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Preface

Each year since 1996 the universities of Bergen, Oslo and Trondheim have
organized summer schools in Nordfjordeid in various topics in algebra and
related fields. Nordfjordeid is the birthplace of Sophus Lie, and is a village on
the western coast of Norway situated among fjords and mountains, with spec-
tacular scenery wherever you go. As such it is a welcome place for both Norwe-
gian and international participants and lecturers. The theme for the summer
school in 2003 was Algebraic Combinatorics. The organizing committee con-
sisted of Gunnar Flgystad and Stein Arild Strgmme (Bergen), Geir Ellingsrud
and Kristian Ranestad (Oslo), and Alexej Rudakov and Sverre Smalg (Trond-
heim). The summer school was partly financed by NorFa-Nordisk Forskerut-
danningsakademi.

With combinatorics reaching into and playing an important part of ever
more areas in mathematics, in particular algebra, algebraic combinatorics was
a timely theme. The fist lecture series “Hyperplane arrangements” was given
by Peter Orlik. He came as a refugee to Norway, eighteen years old, after the
insurrection in Hungary in 1956. Despite now having lived more than four
decades in the United States, he impressed us by speaking fluent Norwegian
without a trace of accent. The second lecture series “Discrete Morse theory
and free resolutions” was given by Volkmar Welker. These two topics origi-
nate back in the second half of the nineteenth century with simple problems
on arrangements of lines in the plane and Hilberts syzygy theorem. Although
both are classical themes around which mathematics has centered since, there
has in recent years been an influx of completely new insights and ideas, and
interest in these fields has surged. An attractive feature of both topics is that
they relate heavily both to combinatorics, algebra, and topology and, in the
case of arrangements, even to analysis, thus giving a rich taste of mathemat-
ics. The third lecture series was “Cluster algebras” by Sergei Fomin. This is
a recent topic, of this millennium. It has quickly attracted attention due to
it giving new insights into classical mathematics as well as giving us fascinat-
ing new algebraic structures to study, relating to combinatorics and discrete
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geometry. This lecture series is however published elsewhere and so is not
included here.

But we are pleased to present the first two lecture series in this volume, the
topics of which are so natural, classical and inexhaustible that mathematicians
will certainly center around them for years to come.

November 2006, Gunnar Flgystad
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Part I

Lectures on Arrangements:
Combinatorics and Topology

Peter Orlik



These notes represent the revised and enlarged text of my lectures at Nord-
fjordeid, Norway in June 2003. My background made this invitation poignant.
T arrived in Norway in December 1956 as a shell-shocked and depressed refugee
of the defeated Hungarian revolution. Olaf Hauge accepted me into his home,
healed my body and spirit, and taught me Norwegian. He was instrumental in
helping me reunite with my parents and remained a cherished friend through-
out his life. I enrolled in the Technical University in Trondheim, where I came
under the guidance of Haakon Waadeland whose encouragement was essential
in my decision to switch from engineering to mathematics. He helped me get
into graduate school in the United States and I embarked on a career there.
My wife, children, and I spent many summers with my parents in Oslo and
once again I had the good fortune of developing a lasting friendship with a
colleague. Per Holm’s hospitality made me welcome in his mathematics de-
partment at every visit.

In Hungary my parents and I survived a Fascist dictatorship, World War II,
a Communist dictatorship, and a revolution. We found in Norway not only
safety, but also the indescribable joy of freedom and respect for human dignity.
Even after my father died in 1997, my mother preferred to stay in Oslo, where
she felt at home. Although her death in 2002 severed my strongest tie to
Norway, this beautiful country and its generous people are embedded in my
heart forever.

These notes are dedicated to the memory of my parents
and to the many Norwegians whose help and kindness enriched our lives.



Introduction

Definition

Let V be a vector space of dimension ¢ > 1 over the field K. An arrangement
A= {Hy,...,H,} is a set of n > 0 hyperplanes in V. In dimension 1, we
consider n points in the real line R or in the complex line C. We shall see
later that these seemingly innocent examples lead to interesting problems. In
dimension 2, the Selberg arrangement of five lines is shown below. We shall
use this arrangement to illustrate definitions and results in Section 1.11.

Fig. 0.1. A Selberg arrangement

Arrangements occur in many branches of mathematics. In combinatorics,
we may consider real arrangements and ask for the number of faces of various
dimensions in the decomposition of space [54]. In statistics, ranking patterns
of the one-dimensional unfolding model may be counted using arrangements
[31]. In probability, random walks on arrangements have surprising relations
with card shuffling and file management [9]. In topology, the complement of
a complex arrangement is a smooth, connected open manifold and we may
ask for its topological invariants [38]. The cohomology ring of the comple-
ment is a purely combinatorial object, whose algebraic properties have been
studied extensively [53]. Multivariable hypergeometric integrals are defined on
complements of arrangements, and their classification leads to local system
cohomology groups on the complement [1, 2, 30, 39, 46, 51]. These integrals
are in turn related to representation theory of Lie algebras and quantum
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groups [51]. They satisfy certain differential equations which are the Kniznik-
Zamolodchikov equations in a special case, of interest in conformal field the-
ory [51, 52]. More generally, they give rise to Gauss-Manin connections in the
moduli space of all arrangements of a fixed combinatorial type [2, 39, 15, 16].
A brief history of the subject up to 1990 appeared in [38], where the reader
will also find many basic definitions and properties not recorded here. A more
recent account of results on hypergeometric integrals was presented in [39].
Although we borrow freely from these sources, our point of view here is dif-
ferent, and we include several new results currently available only in research
papers.

Algebraic Combinatorics

In Chapter 1 we collect some aspects of Algebraic Combinatorics related to
hyperplane arrangements. For real arrangements, we consider combinator-
ial questions in Section 1.1, such as counting the number of faces of various
types. We define the intersection poset L(.A), the Poincaré polynomial 7(.A, t),
and the f invariant 5(A). We also discuss two other problems involving real
arrangements. In Section 1.2 ranking patterns are defined and interpreted as
arrangements problems following recent results of [31]. In Section 1.3 random
walks on complements of arrangements are considered and their probabil-
ity distribution is given following work of Bidigare, Billera, Brown, Diaconis,
Hanlon, and Rockmore [6, 9, 7].

In the next sections we present several combinatorial constructions. Al-
though they were originally invented as tools to be used in applications, they
have since developed a life of their own. It seems appropriate to present them
here as objects of study in algebraic combinatorics and relegate their original
motivation to the applications in Chapter 2. In order to make the presentation
reasonably self-contained, we borrow two sections from [39]: 1.5 and 1.6. In
the latter, there was a mistake. The corrected version presented here is due
to Hiroaki Terao.

The Orlik-Solomon algebra A(A) is defined and studied in Section 1.4.
It was first introduced in [37] to determine the structure of the cohomology
ring of the complement of a complex arrangement, see Section 2.1. The Orlik-
Solomon algebra A(A) is the quotient of the exterior algebra on the set of
hyperplanes by an ideal determined by the combinatorics of the arrangement.
Its Hilbert series equals the Poincaré polynomial of the arrangement. The
finite dimensional vector space A(.A) has a basis called the nbc basis, short for
no broken circuits. This basis gives rise to the NBC simplicial complex, whose
topology is determined in Section 1.5. In particular, its reduced homology is
concentrated in one dimension and has a basis of size 5(.A) constructed from
the Bnbc set.

Let A = (Aq,...,\n) be a set of complex weights for the hyperplanes.
Define ax = Y ;- Aia; € A'(A). Note that axax = 0 because A(A) is the
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quotient of an exterior algebra. Thus multiplication with ay provides a com-

plex (A*(A),ax)
0— A%(A) 25 AYA) 2 25 A7(A) — 0.

In Section 1.6 we study the combinatorial cohomology groups H?(A®*(A), ax)
which depend on A. Thus it is useful to consider the space C™ of all possible
weights A. Loci in the space of A where the ranks of these cohomology groups
jump are called the resonance varieties. They provide invariants of the Orlik-
Solomon algebras [25].

We may go a step further and treat the weights as variables. Aomoto [1]
defined a universal complex whose specialization is the complex (A®(A), ay).
Let y = {y1,...,Yn} be a set of indeterminates in one-to-one correspondence
with the hyperplanes of A. Let R = C[y] be the polynomial ring in y. Define
a graded R-algebra:

A®* =A*(A) = R®@c A*(A).

Let ay = > i, y; ® a; € Al. The complex (A®(A), ay)
0— A%(A) 25 AT A) 25 B AT(A) - 0

is called the Aomoto compler. We determine its cohomology groups under
some mild conditions on the variables y in Section 1.6. Up to this point we con-
sidered a single arrangement, first with fixed and later with variable weights
for its hyperplanes.

In the rest of this chapter we consider all arrangements of a given com-
binatorial type. In Section 1.7 we define two arrangements to have the same
combinatorial type if there is an order preserving bijection between their in-
tersection posets. This introduces further variables in the setup. We now con-
sider the coefficients of the linear polynomials which define the hyperplanes as
variables. The conditions on this system of variables which assures the order
preserving bijection on the respective posets will be determined explicitly by
the combinatorics. We define dependent sets Dep(7) for the combinatorial
type 7. Terao [50] showed that the type of an arrangement is determined by
the sets of independent and dependent collections of ¢ + 1 element subsets of
hyperplanes in A, the projective closure of A in CP¢. This allows for intro-
duction of a partial order on types by reverse inclusion of dependent sets. The
type of the general position arrangement G whose dependent set is empty is
the maximal element. For a pair of types (7',7) we say that 7 covers 7' if
there is no realizable type between them in the partial order. Moduli spaces
of arrangements of a given combinatorial type are also defined in this section.

Certain endomorphisms of the Aomoto complex, called formal connections,
arise in the calculation of the Gauss-Manin connection, discussed in detail in
Chapter 2. These formal connections are introduced and studied in a purely
algebraic setting in Section 1.8 following [16]. Let (A®(G),ay) be the Aomoto
complex of a general position arrangement of n hyperplanes in C¢. Given
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any subset S of hyperplanes, we associate with it an endomorphism wg of
(A*(G),ay) and show that it is a cochain homomorphism. In Section 1.9 we
define multiplicities mg(7) for each subset S and each type 7.

The Orlik-Solomon algebra and the Aomoto complex depend only on the
combinatorial type, so we may label them accordingly. Define

G)(T’,T) = Z ms(T/)L:}S
SeDep(7T',T)

where Dep(7’,7) = Dep(7’) \ Dep(7). In order to prove that the endo-
morphism @(77,7) induces a cochain map w(7’,7) on A*(7), the Aomoto
complex of type 7, we show in Section 1.10 that this endomorphism preserves
the subcomplex 1°(7) of the Aomoto complex A®(G) corresponding to the
Orlik-Solomon ideal of type 7. This provides a commutative diagram:

(A.(g)vay) - (A.(T>7ay)
l&.‘;(T/,T) lw(T’,T)
(A*(G),ay) —— (A*(T),ay)

The horizontal maps are explicit surjections provided by the respective nbc
bases. Given weights A, the specialization y — A in the chain endomor-
phism w(7”’,7) defines chain endomorphisms in the Orlik-Solomon algebra
wi(T',T): AY(T) — A4(T) for 0 < g < {. These induce endomorphisms

QUT',T): H(A*(T),ax) — HI(A*(T),ax)

for 0 < g < ¢ which we call combinatorial Gauss-Manin connections. Most of
the definitions and results of this chapter are illustrated in Section 1.11 using
the Selberg arrangement. The chapter closes with a set of exercises.

Applications

Chapter 2 contains applications. Section 2.1 concerns topology. Here we as-
sume that V' is a complex vector space. The objects of primary interest are the
divisor N(A) = Uge 4 H and the complement M(A) = V — N(A). The divisor
N has interesting non-isolated singularities and we may ask for a resolution
described in [39], and the topology of an associated Milnor fiber treated in
detail in [19]. The complement M is a connected, smooth, orientable manifold
of real dimension 2¢. We may ask for its topological invariants, see [38]. Its
cohomology ring is isomorphic to the Orlik-Solomon algebra A(A) defined in
Section 1.4. In particular, it is a combinatorial invariant.

The problems discussed in the next sections are from analysis. The theory
of multivariable hypergeometric integrals involves arrangements. In the Sel-
berg arrangement of Figure 0.1, we may choose coordinates u1, us in the plane
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with origin at the lower left vertex and unit equal to the sides of the square.
Then the lines are described as the zero sets of the degree 1 polynomials:
uy =0, u; =1, us =0, ug = 1, and u; = uo. In other words, the arrangement
is the zero set of the polynomial

Q(A) = ul(ul — 1)UQ(U2 — 1)(U1 — ’LLQ).

In the general case, introduce coordinates uq,...,up in V' and choose a linear
polynomial a; for the hyperplane H; € A so H; is defined by the vanishing of
;. The product Q(A) =[]}, o is a defining polynomial for A. It is unique
up to a constant. Given A, we define a multivalued holomorphic function on
M by

D(u; A) = H a;‘j.
j=1

A generalized hypergeometric integral is of the form

/0 P(u; A)n

where o is a suitable domain of integration and 7 is a holomorphic form on
M, see [2]. This is the Gauss hypergeometric function when £ =1, n = 3 and
a1 =u,a2 =u—1,a3 = u— x. Selberg’s integral [47] is another special case:

/ / (g g (L — ) - (1 — we)]" YA dus ... dug
0 0

where A(u) = [[,_;(u; —u;). Assume that the real parts satisfy
Rx >0, Ry >0, Rz > —min{1/¢, Rz/({ — 1), Ry/({ —1)}.

The corresponding arrangement consists of the coordinate hyperplanes, their
parallels u; = 1, and the diagonals u; = u; for ¢ < j. It is illustrated for ¢ = 2
in Figure 0.1.

Hypergeometric integrals occur in the representation theory of Lie algebras
and quantum groups [51]. In physics, these hypergeometric integrals form solu-
tions to the Knizhnik-Zamolodchikov differential equations in conformal field
theory [51]. The space of integrals is identified with a complex rank one local
system cohomology group over M. Associated to A we have a rank one repre-
sentation p : 1 (M) — C* given by p(v,) = t; where t = (t1,...,t,) € (C*)"
is defined by t; = exp(—27wi\;) and +y; is any meridian loop about the hy-
perplane H; of A, and a corresponding rank one local system £ = Ly = Ly
on M. The first objective is to calculate the local system cohomology groups
H?(M, L). One method was described in detail in [39], summarizing most re-
sults known at that time. It uses the de Rham complex of rational global dif-
ferential forms on V with arbitrary poles along the divisor N. In this case the
cochain groups are infinite dimensional. We must introduce conditions on the
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weights in order to reduce the problem to a finite dimensional setting. These
are the (STV) conditions of Theorem 2.2.6. We call weights T-nonresonant if
they satisfy the (STV) conditions for arrangements of combinatorial type 7.
In this case H4(M; L) = 0 for q # ¢ and dim H*(M; £) = B(A). Not much can
be said about other weights using this approach.

In these notes the local system cohomology groups are calculated using
stratified Morse theory, following [13, 14, 15, 16]. The main advantage is
that the cochain groups are finite dimensional for all weights, so this method
provides some information for all weights. Note also that when the cochain
groups C'? are finite dimensional vector spaces, there are natural projections
@ : C?1 — HY constructed as follows. Let Z¢ be the group of cocycles. Choose
a basis 21, ..., 2, for Z9 and extend it to a basis of C? by wy, ..., ws. Define
©(z;) = [z] as its cohomology class, and ¢(w;) = 0.

In Section 2.2 we review the stratified Morse theory construction [11, 13]
of a finite cochain complex (K*(A), A®), the cohomology of which is natu-
rally isomorphic to H®*(M; £). This leads to the construction of the universal
complex (K®, A®(x)) for local system cohomology where K¢ = A ®¢ K7 and
A= (C[mlil, ...,xF1. The Aomoto complex is chain equivalent to the lin-
earization of the universal complex. In Section 2.3 we define the jumping loci
of local system cohomology groups, called characteristic varieties, and show
that the resonance varieties are tangent cones of the characteristic varieties.

In Section 2.4 we return to the moduli space of arrangements with a fixed
combinatorial type 7. Let B(7) be a smooth, connected component of this
moduli space. There is a fiber bundle 7 : M(7') — B(7) whose fibers, 771 (b) =
My, are complements of arrangements Ay, of type 7. Since B(7) is connected,
My is diffeomorphic to M. The fiber bundle = : M(7) — B(7) is locally
trivial. Consequently, given a local system on the fiber, there is an associated
flat vector bundle 77 : HY(L£) — B(7), with fiber (79)~1(b) = H(My; L) at
b € B(7) for each ¢, 0 < ¢ < ¢. Fixing a basepoint b € B(7), the operation
of parallel translation of fibers over curves in B(7') in the vector bundle 7 :
H?(L) — B(7) provides a complex representation

vd 7 (B(T),b) — Autc(HY(Mp; Ly)).

The loops of primary interest are those linking moduli spaces of codimension
one degenerations of 7. Such a degeneration is a type 7’ whose moduli space
B(7”) has codimension one in the closure of B(7'). This is equivalent to the
combinatorial condition that 7 covers 7.

The Gauss hypergeometric function is defined on the complement of the
arrangement of three points in C. It satisfies a second order differential equa-
tion which, when converted into a system of two linear differential equations,
may be interpreted as a Gauss-Manin connection on the moduli space of
arrangements of the same combinatorial type [39]. This idea has been gener-
alized to all arrangements by Aomoto [1] and Gelfand [30]. The connection
is obtained by differentiating in the moduli space B(7"). Explicit connection
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matrices were obtained by Aomoto and Kita [2] for arrangements G in gen-
eral position and G-nonresonant weights. Unfortunately, this pioneering work
is available only in Japanese. The relevant matrices have been reproduced
in [39, 15]. The endomorphisms &g in Section 1.8 were modeled on these
matrices. Moduli spaces were formalized by Terao [50], who also calculated
Gauss-Manin connection matrices in types 7 covered by G and 7 -nonresonant
weights. His results inspired the idea that all Gauss-Manin connections may
be obtained by universal constructions.

In [16] we used an equivalent interpretation of the Gauss-Manin connection
as a logarithm of the representation ¥. This allows for local calculations, valid
for all arrangements and all weights, and leads to the following result of [16]
presented in Section 2.5:

Let M be the complement of an arrangement of type 7 and let £ be
the local system on M defined by weights A. Suppose 7 covers 7’. Let ¢? :
K% — HY(M, L) be the natural projection. Then there is an isomorphism 7 :
A? — K1 so that a Gauss-Manin connection endomorphism 2% (B(7"),B(7))
in local system cohomology is determined by the equation

ploT90 wg\(T',T) = Q%(B(’T')7 B(7)) o o7l

The section closes with an example of how this equation may be used. We
provide additional exercises in Section 2.6.

The level of presentation follows what is customary in lectures: some very
easy arguments are included to get the audience interested, while more difficult
facts may be quoted from the literature.

Much of this material is drawn from joint work with Dan Cohen [13, 14,
15, 16] and Hiroaki Terao [38, 39, 31]. T am grateful to them for all they have
taught me in the course of our collaboration. I also thank the organizers of the
Summer School, Gunnar Flgystad and Kristian Ranestad, for the invitation
to deliver the lectures, for including these notes in the published series, and
for helpful comments on the presentation; Dan Cohen for suggestions on the
presentation and for providing examples; Hiroaki Terao for permission to use
his revisions in Section 1.6; and Anne Britt Orlik of WritingBarefoot for her
meticulous reading of the manuscript and patient ruthlessness in correcting
it.

Madison, October 23, 2006
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Algebraic Combinatorics

1.1 Chamber Counting

Basic Constructions

Let V' be a vector space of dimension £. Let A be an arrangement of n hyper-
planes in V. Let L = L(A) be the set of nonempty intersections of elements
of A. An element X € L is called an edge of A. It is convenient to label the
hyperplanes A = {Hy,...,H,} and X € L by the hyperplanes containing it.
Define a partial order on L by X <Y <= Y C X. Note that this is reverse
inclusion. We agree that V' is the unique minimal element of L.

Define a rank function on L by r(X) = codimX. Thus (V) =0, r(H) =1
for H € A. The rank of A, r(A), is the maximal number of linearly indepen-
dent hyperplanes in A. It is also the maximal rank of any element in L(.A).
We call A central if NgeaH # 0, where T' = Nyea H is called the center. The
{—arrangement A is called essential if it has an element of rank ¢. Equivalently,
A contains ¢ linearly independent hyperplanes. The poset L(.A) of an arrange-
ment has special properties. We call the hyperplanes the atoms of L(.A). Given
X,Y € L(A), we define their meet by X ANY =n{Z e L | XUY C Z}. If
X NY # 0, we define their join by X VY = X NY. Then:

(1) Every element of L\ {V'} is a join of atoms.

(2) For every X € L all maximal linearly ordered subsets

V=Xo<X1<...<X, =X

have the same cardinality. Thus L(A) is a geometric poset. It follows that
maximal elements have the same rank.

(3) If A is central, then all joins exist, so L is a lattice. For all X,Y € L
the rank function satisfies

r(XAY)+r(XVY) <r(X)+r).

Thus for a central arrangement, L(.A) is a geometric lattice.
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Let A be a real arrangement. Then M(A) is a union of open, connected
components called chambers. Each X € L(A) is similarly decomposed into
relatively open connected subsets called faces. Let F(A) be the set of faces.
The support |F| of a face F is its affine linear span. Let ' denote the closure
of F in V. The set F(A) is partially ordered by reverse inclusion: P < @ if
Q C P. We call F(A) the face poset of A.

Chamber Counting

The problem of determining the number of faces of all dimensions in a real
arrangement is still unsolved. A more modest problem is to determine the
number of chambers. Even this is fairly difficult, so we start with a special case.
An arrangement is in general position if every intersection of k hyperplanes
has rank k. For k = ¢ the intersection is a point, and for k > £+ 1 it is empty.
Write Ch(A) for the set of chambers. It is clear that for £ = 1, |Ch(A)| = n+1.
For ¢ = 2 we can sketch the first few cases and count:

n__[01[2(3]4]
|Ch(A)[|[1]2]4]7]11]

These numbers are familiar, they are increasing by n+1. L. Schlafli proved
the following result before 1900.

Theorem 1.1.1. Given n hyperplanes in general position in RY, the number
of chambers in the complement is

x5+ () ()

Proof. This formula holds for all £ when n = 0 and for all n when ¢ = 1. We
proceed by induction. Suppose the formula holds for all n in dimensions < ¢
and in dimension ¢ for all arrangements with < n hyperplanes. Now consider
an f-arrangement with n hyperplanes. The first n — 1 hyperplanes give

A n—1 n n—1 n n n—1
L0 1 14
chambers of dimension ¢. The n-th hyperplane is divided by the first n — 1

into ) ) )
n— n— n—
="y )+ () ()

chambers of dimension ¢ — 1. Each of these chambers divides an /-dimensional
chamber into two new chambers. Thus

ICh(A)| = A + B.

A binomial coefficient identity completes the proof. ]
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What can we expect for an arbitrary arrangement? In 1889, S. Roberts
gave a formula in the plane which accounted for the number of regions lost
because of multiple points and the number of regions lost because of parallels.
The problem is to describe this by a function. The argument in Theorem 1.1.1
proves the next result for arbitrary arrangements. The deletion of a nonempty
arrangement A with respect to H € Ais A" = A— {H}. The restriction is
A'={HNK | K e A'}.

Lemma 1.1.2. Let A, A", A" be a deletion-restriction triple. Then
|Ch(A)| = |Ch(A")| + |Ch(A")|. D

We need a function with the same recursion. Mobius invented his number
theoretic function in 1832. Let N = {1,2,...} denote the natural numbers.
Define puy : N — {0, £1} by

pn(1) =1
un(p1...pr) = (=1)" if p1,...,p, are distinct primes
un(n) =0 otherwise.
Suppose n > 1 and write n = pi*...p%", where p1,...,p, are distinct

primes. Since r > 0, we have

S () =3 (Z)(—l)’“ = 0.

d|n k=0

The condition pn(1) = 1 and this formula determine py recursively.

The Mobius function was generalized to an arbitrary poset L. It is a two-
variable function, but we are interested in a one-variable version. Define p :
L — Z by p(V) =1, and for X >V by the recursion >, . u(¥Y) = 0.

In order to recover the number theoretic Mdbius function from the Mébius
function of a poset, recall that there is a natural partial order on the set N
defined by m < n < m divides n. Let L(N) denote this poset. Its unique
minimal element is 1. Let p : L(N) — Z denote the M&bius function of this
poset. Then un(n) = p(n).

The Poincaré polynomial of A is w(A,t) = > o u(X)(—t)"X). This
polynomial satisfies the following recursion [38, 2.57]:

(A, t) = m(A' t) + tn(A”, ). (1.1)

This formula, Lemma 1.1.2, and the fact that the empty arrangement has one
chamber prove Zaslavsky’s result:

Theorem 1.1.3 ([54]). Let A be a real arrangement. The number of cham-
bers in its complement is given by

ICh(A)| = m(A,1). O
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There is another poset invariant of importance in the sequel, called the beta
inwariant of the arrangement A of rank r:

BA) = (=1)"m(A, =1).
The complement of a real arrangement can have bounded chambers only if
the arrangement is essential.

Theorem 1.1.4. Let A be an essential real arrangement. The number of
bounded chambers in its complement is B3(.A). O

The beta invariant satisfies a recursion in deletion-restriction. The dis-
tinguished hyperplane H is called a separator if r(A’) < r(A): removing H
reduces the rank of the arrangement. If H is not a separator, then

B(A) = B(A) + B(A"). (1.2)

Further Constructions

Here are some additional definitions used later.

(1) Given an edge X € L, define a subarrangement Ax of A by
AX:{H€A|XQH}.

Here Ay is the empty f-arrangement @, and if X # V', then Ax has center
X in any arrangement.

(2) Define an arrangement AX in X by
AY¥ ={XNH|HecA\ Ax and X N H # 0}.

We call AX the restriction of A to X.

(3) The affine f-arrangement A gives rise to a central (¢ + 1)-arrangement
cA, called the cone over A. Let Q be the homogenized Q(A) with respect to
the new variable 1. Then Q(cA) = uoQ and |cA| = |.A|+1. There is a natural
embedding of A in cA in the subspace ug = 1. Note that this embedding does
not intersect ker ug = Ho, the infinite hyperplane.

(4) Embed V in projective space P’ and call the complement of V the
hyperplane at infinity H... Let H be the projective closure of H and write
A = UpgeaH. We call A, = AU {H,} the projective closure of A. It is
an arrangement in P’. Let ug,uq,...,u, be projective coordinates in P¢ so
that Ho = kerug. Then H :~ker ayg where tilde denotes the homogenized
polynomial. Here Q(As) = uoQ(A) and |Ax| = |A| + 1.

(5) Given a nonempty central (¢+1)-arrangement C, we obtain a projective
L-arrangement PC by viewing the defining homogeneous polynomial Q(C) as a
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polynomial in projective coordinates. It is called the projective quotient. Here

€| = [PC].

(6) Given a nonempty central (¢ + 1)-arrangement C and a hyperplane
H € C, we define an affine f-arrangement dgyC, called the decone of C with
respect to H. We construct the projective quotient PC and choose coordinates
so that PH = ker ug is the hyperplane at infinity. By removing it, we obtain
the affine arrangement dyC = PC — PH. Note that Q(dgC) = Q(C)|y,=1 and
|dgC| = |C| — 1. These constructions are interrelated in the diagram below.

cA

TN
dy_cA = A — Ao = PcA

Let C be a central arrangement in V' with center T'(C) = (\yec H # 0.
We call C decomposable if there exist nonempty subarrangements C; and Co
so that C = C; U (s is a disjoint union, and after a linear coordinate change
the defining polynomials for C; and C; have no common variables. This is
equivalent to the existence of two nonempty central arrangements so that C
is their product. It is remarkable that this property is determined by the beta
invariant [39].

Theorem 1.1.5. Let C be a nonempty central arrangement. Then 3(dC) > 0,
and C is decomposable if and only if B(dC) = 0. a

1.2 Ranking Patterns

The simplest arrangement consists of points on the real line, yet we can ask
interesting questions about it. The problem stated here has a long history in
psychology, sociology, and marketing. It is called the one-dimensional unfold-
ing model. We include some recent results from [31] in the discussion.

The real line R is viewed as the underlying continuum of a particular
attribute, and ¢ objects z; € R (1 < j < /) are placed on it according
to the amount of this attribute. We may assume that z; < z5 < -+ <
x¢. (Since the underlying vector space is one-dimensional and the points are
hyperplanes, this notation appears to violate our convention that the vector
space has dimension ¢ and the number of hyperplanes is n. In fact, we are just
anticipating construction of arrangements in vector spaces whose dimension
equals the number of points in the problem.)

Each individual preference is represented by a point y € R. We say that y
provides the ranking (i1iz...1p) if

ly — @iy | <y — @i, < <y — 2]

In order to make this unambiguous, we must assume that the midpoints m;; =
(x; + x;)/2 are distinct. Imagine y moving on R. For y < 27 the ranking is
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(12...¢). When y passes m;;, the adjacent indices ¢ and j are transposed.
After passing (g) midpoints, y > z, and the ranking is (¢...21). The set of

these (5) + 1 permutations is called the ranking pattern of x = (z1,...,x¢).

The question is this: how many ranking patterns are there for given £7 If
¢ = 3, then there is only one: (123),(213), (231), (321). If £ = 4, then there are
two: if my4 < mog, we get

(1234), (2134), (2314), (2341), (3241), (3421), (4321)
and if my4 > mog, we get
(1234), (2134), (2314), (3214), (3241), (3421), (4321).

Here is a brief description of recent work on the subject [31]. We formalize
the definitions. Let R(x) = R — {m;; | 1 <14 < j < ¢}. Let P, denote the set
of permutations of ¢ letters. Define the ranking map Ry : R(x) — P; by

Rx(y) = (leQZf) — ‘y_x'h' < |y _:Ei2| << |y_xi£|' (13)
The assumption 1 < 9 < --- < xp naturally leads to an arrangement. Let
H;j = {(x1,...,7) € R® | z; = x;}. The arrangement

is called the braid arrangement. It has (%) hyperplanes. Let M(B;) be its
complement. Since the ¢ points are distinct, x € M(By). Let Sy denote the
symmetric group on £ letters. The action of o € S; on R is defined by

0'(331, cee ,1‘[) = (33071(1), e ,ngl(z)).

It is well known that S, acts simply transitively on the set of chambers of
M(B;), Ch(B,). It follows that |Ch(B,)| = ¢!. Let Cy denote the chamber
where 7 < 29 < -+ < xy. Given any chamber C' € Ch(B;) there exists a
unique o € Sy so that C = (.

In order to discuss the ranking patterns of these points, we also assume
that the midpoints are distinct. This leads to another set of hyperplanes where
Mpg = Mys OF equivalently, x, + £, = z, + ;. Define the index set

I ={(p,q,r,8) |1 <p<qg<¥ p<r<s<{, distinet p,q,r, s}
For (p,q,r,s) € 14, define the hyperplane
Hpgrs = {(z1,...,20) €R" | zp + 2y =z + 25}
There are S(fi) such hyperplanes. The mid-hyperplane arrangement is

.AE - BZ U {HquS | (pv(brvs) € ‘[4}
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The ranking map (1.3) defines ranking patterns for x € Co N M(Ay). Let r(¢)
denote the number of ranking patterns:

r(l) = {imRx | x € Coy " M(Ap)}|.
The following result of [31] determines r(¢):

Theorem 1.2.1. Let 0 € Sy and x,x" € 0Cy N M(Ay). Then x and X' have
the same ranking pattern if and only if x and x" lie in the same chamber of
Ay. Thus

_|Ch(Ag)| _ 7(Ag, 1)

"O=lerg) =" a "

This is a satisfactory answer for a mathematician, but explicit knowledge of
the values of r(¢) would be even better. The next table provides these values
for ¢ < 7.

¢ (Ag, t) [|Ch(AQ|| r(£)
3 1+ 6)(1+20) 6 1
4 (1+t)(1 + 3t)(1 + 5t) 48 2
5 (1+8)(1+ 7t)(1 + 8t)(1 + 9¢) 1440 | 12
6 (1)1 +13t)(1+ 14¢)(1 + 15¢)(1 + 17¢) 120960 | 168
7I(1 4 £)(1 4 238) (1 4 24¢) (1 + 25¢) (1 + 26)(1 + 27¢)|23587200|4680

In light of such beautiful factorization of 7(Ay, t), it is natural to conjecture
that factorization into linear terms holds for all /. Unfortunately, we can prove
that for ¢ > 8 this is not possible.

1.3 Random Walks

Let A be a real arrangement and recall F(A), the face poset of A. There is a
particularly efficient way to store the information in the face poset by using
the associated oriented matroid. Let J = {+,—,0}. We may view each face
FeF(A) asamap F:{l,...,n} — J defined by F(k) = signay(p) for any
p € F. Note that F(k) = 0 if and only if F C Hy, and if F(k) # 0, then the
sign indicates whether F' is in the positive or negative half-space determined
by Hj. Which side is called positive depends on the original choice of ay,. Let
W = Jm", and let mp : W — J be the projection onto the k-th coordinate.
Define a map o : F — W by

it F(k) >0,
mro(F) =14 0 if F(k)=0,
—if F(k) <0.



20 1 Algebraic Combinatorics

Thus the face F' gives rise to an n-tuple of elements of J. We illustrate this
concept in Figure 1.1, where we labelled the 7 chambers only. There are 9
faces of codimension one and 3 faces of codimension two. Not every n-tuple
of elements is in the image of o. In the example there is no chamber labelled
(—,—,4), edge labelled (0, —, +) or vertex labelled (—,0,0).

Fig. 1.1. The chambers of Q(A) = uiuz(u1 +uz — 1)

The face poset is a sharper invariant than the intersection poset. Arrange-
ments A and B in Figure 1.2 have isomorphic intersection posets, but they

have different face posets.

A B

Fig. 1.2. Different face posets

The face poset F admits the structure of a semigroup. The multiplication
is defined for F, F’ € F by

/ F(k) if F(k) #0,
(PF)(k) = {F’(k) if F(k)=0.

In the special case when C' is a chamber, F'C' is also a chamber for every face
F. We may view this as a map F' : Ch(A) — Ch(A), called the action of F
on the chambers. We can define a distance on the set Ch(A). Two chambers
are adjacent if they share a codimension one face (wall). A gallery from C to
C’ is a sequence of chambers C' = Cy, ..., C, = C' where successive chambers
are adjacent. The distance d(C, C") is the minimal length of a gallery between
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them. Geometrically, F'C is the nearest chamber to C' whose closure contains
F. We illustrate this in Figure 1.3, where F' = (—,+,0) and C = (4, —,+),
so FC = (—,+,4+).

N

Fig. 1.3. The action of F’

Random walks on arrangement complements were first defined using this
action by Bidigare, Hanlon, and Rockmore [6]. Our description follows later
work by Billera, Brown, and Diaconis [9, 7]. A probability measure w on the
face poset assigns to each face F' € F a nonnegative real number w(F') so
that ) pcrw(F) = 1. A random walk which starts at the chamber Cj is the
process (C)r>o with C,. = F,. - -- F1Cy, where F1,. .., F, are independent and
identically distributed choices from w. Equivalently, this is a random walk on
the semigroup F with all states in the ideal of chambers Ch. The transition
matrix K of this random walk has entries

K(C,C)y= > w(F),

FC=C'
representing the probability of moving from C to C’ in a single step.

Theorem 1.3.1 ([6, 9]). Let A be a real arrangement with intersection poset
L and face poset F. Let w be a probability measure on F. Then the transition
matriz K is diagonalizable. For each X € L there is an eigenvalue

Ax = > w(F)

FeF
FCX

with multiplicity mx = (—1)") u(X). O

The m!" power of the matrix K gives the transition probabilities after m steps.
Let K denote the probability distribution of the walk started at C' after m
steps, so K*(C') = K™(C,C"). A fundamental theorem of Markov chain
theory [32, Thm 4.1.4] implies that K7 converges to a limit 7, as m — oo
independent of the starting region C. The probability distribution 7 is called
the stationary distribution of the walk.
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If the measure w is concentrated on a hyperplane, then every walk that
enters the hyperplane stays there forever. In this case the stationary distribu-
tion is not unique. The measure w is called separating if it is not concentrated
on any hyperplane of A: for every H € A there is a face F' with F' € H and
w(F) > 0. The following result determines the stationary distribution and
provides an estimate for the rate of convergence to stationarity. For a precise
definition of how this is measured, see [7].

Theorem 1.3.2 ([6, 9]). Let A be a real arrangement with face poset F. Let
w be a probability measure on F and let K be the transition matriz of the
random walk.

(1) K has a unique stationary distribution 7 if and only if the measure w
18 separating.

(2) Assume that w is separating. Then the rate of convergence satisfies

IKg —nll< Y X O
HeA

Of the many examples in [6, 9, 7] which illustrate these results, we present the
braid arrangement. This arrangement was defined in Section 1.2. Recall that
S¢ denotes the symmetric group on ¢ letters. Since S, acts simply transitively
on the set of chambers, choice of a distinguished chamber Cy where z; <
T9 < --- < x4 allows identification of the chambers with the elements of
S¢: given any chamber C there exists a unique o € Sy so that C' = oy,
so we identify C' with o. The faces can be identified with ordered partitions
B = (By,...,By) of £. For example, B = ({2,5},{1,4,7},{3,6}) corresponds
to the face defined by zo = x5 < 1 = 4 = x7 < x3 = zg. The action of
a face on a chamber is described in terms of a deck of cards. Suppose C is
o= (01,...,00) and a deck of £ cards is arranged in the order determined by
o. Let B = (By,...,B) correspond to the face F. Then FC is a chamber
whose permutation is obtained by the operation of B on the cards: remove the
cards with labels in B; and put them on top without changing their relative
order, then remove the cards with labels in By and place them next, and so
on. For example if o = (4215763) and B = ({2,5},{1,4,7},{3,6}), we get
(2541763). Interpretation of the walk as card shuffling provides for interesting
examples, depending on the choice of the probability distribution w. Here are
two examples.

Random to top

Let [¢) = {1,...,¢}. If we assign a positive weight w; to each 2-block partition
({i}, {[¢] —i}) and weight 0 to all other faces, then it corresponds to a scheme
called Tsetlin library or random to top shuffle: a card is repeatedly picked at
random according to the weights w; and is placed on top. This walk represents
the situation of a stack of £ files, where file 7 is used with frequency w;. Each
time a file is used, it is replaced on top of the stack. After the process has
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been running for a long time, the most frequently used files will tend to be
near the top.

Riffle shuffle

The braid arrangement is not essential. All faces contain the line z; = - -+ = xy
corresponding to the single 1-block partition ([¢]). The number of 2-block
partitions of the form (s, [(] —s) where ) Z s Z [/] is (2° —2). Assign the weight
1/2% to each 2-block partition and 2/2 = 1/2¢~! to the 1-block partition.
The corresponding shuffling mechanism consists of inverse riffle shuffles. In an
ordinary riffle shuffle a deck of cards is divided into two piles which are riffled
together. The inverse chooses a set s of cards which are removed (unriffled)
and placed on top. Here s can be ) or [¢], in which case the deck is unchanged.
Both of these cases correspond to the action of the 1-block partition. The effect
of the choice of weights is that the 2¢ subsets s C [{] are equally likely to be
unriffled. The stationary distribution 7 is uniform. For each hyperplane H,
Ag = 1/2 so the convergence bound from Theorem 1.3.2 gives

1K™ — ]| < (ﬁ) (;)m

1.4 The Orlik-Solomon Algebra

In this section we define a combinatorially constructed algebra A(A). It was
first introduced in [37] to determine the structure of the cohomology ring of
the complement of a complex arrangement, see Section 2.1. It is the quotient
of the exterior algebra on the set of hyperplanes by an ideal determined by
the combinatorics of the arrangement. Its Hilbert series equals the Poincaré
polynomial of the arrangement. The finite dimensional vector space A(A)
has a basis called the nbc basis, short for no broken circuits. We study the
structure of this algebra and how it behaves under deletion and restriction.

