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FOREWORD 

The Cambridge Combinatorial Conference was held at Trinity College from 12 
to 14 May 1977, under the auspices of the Department of Pure Mathematics and 
Mathematical Statistics. Twenty two of the participants, many from abroad, were 
invited to give talks. This volume consists of most of the papers they presented, 
together with two additional articles which are closely connected with the themes 
of the conference. The opportunity was taken, where necessary, to revise and 
amend the papers, each of which has been thoroughly refereed. It is a pleasure to 
acknowledge the rapid and efficient work of both referees and authors. 

This volume is dedicated to Professor W.T. Tutte in acknowledgement of his 
great contributions to graph theory and combinatorics. Professor Tutte had spent 
two months in Cambridge, with the financial support of the Science Research 
Council, and the date of the conference was arranged to coincide with his sixtieth 
birthday. On Friday 13  May a celebration dinner was held in Trinity College. 
Professor P.W. Duff, Regius Professor of Civil Law Emeritus, who was Professor 
Tutte’s tutor while he was a student at  Trinity, proposed a most memorable toast 
which received an equally memorable reply. 

Several of the papers were quickly and efficiently retyped by Mrs. J.E. Scutt. 
The editorial burden was greatly relieved by the excellent work of Mr. A.G. 
Thomason. 

BCla Bollobh 
Cambridge 

3 August, 1977 
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LINEAR SEPARATION OF DOMINATING SETS 
IN GRAPHS* 

c. BENZAKEN 
Uniuersitt Scientifique et Medicale de Grenoble, Mathtrnatiques Appliqutes et Informatique, 
38041 Grenoble, France 

P.L. HAMMER 
Uniuersity of Waterloo, Department of Combinatorics and Optimization, Waterloo, Ontario N 2 L  
3 G 1 .  Canada 

The class of finite undirected graphs G having the property that there exist real positive 
numbers associated to their vertices so that a set of vertices is dominating if and only if the sum 
of the corresponding weights exceeds a certain threshold 0 is characterized: (a) by forbidden 
induced subgraphs; (b) by the linearity of a certain partial order on the vertices of G;  (c) by the 
global structure of G. The class properly includes that of threshold graphs and is properly 
included in that of perfect graphs. 

1. Introduction, notations, main results 

We shall consider in this paper only finite, simple, loopless, undirected graphs 
G = (V, E) (where V is the vertex set of G, and E is the edge set of G). The 
terminology follows that in [l] or [ 5 ] .  

For any x E V, we shall denote by N ( x )  the set of vertices adjacent to x and by 
M ( x )  the set of vertices of G not belonging to x U N ( x )  (for simplicity we shall 
usually put x instead of {x}). 

The edgeless graph on k vertices will be denoted by I k .  The complete graph 
with k vertices will be denoted by Kk. The complement of the perfect matching of 
2 k  vertices will be denoted by J 2 k .  (Note that I. = KO = Jo = 8, I ,  = K,, I, = J,.) 

Following Zykov’s terminology [8], for two graphs GI = ( V,, El) and G2 = 

(V,, E,), with V, rl V2= 8, we shall define their direct sum G,+ G, as being 
(V, U V,, El U E 2 )  and their direct product G l x  G ,  as being (V, U V,, 
El U E, U E,,), where E12 is the set of all edges linking points in V1 to points in 

A subset S of the vertex set V of a graph G is called a dominating set of G (in 
abbreviation S dom G) if any vertex x &  S is adjacent to at least one vertex y E S. 
A vertex v is called universal (or dominating) if { v }  dom G. Every set containing a 
dominating set is dominating. 

A subset S of V is called an independent set of G when the induced subgraph 
Gs is edgeless. Every subset of an independent set is independent. 

v2 * 

*This research has been carried out at the University of Waterloo (December 1976) and completed 
at the University of Grenoble (March 1977). 
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A maximal independent set of G is a minimal dominating set of G. The 
converse is generally not true. A domistable graph is a graph such that every 
minimal dominating set is independent. 

A domishold graph is a graph having the property that there exist positive real 
numbers associated to their vertices so that S is dominating if and only if the sum 
of the corresponding “weights” of vertices of S exceeds a certain threshold 6. 

Examples and counterexamples. Both I,, and K,, are domishold and domistable 
graphs. Each weight is 1, and the thresholds 8 are n (for I,,) and 1 (for K,). For 
p > 1, the graph J2p is domishold (each weight is 1, and the threshold 8 is 2), but 
not domistable. 

Let HI = K,+ K,, let H ,  be the simple path on 4 vertices, and let H3 = I, x I,, 
H4 = (II + K,) x I,, H5 = (II + K 2 )  x (I1 + K, )  (see Fig. 1). It is easy to notice that 
none of the graphs in Fig. 1 are domishold. 

H3 H4 H, 

Fig. 1. 

Let us define now a binary relation SG on the vertex set V of G, by putting 
x6,y (x, y E V) iff 

( S  dom G, x @  S, y E S )  j ( (S \  y )  U x) dom G. 

We shall say that ‘‘x is at  least as dominating as y” ,  or that “x can replace y”. 

Lemma 1.1. 6, is a reflexive and transitive relation (i.e. a preorder). 

Proof. The reflexivity is obvious. Assume i6,j and j6,k ( i ,  j ,  k -distinct), and let 
S be a dominating set of G, containing k ,  but not i. If jg S, then ((S \ k )  U j )  dom G 
(because j6 ,k)  and does not contain i ;  therefore ( ( S  \ k )  U i )  dom G because i can 
replace j .  If j E  S then ( (S \  j) U i )  dom G, contains k but not j .  So ( ( ( (S \  j )  U 
i )  \ k )  U j )  dom G, i.e. ( ( S  \ k )  U i )  dom G. In both cases i6,k. 

The main results of this paper are the following: 

Theorem 1.2. The following properties are equivalent: 

(i) G is domishold. 
(ii) The preorder 6, is linear. 

(iii) G has tao induced subgrapk isomorphic to H,,  H2,  H,, H4 or H, .  
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(iv) G is built from the empty graph by the repeated application of GI-+ G" 
where 

G"= (G'+l , )x  Kq x Jzr ( p  +q+ r f  0) .  

Corollaries. (a) Every induced subgraph. of a domishold graph is domishold (be- 
cause of (iii)). 

(b) Every domishold graph is perfect (follows from [6] where it is proved that a 
graph without any induced subgraphs isomorphic to H2 is perfect). 

Theorem 1.3. G is a domishold graph i f ,  the vertex set V of G can be partitioned 
into three (possibly empty) subsets V1, V,, V, (IV31 being even) inducing respec- 
tively the graphs lIvll, KIV21, Jlv31 with the following properties: 

Any  vertex of V, is adjacent to any vertex of V,. 
For any i E V,, N ( i )  n V, induces the complement of a perfect matching J2k with 

The elements of V, can be indexed so that 

Nil)  2 N(i,) 2. . . 2 N(iIv,,).  

2k  = ( N ( i )  n V31. 

The proofs of these results are given in Section 2. 
Section 3 deals with connections between threshold and domishold graphs. 

Consider an arbitrary threshold graph G, and let L be an arbitrary subset of 
vertices, inducing a complete subgraph in G. A one to one correspondence is 
established between the set of all pairs ( G , L )  (taken for all threshold graphs G 
and all their complete subsets L )  and the set of all domishold graphs. 

Section 4 deals with Boolean aspects of the previously obtained results and with 
algorithms for recognizing domishold graphs. 

2. Proof of the main results 

Proposition 2.1. If G is domishold, then f i G  is a linear preorder. 

Proof. Indeed, if G is domishold and ai are the weights associated to its vertices, 
then it is obvious that for any pair of vertices j ,  k one of the relations jack (if 
ai 3 ak)  or k8,j (if ak 3 ai) must hold. 

A vertex m of G is called maximal if it is maximal with respect to 
6,(mfiGi, Vi E VG). 

Remarks. (1) Any dominating vertex is maximal. 

dominating. 
(2) If a graph has a dominating vertex, then every maximal vertex is 

Lemma 2.2. Let G be a graph such that the corresponding preorder f i G  is linear and 
let m be a maximal vertex of it. 
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If  m is neither an isolated nor a dominating vertex then every pair {x ,  y }  with 
X E  N ( m ) ,  y  EM(^) is a dominating set of G and every vertex y E M ( m )  is 
dominating in G,,,. 

Proof. Let S be a maximal independent set of G not containing m (its existence 
is guaranteed by the fact that m is not isolated). Thus S dom G. Let i be any 
element of S. Since m & S  and m6,i we must have ( S \ i ) U m  dom G ;  i is not 
adjacent to any vertex of S\ i, hence it must be adjacent to m. So S C  N ( m ) .  

Now, if {x, y }  is such that x E N(m),  y E M ( m )  then x is adjacent to y (otherwise 
{x,  y }  is included in a maximal independent set of G not containing m and not 
included in N ( m ) ) .  This means that {x, y} dom G (every X ' E  N ( m )  is adjacent to y ,  
every y ' ~ M ( m )  is adjacent to x and m is adjacent to x ) .  

But m can replace x and { m ,  y }  dom G. Hence every y' in M ( m )  is adjacent to 
y ,  proving the Lemma. 

Lemma 2.3. If S, is linear, m is a maximal vertex of G and G, the subgraph 
induced by V \  m, then the preorder SGm is also linear. 

Proof. Let i, j E V \  m and assume i6,j. Let S be a dominating set of G, 
containing j but not i. Assume first that m is isolated in G. Then S U m dom G 
contains j but not i. Hence ( ( S  U m)\ j )  U i dom G and by deleting m, (S\ j )  U 
i dom G, showing that iaGmj. I f  m is a dominating vertex of G then S dom G and 
( S  \ j) U i dom G,, showing that iSGmj. Finally let us consider the case where m is 
neither isolated nor dominating. If i or j belongs to M ( m )  then iaGmj (or jSGmi) 
because by Lemma 2.2 i(resp. j) is dominating and so maximal in G,. If i and j 
belong to N ( m )  then S dom G and (S\ j )  U i dom G does not contain m so that 
( S  \ j )  U i dom G,. Hence iEiGmj. 

Lemma 2.4. If 6, is linear, m is a nonisolated vertex of it, and i, j E V \  m such that 
i E M ( m )  f l  M(j ) ,  then m is not a maximal vertex of G. 

Proof. Otherwise (by Lemma 2.2) i E M ( m )  must be dominating in Gv,,, which 
is impossible since i is not adjacent to j ( j #  m ) .  

Lemma 2.5. If  6, is linear, m E V, i and j are adjacent vertices in M ( m )  and i f  
h, k, 1 E N (  m )  are such that 1 E M (  h )  n M( k ) ,  then m is not a maximal vertex of G. 

Proof. Assume m is maximal. Since it is neither isolated nor dominating, it 
follows from Lemma 2.2 that {h,  i }  and { k ,  j }  are dominating sets of G. However 
{i ,  j} and {k, h }  are not dominating (because m E M ( i ) n M ( j )  and 1 E M ( h )  n 
M ( k ) ) .  Hence neither jsGh nor hS,j hold, in contradiction with the assumed 
linearity of SG. 

Proposition 2.6. A graph G having the property that the preorder 6 ,  is linear, 
cannot have any induced subgraph isomorphic to HI, H2, H3,  H4 or H, .  
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Proof. Assume that G with linear preorder 6, has an induced subgraph H 
isomorphic to an H, ( t  = 1 , .  . . , 5 ) .  

By removing a maximal vertex m &  H (if possible) and continuing this process as 
many times as possible, we shall eventually arrive (by Lemma 2.3) to a graph G' 
(with linear preorder) having a maximal vertex m in its induced subgraph H. 

If t = 1 , 2  or 3 then we can find two vertices n ( f  m )  and p such that 
p E M ( m )  fl M ( n ) .  By Lemma 2.4, m is not maximal (a contradiction). If t = 4 or 5 
then H = (I, + K 2 )  x H' (where H' = 13(t = 4) or H' = I ,  + K2(t = 5)).  

By the same argument as above m k  K2. Similarly, if H' = 13, m & 13. So we may 
suppose m =I , .  Then K 2 c  M ( m )  while H' is a subset of N(m) .  It follows now, 
from Lemma 2.5, that m is not maximal. In any case, we have a contradiction. 

Lemma 2.7. (Wolk [7].) If G is a connected graph without a dominating uertex, 
then the complementary graph G contains an induced subgraph isomorphic to H ,  or 
H2. 

Lemma 2.8. If G has no isolated or dominating uertex and no induced subgraph 
isomorphic to H, ( t  = 1,2 ,  . . . , 5 )  then its complement G has an isolated edge (i.e. 
an edge which is not adjacent to any other edge). 

Proof.' G has no dominating vertex. If G is connected then by Lemma 2.7, G 
contains a subgraph isomorphic to H ,  or H2 (a contradiction). If c is not 
connected then every connected component has at least two vertices (G has no 
dominating vertex). If one component has exactly two vertices the lemma is 
proved. Otherwise each component contains a subgraph isomorphic to one of the 
following 

Hence, G contains a subgraph isomorphic to L ,  x L, where the Li ( i  = 1,2)  are I3 
or I ,  + K2. Thus G contains a subgraph isomorphic to H, ( t  = 3 or 4 or 5). 

Lemma 2.9. If G is not empty and has no induced subgraph isomorphic to H, 
( t  = 1 , 2 , .  . . , 5 )  then G has one of the forms 

G =  G'+I, ,  

G = G'x K, ,  

G=G'xJ , ,  

where G' has no induced subgraph isomorphic to any H, ( t  = 1, . . . , 5 ) .  
' The use of Wolk's result in the present proof was recommended by Ch.Payan and has produced a 

substantial simplification over our original proof. 
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Proof. The decomposition follows from Lemma 2.8; the fact that G’ has no 
induced subgraph isomorphic to H, is obvious. 

Proposition 2.10. If G has no induced subgraph isomorphic to H, ( t  = 1,2,  . . . , 5 )  
then G is built from the empty graph by the repeated application of G‘+ GI’ where 

G ” = ( G ’ + I p ) x K q x 5 2 f  with p + q + l # O .  

Proof. Obvious from the repeated application of Lemma 2.9, from the associativ- 
ity and commutativity of + and X ,  and from the following relations: 

(p times), Ip = I, + I, + II +. * - + I ,  

K q = K l x K l x K , x . - - X K ,  (qtimes), 

J Z f  = J2 x J2 x J2 x . * . X J2 ( 1  times). 

Proposition 2.11. If G is built from the empty graph by the repeated application of 
G’+ GI’ defined above then G is domishold. 

Proof. The empty graph is obviously domishold. Assume now that G =  
(GI+ I,) x K, X JZr, and that G’ is domishold. Let wt represent the weight of the 
vertices 1 E VGj, and wo the threshold for G’. Let w* = imin, wl. We can always 
assume that 2w* G wo, since otherwise G’= Kq, and we could take all weights wf 
(1 E VG,), as well as w,,, equal to 1 (in which case again 2w* =s wo). Let us also put 
W =  l+CfEVo.  wI and let us define Go= wo+pW and 

i e  V,’, r wr  
W i E I,, 

WO+ PW i e  Kq, 
wi= { 

(w,+pW- w* i E  J2,. 

The “weights” Gt and the “threshold” wo of G characterize the dominating sets 
of G. Indeed, any minimal dominating set D of G is of one of the following three 
types: (i) D = { k } ,  k E Kq;  (ii) D = { j ,  e}, with j E J2,, j #  e, and e E JZr U I, u VGj;  
(iii) D = D‘U I,, where D’ is a minimal dominating set of G‘. 

Proof of Theorem 1.2. Follows from Propositions 2.1, 2.6, 2.10, 2.11. 

Proof of Theorem 1.3. Necessity. From property (iv) of Theorem 1.2, we can 
define Go, G,, . . . , G, with 

G o = @  G , = G  

and 

Gi+,=(Gi+I , , )xKq,xJ2,  ( i = O , 1 ,  . . . ,  t - 1 ) .  
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Putting 

it is clear by induction that this partition has the desired properties. 
Sufficiency. By induction. If G has the prescribed properties it is obvious that if 
V, # 9 then i l v , l  is either isolated (and after its elimination we get a graph G' with 
the same properties), or is adjacent to a vertex k in V, (k is dominating and its 
elimination leads to a graph G' with the same properties), or is adjacent to a 
non-adjacent pair { j ,  j ' }  of V, so that G = G ' x J ,  with G' having the same 
properties. 

If V, = pl then every k E V, (in case of V, # (3) is dominating and GV-k has the 
same properties. 

If V, = $I then G = .Izr is domishold. 

3. Threshold and domishold graphs 

We shall recall that, as in 121, by a threshold graph we shall mean a graph such 
that real non negative numbers can be associated to its vertices so that two 
vertices are adjacent iff the sum of their weights exceeds a certain threshold. 
Alternatively, a graph is threshold iff there exist real num.bers associated to its 
vertices so that the sum of these numbers associated to vertices belonging to an 
independent set (a dependent set) is < (is 2 )  than a certain threshold. Several 
characterizations of such graphs can be found in 121. 

We recall also that, as in [3], by a split graph we shall mean a graph whose 
vertex set V can be partitioned in two (possibly empty) subsets V,, V, such that 
V1 induces IlVll and V, induces KIV2,. 

Theorem 3.1. Every threshold graph is domishold and has all the following 
properties : 

(a) I t  has no induced square [ I ,  X I , ] .  
(b) I t  i s  split. 
(c) It  is domistable. 
(d) I t  is an interval graph. 

Conversely a domishold graph having any one of the mentioned properties is 
threshold. 

Proof. It has been proved in [2] that a threshold graph is characterized by the 
absence of induced subgraphs isomorphic to HI, H2 and 1 2 X  I,. From this, it 
follows that it has no subgraph isomorphic to H, ( t  = 1 , 2 , .  . . , 5 ) .  Hence it is 
domishold and satisfies (a). 

In [2] it is proved that a threshold graph is split (b). Moreover if i and j are two 
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adjacent vertices of a threshold graph, we have: 

N ( i )  E N ( j )  U j or N ( j )  s N( i )  U i .  

Therefore a minimal dominating set will never contain both i and j ,  and hence it is 
independent, proving (c). 

Finally it has been proved [2] that in a threshold graph (having split structure 
V1 U V,) one can index the elemenrs of V1 in such a way that N ( i l )  E N(i2)  c 
* * * E N(ilv,,). Associate to each element i ,  E V1 the interval [a, a] and to each 
element k E V, the interval [mk ,  /V,l+ 11 where mk is the least integer such that 
k E N(imk)  (if any), and otherwise mk = I VII + 1. It is easy to see that the corres- 
ponding interval graph is isomorphic to the original one, proving (d). 

Conversely a domishold graph without an induced square I2 X I, (and of course 
without H1, H,) is threshold. A split graph has no square and if it is domishold, it 
is threshold. 

If a graph G is domishold and domistable then a maximal vertex m (for 6,) is 
either dominating or isolated. Otherwise by Lemma 2.2 any set {x, y} with 
x E N ( m ) ,  y E M ( m )  is minimal dominating (the minimality follows from the fact 
that y is obviously not dominating, and neither is x, otherwise m should be 
dominating). Hence by removing m, we get again a domistable and domishold 
graph. By induction it follows that the original graph is threshold. 

Finally if an interval graph is domishold then it does not contain a square. 
Indeed assume there exists a square and [a ,  b ] ,  [c ,  d ]  are the corresponding 
intervals associated to two opposite vertices of this square. We have [ a ,  b]n 
[c,  d ]  = 8. Obviously, the two intervals [e,  f ] ,  [ g ,  h ]  associated to the other two 
vertices of the square must intersect both [ a ,  b] and [c,  d ]  and therefore intersect 
each other (a contradiction). 

Definition. Let i be a vertex of a graph G. The i-duplication of G is the graph G’ 
obtained by adding a new vertex i’  to V, with N(i’)  = N ( i ) .  Conversely, we shall 
say that G is the ( i ,  i’)-fusion of G‘. 

We can extend this definition to W-duplication of G ( WG V,) by duplicating 
sequentially each vertex of W (this operation does not depend on the order of 
duplications). 

Also if U s  V,, induces the complement of a perfect matching (Jiui) and if 
every pair ( i ,  i ’ )  of non adjacent vertices in U have the same neighbourhood 
( N ( i ) = N ( i ’ ) ) ,  by the U-fusion of G, we mean the graph obtained by the 
sequential repetition of all the ( i ,  i’)-fusions of G. 

Theorem 3.2. If G is a domsihold graph and S a maximal subset of V, inducing a 
subgraph Jlsl then the S-fusion of G is threshold. 

Conversely i f  G is threshold and L a subset of a maximal subset of V, inducing a 
clique of G then the L-duplication of G is a domishold graph. 
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Proof. A direct consequence of Theorem 1.3. 

Remark. Despite the fact that the class of domishold graphs includes properly 
that one of threshold graphs, this theorem seems to point to a (to us) surprising 
similarity between threshold and domishold graphs. 

4. Boolean aspects and algorithms 

4.1. Recognizing domishold graphs 

It is easy now to construct a procedure for the recognition of domishold graphs; 
the time needed by this procedure will be polynomial in the number n of vertices. 
The procedure can start by searching for isolated vertices and eliminating them. 
When no more isolated vertices can be found, the procedure could search for 
dominating vertices. After repeating the above two steps as many times as 
possible we shall obtain a graph without isolated or dominating vertices; in this 
graph we shall look for two non-adjacent vertices, both of which are linked to 
every other vertex. The graph is domishold if and only if the above three steps can 
be repeated until the total exhaustion of the vertex set. 

4.2. Recognizing the linear separator of a domishold graph 

A linear inequality 

i wixi 3 wo, xi  E{o, 1) ( i  = I , .  . . , n )  
i = l  

is called domigraphic if there exists a domishold graph of n vertices such that the 
w,’s are the weights of the vertices, and wo is the threshold. In other words, the 
inequality holds if and only if (x,,. . . , x,) is the characteristic vector of a 
dominating set. We can obviously assume that w1 2 * . .3 w,. 

The condition 

i w i 2 w o  
i = l  

is obviously necessary for a linear inequality to be domigraphic. In the case n = 1, 
it is sufficient too. For n = 2,  this condition along with (w ,  < wo) + ( w ,  < wo) are 
again sufficient. 

Theorem 4.1. The inequality 
one of the following conditions hold: 

wixi 3 wo ( n  3 3 )  i s  domigraphic i f  and only i f  

(i) w1 2 wo and C:=, wixi 3 wo is domigraphic; 
(ii) w1 < wo, 

(iii) w1 < wo, w,+ w, 3 wo and CrS3 wixi 3 wo is domigraphic. 
wi < wo and CYz2 wixi 3 wo- w1 is domigraphic; 
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The proof is based on Theorem 1.2 and is omitted here. 

4.3. Boolean functions associated to domishold graphs 

A monotone Boolean function f ( x l , .  . . , x,) is called domigraphic if there exists 
a graph with n vertices such that the set of characteristic vectors X of all its 
dominating sets is the same as the set of solutions to the equation f ( x l ,  . . . , x,) = 

1. 

Theorem 4.2. f ( x l ,  . . . , x , )  is a domigraphic Boolean function i f  and only i f  it has 
one of the forms 

f ( x l ,  x27 . . . 7 x n )  = x 1  v g ( x 2 ,  . . . > x n )  

f ( x l ,  x27 . * * 7 = x1 ’ g ( x 2 ,  . . . 3 x n )  

f(x17 ~ 2 ,  - .  . y  X n ) = x I x Z v ( x l v x 2 )  V xi v g ( x 3 , .  ’ .  > x n ) ?  
(i:, 1 

where g is a domigraphic Boolean function. 

Noticing that the preorder aG introduced in Section 1 is the same as the 
Winder-type preorder defined on the set of variables of a Boolean function, 
Theorem 1.2 will have the following. 

Corollary. A domigraphic Boolean function is threshold i f  and only i f  i t  is 
2- monotonic. 
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REGULARISABLE GRAPHS 

Claude BERGE 
University of Paris 4 PI. Jussieu, 75230 Paris, Cidex 06, Frunce 

1. Introduction 

A graph G is said to be regularisable if a regular multigraph can be obtained 
from G by adding edges parallel to the edges of G. In this paper, we give several 
characterisations of regularisable graphs; in particular, a connected non-bipartite 
graph has a unique optimal fractional transversal (with all coordinates equal to 4) 
if and only if it is regularisable. 

This class of graphs contains the edge-critical graphs with no isolated vertex and 
the line-graphs of graphs with no pendent edge. The Fulkerson-Hoffman theorem 
(Corollary 2.5 to Theorem 2.2) and a property of the edge-critical graphs due to 
Hajnal (Corollary 4.1 to Theorem 3.1) follow immediately from the main results. 

2. Optimal k-transversals of a graph 

In this paper, G always denotes a simple graph (with no loops and no multiple 
edges), but the results and concepts are also valid for a multigraph with no loops. 
The vertex-set of G is denoted by X ,  and the edge-set by E. 

Let G = ( X ,  E )  be a graph. For x E X  write T,x or T x  for the set of neighbours 
of x .  For A = X put TA = UXEA T x .  Also, for A c X ,  B c X write mG(A, B )  or  
m(A, B )  for the number of edges of G having one endvertex in A and the other 
in B. 

A fractional transversal of G is a non-negative function p ( x ) ,  defined for x E X,  
such that 

[ x , Y l ~ E J p ( x ) + p ( Y ) s  1. 

A k-transversal of G is a function p ( x )  on X such that: 

(ii) p ( x ) + p ( y ) a  k for every edge xy .  
(i) p ( x )  E {(A 1,2, . . . , k ) ,  

7k(G) denotes the minimum of C X E x p ( x )  when p ranges over all the k -  
transversals of G. Thus T ~ ( G )  is the usual transversal number 7(G), i.e. the 
minimum cardinality of a set T c X  which meets all the edges. 

Let kG denote the multigraph obtained from G by multiplying each edge by k. 

11 
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A partial H of kG is called a k-matching if at each vertex x, the degree d H ( x )  
does not exceed k. 

Denote by vk(G) the maximum number of edges in a k-matching. Thus 
v,(G) = v(G) is the usual matching number. 

It is well-known that max (vk(G)/k) =min ( ~ , ( G ) l k ) .  The common value, called 
the fractional transversal number of G and denoted by T*(G),  satisfies the 
following inequalities (see Berge, and Simonovits [5],  Lovhsz [lo]): 

Lemma 2.1. For every hypergraph G we have 

Theorem 2.2. Let G be a connected graph. Then there exists an optimal 2- 
matching H of G such that each connected component of H is either a single vertex 
or a pair of parallel edges (“double edge”) or an odd cycle. 

For every 2-matching, there exists and optimal 2-transversal p ( x )  with values as 
follows: 0 i f  x belongs to a singleton of H, (0,2) or (1, 1) for the two vertices 
belonging to a double edge of H ,  and 1 for each vertex belonging to an odd cycle of 
H. 

Proof. Let H c 2G be a maximum 2-matching. Every connected component of H 
which is a path or a cycle of even length can be replaced by a set of painvise 
disjoint double edges without changing m ( H ) .  No component of H is an odd path 
(i.e. a path of odd length) since m ( H )  is maximum. Thus H is now of the type 
described by the theorem. 

We shall label each vertex with 0, 1 or 2, by an iterative procedure described by 
the following rules: 

(1) Label with 0 each vertex which is a singleton of H. 
(2) Label with 2 each vertex which is adjacent in G to a vertex previously 

labelled with 0. 
( 3 )  Label with 0 every vertex which is adjacent in H to a vertex previously 

labelled with 2. 
(4) Every vertex which cannot be labelled by the iterative procedure described 

by rules 1, 2, and 3 ,  will be labelled 1. 

No odd chain, starting from a singleton of H and consisting alternately of edges 
of G-H and of double edges of H, ends with a singleton because such a chain 
would constitute a connected component of a 2-matching H’ with m ( H ’ ) >  m(H) .  
Similarly no odd chain of that kind can end in an odd cycle of H. No odd chain of 
that kind can cross itself at a vertex labelled with 0 (because there would be a 
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better 2-matching having as connected components an odd cycle and a set of 
double edges). 

Thus a unique label t ( x )  can be given to a vertex x by the above rules, 

t ( x ) = O  if x is a singleton of H, 
t (x )=2  and t ( y ) = O  (or vice versa) if x y  is a double edge connectable to a 

singleton (otherwise t ( x )  = t ( y )  = l), t ( x )  = 1 if x belongs to an odd cycle of H. 
The rules show also that t (x)  is a 2-transversal of G. Furthermore, we have 

$ m ( H )  = ~ v ~ ( G ) S T * ( G ) ~ ~ T ~ ( G ) S  2 t ( x )  = i m ( H ) .  
x E X  

So these inequalities hold as equalities; hence t ( x )  is an optimal 2-transversal. 

Corollary 2.3. [ll, 151. For a multigraph G, 

T * ( G ) = ~ V , ( G ) = ~  2 72( G). 

Corollary 2.4. (Konig). For a bipartite graph G = (X, Y, E ) ,  the maximum number 
of edges in a matching equals 

min ( ( X -  A1 + lFG(A)l). 
A c X  

Proof. Let M = minA,, (/A - A \  + lrG(A)1) and let N be the maximum number of 
edges in a matching. Clearly M 2 N. Let H be the maximum 2-matching given by 
Theorem 2.2, and let X c X  be the set of singletons of H in X .  Further let 
X ,  c X - be the set of remaining elements of X labelled i ,  0 < i S 2. Since the 
double edges of H define a matching of G, and as H has no odd cycles, we have 
N>I:=, ,  1x1. However the only vertices of X labelled with 2 are in T,(X,,), and 
so rG (Xo U X) = F(X,,). Hence 

M s IX - ( X ,  u X)1+ ITG (X, u X)1 

= 1x11 + 1x21 + lrH(x")l 
= 1x11 + 1x4 + 1x01 6 N,  

and the corollary is proved. 

Corollary 2.5. (Fulkerson et al. [7]). Let G be a regular connected graph such that 
euery pair of vertex-disjoint odd cycles is joined by an edge ("semi-bipartite graph", 
like the Peterson graph). Then there exists a matching which has at most one 
unsaturated vertex. 

Proof. As above, the 2-matching H has no singleton. If two connected compo- 
nents are odd cycles, they can be replaced by double edges. If only one odd cycle 
remains, it can be replaced by one singleton and a set of double edges, so that the 
double edges constitute a matching with at most one unsaturated vertex. 
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Remark. Theorem 2.2 shows that an optimal fractional tranversal of a graph G 
can easily be obtained; we first construct a maximum 2-matching (as a maximum 
flow in a bipartite transportation network), and then we apply the algorithm 
described in Theorem 2.2 to get a minimum 2-transversal. This shows also the 
fact, quoted by several authors, that the linear programming which describes the 
maximum stable sets of a graph always has a solution with coordinates 0, 1 or $. 

3. Regularisable graphs 

From Lemma 2.1, it follows immediately that a regular graph G satisfies 
T*(G) = i n ,  and therefore, the vector 1 = (1,1, . . . , 1) is an optimal 2-transversal. 
In this section, we shall first consider the problem of the uniqueness of the 
optimal 2-transversal; more precisely, for which graphs is 1 the unique optimal 
2 -transversal? 

Let G = ( X ,  Y,E) be a bipartite graph; then, from Theorem 2.2, we have 
T ~ ( G )  = n if and only if G possesses a perfect matching. In this case, there exist at 
least three optimal 2-transversals: one with all weights equal to 1, and two with 
weights equal to 0 in one vertex-class, and to 2 in the other vertex class (since 
(XI = 1 Yl). So, if a graph G has 1 as an unique optimal 2-transversal, no connected 
component of G is a bipartite graph. 

Theorem 3.1. Let G be a connected graph which is not bipartite. Then the following 
conditions are equivalent: 

(1) G is regularisable, 
(2) t ( x ) =  1 is the only optimal 2-transversal, 
( 3 )  for every non-empty stable (“independent”) set S of  vertices, II‘Sl> IS[. 

Proof. (1) implies ( 2 ) .  Let G be a graph and let H be a regular multigraph 
obtained from G by edge-multiplication. Then 

Thus, t(x)= 1 is an optimal 2-transversal for G. 
Now, assume that there exists another optimal 2-transversal t ’ ( x ) ,  and for 

s = 0, 1,2, put 

A, = {x: x EX, t ’ ( x )  = s}. 

Then IAol=lAzl#O. The set A, is stable (otherwise t ’ (x )  would not be a 
2-transversal), and TA, c A,. We have TA, = A, (otherwise, t ’ ( x )  would not be 
optimal; a better 2-transversal can be obtained from t ‘ ( x )  by replacing a 2-value 
by a 1-value). 
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Since H is regular, 

A ( H )  I A , I  = m H ( A O ,  A2) 

1 m&, A0)sIA21 A(H)  = A(H)  IA,,I. 

Hence mH(x, A,) = A(H) ,  and no edge goes out of A,, U A,. Since G is connected, 
its vertex set is A, U A, and G is a bipartite graph having two vertex classes with 
the same cardinality. This contradicts the hypothesis. 

(2) implies (3) .  Let SZP, be a stable set, and let H c 2 G  be an optimal 
2-matching as described in Theorem 2.2. 

Since t ( x ) =  1 is an optimal 2-transversal, we have T ~ ( G )  = n, so the connected 
components of H are either double edges or odd cycles. Hence 

x s A  

IrGs12= Ir,Sl 3 IS(. 

If II',Sl= IS\, it would follow that all the components of H meeting S are double 
edges. We can then define a 2-transversal t ' ( x )  by putting 

t ' ( x )  = 0 if x E S, 

2 if x E TS, 

1 if xEX-(SUfS).  

Since t ' ( x )  would also be an optimal 2-transversal of G, this contradicts the 
uniqueness of the optimal 2-transversal. Thus IrS( > IS[. 

( 3 )  impiies (1). Now assume that lrSl > IS1 for every non-empty stable set S of 
G. Let H be a bipartite graph whose vertex-classes are two copies X and x of the 
vertex set of G, the vertices x E X and 7 EX being joined by an edge in H if and 
only if x and y are adjacent in G. 

Let B c X ,  BZ !J, BZ X, be a set such that the subgraph GB has no isolated 
vertex. Then f H ( B ) = B .  Now let S c X  be a set such that Gs has only isolated 
vertices. Then S is a stable set of G, and by ( 3 ) ,  

\ f , S l =  lTc;S1 > (SI. 

So, for every set A = B U S c X, A # $3, A # X ,  we have 

IrHA I > I A  1 )  
noting that I',SnB=@ if there are no edges between B and S. 

First, we shall show that each edge a6 of H belongs to at least one perfect 
matching, that is the subgraph H' of H induced by (XU x ) - { a ,  6} has a perfect 
matching. For every A c X - {a} ,  

I rH, A 1 = 1 rHA - { 6}lz IT,A I - 1 3 (A I. 
Thus, by Konig's theorem, H has such a matching. 

Consequently, for each edge ab of G, there exists a 2-matching which saturates 
all the vertices and which uses the edge ab. The union of all these possible 
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2-matchings defines a regular multigraph, which arises from G by edge- 
multiplications. Thus G is regularisable. 

Corollary 3.2. Let G be a connected regularisable graph which is not bipartite: then 
the graph G’ obtained from G by adding a new edge is also regularisable. 

Proof. Let S’ be a stable set of G’ = (X ,  r’). Since S’ is also stable for G = (X ,  r), 
lTS’l3 JS’I + 1, and 

Hence G’ is regularisable. 

is regularisable, but the graph obtained by adding a diagonal is not regularisable.) 

IT‘S’) 3 lrS’l3 IS’) + 1. 

(Note that Corollary 3.2 does not hold for bipartite graphs; the quadrilateral C ,  

Corollary 3.3. If, for every vertex x of a graph G = (X ,  r), there exists a maximum 
stable set T, such that x$ T,, rx$ T,, then G is regularisable. 

Proof. Clearly, we may assume that G is connected without loss of generality; we 
shall show, by induction on IS\, that ITS1 > IS( for every stable set S.  

First, let S = { x }  be a singleton. Then x is not an isolated vertex (because 
T, U{x}  would be a stable set larger than T,). Also, x is not incident to only one 
edge, say [ x ,  y], because x $  T,, hence y E T,, hence Tx = T,, which is a contradic- 
tion. 

Thus, IISI > ISI. 
Now, assume that every stable set S with cardinality S p  - 1 satisfies ITS1 > ISI, 

and consider a stable set So with cardinality p .  Let a E So; we have 

l ~ ~ o ~ ~ ~ l ~ l S o - ~ a l  (1) 

Otherwise, (TSon T,I<IS,-T,I, and T,-(TS,n T,)U(S,-T,)  would be a stable 
set larger than T,, which is a contradiction. 

Case 1: So f l  T, = $4. Then, by eq. (l), 

I ~ s , ]  3 ITS, n T,] + Ira - T, 1 > IrS, n T,) = ISo - T, I = ]SJ 

Case 2: So fl T, # 9. Then Son T, is a stable set with cardinality s p  - 1, and by 
the induction hypothesis, Ir(S,  f l  T,)I> IS,n T,I. Hence 

Irs,la Ir(s, n + ITS, n T, I > Is, n T, I + Iso - T, I = I sol. 
Thus, in each case, IfSol> lSol, and this is true for every stable set So. Hence G 

is not bipartite, and, by Theorem 3.1, G is regularisable. 

4. Application to a-edge-critical graphs 

Let G be a graph with stability number (or “independence number”) a ( G )  = k.  
An edge e of G is said to be a-critical if the subgraph G - e satisfies a(G - e )  > k. 
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The graph G is a-edge-critical (for short, a-critical or edge-critical) if every edge 
is a -critical. Edge-critical graphs have been extensively studied, in particular by 
Plummer [13], Erdos and Gallai [6], Hajnal [9], Berge [3], Wessel [16], George 
[S], Andrisfai [1], Suranyi [14], Lovasz [12], and Zykov [17]. 

Generalizing a result of Hajnal, we can show the following as an immediate 
application of Corollary 3.3. 

Corollary 4.1. Every edge-critical graph with no isolated vertex is regularisable. 

Proof. We may assume without loss of generality that the edge-critical graph G is 
of order larger than 2 (because K2 is regularisable). It is easy to see that G has no 
pendent vertex. Every vertex x is incident to an edge, say [x, y], and the removal 
of this edge creates a stable set Sx,y with cardinality a ( G ) + l .  Thus, Sx,y -{x}= T, 
fulfils the conditions of Corollary 3.3, and consequently G is regularisable. 

5. Application to line-graphs 

Jeager and Payan [12] have shown that the line-graph L ( H )  of a connected 
graph H with no pendent edge is regularisable. We prove here the following result: 

Theorem 5.1. If H is an r-uniform hypergraph with no vertex of degree one, such 
that each edge meets at least r other edges, then L ( H )  is regularisable. 

Let E be the edge-set of H, or the vertex set of L ( H ) ;  let F c  E be a matching 
of H, or a stable set of L(H) .  Let G be the bipartite graph obtained by removing 
from L ( H )  the edges which are not incident to F. The degree in G of a vertex 
e E E is denoted by d,(e).  

For e E E - F, we have dG(e )  s r, because in H the edge e has only r elements. 
For f E F, we have dG(f )  2 r, because in H the edge f meets at least r other edges. 
Hence 

Thus, IT,F( 3 IF[. If the equality never occurs, then the graph L ( H )  is regularisa- 
ble by Theorem 3.1. If the equality holds for some stable set Fa, then 

d G ( f )  = r, 

d , (e)  = r, 

(f E Fa.) 

( e  E rGF,,.) 

It follows that G is a regular bipartite graph, and E - Fa = rGF, (because in H an 
edge e E rGFa is covered by r edges of the matching Fa so any edge in E -  Fa 
which meets e meets also an edge of F, and consequently belongs to r,F,). Thus 
IE- Fol = IFo(. If H has no vertex of degree 1, UfrF, f = UesE--Fo e, and L ( H )  = G 
which is a regular graph. This completes the proof. 
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6. Index of regularisability 

We shall now consider the index of regularisability k(G); this is a number equal 
to $00 if G is not regularisable, and otherwise equal to the least k for which a 
k-regular multigraph can be obtained from G by edge-multiplication. 

Theorem 6.1. Let G be a simple graph, and denote by Q the set of all pairs ( S ,  T ) ,  
where 

S is a non-empty stable set, 
T is a stable set (possibly empty) disjoint from S and satisfying T T  G S, IT I G ISI. 
Put 

(This maximum takes into account the value p/O = +a, but not the undetermined 
value O/O.) 

Then k ( G ) a  p ( G ) .  

Proof. Clearly, Q+ 8, because ({x}, 8) E Q. If k(G) = +m then k(G) 3 p(G)  
(trivially). If k ( G ) < + w ,  then there exists a k-regular multigraph H mini- 
mum degree obtained from G by edge-multiplication. Let (S, T )  E Q. Then 

kl SI - k 1 TI = m,(S, X - S )  - m,(S, T )  = m,(S, X - T )  3 m, (S ,  X - T).  

Since this is true for all (S, T)EQ, we have k(G)= k > p ( G ) .  

For bipartite graphs, we have a more precise result, which is a straightforward 
application of the Theorem of Berge and Hoffman [4] for unimodular hyper- 
graphs: 

Theorem 6.2. (reformulation of [4, Theorem 3.21). Let G = ( X ,  Y, E )  be a bipar- 
tite graph; then k ( G )  = [p (G) ] * .  In other words, G is regularisable if and only if 
p(  G )  < +a; in this case, the least degree for a regular multigraph H is the least 
integer 2 p (G).  

References 

[ I ]  B. AndrBsfai, On critical graphs, Thtorie des Graphes (Rome I.C.C., Paris, 1967) 9-19. 
[2] C. Berge, Graphes et Hypergraphes (Dunod, Paris, 1970). 
[3] C .  Berge, Une propriete des graphes k-stables critiques, Combinatorial Structures (Gordon and 

[4] C. Berge and A.J. Hoffman, Multicolorations dam les hypergrdphes unimodulaires, Proc. Paris 

[5]  C. Berge and M. Simonovits, The coloring numbers of the direct product of two hypergraphs, 

Breach, New York, 1970) 7-1 1 .  

Conf. July 1976, C.N.R.S. Publ. (to appear). 

Hypergraph Seminar 1972, Lecture Notes 411 (Springer, Berlin, 1974) 21-33. 



Regularisable graphs 19 

[6] P. Erdos and T. Gallai, On the minimal number of vertices representing the edges of a graph, 

[7] D.R. Fulkerson, A.J. Hoffman and M.H. McAndrew, Some properties of graphs with multiple 

[8] A. George, On line-critical graphs, Thesis, Vanderbilt Univ., Nashville, TN (1971). 
[O] A. Hajnal, A theorem on k-saturated graphs, Can. J. Math. 17 (1965) 720-772. 

Publ. Math. Inst. Hung. Acad. Sci. 6 (1961) 181-203. 

edges, Can. J. Math. 17 (1965) 166-177. 

[lo] L. Lovasz, Minimax theorems for hypergraphs, Hypergraph Seminar 1972, Lecture Notes 411 

[I  11 L. Lovasz, 2-matchings and 2-covers of hypergraphs, Acta Math. Acad. Sci. Hungar 26 (1975) 

[I21 F. Jaeger and C. Payan, A class of regularisable graphs, Annals of Discrete Mathematics 3 (1978) 

[13] M.D. Plummer, On a family of line critical graphs, Monatsh. Math. 71 (1967) 40-48. 
[I41 L. Suranyi, On line-critical graphs, Infinite and finite sets, (North-Holland, Amsterdam, 1975) 

[I51 W.T. Tutte, The 1-factors of oriented graphs, Proc. Am. Math. SOC. (1953) 922-931. 
[ 161 W. Wessel, Kanten-kritische Graphen, Manuscripts Math. 2 (1970) 309-334. 
[17] A.A. Zykov, On some properties of linear complexes, Math. USSR Sb. 24 (1949) 163-188. 

(Springer, Berlin, 1974) 111-126. 

43 3-444. 

125-127. 

141 1-1444. 



