predecessors of b, if j#i
(see remark after Lemma 2.5). On the other hand

IN,(w,, O)|<(k—1)m+3

by hypothesis. Therefore u,e N,(w,, b,) which in turn yields b,e N, (w,, C) by
Lemma 2.6. Now by a similar argument N, (w,, C) contains b;, a,, m +1 vertices
on L, and m vertices on L; for j#2 contradicting the assumption

INa(W27 O)lsk-1)m+3.
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Hence b,= a;.

(II) Let n(L)=m+1 and u; be on C(b,, a,) for some i. Then u, € N, (w,, L,)
and a,=b, according to (I). Now N, (w, C) contains a; and m +2 vertices on
C(a,, b,]. Hence u, € N_(w;, L,) and b, = g;. This means i=k=3.If n(L,)=m+2
then u; € N,(w,, L) and by Lemmas 2.5 and 2.6 N, (u,, C) would contain the first
m+2 vertices of Cla; b)) (j=1,3). Hence n(L,)=m+1 and, by symmetry,
n(Ly)=n(L;)=m+1.

This implies

wy € Na(ul,Lz), Wseﬁa(uz, L), WIEI\_]a(u3’ Ly).

If p,e N,(a,, C(uy, by)) then (2') implies n(C(p,, b;))=m since u, € N,(ws, L,).
Similarly p,€ N,(b,, C(a,, w»,)) yields a contradiction. In view of us;e N, (w,, L5)
and wye N, (u,, L,) we infer V(L;)< N, (a,, C). If ase N_(a,, C) then we would
obtain a path by running through an arc from a; to a;, Cla,, w,], Q, Clu,, w,], an
arc from w, to u; and Clus, a,]. We have shown N,(a, C)={u,, w,}. By
symmetry N,(a,, C)={u,, ws} and N, (a3, C)={us, wi}. If p;€ N,(p,, C(uy, wy))
for some p, on Cla,, b,] then p, on C(u,, w,) by Lemma 2.6 and g, € N,(w,, L,)
for the predecessor g, of p,. Then n(C(p,, b,)) = m by (2’), a contradiction. Hence

INL(p1, O)|=2(m+1)+3

for p; on C(u;, w,) which yields m = 1. By symmetry, n(L;)=2 (1<j=<3).

If H' is a component of G- V(C)— V(H) and [N(H’', C)|=2 then N(H', C) is
one of the sets {wy, u,}, {w,, us}, {ws, u}.

If V(G)— V(C)= V(H) then the contraction of H to a single vertex yields the
Petersen graph.

(ITT) Let a, # b,. By (II) we may assume n{L,)= m for all a; on C[b,, a,). Let g;
on C[b,, a,). Then N, (u;, C) contains 2m +2 vertices on L, U L,. If a,# b, then
a; € N, (u;, C). Since b€ N, (u;, C) or a,€ N, (u;, C) we would obtain a path by
running through C[a,, ], an arc from u; to by, C[by, 4;], an arc from q; to u,,
Clu,, wq], Q, Clu,, a,] or by running through C[b,, a;], an arc from qa; to u,,
Cluq, wy], O, Clu,, a,], an arc from a, to w; and Clu,;, a,}. We infer k=3. If
n(L,)=m+2 then u, e N, (w,, L,) and N, (u;, C) would contain m +3 vertices of
Cla,, by), contrary to the hypothesis. Hence n(L))=n(L,)=m+1. If p,e
N, (p:, L,) for some p, on C(a,, w,), then as in the proof of Lemma 2.6 we obtain
inequalities

n(C(py, w1)) + n(C(pa, by)) = m
and
n(C(u,, p2))+ n(C(ay, py)) = m,
contrary to n(L;})+n(L,)<2m+2. By Lemmas 2.2 and 2.3 there exists no arc
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from C{b,, a,] to C(ay, wy)U C(u,, by). Hence |N,(x, C)|<m+1 for all
X € V(L] U L2 U L3)—{W1, uz}.

(IV) Let a,=b, and k=3.If n(L,)=m+2 and u, on C(b,, a,) then N, (u, C)
contains by (II) and (III) m + 1 vertices on L, and by Lemma 2.6 the first m +2
vertices of Cl[a,, b,). Hence n(L,)=m +2 implies w,€ N, (u;, L,), and N, (u;, C)
would contain m+4 vertices on Cla,, b,]. Therefore n(L,)=m+1 and, by
symmetry, n(L,;)=m+ 1. Let a3 = b,. Since N, (u;, C) contains all v on C(a,, b,)
and all w; on C[bs, a,] we infer n(L;)=m for all a; on C[b,, a,). Hence, by
symmetry, k =4 implies n{L;)=m for i>2. If Q' is an arc joining p,€ V(L,) to
p;€ V(L;) and i>2 then n(L;)= m +1 by (1”) and hence i = k = 3. Further p; # u,
since n{L,)=m+ 1. There exists an arc Q, from u; to the successor g5 of p; and
therefore n(C(a,, p,))=m by Lemma 2.3. We would obtain a path P by running
through b,, Q', C7{ps, us}, Oy, Clgs, w,J, Q and a, contrary to n{L,)=m+1.
This shows that there exists no arc from C(a,, b;)U C(a,, b,) to U=, L. In
particular n(L;)=<m +1. By Lemma 2.3 and the argument in the proof of Lemma
2.6 it follows that there exist no arcs from L, to L, except for arcs from w; to u,.
Also

Na ((12, C) = {wl’ u2} U N(H7 C)

Hence G —{b,, ..., b} has k—1 components one of which has cut vertices a,, w,
and u,.

(V) Let k=2 and u, € N, (w,, L,). If x,€ N,(w,, L,), then N, (w,, C) contains
u, and the last m+2 vertices of C(ay, b,]. In this case p;e N,(w,, L,) for the
successor p, of u; and hence N, (u;, C) contains w, and the predecessor q; of w,,
a contradiction. Hence

No(wz, L)) = No(uy, L) =0, nL)sm+2 (i=1,2).

Case 1. There exists p,€ N, (w;, L,)—{u,}. Then p, is the successor of u, since
n(C(p,, b,))=m. Further u,e N,(w,, L,) and hence n(L,)=m+1=n(L,)~1.
There exists no arc from x, to C(a;, wy) U C(p,, a;) (x, = u,, a,). If there exists an
arc from C(a,, wy) to C(u,, a,) then as in the proof of Lemma 2.6 n(L,)+ n(L,)=
2m +4, a contradiction. Hence G —{a,} has cut vertices a,, w,, p,.

Case 2. [N (wy, Ly} =|N,(u,, L)|=1. If x,€ N, (x5, L,) and x,€ V(L,)—{u,},
then n(L,)+n(L,)=2m+4, hence w;e N,(u, L,), (i=1,2) contrary to (3") of
Lemma 2.4. If N, (a,, C)<{a,, wi, u,}, then G —{a,} has cut vertices a,, wy, U,.
Therefore let g, € N,(a,, L) —{w:}. Then n(L,})=m+2 and g, is predecessor of
wi.

If Q, is an arc from w; to x, on C(ay, q;), then we obtain a path by running
through an arc from b, to ¢;, C7[q1, x,], Q;, Q and Clu,, b,], contrary to
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n(L)=m+2. In particular wye N,(u;, L,) and hence n(L,)=m+1. We con-
clude that G —{a,} has cut vertices q,, by, U,.

(VD) In the remaining case k=2, u;€N,(w,, L;), we have n(L)=m+2
(i=1,2).

Case 1. There exists an arc from w, to x; on C(uy, wy). If x; is the successor of
u,, then N, (u;, C) contains b,, w, and the predecessor of w;, on C contrary to
IN,(uy, L,)]=m+1. Since N,(u,, C) contains a,, u,, the predecessor of x, and m
vertices on C(xy, wy), we have n(C(uy, x,))=1 and x; € N,(u,, L,). Using sym-
metry we obtain that L, has vertices u,, p,, x;, q;, w,. Further qlel\_l'a(ul, L,),
p1€ N, (w,, L,) and hence |N, (u;, L,)|< m + 1 which yields that L, has vertices u,,
P2, Wy From

x;€ N (uy, L))N N, (u,, Ly)

follows g,€ N,(p,, L,). From x,e N,(u,, L,) and w,e N,(u,, L,) follows a,€
I\-Ia(pl, C). From u,e N,(w,, L,) and w,e N,(u;, L,) follows b, € N,(p;, C) and
D2 € Na (p1, Lz) Hence

Na(pla C)=7=m+6

contrary to hypothesis. In view of the symmetry the following case remains.

Case 2. Each of the sets N, (u,, L), N,(w,, L), N,(u;, L,) and N_(w,, L,) has
cardinality 1. Then n(L;)<m+3 (i=1,2). If x,e N (a,,,L,), then n(L,)=m+3
and x, = p,. In this subcase N,(u,, L;) would contain w,, hence not g, and we
would obtain a path by running through an arc from a; to p;, C[pi, q1), an arc
from q, to uy, an arc from u, to w,, C[w,, u,], Q and b,. If Q' is an arc joining
x; on C(u,, wy) to x, on C(u,, w,), then we obtain a path by running through a,,
an arc from u; to w,, C{w,, x,], Q', Clx,, w,], Q and b,. We infer

n(C(uy, x,)) + n(Clu,, x,)) = m
and, by symmetry,
n(C(xy, wi)) +n(Clx,, w,))=m.

We deduce n(L;)+n(L,)=2m+6 and hence n(L,) = n(L,) = m+3, which in turn
implies y; € N, (u;, L;) for the successor y; of x; (i =1, 2). This is, in view of (3) of
Lemma 2.4, impossible. Hence in Case 2 we have shown |1\_Ia (x, C)|= m +4 for all
x on C(uy, wi) U C(u,, w,) contrary to the hypotheses.

Proposition 3.2. Let L, = Clu;, w;] (I_Sis k) be all components of C—_N(H, O).
Let Ntx(u27 LI) u Na(w27 Ll)ié Qy U, € Na(Wz, Ll)’ Wy € Na(uZ’ Ll) and IN,:((U, C) =
(k—1)m+3 for all ve{u;, u,, wy, w,}.
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If moreover GE ¥, then m =1 and
(i) IN.(x, C)|=k +3 for some x ¢ V(C)-N(H, ©), or
(i) k=2, n(C)=8, u e N,(wy, C) and |N,(u;, C)|=|N,(w,, C)|=4.

Proof. The proof of Proposition 3.2 is divided into Cases A, B, C and D.

Case A. There exists some vertex z;€ N, (u,, L)UN_(w,, L;), such that
n(C(ay, z,))> m and n(C(z,, by))>m.

If z,eN,(u,, L,), then N,(w,, C) contains u,, the predecessor p; of z,, the
successor ¢, of z; and the last m vertices of L,. This implies b;, z;€ N,(w,, L;)
and N, (u,, L,) contains p,, q;, the last m and the first m vertices of L,. We infer

21€ Ny(uy, Ly)) NN, (w,, L,)

and m=1.

(I) We first assume n(C(a,, z1)) > 2. Since N, (u,, L;)N N_(w,, L,) contains all
vertices of C(uy, p;), the path C(a,, z;) has vertices u,, x,, p;. Then p,, q, €
N,(u;, L)) and p;, u,€N,(wy,L,), yielding n(L)=1 for all i=2 and z€
N,(uy, Ly). It a(C{(z4, b)})>2 then C(z,, b,) has vertices q,, y,, w,;, where
yi€ N, (up, L) and g, € N,(wy,L)). If Q is an arc joining g, to p;, then
Cla,, q1], Q, an arc from z, to u,, an arc from x; to u, and Clu,, a,] defines a
path P such that V(P)2 V(C). Therefore pleNa(ql, L).

In the subcase n(L,)=7 the graph G— N(H, C)—{x,, z,, y,} has at least k+4
components. In the subcase n(L,) = 6 the graph G — N(H, C)—{xy, z,} has at least
k +3 components.

(II) Since the subcase n(C(z,, bl))_>2 is symmetr_ic we assume that L; has
vertices Uy, Pi, 21, 41, Wi Then ¢; € N, (uy, Ly), py€ N (wy, Ly) and n(L;)=1 for
all i>2.

(III) Let u, e N, (w,, L,). Then n(L,)<2, since otherwise u, € N, (w,, L,) and
g>€ N, (u;, L,) for the predecessor g, of w,, a contradiction by Lemma 2.3. If
q,€ N, (p,, L)), then G—N(H, C)—{z,} has at least k+2 components. Let q,€
N.(p,, L,). Then z, € N, (w,. L,), since otherwise C[b,, p;], an arc from p, to ¢, an
arc from w; to z4, an arc from 2z, 10 w, and C [w,, b;] would define a path P such
that V(P) 2 V(C). Similarly z, € N,(u,, L). If use N,(zy, L3) and u; on C(b,, as),
then C[as, by}, an arc from b, to u,, an arc from p, to ¢y, an arc from w; to a,,
C[a,, us], an arc from u, to z;, an arc from z; to u, and Clu,, a,] define a path
P such that V(P)2 V(C), a contradiction. Since the case u; on C(b,, a,) is
symmetric, we infer that G— N(H, C) has k components one of which has cut
vertices py, q;, 2. Note that

IN,(u, L)|=(k—1)m+4 forall i>2.
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(IV) Let u; € N,(wy, L,). Then p, € N, (qi, L,), since otherwise we would obtain
a path P by running through C[a,, w,], an arc from w; to u,, an arc from p, to
q:, an arc from z; to u, and Clu,, a,]. If b;e N,(p;, L,), then we could replace
part of P by C[a,, b;}, an arc from b, to p,, an arc from u; to w; and g.. A
similar argument yields a,€ N, (p,, C). Since w, € N, (p1, L,) for all i we have
shown |N,(p,, C)| =km + 3. By symmetry also |N,(q;, C)|=k+3.

Case B. |N,(u,, L,)|=2. Let Xy, ¥1€ No(up, Ly), where y, is a vertex of
C(x,, by). If n(C(y,, b;)) <m, then N,(w,, C) would contain at least m +4 vertices
on C(ay, by]. In view of Case A we assume

n(C(a,, x,))=n(C(y, by))=m
and
N, (v3, L) S {xy, y1i} for v,=u,, w,.

Now N, (w,, L,) contains the first m and the last m vertices of L,, the successor of
x, and the predecessor of y,. Hence m=2 implies n(C(xy,y,)=1 and
[N, (uy, L,)|=m +2=4, contrary to the hypothesis.

(I) Let n(L,)=6. Then L, has vertices uy, Xy, p1, 91, ¥1, Wy and u,, py, g4,
wi€ N, (w,, L;). Therefore x;, y;€N,(w,, L) and w,, p;e N, (u;,Ly), g€
N, (w,, L,). We first assume q, € N, (u;, L,). If p, € N, (w,, L,), then we get a path
P by running through C[b,, u,], an arc from u, to q,, y,, an arc from w, to p,, an
arc from x, to w, and C[w,, b,]. If x,€ N, (w,, L,), then we replace P(q;, w,] by
p:, an arc from x; to w,, and an arc from y, to w,. We have shown that
g1€ N,(u,, L,) implies |[N,(w,, L,)|=4. Therefore q,€ N,(u,, L;) and, by sym-
metry, pi€ N, (wy, L,). Since IN,(u;, L,)|=3, we have n(L,)=1 for i>1, and
G - N(H, C)—{xy, y,} has at least k+3 components.

(I) Let L, have vertices u;, X;, p1, yi, wi. Then p;, w,e N (u;, L,). If
p.e No(wy, L), then y,eN,(w, L;) and hence u,# w,, which yields y, e
N, (uy, Ly). We would obtain a path by running through C[b,, u,], an arc from u,
to y,, an arc from w,; to p,, an arc from x; to w, and C7[w,, b,]. Therefore
pieN,(wy, L). If n(L)=2 for some i>1, then y,eN,(u;,L,) and x;e
N,(wy, L,), which in turn implies u;, w; € N, (p1, L;) for all j=1. Therefore in the
subcase “n(L;)<2 for all i >1" the graph G— N(H, C)—{x,, y,} has at least k +3
components. Now let n(L;)=3 for some j>1. Then u,, w;€ N,(x;, L,) for all
vertices x; of C(w;, w;) and hence n(L;)=3, y; € Z\_Ja(w,-, L;). In this case n{L;)=1
for all i#1, j and G—N(H, C)—{x,, y;, x;} has at least k +4 components.

(III) Let n(L;)=4. Then wy, y;€ N, (u,, L,) and u, # w,, hence b, € N, (u,, L,).
If x, € N,(w,, L,), then we would obtain a path by running through C[a,, b,}, an
arc from b, to u,, an arc from x; to wy, an arc from y, to u, and Clu,, a,]. Hence
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x;€ N (wy, L,), which yields n(L;)=1 for i>2. If successor x, of u, belongs to
N,(u;, C), then C[a,, y,], an arc from y, to u,, an arc from u, to x;, an arc from
u; to x, and C[x,, a,] would define a path. We infer n(L,)=2. If N, (w5, L,) # 0,
then w; on C(ay, a,) and y,e N,(ws, L), w,€ N_(a,, L,). We would obtain a
path defined by C[as, y,], an arc from y, to us, Clus, a,], an arc from a, to w,,
an arc from u, to x; and C7[xy, b,]. Hence G — N(H, C) has k components, one
of which has cut vertices x;, y,, u,. Note that

[N, (u, L))| = (k—1)m+4 for all i>2.

Case C. There exists some vertex z; € N,(u,, L;)— N, (w,, L,). We assume
[Na(v2’ L’l)lS 1 (02 = u29 w2)y

according to cases A and B.

(I) Let n(C(z,, by))<m. Then z;#w, and N,(w,, C) contains u,;, a,, all
vertices of C[z,, b;] and m predecessors of z,. Hence n(C(zy, by))=1, n(L,)=
m+2 and a,=b,. Moreover N, (w,, L,) contains all vertices of C(ay,z,). If
n{Ls;}=m+1, then u;€ N,(w,,L,) and hence n(L,)=m+1 and w,, b,€
N, (u;, C). In this subcase N, (u;, C) would contain m+4 vertices on C[z,, b,].
We have shown n(L;)=m for i >2. If n(L,)=m +2, then p,e€ N, (wy, L,), where
p» is the successor of u,, and hence u, € N, (w,, L,), a contradiction. Therefore
n(Ly)<sm+1. For x;€ N, (x,, L;) such that j#1 and x,e J,,; V(L,), we have
x;€ V(L)). If x,# z,, then x;# u, and therefore

n{C(x;, b))+ n(C(x,, z1))=m.

I

This is impossible since also
n(C(a;, x;)) + n(C(ay, x)) < m.

We have shown that G — N(H, C)—{z,} has at least k +2 components.

(IT) Let m=2. According to (I) we assume n(C(z;, b;))=m. Then N, (w,, L,)
contains u,, wy, z;, m predecessors and m successors of z,. Hence L, has vertices
Uy, P1» Z1, 1, wi. From |N, (u,, L)|=4=m+2 we deduce n(L;)=2 for i>2. Let
Q be an arc from x; e{u,, p,} to y, €{wy, q,}. Then x, = p,, and we obtain a path
P by running through C[by, a,], an arc from a, to w,, C7[w,, u,}, an arc from u,
to z;, Clzy, y:J, Q™ and C7[p;, b,). This is impossible since | V(C)— V(P)|=<1. In
particular |N,(vy, L)|=2 (v, =u,, wy). If n(L,)=m+2, then p,e N, (wy, L,),
where p, is the successor of u,. But then N, (u,, C) would contain m successors of
p, and q,, w;, a,, U, p,. Hence n(L,)<3. Let Q be an arc from xe&
V(L)) # V(Ly) to x,€ V(L;)—{z:}. If x; on C(a,, b,), we get a contradiction as at
the end of (I). If x; on C(b,, a,) and for instance x, on C[z,, b,], then we would
obtain a path by running through C g, x,], Q7, C[x;, a,], an arc from a, to w,,
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C [w,, u,], an arc from u, to z; and C[z,, b,]. We would obtain
n(C(a;, x;)) + n(C(zy, x1)) =2

and hence x;=w;, x;=w,, a contradiction. The case x, on C(ay, z,) is treated
similarly. We have shown that there exists no Q and therefore that G — N(H, C)—
{z,} has at least k +2 components.

(III) In the remaining subcase we have m =1 and n(L,)<5. If n(L,)=5, then
N,(wy, Ly)={y;}. We first assume n(L;)=5. Then |N,(v,, L\)|=m+3
(v, = u,, w,) and hence n(L;)=1 for i >2. Note that L, has vertices uy, y;, p1, 21,
w, or vertices u,, zq, py, y1, wy. If p; € N.(w,, L,), then z, is the successor of p,
and we would obtain a path by running through C[a,, w,}, an arc from w, to p,,
an arc from z, to u,, Clu,, w,}, an arc from w, to y, and C[y,, b,]. Hence
p1€ N, (w;, L;) and, by symmetry, pi€ N, (u,, L,). Similarly it follows that u, e
N,(wy, L. If n(L,)=3 then p,e N,(w, L,) for the successor p, of u, and hence
u, € N, (w,, L,), a contradiction. Consequently G — N(H, C)—{y,, z,} has at least
k +3 components.

(IV) Let n(L,)=4. Then m =1 and N,(w,, L;)= V(L,). Moreover n(L;)=1 for
i>2 since |N,(u,, L;))l=m+2 by assumption. Let Q be an arc joining x, on
C(aq, z1) to y, on C(zy, by). Then

n{Cl(a;, x,)) + n(C(z;, y,)) =1

by (2) of Lemma 2.3. We obtain a path P by running through C[b,, x,], O,
C{yi, z,], an arc from z; to u,, Clu,, w,], an arc from w, to a, and C [a,, b].
But then

|V(C)— V(P)l = "(C(xb 21))"’ n(C()’l, b)=1

and hence n(L,) =S5 contrary to the hypothesis. This disproves the existence of Q.
If n(L,)=3, then u,€ N,(w,, L,) and hence N,(u,, L,) contains u,, w, and the
predecessor of w,; N,(w,, L,) contains u,, w, and the successor of u,. Since

|Na(U1, L1)|>2 (vi=u, or v,=wy),

this is impossible. Therefore n(L,)=<2.

If x,e N,(u;, L) and j> 1, x, # z{, then u; on C(by, a,) and x, on C(z,, b,). We
obtain a path by running through C[b,, z,], an arc from z, to u,, Clu,, w,], an arc
from w, to a,, C[a;, 4], an arc from u; to x, and C[x,, q;]. Hence x, is not the
immediate successor of z;, which yields x, = w;, a contradiction. We have shown
that G— N(H, C)—{z,} has at least k +2 components.

Case D. N,(u,, L) = N,(w,, L,)={z,}. According to Case A we may assume
n(C(ay, z;)) = m. Then n(C(z,, b;))<3, and N, (u,, L,) contains w, and m succes-
sors of z,.
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(I) Let Q be an arc joining x, on C(a,, z;) to y, on C(z,, b;). Then
n(Clay, x1))+n(C(zq, y,))=m
and
n(C(xy, z1))+ n(C()’ls b)))=m

according to Lemma 2.3. Hence n(C(z,, b,))=m +2.

We infer m =1 and that L, has vertices u,, 21, Py, y1, w;. Further n(L;)=1 for
i>2 and p;e N,(wy, L) (cf. (I) in Case B). Therefore [N, (v;, L,)|=2 for v, =
uy, wi. If n(L,)=3, then q,€ N, (u,, L,) for the predecessor g, of w, and hence
w,€ N, (u,, L,), a contradiction. Hence n(L,)<2, which yields that
G- N(H, C)~{zy, y,} has at least k +3 components. For the remainder of Case D
we assume that there exists no arc from C(a,, z;) to C(zy, b,).

(Il) Let x;e€ N,(u;, L) for some j>1. If n(C(x, b))<m, then N,(w,, C)
contains a; and m +2 vertices on C(a;, b;], which would imply m =1, x; = w; and
b, = a, contrary to z;€ N,(u,, L,). Hence n(C(x;, b))=m, |N, (v, L))|=2m =2
(vy=uy, wy) and n(L,)<4. If n(L;))=4, then n(C(zy, b)) =1, since otherwise
N, (uy, L)) = V(L;)—{u;, w;}, which yields N,(w;, L;)= V(L;), a contradiction.
Hence n(C(z,, b)) =2 yields

V(Lj) = {u,'» X;, Wj}, u; € ch (Wj’ L)
and
n(L)=1 forall i#1, |

If Q' is an arc joining different components of C~N(H, C)—{z,, x;} and n(L;)=
4, then Q' has one terminal vertex y, on C(z4, b;) and the other y; on L, But then
y;=w, w; on C(b,, ay) and z,€ N,(w,, L,), hence x;€ N,(w,, L;) and we would
obtain a path by running through C[b,, x;], an arc from x; to w;, Q’, Clw;, w,], an
arc from w, to z, and C7[z,,b,]. We have shown that in the subcase
n(C(z, b,))=2 the graph G- N(H, C)—{z,, x;} has at least k+3 components.

(Il) Let n(C(zy, by))=2. According to (II) we may assume N,(u,, C)<
N(H, C)U V(L,). Then

Y n(L)<(k—1)m+1.

i>1
Hence every arc Q' joining different components of C— N(H, C)—{z;} has one
terminal vertex y, on L; and the other y;, on L; for some j>1. If ;=y, then y,
lies on C(z,, b,), n(C(z,y;))=m and w,#y,, since y,=w, implies b e
N_(u;, C) and n(L;)=m+1, a contradiction. Hence u; =y, yields that L, has
vertices u,, 2z, pi, Y1, w;. In this subcase n(L;)=1 for all i>1, and
G - N(H, C)—{y,, z,} has at least k +3 components. If y,= w; and n(L;) =2, then
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y: on C(zy, by) and n(C(y,, b;))=m. In this subcase n(C(z,, b;))=2, since
otherwise n(L,)=m =2 and hence n(C(z,,y,))=m—1=1, a contradiction.
Hence n(C(z,, b,)) =2 in conjunction with y; = w; and w;# u; imply m =1, w; on
C(by, a,) and z,€ N (w,, L,), which in turn imply b,e N,(u;, C) and a,€
N, (w;, C). We would obtain a path running through C[b;, u,], an arc from u, to
2y, an arc from u, to by, C[by, w;], Q', an arc from w, to a, and C[a,, b,]. We
have shown that the case y,=w;# u; cannot occur. In the remaining subcase
y;# u;, w; we infer m =2, n(L;)=3 and n(C(z,, b;)) = m. Then y, has distance at
least m—1 from z; on C since u,, wy€ N,(z;, C). In this subcase y,=u; or
y, = wy, a contradiction by Lemma 2.2.

(IV) For the remainder of case D we assume n(L,;)=3=3m. If n(L;)=4 for
some j>1, then N, (v, L;)# 9 and [N, (v;, L,)|=3 (v, = u;, wy). Note that there
cannot exist neighboring vertices on C in V(L) N N, (v,, L;). Hence n(L;)=1 for
i#1, j and the path L; has vertices w;, p;, g;, w; Or U;, X;, p;, ¥;, w;. In the former case

N, (u,, L,') =N, (w;, Lj) = {Zj} (Zj =p; Or z;= qj)v
in the latter case
Na(ul’ L,) = Na(wl’ L]) = {xj7 y]}

Then G- N(H, C)—{z,, z;} has at least k+3 components or G—N(H, C)—
{z4, x;, y;} has at least k+4 components.

(V) Let V(L)) ={u;, x;, w;} and j>1. If V(L;)={u;,x;;, w;} for some j'#1, j,
then

xja xj'e Na(ul’ C)nNa(wb C)

and G— N(H, _C)—{zl, x;, Xy} has at least k +4 components. Let n(L;)<2 for all
i#1, ). If u;e N,(w;, C), then G— N(H, C)—{z,, x;} has at least k +3 components.
If u;e N,(w;, L;) then

xe N, (u, LYNN,(w, L;) for all i#j
and hence G- N(H, C)—{z,} has at least k+2 components.

(VI) Let n(L,)<2 for all i=2. As shown in (II) there exists no arc from u; to
Ui>1 V(L). By symmetry the same is true for w, instead of u;. An arc Q' joining
different components of G —N(H, C)—{z,} has terminal vertices u;, w;. In this
subcase n(L;)=n(Ly)=2 and n(L)=1 for i#1, j, j’. Moreover w; lies on
C(b;, a;) since otherwise a;€ N,(w;, C). If u, on C(b, b;) then a;, w, b€
N, (u,, C), a contradiction. In particular L, # L; and by symmetry L,# L, Note
that N, (w;, C) contains a;, u;, b, and u,, which yields

IN.(w, O)|= (k—1)m +4.
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Since Cases A, B, C, D cover all possibilities Proposition 3.2 is proved.

Theorem 3.3. Let C be a maximal circuit of G and let H be some component of
G- V(C). Assume n(G)=11 and GZ X. Then there exist nonadjacent different
vertices x, y in G such that

dx)+d(y)sn(G)—(k-2)(m—1)-35,
where k =|N(H, C)| and m = m(H, C).

Proof. Let GZ X and assume
dx)+d(y)=zn(G)—(k—2)(m—-1)—4

for any two non-adjacent and different vertices x, y € V(G). We adopt the notations
of Proposition 3.2. Let

Case 1. Let
Na(ui,U L]-)UN,,(wi,U L]-)%Qi for some i=1.
j*i j#Ei

Without loss of generality we may assume N_(u,, L,)#@. For arbitrary x¢
V(C)— N(H, C) we put

IN.(x, C)|=(k—1)m+ 8
and
e=n(G—-C-H)—-|N(x, G-C)|.
Then
dw)+dx)sn(H)-1+k+n(C)—1-(k—1)m—-86+|N(x, G- O)]
=n(G)—(k=2)m-1)-(8+ec+m).

Hence 6+m+e=<4, and by Propositions 3.1 and 3.2 we can find x, x'€
V(C)— N(H, C) such that x"e N, (x, C) and

IN, (x, O)|+|N,(x', O)|= n(C)+ (k~2)(m ~ 1)+ min (2, k —2).

Then also 8'+m+e'<4 and 6+6'=n(C)—k(m+1)+min (4, k), where &', &'
have the meaning for x’ as §, ¢ have for x.

From N(x, G-C)NN(x', G—C)=0 we deduce £+ ¢'=n(G—C— H). There-
fore

(n(C)—k(m+1)+min (4, k) +2m+n(G—-H—- C)<8,
which simplifies to
M(G-H-C)+2m+4+min (2, k-2)<=n(G-H)—(k—-2)(m+1)
+min (2, k—2)=<8. (*)



On maximal circuits in finite graphs 143

The first part of (%) is equivalent to n(C)=k(m +1)+2, which in turn is an
application of Lemma 2.2, since G£ ¥ implies that G— N(H, C) has at most k
components. On the other hand we have

d(x)+d(x")<2n(C)-2-|N,(x, C)|—|N,(x", C)|+|N(x, G- C)|+ N(x', G~ C)|
sn(C)— (k-2 m—1)—min (4, k)+2n(G-C-H)—e—¢'
=n(G)—{(k—2)(m—1)—n(H)—min (4, k).

Hence by hypothesis n(H)+min (4, k)<4. We infer k<3 and n(H)+k=<4.
Combining the last inequality with the second part of (*) we obtain

n(G)—(k-2)m+1)+k—-2+k=<12.

In the subcase m =1 this means n(G)=<10. If m =2 then m =2 and k =2 by (*)
and again n(G)<10.
For the remainder of the proof we assume

N (u, LHyu N, (w, L)=¢ forall i#j.

We call a vertex z on some L; a good vertex if n(C(a;, z))=n(C(z, b,)) #0 and
moreover there exists no arc joining C(a, z) to C(z, b;).

Case 2. Let Q be an arc joining different components of C— N(H, C) such that
none of the terminal vertices is a good vertex. Without loss of generality we may
assume that Q joins z,€ V(L,) to z,€ V(L,).

Case2.1. For i=1 and i=2 there exist arcs from C(a,, z;) to C(z, b;). Then
n(L;)+ n(L,)=2m+6 by (3") of Lemma 2.4 and hence n(L;)=n(L,)=m+3 by
hypothesis. Moreover g; € N, (u;, L;), where q; is the successor of z; on L; (i=
1, 2). But this subcase cannot occur (see (3) of Lemma 2.4).

For the remainder of Case 2 we assume that there exist no arcs from C(a,, z,)
to C(z4, by).

Case 2.2. Let n(C(z,, by))=3. Then n(C(z,, b;))=3 and 3<n(L,) = m, since
IN, (41, L;)| = n(C(z,, by)). We infer n(C(a;, z;)) <m—1, since n(L,)<m+3. By
Lemma 2.3 we have gq,€ N, (us, L,), which in turn implies n(L;)<m+2 and
n(C(ay, z;))<m—2. From this we deduce n(C(a,, z,))=2 by Lemma 2.2.
Moreover there exists no arc from C(a,, z,) to C(z,, b,), since n(L;)+ n(L,)<
2m+2.

Therefore [N, (w,, L,)|= 2, which implies n(L,)<m +1, a contradiction.

Case 2.3. Let n(C(zy4, by))=2. In view of Case 2.2 we obtain n{C(a,, z;)) =1,
hence n(C(a,, z;))=m 1 by Lemma 2.2. On the other hand n(L,)=<m + 1, since
IN, (u;, L,)|=2. We infer 3<n(L,)=m+ 1. From n(C(ay, z;)) = 1<m we deduce
g>€ N, (u,, L,) by Lemma 2.3. Since z, is not a good vertex this implies n(L,)>4,
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hence m = 3. On the other hand n(L;)=4=m +1 by Lemma 2.2. Consequently
n(Ly=n{l,)=4=m+1

and, by Lemma 2.3, there exists no arc from C(a,, z,) to C(z,, b,). Now
n(L;)=m for all i>2. An arc joining different components of C— N(H, C)—{z,}
would join q, to the predecessor of z, which, by the construction in Lemma 2.6, is
impossible. If such an arc does not exist, then G— N(H, C)—{z,} has at least k +2
components contrary to G£ K.

Since z, is not a good vertex the discussion of Case 2 is exhaustive and leads to
a contradiction in any subcase.

Case 3. Each arc joining different components of C—N(H, C) has a good
terminal vertex. Let S be the set of all good vertices. By assumption
G — N(H, C)—S has at least k+|S|+ 1 components contrary to G£ .

This completes the proof of the theorem.

Corollary. Let G be graph without hamiltonian circuit and having at least 11
vertices. Then
(i) there exist non-adjacent vertices x, y such that d(x)+d(y)=n(G)—5 or
(i) there exist for some t=1 vertices x,, X, . . ., X, such that G—x,— - - - — x, has
at least t+1 components.

Proof. If n(G)=3 and if G has not property (ii) then G is 2-connected and we
can find a maximal circuit C in G. Also |N(H, C)|=2 for each component H of
G~ V(). In this case (i) by Theorem 3.3.
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A REDUCTION METHOD FOR EDGE-CONNECTIVITY
IN GRAPHS

W. MADER
Freie Universitit Berlin, Fachbereich Mathematik, 1000 Berlin 33, W. Germany

Let V(G) be the vertices and E(G) the edges of the multigraph G =
(V(G), E(G)). (In a multigraph parallel edges are allowed, but not loops.) We
denote the set of edges between the vertices x and y of G by [x, y];, sometimes
without the index G. Let A(x, y; G) be the maximal number of edge-disjoint paths
between x and y in G.

Let he[z x]g and ke[z, ylg with x#y, and denote by G** the multigraph
which arises from G —{h, k} = (V(G), E(G)—1{h, k}) by the addition of exactly one
new edge between x and y. The multigraph G"* is called a lifting of G at z, arising
from the lifting of h and k at z. For pairs x# y in V(G)—{z} it is obvious that
Ax, y; G™)< A(x, y; G). If for all such pairs A(x, y; G™)=A(x, y; G) holds, we
call the lifting admissible. In [5], Lovasz proved that at each vertex of an eulerian
multigraph there is an admissible lifting. In his talk at the conference on graph
theory in Prague in June 1974 he also announced the result that at each non-
separating vertex z of even degree in a finite multigraph G, there are edges h and
k such that

min {A(x, y; G"™):{x, y}c V(G)—{z}}
=min{A(x, y; G):{x, y}< V(G)—{z}}
holds. Furthermore he advanced the conjecture (see [6]) that at each non-
separating vertex of even degree in a finite multigraph there is an admissible
lifting.

As the main result of the present work we will prove the following somewhat
more general result, namely that if z is a non-separating vertex of degree at least
4 in the multigraph G then there exists an admissible lifting of G at z.

With the help of this result we will describe a simple construction procedure for
all n-fold edge connected multigraphs, thereby proving Conjecture 2 of Simmons
[11] in a somewhat modified form.

In a directed multigraph G let A(x,y; G) denote the maximal number of
(continuously directed) edge-disjoint paths from x to y. An orientation G of the
multigraph G is called admissible if for each pair x#y of vertices of G
A(x, y; G)=[3r(x, y; G)] holds, where [r] denotes the integer part of the real
number r. As suggested by Lovasz, we will deduce from our main result a theorem
of Nash-Williams [9], stating that every finite multigraph possesses an admissible
orientation.
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We mention a few more definitions and symbols. In place of x € V(G), resp.
k € E(G), we mostly write x € G, resp. ke G. For ke E(G), say kel[x, ylg, let
Vs (k) ={x, y} (usually written without the index); when |[x, y]|= 1 we sometimes
regard [x, y] simply as the edge between x and y. Let A< V(G) and B < V(G)
with ANB=0. Then let A= V(G)— A and let G(A) denote the submultigraph
induced by A. Further let G—A=G(A) and for E‘'c E(G) let G—-E'=
(V(G), E(G)— E"). Furthermore let

E(A,B;G)={kecE(G): V(k)NA#§ and V(k)NB#@},
d(A, B; G)=|E(A, B; G))

and
E(A;G)=E(A,A;G), d(A;G)=|EA;G]|.

In the case A ={a} we write simply a in the symbols, and the same convention is
used if E'={k}; thus for instance d(a; G) is the degree of the vertex a in G. Let
8(G)=min,, ., d(x; G) and let |G| =|V(G)|. A multigraph G is called n-regular
if d(x; G)=n holds for all xe V(G). For xe G let

N(x; G)={ye V(G):[x, y]lc # B}
and for a submultigraph H< G and k € E(G) with Vg(k)<= V(H) let
HUk=(V(H), EH)U{k})

with Vg, (k)= Vs(k). A path P with endvertices x and y is called an x, y-path,
and for x’, y'e P we denote by P[x’, y'] the x’, y'-path contained in P. In general
the multigraphs we consider are finite: only in a few places will infinite multi-
graphs be allowed, and these will be manifest from the context. For a finite
multigraph G we put A(x, x; G)== for xe G and A(G)=min A(x, y; G), so in
particular A(G) = in the case |G|=1. A multigraph G with A(G)=n is called
n-fold edge connected. By Menger’s theorem in edge form (see for instance
[12,9.3] and for infinite multigraphs compare [2, p. 45]) we know that

Alx, X; G)=min{d(X; G): X< V(G) with xeX and
e X} for x#xin G.

We will frequently make use of this without explicit reference. Thus for x# X in
G, the set

T(x,%x; G)={Xc V(G):xeX,¥e X and d(X;G)=A(x,%;G)}

is non-empty. A set E'c E(G) with |E'|= A(x, X; G) with the property that x and
% lie in different components of G — E’ we call a smallest separating edge set for x
and ¥ in G.

We shall use most of the above definitions analogously for directed multigraphs
(or multidigraphs). The set of edges k from x to y in the multidigraph G we
denote by (x, y)s; x is called the initial vertex of k and y the terminal vertex. An
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orientation of the multigraph G to a multidigraph G is equivalent to a decomposition
of [x, y]g into two disjoint sets (x, y)g and (y, x)s for all x#y in G. For a
multidigraph G let E(A, B; G)={k € E(G): the initial vertex of k belongs to A,
the terminal vertex to B}. In contrast to the undirected case we do not now put
E(A; G)=E(A,A; G) but we define E*(A;G)=E(A,A;G),E(A;G)=
E*(A;G) and E(A;G)=E"(A;G)UE (A;G). We define d(A, B;G),
d*(A; G) and d(A; G) correspondingly. For the directed case of Menger’s
theorem and for the definition of T(x, X; G) one has merely to substitute
d*(X; G) for d(X; G). In a directed multigraph we understand by a path, resp.
cycle, a continuously directed path, resp. cycle, and an x, y-path is a directed path
from x to y.