Definitions

Let K be a commutative ring. Let E' = @gecaKey and let E = E(A) =
A(E") be the exterior algebra of E'. If |A] = n, then E = @7_(EP, where
EY = K, E! agrees with its earlier definition and E? is spanned over K by all
ew, -+~ em, with Hy € A. Define a K-linear map 0 = 0 : E — E by 01 = 0,
dey =1 and for p > 2

p
dew, -+-em,) = Z(_l)k_1€H1 --Emy---em,
k=1

for all Hy,...,H, € A If S = {Hy,...,Hp}, write es = ey, ---en,, NS =
HyN---NHp, and |S| =p. If p= 0, we agree that S = { } is the empty tuple,
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es =1, and NS = V. If NS # (), then we call S dependent when r(NS) < |S]|
and independent when r(NS) = |S|. This agrees with linear dependence and
independence of the hyperplanes in S.
Let A be an affine arrangement. Let I = I(A) be the ideal of E(A) gen-
erated by
{es | NS =0} U{des | S is dependent}.

The Orlik-Solomon algebra A(A) is defined by A(A) = E(A)/I(A). The grad-
ing of E induces a grading on A* = @&, AP.

This algebra was introduced in [37], where we showed that it is isomorphic
to the cohomology algebra of the complement M(.A). It has since proved to
have other applications as well. We show some basic properties of this algebra
established in [37, 38]. This presentation follows the simplified proofs of the
excellent survey by Yuzvinsky [53], which also contains a wealth of other topics
on the Orlik-Solomon algebra not discussed here.

Properties

Label the hyperplanes A = {H.,...,H,} and write e;, = ep,. Let [n] =
{1,...,n}.If S C [n] and i € S, then e;0eg = *eg, so I contains all dependent
sets. A circuit is a minimally dependent set S: S is dependent, but for every
i€ 5,8, = S—{i} isindependent. The ideal I is generated by eg where NS = ()
and deg where S is a circuit: if T is any dependent set, then T contains a
circuit S. Let R =T — S. Then er = Heges and der = *erdeg *+ egder.
Now deg € I by assumption, and eg € I because S is dependent. Write
L7 = {X € L(A) | r(X) = q}.

Proposition 1.4.1. For X € L(A), let Ex(A) be the linear span of all
es with NS = X, and let Ix(A) = I(A) N Ex(A). Define Ax(A) =
Ex(A)/Ix(A). Forq=0

A1(A) = P AL (A).

XeLq

Proof. If NS = (), then eg € I(A). Thus every nonzero element of A(A) is in
the projection of some Ex(A). We noted above that the other generators of
I(A) are deg for circuits S. If S is a circuit with NS = X, then NS; = X for
all 4 € S and hence 0S € Ex(A). Finally, in the direct sum decomposition of
A9(A) now obtained, it is sufficient to sum over X € L9 since all generators
are independent S for which »(NS) = |S|. O

Proposition 1.4.2. For X € L(A), Ax is an arrangement, so we may define
E(Ax), I(Ax), and A(Ax). Then

I(Ax) = I(A) N E(Ax).
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Proof. Recall that E(Ax) is generated by es where X C NS. The inclusion
I(Ax) C I(A)NE(Ax) is clear. For the converse, suppose a € I(A)NE(Ax).
Recall that a € I(A) may be written as

a= g br,serdes + E cTU er ey
R,S T,U

where bgr g,cry € K, S is a circuit, and NU = . Since Ax is a central
arrangement, U ¢ Ax. If X C NS; for some i, then X C NS. Thus a has a
summand a’ = ZXcﬂ(RUS) br,ser deg € E(Ax) and the generating elements
of a —a' are in @yxx E(Ay). Thus a =’ € I(Ax). O

This result has further consequences for the structure of the Orlik-Solomon
algebra:

(1) The homomorphism induced by inclusion i : A(Ax)—A(A) is a
monomorphism.

(2) If Y < X, then Ay(.Ax) = Ay(A)

Next we show that A is a free K-module and construct its nbc basis.
Introduce the linear order in A = {H;,..., H,} by H; < H; if i < j. Note that
it is arbitrary. We call a monomial eg € E(A) where S = (i1,...,1p,) standard
if i1 < --- < ip. Standard monomials form a multiplicative basis. The linear
order in A induces the degree-lexicographic order on standard monomials. Let
S = (i1,...,3p) and T = (j1,...,jq) be standard. Then eg < ey if either p < ¢
or p = ¢q and for some m, 1 < m < p, i, = j, for r < m, and 4,, < jm,. This
order is invariant under multiplication by monomials. Define

B(A) = {0es | S is a circuit} U {eg | T is minimal with N7 = 0}.

A broken circuit is an independent set R such that there exists an index i
with the property that (i, R) is a circuit and ¢ < j for all j € R. The initial
monomial of deg is the broken circuit S; = S — {i;}. The initial monomial
of ep is itself. Let In(B) and In(I) denote the sets of initial monomials. Let
[In(B)] and [In(I)] denote the corresponding sets of all monomials divisible
by some initial monomial. Let C' = C'(A) be the linear complement of [In(B)]
in E(A), called the nbc set, short for no-broken-circuits. This is the set of
monomials not divisible by any element of In(B). Let D be the corresponding
object for [In(I)]. We shall abuse notation by viewing both sets as subsets
of [n] and as K-modules. Clearly, E = I @ D. Thus the surjection 7 : E—A
induces an isomorphism 7 : D—A.

Proposition 1.4.3. The map © : C—A is an isomorphism of K-modules.
Thus A is a free K-module and the nbc set C provides linearly independent
generators.
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Proof. Since [In(B)] C [In(I)] and hence D C C, we see that m : C—A is
surjective. We must show that nbc monomials are independent in A. The
K-module C' is graded by [n] because it is generated by monomials. It is
also graded by L(.A) because all its generators are independent sets, and this
grading is finer, so C? = @ycrrCy for 0 < p < n. If eg € C, then each
es, € C and hence deg € C, so 9C C C. It follows that 0Cx C ®yxCy
where 7(Y) = r(X) — 1. Next we show that for X € L—{V}, 0, is injective.
Let 7 be the smallest index in Ax. Since elements of C'x contain no broken
circuits, i € S for every es € Cx. Thus ¢;Cx = 0. The general formula
d(ejes) = es — e;0eg shows that for eg € Cx, eg = e;deg, so J is injective.
We complete the proof by induction on the rank. If »(X) = 0, then X =V,
Cy =K = Ay, and 7 : Cy—Ay is the identity. For r(X) > 0 we use the
commutative diagram

Cx —2 - ¢rt

L L

Ay —2 . 41

We showed that the top map is injective. Since the right vertical map is
injective by the induction assumption, so is the left vertical map. ]

It follows from Proposition 1.4.3 that B(.A) generates I(A). Note also the
following connection between A and its projective closure A..: S is a circuit
in A if and only if it is a circuit in A,, which does not contain H,, and T
is minimal with N7 = () in A if and only if (T, Hy,) is a circuit in Ay. Thus
the circuits of Ay form a generating set for I(A).

Deletion-Restriction

It remains to investigate deletion and restriction. Let A, A’ = A — {H} and
A" = A" be a deletion-restriction triple. We want to construct compatible
linear orders. Let H = H,, so the deleted hyperplane is the largest in A.
Define A : A’—A” by A\(H) = HNH,,. Next give A" an arbitrary linear order,
A" ={Ky,..., K, }, where n” < n’ = n—1. Use this to order A’ as follows: if
A71(K1) has cardinality ki, give these hyperplanes the subscripts 1,...,k; in
any order; if \™1(K>) has cardinality ko, give these hyperplanes the subscripts
ki+1,...,k1 + ko in any order, and so on. Evidently ki + -+ + k,» =1/, so
this defines a linear order in A’, and since we have already named H,,, we get
a linear order in A. These linear orders satisfy the following properties: (1)
the largest hyperplane is deleted; (2) the order in A’ is the restriction of the
order in A; and (3) if A(H) < M(K) then H < K. With these orders we may
view A : [n/]—[n”] and extend it to ordered tuples: if S = (41,...,4p), then
A(S) = (A(@1), ..., A(3p)). If S is standard, then A(S) is nondecreasing.

Proposition 1.4.4. Assume A is nonempty and let (A, A', A"”) be a deletion-
restriction triple. Then there are exact sequences for ¢ > 0:
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0— A9(A) 5 A9(4) L A1 (A") = 0.

Proof. Let i : E'—FE be the natural inclusion and define j : E—E" by j(es) =
exs—in}) if n € S, and j(es) = 0 otherwise. Here i is injective, j is surjective,
and j o4 = 0, but ker(j) C im(¢) may not hold. Clearly ¢(I") C I. We show
that j(I) C I”. Suppose S C [n] and n € S. Write S’ = S — {n} and note that
NS =NAS"). It NS =0, then NA(S’) = 0 and j(es) € I”. If S is dependent,
then so is A(S"), so j(Oes) = j((esren)) = j(Les + (Des )en) = A(j(es)) €
I". Next we argue on the respective nbc sets. Since H,, is last in the ordering,
i(C") € C. We show that j(C) = C”. Since j : E—E" is surjective, each
standard basis element of E” is j(eg) for some S with n € S. The compatible
orders imply that such an S € C if and only if A(S — {n}) € C”. In order to
show that the sequence

o' Lolc o (1.4)

is exact, it suffices to show that ker(j) C im(¢) holds. Since i(C”) is generated
by eg with n & S, it suffices to show that ker(j)NC contains no nonzero linear
combination of eg with n € S. Since S € C' if and only if A(S — {n}) € C”,
we must prove that A is injective on the set S’ C [n'] where (S',n) € C. Let
51,54 C [n] be sets so that (S7,n), (S5, n) € C and A(S]) = A(S%). If S1 # 5%
then there exist m € 5] and p € S} so that {m,p,n} is dependent. We may
assume m < p < n, so (p,n) is a broken circuit. This contradicts (S5,n) € C.
We conclude that the sequence of nbc modules is exact. Proposition 1.4.3
completes the argument. O

Corollary 1.4.5. Define the Hilbert series of the graded algebra A(A) by
H(A(A),t) = dim(A2(A))t?. Then H(A(A),t) = (A, t).

Proof. If A is empty, then H(A(A),t) = 1 = w(A,t). Let (A, A", A”) be a
deletion-restriction triple of a nonempty arrangement. It follows from Propo-
sition 1.4.4 that the Hilbert series satisfies the recursion

H(A(A),t) = H(A(A),t) + tH(A(A"),t).

We noted the same recursion for the Poincaré polynomial of the intersection
poset in (1.1). O

1.5 The NBC Complex

Definitions

This section is borrowed from [39]. It illustrates a purely combinatorial con-
struction and a mixed combinatorial and topological calculation that is used
in Section 1.6 to compute the cohomology groups of a seemingly unrelated
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complex. The latter is also used in Section 2.2 to calculate the local system
cohomology groups of the complement.

Recall the definition of the nbc set from the last section. The nbc set
is closed under taking subsets, hence it forms a simplicial complex called
the nbc complex of A, denoted by NBC. We agree to include the empty set
in nbc and the empty simplex of dimension —1 in NBC(.A). This results in
reduced homology and cohomology. If A has rank r then NBC is a pure (r—1)-
dimensional complex consisting of independent sets. An (r — 1)-dimensional
simplex of NBC is called an nbc frame . A simplex of NBC is ordered if its
vertices are linearly ordered. We agree to write every element of nbc in the
standard linear order.

Definition 1.5.1. Let L = L\ {V'}. Define a map v : L — A by
v(X) = min(Ax).
Let P = (X1 > - - > X,) be a flag of elements of L. Define
v(P) ={v(X1),...,v(Xy)}

Let S = {H;,,...,H;,} be an independent q-tuple with H; < --- < H;_ .
Define a flag

§(9) = (X1 > > Xy)
of L, where X, = i_, H;, for1<p<q. AflagP = (X; > > X,) is
called an nbc flag if P = £(S) for some S € nbe. Let {(nbc) denote the set
of nbc flags.

Lemma 1.5.2. The maps £ and v induce bijections
¢ : nbc — {(nbc) and v : &(nbc) — nbc,
which are inverses of each other.

Proof. Let S = {H;,,...,H;,} € nbc. We show first that v o {(S) = S.
Suppose &(S) = (X1 > -+ > Xy). Then H;, O X,. If minAx, < H;,,
then {min Ax, H;,,..., H;,} is dependent and must contain a circuit. It fol-
lows that {H;,,..., H;,} contains a broken circuit. This contradicts S € nbc.
Therefore min Ax, = H;, for 1 < p < ¢. This implies that v(£(S5)) = S, so the
map & : nbc — £(nbc) is bijective and v o £ : nbc — nbec is the identity
map. Thus these maps are inverses of each other. ]

Lemma 1.5.3. We have

Embe) = {(X1 > > X,) | v(X1) < v(Xa) < - <v(Xy),
r(Xy,)=q-p+1(1<p<q)}.
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Proof. By Lemma 1.5.2, the left-hand side is contained in the right-hand side.
Conversely, let P = (X; > --- > X,) belong to the right-hand side. We will
show that v(P) € nbc. It is sufficient to derive a contradiction assuming that
v(P) itself is a broken circuit. There exists H € A such that (1) H < v(X3);
and (2) {H} Uv(P) is a circuit. Since

X1 Cv(Xy)n---nv(X,) C H,

we have H € Ax, and thus v(X;) = min(Ayx,) < H. This contradicts (1).
Thus v(P) € nbec. Since X, C v(X,)N---Nv(X,y) for 1 < p < ¢, and
r(Xp) =q¢—p+1=rwX,)Nn - Nv(X,)), we have P = £ o v(P), so
P € ¢(nbc). 0

We agreed to delete the last hyperplane H,, € A in the deletion-restriction
triple (A, A’, A”), and we have constructed compatible linear orders in them.
Clearly v(K) < H,, for all K € A”. Let nbc’ = nbc(A’), NBC' = NBC(A),
nbc” = nbc(A”), and NBC” = NBC(A”). Write nbc = {{vS",H,} | 8" €
nbc”}. Equation (1.4) shows that there is a disjoint union

nbc = nbc’ Unbc .
Lemma 1.5.4. Let {X1,...,X,} € A”. Then
{X1,...,X,} €nbc” = {v(X1),...,v(X,), H,} € nbc.

Proof. (=): Suppose {X1,...,X,} € nbc”. If {v(X1),...,v(X},), H,} con-
tains a broken circuit, then there exists an integer k with 1 < k£ < p and a
hyperplane H € A’ with H < v(X}) such that {H,v(Xy),...,v(X,), H,} is
linearly dependent. Thus {HNH,,, Xk, ..., X,} is also linearly dependent and
v(HNH,) = H < v(Xy). This implies that {Xj,...,X,} contains a broken
circuit,which is a contradiction.

(<): Suppose {v(X1),...,v(X,), H,} € nbe. If {X;,...,X,} contains a
broken circuit, then there exists an integer k£ with 1 < k£ < p and a hyperplane
X € A” with X < X}, such that {X, Xy, ..., X,} is linearly dependent. Thus
{v(X),v(Xk),...,v(Xp), Hy} is also linearly dependent and v(X) < v(Xy).
This implies that {v(Xy),...,v(X,), H,} contains a broken circuit, which is
a contradiction. a

Lemma 1.5.5. If {H;,,...,H;,,H,} € nbc, then v(H;, N H,) = H;, for
1<k <p.

Proof. We may assume p = 1 without loss of generality. In general v(H;, N
H,) <X H;,. If v(H;, N H,) < H;,, then {v(H;, N H,), H;,, H,} is linearly

dependent. Thus {H;,, H,} contains a broken circuit, a contradiction. O
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Homotopy Type

Theorem 1.5.6. Let A be an l-arrangement of rank r = r(A) > 1. Then
NBC = NBC(A) has the homotopy type of a wedge of spheres, Vg a)S™"'. If
B(A) =0, then NBC is contractible.

Proof. The assertion holds for r = 1, since 5(A) = |A| — 1 and NBC consists
of | A| points.

If A is an arrangement with » > 2, then NBC is path connected. It suffices
to show that vertices corresponding to distinct hyperplanes H;, H; € A, i < j,
are connected. If X = H; N H; # 0, then r(X) = 2 < r. If H; = v(X),
then {H;, H;} is a 1-simplex in NBC. If v(X) < H;, then {v(X), H;} and
{v(X), H;} are both 1-simplexes in NBC. Thus the vertices H; and H; are
connected. If H; N H; = (), then there exists Hy with H; N H # 0 and
H; N Hy, # 0. It follows that H; and H; are connected via H.

If v is a vertex of NBC, then its star, st(v), consists of all open simplexes
whose closure contains v. The closure, st(v), is a cone with cone point v. Let
(A, A, A”) be a triple with respect to the last hyperplane H,,. Then st(H,)
consists of all simplexes belonging to the set {S € nbc | SU{H,} € nbc}.
Also NBC' consists of all simplexes S of NBC with H,, ¢ S. Thus we have

NBC = st(H,,) UNBC'. (1.5)

By Lemma 1.5.4, v{Xy,...,X,} € st(H,) N NBC'. So the map v induces a
simplicial map
v:NBC” — st(H,) NNBC'.

This map is obviously injective. It is also surjective by Lemmas 1.5.5 and
1.5.4. Thus the two simplicial complexes are isomorphic:

NBC” ~ st(H,) " NBC'. (1.6)

If A is an arrangement with r > 3, then NBC is simply connected. We use
induction on |A|. Since |A| > r, the induction starts with |.A| = r. In this case,
A is isomorphic to the arrangement of the coordinate hyperplanes in r-space.
Since any subset of A is a simplex of NBC, NBC is contractible. Now st(H,,)
is a cone with cone point H,. In particular, it is simply connected. Since
|A’| < |AJ, the induction hypothesis implies that NBC' is simply connected.
Finally, r(A") = r—1 > 2, so it follows that NBC" is path connected. Thus, by
(1.5) and (1.6), van Kampen’s theorem implies that NBC is simply connected.

Next we want to compute the homology groups of NBC. Integer coefficients
are understood. Consider the Mayer—Vietoris sequence for the excisive couple
{st(H,),NBC'}. Using (1.5) and (1.6) we get the long exact sequence

. — H,(st(Hy)) ® H,(NBC') ), 7 (NBC)

O Jj2)

O, Hy 1 (5t(Hy) NNBC) Y2720 g (5t(H,)) @ Hy—r (NBC') —
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The fact that st(H,) is contractible, together with (1.6), gives

.. — H,(NBC') 2= H,(NBC) 2 H,_,(NBC") L% H,_;(NBC') — ...
(1.7)
Next we show that

Hp(NBC)—{O Tfp;ér 1,

free of rank S(A) ifp=1r—1.

We use induction on r, and for fixed r on |.A|. We have established the assertion
for » = 1 and arbitrary |.A|. The assertion is also correct for arbitrary » when
| A| = r, since in this case we may choose coordinates in V' so that A consists
of the coordinate hyperplanes. It follows that A is a central arrangement and
by [38, 2.51] that 3(A) = 0. For the induction step we assume that the result
holds for all arrangements B with 7(B) < r and for all arrangements B with
r(B) = r and |B| < |A|. Consider the exact sequence (1.7). Here we need a case
distinction. If H, is a separator, then r(A’) < r. In this case A" = A" x &,
where @1 is the empty l-arrangement. Thus w(A’,t) = w(A”,t), so (1.1)
implies that m(A,t) = (14+t)m(A",t) and hence 8(.A) = 0. On the other hand,
XNH,#0forall X € L(A")\ {V} so NBC = st(H,,), which is contractible.
If H, is not a separator, then for p # r — 1 the induction hypothesis implies
that H,(NBC') = H,_1(NBC") = 0 and hence H,(NBC) = 0. For p =71 — 1,
the induction hypothesis implies that H,_1(NBC") is free of rank 8(A”) and
H,(NBC') is free of rank (3(A’). The conclusion follows from (1.2).

This allows completion of the proof. For » = 2, NBC is 1-dimensional and
hence it has the homotopy type of a wedge of circles whose number equals
the rank of H;(NBC). We showed above that this rank is §(A). For r > 3,
NBC is simply connected. It follows from the homology calculation and the
Hurewicz isomorphism theorem that m;(NBC) = 0 for 1 < 4 < r — 1, and
mr—1(NBC) ~ H,._1(NBC;Z). The last group is free of rank 5(A). O

The Bnbc Basis

Ziegler [55] defined a subset fnbc(A) of nbc(A) of cardinality |Snbc(A)| =
B(A). It has the property that if the simplexes corresponding to Snbc are
removed from the complex NBC, the remaining simplicial complex is con-
tractible. The set Snbc is used to construct a basis for the only nontrivial
cohomology group H"~1(NBC).

Definition 1.5.7. A frame B is called a fnbc frame if B is an nbc frame
and for every H € B there exists H < H in A such that (B\{H})U{H'} is
a frame. Let fnbce(A) be the set of all fnbc frames. When A is empty, we
agree that fnbe(A) = (.

We need to determine what happens to these frames under deletion and
restriction. Recall that we have agreed to delete the last hyperplane H,, € A.
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Let fnbc = fnbc(A), Bnbc’ = fnbc(A’), and Bnbc” = pnbc(A”). Ziegler
[55, Theorem 1.5] proved the following important Snbc recursion:

Theorem 1.5.8. Write fnbc = {{vB",H,} | B" € pnbc"}. If H, is a
separator, then fnbc = (). Otherwise, there is a disjoint union

Bnbc = fnbc’ U ﬁnbcﬂ. a

When ¢ = 1 we agree that Snbc” is empty, so ,Bnbc ={H,}.
For an nbc frame B € nbc let B* € C"~!(NBC) denote the (r—1)-cochain
dual to B. Thus for an nbc frame B’ € nbe, B* is determined by the formula

1 if BB=B
0 otherwise.

(B, B) = {

The next result follows from Ziegler’s recursion theorem 1.5.8:

Theorem 1.5.9 ([29]). The set {[B*] | B € Onbc} is a basis for the only
nonvanishing cohomology group H"~!(NBC).

Proof. If H,, is a separator, then Snbc = ). In this case NBC is contractible,
as we saw in the proof of Theorem 1.5.6. Suppose that H,, is not a separator.
Recall (1.5) and (1.6). The Mayer-Vietoris cohomology exact sequence reduces
to the short exact sequence

0 — H™2(st(H,) nNBC') <> H™1(NBC)
) =1 (e(H,)) @ H =1 (NBC') —

because HP(NBC) = 0, H?(NBC') = 0, and HP~1(NBC") =0 when p # r — 1
by Theorem 1.5.6. We describe the connecting morphism 9* explicitly. If B”
is an (r — 2)-simplex of NBC”, then vB” is an (r — 2)-simplex of st(H,,) "NBC’
and

{vB"}* € C"%(st(H,,) N NBC').
The natural map
CT2(s(H,)) @ ¢ 2(NBC) 2=, or=2 (Gi(3y A NBCY)

sends the element ({vB”}*,0) to {vB”}*. Note that every (r — 1)-simplex in
st(H,) includes H,, as a vertex and {vB”, H,} is the unique (r — 1)-simplex
in st(H,,) which contains vB”. Thus the coboundary map

§:C"2(st(H,)) — C"(st(H,))
sends {vB"}* to {vB", H,}*. This diagram chase shows that
0" ({vB"}]) = {vB", H,}"] € H"'(NBQ).

Now we get the desired result by induction on |A| using Ziegler’s recursion
theorem 1.5.8. O
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1.6 The Aomoto Complex

This section is borrowed from [39] and contains corrections provided by Hi-
roaki Terao. Lemma 1.6.2 replaces [39, Lemma 6.1.3] and Corollary 1.6.5
replaces [39, Corollary 6.2.2]. We thank the editors for finding the mistake
corrected here. The Aomoto complex will play a prominent role in the ap-
plications to local system cohomology and the Gauss-Manin connection in
Chapter 2.

Definitions
Let A = (A,...,A,) be a set of complex weights for the hyperplanes and
define ax = Y. | \; a; € A'(A). Note that axax = 0 because A(A) is a quo-
tient of an exterior algebra. Thus multiplication with ay provides a complex
(A*(A), ax)

0— A%A) 25 AN A) 22 2% A7(A) — 0. (1.8)

In this section we study the combinatorial cohomology groups HP(A®*(A), ay).
When we try to use linear algebra to compute these groups, it becomes
clear that algebraic relations among the \; are of crucial importance.

Aomoto Complex

Aomoto [1] defined a universal complex whose specialization is the complex
(A*(A),ax). Let y = {y1,...,yn} be a set of indeterminates in one-to-one
correspondence with the hyperplanes of A. Let R = C[y] be the polynomial
ring in y.
Define a graded R-algebra:
A* =A*(A) = R®c A*(A).
Let ay = > yeayn @ ag € A'. The complex (A®(A), ay)

0— A%(A) 25 AT A) 25 B AT(A) - 0 (1.9)

is called the Aomoto complex. Let S be a multiplicative closed subset of R.
Consider the Aomoto complex of quotients by S

0— A2(A) 25 ALA) 25 2L AL(A) — 0, (1.10)
where A2 = A2(A) = Rs ®r A®(A), and Rs is the localization of R at S.

Lemma 1.6.1. IfC is a nonempty central arrangement andY = {(31_ vi)™" |
m > 0}, then the complex (AY(C),ay) is acyclic.
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Proof. We showed in Proposition 1.4.3 that 9C C C. If ¢ € C, then
d(ayc) = (day)c — ay(0c) = (Z yi)e — ay(0c).
i=1

Thus 0 is a contracting chain homotopy. ]

This assertion is false for non-central arrangements. The first equality fails
because 0 is not a derivation in that case. This is easy to check in the arrange-
ment of two points on the line.

Lemma 1.6.2. Let X be a system of weights. Suppose that S is a multiplicative
closed subset of R satisfying f(X) # 0 whenever f € S. Denote the evaluation
map by evy : AL — AP defined by y; — ;. The evaluation map induces a
homomorphism

eva : H*(AS(A),ay) — H*(A*(A), ax).

(1) The evaluation map evy : AL — AP is surjective.
(2) Let r = r(A). The evaluation map

evx : H'(AS(A), ay) — H"(A®(A), ax)
1S surjective.

Proof. (1) is obvious. We obtain (2) from (1) since the map involves the top
cohomology groups. O

Next we show that the Aomoto complex (A}, ay) of quotients by a suitable
multiplicative closed subset D of R is isomorphic to the cochain complex of
the simplicial complex NBC.

Dense Edges

An edge X € L(A) is called dense if and only if the central arrangement Ax
is not decomposable. A combinatorial characterization of dense edges follows
from Theorem 1.1.5.

Theorem 1.6.3. Let A be an arrangement and let X € L(A). The following
conditions are equivalent:

(1) X is dense,

(2) Ax is not decomposable,

(3) B(dAx) # 0,

(4) B(dAx) > 0. O
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Let Ao, be the projective closure of A. We agree that the hyperplane at
infinity is largest in the linear order and call it H,, ;1 instead of H.

Define y,41 = — Y i ¥i- Let D(As) denote the set of dense edges in
Ao The multiplicative subset D of R is generated by

{ > wnlZeDA)}

He(Aso) 2

For aflag P= (Y1 > Yy > --- > Y,) in L = L\ {V}, define
q
Zy(P) =[] ay(¥;) € A",
p=1

where ay(X) = e, yu ®@apg for X € L. For S = {H;,,.. .,H;,} € nbc,
recall that £(S) = (X1 > --- > X), where X, = ({_, H;, for 1 <p <gq. Let
C*(NBC, R) be the cochain complex of NBC over R. Note that C~!(NBC, R)

is a rank-one free R-module whose basis is the cochain (#*, dual to @), the only
(—1)-simplex. We define

07:CI Y (NBC,R) — A? (1<q<r)

by

61(0) = 3 al(S)by(S) € A,
S

where o € C771(NBC, R) and 6y (S) = =y (£(S)). For ¢ = 0, define
6°: C~Y(NBC,R) — A°

by ©°(a) = a(P) € A° = R. The important result below is due to Schechtman-
Varchenko [45] and Brylawski-Varchenko [10]. We state it in a slightly different
form using NBC [39] .

Theorem 1.6.4. The maps {O}o<q4<, give a morphism from the (augmented)
cochain complex C*~1(NBC, R) to the Aomoto complex (A®,ay). This mor-
phism induces an isomorphism over the ring of quotients Rp.

Proof. Step 1. For the first half, it is sufficient to show that the diagram

C9-1(NBC,R) —>— C9(NBC, R)

@‘IJ/ l@q+l

+1

A(}J’ a—y> Ag,
is commutative, where & denotes the coboundary map. It is easy to see that
the diagram is commutative when g = 0. Let (* be the (—1)-cochain dual to
the (—1)-simplex (). Then
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0 os(0") =0 (Y _{HY)= ) yn®an =ay =ay0°(07).

HeA HeA

Suppose ¢ > 0. Let S = {H;,,...,H;,} be a (¢ — 1)-simplex in NBC. Let
S* denote the (¢ — 1)-cochain dual to S:

1 if 8=
<S*,S’> _ if S .S,
0 otherwise.
It suffices to show that
a1t o §(S*) = ay®1(S™)

by induction on ¢. Note that

q
=> (-V*N {H;,... . H ,HH;,,,....H;}",
k=0 I

where the second summation is over the set

In={HeA|{H,,, ... H;, H H,

ik L4199

H;,} € nbc}.

Let £(S) = (X1 > --- > X,). It follows from Lemmas 1.5.2 and 1.5.3 that the
maps £ and v provide a bijection between I and

Jo={(Z>X1>...X,) | v(Z2) < Hi,, 7(Z) = q+ 1}
and for 1 < k < g between I, and
Je={V1>.. Y% >Z>Xp11>--->Xy) | Hy, <v(Z) < Hy,,,
(Z)—q—k+1 r(Y;) =q—3+2,v(Y;) = H; (1 <j<k)}.
Fix Y7 with v(Y7) = H;,, r(Y1) = ¢+ 1, and Y7 > X;. Define
JiM) ={(Z2> X2 > ... Xy) [v(Z) < Hiy, 7(Z) = q, Y1 > Z}
and

Je(V) ={(Ye>.. Ve >Z>Xpp1>--->X,) | Hy, <v(Z) < Hy, .,
(Z)—qfiﬁ1 r(Y;) =q— J+2 v(Yj)=Hi; (2<j<k)}

J

for 2 < k < q. Then

[M]=
=

-

L
(]
o
~
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By the induction assumption for {H;,,..., H; } € nbc(Ay, ), we have

St > 5,(P)=0"06({Hi,,..., Hi,}")

k=1 PeJi(Y1)
= ay(Yl)@qil({Hiza R Hiq}*)
= ay(Y1)ay (Xa2) ... ay(X,).
Thus
q q
O os(ST) =Y (1) Y E(P)= D E(P) =D (- Y E(P)
k=0 PeJy PeJy k=1 PeJy
= Z ay(Z)ay(X1)...ay(Xy) — Z ay (Y1)
v(Z)<Hq v(Y1)=Hiy
(Z)=q+1 r(Y1)=q+1
Z>X4 Y1 > X,
q
X Z(_l)k_l Z Zy(P) - Z ay(Z)ay(X2) ... ay(X,)
k=1 PeJ (Y1) v(Z)=H,
r(Z)=q
Yi>Z2>Xs
= Z ay(Z)ay(X1)...ay(Xq)
v(Z)<Hq,
r(Z)=q+1
Z>X,
- Z ay (Y1) lay (Y1)ay (X2) . .. ay(Xq) — ay(X1) ... ay(X,)]
V(Y1)2H11
r(Y1)=q+1
Yi>X,

= > ay(Zay(X1)..ap(X)+ D ay(V)ay(X1) ... ay(Xy)

v(Z)<Hi, v(Y1)=H;
r(Z)=q+1 r(Y1)=q+1
Z>X, Yi>X,
= Y ay(May(X1). ay(X,) = ayO(S).
r(Y)=q+1
Y>X,

Step 2. We have decompositions

C'(NBC,R)= @ C'(NBC(Ax),R)
Xel
r(X)=q

and
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Ay = D AN,
XelL
r(X)=q

Note that the map @7 is compatible with these decompositions. In other
words, @7 induces

@g( : Cq_l(NBC(Ax),R) — Ag,(Ax)

for each X € L with r(X) = ¢. Since D(Ax) C D(A), we may assume that .4
is nonempty central when we prove the last half of the theorem.

Step 3. Suppose that A is nonempty central. Let r = r(A). Let 0 < g < r.
We prove that the induced map

04 : CT1(NBC, Rp) — A}

is an isomorphism by induction on 7 > 1. When r = 1, O} (¢ = 0,1) are
isomorphisms because each yg is invertible in Rp. By Step 2 we have

C'(NBC,Rp) = P C7'(NBC(Ax).Rp)
XeL
r(X)=q

and

A= B Ab(Ax).
XelL
r(X)=q

By the induction assumption we may assume that the theorem holds true for
Ax when r(X) < r. Thus O} is an isomorphism for 0 < ¢ < r —1. Decompose
A into indecomposable subarrangements:

A=A - WA,
It is not difficult to see that

b-ay) ®<A' <Z yH®CLH>>.

HeA;

Note D(A;) € D(A) for 1 < ¢ < m. Thus the complex (AR, ay) is acyclic by
Lemma 1.6.1. Since NBC is contractible by Theorem 1.5.6, the (augmented)
cochain complex C*~1(NBC, Rp) is also acyclic.

Thus we have a commutative diagram

0 4

0 —— C~Y(NBC, Rp) C"(NBC, Rp) — 0

@gl egl

0—— AQ AL — 0
ay ay

whose rows are exact, and the vertical maps O (0 < ¢ < r — 1) are isomor-
phisms. Therefore the rightmost vertical map ©f is also an isomorphism. This
completes the induction step. ]
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Corollary 1.6.5. Let A be an arrangement of rank r with projective closure
As. For X € L(Ay), let Ax = ZXCHi Ai. Assume that Ax # 0 for every
X € D(As). Then

HP(A*(A),ax) =0 forp#r and dimH"(A*(A),ax) = B(A).
Proof. We have a commutative diagram
C9-1(NBC, Rp) «~— C9-1(NBC,C)

l@g lev;o@goj

A} e Ad,
evx

Here ew), is defined in Lemma 1.6.2 and j is the natural map induced by an
extension of the coefficient ring. By Theorem 1.6.4 @ is an Rp-isomorphism.
The composed map evy0O@f oj is the evaluation of OF at yg = Ay (H € A). It
gives a C-isomorphism: C?~1(NBC,C) = AY. Since each map in the diagram
commutes with the coboundary maps, we get the isomorphism

HI(A®,ay) ~ H}(NBC,C),

where H stands for the reduced cohomology. Theorem 1.5.6 completes the
proof. ad

The Bnbc Basis

Next we find an explicit basis using the Snbc set following Falk and Terao
[29]. Recall the map ©" from Theorem 1.6.4 and the evaluation map evy from
Lemma 1.6.2. B}

C""Y(NBC, R) 25 A" £, A7,
Definition 1.6.6. Define ¢ : fnbc — A" by ((B) = evy 0 O"(B*). Explicitly,
if B={H;,...,H; } is a fnbc frame and §(B) = (X1 > --- > X,.) where
Xp = ey Hiy, for 1 <p <, then

T

«B)=1[C > ruwan).

p=1 HE.AXP

Theorem 1.6.7. Let A be an affine arrangement of rank r with projective
closure Aoo. Assume that Ax # 0 for every X € D(Ax). Then the set

{¢(B) € H"(A,ay) | B € fnbc}
is a basis for the only nonzero combinatorial cohomology group, H" (A, ay).

Proof. We combine the results of Theorem 1.5.9, Theorem 1.6.4, and Lemma
1.6.2(2). a
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Resonance Varieties

Each point A € C™ gives rise to an element ay € A! of the Orlik-Solomon
algebra A = A(A). For sufficiently generic A the cohomology H?(A®, ax)
vanishes for ¢ < £ by Corollary 1.6.5. Those A for which H?(A*,ay) does not
vanish comprise the resonance varieties

RL(A)={A e C" |dim HI(A® ax) > m}.

These subvarieties of C" are invariants of the Orlik-Solomon algebra A®. See
Falk [25] and Libgober-Yuzvinsky [36] for detailed discussions of these vari-
eties. They are clearly contained in {Ax = 0| X € D(Ax)}, which is a union
of linear subspaces. Falk [25] conjectured that the resonance varieties them-
selves are unions of linear subspaces. We return to this question in Section
2.3.

1.7 Combinatorial Types

In the rest of this chapter we move from consideration of a fixed arrange-
ment to the study of all arrangements of a given combinatorial type. Fix a
pair (¢,n) with n > ¢ > 1 and consider families of essential ¢-arrangements
with n linearly ordered hyperplanes. In order to define the notion of combi-
natorial type and degeneration, we must allow for the coincidence of several
hyperplanes. We call these new objects multi-arrangements and use simple to
denote arrangements in the ordinary sense. Since the arrangement is assumed
to be essential, we may assume that the ¢ linearly independent hyperplanes
are the first £ in the linear order. Let a; = b; o + Z§:1 biju; (i=1,...,n).
Note that the coefficient matrix (b; ;), 1 < 4,5 < £ is invertible by assumption.

We embed the arrangement in projective space as described in Section 1.1
and call the result A.,. Recall that the hyperplane at infinity is largest in the
linear order and we call it H,,y; instead of H,,. We may therefore view the
projective closure of the arrangement as an (n+1) x (£+ 1) matrix of complex
numbers

bio bi,1 -+ b
bao b2 -+ bay
b=| @ = . (1.11)
bn,O bn,l T bn,@
1 0 --- 0

whose rows are the hyperplanes of A.,. Thus (CPY)" may be viewed as the
moduli space of all ordered multi-arrangements in CP¢ with n hyperplanes
together with the hyperplane at infinity.

We call two simple arrangements combinatorially equivalent if there is an
isomorphism of their posets which preserves the linear order of the hyper-
planes. Given an arrangement A, define its dependent sets for 1 < g <n +1,
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Dep(A)y = {{Jj1,---,Jq} | codim(H;, N...NHj,) < q}.

Let Dep(A) = Ug<r41 Dep(A)q. Two essential simple arrangements are com-
binatorially equivalent if and only if they have the same dependent sets. We
call 7 their combinatorial type and write Dep(7T). Call a subcollection of [n+1]
realizable if it is Dep(.A) for a simple arrangement A. Note that an arbitrary
subcollection of [n + 1] is not necessarily realizable as a dependent set. For
example, the collection {123,124, 134} is not realizable as a dependent set,
since these dependencies imply the dependence of 234.

Terao [50] proved that the combinatorial type is in fact determined by
Dep(7T )e41. Given a subset J C [n + 1] of cardinality ¢+ 1, let A;(b) denote
the determinant of the (¢ 4+ 1) x (£ + 1) minor of b whose rows are specified
by J. Given a realizable type 7, the moduli space of type 7 is

X(T) = {b e (CP")" | As(b) =0 for J € Dep(T)¢s1, As(b) # 0 else}.