This Page Intentionally Left Blank



Annals of Discrete Mathematics 3 (1978) 21-28. 
@ North-Holland Publishing Company 

HAMILTONIAN DECOMPOSITIONS OF GRAPHS, 
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0. Definitions 

Definitions not given here can be found in [3]. 
We will say that a graph G (undirected or directed) can be decomposed into 

Hamiltonian cycles or paths if we can partition its edges (arcs in the directed case) 
into hamiltonian cycles or paths (directed cycles or directed paths in the directed 
case). Our notation is as follows: 

K,  -the complete graph on n vertices; 
K*, -the complete symmetric directed graph on n vertices; 
K,,, -the complete r-partite graph whose vertex set is the disjoint union of r 

C, (resp. c r ) -a  cycle (resp. directed cycle) of length r ;  
S,  -an independent set of n vertices; 
G, x G, - the Cartesian sum (also called product) of two graphs G, = (XI, E l )  

and G, = ( X , ,  E,) is the graph with vertex set X ,  X X ,  in which (xL, x,) is joined to 
( y I ,  y , )  whenever xi = y 1  and x2 is joined to y2 in G,, or x, = y ,  and x1 is joined to 

G, €3 G ,  - the lexicographic product (also called composition) of two graphs GI 
and G, is the graph with vertex set XI x X ,  in which (x,, x,) is joined to ( y l ,  y , )  
whenever x i  is joined to y ,  in G, or x, = y ,  and x, is joined to y ,  in G,: 

G, . G, - the Cartesian product (also called conjunction) of two graphs G ,  and 
G, is the graph with vertex set X I  x X ,  in which (x,, x2) is joined to ( y , ,  y 2 )  
whenever x, is joined to y ,  in GI and x2 is joined to y, in G,. 

sets of n elements, two vertices being joined iff they belong to two different sets; 

Y1 in G, ;  

1. Hamiltonian decompositions of graphs 

The first two results are folklore. 

1.1. Theorem. K, ,  can be decomposed into n hamiltonian paths. 

1.2. Theorem. KZn+,  can be decomposed into n hamiltonian cycles and K2n+2 can 
be decomposed into n hamiltonian cycles and a perfect matching (or 1-factor). 

21 
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1.3. Theorem (Auerbach and Laskar [2]). K,,, can be decomposed into hamil- 
tonian cycles i f  n ( r -  1) is even. If n (r -  1) is odd K,,, can be decomposed into 
hamiltonian cycles and a perfect matching. 

We will now give a survey of hamiltonian decompositions of the three products 
defined in Section 0 and pose some problems concerning them. 

1.4. Theorem (Kotzig [12]). C, x C, can be decomposed into 2 hamiltonian cycles. 

1.5. Remark. The case r = n is also proved in Myers [ 151. 

1.6. Corollary. If each of GI and G, can be decomposed into p hamiltonian cycles 
then GI x G, can be decomposed into 2 p  hamiltonian cycles. 

1.7. Theorem (Myers [15]). K,, x K, can be decomposed into ( n  - 1) hamiltonian 
cycles. 

1.8. Conjecture (Kotzig [12]). C, x C, x C,,, can be decomposed into hamiltonian 
cycles. 

1.9. Remarks on Conjecture 1.8. G.Koester (personal communication, 1977) has 
proved that C, x C, x C, can be decomposed into hamiltonian cycles. In fact he 
informed me that the problem of the existence of a decomposition of C, X C, X 

. . . x C, ( n  times) was posed by Ringel [16, Problem 21 as the existence of a 
decomposition of the 2n-cube (2n-dimensional Wiirfel) into hamiltonian cycles. 
Ringel [16] proved this conjecture for n a power of 2; this also follows from 
Theorem 1.4 with r = n = 4 and Corollary 1.6. 

Very recently I learned that the existence of a decomposition of C, X C, X C, 
into hamiltonian cycles was proved by M. Foregger (personal communication of 
R. Brualdi, 1977). 

1.10. Conjecture. K ,  X K ,  can be decomposed into -$(n + m - 2) hamiltonian cycles 
iff n + m is even and into -$(n + m - 3 )  hamiltonian cycles and a perfect matching i f  
n + m is odd. 

1.11. Conjecture. I f  G, can be decomposed into p 1  hamiltonian cycles and if G, 
can be decomposed into p, hamiltonian cycles, then G,xG, can be decomposed 
into p ,  + p 2  hamiltonian cycles. 

1.12. Theorem (Laskar [13]). C,@S, can be decomposed into n hamiltonian 
cycles. 

1.13. Remark. Theorem 1.12 can be used to give a short proof of Theorem 1.3 since 
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K,,, = K,@S, .  If r is odd. then by Theorem 1.2 K, can be decomposed into 
hamiltonian cycles, that is K,  = U ,  Cy’ (where U means the edge-disjoint union 
and 1 S i < r )  and K,,, = U, C:‘)@ S, = U l , lC~;J )  by Theorem 1.12. If r is even, 
then Kgrx2 is the graph obtained from K ,  by deleting a perfect matching and so 
can be decomposed into hamiltonian cycles by Theorem 1.2. Finally KrxZp = 

( K r x 2 ) @ S p =  U,C$:@Sp= UI,lC$$). And thus if n(r-1)  is even K,,, can be 
decomposed into hamiltonian cycles. 

1.14. Theorem (Laskar [13]). Cr€3C, can be decomposed into n +  1 hamiltonian 
cycles if n is odd or r is even. 

1.15. Conjecture. C, €3 C, can always be decomposed into n + 1 hamiltonian 
cycles. 

1.16. Conjecture. If G, can be decomposed into p1 hamiltonian cycles and if G, 
can be decomposed into p 2  hamiltonian cycles, then GI@ G, can be decomposed 
into p ,  n, + p2 hamiltonian cycles (where n, is the number of vertices of G,). 

1.1.7. Remark. I can prove that Conjecture 1.15 implies the truth of Conjecture 
1.16 for p , s p 2 .  

1.18. Theorem. C, . C,, can be decomposed into 2 hamiltonian cycles. 

Proof. We can suppose r 2 n ;  let the vertex set be Z, x Z, (where Z, denotes the 
additive group of residues mod n) .  Then two hamiltonian cycles are 

XO, X I ,  . . . , x,,-~ and yo ,  y l ,  . . . , where x,,+, = ( i  +i, j )  and yIn+, = (-i- j ,  i), 
O S i S r - l , O ? j < n - l .  0 

1.19. Corollary. If G, and G, can be decomposed into hamiltonian cycles, then 
G, . G, also can be decomposed into hamiltonian cycles. 

Proof. This follows from the distributivity of the product. with respect to the 
edge disjoint union of graphs (a property not holding for the Cartesian sum and 
the lexicographic product). 0 

1.20. Many other problems similar to those above can be considered; in particu- 
lar we can consider decompositions into cycles of given length (see [6]). We 
mention also that Huang and Rosa [9] have considered “orthogonal” hamiltonian 
decompositions, and finally we give the following conjecture of Kotzig [11]. 

1.21. Conjecture (Kotzig [ 111). K,, can be decomposed into perfect matchings, i.e. 
has a 1 factorisation, in such a manner that the uniw of any two perfect matchings 
is a hamiltonian cycle. 



24 J.-C. Bermond 

Partial results have been obtained on this problem, see for example Anderson 
[I]. 

2. Hamiltonian decompositions of directed graphs 

The same problems can be asked for the directed graphs, but they are more 
difficult. Many of the known results are obtained in the following easy way; 
associate with a hamiltonian decomposition of G a hamiltonian decomposition of 
the directed graph G* (obtained from G by associating to each edge of G two 
opposite arcs) by associating with each harniltonian cycle two opposite directed 
hamiltonian cycles. For example Theorem 1.2 gives the following. 

2.1. Theorem. Kz,+,  can be decomposed into 2n directed hamiltonian cycles. 

The problem of the existence of a hamiltonian decomposition of KZ has been 
solved only recently. 

2.2. Theorem (Tillson [17]). If 2n 3 8, then K;, can be decomposed into 2n - 1 
directed hamiltonian cycles. 

2.3. For 2 n = 4  and 2 n = 6 ,  such a decomposition is impossible. The problem 
seems to have been asked first by Strauss for hamiltonian paths (see Mendelsohn 
[14]). In [14] Mendelsohn showed how the existence of sequenceable groups 
implies the existence of a hamiltonian decomposition of KZ,, and that gives the 
result for 2n = 22 [14], 28 [lo], 40, 56, 58 [18]. By computer the existence of a 
hamiltonian decomposition of KT, for 8 s 2n S 18 was obtained (see [ 5 ] ) .  With 
Faber we proposed Theorem 2.2 as conjecture in [5] and [4]. After that A. 
Bouchet (personal communication, 1976) showed that if K;,, can be decomposed 
into directed hamiltonian cycles, then so can K2n-2.  

2.4. Conjecture. One can easily ask many other problems, for example the directed 
versions of the results or problems of Section 1. But there are also problems peculiar 
to the directed case like Kelly’s conjecture that every regular tournament can be 
decomposed into directed hamiltonian cycles. 

3. HamiltoOian decompositions of hypergraphs 

3.1. For hypergraphs the number of problems grows quickly, because one can 
give different definitions of a hamiltonian cycle. I will restrict myself to a 
definition and a problem considered in [7]. If H is a hypergraph with n vertices 
then a hamiltonian cycle is a sequence x ,E lx2  * * x,EIxI+, x,E,,x, such that 
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(i) the n vertices xi are all different (and thus are the n vertices of the 

(ii) the n edges Ei are all different, 
(iii) { x ~ , x i * ~ } ~ E i ( l ~ i ~ n - l )  and {x , , x , ) cE , .  
Let Kf: denote the complete h-uniform hypergraph; its edges are all the 

h-subsets of a set X of cardinality n. 
In [7] we conjectured that K,” can be decomposed into hamiltonian cycles if and 

only if (9/n is an integer and proved this conjecture for n a prime. 
Here I want to prove two theorems concerning the case h = 3. 

hypergraph) > 

3.2. Theorem. If K: can be decomposed into hamiltonian cycles then K:, also can 
be decomposed into hamiltonian cycles. 

and 

Thus we have obtained a decomposition of the edges of K : ,  not of the form 
(x, x’, y )  or (x, XI, y’). We will use Theorems 2.1 and 2.2 to decompose these 
remaining triples. Indeed with the directed hamiltonian cycle x l ,  . . . , x, of a 

(This proof was obtained with D. Sotteau.) In order to shorten the writing, I 
will write a hamiltonian cycle as E,, . . . E,, . . . , En where EL = (xE ,  y,, IC,+,). Let the 
vertex set of K:, be X U  X’ with 1x1 = [X’l= n. With each hamiltonian cycle of the 
decomposition of K: we associate 4 hamiltonian cycles of K:,  in the following 
manner: 

(i) if n is even, we associate with (x,y,x,)(x,y,x,), . . . , (x,y,x,) the following 

3.2. Theorem. If K: can be decomposed into hamiltonian cycles then K:, also can 
be decomposed into hamiltonian cycles. 
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decomposition of K z  we associate the following hamiltonian cycle of K i :  

(x,x ;x,)(x,x;x,) . . . (1,- 1 x:-,x,)(x,x:x I) 
(x: x 1 x;) ~ . . (x ;-, x, - 1 x A)( x ;x,x 1). 

Thus the proof is complete. One can check that we have found [$(n - l ) ( n  -2)]+ 
n - l= '  6(2 n - 1)(2n -2) hamiltonian cycles in K&,. 0 

3.3. Theorem. Zf n = 2 mod (3) K: can be decomposed into hamiltonian cycles. 

We are grateful to A.E. Brouwer (personal communication, 1976) for the 
following idea on which the proof is based. 

3.4. A choice design of order n is a system of representatives of the triples of K: 
such that: 

(i) each point is chosen equally often as a representative; 
(ii) among the n - 2  triples containing a given pair {a, b}, a is chosen i ( n - 2 )  

times and b i ( n - 2 )  times also. 

For example, when n = 5 ,  we have underlined the element chosen. 

012;013;(214; 1_)23;024;034; 123; 124; 134;234.  

3.5. Theorem. A choice design of order n exists if and only i f  n = 2(mod 3). 

Proof. The necessary condition is obvious as $(n - 2) must be an integer. We will 
prove that the condition is sufficient by induction. Suppose there exists a choice 
design of order n. Let the elements of K:+3 be {1,2, . . . n}  U {a, p, y}.  For a triple 
of elements of { 1,2, . . . , n}  we choose the element defined by the choice design of 
order n. For the triples we choose 

(i, j ,  a )  (i,  j ,  P )  (i, j ,  Y) with i < j ,  
i y if i + j = O  (mod3), 
j P i if i + j = l  (mod3), 
a i j if i + j = 2  (mod3). 

For the triples we choose 

(i, a, S) (i, a, Y) ( 2 ,  P, Y) 
1 Y y if i E 0  (mod 3), 
P a 1 if i = 1 (mod 3), 
a i P if i = 2  (mod3). 

For the triple (a ,  p, y )  we choose y. 
We leave to the reader the care of checking that we obtain a choice design of 

order n + 3; the only non-immediate part is to check property (ii) for the triples 
containing a pair (i, a )  or (i, p )  or (i,  y ) .  0 
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3.6. Proof of Theorem 3.3. If n is odd, there exists a decomposition of K,  into 
i ( n  - 1) hamiltonian cycles. To each of these cycles (x,, x2, . . . , x,) we associate 
the following $(n -2) hamiltonian cycles of K:: (xl, y;, x2)(x2, y;, x3) . . . 
(x ,..,, y ~ - l , ~ n ) ( ~ n r y : r ~ l ) , w h e r e  i = l , 2  ,..., $(n-2), y j f y ’ ;  for i # k  andwhere 
the y j are defined according to the existence of a choice design of order n (by Theorem 
3.5). The set {y; : i = 1 ,2 , .  . . ,;(n -2)) consists of the ;(n-2) elements repre- 
sentatives of the $(n -2) triples (x,, x,,,~, y)  containing the pair {x,, x,,,} and where 
neither x, nor x, ,~  has been chosen. Thus we have constructed i ( n  - l)(n -2) 
hamiltonian cycles of K :  and it suffices to verify that no triple (edge) 
appears twice, but that follows from the definition of a choice design of order 
n. 

3.7. Example. Let (0 ,1 ,2 ,3 ,4)  and (0,2,4,1,3)  be two hamiltonian cycles of K,;  
by using the choice design of the example we obtain the two hamiltonian cycles of 
K::  

If n is even the proof is similar. We use a decomposition of K:  into n - 1 directed 
hamiltonian cycles (Theorem 2.2). To each of these directed cycles (xl, x2, . . . , x,) 
we associate d(n - 2) hamiltonian cycles of K,?,: 

y;, xJ(x2, Y;, ~ 3 )  . . . (xn-19 ~ i - 1 ,  xn)(xn, Y:, 

where i =  1 , 2 , .  . . , i (n -2) ;  y j f  y‘; for i f  k and where the set {y i : i=  
1 ,2 ,  . . . , b(n - 2) is determined as follows. Consider the $(n - 2) elements rep- 
resentative of the triples (x,, x,+,, y )  containing the pair {x,, x,,,} and where 
neither x, nor x , ,~  has been chosen. Then split these elements into two sets of 
cardinality i( n - 2) : YIx,, x,+,) and Y’{x,, x,+,l. Then the set {y; : i = 1,2 ,  . . . , %(n -2)} 
is either the set YiX, x,+,l or Y’{x,, x,+,l according as the arc (x,, x,,,) or the arc 
(x,,,, x l )  appears in the directed hamiltonian cycle. 0 

Note added in proof 

M .F. Foregger has proved Conjecture 1.8 (Hamiltonian Decompositions of 
Product of Cycles). 
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The theory of extremal graphs without a fixed set of forbidden subgraphs is well developed. 
However, rather little is known about extremal graphs without forbidden subgraphs whose 
orders tend to with the order of the graph. In this note we  deal with three problems of this 
latter type. Let L be a fixed bipartite graph and let L+E" be the join of L with the empty 
graph of order m. As our first problem we investigate the maximum of the size e ( G " )  of a 
graph G" (i.e. a graph of order n )  provided G"dL+E['"], where c > O  is a constant. In our 
second problem we study the maximum of e ( G " )  if G"BK,(r ,  cn) and G"d K'. The third 
problem is of a slightly different nature. Let C k ( t )  be obtained from a cycle Ck by multiplying 
each vertex by t. We shall prove that if c > O  then there exists a constant l ( c )  such that if 
G " d  Ck( t )  for k = 3 ,  5 , .  . . ,21(c)+ 1, then one can omit [cn,] edges from G" so that the 
obtained graph is bipartite, provided n > n,(c, t ) ,  

Our notation is that of [l]. Thus G" is an arbitrary graph of order n, K P  is a 
complete graph of order p ,  E P  is a null graph of order p (that is one with no 
edges), C" is a cycle of length m, G,(n,, . . . , a,) is an r-partite graph with n, 
vertices in the ith class, K , ( n , ,  . . . , n,) is a complete r-partite graph. C"(t) is a 
graph obtained from C"' by multiplying it by t, that is by replacing each vertex by 
t independent vertices. We use H", S"', T", U" to denote graphs of order m 
with properties specified in the text. We write [ A \  for the cardinality of a set A, 
\GI for the order of a graph G and e ( G )  for the number of edges (the size) of G. 
The set of neighbours of a vertex x is denoted by T ( x )  and d(x )=IT(x ) l  is the 
degree of x. The minimum degree in G is S(G). 

Let 9 be a family of graphs, called the family of forbidden graphs. Denote by 
EX( n, 9) the set of graphs of order n with the maximal number of edges that does 
not contain any member of 3. The graphs in EX(n, 9) are the extremal graphs of 
order n for 9. Write ex(n, 9) for the size of the extremal graphs: ex(n, 9) = e ( H ) ,  
where H E EX(n, 9). The problem of determining ex(n, 9) or EX(n, may be 
called a Turan type extremal problem. We shall prove some Turhn type extremal 
results in which the forbidden graphs depend on n. The first deep theorem of this 

29 
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kind was proved by Erdos and Stone [ 8 ]  in 1946. This theorem is the basis of the 
theory of extremal graphs without forbidden subgraphs (see [1, Ch. VI]). Consid- 
erable extensions of it were proved by Bollobas and Erdos [2] and by BollobSts, 
Erdos and Simonovits [3]. 

For fixed r and t the extremal graphs EX(n, K,(2, r, t ) )  were studied by Erdos 
and Simonovits [7].  Our first aim in this note is to describe EX(n, K J 2 ,  r, cn ) ) ,  
where r s 2  and c>O.  In fact, we prove the following somewhat more general 
result. 

Theorem 1. Let L be a bipartite graph. Put 

q(n, L )  = max {nIn2  + ex ( n l ,  L )  +ex (n2 ,  L )  : n1 + n2 = n } .  (1) 

There exist c > 0 and no such that i f  n > no and 

e ( G " ) > q ( n ,  L ) ,  (2)  

then G" contains an L + EL""'. If in addition for every m there exists an extremal 
graph S" E EX (m,  L )  with maximum degree <$ cm, then 

ex (n,  L +EL'"') = q(n, L )  ( 3 )  

and every extremal graph U" E EX (n ,  L + E'""') can be obtained from an S" E 

EX (m,  L )  and an S"-" E EX ( n  - m, L )  as S" + S"-". 

Remarks. (i) If L = K,(2, r) ,  then the maximum degree of any S" E EX ( m ,  L )  is 
o ( m )  and the same holds if L is not a tree, but there exists a vertex v E L for 
which L - is a tree. Thus Theorem 1 gives 

ex (4 K,(2, r, [cnl))  = q(n, KA2, r ) ) .  

It also gives information on the structure of the extremal graphs. 
(ii) Theorem 1 states that q(n, L )  is an upper bound for ex ( n ,  L + E""'). A 

lower bound for ex ( n ,  L +EL""]) can be obtained by observing that if S"" E 

EX (n ,  L ) ,  then S"' +En-" 

(4) 

L +EL"'], so 

ex  (n, L +  EL'"')^ max {n,n,+ex (nl,  L ) :  n, + n2 = n } .  

In some cases, for instance if L consists of independent edges, (4) is sharp. 
(iii) The essential part of Theorem 1 states that a graph G" not containing an 

L +Ec'"l can not have more edges than Sp + SnPp,  where Sp E EX (p, L ) ,  SnPp E 

EX ( n  - p ,  L )  and p is suitably chosen. It is unfortunate that Sp + S n P p  may 
contain an L+ElCn1 and we need an additional condition to exclude this 
possibility. 

The proof of Theorem 1 is based on five lemmas. 

Lemma 2. q ( n +  1, L ) - q ( n ,  L ) a  n/2 .  
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Proof. Let q(n,L)=n,n,+ex(n, ,L)+ex(n, ,L),  where n,Sn,. Then 

q ( n  + 1, L ) z ( n ,  + l)n,+ex ( n ,  + 1, L)+ex (nz ,  L ) a  4(n, L ) +  4 2 .  

The next lemma is an immediate consequence of Lemma 2 and the straightfor- 
ward Lemma V.3.2 of [ I ] .  

Lemma 3. Given c,>O there exists c,>O such that if e (G")>q(n ,  L )  then G" 
contains a subgraph GP satisfying p 3 c2n, e ( G P )  > q ( p ,  L )  and S(GP) > (4- c,)p.  

Lemma 4. There exists a constant c,>O such that i f  6 (Gn)2 ($ -&)n  and 
K = K3(9r, 9r, 9r) c G", where r = IL(, then G" contains an L + E' with t 3 c,n. 

Proof. Put H = G" - K. Since at least 27r . z n  - (27 r)' edges join K to H, at 
least &n vertices of H are joined to at  least 11 r vertices of K. Let c, = &*2p27r. 
Then H contains t 3 c,n vertices that are joined to the same set of at  least 1 l r  
vertices of  K. The subgraph of K =  K3(9r, 9r, 9r) spanned by this set of vertices 
contains a K2(r, r )  so Kz(r, r )  +EL c G". Since L c K2(r, r )  we have L + E' c 
G". 0 

The first part of the next lemma is a weak form of Theorem V.2.2 in [l], the 
second part is an immediate consequence of the first part. 

Lemma 5. (i) If G = G2(m, n )  does not contain a K2(s, t )  whose first class is in the 
first class of G then 

e ( G ) <  t'l'mn"l'+sn. 

(ii) Given d and R, there exist E > O  and no such that if n 2 no and if in 
G = G,(n, n, . . . , n)  at least (1  - E)n2 edges join any two classes then G contains a 
K,,(R, R, . . . , R ) .  

The last lemma needed in the proof of Theorem 1 is a slight extension of some 
results proved by Erdos and Simonovits [ 5 , 6 ,  lo]. 

Lemma 6. Given c, 0 < c < 1, and natural numbers d and R, there exist M = M(c,  
d .  R) ,  6=6(c ,  d ,  R)>O, and no= n(c, d ,  R )  such that if n>no,  e (G")> 
( I  - l / d -S )$n2  and K,+,(R,, . . , R)@ G", then the vertices of G" can be 
divided into d classes, say A,, A,, . . . , A,, such that the following conditions are 
satisfied. 

(i) (n , -n/dl< cn, where n, =lA,l. 
(ii) The subgraph G, = G"[A,] of G", spanned by A,, satisfies 

e (G, )  < cn? 

(iii) Call a pair {x, y }  of vertices a missing edge if x and y do not belong to the 
sume class A, and xy is not an edge of G". The number of missing edges is less than 
cn2. 
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(iv) Let Bi be the set of vertices in Ai joined to at least cn vertices of the same class 
Ai. Then lBil < M. 

Proof. Let M,, = R and choose natural numbers M ,  < M2<. . . < Md such that 
M,/M,+, <$. Put M = Md. Pick q such that 0 < q < (tc)". 

By Lemma 5 (ii) we can choose E ,  0 < E < c, and n,  such that if N = [qn] ,  n 2 n,  
and in H = Gd(N, N,  . . . , N )  at most &n2 edges are missing between any two 
classes then H contains a Kd(R, R, . . . , R). 

The above mentioned theorem of Erdos and Simonovits (see Theorem V.4.2 in 
[I]) implies that there exist noZ n,  and 6 > 0 with the following properties. If G" 
is as in our lemma and A, ,  A,, . . . , A d  is a partition with the minimal number 
of missing edges (cf. condition (iii) of the lemma) then (i), (ii) and (iii) hold. 

Suppose (iv) fails, say lBll ?M. Then by the minimality of the partition each 
vertex of B ,  is joined to at least cn vertices in each A,. Since 

M,+lcn > (qn)"',M,+,nlpl/M~ + M In, 

repeated applications of Lemma 5 (i) imply that there are sets BcB,, A, =A,,  
i = 1,2, . . . , d, such that IBI = R, IA,I = N and each vertex of B is joined to each 
vertex of A = Uf A,. Now it follows from (iii) and the choice of E that G [ A ]  
contains a Kd(R,  R, . . . , R ) .  Hence G [ A  U €31 contains a Kd+,(R, R, . . . , R ) .  0 

Proof of Theorem 1. It is easy to see that if G, H are graphs containing no L and 
no K2( 1, cm/2),  then G + H contains no L + E'""'. Hence the second assertion of 
Theorem 1 is trivial. To prove the first assertion assume indirectly that G" 
contains no L +E'""] and e ( G " ) >  q(n, L ) .  We shall show that this is impossible if 
c > 0 is sufficiently small. By Lemma 3 and Lemma 4 we may and will assume 
that 6 ( G n )  2 (;-&r-')n , R = gr, and G " S  K3(9r, 9r ,  9r). Applying Lemma 6 
with d = 2, we obtain a partition (Al ,  A J ,  satisfying (i)-(iv) of Lemma 6. For the 
sake of convenience in the sequel a subset H of the vertices of G" and the 
corresponding spanned subgraph may be denoted by the same letter. Clearly, if m 
is the number of missing edges, then 

e ( G " )  = e ( A , ) +  e(A, )+  nln2 - rn, ( 5 )  

where n, = IA,1. Trivially, if neither A ,  nor A, contain L, then 

e ( G " )  s e x  (al, L )  +ex (n,, L )  + n,n, S q(n, L).  

Thus L c  A ,  may be assumed. 
Let us assume that A ,  - B,  contains a subgraph L, isomorphic to L. To each 

x E Lo we find i n ( l  --$i--') or more vertices in A,- B, joined to this x: since x is 
joined to cn or less vertices of A,, it is joined to at least ($-&rpl)n-&nr-' 
vertices of A,. Thus at least n, - r . tnr-' > i n  vertices of A, - B, are completely 
joined to Lo, yielding an L + E' for t = [$a].  This proves that Le A, - B,. Hence 

e (A,) 6 e (A, - B, ) + (B, I n, 6 ex (n,, L )  + IB, I n,. 
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Now we fix some constants and give the basic ideas of the proof. The details are 
given afterwards. 

We fix a constant T such that 1B,Ic T ( i  = 1,2). Lemma 6 guarantees the 
existence of such a T. A constant c, > 0 is fixed so that for a, = rZT-'cL we have 
a ,  < (lOT)-'. Given a set W c  A,, denote by F( W) the set of vertices of A3-, not 
joined to at least one vertex of W. Observe that if W has at least c,n vertices, 
then F ( W )  represents each L c A3-#, for otherwise there would be an L com- 
pletely joined to W and therefore L + E'." c G" and we are home. Thus we may 
assume that F ( W )  represents all the L's in A3pE. Let 

1 

nr 
k, =-(e(A,)-ex (at, L)).  

Clearly, to represent all the L's in A, we need vertices, the omission of which 
diminishes e(A,) by at least e(A,)-ex (n,, L) ,  hence we have to omit at least k, 
vertices: F ( W )  has at least k, vertices. This is the basic idea of the proof, but this 
in itself will not be enough. We shall prove the existence of a set 0, of 0(1) 
vertices in A, such that the number of missing edges incident with this Q, is at 
least k,n, +&nT I if L c A,. We have already checked the case, when no L occurs 
in A, and A,. Let us consider the case, when A, 13 L but A, L. By (5) we have 

e(G") G ex (n,, L )  + k , n ,  +ex (n,, L )  + n, nz - 

If A, >L, A , z L ,  then the number of missing edges is estimated by the sum of 
the missing edges incident with Q1 and Q, minus the number of missing edges 
between Q, and Q2, which is only O(1). Hence 

e ( G " ) s  x(ex (ni, L)+ kini - 
1 

This completes the sketch of the proof. 
Let us see now how the argument above can be made precise. Recall that 

L c  A,. Let L,, . . . , L,, . . . be subgraphs of A,  isomorphic to L. For any 
W = W, c A, and Wc W,, 1 W,l z= a,n, 1W12 c,n, F( I&') represents all the Lp's, 
among them L,, hence for at least a,n - c,n vertices of W, there exists a vertex in 
L ,  not joined to it. Hence there exists an x, E L,  and a W, c Wl, I W,l 2 a2n, such 
that x, is not joined to W, at all. If x, does not represent all the L,'s, we may 
assume that x, FZ L2. Iterating this argument we find an X'E L, not joined to a 
W3 c W, at all, where 1 W,l a u3n, and if x,, x2 do not represent all the Lp's, we 
define xj and W, in the same way. 

Generally, if x p  and W,+, are already defined, we check whether the set 
X ,  = {x,, . . . , x p }  represents all the L c A,. If it does or if p = 2T, the procedure 
stops, otherwise we find an LP+, and an x P t l  in it and a 

wp+, = W,+b I WP+2l 2= ap+,n 
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so that xPc l  is not joined to W,,, at all. At the end of the procedure we have an 
X = X ,  and a W'= W,,, not joined at all to each other. 

Let B ' c  B,  be the class of vertices of degree at least i n  -+onT-' in A,.  Let D 
be the set of vertices of A, joined to B' completely. D is relatively large. Indeed, 
by the minimum property of the partition (A, ,  A,) any x E B' is joined to at least 
n($ - & T I )  vertices of A,, hence at least n($+ F ) -  Tn(&iir' + E )  vertices of A, 
are joined to B' completely. Thus IDI3in if E SAT- ' .  

Now we define another procedure, in each step of which the above procedure is 
applied to a set W, c A, yielding a pair of sets Wi and X,  not joined to each other 
at all: I y I s a , n ,  IWJac,n, I X J 1 ~ 2 T .  Let 

W , = D - u  W: until IWi/<a,n, 
1 < I  

then 

The corresponding sets in A ,  are X , ,  . . . , X,. The procedure stops if for W, = 

A, - U 1<,  W: we have 1 W,l < a,n .  By 1 W ; l s  c,n this will happen for some 
j s c, '. Let X = U X,. Clearly, 1x1 s 2T'c, = O(1). We shall show that there exist 
at least k i n ,  +-&nT-' missing edges joining X to A*. This will complete the proof. 

We need a lower bound for the number of missing edges joining a W: to X :  this 
lower bound is lXll. By the definition of D, if W, c D, then each vertex of 
X ,  c A ,  -B' has degree S i n  -&nT-' in A,.  These vertices represent all the L's 
in A , ,  hence they represent at least k , n ,  edges: 

if n is sufficiently large, E sufficiently small and k ,  2;. If k ,  Gg, we use \ X i / >  1, 
/TI 3 1 (which can be assumed). Thus 

1 
6 T  

IXil 2 k ,  +- 

again. In the other case, when Wi@D, we use a weaker lower bound. Since 
I Wlla cLn and no x E Xi  is joined to Wi, such an x is joined to at most n, - c,n 
vertices of A,, and consequently, to at most n, - cLn = i n  - cLn + E n  vertices of 
A , ,  we obtain now that 
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Thus the number of missing edges incident to X can be estimated from below by 

Here the third term stands for the vertices not belonging to any Wi and for the 
difference between n2 and $n. If E is sufficiently small, T large, then by k ,  C T and 
a , < ( 1 0 T ) - 2  we obtain that at least k,n,+&nTp' missing edges are between X 
and A,. Thus the proof is complete. 0 

Remark. Theorem 1 can be generalized to higher chromatic numbers, that is, an 
analogous theorem holds for L + Kdpl ( r ,  . . . , r, cn).  The proof of this generalization 
is essentially the same as for the particular case considered above. 

Our second theorem concerns ex (n,  K 3 ,  K2(r, [cn])) and, more generally, ex (n,  
C2'+'(t) ,  &(r, [cn])) .  An interesting feature of the result is that the value does not 
really depend on j and t. 

Theorem 7 .  Let j ,  r, t be natural numbers, let k = 2j+ 1 and let c > 0 .  If e ( G " )  2 

cn2 and G" does not contain a C k ( t ) ,  then G" contains a K2(r, m) ,  where 

= 2 2 r - l  c r n+o(n).  

Proof. We shall show first that if instead of a C " ( t )  (and so a fortiori a C k )  we 
prohibit all odd cycles, then G" contains a K2(r,  m )  with 

= 22'-L c 1 n + o ( n ) ,  

but if E > O  then G" need not contain a K2(r, m') with 

m ' = ( 2 2 r p 1 c r  + ~ ) n + o ( n ) .  

(This will show that the value of m given in the theorem is as large as possible and 
that the main thrust of the theorem is that the condition "G" is bipartite" can be 
replaced by the much weaker condition "G" does not contain a Ck( t )"  without 
decreasing the value of m we can guarantee.) 

The first assertion is an immediate consequence of Lemma 5. Instead of the 
second we prove the following stronger assertion. 

Let n be even and let G" be a random subgraph of K,(in,in) obtained by 
taking ap edge of K,($n, 1.) with probability 4c. Then, with probability tending to 
1, G" has cn2+o(n2) edges and if t = t ( G " )  is the maximal number for which G" 
contains a K2(r, t )  then, again with probability tending to 1, we have 

= 22'- 1 c'n +o(n) .  

In order to prove this assertion, we denote by A and B the two classes of 
K&n, $n). We say that a vertex x E B forms a cap with a set U if U c A, 1 U (  = r 
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and x is joined to every vertex in U. The expected number of vertices forming a 
cap with a given r-set in A is 2 2 r - 1 ~ r n  and the variance of the event that an x E B 
forms a cap with U is d i  = 4c( 1 - 4c). By the well known Bernstein inequality for 
binomial distributions (see p. 387 in [9]) the probability that U is joined to more 
than 22'- ' c 'n  + n2'3 or to less than 22rp'crn - n2'3 vertices x E B completely is 
0 (exp (- cln"')). Hence with probability tending to 1 on each U there is a 
K2(r, t )  for t = 22rp ' c rn  - n213 but on no U for t = 2 2 r - 1 ~ r n  + n2/', since 

A similar application of Bernstein's inequality yields that l e (G") -  cn'l s n5/' with 
probability tending to 1. 

Exactly the same argument gives that if G" is a random subgraph of K, of size 
[en]' (or is obtained from K,, by choosing each edge with probability 2 c )  then G" 
will contain a K2(r, t )  for t = 2'c'n - nZi3 with probability tending to one, but for 
t = 2'c'n + n213 only with probability tending to 0. This shows that prohibiting the 
odd cycles results in an increase of the constant from 2'c' to 22r - ' c r  and that the 
main point of our theorem is that the same result can be obtained by prohibiting 
just one odd cycle. 

The proof of our theorem is based on the following result of Szemerkdi [ll]. 

Lemma 8 (Uniform Density Lemma). Given two subsets U, V of the vertex set of  a 
graph G", denote by e( U, V )  the number of edges joining U to V and put 

There exists for a given constant p > 0 an  integer M ( P )  such that for any G" the 
vertices of G" can be divided into disjoint classes V0, . . . , V, for some k < M ( @ )  so 
that IV,l= IV,l if i f  0, j # O ,  I V i I s p n  if i = O ,  1,. . . , k and for all but pk' pairs 
(i, j )  the following condition holds. 

(*) Whenever U i c V t ,  U , c V ,  and l U , ~ > p ~ V , l , l U , ~ > p l V , I ,  then 

Id(Uz, Uj)-d(Vi ,  Vj)I<P'- 

Let us turn now to the main body of the proof of Theorem 7. 
(A) Let e ( G " ) = c n 2  and let P > O  be an arbitrarily small constant, much 

smaller than c. Applying the Uniform Density Lemma to G" we obtain the 
classes V,,, V,,  . . . , V,. Let m = IV,l ( i  = 1, . . . , k ) .  Instead of G" we consider a 
graph G' of n - 1 V,,l vertices, obtained from G" - V,, by omitting all the edges 

(i) 
(ii) joining a V, to a V, for an "exceptional pair", that is, (*) does not hold; 
(iii) joining a V, to a V,, when d ( V , ,  V,)< PI '" .  

joining vertices from the same V, ( i  = 1, . . . , k ) ;  
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Clearly, 

and 

0 s  e(G") - e(G') c 2/3"2n2 

If p is sufficiently small. Therefore instead of proving Theorem 7 for G" it is 
sufficient to prove it for G'. Hence we may and shall assume that G' = G". 

(B) Let R k  be the graph whose vertices are the classes V, ( i  = 1,. . . , k )  and 
Vi is joined to V, in Rk if there exists an edge (u,  u )  in G" joining V ,  to V;. We 
prove that Rk does not contain a triangle (K") .  Let us assume that V,, V, and 
V, from a triangle in R k .  Put 

U' = {x E v,: d(x, V , ) c  p>, 
U" '{X E v,: d(x, V,)G p}.  

For any x E U = V,- U'- Utt there exist a U,,x and a U2,x in V, and V, 
respectively, joined to x completely, where I UL,x 1 z= prn. Hence the number of 
edges joining Ul,x to U,.x is at least 

( '', - p )  > p' m2. 

This is a lower bound on the number of triangles on x, with the other two vertices 
in V, and V,. Hence the total number of triangles (K"'s) of form (x, y, z), x E V,, 
y E V,, z E V, is at least (1 - 2 p ) p 3 m 3 :  by (*) I U'I pm, 1 U" I C prn. A theorem 
of Erdos 141 asserts, that if in an r-uniform hypergraph H of IE vertices there are 
at least c n r - ( r  - 1 ) i t  hyperedges, then H contains a subgraph of the following form: 
C, , . . . , C, are vertex-disjoint t-tuples and we take all the r-tuples ( = hyperedges) 
of form (x,, . . . , xr), xi E C, for i = 1,.  . . , r. Applying this theorem to the system 
of K"'s obtained above we get a Ci = V, ( i  = 1,2,3) with ICil = t and such that 
each K 3  of the form (x, y, z ) ,  XEC,, YEC, ,  Z E C ~  belongs to G". Thus 
K,(t, t, t) = C'(t) c G". This contradiction proves the assertion of (B) for k = 3 .  In 
the general case we apply the theorem with kt  instead of t and observe that K,(kt,  
kt, k t )  3 Ck(t ) ,  again completing the proof of (B). 

(C)  Now we fix a c, E (0, c) and assume indirectly that 

e(G") = cn2, G " B  C'(t) and G"BK2(22'p1c;n,  r). 

Let d, = d (  V,, V-- V,), where V is the vertex set of G". We may assume that 
d ,  = max d, = d.  L,et us permute the indices of V, so that V,, . . . , V,,, are the 
classes joined to V , ,  the others are independent of it. Clearly, V,, . . . , VF+, form 
a set of rns independent vertices. Hence 

k 

e ( G " ) s  ( d , n ) m + ( d , n ) m c ( d n ) ( n - u ) .  
i = s + 2  
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where 

a = /  1 = r s s + ,  IJ V, j=(s+l )m .  

To obtain an upper bound of d in terms of a, we apply Lemma 5 to the bipartite 
graph determined by the classes Uzs,ss+l V,  (=first class) and V, (=second 
class). We find that 

G" I K z ( r ,  t )  with t =  ( 1  -o( l ) )drnra-(r- l  1. (7) 

drnrC1a-(rCIJ< ( 1  +0(1))2~'- 'c; .  (8) 

By the assumption G " 3  Kz(r, 22'C'c;n) and by (7) 

Let us assume that d > 2c, (this will be shown later). From (8) and c; <idc;-' we 
obtain d < (1 + o ( l ) )  4c,(a/n).  This and ( 6 )  yield 

a 
n n  

c n 2 c  e ( G ! ' ) s  dn (n -  a ) s ( l  +o( l ) )n" .  4c,  -( 1 -!) S c1n2,  

which is a contradiction. 
To prove d > 2c, observe that "essentially, dn is the maximum degree": 

1 
c n 2 c  e(G") =- 

2 1  
d (  V,, V- V , ) m ( n  - m ) <  krn . d ( n  - m) = dn(n - m).  

(9) 

Until now /3 and cI were independent, now we may agree that /3 is chosen 
depending on cI  and it is so small that 1 - p > (c,/c). This, ( m / n ) <  p and (9) yield 
the desired inequality d > 2c,. 0 

Remark. The method used to prove Lemma 6 and the method used to prove that 
K' does not occur in the graph R k  are equivalent: both can be used in both cases. 
The proof becomes slightly shorter if we consider only the case t = 1. 

Theorem 9. Let t be a natural number and let c > 0. Then there exists an n,, such 
that if n > n,, and G"@ C"'(t) for m = 3 ,  5 ,  . . . ,21(c)+ 1, where 21(c)+ 1 > C C ' ,  

then G" can be made bipartite by the omission of not more than cn2 edges. 

Remark. Theorem 9 is sharp, apart from the value of I(c) which is probably 
O(c I/*). This l (c )  = O(c- ' I 2 )  would be sharp if true. To see this put n = (21 + 3 ) ,  
and G" = C" " (m) .  If c = (21 +4)C2,  then more than cn2 edges must be omitted to 
turn G" into a bipartite graph and C" does not contain Ck if k is odd and smaller 
than 21+3. 

Proof. Our proof consists of two parts. We shall give two versions of the second 
part. 
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Part I. Let c' < c be fixed. We shall say that the edges are regularly distributed, 
if for every partition V ( G " ) = A U B  we have d ( A , B ) 3 2 c ' .  If we have an 
arbitrary G", we shall find a G"' in it, in which the edges are regularly distributed 
and h(G"') 3 cm2, m > n; also hold, where h(G) denotes the minimum number of 
edges one has to omit to change G into a bipartite graph. Therefore it will be 
enough to prove the theorem for the case, when the edges are regularly distri- 
buted and this will be just Part 11. Let us assume that the edges are not regularly 
distributed in G" ; V(Gn) = A U B and d(A, B )  < 2c'. Clearly, 

h(G")< h(G[Al) + h(G[BI)+ d(A, B )  ( A  IIBI, 

therefore we may assume that 

h(G[A])>c JAI2+(c-~ ' )1A [(BI.  (10) 

i1A12>(c-c')IA IIBI, 

Hence 

that is, IA(>c" (B[  for c"=4(c-c'). This also shows that IA(>(l+c")-In.  Fur- 
thermore, by (lo), 

IBI 
1Al 

h(G[A])>c, IAI2 for c, =c+(c -c ' ) -  

Put Go = G", co = c, G I  = G[A] and repeat the step above until either we arrive at 
a G, in which the edges are regularly distributed or to a GI with J n  or less 
vertices (and use always c: = el - (c - c')). It is easy to show that if n is sufficiently 
large, then G, cannot go below Jn ,  otherwise c,> 1 would occur. Hence the 
procedure will always stop with a graph G, in which the edges are regularly 
distributed. This was to be proved. 

Part I1 (First version). (A) We start with a graph G" for which h(G")  3 cn2, fix 
a c"< c and then a C ' E  (c", c) and a p > 0, which is much smaller than c". Using 
the first part we may assume that the edges are regularly distributed. We may 
repeat part (A) of the proof of Theorem 7 replacing e(  ) by h( ) and c by c'. 
Then we may assume that G' = G", but have to decrease c': replace the original 
condition by condition h ( G " ) s  c"n2. How we define the graph R k  as in the 
beginning of (B) of the proof of Theorem 7. 

(B) We prove that if n is sufficiently large and R k  3 CJ, then G" 3 CJ(r), where 
r is fixed, but arbitrarily large. Exactly as in the proof of Theorem 7, we can prove 
that G" contains at least c , n J  cycles CJ, where c ,  > O  is a constant. Applying the 
theorem of Erdos on hypergraphs [4], we obtain j sets X I , .  . . , X I  with IXll= 
T+m, such that if x , E X , ,  . . . , x, € X I ,  then some permutation ( x L , ,  . . . , x ~ , )  is a 
cycle of G" (we consider here the hypergraph whose hyperedges are the j-sets of 
vertices of j-cycles in G"). Unfortunately the cycles will not determine a CJ(T), 
since the permutation i,. . . . , i, may differ from j-tuple to j-tuple. However, let us 
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apply the Erdos theorem again, now to the hypergraph whose vertices are in 
X ,  U X,U. . . UX, and the hyperedges of which are some cycles of G" of form 
(x ,~,  . . . , x,,), x, E X,, where we choose only one permutation i,, . . . , z,, for which 
the number of cycles is a t  least TJ/j! .  If T is large enough, we obtain j subsets 
Y, c X, such that whenever x, E x, then ( x , ~ ,  . . . , x,) defines a cycle in G" and 
I Y, I = t .  Thus we obtained a C1(t )  c G". 