Let A be a set of vertices of the multigraph G with §# A# V(G) and let a€ A.
The multigraph G, has vertex set A U{a} and E(G,) is defined by G, —a = G(A)
and [[x, alg,|=d(x, A; G) for all xe A. We say that the multigraph G, arises
from G by identification of A to a. (In directed multigraphs the identification of A
to a is defined analogously.) For all X < A it is clear that d(X; G,)=d(X; G)and
d(XU{a}; G,)=d(XU A; G) hold. Furthermore there exists a bijective function
i:E(a; G,)— E(A; G) with i([x,als,)=E(x, A; G) for all x€A; we call i an
associative bijection.

The following lemma is an immediate consequence of Menger’s theorem.

Lemma 1. For any three distinct vertices a, b, ¢ we have
Ala, ¢; G)=min{A(a, b; G), A(b, c; G)},

where G is a (possibly infinite) multigraph or directed multigraph.

The next lemma may be compared with [1, Lemma 3.1 in Ch. IV].

Lemma 2. In the multigraph G let A € T(a, a; G) for certain a, a in G. G, arises
from G by identification of A to a. Then A(x, y; G,)=A(x, y; G) holds for all x#y
in V(G,).

Proof. For x#y in G,, each system of n edge-disjoint x, y-paths in G clearly
yields a system of n edge-disjoint x, y-paths in G,; hence A(x, y; G,)= A(x, y; G).
Since d(A; G)= A(a, a; G) one can associate with each k€ E(A; G) an a, a-path
P, in G with keP, so that E(P)NE(P.)=@ for k#k'. Let
i:E(a; G,)— E(A; G) be an associative bijection. Given a system of n edge-
disjoint x, y-paths in G, we may replace each edge ke E(a; G,), say k€[z, als,,
by P,lz, a], and so obtain n edge-disjoint x, y-paths in G. Thus A(x, y; G)=
A(x, y; G,) also holds, and thereby Lemma 2 is proved.

Lemma 3. In the multigraph G let A € T(a, a; G) for certain a, G in G. Let G, arise
from G by identification of A to a. Let i’ be an associative bijection, which we
continue through the identity on E(G— A) to a map i: E(G,)— E(G). Let G be
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an admissible lifting of G, at ze A —{a}. Then G'™® s an admissible lifting of G
at z.

Proof. Let n=A(a, d; G) and let G, arise from G by identification of A to d. As
the lifting G"* is admissible and z¢{a, a}, it follows that A{(a, a;Gi)=
Ma, a; G,)=n by Lemma 2. Since n =d(A; G'®'®)=d(a; G"), we can extend
n edge-disjoint @, a-paths in G"* to n edge-disjoint 4, a-paths in G"*""® as
in the proof of Lemma 2. Thus

Ma, a; G ®Yy=A(a,a; GE)=A(a, a; G,)=A(a, a; G)
and

A e T(a, a; GHMty,
If x,ye(A—-{z})U{a}, by Lemma 2,

Ax, y; G Y= A(x, y; GEY=A(x, y; G,) = Alx, y; G).
Since G, arises from G'®™® by identification of A to @, we have

Ax, y; G =) (x,y; G,)=A(x,y; G) forall x,yeAu{a}.

If now x€ A and ye A —{z}, we have A(x, y; G)<d(A; G)=n. Hence by Lemma
1 and the above equalities.

A(x, y; Gz min {A(x, a; G''Y), Ma, y; GIVHO)

=min{A(x, a; G), A(a, y; G)}
=min{A(a, y; G), A(x, y; G)}.

But

Aa,y; G)=A(a,y; G.)=A(x, y; G),
and so

A(x, y; G )= M (x, y; G).
Thus

A, y; G'™Y=\(x,y; G) forall x,ye V(G)—{z},

and Lemma 3 is proved.

Lemma 4. In the multigraph G let A< V(G) with d(A; G)<M(a,a; G)+1 for
certain vertices ac A and ae A. Then d(X; G(A))=d(X, A; G)—1 holds for all
Xc A-{a}.

Proof. There exist edge-disjoint a, a-paths P,,..., P, in G with n=A(a, a; G).
Then since d(A; G)=<n+1 each path P, contains exactly one edge of E(A; G),
so V(P,)N X# @ holds for at least d(X, A; G)—1 many v. Since a¢ X the lemma
follows.

Lemma 5. Let d(a; G)= n and suppose that for all {x, y}= V(G —a), AM(x,y; G)=
n holds. Then A(G)= n.
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Proof. If there existed an A < V(G) with a€ A and d(A; G)<n, then [A]|=2
since d(a; G)=n, and we would have A(x,y;G)<n for xe A—{a}# @ and
ye A=

The multigraph G is called irreducible relative to the vertices a# b if, for each
smallest separating edge set E' for a and b, cither E'= E(a; G) or E'= E(b; G)
holds. In particular it then holds that

A(a, b; G)=min{d(a; G), d(b; G)}.

We call the multigraph G irreducible if it is irreducible relative to all pairs a # b of
vertices of G, and G is z-irreducible if it is irreducible relative to all pairs a# b
of G-z, where ze V(G).

Lemma 6. Let G be a z-irreducible multigraph and let k €[x, y]g. Suppose that for
the vertices a#a in G-z, Ma,a;G—k)<A(a,a;G) holds. Then
{a, a}Ni{x, y} #@. If ae{x, y}, but a¢{x, y}, then d(a; G)<d(a; G) holds.

Proof. There is an A € T(a, a; G — k). Since
d(A; G-k)=A(a,a; G—k)<A(a,a; G)

we have ke E(A; G) and by the z-irreducibility of G we have also E(A; G)=
E(a; G) or E(A; G)=E(a,; G). Therefore k is incident with a or a. We now
assume that a €{x, y} and d¢#{x, y}. Then E(A; G)= E(a; G), and so

dla;G)=d(A;G)=A(a,a; G)=d(a; G)
holds.

Lemma 7. Let G**' be a lifting of the multigraph G at z and let there be a # a in
G-z with AMa, a; G*Y<A(a, a; G). Furthermore let AeT(a,a; G*'). Then
{k, k'Y< E(A; G). In the case 3<d(z; G)<4 we have also E(z; G)YNE(A; G)=
{k, k'}. If G is z-irreducible then A(a, a; G*')=\(a, a; G)—1.

Proof. Let say ke[z, x] and k'e[z, x']. Since d(A; G*)<A(a, a; G)<d(A; G),
we have {x, x'}< A or {x, x'}< A, and so {k, k'}< E(A; G). In particular it follows
that

d(A;G)=d(A; G")+2=<A(a,a;G)+1=n+1,

say. The second statement then follows by Lemma 4. Since {k, k'}< E(A; G) = E,,
say, neither E,= E(a; G) nor Ey= E(a; G) holds. If G is z-irreducible, it follows
then that |Eol>n and so

Ma,d; G¥"Y=d(A; G*)Y=n—1.

Remark 8. Let G be an eulerian, z-irreducible multigraph and let G** be a
lifting of G at z. Since in a multigraph H in which all vertices have even degree
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d(A;H) is even for all Ac V(H), there cannot be vertices a#a with
Aa, a; G**)Y=X(a,a; G)— 1. By Lemma 7 then the lifting is admissible. Hence
by Lemma 3 the existence of an admissible lifting at any given vertex z of an
eulerian multigraph can be proved at once by induction [5, Theorem 1].

If [N(z; G)|=2, say N(z; G) ={x, y}, then G"* is an admissible lifting of G at 2z
for all he[z, x] and k €[z, y]. We need then only consider the case [N(z; G)|= 3.
The following example shows that, in general, if d(z; G)=3 then no admissible
lifting of G at z can be found. Let G be an n-fold edge connected graph and let
a, b, ¢ be three distinct vertices of degree n in G. The graph G’ is constructed by
adding a new vertex z and exactly one edge between each of z and a, z and b and
z and ¢. Then

Ma,b; GY=A(a,c; GY=A(b,c; G")=n+1,

but any lifting of G’ at z will reduce the connectivity between a, b and c.

Let the graph G have components C,,...,C, and let ¢, e V(C,) for v=
1,..., n. The graph G’ arises from G by the addition of one further vertex z and
exactly one edge between z and ¢, for v=1,..., n. In the case n=3 there is no

admissible lifting of G’ at z. If however we assume that z is not separating, there
is always, in the case d(z; G)=4, an admissible lifting of G at z. We prove this by
induction on the degree of z; to start the induction we need the following lemma.

Lemma 9. Let z be a non-separating vertex of the finite multigraph G with
d(z; G)=4 and |N(z; G)|=2. Then there exists an admissible lifting of G at z.

Proof. We suppose that Lemma 9 is already proved for all multigraphs G’ with
|G'|+|E(G")|<|G|+|E(G)|- Suppose further that there exists for certain a# a in
G-z a set AcT(a,a; G) with |A|=2 and |A|=2. Let z€ A, say, and let G,
arise from G by identification of A to a. Then z doesn’t separate G, either and
since E(z; G)Z E(A; G) we have also |[N(z; G,)|= 2. By the inductive hypothesis
there exists an admissible lifting of G, at z, and by Lemma 3 an admissible lifting
of G at z also. We may therefore suppose that G is z-irreducible. The case
IN(z; G)|=2 has already been dealt with. Suppose |[N(z; G)|=3, say N(z; G)=
{x,x', x"}. Let say |[z,x]]=2 and let ke[z x] and k’€[z, x']. Then G** is an
admissible lifting of G at z. For if this were not the case, there would exist a set
A c V(G) with E(z; GYNE(A; G)={k, k'}, by Lemma 7. But this is impossible,
since k € E(A; G) implies [z, x] S E(A; G). Thus we may assume |N(z; G)|=4.

If an ae G—2z with |N(a; G)|=1 exists, then z& N(a; G), since z is not a
cutvertex, and an admissible lifting of G —a at z obviously yields one such for G.
It is assumed then that |[N(x; G)|=2 for all xe G. Since G is z-irreducible, it
follows that A(G)=2 by Lemma 5.

Suppose now that there exists a vertex a€ G—z with d(a; G)=2. Let say
E(a; G)={k, k'}. We consider the multigraph H=G"'—a. Let say
K(H)—- K(G)={k,}. By the induction hypothesis there is an admissible lifting
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H" of H at z. If F**: is an admissible lifting of a multigraph F at a vertex z with
d(z; F)=|N(z; F)| =4, then obviously F**« for {k,, k,} = E(z; F)—{k,, k,} is also
an admissible lifting of F at z. Since |[N(z; H)| =4 or there is an edge in H parallel
to ko, we may assume ko€ {h, h'}. Hence {h, h'}< E{G) and G"" resuits from
H"' by subdividing the edge k, by the vertex a. For all x#y in G —{a, z} it then
follows that
A(x, y; G™)=A(x, y; H")=A(x, y; H) = A(x, y; G).

Since A(G)=2 it follows from Lemma 5 that A(H")=2 and so also that
MG"™Y=2. Thus G" is an admissible lifting of G at z.

We may now assume that §(G)= 3. By the z-irreducibility of G it follows in
particular that A(G)=3, by Lemma 5. We show that there is no ke E(G) for
which the vertex z is a cutvertex of G —k. For otherwise, since A(G)=3,
(G —k)—z would have exactly two components, C; and C,, and d(V(C,); G)=
d(V(C,); G)=3 would hold. By the z-irreducibility of G we would then have
|Cy|=]C5| =1, contradicting |[N(z; G)|=4.

Let ape G —z with

d(ay; G)= min d(x; G)=d,,

xeG—z
say, and let ae N(a,; G —2z) # @ with
d(a; G)=  min d(x; G)=d,

xeN(ag; G—2)

say. Further let kye[ay, al#® and let H=G—k, Then by the preceding

paragraph z is not a cutvertex of H, and so by the induction hypothesis there

exists an admissible lifting H™ of H at z. We consider the multigraph G,=

G"" = H"™ Uk,, and we assume that G, is not an admissible lifting of G at z.
There exist then a, # a in G—z with A(a,, a; G,) <A(a,, a; G). Since

Ax, y; G—ko)=Ax, y; H")< A(x,y; G,) forall x#yin G-z,

it follows that A(ay, a; G—ko)<A(ay, a; G). Hence {ay,a}N{ag, a}#§y by
Lemma 6. Since

A(ag, a; H"™) = A(ap, a; G—ko) = A(ag, a; G)—1,

and so A(ag, a; Gy)=A(ay, a; G)=d,, we have {a,a}#{ay a}. Let say
{a,, a}N{a,, a}={a,}. We cannot have

Ala, @; Go)=A(a, a; G)=min{d(a; G),d(a; G)}=d,,

for then by Lemma 1 we would also have A(a,, @; Go)=d,= A(ay, a@; G), since
Alay, a; Go)=d,. Thus we have A(a, a; Go)<A(a,a; G) and we may assume
a;=a. By Lemma 6, d(a; G)=<d(a; G) holds and by Lemma 7

AMa,a; Gy)=A(a,a; G)—1=d-1.
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We first prove the following statement.

(*) If d{aq, a}; G—2)=d —1 and {a,, a}< N(z; G) then there is an admissible
lifting of G at z.

Let v =|[ao, alg|=1. By Lemma 6,
A(a, @; G—[ag, z)=A(a,a; G)=d
holds. Since

d({a,, a}; G—[ag, z))=d =d(a; G)

we have d(aq; G —{a, z}) = v, in particular d(ay; G)=2v+1. Since v =1 there is a
kye E(aq; G —{a, z}), say k,€[a,, u,]. Let E(z, G —{a,, a}) =1k, k,}, say k e[z, u]
and k;€[z, u,]. Since u#u, we may assume u,#u,. We now show that if
k'e[a, z] then G**' is an admissible lifting of G at z.

We show first of all A(x, £; G*)= A(x, X; G) for all {x, x}c V(G)—{aq, z, u,}.
Let G,=G—k,. By Lemma 6, A(x, X; G) = A(x, X; G) holds. It thus suffices to
derive a contradiction from the assumption A(x, £; GY)<A(x, %; G,). Let X e
T(x, %; Gt*') and let say ze X. By Lemma 7 E(z; G,)NE(X; G,)={k, k'}, and
thus {a,u}c X and a,€X. It follows therefore that [a,, ale E(X; G,) and
thereby d({a,, z}, X; G;)=v +2. Since d(X; G)<A(x, %; G,)+1 and x¢{a,, z}
we deduce from Lemma 4 that d({a,, z}; Gi(X))=v+1, in contradiction to
E({a,, z}; G(X)) < E(ao; G —{a, z}).

We show now that A(x, £; G**) = A(x, x; G) for all {x, X} in V(G)—{ay,, z, U}.
First we consider G, = G —k,. By Lemma 6 we have A(x, X; G,)= A(x, X; G). We
again derive a contradiction from the assumption A(x, X; G5*)<A(x, X; G,). Let
XeT(x, x; G5) and let say zeX. By Lemma 7 it follows as before that
{a, u}< X and {a,, u;}< X, and furthermore d({a,, z}, X; G,)= v +2. Once again
Lemma 4 yields a contradiction to d({a,, z}; G(X))=<wv.

We now derive a contradiction from the assumption that A(uy, u,; G*)<
Muy, uy; G). Let Ue T(uy, uy; G). By Lemma 7, E(z; G)NE(U; G)={k, k'},
so ze U and hence both a,e U and {a,u}c U. Since [a,, alU{k, k', k,}<
E(U; G) Lemma 4 once again yields a contradiction to d{{a,, z}; G(U))< .

In the last three paragraphs we have proved that A(x, X; G**)= A(x, X; G) for
all {x, x}< V(G)—{ay, z}. Since

A(x, X; G)=min{d(x; G), d(X; G)}=d, forall {x, x}< V(G- z),

it follows by Lemma 5 (since d(z; G*)=2) that A(aq, x; G*)=d, for all
x € G —{a,, z}. Hence the statement (*) is proved.

Since A(a, a; Gy)=d—1 there exists an A< V(G) with ac A, de A and
d(A; Gy)=d—1. By Lemma 7, {h,h'}c E(A; G) and d(A;G)=d+1. Since
Ma, a; H")y=d—1 also holds, k.2 E(A;G). Thus a,€ A. Since for each
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x € A—{ay, a, z} we have
A(x, @; Go) = A(x, a; G) =min{d(x; G), d(a; G)},
we must have N(ag; G)NA c{a, z}. Otherwise there would be an x,€ AN

N(ag; G—{a, z}), so d(xy; G)=d, by choice of a, and so A(xy, d; Gpg)=d in
contradiction to d{A; Gy)=d—1. We distinguish two cases.

Case (i). [ag, 2] =90.

By the above, E(ay, G—a)< E(A; G). Since
Ala, a; Go—ko)=d(A; Gy)=d—1=d(a; Gy— ko)
it follows that
d(ag; G-a)=|lag, alg|-1=0v—1,

say. The inequality d{ao; G —a)<|lao, als| stands, however, in contradiction to
Aa,d; G)=d(a;G).

Case (ii). [ag, z]g# 0.

If zeA let B=A-{z} and if z¢ A let B=A. By Lemma 7,
E(z; G)YNE(A; G)={h, h'}. Thus both |E(z; G)NE(B; G)|=2 and d(B; G)=
d+1 hold. Then by Lemma 6

AMa,a; G—[ay z)=A(a,a; G)=d

holds, hence d(agy; G —{a, z}) = v since d(B; G —[ay, z]) =d =d(a; G) and since
N(ao; G—a)< B. Tt follows however that d(B—{ac}; G)=d and, by the z-
irreducibility of G, B ={a,, a}. But then a< N(z, G) and by (*) there is an
admissible lifting of G at z.

Theorem 10. Let G be a finite multigraph and let z be a non-separating vertex of G
with d(z; G)=4 and |N(z; G)|=2. Then there exists an admissible lifting of G at
2.

Proof. We suppose that Theorem 10 is already proved for all multigraphs G' with
|G'|+|E(G")|<|G|+|E(G)|. By Lemma 3 we can thus assume that G is z-
irreducible. By Lemma 9 we may assume that d(z; G)=5. Furthermore we may
obviously assume that |N(x; G)|=2 for all xe G and |[N(z; G)|=3. We can
choose a € N(z; G) with

d(a; G)= min d(x; G)=4d,

xeN(z; G)

say, and let k € [a, z]. Furthermore let H= G — k. Since z fulfils the conditions of
Theorem 10 in H also, there is by the induction hypothesis an admissible lifting
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H" at z. We suppose that G"* is not an admissible lifting. Since by Lemma 6
Ax, y; GM)=A(x, y; H™)=A(x, y; H) =A%, y; G)

holds for all {x, y}< V(G)—{a, z}, there is an a € G —{q, z} with
Ma,a; G™)=A(a,d; G)—1=d—1by Lemma 6 and Lemma 7.

Let AeT(a,a; G™). Since
Ma,a; H"™)y=Xa,a; H)=d—1

also holds, we have k¢ E(A;G), so ze A. We may now assume that
N(z; G)N A ={a}. Of course, if there were an xe N(z; G—a)N A, we would
have d(x; G)=d by choice of a, and so by Lemma 6

Ax, a; G™)=A(x, a; H"y=A(x, a; H) = \(x,a; G)
=min{d(x; G), d(a; G)}=d,

in contradiction to d(A; G"™)=d~1. Thus E(z; G—a)U{h, h'’}< E(A; G) by
Lemma 7. Since

Aa,a; H"y=d—-1=d(a; H"™)=d(A; H"™)

we then have d(z; H"" —a)=la, z]g|-1=0v-1, say, and so d(z; G-a)=v +1,
in particular d(z; G)=2v+1. But then d(A —{z}; G)=d, whence A ={a, z} by
the z-irreducibilty of G.

Let I# k' be elements of E(z; G—a), where say l€[z, u]. We now show
A(x, x; G¥) = A(x, x; G) for all {x, x} = E(G)—{z,u}. We consider the multigraph
L=G-1 By Lemma 6 A(x, X; L)=A(x, X; G) holds. We derive a contradiction
from the assumption that A(x, %; L**)<A(x, %; L). Let Xe T(x, x; L**) and let
say z€ X. By Lemma 7, {k, k'}< E(X; L), so ae X and [z, a]; < E(X; L). Hence
d(z, X; L)=v+1, which by Lemma 4 yields a contradiction to d(z; L)=2v.

Since |N(z; G)|=3 there exists u#u’ in N(z; G—a); let e[z, u] and I'e
[z,u']. Since d(z;G)=5, hence d(z;G—a)=3, there exists k'e
E(z; G—a)—{l, I'}. We show that G** is an admissible lifting of G at z. By the
previous paragraph A(x, X; G**')= A(x, X; G) holds for all {x, }< E(G —z) with
{x, X} #{u, a}. We need then only derive a contradiction from the assumption
Mu, u'; GHY<A(w,u'; G). Let UeT(u,u'; G*), and let say zeU. Since
{k, kY= E(U; G) by Lemma 7, ac U and thus [z, alc E(U; G). Then since
u'e U, I'e E(U; G) also, and d(z, U; G)= v +2 holds, which by Lemma 4 yields
a contradiction to d(z; G)=2v+1. Hence Theorem 10 is proved.

Theorem 10 may be extended immediately to infinite multigraphs.

Corollary 11. Let 2 be a non-separating vertex of the infinite multigraph G with
d(z; G)=4, |N(z; G)|=2, and d(z; G) finite. Then there is an admissible lifting of
G at z.
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Proof. There exists a finite subgraph G, G with d(z; Gy)=d(z; G) such that
G,—z is connected. Let

R={E'c E(G):E'2E(G,) and E’ finite},

and denote by P the set of all two element subsets of E(z; G). We define a
function f: & — P. Let E'e R. The graph H = (V(G), E') has by Theorem 10 an
admissible lifting H**" at z. We set f(E')={h’, k'}. Then there exists an element
{h, k} € P with the property that to each E € & there is an E'e ® with Ec E' and
f(E"Y={h, k}. For otherwise we could associate with each pe€ P an E(p) with the
property that for each E'e & with E' 2 E(p), f(E') # p holds. This is impossibie,
though, since f(U ,.p E(p)) € P. However G"* is then an admissible lifting of G at
z. For given x#y in G with A(x,y; G) finite there is an Ee€® with
A(x, y; (V(G), E))=A(x,y; G) and by choice of {h, k} there is an E'e ® with
Ec E' and f(E'Y={h, k}.

Remark 12. Let z be a cutvertex of the connected multigraph G, such that no
ke E(z; G) is a separating edge of G. Let C, # C, be components of G—z and
k€ E(z, V(C); G) for i=1, 2. Then A(x, y; G**2) = A(x, y; G) holds for all x#y
in G. If {x, y}= V(C)U{z} for some component C of G — z, this is clear since G — k;
is connected. If x and y belong to different components of G—z, by Lemma 1

Ax, y; MR =min{A(x, 23 GH), Az, y; GH*))
=min{A(x, z; G), A(z,y; G)}=A(x, y; G).

We will now describe operations by which all n-fold edge-connected finite
multigraphs may be successively constructed. It is somewhat more convenient to

consider here pseudographs (that is, to allow loops). The extension of our
terminology to include pseudographs need cause no problems. (A loop adds 2 to
the degree of the vertex. No loops arise as a result of identifications. For any
vertex a, a€ N(a; G) always holds.) A pseudograph G is called n-minimal if
A(G)=n but for any ke E(G), A(G—k)<n holds. A pseudograph G with
A(G)=n is obviously n-minimal exactly when G has no loops and for each pair
x,y of adjacent vertices, A(x, y; G)=n holds.
We need also the result indicated in [7, Theorem 5b].

Lemma 13. Each finite, n-minimal pseudograph G with |G|=2 has at least two
vertices of degree n.

Proof. We use induction on the number of vertices. We can assume that an
element k € E(G), say k €la, a}, exists with d(a; G)>n and d(a; G)> n. Since
Ma, a; G—k)<n there exists A< V(G) with ae A, ac A and d(A; G)=n. The
multigraph G,, resp. G, arises from G by identification of A to a, resp. A to .
By Lemma 2 G, is n-minimal, since A(x,a; G)=n for all xe A (or since
d(a; G,)=n). Since |A|=2 (as d(a; G)> n) there are two vertices of degree n in
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G, by the induction hypothesis. The same is true of G, and so G also has two
vertices of degree n.

Let G be finite pseudograph and z a non-separating vertex of G with
d(z; G) = 2m such that z has noloops attached. By Theorem 10, G admits successive
admissible liftings at z so as to get a pseudograph G’ with [N(z; G')|<1. (After
the lifting z remains a non-separating vertex.) The pseudograph G* arises from
G'—z by addition of }d(z; G') loops at the (possibly non-existent) vertex of
N(z; G’). We say that G~* arises from G by admissible splitting of z, and call G* an
admissible splitting of G at z. For all x#y in G*, A(x,y; G*)=A(x, y; G). We
now consider the following three operations on pseudographs.

O,,.. Choose m different edges k,, ..., k,, of G, divide k; by a vertex z,€ G and
identify {zq,..., z,.} to a vertex z¢ G.

O;.. Actas in O,,, then choose an a € V(G) and add an edge between z and a.

0. Act as in O,, thereby constructing G'. Now choose m different edges
hi,...,h, of G'" with {hy,..., h,}& E(z; G'), divide h; by a vertex v;€ G,
identify {v,,...,v,,} to a vertex v€ G’ and add exactly one (further) edge between
v and z.

(Note that in O,, and O}, and O%’ the chosen k; and h; may also be loops. For
m = 0 the operation O,, is simply the addition of a new vertex z.)

If the pseudograph G' arises by O,, from a pseudograph G with A(G)=2m,
then A(G')=2m also, by Lemma 5. We will now show that conversely each
(2m)-fold edge-connected pseudograph may be obtained from the graph G with
|G| =1 by successive addition of edges and repeated application of O,,. The next
corollary was announced by Lovasz in Prague.

Corollary 14. Let G be a finite, (2m)-minimal multigraph with |G|=2. Then there
is a pseudograph G’ with A(G'}=2m and |G'|=|G|—1, from which G arises by
o,.

Proof. By Lemma 13 there is a z€ G with d(z; G)=2m; z cannot be a cutver-
tex. Thus there is an admissible splitting G* at z. Further A(G*)=2m holds. As O,,
is the opposite operation to splitting, G* is the pseudograph we are looking for.

If G is a (2m)-regular multigraph with A(G)=2m and |G|=3 then the
pseudograph which exists by Corollary 14 is also (2m)-regular and so likewise has
no loops. These successive constructions of all (2m)-fold edge connected (2m)-
regular multigraphs were displayed by Kotzig in [3] and cited {4, Theorem 8],
(See also [11, Conjecture 1]).

To obtain a similar construction of all (2m + 1)-fold edge-connected pseudo-
graphs, we need the following result.

Lemma 15. Let G be a (2m + 1)-minimal, finite multigraph with |G|=3, and let a,
be a non-separating vertex of G. Then there exists a k € E(G — a,), say ke[a, aJ,
with d(a; G)=2m+1, such that AM(x,y; G—k)=2m+1 for all x# y in G—{a, a},
and furthermore for all x#y in G—a in the case d(a; G)>2m+1.
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Proof. We assume that Lemma 15 is already proven for all multigraphs G’ with
|IG'|<|G]|.

By Lemma 13 there is a b# a, with d(b; G) =2m + 1. Since a, doesn’t separate
the multigraph G, N(b; G) #{a,}. Thus there exists h € E(b; G —a,), say he[b, b].
We can assume that u# i1 exist in G —b with A(u, &i; G —h)<2m, where further
be{u, a} if d(b; G)=2m+1. Then there exists a U< V(G) with ueU, e
U, d(U;G)=2m+1 and he E(U; G); let say be U and be U. Since u#b,
|U|=2. Since either &# b or d(b; G)>2m+1, |U]=2 also holds. In the following
we make use only of |U|=2, |U|=2, and d(U; G)=2m+1, so we may assume
say ag€ U. Let G, arise from G by identification of U to u. By Lemma 1, G, is
also (2m + 1)-minimal and 3 <|G,|<|G| holds. Since G, —u = G(U) is connected,
there is by the induction hypothesis a ke E(G, —u), say kela, @alg, with the
properties {in G, ) described in the statement of Lemma 15.

We now show that k also has these properties in G. Clearly for all xe
U,d(x; G,)=d(x; G) holds, in particular d(a; G)=2m+1. We observe that
there is a w'e U with A(u,u’; G,—k)=2m+1. The case |G.|=4 each uw'e
U—{a, a}# @ will do. In the case |G|=3, d(a; G,)>2m+1 holds, since not all
three vertices of G, can have degree 2m+1. Then d(u; G,—k)=2m+1 and
d(a; G,—k)=2m+1, and since |G,|=3 we have A(@, u; G, —k)=2m+1. Now
for each such uw'eU with A(wu';G,—k)=2m+1 it is obvious that
AMu',x;G-k)=2m+1 for all xeU. By Lemma 2, A(x,y;G—k)=
A(x,y; G, —k) for all {x, y}< U. Since identification of U to & in G —k yields the
same graph as does the same operation in G, Lemma 2 also implies that
Mx, y; G—k)=A(x, y; G) for all {x, y}= U. Hence k has the desired properties in
G.

Remark 16. A multigraph G with A(G)=2m need by no means possess an edge
k € G with the property that for all x#y in G— V(k), A(x, y; G—k)=2m holds.
For consider any graph G with A(G)=2 and subdivide each edge by exactly three
vertices. If we then replace each edge by a set of m parallel edges we obtain a
multigraph G’ with A(G')=2m, but no edge in G’ has the above property.

We now consider a pseudograph G with A(G)=2m +1. For a pseudograph G’
which arises from G by O;,, we have A(G')=2m +1 by Lemma 5. Analogously it
is easily seen that A(G)=2m+1 if G’ arises from G by OP. We will now see
that conversely each finite pseudograph G with A(G)=2m +1 may be obtained
from a vertex by addition of edges and by use of O}, and O?.

Corollary 17. Let G be a finite, (2m + 1)-minimal multigraph with |G|=2. Then
either there is a pseudograph G, with A\(G)=2m+1 and |G,|=|G|-1, from
which G arises by O, or else there is a pseudograph G, with A\(G,)=2m+1 and
|G,|=|G|—2, from which G arises by O?.
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Proof. If |G|=2, G arises from a vertex with m loops by O,,. Let thus |G|=3.
There exists a non-separating vertex a, of G. Let ke€[a, ale E(G —a,) with
d(a; G)=2m+1, where k is the edge described in Lemma 15. Let H=G —k.
Since d(a; G)=2m+1, H—a = G —a is connected, and so there is an admissible
splitting H* of H at a.

Case (i). d(a; G)>2m+1.

Then A(x,y; H)=2m+1 holds for all x#y in G—a. Hence A(H*)=2m+1
and G arises from H® by Oj..

Case (i1). d(a; G)=2m+1.

This can only occur for m>0. Now d(a; H*)=2m and A(a,x; H*)=2m for
x€H*—a#@. Thus H* has no loops at a and since m=1 H®—a is connected.
Hence there is an admissible splitting (HH)® at @. But then A((H*)?)=2m + 1 holds
and G arises from (H®)* by O%.

Let G’ be a pseudograph with A(G')=2m+1 and |G'|=2. If G arises from G’
by O;, then there is a vertex x € G with d(x;G)>2m+ 1. If G arises from G’ by
O then there are two adjacent vertices in G of degree 2m+1. Whilst the
1-minimal finite graphs may be constructed by O, alone, we cannot manage in
Corollary 17 for m > 0 with just one of the operations O}, and O'?. (The complete
bipartite graph K,,, ., with s>2m +1 is (2m + 1)-minimal, and contains no two
adjacent vertices of degree 2m +1.)

The situation is different, though, if we restrict ourselves to the class £,,(m = 1)
of all (2m +1)-fold edge connected finite pseudographs whose vertices all have
degree 2m+1, with the possible exception of one vertex of degree 2m +2. If
G € £, has loops, then G is a single vertex with m +1 loops. Let G € £,, with |G|
even, |G|=4. Then G is (2m+ 1)-regular and arises by O'2 from a pseudograph
G' with A(G")=2m +1, by Corollary 17. Since G’ is also (2m + 1)-regular, it
follows that G'e £,,. Now let G € £, with |G| odd, |G|=3. Then G has exactly
one vertex b of degree 2m+2. Since m=1 b is not a cutvertex. Thus we can
assume aq = b, where a, is the vertex described in the proof of Corollary 17. Then
case (ii) will occur and G arises by O? from a pseudograph G’ with A(G")=
2m+ 1. With the exception of d(b; G')=2m +2, all vertices of G’ have degree
2m+1 and so G'e£,,. Thus we see that the graphs £, arise by repeated
application of O either from a vertex with m+1 loops or from the graph
consisting of two vertices joined by exactly 2m + 1 edges.’

In particular this settles [11, Conjecture 2]. (This conjecture states that each
Ge#4, with |G|=4 may be obtained from an appropriate G'€#, by the
following operations: -choose 2m different edges k4, ..., k,,, of G', subdivide k;,
by a vertex z;, identify {z,,..., z,,} to a vertex z and {z,.,,, ..., Z».} tO a vertex
z'# 2, and join z and z’ by exactly one edge. As stated this construction is not
possible, however, since it implies that each G € £,, with |G|=4 must contain
vertices x#y with |[[x, ylg|=1, and this is only fulfilled when m=1 or m =2.

! This successive construction of all G € £,,, with |G| even had already been found by Kotzig in [3].
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Consider for m=3 a polygonal prism where each edge of both polygons
has been replaced by [(2m+1)/3] parallel edges and each other edge by
(2m +1-2[(2m +1)/3)] parallel edges.) One might suppose that each G € £,, with
|G| odd arises by O;, from a G'e £, with |G'|=|G|—1. The following graph
shows that this is not true. Let C be a cycle of length 12 with vertices a,, ..., a;,
(in cyclic order) and let a C. Join a to the vertices a,, as, ag and a,; by a single
edge and add further the edges [a,, a,..] for n=1, 4, 7, 10 —Naturally it is
possible, however, to obtain each Ge 4,, with |G|=3 odd from a G'e4,, by
O,..,, and conversely applying O,,,, to a pseudograph G'e £,, with |G| even
always results in another element of £,,.

We now turn to the theorem of Nash-Williams mentioned at the start. A
multidigraph G is said to be strongly connected if A(x,y; G)=1 and A(y, x; G)=1
for all x#y in G. Robbins shows in [10] that each 2-fold edge-connected
multigraph admits a strongly connected orientation. Let G be a multigraph and
let @# A < V(G). Let G, , resp. G, arise from G by identification of A to a,€ A,
resp. A to a,€ A. Furthermore let i, be an associative bijection

i,.:E(a,; G,)— E(A;G) for n=1,2

and let G, be an orientation of G,. We say that G, and G, are compatibly
oriented if for all ke E(A;G), i;(k)e E*(a;; G,) if and only if i;'(k)e
E~(ay; G,,)). Then obviously for all k€ E(A; G), ii'(k)e E™(a;; G,) if and only if
i>'(k)e E*(a,; Gaz) and Ga, and Ga2 yield in a natural manner an orientation of
G. Let C be a (continuously directed) cycle in the multidigraph G. G’ arises from G
by reversing the direction of each edge of C and leaving the other edges of G
unchanged. We say that G’ arises from G by reorientation of C. The dual
multidigraph G’ arises from G by reversing the direction of every edge of G.
We shall need the following simple lemmata.

Lemma 18. Let G be an admissible orientation of the multigraph G. Let C be a
cycle of G and let G arise from G by reorientation of C. Then G is an admissible
orientation of G.

Proof. For all Ac V(G), |[E'(A; G)NE(C)|=|E~(A; G)NE(C)| holds. Thus

d*(A; G)=d*(A; G) for all Ac V(G), and the lemma follows by Menger’s

Theorem.

Lemma 19. Let a be a vertex of the multidigraph G with
AMa,a;G)=A(a,a;G)=d (a; GY=d (a; G) foracertainae G- a.

Then for each E* < E*(a; G) and each E- < E (a; G) with |[E*|=|E"|=m there

exist edge-disjoint cycles C,, ..., C,, with E"UE < |J7_, E(C,).

(Since by the definition of a cylce no vertex is passed through twice it follows
that ae C, for u=1,...,m.)
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Proof. Let E;= E(a; G)—(ETUE™) and let Go= G — E,. We split a in G into
vertices a and a’ € G, to obtain a multidigraph G’ thus: add to G,— E™ the vertex
a' and let (x, a')g = (x, a)g, for all xe G, and let (a’, x) = for all xe G'. Since
however, A(a, a; G')=A(a, a’; G')=m holds, it follows that A(a, a’; G')=m by
Lemma 1, and so the existence of the cycles C, follows also.

Lemma 20. Let a be a vertex of the multidigraph G with the property that for all
E*cE*(a;G) and E-< E (a; G) with |[E*|=|E"|=m there exist edge-disjoint
cycles Cy, ..., C, with E"UE < J7_, E(C,). Then for each E < E(a; G) with
|Eo|=d*(a; G) there is a multidigraph G', obtained by reorienting cycles, with
E*(a; G')=E,.

Proof. Let EY=E"(a; G)—E,and E" = E,— E*(a; G). Since |E|]=d"(a; G) we
have |[E*|=|E~|= m. Thus edge-disjoint cycles Cy,..., C,, exist with E"UE™ ¢
m_, E(C,), and reorienting C,, ..., C,, yields the desired G'.

Lemma 21. Let G be a multigraph with A € T(a, a; G) for certain a, a € G, and let
d(A; G)=A(a, a; G) be even. Let G, resp. G, arise from G by identification of A
to a, resp. A to a. If G, and G, possess admissible orientations then so does G.

Proof. Let i and i be associative bijections of G, and G, respectively, and let G,
resp. G, be an admissible orientation of G,, resp. G;. Since A(a, a; G)=2n then

Aa, a; Ga):/\(ﬁ, a, Ga)=n=/\(a, a, Gd)=)\(d,a; G&)

by Lemma 2. Consider say G,. By Lemma 19 the conditions of Lemma 20 for the
vertex a in G, are fulfilled. We choose E,= i '(i(E(a; G,))). Since |Eo|=n we
obtain by Lemma 20 an orientation G, with E*(a; G,)=E,. Then G, and G,
are compatibly oriented and by Lemma 18 G, is also an admissible orientation.
The orientations G, and G, yield in a natural way an orientation G of G. We
now show that G is an admissible orientation of G. First of all A(x, y; G)-——
Alx, y; G,) for all {x, y}c A by Lemma 19 (this lemma implies that x, y-paths in

=

G, can be transferred to x, y-paths in G), and so
Ax, y; G)={3A(x, y; G)]=[2A(x, y; G)]

by Lemma 2. Similarly A(x, y; G)=[3A(x, y; G)] for x,ye A. By the above
we have A(a,d; G)=d (A:G)=n=A(a, a; G). Let now, say, xc A and ye A
and let m =[3A(x, y; G)]. Thensince A(x, y; G)< A(x, a; G,) we have A(x, a; G,) =
2m, similarly A{a, y; G,)=2m, and so A(x, a; G,)=m and A(a, y: G)=m.
Hence A(x, a; G)=m and A(a, y; G)=m. Since E(A; G) separates x from y we
have 2n = A(a, a; G)=2m, and so

Ax, y; G)=min{A(x, a; G), A(G, a; G), A(a, y; G)}=m,

as required.
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Theorem 22 (Nash-Williams). Each finite multigraph has an admissible orien-
tation.

Proof. We suppose that Theorem 22 is false. Let G be a counter-example to
Theorem 22 with |G|+|E(G)| as small as possible. It is easily seen that G has no
cutvertex and A(G)= 2. Obviously |G|= 3, so [N(x, G)|=2 for all xe G. Further it
is easily seen that 6(G)=3. By Lemma 21 we have the following result.

(a) If A€ T(a,a;G) and if d(A; G) is even, then |A|=1 or |A|=1.

Let ke E(G) and consider G—k We cannot have [3A(x,y;G—k)]=
[3A(x, y; G)] for all x, y € G, since otherwise an admissible orientation of G —k
yields one such for G. Hence there exist a#da in G with A(a, a; G) even
and A(a,a; G—k)<A(a,a;G). Let AeT(a,a; G—k). Then ke E(A; G) and
d(A; G) is even. Thus by (a) either A ={a} or else A ={a}, and so either
keE(a; G) and d(a; G) is even or ke E(a; G) and d(a; G) is even. Hence we
have the following.