If G is the type of a general position arrangement, then Dep(G) = 0 and
the moduli space X(G) is a dense, open subset of (CP‘)". We investigate
topological properties of this moduli space in Section 2.4.

Define a partial order on combinatorial types as follows: 7 > 7' <=
Dep(7) C Dep(7’). The combinatorial type G is the maximal element with
respect to this partial order. Write 7 > 7" if Dep(7) C Dep(7'). It T > T/,
we say that 7 covers 7' and T’ is a degeneration of T if there is no realizable
combinatorial type 7" with 7 > 7" > 7'. In this case we define the relative
dependence set

Dep(7',T) = Dep(7") \ Dep(T).

Terao [50] classified the three codimension-one degeneration types in the
moduli space of an arrangement whose only dependent set is the circuit T =
(41,...,%g+1). Let T, be the g-tuple obtained from T by deleting i,,.

I: Degenerations of T with |[SNT| < ¢q—1 for all S € Dep(7’,7T).
II: The collection {(T},, m) | m ¢ T'} for each fixed p, 1 <p < g+ 1.
III: The collection {(T,m) | 1 <p < g+ 1} for each fixed m ¢ T

If ¢ = 1, then Type II does not appear. Observe that p denotes a position in
the ordered set T' while m denotes an element not in 7.

1.8 Formal Connections

In the remaining sections of this chapter we define formal connections in
the Aomoto complex. These endomorphisms determine combinatorial Gauss-
Manin connections and will be used in Chapter 2 to study topological analogs.
It will be convenient to refer to the hyperplanes by their subscripts. Let T' =
{i1,..yig+1} C {1,...,n}. If order matters, we write T' = (i1,...,4441) and

ar = A4y "'CLqurl. Let (.]7T) = (j,il,...,iq+1) and Tk = (il,...,ik,...,iq+1).
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Let (A*(G), ay)) be the Aomoto complex of a general position arrangement of
n ordered hyperplanes in C*. We embed the arrangement in projective space
as described in Section 1.7 and call the resulting type Go.. The fact that the
hyperplane at infinity H,; may be part of a dependent set, but the nbc
set contains only affine hyperplanes leads to awkward case distinctions which
have no geometric significance. We write S = 7' if S and T are equal sets.

Definition 1.8.1. Let S be an index set of size ¢ + 1. Define an R-linear

endomorphism of the Aomoto complex wg : (A*(G),ay) — (A*(G),ay) as

follows. In the formulas below T is a p-tuple, n+1 & T, and 1 < j < n.
Ifn+1¢S8,

yj0agr) ifp=gqand S=(5,T),
O (ar) = 4 aydar ifp=q+1and S=T,
0 otherwise.

Ifn+1eS,

—(Zje[n]_T yj)aT ifp=qand S=TU{n+ 1},

Jjg(aT) _ (_1)k_1yja’(j,Tk) pr =4q, S = (j7 Tk?) U {n + 1}’ G,nd] ¢ T}
(—-D*ayar, ifp=q+1and S=T, U{n+1},
0 otherwise.

Proposition 1.8.2. For every S, the map ©g is a cochain homomorphism of
the Aomoto complex (A*(G),ay)).

Proof. Let S be an index set of size ¢ + 1. Since @% = 0 for p # ¢, ¢ + 1, to
show that wg is a cochain map, it suffices to check commutativity in the three
squares indicated below.

a ay

— AT (G) —— AY(G) —— ATHH(G) — s ATH(G) —

l@g*:o lag laﬂ;l lwg“:o

— ATL(G) _ Yy A%(G) _Wy AItL(G) _ Y ATH2(G) —

If n+1 ¢ S, then we may assume that S = {1,2,...,¢+ 1}. Otherwise
S ={U,n+ 1} and we may assume that U = {n —¢+1,...,n}. Since A*(G)
is free on the generators ar, we may work with these.

In the first square above we start with az € A7, Since @g_l =0, we
need to show that @ (ayar) = 0.

Suppose n + 1 ¢ S. Since T" must be equivalent to a subset of S, we
may assume that T = (3,4,...,¢ + 1). Then @¢(ayar) = y11y2(dan 2,1y +
3a(2,1,T)) =0.

Suppose n+ 1 € S. Since T" must be equivalent to a subset of U, we may

assume T'= (n — ¢+ 2,...,n). Then ayar = Z;:f“ y; agjry- We get
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n—q
@ (ayar) = Z yj‘:}g(a(j,T)) + Z/nfq+1@g*(a(nfq+1,T)>
j=1
n—q n—q
= (DU r1Y0n—qi1,31)0 + O (—DYjYn—g110Gn—g41.7),
j=1 j=1

=0.

In the second square we start with ap € A9.
Suppose n + 1 ¢ S. Since T must be equivalent to a subset of S, we

may assume that T = (1,2,...,q). Then &%(ar) = yq410a(q41,7) and
ay@l(ar) = ygi1aydagger ). The only nonzero term in @%''(ayar) is

@§+1(yq+1a(q+1,T)) = Yq+1ay0a(q41,1), 50 the assertion holds.
Suppose n+ 1 € S. If T = U, then &§(ar) = (—1)'(37-{ y5) a¢jr), and

- - - —q+1
ay@%(ar) = (721 yj) ayar. Also, ayar = 327"V yiacm), s0 0% (ayar) =
—(>2j=1 y;j) ayar, as required. If T # U, then we may assume that 7' =
(n—q¢n—q+1,...,n—1). Then @¢(ar) = (—1)2yna(n’T)2, 0 aywh(ar) =

Ynlya(n,T),- On the other hand, there is only one term in ayar on which (Z)gﬂ

is nonzero, namely y,a,ar. Since &)gfl(yna(n’T)) = YnGyQ(n,T),, the assertion
holds.
In the third square we start with ar € A9+, Since @g+2 = 0, it suffices to

show that ay@%" (ar) = 0. For any S, this follows from ayay = 0. O

Remark 1.8.3. The map @ is given by geometric considerations in [2, 50, 39].
There are many possible lifts &)Z«H which make @g a cochain map. However,
if we require that ®g+1(aT) = 0 unless 7' is related to S as indicated in the

definition, then the lift is unique.

1.9 Multiplicities

The formal connection endomorphisms of the last section were defined for
the Aomoto complex of the general position type G. Our aim is to show that
they induce endomorphisms for all pairs of types 7,7’ where 7 covers 7".
Simply adding the endomorphisms &g for all S € Dep(7’,7) is insufficient
because some degenerations may appear in more than one type. We study
these multiplicities next.

Definition 1.9.1. Given S C [n + 1], let Ng(7T) = Ng(b) denote the sub-
matriz of (1.11) with rows specified by S. Let rank Ng(7) be the size of the
largest minor with nonzero determinant. Define the multiplicity of S in T by

mg(T) = |S| —rank Ng(7).
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B(T)= Y, ms(T)-@s and (T, T)= >  ms(T) @s.
SeDep(T) SeDep(T',T)

The Orlik-Solomon algebra for the combinatorial type G of general position
arrangements is the exterior algebra on n generators truncated at level £.
For an arrangement A of combinatorial type 7 # G, the Orlik-Solomon ideal
I(A) depends only on the combinatorial type, so we may write (7). Thus
A(T) = A(G)/I(T). The ideal I(A) gives rise to a subcomplex 1°(7) of the
Aomoto complex A®(G), and we have A*(T) = A*(G)/I*(T).

In order to prove that the endomorphisms ©(7”,7) on A®*(G) induce en-
domorphisms w(7’,7) on A*(7), we must show that they preserve this sub-
complex, O(7',7)(1*(T)) C I1*(7T). This fact is established in Section 1.10.

For the remainder of this section we fix the realizable combinato-
rial types 7,7’ and assume that 7 covers 7’. Since the Aomoto complex
has dimension ¢, only |S| < £+ 1 can contribute to the maps @(7”’, 7). Recall
that a generating set for I(7) is obtained from the collection of circuits of
Ao Fix a circuit T' € Dep(7 ) g41. If T = (U,n + 1), then the hyperplanes of
T meet at infinity in A, so the hyperplanes of U have empty intersection
in A and ay is a generator of I(7). If n +1 ¢ T, then dar is a generator of
I(T). Let

_Jay T =(Un+1),
T Noar ifn+1¢T.

It is important to remember that if a circuit 7" is of size ¢ + 1, then each
element in 77 is a g-tuple. The next observation follows from the definition.

Lemma 1.9.2. Let T be a g+ 1-circuit and let S be any set. If [TNS| < g—1,
then wg(rr) = 0.

Lemma 1.9.3. Let T € Dep(T )q+1 be a circuit and let S € Dep(T',T ) 441 be
a degeneration of Type I. Then &g(rr) = 0.

Proof. This follows from Lemma 1.9.2 if |[TNS| < g—1. Suppose |[TNS| = g—1.
It follows from the definition of the formal connections that n + 1 ¢ T and
that n + 1 € S. In this case, we may assume that T = (1,...,¢ + 1) and
S={3,4,...,9g+1,m,n+ 1} where m € [n]\ {T'}. The only nonzero terms
in wg(dar) are:

ws(ar,) = —Ymamas,...q+1 = Os(ar,).

Since these terms appear with opposite signs in dap, we conclude that
J)S((‘)aT) =0. O

Let T € Dep(7T)4+1 be a circuit and recall that every degeneration of T is
of Type I, I1, or III. We refer to S € Dep(7’,7T) as T-relevant if ©g(rr) # 0.
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For such S we have |S| = g or |S| = g+ 1. It follows from Lemma 1.9.3 that in
all further considerations of T-relevant endomorphisms we may assume that
the degenerations are of Types II and III.

Lemma 1.9.4. Let T be a set of cardinality ¢ + 1. If T;,T; € Dep(T) for
i#j, thenT; € Dep(7) for alli, 1 <i<q+1.

Proof. Without loss, assume that T7,7» € Dep(7). Then there are nonzero
vectors o = (0, a2, g, ..., g41) and B = (£1,0,0s, ..., B4+1) which are an-
nihilated by the rows of the matrix (1.11) indexed by T} and T5, respectively.
If a; = 0 for some i # 1,2, then « is annihilated by the rows corresponding
to T;, hence T; € Dep(7). If o; # 0, then o;8 — S is a nonzero vector
annihilated by the rows corresponding to T;, hence T; € Dep(7T). a

Proposition 1.9.5. Let T € Dep(7 )q+1 be a circuit. Then there is at most
one j € T so that T; € Dep(7',7),.

Proof. By relabeling the hyperplanes we may assume that T = (1,...,q¢+1).
Then T; = T\ {i}. Since T is a circuit, T; is independent in type 7 for
each i € T. Since 7 is the type of an arrangement which contains ¢ linearly
independent hyperplanes, there exists a set J C [n] of cardinality ¢ — ¢ so
that T3 U J U {n + 1} is independent in 7. We assert that T, U J U {n + 1} is
independent in 7 for all i € T

Suppose otherwise. If, for instance, Ty41 U J U {n + 1} € Dep(7), then
there are constants o, 35, &, not all zero, so that

q
Zaibi—‘rZﬁij‘ + &byt =0 (1.12)

i=1 jeJ

where by, denotes the k-th row of the matrix (1.11). Since T is a circuit, there
are constants (; % 0 so that by = ZZ; (i bg. Substituting this expression in
(1.12) yields a dependence on the set T3 UJU{n+1}, which is a contradiction.

Let S =T UJU{n+ 1}. Then S; is independent in type 7 for each i,
1 <4 < ¢+1. Since 7" is a codimension-one degeneration of 7, if T; € Dep(7”),
then X(7") is locally defined by the vanishing of the submatrix Ag, of (1.11)
whose rows are specified by S; in X(7). If T; € Dep(T") for j # i, then by
Lemma 1.9.4, Ty, € Dep(7”) for every k. So, as above, X(7”) is locally defined
by the vanishing of Ag, in X(7') for every k, 1 < k < g+ 1. We will show that
this is a contradiction by exhibiting a point in X(7) for which Ag, vanishes
but Ag, does not vanish for k£ # 1.

Assume that J = (¢+2,...,£+1). Then X(7') contains points of the form

0 I, O

0 v 0
b(t) = 0 0 I
F(t) G(t) H(t)

1 0 0
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where I, is the k x k identity matrix, v = (t 1--- 1), and the submatrix
(F(t) G(t) H(t)) is chosen so that b(t) satisfies the dependence and indepen-
dence conditions of type 7 for each nonzero t. The point b(0) is in X(7'), and
for 1 <k < g+1, Ag, (b(0)) vanishes only for k = 1. Thus, if T}, T; € Dep(7”),
then there is a realizable type 7" such that 7 > 7" > 7'. This contradicts
the assumption that 7 covers 7”. O

This result shows that Dep(7”’,7T), has no T-relevant element unless T has a
codimension-one degeneration of Type II. In this case, there is a unique p so
that T, is the only T-relevant element in Dep(7”,7),. It remains to consider
T-relevant S € Dep(7”, 7 )g41-

Lemma 1.9.6. Let T € Dep(7)q+1 be a circuit. If all T-relevant S €
Dep(7',T)q+1 belong to a family of a single type, then mg(T') =1 for each
such S.

Proof. By relabeling the hyperplanes we may assume that T = (U,n + 1)
where U = (1,...,q). Suppose the degeneration is of Type II so (U, k) €
Dep(T',T)q+1 for some k € [n]—U. Argue by contradiction. If my 5y (7") = 2,
then in type 7" there are two linearly independent vectors a = (a1, . .., ag, o)
and B = (01, ..., 0y, Br) which are annihilated by the rows of (1.11) specified
by (U, k). If oy = 0, then (U, k) € Dep(7”). Since (U,n + 1) is a circuit in
7T, and (U1, k) & Dep(7) by Proposition 1.9.5, we have (U, k) € Dep(7',7T)
and hence (Uy,k,n + 1) € Dep(7’,T). This contradicts the assumption that
all T-relevant sets S belong to a Type II family. If o # 0, then we use it to
eliminate §; and find the same contradiction.

If the degeneration is of Type III, we may assume that (Up,p,n + 1) €
Dep(7',T) with p € [n] — U. Assuming that my, pn+1)(7’) = 2 leads to a
similar argument. We consider the coefficient o, 41 and conclude that (Uy,p) €
Dep(7',7T) and hence (U,p) € Dep(7’,7). This contradicts the assumption
that all T-relevant sets S belong to a Type III family. a

Lemma 1.9.7. Let T € Dep(7)q41 be a circuit. Suppose T gives rise to
codimension-one degenerations of both Type II and Type III. Then the Type
II family is unique. For each Type III family there is a unique p € [n+1] =T
so that (T;,p) is also in the unique Type II family. We call (T;,p) the inter-
section of these families. Moreover, m(r, )(7") = 2 for each intersection and
mg(T') =1 for all other T-relevant S in these families.

Proof. By relabeling the hyperplanes we may assume that T = (U,n + 1)
where U = (1,...,q). If T gives rise to a Type II family, then it is of the
form {(U, k) | k € [n] —U}. By Proposition 1.9.5 there is a unique j for which
T; € Dep(7')4. We may assume that j = ¢ + 1 so that T, = U € Dep(7”).
If T gives rise to two different families of Type II, then also some (U;,n+1) €
Dep(7"’), contradicting Proposition 1.9.5.

Suppose there is also a Type III family involving T'. (There may be several
Type III families involving 7', but it will be clear from the proof that we
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may consider one Type III family at a time.) Let (U, p) be the intersection
of the given Type II family and this Type III family. We show first that
mup)(T') = 2. Since U € Dep(7’,T), it suffices to prove that row p is a linear
combination of the rows specified by U in (1.11). Since (U,n + 1) € Dep(T),
there is a vector @ = (ayq, ..., ®y, pt+1,0) which is annihilated by the rows
(U,n+1,p) of (1.11). Since (U,n+1) is a circuit, all a; # 0. This dependency
holds also in type 7. Since (Uy,p,n + 1) € Dep(7’), we also have a vector
B = (0,B2,...,8q Bnt1,0p) annihilated by the rows (U,n + 1,p) of (1.11)
in type 7'. We claim that 3, # 0, for otherwise we would have (Uy,n +
1) € Dep(7’,T), contradicting Proposition 1.9.5. The vector 11 — @13
provides the required dependence. Hence, my,)(7’) > 2. Assuming that
mu,p)(T') > 2 contradicts Proposition 1.9.5.

The fact that the other multiplicities in these families are 1 is established
as in the proof of Lemma 1.9.6. ad

Theorem 1.9.8. The endomorphism (7', T) satisfies w(T',T)(1°(T)) C
[*(T) if and only if for each K C [n] and each circuit T € Dep(T) we have
> wglagrr) € 1°(T) where the sum is over T-relevant S in a single type of
codimension one degeneration involving T .

Proof. This is clear if T is involved in a single type. If more types appear,
then Lemma 1.9.7 shows that each S is the intersection of at most two types.
Furthermore, all such intersections have multiplicity 2, so the corresponding
S may be considered individually in their respective types, each time with
multiplicity 1. a

1.10 Ideal Invariance

In this section we show that a suitable sum of universal endomorphisms wg in
the Aomoto complex of the general position type induces an endomorphism in
the Aomoto complex of of type 7 for all pairs of types 7,7’ where 7 covers
7.

Theorem 1.10.1. If T covers T', then @(T',T)(1°(T)) C I*(T).

Proof. 1t follows from Theorem 1.9.8 that we may argue on the different types
independently. It suffices to show that for every circuit T € Dep(7), every
k-tuple K, and every degeneration 7' of 7, we have &(7")(agrr) € 1°(7).
As before, we must consider several cases. Note that n+1 ¢ K, and we agree
to use the same symbol for the underlying set. Similarly, if L is a set which
does not contain n + 1, then we write L for the corresponding tuple in the
standard order.
The following identity will be useful in several parts. If J C [n], then

(Z ymam)an = (Z ym)aJ-

meJ meJ
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Case 1: T € Dep(7T)q4+1 is a circuit withn+4+1€ T

Write T'= (U,n + 1), and assume that U = (n — ¢+ 1,...,n). First assume
T C S € Dep(7'). Clearly, {K, T} € Dep(T"). Let L = [n]\ {KUU}. We get

o+
WIK,Un+1} (akav) E yj)akay.
jEL

For every j € K, {K;,T} € Dep(7”’). Here

NI{CK rlakay) = (= 1 ayag,ay.

Similarly, for every j € K and every m € L, {K;,m,T} € Dep(7”). Here

olta
Wik, m, Un+1}(a’KaU) = maK;0U-

In the remaining parts of this case we may assume that T ¢ S for S €
Dep(77).

Case 1.1

If |SN{K,U}| < k+q—1 for all other S € Dep(7”), then we are done by
Lemma 1.9.2. If there exists S € Dep(7”’) with [SN{K,U}| > k+¢—1 and
T ¢ S, then S = {K,T,,m} with m € [n+ 1]\ T. The classification implies
that (T), m) is in Type II or III, and all the other members of that type must
also be in Dep(7”).

Case 1.2

Suppose (T, m) belongs to Type II. Then p is fixed. If p # ¢ + 1, then we
may assume that p = 1. Thus Dep(7’) contains S,, = {m, K,T1} for all
m € L. Since every S,,, contains F' = {K, T} }, we conclude that F' € Dep(7”).

Here ij,Jrq(aKaU) = (-1)**ayaxay, and @gzq(aKaU) = (-D*ymamarxay, .
Thus

+q k+q _
+ E Og Naxay) = —Yn—gr10K0U.
meL

If p = ¢+1, then Dep(7”) contains S,,, = {m, K,U} for all m € L. Since every
Sy, contains F' = {K U}, we conclude that F' € Dep(7”). Here @ +q(aKaU) =

ayO(akay) and Wsm Yaxay) = Ym0 (m, Kk, U) = YmOKAU — YmamO(axay).

Thus
+q
+ Ws Yakay) yg axay-
meL
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Case 1.3

If (T,,, m) belongs to Type III, then for some fixed m € L, Dep(7”’) contains
the sets S, = {m,K,T,} for all p with 1 < p < ¢+ 1. If p # ¢+ 1, then
&g:q(aKaU) = (—1)k"‘p‘"lyma(m’K’U)ker+1 = (-1)P yapnaxay,. Thus
P (Izgjq(aKaU) = (-=D)*ymamarxday. If p = g+1, then L:}]{C:;)qK’U}(CLKCLU) =
YmO0(m K.U) = YmOK AU — Ymm(ax )ay + (-1 1y, amaxday. Thus

q+1

Zws (akay) = ym(ax — amdak)ay.

This completes the argument in Case 1.

Case 2: T € Dep(7)q+1 is a circuit withn +1¢ T

Here we may assume that 7' = (1,...,¢q + 1). We note that ar = a1(dar) €
I(T) and hence d(axar) € I(T). First assume T C S € Dep(7”). Clearly,
{K,T} € Dep(7’) and we have

~k - i
{;T}(aKaaT):Z( Dl {KT}(“K‘IT) > (1 hyi0a,k.,)
JET JET
(O vi)dlakar).

JjeT

For j € K, {K;,T} € Dep(7’), but wl{g;qu}(aKaaT) = 0. Let L = [n]\
{K UT}. For every j € K and every m € L, {K;,m,T} € Dep(7"), but only
m =n—+ 1 gives a nonzero term:
J{c}th”'*‘l}(aKaaT Zyb aF;aT.
seT

In the remaining parts of this case, we may assume that T ¢ S for S €
Dep(7”).

Case 2.1

If ISN{K,T,}| < k+q¢—1 for all other S € Dep(7”) for all j, then we are done
by Lemma 1.9.2. If there is a Type I degeneration S so that wg is not zero
on some term of dar, then |S N {K,T;}| = k+ ¢ — 1, and it follows from the
definition of formal connections that n 4+ 1 € S. In this case we may assume
that S = {K,3,4,...,¢+ 1,m,n+ 1} where m € [n]\ {K,T}. Lemma 1.9.3
shows that @g(dar) = 0.
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Case 2.2

Suppose (T,,,m) € Dep(T’) with m € [n+1]\ T belongs to Type II. Then p is
fixed, and we may assume that p = ¢+1. Thus S,,, = {m, K, T;4+1} € Dep(7”)
for all m ¢ T. Since every S, contains F' = {K,T,11}, we conclude that
F € Dep(7T’). We have

@yt (axdar) = (—1)%ayd(axar,,,)-
Since Tq+1 € Dep(7’), we also have {K;, Ty+1,n+1} € Dep(7”) for all j € K.

Here oF axOar) = (— l)qﬂayaKjaTqH. Thus

{K; aTq+1:”+1}(

Nl{cft?quﬂ n+1}(aKaaT) - (71)q+1 (8aK)aTq+1

JjEK

If m # n+1, then & w{ F}(a,KaaT) = (1) 0(am,x 1,,,)- Note that m & T
by the classification, and m ¢ K follows from the expression. Thus m € L
and we get

Q?;?F}(aKaaT Z YmO(am, k.1, ,,)-
meL meL
Let m = n + 1. We have L:}IE;ZL+1}(CLKGGT) Zq+1( 1)P=1% I{CFnH}(aKaT ).
Forp # q+1, (JJIE;ZL_H}(CLKGTP) = (-1)P*y,axar,,, and w{F,n+1}(aKaTq+1) =

_(ZPQKUTQH Yp)axar,, . Thus

~1{€;n+1}(aK8GT) = (=1)7t( Z yi)axar, .-

JEM\K
Similarly, for every j € K and s € L, {Kj,s,Ty11,n+ 1} € Dep(7’). Here

otae — +i+1
Wik, qu+1,n+1}(aKan) = (=)™ " ysasak;ar,,,. Thus

2D it sty ey (x0r,) = (CDQ_yea.)Gax)ar, ..

seLjeK sEL

Summing over all dependent sets in Type II, we must compute &(axdar),
where £ =

+q Z ~k+q Z ~k+q ~k+q Z Z ~k+q
+ WK, Typimt1y T Wimry T O 1y T {K;,5,Typ1,n+1}"
jEK meL seLjeK

We get
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é(axdar) = (—1)%ayd(axar,,,) + (~1)" ay (dax)ar, ,,

U Y @m iz, )+ (DY yy)axar,,

meL JEMN\K
+ (_1)q (Z ysas) (aafK)aT,Hl

seL

= (-1)%( Z Yj + Z Ym — Z yj)arxar,,

JEKUT 41 melL JEIMN\K

+ (_1)q<yq+1aq+1 + Z YmQm — Z ymam)a(aKaTqH)
meL meL

+ (—1)q(— Z yjaj + Z ymam) (aCLK)aTq+1

JEMN\Tq+1 merL
= (*l)qulyq—i-l[aKaTqH - aq+1a(aKaTq+1) + aq+1(aaK)aTq+1]
= —Yg+10Kx0ar.
Case 2.3

If (T, m) belongs to Type III, then for some fixed m ¢ T, Dep(7”) contains
the sets S, = {m, K,T,} for all p € T. If m # n + 1, then

Z wS Yagdar) = Z(—l)p_lyma(amaKan) = ym(ax — amOar)dar.

peT peT

For m = n + 1 we need the formulas

~k+ (a a ) (_1)p+s_1ysaKan if s # p,
n K T .
Ty ) _(Zje[n]\{K,Tp}yj)aKan if s =p.
We get &% 1y (adar) = (—1)P(X ek ¥)axar, . Thus

]{€1th n+1}(a’Kaa’T) = —( Z yj)aKaaT.
peT JEMN\K

This completes the argument in Case 2, and hence the proof of Theorem
1.10.1. a

Combinatorial Gauss-Manin Connections
Theorem 1.10.1 implies that there is a commutative diagram
(1°(T),ay) —— (A*(9),ay) —— (A*(T),ay)
JG(TCT)II.(T) l@(T’,T) lw(T’,T)
(1°(T),ay) —— (A*(9),ay) —— (A*(T),ay)
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where ¢ : 1*(7) — A®(G) is the inclusion, p : A*(G) — A®*(7) is the projection
provided by the respective nbe bases, and w(7”,7) is the induced map. It
follows that for given weights A, the specialization y — A in the chain endo-
morphism w(7”, T) defines chain endomorphisms w$(7",7) : AY(T) — AY(T)
for 0 < g < L. Let p?: A7 — H(A*(T),ax) be the natural projection. It fol-
lows that w} (7', 7) induces an endomorphism

2(T',T) : HY(A*(T),ax) — HY(A(T), ax)
determined by the equation pZow} (7', T) = Q(T',T)op?. We call 24(T",T)

a combinatorial Gauss-Manin connection endomorphism in Orlik-Solomon al-
gebra cohomology. The terminology will be explained in Section 2.5.

1.11 Examples

The Selberg Arrangement

We illustrate the definitions and results of Chapter 1 in the Selberg arrange-
ment. Figure 1.4 shows the arrangement A and its partially ordered set L(.A).

14| 245 14 245 135 23

135

23 4 3

A L(A)
Fig. 1.4. The Selberg arrangement and its poset

DR
1

Fig. 1.5. Values of the Md&bius function
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The values of the Mobius function are given in Figure 1.5. Thus w(A4,t) =
1+45t+6t% and there are 12 chambers in the complement. Furthermore 3(A) =
(—=1)%2(1 — 5+ 6) = 2 is the number of bounded chambers.

Next we construct the Orlik-Solomon algebra A(A). Note that the subsets
(12) and (34) have NS = @ and the circuits are (135) and (245). Thus the
algebra relations are

a2 =a3z4 =0, azs—ais+aiz3 =0, ags—ass+axy =0.

It follows that the broken circuits are (35) and (45). Thus A(A) has the
following nbc basis:

1 ay, a2, as, a4, as a13, 414, A15, A23, A24, 425

The complex NBC(A) is shown in Figure 1.6. Its 1-simplexes are the nbc

frames.
1

2
Fig. 1.6. The NBC complex of the Selberg arrangement

Here Snbc = {(24), (25)} and the cohomology classes [(24)*] and [(25)*]
form a basis for H!(NBC(A)).

Next consider the complex (A(A), ay). If at least one A; # 0, then the map
ax : A — Al is a monomorphism. The table below describes ay : A1 — A2
in terms of these nbc generators. We use the notation A\j =3, ; A;.

a13 | ai4 | G15 | a23 | a4 | a2s
ar||—A3|—=Ag|—As5
as —A3|=Ag|—As5
az|| A1s —A5| Ao
ay A1 A2 |—As
as||—A3 A13 —Ag| Aoy

The remaining calculations in this example were provided by Dan Cohen.
Let G be the combinatorial type of a general position arrangement of five lines
in C2. The nbc bases for the Orlik-Solomon algebras A®(G) and A®*(7) give
rise to bases for the corresponding Aomoto complexes. The Aomoto complex

(A*(G), ay) is given by
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A%(G) = AN(G) = A(G)
where A°(G) = R, AY(G) = R°, A%(G) = R'?, and the matrices of the bound-
ary maps are [y1 Y2 Y3 Y4 ¥s] and

—Y2 —Y3 —Y4 —Y5 0 0 0 0 0 0
Y1 0 0 0 —Y3 —Y4 —Ys5 0 0 0
0 Y1 0 0 Y2 0 0 —Y4 —Ys 0
0 0 Y1 0 0 Y2 0 Y3 0 —VYs
0 0 0 Y1 0 0 Y2 0 Yys  Ya

The Aomoto complex A®(T) of the Selberg arrangement is given by
AYT) 2 AY(T) 25 AY(T)

where A°(T) = R, AL(T) = R®, and A%(7) = RS. The matrix of the boundary
map AL(T) =% A2(T) is
—ys —ya—ys 0 0 O
0 0 0 —ys3-—ya—us
yi5 0 —ys y2 0 O

0 1 0 0 y25 —ys
—y3 0 w13 0 —ys4 y2u

where y; = >, ;).

1 2 5 1 2

A A

Fig. 1.7. The Selberg arrangement and a degeneration

In Figure 1.7 the multi-arrangement A’ is a codimension-one degener-
ation of type 7’ of the Selberg arrangement of type 7. Here Dep(7) =
{135, 245,126, 346} and

Dep(T',T) = {34, 35,45, 134, 145, 234, 235, 345, 356, 456 }.

Since lines 3, 4, and 5 coincide in type 7, it follows from the definition
that mgss = 2. Note that T = (346) € Dep(7) gives rise to the Type II
family {341,342,345}. Here p = 3 is the position of the entry deleted in
T. Tt is replaced one at a time by the elements not in 7. Note also that
T = (346) € Dep(7) gives rise to the Type III family {465,365,345}. Here
m = 5, so we insert 5 and delete one at a time each entry in T'. The intersection
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of these two families is (T5,5) = (345). It follows from the definition that
O(T',T): A*(G) — A*(G) is given by

(T, T) = @34 + W35 + Wa5 + @134 + @145 + Woz4 + D235 + 20345 + D356 + Wase-

Note that the multiplicity mss5 = 2 enters here. The matrices of this chain
endomorphism are @°(7’,7) = 0,

00 O 0 0
00 O 0 0
ONT,T)= |00 yss —ys —ys |,
00 —ys y35s —ys
00 —ys —ys yss

0 0 0 0 0 0 0 0 0 0
0yss —ya—ys 0 0 O Ya 0 0
0-ys yss —ys 0 0 O —ys3 0 0
0—-y3s —ys y3a 0 O O 0 0 0
~9 / 0 0 0 0 Ya5 —Ya —Ys Ya 0 0
CTD=100 0 0 —gsys 0 -y 0  —ys
0 0 0 0 —y3 0 wys 0 0 Ya
00 0 0 0 0 0 yg+ys 0 0
00 O O o0 0 O —Y1 Y345 0
0 0 0 0 0 —y2 yo Y3 0 Y345 — Y2

The projection p : A*(G) — A®
bases by

—~

T) is given in terms of the respective nbc

0 if J = (12) or J = (34),
ays —ayz if J = (35),

ags — agy if J = (45),

ag otherwise.

play) =

This yields the induced endomorphism w(7’,7) : A*(T) — A*(T), given
explicitly by w*(7",7) =0, w}(7",7) = 0Y(7',T), and

yass —ys —ys 0 0 O

—y3 yss —ys 0 0 O

2 —y3 —Y4 Y34 O 0 0
w(T",T) = .

(T°.7) 0 0 O wyas —ys —Ys

0 0 0 —ys yss —ys

0 0 0 —y3—y4 ysa

The dense edges of A are {1,2,3,4,5,135,245}. The additional dense edges
in its projective closure Ao, with infinite hyperplane Hg are {6,126,346}.
Recall that A\¢ = —A12345. The weights satisfy the conditions of Theorem
1.6.7 provided the following are not zero:

A1, A2, A3, Ad, As, Ag, A126, A135, A2as, Azde.
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In this case

C({24}) = (M2a2 + Asaq + Asas5)Asa4 = AoAga24 — AgA5045,
C({25}) = (A2a2 + Asayq + Asas)Asas = AaAsazs + AgAsaqs.

Using the Orlik-Solomon relation a4s = ags — agq shows that {ney =
A2A4a24, 25 = AaAsass} is a basis for the only nonvanishing group H? (4, an).
The projection p? : A%(T) — H?(A®*(T),ay) is given by

(Mdz + Aods + A;A;Q)ZS ;(AW “Aad)s e ) (13),

% if (i5) = (14),

AsAr25m24 — (A1 A2 + A Aa + Aads)mas if (i) = (15)
2 A1 A2A5A135 e ’

p(aij) =

_% if (i5) = (23),

o4 e

A2y =@,

o5 e

A2)s5 e

A calculation with the endomorphism w3(7",7) = w?(7T’ ,T)|yH)\ and the

projection p? yields the combinatorial Gauss-Manin connection

oy = [0 ]

Next consider A which give rise to cohomology in other dimensions. The
kernel of the map ay : A' — A2 has dimension two if A\; = A4, Ao = A3,
As = Xg, and Aj o5 = 0. If A is nontrivial, then A\; # 0 or Ay # 0. For such
weights, one can check that a; —as —az+ay generates H'(A®(7),ax) and that
the combinatorial Gauss-Manin connection 24(77,7) : H'(A*(T),ax) —
H(A*(T),ay) is trivial. One can also show that, for an appropriate choice of
basis for H2(A®(T), ax), the projection A%(T) — H?(A®*(T),ax) has matrix

A=A A2
—A2 A2 A2
0 0 A
A1 —A1 =\
A1 A2 A2
A0 0

and that the combinatorial Gauss-Manin connection 2%(7”,7) induced by
wx(7',7) is also trivial.



1.11 Examples 57
Four Lines

Let 7 be the combinatorial type of the arrangement A of four lines in C2
depicted in Figure 1.8. Here X(7) has codimension one in (CP?)* = X(G). The
combinatorial types 7; of the (multi)-arrangements A; shown in Figure 1.8 are
codimension-one degenerations of 7 corresponding to irreducible components

of the divisor D(7) = X(T) \ X(7).

1 2 3 1 2 3 4 12 3 1 2 3
4
4 4
A Ay Aa As
Fig. 1.8. Four lines and three degenerations

For these degenerations we have

Dep(7Ty,7) = {345},
Dep(To, T) = {12,124,125},
Dep(T;, T) = {124, 134,234},

Here 77 is a degeneration of Type I, 75 is a degeneration of Type II, with
p = 3, and 73 is a degeneration of Type III, with m = 4. The corresponding
endomorphisms &(7;,7) of the Aomoto complex A(G) of a general position
arrangement of four lines may be calculated as follows. By definition

O(T1,T) =345, @0(72,7T) = 012+D12a+0125, @0(73,7) = D124+D134+@D234,

and the individual &g are defined in Section 1.8. Let p : A*(G) — A*(7) be
the natural projection given in the nbc bases by

a13 — 412 if J= (23),
plas) = )
aj otherwise.
By Theorem 1.10.1 the chain endomorphisms @(7;,7) of A*(G) induce chain
endomorphisms w(7;,7) of A*(T). A calculation with the projection p reveals
that these are given by w!(7;,7) = &'(7;,7) for each j, and

0000 0 Y120 0 0 0
0000 —ys 20 0 0 O
WA(T, T)= (0000 u |, Wi (T, T)=|0 0 y2 —y2 0],
0000 wys 0 0—-y1 y1 O

0000 —y12 000 00
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Yo+ 0 —ys ya O
0 w1 —ya 0O s
w (T3, T) = | ~y2 —ys y23 —Y2 —ys |-
Y13 —Y3s —Y1 Y13 —Y3
—Y2 Y12 —Y1 —Y2 Y12
Weights A satisfy the conditions of Theorem 1.6.7 provided the following
are not zero: A1, Aa, A3, A4, A123, AM1234. The Bnbc basis for H?(A®*(T),ay) is
{7724,7734} where Nij = )\i/\jai]‘. The projection p2 : Az(T) —» HQ(A.(T),G)\)
is given by

A12M24 + AamM3a ., ..
Q2Md T A4 15y — (12),
oo (ij) = (12)
Asog + A3z L.
28124 AL i iy — (13),
) N oo (i) = (13)
Plea) = (24 + n34)
— (124 + N34 e
_ f = (14
)\1)\4 1 (7’]) ( )7
1ij [P
— f = (24 4).
e i (i) = (24) or (34)

Calculations with the endomorphisms w3(7;,7) = w?(7;,T )|yH>\ and the

projection p? yield the following combinatorial Gauss-Manin connection ma-
trices:

0 Ao 2 A2 Ae 2 X234 O
0] =] aammy =M 0 .

R(T.T) - |
These matrices were first determined by Terao [49] and recovered in [39,
Ex. 10.4.2] and [15, Ex. 8.2].

We return to the question of resonant weights in Section 2.5.

1.12 Exercises

Problems 1-8 refer to the following arrangements: Let (£1,41,+1)
be the vertices of the standard cube in R3. Let A; be the set of symmetry
planes of the cube. This is a central arrangement. Let Ay = PA; be its
projective quotient, and let A3 = dg.As be the decone with respect to the
plane H = ker us.

1) Construct the intersection posets of these arrangements. How are they
related?

2) Compute the Poincaré polynomials of these arrangements. How are they
related?

3) Compute the 8 invariants of these arrangements.



1.12 Exercises 59

4) Find the relations in the Orlik-Solomon algebra for these arrangements.
How are they related?

5) Order the hyperplanes in A; and find the corresponding nbc basis. Do
the same for Az assuming that the decone was with respect to the largest
hyperplane in 4;. What can you conclude?

6) What are the dense edges of these arrangements?

7) Find weights for A3 which satisfy the conditions of Theorem 1.6.7, and
compute the combinatorial cohomology directly.

8) Find nontrivial weights for A5 which do not satisfy the conditions of
Theorem 1.6.7, and compute the combinatorial cohomology directly. Are there
several possibilities?

9) Give an example of a nonempty central arrangement A with Hy, Hy € A
so that H; is a separator and Hs is not.

10) Let A be a nonempty central arrangement with top element 7' =
NgeaH. Define p(A) = pu(T). Show that u(A) = —u(A”) if H is a separator,
and p(A) = p(A") — p(A”) otherwise.

Problems 11-16 refer to the following definition: Let S = Cluy, ..., uy]
be the polynomial ring of V. Let Derg denote the derivations (vector fields)
of V. Given a central arrangement A defined by the homogeneous polynomial

Q = Q(A), define
D(A) ={0 € Ders | 0(Q) € QS}.

11) Show that each 6 € D(A) decomposes into homogeneous components
so D(A) is a graded S-module.

12) Show that the Euler derivation Zle ;52 is in D(A) for every non-
empty arrangement.

13) Show that if A C B, then D(B) C D(A).
14) Consider A; of Problem 1 and compute D(A;).

15) Call A a free arrangement if D(A) is a free S-module. Consider A; of
Problem 1 and show that A; is free.