(C) Clearly, the only thing to prove is, that Rk 3 C2" + I  for some 2s + 1 =s (c') 
If e.g. V,, . . . , V, define a shortest odd cycle in Rk, by the assumption that the 
edges are regularly distributed in G", there must be a V,, q > j ,  which is joined to 
at least 2c'j of the classes V,, . . . , V,. If V, is joined to a V, and V,. for some i t  
farther from z than 2, then the arc V,V,V,. will create a shorter odd cycle. Hence 
either C3 c R k  or 2c"jG 2, and, consequently, j G ( c ' ) ~ ' .  

Part I1 (Second version). The difference between the two proofs is above all, 
that here we shall not use the Uniform Density Lemma. 

(A) By the first part we may assume that the edges are regularly distributed. 
Let A ,  be an arbitrary set of J n  vertices. By d ( A , ,  V-A, )*c '  (where V is the 
vertex set of G") and by Lemma 5 we can find a B ,  c A , ,  for which \Bl\ = T =  t2 ,  
and a set B,c V - A ,  for which l B 2 1 ~  bn with b = ( c ' ) ~ ,  so that B ,  and B, are 
completely joined. B, is recursively defined: 

B, = Bi - (J B,. 
i if 

Clearly, 

Hence for any fixed p > 0 we can find a 1, = l,(c, p )  such that 

Omitting all the edges between us-Il B,, and the rest of the graph we omit at 
most pn' edges. If now we omit all the edges (x, y )  for which x E B,, y E Bt+2p for 
some z and p then we change the graph into a bipartite one. Hence there exists a 
pair ( I ,  p )  for which at  least (c 'n2-  pn2)/l:  edges were omitted between B, and 

in the sense that the first 
(second) class of it is contained in B, (B,+2p). Let these classes be denoted by 0, 
and ECtzp, respectively. If 0, is already defined, D,-l can also be defined as 
follows: ID,/ = T, we find t vertices in 0, and 2T vertices in B,-, joined to each 
other completely. By Lemma 5 this can be done if n is sufficiently large. The class 

Hence there exists a K,(T, T )  joining B, to 
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D,-l contains T of these 2T vertices, E,-l is obtained from E, in the same way, 
but here we have to choose the T vertices outside of DjPl. Finally we obtain a 
c 2 ? + 2 p - - l  (1) in G", whose classes are E, in El, E,, . . . , E,+2p, D,, DiP1, . . . , D, in 
this cyclic order. This proves the theorem, except for the upper bound on the 
length of the cycle, which is  very similar to that of the first version. We only 
sketch it here; if we already know the existence of a CZs+'(f) for any t and s Zl, 
then we take a CZs+'(t2) for some very large t and find t vertices outside joined to 
the same c'(2s+l)t2 vertices of this subgraph. If t is sufficiently large, at least 
cf(2s+1) classes are joined to each of the considered t vertices by t or more 
edges. Thus we can find a shorter CZS'+l(t) if 2s + 1 > (c ' )~ ' .  0 

Remark. With essentially the same effort we could prove the existence of a 
CZstl(f, cn, t, cn, t, cn,. . . , t, cn, t )  instead of the existence of a CZs+l( t ) ,  where 
Ck(rn,, . . . , mk) is the graph obtained from the cycle Ck by replacing its ith 
vertex by mi new independent vertices. In other words, we can guarantee that 
every second class of our graph contains cn vertices. 
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Dirac [4] proved over 20 years ago that if in a graph of order n every vertex has 
degree at least i n  then the graph contains a Hamiltonian cycle. This theorem of 
Dirac was the first in a long line of results (see [2, 3, 5 ,  9, 11, 121, etc.) concerning 
forcibly Hamiltonian degree sequences, that is degree sequences all whose realiza- 
tions are Hamiltonian. The conditions given in these results are such that if a 
sequence (d , ) ;  satisfies them then so does every sequence (dk): majorizing (d,); ,  
that is satisfying d i a  d,, k = 1 , 2 ,  . . . , n. In fact, Chvhtal [3] proved the best 
possible result of this kind. 

Very little is known about graphic sequences that together with some other 
restrictions on the graph force the graph to be Hamiltonian, and which are such 
that not every sequence majorizing them has that property. Szekeres raised the 
question whether a two-connected (m-k)-regular graph G of order 2m is 
Hamiltonian if k (5 1) is sufficiently small. It is clear that if instead of regularity 
we ask only that the minimal degree is m - 1  then the answer is negative. 
Similarly one can not discard the condition that the graph is two-connected. Erdos 
and Hobbs [7,8] proved that the answer to the question of Szekeres is in the 
affirmative if k = 1 , 2  or k < c J m ,  where c is a positive constant. On the other 
hand, if m = 3 k - 4 and k 3 3 then G need not contain a Hamiltonian cycle. An 
example showing this can be obtained by omitting some edges from K m P k U  

The aim of this paper is to show that the order of k in the example above is 
best possible: the graph has to be Hamiltonian if k < c,m - c2 for some positive 
constants cl, c2. It seems very likely that the best value of c1 is i, but we can not 
prove this. 

and suitably joining these three components to two vertices (see Fig. 1). 2 ~ m - k t l  

Throughout the paper we use the terminology and notation of [ l ] .  

Theorem 1. Let k and m be natural numbers satisfying m 2 9 k .  Let G be a 
2-connected ( m  - k)-regular graph of order 2m - E ,  E ~ ( 0 ,  I}. Then G is Hamil- 
tonian. 

Proof. In order to reduce the number of symbols floating around, we shall take 
E = 0. The case E = 1 can be treated in exactly the same way. 
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Fig. 1. A two-connected 4-regular non-Hamiltonian graph of order 16, k = 4. rn = 8 

Let us assume that G does not contain a Hamiltonian cycle. Our aim is to 
arrive at a contradiction. We prepare the ground by proving five lemmas about 
the structure of G; the first three lemmas were proved in [S]. 

Let L be a longest cycle in G. Give L an orientation. Put R = V(G)- V ( L )  and 
r =  IRI. By a theorem of Dirac [4] (see also [l; Theorem 111.4.101) we have 
I L ( z 2 ( m - k )  so l s r s 2 k .  

Let v E R. Let C be the set of vertices of L adjacent to v. Denote by B the set 
of vertices of L immediately preceding vertices in C (“before”) and denote by A 
the set of vertices of L immediately following vertices in C (“after”). As L is a 
longest cycle, we have B f l  C = C f l  A = 8. 

Lemma 2. A U { v }  and B U { v }  are independent sets. Furthermore, if w E R - { v }  
then w is joined to at most one vertex of A and at most one vertex o f  B. 

Proof. If one of the assertions of the lemma failed to hold, the graph G would 
contain a cycle longer than L, as shown in Fig. 2. 

Lemma 3. The set R consists of independent vertices. 

Proof. Let P be a longest path in G[R] and suppose p = 1P13 2. Let a ,  and a2 be 
the endvertices of P. Then each a, ( i  = 1 , 2 )  is joined to at most p - 1 vertices of R 
and so at least 2 ( m  - k - p + 1) edges join { u l ,  a2} to L. 

I f  x1 and x2 are vertices of L at distance d on L and 1 c d =s p ,  then either Y,  is 
not adjacent to a ,  or x2 is not adjacent to a2, since otherwise there is a cycle 
longer than L, as shown in Fig. 3 .  Hence at most two edges join any set of p +  1 
consecutive vertices of L to the set { a , ,  a2}. Consequently at most 2/(p+ 1) x 
(2m - r )  edges join { a , ,  a,} to L so 

2 ( m  - k - p + 1) < 2(2m - r ) / ( p  + 1). 

Fig. 2. The vertices of L are on a circle, n, E C, y, E A and y, follows x,, I = I ,  2. The cycles in the thick 
line are longer than L. 
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Fig. 3 .  The case p = 5 ,  d = 5 .  

Noting that p s r s 2k, we see that 

m z s  k ( p  + l)/(p - 1 )  + p - l/(p - l), 

contradicting the assumption on the relation between m and k. 0 

Remark 4. The last inequality shows that the lemma holds if instead of m 3 9 k  
we require only that m 2 3 k + 2  (or m > 3 k + l  if ~ = l ) .  

Let D =  V ( G ) - A U B U C U R  and put s = \ A - B [ = ] B - A [ .  Since IAI=IBI= 
ICI = m - k and IA U B U CI = 2 ( m  - k ) +  s = 2 m  - r-lDl, we have ID( = 2 k  - r - s .  
In particular, r + s < 2k. Let Do be the subset of D whose elements are adjacent 
to no vertices in A fl B. 

Lemma 5. \D,J> k-s - '  r. 

Proof. We may assume that r + 2s S 2k - 1 since otherwise there is nothing to 
prove. Suppose s = 0. Then A n B = A  so A U C =  V(L) and the vertices of A 
and C alternate around L. However, this is impossible since then r =  
2 m - 2 ( m - k ) = 2 k .  Thus sal. 

For each vertex b ,  E B - A there is an interval on L consisting of vertices bl ,  cl ,  
f , ,  c2, f 2 , .  . . , fi ,, c,, a,, where c, E C, f, E A n B and Q, E A -B. There are s such 
intervals and so the vertices of D also form S intervals, some of which may be 
empty. Let I ,  be the length of the ith interval. Then CS=,,lz = ID\ = 2 k  - r -  s. The 
set D - D,, does not contain adjacent vertices since otherwise G contains a longer 
cycle than L, as shown in Fig. 4. Consequently 

s 1 '  
ID,,[ 2 1 [ + I z ]  3 5 ( I ,  - 1) = k - s - i r .  0 

1 = l  !;I 

Fig. 4. d, E D - D,, and f, E A n B. The cycle in the thick line is longer than L 
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Let W = V(G)-A. By Lemma 3 we have IAl= m - k and so I W( = m + k. Put 
GI = G[ W]. Order the vertices in W as w,,  w 2 , .  . . ,so that deg, (w,)>deg, (wi) 
whenever i < j .  Put M = { wi : deg, ( wi) 3 m - 3 k } .  

Lemma 6. [MI 3 k, that is deg, (wk) 2 m - 3k. 

Proof. By Lemma 2 every vertex of R has degree at least m -  k - 1  in W. 
Furthermore no vertex of (B -A) U Do is joined to any vertex of A f l  B. Hence 
each vertex of (B-A)UD, has degree at least m - k - s 3 m - k - ( 2 k - r ) ~  
m - 3 k + r  in W. Thus R U ( B - A ) U D , c M  and, by Lemma 5, 
( R  U (B -A)U D o l s  k. 17 

Let now p=max{t: deg, ( w k + , ) a  m - 3 k  and G[wl, w2,. . . , wk+t] contains 2t 
independent edges}. Lemma 6 implies that p 3 0 .  Since 2p independent edges 
have 4p vertices, we have 4p s k + p so 0 s p s i k .  Put W, = {wl, w2, . . . , wktp). 

Lemma 7 .  There is an x 1 - x 2  path P of length 2k in GI such that W,c V(P)  and 
X l Y l ,  X,YZEE(G) for Some Y 1 ,  Y 2 E A  Y 1 +  Y 2 .  

Proof. Choose a set S of 2 p  independent edges in G[W,,]. Let T be the set of 
vertices wit 1 I s  K + P, not incident with edges in S. Since deg, ( w ~ + ~ )  6 rn - 3 k ,  
for l S i < j s k + p  we have 

/ ~ , ( ~ , ) n ~ , ( w ~ ) / ~ 2 ( m - 3 k - l ) - ( m +  k - 2 )  = m - 7 k  2 2 k .  

This implies that we can connect the edges in S and the vertices in T in any order 
to form a path P', using a vertex of W- W, between each two elements of S U T. 
The path P' has length 2 k - 2  and its endvertices have degrees at least m - 3 k  in 
W. Extend P' by one edge at each end to a path P so that the new endvertices xl, 
x2  have as small degrees in W as possible. Since W does not contain m - 4 k  
vertices of degree at least m - k - 1 in W, each endvertex xi of P is adjacent to at 
least two vertices of A. Therefore we can select yl, y2 E A, y1 # y2, such that xi is 
adjacent to y i ,  i = 1 , 2 .  0 

Armed with our lemmas, we shall show now that G does contain a Hamiltonian 
cycle. 

Let P be the x 1  - x 2  path whose existence is guaranteed by Lemma 7. Omit 
V ( P )  from G together with every edge joining vertices in W and add a new 
vertex x' to the remainder. Join x' to y t  and y2. Denote by G '  the graph 
constructed in this way. By construction G' is a bipartite graph with vertex classes 
A and 2 = ( W- V ( P ) )  U {x ' } .  We shall show that G' contains a Hamiltonian cycle. 
Since x 1  is adjacent to y, and x2  to y 2 ,  a Hamiltonian cycle of G' can be pulled 
back to a Hamiitonian cycle of G: all we have to do is replace the path x l x ' x z  by 
x ,  Px2. 



Hamiltmian cycles in regular graphs 41 

In order to show that G' is Hamiltonian we make use of a result of Moon and 
Moser [lo] (see also [l, Corollary 111.4.71). Somewhat unnaturally we state this 
result as an assertion about the graph G' at hand. Let d,  S d, s .  . *d,,-, be the 
degree sequence of the vertices in Z and let d', S d; S .  * . < dl,-, be the degree 
sequence of the vertices in A. If dL S 1 < m - k implies dk--k-l+l 3 m - k - 1 + 1 
then G' is Hamiltonian. 

Suppose A contains m - k + 1 + 1 vertices of degree at most m - k - 1 in G'. 
Then the set of these vertices is joined to {wl, w,,. . . ,  w ~ + ~ }  by at least 
(1 - ( k  + l ) ) (m - k - 1 + 1) edges. Since each w,, 1 < i s k + p, is joined to at most 
2k vertices of A, 

( 1 -  k + p -  l)(m- k - 1  + 1 ) s 2 k ( k + p ) .  

This in equality implies 

1 < $ k  + 1. 

Hence it suffices to check that the condition of Moon and Moser is satisfied for 
every 1 less than 4k + 1. 

Suppose d, s 1 for some 1, 1 S 1 < $ k  + 1. In G' every vertex has degree at least 
2, so 13 2. Put W, = {w,, w2,. . . , w ~ + ~ + ~ - ~ } .  Then, by the choice of P and 1, we 
have 

deg, (w,) 3 m - k - 1 for every w, E W,. (1) 

In particular, each vertex of W, has degree at least m - 3 k  in W. Hence the 
definition of p implies that G[ Wg] has at most 2 p  + 1 independent edges where 
W,+ = W,U{w,+,+,}~ W,. In turn, a theorem of Erdos and Gallai [6] (see also [ l ,  
Corollary 11.1.101) gives 

k + p + l  k - p  4 p + 3  
e (Gtwdl ) smax( (  )-( ). ( )]. 

Consequently 

On the other hand, eq. ( 1 )  implies that some of the k ( m -  k )  edges of G[W] 
must join vertices of W,. More precisely, 

e ( G [  W,]) 3 ( k  + p + 1 - l ) ( m  - k - 1 )  - k ( m  - k ) .  ( 3 )  

Putting (2) and (3) together, we see that 

s ik  +'; '- ') - ( k + p  + 1 - l ) (m - k - 1 ) +  k ( m  - k). (4) 
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To complete the proof of the theorem we shall show that (4) can not hold. 
(a) Assume first that 

Rearranging it we obtain 

2 ( p  + 1 - l ) m  =S l (6k  +31-5) + p ( 6 k  +41-4)-4k +2.  

Since 6 k  + 41 - 3 < m, this inequality has to hold when we put p = 0. In turn, one 
sees it has to hold for 
inequality becomes 

2 m < 8 k + 4  

and this does not hold. 
(b) Assume now that 

the minimal value of I, for 1 =2 .  However, then the 

Rearranging it we obtain 

2 ( p +  1 - 1)m sz 1(6k +4p  + 3 1 - 5 ) + p ( 2 k  + 16p + 16) - 6 k  + 8. 

Since 1 < $ k  + 1 and p =S Likj we see that the inequality must hold with 1 = 2 and 
p = O .  However, in that case we get the inequality 

which contradicts the assumption of the theorem. We have proved that (4) does 
not hold and so the proof of the theorem is complete. 0 

2m < 6 k  + 10 
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1. Introduction 

Let n be a positive integer, and let S, denote the set of permutations of 
(1,. . . , n}. We define a graph G, as follows. The set of vertices of G,, is S,. TWO 
vertices u, T E  S,  are joined by an edge in G, if and only if the permutation U-'T 
has exactly one non-trivial cycle (that is, a cycle of length at least two). Let 0, 
denote the nth assignment polytope. Thus 0, is the ( n  - 1)2-dimensional polytope 
in R"' consisting of all n x n non-negative doubly stochastic matrices. It is proved 
in [l] and [ 3 ]  that the vertex-edge graph of 0, is isomorphic to G,,. It is readily 
verified that G, is the complete graph K,,! for n = 1, 2, 3 .  As shown in [ 3 ] ,  the 
graph G, is the complete 6-partite graph K4,4,4,4,4,4. The following are some basic 
properties of G,. 

Property 1.1. G, has n !  vertices. 

Property 1.2. G, is a vertex-transitive graph. 

Property 1.3. G, is a regular graph of degree A,, where 

A,, = ( L ) ( k -  l)! .  
k =2 

Property 1.4 [3]. For n z= 3 ,  the girth of G,, is 3. Indeed each edge is an edge of a 
cycle of length 3. 

Property 1.5 [ l ,  31. The diameter of G, is 2 for n 3 4. (Ir is, of course, 1 for n = 1, 
2, 3.) 

Property 1.6 [3].  G, is a hamilton-connected graph. 

* Research performed while the author was visiting the UniversitC de Paris VI and was partially 
supported by a grant from the Wisconsin Alumni Research Foundation and a grant from the National 
Science Foundation. 
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Since a hamilton-connected graph with at least three vertices has a hamilton 
cycle, it follows from Property 1.6 that G, has a hamilton cycle for n 2 3. As was 
pointed out by Balinski and Russakoff [l], the fact that G, has'a hamilton cycle is 
an immediate consequence of a well-known algorithm for generating the permu- 
tations in S,. 

Property 1.7 [4]. For n 2 2 the connectivity of G, is A,. 

Property 1.8 [3].  For n 3 3 the vertices of G, can be partitioned into n!/6 cliques 
(maximal complete subgraphs) each having six vertices. 

consult [ 31. 
For more information on these and other theorems concerning G, one can 

2. The chromatic index of G,. 

Let G be a graph and let A be the largest degree of a vertex of G. A matching 
of G is a subset F of the edges of G such that no two edges of G have a common 
vertex. If the matching F has the property that each vertex of G meets an edge of 
F, then F is called a perfect matching or l-factor of G. The chromatic index q(G) 
of G is the smallest integer t such that the edges of G can be partitioned into t 
matchings. By a theorem of Vizing the chromatic index of the graph G is either A 
or A + 1, If G is a regular graph of degree A, then q(G)  = A if and only if the 
edges of G can be partitioned into l-factors. A partitioning of the edges of G into 
l-factors is called a l-factorization of G. 

The graphs G,, GZ, and G, being the complete graphs K, ,  K, ,  and K ,  
respectively, have l-factorizations. The graph G, is the 6-partite graph K4,4,4,4,4,4, 
and a l-factorization is readily found. One is naturally lead to conjecture that the 
graph G, has a l-factorization for each n 2 2. The purpose of this note is to prove 
that 4(G,) =A, ,  ( n  3 2). The following two lemmas are well known (see e.g. [2, p. 
2491). 

Lemma 2.1. The complete graph K, has a l-factorization for each positive even 
integer n. 

Using the property that K ,  is an induced subgraph of K,+,, one quickly obtains 
the following. 

Lemma 2.2. For each positive odd integer n, the edges of the complete graph K,, can 
be partitioned into n sets each being a matching with ( n  - 1)/2 edges. 

Let H be a subgroup of the symmetric group S, with index t. Let H ,  = 

H, H2, .  . . , H, be an enumeration of the right cosets of S,, with respect to H. Let 
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G,(Hi)  denote the subgraph of G, induced by the vertices in Hi (1 s i c t). For 
distinct integers i and j with 1 s i ,  j c  t, let Gn(Hi, Hi) denote the partial subgraph 
of G,, where the set of vertices is Hi U Hi and where two vertices are joined by an 
edge if and only if one is in Hi, the other is in Hi, and they are joined by an edge 
in G,. In particular Gn(Hi,  Hi) is a bipartite graph with bipartition Hi, Hi. 

Lemma 2.3. The graphs G,(Hi), i = 1, . . . , t, are isomorphic regular graphs. 

Proof. Let H, = Ha, (1 s i s t ) .  Then it is readily verified that the correspondence 
between H and H, defined by T 4 TC~ ( T  E H )  is an isomorphism between G,(H) 
and G,(H,). Let (+ be an element of H. Then the correspondence between H and 
itself defined by p + v p  (PE H )  is an automorphism of G,(H) which takes the 
identity E to p. The conclusions now follow. 

Lemma 2.4. G, (H,, H,) is a regular graph (1 s i, j s t, i # j )  

Proof. Let U , T E H ,  and let ~EH,. Then T C - ~ E H  and T U - ~ ~ E H , .  Since 
T-'(TC-'P) = a - ' p ,  there is an edge joining u and p if and only if there is an edge 
joining 7 and TC-'~. Hence the correspondence p + 7a-l~ ( p  E H,) shows that the 
degree of a in G,,(H,, H,) equals the degree of 7 in G,,(H,, H,),  and we conclude 
that all vertices of H, have the same degree in G,(H,, H,). Similarly, all vertices of 
HI have the same degree in Gn(H,,  HJ) .  Since IH,/ = /FIJI, G,,(G,, H I )  is a regular 
graph. 

S, which is isomorphic to SnPl, and we identify this subgroup with S,-*. Let 
The collection of permutations (T of S,  such that a ( n )  = n form a subgroup of 

s:-,=sn-l, s : I ; = s n - l ( n - l , n ) , .  . . )  s ~ - l = s , - l ( l , n )  

be an enumeration of the right cosets of S,  with respect to S,-l. 

Lemma 2.5. The graph G,(SL-l, Si-J  is a regular graph of degree 'ynP1 where 

Proof. According to Lemma 2.4 the graphs in question are regular graphs. Let i 
be an integer with 1 s i c n - 1 and consider the graph Gn(S,-l, SnP1(i, n)). Let 
v E SnPl. Then there is an edge of this graph joining the identity E and a(i, n )  if 
and only if v(i, n)  has exactly one non-trivial cycle. Since a(n )  = n, the latter is 
true if and only if (T = E, or a has exactly one non-trivial cycle and a(i) # i. Hence 
the degree of regularity of G,(SnWl, SnPl(i, n) )  is the number of cycles of SnPl of 
the form (i, kl, . . . , k,) where 0 6  t s  n-2. Hence the degree of regularity is 

n - 2  

r =o 
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Now let i and j be integers with 1 S i, j S n - 1 and i f  j ,  and consider the graph 
G,(S;-l, Si-l) .  Let CTE S,-,. Then there is an edge joining (i, n )  and a(j, n )  in 
this graph if and only if (i,  n)a(j, n )  has exactly one non-trivial cycle. Since u 
varies over all permutations in it follows that the graphs G,($-,, Si-,), 
(1 G i, j 6  n - 1, i f ;  j )  have the same degree of regularity Y,-~. Since the degree of 
regularity of each of the graphs G n ( S i - i ) ( l G i s n )  is Anpi ,  it now follows that 

and 

Hence 

and each of the graphs G,(S;-,, S’,-,) ( l s i ,  j s n ,  i f  j )  is a regular graph of 
degree yn-l = (A, -A,-J/n - 1. The lemma now follows. 

Lemma 2.6. A, 3 y, for n 3 3. 

Proof. By definition, 

Direct calculation shows that 

with equality if and only if k = n. Since the first term ( k  = 1) in the summation for 
y,, is 1 and all terms in both summations are integers, it follows that for n 2 3 ,  

A n  3 7,. 

We are now ready to state and prove the main result. 

Theorem 2.7. The graph G, admits a 1-factorization and consequently 

q (Gn)  = A,, ( n  3 2). 

Proof. We prove the theorem by induction on n. We have already observed that 
G, has a 1-factorization for n = 2 and 3. Let n b 4. It follows from Lemma 2.3 
that the graphs G,(SL-,)(i = 1 , .  . . , n )  are isomorphic to Gn-l and hence by 
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the inductive hypothesis each of these graphs has a 1-factorization. Since 
Gn(S;-l, S: , - , )  is a regular bipartite graph of degree ynPl by Lemma 2.5 (1 S i, j s  
n, i# j ) ,  it follows from Konig's theorem that each of these graphs has a 1- 
factorization into ynP1 1-factors. 

First suppose that n is even. Then the edges of G,, which are edges of one of 
the graphs G,,(SLPl) (1 s i6 n )  can be partitioned into A,-, 1-factors. Since n is 
even, the complete graph K,, has a 1-factorization, and it now follows that the 
edges of G,, which are edges of one of the graphs Gn(S;-l, SL-l) (1 si, j s n ,  i # j )  
can be partitioned into ( n -  l)yn-l 1-factors. Hence in this case G,, has a 
1 -factorization. 

Now suppose that n is odd. Then the edges of K,, can be partitioned into n sets 
each being a matching with ( n  - 1)/2 edges. Hence it follows that the edges of G,, 
which are edges of one of the graphs G,,(S;-,, Sl,-,) (1s i, j S  n, i f  j )  can be 
partitioned into nynPl matchings each with ( n  - l)! ( n  - 1)/2 edges. Each of these 
matchings coupled with a 1-factor of one of the graphs Gn-l(S;-l) g' ives a 
1 -factor of G,. By Lemma 2.6, A,,-l - ynP1 2 0. Hence these ny,,-, matchings of 
G,, and y,, 1-factors of a 1-factorization of each G,,(S;-l) can be paired to give 
ny,,-, 1-factors of G,,. The remaining AnPl - yn-l 1-factors of the 1-factorization 
of Gn(SL-l) ( l s i s n )  give AnPl -  yn-[ 1-factors of G, completing a 1- 
factorization of G,. Hence in this case G,, also has a 1-factorization, and the 
theorem follows. 
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LOOPY GAMES 

J.H. CONWAY 

Department of Pure Mathematics and Mathematical Statistics, Uniuersity of Cambridge, Cam- 
bridge CB2 1 SB, England 

0. Introduction 

Two players, Left and Right, play the sum 

A + B + C + *  

of a finite number of games A, B, C, . . . as follows. They move alternately and the 
player whose turn it is to move selects at  will just one of the component games A, 
B, C, . . . and makes a move legal for him in that component. If our games are of 
the sort discussed in [l] then every sum of this kind necessarily ends after finitely 
many moves, and the winner is therefore completely determined by the normal 
play convention that a player who does not move when it is his turn to do so loses. 
But in this paper, we consider also games that might continue indefinitely, 
perhaps because they contain repetitive cycles of moves, o r  loops. 

To specify a game G formally, we require to know its set of positions, one of 
which, usually given the same name as G, is called the initial position, and we shall 
also need to know the rules which determine what changes of position correspond 
to legal moves for Left or Right. When the number of positions is small, this 
information can conveniently be conveyed on a graph like that of Fig. 1, in which 
the nodes represent positions (the heavy node representing the initial position), 
and an arrow P+,Q denotes a legal move from P to Q for Left, while P+,Q 
would denote one for Right. 

A play of G is then a finite or infinite sequence G-txH+,K+,  . . . (each of 
X ,  Y, 2,. . . = L or R) of legal moves between positions of G, starting from the 
initial position. It is called an alternating play if the sequence X ,  Y, 2,. . . is 
alternating, either L, R, L, R , .  . . or R, L, R, L,.  . . . 

To complete the definition of G, we may add rules which say who wins for 
various infinite plays. To some of the infinite plays we shall attach the sign +, 
meaning that Left wins, to others the sign - (Right wins), and to all the rest the 
ambiguous sign f, meaning that the game is declared drawn. G is called fixed if 
none of the infinite plays are drawn, free if all of them are. 

If G is any game, we shall write G' for the modified game in which all infinite 
plays that are draws in G are redefined to be wins for Left, and G- for that in 
which these plays are called wins for Right. G(on) denotes the game obtained 
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Fig. 1 

from G by making all infinite plays wins for Left, and G(o@ that for which all are 
wins for Right. For free games 

G' = G(on) and G-  = G(ofj,  

while for fixed ones 

G ' = G = G -  

As a matter of notation, we shall write 

G ={A, B, C, . . . I D, E, F, . . . }  

to indicate that from the position G the legal moves for Left are to A, B, C, . . . 
only, while those for Right are to D, E, F,. . . only. Thus in Fig. 1, 

In these circumstances A, B, C, . . . are called the Left options of G, and GL 
denotes a typical one of them, while D, E, F, . . . , and typically GR, are called the 
Right options of G. So in Fig. 1, aL denotes either a or  y, aR denotes only P, PL 
denotes y, while P" has no meaning, and either yL or yR denotes a. 

In this notation, the Left options of G + H are all the games of the form 

GL+H or G+HL,  

while its Right options are 

GR+H or G + H R ,  

so that we can write 

G + H = { G L + H ,  G+HLI GR+H,  G+HR}.  

An end position, usually given the name 0, is one that has neither Left nor Right 
options 

{ I > = @  

It follows from the normal play convention that the player whose turn it is to 
move from an end position loses, and so of course a player who reaches an end 
position wins. 



Loopy games 51 

1. Enders and stoppers 

A play in the sum of a number of games determines plays in the individual 
components in an obvious manner, for instance the play 

G + G + HL--+R G + HLR+, GL+ H L R j R  GL+ HLRR+, GLL 
+ HLRR-+, 

determines the component plays 

G+,GL+,GLL-+. . . and H+,HL+RHLR-+RHLRR+-. . 

Notice that the play in the sum might be alternating even when (as here) the 
component plays are not - it is for this reason that we cannot afford to restrict 
ourselves to alternating plays only. 

The game of Fig. 2 satisfies the ending condition: it has no infinite play, 
alternating or not. In such a game, called an ender, if the players keep on making 
moves, even in non-alternate fashion, they will necessarily arrive at an end 
position after a finite number of turns. A sum of games which individually satisfy 
the ending condition also satisfies that condition. 

Fig. 2 Fig. 3 

The game of Fig. 3 is not an ender, but satisfies the weaker stopping condition, 
that there is no infinite alternating play from any position. Such games we call 
stoppers - if Left and Right play alternately in a stopper the game is sure to come 
to a stop, with the player whose turn it is unable to move, but it need not have 
ended, because there might be moves available to the player whose turn it isn’t. A 
sum of components that are stoppers need not itself be a stopper - for example 
the games on and off of Fig. 4 are individually stoppers in which no alternating 
play has more than one move, but their sum is the third game of the figure, called 
dud, in which both Left and Right always have pass moves. 

on Off dud 

Fig. 4 
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2. Outcomes and order-relations for sums 

To complete the definition of a sum, we shall need to say which infinite plays 
are wins for Left or Right, and which are drawn. 

Any infinite play in the sum G + H + K + .  . . determines plays in the compo- 
nents, at least one of which is infinite. If all the component plays that are infinite 
give wins for the same player, we shall say that that player wins the sum, and 
otherwise will agree that the sum is drawn. A play is drawn when some 
component is drawn, or when some two of the components are won by different 
players. 

We shall define the negative, -G, of a game G by reversing the roles of Left 
and Right throughout - moves that were legal for one player in G become legal 
for the other in -G, and a player wins -G just when his opponent would win G. 
We shall write G - H  for G + ( - H ) ,  even though in this theory there is no useful 
sense in which G - G is equivalent to 0. 

If A and B are fixed games (no draws) we shall define A 2 B to mean that, 
supposing that Right starts, Left has a strategy which guarantees him either a 
draw or a win in the difference game A - B .  We shall abbreviate this whole 
phrase, including the understanding that Right starts, to “Left can survive in 
A - B”. 

Theorem 2.1. 

A s B implies ( A  + C)+2 ( B  + C)+, 

A 2 B implies (A + C)-> ( B  + C)-. 

Proof. Suppose K is the given survival strategy for A - B. We shall construct from 
it a strategy 2 which enables Left to survive in both 

(A + C)’-(B + C)’=(A + C)++ (-B - C)- = A, 

and 

(A + C)-- ( B  + C)- = (A + C)--(-B - C ) + = A 2 ,  

as follows. 
In the compound game A + C - B - C Left responds to any Right move in A or 

-B with the response provided by K, and to a Right move in C or -C with the 
mirror image move in -C or C. To see that this avoids loss (supposing Right 
starts), consider in Table 1 the signs of the resulting plays in all components 
(writing 0 for finite play). 

If the play in C and -C is finite (line 1 in Table l), then 

sign (A + C)’ =sign (A + C)- = sign (A) 

and 

sign (-B - C)- =sign (-B - C)’ =sign (-B),  
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Table 1 

Line A +C -B -C (A+C)' ( -B-C)-  (A+C)-  (-B-C)' 

1 X O Y O  X Y X Y 
2 + + ?  - + ?a' 

+ ?a) 3 O + ?  - 
4 - + + -  
5 ? - + +  ?a) 

6 ? - o +  ?a) + 
I + -- + + 

+ 
+ 

-( - 

1- 
+ 

1+ 
- - 

a) Here the ? signs in a given line need not be identical. 

so since Left avoids loss in A - B ,  he does so in A ,  and A,. Otherwise either 

sign(C)= +, sign(-C)=- (lines 2, 3, 4 in Table 1) 

or 

sign (C) = -, sign (-C) = + (lines 5, 6, 7 in Table 1). 

In the former case sign (A + C)+= + so that Left has avoided loss in A , .  In the 
latter case, if sign (-B) = + or 0, then sign (-B - C)- = + (lines 5 and 6 in Table 
l), while otherwise sign ( -B)  = -, so sign (A)= + (since K ensures that Left 
survives in A - B), and we can deduce that sign ( A  + C)' = + showing that Left 
has avoided loss in A ,  once again. The argument for A, is similar (see the 
right-hand portion of the table). 

So far we have only defined inequalities between fixed games. If we define for 
more general games A 2 B to mean that both A' 2 B' and A- 2 B-, then we can 
generalise the statement of Theorem 2.1 to read: 

Theorem 2.2. For all games, A 2 B implies A + C 2  B + C. 

Proof. This is deduced immediately from the above definition and the formulae 

( X +  Y)' = ( X + +  Y+)+, ( X +  y)- = x- + Y-,  

which are obviously valid for all X,  Y. 

Theorem 2.3. A 2 B 2 C implies A 2 C. 

Proof. The theorem need only be proved for fixed games A, B, C. The proof is 
rather subtle, and Left must employ one of the servants, Mr. read, to help in 
constructing the desired strategy for A - C from the given ones X for A - B, 3 for 

[Footnote on  footmen: their names are spelt with lower case letters (eg., r), to 
distinguish them from the real players Left and Right, for whom we use L and R.] 

B - C. 



6 0 J.H. Conwny 

X a 

Left should set up games -B and B on the upper table (Fig. 5) across which he 
faces Mr. read, and A and -C on the lower one, where his opponent is Right, 
and should sit on a swivel-chair between these two tables. He should then respond 
to a move made by either read or Right with the response given by the 
appropriate strategy X or 1, and instruct Mr. read always to reply to a move in 
either -B or B with the mirror-image move in B or -B. 

We assert that the moves played by Left across the lower table will then 
constitute a loss-avoiding strategy for him in A - C, Right starting. 

If the total play is finite, then since Left makes the last move in each of the 
pairs A - B and B - C, he does so in the pair A - C, which he therefore wins (line 
1 of Table 2). If not, but the play in -B and B is finite, then one of the signs x 
and y of A and -C must be +, so that Left survives in A - C as desired (line 2 of 
Table 2). 

Table 2 

Line A -B +B -C A -C 

1 0 0 0 0 0 0 (and Left wins) 

3 + - + ? + ?  
4 ? + - + ? +  

2 x o o y x y  

In the cases when play in -B and B is infinite (lines 3 and 4 of Table 2), we 
must ensure that Left makes infinitely many moves against his real opponent, 
Right, rather than entering an infinite huddle with the servant. 

But if 

sign ( B )  = +, sign ( -B)  = - (line 3 of Table 2), 

then X ensures that sign (A) = +, while conversely if 

sign ( B )  = -, sign ( -B)  = + (line 4 of Table 2), 

then 3 forces sign (-C) = +, so that in each case infinitely many moves are made 
in A - C, and Left has avoided loss therein. 
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3. Some results from the theory of ending games 

In the next few sections, we outline the theory of ending games, as developed in 
[l]. For such games the relation G 3 H means that, supposing Right starts, Left 
has a strategy which wins G - H for him, since now no drawn games are possible. 
In terms of this, we can define four atomic relations 

G A H means that G 2 H and H 2 G 

G > H means that G a H but H 3  G 

G < H means that G 2 H but G& H 

G /I G means that G S  H and H &  G 

The assertion that G = H  means that Left can win G - H  if Right starts, while 
Right can win if Left starts, so that G - H is a second-player-win. The reason why 
we say that G and H have the same value in this case is that it turns out that then 
G can be replaced by H in any sum of games without affecting the outcome. Since 
we often drop the distinction between games and their values, we shall often drop 
the dot from above the equality sign =. 

More generally, if G a H ,  then a term H in any sum may be replaced by G 
without destroying the existence of a strategy for Left, so that G is at  least as 
valuable to Left as H is. 

The basic idea of the theory is that from inequalities on the components of a 
sum we can derive inequalities for the total, and if we can deduce enough to 
decide its order-relation with 0, then we know who wins: 

( G  and H have the same value), 

(G's value exceeds H s ) ,  

(G's value is less than H's), 

(the values are incomparable). 

G = 0 if and only if G is a second-player-win, 
G > 0  if and only if G is a win for Left (no matter who starts), 
G < 0 if and only if G is a win for Right (no matter who starts), 
G ( 1  0 if and only if G is a first-player-win. 

4. S i m p l i i g  ending games 

There are many alterations we can make to the structure of a game which do 

The value of G is unaltered or increased when we 
( a )  increase the value of any option, 
( p )  insert a new option for Left, 
( y )  delete one of the options for Right. 

not affect its value, or change it only in a restricted way: 

We examine ( p )  more closely-if the proposed new option H for Left satisfies 
H Z  G, then the value of G is strictly increased, but if not, i.e., H a  I G (this means 
H < G or HI( G ) ,  then the value of G is unchanged. This latter fact is called the 
gift-horse principle, and the new option H, when H a l  G, is called a gift-horse for 
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Left. Similarly, if H s G, then G's value will be strictly decreased by adding H as 
a new Right option, and otherwise (HID G), H will be a gift-horse for Right and 
leave the value unaltered. 

If Gl-1 and GL<l are two different Left options of G that satisfy GLIS GL<i, then 
we say that G L ~  is dominated by GLc), and in this case G's value will be unaffected 
when we delete G L - ~  provided that we retain GL-c]. In general, we may omit many 
dominated options simultaneously, provided that we retain enough options to 
dominate them. For Right options, we say that GR0 dominates GRi provided we 
have the reversed inequality GR> 3 GRcl, and once again we can omit dominated 
options provided we retain enough to dominate them. 

If G is an ending game with only finitely many positions, we can repeatedly 
apply these ideas until every position is free from dominated options. The 
finiteness restriction is necessary, because in the game 

w={O,1,2,3 , . . .  I }  

every option is dominated, and they plainly cannot all be omitted, although of 
course infinitely many can -for instance 

w = { o ,  1,4,9,  16,25,36,. . . [ )={1,2,4,8,  16,32,64,. . . I } .  

Despite its infinitude of positions, w is an ending game - its tree is sketched in 
Fig. 6. 

The following kind of simplification is both more subtle, and more generally 
applicable. If a particular Left option GL-ci of G has itself a Right option G L ~ ~ R ~ ~  
which satisfies GL[lR[iS G, then we say that the move to GL0 is reversible (through 
GLc:R4. In these circumstances we can, without affecting the value of G, replace 
G'-l as a Left option of G by all the Left options G L ~ ~ R ~ L  of G L ~ ~ R ~ ~ .  This is called' 
bypassing GL(i, and is illustrated in Fig. 7. Similarly, the Right option GRi is 
reversible (through GKlL~)  if GRj'-i 3 G, and is bypassed by replacing it by all the 
G K , L K .  

I t  is legitimate to bypass a number of reversible moves at once, and in this way 
we can arrange that any ending game, whether finite or infinite, can be completely 
freed of positions with reversible moves. If G has only finitely many positions, we 

are 

Fig. 6 
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Fig. 7 

can also free these from any dominated options, and so arrive at the simplest form 
of G. The point of this concept is illustrated by the following theorem. 

Theorem 4.1. Z f  G and H are ending games in which no positions have either 
dominated or reversible options, and G and H have the same value, then G and H 
are isomorphic. 

This theorem provides us with an efficent way to work with sums of games with 
only finitely many positions. By eliminating dominated options and bypassing 
reversible moves we first find the simplest form, which is an exact invariant for the 
value. The value, by our earlier theorems, contains exactly that information about 
a game which is relevant in computing the outcome of sums involving it. 

5. On numbers and games 

Certain ending games can be identified with numbers. (For games with only 
finitely many positions only the dyadic rational numbers m/2" arise.) The num- 
bers naturally form a tree, as shown in Fig. 8, and we say that x is simpler than y if 
the path from 0 to y includes x. (0 is the simplest number of all.) Each number y 

I 

Fig. 8 
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has a canonical form in which the options are all the numbers that precede y 
along this path, for example: 

O = {  I}, l={OI}, 2={0,1 I } ,  3={0 ,1 ,2 /} , . .  . , w = { O ,  1,2 , .  . . I} ,  
-0=0, -l={lO}, -2={10,-1}, -3={10,-1,-2} , . . . ,  - w = { ] O , - l , . . .  }, 

1 
$={OI  l}, $ = ( O I  l,+}, Q = { O l l  3 1 2 2 4  L} 2 .  . ., - = (0 I 1, i, $, . . .I, 

$ = { O , + l  l}, %=(0,+ I La}, s={o,;,; I l,$}, . . . , $ = { O , $ , % , .  . .11,:,. . .} 

0 

and it may also have a simplest form obtained by omitting the dominated options: 

O = {  11, 1={0)},  2=(1  I}, 3-12 I],. . . , w +  1 = ( w  11, 
- l = {  lo}, - 2 = {  1-l}, -3={ 1-2}, . . . , - ~ - 1 = {  I - w } ,  

+{+ll}, 5-{1(3 1 1 - 5  3 
8- 2 41, z - { g l a } >  1$={112}. 

It can be shown that o has no simplest form. 

computed using the rule: 
When the value of every position in G is a number, these numbers can be 

If every option of G is a number, and every Left option is strictly less than every 
Right option, then G is itself a number, namely the SIMPLEST number greater than 
every Left option and less that every Right one. 

{2,3+I}={.rrl 17)-4, (1 Ie}={l i I )=2,  (-1 I>=o, {$I;>=& 
This rule generalises to give the simplicity principle, which sometimes assigns a 
numerical value to a position which has non-numerical options: 

lf  there is some number, z say, that satisfies 

every GL 4 I z 4 1 every GR, 

then the value of G is a number, namely the simplest such z. 

To apply this, of course, we need techniques enabling us to compare games with 

For every ending game G there are two Dedekind sections L(G) and R(G) of 
numbers. 

the number-line with the following properties: 

X > L(G) if and only if x 2 G, 

x < R(G) if and only if x s G, 

L( G )  > x > R(G)  if and only if x 11 G. 

When G is a number, z say, then L(G) is the section between z and all smaller 
numbers, R(G) that between z and all larger ones, as in Fig. 9. But usually we 
have R(G)<L(G),  as in Fig. 10. 
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Fig. 9 Fig. 10 

To compute these sections, let Left and Right play G "intelligently", stopping 
play when the value first equals a number, z say, with player Y ( Y = L  or R) 
about to move. Then if player X started, we have 

X(G) = Y ( z ) .  