(B) Every edge of G is incident with a vertex of even degree.

By the result of Robbins [10] (and anyway from (B)) there exist in G vertices of
degree greater than 3; let

Vo={xe V(G): d(x; G)>3}

and let d,=min,_y, d(x; G). We now prove the following:

(y) There is no ze V(G) with d(z; G)=d, and A(z,x; G)=d, for all xe
Vo—{z}.

We assume there were such a z. By Theorem 10 we may obtain a multigraph H
from G by successive admissible liftings at z, in which d(z; H)=3 or |N(z; H)|<
1. Since |E(H)|<|E(G)| there is an admissible orientation H of H. Let E(H)—
E(G)=1{h,,..., h}. We divide the edges h; in the directed multigraph H by a
vertex z; identify {z,,..., z,} to z, thus obtaining G. Obviously G is an orienta-
tion of G; we now show that it is admissible. For x#y in G—z we have

Ax, y; G)=A(x, y; HY=[BA(x, y; H)]=[3A(x, y; G)].

In the case d(z; H)=2 we have A(H)=2 by Lemma 5, and so also A(G)=
2, and then H is strongly connected and |d*(z; H)—d (z; H)<1. If
d(z; H)<2 we have A(H—2z)=2, and so H—z is strongly connected. Hence in
both cases G is strongly connected and both d*(z; Gy=m= [3d,]land d~(z; G)=
m hold. We have to show besides that A(z, x; G)=[1A(z, x; G)] and A(x, z; G)=
[2A(x, z; G)] for all xe G—z. For xec G—V, this is on account of the strong
connectivity of G. By our assumptions and by Lemma 1 A(x, y; G)=d, for all
{x, y}< V,—{z}, and hence A(x, y; G)=m. We now deduce a contradiction, say,
from the assumption A(z, z; G)<m for some z e V,—{z}. Let Ze T(z, 7; G) be
minimal with respect to inclusion. Since A(x, y; G)=m for {x, y}<= V,~{z}, and
Ze Z, we have V,—{z}< Z, and so d(x; G)=3 for all xe Z—{z}. By () we have
E(G(Z))< E(z; G). Since d*(z; G)=m we have |Z|=2; let xe Z—{z}. Since Z
is minimal we have d*(Z~{x}, G)>d*(Z; G) and so d(z, x; G)>d(x, Z; G). It
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d(x, Z; G)>0 we have |[z, x]g|=2. If d(x, Z; G)=0 we have d(x, z; G)>0 by
the strong connectivity of G, so again |[z, x];|=2. But [[z, x]|>2 is in contradic-
tion to A(z, Z; G)=d,=d(z; G) since d(x; G)=3.

By (vy) the set

P={{x,y}= V(G):A(x, y; G)<min{d(x; G), d(y; G)}}
is non-empty. Let {a, a} € P with

Ala,a; G)= min A(x, y; G).
{x, yteP

By (a), A(a,a; G) is odd, say A(a,a; G)=2n+1. Since A(G)=2 we have
n=1, and so {a, a}<c V,. Let A € T(a, a; G). The multigraph G,, resp. G,, arises
from G by identification of A to a, resp. A to a. G, and G, have admissible
orientations G, and G, respectively. By Lemma 2 A(G,)=2 holds and
Ala,a; G,)=2n+1. Thus Ga is strongly connected and both A(a, a; Ga)> n and
Aa, a; GG)Z n hold; in particular d*(a; Ga)z n and d (a; Gu)z n. Similar con-
siderations hold for G,

(8) Each (non-empty) set X< V(G,—a) with d"(X; G,)<n contains only
vertices x with d(x; G)=3.
(8) remains true if d” is replaced by d” or a by a.

Proof of (8). For xe X, A(x, a; Ga)< n. By Lemma 2 A(x, a; G)=A(x,a; G,)<
2n, since G, is an admissible orientation of G,. By choice of {a, a} we have
{x, a}€ P, and so

Ax, a; GYy=min{d(x; G), d(a; G)}.

Hence d{(x; G)<2n since A{x, a; G)<2n<d{a; G). However, then d(x; G)=3,
for if d(x; G)>3 we would have d,<2n. In the case dy<2n though we would
have for all ze G with d(z; G)=d, and ye G—z that {2, y}& P, by choice of
{a, a}, and so

A(z, v; G)=min{d(z; G), d(y; G)} forallye G—z,

in contradiction to ().

(¢) Let E'< E*(a; G,) and E" < E(a; G,) with |[E*]=]E | = m. Then there
exist edge-disjoint cycles C,, ..., C, with EYUE < ., E(C,);
(£) holds similarly with G, replaced by G,.

Proof of (¢). Let H=G, —(E(a; G,)—(E*U E™)). The multidigraph D arises in
the following way from H: add to H— E~ a vertex a'¢ H and set (x, a')p =(x, a)y
for all xe H and let d*(a’; D)=0. Let d (a; G,)=n; the case d*(a; G,)=n
follows dually. Let Be T(a, a’; D) be minimal w.r.t. inclusion. It suffices to
deduce a contradiction from the assumption d*(B; D)<m. Since d*(a; D)=m
we have B—{a}# ® and since d (a; D)=0 we have d"(B —{a}; D)< m. Since
d(a;G)=n=m+|E(a;G,)—E|,
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d*(B —{a}; G,)<n follows. By (8) then d(b’; G) =3 for all b’e B—{a} and by (8)
B—{a} is a set of independent vertices. Let be B—{a}#§. By choice of B,
d*(B—{b}; D)>d*(B; D), and so d(a, b; D)> d(b, V(D)— B; D), and in particu-
lar (a, b)p#®. Since G, is strongly connected there is a ke E*(b; G,). If
ke E(D), then ke E(b, V(D)—B; D) since d(a;D)=0, so [(a, b)p|=2. If
k& E(D), then k€ E(a; G,), so again |[a, b]s,|=2. Since d(b; G)=3, b#a and
ILa, b]g,|=2 contradicts A{a, a; G,)=2n+1=d(a; G,).

We now conclude the proof of Theorem 22. We can suppose d*(a; G,)=
d~(a; G,), for otherwise we may replace say G, by its dual. Since by (¢) the
conditions in Lemma 20 are fulfilled for ae G, we may suppose, in view of
Lemma 20 and Lemma 18, that G, and G, are compatibly (and admissibly)
oriented. G arises naturally from Ga and Gd. We will now show that G is an
admissible orientation of G. For {x, y}< A, it follows easily by (¢) and Lemma 2
that

A(x y; G) = A(x, y; Go) =[BA(x, y: G)]=[BA(x y; G)),

and similarly for {x, y}< A. Next we show that A(a, @; G)=n and A(@, a; G)=n.
We deduce a contradiction from the assumption that A(a, @; G)<n, say. Since
A(a,a; G;)=n and A(a, a; G,)=n we see immediately that if d*(A; G)= n then
Ma, a; G)=n. Thus d*(A; G)=n+1 must hold. Let Be T(a, a; G) with

IBNA|+|BNA|=max{|B'NA|+|B'NA|:B'c T(a,a; G)}.

Since A(a,a; G,)=n we have BNA#¢ and since A(a,a; Ga)zn we have
BN A#§. Since
d*BNA;G)+d (BNA;G)<d (A;G)+d*(B;G)sn+n-—1,

it follows that d*(BNA; G)<n or d (BN A; G)<n. Letsay d (BNA; G)<n;
the cased* (BN A ; G) < nleads similarly to a contradiction. Thend (BN A;; Ga) <n
also and by (8) we have d(x; G)=3 for all xe BN A. Let beéﬂA#ﬂ By
choice of B it follows that B U{b}é T(a, a; G) so d*(BU{b}; G)= d"(B; G) and
so by (B) then d(b,BNA;G) >d(B, b; G); in particular d(b; BNA; G)=1.
Since A € T(a, a; Cj) we have d(b, A g)< 1 since d(b; G)= } and b # a. There-
fore d(b,BNA;G)=1 and d(A,b; G)=0. Thus d(_’B, b; G)=0, and by (B)
d~(b; G)=0, contradicting the strong connectivity of G,.

Let now xe A and ye A, and let m =[ZA(x, y; G)]<n. Then A(x, a; G)=2m, so
by Lemma 1 A(y,a;G)=2m and so by the above, A(y,a; G)=m and
Aa, y; G)=m. Since similarly A(a, x; G)=m and A(x, a;G)=m, we have by
Lemma 1 that A(x, y; G)=m and Ay, x; G)=m.

Note added in proof

Many thanks to Dr. Bollobas for translating my paper from German into

English. The original German version may be obtained from the author upon
request.
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ANOTHER CRITERION FOR MARRIAGE
IN DENUMERABLE SOCIETIES

C. St. J. A. NASH-WILLIAMS

Department of Mathematics, University of Reading, Whiteknights, Reading RG6 2AX, Great
Britain

A society is an ordered triple (M, W, K) of sets such that M, W are disjoint and K c M x W.
An espousal of (M, W, K) is a subset of K of the form {(a, E(a)): a € M} where E(a,) # E(a,)
whenever a, # a,. For every transfinite sequence f of distinct elements of W, we define (in a
somewhat complicated manner) a number g(f). We prove that a necessary and, if M is
countable. sufficient condition for (M, W, K) to have an espousal is that q(f)=0 for every
countable transfinite sequence f of distinct elements of W.

1. Introduction

We shall use the following set-theoretic conventions. A relation is a set of
ordered pairs. Let R be a relation, A and B be sets and a be an element. Then
R{a) denotes {y: (a, y) € R}, R{a) denotes the element of R{a)} if |R{a)|=1, and
R[A] denotes |J,.a R{a). The domain dom R and range rge R of R are
{x: (x, t)e R for some 1} and {y: (¢, y) € R for some t} respectively. A function is a
relation f such that |[f{x)|=1 for every x edom f. A function f from A into B or
function f: A— B is a function f such that dom f= A, rge f< B. A function from
A onto B is a function with domain A and range B. A function f is injective if
there do not exist distinct elements x, y of dom f such that f(x)= f(y). A set S is
countable if |S|=N\,. The axiom of choice will be assumed in this paper.

A society is an ordered triple (M, W, K) such that M, W are disjoint sets and K
is a subset of M X W. Elements of M are men of a society I'=(M, W, K) and
elements of W are women of I', and a man m will be said to know a woman w if
(m, w)e K. An espousal of I is an injective function E: M— W such that Ec K
(i.e., intuitively, a prescription for finding wives for all the men so that each man
marries a woman whom he knows). A society is espousable if it has an espousal. A
society (M, W, K) is male-countable ift M is countable.

Damerell and Milner [1] proved a conjecture of [2] that a certain condition
would be necessary and sufficient for a male-countable society to be espousable.
In [3], I gave an alternative version of this proof and conjectured another
necessary and sufficient condition for a male-countable society to be espousable.
In fact, this conjecture is clearly false in the form suggested in [3], but it requires
only 2 minor modification and the present paper proves the modified conjecture.
This criterion for espousability of male-countable societies has perhaps a some-
what more direct character than the previous one (which involved a transfinite
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sequence of functions called “‘margin functions”) and its proof secems a little
shorter.

Further discussion of the background and history of this work may be found in
[3].

We shall assume ordinals (ordinal numbers) to have been defined so that an
ordinal « is the set of all ordinals less than «. In particular, the ordinal O is the
empty set. An ordinal 8 is a successor ordinal if 8=« +1 for some ordinal a. A
limit ordinal is an ordinal which 1s neither 0 nor a successor ordinal. We define a
transfinite sequence to be a function whose domain is an ordinal number. If f is a
transfinite sequence and A is an ordinal less than or equal to dom f, then f, will
denote the transfinite sequence {(«a, f(@)): @ <A}, i.e. the restriction of f to A. We
define a queue to be a countable injective transfinite sequence, i.e. an injective
transfinite sequence whose domain is a countable ordinal. A queue in a set A is a
queue whose range is a subset of A. The transfinite sequence whose domain is the
ordinal O will be denoted by [1. In fact, since the ordinal 0 is the empty set, it
tollows that [ is also the empty set, but we denote the empty set by [1 and not ¢
when it plays the role of a transfinite sequence.

Let 2 denote a set whose elements are the integers and two further ‘““numbers”
o and —. Elements of 2 will be called quasi-integers. The size ||All of a set A is
defined to be its cardinality |A| if A is finite and to be % if A is infinite: thus
lAjle 2 for every set A. The sum a, +- - - +a, of n quasi-integers a,, ..., a, has
its usual meaning if the g; are all integers, is defined to be = if at least one a; is %,
and is defined to be ~x if no g, is = but at least one is —. The difference a — b of
two quasi-integers 1s the sum of a and —b; and likewise the sum of the
quasi-integers a, —b, ¢ may be denoted by a —b+c¢, etc. For our purposes, the
most important distinctive feature of these definitions is that oo — is defined to be
o, since we wish to think of —c as the largest possible value of |A\ Bl for sets
A, B such that B< A and |Al|=||Bi|=<. Inequalities between quasi-integers are
defined in the obvious way. The infimum inf of of a non-empty subset &/ of 2 is
the greatest quasi-integer g such that g=<a for every a e s, and the supremum
sup &« is analogously defined. If A is a limit ordinal and a, € 2 for every 8 <A, we
define liminf, ., g, to be sup {i,: ¢ <A}, where i, denotes inf{a,: ¢ <G<<A}.

Throughout this paper, it will be understood that we are discussing a society
I'=(M, W, K) and the symbols I, M, W, K should henceforward be interpreted
accordingly.

The demand-set D{X) of a subset X of W is {me M: K(m)< X}, ie., intui-
tively, the set of all men who demand wives from X when an espousal of I is
sought. If f is a queue in W, then A(f) will denote Df(rge f).

With any queue f in W we shall associate a quasi-integer g(f), called the margin
of f, which is defined as follows. Define q((]) to be —||D(@)|.If now dom f is an
ordinal A >0 and q(f’) has been defined for every queue f' in W whose domain is
less than A, then define gq(f) to be

D q(f)+1-A(ONA)| If A is a successor ordinal k+1,

(i) Him inf,_,, g(fs) — 14N\ U o A(f)ll if A is a limit ordinal.
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Roughly speaking, q(f) 1s the largest number of women whom we could hope to
leave unmarried in rge f after working along the sequence f term by term, trying
at each stage to ensure that wives have been found for all the men who demand
them from amongst the set of women so far considered. Of course, if D(@)# @,
then the men in D(¥) know no women at all and we encounter, so to speak, a
shortfall of |D(f)|| women before we even start working along the sequence f:
hence {0} is defined to be —||D(@)|. Intuitively, (i) expresses the idea that, when
the men in A(f.) have been married to women in rge f, with the maximum
possible number g(f.) of such women left unmarried, then adding f(x) to these
unmarried women gives us g{(f.)+ 1 women amongst whom to find wives for the
men in A(f)\ A(f,), which we might at best hope to achieve leaving q(f.)+1—
lA(H\ A(£) of these women still unmarried. If, now, dom f is a limit ordinal A as
in (ii), and if, for 8 <A, ¢(f,) is the maximum number of women who could be left
unmarried in rge f, after wives have been found for the men in A(f,), then we
could at most hope, after working along the sequence f, to leave [=
lim inf,_,, q(f;) women in rge f unmarried to men in C = J,.,4A(f,), and amongst
these | women we must still find wives for the men in A(f)\ C, which can leave at
most [—||A(f)\ C|| unmarried women in rge f The proof of our first lemma
translates this informal explanation into a more precise argument.

Lemma 1.1. If E is an espousal of I' and f is a queue in W then
lrge H\ E[AHT =< q(P. (1)

Proof. The assumed existence of E implies that, for every me M, E(m)ec K{(m)
and therefore K(m)#@ and therefore me D(f). Hence 0= —||D(@)]|=q(D), so
that (1) is true when f=[], i.e. when dom f=0.

To continue the proof by transfinite induction on dom f, suppose now that
dom f=A>0 and assume the inductive hypothesis that |(rge g)\ E[A(g)}|<q(g)
for every queue g in W with domain less than A.

Suppose first that A is a successor ordinal k + 1. Then

E[A(f0]< K[A(f)]l s 1ge £, = (rge )H\{f(x)}. 2)

Moreover rge f, =rge f and therefore
E[D(rge f.)]< E[D(rge f)lc rge f,

E[A(fo]< E[A(Hl<1ge f. (3)
Using the inductive hypothesis, (2) and (3), we sce that

q(H) =q(f) + 1-laO\ Al
= |(rge fO\ E[A(fON+ 1 - lE[A(DINELAGFI
=ll(rge N\ ELAGFON —IETANTN E[AGITI
=|l((rge N\ E[A(FOD\(ELAN N E[AF)DI
=ll(rge H\ELAN]-

ie.
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Now suppose that A is a limit ordinal. Let i, denote inf {q(f,): ¢ <6 <A} for
every ¢ <A, and let V denote |4, 4(f,). Since rge fy Srge f and consequently
A(fgy< A(f) for every 8<<A, it follows that V< A(f). Therefore

E[V]< E[A(H]< K[A(f)lcrge f. (4)

For ¢ =< 60 <A, the inductive hypothesis gives

q{fe)= ||(rge fTONE[A(f)]= H(rge f¢) \ E[V]“
Therefore iy =|/(rge f,)\ E[V]| for every ¢ <A, and consequently

lim inf q(f,) =sup {i,: ¢ <A}
= sup {{(rge f,)\ E[V]|: & <A} =||(rge /H\E[V].
Hence

q(f) = li{’n iAnf a(fe)—llAH\ V|

=|(rge H\ELVII-IE[ANI\ELV]
= |[(rge H\ E[VD\(E[A(HI\ E[V D
= |[(rge NN ELAN]I

in view of (4).

We shall say that a society (M, W, K) is good if q(f) =0 for every queue f in W,
and is bad if q(f)<0 for some queue f in W. Lemma 1.1 implies that every
espousable society is good. The purpose of this paper is to establish the following
theorem.

Theorem 1.2. A male-countable society is espousable if and only if it is good.

Thus, if a male-countable society (M, W, K) is not espousable, then there is a
queue f in W with q(f)<0. Informally speaking, f is a countable transfinite
sequence of women which provides a fairly obvious obstruction to the existence of
an espousal, because an impossibility is encountered when we work along this
sequence term by term, trying at each stage to ensure that wives have been found
for all the men who demand them from amongst the women so far considered.

In essence, Theorem 1.2 is a conjecture of [3]; but in [3] I mistakenly suggested
taking q(J)=0 as the first step in the definition of g{f).

2. Preliminary lemmas

Definition 2.1. If f',f°, ... f* are queues with disjoint ranges and dom f' =
a, (i=1,..., n) then fl*f*=...xf" will denote the queue h with domain «,+
a,+ - +a, such that

hla, ta,+-+o,_,+0)=f(0), i=1,2,...,n;0<q
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(where a;+a,+ - -+a;_;+60 means 0§ if i=1). Informally, the terms of the
queue fl'#f7%---xf" are the terms of f' followed by those of f? followed by
those of f> etc. The queue {(0, x)} will be denoted by [x]: in other words, [x] is the
queue f such that dom f=1={0}, f(0)=x.

If AcM, Uc W then I'TA, U] will denote the society (A, U, KN(A x U));
and I'-A, I'-U TI'-A-U wil denote I'TM\A, W], ITM, W\U],
I'IM\ A, W\ U] respectively. If acM, ueW then I'-a, I'-u, I'—a—u will
denote I'—{a}, I'—{u}, I'—{a}—{u} respectively. If f is a queue in W then I]f will
denote I'— A(f)—rge f and I'Tf] will denote ITA(f), rge f].

As previously stated, we shall throughout this paper be considering a society
denoted by both I' and (M, W, K); but we may also wish to consider other
societies, such as I'— A where A = M. In such situations, the name of a society in
which the symbols D, A, q are to be interpreted may be attached to these symbols
as a suffix. However, if no suffix is attached, then D, A and g should be
interpreted in the society denoted by I" and by (M, W, K). For example, Lemma
2.2 below asserts that Dp_,(X) = Dr(X)\ A.

Lemma 2.2. If Ac M, X< W, then Dr_,(X)=D(X)\ A.

Proof. Let K, = K\(AXW). Then I'-A =(M\ A, W, K,). Moreover K,(m)=
K{(m) for each meM\A. Hence, for any meM\A, we have me
D_.(X)iff K,(m)< X, which occurs iff K(m)< X, which occurs iff m e D(X).
Therefore

Dr_A(X)=D(X)N(M\ A)=D(X)\ A.
Corollary 2.3. If A<M and f is a queue in W then Ar_,(f)=A())\ A.
Lemma 2.4. If U, X are disjoint subsets of W then D _(X)=D(XU U).
Proof. Let KY = K\(Mx U). Then I'-U =(M, W\ U, K"). Moreover K"{(m)=
Km)\U for each meM. Hence, for any meM, we have me
D,_(X)ifft KY{m)< X, which occurs iff K{(m)\ U< X, which occurs iff K(m)<
XUU, ie meD(XUU,).

Corollary 2.5. If f, g are queues in W with disjoint ranges then A_,.(f)=
A(g*f).

Proof. By Lemma 2.4,
D rge o(rge f) = D((rge g) U (rge f)) = D(rge (g *f)).

Lemma 2.6. If Ac M and U, X are disjoint subsets of W then Dy_, _(X)=
D(XU U\ A.
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Proof. By Lemmas 2.2 and 2.4,
Dp_ g AX)=Dp_o(XUU)=D(XUU)\A.

Corollary 2.7. If f, g are queues in W with disjoint ranges then Ap{g)=
A(f+g)\ A(f).

Proof. By Lemma 2.6,

AF/f(g) = Dr_a(f)—rge f(rge g) = D((rge f)U (rge g)\ A(f)
= D(rge (f*gh\A(f)=A(f=D\A(P.

Lemma 2.8. If A is a finite subset of M and f is a queue in W then
ar-Af)=qH +A N A (5

Proof. By Lemma 2.2,

qr-a@) = —|IDr_@] = —IDO\ A
= -|ID@|+IlAND@)|=q@)+]|ANAO.
Hence (5) is true when f=[], i.e. when dom f=0.

To continue the proof by transfinite induction on dom f, suppose now that
domf=A>0 and assume the inductive hypothesis that qp_,(g)=
q(g)+|A N A(g)| for every queue g in W with domain less than A.

If A is a successor ordinal « + 1, then the inductive hypothesis and Corollary 2.3
give

Ar-alD)=qr_alf)+1=Ar_ AN\ Ar_a(fl

=q(f)+ANAfIlI+1
—IAH\ AN AFIN A

=q(fo+ANAFIN+ 1= AO\NAFI
+HAN@AON G

=q(f)+1-lam\AIl+IlA Nna@

=q(H+[lAnafl.

Now suppose that A is a limit ordinal. Let V denote | J,., A(f,). Since A is

finite, there exists £¢<<A such that ANV<cA(f.) and consequently ANV=
A NA(f,) for £ <8< A. Therefore

lim inf g(f,) + A N V|| =lim inf (q(f,) +]A N A(f,)])

=lim inf q,-_A(fs)
8—A
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by the inductive hypothesis. This observation and Corollary 2.3 give

ar-a(H) = ligli)‘nf ar-alfo)— “A r-a(M\ 9L<J)\A r—A(fe)“

= lim inf g(fo) + A O VI=anO\ A)\9L<JA(A(fe) \A)
= lim inf a(fo) HIA N V= AD\ VII+]A N AN\ D)
= lim inf q(f,) —lAM\ Vl+lAn Al
=q(+|ANAF].

Lemma 2.9. Let f, g be queues in W with disjoint ranges. Suppose that dom f= 8
and dom g is a limit ordinal A. Then

lim infq((f* 8)¢) = lim inf q(f* g).
8-—>8+A 8—A

Proof. Let us write

do = q((f*8)e), q5=q(f* &),
Qs ={qe: <0<8+A}, ={qe <0<},
iy =inf Q,, it,=inf Qj,
I =1im inf g, I’ =1im inf g5.
8->8+A 6—>A

If 6<A then f*g,=(f*g);,, and therefore q)H=qs.o Therefore Q)=Q;,,
and consequently

i,=1s,, forevery y<A. (6)
Therefore
U'=sup{if: ¢<A}=sup{iy,: <P <d+A}<sup{i,: ¢<d+A}=1L

For every ¢ such that §<¢$ <8+A, we have ¢ =8+ p(¢) for some ordinal
p(¢) <A and therefore, by (6),

Iy = i,y <sup{il: y<A}=1l.
For every ordinal ¢ <8, we have Q; < Q, and therefore, using (6),
iy <ig=ij=ssup{il: y<A}=1".

It follows that I'=sup {i,: <8+ A} =1 Since we have already proved that I'<,
we conclude that |=1".

Lemma 2.10. If uec W and f is a queue in W\{u}, then
qul*f)=1+qr_Af). (7)
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Proof. By the definition of g([u]) and Lemma 2.4,
q(u]=0) = q(u) =qO) + 1 -[lAu\ A0
= —[ID@)|+ 1 -|D{u)\ D@ =1-|D{u})]
=1-[Dr @l =1+qr .0

Hence (7) is true when dom f=0.

To continue the proof by transfinite induction on dom f, suppose now that
dom f=A>0 and assume the inductive hypothesis that q([u]* g) =1+q,_.(g) for
every queue g in W\ {u} with domain less than A.

If A is a successor ordinal « + 1, then the inductive hypothesis and Corollary 2.5
give

qLulxf)=qul*f)+1-|Aul= H\ A(ul= £
=1+qr(f)+1-lar LA\ Ar_ufl
=1+q,_.f).
Since A(([ul*f)y) < A([ul*f),), it follows that

U Aldul*hHe)= U A(([u]*f)3)=UAA([u]*fa). (8)

B<14+A l=p<i+A
If A is a limit ordinal, then Lemma 2.9, (8), the inductive hypothesis and
Corollary 2.5 give

q([ul*f)=lim inf q(([u]*f)e)—ilA([u]*f)\B Q+AA(([u]*f)B)\|

8—1+A

= liznﬂiAnf q(ul*f)—llAul=H\ LJAA([U]*]‘;)H

=liminf (1 +qp(fo) = 1A, (H\ UA Ar

=1+ liren ipf Ar-ulfo) =18 —H\ UA Ar_ (Il

=1 +q{"—u(f)'

{In fact, | +A =A when A is a limit ordinal, but this fact is not needed in the
above argument, although we use the fact that 1+A is a limit ordinal in applying
the definition of q([u}*f).)

Lemma 2.11. If f, g are queues in W such that q(f) =0 and (rge f)N(rge g)=0
then

qr,A8)=q(f=g). 9
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Proof. Using Lemma 2.6 we obtain
QF/f(D) = ”Dl‘/f(ﬂ)” = _“DF—A(f)*rge f(g)“
= —[[D@Urge H\ A =0=q(f) = q(f D).

Hence (9) is true if dom g =0.

To continue the proof by transfinite induction on dom g, suppose now that
dom g = A >0 and assume the inductive hypothesis that q,{h) = q(f* h) for every
queue h in W\ (rge f) with domain less than A.

Let dom f=4. It is clear that

A((f*2)e) S A((f*g)y), HHO<SH=<E+A (10)
In particular,

A(f)c A(f+g), (11)

A(f)icA(fxg,), fa<A (12)

Moreover, it follows from (10) that

U A((f*g)B)=8<BL<J$“A((f*g)B)= LQAA(f*gJ (13)

B<E+A

If A is a successor ordinal x+1 then the inductive hypothesis, Corollary 2.7,
(11) and (12) give

‘h"/f(g) = QF/f(gK) +1 _”AI‘/f(g)\Ar/f(gK)”
=q(frg)+1-[AF*\ A\ (AF*gI\ AN
=q(fxg)+1-JA(f=g)\A(f* gl =q(f*g).
If A is a limit ordinal, then the inductive hypothesis, Corollary 2.7, Lemma 2.9,
(11), (12) and {13) give
CIr/f(g) = ﬁ?_j:lf arif8)— “Ar/f(g)\ L_<J)‘Al‘/f(go<)”
:lign%ipf q(f*ge) —(A(f*g)\ A\ L;JA(A(f*ga)\A(f))H

=lim inf q((f* g)e) —[|A(f* @)\ LJAA(f* g

8—>8+A

=lim inf g((f* g)e) —|A(f * g)\,3<L;;JHA((f* 2)a)l

8-—>3+A

=q(f+*g).

Corollary 2.12. If I' is good and f is a queue in W such that q(f)=0 then I'lf is
good.
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Proof. For every queue g in W\rge f, Lemma 2.11 and the goodness of I" imply
that qr,{g)=q(f*g)=0.

Lemma 2.13. If V< Wand I[1=TTD(V), V] and f is a queue in V then
an(f) = q(f). (14)

Proof. Let K;=KN(D(V)xV). If meD(V) then K(m)= V and therefore
Kp(m)=K{m). Let X be a subset of V. If me D(X) then K(m}ng V.
therefore me D(V) and Kp(m)=K{(m)< X and so me Dy(X). If m' e D_(X)
then K(m')= Kg(m'y< X and so m’ € D(X). We conclude that, for every subset X
of V,

Dp(X)=D(X). 1s)
Consequently
4u@) = —[[DaD)il= ~ID®) = 9O,

and therefore (14) is true when dom f=0.

To continue the proof by transfinite induction on dom f, suppose now that
dom f=A>0 and assume the inductive hypothesis that g;(g)=q(g) for every
queue g in V with domain less than A. By (15), A5(f) = A(f) and Ax(fy) = A(f,)
for every 8 <A. From this remark and the inductive hypothesis, we see that

(i) if A is a successor ordinal x + 1 then

an(H) = an(f)+ 1=lAn(H\ An(fI
=q(f)+1=lA\ A= q(h);

(1) if A is a limit ordinal then

au(f) = lizn_)i)\nf an(fo) — | Ax(H\ 99,\ A(f)l
= lil;n_)i)‘nf q(fe)— ||A(f)\9UAA(fe)|| =q(f).

Corollary 2.14. If I" is good and g is a queue in W then Ig] is good.

Proof. Let f be any queue in rge g. Then q(f)=0 since I' is good. Taking
V =rge g in Lemma 2.13 gives qr(f) = q(f)=0.

3. Selecting a wife for a

To prove the existence of an espousal in a good male-countable society I, we
might begin by considering one man a and trying to find a woman u € K{(a) such
that I'—a —u is good. Then a could be married to u and we could re-commence
work in the good male-countable society I'—a — u by seeking a suitable wife for a
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second man. This process could be continued until all the men are married. This is
approximately the method of proof which we shall use, but we shall need to
replace the notion of a good society by an apparently more general notion of a
“piecewise good’ society in order to make the argument work. However, after
Theorem 1.2 has been proved, it is fairly easy to show that a society is piecewise
good if and only if it is good. This can be done by first deducing from Theorem
1.2 that a society I'= (M, W, K) is good if and only if ITL, W] is espousable for
every countable subset L of M—which is not surprising since the definition of
goodness considers countable transfinite sequences only.

Lemma 3.1. If I" is good and male-countable, ac M and |K{a)|>X,, then
I'—a—u is good for some uc K{(a).

Proof. Let M* ={me M: |[K(m)|<R,}. Since |M*|<|M|<X, and |[K(m)|<R, for
every me M*, it follows that |[K[M*]|<RX,<|K{a)| and so we can select uec
K{a)\ K[M*]. Let f be a queue in W\{u}. We shall show that

ar-.f)=q(f). (16)

Let X be any countable subset of W\{u}. Then D(X) and D(XU{u}) are
subsets of M™*. Moreover, since ug K[M™*], it follows that an element of M*
belongs to D(X U{u}) if and only if it belongs to D(X). Hence D(X U {u}) = D(X),
from which it follows by Lemma 2.4 that

Dr_(X)= D(X). (17)
Taking X =@ in (17) gives
qr-. )= _“Dr—u(’b)u = _”D(Q)“ =q0J).

Hence (16) is true if dom f=0.

To continue the proof of (16) by transfinite induction on dom f, suppose now
that dom f=A >0 and assume the inductive hypothesis that q,_,(g)=q(g) for
every queue g in W\ {u} with domain less than A. The subsets rge f, rge f, (a <A)
of W\{u} are countable by the definition of a queue, and so it follows from (17)
that A, (fi=A(f) and A, (f,)= A(f,) for every o <A. From this remark and
the inductive hypothesis, we see that

(i) if A is a successor ordinal « +1 then

ar-N=aqr-f+1=I1Ar_ O\ Ar_(fO
=q(fo+1-jaO\ Al = a(f);

(i) if A is a limit ordinal then

ar-H= lilsrii)flf ar-ufo) 1A r_.(O\ 9L<J>\ Ar_(fo)l

= lim inf q(f,) -llac \GL;IAA(fe)H =q(f).
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We have now proved (16) by transfinite induction.
If f is a queue in W\ {u} then

ar-o-)=ar O+ KatNAr D= qr LN =4q())=0

by Lemma 2.8, (16) and the hypothesis that I" is good. Therefore I'—a—u is
good.

Lemma 3.2. If I' is good, aeM, ue W and I'—a—u is bad then there exists a
queue g in W such that uerge g, a€ A(g) and q(g)=0.

Proof. Since I'—a —u is bad, there is a queue h in W\{u} such that q,_,_,(h) <
0. By Lemmas 2.8 and 2.10,

qLul*h)+{a} 0 AQul* b= qr_.(ul*h)
= 1+qF—a—u(h)SO~
From this and the fact that q(Qu]+*h)=0 since I' is good, we conclude that

q[ul=h)={a}n A(u]=h)| =0, so that [u]*h is a queue g with the properties
asserted by Lemma 3.2.

Lemma 3.3. If I'is good, f is a queue in W, q(f) =0, ac M\ A(f), uc W\rge f and
(I'/f)—a—u is bad, then there exists a queue g in W\rge f such that uerge g,
ag€ A(fxg) and q(f+g)=0.

Proof. By Corollary 2.12, I/f is good. Therefore, by Lemma 3.2 (with [7f
replacing I') there exists a queue g in W\rge f such that uerge g, a¢ 4,4{g) and
qar;,Ag)=0. Since ae M\A(f) and ag 4;,{g), it follows by Corollary 2.7 that
ag A(f+g). By Lemma 2.11, q(f+*g)=0.

Lemma 3.4. If I' is good and male-countable and a € M then there exist a queue f
in W and a woman u such that ag A(f), ue K(a)\rge f and (I'/f)—a —u is good.

Proof. Suppose that

(1) (I7f)—a~—u is bad for every pair f, u such that f is a queue in W and a# A(f)
and ue K(a)\rge f.

We observe that —{|D(@)|| = q(1)=0 since I' is good. Therefore

@=D® =AO). (18)
Therefore a2 A((J) and I'lJ=1I" and so, taking f=0 in (1), it follows that
I'—a—u is bad for every u € K{a). Therefore |K{a)| <N, by Lemma 3.1. There-
fore there exists a queue h in K{a) such that dom h < w, 1rge h = K{a) [1.e. either
the finite sequence h(0), h(1),..., h(|K{(a)|—1) or the infinite sequence h(0),

h(1), ... is an enumeration of K{a)].
By (18), a2 D(®). Therefore K{a)#® and so h(0) exists. Let i, =0. Since we
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have observed that I'—a ~ u is bad for every u € K{a), it follows that I'—a — h(i,)
is bad. Therefore, by Lemma 3.2, there exists a queue f' in W such that
h(iperge f', ag A(f") and q(f")=0.

Since a# A(f'), there exists an i for which h(i)€rge f'; let i, be the least such i.

By (1), U7f"Y)—a—h(i,) is bad. Therefore, by Lemma 3.3, there exists a queue
f?in W\rge f* such that h(i,)erge 2 a€ A(f'*f?) and q(f*'*f>) =0.

Since ag A(f'*f?), there exists an i for which h(i)&rge (f'*f?); let i, be the
least such i. By (1), (I'/(f**f?))—a — h(i3) is bad. Therefore, by Lemma 3.3, there
exists a queue f° in W\rge (f'*f>) such that h(i;)erge f>, a€ A(f'*f>+f°) and
q(ft=f>=f)=0.

Since a A(f' *f?=f*), there exists an i for which h(i) £ rge (f' = f>=*f>); let i, be
the least such i. By (1), (IV(f'*f>%f*))—a— h(i,) is bad. Therefore, by Lemma
3.3, there exists a queue f* in Wirge (f'#f>*f°) such that h(i,)ecrge f*,
ag A(f'#f2f3%f%) and q(f'=f2=f>+f%)=0.

Continuing this process, we define f7, i, for every positive integer r. Let F°
denote [, let F™ denote f'xf?x---xf" for each positive integer r, and let
F=f"s=f*%-.-with the obvious interpretation, i.e. F is a queue with domain
dom f'+dom f>+: - - such that F(dom F'!+a)=f"(a) whenever r is a positive
integer and « edom f".

Our procedure ensures that h(i,)erge f™ for every positive integer r: therefore
no f" is [1 and so dom F is a limit ordinal. Our procedure also ensures that
q(F")=0 for every positive integer r and therefore

lim inf g(F,)=<0. (19)

a—dom F
Since h(i,)crge f* for each r, it follows that i, i,,...are distinct. Since h(i)e
rge F'~' whenever i<, it follows that h(0), h(1),... all belong to rge F, i.c.
K(a)crge F and consequently a € A(F). On the other hand, since the element
h{i,) of K(a) belongs to rge f* for each positive integer r, there can be no
8 <dom F for which K{a)c<rge F,; and therefore a# ), yomrA(F,;). Hence
a € A(F)\ U g<gom rFA(Fg) and so

lACF)\ U FA(F9)||>0- (20)

8 <<dom

Since dom F is a limit ordinal, it follows from (19) and (20) that q(F)<0,
contradicting the goodness of I Hence () leads to a contradiction and Lemma
3.4 is proved.

Lemma 3.5. If I' is good and male-countable and a € M then there exist u € K{a)
and disjoint sets M', M", W', W” such that

M\{a}=M UM", W\{u}=wWuw’
and I'TM', W'], ITM", W"] are both good.
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Proof. There exist f, u as specified in Lemma 3.4. Let
M'=A(f), M"=M\({a}UA(f)),
W' =rgef, W"= W\ ({u}Urge f).

Then I'TM’, W']=TI{f], which is good by Corollary 2.14, and I'fM", W']=
(I'’f) — a — u, which is good since f, u are chosen in accordance with Lemma 3.4.

Definition 3.6. I" is piecewise good if, for some positive integer r, there exist
disjoint sets M,, W, M,, W,, ..., M, W, such that

M,UM,U---UM, =M, WUW,U-- - UW, =W
and I'IM,, W] is good for i=1,...,r

Lemma 3.7. If I' is piecewise good and male-countable and ac M then I'—a—u is
piecewise good for some ue K{a).

Proof. Since I' is piecewise good, there exist disjoint sets M,, W,, M,,
W,, ..., M, W, such that

MU---UM =M, WuU---UW, =W

and the society I, =I'IM,, W,] is good for i=1, ..., r. For some k, a € M, and, by
Lemma 3.5 applied to I}, there exist ue K(a)N W, and disjoint sets M,
M", W', W” such that

M \{a}=MUM", W\ ul=wuw”

and I [M', W], I.[M", W] are both good. Let I'*=T—a—u. Then
[M', W=T[M, W], r*{M”, Wl=T,[M", W],
M, Wl=T; (i#k)

and the goodness of these societies ensures that I'™ is piecewise good.

4. Proof of Theorem 1.2

If I is espousable then it is good by Lemma 1.1.

To prove the converse for male-countable societies, suppose that I' is good and
male-countable. Let M ={q;: i € I}, where I={1,2,...,|M|} if M is finite, I is the
set of all positive integers if M is infinite, and a;# a; when i# j. Since I' is good, it
is piecewise good. Consequently, if |M|=1, then I'—a,—u, is by Lemma 3.7
piecewise good for some u, € K{a,). Let '—a,—u, =, =(M,, W;, K,). If |M|=
2, then I',—a,—u, is by Lemma 3.7 piecewise good for some u,c K(a,). Let
N—a—u,=I=(M, W, K,). If |M|=3, then I'n,—a;—u; is by Lemma 3.7
piecewise good for some us € Ky{(as). Let [, —a;—uy=y=(M,, W;, K;). If | M|=
4, then I'y—a,—u, is by Lemma 3.7 piecewise good for some u,e Ki{a,), etc.
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Continuing this argument, we obtain an espousal {(a,, u,): i € I} of I". Therefore I"
is espousable.
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1. Introduction

One form of the Dirichlet’s principle states the following.