16) Show that A defined by Q(A) = ujusus(ui + ug + ug) is not free.
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Applications

Much of the algebraic combinatorics described in Chapter 1 was originally
developed with topological applications in mind. We give a brief description
of some of the main features of these applications.

2.1 Topology

If A is a real arrangement, then the complement M(A) consists of open, con-
nected, convex subsets of R whose number was determined in Theorem 1.1.3.
If the arrangement is essential, then some chambers may be bounded, and the
number of bounded chambers was determined in Theorem 1.1.4. Thus from
the topological point of view M(A) is not very interesting.

If Ais a complex arrangement, then the topology of the complement M(.A)
is much more subtle. It is an open, connected, smooth manifold of real dimen-
sion 2¢ with interesting homology and homotopy groups. When ¢ = 1, the
complement of n points in C is homotopy equivalent to a bouquet of n circles.
When ¢ > 2, the complement is not easy to visualize. An elementary Morse
theoretic argument provides the following:

Proposition 2.1.1. The complement M(A) has the homotopy type of a finite
cell complex. a

This implies in particular that all homology and cohomology groups are finite
dimensional. A much stronger statement was proved by Randell [42] and in-
dependently by Dimca and Papadima [23]. Call a cell complex minimal if the
number of its g-cells equals its ¢g-th betti number for all ¢ > 0.

Theorem 2.1.2 ([42]). The complement M(A) is homotopy equivalent to a
mintmal cell complex. a
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Cohomology Ring

The cohomology ring of the complement was determined by Brieskorn [8].
Let B(A)* be the graded C-algebra generated by 1 (of degree 0) and the
logarithmic forms doy, /oy for Hy, € A (of degree 1).

Theorem 2.1.3 ([8]). There is an isomorphism of graded algebras
B(A)* ~ H*(M(A),C)

which carries the form day /oy to the cohomology class which has value 271
on the homology class of a simple loop linking Hy, and 0 elsewhere. O

The Brieskorn algebra B(.A)® is a subalgebra of the de Rham algebra of all
rational differential forms on V with poles of arbitrary order on the divisor
N(A). If we use the customary total grading whose degree is the sum of
the exterior degree and the polynomial degree, then the Brieskorn algebra is
the graded component of total degree 0. The Orlik-Solomon algebra, defined
in Section 1.4 in purely combinatorial terms, is isomorphic to the Brieskorn
algebra and hence to the cohomology algebra.

Theorem 2.1.4 ([37]). There is an isomorphism of graded algebras
A(A)®* ~ B(A)*

which carries the generator ap € A(A)' to the form day/ay. In particular,
the cohomology algebra of the complement is a combinatorial invariant. O

Let by(A) = dimH?(M(A),C) be the g-th Betti number of M and let
Poin(M,t) = > ,bq(A) be the Poincaré polynomial of the complement
M. In light of Theorem 2.1.3, Theorem 2.1.4, and Corollary 1.4.5 we have:

Corollary 2.1.5. The Poincaré polynomial of the complement equals the
Poincaré polynomial of the arrangement.

Poin(M(A),t) = m(A,t). O

Homotopy Groups

The fundamental group of the complement, 7 (M, %) with respect to a base
point * € M (which will remain unspecified), was first described for com-
plexified real arrangements by Randell [40] then determined by Arvola [5] for
all arrangements. A detailed description with proof is also found in [38]. It
suffices to consider line arrangements in C2. The fundamental group of the
complement (M, %) has a presentation with one generator for each hyper-
plane chosen as a loop linking the hyperplane. There are two kinds of relators.
At each point where hyperplanes intersect, there is a set of relators which in-
volve only the generators corresponding to the hyperplanes which contain the
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point or their conjugates. There are additional braid relations which depend
on the particular wiring diagram used for the presentation. In a complexified
real arrangement, the real picture may be used as a wiring diagram. In this
case there are no braid relations.

We illustrate this on the Selberg arrangement of Figure 1.4. Tilt the = axis
by a small positive angle so that the four points in L(A) have distinct = co-
ordinates: 135 < T14 < To3 < Taoss. A plane P in C? whose intersection
with the real plane of the figure is a line perpendicular to the z axis inter-
sects the arrangement in five points everywhere except at the four points of
L(A). We choose small loops ; in P around the five points and label them
by the corresponding hyperplanes. At large negative x the order of the hy-
perplanes with increasing y is Ho, Hy, Hs, H3, Hy. Now sweep P left to right.
As P passes through H; N Hs N Hs, the order of the hyperplanes changes to
H,, H3, Hs, Hy, Hy. The theory tells us that a set of new relators is added to
the group: [vs,7s,v1] defined as

V3Y5Y1 = V17375 = V57173-

In addition, some of the loops emerging on the other side have been con-
jugated. Ordered by increasing y they are 72,7s,72",71,71, where ' =
’7;1’)/5’}/1. Passing through H; N Hy adds the commutator relation [y, v4] =
17477 5 L. Passing through the remaining two points of L(.A) we obtain the
following presentation:

w1 (M, %) = {7 | [v3,75, 7], [ve, val, [y2, 3], [ra, 72t 2] 3

Not much is known about the structure of these groups in general. It follows
from the description of the relators that they are elements of the commutator
subgroup. Thus the abelianization is free, and the number of generators equals
the number of hyperplanes. The following question is over ten years old: is
the identity the only element of finite order in (M, *)?

Higher homotopy groups are discussed by Falk and Randell [27, 28]. See
also Dimca and Papadima [23] for recent developments. Recall that a space
is called a K(m,1) space if all its higher homotopy groups vanish. There are
examples where M(A) is a K (m, 1) space, such as the complexification of the
braid arrangement By, defined in Section 1.2. There are also examples where
M(A) is not a K(m, 1) space, such as the general position arrangements with
n > £, defined in Section 1.1. There are two classes of arrangements whose
complements are known to be K (7, 1) spaces. A central real arrangement is
called simplicial if every chamber of the real complement is an open cone over
a simplex. Deligne [22] proved that the complement of the complexification
of a simplicial real arrangement is a K (m, 1) space. The other class is called
fiber type. Let A be an f-arrangement. Call A strictly linearly fibered if, after a
suitable linear change of coordinates, the restriction of the projection of M(.A)
to the first (¢ —1) coordinates is a fiber bundle projection whose base space B
is the complement of an arrangement in C*~! and whose fiber is the complex
line C with finitely many points removed.
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Definition 2.1.6. (1) The 1-arrangement ({0}, C) is fiber type.
(2) For £ > 2, the £-arrangement A is fiber type if A is strictly linearly
fibered with base B = M(B) and B is an (¢ — 1)-arrangement of fiber type.

The braid arrangement is fiber type. Terao [49] showed that the topological
property of fiber type is equivalent to the combinatorial property known as
supersolvability of the intersection poset. It follows from repeated application
of the the long exact sequence of a fibration that the complement of a fiber type
arrangement is a K (m, 1) space. We do not know how to determine whether
M(A) is a K(m,1) space in general.

Many interesting invariants have been derived from the fundamantal
group. We mention one here, obtained from the lower central series. Let
G = m(M,%), Gy = G, and for n > 1 define G,41 = [Gp,G] where
[A, B] denotes the subgroup generated by commutators of elements in A
and B. The groups G,, form the lower central series of G. It is known that
G(n) = G,,/Gpy1 is a finitely generated abelian group, hence its rank ¢,, is
an invariant of G and thus of A. There is considerable literature on finding
the ranks ¢,,. Falk and Randell proved the following.

Theorem 2.1.7 ([26]). Let A be a fiber type arrangement with complement
M. Then the following identity holds in Z[[t]]:
> .
[[(=#)% = Poin(M, —t). D
j=1

2.2 Local System Cohomology

Next we turn to connections with the theory of multivariable hypergeometric
integrals. Given A, define a multivalued holomorphic function on M by

A generalized hypergeometric integral is of the form

/U@(u; A)n

where ¢ is a suitable domain of integration and 7 is a holomorphic form on M,
see [2]. The function ®(u; X) determines a locally constant sheaf £ on M whose
sections are the single valued branches of ®(u;X)~!. The sheaf cohomology
groups HY(M; L) agree with cohomology in the local system defined below
[39, Prop. 2.1.3]. We also defined local system homology groups in [39] and
showed how the hypergeometric integrals are evaluations of a pairing between
them. In order to study hypergeometric integrals, we investigate these local
system cohomology groups.
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Stratified Morse Theory

For an arbitrary complex local system £ on the complement of an arrange-
ment A, stratified Morse theory was used in [11] to construct a complex
(K*(A), A®), the cohomology of which is naturally isomorphic to H*(M; L).
We recall this construction in the context of rank one local systems from
11, 13).

Given A, let t; = exp(—27iA;) and t = (t1,...,t,) € (C*)". Associated
to A we have a rank one representation p : m (M) — C*, given by p(v;) = t;,
where ; is any meridian loop about the hyperplane H; of A, and a corre-
sponding rank one local system £ = Ly = £ on M. Note that weights A and
X yield identical representations and local systems if A — A" € Z".

We assume throughout that A contains ¢ linearly independent hyper-
planes. Then A determines a stratification of V with strata Sx = M(AX)
for X € L(A). Let F be a complete flag (of affine subspaces) in C,

F: 0=F'crFcFcrc...cF=C,

transverse to the stratification determined by A, so that dimF? N Sx =
q — codim Sx for each stratum, where a negative dimension indicates that
F1N Sx = 0. For an explicit construction of such a flag, see [11, §1]. Let
M? = F4N M for each q. Let K¢ = HI9(M? M1, L), and denote by A?
the boundary homomorphism H9(M?, M=, £) — HITL (Mt M4; L) of the
triple (M2+t1 M% M9~1). The following compiles several results from [11].

Theorem 2.2.1. Let L be a complex rank one local system on M.

1. For each q, 0 < q < ¢, we have H' (MY, M9~1: L) = 0 if i # q, and
dimc H1(M?,M?71; L) = b,(A) is equal to the q-th Betti number of M
with trivial local coefficients C.

2. The system of complex vector spaces and linear maps (K*, A®),

Al—l

0 1
A A Kz

KO—>K1—>K2—>"'—>K571 ,

is a complex (Ao AY = 0). The cohomology of this complex is naturally
isomorphic to H*(M; L), the cohomology of M with coefficients in L. O

Universal Complex

The dimensions of the terms K7 of the complex (K*®, A®) are independent of t
(resp., A, L£). Write A®* = A®(t) to indicate the dependence of the complex on
t, and view these boundary maps as functions of t. Let A = Clzi?,.. ., zt!]
be the ring of complex Laurent polynomials in n commuting variables, and
for each ¢, let K9 = A ®@c K1.

Theorem 2.2.2 ([13, Thm. 2.9]). For an arrangement A of n hyperplanes
with complement M there exists a universal complex (K®, A®(x)) with the fol-
lowing properties:
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1. The terms are free A-modules, whose ranks are given by the Betti numbers
of M, K4 ~ Aba(A),

2. The boundary maps Al(x) : K¢ — K+ are A-linear.

3. For eacht € (C*)" the specialization x — t yields the complex (K*®, A®(t)),
the cohomology of which is isomorphic to H®*(M; Ls), the cohomology of
M with coefficients in the local system associated to t. O

The entries of the boundary maps A?(x) are elements of the Laurent polyno-
mial ring A, the coordinate ring of the complex algebraic n-torus. Via the spe-
cialization x — t € (C*)™, we view them as holomorphic functions (C*)"* — C.
Thus we may view A?(x) as a holomorphic map A? : (C*)" — Mat(C),
t — A9(t) from the complex torus to matrices with complex entries.

Remark 2.2.3. The canonical graded algebra isomorphism H®*(M,C) ~ A*(A)
induces an isomorphism of vector spaces K(A) ~ A?(A) for 0 < g < ¢. This
isomorphism is not canonical.

This universal complex is closely related to the Aomoto complex.

Theorem 2.2.4 ([13]). For any arrangement A, the Aomoto complex (A®, ay)
is chain equivalent to the linearization of the universal complex (K®, A®(x))
at x = 1. O

Nonresonant Weights

The complex (K®, A®(t)) computes local system cohomology in principle,
but we do not know how to calculate the groups H%(M; L) explicitly for
arbitrary weights. It is clear that for a dense open set of weights the lin-
earized complex has the same cohomology groups as the universal complex.
We call such weights nonresonant. A sufficient condition for this was estab-
lished by Esnault-Schechtman-Varchenko [24] and improved by Schechtman-
Terao-Varchenko:

Theorem 2.2.5 ([44]). Let A be an arrangement of rank ¢ with projective
closure Aoo. Assume that \x ¢ Zsq for every X € D(As). Then

HIM; L) ~ HY(A®% ax). O

Theorem 2.2.5 was obtained using the de Rham complex, resolution of singu-
larities, and work of Deligne [21]. It would be interesting to obtain an inde-
pendent argument via stratified Morse theory.

We combine Corollary 1.6.5 with Theorem 2.2.5 to obtain the following
result.

Theorem 2.2.6 ([44]). Let M be the complement of an essential arrangement
A in Ct. If L is a rank one local system on M whose weights X satisfy the
condition

(STV) Ax ¢ Z> for every dense edge X of A,
then H1(M; L) =0 for q # ¢ and dim H*(M; £) = B(A). O
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2.3 Resonance

Consider the set of weights A € C™. For nonresonant weights we have
HY(M; L) = 0 for ¢ # ¢ and dim H*(M; L) = B(A). It follows from Theo-
rem 1.6.3 that the (STV) condition depends only on the combinatorial type
7. We call weights which satisfy the (STV) condition T-nonresonant. The set
of 7T-nonresonant weights is a proper subset of all nonresonant weights. For
example, in case of general position arrangements, G-nonresonance requires
A ¢ Z>o for all H € Ao, while every nontrivial local system is nonreso-
nant. Note also that 7-nonresonant weights form a dense, open subset of all
weights.

We call A combinatorial it H1(M; L) ~ HI(A®,ay) for all . We say that
X is T-combinatorial if there exists A’ so that A — X' € Z™ and X satisfies
the conditions of Theorem 2.2.5. The corresponding sets are dense, open sub-
sets of all weights and contain both nonresonant and resonant weights. See
Exercise 3 for an example. There are also examples of arrangements where
HI(M; L) £ H1(A®, ax). Exercise 4 provides an arrangement and weights for
which dim H*(A4°®,ax) = 1 and dim H*(M; £) = 2, see [20].

There is no general algorithm for calculating local system cohomology for
resonant weights. It is an interesting question to determine the structure of
the subset of resonant weights in the space of all weights. Each point t € (C*)™
gives rise to a local system £ = Ly on the complement M. For nonresonant t,
the cohomology H%(M, L) vanishes for ¢ < ¢. Those t for which H%(M; L)
does not vanish comprise the characteristic varieties

X3 (M)={t € (C")" | dim HY(M; L¢) > m}.

m

These loci are algebraic subvarieties of (C*)™, which are invariants of the ho-
motopy type of M. See Arapura [3] and Libgober [34] for detailed discussions
of these varieties in the contexts of quasiprojective varieties and plane alge-
braic curves. The characteristic varieties are closely related to the resonance
varieties defined in Section 1.6.

Theorem 2.3.1 ([13]). Let A be an arrangement in C* with complement
M and Orlik-Solomon algebra A. For each q and m, the resonance variety
RL (A) coincides with the tangent cone of the characteristic variety X9, (M)
at the point 1 = (1,...,1) € (C*)".

Proof. For each t € (C*)™, the cohomology of M with coefficients in the local
system Ly is isomorphic to that of the Morse theoretic complex (K*(A), A®(t)),
the specialization at t of the universal complex (K$%(A), A®(x)) of Theo-
rem 2.2.2. So t € X2 (M) if and only if dim H?(K*(A),A*(t)) > m. An
exercise in linear algebra shows that

X1 (M) = {t € (C*)" | rank A1 (t) + rank A%(t) < dim K(A) — m}.

For A € C", we have A € RY, if dim HY(A®,ay) > m. Denote the matrix
of axA : A1(A) — AT (A) by p9(X). Then, as above,
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RI(A) = {X € C" | rank p? 1 (X) + rank p9(\) < dim AY(A) — m}.

Now dim A?(A) = dim K9(A) = b,(A), and for each ¢, by Theorem 2.2.4,
we have rank 9(X) = rank A?(X) where A%(\) denotes the linearization of
A9(AN). Thus,

21 (M) = {t € (C*)™ | rank AT (t) + rank A4(t) < by(A) —m} and
RI(A) = {X € C" | rank A1 (X) + rank AL(X) < b, (A) — m},

and the result follows. O

The characteristic varieties are known to be unions of torsion-translated
subtori of (C*)™, see [3]. In particular, all irreducible components of X4, (M)
passing through 1 are subtori of (C*)™. Consequently, all irreducible compo-
nents of the tangent cone are linear subspaces of C™.

Corollary 2.3.2. For each q and m, the resonance variety R% (A) is the

m
union of an arrangement of subspaces in C™. O

For ¢ = 1, these results were established by Cohen and Suciu [20], see
also Libgober and Yuzvinsky [34, 36]. For the discriminantal arrangements of
Schechtman and Varchenko [46], they were established in [12]. In particular,
as conjectured by Falk [25, Conjecture 4.7], the resonance varieties R, (A)
were known to be unions of linear subspaces in these instances. Corollary 2.3.2
above resolves this conjecture positively for all arrangements in all dimensions.
Theorem 2.3.1 and Corollary 2.3.2 have been obtained by Libgober in a more
general situation, see [35].

There are examples of arrangements where the characteristic varieties con-
tain (positive dimensional) components which do not pass through 1 and
hence cannot be detected by the resonance variety, see Suciu [48]. In some
of these cases the combinatorial cohomology vanishes but the local system
cohomology does not.

2.4 Moduli Spaces

Recall from Section 1.7 that the moduli space of all multi-arrangements of n
ordered hyperplanes in C* may be viewed as the set of matrices (1.11) whose
rows are elements of CP¢, and that given a realizable type 7, the moduli space
of type 7 is

X(T) = {b e (CP")" | As(b) =0 for J € Dep(T )41, Ay(b) # 0 else}.

Let
Y(T) = {be (CP)" | As(b) # 0 for J ¢ Dep(T)¢11}.

Then the moduli space of type 7 may be realized as
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X(T) = {b e Y(T)| As(b) = 0 for J € Dep(T)es1)-

Note that X(G) = Y(G). For any other type 7 the moduli space X(G) may be
realized as

X(G)=4{beY(T)| As(b) #0 for J € Dep(7T )¢1}-

If T # G, then X(7) and X(G) are disjoint subspaces of Y (7). Let i1 : X(G) —
Y(7T) and jr : X(T) — Y(7T) denote the natural inclusions. We showed in [15]
that for any combinatorial type 7 the inclusion iz : X(G) — Y(7) induces a
surjection (i7). : H1(X(G)) — H1(Y(T)).

For the type G of general position arrangements, the closure of the moduli
space is X(G) = (CP*)". The divisor D(G) = X(G) \ X(G) is given by D(G) =
U, D, whose components D; = {b € (CP*)" | A;(b) = 0} are irreducible
hypersurfaces indexed by J = {j1,...,Jet1}-

Choose a basepoint ¢ € X(G), and for each £+ 1 element subset J of [n+1],
let d; be a generic point in D ;. Let Iy be a meridian loop based at ¢ in X(G)
about the point dy € D ;. Note that ¢ € Y(7) and that I is a (possibly null-
homotopic) loop in Y(7') for any combinatorial type 7. We showed in [15] that
for any combinatorial type 7 the homology group H;(Y(7)) is generated by
the classes {[I}] | J & Dep(T)¢+1}. Thus the homology group H;(X(G)) is
generated by the classes [Iy] where J ranges over all £ + 1 element subsets of
[n +1].

It is easy to see that the moduli space X(7') has complex codimension one
in the closure X(7) if and only if 7 covers 7’. The next theorem is essential
for later results.

Theorem 2.4.1 ([15]). Let T be a combinatorial type which covers the type
T'. Let b’ be a point in X(T'), and v € m(X(7T),b) a simple loop in X(T)
about b'. Then the homology class [y] satisfies

G = > my-[D] (2.1)

J€Dep(7T',T)

where my is the order of vanishing of the restriction of Ay to X(T) along
X(T"). O

It is not hard to see that this multiplicity agrees with the algebraic definition
given in Section 1.9.

The moduli space X(7') is not necessarily connected. The existence of a
combinatorial type whose moduli space has at least two components follows
from examples of Rybnikov [43, 4]. Let B(7) be a smooth component of the
moduli space. Corresponding to each b € B(7) we have an arrangement A,
combinatorially equivalent to A, with hyperplanes defined by the first n rows
of the matrix equation b - i = 0, where i = (1 Uy - ug)T. Let My, = M (Ay)
be the complement of Ap. Let
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M(7T) = {(b,u) € (CP*)" x C* | b€ B(T) and u € My},

and define 77 : M(7) — B(7) by mz(b,u) = b. Since B(7) is connected by
assumption, a result of Randell [41] implies that 77 : M(T) — B(7) is a
bundle with fiber 7! (b) = My.

Since this fiber bundle is locally trivial, there is an associated flat vector
bundle 79 : HY(A) — B(7) with fiber the combinatorial cohomology group
(1)~ (b) = HI(A(Ap),ay) at b € B(7) for each ¢, 0 < ¢ < {. Fixing a
basepoint b € B(7'), the operation of parallel translation of fibers over curves
in B(7) provides a complex representation

@9 7, (B(T),b) — Autc(HI(A(T), ay)). (2.2)

Clearly, this representation is induced by the representation on the cochain

level:
¢® :m(B(7),b) — Autc(A®(7)). (2.3)

In both cases we subscript by 7 to indicate the dependence of this representa-
tion on the combinatorial type 7. Since X(G) is connected, we may write B(G)
in its place. Results in [15] provide a means for comparing the representations

¢F : m1(B(T),b) — Autc(A®*(7)) and ¢g : m1(B(G),c) — Autc(A°(G)),

corresponding to an arbitrary arrangement of n hyperplanes in C’ and a
general position arrangement of n hyperplanes in C*.

Theorem 2.4.2 ([15]). Let T be a combinatorial type whose first £ + 1 hy-
perplanes are linearly independent. Let s : (A(G),ax) — (A(7),ay) be the
natural surjection defined by the respective nbc bases. Then for any element
v € m(B(T),b), there is an element I € 71 (B(G),¢) so that the diagram

A%(G) —— A%(T)
[z £
A%(G) —— A%(T)
commutes up to conjugacy. O

The requirement is that if v € 1 (B(7),b), then I € 71 (B(G), c) satisfies
(i)« ([I") = (47)«([7]). We call such a pair of classes compatible.

2.5 Gauss-Manin Connections

In this section we derive the main topological application of the formal con-
nections constructed in Chapter 1.

For each b € B(T), weights A define a local system £, on M,. Since
w1 : M(T) — B(T) is locally trivial, there is an associated flat vector bundle



2.5 Gauss-Manin Connections 71

7 : H9(L) — B(7) with fiber the local system cohomology group (79)"(b) =
H(My; Lp) at b € B(7T) for each ¢, 0 < ¢ < £. Fixing a basepoint b € B(7),
the operation of parallel translation of fibers over curves in B(7") provides a
complex representation

@l ;7 (B(T),b) — Autc(H(Mp; Lp)). (2.4)

This representation is related to the corresponding representation of the
fundamental group of a general position arrangement of n hyperplanes in C*
with total space E™? in case of 7-nonresonant weights by the following result.
Recall from Theorem 2.2.6 that here only ¢ = ¢ matters.

Theorem 2.5.1 ([15]). Let A be a collection of T -nonresonant weights. As-
sume that v € 71 (B(7),b) and I' € m(B(G),c) are compatible classes. Then
the automorphism Wi (v) € Autc(H*(Mp;Ly)) is determined by W(I') €
Autc(HYE™Y L)) and the surjection 3 : HYEDY Le) — HY(Mp; Lp) up
to conjugacy. a

The local system cohomology of My may be computed using the Morse
theoretic complex K*(Ap). The fundmental group of B(7) acts by chain au-
tomorphisms on this complex, see [14, Cor. 3.2], yielding a representation

YT 1 m1(B(T),b) — Autc(K*(Ap)).

Theorem 2.5.2. The representation W3 : w1 (B(7T),b) — Autc(HI(Myp; Ly))
is induced by the representation ¥y : w1 (B(7T),b) — Autc(K*(Ap)). O

Bundles and Connections

The vector bundle 77 : H4(L) — B(7) supports a Gauss-Manin connec-
tion corresponding to the representation (2.4). Over a manifold X there is
a well known equivalence between local systems and complex vector bundles
equipped with flat connections, see [21, 33]. Let V. — X be such a bundle,
with connection V. The latter is a C-linear map V : £9(V) — (V) where
EP(V) denotes the complex p-forms on X with values in V, which satisfies
V(fo) = odf + fV(o) for a function f and o € £°(V). The connection
extends to a map V : EP(V) — EPTH(V) for p > 0, and is flat if the curva-
ture V o V vanishes. Call two connections V and V' on V isomorphic if V’
is obtained from V by a gauge transformation, V/ = go V o g~! for some
g: X — Hom(V,V).

The aforementioned equivalence is given by (V,V) — VV where VV is
the local system, or locally constant sheaf, of horizontal sections {0 € £E%(V) |
V(o) = 0}. There is also a well known equivalence between local systems on
X and finite dimensional complex representations of the fundamental group
of X. Note that isomorphic connections give rise to the same representation.
Under these equivalences, the local system on X = B(7) induced by the
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representation ¥ corresponds to a flat connection on the vector bundle 79 :
HY(L) — B(7), the Gauss-Manin connection.

Let v € m(B(7),b), and let g : S* — B(7) be a representative loop.
Pulling back the bundle 72 : H(L) — B(7) and the Gauss-Manin connection
V, we obtain a flat connection g*(V) on the vector bundle over the circle
corresponding to the representation of m1(S!,1) = (¢) = Z given by ¢
W4 (). This vector bundle is trivial, since any map from the circle to the
relevant classifying space is null-homotopic. Specifying the flat connection
g*(V) amounts to choosing a logarithm of ¥Z(v). The connection ¢g*(V) is
determined by a connection 1-form dz/z® 2% () where the connection matrix
24(v) corresponding to v satisfies WL (v) = exp(—2mi2%(v)). If v and 4 are
conjugate in 71 (B(7), b), then the resulting connection matrices are conjugate,
and the corresponding connections on the trivial vector bundle over the circle
are isomorphic. In this sense, the connection matrix 27 () is determined by
the homology class [v] of 7.

In the special case when T covers 7’ and v € 71(B(7), b) is a simple loop
linking B(7") in B(7'), we denote the corresponding Gauss-Manin connection
in the bundle 79 : HY(L) — B(7) by 2%(B(7"),B(7)).

Combinatorial Analogs

The Gauss-Manin connection in local system cohomology has combinatorial
analogs. We have the vector bundle A? — B(7) whose fiber at b is A7(A), the
g-th graded component of the Orlik-Solomon algebra of the arrangement Aj,.
The nbc basis provides a global trivialization of this bundle. Given weights
A, the cohomology of the complex (A®(Ap),ax) gives rise to the flat vector
bundle HY(A) — B(7) whose fiber at b is the ¢-th combinatorial cohomology
group H9(A®*(Ap),ax) described above. Like their topological counterparts,
these algebraic vector bundles admit flat connections. We call the connection
in this cohomology bundle 2% (B(7”),B(7)) temporarily, and show in the
next theorem that it is equal to the combinatorial Gauss-Manin connection
Q4T',T), defined in Section 1.10.

Theorem 2.5.3. Let M be the complement of an arrangement of type T and
let L be the local system on M defined by weights X. Suppose T covers T'.

1. Let p?: A7 — H1(A*(7T), ax) be the natural projection. Then the connec-
tion 2% (B(T"),B(T)) is determined by the equation

Pt oWl (T, T) = 24(B(T'), B(T)) o 4

and hence 2% (B(T"),B(T)) = 24(T",T).

2. Let 97 : K7 — HY(M, L) be the natural projection. Then there is an
isomorphism 71 : A1 — K7 so that a Gauss-Manin connection endomor-
phism 2} (B(7"),B(T)) in local system cohomology is determined by the
equation
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ploTlo wg\(T’,T) = Q%(B(T’), B(7))op?ori.

Proof. Assume that the weights are 7-nonresonant. Then all relevant infor-
mation is determined by the combinatorial type, so we may write H?(7T; L) =
H9(Mp; L) and use similar notation for G. Recall from Theorems 2.2.5 and
2.2.6 that H(T;L£) = 0 for all ¢ # ¢ and that H*(7; L) ~ H'(A*(A),ay).

We show first that a Gauss-Manin connection matrix 2%(B(77),B(7)) =
2% (B(7"),B(7)) in the Bnbc basis for the unique nonvanishing local system
cohomology group is induced by an endomorphism 2, of the top cohomology
of the complement of a general position arrangement.

Let « be a simple loop in B(7) linking B(7”) in the closure. Let I" be a com-
patible class in the sense of Theorem 2.4.2. It induces an automorphism ¥g (1)
of H'(G; L). Choose a connection matrix 2, so that ¥g(I') = exp(—2mi£2;).
Since the map 3 is surjective, the endomorphism 2, : H*(G) — H*(G) induces
an endomorphism HY(T) — H*(T), which we denote by £2,. We assert that
£2, is a connection matrix for ¥z (). It suffices to show that exp(—2mif2;)
is conjugate to ¥ (7). By construction we have s o Q7 = 2, 05. From this it
follows that s o exp(—2ﬂ'if2£) = exp(—2mif2;) o 5. By Theorem 2.4.2 and
Theorem 2.5.1, up to conjugacy, we have 5§ o Wg(I') = Wr(v) o 5. Hence,
exp(—27mif2,) is conjugate to Uz (7).

Hf(g;[,) — HK(T; L)
lfzﬁ lnﬁ (2.5)
HYG; L) —— HY(T;L)

Next we show that this connection is a specialization of a formal connec-
tion. Aomoto and Kita [2] computed 2,(B(G;),B(G)) where G; is the com-
binatorial type whose only dependent set is the (¢ + 1)-tuple J. The formulas
for @; were chosen to imply that £2%(B(G;),B(G)) = £25(Gs,G). Theorem
2.4.1 and Theorem 2.4.2 imply that {2, equals .QC(T 7T) up to conjugacy.
Since 2c(7’,T) is induced by the specialization &4 (77, 7) of the endomor-
phism @&/(7",T) of the Aomoto complex of a general position arrangement, it
follows from Theorem 1.10.1 that 2%(B(7”),B(7)) is induced by the special-
ization w§(7”,7) of the endomorphism w*(7”,T) of the Aomoto complex of
type 7. The same holds for ¢ < ¢ vacuously.

Thus, for 7-nonresonant weights, the endomorphism w(7’,7) induces
both the local system Gauss-Manin connection and the combinatorial Gauss-
Manin connection in the Snbc basis for all ¢. Since w(7”,7) is a holomorphic
map in the variables y and the set of 7-nonresonant weights is open and dense,

w(7’,T) induces a Gauss-Manin connection endomorphism for all weights in
either cohomology theory. a

Note that 2}(B(77),B(T)) = £24(7',7) not only for 7-nonresonant
weights but also for resonant weights which are 7-combinatorial. On the



74 2 Applications

other hand, there are examples of resonant weights which are not combi-
natorial where H9(M; L) # H7(A*(A), ax), see [48]. In these cases the groups
H?(M; L) are not known to be combinatorial invariants. The point is that the
combinatorialcohomology bundle is locally trivial over the entire moduli space
of type 7, while the local system cohomology bundle is known to be locally
trivial only over connected components of the moduli space.

Nevertheless, the second part of Theorem 2.5.3 asserts that the associated
Gauss-Manin connection is induced by the combinatorially defined endomor-
phism w(7’,7) of the Aomoto complex in all cases. The maps ¢? and 7¢
contain the additional (generally unknown) information.

Added in Proof The eigenvalues of these Gauss-Manin connections have
been obtained for nonresonant weights in [17] and for all weights in [18].

Example

In order to find a substantial application of the second part of Theorem 2.5.3
we would have to find a type 7 which admits resonant weights that are not
combinatorial. All known examples are fairly large, see Exercise 4 in Section
2.6. We avoid such a large calculation by doing the next best thing. In what
follows we describe all the necessary steps for the application of Theorem
2.5.3 in the example of four lines in Figure 1.8 of Section 1.11. Here all res-
onant weights are combinatorial, and the reader is encouraged to find the
corresponding connection matrices by combinatorial methods.

The key difficulty is that we must compute the groups H4(M, L) directly.
The universal complex (K', A* (x)) and Aomoto complex (A', ay) of A are
recorded in [14, §6.1]. The universal complex is equivalent to the cochain
complex of the maximal abelian cover of the complement M. For any t € (C*)*,
the specializations at t of the two complexes are quasi-isomorphic. The latter
complex may be obtained by applying the Fox calculus to a presentation of
the fundamental group of the complement, see for instance [19].

A presentation of the fundamental group of the complement is

w1 (M) = (x1, T2, 23,24 | [X321,T2), [X122, 23], [Ts,x4] for i =1,2,3) (2.6)

where [, ] = afa~t37L. Check that the set of relators [x1, z2, 23] introduced
in Section 2.1 may be written as the first two commutators. The coboundary
map Al(x) : K! — K? is obtained by taking the Fox derivatives of the relators.
These derivatives are defined as follows.

Let F be a free group on the generators x1,...,xz,, ZF its integral group
ring, and € : ZF — Z the augmentation map. To each x; corresponds a Fox
deriative 0; : ZF — ZF defined by 9;(1) = 0, 9;(z;) = 05, and 0;(uv) =
i (w)e(v) 4+ ud;(v).

We get the following matrix with rows indexed by the variables and
columns indexed by the relators:
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X3 — I2T3 1—.T3 1—304 0 0
1 _ 1 _ r1T3 — 1 Tr1 —X1T3 0 1-— X4 0
A =A=1"" w1 0 0 1-al|
0 0 $1—1$2—1:E3—1

The coboundary map in the Aomoto complex ay : Al — A? has matrix

—y2 —y3 —y4+ 0 O
yi3 —y3 0 —ys O
—y2 yi2 0 0 —yaf’
0 0 yv1 w2 us3

pl=pl(y) =

Its rows correspond to the products (yia1 + yeae + ysas + ysaq)a; for
i = 1,2,3,4. Tts columns are indexed by the ordered nbc basis for A?(A):
12,013,014, G24, 034. Recall that ass = —aq2 + a13. Note that p' equals Al
linearized: replace x; by 1 + y; and retain only the linear terms. A nontrivial
resonant local system £ on M corresponds to a point 1 # t € (C*)* satisfy-
ing titot3 = 1 and t4 = 1. For each such t we have H?(M; L) ~ C3. Define
Z:4° 5 A%and T : R> — R by

Tiz2 —1 0 ®imo+ 14 —2 y12 0 w124

o — 1 0 xro — 1 Y2 0 Y2

== 0 a2—1 0 and T =0 4 0
0 1—x1 T3 — 1 0 —y1 y3
0 0 11—z 0 0 —y2

Note that 7 is the linearization of =. Since £ is nontrivial, ¢; # 1 for some
1. Assume, without loss, that o # 1. For each t satisfying t1tot3 = 1, t4 = 1,
and this condition, check that rank Z(t) = 3 and Z(t) o Al(t) = 0. So the
projection C° ~ K2 — H?(M;L) ~ C? may be realized as the evaluation
©? = Z(t).

Via the map 7", the endomorphisms w(7;,7) induce maps §2; : R®> — R3,
which satisfy ¥ o w?(7;,7T) = §2; o 7. These maps have matrices

00 yi24 yi2 0 w124 Ya  —Y4 —Y1234
21 =100 —ys |, 2= | 0 yi2 —ys|, 23 = | —y123 Y123 —Y1234] -
00 —Yi2 0 0 0 0 0 Y1234

Let A be a collection of weights corresponding to t. Note that Ao ¢ Z
since to # 1. Hence, T°(A) : (C5 — C3 is surjective for all such A. Iden-
tify HQ( L) = C3, and let 72 : A2 — K? be an isomorphism for which
02 o 7? T()\) Theorem 2.5.3 1mpheb that a Gauss-Manin connection ma-
trix 22(B(7;),B(7)) in H*(M; L) corresponding to the degeneration 7; of
T satisfies T(A) - w5 (7', 7) = 2}(B(7;),B(T)) - T(N). Since the equality
Yow?(7;,T) = £2;07 holds in the Aomoto complex, the specialization y — A
yields connection matrices 2%(B(7;),B(7)) = £2;(\).

The endomorphisms 2} (B(7;), B(7)) may be determined by similar meth-
ods. As noted in [14], the endomorphism 2} (B(73), B(7)) corresponds to the
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automorphism of H'(M; £) ~ C given by multiplication by #;t2, so it has ma-
trix [A12]. Note that A1z € Z if t1t2 = 1. The endomorphisms 2% (B(7;), B(T))
and 25(B(73),B(T)) are trivial.

Connection matrices corresponding to other codimension-one degenera-
tions of 7 may be obtained by analogous calculations. Note however that the
projection T(A) : A? — H?(M; L) given above need not be relevant for all
degenerations.

2.6 Exercises

1) Find a saturated chain of degenerations from the general position arrange-
ment of 5 lines to the Selberg arrangement. (Saturated means that if 7 and
7T’ are in the chain, then there is no realizable type 7" with 7 > 7" > T".)

2) Find a second saturated chain for Problem 17. Do the two chains have
the same length?

3) Consider the Selberg arrangement with A = 1/3(1,1,1,1, —2). Show
that A is combinatorial. Compute H'(A, ay) to show that X is resonant.

4) Define the Ceva(3) arrangement in CP? by
Q = (uf — u3)(ui — u3)(uj — ).

Show that A = 1/3(1,1,1,1,1,1, -2, -2, —2) is not 7-combinatorial. [Hint:
Show that there are no integers ki,..., kg with Z?:1 k; = 0 so that the
weights A} = A; + k; are 7-combinatorial.]
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Part 11

Discrete Morse Theory
and Free Resolutions

Volkmar Welker



1

Introduction

1.1 Overview

These lecture notes present topics from Algebraic Combinatorics that lie on
the borderline to Algebraic Topology and Commutative Algebra. In partic-
ular, we will present and review combinatorial and geometric methods for
studying minimal free resolutions of ideals in polynomial rings. Before we
give the exposition of the topics we will spend time in order to outline the ba-
sic mathematical theory behind. Thus these notes will also include definitions
and examples for CW-complexes and free resolutions. All this basic material
is geared towards the applications given in the later sections and is therefore
not presented in utmost generality. A comprehensive exposition of the inter-
action between Combinatorics and Commutative Algebra and the history of
this interaction can be found in the books by Miller and Sturmfels [35] and
Stanley [57].

Our methods will be algebraic and topological. The main idea, first em-
ployed in [6], is that in many cases one can associate to a free resolution of an
ideal a topological space — a CW-complex — that carries in its cellular struc-
ture the algebraic structure of the free resolution. It will be demonstrated
that methods from Topological Combinatorics — Discrete Morse Theory — can
be used to minimize the given resolution. This idea was first developed in [3]
and more examples and applications beyond the ones given in these notes can
also be found in [4]. Recently, three independent generalizations to arbitrary
algebraic complexes [32], [51] and [27] have been successfully applied. But,
we will stick to the setting of cellular resolutions and Discrete Morse Theory
applied to them. We do so, since we think that the additional structure of a
geometric object sheds further insight into the algebraic object of a minimal
free resolution and also poses several intriguing questions about the geometry
of cell complexes (see e.g. [60]).
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From the point of view of Combinatorics minimal free resolutions can serve
as a tool for the study of invariants of simplicial complexes. Since the actual
relation to Combinatorics will be less obvious in the main body of these notes,
we devote a major part of this introduction to establishing the link between
the topics touched in the notes and their applications in Combinatorics.