Thus 

L({5 14)) = R(5), 

L({7 I {5 1 411) = R(7), 

R({5 141) = L(4), 

R((7 I ( 5  1 4))) = R(5). 

It is important to realise that the only case when G is a number is when 
L(G) < R(G) as sections, and that then its value is to be found by the simplicity 
rule. For instance if G={4 ((5 14)) the above rules suggest L(G)=R(4) and 
R(G)=R(5) and so L(G)<R(G). In fact, G is a number, namely the simplest 
number z satisfying 

R(4) < z < R(5), 

namely 5 itself, and so L(G)=L(5), R(G)=R(5), and we should have stopped 
play at G itself. 

6. Other ending games 

Ending games can have many other values besides numbers, and we can afford 
here only to give a few simple examples: 

( a )  Switches. These are games {x I y }  for which x and y are numbers with 
x 2 y .  When playing a sum of switches and numbers, move in that switch with the 
largest value of x - y .  
(0) Nim-numbers or nimbers. These are defined inductively 

*0=0={ I}, 
*1=*={0~0},  

*2 = (0, * I 0..*1, 

*3 = (0, *, " 2  I 0, *, *2}, 

*n={*o ,* l , . . . ,  *( n - 1 ) ) * 0 , * 1 ,  . . . ,  * ( n - l ) } ,  

* w  = {*O, "1, " 2 , .  . . I *o, "1, " 2 , .  . .}, 
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and in fact for all ordinals 

*a = { * P ( P  < a )  I * P ( P  < a)) .  

The sum of two nimbers is another (use binary notation without carry-e.g. 
*3+*5 =*6), and we can say that G will certainly have a nimber value * n  
provided that 

(i) every G L a  ( * a  a levery GR, and 
every * m ( m  < n )  appears as both a Left and a Right option of G. 

These observations contain the Sprague-Grundy theory of impartial games. 
( y )  Small games. Nimbers are particular examples of games that are greater 

than every negative number even - ( -’). and less than every positive one. There 
w 

even exist positive games of this kind, notably t = (0 1 *} (pronounced “up”). 

7. Sums of free loopy games 

We return to the topic of loopy games, more particularly the free games, in 
which infinite play is always declared a draw. What information do we need about 
the individual components G, H, K, . . . of a sum G + H + K + * . * of such games if 
we are to compute the outcome of the total? 

We answer this as follows. If we want to see whether Left can at least draw, we 
might as well redefine all draws as wins for Left, so obtaining the game 

(G + H + K +  * . .)+ = (G’+ H’ + K++. . a)+, 

and so we need only know the values of G’, H’, K’, . . . . If, on the other hand, 
we want to know whether Left can win, we might as well redefine all draws as 
losses for Left, when we are considering the game 

( G + H + K + .  . . ) -=(G-+H--+K-+.  . .I-, 
and so need only know the values of G-, H-, K- ,  . . . . 

merely G = A & B. 
To indicate that a game G has G’ of value A and G- of value B, we shall write 

For free games G, we have of course 

G’ = G(on) ,  G- = G(of), 

and so A and B in this case are often called the onside and offside of G. 
The answer to our question is therefore this -we can work out the outcomes 

of sums of open games in terms only of the onsides and offsides of the individual 
components. Since it often happens that the two sides of G have values that are 
equal to ending games, and maybe to numbers, this is a very real simplification. 

Consider for instance the following familiar little game from our infancy (Fig. 
11). Left may say “’tis” and then Right may respond with “’tisn”, and Left 
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Fig. 11 

follow with ‘‘’tis” again, and so on alternately. Formally, the game has just two 
positions, tis and tisn, with a Left move from tis to tisn and a Right one back from 
tisn to tis. 

We assert that 

tis = 1 & 0, tisn = 0 &-1, 

and so we can predict the outcomes of all sums of these games together with other 
open games whose onsides and offsides are numbers. The reader is recommended 
to check the equality t i s f =  1 by the only method we have given him so 
far - showing that Left has survival strategies in both the differences tis+ - 1 and 
1 - tis+, Right starting. 

8. The iteration method 

We can of course always check any asserted inequality or equality about values 
of games by investigating suitably defined difference games. But we need a 
method for finding such equations as G = A  & B, as well as for checking them. 
Here is a method that often works, and is informative even if it does not. 

Take the graph that defines the game, and against each node mark an upper 
bound for the game obtained by taking that node as the initial position. We shall 
use [GI for the game marked at the node G. Now at any node H = {HL I HR} we 
can if we like replace our present upper bound by the possibly better one given by 
the formula {[HL] I [HR]}. 

It might well happen that by repeated use of such improvements, or possibly 
some more powerful techniques, that we eventually arrive at a system of upper 
bounds [HI that satisfy the equations 

for all positions H of G. We assert that then we have found the onsides of these 
positions [HI = H(on) .  

What shall we use for the initial upper bounds? Here we have a simple choice: 
on+ is an upper bound for every game G, 

and so if we like we can start with [HI = on+ for every position H. 
We might remark at this point that it is this property that prompted our choice 

of name for on. O n  has now become the standard set-theoretical name for the 
class of all ordinal numbers (the initial letters provide the reason), which in von 
Neumann’s sense is also the largest ordinal number. We might call it The 
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Burali-Forti Number since the Burali-Forti paradox is customarily resolved by 
declaring that on is a Proper Class, rather than a proper set! In our language the 
Burali-Forti paradox corresponds to the assertion that on is an option of itself. 

To prove our assertion about on+, observe that Left certainly avoids defeat in 
on+ - G by the simple strategy of always playing in the component on+. 

Before we prove that the answer given by the iteration process is correct, we 
shall discuss a few examples to show how it works. In these examples, we 
abbreviate on+ to on. 

The games tis and tisn. Here the equations to be solved are 

ris = {tisn I }, tisn = { I tis}. 

We start with the initial approximations 

[ tis] = [ tisn] = on 

and find as our next approximations 

[ t i s ]  = {on I }, 
which we evaluate as 

[tisn] = { 1 on}, 

[ t is]  = on (again), tisn = 0, 

using obvious generalisations of the simplest number rule. From these approxima- 
tions in turn we derive further ones: 

tisn = { I on} = o (again), [tis] = {0 I } = 1, 

but now the process finishes, since the next approximations are 

[ t i s ]  = (0 I } = 1 (again), [tisn] = { I I} = O (again). 

Our theorem now asserts that the final approximations really are the respective 
o nsides : 

t is(on) = 1, tisn(on) = 0 

(It also explains why we use the notations G(on)  and G(om.) We leave it to the 
reader to compute in a similar way the offsides 

tis(ofS) = 0, tisn(ofi) = -1, 

which are derived by starting at the universal lower bound 08- = 08. 
For our next example we take the games a, (3, 7, 6 shown in Fig. 12 so that we 

Fig. 12 
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Table 3 

{ O I S ) = a  b I l = P  laIP}=r {r0=6 

{OIon}=I 
on on on on 

{11)=2 
{1]2}=1: 

{1i1}=2 
{0 I 2) = 1, so the process has converged. 

o f f  o f f  o f f  o f f  
{o f f I }=O 

{off I O} = -1 
{-1 I ) = O  

{O I o>=* 
{ * I ) = O  

{ * l o }=  1 
{.1 I > = o  

have to solve the equations: 

a = { O I %  P = { 4 } ,  r={alPl,  s=Irll. 

In Table 3, a single entry on a line indicates a new approximation and this 
process has converged as well. 

We conclude that 

a=1&*,  @ = 2 & 0 ,  r = l $ & J ,  6 = 2 & 0 .  

It might help the reader if we remark that * is incomparable with 0, and that J 
(pronounced “down”), being the negative of t , is a negative infinitesimal. So the 
simplicity principle, in its generalised form, tells us that {* I } = { 1 I } = 0. Since 
tis = 1 & 0, we have actually shown that p = 6 = tis + tis. 

For our last example, we take the game 

dud ={dud  I dud] 

of Fig. 4. Here from the initial approximation on we derive {on I on} = on, and 
from off we similarly find {off I off) = off. So in the “&” notation: 

dud = on & of. 

9. The approximation theorem 

When the iteration process converges, it produces games [HI that satisfy 

[HI = I[H’-I I [ffRII 
for all positions H of G. We shall call these equations the equations defining G. 
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We are about to prove the Approximation Theorem, which asserts that any 
solution of them lies between the on and offsides: 

H ( o f )  c [HI c H(on)  

for every position H of G. There is actually a slight generalisation: 

Theorem 9.1. If the games [HI form a subsolution of the equations defining G, in 
the sense that 

for all positions H of G, then they also satisfy 

[ H I S  H(on)  

for all s w h  positions. 

Proof. I t  will not harm us to suppose that the games [HI are fixed, for we can 
replace them by the [HI+ if not, and we can also suppose that H = H(on).  Then 
the hypotheses tell us that Left can survive in each of the games 

{[HL1 I [HRI1 - [HI, 

while the conclusion requires him to survive in H -[HI. We need only produce a 
strategy for G - [GI. 

Since this strategy is quite hard to find, we shall suppose that Right kindly 
places a potential infinity of his more mathematically inclined servants, Messrs. 
rado (ro),  radon (rl) ,  . . . , rademacher (r,,,), . . . at the disposal of Left, and allows 
him to use the Great Hall, and various furnishings, of The Wright House, which is 
a rather grand establishment. 

On the far table in Fig. 13 is set up the real game G-[GI, which Left is to play 
against his real opponent, Right. But even before play starts, Left instructs r, to 
bring in an additional table on which is set up the difference game 

RG"1 I [GRI}k{[G' I I [GRI1=Xo-Xo, 

and a chair labelled So, to be placed near the games {[G"] I [GR]} and -[GI. 
Left has, by the hypotheses of the theorem, a survival strategy, which we also 

call So, for the sum of these two games. The chair marked 3, which was already in 
the hall, is placed near the games G = {GL 1 GR} and -{[GL] I [G"]}. 

Fig. 13 
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I r l -  - - - - - - - r  m-1 j 

Fig. 14 

As the game proceeds, Left occasionally instructs a new footman ( rr )  to bring in 
a new chair (Nz), and a new table on which is set up a position of the form X ,  -Xc .  
Footman r, is detailed from then on to respond to a Left move in either X, or -X, 
with the mirror image move in the other. In Fig. 14 we show a number of these 
tables, all marked with the positions in which they were originally set up. 

The chairs KO, XI, . . . , X,, and 2 are placed between adjacent tables, and each 
corresponds to a strategy, of sorts, for playing the two games nearest to it. The 
strategies 8, are easiest to describe. When chair X, was first brought in, the games 
it was put next to were in a position of the form 

{IffL] I [HRI1 - [HI 

for some position H of G -strategy X, is Left’s survival strategy for this game 
given by our hypotheses. 

The two games nearest to chair 1 will usually have the form 

H = {HL I HR} and -{[HL] I [HR]} 

for some position H of G. The “strategy” 1 is then the following sequence of 
actions. If Right makes a move in either of these games, Left is to make the 
corresponding move in the other, making the compound position have the form 
K - [ K ]  for some position K = HL or HR of G. He then instructs a new footman, 
rm+l,  to bring in a new table on which is set up the difference game 

1 

{[A’ 1 I rKRI1-cK’-1 I [KRI), 

and a new chair, Nm+l, to be placed near to the games {[KL] I [KR]} and -[K] for 
whose sum he has a survival strategy we shall also call Xm+l. 

The chair 1 is then repositioned next to 

K = {KL I KR} and -{[KL] I [KR]}. 

Left’s total strategy is therefore this. To any move, whether played by his real 
opponent Right. or one of the footmen r,,, r , ,  . . . he replies with the response 
given by the strategy corresponding to the nearest chair. The strategies Xt are 
those for various differences X -  Y with X 2  Y that are given us by the hypoth- 
eses, while the strategy 3 requires just one “imitation” move, and a call for a new 
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table and chair to be inserted. It is plain that this compound strategy always gives 
Left a reply in a game somewhere in the Hall, but not entirely clear that he will 
eventually respond to any move in the real game with another move in that game, 
and perhaps even less clear that he avoids loss in that game if it continues 
indefinitely. We now proceed to establish these facts. 

If infinitely many tables are brought in in the course of play, both results are 
easy. Each new table was only brought in after a move in G had been made by 
either Left or Right, so infinitely many moves have been made in G, and since 
G = G(on),  all infinite plays in G count as wins for Left, who therefore wins or 
draws the compound game G-[GI. So we shall suppose that only the finitely 
many tables shown in Fig. 14 were brought in. 

In this case the total play in G and - X ,  has been finite (sign 0) as must have 
been that in X,, if footman r, has correctly obeyed his orders. Let i be the 
greatest number, if any, for which the play in X ,  was infinite. Then strategy X I t l  
avoids loss in X,,, - X,,  so that the sign of the play in -X,  must be +, whence sign 
( X , )  = -. To have avoided the threatened loss for Left in X,  -Xt-l, strategy X, 
must have given the sign + for -Xtp,, whence sign (X,-l)=-, and so on. 
Eventually, we see that strategy K,, forces the sign of the play in -[GI to be +, 
showing both that Left made infinitely many moves in the real game G-[GI and 
that he avoided loss in that game. 

In the final case, the total play was finite, and Left’s strategies N, . . . X, ensure 
that he made the last move in it. This cannot have been against any of the 
footmen r,,, . . . , r, since they have always the mirror-image reply to make, and so 
it must have been played in the real game against Right, who has not replied and 
therefore loses, by the normal play convention. The approximation theorem is 
therefore established . 

In any convergent case of the iteration process, the Approximation Theorem 
tells us that the upper bounds [HI it gives for the games H(on) are also lower 
bounds, and therefore are the correct answers. 

10. Some results about stoppers 

Stoppers have some special properties which make them particularly easy to 
handle. 

Theorem 10.1. l f  G is a stopper, then 

(a) G ( o n ) a H ( o f f )  i f  and only i f  G(of f )*H(of f ) ,  
( p )  C i ( o f f ) ~ H ( o n )  i f  and only i f  G(on)GH(on) .  

Proof. We need only prove ( a ) ,  by symmetry. In the difference game G - H  the 
condition that G is a stopper ensures that if there is infinite play in G, there must 
be infinite play in -H. Since -H(off) = (-H)(on) this will count as a win in either 
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of G ( o n )  - H ( o m  and G ( o m  - H(o8) .  If there has only been finitely much play in 
G, then of course the signs attached to infinite plays in it are irrelevant. 

Corollary 10.2. If G and H are both stoppers, then the inequalifies 

G ( o f ) a  H(o f ) ,  G ( o n ) a  H(om,  G ( o n ) a  H(on) 

are all equivalent, and any one of them suffices to prove G 3 H. 

It can also be shown that 

Theorem 10.3. Any stopper can be put into a form free of reversible moves, and, i f  
it has only finitely many positions, can also be freed of dominated options, and so 
has a simplest form. 

We do not give the proof here, since it follows closely the corresponding result 
for enders, which is given in [l]. The condition that G is a stopper prevents the 
possibility of a non-terminating sequence of bypasses of reversible options. It also 
justifies the omission of dominated options, which is not quite so obvious as it is 
for enders. 

Theorem 10.4. I f  G and H are fixed stoppers in simplest form, and G = H, then G 
and H are isomorphic games. 

Proof. (Patterned on the corresponding proof for enders, in [l].) Left has a 
survival strategy in G -H. If Right moves in this, say to G R -  H, what can Left’s 
reply be? Plainly not GRL- H, for this requires G R L a  H = G, showing that G had 
a reversible option. So Left’s reply is to some game G R -  HR, showing that for 
every G R  there must be some HR< GR. But for similar reasons there must be 
some GR’C HR, and so GR’SGR.  Since G has no dominated options, this 
entails that GR’ = HR = GR,  and we have shown that for every Right option of 
either game there is an equal Right option of the other. 

Since a similar statement holds of Left options, we have established a 1-1 
correspondence between the options of G and those of H. We can now proceed 
to establish similar correspondences between options of these options, and so on, 
identifying the entire set of positions of one game with those of the other. The 
argument also shows that the only way to survive in the difference game G - H is 
to play the “mirror-image” strategy. 

We must now show that the signs attached to infinite plays of G and H also 
correspond. But if, say, a certain play of H were given the sign + while the 
corresponding play of G received -, then Right, starting in G - H, could play so 
that both components received the sign -, so forcing Left to lose, and showing 
that GZ H. This concludes the proof. 

The value of these results follows from the fact that very many free games can 
be written in the form A & B, where A and B are stoppers, for which Corollary 
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Fig. 15 

10.2 shows us we need not distinguish between various notions of inequality. 
(This was why we allowed ourselves to abbreviate on+ to on in an earlier section.) 
If this happens for a game G with only finitely many positions, then we can put A 
and B into simplest form, by Theorem 10.3 and by Theorem 10.4, the resulting 
pair of graphs is a complete invariant for G. 

Unfortunately, not everything in the garden is quite so lovely. Bach has 
produced the game G shown in Fig. 15 (the carousel) which has a number of 
disturbing features: 

(i) Its onside and offside are not equivalent to stoppers. This can be proved by 
a method like that of Theorem 10.4.) 

(ii) The Left option 0 of G is dominated by H, but cannot be omitted. (The 
reason, roughly, is that Left always arrives at  a better position by taking another 
trip round the carousel than he does by stepping off to 0 now. But there are 
circumstances in which he can win by stepping off sometime, but will not win by 
going round and round forever.) 

(iii) If in G-G, the first player always moves round the carousel, then the 
second player cannot afford to do anything but make the corresponding move in 
the other component. (This is proved by case-by-case analysis.) 

Question. Is there a wider notion than that of stopper which will allow us to find 
a simplest form theorem for all free games with finitely many positions? 
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HAMILTON CIRCUITS AND LONG CIRCUITS 

G.A. DIRAC 
Matematisk Institut, N y  Munkegade, 8000 Aarhus C, Denmark 

1. Introduction and terminology 

In this paper the term graph will denote an undirected graph without loops or 
multiple edges which may be finite or infinite. The set of vertices of a graph r will 
be denoted by T(r ) ,  the set of its edges by 8(r), and lT(r)l will be denoted by 
n,. The length of a path or a circuit A is the number of edges it contains and is 
denoted by l ( A ) .  If Y is a path and X ,  Y E  T(Y), then the unique (X, Y)-path 
contained in Y, will be denoted by Y(X, Y). If A and B are two non-empty 
disjoint subgraphs of a graph (for example, sets of vertices), then a path of the 
graph which has a vertex of A and a vertex of B as its end-vertices and has 
nothing else in common with A U B will be called an (A, B)-path. The number of 
(A, B)-paths of length 1 will be denoted by e(A, B ;  r). A path of a graph will be 
called terminated in the graph if no path of the graph contains it as a proper 
subgraph. If r is a graph and V E  'V(r), then the set of those vertices of r which 
are joined by an edge to V in r will be denoted by Nr(V),  and lNr(V)l is the 
ualency of V in r, denoted by v r ( V ) .  A graph will be called k-connected, where 
k > 0 ,  if corresponding to each pair of distinct vertices V and W the graph 
contains a set of k or more (V, W)-paths such that each pair of them have nothing 
except V and W i n  common. If d is a subgraph of the graph r then T(A) denotes 

The main purpose of this paper is to establish weak necessary conditions for the 
existence of a Hamilton circuit in a graph, partly in terms of the valencies of the 
vertices, and for any given integer f > 3 to establish weak necessary conditions for 
the existence of a circuit of length 3 f in a 2-connected graph which may be finite 
or infinite, also partly in terms of the valencies of the vertices. 

r- (r - A) .  

2. A theorem of Menger type 

It is convenient to prefix a Menger type result which will be used later. It holds 
also for graphs with multiple edges. 

Theorem 2.1. Suppose that r is  a graph, d and % are disjoint sets of vertices of r, 
A E d and B E % and r contains an (d, %)-path whose end-vertices are A and B, 

75 
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and r contains a set 9 of two or more pairwise disjoint (a, 9)-paths. Then there 
exists a subset PI of 9 and a set 9, of (d, 9)-paths of r such that 19,1= 19,1 2,  
9 n 9, = 8, and (9 - 9,) U 9, i s  a set of pairwise disjoint paths of r whose union 
includes A and B. 

Proof. Let Y denote an (d, 9)-path of r whose end-vertices are A and B and IT 
the union of all paths of 9. Suppose {A, B } g  IT and II fl Y #  8 (otherwise there is 
nothing to prove). 

As Y is followed from A to B let A' denote the first vertex in IT and B' the 
last, and let YAr, YB,, respectively, denote the paths of 9 to which A', B' belong. 

If YA,= YBr then Theorem 2.1 holds with 9 , = { Y A . }  and 

9, = {Y(A, A') U Y,,(A', B') U Y ( B ' ,  B)}. 

If YAr#  YB., then put si4 fl YBf= X and 9 fl YAr= Y. Now Theorem 2.1 holds 
with 9 , = { Y A . ,  YB,}  and 

92={Y(A,  A')U YA,(A', Y ) ,  YB,(X, B')U Y(B', B)}. 

3. Hamilton circuits in graphs 

Notations. The edge joining two distinct vertices V and W will be denoted 
(V ,  W). If r is a graph and V E  V ( r ) ,  then the set of all vertices U #  V of r with 
the property that r contains a circuit 0 such that U, V E  0 and at least one of the 
two (U, V)-paths whose union is 0 has length 2, will be denoted by %'( V) ,  and 
the set of all vertices U of %(V)  such that u r ( U ) S v r ( V )  by %"(V). If W is a 
vertex of r other than V, then the set of all vertices of %'(V) other than W which 
are not joined to W by an edge will be denoted by %(V, W).  I%'(V)l, I(e'(V)l, 
I%(V, W)l and I%"(V)fl %(V, W)l will be denoted by c ( V ) ,  c ' (V) ,  c (V ,  W )  and 
c ' (V,  W ) ,  respectively. Let Y denote any path of length 2 1 in r and V an 
end-vertex of Y. Then if V1, .  . . , V,, denote the vertices of Y in order from end 
to end with V1 = V, the set of all vertices Vi of Y such that 2 6  i s  n - 1 and 
(V ,  Vi+l) E r will be denoted by 9( V, Y ) ,  and IS( V ,  Y ) (  by t( V,  Y ) .  If n = 2 then 

The following statement follows from the definitions of %(V) and F( V ,  Y) :  
9( v, Y )  = 8. 

(1)(A) Let r denote a graph, Y any path of length 3 2  in r, and V and W the 
end-vertices of Y. Then S( V, Y )  c %( V )  and 9( W, Y )  c %'( W). 

( B )  Let U denote the vertex of Y such that I(Y( U,  V ) )  = 2. Suppose that X is any 
vertex of Y -  V such that (V, X)E r. Then V Y E  Zr(Y(V, X ) ) -  Vr Y E  %'(V) i f  
and only if r contains a (V, Y)-path of length 2 (which is the case if e.g. 
( X ,  Y ) E  r, in particular i f  U E  %(V) .  
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(C) If, in addition, ( Y ( V , X ) - X ) n . N r ( W ) f . @ ,  then t l Y ~ C l r ( y ) - V :  Y€Ce(V) 
i f  and only if  I' contains a (V ,  Y)-path of length 2 (which is the case if e.g. 
( X ,  Y )  E n. 

The following easily proved statement follows from a result of the writer [2]: 

(2 )  A circuit of a connected graph is a Hamilton circuit of the graph i f  and only i f  it 
includes all the vertices of a longest path of the graph. 

Next, an observation due to Ore [4]. 

(3)  I f  r is a graph and Y is a path of length 3 2  in f and V and W are the 
end-vertices of Y, then each vertex X of F(V, Y )  is the end-vertex of an ( X ,  W)- 
path of r which includes every edge of Y except one, and whose vertex-set is ?fly). 
Furthermore, 

W) n F( V, Y )  # PIe Nr( V )  n F( W, Y )  f PI, 
and if this is the case then r contains a circuit which includes every edge of Y except 
possibly one intermediate edge, and whose vertex-set is "?r(Y). 

The following will also be used: 

(4) If r is a graph and Y is any terminated path of r with two distinct end-vertices 
V and W, then t( V,  Y )  = vr( V )  - 1 and t( W, Y )  = vr( W)- 1. 

Proof of (4). N r ( V ) U N r ( W ) G  Y ( Y )  since Y is terminated in r. One of the 
vertices of N r ( V )  is the vertex first after V on Y (this vertex exists because 
V f  W) ,  the other vertices of N r ( V ) ,  if any, are each preceded (as Y is followed 
from V to W) by a vertex of F(V, Y) .  Thus t (V ,  Y ) =  vr (V) -  1. Similarly 
t (W,  Y ) = v r ( W ) - l .  

We now come to a simple necessary and sufficient condition for a graph to 
contain a Hamilton circuit. 

Theorem 3.1. Any  graph r with 2 3  vertices contains a Hamilton circuit if and 
only i f  it is connected, and there exists a longest path Y of r such that if V and W 
denote the end-vertices of Y, then N r ( W ) n  F(V,  Y)#@ (which is equivalent to 
Nr( V )  n y( W, Y )  + 8). 

Proof. If r contains a Hamilton circuit, then r is connected, and any path 
obtained from a Hamilton circuit of r by deleting one of its edges clearly has the 
property required. 
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To prove the converse suppose that r is connected and n r a 3  and Y is a 
longest path of r as described in the theorem. n y 2 3  because and r is 
connected. Therefore by (3) ,  r contains a circuit which includes every vertex of Y. 
By (2)  this circuit is a Hamilton circuit of r. 

The symmetry mentioned exists by (3). Now Theorem 3.1 is proved. 

Theorem 3.2. Any  graph r with 3 3  vertices contains a Hamilton circuit i f  and 
only if it is connected and there exists a longest path Y of r such that i f  V and W 
denote the end-vertices of Y, then either (V, W ) E ~  or +(V)+vr (W)> ny  or 
c(V, W)<vr (V) -2  or c (W,  V ) G V , ( W ) - ~ .  

Proof. If r contains a Hamilton circuit then the condition stated in the theorem 
clearly holds. 

To prove the converse, suppose that r is connected and n r a 3  and Y is a 
longest path of r with end-vertices V and W and with the property stated in 
Theorem 3.2. ny 3 3 because r is connected and nr 2 3. Therefore if (V, W )  E r 
then Y U {( V, W)}  is a Hamilton circuit of r by (2). 

In what follows assume that (V, W) fi r. 
Suppose now that ur (V)+Uy(W)3ny .  Because Y is a longest path of r, 

Nr( V) U Nr( W) G 'If( Y). Therefore the number of vertices of Y - W not joined by 
an edge to W in I' is ny  - 1 - U y (  W). Since U r (  V )  + O r (  W )  3 ny this number is 
< ur( V ) -  1. Therefore the number of vertices of Y - V -  W not joined by an 
edge to W is s ~ r ( V ) - 2  since (V, W)fiI'. Now Y ( V , Y ) s Y ( Y ) - V - W  by 
definition and t( V,  Y) = vr( V )  - 1 by (4). From the last two statements it follows 
that N r ( W ) n  Y(V,  Y ) # @ .  Therefore by Theorem 3.1 r contains a Hamilton 
circuit. 

Suppose next that for example c (V ,  W ) S v , ( V ) - 2 .  Because Y is a longest 
path of r, t( V, Y )  = vy( V )  - 1 by (4). From this Nr( W )  fl .T( V, Y) # @, for other- 
wise by (1A) .T( V, Y )  c %( V, W), from which and t( V, Y) = ur( V )  - 1 it follows 
that c( V, W) 3 vy( V ) -  1 ,  which is contrary to hypothesis. Since Nr( W) n 
Y( V, Y) # @, by Theorem 3.1 r contains a Hamilton circuit. Now Theorem 3.2 is 
proved. 

From Theorem 3.2 a result can be deduced in which connectedness is not 
assumed. 

Theorem 3.3. If a graph r is finite and contains a 3 vertices, and for each pair of 
distinct vertices V and W such that each of them is the end-vertex of some 
terminated path in r (but not necessarily of the same one) either (V, W )  E r or 
u y ( V ) + t r ( W ) a n r  or c(V, W ) S u r ( V ) - 2  or c(W, V ) s ~ r ( W ) - 2 ,  then r con- 
tains a Hamilton circuit. 

Proof. Show that r is connected, and then apply Theorem 3.2. 
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The following Theorem can be used to deduce that a given graph contains a 
Hamilton circuit. 

Theorem 3.4. If a graph r is finite and connected and contains 3 3 vertices, and 
for each pair of distinct vertices V ,  and V, of r such that (V, ,  V2)& r either 
ur( V,) + ~ r (  V,) 2 nr or c'( V, V,) uy( V,) - 2 or for i = 1 
or 2 

vr( V,) - 2 or c f (  V,, V,) 

then r contains a Hamilton circuit. 

Proof. The proof will be based on a method first used by P6sa [6]. Suppose that r 
does not contain a Hamilton circuit (reductio ad absurdum). Among the longest 
paths of r let Y be one such that the sum of the valencies of its end-vertices in r 
is maximum, and let V1 and V, denote the end-vertices of Y. n y  2 3 because r is 
connected and nr 3 3. 

Since the sum of the valencies of the end-vertices of Y is maximum, it follows 
from (3) that S(Vi,  Y ) c  V(Vi)  for i = 1,2.  

From Theorem 3.1 (V,, V , )&r  and 

S( V1, Y) n Nr( V,) = F( V,, Y) n N;.( V,) = $4. 

From this and the above we have that F(V1, Y)E %'(V,, V,) and S(V,, Y ) c  
V(V,, VJ. Hence, by (4), cf(V1, V,)2vr(V,)-l and c'(V,, Vl)>ur(V,)-l. 

By Theorem 3.2, V r (  V,) + ur( V,) nr - 1. 
Therefore the last alternative of Theorem 3.4 holds. Let the notation be chosen 

so that X , ,  X ,  E Nr( V,) and 

V x ~ ( N r ( X i ) u N r ( X z ) > n  %'(V,, V J :  ur(X)>vr(Vi) .  

Nr(V1)c V ( Y )  because Y is a longest path of I', so X , ,  X,E 'V(Y). Let the 
notation be chosen so that l(Y(V1, X , ) ) a  2. A Y is followed from V1 to V, let Z 
be the last vertex before X,.  Then Z E Nr(X2) n S( V1, Y) ,  therefore Z E 

N r ( X , ) n  %'(V,, V,), so by hypothesis Ur(Z)>Ur(Vi). But since among the 
longest paths of r, Y is one, the sum of the valencies of whose end-vertices is 
maximum, v r ( Z )  S vr( V,). This contradiction proves Theorem 3.4. 

Note. The proof shows that r contains a Hamilton circuit if a pair of vertices 
V1, V, exist which are not joined by an edge and are joined by a longest path of r 
and have the property stated in the theorem. However, to apply this stronger 
form of the theorem would require checking which pairs of vertices are joined by 
longest paths. 
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It is easy to deduce ChvBtal’s theorem on Hamilton circuits [3]: 
Suppose that a graph I‘ is finite and contains 3 3 vertices, and s( C j )  and s( 3 j )  

denote the number of vertices with valency C j and 3j in r, respectively. If for 
each integer i with 1 C i C $ ( n  - 1) either s( s i) C i - 1 or s( 3 n - i ) 3  i + 1, then I‘ 
contains a Hamilton circuit. For suppose that this is note true, then it may be 
assumed that adding any new edge to r creates a Hamilton circuit. But then 
clearly r is connected, and if V1 and V, are any two independent vertices the sum 
of whose valencies in r is maximal, then this sum is C q - 1 ,  and also 
c‘( V,, V,) 5 vr( V,) - 1 and c’( V,, V,) 3 ~ y (  V,) - 1 and by assuming w.1.g. that 
vy( V,) s vy( V,) we arrive at a contradiction. 

Unlike ChvBral’s theorem and P6sa’s theorem [ 5 ] ,  Theorems 3.1-3.4 set no 
upper bound for any i>O on the number of vertices having valency C i  in the 
graph. 

4. Long circuits in 2-co~ected graphs 

The only 2-connected graphs which contain no circuit of length > 3  are the 
3-circuits, as may be easily verified. Also, in any graph each circuit is contained in 
a 2-connected spanned subgraph. In this section some sufficient conditions will be 
established for any integer f 3 4 that a finite or infinite 2-connected graph with > f 
vertices should contain a circuit of length 3 f. In addition the graphs which satisfy 
such conditions and contain no circuit of length > f will be classified. For this 
purpose some special results will be proved. We require some more. 

Definition 4.1. A graph which contains x vertices, and each pair of distinct 
vertices are joined by one edge, where x may be finite or infinite, will be denoted 
by (x). A graph which consists of an (x), and of y further vertices each of them 
joined by an edge only to every vertex of the (x), where x and y may be finite or 
infinite, will be denoted by ((x), y ) ,  and the (x) will be called the core. If y > 1 and 
a new edge is added to a ((x), y ) ,  the resulting graph will be denoted by ((x), y +) 
and the (x) will be called the core. (The new edge is not incident with any vertex 
of the core.) If 0 is a circuit and Y is any path of length 2 1 such that Y n 0 
consists of the two end-vertices of Y, then Y will be called a chord of 0. 

It is easy to verify the following two results (5) and (6). 

( 5 )  Suppose that r is any graph and 0 is any longest circuit of r and Y is any chord 
of 0 with end-vertices M and N. Let Y ,  and Y2 denote the two ( M ,  N)-paths whose 
union is 0. Then: 

(A) ( M ,  N )  s f  0 and 1( Y )  s 1( Y,),  1( Y,). 
(B) If R ,  is an interior vertex of Y1 and R ,  is an interior vertex of Y,, and 

W , ( M ,  R l ) ) + U 2 ( N ,  R2))< 1(Y)+g, 
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where g is an integer 3 1,  then I' does not contain any (R,, R,)-chord of 0 which 
has length 2 g and is disjoint with Y. In particular, if 

Y,(M R,)) + 1( Y,(N R2)) I (  Y), 

then r does not contain any (R,, R,)-chord of 0 disjoint with Y, so (R,, R,)& F. 

( 6 )  Suppose that r is a connected graph and a longest circuit of r has the same 
length as a longest path of r. Then i f  0 is any longest circuit of r, r- 0 consists of 
one or more isolated vertices, and if two vertices are joined by an edge of 0, then at 
least one of them is joined to no vertex of r- 0 in r. 

Theorem 4.2. Suppose that r is a graph and 0 is a longest circuit of r and n, = f ,  
where f is even. Then 

V ~ E  V ( r ) - V ( @ ) :  e(V, 0; r)+f. 
Suppose that V E  V ( r ) -  V (@)  and e (V ,  0; r) =if. Then the notation can be 
chosen so that the vertices of 0 are in cyclic order V , ,  W, ,  . . . , Vflz, W,, and V is 
joined to W,,  . . . , Wf12. If in addition r is 2-connected, then rs ((if), n,-if), the 
vertices of the core being W,,  . . . , Wf12. 

Proof. It follows at once from (5A) that e( V, 0; r) ==if and that if e( V, 0; r) =if 
then V is joined to every other vertex of 0 and the notation can be chosen as 
described. Suppose now that this is the case, and that r is 2-connected. Then: 

(i) The only (V,  @)-paths in r are in the tf paths of length 1 which join V to 

For by (5A) no (V,  @)-path ends in V , ,  . . . , V,, and no (V, @)-path of length 

(ii) No chord of 0 joins two of V,,  . . . , Vf12. 
For suppose that a chord of 0 joins V1 and Vi. By (i) this chord does not 

contain V. But then we have a contradiction to (5B) with V(Y)  = { W,,  V, Wi}. 
Now (ii) is proved. 

(iii) N o  chord of 0 of length 3 2  joins one of V1, .  . . , V,, to one of 

For suppose that such a chord joins V1 and Wi. Then i#  1, if from the 
maximality of 0, and V does not belong to the chord by (i). But then we have a 
contradiction to (5B) with Y"(Y)={W,,  V,  Wi}. Now (iii) is proved. 

Wl,  . . . 9 WfI2. 

> 1 ends in W,,  . . . , Wf12. 

Wl,  . . . , Wfl,. 

(iv) No chord of 0 of length 2 3  joins two of W,,  . . . , WfI2. 
For suppose that such a chord joins W ,  and Wi. Then 3 C i Sif - 1 from the 

maximality of 0, and V does not belong to the chord by (i). But then we have a 
contradiction to (5B) with V ( Y ) = { W , ,  V,  Wi+l} .  Now (iv) is proved. 

(v) No two vertices of V ( r )  - W ,  - . . * - W,, are joined by an edge. 
For suppose on the contrary that X and Y are to such vertices and (X, Y) E r. 
X #  V and X #  V. For if e.g. X =  V then Y& 0 by (i). Therefore, since r is 
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2-connected, r -  V contains a (Y ,  @)-path of length 3 1. Consequently r con- 
tains a (V, @)-path of length 2 2. But this is contrary to (i), therefore X f  V and 
Y #  v. 

X &  0 and Y @  0. For if e.g. X E  0 then by (ii) and the above, YE? V ( 0 )  U {V}. It 
may be assumed that X = V1. r- X contains a (Y ,  @)-path of length b 1 since r 
is 2-connected. Consequently r contains a chord of 0 of length 3 2 with V, as an 
end-vertex. But this is not the case by (ii) and (iii), so X &  0 and YE# 0. 

Since {X, Y }  n (0 U { V}) = P, and ( X ,  Y )  E r and r is 2-connected, there exists a 
chord of 0 containing ( X ,  Y ) ,  and this has length 3 3. But by (ii), (iii) and (iv) no 
chord of 0 has length > 3 .  This contradiction proves (v). 

By (v), rs(($f), +-if). Now Theorem 4.2 is proved. 
If the longest circuit of the graph has odd length, then there are more 

alternatives: 

Theorem 4.3. Suppose that r is a graph and 0 is a longest circuit of r and no = f ,  
where f is odd. Then 

V V E  V(r)-v(@): e ( V ,  @;r)si(f-i). 
Suppose that V E  V(r)- V ( 0 )  and e ( V ,  0 ;  r) = $ ( f  - 1) .  Then the notation may be 
chosen so that the vertices of 0 in cyclic order are V,, W,, . . . , V(f-l)/2, W(f-1)i2, 
V(f+1)/2 and V is joined to W,, . . . , W(f-1)12. If in addition r is 2-connected, then 

either rs((i(f- l)), nr-$(f- l ) + ) ,  
or f a 5  and r is a subgraph of a graph obtained from a ((i(f-l)), m )  with 

$(f - 1 )  s m s n, -i(f+ 3 )  by selecting one vertex in the core and one vertex not in 
the core, and taking two or more new vertices and joining each of them to just the 
two selected vertices, 

or f b 7 and r is a subgraph of a graph obtained from a (($(f - l)) ,  m )  with 
+(f- 3)  d m s nr -i(f- 1) - 4 by selecting two distinct vertices W, and W(f-1)/2 in its 
core, and taking two or more trees, each consisting of a vertex joined to 3 1 others 
(pairwise disjoint and disjoint with the (($(f- l)), m)),  and if such a tree has just 2 
vertices then joining both of them to W ,  and to W(f-1),2, while i f  a tree has b 3  
vertices then joining the vertex having valency > 1 in the tree to both W, and 
W(fpl ) l z  and joining all the vertices having valency 1 in the tree to just one of W, 

If in addition r is 3-connected or contains at most one vertex of valency s 3, then 
and W(f-l),2. 

r c (W- I)), nr  -i(f - 1) + >. 

Proof. From (5A) it follows that e (V ,  0; r)a$(f- 1) and that if e (V ,  0; r)= 
$(f- l ) ,  then the notation may be chosen as described. Suppose now that this is 
the case. Then 

(i) The only (V ,  @)-paths in r are the $(f - 1)  paths of length 1 which join V to 
w,, . . . > W(f-l)/2. 
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The reason is the same as in the proof of Theorem 4.2. 
(ii) No chord of 0 joins two of V,, . . . , V(f+l)/z. 

For suppose that such a chord joins V, and V,. By (i) it does not contain V. If 
i = 1 then 2 S j S$(f- l), therefore (5B) with "Ir( Y) = { W,, V, W,} is contradicted, 
therefore i #  1, and similarly j #  1. But then (5B) with V(Y)={W,, V, W,} is 
contradicted. Now (ii) is proved. 

(iii) No chord of 0 of length 2 2  joins one of V,, . . . , V(f+l)/z to one of 
W,, . . . , W(f-l)/2 except possibly when f a  5, (V, W(f-,,l,)-chords of length 2 or 
(V(f+1)/2, Wl)-chords of length 2, and if r contains a (V17 W(f-,,/,)-chord of 0 of 
length 2 then no chord of 0 has V(f+1)/2 as an end-vertex, and if r contains a 
( V(f+1)/2, W,)-chord of 0 of length 2 then no chord of 0 has V, as an end-vertex. 

For suppose that a chord of 0 of length 3 2  joins V, and W,. Then fa5, 
(V,, W,)a 0 by (5A). By (i) the chord does not contain V. 

i = l  or i = $ ( f + l ) .  For suppose that 2< iS$( f - l ) .  Then if i > j  we have a 
contradiction to (5B) with V(Y) = { W,+,, V, W,} and if i < j we have a contradic- 
tion to (5B) with 'V( Y) = { W,-,, V, W,_,}. Hence i = 1 or i =a(f+  1). 

If i = l ,  then j=$.(f-l). For if 2<j<$(f -3) ,  then (5B) with "Ir(Y)= 
{W,, V, W,} is contradicted. Similarly, if i =$(f+l), then j =  1. 

All (V,, W(f_,,,2)-chords of 0 and all ( V(f+1)/2, W,)-chords of 0 (if any) have 
length < 2  by (SA). 

It has now been proved that no chord of 0 of length 3 2  joins one of 
V1,. . . , V(f+l)12 to one of W,, . . . , W(f-1)12 except possibly when f a 5  
(V,, W(f-l)i2)-chords of length 2 or (V(f+1)12, W,)-chords of length 2. 

Suppose that r contains a (V,, WV--1)/2)-chord of 0 of length 2, and let U 
denote the intermediate vertex of any such chord. Then no chord of 0 has 
V(f+1)12 as an end-vertex. For suppose on the contrary that Y' is such a chord of 
0. By (5A) U &  Y' and the other end-vertex of Y' is neither V, nor W(f-1)12. 
Therefore by (ii) the other end-vertex of Y' is one of W,, . . . , W(f--3)/2, say W,. 
But then the union of the path whose vertices in order are V,, U, WV-,)/,, 
V(f-1)12,. . . , W,+,, V, W,, V,, . . . , W,, and of Y' and (V,, V(f+1)12) is a circuit in r 
of length >f  by (i) and since U& Y'. But this is contrary to the maximality of 0. 
Thus if r contains a (V, W+,),,)-chord of length 2 of 0 then no chord of 0 has 
Vtf+1),2 as an end-vertex. Similarly, if r contains a (VU+l)12, W,)-chord of 0 of 
length 2 then no chord of 0 has V1 as an end-vertex. Now (iii) is proved. 

(iv) No chord of 0 of length 2 3 joins two of W,, . . . , W(f-l)/2 except possibly 
when f2 7, (W,, W(f-,,,,)-chords of length 3, and if r contains such a chord then 
no chord of 0 has V1 as an end-vertex except possibly (V,, W(f-,),)-chords of 
length S 2 ,  and no chord of 0 has V(f+1)/2 as an end-vertex except possibly 
( V(f+l)12, W,)-chords of length S 2. 

For suppose that a chord of 0 of length 2 3 joins W, and W,, where i < j .  By (i) 
it does not contain V. Then by (5A), f2 7 and j -  i 3 2. i = 1, because if i f  1 then 
2 S i S j - 2, and therefore (5B) with V (  Y) = { W,-,, V, W,-,} is contradicted. 
Similarly j =$(f- 1). Then the length of the chord is 3 by (5A). 
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Suppose that r contains a (Wl, W(f-1)12)-chord of 0 having length 3, and let S 
and T denote the two intermediate vertices of any such chord. No chord of 0 has 
Vl as an end-vertex except possibly (V,, W+,,,,)-chords of length ~ 2 .  For if this 
is false, then by (5A) and (ii) there is a (Vl, Wi)-chord of 0 with 2 s  i<$(f-3), 
say Y’. By (5A), V, S, T& Y .  Therefore the union of Y’ and of the path whose 
vertices are Wi, Vi+], . . . , W(f--3)/2, V, Wi-l, V-], . . . , W,, S, T, W(f-1)/2, V(f+l)/z is 
a circuit in r with length >f. But this is contrary to the maximality of 0. Thus no 
chord of 0 has V1 as an end-vertex except possibly ( V1, W(f+l,,,)-chords of length 
S 2 .  Similarly no chord of 0 has V(f+1)/2 as an end-vertex except possibly 
(Vv+1)/2, W,)-chords of length C2. Now (iv) is proved. 