For every positive integer n there exists a positive integer N such that for every
set X with at least N elements the following holds: for every mapping c: X —
{1, 2} (i.e. for every partition of X into two parts) there exists Y< X, |Y|= n, such
that the mapping ¢ restricted to the set Y is a constant mapping. (Of course, we
may put N=2n-1.)

This theorem was generalized to the B-property of hypergraphs (see e.g. [3]), to
the chromatic number of graphs and hypergraphs (a theorem typical for our
purposes is the existence of highly chromatic graphs and hypergraphs which are
locally sparse; this was started by [1, 2], and in full generality proved in [4, 6]),
and to Ramsey theory (started by [12]).

All these concepts and theorems are dealing with partitions of subobjects of a
certain “type” (such as vertices, edges) into a small number of parts. Shortly, the
above concepts and theorems are related to restricted partitions.

In this paper we are interested in unrestricted partitions.

We try to develop results and theory analogous to the above one for restricted
partitions. Some of the stones in this project are already known. These are
Dirichlet’s principle itself and the Erdds-Rado canonization Lemma which are
stated below.

Dirichlet’s principle. For every positive integer n there a exists a positive integer N
such that for every set X with at least N elements the following holds: for every
mapping ¢ : X — X (i.e. for every partition of a set X into any number of parts) there
exists a subset Y < X, |Y| = n, such that the mapping c restricted to the set Y is either
a constant or a 1-1 mapping. (Of course, it suffices to put N=(n—1)*+1.)

Erdos-Rado Canonization Lemma. Put

(f)z{Yg X; |Y|=k}.

181
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For all positive integers n, k there exists a positive integer N such that for every set X
with at least N elements the following holds: For every mapping

()= (&)

there exists a subset YS X, |Y|=n, a (total) ordering < of Y, and a set o S
{1, ..., k} such that

cmy,....,mPD=clmy, ..., mi}), {my...,m}e (Z)

{mi,--.,mL}E(D, m<m,<----<my, mi<my<---<mj,
if and only if m;=m! for i€ w.

We include these theorems into a more general framework. This can be done
by means of the following definitions.

Definition 1.1. A hypergraph (X, #) is a called selective if for every mapping
c:X — X there exists an edge Me# such that the mapping c |y is either a
constant or a 1-1 mapping.

A constant with no stress on its actual value will be denoted by the symbol §. A
1-1 mapping will be denoted by 1-1. Using this convention we may rewrite the
last part of Definition 1.1 as follows: “such that either ¢ |,y =§ or ¢ |y =1-1".

Definition 1.2. Let (X, M) be a hypergraph. A hypergraph (X', #’) is said to be
selective for (X, M) if for every mapping c: X' — X' there exists an embedding
X, M)— (X', M) such that either cof=8§ or cof=1-1.

Here, a mapping f: X — X' is said to be an embedding if f(M)e M'iff Me M
and fis 1-1.

The fact that (X', M) is selective for (X, M) will be denoted by (X, M) —
(X', M.

Definition 1.3. Let % be a class of hypergraphs. X is said to have the selective
property if for every Be X there exists a C€ X such that B— , C.

Remark 1.4. In many respects the selective property of a hypergraph is analogous
to the B-property of a hypergraph.

It is easy to see that x(X, M)=k for every selective k-uniform hypergraph
(X, m). On the other hand the hypergraph

(X, (f)) is e-selective iff | X|=(k—1)>+1.

From these two facts P.Erddés personal communication deduced that there are
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constants c¢,, ¢, such that ¢,k <(s(k))"*< ¢,k for all sufficiently large k. Here s(k)
is the minimal number of hyperedges of a k-uniform selective hypergraph. This is
analogous to results related to B-property.

On the other hand a “large” chromatic number of a hypergraph does not imply
selectivity. An example is provided by 3-uniform hypergraphs

(EHE) +<G))

These hypergraphs fail to be selective for every set X.

In Section 3 we characterize nearly all classes of hypergraphs which have the
selective property. This will be proved by means of the Existence Theorem of
Section 2. In Section 4 we further generalize the above concepts so as to include
Erdds-Rado Canonization Lemma. We prove also that the class of all finite
graphs has the edge-selective property (see Definition 4.2 below).

2. Sparse and selective hypergraphs

Theorem 2.1. For all positive integers k, r, k=2, there exists a hypergraph (X, M)
with the following properties:

(1) (X, M) is k-uniform;
(ii) (X, M) is selective;
(iii) (X, M) does not contain cycles of length <r.

Proof. Let X be a set with n elements, k=2. Let ¢c: X — X be a colouring. A
k-tuple Me(}) is said to be c-selective if either ¢ |y, =§ or ¢ |y =1-1.

We claim that there exists a positive constant a >0 which depends on k only
such that the number of c-selective k-tuples is greater than «(;) for any colouring
c:X—>X

In order to prove this we distinguish two cases.

(i) |¢c " (x)|<n/2k for every xeX. Find a colouring ¢:X — X such that ¢
refines € (i.e. ¢(x)=c(y) implies &(x)=¢&(y)) and such that | (x)|>n/k—n/2k
whenever ¢~ '(x) # §. Clearly every C-selective edge is c-selective and the number
of C-selective edges is at least

(3
kK 2k) ~ " k)’

where «, does not depend on n.
(ii) |¢"'(x)|= n/2k for an x € X. Then the number of c-selective edges is at least

).

We put a = min (aq, a,).
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In the proof of Theorem we shall apply the method used by Erdos and Hajnal
in [4].

Let G = (X, M) be a hypergraph, ¢: X — X a colouring. Denote by G/c the set
of all c-selective edges of G.

Let k, r be fixed. LetG ., ,= G be a random subset of the set

({1,2,...,n} ) (n>k n»r),
k
where for each k-tuple M holds P[MeGl=p=n'"*"’ where 0<8<r"!. Put
vy=P{c:{1,...,n}—>{1,..., n}implies |G/c|= n]. (%)
Then
(&)
k n
1_Y$Z(P[G/C<n])<""( " )(1“P)“(")=0(1), ()

where a >0 is a constant given by the above claim.

On the other hand if we denote by ¢(G) the number of edges of a hypergraph
G which are contained in cycles of lengtht, 2=<t=r, then one can show that the
expected value is

E (c(G, k. p)~o(n) (* %)
(see [4]).

It follows from (*) and (* *) the existence of a k-uniform hypergraph which has
for every partition of its vertices at least n selective edges and which has at most n
edges in circular cycles of length <r After deleting these edges we get a
hypergraph with the required properties.

3. Selective classes of graphs and hypergraphs
We shall consider the following classes of hypergraphs (see [8, 10]).

Definition 3.1. Let U be a set of k-uniform hypergraphs. Denote by Forb (%)} the
class of all k-uniform hypergraphs (X, #) which do not contain any member of %
as an induced subhypergraph.

Explicitly: (X, #)e€ Forb (A)iff A — (X, M) for no Ae¥ (A — (X, M) means
that there is an embedding A into (X, #)).

Theorem 3.2. Let k =2 be a positive integer. Let Y be a finite set of 2-connected
k-uniform hypergraphs. Then the class Forb (W) has the selective property.
A hypergraph (X, M) is 2-connected if the hypergraph

X\ {x},{M: xg M e M}

is a connected hypergraph for every x € X.
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Proof. Put r=max{|A|: AeA}+2. Let (X, #M)e Forb (). Put |X|=K. Let
(Y, N) be a k-uniform selective hypergraph without cycles of length =<r (use
Theorem 2.1). Let #£y:X —> N be a fixed bijection for each Ne N. Define a
hypergraph (Y, M) by M'e M'iff there exist Ne N and M € M such that £ (M) =
M.

Claim 1. (X, M) — ., (Y, #").

Let ¢c: Y — Y be a mapping. By the selectivity of (Y, &) there exists N€ X such
that either c|y=§ or c|v=1-1. But $y:X— N is a desirable embedding
(x, M)— (Y, M) as for k=2 (Y,N) does not contain 2-cycles: it is either
co¥fy=8§ or co¥y=1-1.

Claim 2. (Y, #')c Forb ().

Let there exist A€ and an embedding f: A — (Y, #M'). As A is 2-connected
and (Y, ) does not contain a (non-trivial) 2-connected subhypergraph of size |A|,
it follows that there exists N € & such that f(A) < N. But (Y, M) restricted to the
set N is a hypergraph isomorphic to (X, #). This contradicts (X, /)< Forb ().

Remark 3.3. Theorem 3.2 is, in several respects, the best possible. If U fails to be
finite than Forb (%) need not be selective. Consider k =2, A={C,;,;: k=1}.
Then Forb () is the class of all bipartite graphs, which obviously fails to be a
selective class. On the other side if k=2, A ={P,} (P, is the path of length n),
then G e Forb ()= x(G)=<n and it is easy to see that Forb (¥) fails to be a
selective class for every n=1.

Theorem 3.2. generalizes a previous result of the authors asserting that the class
Gra (k) of all graphs which do not contain a complete graph with k vertices is a
selective class (see [11]). This result was established by means of type representa-
tions of graphs (see also [9]).

4. A generalized selective property

For simplicity we relate concepts and results of this part to graphs only. In a full
generality we hope to do this elsewhere.

Notation. For graphs G, H denote by () the set of all (induced) subgraphs of H
which are isomorphic to G.

Definition 4.1. Let F, G be graphs. We say that a graph H is selective for G with
respect to F if for every mapping

e:(i)(r)
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there exist a subgraph G’ of H isomorphic to G (i.e. there exists G'e(8)), an
ordering < of V(G') and w<{1,2,..., n=|G|} such that the following holds:

c(F)=c(F,) iff V(F)={xi,....x)},i=1,2, and x/=x7 forjew.

In this case we write shortly

c G,)z can.
F

The validity of the statement in Definition 4.1 will be denoted by G—5, H.
Remark. Clearly G — ., Hiff G —> .. H.

Definition 4.2. A class ¥ is said to have the F-selective property if Fe 3% and for
every G € ¥ there exists He % such that G >, H.

Theorem 3.2 describes many classes of graphs which have the K,-selective
property. For F# K, it is very hard to prove the F-selective property even for the
simplest classes of graphs. In this paper we sketch a proof that the class Gra of all
finite graphs has the K,-selective property (that is the edge-selective property). In
order to do this we have to introduce some more concepts.

Definition 4.3. Denote by Rel the class of all finite relations (X, R), Re XX X,
which do not contain a directed cycle.

A 1-1 mapping f: X — X' is called an embedding of a relation (X, R) into a
relation (X', R') if

(f(x), f(y))e R'"&(x,y)eR.

(X, R) is said to be a subrelation of (X', R’} if X< X' and the inclusion is an
embedding.
Denote by

((X', R'))
(X, R)
the set of all subrelations of (X', R") which are isomorphic to (X, R).

We shall need the following special relations:

Fy=(0,1,2}1{0,1),(1,2),(0,2)});
F,=({0,1,2},{(0,1), (1, 2)});
F;=({0, 1,2}, {(0, 1), (0, 2)});
F,=(0, 1,2}{(0,2),(1,2)}.

The following is a special form of a result proved in [10].
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Theorem 4.4. Letic{1,2,3, 4} be fixed. Then for every (X, R)e Rel there exists a
relation (Y, )€ Rel such that the following statement holds:
For every mapping

c: ((YI;S)) — {0, 1}
there exists |
e(5)

such that the mapping c restricted to the set (X', R'), F,) is a constant mapping.

The validity of the statement of Theorem 4.4 for particular (X, R) and (Y, S)
will be denoted by (X, R)— 5 (Y, S).
Using this theorem we prove the promised result.

Theorem 4.5. The class Gra has edge-selective property.

Proof. Let G=(V, E) be a fixed graph, V={v,,...,v,}.
Define the relation (V, R) by

R ={(v, v)): {v, v} E, i<j}.

We may assume without loss of generality that the relation (V, R) has the
following properties:
(i) there exists a vertex a € V such that (a, v)e R for all a#ve V;
(ii) there exists a vertex be V such that (v, b)e R for all b#ve V;
(iii) (V, R) contains graphs G,, G,, G; depicted on Fig. 1 as induced subgraphs.
(i), (i) and (iii) may be assumed as we may, eventually, enlarge G by new
vertices and edges.

—

N |
ZERN ~J 1

G, G,
Fig. 1
Let (V, R), i=1,2,3,4, be relations satisfying
(V,R) -5 (V, Ry) —352(V,, R,) —33(V3, R3) _>g‘ (V4 Ry).

Put (V,, R,) = (V’, R') and define the graph (V', E) by E'={{x, y}: (x, y)e R'}.
We prove (V, E)—>:f,j (V', E’). Let =< be a fixed ordering of V' which satisfies

R'c =,



188 J. Neseiiil, V. Rodl

This ordering < exists since (V', R’} is acyclic. Let ¢:E'— E' be a fixed
mapping. Write the same letter ¢ for the mapping c¢:R’— R’ defined by
c((x, y))=c({x, y}.

Each of the relations F, i=1, 2, 3,4, contains at most 3 arrows and for a
partition d:E(F;)— E(F)), i=1,2,3, 4, there are the following possibilities:

(1) d is a constant mapping;

(2) d is 1-1 mapping;

(3) d((0,1))=d((0,2)) and d{(0, 1)) # d((1, 2));

(4) d((0,2))=d((1,2)) and 4((0, 1)) #, 2)).

Denote the partition which corresponds to a mapping d with property (1) by =,
i=1,2,3,4. (The partitions m; and m, are related only to the arrows of F,.)

Now define the mapping

i : <(V1,:IR )) il {1, 27 37 4}
as follows. Put
o(F)=k iff Fe <(V)’GR ))

and the partition ¢ restricted to the edge set of F' coincides with .
Using the above definition of (V’, R') we find a

(V,R)e<(v’ R ))
(V,R)
such that for every ie{l, 2, 3, 4} there exists a constant §; with the property that
the mapping ¢; restricted to the set ((V, R), F,) is the constant §,.

However the values §,, §,, §; and §, are not arbitrary. We distinguish four
cases.

(a) §,=1.
Then, since the relations G, and G, which are subrelations of (V, R), we have
§,=8,=8§,=8§,=1. Consequently the mapping ¢ restricted to the set R is a
constant mapping.

(b) §,=2 and §;=1.
Then (because of the relation (G,) we have §, =3 and (because of the relation Gj)
we have §,=2.

Finally, let c((x, y)) = c((x’, y")) and x# x' for some (x, y), (x’, y)€ R. It follows
from §,=1 that

c((x,¥)) = cl(x, b)) = c((x", y)) = c((x", b)),

where b is the vertex of (V, R) which corresponds to the vertex b of (V, R). From
this it follows that §,# 2, §; # 3, which is a contradiction.

Consequently c((x, y)) = c{(x’, y) iff x = x" for all (x,y)eR, (x',y)eR.

(c) §,=2, §;=2 and §,=1.
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Then §, =4 by the relations G, and G;. As in the case (b) one can show that
c((x, y)=c((x',y) iff y =y’ for all (x,y),(x",y)eR.

(d §,=8:=8,=2.
It follows that §; =2 and it is easy to see that in this case ¢ restricted to the set R
is a 1-1 mapping.

As the above cases exhaust all possible cases, we have

(V,E)— G (V', E)).

Concluding remarks. (1) Using a similar argument we may prove that for every
positive integer k the class Gra (k) of all graphs which do not contain a complete
graph with k vertices, has the edge-selective property.

However for edge-selectivity we do not have a theorem similar to Theorem 3.2
for vertex-selectivity.

(2) We may prove that the class Gra has the F-selective property only if either
F=K, or F=D,=({1,2,...,k}, 9).

This and other related results are going to appear elsewhere.
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MONOCHROMATIC PATHS IN GRAPHS

Richard RADO

Department of Mathematics, University of Reading, Whiteknights, Reading RG6 2AX,
Great Britain

P. Erdés kindly communicated to the author the following result.

Theorem 1. Let I' be a complete denumerable graph and suppose every edge of I’
receives one of the two colours c,, c,. Then there are two paths m,, m,, each finite or
simply infinite, such that every vertex of I' occurs exactly once in either 7, or w, and
every edge of m; has the colour ¢; for i€{0, 1}.

A close study of the proof sketched by Erdos reveals that Theorem 1 is a rather
special case of a more general proposition, Theorem 2 below, in which the graph
is directed and is only approximately complete and in which there may be more
than two colours.

Italic capitals denote sets and |A| is the cardinal of A. Put L=
{1,3,5,...}U{w}, where w Is the least infinite ordinal.

Theorem 2. Let A < Vand |A|<R,<|V| and let I be a directed graph of the form
I'=(V, E),

where E < A X V. Suppose that, for every x € A,
[{ye V:ilx y)€ E}|<|V], (1)

and every edge of I receives a colour from the colour set 1. Then there is a set J< 1
and, for every jelJ, a m;e L and x(v)e V for 0sv< my, such that

(i) every x € A occurs among the x,(v),

(i) x;(p) = x;(v) implies (i, u)=(j, v),

(ii)) if je J and O0<v<m, and v is odd, then

(v =1, (), (x,(v + 1), x,(v))
are two edges, each of colour j.
The condition (iii) means that the path belonging to a value j € J (monochroma-

tic of colour j) has its edges alternately directed one way and the other:

Theorem 1| is obtained by putting in Theorem 2 A=V; |V|=R,, E=
VXV —{x, x):xe V}; I={c,, ¢,} and making the colour of every edge indepen-
dent of its orientation.

191



192 R. Rado

Proof of Theorem 2. We begin by disposing of a trivial case. If {I|=|A] then we
can choose a set J< I with [J|=|A|. We put m; =1 for je J. We can write

A ={x(0):je I},

where x;(0) # x;(0) for i#j. Then assertion (iii) holds vacuously because there is
no odd number » with 0 <v<<m,
So we may suppose

Hl<lAl=R,=<|VI 2)
and write

A=la,:0sA<p} (3)
for some p=w. For x€ A put

fi{x)={ye V:(x, y) has colour i} for iel,

f=U filtny={ye V:(x.y)€ E}.

We shall now define systems of paths which have some of the desired properties
and which will be used to construct a system of paths as required in Theorem 2.
Denote by (2 the set of all triples of the form

(R, (m,:peR), (5,(r):peR;0=sv<m,)), 4)

where: Rcl; m,e{1,3,5,.. Jfor peR; x,(v)e Vifor pe R; 0sv<m,; and we
have the conditions: x,(v)= x,(¢') implies (p, v)=(p’, v');if pe R and 0 <v<m,;
v odd. then

P

(=1, x v+ e A,

xp(v)e f(x,(v=DNf(c,(v+ 1)
and finally

Vo N tm, = )= V]. (5)

R

We notc that the paths constructed from the triple (4) already satisfy the
conditions (ii) and (iii) of the theorem to be proved. The ‘“factor” V on the
left-hand side of (5) is added in order that the case R = should be covered. This
enables us to assert that {2 is not empty, since the triple (¢, 6, 8) belongs to (2,
where 6 denotes the empty family.

I now describe a recursive construction. Let the triple (4) belong to (2
Moreover, let it be chosen in such a way that the set R is maximal by inclusion. If

Acix,(r):ipe R:0O=sv<m,},
then the assertion holds with J = R. So we may suppose

Aglx,(v)ipe R;0=sv<m,}.
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Then there is a least number v, < p such that a,, # x,(v) for all p, v with p€ R and
Osv<m, Puta=aq,,.

Case 1. For every p,e I we have

ful@) 2 O fo (5 (m, —DI<|VL (6)

Put
D=Vn rpr(xp(mp —1)).

Then |V —f(a)|<|V| by (1); |D|=|V| by (5); for every po€ L, |f,(a)N D|<|V| by
(6); from (2) we deduce that |f(a)N D|<|V].
Now we obtain the contradiction

|VI=|D|=|D N f(a)|+|D - f(a)|<|D N f(a)| +|V - f(a)| <|V|.
Case 2. There is p,e I with

(@)D U f,(x,(m, = 1) =[V]. (7)

Case 2a. po£ R. Then put m, =1; x,(0)=a; R'= R U{p,}. It follows that the
triple

(R',(m,:peR),(x,(v):peR;0<v<m,))

belongs to {2, which contradicts the maximality of R.

Case 2b. p,€ R. By {7) we can choose an element x,(m, ) of the set
fald)Y N f(x,(m, — 1) —{x,(v):pe R; 0sv<m,}.
peR

Put x, (m, +1)=a; m, =m, +2; m,=m, for pe R—{p,}. Then the triple
(R,(m,:peR),(x,(v):peR;0<sv<m,))

belongs to (2.

It has now been shown that, if we are given any triple of (2 having a maximal
set R and if the triple does not give rise to a system of paths with the required
properties, then we can lengthen one of its paths by adding two more vertices. In
doing this we shall have incorporated in our paths the first vertex of A in the
enumeration (3) which has not yet occurred in our paths. A moment’s considera-
tion shows that if we iterate this procedure, starting with a triple of {2 whose R is
maximal, we shall continue to lengthen some of our paths, aiways maintaining the
truth of (ii) and (iii) of Theorem 2. We shall have satisfied the requirements of
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that theorem if we take as J our set R and as paths the limits of the paths which
are being constructed by our procedure. [

It would be of interest to decide whether Theorem 1 can be extended to the
case of monochromatic paths of length greater than w. Let n be an ordinal number
and let, for every ordinal v <n, x, be a vertex of the edge-coloured complete
graph I. The family (x, : » < n) might be called a path in the colour c if x, # x, for
w<v<n and if, for every ordinal v with v+ 1< n, the edge {x,, x,.,} has colour ¢
and, for every limit ordinal » < n, the supremum of the set {u <v:{x,, x,} has
colour ¢} has the value ». The conditions are equivalent to saying that, whenever
w < v<n, we have x, # x, and {x,, x,} has colour ¢ for some A in p<A<w.
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Gallia est omnis divisa in partes tres (J. Caesar).

0. Introduction

In this paper we present a general study of a natural partition of the edges of a
graph G into three classes — the principal tripartition of G — which is defined
canonically from the cycie space of G.

For ease of visualization we shall employ the graph-theoretic concepts of cycles
and cocycles, but unless otherwise stated the results hold also for binary matroids.
We prove a number of theorems concerning this principal tripartition and indicate
that the results are of more than merely academic interest by applying them to
obtain a criterion for the planarity of a graph to solve a conjecture of Gauss
concerning the sequence of crossing points of a closed curve. The tripartition can
also be used to obtain many ““Parity Theorems” — theorems concerning the parity
of certain numbers associated with a graph, such as the number of spanning trees.
A Parity Theory for graphs may be regarded as promising for networks
engineering.

1. Definitions and notation

By a graph G=(V, E) we shall mean a finite set E (the edges of G), each
element of which is incident to two elements (not necessarily distinct) of another
finite set V (the set of vertices). Thus we allow our graphs to have loops and
multiple edges (see Berge [1]).

Let €=2F be the free vector space over GF(2), with the elements e of E as
basis. In other words, any subset A of E is represented by a vector whose
e-component, A, is 1 if ec A and 0 otherwise. We shall use the same symbol to

* This research was supported by NATO Research Grant No. 637.
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denote the set or the corresponding vector. Moreover, a lower-case letter denot-
ing an edge in E will also denote the set consisting of that edge alone, as well as
the corresponding vector. A set will be called ’even’ or ‘odd’ according as it has
even or odd cardinality.

Clearly e+ e = 0 (the zero vector) for any e E and A+ A =0 for any A€ €.
For A, Be € we write

(A,B)= ), A.-B,
ecE

(the “scalar” product of A and B). If (A, B)=0, i.e., if A and B have an even
number of common elements, we say that A and B are orthogonal.

If & is a subspace of &, write

9+={Be¥|(A,B)=0 forall Aec3}
@+ is called the orthogonal subspace of 9. We have [6]
dim @ +dim @* =card E

and
(@Yt =9.

Similar results to the above hold for the space ¥ =2 defined over the set V of
vertices of G (or, for that matter, over any finite set).

The boundary de of an edge e is defined as the sum of its incident vertices. The
boundary mapping 9: €—7 is the linear mapping defined on the basis of € as
above, i.e.,

0A = Z de.

ecA

The coboundary 8v of a vertex v is defined by the relation
(e, 8v) = (de, v),

i.e., the edge e € 8v if, and only if, v e de. The coboundary mapping ¥ : 39— € is
the linear mapping defined on the basis of ¥ as above, i.e.,

88 =Y év.

veES

It follows that for any A€ € and Se ¥V
(A, 88)=(3A, S). (1.1)

The space € = ker d will be called the cycle space of G, and the space Im & will
be called the cocycle space of G. Since Im & is the orthogonal complement of
ker & the cocycle space is denoted by 4*. The elements of € are called cycles of
G; those of €* are called cocycles. There may be some sets of edges that are both
cycles and cocycles. Such sets, belonging to the space €N €~, are of particular
importance and will be called bicycles. In Fig. 1.1. in heavy lines bicycles X are
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Fig. 1.1

displayed, which do not include other nonzero bicycles; vertices labels display S,
such that 8§ = X. In Fig. 1.2. the sets {d, e}, {b, ¢, d}, {b, ¢, ¢, k, I} are cycles, the
sets {b, c}, {b,d. e, f},{c, b, h, i, j, k, I} are cocycles, and the set {b,c, f, g h, i} is a
bicycle.

If Ae¥€ and there is an edge e such that A+ee %", then A is called a
principal cycle of G. The edge e and the principal cycle A wili be said to be
associated, each with the other. Similarly, if B € €+ and there is an edge e such
that B+ee € then B is called a principal cocycle of G. In Fig. 1.2 the cycle
{b,c,f, g h, i k, I} is principal because the addition of edge j makes it into a
cocycle; the cycle {b, ¢, d} is also principal since the deletion of edge d makes it
into a cocycle. The cocycles {b, ¢, f, g, h, i, j, k, I} and {b, ¢} are principal cocycles.

A tree in a graph is a minimal subset of E which meets every nonzero cocycle.
A cotree is a minimal subset of E which meets every nonzero cycle. If Y is a tree
then Z= Y + E is a cotree. If ec Y, denote by Y* the unique cocycle which meets
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Y in e alone; if e€ Z, denote by Z° the unique cycle which meets Z in e alone.
The family {Y*}..y is a basis — called a fundamental basis — for €*; similarly the
family {Z°}.., is called a fundamental basis for €.

A dendroid of €N €* is a minimal subset of E which meets every nonzero
bicycle. A fundamental basis for €N €* is also defined as above.

2. The edge tripartition of a graph

By of + % we mean the subspace of € which is the sum of the subspaces & and
B of €. Then it is known [6] that for any subspace 4 of € we have

(ENEH) =%+ ¢". (2.1)

Let us now consider what status an edge e¢ may have with respect to € + 6*.

If e belongs to a bicycle X then e is not orthogonal to X. Hence e is not a
vector of € +%*. If e does not belong to any bicycle, e is orthogonal to every
bicycle, and hence e is a vector in € + €*. In the latter case there exist a cycle
v(e) and a cocycle w(e) such that

e=vy(e)+w(e).

Clearly y(e) is a principal cycle and w(e) is a principal cocycle.
Such an expression of e as the sum of a principal cycle and principal cocycle will
be called a decomposition of e. In general it is not unique, for we also have

e=(y(e)+ X)+(w(e)+ X), (2.2)

where X is any bicycle. Moreover, it is easily verified that any decomposition of e
is of the form (2.2) for some bicycle X.

From (2.2) we deduce that all principal cycles associated with e are of the form
v(e)+ X, while all principal cocycles associated with e are of the form w(e)+ X,
where X € 4N %*. Hence if e belongs to one of its associated principal cycles, it
belongs to all of them, and similarly for its associated principal cocycles. Thus we
have the following theorem.

Theorem 2.1. For any edge e of G, exactly one of the following statements holds:
(i) e belongs to a cycle which becomes a cocycle when e is omitted from it,
(ii) e belongs to a cocycle which becomes a cycle when e is omitted from it,

(iii) e belongs to a bicycle.

In this way we define the principal tripartition of G, denoted {P, Q, R}. We have
P={e|Avyec¥, ecy and e+vye¥$'}
Q={e|Fwe¥, ecw and e+wec¥}
R={e|IXec¥N¥", ecX}
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From Theorem 2.1 we have P+ Q+ R =E. Since €* is defined from %, Theorem
2.1 can be stated in terms of cycles only.

Theorem 2.2. For any graph there exists a tripartition {P, Q, R} of its edges such
that

(i) e€ P if there is a cycle, containing e, which is orthogonal to every cycle not
containing e and is not orthogonal to any cycle containing e,

(ii) e€ Q if there is a cycle, not containing e, which is orthogonal to every cycle
not containing e, and is not orthogonal to any cycle containing e,

(iti) e € R if there is a cycle containing e which is orthogonal fo every cycle.

In Fig. 2.1 the principal tripartition of the edges of the graph is displayed. In
this graph there is one bicycle {a, b, c, d, e, f, g, h, i, j}. Thus the edge p can be
decomposed in two ways, viz.

cycie cocycle
p=atctetf+gtitk+l+tnt+tq tatct+et+f+gtitk+l+tn+ptg,
and
p=btd+h+j+tk+i+n+gq +tb+d+h+jt+tk+i+tn+p+g

We give below some elementary properties of the principal tripartition. First,
note that obviously every loop (edge which is a cycle) belongs to P, and every
bridge (edge which is a cocycle) belongs to Q; more we have the following
theorem.

Fig. 2.1

Theorem 2.3. (i) The zero cocycle is a principal cocycle associated with e if and
only if e is a loop.
(ii) The zero cycle is a principal cycle associated with e if and only if e is a bridge.

Theorem 2.4. (i) If e P every principal cycle associated with e is odd and every
principal cocycle associated with e is even.

(ii) If e€ Q the parities in (i) are reversed.

(iii) Every bicycle is even.
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Proof. This is a direct consequence of the orthogonality of cycles and cocycles.

Theorem 2.5. Given ¢, fe P+ Q, and e=y(e)+w(e) and f=vy(f)+o(f) two
decompositions of e and f:

(i) eey(f) if, and only if fe y(e),

(i) e€ w(f) if, and only if fec w(e).

Prooi. Consider

(v(e), ¥() = (e + wle), ()
=(v(e), f+w(f).
Then, by orthogonality,
(e, v(M =(¥(e), ), (2.3)
which is equivalent to (i). It follows immediately that
(&, w(f))=(wle), f), (24)

which is equivalent to (ii).
When e# f then

(e, v(N) = (e, w(N)=(v(e), H={w(e), f).

If these scalar products all have the value 1 we say that e and f are ‘interlaced’.
The set of edges interlaced with e in G will be denoted by A(e). Thus, for
eec P+ Q, we have

rAle)=y(e)Nw(e)N(P+ Q). (2.5)

From (2.1) we also deduce that any set A € € which is orthogonal to all bicycles
can be decomposed, i.e. written as

A=y(A)+w(A), (2.6)

where y(A)e € and w(A)e €*. y(A) is called a decomposition cycle associated
with A, and w(A) is called a decomposition cocycle associated with A.

Theorem 2.6. Given two sets A, Be (€N €)", and any decomposition of them
A=vy(A)+w(A), B=y(B)+ w(B), then

{y(A), B)=(A, y(B)) 2.7)
and

(0(A), BY=(A, w(B)). (2.8)
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Proof. Consider
(y(A), y(B))=(w(A)+ A, y(B))=(y(A), (B)+ B).
Then, by orthogonality

(A, y(B))=(y(A), B).
The same holds for w(A), «(B).

Since €' is defined from ¥, then the decomposition formula (2.6) can be stated in
terms of cycles only, or in terms of cocycles only.

Theorem 2.7. (i) Given Ac E, a cycle y(A) is a decomposition cycle associated
with A, if and only if y(A) is orthogonal to every cycle orthogonal to A, and not
orthogonal to every cycle not orthogonal to A.

(ii) Given A < E, a cocycle w(A) is a decomposition cocycle associated with A, if
and only if w(A) is orthogonal to every cocycle orthogonal to A, and not orthogonal
to every cocycle not orthogonal to A.

Proof. (y(A), y)=(A, v) is equivalent to {(y(A)+ A, y)=0. And (y(A)+ A, y)=
0 for every y € € means that y(A)+ A is a cocycle, which also means that y(A) is
a decomposition cycle associated with A. The proof of (i) is similar.

Theorem 2.7 stated for A =e, or simply Theorem 2.2., gives the following
theorem.

Theorem 2.8. (i) A cycle y(e) is a principal cycle associated with e if and only if
v(e) is orthogonal to every cycle not containing e and not orthogonal to every cycle
containing e.

(ii) A cocycle w(e) is a principal cocycle associated with e if and only if w(e) is
orthogonal to every cocycle not containing e and not orthogonal to every cocycle
containing e.

3. Graphs without bicycles

Let us consider graphs for which R =0. The importance of this restriction will
appear more clearly in Section 7 where it is shown that by a slight manipulation of
its edges any graph can be converted into a graph without bicycles.

If R=0, € is the direct sum of € and €*. The decomposition of any edge e,

e=y(e)+wle), 3.1

is unique, and we can speak of the principal cycle and cocycle of e. And for any
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A € ¥, A has the unique decomposition,

A=y(A)+w(A), (3.2)
where
y(A)= Y yle), w(A)=Y wle). (3.3)

This defines two linear projection mappings y:€— %€ and w:%— €*. Clearly
Im y=% and Ker y = €+, Im 0 = €*, and Ker w = ¢, and also y>*=y and 0’ = o.
In terms of principal cycles and cocycles we have the following theorem.

Theorem 3.1. In a graph without bicycles
() Ae¥€ is a cycle if and only if the principal cocycles of the edges of A have
zero sum, i.e.,

Acbe ) w(e)=0.
ecA
(ii) Be € is a cocycle if and only if the principal cycles of the edges of B have
zero sum, i.e.,

Be¢'© ) y(e)=0.

ecB

Notice that this theorem can be used to derive principal cycles or cocycles from
others. For example, the principal cycle for an edge belonging to a cocycle B can
be found if the principal cycles for the other edges of B are known.

Theorem 3.2. Let G be a graph without bicycles, and let Y be a tree of G and Z the

corresponding cotree. The family of cycles {y(e)}..z is a basis for € and, similarly,
{w(€)}ecy is a basis for €*.

Proof. {y(e)}..x generate € since Imy=%. Let us consider, for feY, the
fundamental cocycle Y’. Since Ker y= %", we have y(Y/)=0. Since Y'=
f+ZNY', y(f) is expressible as a sum of y(e) for some edges ee Z. Hence
{v(e)}.cz also generate €. Moreover, {y(e)},.. is minimal since its cardinality is
the dimension of €.

Theorem 3.3. If R=0, then the number of edges interlaced with an edge e is
always even, i.e.,

O=A(e) (mod?2).

Proof. Since P+ Q=E, Eq. (2.5) becomes A(e)=vy(e)N w(e). By orthogonality
A(e) is even.
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4, The generalized tree and cotree functions

Given a tree Y and its corresponding cotree Z in a graph G, consider the
fundamental bases {Y¢},.y of €* and {Z°}..~ of €. For an edge ¢ c E we define

yle)=Y*¢ if eeY,

4.1)
yey= ) Y° if eeZ
acZ+te
and
e)=2° if eeZ,
z(e) 4.2)

z(e)= Z Z* if eeY.

acY*+e
By linearity we can extend these definitions from edges to sets of edges and
obtain functions
y:€—> %+, 2:¢—>¢%.

We call y the generalized tree function since it extends to edges not in Y the
well-known isomorphism y,y of 2¥ to €*. For a similar reason z is called the
generalized cotree function, extending the isomorphism z,z of 2% to 4. Clearly
Imy=%*and Im z=%.

Theorem 4.1. (i) A € € is a cycle if and only if the cocycles y(e) for e € A have zero
sum, i.e.,

Acte Z y(e)=0.

ecA
(it) B € € is a cocycle if and only if the cycles z(e) for e € B have zero sum, i.e.,
Be%'o ) z(e)=0.

ecB

Proof. Left to the reader.

There exists a convenient relation between the generalized tree and cotree
functions and the decomposition (2.6).

Theorem 4.2. For any edge ec E of a graph without bicycles

(i) The cocycle y(e) is a decomposition cocycle associated with 'Y N y*(e).
(i) The cycle z(e) is a decomposition cycle associated with Z N z%(e).
(ili) The union of the two families {Y N y*(e)}.cy and {Z N z*(e)},. . is a basis of €.

Proof. By the definition of y, for any B € €* we have B =y(Y N B). Hence, since
y2(e) e €*, put B = y?(e):

y>(e) = y(Y Ny*(e)),
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Fig. 4.1

which means that y(e) and YNy?*(e) have the same image under y: since
ker y =%, we have

YNy*(e)=A+y(e),

where A €4 (and y(e)e €*): which is a decomposition (2.6) of YN y?(e).
The proof of (ii) is similar, the proof of (iii) follows easily.

Theorem 4.3. If G is a graph without bicycles,

(i) There exists an integer « such that y* = w.
(ii) There exists an integer B such that z° = v.

Proof. Left to the reader.

Theorem 4.3 and Theorem 4.2 provide means for computing the projections
v and @ when R =0.

For the graph of Fig. 4.1, take the tree Y ={a, b, ¢, d} and the cotree Z = {1, 2}.
Corresponding to Z the fundamental basis of cycles is displayed in the window of
first column of Table 1. From it, the whole Table 1 is generated.

Table 1
z(e) e y(e) y(A)  vy(e) w(e) PQOR e
=w(A)
lac a al acl bed2 abcd2 Q a
2bed b b2 bcd2 abd12 adi2 P b
12abd ¢ cl2 abd12 acl al P c
2bed 4 d2 bed?2 abd12 abl12 P d
lac 1 ac2 acl bed?2 bcd12 Q 1
2bcd 2 bed12 bed2 abd12 abdl P 2

5. Bipartition of the edges into a cycle and a cocycle

Let us consider the decomposition of E into a cycle and a cocycle.
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Theorem 5.1.* There exists a bipartition of the edges of a graph into a cycle and a
cocycle, i.e.,

E=(y(E)+ X)+(w(E)+X),
where Xe €N %€".

Proof. Any bicycle X being even (Theorem 2.4), we have (X, E)=0 for any
bicycle; thus E belongs to (€ N $*)*. Then, by Eq. (2.6), E has the decomposi-
tion given in the theorem.

It is usual to say that a graph (or a binary matroid) is even if E is a cycle, and
bipartite if E is a cocycle. Then in an even graph there exists a decomposition with
v(E)=E and »(E)=0; and in a bipartite graph there exists a decomposition with
v(E)=0 and w(E)=E.

Theorem 2.7 can be stated for A =E.

Theorem 5.2. (i) A cycle y(E) is a decomposition cycle associated with E if and
only if y(E) is not orthogonal to every odd cycle.

(ii) A cocycle w(E) is a decomposition cocycle associated with E if and only if
»(E) is not orthogonal to every odd cocycle.

And for graphs without bicycles we have the following.

Theorem 5.3. Given a graph without bicycles,

(i) a nonzero cycle y(E) is a decomposition cycle associated with E if and only if
v(E) is orthogonal to every even cycle,

(ii) @ nonzero cocycle w(E) is a decomposition cocycle associated with E if and
only if w(E) is orthogonal to every even cocycle.