On the other hand combinatorial methods, among them the ones presented
in these lecture notes, have been successfully applied to obtain results in
Commutative Algebra and Combinatorial Topology. Combinatorial methods
have led to explicit constructions of minimal free resolutions of ideals that
arise in Commutative Algebra (see e.g. [6]) and combinatorial methods have
led to the calculation of explicit homotopy types of spaces and (co)-homology
groups of spaces that arise in Algebraic Topology (see e.g. [64]). Unfortunately
these applications are either technical or require techniques that are beyond
the scope of this manuscript. Therefore we do not provide an exposition here
and refer the reader to the book [35]. For more basic facts from Topological
Combinatorics we point to the article by Bjérner [9] and for more information
on Discrete Morse Theory to the article by Forman [20]. The very nice book
by Hibi [26] is another source for additional information.

Fig. 1.1. shows the main objects of these notes positioned in between
the three major mathematical fields and their relevant subfields or relevant
objects.

Commutative
Algebra

Finite Free Resolution

Ideal

CW-Complex
Enumeration

Cellular Resolutions

Combinatorics Algebraic

Discrete Morse Theory

Set System TOpOlOgy

Singular Homology

Fig. 1.1. Topics touched by the Lecture Notes
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The notes are divided into four chapters. The first chapter contains the in-
troduction with an overview of the notes and sections motivating the study of
minimal free resolutions and cellular resolutions in Algebraic Combinatorics.
In the second chapter we give an exposition of the basic mathematical ob-
jects studied. In particular, we define multigraded minimal free resolutions,
CW-complexes and cellular resolutions. The third chapter focuses on cellular
resolutions and provides a long list of examples. Then in the fourth chap-
ter we introduce Discrete Morse Theory as developed by Forman [20] and
show how it can be applied to minimize cellular resolutions. Each chapter is
supplemented by a section containing open problems and exercises.

These notes grew out of the lectures given at the 2003 summer school on
‘Algebraic Combinatorics® in Nordfjordeid. I would like to thank the organizers
of this event for their work which created a very productive and pleasant
atmosphere. I very much enjoyed the week teaching in this wonderful place
together with Sergey Fomin and Peter Orlik. Those parts of my lecture which
are not ‘standard‘ Algebraic Combinatorics — the application of discrete Morse
theory to free resolutions — were developed in joint work with Ekki Batzies
in [3] and [4]. While developing these ideas in [3] Ekki found an alternative
approach to the standard discrete Morse theory. Our approach to discrete
Morse theory in these notes is based on his ideas. I am grateful to Ekki for
letting me include his ideas in this notes. I also thank Anna Thursby for many
helpful conversations while working on these notes.

Let us now turn to some applications of (Commutative) Algebra in Com-
binatorics which are supposed to motivate the subsequent chapters and put
them in perspective.

1.2 Enumerative and Algebraic Invariants of Simplicial
Complexes

Recall that an (abstract) simplicial complex A on the (finite) ground set (2 is
a subset A C 2%? of the power set of {2 such that for any A C B € A it follows
that A € A. We will often assume that 2 = [d] := {1,...,d} is the set of the
first d integers. Even though the concept of a simplicial complex appears to
be simple minded, it indeed captures many objects that are of central interest
in Algebraic Combinatorics.

Ezxample 1.2.1. A matroid M on the ground set {2 is a set of subsets of (2
such that for any A C B € M we have A € M — which implies that M is a
simplicial complex — and such that if A, B € M and |A| = |B|+1 then there is
ay € A\ B such that BU{y} € M. The collection of sets in M is called the set
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of independent sets of M. There are many equivalent definitions of a matroid
(see [61]) but for the point of view we take in these notes this definition is the
most suitable. Let us give a few concrete examples of matroids.

1. Ugy = {A C[d] | #A <} is the complex of all subsets of [d] of cardinality
< I. It is easily seen that Uy is a matroid and it is called uniform matroid.

2. Let 2 C V be a finite subset of a vectorspace V over a field k£ and set
Ling to be the set of subsets of {2 that are linearly independent over k.
Then basic linear algebra shows that £ing is a matroid. Thus matroids
can be seen as a generalization of the concept of a vectorspace.

3. Let 2 = A be a finite set of hyperplanes in a vectorspace V over a field
k. Let 24 be the set of subsets B of A such that codimy (.5 H = #B
— the intersection over the empty set being the ambient vectorspace V.
Then again A 4 is a matroid, which coincides with the matroid Ling, for
{2 a set of linear forms in the dual space V* defining the hyperplanes in

A.

At this point Algebraic Combinatorics and Enumerative Combinatorics
overlap. Before we are going to demonstrate this connection we will have to
make a few more definitions.

For a simplicial complex A and A € A the dimension dim(A) is given by
#A—1. The dimension dim A of the simplicial complex A is max e dim(A).

Ezample 1.2.2. The rank rk(M) of a matroid is the maximal cardinality of its
independent sets. Thus we have dim M = rkM — 1. In particular, dimUy; =
I -1, dim Ling = dimspany (£2) — 1 and dim2A4 = codim (. 4 H — 1.

We call an element A € A of a simplicial complex A a face of A. If the
face A is maximal in A with respect to inclusion (i.e., A C B € A implies
B = A) then we call A a facet. If dim(A) = dim(A) for all facets A of A then
we call A a pure simplicial complex .

Ezample 1.2.3. A matroid M is a pure simplicial complex. For if |A| < |B| for
two faces A and B of M then there is a face C' C B such that |C| = |A| +1
and hence AU {y} is in M for some y € C'\ A. Thus all facets have the same
dimension which then must be dim(A).

The f-vector of a simplicial complex A is the vector

F(A) = (f-1,--+, faim(a))s

where f; is the number of i-dimensional faces of A.
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Fzxample 1.2.4. For the uniform matroid Uy,; the dimension is given by
dimUgy =1 — 1 and the f(Uzs) = ((2), (§),.... (9)).

0/ \1
A first question to be asked is: When is a given vector the f-vector of a
simplicial complex ? The answer to this question is provided by the famous
Kruskal-Katona Theorem (see for example [1]).
For the formulation of the theorem the following lemma introduces the
binomial expansion of a natural number.

Lemma 1.2.5. For natural numbers n and i there exists a unique set of nat-
ural numbers j <1 and a; > --- > a; > j > 1 such that

() (),

For natural numbers i and n we denote by n(* the number ( i ) + o+

4
(j‘j_jl), where n = (%) 4+ - + (ajJ) is the binomial expansion. '

Theorem 1.2.6 (Kruskal-Katona Theorem). A wvector (1, fo,..., fp-1)
of nonnegative integers is the f-vector of a (D — 1)-dimensional simplicial
complex if and only if fi11 < fi(ZH) for0<i<D-2.

Here we have a first chance to pass to algebra. For a simplicial complex
A on [d] let Ia be the ideal in the polynomial ring k[z1,...,24] generated
by monomials x4 = [];c 4 z; for subsets A C [d] such that A ¢ A. The ideal
14 is called the Stanley-Reisner ideal of A. A minimal generating system is
given by the monomials x4 for the inclusionwise minimal non-faces A of A.
Clearly, if A C B and A,B ¢ A then xp is a multiple of x, and therefore
lies in any ideal with x 4 in its generating set. By k[A] we denote the quotient
klx1,...,24)/Ia which is called Stanley-Reisner ring of A.

Ezample 1.2.7. If A = M is a matroid over {2 then a minimal non-face of M is
also called circuit — or minimal dependent set. Thus I, is minimally generated
by the x4 for the circuits A of M. For M = Uy, and A C [d] we have A & Uy,
if and only if #A4 > [+ 1. Thus an A ¢ Uy, is inclusionwise minimal if and
only if #A4 =1+ 1. Hence Iy, , is in this case minimally generated by the x 4
for #A =1+ 1.

The concept of a Stanley-Reisner ring is connected to the enumera-
tive invariant ‘f-vector‘ by counting numbers of monomials. A monomial in
klz1,...,z4] is a product x* = z¢* -+~ 25¢ for a = (av, ..., aq) € N Let us
count the number of monomials whose image under the canonical projection
7 k[zy,...,2q] — Kk[A] is non-zero. For this to happen we must have that
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the monomial is not divisible by a monomial x 4 for a minimal non-face A of
A. But this condition applied to a monomial x® means that the support

B =supp(x®) :={i | oy > 0}

must lie in A. Thus x is a multiple of x5 inside the polynomial ring klx; | i €
BJ. If we define the degree deg(x®) of x* by |af := a; + -+ + ag4 then this
argumentation implies that there are ( dim( B)) monomials of degree j and
support B that are not in the kernel of w. This shows that the generating

— _
function Hp(t) = Z ( J )tdlm(B)H of the monomials with support

£ dim(B)
j=dim(B)
4dim(B)
B enumerated by degree equals Hp(t) = ﬂt)w- Hence the generating
function Hilba(t) of the monomials in k[x1,...,2z4] that do not lie in the

kernel of the canonical projection to k[A] by degree is given as Hilba(t) =

> Hp(t). Thus
BeA
dim(A)4+1

fiaat’
= (-t
The generating function Hilb () is also called the Hilbert-series of k[A].

This fact is due to the observation that the images of the monomials of degree
Jj that do not lie in the kernel of the canonical projection from k[x1, ..., z4] to

Hilba(t) =

k[A] form a basis for the vectorspace of homogeneous polynomials of degree j
in k[A]. In general, for a graded k-algebra the Hilbert-series is the generating
series of the dimensions of the graded pieces (see [12, Chapter 5], [18] for more
on Hilbert-series of Stanley-Reisner rings and general graded algebras).

It is natural to write Hilba(¢) as a rational function with a common de-
nominator. We then get:

dim(A)+1

Z fz 1tz t)dim(A)+1—i
Hilba(t) := —=2

(1 — ¢)dim(A)+1
If we expand the numerator polynomial in the ¢* then:
dim(A)+1
Z hit!
Hilba(t) = HT(A)

The vector h(A) = (ho, - .., hdim(a)+1) is then called the h-vector of A.
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Remark 1.2.8.
l.ho+ - +hg= fdim(A)-
92 ho = 1.
3.
dim(A)+1
hdim(A)+1 — Z (—1)dlm(A)+1_1f7;71 _ (_1)d1m(A) Z(_l)l_lfifb
i=0 i>0

Note, that Y ,5,(—1)""! f;_1 is also known as the reduced Euler-character-
istic of A (see [37]). It is clear that the h-vector arises from the f-vector
by an invertible linear transformation. Thus both carry the same amount
of information. At first sight the f-vector appears to be the more natural
invariant but then as we will see in Section 1.3 the h-vector turns out to be
the ‘better invariant in many situations.

Ezample 1.2.9. If A = Uy, is the uniform matroid then

l

> <‘j)ti(1 — 1)l

HﬂbUd,z (t) = — (1 _ t)l

If one expands the numerator special values of [ in terms of ¢-powers then

we get:
=0 Hilby, , (1) = 1
I=1 Hilby;, , () = W
t=2  Hiby,, () = — ?1(5 ;)22)“ + (5,0
l=d-1 Hilby, , ,(t) = W
P=d Hilby, , () = ﬁ

There is one further way to calculate the h-vector of a simplicial complex
from algebra. Here we introduce the concept of a minimal free resolution .
This concept will be crucial for these notes and a more thorough definition
and introduction will be given in Chapter 2.

Namely, let S = k[xy,...,z4] and

0, [ 15}
F: 05 F ... 2L R,

be a minimal free resolutions of k[A] over S, that is
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(FR1) F; is a free S-module for 0 < i < r (i.e. F; = S5 for some 3; > 0
in case F; is finitely generated).

(FR2) The differentials 9; are S-module homomorphisms for 1 < i < r+1.
(FR3) The sequence is exact; i.e. Kerd; = Im0; 11, 1 <@ <.

(FR4) CoKerd; = k[A].

(Min) Im9; C mF;_; for 1 <4 <r+1and m = (x,...,24) the unique
graded maximal ideal in S.

An object satisfying conditions (FR1)-(FR4) is called free resolution of
k[A] and (Min) is the minimality condition. If we choose bases for the F; and
express the 9; as matrices then (Min) is easily seen to be equivalent to

(Min’) The matrices representing 9;, 1 <4 < r + 1, contain no entry from

k\ {0}

It is well known (see for example [18, Chapter 20]) that minimal free reso-
lutions always exist. Indeed more general, minimal free resolutions are studied
for modules over rings. But here we confine ourselves to the combinatorial set-
ting of the S-module k[A]. It is easily seen that in a minimal free resolution of
k[A] the F; are always finitely generated. The sequence (8o, ..., [,) is called
the sequence of Betti numbers of k[A] — which can be shown [18, Chapter 20]
to be independent of the chosen minimal free resolution. The number r is also
called projective dimension of k[A]. The Auslander-Buchsbaum theorem (see
[18]) states d — r = depth(k[4]), where depth(k[A]) is the depth of k[A]. For
the moment we take this as the definition of depth. The depth will resurface
and gain importance in Section 1.3, where we will give its usual definition. Ac-
tually we will see in examples that using the Auslander-Buchsbaum theorem
we can sometimes calculate the depth from minimal free resolutions.

Now we want to put more structure on the free resolution. For this purpose

we consider S = k[z1,...,z4] as an N?-graded or multigraded k-algebra; that
is S @ Sa, where S, is the 1-dimensional k-vectorspace generated by x.
a€eNd

Since I 4 is generated by monomials it follows as a k-vectorspace

= @ S,

aenNd
supp x*¢ZA
Thus the N%-grading carries over to the quotient k[A].

Now we require F to respect the N%-grading. For an o € N¢ we denote
by S(—a) the free S-module of rank 1 whose multigrading differs by « from
the standard multigrading; that is for v € N¢ the monomial x” € S(—a) has
multidegree o + . Also we require that the maps J; are homogeneous with
respect to this multigrading. Again it is well known (see again [18, Chapter
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20]) that there is an N¢-graded or multigraded minimal free resolution of
k[A] — more generally of any N¢-graded module over k[z1, ..., z4]. This leads
to

022 P S(—a)te 2 2 @) S(—a)foe

a€eNd a€eNd

The numbers f; o determined by (multigraded) minimal free resolutions
of k[A] are called the multigraded Betti numbers of k[A].

Ezxample 1.2.10. Even though it is possible to describe the multigraded min-
imal free resolution of k[A] for A = Uy, explicitly for all parameters j (see
Exercise 1.4.13), we will confine ourselves in this example to the extreme cases
l=0andl=n-1.

e 1=0: For Uy the Stanley-Reisner ring

k[Ud,Q] = k’[l‘l, ce ,xd]/<m1, N ,J}d> >k

is the field k. We set ea = ), , e; and
F,L' = @ S(—BA)
AC[n]
#A=i

and define 0; for f € S(—eq) and A = {jo < --- < ji—1} by

i—1
0if =D T FA\ G}
m=0
Here we denote by fa\y;,.) the element f € S(—ea) considered as an
element of S(—ea\yj,,1) with degree shifted by —e;, . Moreover, we de-
duce from the Auslander-Buchsbaum theorem that depth(k[Ug]) = 0 =
dim(Ugq0) + 1. One checks that this indeed is a resolution and that since
no units occur as coefficients in the differential it follows by (Min’) that
the resolution is minimal. This resolution actually will be one of the first
examples of a cellular resolution that we will encounter in later chapters.
e 1=d — 1: In this case

k[Ud’dfl] = k[(El, e ,:Ed]/<{£1 . ~9cd>.

We set Fy = S(—f) and Fy = S(—epg) where 0; is defined by sending
1 € S(—epqg) to 1...24 € S(—0). Again one checks that this defines a
resolutlon and then it is clear that the resolution is minimal. Again using
the Auslander-Buchsbaum theorem we deduce that depth(k[Ugq—1]) =
d—1= dim(Ud’dfl) + 1.
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Consider the generating series H(S(—a),t) of the monomials x” in S(—«)
by degree |o+7|. As before we write | - | for the coordinate sum of a vector in
N4, Since the degrees in S(—«) differ only by a shift of |a| from the degrees

in S we get H(S(—w),t) = % Since F is exact it follows that

r

D (1" Y BiaH(S(—a),t) = Hilba(t).

i=0 a€eNd
This implies that

r , dim(A)+1
S Brat S hit
=0 aeNd _ i=0

(1 _ t)d - (1 _ t)dim(A)Jrl ’

Hence we get an intimate relation between the multigraded Betti numbers
of k[A] and the h-vector of k[A].

1.3 Cohen-Macaulay Simplicial Complexes

After having introduced some of the basic invariants of simplicial complexes
that are studied in Algebraic Combinatorics, we now turn to a class of sim-
plicial complexes that have particularly nice properties.

In Section 1.2 we had already used depth in order to describe the length
of a minimal free resolution of k[A]. Now we give a precise definition of depth
and will use this invariant in order to define the Cohen-Macaulay simplicial

complexes .
For a k-algebra R the depth depth(R) of R is the maximal length s of
a sequence ¥, ...,Yys of elements of R such that y;11 is not a zero-divisor

in R/{y1,...,4i), -1 <i<s—1,and 0 # R/{y1,...,ys). Such a sequence
is also called regular sequence. Indeed it can be shown that the elements of
the sequence can be chosen to be homogeneous of degree 1 — after possibly
extending the field k (see Exercise 1.4.19). Moreover, it can be shown that any
permutation of the sequence is again a regular sequence (see Exercise 1.4.18).

Ezxample 1.3.1. If A =Ug, for | = 0 then k[Uq o] = k and depth(k[Uq]) = 0,
since for any element y; of &\ {0} we have (y1) = k. If A = Uy, for | =
d — 1 then k[Ugq-1] = k[z1,...,24]/(x1 - x4). In this case one checks that
Y1 =1+ T2,...,Yd—1 = T1 + 24 is a maximal regular and depth(k[Ugq-1]) =
d—1. Recall that in both cases we had already calculated the depth using the
Auslander-Buchsbaum theorem in Example 1.2.10.
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It is usually very hard to calculate the depth of a k-algebra and the sit-
uation does not become significantly simpler if we are in the combinatorial
setting of R = k[A].

It turns out that in Combinatorics the situation when depth(k[4]) =
dim A + 1 is particularly interesting. In this situation A is called Cohen-
Macaulay over k. For those familiar with the notion of a Cohen-Macaulay
ring in Commutative Algebra: The simplicial complex A is Cohen-Macaulay
over the field k if and only if k[4] is a Cohen-Macaulay ring. This is due to
the fact that in commutative algebra a k-algebra R is called Cohen-Macaulay
if depth(R) = dim R (see [18]). Here dim R denotes the Krull-dimension of
R. Note, depth(R) < dim R is true always. The fact that the ring theoretic
dimension dim k[A] equals dim A + 1 then explains the combinatorial defini-
tion.

Ezample 1.3.2. If A = Uy, for [ = 0 then by Example 1.2.10 or 1.3.1 we know
that
depth(k[Ugp]) =0=—-1+1=dimU, o+ 1,

If A=Uyg, for l =d — 1 then again by Example 1.2.10 or 1.3.1 we know
depth(k[Ugg1]) =d —1=d—2+1=dimUgq_, + 1.
Thus in both cases k[4] is Cohen-Macaulay over any field.

Note, that there are examples of simplicial complexes A for which the
Cohen-Macaulay-ness of k[A] depends on k (see Exercise 1.4.17). From the
side of Combinatorics the interest in Cohen-Macaulay simplicial complexes is
stimulated by the following fact:

Proposition 1.3.3. If A is a Cohen-Macaulay complex over some field k then
its h-vector has only nonnegative entries.

The proof of this result follows by some basic commutative algebra argu-
ments from the definition of a Cohen-Macaulay ring (see Exercise 1.4.21).

Tt is easily seen that the converse of Proposition 1.3.3 is false (see Exercise
1.4.21). Given the definition of a Cohen-Macaulay simplicial complex it seems
to be extremely hard to verify Cohen-Macaulay-ness for an even moderately
complicated class of simplicial complexes.

Here we are at a point where Topological Combinatorics enters the picture.
Let us first recall some basic notions from convex geometry. The convex hull
conv{vg,...,v,} of a finite set of points vg,...,v,, € RJ is the set of all
convex linear combinations

conv{v,..,vm} = { 3 v [ A >0, 0<i <m, 3on =1},

=0 1=0




94 1 Introduction

If v, . . ., Uy, are affinely independent (i.e. vg — Uy, - - -, Um—1 — Uy, are linearly
independent) then their convex hull is called an (affine) m-simplex . Clearly,
if V' is any subset of an affinely independent set vy, ..., v,, then conv(V) is a
(#V —1)-simplex — we call conv(V) a face of conv{vy, ..., v, }. Faces that are
0-simplices are also called vertices and are identified with the unique point
contained in them.

A geometric simplicial complex I' in R/ is a collection of affine simplices
in R7 such that for any simplex in I" all its faces also lie in I" and for any
two simplices in I" their intersection is a face of both. Clearly, if we map the
geometric simplices in I” to the set of their vertices then the image of I" will be
an abstract simplicial complex. Conversely, for a simplicial complex A on [d] a
geometric realization of A is a subset X — equipped with the subspace topology
— of some RJ such that there is a geometric simplicial complex I" for which
the set theoretic union of its simplices is X. Since one can show that any two
geometric realizations of an abstract simplicial complex A are homeomorphic
we write |A| for any geometric realization of the abstract simplicial complex
A on [d]. Indeed, if we take

|A| = U conv{e; | i € A},

AcA

where the e; are the standard unit vectors e; in R%, then it is a geometric
realization of A. Let us state the upshot of this paragraph:

Proposition 1.3.4 (see e.g. [37]). For any abstract simplicial complexr A
there is a geometric realization |A| and any two geometric realizations are
homeomorphic.

The preceding proposition allows us to give up the distinction between
abstract and geometric simplicial complexes and their topological realizations
for the rest of these notes.

Let us return to algebra and consider the dependence of k[A] on the topo-
logical realization |A|. In general, from the point of view of topology the ring
k[4] is ‘bad’ since it is not a topological invariant.

Ezample 1.3.5. For uniform matroids Ug; the geometric realization |Ug | is
just the (I —1)-skeleton of the (d — 1)-simplex conv{e; | 1 <4 < d}. In partic-
ular, for [ = 1 we get d points and for | = 2 we get the geometric picture of a
complete graph on d vertices. For [ = d — 1 we get the full boundary complex
of the (d — 1)-simplex, which is easily seen to be homeomorphic to a (d — 2)-
sphere. If d = 3 then |Us 5| is just the geometric picture of a triangle. Clearly,
as a topological space a triangle is homeomorphic to a quadrangle |Q4| — each
homeomorphic to a 1-sphere. We can take for Q4 the simplicial complex on [4]
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with facets {1,2},{2,3},{3,4},{1,4}. Then k[Us 2] = k[z1, 22, x3]/{z12273)

and k[Q4] = k[z1, 22,23, x4]/(x123, T224). If we compute the Hilbert-series,
we get
(1+t+1t%) (142t + t2)
Hy,,(t) = ——5=,Hg,(t) = ————5—
U3,2( ) (1 — t)2 ) Q4( ) (1 — t)2 )

being fundamentally different.

Thus k[4] clearly captures much of the combinatorial information of the
particular triangulation of the space |A]|.

Nevertheless, it is surprising and worthwhile to mention that we can read
off the Cohen-Macaulay property from the space |A|.

Theorem 1.3.6 (Munkres [36]). If A and A’ are abstract simplicial com-
plexes such that |A| and |A'| are homeomorphic then A is Cohen-Macaulay
over k if and only if A" is Cohen-Macaulay over k.

Since an algebraic approach to the Cohen-Macaulay property involves the
calculation of the depth it is desirable to have a geometric criterion for Cohen-
Macaulay-ness. Before we can state a theorem giving a criterion for Cohen-
Macaulay-ness, we have to introduce some further notion from Topological
Combinatorics.

For a simplicial complex A and a face A € A we denote by linka(A) the
simplicial complex

linka(A)={BC[n]\A| AUB € A}
Ezample 1.3.7. If A =Uy,; and A € A then
linka(4) = {B C[d\A| #B<1—#A}.

Thus up to relabeling the ground set elements we get that linka(A) is an
Ug—paj—ua.

If A is a simplicial complex on ground set [d] then we denote by C; the
k-vectorspace of dimension f; with basis f4 for A € A and #4 =i+ 1. By J;
we denote the homomorphism sending f4 to Z;ZO(—I)ij\{v].} if A={vy <
-+ < v;}. One easily checks that §; 0 §;11 = 0 and therefore Kerd; C Imd; .
Then the i-th reduced simplicial homology group ﬁi(A; k) of A is defined as
the quotient Kerd; /ITmd;11.

The criterion for Cohen-Macaulay-ness is provided by the following theo-

rem of Reisner:

Theorem 1.3.8 (Reisner’s Criterion [49]). A simplicial complex A is
Cohen-Macaulay over the field k if and only if for any A € A we have
H;(linka(A); k) =0 fori < dim(linka(A)) — 1.
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The following corollary shows that the concept of a pure simplicial complex
— that we have introduced above but have not used so far — resurfaces here
again.

Corollary 1.3.9. If A is Cohen-Macaulay over some field k then A is a pure
simplicial complez.

Ezample 1.5.10.

1. If A =Uyg, then the image of 6,1 for ¢ <1 — 2 is equal to Kerd;. A basis
for both is provided by the 9;11(fB), where n € B. Thus for A = () we get

H;(linkA(0); k) = H;(Ug: k) =0

for i < dimUg; = [ — 1. Since we already know that linky,,(B) =
Uq—nB,1—4p it follows by induction that Ug; is Cohen-Macaulay over
any field k.

2. Let A be a simplicial complex such that |A| is homeomorphic to a D-
sphere. Then one checks that |link A(A)| is homeomorphic to a (D — #A)-
sphere. Now standard arguments from Algebraic Topology [23] show that

H;(link4(A); k) = 0,7 < dim(link 4 (A)) = D — #A.
Thus A is indeed Cohen-Macaulay over any field.

Now we return to Enumeration. By Remark 1.2.8 (1) we know that Jdim(a)
is the sum over the h-vector. If A is Cohen-Macaulay then we know that h; > 0
for all 4. Thus the h; give a statistics on the number of dim(A)-dimensional
faces of A in that case. Recall that by Corollary 1.3.9 we know that all facets
of a Cohen-Macaulay complex have the same dimension; that is A is pure.

Ezample 1.3.11. We have already seen that if A = Uy, then A is Cohen-
Macaulay and we know that in this case dimUy; ={—1and f;_; = (‘li) Thus
the h; provide statistics on the number of I-subsets of a d-set (see Exercise
1.4.16).

This approach finally raises the question which sequences of numbers can
actually occur as the h-vector of a Cohen-Macaulay simplicial complex. In
order to answer this question we again recall the binomial expansion from
Lemma 1.2.5. So if for natural numbers n and i the binomial expansion of n
is given by n = (%) + - (“jﬂ) then we set

@ (e o (et
n <i—1>+ +<j—1 .
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Theorem 1.3.12 (see [12]). A vector (ho,...,hp) of nonnegative numbers

is the h-vector of a (D — 1)7dimen5i0nal Cohen-Macaulay simplicial complex
if and only if hg = 1 and hZ@ < hij_q for1<i<D.

A standard proof of Theorem 1.3.12 is algebraic in nature and uses Ex-
ercise 1.4.19 and the famous Macaulay-Theorem about the Hilbert-series of
0-dimensional graded k-algebras, which says that a polynomial hg+hyt+-- -+
hptP is the Hilbert-series of a 0-dimensional k-algebra if and only if the h;
satisfy the conditions from Theorem 1.3.12.

Now having seen how enumerative invariants of Cohen-Macaulay graded k-
algebras emerge and relate to enumerative invariants of simplicial complexes,
the reader may ask how this relates to minimal free resolutions — one of the
central concepts of these notes.

For that we need to define the concept of an Alexander-dual simplicial
complex. For asimplicial complex A on ground set [d] we define its (Alexander-)
dual simplicial complex A* as

Ti={Acld|[d\AgA}
We refer to Exercise 1.4.22 for more properties of A*.
Now we are in position to formulate a result that gives a criterion for
Cohen-Macaulay-ness of a simplicial complex in terms of the minimal free
resolutions of k[A*].

Theorem 1.3.13 (Reiner-Eagon Criterion [17]). A simplicial complex A
is Cohen-Macaulay over k if and only if the minimal N%-graded free resolution

““*1@5 ,6’“1_) @S BOu

a€eNd aeNd
of k|A*] satisfies: There is an integer j such that for alll > 1 and o € N¢
we have B.o =0 for |a| #1+j.

Here we close the presentation of material linking Algebraic Combi-
natorics, Enumerative Combinatorics, Commutative Algebra and Algebraic
Topology. As already mentioned we recommend the books [35], [57], [26] and
the survey article [9] for further motivation and a broader view of the sub-
ject. In the last section of this chapter we present a small subset of the open
problems in the field and add some speculations about their connections.

1.4 Some Open Problems in the Field

In this section we describe some of the important open problems in the field
and add some questions and speculations. From now on we will be less self
contained and will refer the reader to standard books or subsequent chapters
for definitions and details.
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The g-Conjecture:

First we discuss the g-conjecture. The g-conjecture asks for the classification
of the f-vectors of simplicial complexes that triangulate a sphere or more
generally simplicial complexes that are Gorenstein®*. A simplicial complex A
is called Gorenstein® over a field k if A is Cohen-Macaulay over k and for
all simplices B € A we have H;(linka(B); k) = k for i = dim(link(B)).
Note that in particular this implies that A has the homology of a sphere and
that it is a pseudomanifold (see Exercise 1.4.23). For this reason Gorenstein*
simplicial complexes are sometimes also called generalized homology spheres.
We would like to mention that the term homology sphere itself is used in
various meanings in the literature. It can mean a space (manifold) that has the
homology of a sphere or may be used synonymously to generalized homology
sphere. The conjecture is formulated in terms of the h-vector (resp. the g-
vector).

Conjecture 1.4.1 (g-Conjecture). A vector (hg,...,hp) of nonnegative inte-
gers is the h-vector of a (D — 1)-dimensional Gorenstein* simplicial complex
A if and only if

1~hi:hD7i fOI'OS’LSD
2. hy = 1. ‘
3.Forgo=1,¢g;,=h; —h;j_1,1<i< L%J we have g;_1 zglm for1 <<

1Z]-

The conjecture is wide open but has been verified in the very important
case for which it was originally conjectured. In the 1970’s McMullen formu-
lated the above conjecture for boundary complexes of simplicial polytopes.
Billera and Lee [8] proved by explicit constructions the sufficiency of the con-
ditions and Stanley [56] showed the necessity by invoking the Hard-Lefschetz
Theorem from Algebraic Geometry. Later McMullen [34] gave a proof of the
necessity without resorting to tools outside Discrete Geometry. We refer the
reader for the basic definitions from polytope theory and further information
about the g-Conjecture to the book by Ziegler [63]. In the sequel we will freely
use polytope terminology without explicitly referring again to the book.

Theorem 1.4.2 (g-Theorem [8], [56]). A wvector (ho,...,hp) of nonneg-
ative integers is the h-vector of the boundary compler of a D-dimensional
simplicial polytope if and only if

1. hi =hp_y1 for 0 <i<D.

2. hg = 1.

3. For go =1, gs = hi —hi—1, 1 <1 < L%J we have g;_1 > gi<i> for
1<i<[2].
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The g-Conjecture 1.4.1 remains wide open and opinions are split on
whether or not there is a counterexample. Note that the sufficiency of the
conditions in the g-Conjecture follows from the g-Theorem; it is the necessity
that is open. Conditions (1) and (2) are easily verified, so that (3) becomes the
crucial part. Recently some progress was made from a new perspective. Using
rigidity arguments Nevo [39] was able to show that go, g1, g2 always satisfy
(3), which implies the g-conjecture in dimensions < 4. Since the conjectured
characterization of f-vectors (resp. h-vectors) of boundary complexes of sim-
plicial polytopes and triangulations of spheres is the same one may wonder
how much larger the class of simplicial complexes that triangulate d-spheres
is compared to those that appear as boundary complexes of d-dimensional
simplicial polytopes. By Steinitz’s Theorem (see [63, Theorem 4.1]) the two
classes coincide in dimensions < 2. But already in dimension 3 it is shown
in [45] that the class of simplicial complexes that triangulate d-spheres is
substantially richer.

h-Vectors of Gorenstein Algebras:

One way to derive conditions (1) and (2) of Conjecture 1.4.1 is via Commuta-
tive Algebra. For that we first have to note that if A is a Gorenstein® simplicial
complex over the field k then k[A4] is a standard graded Gorenstein k-algebra
(see [12, Chapter 5]) . More generally, assume that R = @,~, R; is a standard
graded Gorenstein k-algebra (see [12, Chapter 3] or [57] for a definition and
background). Then its Hilbert-series Hilbg(t) := Y., dim R;t* satisfies

ho + - -+ hpt?

Hilbp(t) = O(JL%
where dim R is the Krull-dimension of R and (hg,...,hp) is a sequence of
nonnegative integers — rationality follows by the Hilbert-Serre theorem (see
[12, Proposition 4.3.3], [57]) and the nonnegativity of the h;’s from the fact
that Gorenstein algebras are also Cohen-Macaulay (see [12, Theorem 3.2.10])
for which the result follows analogous to the case of Stanley-Reisner rings
treated in Exercise 1.4.21. Note, that Hilby () coincides with Hilba(t) from
Section 1.2. The vector (hg,...,hp) is also called the h-vector of R. Again by
Gorenstein-ness of R it follows that (ho,...,hp) satisfies h; = hp_;. But (3)
remains open in general and is not true for Gorenstein k-algebras in general
as shown in [40]. Indeed Stanley in [57, Section I1.6] asks for a characteriza-
tion of h-vectors of Gorenstein k-algebras und provides in [55, Example 4.1]
an example which shows that (3) is not satisfied by h-vectors of Gorenstein
algebras in general. Indeed he gives an example of a 0-dimensional Gorenstein
k-algebra whose h-vector is not unimodal. A sequence of integers (ag, ..., a,)
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is called unimodal if there is a 0 < 7 < r such that ag < --- < a; > -+ > a,.
It is a easy to see that if the g-conjecture holds then the h-vector of any
Gorenstein® simplicial complex is unimodal. But there is still the following
conjecture that is open.

Conjecture 1.4.3 (Hibi, Stanley). If (ho,...,hp) is the h-vector of a standard
graded k-algebra that is a Gorenstein domain then it is unimodal.

There had been a conjecture by Hibi [25] on Cohen-Macaulay domains
that would have implied Conjecture 1.4.3, but it was disproved [40]. Note
that Conjecture 1.4.3 and the unimodality consequence of the g-Conjecture
1.4.1 are not directly related since the Stanley-Reisner ring of a Gorenstein*
simplicial complex of dimension > 0 is never a domain. In order to establish
a link we turn to Grébner bases theory. If R = k[z1,...,x4]/I is a standard
graded k-algebra then I is a homogeneous ideal which means that it is gener-
ated by homogeneous polynomials. Grobner bases theory now associates to I
together with a monomial order a monomial ideal (see e.g. [22] for background
on Grobner basis theory). We briefly review the definitions needed in our con-
text. A monomial order < on the set of monomials in the polynomial ring
k[x1,...,24] is a linear order for which 1 < m for any monomial m and for
which m =< m/ implies mn < m/n for any monomials m, m’ and n. For a poly-
nomial f € k[z1,...,2q] we let 1t<(f) be the largest monomial with respect
to =< that appears in f. For an ideal I the initial ideal with respect to < is the
monomial ideal in<(I) generated by all monomials lt<(f) for f € I. Now the
following simple result (see Exercise 1.4.24) will be crucial for establishing a
link between Conjecture 1.4.3 and the g-Conjecture 1.4.1.

Proposition 1.4.4. For a standard graded k-algebra klzi,...,zq4]/I and a
monomial order < we have

Hilb(k[z1,...,zq)/1,t) = Hilb(k[z1, ..., zq4]/in<(I),1).

Even though in<(I) is a monomial ideal it is in general not squarefree,
the latter being equivalent to being the Stanley-Reisner ideal in<(I) = I for
some simplicial complex A (see Exercise 1.4.25). But still we get the following
immediate corollary.

Corollary 1.4.5. Let R = k[z1,...,x4]/I be a standard graded k-algebra and
let < be a monomial order for which in<(I) = Ia for some simplicial complex
A. Then the h-vectors of R coincides with the h-vector of A (with terminal
0’s removed).

This of course is a rather trivial fact, but it allows us to connect the g-
Conjecture 1.4.1 and Stanley’s Conjecture 1.4.3.
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Corollary 1.4.6. Let R = k[xy,...,24]/I be a standard graded Gorenstein
domain and let A be a simplicial complex on ground set [d]. Assume there
exists a monomial order X for which in<(I) = Ia. Then:

1. The h-vector of R is unimodal if and only if the h-vector of A is unimodal.
2. The h-vector of R satisfies conditions (1)-(3) of Conjecture 1.4.1 if and
only if the h-vector of A satisfies conditions (1)-(3) of Conjecture 1.4.1.

This again very simple observation has recently proved to be useful for
many classes of Gorenstein domains. Indeed for a substantial number of classes
of ideals I for which k[x1,...,24]/I is a Gorenstein domain it has been veri-
fied that there is a monomial order < for which in<(I) = Ia for a simplicial
complex A whose geometric realization is a sphere. In this case we say that I
has a spherical initial ideal . The first instance where it was shown that certain
classes of ideals have a spherical initial ideal was joint work of Victor Reiner
and the author in [48]. Here it was shown that the defining ideals of all Goren-
stein Hibi-rings have a spherical initial ideal, indeed they show that there is an
initial ideal that is the Stanley-Reisner ideal of a simplicial polytope. Goren-
stein Hibi-rings include a toric deformation of coordinate rings of complex
Grassmannians and quotients of the polynomial ring by some determinantal
ideals. Later Athanasiadis [2] generalized the construction given in [48] to a
much wider class of ideals. Both in [48], [2] and in further cases treated by
Ohsugi and Hibi [43] the ideals were all toric. The work of Bruns und Rémer
[12] verified the existence of spherical initial ideals for all Gorenstein Ehrhart
rings of integral polytopes which possess a regular unimodular triangulation.
In all the cases mentioned so far it was possible to verify that indeed there is
a simplicial polytope for which the Stanley-Reisner ideal occurs as an initial
ideal. Together with the g-Theorem 1.4.2 this shows the following (we refer
the reader to [13] for definition and further references):

Proposition 1.4.1 (Corollary 11 [13]) If R is the Ehrhart ring of an inte-
gral polytope that admits a regular unimodular triangulation and R is Goren-
stein then the h-vector of R satisfies (1)-(3) of Conjecture 1.4.1. In particular,
it 1s unimodal.