Suppose now that r is 2-connected. 
If r contains neither a (Vl, W(f-,,,2)-chord of 0 of length 2, nor a 

( V U + ~ ) / ~ ,  Wl)-chord of 0 of length 2, nor a (Wl, W(f-l,,)-chord of 0 of length 3, 
then by a reasoning similar to that used to establish (v) in the proof of Theorem 
4.2 it is seen that 

8(r- w1- . . * - W(f-1)/2) ={(V1, V(f+1)/2)1. 

From this it follows that in this case 

the vertices of the core being W,, . . . , W(f-1)/2. 
Suppose that r contains one or more (V,, W(f-,,,,)-chords of 0 of length 2, but 

no ( W,, W(f-,)12)-chord of length 3. Then by (i), (ii), (iii) and (5B) Vtf+l)/2 is joined 
only to V1 and to W(f-1)/2 in r, and the same is true for the intermediate vertex of 
each (Vl, W(f-1)12)-chord of 0 of length 2. Therefore in this case the second 
alternative of Theorem 4.3 holds. Similarly, if r contains one or more 
(V(f+1)12 ,  Wl)-chords of 0 of length 2 but no (Wl, W(f-,,,2)-chord of length 3, 
then the second alternative of Theorem 4.3 holds. The vertices of the core are 

contains one or more (Wl, WffPIti2)-chords of 0 of length 3. 
Let Yo be any such chord, and the vertices of Yo in order W1, V‘, V”, W(fP1)/2. By 
considering the circuit (r- V, - L$+l)lz) U Yo in place of 0 it is seen that (i)-(iv) 
with V‘ in place of V1 and V in place of V(f+l)12 apply to it. It follows that either 
the connected component of r-  W1- W(f+l)/2 containing V’ and V” is a (2) and 
V’, V“ are joined to no vertex of r other than W1 and W(f-1)/2, or this connected 
component is a tree with 3 3  vertices in which V’ is joined to all the other 
vertices, and in r V’ is joined only to W, and perhaps to W(f-l)/2 as well, while 
the other vertices of the tree are joined only to W(f-1)/2 or we have the situation 
just described but with V’ replaced by V” and W(f-1,/2 by W,. The same applies 
to the connected component of r- W,- W(f-1)/2 containing V1 and V(f+l)i2 of 
course. Thus in this case the third alternative of Theorem 4.3 holds, the vertices 
of the core being again W,, . . . , W(f-l)12. 

It is easy to see that if the second or the third alternative of Theorem 4.3 holds, 

w,, . . . , W(f-l),2. 
Suppose that 
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then r is not 3-connected, and contains two or more vertices having valency S 3. 
Now Theorem 4.3 is proved. 

It is worth mentioning that: 

(7) I f  r is a graph and 0 is a longest circuit of r and V and W are two vertices of 
r -  0 such that r- 0 contains a (V, W)-path of length p and e (V ,  0 ;  r) > O  and 
e(W,  0 ;  r ) > O ,  then 

e (V,  0; r ) + e ( W ,  0; r ) s f n , - p .  

The next theorem is concerned with longest paths and circuits, with particular 
attention to the extreme cases. 

Theorem 4.4. Let f be any integer > 4. Suppose that r is a (finite or infinite) graph, 
and nr > f, and Y is a longest path of r such that if A and B denote the 
end-vertices of Y and a and b denote v , ( A )  and v r ( B ) ,  respectively, then a + b = f .  
A s  Y is followed from A to B let A’ denote the last vertex which belongs to ”,-(A) 
and B’ the first vertex which belongs to &(B).  

(A) If a = f - 1 or b = f - 1,  then r contains a circuit of length 3 f .  
( B )  If A’ = B’ and r is 2-connected, then r contains a circuit of length 3 f + 1. 
(C)  If Y(A,  A‘) f l  Y ( B ,  B’)  = fl and r is 2-connected, then r contains a circuit of 

length z=f+2.  
( D )  If Y(A,  A’) and Y ( B ,  B‘)  have more than one vertex in common, then r(Y) 

contains a circuit of length 3 f .  Moreover if r contains no circuit of length > f and 
r is 2-connected7 then r ( Y )  contains a circuit 0 of length f such that 0 f l  Y = 

Y(A,  P )  U Y ( B ,  Q )  with P# A, B and Q #  A, B and 1( Y ( P ,  Q )  3 2, and either 
(1)  f = l (Y)  and (6)  holds for r, or 
(2 )  S s f  and 3 s l ( Y ( P , Q ) ) s l ( Y ( A , B ’ ) ) + l ,  I ( Y ( B , A ’ ) ) + l ,  Y ( P , Q )  is a 

longest (P,  Q)-path of r-(0 - P -  Q )  and r- 0 contains no circuit of length 
3 21( Y ( P ,  Q))  - 3, and r(0) contains circuits of all lengths from 3 to f, and either 

(2.1) P = B’ and Q = A‘ and r = U ,s9 r,, where 191 s 3, V i  E 9: r, is a subgraph 
of r such that P, Q E  r, and T , - P -  Q is connected and non-empty, and 

Vi, f i , ~  9: V ( r , ,  n rJ = {P,  Q }  

and i f  Y(A,  P ) ,  Y ( B ,  Q),  Y ( P ,  Q )  belong to r,,, r,,, r,,, respectively, then 
i, # i ,  # i, # i ,  and r(0) = r,, U TI,, or 

(2.2) {A’, B ’ } # { P ,  Q }  and r= rl U r,, where rl and r, are subgraphs of 
r, V ( T ,  n r,) = {P ,  Q},  rl - P -  Q and r, - P -  Q are connected, and rl = r(0) 
and Y ( P ,  Q ) E  r,. 

If in addition r contains no circuit of length > f and r is 3-connected, then ( 1 )  is 
the case. Then if  r contains a vertex with valency [if] which does not belong to 
every longest circuit of I‘, then 

r~ <<?f>, nr-+f> 
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i f f  is even, and 

r E ((4(f - I>>, nr - f<f - 1) + > 
i f f  is odd. 

In all four cases (A), (B) ,  (C) ,  (D) ,  r contains circuits of 3 f - 2 different lengths. 

Proof. l(Y(A, A‘))> a and Z(Y(B, B’))> b, since Y is a longest path and so 
NJA) U N r ( B ) E  Y. 

(A) This is obvious. 
(B) Suppose that A ‘ =  B’ and r is 2-connected. Then a, b 3 2 .  T - A ‘  is 

connected because r is 2-connected. Hence T-A’  contains a (Y(A, A’)-  
A’, Y(B, B‘)-B’)-path. Let Yl be any such path in T-A’ and let A” denote 
the end-vertex of Y1 on Y(A, A’) and B” the other end-vertex of Y l ,  and 
as we follow Y from A to A’ let A l  denote the first vertex after A” which belongs 
to Nr(A), and similarly define the vertex B, on Y ( B ,  B‘). Clearly A, and B1 exist. 
Then 

Y(A”, A )  U {(A, A,)} U Y(A1, A’) U Y(A’, B1) U {(B, BJ} U Y(B, B”) U Y, 

is a circuit of r of length af+ 1. Now (B) is proved. 
(C) Suppose that Y(A, A‘) fl Y(B, B’) = P, and r is 2-connected. Then a, b 3 2. 

So, since r is 2-connected, r contains two disjoint (Y(A, A’), Y(B, B’))-paths. In 
addition r contains Y(A’, B’). Therefore by Theorem 2.1, r contains two disjoint 
(Y(A, A’), Y(B, B’))-paths whose union includes A’ and B’. Let Y ,  and Y2 
be any two such paths, and put (Y,  U Y7)n Y(A, A’)={A’,  A”} and 
(Y ,  U Y2) f l  Y(B, B‘) ={B‘, B”}. As we follow Y from A to A’ let A, denote the 
first vertex after A” which belongs to N r ( A ) ,  and as we follow Y from B to B‘ let 
B ,  denote the first vertex after B” which belongs to N r ( B ) .  Clearly A, and B1 
exist. Then 

Y(A”, A)  U {(A, A,)}U Y(A,, A’) U Y ( B ” ,  B )  

u{(B, B1))U Y ( B 1 7  B‘)U y1 y2 

is a circuit of r with length > f + 2 .  Now (C) is proved. 

clearly 
(D) Suppose that Y(A, A’) fl Y(B, B’) contains more than one vertex. Then 

(i) a 3 2  and b 3 2 .  
If Nr(A)n Y(B, Y ) f g ,  i.e. if N r ( B ) n  Y(A, y)#@ (which is the case if 

(A, B) E r), then r( Y) contains a Hamilton circuit of r by Theorem 3.1, and such 
a circuit has length + > f .  Therefore from now on suppose that: 

(ii) (A, B)$ r and Nr(A) fl Y(B, Y) = N r ( B )  fl Y(A, Y) = P,. 
Among all ordered pairs [ X ,  Y]E V(Y) such that X E  Y(A, Y )  and (A, Y ) ,  

(B, X )  E r and 

( Y ( X  y ) - X - Y ) n ( N r ( A ) u N r ( B ) ) = P )  
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let [P, Q] be one such that I(Y(P, Q)) is a minimum. [P,  Q] exists because 
B’E Y(A, A‘)-A’. If Y is followed from A to B let P’ denote the first vertex 
after P and Q’ the last vertex before Q. From the definition of P and Q and (ii) 
there follows: 

(iii) A, P, P’, Q, B are five distinct vertices of Y and occur on Y in this order, 
similarly for A, P, Q’, Q, B, furthermore I( Y(P, Q)) 2 2 and 

(NJA) u N J B N  n WP’, Q’) = 8. 
Now put 

Y(A, P )  U Y(B, Q) U {(A, Q), (B ,  PI} = 0, 

then 0 is a circuit of r. Since 

(Nr(A) U .hr,>) n Y(P,  Q’) = 8, 
we have 

(iv) {A}UNr(A)U{B}U(Y(B, Y ) - P ’ ) s  “Ir(0), 

{ B }  U N r ( B )  U {A}U (Y(A, Y)- Q’) E “Ir(0). 

From (ii) and (iv) we have that I ( @ ) *  a + b = f. 
It has now been proved that r( Y) contains a Hamilton circuit of r or the circuit 

Suppose that r contains no circuit of length >f.  Then (ii), (iii) and (iv) hold, 
0 of length >f. 

and 0 is a longest circuit of r and I ( @ )  = f. Therefore 

(v) {A}UNr(A)U{B}U(Y(B, Y)-P’)= Y(0), 

{B}UNr(B)U{A}U(T(A, Y)-Q’)= T”(0). 

For convenience put Z( Y(P, 0)) = r. r S I( Y(A, B’)) + 1 and r =s I( Y(B, A’))+ 1 

The alternatives (1) r = 2 ,  (2) r s . 3  will be considered in turn. 
(1) Suppose that r = 2. Then I ( @ )  = I(Y) and (6) applies to r. 
(2) Suppose that r 3 3. Since Y is a longest path of r there is no (P, Q)-path in 

Next it will be shown that 

(vi) B’E Y(A,P)-A, (A, B ’ ) E ~ ;  

because 0 is a longest circuit of r. 

r - (0 - P - Q) longer than Y(P, Q). 

VVEY(Y(A,B‘))-A-B’:(A, V ) E r  and (B, V ) & r ;  

VVE T”(Y(B’, P)) -B’ :  (A, V ) a r  and (B, V ) E ~ ;  

if P Z B ’  then 

A’EY(Q,B)-B, ( B , A ’ ) E ~ ;  

VVEV(Y(B,A’))-B-A’: (9, V ) E ~  and (A, V ) & r ;  

if Q#A’  then 

VVEV(Y(A’, a)) -A’:  (B, V ) & r  and (A, V ) E ~ .  
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For B’E Y(A, P) -A  from the definition of B’ and P and since (A, B)&T.  
From (v), 

VVEY(@)-A-B: (A, V)ET or VEF(B,  Y). 

If VE Y(Y(A, B’) ) -A ,  then V& F(B, Y) from the definition of B’, hence 
(A, V)E T. From this and (ii), 

VV€Y(Y(A,B’))-B’: (B,  V)&T. 

The first two statements if (vi) are now proved. 
Suppose that P #  B”: If Y is followed from A to B let C denote the first vertex 

after B’ and D the first vertex after C. (A, C ) &  T by (ii). If C = P, then (B, C) E T 
of course. If C #  P, then D E 0, hence by (v), (A, D)E T or D E F(B, Y). There- 
fore if (B, C) @ r, then (A, D) E T. But if (A, C) & T and (B, C) & T and (A, D )  E r, 
then, since (B, B’)E r, the definition of [P,  Q] is contradicted. This proves that 
(B, C) E T. Thus (A, C) & T and (B, C) E T. From this and (ii) (A, D) & r. If D #  P, 
then the above argument with B’ replaced by C and C by D shows that 
(B, D ) E T .  Repeating this step by step until P is reached proves the third 
statement of (vi). 

The remaining statements of (vi) follow by symmetry. 
It follows from (vi) that T(0) contains circuits of all lengths from 3 to f. 
We will now consider the two cases (2.1) P = B’ and Q = A’, and (2.2) P f  B’ or 

(2.1) Suppose that P =  B‘ and Q = A’ and T is 2-connected. 
We will first show that: 
(vii) Y(A, P ) - P ,  Y(B, Q)- Q and Y(P, 0 ) - P -  Q belong to three different 

connected components of T- P - 0, and each connected component of T- P- Q 
is in T joined to P and to Q. 

Proof of (vii). T- P- Q contains no (0, Y ( P ,  Q))-path. For suppose that Y’ is 
such a path. It may be assumed that the end-vertices of Y’ are V E  Y(A, P)-P 
and WE Y(P, Q) - P- Q. When Y is followed from A to B let V’ denote the first 
vertex after V. By (vi), T contains the circuit 

Q #  A’. 

Y( V, A )  U {(A, V’)} U Y(  V’, P )  U { (B,  P ) }  U Y(B, W) U Y‘ 

and this circuit contains V ( 0 )  and W, therefore it is longer than 0, which is 
contrary to hypothesis. Hence T-P- Q contains no (0, Y(P, Q))-path. 

T-P- Q contains no (Y(A, P),Y(B, a))-path. For suppose that Y“ is such a 
path and let X and Y denote the end-vertices of Y”, where XE Y(A, P) - P. As Y 
is followed from A to B let X ’  denote the first vertex after X and Y’ the last 
vertex before Y. Then, since Y(P, Q) n I”’ = fl from what has just been proved, by 
(Vi), 

Y ( X ,  A )  U {(A, X ’ ) }  U Y ( X ’ ,  Y ’ )  U {( Y’, B)}  U Y(B, Y) U Y” 

is a circuit of T which contains Y ( Y )  and is therefore longer than 0. This is 
contrary to hypothesis, therefore T- P- Q contains no (Y(A, P ) , Y ( B ,  Q))-path. 
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This shows that Y(A,  P ) - P ,  Y(B, Q)- Q and Y(P, Q ) - P -  Q belong to three 
different connected components of f - P - Q. Since r - P - Q is disconnected and 
r is 2-connected, each connected component of r- P -  Q is joined by an edge to 
P and to Q. Now (vii) is proved. 

Let the set of connected components of r-  P -  Q be {r:: i E 9}  and suppose 
that Y ( A , P ) - P G ~ ; ~ ,  Y(B, Q ) - Q G ~ ; ~  and Y(P, Q ) - P - Q s r , ! , .  Then 
i l  f i2 # i, # i, from (vii). Also, Y(A,  P )  - P = r:,, for otherwise r;, contains a 
vertex Z such that ZE Y and 2 is joined to a vertex Z’ of Y(A,  P ) - P  by an 
edge, but by (vi) either Z ‘ =  A or Z‘& F(A, Y ) ,  from which it follows by ( 3 )  that 
Y is not a longest path of r, which is contrary to hypothesis. Similarly Y(B, 0)- 
Q = ri2. Now put r(r; U {P, Q}) = Ti Vi  E 9, and it is seen that (2.1) of (D) holds. 

(2.2) Suppose that Pf B’ or QZA‘,  and r is 2-connected. 
We will first show that: 
(viii) r - P -  Q has exactly two connected components, one of them is 0 - P -  

Q, and the other contains Y(P’, Q‘), where P’ is the first vertex after P and Q’ is 
the last vertex before Q as Y is followed from A to B. 

Proof of (viii). 0 - P - Q is connected, because if P# B’, then B’E Y(A, P) - P, 
and therefore 0 - P - Q contains 

( Y ( A  P )  - P )  u ( W B ,  Q) - 0) u {(B, B’)}, 

which is a connected graph containing V ( @ ) - P -  Q, and similarly if Q+ A’. 
0 - P -  Q and Y(P‘, Q’) belong to two different connected components of 

r - P - Q .  For if not, then r - P - Q  contains a (0, Y(P‘, Q‘))-path Y’ .  The 
notation can be chosen so that the end-vertices of Y‘ are X and Y, where 
X E  Y(P’, Q‘) and Y E  Y(B, Q ) -  Q. As Y is followed from A to B let Y‘ be the 
last vertex before Y. If Y E  Y(Q, A’) - Q then by (vi), 

Y’U Y ( Y , B ) U { B , P ) } U Y ( A , P ) U { ( A ,  Y’)}UY(X, Y’) 

is a circuit in r which contains V ( 0 )  and X ,  which contradicts the extremal 
property of 0. If on the other hand Y E  Y(B, A’)- A’ then by (vi), 

Y’U Y(Y,B)U{(B, Y’)lU Y(Y’, Q)U{(Q,A)}U Y ( A , X )  

is a circuit of r longer than 0, contrary to hypothesis. These contradictions prove 
that 0 - P -  Q and Y(P’, Q’) belong to two different connected components of 

At most one of P, Q is joined to a vertex & Y in r. For if P f  B‘, then by (vi), 
PE T(B, Y ) ,  and therefore P is not joined to a vertex @ Y by (3), since Y is a 
longest path of r. Similarly if Q# A’, then Q is not joined to a vertex & Y. But by 
hypothesis P f  B’ or Q #  A’. This proves the statement. 

It follows that r-  P -  Q has exactly two connected components, the one which 
contains 0 - P -  Q, say r;, and the one which contains Y(P’, Q’), say r;. For any 
other connected component of T - P - Q  would contain no vertex of Y, and it 
would be joined to P and to Q since r is 2-connected. 

r - P - Q .  
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r; = 0 -P- Q. For otherwise there exists a vertex Z& Y in r; joined by an 
edge to a vertex Z’ of 0 - P- Q. In this case if Z‘= A’, then A’ E Y(B, Q)- Q, so 
if A” is the last vertex before A’ when Y is followed from A to B, then by (vi), 

{Z,  Z’, (Z ,  Z’)}U Y(A’, B )  U { ( B ,  P)} U Y ( P ,  A”) U {(A, A”)} U Y(A,  P)- P 

is a path of r which contains Y ( Y )  and Z. But this is contrary to the definition of 
Y,  therefore Z ’  # A’. Similarly Z‘# B’. 

Since Z ’ Z  A’, B’, by (vi), Z’=  A or Z’= B or Z’E Y(A,  Y )  or Z’E Y(B, Y ) ,  
and therefore by (3) again Y is not a longest path in r. This contradiction proves 
that r; = 0 - P- Q. Now (viii) is proved. 

From (viii) it follows that (2.2) of (D) holds with rl = r-  r: and r, = T-r{. 
In both cases, (2.1) and (2.2), if @ is any circuit of r-0, then @ is in a 

connected component of r-0 which is joined by an edge to P and to Q and to 
no other vertex of r. It follows from this, since r is 2-connected by hypothesis, 
that r contains a (@, P)-path Yp and a (@, Q)-path Yo such that Y p  n Yo = 8. 
Clearly Y p  U @ U Yo contains a (P, Q)-path of length 241(@)+2. Therefore 
1 ( @ ) ~ 2 r  - 2. 

In case (2) ,  r- P- Q is disconnected. Therefore if r is 3-connected then (1) is 
the case. The last but one statement of Theorem 4.4 follows directly from 
Theorems 4.2 and 4.3. The last statement is easily verified. 

There follows a theorem giving necessary conditions, involving also the valen- 
cies of the vertices, for a finite or infinite 2-connected graph to contain a circuit of 
prescribed minimal length. 

Theorem 4.5. Let f denote an integer 3 4 and r any 2-connected graph such that 
n,- > f ,  and for each pair of distinct vertices V ,  and V ,  of r such that ,( V,, V,) & r 
either v r ( V 1 ) + v y ( V J a  f ,  or c‘(V1, V Z ) ~ v , ( V 1 ) - 2 ,  or c’(V2, V 1 ) ~ v r ( V , ) - 2 ,  or 
for i = 1 or 2, 

Then either r contains arbitrarily long circuits, or r contains a Hamilton circuit, or 
there exist longest paths in r and if Y is one such that the sum of the valencies of its 
end -vertices is maximum and = d ,  then d 3 f .  In the latter case r contains circuits of 
3 f - 2 different lengths, and r contains a circuit of length > f except if d = f and we 
have the extreme situation of Theorem 4.4(D). If in addition r is 3-connected and 
contains >f vertices of valency  if] or some vertex of  valency a [ $ f ] ~ ? t h e  
intersection of all longest circuits, then r contains a circuit of length >f, or f is even 
and 
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or f is odd and 
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Proof. Either r contains arbitrarily long paths, or r contains a longest path. In 
the first case r contains arbitrarily long circuits because it is 2-connected [l, 
Theorem 11. In what follows suppose that r contains neither arbitrarily long 
circuits nor a Hamilton circuit. Then among the longest paths of r let Y be one 
such that the sum of the valencies of its end-vertices is maximum; let this sum be 
denoted by d .  Obviously I (  Y )  > 1. 

We prove that d 2 f. Suppose that d < f (reductio ad absurdum). Let V, and V, 
denote the two end-vertices of Y. ur(Vl)22  and ur (V2)s2  since r is 2- 
connected. (V,, V,) & r by Theorem 3.1 because r is assumed not to contain a 
Hamilton circuit. ur( V,) + ur( V,) = d < f by hypothesis. From the definition of Y 
and (3) we have 9( Vi, Y ) G  %'(Vi) for i = 1,2 .  From Theorem 3.1, 

T(V,, Y) n Jr(V2) = 8, T(V,, Y) n Jr(VJ = 8. 
Thus 9(V, ,  Y ) G  Yr(V1, V,) and F(V2, Y ) G  W(V,, Vl). Hence by (4), 
c'( V1, V,) 3 ur( V,) - 1 and c'( V,, V,) 3 ur( V,) - 1. Therefore r has the last of the 
list of alternative properties assumed in the theorem. From here a contradiction is 
obtained in the same way as in the proof of Theorem 3.4. Consequently d af. 

Since d 2 f, by Theorem 4.4, contains a circuit of length 3 f, and in fact circuits 
of 2 f -  2 different lengths. 

If r contains no circuit of length > f then d = f and Theorem 4.4(D) applies to 

If r is also 3-connected and contains no circuit of length > f, then by Theorem 
4.4, f =  l(Y) and (6) applies to r. If in addition more than f vertices have valency 
a&], so if there is a vertex of valency a[ff] which is not contained in every 
longest circuit of r, then if f is even 

r. 

r c <<if>, nr -if> 

rG((b(f-1)A ni--+(f-1)+>. 

by Theorem 4.2, and if f is odd 

Now Theorem 4.5 is proved. 
Theorem 4.5 implies some results of P6sa [6] and of the author [l] on the 

existence of circuits of given minimum length f in 2-connected graphs in terms of 
fixed bounds on the number of vertices with valencies <$f, however Theorem 4.5 
makes no such restrictions. 
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1. Introduction 

Simplicia1 decompositions were used the first time by Wagner [19, 201 in his 
beautiful characterizations of all (finite) maximal graphs not contractible onto Ks 
and, respectively, onto K3,3. Later Wagner and the writer [21, 6, 7, 101 deter- 
mined the homomorphism-bases (i.e. the elementary brickstones in the decom- 
positions of the maximal graphs in question) for several other graphs, or classes of 
graphs. But the determination of the homomorphism base of a graph seems to be 
only possible if the latter is relatively small (so far, no bases are known of graphs 
with more than 6 vertices). Nevertheless this form of decomposition is attractive 
by itself, and therefore the writer tried again and again to investigate its general 
properties and to apply it to other problems in graph theory. Surprisingly, 
especially in the case of infinite graphs, simplicia1 decompositions turn out to be a 
useful tool. It was shown in [ll, 121 that under rather general assumptions an 
uncountable graph G has a simplicia1 decomposition whose members are all of 
“small” cardinality. This made it for instance possible to tackle a generalization of 
Hadwiger’s conjecture to graphs with infinite chromatic number [12]. 

In the present paper we summarize and extend the previous methods and 
results. A general decomposition theorem is proved and applied to several 
problems. For example we get insight in the structure of the graphs which do not 
contain a subdivision of a complete graph of a given uncountable order. Further it 
will be shown that an n-connected graph of regular order a>X, contains a 
subdivision of a Ka,n (n a positive integer); this generalizes a result of Dirac [l]. 
Also we obtain the following: If G has uncountable regular order a and does not 
contain a subdivision of an infinite complete graph, then there is a finite subgraph 
F of G such that G - F  has a components. Finally it is shown that every 
connected graph which does not contain a subdivision of an infinite complete 
graph has a normal rooted (spanning) tree in the sense of Jung. 

2. Terminology, notation 

In general we follow the standard notation as it is used, or at least understood, 
by all graph-theorists. 

* This paper was written while the author was visiting the University of Aarhus, Denmark. 
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The order of a graph G is IV(G)J, denoted briefly by \GI. By G[T] we denote 
the subgraph of G induced by some T G  G or c V(G).  By 2 we always indicate 
proper inclusion. Most times we simply write U E  G instead of U E  V(G). 

In this context we find it more convenient to say “simplex” instead of 
“complete graph”; S(a) denotes a simplex of order a.  In general the letter S is 
reserved to denote simplices. 

G Z H means that G contains H as a subgraph of a contraction (more precisely, 
that there is a bijection of V ( H )  to a family of disjoint connected subgraphs Z, of 
G (hE  V ( H ) )  such that [h, h ’ ] s E ( H )  implies the existence of an edge (in G )  
between zh and zh,); we then say G is homomorphic to H. I f  G contains a 
subdivision of H, we write G > u  H. Mind that for a > X,, a regular 

(Jung ~ 4 1 ) .  
If P is a path, say connecting the vertices a, b, by B we denote its “inner part”, 

i.e. the graph P - a - b ,  and if u, u E V(P),  by P,,, we denote the (unique) 
u, v-path contained in P. 

We write a .  T .  b ( G )  if T separates a, b in G (i.e. if the vertices a, b are not in T 
and every a, 6-path in G meets T) .  

For T c  G and u E V(G-  T )  we define the connection graph G(u+ T )  from v 
to T (in G) as the subgraph of G induced by the union of all paths P in G starting 
in v and having P f l  T =Id.  (Thus G(v+ T)  is the subgraph induced by the 
connected component C of G - T which contains u plus all the vertices of T 
which are adjacent to a vertex of C.) T is called an inward subgraph of G if there 
is a u E G -  T such that G(u+ T > n  T =  T (i.e. if every t E  V(T) can be reached 
from u by a path P with f ‘n T = g ) .  

If x, y are distinct vertices of G, their Menger number pG(x, y )  is the maximum 
number of internally disjoint x, y-paths in G. (Here, as throughout in this paper, 
“number” is used in the sense of “cardinal”.) If a is a cardinal, a+ denotes its 
immediate successor. o(a) is the initial ordinal of cardinality a; for an ordinal cr, 
W(a)  denotes the set of ordinals <a. The axiom of choice is assumed throughout. 

If M is a set with a relation < which is irreflexive, asymmetric and transitive 
(i.e. it is the irreflexive kernel of a partial order) such that for every x E M, the set 
of y E M with y < x is a chain with respect to < (that means: if y, z < x, then y = z ,  
y < z  or z <  y), then M with < is called an order-theoretical tree. 

3. Simplicial decompositions 

Let G be a graph, and let Gh(A < a) be a family of subgraphs of G, where a > 0 
is an ordinal number (and h runs through all ordinals smaller than a). We say 
these Gh form a simplicia1 decomposition of G if G is the union of the GA and for 
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every T,  0 < T < a, holds: 
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is a simplex properly contained in both U A < , G A  and G,. 
Thus G is built up from the G, by a transfinite process (if a is infinite), in each 

step of which G, is pasted to the part constructed before, along a simplex, like an 
infinite cactus is composed of its branches. 

The subgraphs G::= U ,<, G, are called partial sums of the above decomposi- 
tion. An S, may be the empty graph $3, but no G, can be empty if G#$3 (which 
will be assumed throughout). 

Further, each G, and each G: (0 < T < a) must be an induced subgraph of G, 
and G is connected if and only if all G, are connected and no S, is empty. One 
has 

a . S , . b ( G )  ( * )  

for every U E G : - S , ,  ~ E G , - S ,  (see [8 ,  (1.1)]). 
To every simplicia] decomposition there is associated a tree structure which 

reflects the manner G is composed of the G,: For u E G, let A, denote the 
smallest A such that u belongs to G,. Then for A, K < a we set A a K if A < K and 
there is a vertex u E G, such that A, = A. a is an asymmetric relation in W(a) .  Let 
<< denote its transitive closure, i.e. A << K if and only if there is a finite chain 

A = A o a A ,  d . . . d A, = K.  

Proposition 3.1. W(a)  is an order-theoretical tree with respect to <<. 

Proof. Since A << K implies A < K,  << is asymmetric and irreflexive, hence, as it is 
transitive, a partial order (more precisely, the irreflexive kernel of such a relation). 
Assume that << does not define an order theoretical tree. Then there is a smallest 
T and A, K such that A << T, K << T but A, K are not comparable with respect to <<. 
There exist chains A = A , , 4 A 1 4 . .  . a h ,  = T ,  K = K ~ , Q K ~ ~ .  . * QK,,, = T  

(n ,  m > 0). By definition there are a, b E S, with A,,-l = A,, K , ~ ~  =A, ;  say A, <A,. 
Since [a,  b ] ~  E ( G )  and GL,,+l is an induced subgraph containing a, b, it follows 
[a,  b ] ~  E(GAb), i.e. a E G,,; therefore A, = A, or A, a A b .  Thus A, K << A, = K , ~ ~  < T 

and A, K not comparable under <<, which contradicts the minimal choice of T. 

If for T,  0 < 7 < a, S, is contained in some G,, A < T,  then we can replace the 
above tree structure by a graph theoretical tree (on W(a)): Namely let then T -  

denote the smallest A of that kind, and draw all the edges [A,A-]. 
Especially if all the S, are finite, each S, is contained in a G,, A C T ,  and T -  is 

the largest A such that A 4 T. Then the simplicia1 decomposition gives good insight 
in the structure of the graph G ;  for instance the chromatic number x (G)  of G is 
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the supremum of all the x(G,). This is, however, not the case in general. For 
instance several of the S, (or parts of them) may sum up to form an S(X,) though 
all the G,, are at most countable. The tree structure associated with the simplicial 
decomposition then cannot be described by a graph; we then face extreme 
difficulties if we want to carry over the methods which apply in the case of finite 

s,. 

4. Separation-invariant subgraphs 

Every (induced) subgraph H of G which occurs as a member in some simplicial 
decomposition of G is called a simplicial summand of G. In our next proposition 
we characterize the simplicial summands of G by separation properties. 

A subgraph H of G is called separation invariant in G if for any n, y E H, Tc H 

x . T . y ( H ) + x . T . y ( G ) .  

Of course every simplex in G is separation invariant in G, though it need not be a 
simplicial summand. But we have (see [ l l ,  Section 21): 

Proposition 4.1. Let H be an induced subgraph of G and not a simplex. Then the 
following statements are equivalent: 

(i) H is a simplicial summand of G; 
(ii) H is separation-invariant in G; 

(iii) For every a E G - H, G(a-.H) n H is a simplex; 
(iv) If P is a path in G connecting vertices a, b of H with Bn H = (4, then 

[a. h ] ~  E ( G ) .  

Proof. Is not difficult to show that each of the statements (ii) and (iii) is equivalent 
with (iv). If (iii) holds we get a simplicial decomposition with H and the graphs 
G ( a + H )  as members, thus (iii)+(i). - Assume (i). Then there is a simplicial 
decomposition G,,(A < m) of G such that H occurs as some G,. If (iv) does not 
hold there is a path P connecting non-adjacent a, b of H such that n H = 8. Let 
<(T< << m) be the smallest cardinal such that U h G ,  G,, contains such a path P. 
< > T by the definition of simplicial decomposition. P has a first vertex f and a last 
vertex 1 in common with G,, f #  1. It follows f ,  1 E S, by the relation ( * )  above. 
Now replacing Prc by [f, 11 shows that there is a path of the kind in question in a 
sum u As,s G, for some 1;’ < 1;, which contradicts the choice of 6. Hence (i) implies 
(iv) . 

Proposition 4.2. Let G, ( i  E I )  be a family of separation-invariant subgraphs of G. 
Then also H: = n,,, G, is separation-invariant in G. 
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Proof. Assume H to be not separation-invariant in G. Let P be a path of minimal 
length such that 

(i) P connects non-adjacent vertices a, b of H, 
(ii) PnH=g .  

(Of course f‘# @ by (i)). 
Let v E V(p). There exists an i E 1 such that v& G,. Let x, y be the first vertex of 

G, o n  Pus, Pub, respectively. Then x, y E G(u+ G,) n G,, hence [x, y] E E ( G )  since 
G, is separation-invariant. By replacing Px, in P by [x, y]  we get a shorter 
a, b-path P’ with 8’ n H = @, which is a contradiction. 

Since G is trivially separation-invariant in itself, we can form, for every H c G, 
the separation-invariant closure C,(H) of H in G, defined as the intersection of 
all separation-invariant subgraphs of G containing H. 

Now we give an estimate of the order of C,(H) in terms of the Menger 
numbers of non-adjacent vertices in G, which is crucial for what follows. 

Theorem 4.3. Let a be a regular cardinal >&, such that for every pair x, y of 
non-adjacent vertices of G holds pG(x, y)(a .  Then for any  H G  G with IHl<a we 
have 

Proof. Let H ,  := G [ H ] .  Assume then that, for some n EN,  Eln-,  G G is already 
defined. For every pair x, y of distinct non-adjacent vertices in Hnp1 choose a 
maximal (with respect to inclusion) system Pxy of pG(x, y )  internally disjoint 
x, y-paths in G and let H,, be the subgraph of G induced by Hn-, and the union 
of all these Pxy. If lHn..ll <a then there are less than a systems Pxy each with less 
than a elements, hence also IH,, <a  by the regularity of a. 

In this way we get a sequence 

G [ H ]  = H,, H ,  H2 . . . 

of induced subgraphs of G with IH,I <a .  Let H* := uz=, H,. Again by the 
regularity of a and a > X, we conclude IH*] < a .  H* is separation-invariant (hence 
contains C,(H)) .  Otherwise there were a path P in G connecting non-adjacent 
vertices a, b of H *  with fin K* = j4. There exists n E N  such that a, b E H n p 1 .  But 
then the system Pab added to Hnw1 in the nth step would not have been maximal, 
with contradiction. 

Let us denote by @(G) the supremum of all the cardinals pG(x, y )  where x, y 
run through all pairs of non-adjacent vertices of G. (If G is a simplex then we set 
@(G)  = 0.) 

Thus, if pG(x,  y)>@(G) ,  then x, y must be adjacent in G. 
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By the same argument as in the proof of Theorem 4.3 we obtain: 

Theorem 4.4. For H c  G the inequality holds 

ICc+(H?I max (IHI, fi(G), No>. 

Further we get 

Corollary 4.5. If G is uncountable and fi(G)<lGl, then G has a separating 
simplex of order S max (fi(G), No), unless G itself is a simplex. 

Proof. If G is not a simplex, let H consist of two non-adjacent vertices and set 
a = max (Ju.(G), No)+. The result follows from Theorem 4.3 and Proposition 4.1. 

5. The decomposition theorem 

We can now prove 

Theorem 5.1. Let G be a graph and a a regular cardinal with IG( z a  > R,. Assume 
that pG(x, y ) < a  for every pair of non-adjacent vertices x, y in G and that G does 
not contain an S(a). Then G has a simplicia1 decomposition G,(h < a),  where u is 
the initial ordinal of \GI, in which all G, have cardinality less than a .  

In addition this decomposition can be chosen in such a way that every S, is an 
inward simplex in G,, moreover such that G, - S, is connected for every h < u. 

Proof. Let V(G) be well-ordered according to u: 

V(G)={x,: v<u} .  

G is not complete by hypothesis. Choose non-adjacent y‘,  y” in G and set 

Go := c ~ ( X g ,  y’, y”). 

Then by Theorem 4.3 

I Go/ <a. 

Now let 0 < 7 < u and assume that separation-invariant subgraphs G5 of order less 
than a for all t ; < ~  are already defined such that these G5 from a simplicia1 
decomposition of their union, further the following conditions hold: 

(1) Each x , ( v < ( )  is in Uh<5V(G,), 
(2) Each G,-S, is connected, 
(3) For at least one (then by (2) for all) v E V(G, - S5) there holds 
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We shall now construct G,. First we state that G:= U,<, Gh is separation- 
invariant in G.  

Otherwise there are non-adjacent a, b in G: such that there is an a, b-path 
P G G with P n G:= 8. Let A,, be the smallest A with a E G,, respectively 
b E G,; without loss of generality A, <A,. If A, =A,, then Gh, were not 
separation-invariant; hence A, < A,. 

Since a E G(b+ U,<,, G,), a E Uh<., Gh we have by (3) 

a ' sA, Ghb 

which would imply 

P n Ghb ={a ,  bl, 

contradicting the separation-invariance of GAb. 
Now, to construct G,, let x be the xu with smallest v such that xu& G: (it exists 

because of IG:l<(GI). B y  Proposition 4.1, G(x+ G:)n G:=: S, is a simplex; 
IS,( < a  by hypothesis, and S,# G: since y', y" are non-adjacent vertices of G:. 

For every s E V(S,) choose an x, s-path P, in G with P, n S, ={s}. Let now 
G, : = C,(S, U U sEs, P,). Then G, has the required properties (i.e. it also fulfills 
the conditions stated for the Gc above). 
In this way, by transfinite induction a sequence of G,(A < v) is constructed 

which has the desired properties. 

6. The a-saturation of a graph 

We want to apply Theorem 5.1 to study the structure of graphs which do not 
contain a given graph (or any member of a given class of graphs) as a homomor- 
phic image or as a subdivision. At this point, in actually establishing a simplicia1 
decomposition, the condition on the Menger numbers may cause difficulties. 
These are taken care of by the considerations of this section. 

We say that a graph G is a-saturated (a a cardinal) if K G ( a ,  b ) 3 a  implies 
[a, b ] ~  E(G).  The a-saturation [GI, of a graph G is the graph arising from G by 
adding all the edges [a,  b]  where a, b are non-adjacent vertices of G with 
pG(a, b ) a a .  (If JGl<a, then [GI, = G.) 

Proposition 6.1. For any Tc G with IT1 <a and a, b E G we have 

a -  T - b ( G ) e a .  T .  b([GlJ. 

Especially, the non-adjacent pairs of vertices a, b with Menger number (a are the 
same in G and [GI, and we have 

K[GL(a ,  b )  <a 

for all non-adjacent a, b in [GI,. 
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Proof. Assume a .  T .  b ( G ) ,  IT1 <a, and let C denote the component of G - T 
which contains a. If there were an a, b-path in [GI, avoiding T, on this path there 
had to occur an edge [x, y ]  with x E C, y,d C ;  hence [x, y ] &  E ( G ) ,  which implies 
pG(x, y ) s a .  But x -  T .  y (G)  because x, y belong to different components of 
G - T, hence pc (x, y )  s 1 TI <a, with contradiction. 

The other direction of the asserted equivalence is trivial. 

Proposition 6.2. Let H be a graph of order <a, a a cardinal > 8 , .  Then for any 
graph G 

[GI">,,H@G >,H 

[ GIa > H G  G > H. 

Proof. If [G],>,H or >H then there is also a subgraph H * c [ G ] ,  with H*>,H, 
or H*> H respectively, such that IH*lsmax ( /Hl ,N,)<a.  If [x, y ]  is an edge of 
H* which is not in G, then pc (x, y )  3 a ; hence, by reasons of cardinality, there is 
an x, y-path P in G with fin H* =Id, and we can replace [x, y ]  by P. By a routine 
application of Zorn's lemma we can carry through this replacing procedure "step 
by step" for all the edges of H* not in G, and we find a subdivision of H* in G. 

If we choose H as a simplex, we can prove the last proposition also for IHI = a .  

In fact we have 

Proposition 6.3. Let a be an infinite cardinal and G be an arbitrary graph. Then 
the following statements are equivalent: 

(i) [GI, 3 S(a), 
(ii) [GI, >,,S(a), 

(iii) G >,,S(a). 

Proof. (i)@(ii) follows from Proposition 6.1, and (ii)+(iii) by a standard applica- 
tion of Zorn's lemma onto the set of all those subdivisions of simplices in G which 
have their branch vertices in V(H*) ,  where H* is the subdivision of S(a) 
contained in [GI, by hypothesis. The other assertions of Proposition 6.3 are clear. 

Let H be a graph and a > 0 be a cardinal. Replace each edge [x, y]  of H by a 
system Pvy of a internally disjoint x, y-paths such that no  two paths of any two 
.Px, have internal points in comnon. We call the graph arising in this way a 
subdivision of H of strength a ;  we denote such a configuration by U,(H).  By 
routine methods (see [12, (15)]) we find: 

Proposition 6.4. Let A c V( G )  with \A 1 = a such that pc(x ,  y )  3 b >a 3 No for any 
distinct x. y E A holds. Then there is a Ub(S(a)) which has A as its set of branch 
vertices. 
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Proposition 6.5. Assume [Gb+ 3 S(a), a 3 KO. Then G 3 S(X,) or G 2 U,+(S(a)), 
and i f  especially a = b" = 2' for some cardinal b, then G 2 S(a) or G 3 Ua+(S(a)). 

Proof. E ( S ( a ) )  decomposes into two disjoint classes, namely into the class of 
edges which are also in G and the class of edges [x, y] with non-adjacent x ,  y of G 
and ~ ~ ( x ,  y ) S a ' .  The assertion follows from Proposition 6.4 together with [5 ,  
Theorem 3(i) and Theorem 4(iii)]. 

7. Graphs without forbidden configurations 

For some class (5 of graphs, by & we denote the class of maximal elements of 6, 
i.e. the class of those G E G for which G U [x, y ] , d  E, for any pair of vertices x ,  y 
which are not adjacent in G. (8 may be empty (but only if Q does not contain a 
finite graph). 

Let r be a non-empty class of finite graphs; if r consists of one element A 
only, which will be the most important special case, we identify r with A. By the 
homomorphism-class @*r we denote the class of all graphs G with G% H for all 
H E  r. Similarly, b y  the subdivision-class @$r we denote the class of all graphs G 
with G Y U H  for all  HE^. 

6*r and $zT then denote the class of maximal elements of @*r, and QZr, 
respectively. Thus GEG*T (or $jzr) if and only if G is not > (or >u, respec- 
tively) to a member of I', but becomes > (or >.,_respectively) to some H E  r if 
any new edge to G is added. Mind that S ( t ) E @ * r  for every t <  minHIEr [HI. 

Proposition 7.1. Every graph G E @ * ~  (or ~ @ : r )  can be extended, by adding 
edges, to an element G E $ * ~  (or E G : ~ ,  respectively). 