Theorem 5.4. For any bipartition of a graph, E = y(E)+ o(E),
P<y(E), Qcw(E).
In case R=0,
P=vy(E), Q=w(E).
The proofs of Theorems 5.3 and 5.4 are immediate.
It follows from the theorem above that if R is known, and a bipartition is given,
the principal tripartition is known. The knowledge of R for graphs comes simply

! The appearance of this Bipartition Theorem among graph theorists has been both recent and
reticent. Pla proposed to us a proof in the context of flow theory, independently of the paper [2] by
Chen. Later we learned from Lovasz that Gallai had proved the theorem in 1965, and that Pésa had
given a combinatorial algorithm for finding bipartitions. We shall describe Pésa’s algorithm, with
proof, in the next section.
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Fig. 5.1

from the fact that bicycles are coboundaries of the elements of Ker 48 = (Im 48)*,
and a generating system of Im 88 is obviously (98v),y. For the graph of Fig. 5.1,
while taking a fundamental basis for Im 98 (with dendroid 1+3+2+4, in Table
2), bicycles appear given by &S, such that 36S=0(S=1+3+5 or 2+4+6; then
R=a+b+c+d+1+f). Also appears w(E), given by 8S such that d6S=dE =
1+2+4+5(5S=234 or 156 or 23 or 1245; then w(E)= a +d). So the tripartition

is:
P=g+h, Q=0, R=a+b+c+d+I+f

And also appears a principal cocycle associated with g, given by 8S such that
38S=0g=1+5(S=2+4; then w(g)=a+b+c+d).

Table 2

v v 388 S

1256 1*5+ 24
1234 3*5+ 34
24 2%6* 124
2345 4*6° 1234
1456 — 135
15 — 246

o N S N

2 Stars indicate ele-
ments of the dendroid
of Im 34.

The next section is devoted to an algorithm for computing combinatorially
rather than algebraically the decomposition of E.

6. A combinatorial bipartition algorithm for graphs

Throughout this section we shall consider only graphs, rather than binary
matroids in general, since we shall need to consider vertices and the boundary and
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coboundary mappings. We shall also assume that these graphs have no loops or
multiple edges.

The problem of finding a bipartition of the edges of a graph G is that of finding
a set F of vertices such that

E=8F+A, 6.1
where A € €, which is equivalent to finding F< V such that
oE = aoF. 6.2)

A set F of vertices satisfying (6.2) will be called a foot of G.

Now the edges in 8F are those that join a vertex in F to a vertex in V+F, and
the graph resulting from their removal (which has edge set A) is an even graph,
since A€ %. Hence a foot F of a graph G is a set of vertices such that the
subgraphs induced by F and by V+F are both even graphs.

The following theorem is a direct corollary of Theorem 5.1. The constructive
proof of it given below is due to L. Pdsa (personal communication).

Theorem 6.1. Every graph has a foot.

Proof. The proof is by mathematical induction on the number of vertices in the
graph. The theorem is true for graphs with 1 edge and 2 vertices; suppose it
true for graphs having n —1 vertices, and consider a graph G having n vertices.

If all the vertices of G have even degree then there is nothing to prove. If not,
then let v be a vertex of odd degree, and let H be the set of vertices adjacent to
v. We now modify G to obtain a new graph G’, as follows. Delete the vertex v,
and hence any edges incident with v, and replace the graph induced by H by its
complement. Thus two vertices of H will be joined in G' if, and only if, they were
not joined in G. Edges incident with at least one vertex not in HU{v} are not
affected.

Since G’ has n—1 vertices it has a foot F'. The vertices of H are therefore
divided into two classes, HNF and HN(V'+ F’), where V' is the vertex set of
G’. One of these has an odd number of vertices, the other an even number, since
the cardinality of H is odd.

We now assert that the set (either F' or V'+ F') which contains an odd number
of vertices of H is a foot F of G. For consider what happens when we reconstruct
G from G'. In the subgraph induced by F only the vertices of FN H are affected,
each to the extent of reversing its adjacencies with the even number of other
vertices of FN H. Hence the degrees of these vertices, and hence of all vertices in F
remain even (see Fig. 6.1}, In the subgraph induced by V'+ F the degrees of the
vertices of (V'+ F)N H are changed in parity by the complementing operation;
but the restoration of the vertex v to the set V+ F increases by 1 the degrees of
these vertices, and moreover the degree of v in the subgraph induced by V+ F is
even. Hence the subgraphs induced by F and V + F are even, and F is a foot of
G. This completes the proof of the theorem.
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It is clear that this theorem also gives rise to an algorithm (also due to Pésa) for
determining a foot of a graph G on n vertices. We use the operation described
above to construct a sequence of graphs of decreasing numbers of vertices until
we obtain an even graph. This must happen in at most n steps — possibly with an
empty graph. By retracing this sequence of graphs we can construct a foot of each
from a foot of the preceding one and hence find a foot of G (see Fig. 6.1.).

The crucial step is that of taking the local complement, and this could require a
time O (n?). Hence the whole algorithm can be completed in O (rn®) time.

4 ®
~—x
& «— 52 «— 3

Fig. 6.1

7. The effect of edge manipulation on the tripartition

We consider here four manipulations of an edge e (illustrated in Fig. 7.1) and
introduce the following notation for them.

(a) G:e denotes the graph obtained from a graph G by bisecting the edge e, i.e.,
replacing e by two edges, e; and e,, in series.

(b) G.e denotes the graph obtained from G by contracting the edge e, i.e.,
deleting e and identifying its ends.

(c) G&e denotes the graph obtained from G by doubling the edge e, ie.,
replacing e by two edges, e, and e,, in parallel.

(d) G- e denotes the graph obtained from G by deleting the edge e.

G:e G-e G&e G-e

Fig. 7.1
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Table 3
Manip ein e; & e,in new P new Q new R Aq
G:e P R P+e+PnNA(e) Q+0NAe) R+ej+e,TAr(e) +1
G.e P P+e+PNi(e) Q+QNA(e) R+A(e) +14
G&e P P Ptete +e,+a(e) Q+Ale) R 0
G-e P P+e+Afe) Q+Xx(e) R 0
G:e Q Q P+A(e) Q+ete +e,+A(e) R 0
G.e Q P+A(e) Q+e+Ale) R 0
G&e Q P+PNA(e) Q+e+QnNAfe) R+e +e,+A(e) +1
G-e Q P+PnNAle) Q+e+QNaAle) R+A(e) +1°
G:e R 14 P+u*(e) Q+p(e) R+ u(e) -1
G.e R P+put(e) Q+p(e) R+pu(e) -1
G&e R Q P+pu(e) Q+p*(e) R+ pule) -1
G-e R P+u~(e) Q+u*(e) R+ pule) -1

*If e is not a loop.
* If e is not a bridge.

The effect of these four operations on the graph depends strongly on the status
of the edge e relative to the tripartition. Hence there are 12 cases to consider.
The results are displayed in Table 3; proofs are immediate.

The new symbols used in Table 3 are defined as follows. By Aq is meant the
change in the dimension g of the bicycle space; by i(e) is meant the set of edges
isobicyclic to e, i.e. the set of fe R such that for any bicycle X, ec X& fe X; by
w*(e) is meant the set of fe R such that in any decomposition of E, e and f
occur in the same part (thus pw*(e) is a subset of w(e)); by p(e) is meant the set
of edges f such that in any decomposition of E, e and f do not occur in the same
part (thus u (e) is also a subset of u(e)).

From Table 1 we see that for any one manipulation the change in the
dimension of the bicycle space is —1, 0 or +1 depending on which of the classes P,
Q, R (not necessarily in that order) contains the edge being manipulated. Hence
we have:

Theorem 7.1. Given any of the four manipulations and any edge e, the class (P, Q
or R) to which e belongs can be determined from the change in the dimension of the
bicycle space when the manipulation is performed.

Manipulations produce relations between the principal cycles and the decom-
position cycles associated with E, as follows.

Theorem 7.2. (i) If ec P: y(e)= y(E(G —e))+ y(E(G)),
(ii) If e€e Q: w(e) = w(E(G.e))+ w(E(G)).

Proof. Note that cycles of G — e are cycles of G, and cocycles of G.e are cocycles of
G. Therefore Theorem 7.2. is a consequence of Theorems 2.8 and 5.2.
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A manipulation can be performed on several edges, and is then called manipu-
lation on a set of edges AcE (G:A, G.A, G& A, G—A).
Let us consider the problem of withdrawing all the bicycles from a graph.

Theorem 7.3. Given a graph G with bicycles, and A = E; if A is a dendroid of the
bicycle space of G, then G: A, G&A, G.A and G — A are graphs without bicycles.

Proof. The theorem is proved by simple inspection of Table 3 and the use of a
fundamental basis of bicycles.

8. Bicycles and the parity of the tree number

In this section we shall make use of Table 3 of Section 7 to establish some
assertions concerning the parity of the tree number N(G)—the number of
spanning trees of the graph G. (In what follows the word ‘spanning’ will be
understood).

The following theorem was first proved by W. K. Chen [2].

Theorem 8.1. If G is connected, N(G) is odd if and only if R=0.

Chen’s proof of this theorem is algebraic, depending on the calculation of a
determinant; here we give a combinatorial proof.

Proof. We know that if an edge e is not a bridge or a loop, then
N(G)=N(G.e)+ N(G—e).

For any tree T of G either contains e, in which case it remains a tree when e is
contracted, i.e., T.e is a tree of G.e; or it does not, in which case it is also a tree of
G — e. Moreover the number of trees is not changed when a bridge of a graph is
contracted, or when a loop of a graph is deleted.

The proof of the theorem is made by mathematical induction on the number of
edges. We first observe that the theorem is true for the connected graphs with two
edges. Note also that the theorem is true for a connected graph where each edge
is either bridge or loop.

Now suppose that the theorem is true for graphs having at most m edges, and
consider any edge e which is not a bridge or a loop in a graph having m + 1 edges.

If ec P, then G.e has bicycles and N(G.e) is therefore even, by hypothesis.
Hence N(G) has the same parity as N(G — e). But G — e is connected, and G has
the same bicycles as G —e, and hence the theorem is true for G.

If e € O, we obtain the same result by interchanging the operations of deletion
and contraction.
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If ec R, G.e and G — e are connected and have same bicycle space dimension.
Therefore N(G.e) and N(G —e) have the same parity; hence their sum is even.

Theorem 8.2. (a) Let A be a non-empty subset of E(G) not containing any cycle of
G. The number of trees of G that contain A (or cotrees disjoint from A) is odd if
and only if G.A has no bicycles.

(b) Let B be a nonempty subset of E(G) not containing any cocycle of G. The
number of trees of G that are disjoint from B (or cotrees containing B) is odd if and
only if G— B has no bicycles.

Proof. In fact the trees containing A (or the cotrees disjoint from A) are in
bijection with the trees (or cotrees) of G.A; the trees disjoint from B (or the
cotrees containing B) are in bijection with the trees (or the cotrees) of G— B.
Therefore Theorem 8.2. is a corollary of Theorem 8.1.

For other results on parity and principal tripartition, see de Fraysseix [3].

9. Bicycles and the Tutte® polynomial

We now show that the dimension q of the bicycle space of G is related to the
Tutte polynomial (or dichromate, see [12]) of More, precisely:

Theorem 9.1. If a graph has m edges and 29 bicycles, then
x(-1,-1)= (=17 (=2)%

Proof. For a graph in which every edge is either a bridge or a loop (say that there are
o bridges and B loops, where a + = m) it is known that the Tutte polynomial
reduces to x°y®, and certainly g =0, so that the result of the theorem holds.
Suppose now that the theorem is true for graphs having at most A edges which
are neither bridge nor loop; let us consider a graph G with A +1 edges which are
neither bridge nor loop, and let e be one of them. Then it suffices to show that the
recurrence relation for the Tutte polynomial is satisfied, that is to say that

(—DY™EA=2)TC 4 (=) CTH=2)1C O = (1) (-2)1P. 9.1

In G.e and G—e the number of edges which are neither bridge nor loop is
smaller than or equal to A. Then by recurrence hypothesis and from Table 3 we
have the following values for the left-hand side of (9.1).

If eeP: (~1)""Y(=2)"" +(-1)" 1 (-2)",

if eeQ: (-1)"(=2)*+(-1)"1(=2)*", and

if eeR: (—1)" H(=2) +(-1)" "1 (=2)* L.

2 We dedicate a new value of the Tutte Polynomial to Professor W. T. Tutte on the occasion of his
60th birthday.
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In each case this reduces to the right-hand side of (9.1) and the recurrence is
therefore satisfied.

10. Characterization of planar graphs by the algebraic diagonal

A graph is planar in the sense of Whitney [13] if there exists a graph G*, called
the algebraic dual of G, and a bijection ¢ of E(G) onto E(G¥), called duality,
such that

(i) every cocycle of a vertex of G has, as dual, a cycle of G*, and

(i) every elementary cycle (i.e. minimal under inclusion) of G* is the dual of a
cocycle of G.

By an algebraic diagonal of a connected graph G having no bicycles will be
meant a walk § on G including each edge exactly twice, such that between two
occurrences of the same edge e in the walk, the set of edges occurring exactly
once makes, with e, the set y(e) if e€ P and w(e) if ec Q.

Theorem 10.1. A connected graph without bicycles is planar if and only if it has an
algebraic diagonal.

(The proof below has been very briefly described in [9]).

Proof. (a) Let G be a planar connected graph without bicycles. Then G and G*
admit dual plane realizations where the dual edges e and e* cross each other and
each is incident to two vertices (distinct or coincident) of one graph, correspond-
ing to faces of the dual graph. We associate with these edges a set of four
elements, denoted by Ie, Je, Te, Ue (represented by the arrows in Fig. 10.1) on
which operates the Klein group (I, J, T, U) (I =identity, J =inverse, T = traverse
and U = transverse). Each of the four elements is incident with a face and a vertex
incident with e, such that, a being any one of them, a and Ta are incident with
the same vertex, while a and Ja are incident with the same face. Thus with G and
G* represented in the plane, we associate a quadrialphabet & on which operates
the Klein group (I, J, T, U). J and T interchange under duality.

1
de |
e T
Te (; Ue
{
|
Te\i!,ier
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/ N

Fig. 10.2

A word in o, Z=cyc, " - ¢; - - - ¢, such that every letter has its incident vertex
in G (respectively G*) in common with the inverse (respectively traverse) of the
following letter is called a word of Gj it describes a walk in G in one of two
senses. The walk is closed if ¢, is considered as following c,. Denote by |Z| the set
of edges encountered an odd number of times in Z. If Z is a closed walk in G
then |Z|eker d. For any permutation 7 on &, if b is on the orbit of a, i.e. if
m*a = b for some integer k, the interval from a (not included) to b (included),
denoted by (a, b]™ is defined as the shortest word ma, w°a, ma,...,b. (a, al”
denotes the orbit of = that contains a. Denote by |a, b|" the set of edges
encountered an odd number of times in (q, b]".

1t is known that for a plane representation of G there is associated with each
vertex a cyclic permutation of the edges incident with that vertex, and hence [7]
an involution B without fixed points on & which interchanges the letters having
the same incidences (see Fig. 10.2). The permutation 7= U.B8 has the following

property.
Property 10.2. For every ae o, (U.t)*=1I and ta# Ua.

It appears that ‘a 7a’ is a word of G and of G¥; in fact, a and J.ra have the
same incident vertex in G, since J.ra = J.U.Ba = T.Ba; moreover a and T.ra have
the same incident vertex in G* (i.e. face of G) since T.7a=T.U.Ba =J.Ba. An
orbit (a, a]” of 1 therefore describes simultaneously a closed walk of G and of
G*. It follows that |a, a|” is the zero bicycle —the only bicycle in G, by
hypothesis. Thus we have:

Property 10.3. For every ac 4, |a, a|” =0.

It follows [8] that = has exactly two orbits, transverses of each other, one being
...abc..., the other ... UcUbUa... (see Figs. 10.3 and 10.4) constituting a
particular closed walk of G and G* in which each edge occurs twice. This walk is
called the Petrie polygon or geometric diagonal A of the plane representations of
G and G*. An argument similar to that used to obtain Property (10.3), taken
together with Eq. (3.1), namely e = y(e)+ w(e), shows that A has the following
properties.
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Fig. 10.3 Fig. 10.4

Property 10.4. For every ac o

(i) if lale P, then Ta is on the orbit of a and |a, Ta|" = y(|a|),
(i) if |a|e Q, then Ja is on the orbit of a and |a, Ja|" = w(|al).
Thus 4 is an algebraic diagonal of G.

For the proof of Property 10.4(i) note that if |a|€ P, then in G, (a, Ta]" is a
closed walk. In G* it is a walk plus the last edge |Tal; Hence (a, 7' Ta]" is a
closed walk. Thus |a, Ta|" is a cycle of G and |a, Ta|" +|a| is a cocycle of G,
whence |a, Tal" = y(|a|). The proof of (ii) is similar.

(b} Conversely we show that, given a connected graph G without bicycles,
having an algebraic diagonal S, we can associate with it a graph G*(S) having the
properties of an algebraic dual in the sense of Whitney. To do this we associate
with E(G) a quadrialphabet & on which operates a Klein group (I, J, T, U) with
the same incidence conventions for each quadruplet and its edge as were given in
Part (a) of the proof. The walk S, meeting each edge exactly twice, is closed. S
induces a permutation 7 (Fig. 10.4) on & consisting of two transverse orbits. One
of these is constructed by describing S, starting at an initial edge and in an
arbitrary sense, and by substituting for any edge e encountered for the first time
the letter Ie (which fixes the vertex of incidence of Te and Ue), and by
substituting for any edge e encountered for the second time the letter Te if the
vertex of incidence of Te agrees, and the letter Je if not. Since, by construction, 7
has the Properties (10.2), the permutation p = T.7 has the following property.

Property 10.5. For every ae oA, (J.p)* =1 and pa# Ja.

Since ‘ara’ is a word of G, ‘apa’ is also a word of G; in fact J.pa and J.ra
have the same incident vertex in G since J.pa =J.T.7a = T.J.7a. The orbits of p
describe walks on G. It follows that the orbits of p containing a and Ja are
distinct (inverses of each other) and constitute a particular closed walk of G,
called a face of G relative to S. This face is said to be incident to the letters a and
Ja. An arbitrary edge e is incident to two faces relative to S (distinct or
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coincident), said to be adjacent. Then G*(S) is, by definition, the graph whose
vertices are the faces defined above and whose edges correspond to adjacent
faces: an edge e* of G*(S) corresponds to each edge e of G having the same
incidence with the faces of G (that is to say with the vertices of G*). The edges e
and e* are said to be duals.

It remains to verify that G*(S) satisfies the Whitney conditions (i) and (ii).

(i) Consider a vertex ve V(G). The permutation o =J.7 has, by Property
(10.2), the following properties:

for every ae o, (T.o)?=1I and oa # Ta.

Since ‘ara’ is a word of G*(S) so is ‘aca’; in fact T.ca and T.7a have the
same incident vertex in G*(S) since T.oa = T.J.ra =J.T.7a. 1t follows that the
orbits of o containing the letters a and Ta, incident with the vertex v, are distinct
(each the transverse of the other), comprise only letters incident with v, and
make up a closed walk of G*(S). The set of edges of G that are incident with v
exactly once (a cocycle of G) therefore has, as dual, a cycle of G*(S).

(i) An elementary cycle A* of G*(S) corresponds, by definition, to a sequence
of distinct faces of G, say fy, fi,...f;....f,, all distinct, where, if n =0, there is
an edge e, incident twice with f;, and, if n >0, there is an edge e, incident with f,
and f,, and an edge ¢,(i=1,2, ..., n) incident with f,_; and f; (see Figs. 10.5 and
10.6). 1t is now a matter of showing that A =(ey, e4,...,¢,) is a cocycle of G.

Consider the following two words of G associated with A:

M(x) = (Ua,, P_lal]pal Ua,(Ua,, P_laz]p aUa, - -+

-+ (Ua;_,, (Fig. 10.5) or x = Ja, (Fig. 10.6).
and

N(x)=(Uay,, Pgla1]p(Ua17 Pvlaz]p < (Uay_y, Pilai]p -+ (Ua,, P_lx]p,

where a, is one of the two letters of e, incident with f,, a;, for 1 =<i=n, is the first
letter of ¢; encountered by the orbit of p starting at Ua;_4, and x is the first letter
of e, encountered by the orbit of p starting at Ua,. M(x) and N(x) are not
necessarily closed. Since x is, like a,, a letter of e, incident with f, we have two
cases to consider: either x = a, (Fig. 10.5) or x = Ja, (Fig. 10.6).

Fig. 10.6
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Ub

Fig. 10.7

At this point we digress slightly to extend our définition of an interval (a, b
over 7. It was defined above as the portion of the orbit of 7 from a to b, and this
definition applies only when a and b are on the same orbit, i.e. when be(a, aT
(see Fig. 10.4). We now extend this definition to cover the case b (a, a] (see Fig.
10.7) as follows. If b is not on the same orbit as a then Ub is, i.e. Ube(q, a]", and
we define (a, b]" to be (a, Ub]'b.

Hence the interval from a to b on the diagonal includes the backtrack ‘Ub b’ on
the edge |b|, which is therefore traversed twice. This means that |b|€|a, b|".

In this new notation Properties (10.3) imply at once a ‘Chasles formula’,
namely:

Property 10.6. For a, be oA, |a, b|" +1|b, c|" =|a, c|".
Properties (10.4), which = satisfies by hypothesis, generalize now to
Property 10.7. For all ac o, |a, Ta|" = y(|a)), and |a, Ja|" = w(|a]).
For, if |a|& P then Ta¢(a, a]” and

la, Tal” =|a, U.Ta|" +|a| = o{|a])+|a| = y(|a)),
while if |a|€ Q, then Ja¢ (a, a]” and

la, Ja|" = |a, UJa|" +|a| = y{la]) +|a] = w(|a]).
We also have, as consequences, the following two useful results:
Property 10.8. For every ac 4, |a, Ua|" =|al.
This property holds since (a, Ual” = (a, a]” Ua, whence |a, Ua|" = 0+]al.
Property 10.9. For every ac 4, |p~'a, a|" = w(lal).

This property holds since (p~'a, a]” = Ta(Ta, a]’, whence |[p~'a, a|” = |a|+ y(|a])
by virtue of Property (10.7).
We now resume the proof of the second part of the theorem.
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In the case x = g, consider the two closed walks K = M(a,)Ua, and L = N{a,),
(see Fig. 10.5). Write K = ¢oc, -+ - ¢; * * * ¢,, Where ¢; € o, and consider the expression

(CO’ Cl]T(Cly C2]T. t (cj—b cj]T e (Cr—17 cr]‘r(cn CO]T,

which is a closed walk over the diagonal with occasional backtracking. The sum of
the edges over the whole walk is zero, by virtue of Properties (10.6) and (10.3),
i.e.

0=|cy, co| +|cp, &+ -+ |Cj71’ CilT

+e oo 6 e, cof” (10.1)

We distinguish two kinds of terms in (10.1). Corresponding to a factor
(Ua;_1, p~'a;F in N(ap) we have terms with ¢,_;=p '¢; and thus |¢; ;, ¢;]" =
w(|c;]), by virtue of Property (10.9). These terms therefore give on summation:

Y o)=Y olch=1), (€)= w(L).

ceN(ag) ceL ec|L
Corresponding to the pair of terms a; U @; in M(x) we have, for i =0, 1, ...,
lo™ a;, ail” +|a, Ual| = o(|ai) +|a;] = y(lai)),

by virtue of Properties (10.1), (10.8) and Eq. (3.1). Summing for all these terms,
we have

n

Y v(ah= Y v(e)=v(A).

i=0 ecA

Hence from (10.9) we have
0=w(L)+y(A). (10.2)

L is a closed walk in G; |L| is therefore a cycle of G, and belongs to the kernal
of w. Hence by (10.2) A belongs to the kernel of v, i.e. it is a cocycle of G, which
is what was to be proved.

In the case x=Jay, consider the two closed walks K'=M(J,) and L'=
N(Jag)Ua, (see Fig. 10.6). Write K'=cqc,---¢;- - -¢, and consider the closed
walk

(€, €T (Cq, 651 -+ (Cj—b C,‘]T SR (R (8
on which the sum of the edges is zero by Properties (10.6) and (10.3), i.e.
0=lco, c,]"+ ey, e+ -+ !cj—la C,‘IT
+e e, o Fe ol (10.3)

Now we distinguish two kinds of terms in (10.3). There are the terms |c;_y, ¢;|”
corresponding to the ¢;€ N(Ja,), where, for ¢;# ¢y, ¢, = p~'¢;, whence

|cj—1’ cj"r = (l)(’cl‘),
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by virtue of Property (10.9); while for ¢; =c,, ¢;_1 = ¢, = Jag= T.p ¢y, whence

IC,, CO|T = IJa(h Ua()lT + |P_lco, COITa
by virtue of Property (10.6), or again

ler, col™ = (@, ) + @(|col),

by virtue of Properties (10.7) and (10.9). On summation we get

Y olc)+y(ad= Y wle)+e=w(L])+e,

ceNag) ec|L’|

by virtue of Eq. (3.1). The other terms, taken in pairs for i=1,2,..., n are equal
to

lp_laia al” +la, Ua|" = w(la;)+la]= v(lal)),

by virtue of Properties (10.9), (10.8) and Eq. (3.1), and in addition there is the
term corresponding to i =0, namely

lp~ Jag, Jao|” = w(|a)).

On summation we obtain

_;1 7(|aiD+ w(|a0|) = '—io ‘y(|ai|)+ |aol = Z y(e)+ey=y(A)+ e,

ecA

by virtue of Eqgs. (3.1) and (3.3). The equation (10.3) becomes
0=w(/L')+y(A),

which is similar in form to (10.2) and implies the same conclusion. This completes
the proof of Theorem 10.1.

Note. The above theorem applies only to graphs without bicycles, but it can be
applied to graphs in general by making a slight modification to the graph in
question as mentioned in Theorem 7.3.

11. Proof of the interlace conjecture of Gauss

Consider in the plane a closed curve C— a continuous image of a circle —
which has a finite number of points of self intersection (see Fig. 11.1), each
intersection being of two portions of the curve only. These points will be called
crossings. Suppose that these crossings have been labelled with arbitrary distinct
symbols, such as letters of the alphabet, as in Fig. 11.1, where the letters a, b, ¢, d
and e have been used. Let the curve now be traversed exactly once, and the labels
recorded in the order in which they are encountered during the traversal. Then we
obtain a sequence of labels in which each symbol occurs exactly twice. Thus for
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Fig. 11.1

the curve of Fig. 11.1, we obtain the sequence abcdbaeedc. The problem of
Gauss, with which this section is concerned, is that of determining which se-
quences can arise in the above manner from some closed curve in the plane.

First we shall need a few definitions. In what follows the term sequence will be
used to denote an ordered sequence of symbols in which each symbol occurs
exactly twice. A crossing sequence is a sequence which can be obtained in the
manner described above from some self-intersecting closed curve in the plane.

We shall denote by S° the set of symbols that occur exactly once in § between
the two occurrences of the symbol e. Clearly, if f€ S¢ then e€ S’ (compare $° to
A(e) of Section 3.); we shall then say that e and f are “interlaced”. Given a
sequence S we define a graph, denoted by I(S) and called the interlace graph of S,
whose vertices correspond to the symbols in S§ and in which two vertices are
adjacent if and only if the corresponding symbols are interlaced.

Gauss [5] observed that if a sequence is a crossing sequence then the following
interlace property holds:

Property 11.1. For every symbol e, S° is even.

This implies that the interlace graph of a crossing sequence is an even graph,
i.e. every vertex has even degree. By exhibiting the sequence abcdecdabe Gauss
showed that the necessary condition (11.1) is not sufficient, and propounded the
problem of finding other interlace properties to be added to Property (11.1.) in
order to form a necessary and sufficient condition for a sequence to be a crossing
sequence. We call the conjecture that such interlace conditions exist the interlace
conjecture of Gauss.

In 1936 Dehn gave a solution to the recognition of crossing sequences [4]. This
solution was of an algorithmic nature, giving a method for determining whether or
not a given sequence was a crossing sequence. This solution has been discussed by
us elsewhere (see [7]), along with other approaches to this problem that rely, as
does Dehn’s, on topological transformations of the curve, and the corresponding
transformations of the sequence S. Below we give an algebraic solution to the
Gauss crossing problem, one that relies only on the properties of the sets S°
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defined above, in the spirit of the Gauss condition (11.1). Therefore the conjec-
ture is proved that interlace properties can characterize crossing sequences.
The essentials of this solution are embodied in the following theorem.

Theorem 11.2. A sequence S is a crossing sequence if and only if the interlace
graph I(S) has the following properties:
(i) for every e, S° is even (this is Gauss’s condition),
(ii} for every e and f that are not adjacent in 1(S), S°N S is even,
(iii) the edges (e, f) for which S°NS’ is even form a cocycle.

(The proof below has been very briefly described in {10]).

Proof. Let E denote the set of symbols occurring in S.
(a) We first show that properties (i), (i) and (iii) are together equivalent to the
following property.

Property 11.3. There exists a bipartition (P, Q) of E, with PN Q=0 and PUQ =
E, such that every element of the family {y(e)}..r defined by

v(e)=S8°U{e} ifecP,
and
y(e)=S° ifecQ,
has an even intersection with every element of the family {w(e)}..r defined by
w(e)=8° ifeeP,
and
w(e)=8°Ule} ifecQ.

On the one hand we show that Property (11.3) implies (i), (ii) and (i) of
Theorem 11.2. For every e, y(e)Nw(e) =S¢ is even, which gives (i). If f¢ S° then
the two sets S°N(S’U{f}) and S°NS’ are equal. Hence since one of them is
even, so is the second, and this gives (ii). Finally, if f€ 8¢ then SN (S’ U{f}) and
S¢N S’ differ exactly in the element f. Hence e belongs to one class (P or Q) and
f belongs to the other if and only if S*NS’ is even. This gives (iii).

On the other hand, (i), (ii) and (iii) of Theorem 11.2 together imply Property
(11.3). The cocycle referred to in (iii) defines a partition of E into two classes P
and Q. Consider the sets y(e) and w(e) defined by P and Q in accordance with
Property (11.3), and suppose that one intersection, say y(e)Nw(f), is odd.
Then f# e, by (i). Moreover, fe S¢, since otherwise y(e) Nw(f)=S°NS’ would be
even, by (i). Hence S°N(S'U{f}) and $°NS’ have opposite parity. We now
distinguish two cases. If e and f belong to the same class, then $*N S’ is odd, by
(iii), and y(e) N w(f) = S* N (ST U{f}) is even — which is not possible; but if e and f
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Fig. 11.2

belong to distinct classes, then S$¢N S’ is even, by (iii), and y(e) N w(f), which has
the same parity as S°N S/, is also even — again a contradiction.

(b) We next show that a crossing sequence of a curve C satisfies Property
(11.3). It is well-known that the curve C divides the plane into regions colourable
in two colours, so that two regions incident with a common portion of C have
different colours (see Fig. 11.1).

Consider the graph G(S) whose vertices are the regions with colour different
from that of the infinite region, and whose edge set E is defined as follows: e€ E
is incident with the two vertices of G(C) which represent the regions which have
the intersection point e in common. Then G(C) is a plane graph which can be
realized in the plane in a natural way by making the edge e pass through the point
e of C (as in Fig. 11.2, heavy lines). Let G*(C) be the plane graph defined as for
G(C) but using the regions with the other colour (see Fig. 11.2, dotted lines).
Then G(C) and G*(C) are dual graphs, and C is seen to be the geometric
diagonal of these two graphs, as defined in Section 10.

If the curve C is traversed once in the sense given by the sequence S, then the
two directions in which a given edge of G(C) is crossed by C can be described as
being “the same” (as in Fig. 11.3a) or “opposite” (as in Fig. 11.3b). Let P be the
set of edges that are crossed in the same direction by C — for example the edge
‘d’ in Fig. 11.2), and let Q be the set of edges that are crossed in opposite

=<

(a)

—~.

(b)

Fig. 11.3
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directions by C-—for example the edge ‘b’ in Fig. 11.2. Then the families
{v(e)}.cx and {w(e)},.g defined by Property (11.3) are the families of cycles and
cocycles of G(C) respectively. This is clear for y(e), which, by definition, has zero
boundary in G(C); as for w(e), since it has, in the same way, zero boundary in
G*(C), it is a cycle in G*(C), and hence is a cocycle in G(C).

Hence Property (11.3) is satisfied by S by virtue of the orthogonality of cycles
and cocycles in G(C).

(c) Finally we show, conversely, that if a sequence S satisfies Property (11.3)
then it is a crossing sequence.

Let P and Q be defined for S as in Property (11.3), giving rise to the mutually
orthogonal sets y(e) and w(e). Associate with S the graph G(S) induced by the
sequence S on the set E considered as a set of edges, S being a walk on the graph
G(S) such that an edge e is described twice in the same direction if e € P, and
once in each direction if e€ Q. To see that this is always possible, consider the
process of drawing such a graph G(S) edge by edge, adding the edges in the order
in which the symbols occur in S. If an edge x is about to be drawn, and the next
edge e has already been drawn, then the membership of e (in P or in Q)
determines at which end vertex of e the edge x must end. Moreover, if the walk
so far drawn ends at a vertex A, and the next edge f to be included in the walk is
already drawn but is not incident with A, then one end of f (and again the
membership of f indicates which one) must be identified with A. It follows from
this that the vertex set V of G(S) is also determined.

We now show that the sets y(e) and w(e) are respectively the cycles and
cocycles of G(S).

First, y(e) € ker 4, since the boundary of y(e) is that of a closed walk in G(S),
by the definition of y(e) in Property (11.3).

Second, w(e) € (ker 9)*, since w(e) is, by virtue of Property (11.3), orthogonal to
each element of the family {y(e)}..g, which includes a base for ker 3, as we shall
now show.

To this end, describe the sequence S from the beginning, and note the
incidences of the edges that appear in S. Their 2|E| extremities reduce, by
successive identifications as indicated above, to | V| vertices of G(S). With the
exception of the first edge, every edge occurring for the first time in § gives rise to
one such identification (with one end of the preceding edge) — |E|~1 identifica-
tions in all. An edge occurring for the second time may or may not imply an
identification; let e;, e,, ..., e, be those that do. Hence the total number of
identifications 2 |E|-|V| is |E|—1+7r, whence r=|E|—|V|+1=dimkerd. The
second occurrence of an edge ¢; produces the cycle y(e;) and a vertex identifica-
tion, and it follows that the cycle y(e;) has a nonzero boundary in the graph
induced by the portion of $ up to, but not including, ¢, and hence vy(e;) is
independent of the y(e;) for j<i. Thus {y(e)}o<i=, is a base for ker by virtue of
this independence and the dimension; and it is certainly included in {y(e)}, k.

Finally we show that G(S) is a planar graph. From Property (11.3) we have, for
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every e,
y(e) +w(e)=e,

where y(e) is a cycle of G(S), and w(e) a cocycle of G(S), as proved above. Thus
in virtue of Theorem 2.1, G(S) is a graph without bicycles whose principal cycles
are the y(e) and whose principal cocycles are the w(e). Moreover

{eleey(e}=P, {elecw(ea}=0Q.

Hence S is an algebraic diagonal for G(S) as defined in Section 10. Hence, by
Theorem 10.1, G(S) is planar. It admits a plane representation in which the
geometric diagonal crosses the edges in the order given by the sequence S. Hence
S is a crossing sequence.

Theorem 11.2 above does more than just give a necessary and sufficient
condition for a sequence to be a crossing sequence; it gives also a practical
method for constructing a curve C of which the sequence S is the crossing
sequence. This can be done in three stages.

Stage 1. Find classes P and Q. From Theorem {11.2(jii) we see that if ¢ and f
are interlaced, then they will belong in the same class, if and only if S°N S is odd.
Choose any partition (P, Q) consistent with these requirements. (If I(S) is not
connected then each of its components will be partitioned, and there will be more
than one way of putting the parts together to form P and Q). Thus for the
sequence abcdbaeedc of Fig. 11.1 we may take P={c, d, ¢} and Q ={a, b}.

Stage 2. Construct G(S). In S, underline the second occurrence of elements of
Q, to indicate which edges are to be traversed once in each direction. Place a
prime (') against every other element of S, to indicate that an edge following a
primed edge is the first one encountered when one turns in an agreed sense at
their common vertex (any, for example, that it is the ‘first on the left’ following
the primed edge), and that an edge following an unprimed edge will be the “first
on the right’. From the sequence above we now have a’bc’db’ae’ed’c.

If G(S) exists it is determined uniquely by this sequence (see Fig. 11.4) and S is

Fig. 11.4
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a walk described by the ‘first on the left—first on the right’ algorithm of Shank
[11].

Stage 3. Construct C. The geometric diagonal C can now be traced by going
along each edge, first along one side as far as the midpoint and then crossing to
the other side to complete the traversal of the edge. Since every edge is traversed
twice, this procedure effectively replaces each edge by two portions of C which
cross at the midpoint, these portions being joined up near the vertices of G(S) in
the manner shown in Fig. 11.5.

In this way a curve C which gives rise to the sequence S is constructed.

The analogous problem for several closed curves in the plane that intersect
themselves and each other can be solved by reducing it to the problem for a single
curve. We now have a family C={C}, i=1,2,...,k, of curves, supposed
oriented, and for each curve C; there is a sequence S; of points of intersection in
the cyclic order in which they are encountered on C, these points being rep-
resented by symbols from a set E. Each symbol in E occurs exactly twice in the
collection §={S;}.

As before, these curves define regions of the plane, colourable in two colours,
and we denote by G(C) the graph defined by the regions of one colour. This
graph has, as diagonals, the family C of curves. Denote by |S;| the set of symbols
occurring exactly once in S;. We may assume, without loss of generality, that the
family of sets {|S;|} is connected, since otherwise the problem will break up into
smaller independent problems for which the assumption is true.

Now any k—1 sets |S;| form a base for the bicycle space of G(C). Choose a
dendroid of this space by taking a minimal transversal of the |S;|. For example,
choose an element a, of |S,]; it will belong to some other set, say |S,|. If k =2, we
are finished. If not, then [S;|+|S,|# 0, and we choose a,€|S;|+|S,]. Now a,
belongs to some other |S,], say |S;]. We now choose as in |S;|+|S,/+|S;|, and so
on.

If, in G(C), we bisect the edge corresponding to the intersection a,, replacing it
by two edges, a) and af in series, the the two curves C,; and C, are ‘merged’ to

Fig. 11.5
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Vo

C1 and C2 separate Cl and C2 merged

Fig. 11.6

become a single curve, and the element pair ajaf is traversed twice in this order
(see Fig. 11.6). Bisection of a, will now merge this curve with C;, and so on. In
this way, by successive mergings, we eventually obtain a single curve.

Conversely, given a family of k sequences {S;} over a set E, such that each
element of E occurs exactly twice, we can determine whether it is representable
as the set of points of intersection of k closed curves in the plane. We do so by
reducing the problem to that of a single curve by successive mergings of one curve
with another, as described above. The corresponding operation on the sequences
is as follows. If a, is the chosen element of |S,|+1S,|, we replace its occurrence in
S, by the sequence a{S,af, and drop the sequence S; from the family. This
process is repeated with the chosen elements a,, a,, etc. until a single sequence
S* is obtained. From this we construct the graph G(S*), and, on suppressing the
midpoints of the chosen edges, we obtain the graph G(S) whose set of diagonals is
the required family of curves.

This process of reducing a set of curves to a single curve is similar, though not
identical, to the procedure, based on Dehn’s algorithm, described in [7] for the
same problem.
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PERCOLATION PROBABILITIES ON THE SQUARE
LATTICE

P.D. SEYMOUR and D.J.A. WELSH
Merton College, Oxford, England

1. Introduction

This paper deals mainly with bond percolation on the square lattice. This model
is a special but perhaps the most interesting case of the general theory of
percolation introduced by Broadbent and Hammersley [4] in 1957. In Section 2
we review briefly the general percolation model; for further details see Frisch and
Hammersley [13], Shante and Kirkpatrick {24}, Essam [9] or Welsh [29].

In Section 3 we introduce the FKG inequality of Fortuin, Kasteleyn and
Ginibre [12]. In Section 4 we introduce the problem of percolation through an
nxn sponge (loosely speaking, when is it possible to move from one side to
another of a randomly dammed chessboard?). We examine two of the possible
critical probabilities pr, py; defined in [29] and use the theory developed for the
sponge problem to prove the result

prtpu=1

Since Harris [18] has proved py; =1 and since intuitively one expects the numbers
to be equal this suggests that all the critical probabilities for bond percolation on
the square lattice have the common value 3.

2. The percolation model

If G is a graph, finite or infinite, we let V= V(G) be its set of vertices and
E = E(G) its set of edges. The little graph terminology we use is standard (see for
example Berge [2] or Bondy and Murty [3]).