Beyond toric ideals in joint work with Jonsson [30] and Soll [54] we have
exhibited (respectively conjectured) an explicit spherical initial ideal for the
quotient of the polynomial ring in the entries of a generic skew-symmetric
(n x n)-matrix by its Pfaffians of fixed degree (respectively the quotient of
the polynomial ring in the entries of a generic (n x n)-matrix by its minors
of a fixed size). Further results in this direction including results on minors
of symmetric matrices and a very nice summary of the known examples can
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be found in the survey article [16]. We would like to mention that the latter
article also exhibits interesting connections to minimal free resolutions.
All these results lead to the question:

Question 1.4.7. For which classes of standard graded k-algebras k[z1,...,zq4)/I
that are Gorenstein domains is there a spherical initial ideal of I 7

If the answer to Question 1.4.7 is positive and in<(I) = I4 for a simplicial
complex that is know to satisfy the g-Conjecture 1.4.1 it then it follows that
R satisfies Stanley’s Conjecture 1.4.3. Clearly, not all Gorenstein domains can
be expected to even have a squarefree initial ideal. But even if there is no
squarefree initial ideal one may wonder whether one of the operations that
transform monomial ideals to squarefree monomial ideals will transform some
initial ideal to a Stanley-Reisner ideal of a Gorenstein* simplicial complex.

It should be noted that the conditions of the g-Conjecture 1.4.1 also follow
for a Gorenstein k-algebra if it can be shown that there is a quotient by a
regular sequence which has the so called Lefschetz property (see e.g. [38]).
We do not want to go into details here, but it should be noted that this
path was taken by Stanley [56] in its original proof of the necessity in the
g-Theorem 1.4.2. More recently, conditions on 0O-dimensional algebras that
imply the Lefschetz property have been studied intensively in Commutative
Algebra (see e.g. [38]).

Betti Numbers of Resolutions:

So far our open problems centered around the h-vector. In this section we
take a closer look at the Betti numbers of the minimal free resolution of a
Stanley-Reisner ring. From now on we again write S for the polynomial ring
k[x1,...,xq]. At the end of Section 1.2 we have established the transformation
between the multigraded Betti numbers f;; of the S-module k[A] and the h-
vector of A. Clearly in general, the Betti numbers cannot be calculated from
the h-vector only. In particular, the classification theorems for f-vectors of
simplicial complexes, Theorem 1.2.6, and h-vectors of Cohen-Macaulay sim-
plicial complexes, Theorem 1.3.12, do not yield a classification of the sequence
of Betti numbers of the corresponding class of simplicial complexes. Indeed
such a classification is a wide open problem.

Question 1.4.8. 1.1s there a good characterization of the sequences of non-
negative numbers (S, ..., 03,) that can occur as the sequence of Betti
numbers of a Stanley-Reisner ring k[A] of a simplicial complex A.

2. Is there a good characterization of the matrices (5;;) of nonnegative num-
bers that can occur as the bigraded Betti numbers of a Stanley-Reisner
ring k[A] of a simplicial complex A.
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Here the bigraded Betti number 3;; is defined as 3;; := EaeNdJa\:j Bi.a-
For example, substantial work was needed [50] to only prove parts of a con-
jecture by Herzog on bounds on some of the bigraded Betti numbers. So in
full generality this question, which indeed asks for a classification, appears to
be almost hopeless.

For ideals Ta in S for which S/I4 is Gorenstein the minimal free resolu-
tion has additional structure which looks particularly intriguing in context of
cellular free resolutions. This concept will become crucial in the later chapters
and will be introduced in Section 2.4. For now it may suffice to say that a
free resolution is cellular and supported by the CW-complex X if the differ-
entials are the differentials from the cellular chain complex of X homogenized
by monomial factors. Indeed, what we say in the next proposition about free
resolutions of k[A] for Gorenstein® A is true for any Gorenstein S/I. But
here we would like to confine ourselves to the case of Stanley-Reisner ideals
and even more to Gorenstein® simplicial complexes. Also there are even more
implications to the fact that S/Ia is Gorenstein (see Chapter 3 [12]).

Proposition 1.4.9 (Chapter 3 [12]). Assume A is a Gorenstein®* simplicial
complex. Then there is a minimal free resolution

7] O o
F: 05 F ... L F

of I such that:

1. ﬁr = I‘ks(Fr) =1.
2. B; = rkg(F;) =rkg(Fr—i—1) = Br—i=1, 0<i <r — 1.
3.0, =0'_, |, 1<i<r—1, when considered as matrices.

Now assume that for a Gorenstein® simplicial complex the minimal free
resolution is cellular and supported by the CW-complex X. What do we know
about X 7 Clearly, Proposition 1.4.9 tells us that there is a unique cell of
top dimension and that its removal from X leaves a CW-complex X’ whose
homology coincides with the one of a sphere of the same dimension. Assume X'
is indeed a sphere and moreover that it is the boundary complex of a polytope.
Then again Proposition 1.4.9 shows that the number of i-dimensional faces
of X’ equals the number of (r — ¢ — 1)-dimensional faces. Indeed, in addition
9; = 0t _,_, also suggests that X’ is indeed a self-dual polytope. A polytope is
called self-dual if it has the same face structure as its polytope dual. Little is
known about self-dual polytopes and there are not even many known classes
(see for example [7]). Thus it appears to be a worthwhile undertaking to study
cellular complexes that support the minimal free resolution of a Gorenstein*
simplicial complex and find out whether these complexes can be chosen to be
self-dual polytopes. This is rather daring for several reasons. First, it is known



104 1 Introduction

by work of Velasco [60] that not all monomial ideals even have a minimal free
resolution that is supported by a CW-complex. Even though [60] does not
explicitly clarify the Gorenstein* situation it at least makes it unlikely that in
this case any minimal free resolution is cellular. Second, even if the minimal
free resolution is supported by a CW-complex then by work of Reiner and the
author [47] and more conceptually again by Velasco [60] we know that it may
not be possible to choose a regular CW-complex. Recall, since a polytope
is a regular CW-complex, regularity is a prerequisite for a CW-complex to
be a polytope. Third, even if the monomial free resolution of the Stanley-
Reisner ring of a Gorenstein® simplicial complex is supported by a regular
CW-complex, then except for its homology there is little evidence that the
CW-complex can be chosen to be a polytope. Last, even if it is supported by
a polytope the duality of differential does not yet guarantee its self duality.

So let us be very modest and only ask for such constructions for very simple
and nice Gorenstein™ simplicial complexes; boundary complexes of simplicial
polytopes.

Question 1.4.10. Let A be the boundary complex of a simplicial polytope. Is
there a self-dual polytope that supports the minimal free resolution of 75 ?

Unfortunately, there are very few boundary complexes of simplicial poly-
topes for which we have a that good control over the minimal free resolution.
Even the n-gon poses an open problem here.

Question 1.4.11. Is there a self-dual polytope that supports the minimal free
resolution of the Stanley-Reisner ring of an n-gon ?

The last problem appears to be doable, even though work by Soll [53]
shows that some obvious approaches do not work so easily. But again the
work in [53] shows that the answer is yes for small n.

Here we close this introduction, hoping that we have given convincing
evidence that the topic of the subsequent chapters relates well to central
questions in Algebraic Combinatorics.

Exercises

Exercise 1.4.12. Give a proof of the binomial expansion Lemma 1.2.5.
Exercise 1.4.13. Describe for general parameters d and [ the minimal free
resolution of k[Uq,].

d—1
l

Exercise 1.4.14. Give a proof for ﬁl,l(Ud,l, k) = Al
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Exercise 1.4.15. Deduce Corollary 1.3.9 from Theorem 1.3.8.

Exercise 1.4.16. Find a statistics partitioning the set of I-subsets of [d] into
1+ 1 subsets Vj, ..., V. such that (#Vo,...,#Vi) = h(Ua,).

Exercise 1.4.17. Give an example of a simplicial complex A and fields k& and
k' such that A is Cohen-Macaulay over k but not over k’.

Exercise 1.4.18. Show that any permutation of a regular sequence is a reg-
ular sequence.

Exercise 1.4.19. Show that if k[A] is Cohen-Macaulay, then if k is suffi-
ciently large there is a maximal regular sequence consisting of homogeneous
polynomials of degree 1.

Exercise 1.4.20. Deduce Proposition 1.3.3 from Exercise 1.4.19.

Exercise 1.4.21. Give an example of a simplicial complex A that is not
Cohen-Macaulay over any field (even any ring) but still has nonnegative h-
vector.

Exercise 1.4.22. Let A be a simplicial complex over ground set {2. Then:

1. A* is a simplicial complex.

2. (A*)* = A.

3. The geometric realization of A* is a deformation retract of the set theo-
retic difference of the boundary of the full simplex on {2 and the geometric
realization of A. (This exercise requires some familiarity with basic ho-
motopy theory).

Exercise 1.4.23. Show that any Gorenstein® simplicial complex is a pseudo-
manifold (i.e. each face of codimension 1 is contained in exactly two facets).

Exercise 1.4.24. Prove Proposition 1.4.4. Hint: Show that the images of the
monomials that do not lie in the initial ideal from a linear basis of both k-
algebras.

Exercise 1.4.25. Show that a monomial ideal I is the Stanley-Reisner ideal of
a simplicial complex if and only if it can be generated by squarefree monomials.
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Basic Definitions and Examples

In this chapter we define the concept of a cellular resolution, which lays the
ground for the application of discrete Morse theory in Commutative Alge-
bra. Since the concept of a cellular resolution uses the concept of multigraded
free resolutions and CW-complexes as an ingredient we define these concepts
first. Indeed we have already given definitions of resolutions and simplicial
complexes in Chapter 1 in a more informal way. In this chapter will be more
rigorous and also add more details and examples. More precisely, Sections 2.1
- 2.4 give the definitions of free resolutions, CW-complexes, simplicial com-
plexes, cellular free resolutions, monomial modules and co-Artinian monomial
modules.

2.1 Multigraded Free Resolutions

We start with basic definitions from Commutative Algebra. In particular, we
study multigraded free resolutions in more detail and give exact definitions.
We first review some basic notions of Commutative Algebra and some of the
definitions already provided in the introduction.

For a field k we denote by k[x1,...,24] the polynomial ring over k in d
variables. A monomial in k[z,...,2z4] is a product x* = z" ---z5* for a
vector a = (ay, ..., aq) € N% The vector « is then called the multidegree of
x® and the degree deg(x?®) is |a|] = a3 + - 4+ a4. Here we use N to denote
the natural numbers including 0. As in Chapter 1 by [d] we mean the set of
integers {1,...d} form 1 up to d and for a subset A C [d] we denote by x4
the monomial [],. 4 @;.

Recall, that a finitely generated k-algebra R is up to isomorphism the
quotient k[xq, ..., z4]/I of the polynomial ring k[x1, ..., x4] in a finite number
of variables by an ideal I.
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2 Basic Definitions and Examples

Ezxample 2.1.1.

1.

Let k[x1,....z4] be the polynomial ring in d variables over the field k. Let
OS),, be the ideal that is spanned by all polynomials

1

PI(CRVE VA

j=1
for all subsets A = {i; < --- < 4;} C [n] of cardinality 1 <[ < d. Then
k[z1,...,24]/OSq, is a finitely generated k-algebra. This ideal actually
connects to matroids (see Example 1.2.1) and is known as the Orlik-
Solomon ideal of the uniform matroid U, ;—1 (see Question 2.1.14 for
more details).

. If we write m = (zq,...,z4) for the ideal generated by the variables in

k[z1,...,xq4) then its I-th power m! is the ideal generated by all monomials
x“ of degree [; i.e. |a] = 1.

Definition 2.1.2.

1.

A finitely generated k-algebra R is called (standard) Z%-graded if there is
a direct sum decomposition
R= P R.

a€Zd

of R as a k-vectorspace by subspaces Ry, o € Z2, such that
}%a}%g C:}{a+ﬁ
and Rg = k.

AfR=@, cp0 Ra is a Z4%-graded k-algebra, then the R-module M is called

72 -graded if there is a direct sum decomposition

M:@Ma

a€Zd
as k-vectorspaces such that
}%QA4B C A1a+g.
If
N=P N
a€Zd

is another Z4-graded R-module and
¢o: M — N
is an R-linear map, we call  homogeneous if for all « € Z¢ we have

d(My) C Ng.
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Ezample 2.1.35.

1. Clearly the polynomial ring R = k[z1,...,24] is Z%graded. Here R, =
kx“ is the one dimensional vectorspace spanned by the monomial x¢ if
a € N and R, = 0 otherwise. If I is any ideal in k[z1,...,24] which
is generated by monomials then the quotient k[x1, ..., x4]/I inherits this
Z%-grading and again is an example of a Z%graded k-algebra.

2. As a special case of (1) the ideal m!, which is generated by all monomials
of degree [, inherits the Z? grading from k[z1,...,74] and therefore the
quotient k[xy, ..., z4]/m! is Z%-graded as well.

3. If we denote by T = k[mlﬂ, e ,xljiﬂ] the ring of Laurent polynomials
then T can also be considered as a Z%-graded k[z1,...,x4]-module. The
Z%-degree of a Laurent monomial x® = it -z is given by a € ze,

4. The k-algebra k[z1, ..., 24]/OSy, in general carries no obvious Z¢-grading
for any e > 2. For any such grading we would need the generators of O.S,, ;
to be homogeneous with respect to this grading on k[x1,...,x4]. Still if
we impose an Z-grading on k[z1,...,24] by the usual degree function,
then all generators of OS,,; are homogeneous of degree | — 1. Thus the
Z-grading carries over to the quotient.

Let us now turn to a class of Z?graded k-algebras that appears in the
study of toric varieties (see e.g. [35] for more details on this connection).

Definition 2.1.4. 1. An affine semigroup A is a finitely generated (i.e., A =
NA; + -+ N, for some elements A1, ..., \, € N?) sub-semigroup of the
semigroup N?.

2. For a given affine semigroup A we order Z* by o < f if and only if
a+~ =3 for some v € A. We write (Z%, A) for the poset (i.e., partially
ordered set) Z with the order induced by A.

3. Let k be a field. A ring R is called affine semigroup ring if R = k[A]

is the subring of S := k[x1,...,xq] with k-basis given by the monomials
x* = xi‘l ~--x2“" for elements A\ = (\1,...,\q) € A, where A C N? is an

affine semigroup.

4. Let R = k[A] be an affine semigroup ring. We denote by m C k[A] the maz-
imal homogeneous ideal in k[A]. This is the ideal generated by all mono-
mials x» = 27" -- ~x2d for elements A = (A1,...,Aq) € A —{(0,...,0)}.

Note, that an affine semigroup-ring R = k[A] is naturally Z?-graded, where
R=@,cze Ra with R, =0 if a ¢ A and R, = kx® if a € A. For A = N we
have k[A] = k[x1,...,24] and the partial order as defined above is the usual
partial order given by componentwise comparison; that is o < 3 if and only
if a; < G; for all i = 1,...,d. We will use the general setting of arbitrary A
when we study resolutions of the field k over an affine semigroup ring k[A].
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Ezample 2.1.5. 1.1f A; = {a € {0,1}? | |a| =1 } for some | € N\ {0} then 4,
is called the I-the squarefree Veronese of k[x1,...,x4]. If I =1 then A; =
N¢ and k[A;] = k[z1,...,24]. For [ = 2 we get that k[As] = k[z;z; | 1 <
i < j <dJ. If we consider the polynomial ring k[z; ; | 1 <i < j < d] then
the map sending z; ; to x;x; defines a surjection onto k[As]. It can be seen
that the kernel is the ideal generated by all binomials z; j2, s — 2 s2r,;-
Thus if we grade z; ; be e; +e¢; for the i-th and j-th unit vector in N9 then
the polynomials z; ;2 s — 2 s2r ; are homogeneous of degree e; +e;+e,+e,
and the Z? grading carries over to the quotient k[A5] and coincides with
the Z%grading inherited from Ay C N If d = 3 and | = 2 then in
the poset (Z4, Ay) we get (1,1,0) < (1,2,1) and (0,1,1) < (1,2,1) but
(1,0,1) 4 (1,2,1) since (0,2,0) & As.

2. For a permutation o € S; we denote by X7 = (x7;) € R4 the corre-
sponding permutation matrix ; i.e. z7; = 0 for j # o(i) and o = 1.
Then the set of all permutations matrices X? for ¢ € Sy generates
an affine semigroup, which we denote by By. The corresponding affine
semigroup ring is of particular combinatorial interest. The Hilbert-series
H(k[Ba),t) = Y, alt’ has the property that the coefficients a¢ count
the number of mag_;ic squares — d X d matrices with entries in N — with row
and column sums i. The numbers a¢ have been subject to considerable
attention in Enumerative Combinatorics and provided one of initial mo-
tivations for the introduction of techniques from Commutative Algebra
into Combinatorics (see [57] for more background).

Definition 2.1.6 (Multigraded free chain complex). Let R be a Z9-
graded k-algebra, C; for all i € N a free (finitely generated) 74-graded R-

module and

0'+1 81' 0'—1 1%}
CI Z—>C74—>Ciflz—>—l>C0

a sequence such that all maps 0; : C; — Ci_1, i € N — {0}, are Z4-
homogeneous and 9;00;+1 = 0 for alli € N—{0}. Then C is called a Z%-graded
or multigraded free chain complex (over R).

Ezample 2.1.7. Let R = k[z1,...,24] and consider C : 0 ﬁ>Cl ﬁ»cm where

C1 = R(—(1,1,0)) ® R(—(1,0,1)) ® R(—(0,1,1)),

CO = R(_(17 Ov 0)) S R(_(07 17 O)) 2] R(_(Oa 07 1))
We define 01 by sending f € R(—e; —ej) to z; f; —x;fj for 1 <i < j <3,
where f; (resp. f;) denotes f € R(—e; —e;) considered as an element of R(—e;)

(resp. R(—e€;)). As usual e;, e; denote the corresponding unit vectors in N3.
Then C is an Z3-graded chain complex.
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Remark 2.1.8. Note that if R = k[/] is an affine semigroup ring and

9; O —
c: ...2 B¢ —>C1 1= —>C0

is an Z?-graded free chain complex over R then C; = @74 Cf where C¢ =
R(—a)"" is the free R-module of rank 3¢ with generators in multidegree a.

Definition 2.1.9 (Multigraded free resolution). Let R = k[A] be an
affine semigroup ring. Let M = @, cza Mo be a Z4-graded R-module. A 7.%-
graded free resolution or multigraded free resolution F of M is a Z%-graded
free chain complex

o; ) o;
F.ooodmy g G 9

over R, satisfying the following properties:
1. F is exact, that is,

Kerd; = Imd; 41 for all i € N\ {0},
2. Coker 01 = M

For first examples of multigraded free resolutions we refer to the examples
given in the introduction 1.2.10.

Remark 2.1.10. Let R = k[A] be an affine semigroup ring and

1+1 -1 4]
Fo:o- .7:—>.7:Z 1—> —1>.7:0

a Z%graded free chain complex. Then F is a free resolution of the Z?-graded
R-module M if and only if there is a homomorphism of 9y : Fg — M of
Z%-graded modules, such that

PRCEE Y I RN SRR NNy ) N

is exact.

Definition 2.1.11 (Minimality of a multigraded free resolution).
A Z%-graded free resolution

0; 0; 0;— 7]
FooooBERSFL SR,

Fi = @pepa FE, FY = R(—a)%" of the Z4-graded R = k[A]-module M is
called minimal if for all i € N — {0} the image of 0; is contained in mF;_;.
The numbers

B (M) := B
are called the (multigraded) Betti numbers of M. By B; = Y, o4 37 we denote
the Betti numbers of M.



112 2 Basic Definitions and Examples

Remark 2.1.12. Existence and uniqueness up to chain-complex isomorphisms
of the minimal free resolution are well known facts (see [18]) from Commu-
tative Algebra. The term minimal is derived from the fact that a minimal
resolution

Oit1 0; 0i—1 o
—)‘7-—7,—“?171—)—1)'7:0

of the R-module M simultaneously assumes minimal values for all ranks 3,
where F; = @, oz F and Ff* = R(—a)%".

Exercises and Questions

Exercise 2.1.13. Given aminimal free resolution of theideal I in k[x1, ..., z4].
Show how to construct from the given minimal free resolution a minimal free
resolution of the quotient k[x1, ..., 2z4]/I. Note, the construction should trans-
form multigraded resolutions into multigraded resolutions.

Question 2.1.14. Let M be a matroid over the ground set [d] (see Example
1.2.1 for a definition of matroids). Recall, that a set A = {j1 <--- < 5} C[d]
is called a circuit of M if A ¢ M and A\ {j;} € M for all 1 <i <1 (see also
Example 1.2.7). Let OS) be the ideal in k[z1, ..., x4] that is generated by all
22:1(71)"&4\{%} for circuits A = {j1 < -+ < ji} of M (see Example 2.1.1
(1) for the case M = Ug;). Then k[x1,....xzq4]/OSp is a commutative version
of the Orlik-Solomon algebra (see [44]). The Orlik-Solomon ideal for general
matroids has been subject to substantial research recently (see for example
[58]) and still appears to be a mysterious and difficult object. In particular,
the minimal free resolution of OSy, is not known for general M.

Question 2.1.15. Let M be a matroid (see Example 1.2.1) over [d]. Let us
denote by {Bi,..., By} the collection of its inclusionwise maximal indepen-
dent sets — the bases of the matroid M. Then consider the affine semigroup
Ay € N9 that is generated by the vectors ep, = ZjeBi e; for the j-th
unit vectors e; in R?. It has been asked by Sturmfels whether the minimal
free resolution of the field k — considered as an Z9-graded k[A,]-module by
k = k[An]/m for the ideal m generated by the xp;. — can be described. In
particular, it is open whether §; , = 0 for |a| # i. The latter question is
equivalent to saying that k[Ay/] is Koszul.

Exercise 2.1.16.

1. For [ > 1 find a Z%-graded minimal free resolution of the ideal (z!,...,z})
in klxy,..., 4.

2. Find a Z%-graded minimal free resolution of the ideal (z2;4 12242 | 0 <
1<d-—1)in kf[z1,..., 2]
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2.2 Basics of CW-Complexes

After being prepared to work with free resolutions we will now recall some
basic definitions from Algebraic Topology. In particular, we will give the defi-
nition and examples of CW-complexes. In later chapters this seemingly unre-
lated concept will allow us to endow free resolutions with a geometric struc-
ture.

Let us start with the basic definitions around CW-complexes. We refer the
reader to the book [23] for more details.

Definition 2.2.1. A topological space is called an (open) cell of dimension d
(or d-cell) if it is homeomorphic to the d-dimensional open ball

o

d
Bi={z = (21,...,2q4) € R? | Za:f <1}
i=1

Analogously, a topological space is called an closed cell of dimension d (or
closed d-cell) if it is homeomorphic to the d-dimensional ball

d
Bl = {2z = (x1,...,24) € R?| Zasfgl}.
i=1

Definition 2.2.2 (CW-complex). We call a topological space X a CW-
complez, if there exists a collection X*) = {o; | i € I} of disjoint open cells

such that
X = U O,

satisfying the following properties:

1. X is Hausdorff.
2. For every open cell o0 € X of dimension d, there exists a continuous
map

fJ:JQBd—>X

from the corresponding closed d-cell B® such that the restriction f2 :=
f"'é’d s a homeomorphism

© ~
fo:B*—= o

and such that the image f,(S9™1) of the boundary S4=1 of B? intersects
only finitely many cells non-trivially, all of which have dimension at most
d—1.

3. A subset A C X is closed in X if and only if ANG is closed in & for all
oe X,
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For a cell o € X, we call the map
fr:BY— X

the characteristic map of o and & = f,(B?) the closed cell that belongs to o.

For d € N we denote by X% C X the union of all cells of dimension at
most d and call X the d-skeleton of X. By X(? we denote the set of all cells
of dimension d.

A subcomplex of X is given by a subset of the cells of X that forms a
CW-complex with the same characteristic maps. We say (X, A) is a pair of
CW-complezes (or CW-pair) if X is a CW-complex and A a subcomplex of
X.

If (X, A) is a pair of CW-complexes then we denote by (X, A)@ the set
of d-cells of X that do not belong to A. We set (X, A)*) :=Js0(X, A)D.

There is a natural way to view (X, A)*) (X*) respectively) as a partially
ordered set: For cells 0,0 € (X, A)*) (X respectively) we set o' < o if and
only if the closed cell o' is a subset of the closed cell 7. We say that o’ is a
facet of o if ' # o and for T € (X, A)) the inclusion o' < T < o implies
T € {0,0'}. We say that o is a facet of X if o is mazimal with respect to the
above partial relation on X ™).

Fig. 2.1 gives an example of a CW-structure on the 2-sphere.

Ezample 2.2.3. Since a (closed) 0-cell consists of a point only there is a unique
map from any closed d-cell to a 0-cell. The resulting attaching map corre-
sponds to collapsing the boundary of B? to a point. Thus any CW-complex
consisting of a 0-cell and a single d-cell for some d > 1 only is homeomorphic
to a d-sphere S? .

Remark 2.2.4. 1. Note that in all constructions mentioned above, a single
CW-complex X can also be regarded as the CW-pair (X,0). In the re-
mainder of these lecture notes we will sometimes implicitly identify X
with (X, 0).

2. The letters “CW?” in the term “CW-complex” stand for “closure - finite-
ness” (referring to Property 2 in Definition 2.2.2.) and “weak topology”
(referring to Property 3 in Definition 2.2.2.).

The Definition 2.2.2 of a CW-complex shows that indeed the data needed
to define a CW-complex is sufficient to reconstruct this complex from the sub-
complexes formed by its faces of dimension < 7 for all ¢ > 0. This constructive
viewpoint is actually better suited for combinatorial application. The remain-
ing section is devoted to a presentation of this aspect. First, we need to recall
the process of gluing two topological spaces.
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Skeleta Cells
X=X2= : i

X1 =
o—O
o—O

X0 =

Fig. 2.1. Realizing the 2-sphere as a CW-complex

Definition 2.2.5. If X andY are topological spaces, A C X closed, f : A —
Y a continuous map, we denote by X Uy Y the quotient space of the disjoint
union XUY by the equivalence relation that is generated by the relations a ~
f(a) for all a € A. The space X Uy Y is endowed with the quotient topology
induced by this equivalence relation.

Lemma 2.2.6. A topological space X is a CW-complex if and only if it can be
obtained by the following process of attaching cells of increasing dimensions:

Let X° be a discrete set of points. These points form the 0-skeleton. As-
sume the (d — 1)-skeleton X91 is constructed. Let UUGIng be a disjoint
union of balls B = B of dimension d, o ranging over some index set 1. For
all o € Iy let foy : ST 1 = OB — X1 be a continuous map whose image
intersect only finitely many cells in X1 non-trivially.. These maps induce
a continuous map

N d—1 _ o/ d d—1
f.UUGId,SU _8(Ua€IdBU) — X )
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S4=1 denoting the sphere that bounds B2. We construct the d-skeleton of X
by setting '
d d d—1
X4.= (UUeIdBU) Uy X941,
Note that the map f carries the information of how the d-dimensional balls
BY are attached by their boundaries S2=! to X211, The map fa, is called the
attaching map of o.
We set
X = [Jx
deN
We define the topology of X by setting for A C X: A is closed in X if and
only if AN X? is closed in X? for all d € N.

Proof. If a topological space X is given by a construction as described above,
the cells of X are in one-to-one correspondence with the elements of the dis-
joint union I := (Jc 1a : The characteristic map f, of the cell corresponding
to the index o € I; is given by the composition

By — (|

Bt — Bi——| By Uy X1 — x.

o€ly oely

The cell itself is given by f,(B%). On the other hand, if X is a CW-complex
and 0 € X®) a cell, f, : B — X its characteristic map, we define the
corresponding attaching map by

foo = folgi—r : 841 =B — X971

Using the properties of the quotient map

. dryyd—1 . d d—1
UaeIdBUUX *»(UUEIdBU) UfX )

it is straightforward to check that the identity map between two copies of X,
one endowed with the topology according to the definition of the CW-complex
and one with that according to the attaching construction, is continuous in
both directions. This proves the assertion.

Exercises

Exercise 2.2.7. Let A = {H;,...,H;} be a finite set of affine hyperplanes
in R?. Fix for each hyperplane H; a linear form ¢; : R? — R such that H; =
Ker/;. To each point x € R we associate the sign-vector sgn(x) = (sgn(¢1(x)),
...,sgn(¢¢(x))), where for a real number a € R its sign sgn(a) € {0,£1}
is defined in the usual way. For each € = (e1,...,e5) € {0,£1}/ consider
ce = {x € R? | sgn(x) = €}. the collection of points in R? with sign-vector e.
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1. Show that each ¢, is an open cell.
2. Let X 4 be the union of the cells ¢, that are bounded subsets of R%. Show
that X 4 is a CW-complex with cell structure given by the bounded c..

Exercise 2.2.8. Let S* be the unit circle. Construct for n > 1 a CW-complex
X, which is homeomorphic to (S')™ and minimizes the number of cells among
all CW-complexes homeomorphic to (S*)™.

2.3 Basics of Cellular Homology

In this section we introduce cellular homology for CW-complexes X and for
pairs (X, A) of CW-complexes (see [11] or [23]). Indeed, it seems that the
definition of cellular homology is much more complicated than singular ho-
mology — and of course it is well know that the two theories coincide on
CW-complexes. But in Topological and Algebraic Combinatorics one cares
about explicit constructions and calculations. Thus it is necessary to set up
computable homology theories and cellular homology is one of them. Here we
would like to be more precise about what we mean by a ‘computable homol-
ogy theory.” We will require that as input data the space is given in a form
from which one can build chain groups with explicit bases and matrices rep-
resenting the differentials. Cellular homology is computed from the cellular
chain complex, which we now define.

Definition 2.3.1 (Cellular chain complex). Let (X, A) be a CW-pair. For
1 € N let C;(X, A) be the k-vectorspace freely generated by the i-cells of X that
do not lie in A. The following construction defines the differentials of a chain
complex

C(X,A) : - 2Teix, A) Pne i (x, )2 2 ex, A) %0

called the cellular chain complex of the pair (X, A).
Fori €N let m;: X* — X'/ X1 be the canonical projection. Note that

Xix=t= \/ s,
ocex ()

with S = S x {o} denoting a sphere representing the image of the closed cell
fo(BL) under the projection ;. Here the wedge is taken by choosing a base
point x € S* and by identifying all (x,0), o € X,

Fori € Nlety; : B — S be any continuous map collapsing the bordering
sphere S™™1 of B* to the base point of S* such that the restriction to the
interior of B' is a homeomorphism onto its image. For o € (X, A)D define
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pe ¢ X — S such that ps © fo = ;i and ps © for is the constant map onto
the base point of S* for all o’ € (X, A)D, o # o'. We call p, the cellular
projection map corresponding to the cell o.

Recall, that for a map f : S — S* one defines its degree degf to be
the unique integer such that the induced homomorphism in homology fi :
H;(S"Z) — H;(S%Z) is multiplication with degf.

Let o be an i-cell. We set

0i(0) :== Z [T:0]T.
Tex (-1
with
[7: 0] :=deg(pr o for)-
This defines the differential 0; : Ci(X, A) — C;—1(X, A) .

Indeed Definition 2.3.1 bears the claim that the 0; are differentials; i.e.
0; 0 0;41 = 0 for all i > 0. We leave the verification of this claim as Exercise
2.3.7. The next result now shows that the complex we have set up indeed
calculates the ‘right’” homology theory.

Theorem 2.3.2 (see p. 204 [11]). The singular homology H.(X, A) of the
pair (X, A) is isomorphic to the homology of the chain complex C(X, A).

For our applications to free resolutions the class of acyclic complexes will
be central.

Definition 2.3.3 (Acyclic CW-complex). Let k be a field. A CW-complex
X is called acyclic if we have:

k fori=20

0 otherwise.

Hi(X: k) = {

Note that a connected CW-complex X is acyclic if and only if Kerd; =
Imd; ;1 for i > 1. This condition is reminiscent of the same condition for the
differential in a resolution. We we will make this more precise in Proposition
3.1.2.

CW-complexes form a generalization of spaces called (geometric) simplicial
complezes . These are built from affine simplices in the following way:

Definition 2.3.4 (Simplicial Complex).

1. Let vg, . ..,v; € R? be a finite set of points in Euclidian space. The points

Vg, ..., 0; are called affinely independent if Z)\l,vl, =0 and Z)\U =0

v=0 v=0
implies all \, = 0. (This is equivalent to the property that the smallest
affine subspace of R® which contains the points vy, ..., v; has dimension

i.)
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2. A (geometric) simplex o = (vg,...,v;) is defined as the set of all linear
combinations Zf/zo AU, such that Zi:o A, =1 and all N, > 0, where
v0,...,0; is a set of affinely independent points in some R%.

3. For a geometric simplex o = (vy, ..., v;) we refer to i as the dimension of
.

4. We regard () = 0 as the unique simplex of dimension —1.

5. Note that if 0 = (vo,...,v;) is an geometric simplex then (vyy,...,vy,)
is a geometric simplex for any 0 < vy < ... < v < i as well. We call
(Vugy -+, Uy, ) a k-face of o.

6. A set X of geometric simplices is called simplicial complex if
a)o € X and T a face of o implies that T € X,
b) o € X and 7 € X implies that o N T is a face of both o and 7.
7. Simplices of X of dimensions 0 are called the vertices of X.

The following remark clarifies the relation of abstract and geometric sim-
plicial complexes. Note that when we first encountered this correspondence in
Section 1.3, instead (vo,...,v;) we used conv{vy,...,v;} to denote the geo-
metric simplex or equivalently the convex hull. But in order to be able to
relate simplicial to cellular homology we have to order the vertices of a geo-
metric simplex and therefore subsequently use the notation (vo,...,v;). We
refer the reader to the book [37] or to Chapter 1 (around Proposition 1.3.4)
for more facts.

Remark 2.3.5. An abstract simplicial complex over ground set {2 is a subset
A C 29 of the power set of a given (finite) set V' such that for all A € A and
all B C A we have B € A. In the theory of Combinatorial Algebraic Topology
the following facts (see [37]) are well known:

1. For every abstract simplicial complex A there exists a geometric simplicial
complex X' and an isomorphism

A Y

of partially ordered sets, that is, for all A, B € A such that A C B we
have #(A) C @(B). In this situation we say X is a geometric realization
of A.

2. Two geometric simplicial complexes realizing the same abstract simplicial
complex are homeomorphic.

Justified by the previous remark, in the remainder of these lecture notes
we will not distinguish between abstract and geometric simplicial complexes.

To see that simplicial complexes can be viewed as a special class of CW-
complexes consider the following:
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Proposition 2.3.1 (see [11], p.245-247) Let X be a (geometric) simplicial
complex. Then there exist characteristic maps fy : B® — X := Uses o
that turn X into a CW-complex. The closed cells of this CW-complex are the
affine simplices of X. One can choose the characteristic maps f, such that
the coefficients [T : o] of the cellular homology of X are given in the following
way: If 0 = (Vg .-, 0;), T= (00, Vy_1,Vp41,---,0;) then [T : 0] = (1)

Indeed simplicial complexes are examples of regular CW-complexes. This
concept will be defined and serve as the starting point for discrete Morse
theory in Section 4.1 (see also Exercise 2.3.8).

Exercises

Exercise 2.3.6. Let C; be a free Abelian group i > —1, where C_; = 0.
Let 0; : C; — C;_1, i > 0, be homomorphisms of Abelian groups such that
0;00;41 = 0 fori > 0. If Cy /Imdy = Kerdy/Imd, is a free Abelian group. Then
there is a CW-complex X such that (C;, 0;)i>0 is the cellular chain complex
of X.

Exercise 2.3.7. Show that the maps 0;, ¢ > 0, set up in Definition 2.3.1 are
indeed differentials; i.e. 9; 0 941 = 0.

Exercise 2.3.8. Show that the differential of the chain complex calculating
cellular homology of a (geometric) simplicial complex has only coefficients
0, £1.

Exercise 2.3.9. Let X 4 be the CW-complex from Exercise 2.2.7. Show that,
the differential of the chain complex calculating cellular homology of X 4 has
only coefficients 0, 1.

Exercise 2.3.10. Prove Proposition 2.3.1.

Exercise 2.3.11. Let M be a matroid considered a an abstract simplicial
complex. Show that the homology of M is concentrated in dim(M); that is

H;(M;Z) = 0 for i # dim(M).

2.4 Cellular Chain Complexes and Cellular Resolutions

In order to link CW-complexes to Z%graded modules we need to equip the
CW-complex itself with a suitable grading. We define the class of gradings
that will become relevant later in this section.
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Definition 2.4.1 (Graded CW-complex).

1. For a (not necessarily finite) partially ordered set (P,=<) and a map
f: (X, A% — P we call (X, A, f) a P-graded CW-pair if f is order
preserving. (See Definition 2.2.2 for the definition of the partial order on
(X, 4)).)

2. If (P,=X) is a partially ordered set, (X, f) a P-graded CW-complex and
p € P, we denote by X<, the P-graded sub-C'W-complex of X consisting
of all cells o € X*) such that f(o) < p.

Ezxample 2.4.2. 1. Let X be a CW-complex and assume that P is a lattice
(i.e.; a partially ordered set for which infima and suprema exist). Then any
map f: X(® — P induces a grading (X, f) on X. Namely, we grade the
cell o be the supremum of all the gradings of the 0O-cells in the boundary
of o.

2. Let X be a CW-complex and let P be the set of cells of X ordered by
inclusion. Then if f is the map sending the cells of X to their copy in P
the pair (X, f) is a graded CW-complex.

Z4%graded free chain complexes and in particular free resolutions can be
constructed from graded CW-complexes in the following way:

Definition 2.4.3 (Cellular chain complex, cellular resolution). Let
R be a ring. We call a Z%-graded free chain complex

c:..28e, 2 2 ey, = @ oy, Cf = R(-a)¥

a€Zd
cellular if there is a (Z%, A)-graded CW-pair (X, A, gr) such that:

1. For alli € N there is a basis e, of CF indexed by the i-cells o in (X, A))
such that gr(o) = .
2. For alli € N—{0}, 0 € (X, A)) we have

Dies = Z [0 : o] Kgr(d)—gr(v') ol

o>o'eX (=1

where [0 : o] is the coefficient of ¢’ in the differential of o in the cellular
chain complex of the pair (X, A).

In this situation we write C(g); 4 for the given chain complex and say that
C(g)r(,A) is supported by the (Z¢, A)-graded CW-pair (X, A, gr). When the Z9-
graded free chain complex C is a Z?-graded free resolution C = F, we say that
F = .7:?;{7A) is a Z%-graded free cellular resolution supported by the (Z<, A)-
graded CW-pair (X, A, gr).
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Example 2.4.1 Consider the ideal M = (z3xq, 323, 2173, 217273) in S =
klx1,x9,x3]. The multigraded minimal free resolution of M over S is given
by:

T3 0 0

0z 0 | S(21,0)

S(—(2,1,1)) 0 0 o @
o vy —xg 2] S(=(0,2,1)

F: 00— S(—(1,2,1)) @ — M ——0

S S(—(1,0,2))

S(—(1,1,2)) &
S(—(1,1,1))

This resolution is easily seen to be cellular with F = F5 for the graded
complex (X, gr) from Fig. 2.2:

(21,1

(1,21)

(0,2,1) (1,0,2)

Fig. 2.2. Graded CW-complex from Example 2.4.4

The above example is a special case of Example 2.4.2 (1) for the given
CW-complex and the lattice N> — note that here we use lattice in the order
theoretic sense — with partial order given by componentwise comparison in N.

Exercises and Questions

Exercise 2.4.4. Show that the resolutions from Exercise 2.1.16 are cellular
and describe the corresponding complexes.

Exercise 2.4.5. Assume the Z?-graded k[zi,...,74]-modules M and M’
have cellular minimal free resolutions. Show that M @ M’ also has a cellular
minimal free resolution.
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Question 2.4.6. Assume there are cellular minimal free resolutions F and F’
of a Z4-graded k[z1,...,x4)-module M. Let X be the CW-complex which
supports F and let X’ be the CW-complex that supports F'. Are X and X'
homeomorphic 7 homotopy equivalent ?