Proof. Routine application of Zorn's lemma onto the set of all graphs G U E '  
where E' is any set of new edges to G such that G U E' is still in @*T (in @zr, 
respectively). 

Let us call a graph G prime if there is not a separating simplex in G, i.e. if there 
is no proper simplicial decomposition of G. A simplicia1 decomposition G A  (A < a) 
of G is called a prime-graph decomposition if all the G,, are prime; it is called 
reduced if no G,, is contained in a G, with A f  K.  By [8, Satz 31, a prime-graph 
decomposition of G is reduced if and only if all its members are maximal prime 
(induced) subgraphs of G. In [8 ]  it was shown: 

Theorem 7.2. Every graph G without an infinite simplex has a reduced prime- 
graph decomposition G,(h < a). The Gh are uniquely determined; they are just all 
maximal prime (induced) subgraphs of G. 
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In [8] also an example is given that a graph containing infinite simplices need 
not have a prime graph decomposition. 

If r is a class of finite graphs, every element of $?*r has a prime-graph 
decomposition, by Theorem 7 .2 .  The class of all prime graphs, occurring in the 
prime-graph decomposition of any G E G " ~ ,  is called the base of 6*r and 
denoted by B$*I'. One has B & r c  @*r, but not necessarily &*r. Analogously 
the base B&r (of 6:n is defined. It is clear that for the knowledge of the 
graphs in $*r or, respectively, $?zr it is decisive to know the base-elements of 
these classes. (The way how these base-elements have to be composed in order to 
give maximal elements of @*r or @:r, follows certain rules whose determination 
is of minor difficulty and which is omitted here). In [ 111 the following estimate for 
the order of the base elements was given: 

Theorem 7.3. If r is a class of finite graphs then every element of the base of 6*r 
or &r is finite or countable. 

Proof. Let G be an element of @*r or @:r. Since G& S(X,), G has, by Theorem 
7.2, a prime-graph decomposition PA (A < u). What we have to show is that each 
PA has order <Xu. By Proposition 6.2, [GIxo€ @*r (respectivelye @:r), which 
means G = [GI,, by the maximality of G. Especially we conclude pG(x, y )  < K, for 
all non-adjacent x, y in G, and this property carries over to each PA, since each PA 
is an induced subgraph of G. Hence by Theorem 5.1 each PA has a simplicia1 
decomposition in which all members are finite or countable. But since each PA is 
prime, each such decomposition has only one member, namely PA, which there- 
fore itself must be finite or countable. 

By Theorem 7.3 it was possible to extend the known characterizations of the 
(maximal) graphs G not homomorphic to some given graph H ,  by means of 
determining B&(H), also to infinite graphs G. Wagner's theorem [20], for 
instance, extends in the following way: 

Theorem 7.4. The base B$*S(5) consists of the non-planar graph W (see Fig. 1) 
and all prime maximal planar graphs (which may be finite or countable). 

The maximal countable planar graphs form an interesting class of graphs onto 
which apparently almost no research has been done so far. In [11] some basic 
properties of these graphs were proved. It was shown that such a graph must be 
2-connected but is not necessarily 3-connected and that it is prime if and only if it 
is 4-connected. It does not necessarily contain triangles. Its connectivity is finite 
but may be arbitrarily great, which was observed by Mader [18]. Each such graph 
contains one-way infinite paths, which follows for instance from [13, Satz 61. (An 
independent proof was orally communicated to the writer by Dirac). Further it 
can be deduced from [9, Satz 31: If G is maximal planar and countable and if G 
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Fig. 1 

does not contain a two-way infinite path, then G has an edge which is contained 
in infinitely many separating triangles. 

Also the characterization of all (finite) graphs not homomorphic to a 4-  
connected graph [lo, Satz 61 easily carries over to infinite graphs. We have: 

Theorem 7.5. Let r, denote the class of (finite) 4-connected graphs. Then %$*r, 
consists of S(v), v S 4 ,  and the graphs W and P,, of Figs. 1 and 2. 

Fig. 2. 

We saw that every graph G, which is not > (or > u) to some finite graph H, can 
be extended by adding edges to a graph G with the same property such that G 
has a simplicial decomposition with members of “small” (i.e. finite or countable) 
order. It is remarkable that this statement remains, in a modified version, valid if 
H is infinite, though in this case it makes no sense to consider maximal graphs 
with respect to the forbidden configuration. 

Theorem 7.6. Let G, H be graphs with IG1>IH(>K0 and assume G$,H (or 
G* H ) .  Then G can be extended, by adding new edges, to a graph G which is  also 

H (or $ H ,  respectively) and which has a simplicia1 decomposition G, ( A  < (T = 

w(lG1))  in which all members have order not greater than lH(. It may be chosen 
G = [Gb with a = lHl+. 

The proof follows from Theorem 5.1 in connection with Propositions 6.1 and 

A sharper result can be proved if especially H is an uncountable simplex. 
6.2. 

Theorem 7.7. Let a be a regular, uncountable cardinal, and let G be a graph with 
G $,S(a). Then [GI, is $,S(a) and has a simplicial decomposition in which each 
member has order smaller than a. 

This follows from Theorem 5.1 in connection with Propositions 6.1 and 6.3. 
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8. Application to colouring problems 

Erdos and Hajnal [4] define the colouring number ((G) of a graph G as the 
smallest ordinal v such that there exists a well-ordering < of V(G) with respect to 
which each U E  V(G) is adjacent to less than v predecessors. The colouring 
number is related to the chromatic number of a graph by the inequality 

I ( G ) z  x ( G ) .  ( *  * )  
It is natural to ask which configurations must be contained in G if <(G) is great. 
By Erdos and Hajnal [4, Theorem 7.11 it was shown that ((G)>X,, implies the 
existence of an infinite path in G. In [ 121 the following stronger result is proved: 

Theorem 8.1. If ((G) 3 X,, then for every a < ((G) there is a subdivision of S(a) 
contained in G. 

Proof. Assume first ( (G)>K,,  and that G t ,S (a )  for some a<[(G).  Then, by 
Theorem 7.6, [GI,+ t U S ( a )  and [GI, has a simplicia1 decomposition G, (A < 
w(lG/)) with IG,lSa for all A. Let <, be a well-ordering of G, -S, of order type 
w(lG, - $ 1 ) .  (Here S,, = is to be understood). For x E V(G) let A, be the 
smallest A such that x E G,. Now for x, y E V(G) we set x < y if either A, < A,, or 
if A,  = A, =: A and x <,, y. In this way a well-ordering of V(G) is defined such that 
each vertex is adjacent to less than a predecessors; this contradicts the hypothesis 
[ ( G ) > a .  

If ((GI =Xi, the assertion is deduced from a result of Mader [17], using the fact 
that from {(G) 2 2n - 2 ( n  E N )  it follows the existence of a finite subgraph F of G 
with ( ( F ) S n  (Erdos and Hajnal [4, Theorem 9.11). 

It cannot be shown that under the assumptions of Theorem 3.1 there must be a 
subdivision of S(((G)) in G, also if ((G) is not a limit cardinal. Namely, the 
complete bipartite graph K,,,+ has colouring number a* but does not contain a 
subdivision of S ( a ' ) .  But it can easily be shown that, under the aforesaid 
assumptions, G must contain {(G) disjoint subdivisions of S(a), since the deletion 
of less than {(G) such configurations results in  a graph which, by cardinality 
reasons. has again colouring number (( G). 

Hadwiger's famous conjecture asserts the implication 

x(G)  20 3 G > S(a )  ( * * * )  

for a EN.  It makes sense to consider this statement also for infinite cardinals a .  
From the inequality ( *  * )  and Theorem 3.1 we get immediately: 

Corollary 8.2. I f  x ( G )  3 CS,,, then G > u  S(a) for every a < x(G) 

The stronger implication ( *  * * )  is of course wrong if a is a limit cardinal, since 
then the disjoint union of all S(b),  b < a ,  has chromatic number a .  without 
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containing S(a) as a homomorphic image. It is, however, hopelessly difficult to 
decide (* * *) if a is of the form b' (see [12]). 

Proposition 6.5 can be used to refine Theorem 8.1 and Corollary 8.2 (see [12, 
Satz 61). 

9. Connectivity and separability of uncountable graphs 

Dirac [ l ,  Theorem lO]t proved the interesting result that every 2-connected 
graph G of uncountable regular order contains a pair of vertices a, b such that 
pG(a,  b )  = [GI holds. The assertion is equivalent to G >,K2,1G1. In this form 
Dirac's theorem can be generalized as follows: 

Theorem 9.1. Let G be an n-connected graph (n EN) of uncountable regular order 
a .  Then G contains a subdivision of the complete bipartite graph K,,a. 

Proof. If [Gl,zS(a), then by Proposition 6.3 we have G>uS(a)zK,,a.  There- 
fore let us assume [GI, $ S(a). By Proposition 6.1, p*.rGL(~, y)<a for all x, y E G 
with [x, y]dE([G],). Thus the hypotheses of Theorem 5.1 are fulfilled with 
respect to [GL. Therefore there exists a simplicia1 decomposition G, (A < a)  of 
[GI,; a = o ( a ) .  Since G is n-connected one easily shows that also every G, is 
n-connected and every S, has order at  least n. For each A, O < A  <a, choose an 
X, E G, - S, and n paths PI,, . . . , Pnh c G, such that (i) each P,, connects x, 
with a vertex of S,, (ii) p,A n S, =@, and (iii) for i# j ,  P,, and P,, have only x, in 
common. This choice is possible, by well-known properties of n-connected 
graphs. Let FA denote the union of P,,, . . . , P,,, and set FA f l  S, = T A  ; I T A  I = n by 
the choice of the PtA. 

For any A, O < A < a ,  let f ( A )  be the minimum of all ordinals K such that 
T A  G G,; f ( A ) <  A by the finiteness of T,. 

By a theorem of Dushnik [3]$ there is a A, such that If-l(Ao)l=a. For A, 
K E f-'(A,,), say A < K,  we have 

F, n F, G GA n G, n F, G s, n F, = T, 

Because the set of n-element subsets of V(G,,J has cardinality at most 
max (No, I V( G+,)\), there exist a ordinals A E f- '(A,) such that all the correspond- 
ing T, coincide. Any two of the corresponding FA have only elements of T, in 
common, by (+). Hence [G],>,K,,,from which the assertion follows by the same 
kind of argument as (ii)J(iii) in Proposition 6.3. 

It is clear that Theorem 9.1 does not hold if 1G1 is a singular cardinal. This is 
evident even in the case n = 1. All what we can say in this case is Theorem 9.4 
below. 

-t See also [2] for a proof. 
$ We could also apply the well-known result that every uncountable connected graph of regular 

order a contains a vertex of valency a,  onto the graph with vertex set W(o(a)) and the edges [A, f(A)]. 
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Proposition 9.2. If G is n-connected ( n  finite) and HE G, then there exists an 
n-connected subgraph H" of G which contains H and has order at most 
max (IHI, Ho). 

Proof. Set H ,  = H. Assume H, to be already constructed. Then let H,,, be the 
graph arising from H,,, by adding n internally disjoint a, 6-paths for every pair a, 
b of vertices of H,, with pH,  (a ,  b )  < n. Then it is easy to see that U -(, H,  = H" 
is n-connected, and its order has the asserted bound. 

From Proposition 9.2 w e  conclude, 

Proposition 9.3. If G is n-connected and infinite, then to every infinite cardinal 
a s / G /  there exists an n-connected subgraph H of G with / H I = a .  

From Proposition 9.3 and Theorem 9.1 we find, 

Theorem 9.4. If ( G ( = a > X ,  is singular and G is n-connected, then there is a 
subdivision of K,,b in G for every b <a. 

Especially we have (for n < K O ) :  

Corollary 9.5. Every uncountable n-connected graph contains a subdivision of a 
finite n-connected graph. 

It is interesting that the analogous statement is not true for countable graphs 
and n 2 6 .  For there are 6-connected countable planar graphs G;  every finite 
graph H with G>,H or G > H  must have connectivity at most 5 ,  by Euler's 
formula. 

Next we investigate the alternative between the existence of a subdivision of an 
infinite simplex and of a finite set of vertices with high separation index. Again 
our result is obviously wrong for countable graphs. 

Theorem 9.6. Let G be a graph of uncountable regular order a and G$,S(H,,). 
Then there exists a finite T c G such that G - T has a connected components. 

Proof. By Propositions 6.1 and 6.2 in connection with Theorem 5.1 we find a 
simplicia1 decomposition G,(A < w(a)) of [GIKI in which all G, are finite or 
countable; especially all the S, must be finite. For A > 0, let f (A)  denote the 
smallest ordinal K such that S, G G,. As in the proof of Theorem 9.1 there must 
be a A. such that f-'(ho) has cardinality a ,  and there is a finite T c  V(G) such that 
V(S,) = T for a of the A in f-'(A,). For these A, all G, - S, belong to different 
components of [GIK, - T, by the separation-property (*) stated in Section 3 .  
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For the case of singular order we get by the same ideas as in the last proof: 

Theorem 9.7. Let G be a graph of uncountable singular order a and Gt,S(X,). 
Then for every b <a there exists a finite T c  G such that G - T has at least b 
connected components. 

The existence of a T with the separation properties stated in Theorems 9.6 and 
9.7 cannot be asserted if it is only stipulated G&S(X,). This is shown by the 
minimal block that is obtained if every edge of an uncountable simplex is 
subdivided (at least) once. 

By application of Proposition 6.5 we obtain the following sharpening of 
Theorem 9.6: 

Theorem 9.8. Let G be a graph of uncountable regular order a. Then (at  least) one 
of the following statements holds: 

6) G z S(X,), 
(ii) G 2 Uxl(S(&J), 

(iii) There is a finite T such that G - T has a components. 

(If IGI>K, is singular, (iii) has to be replaced by the statement: To every 
b <]GI there is a finite T such G - T has 2 b components). 

10. Normal rooted trees 

Jung [15, 161 studied the following interesting concept: Let G be a connected 
graph. Then a rooted spanning tree T of G is called normal (with respect to G) if 
any two vertices which are adjacent in G are comparable with respect to the 
partial order of V(G) determined by T and its root?. 

A subset D of V(G) is called dispersed (verstreut) if to every one-way infinite 
path U there exists a finite F G G such that in G - F there is no path connecting a 
d E D with a vertex u E U. Jung [16, Satz 6’1 proved that a necessary and sufficient 
condition for a connected graph G to have a normal rooted spanning tree (with 
given root) is that V(G) is the union of a countable system of dispersed sets. 
Surprisingly, thus the choice of the root has no influence onto the existence or 
non-existence of such a spanning tree since the term “dispersed” is independent 
of the given root. It follows that, if G has a normal rooted spanning tree, then 
every connected subgraph of G has such a tree too. By Jung [16] every connected 
countable graph and every connected graph without an infinite system of two-way 
infinite paths has a normal rooted spanning tree. Using the preceding results we 
can sharpen the latter criterion. 

t If r is the root, this partial order is defined by: x S y if and only if the r, y-path in T contains x. 
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Theorem 10.1. Every connected graph G which does not contain a subdivision of 
an infinite simplex has a normal rooted spanning tree. 

Proof. As in the proof of Theorem 9.6 we find a simplicia1 decomposition G,, 
( A < w ( / G / ) )  of [GI,, where all I G A / S X o  and all S, are finite. In addition, by 
Theorem 5.1, each S, can be chosen in such a way that every G, - S, is connected 
and S, is an inward simplex of G,. 

By Jung’s result, we can select a normal rooted spanning tree T,, of GO (with 
respect to any given root r o E  Go). 

Now assume O <  T <  w(lG1) and suppose that for every A < 7 there are already 
determined T,, r, such that the following conditions are fulfilled: 

(1) r , E S , ,  if A > 0 ,  
(3) T, is a normal rooted spanning tree of G, - ( S ,  - r , ) ,  with respect to the 

(3) U .,,T,, =: TL+l is a normal rooted spanning tree of GL+, = u vshGv (with 
root r,, 

root T o ) .  

Then u ,,,,T,, = Uh+T;+l =: T is a normal rooted spanning tree of G:. (For it 
is a tree, as the union of a chain of trees; it covers V(G:); and finally, if there 
were adjacent x, y in G: which are not comparable under the partial order of T 
with respect to r,,, the same situation would already occur in some TL + I ,  A < 7, 
contradicting ( 3 ) . )  

Since S, is a simplex and V(S,) s V( T ) ,  any two vertices of S, are comparable 
under 6, hence form a finite chain under S .  Let r, be the maximum of this chain. 
By construction of G,, G, - (S, - r,) is connected and at  most countable; hence by 
Jung’s theorem we can choose a normal rooted spanning tree T, of G, ~ (S, - r,)  
with root r,. 

We assert that U ,,,Tv = T U  T, =: T:, is a normal rooted spanning tree of 
G:+ with root r(, .  

First of course T:+l is a tree spanning G:+l. Let now [x, Y ] E E ( G : + , ) .  If x, y 
are both in G: or both in G, - (S, - r,), it follows from the normality of T and 
from the choice of T,, respectively, that x, y are comparable under the partial 
order S of T:+l determined by the root rti. If x E G, - S,, y E G:, then necessarily 
Y E S , ,  hence y s r , s x ,  and again x, y must be comparable under 6. 

In this way we get T,, r, for every A < w ( / G / )  such that conditions (l), (2) ,  ( 3 )  
are fulfilled, and we easily show (by the same argumentation as above concerning 
the union of the T,, v < T )  that the union of all T, form a normal rooted spanning 
tree of G with respect to r(,. 

By application of Proposition 6.5 we get the somewhat stronger result: 

Theorem 10.2. Every connected graph without an S(X,,) and without u UX,(S(&))  
has a normal rooted spanning tree. 
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It would be interesting to characterize the connected graphs which possess 
normal rooted spanning trees, in terms of forbidden configurations. We conclude 
with the following. 

Conjecture 10.3. A connected graph G has a normal rooted spanning tree if and 
only if there is not an uncountable subset X s V(G) such that pG(x, y)  2 X,, for 
any x # y  of X holds. 
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1. Introduction 

In combinatorial constructions, it is a matter of great interest to know when a 
partial system can be completed to a full one. Thus rows forming a Latin rectangle 
can always be completed to a full Latin square [4]. This and the related topic of 
completing nets to affine planes, studied by Bruck [l] are the subject of Section 2. 

It has been shown by the writer and Ryser [8] that for rational matrices A 
satisfying either’ 

AAT = ml (1) 

or 

A A T = ( k - A ) I + h J ,  AJ= kJ, 

providing that some rational solution exists, any set of r initial rows satisfying the 
trivially necessary conditions will have a rational completion to a full matrix. 
These results are discussed in Section 3. 

The more difficult question as to finding integral completions for (1) or (2) is 
discussed in Section 4. For (1) in results due to the writer [6] and to Verheiden 
[ll] at least the last 7 rows may be added, but not in every case the last 8. For (2) 
it is shown in this paper for the first time that at least the last 4 rows may be 
added, but again an example shows that not in every case can the last 8 be added. 

2. Completions of Latin squares and nets 

It was shown by the writer [4] that a Latin rectangle can always be completed to 
a Latin square. An r by n Latin rectangle R on n letters xl, . . . , x, is a matrix of r 
rows and n columns such that each letter occurs exactly once in every row and no 
letter occurs twice in a column. The method of proof depends on considering the 
sets S1, .  . . , S, which are subsets of {xi,. . . , x,} such that x1 E Si if and only if x, is 
not in the ith column of R. A further row which can be added to R to make an 

* This research was supported in part by NSF Grant MPS-72-05035 A02. 
’ Equation (2) is satisfied by the incidence matrix of a symmetric block design. Equation (1) includes 

Hadamard matrices as special cases, and the case (2) with A = 0 may also be thought of as a “null 
design”. 

1 1 1  
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r + 1 by n Latin rectangle R’ will consist of distinct representatives of S1, .  . . , S, 
and conversely distinct representatives of S1, .  . . , S, may be used to form such a 
row. The method of proof shows that such a row can be added in at least ( n - r ) !  
ways. Then a further row can be added to R‘ in at least ( n  - 1 - r)! ways. Hence if 
n - r = s, R can be completed to a Latin square in at least s!(s - l)! * - 2!1! ways. 
In particular, even allowing for equivalence by permuting the last s rows arbitrar- 
ily, there are at least (s - l)!(s -2)! * . . 2!1! completions of R to a Latin square L. 

The situation is quite different if we are given entries in a square not complete 
rows, such that no row or column contains a repeat. For example if the first row 
contains xl,. . . , x,-~ in its first n - 1 cells and the second row contains x, in its 
last cell, then no completion exists. For the only possible entry in the nth cell of 
the first row is x, and this yields a conflict in the last column. But a conjecture of 
Trevor Evans asserts that any start with no repeat in a row or column and at most 
n - 1 entries can be completed. There is some information on this conjecture but 
it remains an open question. 

Let L be a Latin square of order n. Let us take each of the n2 cells of L as a 
point. From L we can define three families of parallel lines, each line containing n 
points. A line of the first family will be the points in a row of L. A line of the 
second family will be the points in a column of L. In the third family the ith line 
will consist of the cells of L containing x,. Viewed in this way a Latin square is a 
3-net N. 

A k-net N is a system of points and lines such that 
(i) N has at least one point; 
(ii) the lines of N are partitioned into k disjoint, nonempty “parallel classes” 

(a) each point of N is incident with exactly one line of each class; 
(b) to two lines belonging to distinct classes there corresponds exactly one point 

Here we shall always suppose k 3 3 and that the number of points in N is finite. 

With these assumptions there is a positive integer n such that 
(1) N has n2 points; 
(2) N has exactly kn  distinct lines. These fall into k parallel classes of n lines 

each. Distinct lines of the same parallel class have no points in common. Two 
lines of different classes have exactly one common point. 

such that 

of N which is incident with both lines. 

To avoid trivial cases we also assume that every line has at least two points. 

(3) Every line of N contains exactly n points. 
If we take two parallel classes and let the first correspond to the rows and the 

second to the columns of an n by n square, then let K 1 , .  . . , K,, be the lines of a 
third parallel class. If we place x, in the cells corresponding to points of K,, 
i = 1 , .  . . , n, we have a Latin square L. If there is a further parallel class 
corresponding to a Latin square L*, then L and L* are orthogonal which is to say 
that the pairs (ag,  b,) with ug the entry in the cell of the ith row and jth column of 
L and b,, the entry from L*, then (a,,, bs,) i = 1,. . . , n ;  j = 1,. . , , n gives all n2 
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pairs (xi, x i )  i = 1, . . . , n ; j = 1, . . . , n. Conversely k - 2 Latin squares any two of 
which are orthogonal yield a k-net. 

A k-net on n2 points can have k at most n + 1 since there is at most one line 
joining two distinct points. An ( n  + 1)-net on n2 points is an affine plane of order 
n, designated E(2, n ) ,  and conversely an affine plane of order n is an ( n  + 1)-net 
on n2 points. Thus a k-net N on n2 points can be extended to an affine plane 
provided that n + 1 - k = d further parallel classes can be adjoined to N to form a 
larger net N*. Bruck [l] has considered the completion problem of extending a 
k-net to an affine plane. Here d = n + 1 - k is called the deficiency of the net. His 
main results show that the completion is possible provided that d is small 
compared to n. 

Theorem 2.1 (Bruck). Zf n > ( d  - 1), and if N can be completed at all, then it can 
be completed uniquely. 

Theorem 2.2 (Bruck). Zf n > p(d  - l ) ,  N can always be completed where p ( x )  = 

4x4+ x3+ x2+ $x. 

With a k-net N of order n (N has n2 points) Bruck associates a graph GI.  The 
vertices of G ,  are the points of N and the (undirected) edges of GI are arcs 
joining Pi and Pi if and only if Pi and Pi are on a line of N. Let G, be the 
complementary graph of GI. If G, can be shown to be the graph of a d-net N2 
then N and N2 together form an affine plane. He can describe abstractly the 
properties of G, and define this as a pseudo-net graph. His proof consists in 
determining conditions so that G, will indeed be the graph of a d-net. 

A transversal of a k-net N is a set of n points of N no two of which are on a 
line of N. He is able to prove that if n > ( d  - 1)’ two distinct transversals have at 
most one point in common. This proves his Theorem 2.1 above. The proof of 
Theorem 2.2 is more complicated. 

3. Rational completions 

The problems considered here can be described in terms of matrices. Let A be 
a rational matrix of order n such that for a positive integer rn 

AAT= mZ. (3) 

Here AT is the transpose of A. A necessary condition for the existence of 
a rational A satisfying (3) is given by 

(1) If n is odd, rn is a square. 
(2) If n = 2 (mod 4), = a 2 +  b2 for integers a, b. 
(3) If n=O (mod4), m is positive. 
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These necessary conditions for existence of a rational A are sufficient for the 
existence of an integral A satisfying (3). 

For the second equation let v > k > A > 0 be integers satisfying 

k ( k - l ) =  h ( v  - 1).  (4) 

Let A be a matrix of order v satisfying 

AAT = ( k  - A)T+ AJ = B, 

where J is the matrix of order u with every entry a 1. This is the incidence 
equation satisfied by the incidence matrix A of a symmetric v, k, A block design 
D. An incidence matrix A satisfies the further relations 

AJ= kJ,  JA = kJ. (6) 

ATA = ( k  - A ) I +  AJ. (7) 

The following theorem due to Ryser may be found in the writer's book [ 5 ,  p. 
1041. 

Theorem 3.1. A non-singular matrix A of order v satisfying either ( 5 )  or ( 7 )  and 
either of the relations in ( 6 )  will satisfy all four relations. Furthermore k(k-1)= 
A(v - 1) will also be a consequence. 

As AAT= ATA we shall refer to a matrix A satisfying all four equations as a 
normal matrix satisfying its incidence equations. 

Necessary and sufficient conditions for the existence of a rational solution to the 
incidence equation (5) depend on the deep Hasse-Minkowski theory of quadratic 
forms. They are, however, easy to state and may be found in [5, p. 1071. 

Theorem 3.2 (Bruck, Ryser, Chowla [ 2 , 3 ] ) .  Necessary and sufficient conditions for 
the existence of a rational matrix A satisfying ( 5 )  are 

(1) If v i s  even, k - A is a square. 
(2) If v is odd, z 2  = ( k  - A ) x 2  + (-1)'"~'"2Ay2 has a solution in integers x, y, z not 

all zero. 

The completion problem of interest here is to be given an r by n (or r by u )  
matrix X to decide whether or not there is a square matrix A having X as its first 
r rows which satisfies (3) or (5). We shall treat the cases separately, though they 
have much in common. 

For (3) X clearly must satisfy the condition 

XXT = mI,. (8) 

Two theorems are relevant here. The first comes directly from Hall and Ryser 

181. 
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Theorem 3.3 (Hall and Ryser). Suppose that A is a non-singular square matrix 
such that 

A A T = [ v - ] = D l $ D 2 ,  0 0 2  

where D ,  is of order r, D,  or order s and r + s = n. Let X be an arbitrary matrix of 
size r by n, such that X X T =  D,. Then there is an n by n matrix Z having X as its 
first r rows such that ZZT = D,$ D,. This result holds for all fields F of characteris- 
tic not 2. 

Corollary 3.4. A n  r by n matrix X such that X X T =  mI, can be completed to an n 
by n matrix Z with X as its first r rows satisfying ZZT= ml providing that some 
matrix A exists with AAT= mI. 

Thus providing that the neccessary existence conditions hold for AAT = m l  
then any initial r rows X satisfying X X T =  ml, can be completed to a solution Z 
of ZZT= mI,. 

The second theorem, a slight generalization of one in Hall and Ryser [8] may 
be found in [6]. 

Theorem 3.5. Suppose that AAT = Dl@ D, where A is of order n and nonsingular 
and D1 and D, are of order r and s = n - r and are nonsingular. Suppose further 
that X and Y are r by n matrices such that X X T =  YYT= D,. Then there exists an 
orthogonal matrix U of order n such that X U  = Y. This result holds for all fields F of 
characteristic diflerent from 2. 

Here an orthogonal matrix U is one satisfying UUT = UTU = I. 
For the incidence equation (5) we shall assume that X and r by v matrix 

satisfies the two conditions 

X X T  = ( k  - h ) I ,  + hJ,,, (9) 

Here Jrr and J,, are respectively matrices of sizes r by r and r by v in which every 
entry is 1. 

Theorem 3.6 (Hall and Ryser). Suppose that the conditions of Theorem 3.2 for the 
existence of a rational solution to (3) are satisfied. Then given an r by v matrix X the 
conditions of ( 9 )  and (10) are both necessary and sufficient for the existence of a 
rational v by v matrix Z with X as its first r rows which is a normal matrix satisfying 
the incidence equations (3, ( 6 )  and (7). 

Thus over the rational field providing (3) or (5) has any rational solution a 
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matrix X of r rows satisfying the appropriate conditions (8) or (9) and (10) has a 
rational completion. 

The key theorem is Theorem 3.3 whose proof depends on the Witt “subtraction 
theorem” for quadratic forms. This is given on p. 276 of (5). 

4. Integral completions 

Given an integral matrix X of size r by n (or r by u )  satisfying the appropriate 
conditions (8) or (9) and (lo), we ask here about the existence of an integral 
matrix Z satisfying ( 3 )  or (9, (6), ( 7 ) ,  where X is the matrix of the first r rows of 
Z. 

In these cases the completion can be shown to exist for small values of s = n - r 
(or s = u - r ) .  It may be true that, as in Bruck’s results, the completion will exist if 
s is small compared to n (or u ) .  

It was shown by the writer [ 6 ]  that for ( 3 )  the solution exists providing s = 1 or 
2 .  This result has been improved by one of the writer’s students, Verheiden [ 111. 

Theorem 4.1 (Verheiden). Let r + s = n. If X is an integral r by n matrix such that 
XXT = ml, and if some rational n by n matrix exists with AAT = ml, then providing 
s 7 there exists a rational n by n matrix Z having X as its first r rows such that 
ZZT = mI. 

This depends upon deep theorem on integral quadratic forms, in particular the 
result that an integral quadratic form which is positive definite and has determin- 
ant 1 will be integrally equivalent to a sum of squares if the dimension (number of 
variables) is at most 7. 

For s = 8 the conclusion of Theorem 4.1 is false. Suppose X is the 1 by 9 matrix 
consisting of 9 ones. Then there is no 9 by 9 matrix Z with its first row consisting 
of all 1’s such that ZZT = 91. If there were such a matrix the sum of the squares of 
the elements in the second row would be 9 and so the sum of these elements 
would be odd, conflicting with the fact that the inner product with the first row 
must be zero. 

The results of Theorem 4.1 were obtained later independently by Hsia [9]. 
Using further deep properties of quadratic forms Verheiden proved the further 

interesting result. 

Theorem 4.2 (Verheiden). Under the hypotheses of Theorem 4.1 there exists, for 
any s, an n by n matrix Z having X as its first r rows such that ZZT= ml and such 
that there is some power of 2 ,  say 2‘ so that 2‘2 is integral. 
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In the case of 9 by 9 matrices in which the first row consists of 9 1’s there is a 
completion Z such that 2 2  is integral. 

2 2 2 2 2 2 2  

- 3 - 3  0 0 0 0 0 

3 - 3  0 0 0 0 0 

- 3 3 0 0 0 0 0  

0 0 3 3 - 3 - 3  0 

0 0 3 - 3  3 - 3  0 

0 0 3 - 3 - 3  3 0 

2 2 -1 -1 -1  -1 -4 

1 1 -2 -2 -2 -2 4- 

This example also shows that 2 cannot be replaced by any other prime in 
Theorem 4.2 since the same difficulty remains when Z is multiplied by any odd 
number. 

Now let us suppose that X is an integral matrix of size r by u satisfying the 
conditions of (9) and (10). Let s = u - r and let Z be a rational normal completion 
of x 

Here, being a rational normal solution, Z satisfies 

Z Z ~  = .zTz = ( k  - A ) I  + AJ (13) 

and 

Z J =  J Z =  kJ. 

Here (14) asserts that every row or column of 2 has sum k while (13) asserts that 
the inner product of a row (or column) with itself is k and the inner product of 
two different rows (or columns) is A .  

Considering the ith column of 2 we have 
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Let us write 

y l i  + . . . +ysi = ui, y:,+. . . +y:i= wi. (16) 

Then subtracting the first equation of (15) from the second we have 

c ( x ; - x j i ) +  wi - ui = 0. (17) 
j = l  

As the xll are rational integers we have xE- x,, 2 0 with equality only when xII = 0 
or 1. Thus 

u, 2= w, (18) 

with equality only when every x,, = 0 or 1. O n  the other hand 

Similarly 

From (18), (19) and (20) it now follows that 

u , = w i ,  i = l ,  . . . ,  u, x j i = O o r l ,  j=l, . . . ,  r, i = l ,  . . . ,  u. (21) 

Theorem 4.3. Let us suppose that ( 5 )  has a rational solution and let X be an r by u 
integral matrix satisfying (9) and (10) and let 

be a normal rational completion of X satisfying ( 5 ) ,  (6) and (7). Then every xij = 0 
or 1 where X = [ x i j ]  and in a column of Y (where r + s  = u )  

yl1 + y z j + .  . . + y s, . = y2 l j  + . . . + y f j =  uj 

and O c u j s s s ,  j = l , .  . . , u  and CY=l u j = s k .  

Proof. All parts of this theorem have already been proved except for the 
inequalities 0 S uj s s. Trivially 0 s uj with equality only when every yij = 0. From 
the Cauchy-Schwartz inequality (y ,  + . . . + y , ) ” c  s(y: + . . . + y f )  with equality 
only when y I  = yz = . . . = ys. But in our case y:+. ‘ ‘ + y: = y I  +. . . + ys so that 

(y1+  . . . + yJ” s(y, + . . * + y,) 

and y1 + . . . + ys S s or uj S s with equality only when y, = yz . . . = ys = 1. 

be a 0-1 matrix and so an incidence matrix. 
We note that since every x is 0 or 1, that an integral completion, if it exists, will 

We can now prove our main result on this subject. 
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Theorem 4.4. Suppose that v > k > A > 0 are integers satisfying k (  k - 1) = A ( I J  - 1) 
and that there exists a rational matrix A of order u satisfying AAT= ( k  - A ) I + A J .  
Suppose also that we are given an integral r by v matrix X such that 

X X T  = ( k  - A ) &  + AJ,,, (22) 

XJ = kJ,,. (23) 

Then with s = v - r, if 1 < s < 4 there exists an integral v by u matrix W with X as its 
first rows such that 

WWT= WT W = ( k - A ) I + A J ,  (24) 

WJ= J W =  kJ. (25) 

This conclusion is false if s = 8. 

If 

is a rational normal completion of X whose existence is assured by Theorem 3.6, 
then also 

is a rational normal solution providing that U is an s by s rational matrix 
satisfying 

UUT= UTU=Is, ( I , . .  . , l ) U = ( l , .  . ., 1)=e , ,  (26) 

the vector e, being a vector of s 1’s. This last condition is necessary so that 
JZ1 = kJ. If c, = [ Y , ~ ,  . . . , ysIlT is a column of Y then Uc, is the corresponding 
column of UY. Hence by Theorem 3.5 if eT, cJ,, c,,, . . . , cJm are linearly indepen- 
dent columns we can choose U so that UeT= eT, Uc,,, Uc,, UcJm are any rational 
columns with the same inner products as the original ones. 

From (12), (13) and (14) we have the following relations on the columns of 2 

x l ,  + x,, + . . . + xrJ + y I J  + . . * + ysl = k ,  

x:,+ x;, + .  . . + x;+ y; ,+.  . . + y:,= k ,  (27) 

x , J x , I + x 2 J x 2 1 + ’ .  ‘ + X , J X ? ‘ t + Y I J Y l l + ’  “ + Y S I Y S I = A >  j r t .  

As the x’s are integers it follows that the inner products of the columns of Y are 
all integers. We also recall from Theorem 4.3 that 
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Case s = 1. Here from (28) y l j  = uj is an integer in every case and the theorem 
holds. 

Case s = 2. 0 s uj s 2, j = 1 rn . . . , zi from Theorem 4.3. If uj = 0 the jth column 
is [0, OIT, while if uj = 2 the jth column is [ l ,  1IT. Hence if no uj = 1 the last two 
rows are identical, which is a conflict since they are linearly independent. Hence 
some uj = 1 and permuting the columns we may assume u1 = 1. Choosing U 
appropriately for the 1st column cl, 

c1 = [ 3. 
Here 

As the inner product of the first and jth column is an integer h I j  we have 
(cl ,  c j )  = y l j  = A l j  is integral and as yli + y2j = uj is an integer then yZj is also an 
integer. Hence in (30) Y is an integral completion for X making 

a full integral normal completion of X. This proves our theorem €or s = 2. 

Case s = 3 .  0 s u j S 3 .  If u j = O , c j = [ O , O , O ~ ,  while if uj=3, cj=[1,1,1IT. 
Since the last three rows are not identical there must be some uj = 1 or some 
uj = 2. Suppose some uj = 1, and we may take u1 = 1 so that with an appropriate 
U 

c,=[H] 
Hence for the 1st and jth columns Aij = (c,, cj) = y l j  and so the first row of Y is 
integral. Adjoining this integral row to X we are reduced to the case s = 2 and our 
result holds. Suppose that no uj = 1 but that some uj = 2. We may take u1 = 2 and 
with an appropriate U the column c1 becomes 

c, =[ i]. 
Here if cj = [yli, y Z j ,  y3j]T then 

(32) 

(33) 
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It now follows that y3j is an integer for j = 1 , .  . . , u. Adjoining this integral row to 
X we are reduced to the case s = 2 already proved. 

This completes the proof for s = 3. 

Case s = 4 .  0 s u j s 4 .  If ui=O, ~ ~ = [ 0 , 0 , 0 , 0 ] ~ .  If u j = 4 ,  ci=[1,1,1,1IT.  If 
some ui = 1 take u1 = 1, c1 = [l, 0, 0, 0IT. Then A l i  = (cl, cj) = yli  is an integer and 
adjoining this integral row to X we are reduced to the case s = 3. If some uj = 3 
take u1 = 3, c1 = [l, 1 ,1 ,  OIT. Then with ci = [yli, yZj, y3j, y4j]T we have 

A 1 j  = ( ~ 1 3  cj) = Ylj + ~ 2 j  + ~ 3 j  

and 

uj = Ylj + ~ 2 j  + Y3j + Y4j. 

Hence y4j is integral for j = 1 , .  . . , v. Adjoining this integral row to X we are 
reduced to the case s = 3. 

Thus we need consider only cases where ui takes on only the values 0, 2, 4. 
There must be some cases with u i = 2 .  Take u , = 2  and c l = [ l ,  1, 0, 0IT. If a 
further column has uj = 2  then cj=[a, b, c, dIT with a + b + c + d  = 

a2+b2+ .c2+d2=2  and Al i=a+b .  If A l j 3 3  then a”+b2a($)2+($)2=%, a con- 
flict. If A l j < - - l  then c + d 3 3  and c2+d2>p a conflict. Hence A l j  =0 ,  1, or 2. If 
A l i  = 2  then ci =[1, 1, 0, 0IT and is identical with c,. As Y is of rank 4 there must 
be 4 linearly independent columns. Thus there must be at least three columns 
with u = 2, and besides u1 = 2 two others with ui = 2 and h l i  = 0 or 1. 

Suppose first that there are three columns with u = 2 and A i j  = 1 in all three 
cases. Then Y, taking u1 =2,  u2=2,  u3 = 2, A,,= 1, A I 3 =  1, A23= 1 will have the 
shape 

If u; = 4 then c; = [l, 1, 1, 1F which is integral. If u; = 0, ci = [0, 0, 0, OF. If u; = 2 
then 

Hence 

A,; + & j  + A3j = 2 ( y i j  + yzj + ~ 3 ; ) .  (36)  

If A l j + A , i + A , j  is odd, then each of yli, yZj, y3j and so also y4j is half an odd 
integer. But with odd integers a, b, c, d then 

(:)2 + (i)2 + (5) -t (4)’ = 2, 
a2  + bZ + c 2  + d 2  = 8,  (37) 
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which is impossible with odd a, b, c, d. Hence AI i  + A Z j  + A g j  is even and yli, y,;, y j j  
and y4i are all integers. Thus in this case Y is integral and our theorem holds. 

There remains to be considered the cases in which there are two u's equal to 2 
and the Aij  = 0. Here Y has the shape 

(i) 

For a column c, with u, = 2  different from cI and c, we have A l l  = a +  b, 
A,, = c + d, A l l  + A2, = y = 2. With A,, = 0 or 1 and A,, = 0 or 1 the only possibility 
is A,, = 1, A,, = 1 and taking j = 3 we may put Y in the shape 

(39) 

If uI =4 then cl[l, 1, 1, lr= c1 +c2  so that a further independent column cI must have u, = 2 and 

h i ,  = 1, A,, = 1, A,, = 0 or 1. Thus with this j =4, Y has the shape 

[ 0 1 1 _ ' '  ;] 
1 0 0 0 . . .  b I .  

0 1 1 0 " '  

0 1 0 1 _ ' '  d . .  

Y =  , A,,=] .  

With A,, = 0 we have y14 + y3, = 0, y2 ,  + y,, = 2 and so y:, + y& 3 2 but as u, = 2 
this gives c, = [O, 1, 0, 1IT as in (40) above. But here c1 + c2 = cj + c, and so c, is 
not an independent column and we must have Y in the shape (41) with A,, = 1. 
Here for a further column c, we have c, = [0, 0, 0, OF if u, = 0 and c, = [l, 1, 1, 1IT 
if u, = 4. For any further column c, = [ a ,  b, c, dIT we will have u, = 2, A,, = a + b = 

1, h , , = c + d = l ,  A,,=a+c and A,,=a+d. Hence A j , + A , , - A , , = 2 a  is an 
integer. If a is half an odd integer, so is b, c, and d and as in (37 )  this leads to a 
conflict. Thus a is an integer and so are b, c, and d. 

This covers the final possibility with s = 4 and we conclude that Y can be taken 
as integral in this case. 
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For s = 8  in the case v = l l ,  k = 5 ,  h = 2  the initial rows 

cannot be integrally completed because an integral completion would be a 
symmetric 11, 5, 2 design and any two columns would also have inner product 2, 
which is not possible here for the first two columns. But there is a rational normal 
completion of denominator 2. 
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A CLASS OF REGULARISABLE GRAPHS 
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I.R.M.A., B.P. 53, 38041, Grenoble, Ceden, France 

1. Introduction 

In  this volume Berge [l] gives a generalization to hypergraphs of the following 
result on line graphs: the line-graph of a graph with no pendent vertex is 
regularisable. 

In this note we characterise regularisable graphs without an induced subgraph 
isomorphic to K,,,, a star with three edges. Since no line-graph contains an 
induced K,,,, this is another extension of the result above. 

Throughout the note we use the notation of [l]. 

2. A class of non-regularisable graphs 

Definition 2.1. A graph will be said to be of class C whenever it can be obtained 
by the following two operations: 

(i) take an elementary cycle of even length together with a (proper) colouring 
of its vertices with colours a and p ;  

(ii) add some edges (at least one) whose endvertices are coloured a and are at 
distance 2 on the cycle. 

For example, omitting an edge of K ,  we obtain a graph of class C. Clearly, a 
graph of class C has no induced subgraph isomorphic to Kl,3. 

Lemma 2.2. A graph G of class C is not regularisable. 

Proof. G is connected, it is not bipartite and the set S of vertices of G coloured p 
is a non-empty independent set of G such that ITS1 = IS\. The result now follows 
from the [ I  Theorem 3.11. 

3. A class of regularisable graphs 

Theorem 3.1. A connected graph G with no pendent vertex and with no induced 
suhgraph isornorphic to K l , 3  is regularisable if and only if it is  not of class C. 

12s 
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Proof. By Lemma 2.2 it is sufficient to prove the "if" part of this theorem. 
Let then G be a connected graph with no pendent vertex, with no induced 

subgraph isomorphic to K,,,, which is not regularisable. We shall show that G is 
of class C. 

G is not bipartite (otherwise G would be an elementary cycle of even length). 
Hence by [l, Theorem 3.11, there exists a non-empty stable S of G such that 

Every vertex of S is adjacent to at least 2 vertices of T S  since G has no pendent 
vertex. Moreover, every vertex of TS is adjacent to at most 2 vertices of S since G 
has no induced subgraph isomorphic to Kl,3. 