By the percolation model on G we mean the assignment of open or closed to
each edge of G with probabilities p and g = 1 —p respectively, the assignments to
be independent for each edge. If an edge is open we picture it as allowing fluid to
pass along it; if closed it does not allow fluid to move along it. Thus if A is any
subset of edges of the finite graph G, the probability that A is exactly the set of
open edges is

7(A)=pAlgE Al

227
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If 2 denotes the set of all possible assignments, we identify a typical member w of
{2 with the subset of edges which are open in w. We shall be dealing throughout
with a graph G in which E(G) is at most countable and the random variables are
on the space 2. There is never any problem with the measurability or lack of it
for the random variables which we shall be discussing and hence we shall usually
write X for X(w) and so on. For details of similar such arguments see for example
[17]
If G is a graph and A, B are subsets of V(G) and U is a subgraph of G,

{AS B)

denotes the fact that there is a path lying entirely in U which connects some vertex
x in A to some vertex y in B. Occasionally we abuse notation and U is not a
subgraph of G but just a set of vertices. In such cases we interpret the expression

as {A 5 B} where U is the graph induced by U.

If £ is the probability space of the percolation model on G the event {A ~ B}
is the event of (2 that there is some path of open edges linking a vertex of A to a
vertex of B.

Throughout £ will denote the square lattice, that is the set of points (x, y) of
the plane having integer coordinates x and y and having edges joining each point
(x, y) to its nearest neighbours (x+1,y), (x—1,y), (x,y—1), (x, y +1).

As usual in this theory it is convenient to regard £ as the “limit” of a sequence
of finite graphs. One suitable sequence is (&£,: 0<n<x) where £, is the
restriction of & to the set of vertices {(x, y): —n<sx<n, —nsy=sn}. &£ itself is
self-dual; that is, if we consider a new infinite graph £* whose vertices are the
points {x +31, y +1) where x, y run through the integers, and whose edges are again
those lines joining nearest neighbours, then £* has the following properties.

(a) It is isomorphic to Z.

(b) There is an obvious geometric duality between &£ and #£* inasmuch as they
can be drawn as geometric duals in the plane, see for example {3].

Almost exclusively in this paper we shall restrict ourselves to percolation on %,
or some sequence of subgraphs of &£ which approach £.

Suppose we now regard the origin O as a source of fluid. We say that a point v
of £ is wet by fluid from the origin if there is a path consisting of open edges from
O to v, and otherwise v is dry.

Let us now fix p, 0= p=<1. We let P,(p) be the probability that at least n points
are wet by fluid from the origin. Clearly

P.(p)=P, . (p)

so that

P(p) = lim P, (p)
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exists, and satisfies
O=sP(p)=<1.

However, though each P,(p) is a polynomial in p and can be calculated, it still is
not known for example whether or not P(p) is continuous in p. Broadbent and
Hammersley [4] show that there exists a critical probability py; defined by

pu=Inf p: P(p)>0.

Harris [18] proved that
1
=— (1)
Pu 5

and Hammersley [16] that
Pu=0.646790. )

As pointed out in [29] there are several other “critical probabilities” in the
literature, and the relationships among them are obscure to say the least. First
consider V(p), the expected number of points wet by the source at the origin—
that is,

Vip)= ) P.(p.

n=1
We define p; by
pr=infp: V(p)=co.
Since V(p) is infinite if P(p)>0, we have immediately that
Pr<pu 3
One of our results below will be that

1
=, 4
PT<2 (4)

This has an easy proof, but also follows from our main theorem:

Theorem 2.1. In percolation on the square lattice the critical probabilities py, py
satisfy pr+py=1.

Our proof of this is quite long and is given in Section 5. Thus on an intuitive
level at least there is strong evidence to support the following conjecture.
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Conjecture 2.2. pr=py, =3.

We should emphasize that for several years there has been a folklore belief that
the above conjecture was proved by Sykes and Essam [25] in 1964. Sykes and
Essam in fact show that under certain (as yet unproven) assumptions a third
quantity py associated with percolation on the square lattice is equal to 3.
Although various attempts have been made (see for example Grimmett [14]) to
prove that the assumptions demanded by Sykes and Essam are correct it is a much
more difficult (in fact, as far as we can see, hopelessly intractable) problem to
relate pg with py or pr. Even the very definition of pg is shrouded with mystery.

3. The FKG inequality

In 1971 Fortuin, Kasteleyn and Ginibre [12] proved a remarkable inequality
showing that non-decreasing functions on a finite distributive lattice are positively
correlated by all positive measures which have a certain convexity property. This
inequality was originally applied to Ising ferromagnets in an arbitrary magnetic
field, but as pointed out in [12] it is also closely related to a lemma used by Harris
[18] in proving Theorem 2.1. In [23] we showed that the inequality has diverse
applications in combinatorial theory, and Kempermann [20] has given some new
applications in probability theory. In this section we shall use it to obtain some
new results in percolation, first passage percolation, and random graph theory. It
is also used repeatedly in the proof of our main result in Section 5.

Two random variables X and Y are covariant if €(XY)=(€X)(€Y). Two
events A, B are covariant if their respective indicator functions are covariant.
Clearly (if P(B)#0) A, B are covariant if and only if

P(A | B)=P(A).

A set {X|,...,X,} of random variables is covariant if for any subset I<
{4 k) E( e X) =L 8(X0).

Let D be a distributive lattice, where obviously we are using “lattice” in its
algebraic sense. A function f: D— R is called increasing if f(x)=< f(y) for any pair
of elements x,y of D such that x<y. A function f is decreasing if —f is
increasing.

When D is finite and g : D— R™, the w-average of a function f: D— R is given
by

== X fn) / L uto.

xeD xeD

The original version of the FKG inequality proved in [12] is as follows.



Percolation probabilities on the square lattice 231

Theorem 3.1 (The FKG inequality). Let D be a finite distributive lattice and let
w:D— R* satisfy
puy)<pxayulxvy) (x yeD). (5)

Then if f, g are both increasing or both decreasing functions, then

(fgr=(fXg)- (6)

An obvious corollary of this is that if f and g are functions on D which are
monotone but in the opposite sense, then

(fer={fX.

Before proceeding to give some applications of Theorem 3.1 we prove a
lemma. The proof is elementary, but we give it because we use the result several
times later.

Lemma 3.2, If A,, A, are covariant events in 2 with P(A,)=P(A,) then
P(Al)2 1 —[1 _P(A1 U A2)]1/2

Proof.
P(ALUA)=PA)+PA,| 2\A)P(L\A))
<P(A)+P(A)[1-P(A)],
since A,, A, are covariant. Hence since P(A,)= P(A,) we have
1-P(A,UA)=[1-P(A)T,

which completes the proof.

Example 3.3 (Random graphs). For each positive integer n let D, be the lattice
of subsets of E,, the set of edges of the complete graph K,. Now let i be defined
as

Al IE\NA]

nwA =ptq

Consider the following events about the random graphs  on n vertices in which
each edge of K, exists or does not exist with probabilities p, 1 —p;

A: w is planar,

B:  is hamiltonian,

C: w is 4-colourable.
It is clear that whereas A and C have decreasing indicator functions, B has an
increasing indicator function. Hence the FKG inequality gives such statements as

Plrandom graph w is hamiltonian| w is planar]

< P[random graph o is hamiltonian]. @)
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P{random graph o is 4 colourable | @ is hamiltonian]

< P[random graph o is 4 colourable]. (8)

Although intuitively appealing, such results do not seem easy to prove directly
and serve to indicate the power of the FKG inequality.

Now the reader will notice that in the FKG inequality as stated in Theorem 3.1
the lattice D is restricted to being finite. Various infinite extensions of the
inequality and of a stronger result of Holley [19] have been made recently by
Batty [ 1], Cartier [5], Edwards [7], Kempermann [20] and Preston [22]. However,
as far as the main theorems of this paper are concerned the only infinite extension
we need is the following covariance inequality first proved by Fortuin [10].

Theorem 3.4. Let G be a countable graph and let P be the probability measure
induced by a percolation model on G. Let f and g be increasing functions on the
partially ordered probability space associated with this model. Then if & is the
expectation operator associated with P,

é(fg)=¢(f)é(g)

whenever the expectations exist.

Immediately from this we see that the results obtained in Example 3.3 above
hold when G is a countably infinite graph.

We close this section by sketching a proof of an extension of Harris’ correla-
tion result to first passage percolation theory as defined by Hammersley and
Welsh [17]. One interest of this extension is that Theorem 3.5 below was the
original “‘physical result” which motivated Batty’s infinite extension [1] of the
FKG inequality.

Let G be a (finite or countably infinite) graph directed or undirected, with
vertex set V and edge set E. Suppose that to each edge ¢, of G we assign a
random variable u; drawn, independently for each edge, from a distribution F(x).
We call u; the time coordinate of e;.

The set 2 of E-tuples w, defined by w(e;) = u, e, € E, is called the phase space
and can be ordered by

w=wSwleg)sw'(e) Ve cE.

If x,y are any two vertices of G we write t, (w) to denote the first passage
(shortest) time between x and y over paths of G, when it is in state w. More
precisely

I (w)= inf (P, w},

where t(P, w) 18 the sum of the time coordinates of the edges making up the path
P, and the infimum is over all paths P joining x and y.

Now for any points x;, x,, ¥;, ¥, of V(G) it is obvious that ¢, . (w) and ¢, , (@)

1X2
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are monotone on {2, in the sense that

OsSew' Dt

X1X2

(@)=t (o).

Thus we can apply the infinite version of the FKG inequality implicit in the work
of Batty [1] and Edwards [7] to get the result that the pair of random variables
t.., and t, are covariant. More generally, if A, B are two subsets of V and

tap(w)=inf 1, (@)
x€A
veB

represents the first passage time between A and B when G is in state @ we have
the following general result:

Theorem 3.5. For any sets A, B, C, D of vertices of the countable graph G the first
passage times t,p and t- are covariant random variables.

4. The sponge problem

In this section we consider a new variant of the percolation problem. It is of
some interest in its own right; indeed we studied it purely for its own sake before
realising that it was a useful tool in giving insight into the relationship between p;
and py. Most of the results of this section will be used in proving our main result,
Theorem 2.1. The vertex or atom percolation version of this problem has also
been studied numerically by Kurkijarvi and Padmore [21]. However, they assume
as physically obvious certain results which we have found impossible to prove
rigorously.

The m x n sponge consists of the subgraph T(m, n) of £ induced on the mn
points

{{x,y):1sx<snlsy=sm}

Each of the m points (1, y), 1 <y=m, is regarded as an infinite source of fluid
which may percolate through those edges of the sponge which are open. The
probability that any edge is open is p, independently for each edge.

We let S,(m, n) = S(m, n) denote the probability that some of the points (n, k),
1< k=m, become wet by fluid.

Trivial inequalities are

S(m,n+1)<8S(m, n), 9)
S(m, n)<S(m+1, n). (10)

A basic, but extremely useful, result is the following.
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Theorem 4.1. For all p, 0<p=<1, and all positive integers m=1, n=2,
S;(m,n)+S(n—1,m+1)=1,

where g =1—p.

Proof. Construct a new graph G(m, n) from the m X n sponge T(m, n) as follows.
Identify all the vertices (1, y), 1<y<m, in a new vertex x,. (Remove all edges
which become loops.) Similarly identify all vertices (n, y), 1=<y=<m, in a vertex
x,. Add a new edge e joining x; and x,. The graph G(m, n) is planar, and its
planar dual G* is isomorphic to G{n—1, m+1). Now consider any assignment
of open and closed values to the edges of T(m, n). There is a path of open edges
from one of the vertices (1, y), 1 <y=m, to one of (n, y), 1 <y=m, if and only if
there is a cycle in G(m, n) consisting of e and otherwise edges which are open in
w. But, by the elementary max-flow min-cut theorem, either there is such a cycle
in G(m, n), or there is a cycle in G* consisting of e and otherwise edges closed in w
(and not both). But since G* is isomorphic to G(n—1, m+1), and an edge of
T(m, n) is closed with probability g, the result follows.

Hence if we define
S.(p)=S,(n, n+1),
we have for all positive integers n,
S.(p)+S,(1-p)=1 (0O=p=<l).
In particular
S,()=3 (I=n<o). an

It is also clear that S,(p) is a monotonic increasing function of p, satisfying for
all n,

S,.(0) =0, S.(H=1.

However we have not been able to prove:

Conjecture 4.2. For all p,0<p=<1, lim S,(p) exists. (We have shown that, even if
the limit always exists, it is not continuous.)

Conjecture 4.3. For p<3 (respectively >%), S,(p) is a monotone decreasing (re-
spectively increasing) function of n.

We now relate S, (p) with P, (p).

Theorem 4.4. For any positive integer n and 0<sp<1

Sn(p)S 1 *(1_Pn+l(p))n"
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Proof. Consider the n X (n+1) sponge and let
X={xy):x=11<y<n},

Y={x,v):x=n+1,1sy=sn}
Then

T,
1-S,(p)=P(X+Y)
>P(ﬁ A,-)
i=1
£
where A, ={(1,H)» Y}, 1sisn

But by the FKG inequality the A; are covariant events, each having probability
=1-P,.(p). Hence

1-5,(p)=(1-P,.()"
and the result follows.
Suppose now we define the critical sponge probability p, by
p,=inf p: lim sup S,(p)>0.

n—soc

Then we know from (11) that

Nl

ps=

: (12)
It will follow from the proof of Theorem 2.1 that|i

0.353210<p,<p.. (13)

One final result which we need before proving the main theorem is the
following: For any n,

S(n,n)<8S(n—-1,n—-1). (14)

To see this consider the n X n sponge. If there is a path across it, then there must
be a path across one of the four (n— 1) x (n— 1) sponges inside it or there must be
a path from the top to the bottom of one of these sponges. Considering the union
of these events gives (14).

5. Proof of Theorem 2.1

We shall prove Theorem 2.1 by the series of Lemmas 5.1-5.6 below. However,
it is probably instructive to show the broad outline here.
First in Lemma 5.1, which is relatively straightforward, we show that

prtpus<l. (15)
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In Lemmas 5.2-5.4 we prove various inequalities about the S{m, n) which
enable us to show in Lemma 5.5 that if p<1—p, not only does the sequence
S,.(p) converge, but

lim S, (p)=0.

In Lemma 5.6, we show that if p>pr,

lim sup S, (p)=8>0.

Thus we have 1—py=<pr which with (15) proves our final result that

prtpu=1.
Lemma 5.1. p,+p,=1.

Proof. Let L be the set of points {(i, 0): i=0} of £ and for L=< n<w let L, be the
set of points {(—i, 0): i=n}. We choose a fixed p <py; and then

P.(p) <.
=1

i

Choose N so that Y. P;(p)<1. Now
. &> @
P{(—i,0)~ L} = P{(0,0)~ L}<Pp).
Hence

Y P((—i,0)> L}<1.

i=N

Hence
N
P{L,~ L}<1.

Now let B; (1=<Xi< ) be the points (—i +3%,3) (0=<i< ) which are the vertices of
the dual lattice £*. For each assignment o of open and closed to the edges of £
we will consider £* in state w*, where if e is closed in ¥ under w then the
corresponding edge e* of ¥* is closed in £*.

Let B* = B*(w) be the set of points of the dual lattice which are joined by a
path of closed edges of ¥* to one of B,,..., By. Suppose that we assume that
with probability one B* is finite. Then if B* is finite let P* be those edges of ¥*
joining vertices of B* to vertices of ¥*\ B*. Then every edge in P* must be open
in £*.
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Now since B* is finite P* must cut L, and must also cut L. Hence by
elementary graph theory arguments there is an open path in £ connecting Ly, with
L. But we have chosen N so that the event Ly~ L has probability strictly less
than 1. Hence the assumption that B* is finite with probability one is false and we
must have

P(|B*|=)>0.
But if for 1=i< N we let
A, ={w: B, is connected in £* by a closed path to an infinite
number of points of £*},
then

P(B*==)=< } P(A).

i

Since P(A;)= P(q), we must have

NP(q)>0,

which implies

q=pu

so that p;+py =1 as required.
Lemma 5.2. If S2n,2n) =1, then S(2n, 4n))=7(1—(1—1)"?)%

Proof. Consider the following regions of the square lattice.

R={(x,y): 1sx<4n 1<sy<2n},

X ={(x,yrx=1,1sy<2n},
Z={(x,y): x=2n,1<y<2n},
W={(xy)rx=n+11<y<2n},

W,={x,y):x=n+1,1sy<n},

W,={{x,y)x=n+1,n+1<sy<2n},
U ={(x,y):n+lsx<3ny=1)},
U,={(x,y):n+1<x<3ny=2n},

S, ={(x,y): 1<x<2n1sy<2n},
S={(x,y):n+1<x<3n1<y=<2n}.
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(1,2n) - Uy e {4n,2n)

[ (2n,20) [tzn+1,2n)
W,
X w—«—; zl |z X’
WT
{n+1,1} 1 (2n,1) {2n+1,1) {3n,1}
(1,1} U, (&n,1)

Fig. 1.

We illustrate the situation in Fig. 1.
Now for any subset of vertices A of £ let A’ be defined by
A'={dn+1—xy): (x,y)e A}.
so that for example
W ={(x,y): x=3n, 1<y<2nl},
X' ={x,y): x=4n,1<y<2n},
S ={(x,y): 2n+1=x<dn 1sy=<2n}
Consider now the events A, A,, A; of {2 defined by
A =lw: W W)
A, ={w: there is an open path from X to Z in S, which

meets an open path from U, to U, in S},

A, ={w: there is an open path from X' to Z’ in 8}
which meets an open path from U, to U, in S}.
Then since A,, A,, A, are monotone in the same sense they are covariant and

since also

ANANAC{XS XY,
we have
S2n, 4n)=P(A,NA,NA,)

= P(ANP(A))
=8S(2n, 2n)(P(A,))>.
We now consider P(A,). We wish to show
PA)=(1-(1-n)"H%

Let (P;: 1=i=<k) be the collection of paths in §; which join X to Z and which
have the additional property that their {ast point Q; of intersection with W is a
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point of W,. For 1 i<k let F; be the section of P, from Q, to Z. Then each F; is
a path from W, to Z.

Let X; be the event that there is an open path in S from F, to U, which uses
only one vertex of F; and no vertex of F{. Let X! be the event that there is an

open path in S from F! to U, which uses only one vertex of F! and no vertex of
F.

t

Now the set of points F; U F! separates U, from U, in S. Hence if there is an
open path in S from U, to U, then either X; or X! occurs. Hence

P(X,UX)=P(U,~> U,)

=S2n,2n)=r1.

But X, X! are covariant, and by symmetry have equal probabilities; hence by
Lemma 3.2,

P(X)=P(X)=1-J(1~1).
Let us now fix i and consider the three events,
B, =B{’={w: path P, is open},
B, = BY’={w: for each j# i such that P, lies in the
region bounded by P, and y =1, P, is not open},

B,=BY =X,
We assert
P(B,NB,NB;)=(1-(1-7)P(B,NB,).
For
P(B,N B,N B;)=P(B,N B, | B,)P(B,),

and if B, occurs, then the occurrence of B, depends only on the state of the edges
of & strictly below P, in S;, and the occurrence of B; depends only on the state of
edges strictly above F; U F’ in S. Since these two sets of edges are disjoint

P(Bzm B, l B,)=P(B, l Bl)P(B3 I B‘).

Hence

P(B,NB,NB,)=P(B,| B,)P(B;| B,)P(B))
=P(B,N B,)P(B,| B)).
But since B, and B, are covariant
P(B,|B)=P(B;)=P(X)=1-v(1-7).
Hence

P(B,NB,NB,)=(1-v(1—7)P(B,NB,).
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Now note that
P((B\" N BY)U(BPNBY)U- -~ U (B N BY))
= ‘:Z P(B{’ N BY).
But
P(B"NBY)U- - -U(BY N BY)=P(BVU: - -UBY),
and

k
liuwme%)>ZwanBynmm
i i=1

k
=(1-V(1-7)) } P(BYNBY)

13

= (1—-+(1—-17))P(at least one P; is open).

Now consider the event C that at least one of the P, is open. Let (P:l1=<i<k}
be the collection of paths in S, which join X to Z and which have the property that
their last point of intersection with W is a point of W.,.

The event C that at least one of the P, is open is covariant with C and by
symmetry

P(C)=P(C).

Also P(CUC)=8(2n,2n)=r7 so that by Lemma 5.1,
P(O)=1-(1-7),
and
P(B" N BY’ for some i)=(1~v(1—7))? (16)

Let E, be the event that there is a point w € W, such that

s, S s
w~ X, w~ U,, w~ Z.

Let E, be the event that there is a point v € W, such that

S, s s
v~ X, v~ U, v~ Z,

Now
ENE,cA,

and hence the proof of Lemma 5.2 is complete if we show that

P(E,NE)=(1-Y(1-1)*
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But E,, E, are covariant and by symmetry
P(E,)=P(E,).

Hence it is enough to show that
P(E)=(1-V(1-1)>

But (by drawing a picture) E, occurs if, for some i, P, is open and F; is joined to
U, by an open path in S. That is

P(E)=P(U (BN BY)).
Thus with (16) we have the required result.

Lemma 5.3. S2n,6n)=[S2n, 2n)P (1-V(1-S2n, 2n)))'¢

Proof. Consider the following regions of ¥ (see Fig. 2):
U={{xy)y=2n2n+1sx<4n},
V={{x,y):y=12n+1<sx<4n},
S={(x,y):2n+1sx<4n, 1<y<2n},
R={(x,y):1sx<6n1sy=<2n},
X={x,y):x=1,1sy<2n},
Z={x,y):x=2n,1<y<2n},

W={(x,y): x=4n 1sy<2n},
Y={(x,vy):x=6n1<y<2n}

Let
R
A={w: X~ W},
R
B={w:Z~ Y},
S
C={w: U~ V}
Then

ANBNCc{w: X~ Y,

{1,2n}) {2r+1,2n)  {4n,2n) {6n,2n)
V]
X 4 w Y
\
(1,1 (2n+1,1) {4n,1) 6n,1)

Fig. 2.
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and since A, B, C are monotone in the same sense and hence covariant we have
R
P(X~ Y)=P(A)P(B)P(C)

=[S(2n, 4n)PS(2n, 2n).

which with Lemma 5.2 proves the resuit.

Let R(n) be the annulus of the square lattice & shown in Fig. 2 bounded by the
squares C,, D,, where C, consists of the lines

y=—-3n+1, x=3n, y=3n, x=-3n+1
and D, consists of the lines

y=—-n x=n+1, y=n+l, x=-n.

Lemma 5.4. The probability that there is an open cycle around the annulus R(n),
that is a cycle of open edges encircling the square D, and encircled by C,, is at least

S(2n,2n)'2(1 -V (1 —S(2n, 2n)))**.

Proof. Let A, B, C, D be the regions of R(n) defined as follows (see Fig. 3):

A={(x,y): —3n+lsx<—n -3n+lsy=3n},

B={(x,y): —3n+1<x<3nm -3n+l<y<-n},

C={(x,y):n+1=<x<3n,-3n+1=<y<3n},

D={(xy):-3n+1<x<3nn+1sy<3n}
Let

X={x,y):3n+lsx<s—n y=-3n+1},

X' ={(x,y): —3n+1sx<s-n,y=3n},

Y={(x,y): x=-3n+1,n+1<y=<3n},

Y={xy):x=3nn+1sy<3n},

U={(x,y):x==-3n+1,-3n+1sy<-n},

U={xy):x=3n-3n+tl<y<-n}

W={{x,y):n+1<sx=<3n y=-3n+1)},

W={(x,y):n+l<x<3n y=3n}

Then if F, is the event that there is an open cycle around R(n) we have
A , B C D
F,2{X~ XIN{U~ UInN{W~ Winl{y - Y}

Now the events on the right hand side are monotone in the same sense and thus
covariant and each has probability S(2n, 6n), so that
P(F,)=(S2n, 6n))*

which with Lemma 5.3 proves Lemma 5.4.



Percolation probabilities on the square lattice

243

{(-3n+1,3n) (3n,3n)
[ x—m W
1 | '
i
Y ! ! Y'
! !
| |
L (-n,ns1) faefnet) l
oo W(— -
______________ »
‘ r (-n,-n) {n+1,-n) ‘
{
: l ’
U 0 : V]
| | l
| | -
X sl I w
{-3n+1,-3n+1}) (3n,-3n+1)

Lemma 5.5. If p<1-—py, then lim,_,., S(n, n) exists and is zero, in other words

ps? 1—pH

Proof. If p<1-py, then g>p,y so that there is a positive probability of an
infinite closed path from the origin in the dual lattice £*. Suppose that for some
€>0, S(n,n)>8¢ for infinitely many n. Choose n,, n,, ... so that R(n,),
R(ny), ..., are disjoint annuli and S(2n;, 2n;)> € for each i. This is possible by
(14).

Now by Lemma 5.4, the probability that there is an open path around R(n;) is
at least

e2(1-V(1 —€))**

for each i. Since the disjointness of the R(n;) makes these events independent, the
Borel-Cantelli lemmas imply that with probability one there can be no closed
infinite path from the origin in £*. Thus we have a contradiction.

Lemma 5.6. If € >0 and p = pr, then for infinitely many values of n,
(1-S(2n,2n))'>(1-VS(2n, 2n))** <§+e.
In other words if p=py, then limsup, ... S(2n,2n)=8, where 8 is a little bit
bigger than 5x107°,
Proof. Suppose the lemma is false, and choose N so that for all n=3" the
inequality fails. Now by Theorem 4.1 if g=1—p,
S.(2n,2n)=S8,(2n~1,2n+1)=1-S,(2n, 2n).
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Hence by Lemma 5.4 if 3' =3~ then the probability that there is a closed cycle
around the annulus R(3') is at least §+e.

Hence by the duality theory of graphs the probability of the event D, that in ¥*
there is an open path from the origin through R(3') is not more than §—e.

If the number of points in #£* which are wet by a source at the origin is N¥,
then we have

E(NH)<4x3N+ Y |R(3Y) P(D,)

t=N N=sk=t—1

<4x3IN4 Y 4Ax3N@E—e)" N
t=N

< oo

which contradicts p = p,.
As our final corollary note that from Lemma 5.6 we know that

p>pr=>limsup S, (p)=5=>0,

n-—w

whereas if p < pr then

lim S, {p)=0.

n—o

Hence we have shown that even if Conjecture 4.2 is true and lim,,_,.. S, (p) exists
and equals S(p) say, then S(p) must be a discontinuous function of p.

Note also that our proof gives the result (13) and we can sum up the situation
with the set of inequalities

0.353210<pr<p, <1< p,y=0.646790 (17)
which with Lemma 5.5 imply that for p > 0.646790,

lim S,(p)=1. (18)

n-—»o0
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ON TUTTE’S DICHROMATE POLYNOMIAL

Cedric A.B. SMITH
Galton Laboratory, University College London, London NW1 2HE, England

A simplified method of defining the Tutte dichromate polynomial is described, together with
direct proofs of its principal properties. It is related to the fragmentation of a matroid. The
method includes graphs and sets of vectors as special cases.

1. Introduction

The object of this paper is to give a short, unified and simplified presentation of
the definition and properties of Tutte’s dichromate polynomial. Comparatively
few completely new results are obtained.

Tutte [10] introduced this polynomial in graph theory. (It is now commonly
known simply as the ‘““Tutte polynomial’’, but Tutte’s own choice of name reminds
us on the one hand that it is a polynomial in 2 variables related to the chromatic
polynomial, and on the other hand that Tutte graduated in chemistry before he
graduated to mathematics. It is also clear from an earlier paper of Tutte’s [9] that
he was partly led to the discovery of the polynomial through the theory of the
solution of electrical networks by means of trees (Kirchhoff [5], Brooks et al. [1]),
where the recurrence relations for the complexity (=number of spanning trees)
are similar to those for the dichromate.)

It is surprising that Tutte, who is a pioneer in the study of matroids, should not
have noticed that the dichromate immediately generalizes to them in the obvious
way. An extension to sets of vectors was given by Smith [6] and the extension to
arbitrary matroids by Crapo [3]. In addition, Smith {7] also showed that the
electrical network theory generalizes to regular matroids. However, Tutte’s and
Crapo’s approaches are complicated, involving a theory of ““internal’” and “‘exter-
nal’ activity, See also Heron [4]. A rather simpler approach is given by Heron [4]
and Welsh [11], but this is still fairly complicated. We show here that the
existence and standard properties of the dichromate polynomial are straightfor-
ward consequences of standard matroid theorems.

2. Definitions

We briefly recall the standard definitions and properties of matroids, in the
form which will be most convenient to us.
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Throughout the paper the following symbolism is used consistently (and is to be
understood in this way, even where, for brevity, this is not explicitly stated). E
stands for a set of elements e;,, M for a (typical) matroid over E. S is a subset of E.
We write S*77 for {}US\{e}, B,(cE) is a (typical) base of M(=maximal
independent set). R;, C stand respectively for the operations of removing and
contracting the element e,

The simplest definition of a matroid is that its independent sets obey the
axioms:

Axiom 2.1. A subset of an independent set is independent.

Axiom 2.2. The maximal independent subsets of any given S(< E) have the same
number of elements, called rank S.

An element ¢, of M is a loop if it belongs to no independent set, and an isthmus
or coloop if it belongs to every base (maximal independent set). Loops and
coloops are degenerate elements.

The following standard properties of bases are immediate consequences of
Axioms 2.1 and 2.2.

Property 2.3. If nondegenerate e; belongs to B,, then there exists e, & B, such that
Bi'=e,UB,\¢ is a base.

(N.B. conventionally this is written {e,}U B,\{e;}, but the notation used here
seems unambiguous.)

Property 2.4. If nondegenerate e, & B,, there exists e; € B,, such that B}, is a base.

The matroids R;M(=“M with ¢; removed”) and CM (=M with e; contracted”)
are defined over the set E\ ¢;. The matroid R;M is defined only when ¢; is not an
isthmus; its bases are identical with the bases of M which do not include ¢;. The
matroid C;M is defined only when ¢, is not a loop. Its bases are obtained from the
bases of M which do include ¢ by deleting ;.

The Tutte dichromate polynomial TM = TM(x, y) of a matroid M is a polyno-
mial in 2 variables, x, y, satisfying the relations:

2.5. If ¢; is nondegenerate,

T™M = TRM+ TC;M

2.6. If all elements e; are degenerate, 1 of them being isthmuses (coloops) and L
being loops,

TM(x, y) = x'y*.
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If, for the moment, we take for granted that 2.5 and 2.6 define a unique
polynomial, then the following well-known properties follow straightforwardly by
induction:

Property 2.7. T in invariant. That is, with the obvious definition of isomorphism,

M=M= TM=TM .
Property 2.8. All coefficients in TM(x, y) are nonnegative.
Property 2.9. TM(1, 1) = the complexity of M = the number of bases.

Property 2.10. If M" = the dual of M, (i.e. the bases of M are the complements of
the bases of M),

TM®(y, x) = TM(x, y).

Notice that all this discussion applies equally well to sets of vectors (considered
as “‘representable matroids””) and to connected graphs (with “‘element” =edge,
“base” = spanning tree). For the relation to the chromatic polynomial of a graph,
see, for example, Tutte [10], Heron [4], or Welsh [11].

3. Existence and uniqueness
We now demonstrate inductively.

Theorem 3.1. There exists a unique polynomial satisfying 2.5-7 (and hence also
2.3-10).

Proof. This is trivially true for |E|=<1. Hence set |E|=n =2, and assume true for
all smaller matroids. If all elements of M are degenerate, the existence and
uniqueness follow from 2.6. Otherwise we have to prove

Lemma 3.2. If ¢, ¢, are nondegenerate elements,

TRM + TCM = TR,M+ TC,M.

Proof. Note first that if R,R:M is defined, it is the matroid on the set E'=
E\(¢;U ¢,), whose bases are identical with the bases of M which do not include
cither e, or e,

Hence R,R;M = R,R M, provided that both are defined. (Actually, it is suffi-
cient that either should be defined, but we do not need this stronger formulation.)
Similarly, provided that both are defined, G, R,;M = R;,CG,M = the Matroid on E’
whose bases are those subsets S which become bases of M after adding e,. And
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similarly G, C;M = C;(G,M when both are defined. It follows that, provided that all
terms are defined, we have a “‘one-line’” proof of Lemma 3.2

TRM + TCM = (TR,RM + TC,R,M)+(TR,C;M + TC,C;M)
=(TR,R,M + TCR,M)+(TR,C,M + TC,C,M)
= TR,M + TC,M. (3.1)

The proof is now completed by:

Lemma 3.3. If any of the terms in eq. (3.1) are not defined, then interchange of ¢;
and e, (i.e. interchanging suffixes h, j) is an isomorphism of M.

(For then it immediately follows from Property 2.7 that RM = R,M, CM = C, M,
whence Lemma 3.2 follows.)

Proof. When, for example, is R,R,M not defined? When ¢; is an isthmus (coloop)
in R,M. That is, when every base B, of M, which does not include e, must
include ¢;; that is, every base of M includes at least one of ¢,, e, If, as above, B,
inclues ¢, but not ¢,, then by Property 2.3 there exists ¢, such that B, = B} /=
e, U B, \ g is a base; and we must have k = h, otherwise B, would contain neither
e; nor e, Conversely, if B, is a base containing e, but not e, then B, =B.™"
contains e; but not ¢,. Hence an interchange of ¢, and e; interchanges the bases
B,, B.. The remaining bases B, are those containing both ¢, and e, which are left
invariant under the interchange. Hence the interchange of ¢, and e¢; maps bases
onto bases, i.e., is an isomorphism.

A similar argument, but using Property 2.4, shows that the interchange is an
isomorphism when C,C:M is undefined, i.e., when no base contains both ¢, ¢,.
And (remembering that by hypothesis ¢, ¢; are nondegenerate in M), it is easy to
sce that Properties 2.3 and 2.4 imply that RC.M, C,RM, etc., always exist. This
completes the proof of Lemma 3.3, hence also of Lemma 3.2, hence also of
existence and uniqueness (Theorem 3.1).

4. Fragmentation of sets of matroids

The argument developed above proves some slightly stronger results than
Theorem 3.1. We begin with some definitions.

Let Z be a set of matroids, {M,,}. (The argument which follows will remain
valid for multisets, i.c., sets with repetitions aillowed.) We define the dichromate of
Z to be the sum of the dichromates of its members,

TZ=Y ™,

If ¢; is a nondegenerate element in some M, in Z, we define the fracture of Z
(through e;) to be the replacement of M, in Z by the pair of matroids R:M,,
CM,, (i.e. formally, replacing Z by

Z'=ZU{RM,}U{CM, }\{M,}.
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a new set with one more matroid member than Z.) By (2.5), this fracture leaves
the dichromate unchanged: TZ'= TZ. If there is any nondegenerate element in
Z', we choose one such, say e¢,, and fracture Z' through e,, to give Z". We
continue in this way until all remaining elements are degenerate; the set Z” ' of
matroids then remaining is a fragmentation FZ of Z, and its elements are the
fragments of Z; each fragment contains no nondegenerate elements, and there-
fore has a dichromate of the form (2.6}.

Given Z, we can in general perform the fractures leading to a fragmentation in
various orders; instead of beginning with a fracture through Z;; we could fracture
through some other nondegenerate edge Z,, and so on. But the argument leading
to Theorem 3.1 is readily modified to give

4.1. The fragments of Z are uniquely determined by Z to within an isomorphism,
i.e., they do not depend in structure on the particular sequence of fractures used.

Also we have

4.2, The dichromate TZ of Z is the sum of the dichromates of all the fragments of
Z.

(Note: 4.2 can be used as an alternative definition of the dichromate, and 4.1
tmmediately shows that it gives a unique value.)
In particular, when the set Z consists of a single matroid M, we have:

4.3. The numbers of fragments of M (in one fragmentation)= TM(1,1)= the
complexity of M = the number of bases of M.

This suggests that there may be a one-one correspondence between the
fragments of M and the bases of M. To verify this, we proceed as follows. We
assume that the order in which the fractures of M are done is given. We note that
the process of repeatedly fracturing M can be represented by a rooted directed
tree, tp,, as follows. The root node is the original matroid M.

If, first M is fractured through ¢;, we introduce two new nodes, R:M and CM,
and two directed edges from M to RM and M to CM respectively. If, subse-
quently, R;M is fractured through e,, we introduce two new nodes, R,R;M and
C.RM, and two new edges from RM to R,RM and from RM to C,RjM
respectively. We do similarly if CM is fractured through e,.

When this construction has been carried as far as it will go, each tip of the
directed graph (= node with no outgoing edge) is a fragment of M, and there is a
unique directed path from M to this fragment, representing the sequence of
operations of removal and contraction of elements by which this fragment is
obtained from M. Hence the number of tips of tg,, = the number of fragments of
M.
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First, suppose that a base B, is given (and hence the complementary cobase
B, = E\ B,); we require to construct a corresponding fragment f,. We begin with
the complete matroid M = the root of digraph. If the first edge through which we
fracture, in the fragmentation process is ¢, we move from M to RM or CM
according as e; belongs to B, or to B, respectively.

If, say, we have gone to RM, and e, is the next edge through which we
fracture, we go to R,RM or C,R;M according as e, belongs to B, or B,. We
continue in this way until the process ends at a fragment f,. Now the removal R,
of the element e, deletes the element e, from any cobase to which it belongs, but
leaves bases not including e, unaltered, and a similar remark applies to contrac-
tion C,, with the words “base” and “cobase’ interchanged. Hence any element of
the base B, of the original matroid M will either be deleted (by contraction) at
some stage of the sequence of operations leading to f,, or will be a member of a
base of f,, i.e., an isthmus in f,. Similarly every element of the cobase B, will
either be removed or will survive as a loop in f,.

Conversely, if we are given a fragment f, we can divide the elements of M into
4 classes, Kjc, K, Ky, Kj, namely those elements which are respectively
contracted or removed in the sequence of operations leading from M to f, and
those which are respectively isthmuses and loops in f. The converse argument
(starting from f and replacing elements in turn to go back to M) then shows that
B =K, UK, is a base of M, and B= K UK a cobase. Thus these construc-
tions give a bijection of bases onto fragments.

All these arguments extend straightforwardly to ‘“‘matroids with multiple ele-
ments’’ (integral polymatroids, see Welsh [11]).

Suppose that, in an ordinary matroid M, there is a set n of m elements,
€1, €, ..., €, such that any permutation of these elements is an isomorphism of
the matroid. Then we can (if we wish) call n a multiple element of multiplicity m.
If all elements of M are removed, other than v, then # will have a certain rank p,,
its autorank, and a certain corank, «,, its autocorank.

Clearly

Py T Ky = 4.1

A multiple element with k, =0 is a multiple isthmus, with p, =0, a multiple
loop, otherwise it is nondegenerate. (A set of parallel edges in a graph, often
known as a multiple edge, has autorank 1). If m, is a multiple element, we can
naturally define R,M, C,M to mean RM, CM, respectively. where ¢; is some
ordinary element belonging to the set m,. That is, the removal operation R,
replaces m, by a new multiple element %, whose autorank is 1 less than the
autorank of 7,, but whose autocorank is unaltered. The multiplicity is therefore
reduced by 1. (If 5, is the null set, it can be omitted from the matroid). Similar
remarks (with “autorank” and ‘“‘autocorank” interchanged) apply to C,.

Using these ideas, we can extend the theory developed above to matroids with
multiple edges in the obvious way: for example, all elements of fragments of M
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will be multiple isthmuses and multiple loops, and the dichromate of M can be
defined as the sum of the dichromates of its fragments.

The theory of fragmentation can also be used to give another definition of the
bichromate polynomial (Smith [7]), and its relation to patroid nets (Smith [7, 8])
although the treatment is not so simple as for the dichromate, but corresponds
more closely to Heron’s [4] and Welsh’s [11] definition of a dichromate.

In bichromate theory, each element ¢; is assigned two numbers, its proconduc-
tance ¢; and its proresistance r, Now we have seen that every fragment f divides
the elements of M into 4 classes, Ky, K, Ky, K. With this fragment we can
associate the product

e(f) = H (ca) H () H (¢;+1rX) H (aY+n). 4.2)

e,eKee e, eKp e;eKqy e Ky

The bichromate is then the sum of the ¢(f) taken over all fragments f; it is a
polynomial in the variables X, Y. To show that it is independent of the particular
fragmentation, we can observe that this definition is equivalent to Smith’s [7]
form. For any subset S< E, write S=E\S, and let v=the nullity of S$ in
M =|S|-rank S, and similarly g = the nullity of S in the dual of M.