2.5 Co-Artinian Monomial Modules

In this section we introduce the concept of a co-Artinian monomial module.
This notion was coined in [6] where the authors also exhibit cellular resolu-
tions for them. Monomial modules will be one of the central examples that
demonstrate the use of discrete Morse theory for the construction of minimal
free resolutions in the next chapter. It does not immediately connect to the
concepts defined so far in this chapter, but all ingredients will come together
in Chapter 3.3.

Monomial modules generalize the concept of a monomial ideal and also
capture modules whose structure is determined by a sublattice of the integer
lattice. In the following we denote by

T:=k[zF!,.. .25 = @kga

a€Zd

the ring of Laurent polynomials generated by all monomials x* = z{*-...-23?
for a = (ay,...,aq) € Z%.

Definition 2.5.1. 1. An S = k[xy,...,24]-module M is called monomial
module if it is a submodule of T generated by monomials x* for o € Z.2.
2. A monomial module M is called co-Artinian if for each x* € M there are
only finitely many x°® € M such that x* 8 € S.
3. Let M be a monomial module. A monomial x* € M is called minimal if
% g M foralli=1,...,d. We denote by MinGen(M) the set of minimal
monomials in M.

The following lemma gives an alternative definition of co-Artinian mono-
mial modules. It shows why the conditions from Definition 2.5.1 are well suited
for our combinatorial setting in which all modules in a resolution are finitely
generated.

Lemma 2.5.2 ([6]). A monomial module M s co-Artinian if and only if it
is generated by the set MinGen(M) of its minimal elements.

Ezample 2.5.3. An ideal in S = k[x1, ..., z4] that is generated by monomials
is called a monomial ideal. Of course, any monomial ideal is an example of a
co-Artinian monomial module.
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We close by showing that the class of co-Artinian monomial modules is
substantially richer than the class of monomial ideals.

Definition 2.5.4. A subgroup L C Z% of the additive group Z% is called inte-
ger lattice .

The following obvious lemma provides another class of examples of co-Artinian
monomial modules:

Lemma 2.5.5 ([6]). Let L C Z® be an integer lattice. Let M C T be the
monomial module generated by all monomials x* such that oo € L. Then My,
is co-Artinian if and only if LN N? = {(0,...,0)}.

Ezample 2.5.6.1f A = NX\; + --- + N\, C N? is an affine semigroup. Then
the lattice Ly = ZA1 + - - - + Z\, generated by A is co-Artinian if and only if

A={(0,...,0)}.
Exercises

Exercise 2.5.7. Show that for a monomial ideal there is a unique minimal
set of monomials that generate the ideal.

Exercise 2.5.8. Let I be a monomial ideal in k[z1,...,z4]. Assume that I
is minimally generated by the monomials m,,...,ms. Let s; be the maximal
exponent of the variable x; in the monomials mq,...,ms. Consider the poly-

nomial ring k:[;cl(-j) |1<i<d,1<j<s]. Toeach monomial m; we associate
the monomial m?oz where we replace the maximal power z! of x; in m; by
xl(-l) . :L'El). Now the ideal IP°! generated by the monomials ij’Ol, 1<j<f,
is called the polarization of I. ‘

1. Given a minimal free resolution of I, construct a minimal free resolution
of 179,
2. Use (1) to show that the Betti numbers 3; of IP°! and I coincide.
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Cellular Resolution

This chapter contains more facts about cellular resolutions and in particular
many examples of cellular resolutions. The set of these examples is chosen
with some personal bias from a big set of examples of cellular resolutions that
have emerged over the last years. We try to be a bit more complete by covering
in the exercises some of the examples that are left out.

3.1 When Does a CW-Complex Support a Cellular
Resolution ?

In order to formulate a criterion for a CW-complex to support a give Z9-
graded chain complex C we need to define certain subcomplexes of C.

Definition 3.1.1. Let

Qit1 0; Oi—1 0
C : —>Cl—l> i,1—>...—1>607

Ci =P Cf, CF = R(—a)%" be a Z%-graded free chain complex over the

affine semigroup ring R = k[A]. Recall, that A induces a partial order on 7%
by a = B if and only if a +~ = 3 for some v € A.

1. We denote by C=* (C=“ respectively) the subsequence of C consisting of the
submodules C2 := Ds<a ¢l e = Ds<a CP respectively). These are
again Z%-graded free chain complexes. They are the sub-chain complexes
of C generated by all generators with multidegree < a (respectively < ).

2. Consider the decomposition C; = @, cza(Ci)a of Ci as a k—module. That
is, for all o € 7, (C;)o consists of all elements of C; of multidegree c.
By C,, we denote the chain complex of k-vectorspaces given by the degree
a € Z% components (C;)o. We call Cy the degree a strand of C.



126 3 Cellular Resolution
Note that (C;)o # C¢. In general neither one is a subset of the other.

Ezample 3.1.2. Let S = k[z1,...,z,] and e;,1 < i < d, the i-th unit vec-

tor. Set C; = @ S(— Zei). Let us choose basis element e4 for each
AC[d);#A=i icA
S(fz e;). If A= {j1 <--- <j;} then we define
icA

diea) =Y (=D'zjean,.

=1

Then

Od

C:O%Cd—> = Cy

is a free chain complex — indeed a minimal free resolution of the field k over
S. Now if we choose a = (1,...,1) then CZ* = C and

Od—
C-<a20—>cd71d—1—>"'ﬁ>00.

The complex of k-vector spaces C, is given by

with trivial differential.

Remark 3.1.1 Since the differentials 0; in Definition 3.1.1 are homogeneous
and R—linear, they restrict to differentials of C=%, C=* and C,, so the above

chain complexes are well-defined.

It is helpful to establish the following criterion for a (Z%, A)-graded pair
(X, A, gr) to support a cellular resolution.

Proposition 3.1.2 ([6]) Let R = k[A] be an affine semigroup ring.

1. The (Z%, A)-graded CW-pair (X, A, gr) supports a cellular resolution of
a Z%-graded R-module if and only if for all o € Z we have that
Hi(onﬁAja;k’) =0 fO’F all i > 1.

2. The (Z4, A)-graded CW-complex (X, gr) supports a cellular resolution of
a monomial R-module if and only if for all « € Z¢ the subcomplex X<a
is acyclic over k or empty.

3. A cellular resolution supported by a (Z¢, A)-graded pair (X, A, gr) is min-
imal if and only if for all cells 0,0’ € (X,A)*), ¢’ < o and dimo’ =
dimo — 1 we have either gr(o) # gr(o’) or [0’ : 0] = 0.
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Proof. For any multidegree « the degree « strand (Fx 4)q is supported by
basis elements e, for cells o in (Xja,Aja)(*). Let z:= Z Qg -
0€(X<a,Aza)’
X - e5. Then 9;z = 0 if and only if the coefficient b, of any e,/, o’ €
(X<a, A<a) D in 8,2 is zero. Now by = x* &7 Z ag - [0’ : o).
0€(X<a,A<4)®
Thus b, = 0 if and only if Z ay- [0’ : 0] = 0. But this is equivalent
0€(X<a,A<a)®

a—gro

to the fact that Z ay - 0 is a cycle in the cellular chain complex of
0E(Xza:A4%a)!
(X=<a, A<q) with coefficients in k.
Similar arguments show that z := Z Ay "X
0€(X<a,A<a)®

X879 . ¢ is a bound-

ary z = 0;417 if and only if Z aq - 0 is a boundary in the cellular
0€(X<a,A<a)®
chain complex of (X<q, A<q) with coefficients in k.

It follows from Definition 2.1.11 that a resolution Fx 4 is minimal if and
only if no entry in the matrix describing the differential is a non-zero constant.
For cellular resolutions this condition directly translates into the last assertion
of the proposition.

Ezample 3.1.3. We adopt the notation from Example 3.1.2. Let A = 2[4 be
the full simplex on ground set [d]. If we grade the simplex A € A by gr(A) =
> ica €i, then it is easily seen that the resolution C is supported by (4, gr).
Now for any degree o € Z¢ we have that A, is either empty or 24 for
A = suppa = {i € [d] | a; # 0}. Thus indeed (A, gr) fulfills the criterion from
Proposition 3.1.2 (2).

We would like to mention that graded CW-complexes are of interest even
if they do not support a free resolution. We refer the reader to recent work by
Floystad [19] for more details and interesting applications to Cohen-Macaulay
simplicial complexes.

Questions and Exercises

Exercise 3.1.4. Show that there is a monomial ideal in some k[z1,...,x4]
for which the minimal free resolution is cellular for all k£ but there is no CW-
complex X that supports the minimal free resolution for all k.

Exercise 3.1.5. Show that there is a monomial ideal whose minimal free
resolution cannot be supported by a regular CW-complex. (This is a hard
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exercise, see [47] for a counterexample and [60] for structural insight into the
class of counterexamples.)

Question 3.1.6. Velasco [60] showed that there are monomial ideals for which
the minimal free resolution cannot be supported by a CW-complex. What can
be said about the class of monomial ideals for which there is a cellular minimal
free resolution ? Does this class have nice algebraic properties 7 What can be
said about the class of simplicial complexes for which the Stanley-Reisner
ideal has a cellular minimal free resolution ?

3.2 Reading off the Betti Numbers

By the following lemma the (multigraded) Betti numbers 8¢, o € Z%, of the
minimal Z?-graded free resolution of M can be computed from any given
Z%-graded free resolution F of M:

Lemma 3.2.1 Let M be a Z%-graded R-module, F a Z%-graded free resolution
of M. Then:
B (M) = dimH;(F=)a, (F7%)a)-

Proof. If F = Fin is minimal, the assertion follows from the fact that all
differentials of the chain complex ((F=%),,(F~%),) vanish. For general F
there is a direct sum decomposition F = Fuin D R, where R is a direct sum
of exact sequences

i times

~~
Raqyit--—0—=8(—-a)” — S(—a)” -0 —0,
a € 7% i,~v € N. This gives:

Hi((FZ)a, (F3*)a) = Hi((Fops ® RZ)a, (Ft @ R7Y),)

min

= Hi((Faimas (Fam)a) © Hi((RZ)a, (R)a)

and the assertion follows because the sequence ((R=%)q,, (R=%),) contributes
no homology.

Starting with a cellular resolution Fx 4 of a Z%-graded R-module M and
following the idea of Lemma 3.2.1 it is possible to describe the Betti numbers
of the minimal free Z?-graded resolution of M in terms of the homology of
the underlying (Z9, A)-graded CW-pair (X, A, gr). We write H;(X, A; k) for
the i-th cellular homology group of the pair (X, A) with coefficients in k
and ﬁi(X ; k) for the reduced homology of X with coefficients in k. As usual
H;(0;k) =0 for i # —1 and H_1(0; k) = k.
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Proposition 3.2.2 Let R = k[A] be an affine semigroup ring. Let M be a Z.%-
graded R-module and (X, A, f) a Z%-graded CW-pair supporting a Z*-graded
free resolution of M. Then:

ﬂla(M) = dimHi(Xja,X_«X U Aja; ]{1)
_ [dim H; 1 (X<, Azai k) if A< # 0
- dimﬁifl(X<a;k) Zf Aja = (Z) ’

where the first equation holds for all i > 0, the second for all i > 2. If in
addition X<, and A<, are acyclic or empty, the second equation also holds
for i = 1. Note that for i = 0 the righthand side of the first equation is easy
to calculate.

In particular, & = 0 in case there is no i-cell in (X, A)(i) of degree .

Proof. Denoting the i—th cellular chain group of a CW-pair by C;(X, A), the
chain-complex ((F ;%)a, (FX%)a) reads as follows:

_ Cini(XzayAza)  Gi(Xza,A<a)  Cici(XzayAza)
Ci+1(X<Oz7A<O£) Ci(X<a7A<a) Cifl(X<a7A<a) Y

with induced differentials. Since we have:

Oi(Xj(mAja) ~ CZ(XjOL)/C’L(Aja) N
Ci(X<a7A<a) - Ci(X<a>/Ci(A<a) = (321)

Ci(Xja) o~ Ci(Xja)

N Ci(X<a) + Ci(Aja) Ci(X<a U Aja)

and the induced differentials are the same as those of the cellular chain com-

1

Ci(onuX—mc U Aja)

plex of the pair (X<o, X<o U A<q), applying Lemma 3.2.1 proves the first
equation.

Applying equation (3.2.1), the long exact sequence of the pair
(Co(X<a,Aza), Co(X<a,A=q)) can be written as follows:

v = Hiv1(X <0y Aza) = Hip1(X<a, X<a UAze) —
— Hi(X<a7A<a) — Hi(XjaaAja) — ...

This proves the second equation for ¢ > 2.
Assume now X<, and A<, to be acyclic or empty. The long exact sequence
for pairs yields the exact sequence:

0= Hl(onz;k) - ﬁl(Xj(laX-<O¢ U Aja; k) -
— Ho(X<aUAzaik) = Ho(X<ask) =0



130 3 Cellular Resolution

If A<, =0, we have H, (X=<a, Xza UA<q k) = I;TO(X<(X; k) as stated.

If A<, is acyclic, considering that X, NA<q = A< , the Mayer-Vietoris-
sequence for X, U A<, yields I:jO(A<a;k) — I?O(X<a;k) — PNIO(X<Q U
Azqs k) — H_1(Aza: k) — H_1(X~qa: k), while the long exact sequence for
the pair (A<q, X<q) vields ﬁO(A<a; k) — ﬁo(X<a; k) = Ho(X<a, Azas k) —
H_1(Aq: k) — H_1(X<q: k). The assertion follows from the five lemma.

If there is no i-cell of degree v in (X, A)®) then H;(X<q, X<oUA<q; k) =
H;(X<a,X<a;k) = 0. This proves that G = 0 in case there is no i-cell of
degree a in (X, A)(®),

Before we close this section we want to study the relative situation; that
is CW-Pairs and quotients of modules.

In a situation where we have a Z%-graded free resolution F of a Z%graded
module M and an exact subsequence G < F resolving the submodule N —
M, passing to quotients yields a Z?—graded free resolution of the quotient
M/N if and only if the modules G; are direct summands of F; for all i > 0.
The following cellular situation fulfills this condition:

Proposition 3.2.3 Let the CW-pair (Y, A) support a Z*-graded cellular free
resolution of the Z%-graded S-module M which restricts to a Z%-graded cellular
free resolution of a submodule N — M supported by the CW-subpair (X, A)
of (Y, A). Passing to quotients yields a Z-graded cellular free resolution of
M/N supported on the CW-pair (Y, X).

The proof of Proposition 3.2.3 is straightforward and left to the reader
(see Exercise 3.2.2).

Now that we have gathered sufficient theory around cellular resolutions we
are need of classes of examples. These will be provided the following sections.

Exercises

Exercise 3.2.1. Let {25, be the set of squarefree monomials of degree [ + 1
in S = k[z1,...,74]. Let Ag; be the full simplex 24!, We grade a simplex
A € Ay, be the least common multiple of the monomials in A.

1. Show that Ay supports a resolution of Iy, ,. This is a special case of the
Taylor resolution which will be defined as the first example of a cellular
resolution at the beginning of Section 3.3.

2. Read off the Betti numbers of Iy, , from this resolution.

Exercise 3.2.2. Prove Proposition 3.2.3.
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3.3 Examples of Cellular Resolutions

In the following sections we present several classes of cellular resolutions. Even
though the Taylor resolution has been known for about 40 years it has only
after [6] been seen as a geometric construction. Similarly, the Bar resolution
is a classical object from Homological Algebra, and clearly had its geometric
flavor in terms of simplicial set. On the other hand the explicit use of its
cellular structure in order to find minimal free resolution seems to be rather
recent. More results and details about the LCM- and LCM*-resolution can

also be found in [4].
The Taylor Resolution:

Recall that for a co-Artinian monomial module M we denote by MinGen(M)
its uniquely defined minimal set of monomial generators (See Definition 2.5.1).
In the sequel we will set up a cellular resolution for co-Artinian monomial
modules M and quotients, which in general is very far from being minimal.
This construction in case of monomial ideals dates back to the 1960’s and can
be found in the PhD thesis of Diana Taylor [59] — even though it was not seen
as a cellular resolution at that time.

Definition 3.3.1 (Taylor complex) 1. For a co-Artinian monomial mod-
ule M let (M) be the simplicial complex on the ground set MinGen(M)
and simplices the finite subsets of MinGen(M). We grade the simplices
o € T(M) by lem(o) :=lem{m|m € o}. Via the correspondence o < x,
we also regard this grading as a Z%—grading. T(M) is called the Taylor
complex of M.

2. More generally, let N C M be two co-Artinian monomial modules.
Then we denote by T(M,N) the simplicial complex on the ground
set MinGen(M) U MinGen(N) and simplices the finite subsets of
MinGen(M) U MinGen(N). Again, we grade the simplices o € T(M,N)
by lem(o) == lem{m|m € o} and call T(M, N) the Taylor complex of the
pair (M, N).

Lemma 3.3.2 Let M and N be two co-Artinian monomial modules such that
N C M. Then (M, N) and (M) define cellular resolutions of the quotient
module M/N and of the monomial module M. module.

Proof. By Proposition 3.1.2 it suffices to show that T(M, N)<, and T(M)<,
are acyclic or empty complexes for all a« € Z. If T(M,N)<, # 0 or
T (M)<qo # 0, then the simplex which contains all points of multidegree «
or less is the unique maximal simplex of the complex. Thus T(M, N)<, or
T(M)<q is contractible and hence acyclic.



132 3 Cellular Resolution

Now we are in position to define the resolution due to Diana Taylor [59].

Definition 3.3.3 (Taylor resolution) 1. For a co-Artinian monomial mo-
dule M the cellular resolution supported by T(M) is called the Taylor res-
olution of M.

2. Let N C M be two co-Artinian monomial modules. The cellular resolution
supported by (M, N) is called the Taylor resolution of the pair (M, N).

(21,0) 021) 1,02) (h))

Fig. 3.1. Taylor resolution for Example 2.4.1

Fig. 3.1 provides a geometric picture of the Taylor resolution for the ideal
from Example 2.4.4 The following theorem summarizes the facts we have
collected so far about the Taylor resolution.

Theorem 3.3.4 Let N C M be co-Artinian monomial modules.

Then there exists a cellular Z.3-graded free resolution of M /N supported by
the pair (X(M, N),T(N),lem). In particular, for the Betti numbers 3 (M/N),
a € 74, of the minimal Z%-graded free resolution of M /N we have for i > 0:

B(M/N) = dim]i]i_l(S(M,Npa,T(Npa;k) if T(N)<a #0
‘ dim H; 1 (T (M, N)<a; k) fT(N)<a=0"
Proof. Follows immediately from Lemma 3.3.2, Proposition 3.2.3 and Propo-
sition 3.2.2.

By the preceding theorem the Taylor resolution of the pair (M, N) indeed
is a resolution of the quotient M /N.

Definition 3.3.5 We call the cellular resolution of M/N supported by the
pair (T(M,N),Z(N),lem) the Taylor resolution of M/N.
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In order to formulate a condition for a monomial module under which
the Taylor resolution is minimal we need the following definition and obvious
remark:

Definition 3.3.6 1. Let p1,...,pn, € S = k[x1,...,24] be polynomials. The
sequence pi,...,pn s called a regular sequence (see also Section 1.8) if
P10y # S and if for all i = 1,...,n we have that p; is not a
zerodivisor in S/(p1,...,pi—1). Here, (p1,...,pi—1) C S denotes the ideal
generated by the polynomials py,...,p;i—1-

2. If p1,...,pn is a regular sequence, the ideal (p1,...,pn) C S is called
complete intersection .

Remark 3.3.7 Let I C S be a monomial ideal. I is a complete intersection
if and only if the elements of MinGen(I) have disjoint supports, that is, if

m,m’ € MinGen(I), m # m’ and x,|m for some variable x,, then xr* m'.

Proposition 3.3.8 1. Let N C M be co-Artinian monomial modules. The
Taylor resolution of M /N is minimal if and only if for all o € (M, N)
and all m € o we have that m‘lcm(a\{m}) implies o\{m} € T(N). In
particular the Taylor resolution of M is minimal if and only if for all
o€ X (M) and all m € o we have m* lem(o\{m}).

2. Let I C S =k[z1,...,24) be a monomial ideal which is a complete inter-
section. Then the Taylor resolution of I is minimal.

Proof. Minimality of the Taylor resolution of M /N occurs if and only if for all
simplices 0 € (M, N) and all m € o either the coefficient lem o /lem(o\{m})
is an element of the maximal homogeneous ideal m or o\{m} € T(N). This
proves the first part of the Proposition. The second part is an easy application
of the first part.

The Scarf Resolution:

Proposition 3.3.8 shows that the Taylor resolution is minimal only in very
exceptional cases. In search of smaller resolutions Proposition 3.3.8 suggests
the following strategy: Start with the Taylor resolution and remove those
simplices that obstruct minimality, namely the simplices ¢ with the following

property:
There exists a monomial m € o such that m|lem(o\{m}). (3.3.1)

Not very surprisingly minimality is not so easily achieved. The reason is that in
general the resulting simplicial complex is not acyclic. Consider the following
simple example:
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Example 3.3.9 Let I be the ideal in k[x1,x2] generated by the monomials
22,73 and T122.
In Fig. 3.2 we present the graded CW-complex underlying the Taylor res-

olution in this case.

XT1T2

Fig. 3.2. Taylor complex for Example 3.3.9

Here, the simpler o = {22, 23, x122} has property (3.5.1) with m = z1x5.
Thus, above strategy calls for removing o. But since no other simplex fulfills
property (3.3.1) the resulting simplicial complex forms the boundary of a tri-
angle which is not acyclic. In this example this can be fized by also deleting
the simplex o’ = {23, 23}. The result is a minimal resolution.

Thus, the next idea is not only to remove the simplices o = {myg, ..., ms}
with property (3.3.1) but also the corresponding simplices o = {my, ..., ms}
—{m}. That is we delete all simplices o = {my, ..., ms} with the property:

There exists m € MinGen(M) such that m|lem(o\{m}). (3.3.2)

The resulting simplicial complex is called the Scarf complex :

T1T2
ZE%J]Q ZElI%
2 2
Ty )

Fig. 3.3. Scarf complex for Example 3.3.9
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Definition 3.3.10 (Scarf resolution) 1. Let M C T = k[zF', ..., 2F"] be
a co-Artinian monomial module. The simplicial subcomplex of the Taylor
complex of M that is given by the set of those simplices o such that there
is mo other simplex T # o with lem o = lem 7 is called the Scarf complex
of M.

2. If the Scarf complex of M is acyclic, we call the resolution supported by
it, the Scarf resolution of M.

In Fig. 3.3 we depict the Scarf complex for Example 3.3.9. Unfortunately,
the Scarf complex in general does not provide a resolution. Consider the next
simple example:

Example 3.3.11 Let I be the ideal in k[xy,xa,x3] generated by the monomi-
als x1xo, 123 and xoxs3.

The resulting Scarf complex consists of three points (see Fig. 3.4). Again,
this is not an acyclic complez.

T1T2

13 Ta2l3

Fig. 3.4. Scarf complex for Example 3.3.11

There is the following obvious, but noteworthy property of the Scarf res-
olution:

Proposition 3.3.12 Let M C T = k[mlﬂ, .. .,xdﬂ] be a monomial ideal. If
the Scarf resolution of M exists (that is, if the Scarf complex of M is acyclic),
then it ws minimal.

Proof. The condition of the second part of Proposition 3.1.2 is obviously sat-
isfied, which proves minimality.

In [6], Bayer and Sturmfels prove existence and therefore minimality of
the Scarf resolution for the class of generic co-Artinian monomial modules.
Here is the definition:
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Definition 3.3.13 Let M C T = k[z{',..., 23" be a co-Artinian monomial
module. Let
o : @ Se,, — M

m€EMinGen(M)

be a presentation of M, that is, d(e;,) = m for all m € MinGen(M).

1. A binomial n,,e., — Nn/ € € ®mEMinGen(M) Se., is called generic if no
variable x;, i =1,...,d appears in m and m’ with the same exponent.
2. M s called generic if there exists a basis of generic binomials for ker 0y.

Theorem 3.3.14 (Theorem 2.9 [6]) Let M C T = klzi’,...,23"] be a
generic co-Artinian monomial module. Then the Scarf complex supports a
cellular minimal free 78— graded resolution of M.

In [5] Bayer, Peeva and Sturmfels prove the same result for a more restric-
tive version of genericity:

Theorem 3.3.15 (Theorem 3.2 [5]) Let I C S = k[z1,...,24] be a mono-
mial ideal such that for any m,m’ € MinGen(M), m # m/, no variable ap-
pears in m and m’ with the same non-zero exponent. Then the Scarf complex
supports a cellular minimal free Z—graded resolution of I.

The Hull Resolution:

In [6] Bayer and Sturmfels introduce another cellular resolution called the
Hull resolution.

Definition 3.3.16 1. For a co-Artinian monomial module the Hull resolu-
tion is the cellular resolution supported on the polytopal Z¢-graded subcom-
plex Xnyun — the Hull complex — of R* whose faces are the bounded faces
of the polyhedral complex which is the convex hull of (t*,...,t%) € R4
for x* € M and t sufficiently large. (See [6, Theorem 2.3] for details.)

2. For a face ¢ of Xpun its degree lem(c) is given by « such that x% is the
lem of the monomials in M corresponding to the vertices of the face c.

Since by [6, Example 3.11] the Hull complex is in general not a locally finite
polytopal complex, its topology differs from the one induced by the topology
of RY, see [11, Theorem 8.2]. But it is locally finite in the important case of
co-Artinian monomial modules defined by lattices [6, Theorem 3.14].

The Hull resolution can be viewed as a generalization of the Scarf resolu-
tion, since it always exists and there is the following Theorem:

Theorem 3.3.17 (See [6], Theorem 2.9) If M C T = klaF', ... 23" is
generic, the Hull resolution coincides with the Scarf resolution and is therefore
manimal.
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The Lyubeznik Resolution:

There is another way to continue the approach taken by the Scarf resolution.
Starting from the Taylor resolution we discussed the two strategies of either
deleting all simplices with property (3.3.1) or even deleting all simplices with
property (3.3.2). What we found in Examples 3.3.9 and 3.3.11 suggests to
do “something in between”: In Example 3.3.9, deleting all simplices o with
property (3.3.1) was not enough. In Example 3.3.11 deleting even all simplices
with property (3.3.2) was too much.

Lyubeznik presents in [33] a nice procedure to delete some simplices with
property (3.3.2) from the Taylor resolution according to a given linear order
on MinGen(M) which he shows always results in an acyclic subcomplex of
the Taylor complex and therefore gives rise to a cellular free resolution of M:

Definition 3.3.18 (Lyubeznik resolution) 1. Let < be a linear ordering
of MinGen(M). Then the Luybeznik complex . is defined to be the simpli-
cial complex on the ground set MinGen(M) that consists of all simplices
o={mo,...,ms}, mg <my <...=<1myg that satisfy:

for allt < s and m € MinGen(M) s. t. m < m; we have

m* lem{my,...,mg}.

2. Lyubeznik’s resolution is the Z%-graded cellular free resolution supported
by the Lyubeznik complex.

The above definition says that one gets the Lyubeznik complex from
the Taylor complex by deleting those simplices o = {myg,...,ms}, mo <
my < ... < ms with property (3.3.2) that contain a “tail” {my,...,ms} for
which there exists a monomial m € MinGen(M) such that m < m,; and
m)lcm{mt, ...,mg}. Fig. 3.5 shows a Lyubeznik complex for the ideal from
Example 3.3.11.

Resolutions Defined by Rooted Complexes:

Recall (see e.g. Example 2.4.2:)

Definition 3.3.19 A partially ordered P set is called a lattice if for all x,y €
P there exists both

e an element z € P such that x,y =X z and for all w € P such that x,y < u
we have z =X u, called the join x Vy of x and y, and

e an element 2/ € P such that 2’ < x,y and for all uw € P such that u < x,y
we have u X 2, called the meet x Ny of x and y.
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T1T2

XT1T273 T1T273

T1T3 T2T3
Fig. 3.5. Lyubeznik complex for Example 3.3.11 when using the ordering ziz2 <

13 < 223

For co-Artinian monomial modules we will frequently make use of the
following lattice associated to it:

Definition 3.3.20 Let M C k[z1, ..., 25" be a co-Artinian monomial mod-
ule. We define LCM(M) to be the lattice consisting of alllem’s of finite subsets
of MinGen(M).

Note that 1 = lem(0) € LCM(M) guarantees that this indeed is a lattice.

Novik presents in [41] a generalization of Lyubeznik’s resolution which
is constructed via rooted complexes. These were introduced by Bjorner and
Ziegler in [10].

Definition 3.3.21 1. A rooting map for a monomial ideal I is a function
7 : LCM(I) — MinGen(I)
such that for all m € LCM(I) we have
m(m) ‘ m (3.3.3)
W(m)‘m”m = 7(m') = 7(m) for allm’ € LCM(I)  (3.3.4)
2. Given a rooting map m and a nonempty subset S of MinGen(I), we define
7(S) := w(lem(S))

We say that a subset S of MinGen(I) is unbroken if ©(S) € S. We call
S rooted if all nonempty subsets of S are unbroken. The rooted subsets of
MinGen(I) obviously form a simplicial complex which is called the rooted
complex RC(I,m) of I (with respect to the rooting map 7).

Novik proves in [41]:
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Theorem 3.3.22 Let I be a monomial ideal, ™ a rooting map for I. Then
the rooted complex RC(I, ) supports a Z%-graded cellular free resolution of
I.

This indeed is a generalization of Lyubeznik’s construction: Let < be a
linear order on MinGen(T). Define a rooting map by setting

m} (3.3.5)

7(m) := minj{m’ € MinGen(I) | m’

It is easy to see that under this choice of the rooting map m the rooted
complex RC(I, ) coincides with the Lyubeznik complex.

Novik also presents a condition under which the resolution given by rooted
complexes is minimal.

For the statement we need the following definition:

Definition 3.3.23 A finite lattice L is called geometric if it is atomic , that
is, every element is a join of atoms, and semimodular, which means that if
for elements x,y € L there exists no element z € L such that t Ny < z < x
then there also exists no element z € L such that y < z < x V y.

Theorem 3.3.24 Let I be a monomial ideal, such that LCM(I) is a geometric
lattice and let © be a rooting map for I. Then the rooted complexr RC(I, )
supports a cellular minimal free resolution of I.

The LCM- and LCM™*-Resolutions:

In this section we introduce cellular resolutions of monomial modules derived
from their LCM-lattices. This is a special case of resolutions obtained from
partial orders on monomials that appeared first in [46].

Consider the following example:

Example 3.3.25 Let M C k[z1,...,z4] be the monomial module generated
by all d monomials of the form x1 ... x;_1Tiy1...2¢q, i =1,...,d. There is a
cellular resolution of M given by a one-dimensional simplicial complex con-
sisting of d + 1 cells of dimension 0 and d cells of dimension 1.

Proof. Consider the following Z?-graded simplicial complex X: There are d+1
points, the first d of them correspond to the minimal generators of M and
are graded accordingly. The last point is graded by (1,...,1) € Z%. For each
of the first d points there is a line connecting it with the last point. All these
lines are graded by (1,...,1) € Z%. It is easily seen that this graded simplicial
complex satisfies the condition of Proposition 3.1.2 since for all a € Z? the
subcomplex X<, is empty, consists of one point or equals the whole complex
X.
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Note that the above resolution has one 0-cell in addition to the ones that
come from the Taylor resolution. Therefore, the resolution does not qualify
for minimality, even though it has much fewer cells of all other dimensions.
The above resolution is an example of the following class of resolutions which
we will call LCM-resolutions:

Definition 3.3.26 1. Let P be a partially ordered set. The simplicial com-
plex A(P) that consists of all finite chains in P, that is all finite subsets
of P that are totally ordered by the partial order of P, is called the order
complex of P.

2. Let M C k[xlil,...,xdﬂ] be a co-Artinian monomial module. Denote by
Xrom (M) the order complex of LCM(M) — {1} (see Definition 3.3.20 for
the definition of LCM(M) ). We refer to this complez as the LCM-complex
of M. We grade the simplices of Xr,om(M) in the obvious way by lem.

Proposition 3.3.27 Let M be a co-Artinian monomial module. Then there
is a 7%-graded cellular free resolution of M supported by Xpom(M).

We call this resolution the LCM-resolution of M.

Proof. For all multidegrees a@ € Z?, that appear as an lcm, there exists a
unique 0-chain {x*} graded with «. For all simplices o of the subcomplex
(XrcMm(M))<q one of the following holds:

1. x*€ o and 0 — {Ka} S (XLCM(M))SQ,
2. x*¢oand o U{x*} € (Xrem(M))<a-

Hence (Xpom(M))<q forms a cone, therefore is contractible and acyclic. The
assertion follows with Proposition 3.1.2.

We now introduce another class of cellular resolutions which is similar to
the class of LCM-resolutions:

Definition 3.3.28 Let M C k=i, ..., 25" be a co-Artinian monomial mod-
ule. Let LCM*(M) be the partially ordered set consisting of all monomials
in M that divide lem o for some finite subset 0 C MinGen(M). We set
A(LCM*(M)) to be the order complex of LCM*(M) graded by lem in the ob-
vious way. We refer to this complex as the LCM*— complez.

Note that LCM*(M) is the convex hull of LCM(M) — {1} in the set of
all monomials in k[zF',... 25" in the sense that we get LCM*(M) from
LCM(M)—{1} by adding all monomials m € k[zi",...,23"] with the property

that there exist monomials mq, mg € LCM(M) such that ml’m‘mg.
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Proposition 3.3.29 Let M be a co-Artinian monomial module. Then there
is a Z3-graded cellular free resolution of M supported by A(LCM*(M)).

Proof. The proof is the same as for Proposition 3.3.27.
The Hypersimplex Resolution:

In this subsection we present a Z?-graded cellular free resolution of the powers
m” of the maximal homogeneous ideal m = (x1,...,24) C S = k[z1,...,24].
This approach was first developed and presented in [3].

Definition 3.3.30 Let C] be the polytopal CW-complex with

d
An::n~Ad71:{ (yl,...,yd)eRd| Zyi:n, y; >0, i:l,...,d}

i=1

as underlying space and CW-complex-structure induced by intersection with
the cubical CW-complex-structure on R¢ given by the integer lattice Z¢. That
is, the closed cells of CJ are given by all hypersimplices

CQ’J = Anﬁ{ (yh...,yd) S Rd ’yz =a; :1€ [d}\J, Y; € [CLJ‘7CL]'+1] 1 j € J}
= Conv(ngZejej | e; €{0,1}, Zej =d—|a|)
= jeJd

with a € N, J C [d] :={1,...,d}, |a| := 2 ic(a) @i» € the i-th unit vector in
R, either subject to the conditions |a| =n and J = (), (these are the 0— cells
Cap = {a},) or the condition 1 < n —|a| < |J| — 1. The CW-complex C}} is
naturally multigraded by setting lem(Cy, 5) := a+ ZjEJ ej. We refer to C}} as
the hypersimplicial complez.

An example of a hypersimplicial complex is shown in Fig. 3.6.

Lemma 3.3.31 Considering canonical orientations of these hypersimplices
and denoting J = {jo,---,Jr}, Jo < .- < Jr, Ju = J\{4u}, the differential
of C} is given by

T

©9Cy =) (~1)"(Caps, = Care;,0)s if 2<n—lal <[J] =2,

v=0
r

0Cq =Y (-1)"Cq,, if 1=n—la| <|J| -2,

v=0

r

0Ca =Y (=1)""'Cate,, .1, if 2<n—lal=|J[-1,

v=0

8027{j07j1} = Cg+e“70 - CE""%@M’ if n—lal =1,

. Cap =0, if |a] =n.
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Proposition 3.3.32 C} defines a multigraded cellular free resolution of m™.

Proof. The O-cells of C} are in one-to-one-correspondence with the set of mini-
mal generators of m™, so the fact that (C?) <o = A,N{ (y1,...,v4) € R? | y; <
a;,i=1,...,d } is contractible or empty for all a € Z¢ proves (use Proposi-
tion 3.1.2) the assertion.

We would like to mention that recently using a different approach Sine-
fakopoulos [52] has constructed a cellular minimal free resolution of powers of
the maximal ideal that is supported on a shellable regular CW-complex.

The Bar Resolution:

Definition 3.3.33 Let k[A] be an affine semigroup ring. We set Ay := A\{0}.
The (normalized) Bar resolution of k as an R- module is the multigraded

resolution 5 )
i 0; i — o
F= BF 5 F = 25 F,
(0,0,3,0)
/ (0,0,0,3)
(0,3,0,0)
(3,0,0,0)

Fig. 3.6. The hypersimplicial complex C3
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Fi = @Bpcza FY such that F is the free R-module with basis given by the set
AF ={[Xo] - N] [ Aj€do, 0S5 <10, Adog+---+ X\ =a}.

The differential is given by

BNl -+ N = 2l X+ ) (=1 ol -+ [hyoa + Mg+ AL

j=1

In order to see that this construction defines a Z%graded free resolution of k,
consider the following Lemma:

Lemma 3.3.34 The Bar resolution is cellular. It is supported by the (Z2, A)-
graded order complex A(Ag) of Ag.

Proof. For o = (Ao, ..., ;) € A(A)M) ] that is A\g < ... < \;, we set gr(o) :=
;. By Definition 2.1.2 it is obvious that this 1ndeed prov1des a (24, A)-grading
for the order complex A(Ag) of Ay. We set A(Ao) = {0 € A(Ap)D | gr(o) =
a}. Consider the following maps

AT C — VPN
[/\07...,)\] ()\w)\z 1+)\17'~'7)\0+"'+>\i)'
For all i € N the map ®°, provides a one-to-one correspondences between

A$ and A(AO)((J ). The differential of the simplicial complex A(Ap) induces the
following map:

ol -+ [A] — +Z ) ol -+ [Xj—1 4 X -+ (A

The given differential comes from homogenizing this map. This proves the
assertion.

Exercises

Exercise 3.3.1. Given an arrangement of hyperplanes A corresponding the
matroid M. Use the CW-complex from Example 2.2.7 to give a minimal free
resolution of k[M]. (This is a very hard exercise. The construction first ap-
peared in [42].)

Exercise 3.3.2. Show that if I is a monomial ideal such that ged(m,n) =1
for any two monomials m and n in the minimal monomial generating set of I
then the Taylor resolution of I is minimal.
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Exercise 3.3.3. The term generic co-Artinian monomial module suggests
that a 'randomly’ chosen co-Artinian monomial module is generic with prob-
ability 1. Justify the terminology ’generic’ for the class of monomial ideals
satisfying the conditions of Theorem 3.3.15.

Exercise 3.3.4. Give conditions on a monomial ideal I such that the Taylor
and the Scarf resolution coincide.

Exercise 3.3.5. Make the term ‘sufficiently large’ in Definition 3.3.16 precise.
(see also [6]).

Exercise 3.3.6. Describe the CW-complex underlying the hull resolution of
the Stanley-Reisner ideal of the uniform matroid U, ;.

Exercise 3.3.7. Give conditions on a monomial ideal such that for a suitable
choice of < in Definition 3.3.18 the Lyubeznik resolution is minimal (see also
[33]).

Exercise 3.3.8. Find a monomial ideal for which LCM(I) is not geometric
but the rooted complex RC(I, ) supports a cellular minimal free resolution
of I.