Let rn be the number of edges connecting a vertex of S to a vertex of TS. It 
follows from the above that 

pis IS]. 

Hence IS( = If's1 and every vertex of S (respectively TS) is adjacent to exactly 2 
vertices of TS (respectively S ) .  Furthermore, there is no edge connecting a vertex 
of f'S to a vertex of V(G)-(SUTS) (otherwise we could find an induced 
subgraph of G isomorphic to Kl,3); since G is connected, V(G)=SUTS. 

Consider now the subgraph G[I'S] of G induced by TS; G[TS] has at least one 
edge (since G is not bipartite). Moreover, for every edge e = {x, y} of G[TS] there 
exists Z E S  such that {z,x}EE(G) and { z ,  y)€E(G) otherwise the subgraph 
induced by y, x and the 2 vertices of S adjacent to x would be isomorphic to K l , 3 .  

This, together with the fact that G is connected, shows that G is of class C. 

4. An application to line graphs of graphs 

Definition 4.1. A graph will be said to be of class K whenever it can be obtained 
by the following three operations: 

(i) take an elementary cycle of length 13 3; 
(ii) choose a non-empty subset S of the vertices such that if IS1 = 1, then 1 is 

odd, and if IS] 3 2, there is no chain of even length with its two endvertices in S 
and its other vertices outside S ;  

(iii) for every s E S add an edge joining s to a (new) pendent vertex. 

Lemma 4.2. A graph is of class C if  and only i f  i t  is isomorphic to the line-graph of 
a graph of class K .  

We leave the proof to the reader. 

Theorem 4.3. The line-graph of a connected graph which is not of class K and with 
no edge adjacent to exactly one other edge is regularisable. 



A class of regulurisuble graphs 127 

Proof. Let G be a connected graph which is not of class K and with no edge 
adjacent to exactly one other edge. By a theorem of Whitney [2] L(G)  is not 
isomorphic to the line-graph of a graph of class K ;  by Lemma 4.2, L(G)  is not of 
class C. Moreover, L(G)  has no induced subgraph isomorphic to K1,3 and no 
pendent vertex. The result now follows from Theorem 3.1. 
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ON MAXIMAL CIRCUITS IN FINITE GRAPHS 

H.A. JUNG 
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1. Introduction 

If the valency d ( u )  of each vertex u of a graph G is at least $ n ( G ) ,  where n ( G )  is 
the number of vertices of G and n ( G ) > 2 ,  then G allows a hamiltonian circuit, 
i.e. a circuit which contains every vertex of G. This result is due to Dirac [5]. It 
stimulated investigations of many authors (e.g. [ 2 ,  3 ,  7, 8, 9 and lo]). 

In this paper we concentrate on the following refinement by Ore [9]: 
If d ( u ) + d ( w ) s n ( G ) > 2  for any two different, non-adjacent vertices u, w of 

G, then G contains a hamiltonian circuit. 
It turns out that the main obstacle to a further improvement in this direction is 

given by the graphs in class X We say that G belongs to class X if for some k a 1, 
there exist vertices x l , .  . . , x k  such that G - x ,  - . . . - x k  has at least k + 1 
components. Obviously no G E X allows a hamiltonian circuit (cf. [4]). 

The results of this investigation have the following main application: 
Let n ( G ) = = 1 1  and G i X .  If d ( u ) + d ( w ) a n ( G ) - 4  for any two diflerent, non- 

adjacent vertices u, w of G then G contains a hamiltonian circuit. 
We note that there exist infinitely many graphs G g X  without hamiltonian 

circuits such that d ( u ) +  d ( w )  2 n ( G )  - 5 for any two different, non-adjacent 
vertices u, w of G. 

For graphs with constant valency related results were obtained by Erdos and 
Hobbs [6] and by Bollobtis and Hobbs [l]. 

2. Notations and auxiliary results 

Given a subgraph H of G, let V ( H )  denote the set of vertices of H and 
G -  V ( H )  the maximal subgraph of G with vertex set V(G)- V(H).  

Circuits and paths in a graph G are considered as subgraphs of G. A circuit C 
in G is called maximal if there exists no circuit C’ such that V(C’)  2 V(C) .  

Given a circuit C together with a direction of traversing let C[a, b] (C-[a, b]) 
denote the path obtained by running on C from a to b in the given (resp. 
opposite) direction of C. Similarly C(a, b], C-(a, b] ,  (C(a,  b)  and C-(a, b ) )  are 
obtained from C[a, b], C-[a, b] respectively by deletion of a (and b). 

In Section 2 and 3 a maximal circuit C with a direction of transversing and a 
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component H of G - ( C )  are fixed. An H-avoiding arc or simply arc is a path Q 
joining vertices u, u ' ~  V ( C )  such that 

V ( Q )  n (v(c) u v(H)) = {u, u'}. 

Given two subgraphs HI, H2 of G, let N(H1,  H2) denote the set of v 2 €  V(H2)  
such that some edge has terminal vertices U ~ E  V(H, )  and 21,. 

Let a maximal circuit C and a component H of G - C  be fixed. Then 
m = m(H, C )  denotes the minimum number s such that there exists a path 
P = P [ a ,  b ]  with N(H, C ) c  V ( P ) ,  V ( P ) n  V ( H ) = @ ,  IV(C)-V(P)I=s,  a# b and 
a, b E N(H,  C). A path P of this form can be enlarged to a circuit by adding a path 
from b to a with inner vertices in H. We note 

Lemma 2.1. m(H, C )  3 1 and n(C[a, b ] )  3 m(H,  C )  + 2 for all a, b E N(H,  C )  such 
that a# b. 

In the following we construct paths P by putting together arcs and subpaths of 
C. For a vertex x on C and a subpath L of C let N,(x, L )  denote the set of 
ZI E V ( L ) - { x }  such that there exists an H-avoiding arc Q = Q[x, u ] .  Note that 
N ( x ,  L )  c N,(x ,  L) .  We denote 

N , ( x ,  L ) =  V(L) - {x } -N , (x ,  L ) .  

Lemma 2.2. Let L, = C(ai, bi) ( i  = 1,2) be different components of C -  N ( H ,  C )  
and Q an arc joining z1 on C[al ,  b , ]  to z2 on C[a2, b,]. If z1 # a, and z,# a, then 

n(C(a , ,  z J ) +  n(C(a2, z2))b m. (1) 

Proof. If zl# a ,  and z2#  a2 then C-[a,, z , ] ,  Q and C[z2 ,  a,]  define a path P. 
Now a, ,  a 2 € N ( H ,  C )  implies IV(C)- V(P)I z  m(H,  C )  and hence (1). Similarly 
(1') is obtained. (1") follows from (1)  and (1'). 

In  the following lemma Li, zi ( i  = 1,2) and Q are given as in Lemma 2.2. 

Lemma 2.3. Let Q, be an arc joining x, on C[a , ,  2,) to y, on C ( z , ,  b , ] .  
I f  x1 # a ,  and z2# a2 then 

n(C(al, xl))+ n(C(z l ,  y d ) +  n(C(a,, 2,))s m. 
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Proof. If V(Q) fl V(Q,)# @ then Q U Q1 contains an arc Q‘ from 2, to x,. In this 
case (2) follows from (1) with respect to Q’. If V(Q) fl V(Ql) = @ and x,# a,, 
2, # a, then we obtain a path P by running through C-[a,, y , ] ,  Q1, C[xl, z,],  Q 
and C(z,, a,]. Now (2) is equivalent to (V(C)- V(P)Ia m. (2”) follows from (2) 
and (2’). 

Let L, = C[a, b,],  zi ( i  = 1,2) and Q be given as in Lemma 2.2. 

Lemma 2.4. Let Q, be an arc joining xi on C[a,, zi> to yi on C(z, bi] ( i  = 1,2). 
If x1 # a,  and x, # a, then 

n(C(a1, ~ 1 ) )  + n(C(z l ,  yl))  + n(C(a,, x d ) +  n(C(z2, y 2 ) )  3 m. 

n(C(xi, ~ 1 ) )  + n(C(yi, bd)  + n(C(xz, zz)) + n(C(y2 ,  b z ) )  3 m. 

If xl, y1 E VW1) and x2, y 2  E V(L,) then 

n(L,) + n(L,) 2 2m +6. 

(3) 

If y1 # b, and y2# b, then 

(3’) 

(3“) 

Proof. If V(Q2) n V(Q) # @ then there exists an arc Q’ from x, to zl. In this case 
(3) follows from (2) with respect to Q’, Q,. The case V(Q)n V(Q,)#P, is 
symmetric. If V( Q,) fl V( Q,) # P, is symmetric. If V( a,) n V( Q,) # P, then there 
exists an arc Q’ from xI to x, in which case (3) follows from (1). Now let x1 # a,, 
x z #  a, and Q, Q,, Q, pairwise disjoint. We obtain a path P by running through 
C-[a2, y l l ,  Q1, C[x,, 4, Q, C-[z2 ,  -4, Qz and C[y2, all. In this case IV(C)- 
V(P)la  m yields (3). Finally (3”) is a consequence of (3) and (3’). 

Lemma 2.5. Let ai E N ( H ,  C )  and u, successor of a, on C ( i  = 1 ,2 ;  a,# a,). Then 
N,(u,, C )  contains the first m successors of a,. For z E N,(u,, C(a,, a l ) )  the set 
N,(u,, C )  contains the first m successors of z. 

Proof. The first assertion is a special case of (1). Now let Q1 be an arc joining u1 
to z on C(a,, a,) and Q, an arc joining u2 to z’ on C(z ,  a,]. Then V(Q,)fl 
V(Q2) = @ since U ~ E  N,(u,, C). We obtain a path by running through C-[a2, u,], 
Q,, C-[z ,  u,], Q, and C[z’,  a,]. Hence n(C(z,  2’))s m. Since N,(u2, C )  contains 
the first m successors of u l ,  the second assertion follows. 

Analogous statements can be made for the predecessors wi of ai E N ( H ,  C )  
( i  = 1,2). 
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The following observation is often used in the proofs to come. 

Lemma 2.6. Let a, b E N(H,  C )  such that a# b and C(a ,  b )  = C[u,  w].  Let Q, Q‘ 
be arcs joining u to z and w to z’ respectively where z, Z’ are different vertices of 
some component of C -  N(H,  C ) -  C(a ,  b).  Then z, z’ have distance at least m on 
C[b,  a ]  or V( Q )  n V( Q’) - {u, w }  # $3. In either case z, z’ are not neighbours on C. 

Proof. If Q, Q’ have inner vertices in common then Q U Q‘ contains a non-trivial 
arc from z to 2’. In this case z, z‘ are not neighbours o n  C since C is maximal. 
Now let V(Q) n V(Q’)E {u, w}. If z is on C(z’ ,  a ]  then C-[a,  z ] ,  Q, C[u, w ] ,  Q’ 
and C-[z’, b ]  define a path, while if z’ on C(z ,  a ]  then C-[a, 2’1, Q’, C[w,  u ] ,  Q 
and C [ z ,  b ]  define a path. 

3. Maximal circuits 

As in the previous section, a maximal circuit C of G and a component H of 
G-  V(C) are fixed throughout Section 3. We use the abbreviations m = m ( H ,  C) 
and k = JN(H, C)l. 

Proposition 3.1. Let L, = C[u,, w,] ( i  = 1,2) be different components ~f 
C-N(H, C )  and w, E N,(u2, L J .  Further let 

JN,(u, C ) l G ( k - l ) r n + 3  for all ZIE V(C)-N(H, C ) .  

Then n ( C ) ~ k ( m + l ) + 3  and w,EN,(u,,L,). 

N,(x, C )  and 
Moreover there exists different vertices x, X‘E V(C)- N ( H ,  C )  such that X’E 

IN,(x, C)l+(N,(x’,  C ) ( ~ n ( C ) + ( k - 2 ) ( m - l ) + m i n  (2 ,  k-2) .  

Proof. Let 

L, = C(a,, b,) = C[u,, w,] ( 1  S i S k)  

be all components of C-N(H, C) and let Q be an arc joining w,  to uz. Then 
n(L,)* m + 1 ( i  = 1,2) by (1) and (1’). 

(I) Let a,# b,. For w, on C[b,, a,] the set N,(w,, C )  contains b,, w1 and tn 
predecessors of w,  by Lemma 2.6, moreover a2 and m predecessors of b, if j #  i 
(see remark after Lemma 2.5). On the other hand 

/N,(W,, C ) l s ( k - l ) m + 3  

by hypothesis. Therefore u2 E N,  (w , ,  b,) which in turn yields b, E N, ( w2, C) by 
Lemma 2.6. Now by a similar argument N,(w,, C) contains bl ,  a,, m + 1 vertices 
on L,  and m vertices on L, for j # 2  contradicting the assumption 

I fi, ( w,, C) I S ( k - 1) m + 3. 
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Hence b, = a,. 

(11) Let n(L,)a m + 1 and u, be on C(b, ,  a,) for some i. Then u, E N,(w2, L,) 
and a, = b, according to (I). Now N,(w,, C )  contains a, and m + 2 vertices on 
C(a,, b2]. Hence u, E N,(w,, L,) and b, = a,. This means i = k = 3. If n(L,) 3 m + 2 
then u, E Na(w2, L,)  and by Lemmas 2.5 and 2.6 Na(u2, C )  would contain the first 
m + 2  vertices of C[a,, b,) ( j =  1,3) .  Hence n ( L , ) =  m + l  and, by symmetry, 
n(L,) = n(L3) = rn + 1. 

This implies 

W2E N , ( U l ,  L,), W 3 E  m u 2 ,  L3), WI E N , ( U 3 ,  LI). 

If p 1 e  N,(al, C(u, ,  b , ) )  then (2’) implies n(C(p, ,  b , ) ) ~  m since U ~ E  Na(w3, L, ) .  
Similarly p , ~  Nu(b2,  C(a2,  w,)) yields a contradiction. In view of u3 E N,(w2, L3) 
and W ~ E  N,(ul, L,) we infer V ( L 3 ) s  N,(a,, C ) .  If a 3 €  N,(al, C )  then we would 
obtain a path by running through an arc from a3 to a , ,  C[al, w,], Q, C[u2,  w,], an 
arc from w2 to u3 and C[u3,  a,]. We have shown N,(a,, C ) = { u , ,  w2}. By 

for some p 2  on C[a2, b2] then p 2  on C(u2,  w2) by Lemma 2.6 and q 2 ~  N,(w2, L,) 
for the predecessor q2 of p,. Then n(C(p, ,  b,)) 3 m by (2’), a contradiction. Hence 

symmetry N,(a,, C )  = {u27 w3) and &(a,, C )  = {u3, W l l .  If p1 E N,(p2, C(U,, WI)) 

IN,(Plr C)l> + 1) + 3 

for p ,  on C(u, ,  wl) which yields m = 1. By symmetry, n(L,)= 2 ( 1 S j S 3 ) .  

one of the sets {w,, u,}, {w2, u3}, {w3, u,}. 

Petersen graph. 

If H’ is a component of G -  V ( C ) -  V ( H )  and IN(H’, C ) l 3 2  then N(H’, C )  is 

If V ( G )  - V ( C )  = V ( H )  then the contraction of H to a single vertex yields the 

(111) Let a,# b, .  By (11) we may assume n(L,) = m for all ai on C[b , ,  a,). Let a, 
on C[b,, a2). Then N,(ui, C )  contains 2m + 2  vertices on L,  U L,. If ai# b , ,  then 
a, E N,(ul, C ) .  Since b, E N,(u,, C )  or ale N,(u,, C )  we would obtain a path by 
running through C-[a, ,  ui], an arc from ui to b,, C[b, ,  a , ] ,  an arc from a, to u,, 
C[u, ,  w,], Q, C[u2,  a,] or by running through C [ b , ,  ail, an arc from a, to u,, 
C[ul ,  w,], Q, C[u2,  a,], an arc from a ,  to u, and C[ui,  a,] .  We infer k = 3. If 
n(L,) 2 m + 2 then u1 E N,(w2, L,) and N,(u3,  C )  would contain m + 3 vertices of 
C[a, ,  bl), contrary to the hypothesis. Hence n(L, )  = n(L,) = m + 1. If p 2 €  
N,,(p, ,  L,) for some p1 on C(a , ,  w,), then as in the proof of Lemma 2.6 we obtain 
inequalities 

n(C(p1, Wl))+ n(C(p2,  b2)) a m 

n(C(u2, P 2 ) )  + n(C(a1, Pl)) 2= m, 

and 

contrary to n(L,)+ n ( L 2 ) < 2 m + 2 .  By Lemmas 2.2 and 2.3 there exists no  arc 
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from C [ b , ,  a2 ]  to C ( a l ,  w , )  U C(u , ,  b , ) .  Hence IN,(x, C ) J s  rn + 1 for all 

X E  V ( L , U L ~ U L ~ ) - { W , ,  ~ 2 ) .  

(IV) Let a, = b, and k 3 3. If n(L,) 2 rn + 2 and ui on C(b2, a,)  then N,(ui, C )  
contains by (11) and (111) m + 1 vertices on L,, and by Lemma 2.6 the first rn + 2  
vertices of C[  a2, b,). Hence n (L,) 3 rn + 2 implies w ,  E N, ( ui, L2), and ( u,, C) 
would contain rn + 4  vertices on C[a2, b2] .  Therefore n(L,) = m + 1 and, by 
symmetry, n(L,) = rn + 1. Let a3 = b,. Since N,(u3, C )  contains all u on C ( a l ,  b2) 
and all wi on C [ b 3 ,  a , ]  we infer n(L i )  = rn for all ai on C [ b 3 ,  al). Hence, by 
symmetry, k 3 4 implies n(t,) = rn for i > 2. If Q' is an arc joining p 2  E V(L,) to 
pi  E V(Li)  and i > 2 then n ( L i )  2 rn + 1 by (1") and hence i = k = 3. Further p 3 #  u3 
since n(L,) = rn + 1. There exists an arc Q1 from ug to the successor q3 of p 3  and 
therefore n(C(a,, p 2 ) ) 2  m by Lemma 2.3. We would obtain a path P by running 
through b2, Q', C-[p3, u3], Q1, C [ q 3 ,  w , ] ,  Q and a2 contrary to n(L2)= rn + 1.  
This shows that there exists no arc from C ( a , ,  b,)U C ( a , ,  b2) to Ui, ,Li .  In 
particular n(L3) S rn + 1. By Lemma 2.3 and the argument in the proof of Lemma 
2.6 it follows that there exist no arcs from L1 to L2 except for arcs from w1 to u2. 
Also 

N, (a,, C )  E { W l ,  u2) u N ( H ,  C). 

Hence G - {b2 ,  . . . , bk}  has k - 1 components one of which has cut vertices a2, w1 
and u2. 

(V) Let k = 2 and u, E N,(w2,  L,). If x1 E Na(w2 ,  L,) ,  then N,(w,,  C )  contains 
u1 and the last rn+2  vertices of C(a,, b , ] .  In this case p 1 ~ N , ( w 2 ,  L,) for the 
successor p1 of u1 and hence N,(u,, C )  contains w ,  and the predecessor q1 of w , ,  
a contradiction. Hence 

N a ( w 2 . L 1 ) = N , ( u 1 ,  L 2 ) = @ ,  n ( L i ) s r n + 2  ( i =  1,2).  

Case 1. There exists p 2 c  N,(w , ,  L2)-{u2}. Then p2 is the successor of u2 since 
n(C(p , ,  b,)) 2 rn. Further u2 E N,(w,,  L,) and hence n(L,) = m + 1 = n(L,) - 1. 
There exists no arc from x, to C(a,, w , )  U C(p,, a,) (x, = u2, a,). If there exists an 
arc from C ( a , ,  w l )  to C(u,, al) then as in the proof of Lemma 2.6 n(L,)+ n ( L 2 ) 2  
2 m + 4 ,  a contradiction. Hence G-{a ,}  has cut vertices a,, w , ,  p , .  

Case 2. IN,(w,, L2)) = IN,(u2, L,)I = 1.  If X,E N,(x2, L,) and X,E V ( L 2 ) - { u 2 } ,  
then n(L,)+ n ( L 2 ) 3  2rn +4 ,  hence wi E N,(ui, Li) ,  ( i  = 1,2)  contrary to (3") of 
Lemma 2.4. If N,(a,, C ) c { a , ,  w , ,  u,}, then G-{a,} has cut vertices a,, w l ,  u,. 
Therefore let q1 E N,(a2, L l ) - { w l } .  Then n(L,) = rn + 2  and q1 is predecessor of 
W 1 .  

If Q1 is an arc from w 1  to x, on  C(al, q,), then we obtain a path by running 
through an arc from b ,  to q l ,  C - [ q , ,  x , ] ,  Q,, Q and C[u, ,  b,], contrary to 
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n(L1)  = m +2. In particular w, E N,(u,, L,) and hence n(L2) = m + 1. We con- 
clude that G-{a,} has cut vertices q,, b,,  u,. 

(VI) In the remaining case k =2,  u , ~ N , ( w , ,  L,), we have n(L i )2  ml-2 
( i  = 1,2). 

Case 1. There exists an arc from w2 to x1 on C(ul ,  w,). If x, is the successor of 
u,, then N,(u,, C) contains b,,  w, and the predecessor of w, on C contrary to 
IN,(u,, L,)Ia m + 1. Since N,(u,, C) contains a,, u,, the predecessor of x1 and m 
vertices on C(x,, w,), we have n(C(u, ,  x,)) = 1 and x1 E Nn(u2, L,). Using sym- 
metry we obtain that L,  has vertices u,, p,, xl, q,, w,. Further qlEfl , (u, ,  L,) ,  
p1 E N,(wl,  L,)  and hence INa(ul, L2)1S m + 1 which yields that L, has vertices u,, 
p,, w,. From 

contrary to hypothesis. In view of the symmetry the following case remains. 

Case 2. Each of the sets N,(u2, Ll), N,(wz, LJ, N,(ul, L2) and N,(wl, L2) has 
cardinality 1. Then n ( L i ) S m + 3  ( i =  1,2). If x l ~ N , ( a , , , L , ) ,  then n(L, )=m+3 
and x1 = pl. In this subcase N,(u,, L,) would contain w,, hence not q1 and we 
would obtain a path by running through an arc from a, to p,, C[p,, q,], an arc 
from q1 to ul, an arc from u1 to w2, C-[w,, u,], Q and b,.  If Q’ is an arc joining 
x1 on C(ul ,  w,) to x2 on C(u,, w,), then we obtain a path by running through a , ,  
an arc from u,  to w,, C-[w2, x2], Q’, C[x,, w,], Q and 6 , .  We infer 

n(C(u1, X l ) )  + n(C(uz, x,)) 3 m 

n(C(x, ,  Wl))+ n(C(x,, m. 

and, by symmetry, 

We deduce n(L,)+ n(L,)S 2m + 6 and hence n(LJ  = n(L,) = m + 3, which in turn 
implies yz E N,(u,, Li )  for the successor y, of x, ( i  = 1,2). This is, in view of (3) of 
Lemma 2.4, impossible. Hence in Case 2 we have shown Ifi,(x, C)l a rn + 4  for all 
x on C(u, ,  w l ) U  C(u2, w2) contrary to the hypotheses. 

Proposition 3.2. Let Li = C[ui, wi] (1 s i S k )  be all components of C- N ( H ,  C).  
Let N,(u,, L , )  U N,(w2, L,)# pl, u, E Na(w2, LA, w1 E fi ,(u2, L,) and IN,(u, C) S 

( k - l ) m + 3  for all U E { U , ,  u2, w,, w,}. 
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If moreover G k X ,  then m = 1 and 
(i) Jfi,(x, C)\ 2 k + 3 for some x E V(C) - N ( H ,  C), or 

(ii) k = 2, n(C) = 8, u i  E N,(w,, C) and IN,(ul, C)l= IN,(w,, C)] =4. 

Proof. The proof of Proposition 3.2 is divided into Cases A, B, C and D. 

Case A. There exists some veitex z1 E Na(u2, L , )  u Na(wz, L,) ,  such that 
n(C(al, zJ)> m and n(C(z,, b,))> rn. 

If Z , E N , ( U ~ ,  L,),  then N,(w2, C) contains u l ,  the predecessor p1 of z,, the 
successor q1 of z1 and the last m vertices of L,. This implies bl ,  z 1 ~ N , ( w z ,  L,)  
and N,(u,, L,) contains p , ,  q,, the last m and the first m vertices of L, .  We infer 

z , E N , ( ~ , ,  Ll)nN,(w2,Ll) 

and m = 1. 

(I) We first assume n(C(a , ,  zl)) > 2. Since N,(u2, L,) n Na(w2, L,) contains all 
vertices of C(u,, p , ) ,  the path C(a,, 2,) has vertices u,, x,, p , .  Then p , ,  q , ~  
N,(ul, L,) and pl,  U ~ E  N , ( w , ,  L , ) ,  yielding n(L, )=  1 for all i 2 2  and Z , E  

N,(u,, Ll).  If n(C(z,, b,))>2 then C(zl, b,) has vertices ql, y,, w,,  where 
y1ENa(u2,L1)  and qlEN,(wl ,Ll) .  If Q is an arc joining q1 to p , ,  then 
C-[a2, q,], Q, an arc from z ,  to u,, an arc from x1 to u2 and C[u2, a,] defines a 
path P such that V ( P )  2 V(C). Therefore pl E Na(ql ,  Ll). 

In the subcase n(L,) = 7 the graph G - N ( H ,  C)-{x,, z, ,  y,} has at least k + 4  
components. In the subcase n(L1) = 6 the graph G - N ( H ,  C) -{x,, z,} has at least 
k + 3 components. 

(11) Since the subcase n(C(z, ,  b,))>2 is symmetric we assume that L,  has 
vertices u l ,  pl,  zl, q l ,  w l .  Then q1 E &,(u,, L,) ,  p1 E &,(wl, L,) and n(L,) = 1 for 
all i > 2 .  

(111) Let u1 EN,(w,, L,). Then n ( L J G 2 ,  since otherwise u,~N, (w , ,  L2) and 
q2€ N,(u,, L , )  for the predecessor q2 of w2, a contradiction by Lemma 2.3. If 
g , ~ N , ( p , ,  Ll), then G - N ( H ,  C ) - { z , }  has at  least k + 2  components. Let q l €  
N , i p , ,  Ll).  Then z ,  E q , ( w , ,  L,) ,  since otherwise C[h,, p,], an arc from pi to 4 , .  an 
arc from w, to z,, an arc from z ,  to w2 and Cp[w2, b,] would define a path P such 
that V(P) 2 V(C). Similarly z1 E N,(u,, L,). If u3e N,(zl, L3) and u3 on C(b,, a2) ,  
then Cp[a3, b,], an arc from b, to ul ,  an arc from p1 to q,, an arc from w1 to a2, 
C-[a2, u3] ,  an arc from u3 to zl, an arc from z1 to u2 and C[u,, a,] define a path 
P such that V(P)z  V(C), a contradiction. Since the case uj on C(b2, a,) is 
symmetric, we infer that G - N ( H ,  C) has k components one of which has cut 
vertices pl,  ql ,  2,. Note that 

I N , ( u , , L l ) I a ( k - l ) m + 4  for all i>2.  
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(IV) Let u1 E N,(wl,  L,). Then p1 E N,(q,, L,) ,  since otherwise we would obtain 
a path P by running through C-[a2, w,] ,  an arc from w1 to u,, an arc from p1 to 
q,, an arc from z1 to u2 and C[u2, a, ] .  If b ,  E N,(pl, L,),  then we could replace 
part of P by C-[a2, b,], an arc from b, to p,, an arc from u1 to w1 and 9,. A 
similar argument yields a ,  E N,(pl, C). Since wi E N,(pl, L,) for all i we have 
shown IN,(p,, C)l 2 km + 3. By symmetry also INu(ql, C)l2 k + 3. 

Case B. [N, (u2 ,Ll )122 .  Let xl, y 1 ~ N , ( u 2 , L 1 ) ,  where y, is a vertex of 
C(x,, b,). If n(C(yl, b,)) < rn, then N,(w,, C) would contain at  least rn + 4  vertices 
on C(a, ,  b,]. In view of Case A we assume 

n(C(a1, x1)) = n(C(y1, bl)) = m 

No(%, L,) E { X l ,  Y l }  for u2 = u2, w2- 

and 

Now Na(w2, L,) contains the first m and the last m vertices of L,,  the successor of 
x1 and the predecessor of y l .  Hence m a 2  implies n(C(x,, y l ) =  1 and 
(N,(ul, L,)I 3 m + 2  24,  contrary to the hypothesis. 

(I) Let n ( L , ) 2 6 .  Then L1 has vertices u,, x,, pl, q,, y,, w1 and u,, p , ,  q,, 
w1 E N,(w2, LA. Therefore xl, y1 €N,(w2, Ll) and wl, p1 E N,(u,, Ll), q1 E 

N,(w,, L,). We first assume q1 E N,(u,, L,). If p1 E N,(wl,  L J ,  then we get a path 
P by running through C[b2, u,], an arc from u1 to q, ,  y l ,  an arc from w1 to p,, an 
arc from x1 to w2 and C-[w2, b,].  If x1 E N,(wl, Ll), then we replace P ( q l ,  w2] by 
p,,  an arc from x1 to w,, and an arc from y, to w2. We have shown that 
q 1 ~ N a ( u 1 ,  L,)  implies INa(wl, L,)I24. Therefore q , ~ N , ( u , ,  L,)  and, by sym- 
metry, p1 E N,(w,, L,). Since IN,(u,, L,)I 2 3, we have n(L,) = 1 for i > 1, and 
G - N(H,  C)  -{xl, y,} has at least k + 3 components. 

(11) Let L1 have vertices u l ,  xl, pl, y,,  wl. Then p,, W , E  N a ( u l ,  Ll). If 
p1 E N,(w,, L,), then y1 E N,(w,, L,)  and hence u2# w2, which yields y1 E 

Na(u l ,  L,). We would obtain a path by running through C[b,, u l ] ,  an arc from u1 
to y,, an arc from w1 to pl, an arc from x1 to wz and C-[w,, b,]. Therefore 
p 1 ~ N , ( w l , L 1 ) .  If n ( L i ) 2 2  for some i > l ,  then y l ~ N a ( u , , L , )  and X,E 

N,(wl, L,), which in turn implies u,, wi E N,(pl, L,) for all ja  1. Therefore in the 
subcase “n(Li) G 2 for all i > 1” the graph G - N(H,  C) -{xl, y,} has at least k + 3 
components. Now let n(Lj)Z=3 for some j >  1. Then u,, w , ~ N , ( x , ,  L,)  for all 
vertices xi of C(uj, wj) and hence n(Lj) = 3, u, E N,(wj, Lj).  In this case n(Li)  = 1 
for all if 1, j and G - N ( H ,  C)-{x,, y,, x i }  has at least k + 4  components. 

(111) Let n(L, )  = 4. Then w,, y, E N,(u,, L,) and u2# wz, hence b ,  E Na(u,, L,). 
If x1 E N,(wl, L,), then we would obtain a path by running through C-[a2, b,] ,  an 
arc from b, to u,,  an arc from x1 to w,, an arc from y1 to uz and C[u2, a,]. Hence 
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x1 E N,(w,, L,) ,  which yields n(L,) = 1 for i > 2. If successor x, of u, belongs to 
N,(ul, C), then C-[a2, y , ] ,  an arc from y 1  to u2, an arc from u2 to x,, an arc from 
ul to x2 and C[x,, a,]  would define a path. We infer n(L2)  = 2. If Na(w3, L,)# $3, 
then w3 on C(a,, a2) and y, €Na(w3, LJ, W ~ E  N,(a,, L2). We would obtain a 
path defined by Cp[a3, y ,] ,  an arc from y ,  to u3, C[u3, a,], an arc from a2 to w2, 
an arc from u2 to x, and C-[x,, b2]. Hence G - N ( H ,  C) has k components, one 
of which has cut vertices xl, y l ,  u,. Note that 

IN,(ui, LA( 3 ( k  - 1)m +4 for all i > 2. 

Case C. There exists some vertex z I  E N,(u2, L 1 ) -  Na(w2, L,). We assume 

INa(%, L,)J< 1 (0, = u2, w21, 

according to cases A and B 

(I) Let n(C(z,, b,))<m. Then z ,#  w1 and fi,(w,, C) contains u,, a,, all 
vertices of C[z,, b,] and m predecessors of zl.  Hence n(C(z,, b,))= 1, n(L, )= 
m + 2  and a,= b,. Moreover N,(w,, L , )  contains all vertices of C(a, ,  z,). If 
n ( L 3 ) 3  m + 1, then U ~ E  Na(w2, L,) and hence n(L,)S m + 1 and w2, b 2 E  
N,(ul, C). In this subcase N,(u,, C) would contain m + 4  vertices on C[z,, b,]. 
We have shown n(L, )  = m for i > 2. If n(L2) 2 m + 2, then p 2  E N,(w,, L2), where 
p ,  is the successor of u,, and hence U , E  N,(w2, L,), a contradiction. Therefore 
n ( L 2 ) s m + l .  For x , E N , ( x , , L , )  such that j # l  and X , E  U,+, V(L,) ,  we have 
x1 E V ( L , ) .  If x1 # z , ,  then xJ#  u, and therefore 

n(c(xJ7 bJ))+ n ( C ( x , >  '1))> m' 

This is impossible since also 

n(C(aJ, x,)) + n(C(ai, xi)) c m. 

We have shown that G - N ( H ,  C) -{z,} has at least k + 2 components. 

(11) Let m 3 2 .  According to (I) we assume n(C(z,, b , ) ) S m .  Then fi,(w,,L,) 
contains u l ,  w,, z l ,  m predecessors and m successors of z,. Hence L,  has vertices 
u,, pl,  z l ,  q,, w,. From IN,(u2, L,)I = 4 = m + 2  we deduce n(Li) = 2 for i >2. Let 
Q be an arc from x, E { u ~ ,  p , }  to y1 E{w,, 4,). Then x1 = pl,  and we obtain a path 
P by running through C[bl,  a,], an arc from a ,  to w2, C-[w2, u2],  an arc from u2 
to zl. C[z,, y,] ,  Q- and C-[pl, b2]. This is impossible since /V(C)-  V ( P ) I s  1. In 
particular lNa(vl, L,)1==2 (21, = u,, wl). If n ( L 2 ) 3 m + 2 ,  then p 2 ~ N , ( w I , L 2 ) ,  
where p2  is the successor of u,. But then N,(u,, C) would contain m successors of 
p ,  and q l ,  w,, a,, u2, p, .  Hence n ( L , ) c 3 .  Let Q be an arc from x J €  
V(L,)# V(L,)  to X , E  V ( L , ) - { z , } .  If xJ on C(a2, b,), we get a contradiction as at 
the end of (I). If xi on C(b,, a2)  and for instance x1 on C[z,, b,], then we would 
obtain a path by running through C-[aJ, x,], Q-, C[xj, a,], an arc from a2 to w,, 
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C-[w,, u,], an arc from u, to z1 and C-[z,, b,]. We would obtain 

n(C(aj, x , ) )  + n(C(zl, XI)) 3 2 

and hence xj  = wj, x 1  = w,, a contradiction. The case x1 on C(al, z,) is treated 
similarly. We have shown that there exists no Q and therefore that G - N(H,  C )  - 
{z,} has at least k + 2 components. 

(111) In the remaining subcase we have rn = 1 and n(L,)  C 5. If n(Ll) = 5, then 
Na(w,, L,)  = {y,}. We first assume n(L,) = 5.  Then INa(uz, L,)I = rn + 3 
(u2=  u,, w,) and hence n(L,) = 1 for i >2.  Note that L, has vertices ul, y, ,  p,, z,, 
w1 or vertices u,,  zl,  pl, yl, w , .  If p1 E Na(w,,  L,),  then z, is the successor of p, 
and we would obtain a path by running through C-[a2, w, ] ,  an arc from w1 to pl,  
an arc from z1 to u2, C[u,, w,], an arc from w2 to y1 and C-[y,, b,]. Hence 
p1 E S,(w, ,  L,)  and, by symmetry, p1 E R,(u1, L,). Similarly it follows that u1 E 

N,(w,, L,).  If n(L , ) z=3  then p , ~  N,(w,, L,)  for the successor p 2  of u, and hence 
u 2 ~ ~ , ( w z ,  L,), a contradiction. Consequently G - N ( H ,  C)-{y,, zl} has at least 
k + 3 components. 

(IV) Let n(L,) = 4. Then rn = 1 and N,(w,,  L,) = V(Ll). Moreover n(L,)  = 1 for 
i > 2 since ]N,(uz, L,))l= rn + 2 by assumption. Let Q be an arc joining x1 on 
C(a,, z,) to y1 on C(z,, b,) .  Then 

n(C(a1, Xl)) + n(C(z1, Yl)) 3 1 

by (2) of Lemma 2.3. We obtain a path P by running through C [ b , , x , ] ,  Q, 
C-[y,, z,], an arc from z1 to u,, C[uz,  w,],  an arc from w2 to a, and C-[a,, b , ] .  
But then 

IV(C>- V(P)I = n ( C ( x , , z , ) ) +  n(C(y1, b 1 ) ) a  1 

and hence n(L , )  3 5 contrary to the hypothesis. This disproves the existence of Q. 
If n(L , )33 ,  then U,E N,(w,,  L,) and hence N,(u,, L,) contains u,, w2 and the 

predecessor of w,; N,(w, ,  L,) contains u,, w ,  and the successor of u,. Since 

INa(ul, ~ ~ 1 3 2  ( u ,  = u ,  or u,  = wl), 

this is impossible. Therefore n(L,) S 2. 
If x, E N,(uj,  L,) and j >  1, x l #  zl,  then uj on C(bl, a,) and x 1  on C(zl, b,) .  We 

obtain a path by running through C[b,, z , ] ,  an arc from z1 to u,, C[u,, w,],  an arc 
from w2 to a,, C-[ai, u j ] ,  an arc from uj to x 1  and C [ x , ,  ail.  Hence x 1  is not the 
immediate successor of zl, which yields x, = w,, a contradiction. We have shown 
that G - N ( H ,  C )  - { z l }  has at least k + 2 components. 

Case D. N,(u,, L,) = N,(w2,  L , )  = {z,}. According to Case A we may assume 
n(C(al, z l ) )  = rn. Then n(C(z, ,  b , ) ) S 3 ,  and NC(ul, L,) contains w1 and m succes- 
sors of zl. 



140 H.A.  Jung 

(I) Let Q be an arc joining x1 on C(a, ,  2,) to y1 on C(z,, b,). Then 

n(C(a1, X l ) )  + n(C(z,, Y l ) )  2 m 

and 

n(C(x1, Z l ) )  + n(C(y1, b,))  2 m 

according to Lemma 2.3. Hence n(C(z,, b l ) )& m +2.  
We infer m = 1 and that L,  has vertices u,, zl, p , ,  y , ,  w,. Further n(L,)  = 1 for 

i > 2  and p l ~ N , ( w , , L , )  (cf. (I) in Case B). Therefore (N , ( v l ,L , ) (22  for v ,  = 

u,, wl. If n ( L J 3 3 ,  then q 2 ~ N , ( u , ,  L2) for the predecessor q2 of w2 and hence 
W ~ E  N,(u,, L2), a contradiction. Hence n ( L 2 ) S 2 ,  which yields that 
G - N(H,  C) -{zl, y,}  has at least k + 3 components. For the remainder of Case D 
we assume that there exists no arc from C(u,, zl) to C(z,, b , ) .  

(11) Let xi E N,(u,, Lj) for some j >  1. If n(C(xj,  bi))< m, then ff,(w,, C )  
contains a ,  and m + 2 vertices on C(ui, b,], which would imply m = 1, xi = wj and 
bj = a ,  contrary to z1 E N,(uz, L,). Hence n(C(xj ,  b j ) ) a  m, Ifl,(z),, Lj)l 2 2 m  = 2 
(0, = ul, wl) and n(L1)S4. If n(Lj)34,  then n(C(z, ,  b,)) = 1, since otherwise 
N,(u,, Lj) = V(Li)-{uj, w,},  which yields N,(w,, L,) = V(Li ) ,  a contradiction. 
Hence n(C(z , ,  b,)) 2 2 yields 

V(L,) = { Uj, xj, W j } ,  u, E Is, ( wj, L,) 

and 

n(L,) = 1 for all if 1, j .  

If Q’ is an arc joining different components of C - N ( H ,  C)-{z,, x,} and n(L1)= 
4, then Q’ has one terminal vertex y1 on C(z,, b,) and the other yj on L,. But then 
yi = wi, wi on C(b,, az) and z1 E N , ( w , ,  L,), hence x j  E N,(wl, Li) and we would 
obtain a path by running through C[b, ,  x,], an arc from xi to w, ,  Q‘, C[w,, w2], an 
arc from w 2  to z ,  and C-[z, ,  bJ .  We have shown that in the subcase 
n(C(z,, b l ) ) a 2  the graph G - N ( H ,  C)-{z,, x i }  has at least k + 3  components. 

(111) Let n(C(zl, b , ) ) 3 2 .  According to (11) we may assume N,(u,, C)E 
N ( H ,  C )  U V(L,). Then 

C n (L,) C ( k  - 1) m + 1. 
, > 1  

Hence every arc Q’ joining different components of C-N(H, C)-{z,} has one 
terminal vertex y1 on L ,  and the other yJ on LJ for some j > 1. If uJ = yJ, then y ,  
lies on C(z,, b,), n(C(z , ,  y , ) ) >  m and w 1  # y , ,  since y, = w 1  implies b, E 

N,(ul, C) and n ( L J ) a  m + 1, a contradiction. Hence u, = y, yields that L ,  has 
vertices ul ,  z,, p , ,  y, ,  w l .  In this subcase n ( L , ) =  1 for all i > l ,  and 
G - N ( H ,  C )  -{yl ,  z , }  has at least k + 3 components. If yJ = wJ and n(LJ)  b 2, then 
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y, on C(z,, b,) and n(C(yl, b l ) ) 3  m. In this subcase n(C(z , ,  b,)) = 2, since 
otherwise n(L,) = rn = 2 and hence n(C(z,, y l ) ) 3  m - 1 = 1, a contradiction. 
Hence n(C(z , ,  b , ) ) 3 2  in conjunction with y, = w, and wJ# u, imply m = 1, w, on 
C(bl, a2) and z, E N,(w,, L,), which in turn imply b, E N,(u,, C)  and a ,  E 
N,(wl, C). We would obtain a path running through C[b,, u,], an arc from u2 to 
zl, an arc from u1 to b,, C[bl, w,], Q', an arc Erom w, to a ,  and C-[a,, b2]. We 
have shown that the case y, = wJ#uI cannot occur. In the remaining subcase 
y,# u,, w, we infer rn a 2 ,  n(L,) = 3 and n(C(z,, b,)) = m. Then y, has distance at 
least m - 1  from z1 on C since u2, w , ~ N , ( z , ,  C ) .  In this subcase y,  = u1 or 
y, = w,, a contradiction by Lemma 2.2. 

(IV) For the remainder of case D we assume n(L,) = 3 = 3rn. If n(L,)  2 4 for 
some j > l ,  then N,(u , ,  L,)#P, and INa(ul, L,)133 ( u ,  = u,, w,). Note that there 
cannot exist neighboring vertices on C in V(L,) n N,(u,, L,). Hence n(L,) = 1 for 
1 f 1, j and the path L, has vertices u,, p,,  q,, w, or u,, xI ,  p l ,  yI, w,. In the former case 

NO(u,, LJ) = N C Z ( w 1 7  LJ)  = { zJ>  ('1 = PJ Or 'J = q J ) 7  

in the latter case 

N,(ul> L J ) = N C Z ( w , ,  L J ) = { x ] ,  YJ}' 

Then G - N(H,  C) - {zl, z,} has at least k + 3 components or G - N ( H ,  C) - 
{zl, x,, y,} has at least k + 4  components. 

(V) Let V(L,) = {uJ, x,, w,} and j >  1. If V(L,,) = {u,,, x,,, w,.} for some j ' #  1, j ,  
then 

' J >  Na(ul, 'In Na(wl> 
and G -  N ( H ,  C)-{z,, x,, x,,} has at least k + 4  components. Let n ( L , ) G 2  for all 
i# 1, j. If u, E N,,(w,, C), then G - N ( H ,  C)-{z,, x]} has at least k + 3  components. 
If u, E Na( w,, L,) then 

x , € N , ( u , , ~ ~ ) n N , ( w , , ~ , )  for all i # j  

and hence G - N ( H ,  C)-{z,} has at least k + 2  components. 