Then the bichromate of M is

bie M(X, )= ¥ | v T (@, x* T[T 0] @.3)
ScE e,cS eS8
From these forms it is easy to prove the main properties of the bichromate,
namely that if ¢; is nondegenerate

bic M =bic R;M +bic CM, 4.4)
that if M is separable into M, and M,,

bic M =bic M, - bic M; 4.5)
that if M is a one-element matroid consisting of a single isthmus e,

bicM=c,+rX; (4.6)

(and similarly ¢, Y +r, for a single loop); and that if we set all ¢;=1=r, the
polynomial bic M(1+x, 1+y) is the dichromate. We will not go into the formal
proofs of these results here: for one method of proof, see Smith [7].

However, by taking e; to be the first element to be removed or contracted in
the fragmentation process, the expression (4.2) gives an immediate proof of (4.4);
and clearly (4.5) and (4.6) are also immediate consequences of (4.2).

These relations can also be extended in the obvious way to matroids with
multiple elements, thus if e, e,, . ..., ¢, all have the same proconductance ¢ and
the same proresistance r, and the matroid is invariant under any permutation of
these edges, they may together be considered as a multiple element with proresis-
tance r and proconductance c¢. For example, a matroid consisting of one triple
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element will have bichromate
(c+rX)P=c3+3c*rX+3cr’ X*+r* X3,
if this is a triple isthmus, but
Y +3c?r+3err X +r3 X3,

if it has autorank 2 and autocorank 1, and so on.

5. Separation

If E is partitioned into (at least two disjoint) subsets E, in such a way that, for
each E,, every base B, meets E, in the same number of elements, p, = |E, N B,|,
then the matroid M is separable, and is in fact separated by the partition {E,} of E.
The following standard properties of separation are simple consequences of this
definition and the matroid axioms:

Property 5.1. Y p, =rank M.

Property 5.2. There is a matroid M, over E,, having rank p,, whose bases are the
intersections of the bases of M with E,. we call M, the component of M in E,.

Property 5.3. Conversely, if we choose, for each M,, an arbitary base B,, the union
of the B, is a base of M.

Property 5.4. If |E|=2, every degenerate edge is a component of M.
Property 5.5. If M is separated by the {E,}, and e; is in the component M,, then
RM and CM are matroids also separated by the {E,} and having the same
components M, as M, except that M, is replaced by RM,, CM, respectively.

As far as the dichromate is concerned, we have the following results:

5.,6. TM =[] T(TM,).
Rl

This follows from Property 5.5 and the definition 2.5, 2.6 of M. Since the
dichromate of a non-empty matroid contains no constant term, we see that:

5.7. If M is separated into ¢ components, TM(x, y) contains no term of degree < c.

We now require a result effectively due to Crapo [2], which is virtually a converse
of Property 5.5.

Theorem 5.8. Suppose that e; is nondegenerate, R.M is separated by a pair of sets
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(ER, EY) and CM by (ES, ES). Then M, RM and C:M are all separated either by
(ER, EX), or by (ES, ES), or by both.

Proof. Crapo gives a rather sophisticated proof. A proof based more directly on
the matroid axioms is as follows.
For S< E define

N, (S)=|SNEXNE, (5.1

and let N(S) be the 2 X2 matrix with elements N, ,(S), 1=<(A, u)<2. We wish to
investigate what are the possible values of N(B,) for bases B, of R;M. Choose one
such base, say B,, and set N(B,) =n. Because R;M is separated by (ER, EX),

N\ (B)+N,(B,)=|EXN B,|=p3. (5.2)

independently of B, i.e. the row sums of the matrices N(B,) are independent of
B,. Hence in general N(B,) can be written in the form

o ol )]

for some integers P,, Q. However, by Property 5.3 there is another base, B
consisting of the part of B, in E¥ and the part of B, in EX. Hence

N(B,)= N(BO)+[

rss

(ny,—P,) (”12+Pr)] (5.3)

() — Q) (nyp+Q,)
is also a possible value of N(base of RM).
Now if b, is a base of C,R, be definition b, U ¢, is a base of M which includes e,.

Hence by Properties 2.3 and 2.4, given B, there exists at least one element e, and
one base b, of CGM such that

B,=bUe, (5.4

NGB - |

and conversely for any base b, of C;M we can find at least one ¢, and B,, a base of
R:M satisfying eq. (5.4). Thus, each N(b,) is obtained from some N(B,) by
subtracting 1 from exactly one of the 4 elements N, ,(B,), i.e. for some A, u,

Nz\y.(Br,)zN/\p.(br)_Fla (55)

while for the other 3 elements N,;(B,) = N,;(b,); and N(B,) is similarly related to
some N(b,). In particular we will assume that

(ni,—1 nu]

USS nis

N(bo)= | (5.6)
(as can always be arranged by relabeling rows and columns if need be). Since
b, = a typical base of C,M is separated by (Ef{, EY), the column sums of N(b,) are
independent of b,, and in particular, the sum of the elements in the second
column is always n.,+ n,,. Hence, for every N(B,,) given by eq. (5.3) it must be



256 C.A.B. Smith

possible to subtract 1 from just one element to make the second column sum to
ni>+ n,,. Remembering that by definition P,=0= Q,, this implies that the only
other possible value for P, or for Q, would be 1, but we cannot have both
P =1=Q, A similar argument shows that the general form of N(b,,) = N(base of
CM) is

(ny—1+p,) (”1z+qu)]

N(buu):[ (nlz—-pu) (ngz—qv)

and that p,=0or 1, g, =0 or 1, but not P, =1=gq,. Now suppose if possible that
we could have both P, =1=p,; then we would have the possible values for the
matrices N(base of R.M), N(base of C;M), namely

N =[" ") N =D e

Ry Ny Ny, L55)

(5.7)
N(B,)=[(n“—1) (n12+1)j|, N(b,,)=[ Ry nu]‘

L3 LGP (n,—1) nyp

Recall that the bases of M take the forms B, and (b,, U ¢;). Now the (1, 2) element
of N(B,), namely N,(B,) = ny,+1, is greater than the N, element of matrices of
all other forms in (5.7); hence B, interects EXU ¢, in a maximal independent set
containing (n,, +n;,) elements. But (b, U ¢,) intersects EXU ¢; in an independent
set of n,,+n,,+1 elements, thus contradicting the matroid axioms. Hence we
cannot have P,=1=p,.

Similarly from a consideration of the intersections of By and b, with EX U ¢, we
see that we cannot have P, =1=gq,; and by considering the intersections of B;
and b, with EXU e;, we cannot have Q, =1 = p, or q,. Thus, at most one of P, Q,
Pw> 4., can differ from 0. But P, =0= Q, for all r, s implies that M, RM and CM
are all separated by (E¢, ES), while p, =0 = g, implies that they are all separated
by (E®, EX), establishing Theorem 5.8.

The result 5.7 is completed by the following theorem due to Crapo [2, 3]:

Theorem 5.9. If a matroid M has at least 2 elements, the first degree terms in the
polynomial TM(x, y) are of the form {BM)(x +y), where 8M, the Crapo invariant
of M, is a nonnegative integer. Also BM >0 if and only if M is nonseparable.

Proof. For|E|= 2, true by direct verification. Hence proceed by induction, assuming
that |E|>2, and that Theorem 5.9 holds for the matroids R;M, CM. If M is
nonseparable, then by Theorem 5.8, at least one of R;M, CM are nonseparable.
Hence 2.5 and 5.7 show that Theorem 5.9 holds also for M, completing the
induction.

Corollary. If |E|=2, there are exactly 2BM one-element fragments of M in any
one fragmentation, and of these, BM are isthmuses and BM are loops.
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0. Introduction

A theorem of Smith (see Tutte [8]) states that in any cubic graph the number of
hamiltonian cycles containing a given edge is even. If the graph is cubic and
bipartite, a theorem of Kotzig (see Bosak [2]) tells us that the total number of
hamiltonian cycles in the graph is even too. These two theorems are in fact
consequences of a more general result, which we prove in Section 1 below. We
also look at sets of edge-disjoint hamiltonian cycles in multigraphs (loops are
allowed). Let m =2 and for two edges x and y of a multigraph G (with at least
three vertices) let P(x, y) be the set of all collections of m edge-disjoint hamilto-
nian cycles in G. The main result of Section 2 states that |P(x, y)| is even.

These results were discovered whilst investigating uniquely edge colourable
graphs. We denote by x'(G) the edge chromatic number of a graph G. (We adopt
the terminology of [1].) If G has no isolated vertices, and if all edge colourings of
G induce the same partition of the edges into independent sets, we say that G is
uniquely k-edge colourable (where k= x'(G)); this is sometimes abbreviated to
uniquely edge colourable. Let « and f be two of the colours used to colour a
uniquely k-edge colourable graph, and let C,, be the subgraph induced by the
edges of colour a and the edges of colour 8. We may swap the colours a and 8 in
any component of C,, and get another edge colouring of G; hence C,; is
connected, and is a path or an (even) cycle. If G is k-regular then C,; is a
hamiltonian cycle, since there is an edge of colour @ (and one of colour 8) at each
vertex.

Obviously any uniquely 2-edge colourable graph is a path or an even cycle; it is
clear also that the star K, , is uniquely k-edge colourable (K, , has vertex set
{uU{v,,..., v} and edge set {uv,,..., uv}). Suppose now that G is uniquely
3-edge colourable. If G contains a triangle we may contract the triangle to a
single vertex and get another uniquely 3-edge colourable multigraph; conversely
we may replace any vertex of degree 3 by a triangle to get a larger uniquely
3-edge colourable graph. This fact led Greenwell and Kronk [4] to conjecture that
every uniquely 3-edge colourable graph other than K, ; contains a triangle; they
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Fig. 1. Tutte's counterexample.

also conjectured that every cubic graph with exactly three hamiltonian circuits is
uniquely edge colourable. A counterexample to the first conjecture was found by
Tutte [9]; see Fig. 1.

A conjecture of Cantoni (see [9]) states that every cubic planar graph with
exactly three hamiltonian cycles contains a triangle. This leads naturally to the
conjecture stated by Fiorini [3], that every uniquely 3-edge colourable planar
graph other than K, ; contains a triangle.

For x'(G)=4 the stars are the only uniquely edge colourable graphs; we prove
this in Section 3. It was first stated by Wilson [10] as a conjecture.

1. Hamiltonian cycles

Throughout this section we shall be concerned with hamiltonian paths in a
multigraph G =(V, E) which begin with a certain sequence of edges. (Paths and
cycles are always considered as sequences or sets of edges, rather than as
sequences of vertices.) We select a path s =e,, ..., e, in G, where the endvertices
of the edge e are v, and v,,,, 1<i=<m. The path s is called a stick. The
definitions to follow, and the statement of Theorem 1.1, depend on our choice of
s; we obtain corollaries to Theorem 1.1 by making suitable specific choices of s.

Let |V|=n, and for a vertex ve V let d(v) be the degree of v in G. Further let
£(v) be the number of edges between v and the set of vertices {vy, ..., v,,}, that
is, all the vertices of the stick except the last. Let h=ey,..., e,_, be a hamilto-
nian path beginning with the stick s, where the edge e; has endvertices v; and v; 4,
1<i=<n-1. Let ¢, be another edge with endvertices v, and v,, k= m+1, where

e,#¢e,_,. Then the set T={e,,...,e,} is called a lollipop.' It contains two
hamiltonian paths beginning with the stick s, namely h=e,,...,e, and h'=
€1y, € 1, €y €1, .., €. Note that if ¢, is a loop then A =h'; we regard {

as then containing two copies of h.

We now define the lollipop graph 7 (G, s) to be a multigraph whose vertex set is
the set of hamiltonian paths of G beginning with the stick s.7 (G, s) has an edge e
for each Iollipop ? of G, the endvertices of e being the vertices h and h' of
(G, 5). Again, note that if h = h’ then e will be a loop of ¥ (G, s).

1 The letter ¢ (koppa) is an episemon, originally coming between 7 and p in the Greek alphabet.
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Suppose k is a hamiltonian path in G beginning with the stick s and ending in a
vertex v,. Then the degree of h in ¢ (G, s) is exactly the number of copies of h
contained in the lollipops, namely d(v,)—£(v,)—1; this holds even if there are
loops in G at v,.

Theorem 1.1. The number of hamiltonian paths in G beginning with the stick s and
ending in a vertex of the set W={we V: d(w)—c(w) is even} is even.

Proof. These paths are exactly the vertices of odd degree in 7(G, s).

Corollary 1.2. Let G be a multigraph, let u, v € V, and suppose that d(w) is odd for
each vertex w e V~{u, v} # (. Then the number of hamiltonian paths in G from u to
v is even.

Proof. We may assume that u and v are adjacent vertices (if they are not we may
add an edge between them); let e be an edge between u and v. We choose the
stick s to be the edge e with u = v, and v = v,; if we V then £(w) is the number
of edges from u to w. Consequently a hamiltonian path h beginning with s and
ending in w gives rise to exactly e(w) hamiltonian paths from u to v. But by
Theorem 1.1 the number of such paths ending in the set W={we V: g(w) is odd}
is even.

Note that the case of Corollary 1.2 in which G is cubic and u is adjacent to v is
precisely Smith’s theorem.

Corollary 1.3. Let G be a multigraph with n vertices, n=4. Let u,v,weV and
suppose that d(x) is odd if x € V—{u, v, w}. Suppose that every path of length n—2
from v to w passes through the vertex u. Then the number of paths of length n—2
from u to v which do not contain w is even.

We prove Corollary 1.3 in the following equivalent form.

Corollary 1.4. Let G be a multigraph with n vertices, n=4. Let u, v, we V, with
uw, wo € E, and let d(x) be odd if x € V—{u, v, w}. Suppose that every (n—1)-cycle
in G passes through the vertex u. Then the number of hamiltonian cycles containing
both the edges uw and wv is even.

Proof. We take our stick to be s=e,, e, where e;=uw, e,=wv, v,=U, V,=Ww
and v;=v. Let h be a hamiltonian path starting with s and ending in a vertex v,.
Then v, cannot be joined to w since there is no (n— 1)-cycle in G which doesn’t
pass through the vertex u. Thus v, is joined to u by &(v,) edges and so h gives
rise to e(v,) hamiltonian cycles containing the edges e; and e,. By Theorem 1.1,
the number of such paths ending in the set W ={x e V: £(x) is odd} is even, and
the result then follows.
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In the particular case when G is cubic and bipartite, let we V, and let w have
neighbours u,, u, and us. By Corollary 1.4 the number of hamiltonian cycles
containing the edges u;w and wu, is even; similarly for u;w and wu; and for u,w
and wus. Thus the total number of hamiltonian cycles in G is even, and we obtain
Kotzig’s theorem.

If we restrict ourselves to cubic graphs we can obtain the following stronger
result.

Corollary 1.5. Let G be a cubic graph, and let H be the number of hamiltonian cycles
in G. For any vertex v € V, let g(v) be the number of (n— 1)-cycles not containing v,
and for any two incident edges e and f let h(e, ) be the number of hamiltonian
cycles containing both e and f. Then

g(v)= h(e, f)= H(mod 2).

Proof. Let s =e¢,, e; be a stick in G. Let a be the number of hamiltonian paths
beginning with s and ending in a vertex adjacent to v; but not v,. Let b be the
number of hamiltonian paths beginning with s and ending in a vertex adjacent to
v, but not v;. Let ¢ be the number of hamiltonian paths beginning with s and
ending in a vertex adjacent to both v, and v,. Then h(e,, €,) = a + ¢, and since G
is cubic, g{vg)=b+c. By Theorem 1.1, a+b is even, and so h(e, e,) =
g(vo) (mod 2). Let now f;, f, and f; be the edges incident with a vertex w. The
number of hamiltonian cycles not containing the edge f, is h(fs, fs), so by Smith’s
theorem H = h(f,, f5) (mod 2), and the proof is complete.

Corollary 1.6. Let G be a graph in which every vertex has even degree. Let u be a
vertex of G, and let e be an edge incident to u. Then the number of hamiltonian
paths in G which begin at u, contain e, and end in a vertex not adjacent to u, is
even.

Given a multigraph G and a hamiltonian path h beginning with a stick s we can
always construct the lollipops which contain h and thus find the vertices adjacent
to h in the lollipop graph ?(G, s); thus we have an algorithm for constructing the
component of (G, s) which contains h. This is particularly simple in the case
when G is cubic, since then the components of ?(G, s) are paths and cycles. This
algorithm is illustrated in Fig. 2, where given one hamiltonian cycle containing the
two dark edges we may find another, since there is no 9-cycle which doesn’t
contain the vertex x. (This algorithm, applied to cubic planar graphs, was
discovered independently by Price [6].)
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Fig. 2. An algorithm illustrated.

2. Hamiltopian decompositions

Given a multigraph G =(V, E), a partition of E into edge-disjoint hamiltonian
cycles is called a hamiltonian decomposition of G. A pair {h, h} of edge-disjoint
hamiltonian cycles is called a hamiltonian pair. Let now G be 4-regular, that is,
d(v)=4 for each ve V, and let P be the set of all hamiltonian pairs. Since G is
4-regular a hamiltonian pair is a hamiltonian decomposition of G. For x, y € E, let
P(x, y) be the set of hamiltonian pairs in which x and y lie in the same cycle, and
let Q(x, y) be the set of hamiltonian pairs in which x and y lie in different cycles;
thus Q(x, y)= P— P(x, y). Note that if x, y,, y, and y, are the edges incident to a
vertex ve V, then P=J?_, P(x,y;) and so |P|=Y7_;|P(x, y;)|; in particular if
each |P(x, y;)| is even then so is |P|.

I would like to express here my thanks to Mr. Richard Pinch, of Trinity
College, Cambridge, whose computing work helped guide me towards the next
theorem.

Theorem 2.1. Let G be a 4-regular multigraph with at least three vertices, and let x
and y be any two edges of G. Then the number of hamiltonian pairs in which x and
y lie in the same cycle is even.

Proof. Suppose that the theorem is false, and let G be a counter-example with
fewest vertices. Then |P]>0, so G is connected and has no loops. Since the only
loopless 4-regular multigraph on 3 vertices is the fat triangle (Fig. 3) it follows
that |V|=4.

Fig. 3. The fat triangle.
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Let z, and z, be edges with a common endvertex v; say v is joined to vertices
u, and u, by z, and z, respectively and to vertices &, and i, by edges Z, and 2z,
respectively. The multigraph G’ is constructed from G by removing v, 24, 25, Z;
and Z,, and by then adding the edge z between u, and u, and the edge Z between
@i, and i,. Given {h, h}e P(z,, z,) with z,, z,€ h, say, then Z,, Z, € h, and there is a
corresponding hamiltonian pair {#’, A’} in G’ with z€ k' and z€ h'. Similarly it is
clear that to each pair {k’, k'}€ Q(z, ) there corresponds a pair {k, k}e P(z,, z,),
and so |P(z,, z,)|=|Q(z, Z)|. But since G' is not a counterexample to the
theorem it follows by the remarks made earlier that G’ contains evenly many
hamiltonian pairs, and so |Q(z, Z)| is even. Hence in G, |P(z,, z,)| is even for any
two incident edges z; and z,, and in particular |P| is even.

Let now x and y be any two edges of G, and let x, y;,¥5,..., Y-, Y, =y be a
sequence of edges forming a path whose end edges are x and y. Now for any edge
z, the identity

Q(x, y)=P(x,2z) AP(z,y)

holds (where the triangle denotes symmetric difference) since z is in either the
cycle containing x or that containing y. Hence we have for 1<i<r—1,

}P(X, yi+l)l = lPl‘lQ(x, )’i+1)l = lQ(X, )’i+1)l
= lP(x, y:) A P(y,, Yi+1)lE IP(x, y:’)l+ lP()’i, )’i+1)1
=|P(x, y;)| (mod 2),

since y; and y;,; have a common endvertex. Thus

|P(x, y)| = |P(x, y,)|=|P(x, y,_)|=- - - =|P(x, y,)] =0 (mod 2),

contradicting our choice of G as a counterexample.

Theorem 2.1 answers a question of Sloane [7], who asked whether the existence
of a hamiltonian pair in a graph G implied the existence of another such pair.
Sloane showed that if G contains a hamiltonian pair then it contains a third
hamiltonian cycle; Sloane’s result was improved somewhat by Nintik [5] who
showed that G must contain at least six hamiltonian cycles. Corollary 2.2 includes
a further improvement on the estimate of the number of hamiltonian cycles in G.

Corollary 2.2. Let G be a 2m-regular multigraph with at least three vertices, where
m=1. If G has a hamiltonian decomposition, then
(i) each edge of G is in at least 3m —2 hamiltonian cycles,
(i) G contains at least m(3m —2) hamiltonian cycles, and
(i) G has at least Bm—=2) Bm—5)- -+ 7.4=3""(m—1)! hamiltonian decom-
positions.
In particular if G has a unique hamiltonian decomposition then G is a cycle.
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Proof. We prove statements (1), (ii) and (iii) by induction on m; they are obvious
if m=1. Suppose m =2. By Theorem 2.1 the number |P| of hamiltonian decom-
positions of G is even. Suppose e € E and {h,, h,}, {h,, h,}€ P with ec h;, i=1, 2.
Then there is an edge fe hy-h,, so {h,, h,} € Ple, f), and since |P(e, f)| is even it
follows that there is a third hamiltonian pair in G. Thus |P|=4, G has at least 8
hamiltonian cycles and each edge is in at least 4 hamiltonian cycles.

Now suppose k>2 and the statements are true for all values of m<k—1. Let
ecE and let {hy,..., h} be the given hamiltonian decomposition, with e € h,,
say. Let G; be the 4-regular subgraph induced by h,Uh;, 2<i<k. G; has a
hamiltonian decomposition, and there are at least three further hamiltonian
decompositions {hy, hy}, 1<1<3, where e € h;. Now if i#j then h; N h, < h, and
so hy# hy. Let H={h;}U{h;: 2<i<k, 1=<1=<3}; then |H|=3k -2 and so state-
ment (i) is proved. Since each hamiltonian cycle contains n =|V| edges it follows
that G contains at least kn - (3k —2)/n hamiltonian cycles, and so statement (ii) is
proved. Further, if h e H let G, =(V, E-h). Then G, is 2(k — 1)-regular and has
a hamiltonian decomposition, namely {h,,...,h} if h=h; and {h,,..., h_,,
by, Wi, - .., b} if h=hy, 2<i<k, 1=<]=<3. Thus G, has at least (3k—5) - - - 7-4
hamiltonian decompositions, and so G has at least (3k—2) (3k—5)---7-4,
proving statement (iii).

An examination of a few arbitrarily chosen 4-regular graphs with fewer than 20
vertices suggested that the number of hamiltonian pairs in a 4-regular graph with
n vertices increases rapidly with n. However, for every n = 10 there is a graph on
n vertices with exactly 32 hamiltonian pairs. Consider first the 4-regular graph T,,
n=35, with vertex set {0, 1,..., n—1} and with the vertex j joined to the vertices
j*=1 and j=2 (addition mod n). T,, is illustrated in Fig. 4.

For O0sk=n—1, the sequence of vertices 0,1,...,k—1, k+1, k, k+2,
k+3,...,n—1 gives rise to a hamiltonian cycle, and the remaining edges also
form a hamiltonian cycle; thus T,, has at least n hamiltonian pairs. If n is odd the
cycle 0,1,2,..., n~1 also yields a hamiltonian pair. Suppose now that {h, h} is a
hamiltonian pair. It is easily shown that if neither h nor h is given by 0,1,...,n—
1 then h, say, must contain a path of the form j, j+2, j+1, j+3, say the path 0, 2,
1, 3. Since 3, 2, 4 is a path in h the edge (3,4) must be in h, so (3,5)€h, so
(4,5)€e h etc., and we see that {h, h} is one of the pairs described above, and that

Fig. 4. The graph T, and a typical decomposition.
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Fig. 5. A graph with 11 vertices and 32 hamiltonian pairs.

T, has exactly 2{3n} hamiltonian pairs, {r} denoting the least integer greater than
or equal to the real number r.

Now let n =10, and let n;+n,=n, with n,=5, i=1,2. Let G,, i=1,2, be
formed from T, by removing the vertex 0 and its incident edges and adding
vertices u; and v;; u; is joined to 1 and n; —1in T,, and v, is joined to 2 and n; —2.
Form G by identifying u; with u, and v, with v, (see Fig. 5). Then the number of
hamiltonian pairs in G is 2p,p,, where p; is the number of pairs in T, _in which the
edges (0, 1) and (0, n —1) are in different cycles. But by the above remarks p, =4
and so G has exactly 32 hamiltonian pairs.

3. Uniquely edge colourable graphs

Let G be a graph with x'(G) =4, and suppose that G is edge coloured with the
colours b, g, r and y. We denote by u(b), say, a vertex u of degree 3 none of
whose incident edges are coloured b, and by v(g, r), say, a vertex v of degree 2
whose incident edges are coloured neither g nor r; that is, they are coloured b
and y.

If G is uniquely edge colourable, then the subgraph induced by the edges of
two given colours is connected, and so is a path or a cycle. We call these colour
paths and colour cycles.

Lemma 3.1. Suppose that K, , is not the only uniquely 4-edge colourable graph.
Then there is a uniquely 4-edge colourable graph G satisfying one of the following
two properties:

(1) G is 4-regular, or

(ii) There are two vertices u, ve V such that d(w)=4 for each we V—-{u, v};
furthermore u and v both have degree 2 and their incident edges are coloured with
the same two colours.

Proof. Let H be a uniquely 4-edge colourable graph. We saw earlier that the
subgraph induced by the edges of any two given colours is connected. In
particular if H is a tree this means that H has no path of length three: thus
H =K, 4. Suppose now H# K, ,. If v is a vertex of degree 1, then the removal of
v and its incident edge gives a graph H' which is also uniquely 4-edge colourable;
since then H is not a tree we may assume that each vertex of H has degree at
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least 2. We set about adding edges and vertices to H to obtain uniquely edge
colourable graphs with fewer vertices of degree less than 4. If at some stage our
graph were to have two vertices of degree 3, u and v say, then either u = u(b) and
v = v(b) or u=u(b) and v = v(g). In the first case we add the b-coloured edge uv,
and in the second we add the vertex w with a b-coloured edge uw and a g-
coloured edge vw. This shows that we may assume H has at most one vertex of
degree 3; since H cannot have just one vertex of odd degree, it has none at all.

Let now H have g vertices of degree 2, all other vertices having degree 4. If
q =0 then H is regular and we may take G = H, so we assume q=1. Let H have
p colour paths; then p=<(3)=6. Furthermore each vertex of degree 2 is an
endvertex of exactly 4 colour paths (for instance, u(b, g) is an endvertex of the
b-r, b-y, g-r and g—y colour paths), and so 2p =4q; that is, p=2q. Since q=1
we have p=2, and since each path has two ends we must then have g=2; thus
q=3or g=2.

Suppose that g =3 (and so p==6) and that u, v, w are the vertices of degree 2.
If u=u(b, g) and v = v(b, g), say, then neither u nor v is an endvertex of the b—g
colour path, which is impossible since the b—g colour path has two ends. Thus we
may assume that u = u(b, g) and v =v(g, r). Then we may add a g-coloured edge
uv. We now have two vertices of degree 3 and by the remarks above this reduces
to the case q=2.

In the final case g=2 let u and » be the vertices of degree 2, and let
u=u(b, g). Then the colour paths are coloured b-r, by, g-r and g-y, and so
either v =v(b, g) or v =1v(r, y), since v is the other endvertex of each of these
paths. If v =v(b, g) we may take G = H. If v = v(r, y) we may identify u and v to
get a 4-regular uniquely edge colourable graph.

Theorem 3.2. The only uniquely k-edge colourable graph for k = 4 is the star, K, ;.

Proof. If G is uniquely k-edge colourable and G’ is the subgraph induced by the
edges of k' of the colours, k'<k, then G’ is uniquely k'-edge colourable, so we
need prove Theorem 3.2 only in the case k=4.

Suppose then that G# K, , is a uniquely 4-edge colourable graph. We may
assume that G satisfies property (i) or property (ii) of Lemma 3.1. If G satisfies
property (i) then any colour cycle of G is a hamiltonian cycle which is contained
in a hamiltonian pair, hence G has at least 3 hamiltonian pairs. But given any
hamiltonian pair we may colour one cycle b—g and the other r—y to get an edge
colouring of G: this means that G has exactly 3 hamiltonian pairs. But this is
impossible by Theorem 2.1 and so G must satisfy property (ii).

Suppose then G has property (ii), and so has two vertices u(b, g) and v(b, g),
say. Then the (b—g)-coloured subgraph of G is an (n—2)-cycle C, (recall that G
has n vertices) and the (r-y)-coloured subgraph is a hamiltonian cycle C,. Let the
neighbours of u and v be u,, u, and v,, v, respectively. Construct the multigraph G’
from G by removing u and v and their incident edges and adding the edges
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X = U U, and y = v,v,. Then C; and C, give rise to a hamiltonian pair {C}, C4} in
G’ such that {x, y}c C%. By Theorem 2.1 there is another hamiltonian pair
{D4, D%} in G’ such that {x, y} < D5. Hence there is an (n—2)-cycle D, in G and
an edge-disjoint hamiltonian cycle D, such that {C,, C,}#{D,, D,}. By colouring
D, with b and g and colouring D, with r and y we get a new edge colouring of G.
This contradiction completes the proof of the theorem.
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HAMILTONIAN PATHS IN SQUARES OF INFINITE
LOCALLY FINITE BLOCKS

Carsten THOMASSEN
Matematisk Institut, Ny Munkegade, 8000 Aarhus, Denmark

1. Introduction

In 1971 Fleischner [2] proved the Plummer and Nash-Williams conjecture
asserting that the square of every finite block is Hamiltonian. This result has
subsequently been extended in various directions. For example, Fleischner [3] has
shown that for any vertex x of a block G, G* contains a Hamiltonian cycle C such
that the two edges of C incident with x are edges of G.

Nash-Williams [7] proposed to study the analogue of Fleischner’s theorem for
countable graphs. As demonstrated by the graph of [7, Fig. 2], it is not so that the
square of every infinite block has a Hamiltonian path. An obvious necessary
condition for a graph to possess a one-way infinite Hamiltonian path is that the
deletion of any finite vertex set results in graph with only one infinite component.
Nash-Williams [7] asked if this condition is also sufficient when the graph in
question is the square of a countable block. The purpose of this paper is to answer
this question in the affirmative when restricted to locally finite graphs.

2. Terminology and preliminaries

We adopt the notation and terminology of Harary [5] except that we say vertex
and edge instead of point and line, respectively. The set of vertices and edges of
the graph G are denoted by V(G) and E(G), respectively. A graph contains no
loops or multiple edges, a multigraph may contain multiple edges but no loops,
and pseudograph may contain loops and multiple edges. An edge or multiple edge
joining vertices x and y is denoted xy and is called an x-y edge (or multiple edge).
An x-loop is a loop incident with x. An x-y path or trail is a path or a trail with x
and y as end vertices (we only consider open trails, i.e. x#y). An x-y trail is
denoted x,x,:-- x, where x,=x, x, =y and x,,..., X, are the intermediate
vertices. A 1-« (one-way infinite) path or trail is a path or trail of the form
X1X,* -+ . A 2-0 (two-way infinite) path or trail is defined apalogously.

A multipath is a multigraph obtained from a path by replacing some edges with
double edges. A Euler trail of a multigraph G is a trail containing all edges of G,
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and a Hamiltonian path or, for short, an H-path, is a path containing all vertices
of G. A Euler cover of a finite multigraph is a collection J,,J,,...,J, of
mutually edge disjoint trails such that each trail joins two vertices of odd degree
in G and such that each edge of G is in one of the trails. A Hamiltonian cover of
the graph G’ is a collection of mutually disjoint paths Py, P,, ..., P, such that
each vertex of G’ is in one of the paths. The Hamiltonian cover of G’ is
compatible to the Euler cover of G if V(G)= V(G’), k =m, and J; has the same
end vertices as P, for i=1,2,..., k. It is an easy consequence of Euler’s theorem
that every finite multigraph (with at least two vertices of odd degree in every
component) has an Euler cover.

If G is a multigraph and H is a subgraph of G, then an exterior path in G with
respect to H is a path which has precisely its ends in common with H, and an
exterior cycle with respect to H is a cycle having precisely one vertex in common
with H.

If G is a multigraph and A < E(G), then (G, A)” is the graph with the same
vertex set as G such that two vertices are adjacent if and only if they are adjacent
in G, or if they are joined by a path of length 2 using only edges of A, or both.
Thus G*=(G, E(G))*. If xyz is a path of length 2 using only edges of A, then we
may consider the graph G’ obtained from G by deleting the edges xy and yz and
adding the edge xz (if it is not already present), and we put A" = A\{xy, yz}. We
call the new edge xz a short-cut at y and observe that if (G', A")*> has a 1-
H-path, then also (G, A)? has.

An infinite graph G is d-indivisible (d=2) if the deletion of any finite vertex
set from G results in a graph with fewer than d infinite components. It is an easy
exercise to show that if G is locally finite (i.e. every vertex of G has finite degree),
then G is d-indivisible if and only if G is d-indivisible.

We shall use the following results.

Theorem 2.1. (Erdos et al. [1]). A countably infinite connected multigraph G has a
1-00 Euler trail starting at x, if and only if x, has odd or infinite degree, no other
vertex has odd degree, and the deletion of a finite edge set from G results in a graph
with only one infinite component.

Theorem 2.2. Let G be a finite connected graph and S a subset of V(G) with at
least two elements such that each endblock of G contains a vertex of S (distinct from
the cutvertex of the block). Then G* has a Hamiltonian cover each path of which
connects two vertices of S.

Proof (due to Fleischner). Let G’ be the graph obtained from G by adding a new
vertex x and joining x by edges to each vertex of S. Then G’ is a block and by a
result of Fleischner [3, Theorem 3], G’ has a Hamiltonian cycle such that the two
edges of C incident with x are edges of G'. But then CN G? is a Hamiltonian
cover of G? with the desired property.
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3. Characterization of infinite, locally finite, connected, d-indivisible graphs

The theorem of this paper is based on the following characterization of infinite,
locally finite, 2-indivisible connected graphs.

Proposition 3.1. Let G be an infinite, locally finite, connected graph. Then G is
2-indivisible if and only if for every vertex x, of G, G contains a 1-© path
P:x, x, - - - such that every component of G— V(P) is finite.

Proof. The “if” part is easy to prove so we proceed to the “only if” part. Since G
is connected and locally finite, G is countable so we can enumerate the vertices of
G: yy, s -.. where y; =x,. We now define recursively a sequence P, P, ... of
finite paths starting at x; such that P, is a segment of P,,, fori=1,2,..., and the
end vertex of P, other than x, is adjacent to the infinite component of G~ V(P,)
(by assumption, there is only one infinite component in this graph). We let P,
consist of y; = x; only. Having already defined P, we define P,, as follows: Let z,
denote the end vertex of P, other than x; and let k(i) be the smallest integer j
such that y; belongs to the infinite component of G— V(P;). Then G —[V(P,)\{z;}]
contains a z; — v, path zuu, - - -1, (4, = yi(;y)- Now let I(i) be the largest integer
j such that u is adjacent to the infinite component of G-
[V(P)U{u,, u,, ..., u}]. Then I(i)=<r and it is easy to see that I(i)=1. Let P,
be the union of P, and the path zu,u, - * - 4. Then either y,, is in P, or it
belongs to a finite component of G — V(P,,,). Now the 1-» path P=|J7_,P, has
the desired properties since for each i, the vertex y; is either in P, or in a finite
component of G —V(P;) and hence it is also in a finite component of G — V(P).

Proposition 3.1 can also be derived from a result of Jung [6, Satz 3] since
a 2-indivisible graph has only one “Ende” in the sense of Halin [4] and thusa 1—o
path of the type described in Proposition 3.1 is a “Hauptweg” in the sense of Jung
(6].

From Proposition 3.1 we easily get a characterization of d-indivisible locally
finite graphs.

Proposition 3.2. The infinite, locally finite graph G is d-indivisible if and only if it
contains a set of k 1-o paths P, P,, ..., P, where k<d, such that every com-
ponent of G—J*_, V(P) is finite.

Proof. Again, the “if” part is easy so we now assume that G is d-indivisible and
we let k be the smallest integer such that G is (k + 1)-indivisible. Then k < d and
G contains a finite vertex set S such that G-S has k infinite components
G,, G,, ..., G,. By assumption, each G; (i=1,2,...,k) is 2-indivisible and
contains therefore, by Proposition 3.1, a 1-c path P, such that each component of
G,— V(P,) is finite. Then also each component of G — | J¥_, V(P,) is finite because
S is finite and each vertex of S has finite degree.
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4. Euler trails versus Hamiltonian paths in a certain infinite graphs

In this section we show how Hamiltonian paths can be obtained from Euler
trails in certain infinite graphs. We need the following lemma about finite graphs.

Lemma 4.1. Let P:xyx, - x, (n=2) be a multipath and let G be a graph
obtained from P by adding a (possibly empty) system of pairwise disjoint exterior
cycles and a new (possibly empty) set S of vertices and joining each vertex of S to
precisely one vertex of P (by a single edge) such that G satisfies the conditions
below.

(i) No vertex of P is joined to more than two vertices of S and at most one vertex
of P is joined to two vertices of S.

(ii) No vertex of P is at the same time joined to a vertex of S and contained in an
exterior cycle.

(ii1) Every vertex not in SU{x,, x,} has even degree in G.

(iv) x, has not degree 3 in G, and if P contains a vertex which has degree 6 and
which is adjacent to two vertices of S, then both of x,, x,, has even degree (note that
(1) and (ii) imply that no vertex of G has degree greater than 6 and that x, and x,
have degree at most 4).

Let J, J,,...,J. be a Euler cover of G such that at most one trail starts at x,.
Then (G, A)Y has a compatible Hamiltonian cover P,, P,, . . . ,P,, where A is the set
of edges incident with or contained in P.

Proof. We prove the lemma by induction on the number of edges of G. The
lemma is easily verified for n =2 so we proceed to the induction step and assume
n=3,

First we consider the case where P has a vertex x; (2<j<n-1) such that x; is
joined to each of x; , and x;,, by a double edge and to two vertices u,; and u, of
S. If the path u,xu, is one of the trails J; (say J), then we put P, equal to the
path u,u, (in (G, A)?) and use induction on G —{u,, u,}. So assume w.l.g. that the
trail J, starts with the path u,xx; 5 where 8 = +1. Let J; be the trail starting with
u,. Then J; contains a segment of the form u,x;x,,, where o = = 1. If o =4, then
some trail, say J,,, distinct from J, and J, contains the segment x; ,xx;_;. We
delete the double edge x;_,x; from G (and from J,) and apply the induction
hypothesis on the components of the resulting multigraph. So we can assume
without loss of generality that 6= —1, o=1.

Now let J,,, be the trail containing the segment x;_,xx;., (m may equal 1 or s or
both). Vertex x; partitions J,, into two trails J}, (containing an edge x;_,x;) and JZ,
(containing an edge x,x,.,). Let G, be the subgraph of G induced by
Xys X2, ..., %y and all their neighbours and the exterior cycles containing an x;
(1=1<j) and the vertex u,. Let G, be the graph consisting of the edges not in G,
and their ends. Then those of the trails J,, J,, ..., J._,, J . 2. ..., J. which are
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contained in G, (resp. G,) form an Euler cover of G, (resp. G,). By the induction
hypothesis there is a compatible Hamiltonian cover of (G, [A N E(G,)])* for
i=1,2. Let P, be the path corresponding to J., (i=1, 2) and let P, be the path
corresponding to J, (s=1,2,...,k; s#m). Then P, P,,...,P,UPZ,
P, .., ..., P is a Hamiltonian cover of (G, A)? compatible to J,, J,,...,J,.

Next we consider the case where there is a j (2<j< n—1) such that x; and x;_;
are joined only by a single edge. Suppose J, is the trail containing this edge. As in
the previous case, we write G as the union G, U G, where G, N G, ={x;} and if x;
is adjacent to a vertex of S or contained in an exterior cycle, then we let this
vertex (resp. cycle) be contained in G,. Vertex x; partitions J; into two trails Jj,
J? such that J) is contained in G; for i=1,2. By applying the induction
hypothesis on each G; (i=1,2), we get a Hamiltonian cover of G (one of the
paths being the union of the paths corresponding to Ji and J3, respectively).