Exercise 3.3.9. Describe the LCM-lattices of the powers m¢, £ > 1, of the
maximal homogeneous ideal in k[z1, ..., x4].

Exercise 3.3.10. Classify the monomial ideals for which the LCM-lattice is
isomorphic to the lattice of subsets of an n-element set.
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Discrete Morse Theory

This chapter contains a presentation of discrete Morse theory as developed by
Robin Forman (see e.g. [20], [21]). This theory allows to combinatorially con-
struct from a given (regular, finite) CW-complex a second CW-complex that
is homotopy equivalent to the first but has fewer cells. As the upshot of this
chapter we then show that one can use this theory in order to construct mini-
mal free resolutions (see also [3]). Discrete Morse theory has found many more
applications in Geometric Combinatorics and other fields of mathematics, we
will not be able to speak about them. We refer the reader for example to [29]
where most applications of discrete Morse theory to complexes of graphs are
reviewed. There are even promising attempts to find real world applications
of discrete Morse theory (see [31]) to image analysis.

The applications to free resolutions require (e.g. for the Bar resolution)
an extension of Forman’s theory to not necessarily finite graded (regular)
CW-complexes in Section 4.2. Then in Section 4.3 we present and develop
the application of discrete Morse theory to cellular resolutions. Since for the
construction of minimal free resolutions it is very often important and inter-
esting to control the differential of the chain complex, we also must control
the differential of the CW-complexes constructed by discrete Morse theory.
Therefore, Section 4.4 discusses Morse differentials.

Except for some exercises and questions we do not give actual applications
of discrete Morse theory to the construction of minimal free resolutions. Such
applications can for example be found in [3], [4] and [24]. Indeed, even though
it has turned out that the method is quite powerful, most applications are
rather technical. Therefore, we think that they are not well suited for these
lecture notes.
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4.1 Forman’s Discrete Morse Theory

The fundamental tool from Combinatorial Topology applied in these notes is
discrete Morse theory as developed by Forman [20, 21]. In this section, we
review parts of this theory.

Definition 4.1.1 Let X be a CW-complez, 0,7 € X cells in X such that
o is a face of T, dim(o) =i — 1, dim(7) =4i. Let

fr:B"' - X and f.: B' - X

be the characteristic maps for o and 7. We say that o is a reqular face of T if
there exist homeomorphisms

o

gr : B' — B’

and
9o : SZZ_Ol ={(x1,...,2,) € S |z >0} — B!

such that the following diagram commutes:

5’;01 - 9 Bi-1
[ o
- - ) fr
B . B X

The central idea of discrete Morse theory is to construct for a given CW-
complex a new CW-complex that is homotopically equivalent to the original
one but is built from fewer cells. The condition needed for such a construction
is the existence of a discrete Morse function .

Definition 4.1.2 (Discrete Morse Function) A discrete Morse function
on the CW-complex X is a function

f:X® SR

such that

1. for every cell o € X*)

‘ {TeX(*) | 7 is a facet of o, f(1) >
‘{TGX(*) | o is a facet of T, f(7) <

and
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2. ifo,7 € X are cells in X, o a facet of T, such that
flo) > f(7),
then o is a reqular facet of T.

Ezample 4.1.1. All functions on X*) that increase strictly with dimension are
discrete Morse functions.

Discrete Morse functions can be regarded as functions that increase with
dimension up to one exception locally.

Definition 4.1.3 (Critical Cells) Let X be a finite CW-complez, [ a dis-
crete Morse function on X. A cell o of X is called f-critical , if

flo)} [=0

flo)} [=0.

| {7 € X®) | 7 is a facet of o, f(7)

>
| {7 € X | 0 is a facet of 7, f(7) <

We set
X(*i)al(f) ={o € X | o is f-critical}

For every dimension i the number of f-critical cells in dimension © is called
the Morse number m;(f) .

The key result by Forman (see [20], Theorem 10.2), that lays the ground
for all subsequent developments, is given in the following theorem. Note that
Forman’s formulation requires a regular CW-complex. But indeed he only
needs some local regularity assumptions that are build in our discrete Morse
functions (see last part of Definition 4.1.2).

Theorem 4.1.4 Let X be a finite CW-complex, f a discrete Morse function
on X. Then X is homotopy equivalent to a CW-complex with exactly m;(f)
cells of dimension i.

Example 4.1.2. If f is a discrete Morse function from Example 4.1.1 then
all cells are critical and hence Theorem 4.1.4 becomes trivial. Based on this
observation we will call these discrete Morse functions trivial .

Exercises

Exercise 4.1.3. Show using discrete Morse theory that the full simplex 2%
over some finite ground set (2 is contractible.
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Exercise 4.1.4. A face A of a simplicial complex A is called free , if A is not
maximal and contained in a unique maximal face. Show using discrete Morse
theory that A and A\ {B | A C B € A} are homotopy equivalent.

Exercise 4.1.5. Show that given a function f: X(© — R from the 0-cells of
a regular CW-complex X to the reals it is always possible to extend f to a
discrete Morse function on X. (See [31] for clever ways to do so.)

4.2 Discrete Morse Theory for Graded CW-Complexes

In this section we expand discrete Morse theory to graded and not necessarily
finite CW-complexes. In [14], Chari reformulates discrete Morse theory in
terms of acyclic matchings. In this section we review his results. On the way we
show that his approach leads in a natural way to the consideration of gradings
by partially ordered sets. As the main result of this section (see Theorem
4.2.14) we prove a version of Theorem 4.1.4 for graded CW-complexes.

We begin with the basic definitions from Chari’s [14] approach to discrete
Morse theory.

Definition 4.2.1 (Cell Graph) Let X be a CW-complex. Consider the di-
rected graph Gx on X*) whose set Ex of edges is given by

Ex :={7 — o | o is a facet of T}.
We call Gx = (X)), Ex) the cell graph of X.

Definition 4.2.2 (Acyclic Matching) Let X be a CW-complex, Gx =
(XU Ex) its cell graph. Let A C Ex be a subset of edges T — o € Eyx,
such that o is a regular face of T for allT — o € Ex.

1. We denote by G4 = (X E4) the induced graph with edge set
E4:=(Ex\AU{o —7|1T—0cA}

that is built from Gx by reversing the direction of all edges T — o that
lie in A. We call an edge 0 — 7 € E4 an A-edge if for its reversed edge
T — o we have

T—0€ A

2. We call A a matching on X, if each cell o € X*) occurs in at most one
edge of A.

3. We call A an acyclic matching on X, if A is a matching and if the induced
graph G4 is acyclic, that is, contains no directed cycle.
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4. A cell of X is called A-critical if it does not occur in any edge T — o € A.
5. We set
Xf:t)wal(A) ={o € X () | o is A-critical}

6. We denote by G4 = (X, E{) the induced graph with edge set
E4:=ExU{o—7|7—0€cA}

that is built from Gx by adding for all edges T — o that lie in A their
reversed edges o — T.

Ezample 4.2.1. Let A = 28] be the 2-simplex on ground set [3]. The following
figure shows an acyclic and a non-acyclic matching on G .

123

?
12 23 13 12 23 13
1 2 ®;: 1 I><}2<I3

Fig. 4.1. Cell graphs for Example 4.2.1

The following simple lemma shows that one can regard the set of acyclic
matchings as a simplicial complex itself (see [15] for results exploiting this
fact).

Lemma 4.2.3 Let X be a CW-complex, A an acyclic matching on X and
A’ C A. Then A’ is an acyclic matching on X.

Proof. Suppose
Y=V — ... > VU, Vg = Vg

is a cycle in A’. Note that, since A’ is a matching, no two consecutive edges
v; — Vi1 and Vi1 — Vo can be A’-edges. From the fact that the dimension
of the cells involved decreases strictly along edges that are not A’-edges and
increases by 1 along A’-edges it follows that

’y:T0—>O'0—>...—>’Tk—>O'k—>Tk+1, Tk+1 = T0,

where all
O; — Ti4+1, i:O,...,k
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are A’-edges and all
k

T, — o0, 1=0,...,

are not A’-edges (or the other way around). Hence « is also a cycle in G4,
since none of the edges involved that are not A’-edges can be an A-edge (this

would violate the property of A of being a matching). This completes the
proof and shows that A’ must be acyclic.

Lemma 4.2.4 Let X be a CW-complex, A an acyclic matching on X. Then
the only cycles in the graph G consist of exactly one edge e € A and its
reversed edge.

Proof. If 7 is a cycle in C;’ﬁ, it must contain one edge e € A and its reversed
edge. Assume not. Then ~ can be viewed as a cycle in Gﬁ‘(, for some A’ C A.
But this conflicts with Lemma 4.2.3.

These two edges cut ~y into two parts that again are cycles, so by induction
hypothesis v only consists of pairs of reversely directed edges. From the fact
that A is a matching it follows that v consists of only one such pair.

The preceding lemma leads us to the definition of a poset structure on
A,

Definition 4.2.5 (The Matching Poset (A®*) <)) Let X be a CW-complez,
A an acyclic matching on X .

1. We define
AW = Aux™)

critical

(4).

For a,b € A we set a <, b:& there exists a path in é‘;‘{ from b to a.
Here, ifa =17 — o € A, we mean a path in Gﬁ from b to either o or T,
ifb=1— o € A, we mean a path in G4 from either o or T to a. We call

the partially ordered set (A™), < ,) the matching poset of A.
2. We call the function

gri: X — A

g Zf (S XS:t)ual
g — .
T =71 if coe{r, T} andT —TEA

the A-universal grading of X. We denote the subcomplezes X<, that arise
from this A®) —grading by X<, a-

Ezample 4.2.2. Let A,, be the simplicial complex on ground set §2,, = {%1,
...,*n} where B C {2, lies in A, if and only if ¢ € B implies —i ¢ B —
as usual — — ¢ = 4. Note that the boundary complex of the n-dimensional
hyper-octahedron is a geometric realization of A,,. Consider the matching A
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on G, which contains all edges B — B\ {n} forn € B € A,, B # {n}..
Then A is an acyclic matching. Its matching poset consists of all faces of A,
which contain —n and the face {n} together with the edges from A. For the
order relation see Exercise 4.2.3.

The following definitions and lemmas clarify the relation between discrete
Morse functions and acyclic matchings.

Definition 4.2.6 Let X be a CW-compler, Gx = (X)) Ex) its cell graph
and f: X)) — R a discrete Morse function on X. We set

Ay :={1 -0 € Ex | o isa facet of 7, f() < f(o)}.
We call Ay the acyclic matching on X corresponding to f.

The next lemmas explain the preceding definition and link Forman’s orig-
inal approach to the one taken by Chari.

Lemma 4.2.7 Let X be a CW-complezx, f : X*) — R a discrete Morse
function on X. Then

1. Ay is an acyclic matching and
2. Xl Ag) = XCulF).

Lemma 4.2.7 and the subsequent Lemma 4.2.8 also justify our choice of
notation ijj&ml for the set of critical cells in a context in which a single acyclic
matching and its corresponding discrete Morse functions are involved.

Proof. 1. By [20, Lemma 2.5] it is impossible to violate conditions (4.1.3)
and (4.1.4) of Definition 4.1.3 simultaneously for a single cell o € X ).
Therefore, all cells ¢ € X*) occur in at most one edge of A ¢. This in turn
shows that Ay is a matching. Acyclicity of Ay is derived from the fact
that f decreases on paths in Gf( and even decreases strictly along edges
o — T that are not A-edges. From the latter edges at least one must occur
in any cycle.

2. This is obvious from the construction of Ay.

Lemma 4.2.8 Let X be a CW-complex, A an acyclic matching on X. Then
there exists a discrete Morse function on X such that

A=A;.
Proof. Let < be any linear extension of <, and

FO A LR
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strictly <-order preserving, that is, for a,b € A®) we have
a<b= fOa) < fH).

We define a discrete Morse function f : X*) — R by

flo) = f(*)(a) if o=ac Xc(::gical
f¥a) if a=7—ve€Aand o € {r,v.}

It is easy to check that f is a discrete Morse function on X and Ay = A.

We summarize the link between Forman’s and Chari’s approach provided
by Lemma 4.2.7 and Lemma 4.2.8 in the following reformulation of Theorem
4.1.4. Again note that in contrast to Forman and Chari, we do not require reg-
ularity of the full CW-complex but have build in local regularity assumptions
in Definitions 4.1.2 and 4.2.2.

Theorem 4.2.9 Let X be a finite CW-complex, A an acyclic matching on X .
Then there is a CW-complex X 4 whose i-cells are in one-to-one correspon-
dence with the A-critical i-cells of X such that X 4 is homotopy equivalent to
X.

In the remainder of this section we give an explicit description of the Morse
complex X 4 corresponding to an acyclic matching A on X, extend the theory
to not necessarily finite CW-complexes and show that the Morse equivalence
is, in a canonical way, compatible with gradings.

Definition 4.2.10 Let P be a partially ordered set, (X, gr) a P-graded CW-
complex.

1. We call the grading gr : X*) — P a compact P-grading of X if X<p is
compact for all p € P. X is then called compactly P-graded.

2. We call an acyclic matching A of X proper if the corresponding A-
universal grading gr 4 : X® — A s compact.

In the sequel we provide prerequisites for the construction of the Morse
complex X 4 corresponding to a proper acyclic matching A on X.

Lemma 4.2.11 Let X be a CW-complex.

1. Leto,7 € X®, dim =4, dim7 =i+1, o a reqular face of 7. Then there
exists a deformation retraction

Q

h/T*)O' T — U
ol ex (%),
o’ a face of T,

o/ ¢{o,T}
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2. Let A be an acyclic matching on Gx, a € A¥) . Ifa = (1 — o) € A, then

hr_o XjAa I X<Aa

x if x¢7T
x*’{hw(m if ver,

is a deformation retraction.
Proof. The assertions follows immediately from Definition 4.1.1

Definition 4.2.12 Let A, X,Y and Y’ be topological spaces, A C X, ¢ :
Y — Y and f: A — Y continuous maps. We denote by

ide¢:XUfY—>XU¢OfY/
the unique map that makes the following diagram commutative:

. idU¢ .
XUY XUy’

idu
X Uy Yl—f¢>X Ugo Y’

The following definition provides the construction of the Morse complex.

Definition 4.2.13 (Morse complex, Morse equivalence) Let X be a CW-

complex, A a proper acyclic matching on X.
Recall (see Definition 4.2.5) that <, denotes the partial order of the
matching poset A®). For all a € A™) we define inductively a CW-complex

(Xa)<,a> a € A™) and a map
H(A)= a: X< o — (Xa)<,a:
1. Let a € A be <, -minimal. We set
(Xa)<,0=X<,a=0
(note that a < ,-minimal = a € Xf:i)ml) and
H(A)< 0= idx_ .-

2. Let a € A™). Suppose for all b <, a, the CW-complexes (XA)jAb and
the maps H(A)< v X< b — (Xa)< b are constructed such that for all
bt € AW ¥ <, b=, a, we have

(Xa)<,p C(Xa)<,b



154 4 Discrete Morse Theory

and the diagram

H(A) <, v
X< v (Xa)=.vr
H(A)< {
X< b Al (Xa)<.»

commutes.
Denote by (Xa)<,a the union

(Xa)<,a=|J Xa)<,»

and by
H(A)<Aa : X<Aa — (Xa)<,a

the map induced by the maps
H(A)jAb : XjAb — (XA)jAb7 b <, Q.

o Casel:a=17—0c€A

We set
(Xa)< 0= (Xa)< 0
and define
H(A)< a: X<,0 — (Xa)<,a
by

o (Case2:a=o0¢€ Xf:;t)zcal

Let dimo =i and f, : B — X< ,a be the characteristic map of
the cell 0. Recall that

XjAa = Bi; Ufa, X<Aa'

We set
(Xa)=,a = By Un(a)-  .ofa, (Xa)<,a
and
H(A)< o:=idps Up,, H(A)<  a-
We define
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and
H(A): X — X4

to be the map induced by the maps
H(A)jAa : XjAa — (XA)jAa-

We call X4 the Morse complex of X with respect to A and H(A) the corre-
sponding Morse equivalence.

Theorem 4.2.14 Let X be a CW-complex, A a proper acyclic matching on
X. Let X4 be the corresponding Morse complex, H(A) : X — X4 the cor-
responding Morse equivalence. Then:

1. For alli € N, the i-cells of X4 are in one-to-one correspondence with the
A-critical i-cells of X .
2. The Morse equivalence H(A) : X — X4 is a homotopy equivalence.

Furthermore, there is a canonical A™ -grading gry XI(;) — A®) of X4
given by the composition

X§) 2, X, o X0 A 4G,

critica

For all a € A®) the subcomplex (X 4)=q with respect to this A _grading is
given by the subcomplex
(Xa)za = (Xa)<,a

from Definition 4.2.13. In addition, the Morse equivalence H(A) : X — X4
respects these A®) -gradings, that is:

3. For all a € A® and all i € N, the i-cells of (X4)<,a are in one-to-one
correspondence with the A-critical i-cells of X< .
4. For all a € A® the restriction H(A)< 0 = H(A)‘XjAa is a homotopy
equivalence
H(A)<,a: X< a = (Xa)<,a-

Proof. The fact that the A-universal grading gr , : X*) — A®) of X induces
a canonical A*)-grading gr , : Xj(q*) — A®™ of X 4 can be seen from the defi-
nition of the Morse complex (see Definition 4.2.13) which is done by induction
over the matching poset A*): Every new cell o4 € XI(:) corresponding to a
critical cell o € Xc(igical, say gr4(o) = a is attached to the complex (XA)_<Aa

so that for all faces 74 € X4 of 04 corresponding to critical cells 7 € ijjm
we have that gr,(7) <, gra(o).

The parts 1. and 3. are immediate consequences of the inductive construc-
tion of the Morse complex: For every element a € A®) which is a critical cell
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a=o0€ ang,hal, we attach a cell of the same dimension. For every element

a € A which is an element a =7 — o € A, we do not attach any cells.

For parts 2. and 4. we use the theory of homotopy colimits. For our combi-
natorial setting the formulation of the crucial facts given in [62] suits our needs
best. From [62, Proposition 3.1] (Projection Lemma) and [62, Proposition 3.7]
(Homotopy Lemma) we derive the fact, that the induced maps

H(A)<,a: X<,a — (Xa)<,a

and
H(A): X — X4

are homotopy equivalences.

Definition 4.2.15 Let X be a CW-complex, P a partially ordered set, gr :
X®) — P a P-grading of X and A an acyclic matching on X. We call A
homogeneous with respect to the P-grading gr : X*) — P if we have:

gr(t) = gr(o) for all T — o € A.

Remark 4.2.16 Let X be a CW-complex, P a partially ordered set, gr :
X®) — P a P-grading of X and A an acyclic matching on X. Then the
following are equivalent:

1. A is homogeneous with respect to the P-grading gr : X*) — P,

2. The A-universal grading of X is compatible with the P-grading gr :
X&) — P, that is, there exists an order preserving map g : A®) — P
such that the diagram

AX)

X () 2 . p
commautes.
This is why we call gr 4 : X*) — A®) the universal A-grading of X .

Remark 4.2.17 Let X be a CW-complex, P a partially ordered set, gr :
X®) — P a compact P-grading of X and A an acyclic matching on X
which is homogeneous with respect to gr : X*) — P. Then A is proper.

Proof. We use again the following commutative diagram:

A)

o
g
gr p

() ——
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If gr : X(*) — P is compact then so is the A-universal grading gr , : X*) —
A,

The following corollary is the crucial fact that later allows the use of dis-
crete Morse theory for the construction of cellular resolutions in Section 4.3.

Corollary 4.2.18 Let X be a CW-complex, P a partially ordered set, gr :
X® — P a compact P-grading of X and A an acyclic matching on X
which is homogeneous with respect to gr : X*) — P. Then the P-grading
gr: X® — P of X induces a compact P-grading gr : XI(:) — P of the
Morse complex X 4 and the Morse equivalence H(A) : X — Xa respects
these P-gradings, that is:

1. For all p € P and all i € N, the i-cells of (Xa)<p are in one-to-one
correspondence with the A-critical i-cells of X<p.
2. For all p € P the restriction H(A)<, := H(A)|x., is a homotopy equiv-
alence :
H(A)=<p : X<p = (Xa)=<p-

Proof. There is the following commutative diagram:

A

8ra \L

g

XG> xS X0 P

Here, the composition gr of the maps in the lower row is the induced P-grading
of X4 which is order preserving because it factorizes into

gr=gogry
where gr4 : Xi‘*) — A®™) is the canonical A®)-grading of X 4.
To prove the remaining assertions, note that
Xop= U Xz,

acA(x)
g(a)=p

and
Xa)== U Ka)<,a

acA(x),
g(a)=p

Now we use again [62]: From [62, Proposition 3.1] (Projection Lemma) and
[62, Proposition 3.7] (Homotopy Lemma) it follows that the induced maps

H(A)zp : Xzp — (Xa)zp

are homotopy equivalences.
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Exercises

Exercise 4.2.3. Describe the matching poset for Example 4.2.2.

Exercise 4.2.4. Set 2, = {{,j} | 1 < i < j < n}. Clearly, an element of
{2 can be interpreted as an edge in a graph. Thus a subset of (2,, itself can
be seen as a graph. Let A, be the simplicial complex on ground set {2,, with
simplices B C (2, where B is a disconnected graph on vertex set [n]. Using
acyclic matchings, show that 4,, is homotopy equivalent to a wedge of (n—1)!
spheres of dimension n — 3.

Exercise 4.2.5. Let M be a matroid. Show using discrete Morse theory that
the simplicial complex M is homotopic to a wedge of spheres of dimension
rkM — 1.

Exercise 4.2.6. Show that minimizing the number of critical cells for a dis-
crete Morse function can be formulated as an integer program. (See [28] for a
reference and applications of this point of view.)

4.3 Minimizing Cellular Resolutions using Discrete
Morse Theory

Now we are in position to formulate the main result of this chapter which
makes discrete Morse theory applicable to cellular resolutions.

Theorem 4.3.1 ([3]) Let R = k[A] be an affine semigroup ring and M a Z%-
graded R-module. Assume (X, gr) is a compactly (Z, A)-graded CW-complex
which supports a cellular resolution F of M. Then for a homogeneous acyclic
matching A of X the (Z%, A)-graded CW-complex (X a,gr) supports a cellular
resolution F5 , of M.

For the proof of Theorem 4.3.1 we need the following lemmas:

Lemma 4.3.2 Let C% be a cellular complex supported by the (Z2, A)-graded
CW-complex X. Then, fori >0 and a € Z¢

Hi(CY)a = Hi(X<a3 k),
as k-vectorspaces.

Proof. For a fixed a an i-cell ¢ € X*) gives rise to an a-homogeneous piece
x*Ye., v = gr(c), in homological degree i if and only if gr(c) = v < «. There-
fore, as a sequence of k-vectorspaces, C, is isomorphic to the cell-homology
chain complex of X<, which proves the assertion.
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Proposition 4.3.3 Let C% be the cellular complex supported by the compactly
(74, A)-graded CW-complex X. Let A be a homogeneous acyclic matching on
X. Then (X 4, gr) supports a cellular Z%-graded chain complex CirA such that
H;i(C%,) = Hi(C%),i>0.

Proof. By Lemma 4.3.2 we have

Hv((/’%; )oz = Hi((XA)ja; k)v Hv(cg(r)a = Hz'(Xja; k)

A

By Corollary 4.2.18 H;(X<q; k) = H;((X 4)=a; k) and the assertion follows.
The proof of Theorem 4.3.1 now follows easily.

Proof. Since F¥ is a resolution of M we have H;(C¥) = 0 for i > 1 and
Hy(C¥) = M. Now by Proposition 4.3.3 X 4 defines a cellular chain complex
with Hi(C)g(rA) = Hz(Cir) = O, ) Z 1 and Ho(cggA) = Ho(Cir) = M. Thus XA
and gr support a Z%-graded free resolution of M as an R-module.

Questions and Exercises

Exercise 4.3.1. Let I be a monomial ideal. Using discrete Morse theory show
that the Lyubeznik resolution can be constructed by reducing the Taylor
resolution.

Exercise 4.3.2. Let I be a generic monomial ideal. Using discrete Morse
theory show that the Scarf resolution can be constructed by reducing the
Taylor resolution.

Exercise 4.3.3. Construct the minimal free resolution of k over k[x1, ..., 4]
from the Bar-resolution using discrete Morse theory.

Question 4.3.4.Is it always possible to construct the Hull resolution of a
monomial ideal (co-Artinian monomial module) from the Taylor resolution
using discrete Morse theory ?

4.4 The Morse Differential

For a finite CW-complex, Forman presents in [20], Chapter 8, a differential
complex

5+1 5
M= =5 M, —- My — ... — My

with the following properties:
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1. For all p € N the module M, is the free Z-module generated by the critical
p-cells of X.

2. The homology of M is the same as the homology of the underlying CW-
complex X.

In [20], Theorem 8.10, he gives an explicit formula for the differential of this
complex. In this section we confirm that, for the corresponding acyclic match-
ing A, the differential complex presented by Forman in fact coincides with the
cellular chain complex corresponding to the Morse complex X 4. This is an
important fact that enables us to present explicit formulas for the differential
of resolutions derived via discrete Morse theory for cellular resolutions (see
for example [3]).

Definition 4.4.1 Let X be a CW-complex, A a proper acyclic matching on
X and Xz the corresponding Morse complex.

1. We denote by

o, oA | a4
CA= .. BCi(Xa)=Ci1(Xa) = .. 5 C0(Xa)
the cellular chain complex of X4 and by [ : ]a the corresponding coeffi-

cients of the differential 02, that is, for T € Xil*) we have

oA (1) = Z [0:7]a o

O facet of T

2. Foroe X, o/ € XU) . we define

critical y
T'a(o,0") == {v | v is a path in G5 from o to c'}.

3. Foroe X, o EXC(::) dimo = dimo’ =1,

tical)
Y=00—T1 — 01— ... > 0k_1 — T — 0 € ['a(0,0"),
(that is, 0g = 0, o = 0', dimo; =i, dim7j =i+ 1and ; - 0j_1 € A
forallj=1,... k) , we set

k

m(y) = (=) [[loi-1 : 7] - o = 7).

=1

Theorem 4.4.2 Let X be a CW-complex, A a proper acyclic matching on X
and X 5 the corresponding Morse complex. Let o,7 € Xf,ft)m[, 0A,TA € Xg*)
their corresponding cells in X,(q*)~ Then

[0a:Tala = Z [0/ : 7] Z m(y).

0/ facet of T YET s (0! ,0)
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For the proof of Theorem 4.4.2 we need the following lemmas:

Lemma 4.4.3 Let X be a CW-complex, 09,70 € X®), A = {1y — 00} a
proper (acyclic) matching on X and X 4 the corresponding Morse complex.
Let o, 7 € XC(;:L)W, OA,TA € X,(q*) their corresponding cells in X 4. If o is not a
facet of 1o or oo is not a facet of T, then
[0 :TaAla =[0: 7]
If o is a facet of 79 and og is a facet of T, then
[ca:TAla=lo:7]=[o0: 7] [0: T0)

Proof. Note that, from Definition 4.2.13, for all critical cells o € Xc(:zical, the
restriction of the Morse equivalence H(A) to ¢ is a homeomorphism onto the
cell o4 in the Morse complex X 4:

H(A)|,:0 — 04.
These homeomorphisms induce an inclusion

Jo. oy J
1yt Xy — X

of the j-skeletons. For every j-cell o € XU), we get the following commutative
diagram, where p, : X/, — 57 is the cellular projection map for the cell ¢
(see Definition 2.3.1):

P E—ye

Note that, although ii‘ is not continuous in general, the map
X0 /X3 s X9/ X071
is. For o4 € ng), we define p,, : Xix — 87 by
Pos = Po 0 ).

For 0,0’ € Xf:?ical, we get the commutative diagram from Fig. 4.2.
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X7
H(A)|x:
fo
X
Po,
A
j j—1 . " .
X0/ X} X7 Po - B
X7/ xi—1

\/ s

o'eX )

Fig. 4.2. Proof of Lemma 4.4.3, first step

Here, f, and f,, are the characteristic maps for the cells o and o4. Note
that, although this diagram cannot be extended commutatively by adding
the identity map id : X7 — X7, it is commutative with both maps X7 —
X7 /X7=1 defined as the canonical projection maps. We therefore get

pafq OfUA = Do’ Ofa-

This proves that the p,, define cellular projection maps for the cells o4 €
x4

Now we are ready to calculate, for critical cells o,7 € Xc(r*izical, dimo =
j, dimT = j + 1, the coefficients [o4 : 74]4. For this, we consider the com-
mutative diagram Fig. 4.3.

Using this diagram, straightforward considerations show that if o is not a
facet of 7y or og is not a facet of 7, then we have

Poa OfarA = Po OfBT
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S] faTA Xj

H(A)|x:
fam
/ \ Poa
x4/x57! j Po gy

\/ s

o'eX )

Fig. 4.3. Proof of Lemma 4.4.3, second step

and therefore
[ca:7al =0 7]
Let now 0,7 € Xfr*iﬂical, dimo = j, dim7 = j+ 1, such that o is a facet of
70 and o is a facet of 7. We get the commutative diagram Fig. 4.4.

Here, ¥ is defined to be the unique map such that the diagram Fig. 4.5
commutes. The fact that oq is a regular face of 79 shows that

deg¥ = —[op : 7] - [0 : T0]-

It follows
[ca:TAla=lo:7]=[o0:7] [0 T0)

Lemma 4.4.4 Let X be a CW-complex, o,7 € X, A an acyclic matching
on X, 7 — o € A such that T — o is <,-minimal in A. Let A’ = A —
{r — o}, X4 and Xy the corresponding Morse complexes. Then, for the
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Sj fa’TA X] pa'o \/pa S] \/ Sj
H(A)|x;
for .
¥ Vid
X
pO'A
i)
X5/x5 X/ Po i
X xi1
\/ s
o'eX )

Fig. 4.4. Proof of Lemma 4.4.3, third step

corresponding cells o4/, Tar € XI(:/), oar 1s a reqular facet of Tas, thus {Ta —
oar} s an acyclic matching on X 4/, and for the corresponding Morse complex
(Xa')r =0, we have

(Xa)r,—o, = Xa.

Furthermore, for the Morse equivalences

H(A): X = X4,
H(AI)Xi)XA/

and
H(TA/ — O'A/) . XA/ — (XA/)TA/—>(TA/7

we get the following commutative diagram.:
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To_wo/ \
’face ofrq
o' Fa /

Fig. 4.5. Commutative diagram defining the map ¥

X
A
HA') H(A)
H(Ty 1 —0 4/
X4 (Ta ar) X4 = (XA/)TA,_WA,

Proof. The proof proceeds by induction over the order relation in the matching
poset A® _ For all a <, T — o the assertion is trivial. For 7 — ¢ < a the
assertion follows from the definition of the Morse complex (see Definition
4.2.13).

After having formulated and proved these facts, we are now ready for the
proof of Theorem 4.4.2.

Proof. We can assume that Xc(r,zml is finite, since for the coefficient [0 : 7]
we only need to consider those X< ; which are compact. We proceed by
induction: Let o, 79 € X*), 79 — 0y 6 A such that 79 — o is < ,-minimal in
A Let A = A—{ry — 00}, X4 and X 4/ the corresponding Morse complexes.
Then, by induction hypothesis, we have

o4 Tarlar = Z 0" : 7] Z m(7),

o'facet of T YET 41 (0 ,0)
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where I'a/ (o, 0) is the set of paths in G4 from o’ to o.
Note that the following conditions are equivalent:

o I'y(d',00) =0 for all facets o’ of T
e 0p4 is not a facet of 74 or o4- is not a facet of g 4.

We distinguish the following cases:

1. The face og 4/ is not a facet of 74/ or o4/ is not a facet of 754,. Then
La(o',0) =T (o', 0)
. In addition by Lemma 4.4.3 it follows that

[(O-A/)TOA/HO'OA/ : (TA/)TOA/HUQA/]TOA/HUOA/ - [O-A/ :TA/]A/)

. Thus an application of Lemma 4.4.4 yields the asserted formula for [0 4 :

TA]A-
2. The face 0g 4/ is a facet of 74, and o4/ is a facet of 7y 4,. Then we have

Ia(o’',0)=Ta(c’,0)U{y* (0o =10 —0)|v€eTl(c 00)}

We deduce from Lemma 4.4.3 that

[(UA’)TOA/ —00 4 - (TA’)TOA/ _"TOA']TOA’ —o0ar

= [O'A/ :TA’]A' — [UOA/ :TA/]AI . [O‘A/ ZTOA']A’-

The formula now follows by an application of Lemma 4.4.4 and the defi-
nition of m(y).

Now we are in position to give a criterion for minimality.

Corollary 4.4.5 Let (X,gr) be a compactly (Z, A)-graded CW-complex which
supports a cellular resolution F5 . Let A be a homogeneous acyclic matching
on X. Then F¥  is minimal if there is no triple of cells o' < o and 0" of X
such that o, 0" are A-critical, gr(o) = gr(¢”’) and dimo’ = dimo” = dimo—1
for which there is a gradient path v € I'a(0’,0"). In particular, the resolution
is minimal if for all A-critical cells o and 0’ < o, dimo’ = dimo — 1 we have

gr(o’) # gr(o).

Proof. The first claim can be deduced from Theorem 4.4.2 using Proposition
3.1.2. The second part of the corollary then is a consequence of the first using
the the fact that along gradient paths gr is weakly decreasing.
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Exercises

Exercise 4.4.1. Find the minimal number of edges needed in an acyclic
matching to construct, starting from the simplex, a CW-complex such that
there are coefficients # +1,0 in the differential of the Morse complex.

Exercise 4.4.2. Show that it is possible to obtain arbitrarily high coefficients
in the differential of the Morse complex of a simplex of sufficiently high di-
mension.

Question 4.4.3. Let f(n) be the largest absolute value of a coefficient that
appears in the Morse differential of an acyclic matching on the n-simplex.
What is the asymptotics of f(n) ?

Exercise 4.4.4. Prove using the construction from Exercise 4.3.2 that in the
Scarf resolution all coefficients are +1.
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NBC, 28, 53
Aomoto, 33
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combinatorial Gauss-Manin, 52
formal, 7
Gauss-Manin, 7
convex hull, 93
convex linear combination, 93
cover, 7, 10, 41, 69
CW-complex, 113
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characteristic map, 114
d-skeleton, 114
P-graded, 121
compactly, 152
pair, 114
regular face, 146
subcomplex, 114
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d-sphere, 114

de Rham algebra, 62

de Rham complex, 9
decomposable arrangement, 17
decone, 17, 58
degeneration, 10, 41, 54
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deletion-restriction, 26, 31
dense edge, 34, 55, 59, 66
dependent, 24

dependent sets, 41
depth, 90, 92
discrete Morse theory, 146
A-critical, 149
A-universal grading, 150
acyclic matching, 148
homogeneous, 156
call graph, 148
critical cell, 147
discrete Morse function, 146
matching, 148
matching poset, 150
Morse differential, 160
Morse number, 147
trivial discrete Morse function, 147
distance, 20
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Eagon-Reiner Theorem, 97
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eigenvalues, 74
empty arrangement, 31
essential, 40
essential arrangement, 13, 23
exterior algebra, 23

face, 22

face poset, 14, 20

fiber bundle, 10, 70

fiber type arrangement, 63
flag, 28

formal connection, 7, 41, 73
Fox calculus, 74

Fox derivative, 74
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Gnbc, 31, 39
nbc, 28

free arrangement, 59
free resolution, 90
Z%-graded, 111
Bar resolution, 142
cellular, 103, 121
criterion for minimality, 126
relative, 130
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Luybeznik complex, 137
Lyubeznik resolution, 137
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Ne-graded, 91

existence and uniqueness, 112

multigraded, 91
multigraded, 111
order complex, 140
rooted complex, 137, 139
Scarf complex, 134
Scarf resolution, 133

supported by CW-complex, 121

taylor, 131
Taylor complex, 131
Taylor resolution, 130
minimality, 133
fundamental group, 62

g-Conjecture, 98
g-Theorem, 98
gallery, 20

Gauss-Manin connection, 7, 10, 71
general position arrangement, 14, 41,

44, 63, 67, 69, 73
geometric lattice, 13
Grobner bases, 100
graded algebra, 24
grading, 24, 26

Hilbert series, 27, 88
Hilbert-Serre Theorem, 99
homogeneous map, 108
homology, 30

homotopy groups, 63
homotopy type, 30, 61
hypergeometric integral, 9, 64
hyperplane, 5, 13

hyperplane at infinity, 16
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monomial, 100
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Stanley-Reisner, 87
independent, 24
integer lattice, 124
intersection poset, 13

join, 13

K(m,1) space, 63
k-algebra
Ne-graded, 90
Z%-graded, 108
finitely generated, 107
Gorenstein, 99
h-vector, 99
multigraded, 90
Orlik-Solomon, 112
standard graded, 108
Krull dimension, 93
Kruskal-Katona Theorem, 87

largest hyperplane, 35
lattice, 121, 139
atomic, 139
geometric, 139
LCM-lattice, 139
semimodular, 139
Laurent polynomial, 65, 66
Lefschetz property, 102
Lie algebras, 9
linear order, 26
linear order of hyperplanes, 25
local system, 9, 75

local system cohomology, 9, 64, 71

locally constant sheaf, 64, 71
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logarithmic forms, 62

loop, 69, 72

lower central series, 64
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manifold, 8, 61
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Ling, 86
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independent set, 86
rank, 86
uniform, 108
uniform matroid, 86
maximal abelian cover, 74
meet, 13
mid-hyperplane arrangement, 18
Milnor fiber, 8
minimal complex, 61
module
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moduli space, 7, 10, 40, 68
monomial, 87, 107
degree, 107
Laurent, 109
multidegree, 107
support, 88
monomial module, 123
co-Artinian, 123
generic, 135, 144
minimal monomial, 123
monomial order, 100
multi-arrangement, 40, 54
multiplicity, 43, 55, 69
multivalued holomorphic function, 64

NBC complex, 28
nbc
basis, 6, 53, 59, 75
complex, 6
flag, 28
frame, 28
set, 25, 28
nonresonant weights, 66

order complex, 140
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partial order, 13, 41
permutation, 110

matrix, 110
Poincaré polynomial, 15, 27, 58, 62
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self dual, 103
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projective closure, 16
projective dimension, 90
projective quotient, 17, 58
pseudomanifold, 105

quantum groups, 9
quotient space, 115

random to top, 22
random walk, 21
rank, 13
of A, 13
rank one local system, 65
ranking pattern, 18
real arrangement, 14
realizable, 41
regular sequence, 92, 133
Reisner’s Criterion, 95
representation, 70, 71
resonance varieties, 7, 40, 67
restriction, 15, 16
riffle shuffle, 23
ring
affine semigroup, 109
Hibi-ring, 101
Laurent polynomials, 109, 123
polynomial, 107
Stanley-Reisner, 87

saturated, 76

Selberg arrangement, 5, 8, 52, 63, 76
Selberg’s integral, 9

semigroup, 20

separator, 16, 31, 32, 59
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vertex, 94
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abstract, 119
Cohen-Macaulay, 92, 93
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f-vector, 86
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maximal, 86
facet, 86
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geometric, 94, 118
geometric realization, 94
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specialization, 52, 66, 75
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star, 30
Steinitz’s Theorem, 99
stratification, 65
stratified Morse theory, 10, 65
(STV) condition, 66
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supersolvable, 64
symmetric group, 18, 22

T -combinatorial weights, 67, 76
T -nonresonant weights, 10, 67
T-relevant, 44

unfolding model, 17
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