If x,_, is joined to x, by a single edge, then we argue as in the previous case.
The only difference is that now G,N G, =1{x,_,} (instead of {x,.}) and if x,_; is
adjacent to a vertex of S or contained in an exterior cycle, then we let this vertex
(resp. cycle) belong to G,.

So we can assume that each edge of P is a double edge and that no vertex of
{X2, X3, ..., X,_1} Is adjacent to a vertex of S, for if one of these vertices were
adjacent to a vertex of S, then it would be adjacent to two vertices of S and this
situation we have already considered. This implies that k, the number of trails in
the Euler cover, equals 1 or 2. Now the structure of G and its Euler cover is so
simple that it is easy to find a compatible Hamiltonian cover. Let us here only
consider the case where x,; is joined to precisely one vertex u, of $ and x, is
joined to precisely two vertices, say u, and us, of S, and J; connects u, with u,,
and J, connects x, with u,. Then (G, A)* contains the two paths Py :u 5%, - * * U,
and P,:x;x3xs- - us. If xy,y, - -y is an exterior cycle, then we replace the
edge x;_,x;,, (which is present in either P, or P,) by the path x,_;y;y, - - y.x;-
By doing this for every exterior cycle, we obtain a Hamiltonian cover of (G, A)>
compatible to J,, J,. The other cases are treated analogously.

This completes the proof of the lemma.

Using this lemma we can prove the main result of this section.

Proposition 4.2, Let G be a locally finite graph obtained from a 1-o path
P:x,x,x; - - by adding exterior paths and cycles to P in such a way that no two
exterior paths or cycles intersect outside P. Let A be the set of edges contained in or
incident with P. Then (G, A)* has a 1-» H-path starting at x,.

Proof. Throughout the proof, the terms exterior path and exterior cycle mean
exterior path (resp. cycle) with respect to P. An exterior z-cycle is an exterior
cycle having z in common with P. In order to describe the system of exterior
paths and cycles, we introduce a pseudograph [;(G) with vertex set V(P) such
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that for every exterior x;-x; path (resp. exterior x;-cycle) there is in I;(G) an
x;-x; edge (resp. x; loop). The multigraph obtained from I;(G) by deleting all
loops is denoted I'(G).

We first show that it is no Joss of generality that I'(G) is a forest. For otherwise,
we consider a maximal system of mutually edge disjoint cycles (by Zorn’s lemma,
such a system exists). Let C,, C,, Cs, ... by the cycles in this system and let z; be
a vertex of C, (i=1, 2,...). By making short-cuts at the vertices of C, (other than
z;), we transform the exterior paths (in G) corresponding to the edges of C; into
an exterior z;-cycle. By doing this for every cycle C, we transform G into a graph
G’ such that I'(G') is a forest. (Note that G’ (and hence also I;(G") is locally
finite because {i:z = z;} is finite for every j).

So we assume that I'(G) is a forest and show next that we can even assume
without loss of generality that every component of I'(G) is a path. For this, let IT
be any component of I'(G) and let y, be a (fixed) vertex of II. For any vertex z of
II let zy, z5, . .., Zaias (8 =0 or 1) be the vertices of II adjacent to z and not in
the yo-z path in II. By making k short-cuts at 2, we transform G into a graph G’
such that in I'(G"), z is adjacent to precisely & of the vertices z,, z,, . . . , Zogrs-
We do this for every vertex z of Il and every component I1 of I'(G). In this way
G is transformed into a graph G” such that no vertex of I'(G") has degree greater
than 2. It is easy to see that no component of I'(G") is a cycle, so every
component is a path.

We can therefore assume that each component of I'(G) is a path. Now, let [I be
such a path (of length =1). If a vertex z of IT is incident with k loops of I;(G),
then by making k+1 short-cuts at z (or k short-cuts if z is an end vertex of IT),
we can get rid of these loops and if I7 is finite (say of length r), we can transform
I1 into a path of length 1 by making r — 1 short-cuts. Similarly, k loops at a vertex
can be transformed into just one loop. Combining these observations, we can
assume without loss of generality:

{1) Every component of I is either a 2-» path or a 1- path or a path of
length 1 or a cycle of length 1 (i.e. a loop together with its incident vertex).

We now denote by Gy, the multigraph obtained from G by replacing some
edges of P with double edges such that in G, x, has odd degree and every other
vertex has even degree. It is easy to see that this can be done and that G,, is
uniquely determined. Let Py, denote the multigraph in G, corresponding to P. It
is easily verified that Gy satisfies the condition of Theorem 2.1 for a multigraph
to contain a 1-o Euler trail. For if § is any finite edge-set of Gy and n is an
integer such that no edge of S is incident with a vertex x,,, (k=0), then all but
finitely many vertices of G,,—S belong to the same component as the vertices
s Xpats o o+ -

Separately we consider the cases where Py, has finitely, respectively infinitely,
many double edges. Consider first the case where there exists an integer n, such
that no edge between x; and x,_, is a double edge in Gy, for i=n, We can
assume that in I'(G) every x; with j< n, has degree one or zero. For otherwise we
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achieve this by making a short-cut at every x; (j < n,) which has degree 2 in I'(G).

Now let J:x;z,z; - - - be an Euler trail of G,,. We shall modify J so as to obtain
an H-path of (G, A)*. Let L be the subgraph of Gy, induced by the vertices and
exterior cycles adjacent to (resp. containing) some of the vertices xq, X5, ..., X, 1
(in particular, x,, € V(L)). By Lemma 4.1, we can modify that part J' of J which is
in L so as 10 obtain a system of disjoint paths in L? such that these paths together
with the part of J outside L form a trail J, of (G, A)* which includes every vertex
of L and every edge outside L. We now transform J; into an H-path of (G, A)? by
considering each segment z;_,z,z,,, of J; such that z,€{x,, X, +1,...} and z; | €
V(GN\ V(P), and by replacing it with a short-cut at z,, when z,,, € V(G)\ V(P)
and when z; ., is the successor of z in P.

Consider next the case where infinitely many edges of Py, are double edges. We
consider first the subcase where no component of I';(G) is an infinite path, i.e.,
every component of I;(G) is a path or cycle of length 1. If x; and x;,, are joined
by a double edge in G, then I'(G) contains an edge of the form x.x, where
s=<i<t because Gy has a Euler trail starting at x,. So we can select integers
iy 0, ...and s, 5, ... and &, b, . .. such that s; < <¢; and the vertices x;, x;.,
are joined by a double edge in Gy, and x,, x, are adjacent in I'(G). By choosing
i;+, sufficiently large compared to i, we can assume that ¢, <ls,;,; for each j. Let
Gy, denote the graph obtained from G,, by deleting all the double edges XX 41
(j=1,2,...). Then G,,is connected, x, has odd degree in Gy, and every other
vertex has even degree. Moreover, the deletion from G,, of any finite edge set
results in a graph with only one infinite component. So Gy, has a Euler trail J.
By using Lemma 4.1, we modify for each j=0, 1,2, ... the part of J which is in
the graph of G, induced by the vertices in {x, : L[+1=<r=<i,,} and the exterior
cycles containing one of these vertices and the neighbouring vertices (here iy =0),
and we thereby obtain an H-path of (G, A) starting at x,.

Finally, we have to consider the case where Py, has infinitely many double
edges and I'(G) has at least one 1- path, say II,. I'(G) has only countably many
1- paths, so we can write a sequence I1,, I1,, . . . of 1-» paths of I'(G) such that
every 1l- path in I'(G) occurs infinitely often in this sequence. We define

recursively sequences i, i, ... and sq, S5, ... and £, £, ... of natural numbers as
follows: We let s; be any vertex of Il,. Suppose we have already defined
Bfyeeesdioty S1582, ..., 8, b, b, ..., 4. Then we let i be the smallest integer

greater than or equal to s; such that x; and x; ., are joined by a double edge and
let £ be any integer greater than i such that x, is a vertex of I, and we let s;,; be
any integer greater than ¢ such that x,  is a vertex of Il,.

We can assume that the vertices x,, x, (j=1,2,...) are the only vertices of
degree 2 in I'(G), for otherwise this can be achieved by making short-cuts at all
other vertices of degree 2 in I'(G). By doing this, we still have a graph of the
same type as described in the proposition because every 1-» path of I'(G) occurs
infinitely often in the sequence IT,, IT,, . . . .We now denote by G,, the multigraph
obtained from Gy by deleting all double edges x,x;; (i=1,2,...). Then Gy is



276 C. Thomassen

connected (because each edge x,x;,., is compensated for by the exterior path
corresponding to the edge x, x, , of I'(G)).

Furthermore, x, is the only vertex of odd degree in Gy, and the deletion of a
finite set of edges of G results in a graph with only one infinite component. So
G, has an Euler trail J. By the choice of the integers i, each vertex x, has degree

4 in Gy,. So for every j (j=0,1,2,...) we modify, using Lemma 4.1, the part of J
in the subgraph of Gy, induced by the vertices X1 Xip2s - -5 %, and the
neighbouring vertices and the exterior cycles containing one of these vertices so as
to obtain an H-path of (G, A)” starting at x,.

The proof 1s complete.

5. Hamiltonian paths in infinite 2-indivisible locally finite blocks

By combining Theorem 2.2 and Propositions 3.1, 4.2, we easily prove the
theorem of this paper.

Theorem 5.1. Let G be an infinite, locally finite, 2-indivisible block, and let x, be
any vertex of G. Then G*? has a 1-» Hamiltonian path starting at x,.

Proof. By Proposition 3.1, G has a 1-» path P:x;x,x;--- such that each
component of G— V(P) is finite. Consider such a component, say K. Let S be
those vertices of K which are joined to P by edges. Then the pair K, S satisfies
the assumption of Theorem 2.2 because G is a block so K* contains a Hamilto-
nian cover P,, P,, ..., P, such that each P, can be extended to an exterior cycle
or path with respect to P by adding two edges of G. We form these exterior paths
and cycles for every component K of G — V(P) and obtain a graph G’ satisfying
the assumption of Proposition 4.2. By this proposition, (G’, A)*> has a 1-e
Hamiltonian path starting at x, where A is the set of edges incident with or
contained in P. Since A < E(G), this Hamiltonian path is also a Hamiltonian path
of G? and the proof is complete.

6. Concluding remarks

If G satisfies the assumption of Proposition 4.2, then also (G, A)* has a
two-way infinite Hamiltonian path. In order to prove this, we define in the proof
of Proposition 4.2 the multigraph Gy, in such a way that every vertex has even
degree and we replace ‘1-cc Euler trail” with “2-o Euler trail” throughout the
proof and we use the conditions [1] for the existence of such a trail. Using this
result, we can modify the theorem to obtain the result that the square of every
infinite locally finite 2-indivisible block has a two-way infinite Hamiltonian path.
Moreover, by using Proposition 3.2 (with d=3), we can also prove by the
methods of this paper that the square of every infinite, locally finite 3-indivisible
block has a two-way infinite Hamiltonian path.
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AN INVESTIGATION OF COLOUR-CRITICAL GRAPHS
WITH COMPLEMENTS OF LOW CONNECTIVITY

Bjarne TOFT
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A k-chromatic graph I’ is called v-critical if all vertices x of the graph are
critical, i.e. x(I'—x)<x(I)=k. It is called e-critical if it is connected and all
edges e of the graph are critical, i.e. x(I'—e)<x(I'). It follows from these
definitions that an e-critical graph is also wv-critical. The critical 3-chromatic
graphs are the odd circuits. It seems hopeless to try to determine the structure of
all critical graphs with chromatic number 4 or more.

G.A. Dirac observed that a graph I' is the complement of a v-critical (e-critical)
graph I if and only if each connected component of I is the complement of a
v-critical (e-critical) graph. This result gives a method for constructing new critical
graphs from known ones. Let us for example take two disjoint odd circuits and
join them completely by edges. The resuit is an e-critical 6-chromatic graph [,
and if the two circuits are of equal length then the number of edges of I' is >%n?,
where n denotes the number of vertices of I. This shows the existence of
e-critical 6-chromatic graphs with “many edges”, i.e. with more than ¢ - n? edges,
where ¢ is a positive constant.

The aim of this note is to give an account of an investigation of those critical
graphs I', whose complements I” have low vertex-connectivity, thus continuing the
line of study initiated by Dirac’s result. The investigation has been carried through
for I of connectivity <2, and the critical graphs of this structure have been
characterized.

The main-tool of the investigation is

Lemma 1. Let I" be a graph, and let C be a subset of the set of vertices of I" such
that I'— C is disconnected. Let I') and I', be subgraphs of I' such that (cf. Fig. 1)

(1) I'yN I, is the subgraph of I" spanned by C,
2) I'N'-C#0 and I',- C#9,
(3) I consists of I'y'U T, together with all edges from I''—C to I,—C.

Let S denote the set of all subsets of C including the empty set and the whole set.
Then

X(D:Tig {x(I'—(C—A)+xU,—A)}.

279
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Fig. 1

Proof. Let A e S. Colour I') —(C— A) with x(I'; ~(C— A) colours and I, — A with
x(I,— A) other colours. Each vertex of I' has then got a colour. The result is

a (x(I'—(C—=A)) + x(I',— A))-colouring of I'. Hence
X(DSlzlilsl{x(ﬂ—(C*A))+X(F2*A)}-

On the other hand, let K be a x(I")-colouring of I'. A set A€ S is defined as
follows. A vertex x of C is contained in A if and only if x has the same colour in
K as at least one vertex of I, —C. Then in K the colours of the vertices of
I'y—(C—A) are all different from the colours of the vertices of I, —A. Hence

X(F)ZX(IH—(C—A))+X(F2~A)>ri1in{x(ﬂ—(C—A))+X(F2—A)}
eS
and the Lemma follows.

Note that if in the Lemma I'— C has =3 connected components, then the two
graphs I'y and I, satisfying (1), (2) and (3) are not uniquely determined from the
structure of I

For I' of connectivity <1 the results of the investigation are:

Theorem 2. A graph I is the complement of a v-critical graph I if and only if each
block of I' is the complement of a v-critical graph. Moreover, if I is v-critical then

x(n=( x())=(b-o)

1

where T, I,,..., T, are the blocks of T and c is the number of connected
components of I.

Theorem 3. If I' is e-critical then I' has no cutvertices, i.e. each connected
component of I" consists of precisely one block.

Proof of Theorem 2. The proof is by induction over the number b of blocks of I'.
If b=1 then the theorem is obviously true. Suppose that =2 and that the
theorem is true for graphs containing <b blocks.

If T is disconnected then by the induction-hypothesis the theorem holds for
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each connected component of I. By the above result of Dirac the theorem then
holds for I We may, therefore, assume that I is connected.

Since I' is connected and has =2 blocks, I’ has the structure described in
Lemma 1 with C consisting of a single vertex x. Then by Lemma 1

(1) x()=min{x(I', —x)+xI), x(I') + x(I>—x)}.
Suppose first that I is v-critical. Then

2 xD=xT—=x)+1=x(I'—x)+x(I—x)+1.

From this and (1) it follows that we may choose the notation such that y(I'; —x) =
x(I')—1. Then by (1)

3 x)=xT)+xT)-1

By (2) and (3) x is critical vertex of both I'; and I5.
Let z be a vertex of I';—x. Then by (1) used on I'—z, and by x(I'—2z)=
x(IN—1 and (3), it follows that

4)  x(I'—z)=min{x(I;—z—x)+x(I}), x(I;— z) + x(I; - x)}
=x(I'D+x(I)-2.

By (4) either x(I,—z—x)=x(I;)—2 or x(I';—z)= x(I:)—1. The first alternative
also implies x(I';—z)= x(I:)—1. Hence z is a critical vertex of I;.

We have then proved that both I'; and I, are v-critical. Both I'; and I, have
<b blocks, hence by the induction-hypothesis all blocks of I'; and I, and
therefore of I', are complements of v-critical graphs. The formula for x(I') follows
from the corresponding formulas for x(I';) and x(I), which are true by the
induction-hypothesis, and (3).

Suppose on the other hand that each block of I' is the complement of a
v-critical graph. Then by the induction-hypothesis I'; and I, are v-critical. By (1)
we get again (3) and, therefore,

xT—=x)=x(I'n—x)+x(I,—x)=x(I') -1+ x(I)-1=x(I)—1,

i.e. x is a critical vertex of I. Again by (1) used on I'—z, and by I'} and I,
v-critical, (4) follows. Then by (3) and (4) x(I'—2z)=x(I")—1, thus z is a critical
vertex of I. Hence I' is v-critical. This completes the proof of Theorem 2.

Proof of Theorem 3. Suppose that the theorem is false. We shall obtain a
contradiction. Let I' be e-critical and let x be a cutvertex of I". The vertex x is a
cutvertex of the connected component of I in which it is contained, hence by the
result of Dirac we may assume that I is connected.

Let again I'; and I', be as in Lemma 1 with C={x}. Since both I, and T, are
connected and with =2 vertices, there exists for i =1, 2 a vertex z; in I; -x such
that (x, z,) is an edge of I

By (3) x(IN = x(I'))+ x(I',)— 1, and hence, since e =(z,, z,) is a critical edge of
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I x(I'—e)=xI')+xU%)—2. In a (x(I')+x(I%)—2)-colouring of I'—e the
vertices z; and z, necessarily have the same colour, moreover the only further
vertex that can possibly have this colour is x. Hence

x(I'—z,—z,—xy=< xy(I') + x{I,) - 3.
On the other hand

XI'—z—z,—x)=x(I'1—z,—x)+ x(I',— 2, — x)
SX(Fl)—1+X(F2)~1.

The last inequality follows since z; and x are not joined by an edge of [ for i =1,
2.

A contradiction has then been obtained. This completes the proof of Theorem
3.

Like Dirac’s result the above Theorem 2 gives a method for constructing new
v-critical graphs from known ones. As an example, let I' be a graph such that
each block of I' is the complement of an odd circuit. By Theorem 2 I'is v-critical
and x(IN=2b+c. If b=2 and ¢ =1 then y(I")=35, and if the two odd circuits are
of equal length then the number of edges of I' is >in”.

Simonovits has described a more general construction-method [2, p. 71, proof
of Theorem 2], that he obtained while studying large independent sets of vertices
in critical graphs.

It is also easy to prove that Theorem 2 implies:

Corollary 4. If I is a connected complement of a v-critical k-chromatic graph T’
(k=5) and x is a vertex of I', then I'—x may have anything up to (k—1)/2
connected components. Moreover, I'—x has precisely (k—1)/2 connected com-
ponents if and only if I consists of the complements of odd circuits of lengths =5,
each pair of which has just x in common.

The result of Corollary 4 is in sharp contrast to Theorem 3.

Since K, is not the complement of a v-critical graph, Theorem 2 also has the
consequence that if I" is v-critical then I" has no bridges. This generalizes the
result of Dirac [1, p. 463], that no vertex of a v-critical graph is joined to all other
vertices except one.

For I' of connectivity <2 the results of the investigation are more complicated,
and perhaps rather unattractive. For v-critical graphs the characterization splits
into four possible cases, and for e-critical graphs into two possible cases. Each of
these six cases gives rise to one or more methods for constructions of critical
graphs, and a variety of new examples of critical graphs can be obtained.

We shall describe the four v-critical cases in constructive terms.

Case 1. Let I'y and I, be two graphs, each having =3 vertices, and I', N T,
consisting of two vertices x; and x,, these two vertices being independent in both
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I'; and I,. Let I be obtained from I'; U I, by joining all vertices of I'; — x, —x, to

all vertices of I',—x, —x, by edges. If I'; and I, satisfy
(1) I'; is v-critical,
(2)  xTp=x)=xUI%—x) = x(I3),
Iy =x, = x,) = x(I,) -1,
Vze V(I,—x,—x,): either
x(U=x,=z)=x(I3)—1
or
xUy=x,—z)=x(13)~1,
then I' is v-critical and x{(I) = x{I'})+ x(I%) — 1.

Case 2. Let I') and I', be two graphs, each having =3 vertices, and I', N I,
consisting of two vertices x; and x, and the edge (x,, x,). Let I' be obtained from

I'UT, as in Case 1. If I'y and T, satisfy
M) xWy—x)=xI' = x) = x(I'y = x,—x) = x(I)— 1,
Vze V(I —x,—x,): either
x('—z)=x(I)~1
or
x( =x,=x—z)=x(I) -2,
2 xh—x)=xy~x)=x(I7),
x(—x;—x) = x(I5)— 1,
Vze V(I',—x,—x,): either
x(=x,—2)=x(I3)~1
or
x(U=x,—z)=x(I3)~1,
then I' is v-critical and x(I') = x(I'}) + x(I%) — 1.

Case 3. Let I'), I, and I" be as in Case 2. If I'; and I, satisfy
T

i

x(Ii—x,—x)=x(I)—2for i=1, 2,

is v-critical for i =1, 2, and

then I' is v-critical and x(I') = x(I'D)+xU%) —2.
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Case 4. Let I', I';, and I" be as in Case 2. If I'; and I, satisfy
M xUi—x—x)=xT") -2,
Vze V(I —x;—x,): either
x(—xy—z)=x(I')~-2
or
x(I'i—x,—z)=x(I)-2,
(in particular these conditions imply that I, is v-critical),
(2) I', is v-critical and x(I's—x; —x,) = x{I5)— 1,
then I' is v-critical and x(I") = x(I'))+ x (1) —2.

The verification of the four cases is based on Lemma 1. It is not difficult, and
we leave it to the reader. Also based on Lemma 1 one can conversely prove:

Theorem 5. Let I be v-critical and I" 2-fold-connected with C = {x,, x,} a cutset of
I’ of size 2. Let I') and I', be as in Lemma 1.

Then the notation may be chosen so that I') and I, satisfy one of the above four
cases. In particular I' is obtainable by one of the four constructions.

As said above: for each of the four cases a variety of examples can be obtained.
We shall not describe these examples here, however a few of them are indicated
in the following corollary.

Corollary 6. Let I' be v-critical and I' 2-fold-connected with {x,, x,} a cutset of I'
of size 2.

(a) For x{I'=4 and (x;, x,) not an edge of I, the number of connected
components of I'—x,—x, may be anything from 2 up to x(I')—2. It is equal to
x(I')—2 if and only if I consists of the complement of an odd circuit of length =5
and x(I')—3 circuits of length 4, each of these x(I')—2 graphs having pairwise just
X1, X, and (x4, X,) in common.

(b) For x(I')=3 and (x,, x,) an edge of I', the number of connected components
of I'—x,— x> may be anything from 2 up to x(I')~1. It is equal to x(I')— 1 if and
only if I' consists of a path of length 2 and x(I")—2 paths of length 3, each of these
x(I') =1 paths having x, and x, as their end-vertices, and each pair of them having
only x, and x, in common.

We shall now turn to the e-critical case. Let thus I” be an e-critical graph with I’
2-fold-connected and {x,, x,} a cutset of I Since an e-critical graph is also
v-critical it follows from Theorem S that I is obtainable by one of the Cases 1-4.
However, by an argument similar to the one used in the proof of Theorem 3, the
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Cases 3 and 4 can be excluded. Moreover, of course, the conditions for I'; and I,
stated in the Cases 1 and 2 are only necessary, but not sufficient, for I" to be
e-critical. Some further necessary conditions can be obtained.

Theorem 7. Let I' be e-critical and I' 2-fold-connected with C ={x,, x,} a cutset of
I of size 2. Let T, and I', be as in Lemma 1. Then the notation may be chosen so
that I'y and I, satisfy one of the above Cases 1 and 2. In particular I is obtainable
by one of the constructions described in the Cases 1 and 2.

Moreover, if the notation is as in Case 1 then I'y and I, satisfy the following
additional necessary conditions:

(1) I'y is e-critical, and I'; — x, — x, is v-critical,
(2) I',—x, and I',—x, are both v-critical.

If the notation is as in Case 2 then I'| satisfies the following additional necessary
condition:

(1) I'y—x,—x, is v-critical.

It is possible to further extend the necessary conditions of Theorem 7 to
necessary and sufficient conditions for I" to be e-critical; however, the additional
conditions are very unattractive (some of them are “mixed” conditions for I'; and
I';), and we shall not discuss them here.

Theorem 7 has the following corollary:

Corollary 8. Let I' be e-critical and I 2-fold-connected with {x,, x,} a cutset of T’
of size 2.

(@) If (x;, x,) is not an edge of I' then x(I')= 6, and if x(I') =6 then the number
of vertices of I' is odd and =11 (and there are precisely two non-isomorphic
examples with 11 vertices, see Fig. 2).

(b) If x(IN<S, then T contains a vertex of valency 2, i.e. I contains a vertex
joined to all other vertices except 2.

(¢) I'—x,—x, has precisely two connected components.

Only the proof of (c) presents some difficulties. We shall outline a proof of (c).

Let I', and I, be as described in Theorem 7. If T, — x, — x, has 2 or more than 2
connected components, then by Theorem 7 each of these connected components
is the complement of a wv-critical graph. Let 7, be a vertex of a connected
component A, of I' - x, — x, such that (t,, x,) is an edge of I. Let 1, be a vertex of
A,=T—1x,—x,— A, such that (1,, x,) is an edge of I'. Such vertices t, and t, exist,
since x,, X, is a minimal cutset of I. By giving x, and ¢, the same colour, and x,
and t, the same other colour, and using that A, and 4, are both wv-critical, it
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Fig. 2

follows that
X(F1)$X(Al_t)+X(A2—t2)+2
=x(A)—-1+x(4,)—-1+2
= X(Fl — X3 _X2).
This is a contradiction, since by Theorem 7 x(I'y —x, —x,) = x(I") — 1.

If I'—x,—x, has 3 or more than 3 connected components then, as noted after
the proof of Lemma 1, there is a freedom in the choice of I'; and I';. Using this
freedom, the above fact that I', — x, — x, only has one connected component, and
this component always being the complement of a v-critical graph, it follows that
all connected components of I'— x, — x, are complements of v-critical graphs.

From this it follows as above that if I, — x, — x, has 2 or more than 2 connected
components, then

x(I) < x(I',—x,—x,),

contradicting that x(I,—x,—x,) = x(I,)— | by Theorem 7. This proves Corollary
8(c).

By a result in [5], Corollary 8(b) implies that all e-critical 4-chromatic graphs
whose complements are not 3-fold-connected are known.

The investigation described above was started in 1968 in the hope that it would
produce e-critical 4- and 5-chromatic graphs with many edges. However, it only
succeeded for v-critical 5-chromatic graphs, cf. the remarks to Theorems 2 and 3.
This was somewhat disappointing, also because the obtained graphs with many
edges were already known. In fact, I learned later that Zeidl in 1957 had obtained
examples of v-critical 4- and 5-chromatic graphs with more than ¢n? edges (see
[6]). The existence of e-critical 4- and S-chromatic graphs with many edges was
established in 1969 using other methods. Thus in [3] e-critical 4-chromatic graphs
with more than {xn® edges were obtained.
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The v-critical 4-chromatic graphs of Zeidl (or the e-critical 4-chromatic graphs
of [3]) and odd circuits can be combined as indicated in Theorem 2 to provide
examples of v-critical 6-chromatic graphs with more than t5n® edges (more than
£n? edges). This shows that the graphs consisting of two disjoint odd circuits of
equal length and completely joined by edges are not the v-critical 6-chromatic
graphs with a maximum number of edges. Whether they are the e-critical ones is
still an unsolved problem, however, in view of the above I suspect this not to be
$0.

Because of the ‘“failure” of the investigation to produce interesting critical
graphs with many edges, perhaps the most striking feature of it is the exhibition of
qualitative differences between v-critical and e-critical graphs (in terms of their
complements), cf. Corollary 4 and Theorem 3, and Corollary 6 and Corollary 8(c).

The proof-methods of the investigation are simple and straightforward, but
somewhat tedious. In principle the investigation can be continued to cover critical
graphs, whose complements contain cutsets of 3, 4, 5,... and so on vertices.
Maybe a continued investigation could produce more light, in particular this
would be desirable in the e-critical case.

A rather detailed account of the investigation can be found in [4]. An improved
and slightly extended version can be obtained on request from the author.
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3GI Canada

1. The 1-Factor Theorem

A 1-factor of a finite graph G can be defined as a regular spanning subgraph of
G of valency 1. Petersen’s Theorem [2, Chapter 10; 4] asserts that if a cubic
graph is without a 1-factor then it has at least three isthmuses, not all in one arc.

Let G be any finite graph, with vertex-set V(G). If S is any subset of V(G) let
G; be the graph obtained from G by deleting the vertices of § and their incident
edges. Let a component of G be called odd or even according as the number of
its vertices is odd or even. Let us write |S| for the number of elements of S, and
h(S) for the number of odd components of Gg. The following theorem is proved
in [5].

Theorem 1.1. (1-Factor Theorem). G is without a 1-factor if and only if there is
a subset S of V(G) such that h(S)>|S]|.

Now if the number of vertices of G is odd there can be no 1-factor. And we
then have h({£2)>|£2|, where (2 is the null subset of V(G). So in applications we
can arrange, by excluding trivialities, that | V(G)| is even. It then follows that

h(S)=|S| mod 2, (1)

for each subset S of V(G).

Let us see how the 1-Factor Theorem can be used to prove Petersen’s Theorem.
Let G be cubic and without a 1-factor. Then |V(G)] is even and, by the 1-factor
Theorem, there is a subset § of V(G) such that |S|< h(S). Using (1) we deduce
that |S|= h(S)—2. The number of edges joining a given odd component of Gg to
S must be odd. Let it be 1 in m cases and 3 or more in n cases. Then |S] is at least
{(m+3n). We now have

Ym+3n)<|S|<h(S)-2=m+n-2,

m=3m—6,
m=3.

Accordingly G has at least 3 isthmuses and its isthmuses are not all in one arc, as
Petersen’s Theorem asserts.

289
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2. The Subgraph Theorem

In this Section we generalize the notion of a 1-factor.

Let us suppose given a mapping f of V(G) into the set of non-negative integers.
We define an f-factor of G as a spanning subgraph of G in which the valency of x
is f(x), for each x in V(G). By the “‘subgraph problem” we mean the problem of
finding a usable necessary and sufficient condition for the general finite graph G
to have an f-factor. When f(x)=1 for each vertex x an f-factor reduces to a
1-factor.

We define a graph-triple as an ordered triple (S, T, U), where S, T and U are
disjoint subsets of V(G) having V(G) as their union. The components of the
subgraph of G induced by U are called simply the components of U.

If xe V(G)and X < V(G) let us write A(X, x) for the number of edges having x
as one end and with the other end in X. If xe X then loops on x are to be
counted twice in the evaluation of A(X, x). If X and Y are disjoint subsets of
V(G) we write A(X, Y) for the number of edges joining X to Y.

Consider a graph-triple B=(S, T, U). If C is any component of U we write

JB;C)= ) Af(b)+ (T, b)}. (2)
hbeV(CH
We then say that C is an odd or an even component of U, with respect to B,
according as J(B; C) is odd or even. We write h(B) for the number of odd
components of U, with respect to B.
We define the deficiency 8(B) of B as follows.

8(B)=h(B)~ ), fla)+ ) {fc)= AT, c)~ AU, c)}. (3)
aes ceT
We call B an f-barrier of G if §(B)> 0. The main result of [6] can be stated as
follows.

Theorem 2.1. (Subgraph Theorem). For a given f the graph G has either an f-factor
or an f-barrier, but not both.

This theorem is proved in [6] by the method of alternating paths. It is assumed
in the proof that f(x) is never zero, and that G has no loops. But these restrictions
are removed in [7].

Let us check the Subgraph Theorem in some trivial cases. If G is to have a
1-factor it is clear that the sum of the “weights” f(x) over all the vertices of G
must be even. And if the weight-sum is odd we have the f-barrier ({2, {2, V(G)),
of deficiency 1.

Let the valency of a vertex x of G be denoted by val (G, x). If G is to have an
f-factor it is necessary that f(x)<val (G, x) for each x. But if f(x)>val (G, x) for
some x then G has the f-barrier (2, V(G)—{x}, {x}).
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Neglecting the trivial cases just considered we may suppose that the weight-sum
is even and that f(x)=val (G, x) for each vertex x. We can then define a mapping
f" of V(G) into the set of non-negative integers such that

f(x)y=val(G, x)— f(x) 4)

for each vertex x. If F is any f-factor of G then the edges of G not belonging to F
determine an f'-factor F' of G. Evidently G has an f'-factor if and only if it has an
f-factor.

We return to the graph-triple B=(S, T, U) and the numbers h(B), 6(B) and
J(B; C) calculated for it in terms of f. When f is replaced by f’ let these numbers
be replaced by h'(B), 8'(B) and J(B; C) respectively. Let us also write B'=
(T, S, U). We note that

J(B; C)+J'(B',C)= ). {val(G, b)+A(S, b)+A(T, b)}

beV(C)

= ) MU, b) mod2

beV(C)

=(0 mod?2

for any component C of U.
The numbers J(B; C) and J'(B’; C) being of the same parity for each compo-
nent C of U we deduce that

h{B’)= h(B). 5)

We can write A(S, ¢)—val (G, ¢) for —A(T, ¢)—A(U, c) on the right of (3). We
can therefore rewrite that equation as

8(B)=h(B)+A(S,T)— Y, fla)— Y. f(o). (6)

acS ceT

Using (5) we can then deduce that
8'(B') = 8(B). (7
These results lead to the following theorem.

Theorem 2.2. (Interchange Theorem). If B is a maximal f-barrier of G then B' is a
maximal f'-barrier of G, and conversely.

3. The Transfer Theorem

The Subgraph Theorem (2.1) is difficult to apply. Suppose for example that we
wish to deduce the 1-Factor Theorem (1.1) from it. We put f(x) =1 for each x, and
assert that if no 1-factor of G exists then G has an f-barrier B=(S,T,U). U T
happens to be null then the 1-Factor Theorem follows immediately, h(B) being
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the number h(S) of Section 1. But why should T be null, and what can we do if it
is not?

Some of the difficulties are overcome in [7]. If G has an f-barrier, for a
general f, then it has a maximal f-barrier, that is one with the greatest possible
deficiency. In [7] we are recommended to use the Subgraph Theorem in the
following form: G has either an f-factor or a maximal f-barrier, but not both. It is
found that when the f-barrier B = (S, T, U) is maximal the vertices of S and T
have special properties, and these can be exploited in problems of graph-
factorization. We arrive at them by considering the effect of transferring a vertex
between S and U.

Consider the graph-triple B=(S, T, U) and let x be a vertex of S. We put
B, =(S—{x}, T, UU{x}) and consider the relation between §(B) and &8(B,).

Write p(x) for the number of odd components of U, with respect to B, that are
joined to x by edges of G. In B, all such odd components are incorporated in a
single component K of UU{x}, and K includes also the vertex x. The other odd
components of U remain as the odd components, other than K, of UU{x}. Some
even components of U, with respect to B, may also be contained in K.

It is easy to verify that

J(B,, K)=p(x)+ f(x)+ A(T, x) mod 2. (8)

Let us define n(x) as the number O or | having the same parity as w(x)+f(x)+
A(T, x). Then we can deduce from the foregoing resuits that

h(B)—h(B,) = u(x)—n(x). 9)
It now follows from (3) that
8(B)—8(B,) = ulx)—n(x)— f(x)+ A(T, x). (10)

It should be emphasized that the expression on the right of (10) is always even, by
the definition of n(x).

If B is a maximal f-barrier the expression on the right cannot be negative; if B,
is a maximal f-barrier the expression cannot be positive. If the expression is zero
and one of the graph-triples B and B, is a maximal f-barrier then so is the other.

We take account also of the case in which x belongs to U instead of S. We then
define p(x) and n(x) with respect to the graph-triple B, =(S{x}, T, U—{x}), and
use (10) with B, replacing B and B replacing B,.

We state the consequences of (10) in the following theorem.

Theorem 3.1. (Transfer Theorem). Let B = (S, T, U) be a maximal f-barrier. If x is
in S then

fle)y< p(x)+A(T, x)—n(x).
If x is in U then

flx)= u(x)+ AT, x)—n(x).
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if
f(x) = p(x)+A(T, x) — n(x)

then x can be transferred between S and U without affecting the maximality of B.

In the case of equality x is called in [7] a ““left-neutral vertex”.

In [7] we find some analogous results concerned with the transfer of a vertex
between T and U. However, it is not necessary to state these separately; we can
obtain them by applying the Transfer Theorem with f" replacing f and B’ replacing
B.

One consequence of the Transfer Theorem derived in [7], is that if G has no
f-factor it has a maximal f-barrier B = (S, T, U) such that f(x)>1 for each x in T.
Thus if f(x) =1 for each vertex x we can arrange that T is null. This observation
removes the difficulty we have encountered in proving the 1-factor Theorem as a
consequence of the Subgraph Theorem.

Starting with the Subgraph and Transfer Theorems we can construct short proofs
of Berge’s extension of the 1-Factor Theorem (see [1, p. 154]) and of the
Erdos-Gallai Theorem on valency-sequences [3]. In the next section we give a new
example, a solution of a problem brought to the author’s attention by Erdos.

4. A theorem on regular graphs

Our purpose in this Section is to give an example of the application of the
Subgraph and Transfer Theorems (2.1 and 3.1). We use them to establish the
following result.

Theorem 4.1. Let G be a regular graph of valency k. Let r be an integer satisfying
O=<r=k. Then there exists a spanning subgraph H of G such that val (H, x)=r or
r+1 for each vertex x of G.

Neglecting trivial cases we may assume 0 < r < k. Suppose first that the number
of vertices of G is an even number 2gq.

We introduce a new vertex w and join it to each vertex of G by a single new
edge. We then attach g loops to w. Let the resulting graph be denoted by G,.
Then the valency of w in G, is 4g, and the valency of each other vertex of G, is
k+1.

Let f be the mapping of V(G,) into the set of non-negative integers defined as
follows. f(w)=2q, and f(x)=r+1 for each vertex x of G. Correspondingly we can
write f'(w)=2q and f(x)=k—r.

Let H be a spanning subgraph of G satisfying the conditions of Theorem 4.1.
Then it has 2q vertices in all, and an even number of vertices of odd valency. It
thus has an even number 2p of vertices of valency r. We can derive an f-factor F
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of G, from H by adding to it w and the edges joining w to vertices of valency r in
H, and then adjoining q —p loops on w. Conversely if F is any f-factor of G, its
intersection with G is a spanning subgraph H of G satisfying the conditions of the
theorem.

Assume that Theorem 4.1 fails. Then by the above reasoning G, can have no
f-factor. Hence, by the Subgraph Theorem, G, has a maximal f-barrier B =
(S, T, U).

Suppose w in S. Then, by the Transfer Theorem,

2q< p(w)+A(T, w)—n(w). (11

But w(w) cannot exceed A(U, w). Hence the expression on the right of (11)
cannot exceed the number 2q of links incident with w. If (11) holds at all it must
do so with strict equality. But then, by the Transfer Theorem, we can transfer w to
U without destroying the maximality of B.

If instead we suppose w in T we can apply similar reasoning with f' replacing f
and B’ replacing B. We get an equation identical with (11) except that T is
replaced by S. Using the Interchange Theorem (2.2) we deduce that if w is in T it
can be transferred to U.

It is now permissible to assume that w is in U. But then U has only one
component, since w is joined to every other vertex of G,. Hence h(B) is at most
1. Since §(B) is at least 1 it follows from (6) that

(r+DIS|+(k—r)|TI=A(S, T). (12)

Suppose first that A(S, T) is not zero. Then S and T are both non-null. Let R
be one of them, the smaller of the two if they have different sizes. Then, by (12),

(k+ 1) |R|<A(S, T). (13)

We deduce from (13) that some vertex of R is incident with k+1 or more
edges joining S to T. But this is impossible since the valency of each vertex of G
is only k(in G).

In the remaining case A(S, T) = 0. Hence S and T are both null, by (12). Since B
is an f-barrier we must suppose G, to be the only odd component of U. This
means that the sum of the weights f(x) over all vertices x of G, must be odd. But
in fact the sum is 2q(r+1)+2q. The foregoing contradictions establish the
theorem in the special case for which G has an even number of vertices.

Let us now suppose the number of vertices of G to be odd. Let G, be the union
of two disjoint copies of G. The theorem holds for G, by the result already
proved. It therefore holds for G.
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