(VI) Let n(L,) S 2 for all i 3 2. As shown in (11) there exists no arc from u,  to 
u ,,, V(L,).  By symmetry the same is true for w, instead of ul. An arc Q' joining 
different components of G - N ( H ,  C)-{z,} has terminal vertices u,, w,.. In this 
subcase n(L,) = n(L, , )= 2 and n'(L,) = 1 for if 1, j ,  j ' .  Moreover w,, lies on 
C(b,, a,) since otherwise af E N,(w,, C). If u2 on C(b,, b,,) then a,, w,, b , , ~  
N,(u2, C), a contradiction. In particular Lz# LJr and by symmetry L2#L,. Note 
that N,(w,, C) contains a,, u,., 6,. and u,, which yields 

Ifia(wJ, C ) l a ( k - l ) m + 4 .  
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Since Cases A, B, C, D cover all possibilities Proposition 3.2 is proved. 

Theorem 3.3. Let C be a maximal circuit of G and let H be some component of 
G - V(C). Assume n( G )  3 11 and GJ?! X .  Then there exist nonadjacent different 
vertices x, y in G such that 

d ( x )  + d ( y )  < n ( G )  - ( k  - 2)( m - 1) - 5 ,  

where k = IN(H, C)l and m = m(H, C). 

Proof. Let G#X and assume 

d ( x )  + d ( y )  2 n ( G )  - ( k  - 2) (m - 1) - 4 

for any two non-adjacent and different vertices x, y E V(G). We adopt the notations 

of Proposition 3.2. Let 

Case 1.  Let 

Without loss of generality we may assume Na(u2, L,)#$i.  For arbitrary x E 

V( C) - N ( H ,  C) we put 

IN,(x, C)l= ( k  - 1)m + 6 

and 

E = ~ ( G - C - H ) - I N ( X ,  G-C)I. 

Then 

d ( v ) + d ( x ) c  n ( H ) -  1+ k +  n (C) -  1 - ( k -  l ) m - G + I N ( x ,  G -  C)l 

= n(G)- (k  -2)(m - 1)- (6 + E + m). 

Hence 6 +  m + & < 4 ,  and by Propositions 3.1 and 3.2 we can find x, X’E 

V(C) - N ( H ,  C) such that X’E N,(x, C) and 

IN, (x, C)l + INa (x‘, C) I 2 n (C) + ( k  - 2)( m - 1) + min (2, k - 2). 

Then also 6 ’ + m + ~ ’ S 4  and 6 + 6 ’ ~ n ( C ) - k ( m + l ) + m i n ( 4 ,  k ) ,  where 6‘, E ’  

have the meaning for x’ as 6, E have for x. 
From N(x ,  G - C) n N ( x ’ ,  G - C) = @ we deduce E + E ’ S  n(G - C- H ) .  There- 

fore 

(n(C)-  k ( m +  l)+min (4, k))+2m + n ( G - H -  C ) c 8 ,  

which simplifies to 

n(G - H -  C) + 2m + 4 + min (2, k - 2) n ( G  - H )  - ( k  - 2)(m + 1) 

+min(2, k - 2 ) 6 8 .  (*) 
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The first part of (*) is equivalent to n(C)* k(m+1)+2, which in turn is an 
application of Lemma 2.2, since G,dX implies that G - N ( H ,  C) has at most k 
components. On the other hand we have 

d ( x ) + d ( x ’ ) S 2 n ( C ) - 2 - I N m ( x ,  C)/--~N,(X’, C)l+lN(x, G -  C)l+N(x‘, G -  C)l 

n(C) - ( k  - 2)(m - 1) - min (4, k )  + 2n(G - C -  H )  - E - E’  

Sn(G)-(k-2) (m-l ) -n(H)-min(4 ,  k ) .  

Hence by hypothesis n ( H )  + min (4, k )  S 4. We infer k S 3 and n ( H )  + k s 4. 
Combining the last inequality with the second part of (*)  we obtain 

n(G) - ( k  - 2)(m + 1) + k - 2 + k s 12. 

In the subcase m = 1 this means n(G) S 10. If m 2 2 then rn = 2 and k = 2 by (*) 
and again n(G:)SlO. 

For the remainder of the proof we assume 

N,(ui, L,) u N , ( w ,  L ~ )  = for all i# j. 

We call a vertex z on some Li a good vertex if n(C(ai, z)) = n(C(z, bi)) # 0 and 
moreover there exists no arc joining C(ai, z) to C(z, bi). 

Case 2. Let Q be an arc joining different components of C- N ( H ,  C) such that 
none of the terminal vertices is a good vertex. Without loss of generality we may 
assume that Q joins z1 E V ( L , )  to z 2 e  V(L2).  

Case 2.1. For i = 1 and i = 2 there exist arcs from C(ai, 2, )  to C(zi,  br) .  Then 
n(Ll) + n ( t 2 )  3 2m + 6 by (3”) of Lemma 2.4 and hence n(L, )  = n(L2) = m + 3 by 
hypothesis. Moreover q t E N a ( u i , L i ) ,  where qi is the successor of zi on Li ( i =  
1,2). But this subcase cannot occur (see (3) of Lemma 2.4). 

For the remainder of Case 2 we assume that there exist no arcs from C(a,, zl) 
to C(Z,, bl). 

Case 2.2. Let n(C(z,, b , ) ) 3  3. Then n(C(z,, b,)) = 3 and 3 s  n(L2) = m, since 
IN,(ul,L,)13n(C(z,, b,)). We infer n(C(ul ,z l ) )Sm-17 since n(L1)Sm+3.  By 
Lemma 2.3 we have q 2 ~ f i a ( u 2 , L 2 ) ,  which in turn implies n ( L , ) S m + 2  and 
n(C(a,, zl))  < rn - 2. From this we deduce n(C(a,, zz)) 3 2 by Lemma 2.2. 
Moreover there exists n o  arc from C(a2, z2)  to C(z2, b2), since n(L1)+ n(L2)G 
2m+2. 

Therefore Ifia(w2, L2)1 2 2, which implies n(L,) G m + 1, a contradiction. 

Case 2.3. Let n(C(z,, b,))=2. In view of Case 2.2 we obtain n(C(a,, z,))= 1, 
hence n(C(a2, z2))  2 m - 1 by Lemma 2.2. O n  the other hand n(L,) G m + 1, since 
l~,(ul ,Ll) lz=2.  Weinfer 3 S n ( L 2 ) = m + l .  From n(C(a , , z , ) )= l<m wededuce 
q2 E N,(u,, L2) by Lemma 2.3. Since z2 is not a good vertex this implies n(L,) 3 4, 
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hence m 3 3 .  On the other hand n ( L , )  = 4 3 m + 1 by Lemma 2.2. Consequently 

n(L,)  = n(L2) = 4 = rn + 1 

and, by Lemma 2.3,  there exists no arc from C(a , ,  z2) to C(z2 ,  b2). Now 
n(L , )  = m for all i > 2. An arc joining different components of C -  N ( H ,  C )  -{zl} 
would join q1 to the predecessor of z2 which, by the construction in Lemma 2.6, is 
impossible. If such an arc does not exist, then G - N ( H ,  C )  -{zl} has at least k + 2 
components contrary to Gk X. 

Since z1 is not a good vertex the discussion of Case 2 is exhaustive and leads to 
a contradiction in any subcase. 

Case 3. Each arc joining different components of C - N ( H ,  C )  has a good 
terminal vertex. Let S be the set of all good vertices. By assumption 
G - N ( H ,  C) - S has at least k + IS1 + 1 components contrary to G& X. 

This completes the proof of the theorem. 

Corollary. Let G be graph without hamiltonian circuit and having at least 11 
vertices. Then 

(i) there exist non-adjacent vertices x, y such that d ( x ) + d ( y ) <  n ( G ) - 5  or 
(ii) there exist for some t 3 1 vertices x,, x2, . . . , x, such that G - x1 - . . . - x, has 

at least t + 1 components. 

Proof. If n ( G )  3 3 and if G has not property (ii) then G is 2-connected and we 
can find a maximal circuit C in G. Also IN(H, C ) l 3  2 for each component H of 
G -  V(C). In this case (i) by Theorem 3.3. 
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A REDUCTION METHOD FOR EDGE-CONNECTIVITY 
IN GRAPHS 

W. MADER 
Freie Universitiir Berlin, Fachbereich Mathematik, 1000 Berlin 33, W. Germany 

Let V ( G )  be the vertices and E(G)  the edges of the multigraph G = 

( V ( G ) ,  E(G)) .  (In a multigraph parallel edges are allowed, but not loops.) We 
denote the set of edges between the vertices x and y of G by [x, Y]G, sometimes 
without the index G. Let h(x, y ;  G )  be the maximal number of edge-disjoint paths 
between x and y in G. 

Let h € [ z ,  x]G and kE[z,  y I G  with x #  y, and denote by Ghk the multigraph 
which arises from G - {h ,  k }  = ( V( G ) ,  E(  G )  - { h, k } )  by the addition of exactly one 
new edge between x and y. The multigraph Ghk is called a lifting of G a t  z, arising 
from the lifting of h and k at z. For pairs x #  y in V ( G ) - { z }  it is obvious that 
A ( x ,  y ;  G h k ) s A ( x ,  y ;  G). If for all such pairs h ( x ,  y ;  Ghk)=  A(x, y; G )  holds, we 
call the lifting admissible. In [5 ] ,  LovAsz proved that at each vertex of an eulerian 
multigraph there is an admissible lifting. In his talk at the conference on graph 
theory in Prague in June 1974 he also announced the result that at each non- 
separating vertex z of even degree in a finite multigraph G, there are edges h and 
k such that 

min{h(x, y ;  Ghk):{x,  y } ~  V ( G ) - { z } }  
=min{h(x, y ;  G ) : { x ,  y } ~  V(G)-{z}} 

holds. Furthermore he advanced the conjecture (see [6]) that at each non- 
separating vertex of even degree in a finite multigraph there is an admissible 
lifting. 

As the main result of the present work we will prove the following somewhat 
more general result, namely that if z is a non-separating vertex of degree at least 
4 in the multigraph G then there exists an admissible lifting of G at z. 

With the help of this result we will describe a simple construction procedure for 
all n-fold edge connected multigraphs, thereby proving Conjecture 2 of Simmons 
[ll] in a somewhat modified form. 

In a directed multigraph G let h(x ,  y ;  G) denote the maximal number of 
(continuously directed) edge-disjoint paths from x to y. An orientation G of the 
multigraph G is called admissible if for each pair x #  y of vertices of G 
A ( x ,  y ;  (?)*[$A(x ,  y ;  G ) ]  holds, where [ r ]  denotes the integer part of the real 
number r. As suggested by Lovtisz, we will deduce from our main result a theorem 
of Nash-Williams [ 9 ] ,  stating that every finite multigraph possesses an admissible 
orientation. 
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We mention a few more definitions and symbols. In place of x E V ( G ) ,  resp. 
k E E(G), we mostly write x E G,  resp. k E G. For k E E ( G ) ,  say k E [ x ,  y],, let 
V,(k)  = { x ,  y} (usually written without the index); when I[x, y]1= 1 we sometimes 
regard [ x ,  y] simply as the edge between x and y. Let A G V ( G )  and B c V(G) 
with A n B = 8. Then let A = V ( G ) - A  and let G ( A )  denote the submultigraph 
induced by A.  Further let G - A  = G ( A )  and for E ‘ c  E ( G )  let G - E l =  
( V (  G ) ,  E ( G )  - E’). Furthermore let 

E(A, B ;  G )  = { k  E E(  G )  : V ( k )  n A # $4 and 

d(A, B ;  G )  = 1E(A, B ;  G ) (  

V(  k )  f l  B # g}, 

and 

E ( A ;  G ) = E ( A , A ;  G), d ( A ;  G ) = ( E ( A ;  GI. 

In the case A = { a }  we write simply a in the symbols, and the same convention is 
used if E‘={k};  thus for instance d ( a ;  G )  is the degree of the vertex a in G. Let 
6 ( G )  =minx,,,,, d ( x ;  G )  and let \GI = I V(G)I. A multigraph G is called n-regular 
if d ( x ;  G )  = y1 holds for all x E V(G) .  For x E G let 

N ( x ;  G ) = { Y E  V ( G ) : [ x ,  y l c # P ) }  

and for a submultigraph HE G and k E E ( G )  with V , ( k ) z  V ( N )  let 

H U k = ( V(H) ,  E ( H )  U { k } )  

with V,,,(k) = V,(k) .  A path P with endvertices x and y is called an x ,  y-path, 
and for x’ ,  Y’E P we denote by P[x’, y’] the x i ,  y’-path contained in P. In general 
the multigraphs we consider are finite: only in a few places will infinite multi- 
graphs be allowed, and these will be manifest from the context. For a finite 
multigraph G we put h ( x ,  x ;  G)=m for X E  G and A(G) =min h(x ,  y ;  G), so in 
particular h(G) = 00 in the case IGl= 1. A multigraph G with h(G) 3 n is called 
n-fold edge connected. By Menger’s theorem in edge form (see for instance 
[12,9.3] and for infinite multigraphs compare [2, p. 451) we know that 

A ( x ,  X; G )  = min { d ( X ;  G ) :  X c V ( G )  with x E X and 
X E X }  for x # X  in G. 

We will frequently make use of this without explicit reference. Thus for x f  X in 
G ,  the set 

T(x,X; G ) = { X E  V ( G ) : X E X , X E X  and d ( X ; G ) = A ( x , x ; G ) }  

is non-empty. A set E’G E ( G )  with IE’I = h ( x ,  X; G )  with the property that x and 
X lie in different components of G - E ’  we call a smallest separating edge set for x 
and X in G. 

We shall use most of the above definitions analogously for directed multigraphs 
(or multidigraphs). The set of edges k from x to y in the multidigraph G we 
denote by ( x ,  Y ) ~ ;  x is called the initial vertex of k and y the terminal vertex. An 
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orientation of the multigraph G to a multidigraph is equivalent to a decomposition 
of [ x ,  yIG into two disjoint sets (x, y ) ~  and (y, x ) ~  for all x f  y in G. For a 
multidigraph G let E ( A ,  B; G) = ( k € E ( G ) :  the initial vertex of k belongs to A, 
the terminal vertex to B}. In contrast to the undirected case we do not now put 
E ( A ; G ) = E ( A , A ; G )  but we define E ' ( A ; G ) = E ( A , A ; G ) , E - ( A ; G ) =  
E + ( A ;  G )  and E ( A ;  G)=E'(A;  G)UE-(A;  G ) .  We define d ( A ,  B ;  G ) ,  
d*(A; G )  and d ( A ;  G )  correspondingly. For the directed case of Menger's 
theorem and for the definition of T ( x , Z ;  G )  one has merely to substitute 
d + ( X ;  G )  for d ( X ;  G ) .  In a directed multigraph we understand by a path, resp. 
cycle, a continuously directed path, resp. cycle, and an x, y-path is a directed path 
from x to y. 

Let A be a set of vertices of the multigraph G with $4 it A # V(G)  and let a E A. 
The multigraph G, has vertex set A U { a }  and E( G,) is defined by G, - a = G ( A )  
and [ [ x ,  aIG,I= d(x,  A ;  G )  for all X E A .  We say that the multigraph G, arises 
from G by identification of A to a. (In directed multigraphs the identification of A 
to a is defined analogously.) For all X G  A it is clear that d ( X ;  G,) = d ( X ;  G )  and 
d ( X  U {a} ;  G,) = d ( X  U A ;  G )  hold. Furthermore there exists a bijective function 
i : E(a;  G,) + E ( A ;  G )  with i ( [ x ,  a],) = E(x,  A ;  G )  for all x E A ;  we call i an 
associative bijection. 

The following lemma is an immediate consequence of Menger's theorem. 

Lemma 1. For any three distinct vertices a ,  b, c we have 

h ( a ,  c ;  G)*min{A(a, b ;  G) ,  h(b,  c ;  G)} ,  

where G is a (possibly infinite) multigraph or directed multigraph. 

The next lemma may be compared with [l,  Lemma 3.1 in Ch. IV]. 

Lemma 2. In the multigraph G let A E T(a, a ;  G )  for certain a, a in G. G, arises 
from G by identification of A to a. Then h(x ,  y; G,) = h(x,  y; G )  holds for all x # y 
in V(G,). 

Proof. For x #  y in G,, each system of n edge-disjoint x ,  y-paths in G clearly 
yields a system of n edge-disjoint x, y-paths in G,;  hence h(x, y; G u ) 2  h(x ,  y ;  G ) .  
Since d ( A ;  G )  = h(a ,  a ;  G )  m e  can associate with each k E E(A;  G )  an a, a-path 

i :E(a;  Ga)+  E(A;  G )  be an associative bijection. Given a system of n edge- 
disjoint x ,  y-paths in G, we may replace each edge k E E ( a ;  G,), say k E [ z ,  u],~, 
by P i ( k ) [ ~ ,  a ] ,  and so obtain n edge-disjoint x ,  y-paths in G. Thus h(x, y ;  G ) S  
A ( x ,  y; G,)  also holds, and thereby Lemma 2 is proved. 

pk in G with k€Pkr  so that E(P,)nE(PV)=B for k # k ' .  Let 

Lemma 3. I n  the multigraph G let A E T(a ,  a ; G )  for certain a, ii in G. Let G, arise 
from G by identification of A to a. Let i' be an associative bijection, which we 
continue through the identity on E(G - A )  to a map i : E(G,) + E(G).  Let Gtk  be 
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an  admissible lifting of G, at z E A -{ii}. Then G"h'i'k' i s  ' an admissible lifting of G 
at 2. 

Proof. Let n = A(a,  ii; G) and let Ga arise from G by identification of A to ii. As 
the lifting Gh,k is admissible and z @ { a ,  a}, it follows that A ( &  a ;  Gh,k)= 
A ( &  a ;  G,) = n by Lemma 2 .  Since n = d(A;  G'(h)'(k)) = d ( a ;  Gtk), we can extend 
n edge-disjoint ii, a-paths in G2k to n edge-disjoint ii, a-paths in G'(h)r(k' as 
in the proof of Lemma 2. Thus 

A(a,  ii; G"h'"k') = A(a,  ii; G,hk)= A(a,  ii; G,)= A(a ,  a ;  G) 

and 

A E T ( a ,  ii; G1(h)'(k)) .  

If x, y E (A - { z } )  U { a } ,  by Lemma 2, 

A ( x ,  y ;  G"h)'(k') = A ( x ,  y ;  Gtk) = A ( x ,  y ;  G,) = A ( x ,  y;  G). 

Since G, arises from G'(h)L(k' by identification of /i to ii, we have 

A ( x ,  y ;  G r ( h ) 4 k )  ) = A ( x ,  y ;  G,) = A ( x ,  y ;  G) for all x, y E A U{ii}. 

If now x E A and y E A - { z } ,  we have A ( x ,  y ;  G)s d(A;  G) = n. Hence by Lemma 
1 and the above equalities. 

A ( x ,  y ;  G'(h)l(k))Smin { A ( x ,  a ;  G'(h''(k)), A(a,  y ;  G"h"'k')) 

=min { A ( x ,  a ;  G), A(a, y ;  G)} 
a m i n  {A(a ,  y ;  G), A ( x ,  y ;  G)}. 

But 

and so 

A(a ,  y ;  G)=A(a, y ;  G,)aA(x, Y ;  G), 

A ( x ,  y ;  G1(h) '(k))a A ( x ,  y ;  G). 

A ( x ,  y ;  G"h)"k') = A ( x ,  y ;  G) 
Thus 

for all x, y E V ( G ) - { z } ,  

and Lemma 3 is proved. 

Lemma 4. In the multigraph G let A c V(G) with d(A; G)G A(a ,  a ;  G ) +  1 for 
certain vertices a E A and ii E A. Then d ( X ;  G(A)) 2 d ( X ,  A ;  G) - 1 holds for all 
X G A -{a} .  

Proof. There exist edge-disjoint a, a-paths P , ,  . . . , P,, in G with n = A ( a ,  U ;  G).  
Then since d(A; G) n + 1 each path P, contains exactly one edge of E ( A ;  G), 
SO V(P,) n X f  P, holds for at least d ( X ,  A ;  G)- 1 many v. Since u& X the lemma 
follows. 

Lemma 5. Let d ( a ;  G ) a  n and suppose thatfor all {x, y } ~  V(G-a), A ( x ,  y ;  G ) a  
n holds. Then A (G) 2 n. 
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Proof. If there existed an A c  V ( G )  with a c A  and d ( A ;  G)<n,  then (A122 
since d ( a ; G ) = n ,  and we would have A(x ,y ;G)<n for x ~ A - { a } # @  and 
y E A # @ .  

The multigraph G is called irreducible relative to the vertices a # b if, for each 
smallest separating edge set E‘ for a and b, either E ‘ =  E ( a ;  G )  or E ’ =  E ( b ;  G )  
holds. In particular it then holds that 

A(a, b ;  G )  = min { d ( a ;  G ) ,  d ( b ;  G)}.  

We call the multigraph G irreducible if it is irreducible relative to all pairs a # b of 
vertices of G,  and G is z-irreducible if it is irreducible relative to all pairs a #  b 
of G - z, where z E V ( G ) .  

Lemma 6. Let G be a z-irreducible multigraph and let k E [x, ylC. Suppose that for 
the vertices (1 f ii in G - z, A ( a ,  ii ; G - k )  < A (a ,  ii ; G )  holds. Then 
{a ,  ii}n{x, y ) # p l .  If a E { x ,  y } ,  but i i & ( x ,  y } ,  then d(a; G ) s d ( i i ;  G )  holds. 

Proof. There is an A E T(a,  ii; G - k ) .  Since 

d ( A ;  G - k ) = A ( a , i ;  G-k)<A(a, i i ;  G )  

we have k E E ( A ;  G )  and by the z-irreducibility of G we have also E ( A ;  G )  = 

E ( a ;  G )  or E ( A ;  G ) = E ( E ;  G) .  Therefore k is incident with a or ii. V’e now 
assume that a E { X ,  y }  and t i&{x,  y } .  Then E ( A ;  G ) =  E ( a ;  G ) ,  and so 

d ( a ;  G )  = d(A; G )  = A(a, ii; G ) S d ( i i ;  G )  

holds. 

Lemma 7. Let Gkk’ be a lifting of the multigraph G at z and let there be a f ii in 
G - z  with A(a, 5 ;  Gkk‘)<h(a, a ;  G).  Furthermore let A E  T ( a ,  ii; Gkk’). Then 
{ k ,  k ’ } s E ( A ;  G ) .  In  the case 3 C d ( z ;  G)<4 we have also E ( z ;  G ) n E ( A ;  G ) =  
{ k ,  k’}. If G is z-irreducible then A(a, ii; Gkk’) = A(a, ii; G ) -  1. 

Proof. Let say k E [ z , x ]  and k ‘ E [ z , x ’ ] .  Since d ( A ;  Gkk’)<h(a, ii; G ) S d ( A ;  G ) ,  
we have { x ,  x ‘ } ~  A or {x,  x ’ } ~  A, and so { k ,  k ’ } s  E ( A ;  G) .  In particular it follows 
that 

d ( A  ; G )  = d(A ; Gkk‘) + 2 s A(a, ii ; G )  + 1 = n + 1, 

say. The second statement then follows by Lemma 4. Since { k ,  k ’ } s  E ( A ;  G )  = Eo, 
say, neither E, = E ( a ;  G )  nor E,  = E ( d ;  G )  holds. If G is 2-irreducible, it follows 
then that IEol> n and so 

A(a, ti; Gkk’) = d ( A ;  Gkk’) = n - 1. 

Remark 8. Let G be an eulerian, z-irreducible multigraph and let Gkk‘ be a 
lifting of G at z. Since in a multigraph H in which all vertices have even degree 
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d ( A ;  H )  is even for all A G V ( H ) ,  there cannot be vertices a f a  with 
A(a, a ;  Gkk‘)  = A(a, ii; G ) -  1 .  By Lemma 7 then the lifting is admissible. Hence 
by Lemma 3 the existence of an admissible lifting at any given vertex z of an 
eulerian multigraph can be proved at once by induction [5, Theorem 11. 

If ~ N ( z ;  G)I = 2, say N ( z ;  G )  = {x ,  y } ,  then Ghk is an admissible lifting of G at z 
for all h E [ z ,  x] and k E [ z ,  y]. We need then only consider the case IN(z;  G)I 2 3 .  
The following example shows that, in general, if d ( z ;  G )  = 3 then no admissible 
lifting of G at z can be found. Let G be an n-fold edge connected graph and let 
a, b, c be three distinct vertices of degree n in G. The graph G’ is constructed by 
adding a new vertex z and exactly one edge between each of z and a, z and b and 
z and c. Then 

A(a, b ;  G’) = A(a, c ;  G’)=  A(b, c ;  G’) = n + 1 ,  

but any lifting of G‘ at z will reduce the connectivity between a, b and c. 
Let the graph G have components C1,.  . . , C, and let c,  E V(C,) for v = 

1,.  . . , n. The graph G‘ arises from G by the addition of one further vertex z and 
exactly one edge between z and c,  for v = 1,. . . , n. In the case n 3 3 there is no 
admissible lifting of G’ at z. If however we assume that z is not separating, there 
is always, in the case d ( z ;  G )  2 4, an admissible lifting of G at z. We prove this by 
induction on the degree of z ;  to start the induction we need the following lemma. 

Lemma 9. Let z be a non-separating vertex of the finite multigraph G with 
d ( z ;  G ) = 4  and ( N ( z ;  G)I22.  Then there exists an admissible lifting of G at z .  

Proof. We suppose that Lemma 9 is already proved for all multigraphs G’ with 
IG‘(+ IE(G’)I < (GI + IE(G)I. Suppose further that there exists for certain a#  a in 
G - z a set A E T(a, 5; G )  with /A122 and IAI 2 2. Let z E A, say, and let G, 
arise from G by identification of A to a. Then z doesn’t separate G, either and 
since E ( z ;  G)!Z E ( A ;  G) we have also IN(z; Ga)132. By the inductive hypothesis 
there exists an admissible lifting of G, at z ,  and by Lemma 3 an admissible lifting 
of G at z also. We may therefore suppose that G is z-irreducible. The case 
IN(z;  G)I = 2 has already been dealt with. Suppose IN(z;  G)I = 3 ,  say N ( z ;  G )  = 

{ x ,  x ’ ,  x”}. Let say l[z, x]1= 2 and let k E [ z ,  x ]  and k’ E [ z ,  x ’ ] .  Then Gkk’ is an 
admissible lifting of G at z. For if this were not the case, there would exist a set 
A E V ( G )  with E ( z ;  G ) n E ( A ;  G ) = { k ,  k’}, by Lemma 7. But this is impossible, 
since k E E(A; G )  implies [ z ,  x ]  EE(A; G ) .  Thus we may assume IN(z;  G ) (  = 4. 

If an a~ G - z  with IN(a;  G)1= 1 exists, then z g N ( a ;  G ) ,  since z is not a 
cutvertex, and an admissible lifting of G - a at z obviously yields one such for G. 
It is assumed then that IN(x; G)122 for all X E  G. Since G is z-irreducible, it 
follows that A(G)> 2 by Lemma 5. 

Suppose now that there exists a vertex a E G - z  with d ( a ;  G )  = 2 .  Let say 
E ( a ;  G )  = { k ,  k’}.  We consider the multigraph H = Gkk’-  a.  Let say 
K ( H )  - K ( G )  = { k ” } .  By the induction hypothesis there is an admissible lifting 
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Hhh' of H at z. If Fklkz is an admissible lifting of a multigraph F a t  a vertex z with 
d ( z ;  F )  = IN(z;  F)I = 4, then obviously Fk3k4 for { k 3 ,  k,} = E ( z ;  F ) - { k , ,  k2}  is also 
an admissible lifting of F at 2. Since IN(z; H)I = 4 or there is an edge in H parallel 
to k,, we may assume k , a { h ,  h'}. Hence {h, h ' } ~  E ( G )  and Ghh' results from 
Hhh' by subdividing the edge k ,  by the vertex a. For all x f  y in G -{a, z} it then 
follows that 

A ( x ,  y; Ghh') = A(x ,  y ;  Elhh') = h ( x ,  y;  H )  = A ( x ,  y ;  G ) .  

Since A ( G ) 3 2  it follows from Lemma 5 that A ( H h h ' ) 3 2  and so also that 
h(Ghh')32.  Thus Ghh' is an admissible lifting of G at z. 

We may now assume that S(G)>3.  By the z-irreducibility of G it follows in 
particular that h ( G ) 2 3 ,  by Lemma 5.  We show that there is no kEE(G) for 
which the vertex z is a cutvertex of G -  k .  For otherwise, since h ( G ) 2 3 ,  
(G - k )  - z would have exactly two components, C ,  and C,, and d( V(C,); G )  = 

d(V(C,) ;  G )  = 3 would hold. By the z-irreducibility of G we would then have 
lC,l= IC,\ = 1 ,  contradicting ~ N ( z ;  G)I = 4. 

Let a, E G - z with 

d(a,; G )  = min d ( x ;  G )  = do, 
x e G - z  

say, and let a E N(a,; G - z )  # P, with 

d ( a ;  G )  = min d ( x ;  G) = d, 

say. Further let k o E  [a,, a ] #  P, and let H = G - k,. Then by the preceding 
paragraph z is not a cutvertex of H, and so by the induction hypothesis there 
exists an admissible lifting Hhh' of H at z .  We consider the multigraph Go= 
Ghh'= Hhh'U ko, and we assume that G, is not an admissible lifting of G at 2. 

x ~ N ( a o ,  G - z )  

There exist then a,# ii in G - z  with A(a,, 2 ;  G,)<A(a,,  a ;  G ) .  Since 

A ( x , y ; G - k , ) = h ( x , y ; H h h ' ) ~ A ( x , Y ; G , )  forall x + y  in G - z ,  

it follows that h(a,,  5 ;  G-k,)<A(a, ,  u ;  G ) .  Hence {al, a}n{a,, a } # @  by 
Lemma 6. Since 

A(a,, a;Hhh' )=A(aO,  a ;  G-k,)=A(a, ,  a ;  G 

and so A(a,, a ;  G,) = h(a,,, a ;  G) = d,, we have 
{al, ii}n{u,, a } =  {al}. We cannot have 

A ( u ,  5 ;  G,)=A(a, 5 ;  G )  = min { d ( a ;  G ) ,  d(ii: 

- 1, 

{a,, a}  Z { a n ,  a}. Let say 

for then by Lemma 1 we would also have h(a,, ii; G , ) ~ d o = A ( a , ,  ii; G ) ,  since 
h(a,, a ;  G,)= d,. Thus we have h(a ,  a ;  G,)<A(a, ii; G )  and we may assume 
a ,  = a. By Lemma 6 ,  d ( a ;  G)G d(ii; G )  holds and by Lemma 7 

h(a , i i ;  G , ) = A ( a , i i ; G ) - l = d - l .  
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We first prove the following statement. 

(*) I f  d({a,, a};  G - z )  = d - 1 and {a,, a}& N ( z ;  G )  then there is an admissible 
lifting of G at z. 

Let u = I[ao, aIGI 2 1. By Lemma 6, 

h ( ~ , a ; G - [ ~ o , ~ ] ) = h ( ~ , i i ; G ) = d  

holds. Since 

d({ao, a } ;  G - [ a o , z ] ) = d = d ( a ; G )  

we have d(a,; G -{u, z } )  = u, in particular d(ao;  G )  = 2 u  + 1. Since u 2 1 there is a 
k, E E(ao; G -{a, z}), say k,E [a,, u,]. Let E(z ,  G -{ao, a})  = {k, k,}, say k E [z, u ]  
and k, E [ z ,  u , ] .  Since u# u1 we may assume u1 # u,. We now show that if 
k‘E [a, z ]  then Gkk’ is an admissible lifting of G at z .  

We show first of all A ( x ,  X; Gkk’)= h(x ,  X; G )  for all {x, X}G V(G)-{a , ,  z, u,}. 
Let G, = G -  k , .  By Lemma 6, A ( x ,  2 ;  G,)  = h ( x ,  X; G )  holds. It thus suffices to 
derive a contradiction from the assumption h(x, X; Gik‘)<A(x, X; G,). Let X E  
T(x, X; Gik‘)  and let say z EX.  By Lemma 7 E ( z ;  G, )  n E ( X ;  G,) = {k, k‘}, and 
thus {a, u } s X  and u,EX. It follows therefore that [a,, U ] G  E(X;  G,) and 
thereby d({a,, z}, X; G l ) a  u +2.  Since d ( X ;  G l ) S h ( x ,  X; G l ) +  1 and x&{a,, z }  
we deduce from Lemma 4 that d({a,, z}; G,(X)) 2 u + 1, in contradiction to 
E({ao, 21; Gi(X)) 

We show now that h ( x ,  X; Gkk’)=  A ( x ,  X; G )  for all {x, X} in V(G)-{a , ,  z ,  u,}. 
First we consider G, = G - k,. By Lemma 6 we have A ( x ,  i; G,) = A ( x ,  X; G). We 
again derive a contradiction from the assumption A ( x ,  2; G,kk’)< A ( x ,  2; GJ. Let 
X E  T(x, X; Gkk‘) and let say z E X. By Lemma 7 it follows as before that 
{a, U } G  x and {a,, U , } C  X, and furthermore d({a,, z}, X ;  G 2 ) 2  u + 2 .  Once again 
Lemma 4 yields a contradiction to d({a , ,  z } ;  G,(X)) s u. 

We now derive a contradiction from the assumption that A(u,, u,; Gkk’)<  
A(u,, u,; G ) .  Let U E  T(ul, u,; Gkk’).  By Lemma 7 ,  E ( z ;  G )  n E (  U ;  G )  = { k ,  k’} ,  
so z E U and hence both U,E U and {a, u } c  u. Since [a,, a]U{k, k‘, k , } ~  
E (  U ;  G )  Lemma 4 once again yields a contradiction to d({a,, z } ;  G(  U ) )  

In the last three paragraphs we have proved that h ( x ,  X; Gkk’) = A ( x ,  X; G) for 
all {x, X }  c V( G )  -{a,, z } .  Since 

E(ao; G -{a,  21). 

v. 

A(x,X; G)=min{d(x;  G ) , d ( X ; G ) } a d ,  for all { x , X } E  V ( G - z ) ,  

it follows by Lemma 5 (since d ( z ;  G k k ’ ) = 2 )  that A(a,, x ;  Gkk’)>dO for all 
x E G -{a,,, z}. Hence the statement (*) is proved. 

Since h(a ,  ii; Go) = d - 1 there exists an A E V ( G )  with a E A, ii E A and 
d(A;  Go) = d - 1. By Lemma 7, {h, h ’ } ~  E ( A ;  G) and d(A; G )  = d + 1. Since 
A(a, ii; Elhh’) = d - 1 also holds, ko& E ( A ;  G). Thus ao€  A. Since for each 
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x E A -{ag, a, z }  we have 

A ( x ,  ii; Go) = A(x, E ;  G) = min { d ( x ;  G), d ( E ;  G)}, 

we must have N(a,; G ) n A  ~ { a ,  z } .  Otherwise there would be an X ~ E A  n 
N(a,; G-{a ,~} ) ,  so d(x , ;  G ) S d ,  by choice of a, and so A(x,, ii; G , ) a d  in 
contradiction to d(A; Go) = d - 1. We distinguish two cases. 

Case (i). [a,, z ] G  = 8. 

By the above, E(a,, G - a )  c E ( A ;  G ) .  Since 

A (a ,  ii ; Go - ko) = d (A ; Go) = d - 1 = d (  a ; Go - k,) 

it follows that 

d(a,,;  G - a )  = [[a,, a]G I - 1 = V - 1, 

say. The inequality d ( a o ;  G - a )  < l[ao, alG1 stands, however, in contradiction to 
A(a, a ;  G) = d ( a ;  G ) .  

Case (ii). [a,, zIc f 8. 

If Z E A  let B = A - { z }  and if z $ A  let B = A .  By Lemma 7, 
E ( z ;  G ) n E ( A ;  G ) = { h ,  h‘}. Thus both IE(z; G ) n E ( B ;  G ) I = 2  and d ( B ;  G)=  
d + 1 hold. Then by Lemma 6 

A(u,  E ;  G-[u , ,  ~ ] ) = A ( U ,  ii; G ) = d  

holds, hence d ( a o ;  G - { a ,  z})= v since d ( B ;  G-[a , ,  z ] ) = d  = d ( a ;  G )  and since 
N(a,; G - a )  c B. It follows however that d ( B  -{ao}; G )  = d and, by the z -  
irreducibility of G, B={ao,a} .  But then a ~ N ( z ,  G)  and by (*) there is an 
admissible lifting of G at z. 

Theorem 10. Let G be a finite multigraph and let z be a non-separating vertex of G 
with d ( z ;  G ) > 4  and ( N ( z ;  G)I>2. Then there exists an admissible lifting of G at 
2. 

Proof. We suppose that Theorem 10 is already proved for all multigraphs G’ with 
IG’I+IE(G’)I<IG(+IE(G)I. By Lemma 3 we can thus assume that G is z -  
irreducible. By Lemma 9 we may assume that d ( z ;  G ) a 5 .  Furthermore we may 
obviously assume that lN(x ;  G)122 for all X E  G and IN(z;  G)I>3. We can 
choose a E N(z; G) with 

d ( a ;  G )  = min d ( x ;  G )  = d ,  
x E N ( z ;  G )  

say, and let k E [a ,  21. Furthermore let H = G - k.  Since z fulfils the conditions of 
Theorem 10 in H also, there is by the induction hypothesis an admissible lifting 
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Hhh' at z .  We suppose that Ghh' is not an admissible lifting. Since by Lemma 6 

h(x, y ;  G h h ' ) ~ h ( ~ , y ; H h h ' ) = A ( ~ , y ; H ) = h ( ~ ,  y ;  G) 

holds for all {x, y } c  V(G)-{a ,  z } ,  there is an ii E G - {a ,  z} with 

h(a ,  ii ; Ghh') = A(a,  ii ; G) - 1 = d - 1 by Lemma 6 and Lemma 7 

Let A E T ( a ,  a ;  Ghh'). Since 

A ( U ,  a ;  H ~ ~ ' ) =  A ( U ,  a ;  H ) =  d - 1 

also holds, we have k # E ( A ;  G), so Z E A .  We may now assume that 
N ( z ;  G) n A ={a} .  Of course, if there were an x E N(z; G - a)n A, we would 
have d ( x ;  G ) 3 d  by choice of a, and so by Lemma 6 

A(x,a;  G h h ' ) 3 h ( x , a ; H h h ' ) = h ( x , a ; H ) = A ( x , a ;  G) 
=min{d(x;  G), d ( Z ;  G)}zd, 

in contradiction to d ( A ;  Ghh')=d-1.  Thus E ( z ;  G - a ) U { h ,  h ' } s E ( A ;  G) by 
Lemma 7. Since 

A(a, i i ; H h h ' ) = d - l = d ( a ;  H h h ' ) = d ( A ; H h h ' )  

we then have d ( z ; H h h ' - a ) = I [ a , z ] G J - l = v - l ,  say, and so d ( z ;  G - a ) = v + l ,  
in particular d ( z ;  G) = 2v  + 1. But then d ( A  -{z}; G) = d, whence A ={a,  z} by 
the z-irreducibilty of G. 

Let I f  k' be elements of E ( z ;  G-a) ,  where say 1 E[Z, u ] .  We now show 
h(x, X; Gkk')  = h(x, X; G )  for all { x ,  X } s  E ( G ) - { z ,  u} .  We consider the multigraph 
L = G - 1. By Lemma 6 h ( x ,  X; L )  = A(x, 2 ;  G) holds. We derive a contradiction 
from the assumption that A ( x ,  X; Lkk')< h(x, X; L ) .  Let X E  T(x, X; Lkk')  and let 
say z E X .  By Lemma 7, { k ,  k'}c E ( X ;  L ) ,  so a E X  and [z, a ] ,  c E ( X ;  L ) .  Hence 
d(z ,  X ;  L )  2 v + 1, which by Lemma 4 yields a contradiction to d ( z ;  L )  = 20. 

Since IN(z ;  G)I23  there exists u #  u' in N ( z ;  G-a) ;  let ~ E [ z ,  u ]  and 1 ' ~  
[ z ,  u ' ] .  Since d ( z ;  G ) 3 5 ,  hence d ( z ;  G - a ) 3 3 ,  there exists k ' E  
E ( z ;  G -  a ) - { (  l'}. We show that Gkk' is an admissible lifting of G at z. By the 
previous paragraph A ( x ,  X; Gkk') = h ( x ,  X; G) holds for all {x, X } s  E ( G  - z )  with 
{ x ,  3 )  # {u ,  ii}. We need then only derive a contradiction from the assumption 
h(u ,  u ' ;  G k k ' ) < h ( u ,  u ' ;  G). Let UE T(u,  u ' ;  Gkk'),  and let say Z E  U.  Since 
{ k ,  k ' } s  E ( U ;  G) by Lemma 7, a E U and thus [ z ,  u]EE(U;  G ) .  Then since 
U'E U, ~ ' E E ( U ;  G) also, and d(z ,  U ;  G ) a  u + 2  holds, which by Lemma 4 yields 
a contradiction to d ( z ;  G )  = 2 v  + 1. Hence Theorem 10 is proved. 

Theorem 10 may be extended immediately to infinite multigraphs. 

Corollary 11. Let z be a non-separating vertex of the infinite multigraph G with 
d ( z ;  G ) * 4 ,  IN(z ;  G)I32,  and d ( z ;  G) finite. Then there is an admissible lifting of 
G at z. 
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Proof. There exists a finite subgraph G , c  G with d(z ;  Go)= d ( z ;  G )  such that 
G o - z  is connected. Let 

9 = ( E ’ c E ( G ) : E ‘ z E ( G , )  and E’ finite}, 

and denote by P the set of all two element subsets of E ( z ;  G). We define a 
function f : 9 + P. Let E’ E 9. The graph H = (V( G), E’) has by Theorem 10 an 
admissible lifting Hh’k’ at z.  We set f(E’) = {h’, k’). Then there exists an element 
{h, k } E  P with the property that to each E E 9 there is an E’E 3 with E E E’ and 
f(E’) = {h, k } .  For otherwise we could associate with each p E P an E ( p )  with the 
property that for each E‘E 9 with E’ 2 E ( p ) ,  f(E‘) # p holds. This is impossible, 
though, since f (  U E ( p ) )  E P. However Ghk is then an admissible lifting of G at 
z. For given x# y in G with h(x ,  y ;  G )  finite there is an E E %  with 
h ( x ,  y; (V(G), E ) ) =  h ( x ,  y; G )  and by choice of {h, k }  there is an E ‘ E ~  with 
E E E’ and f(E’) = {h, k } .  

Remark 12. Let z be a cutvertex of the connected multigraph G, such that no 
k E E ( z ;  G )  is a separating edge of G. Let C ,  # C, be components of G - z and 
ki E E(z ,  V(Ci ) ;  G )  for i = 1, 2. Then A ( x ,  y; Gkik2) = A ( x ,  y ;  G )  holds for all x f  y 
in G. If {x, y} L V(C) U {z} for some component C of G - z, this is clear since G - ki 
is connected. If x and y belong to different components of G - z ,  by Lemma 1 

A ( x ,  y ;  Gklk2)3min{h(x, z ;  Gkik2), A(z, y; Gklkz)} 
= min { h ( x ,  z; G ) ,  h ( z ,  y; G)}= h(x ,  y; G ) .  

We will now describe operations by which all n-fold edge-connected finite 
multigraphs may be successively constructed. It is somewhat more convenient to 
consider here pseudographs (that is, to allow loops). The extension of our 
terminology to include pseudographs need cause no problems. (A loop adds 2 to 
the degree of the vertex. No loops arise as a result of identifications. For any 
vertex a, a & N ( a ;  G )  always holds.) A pseudograph G is called n-minimal if 
h (G)  3 n but for any k E E(G),  h(G - k )  < n holds. A pseudograph G with 
h(G)  5 n is obviously n-minimal exactly when G has no loops and for each pair 
x, y of adjacent vertices, A ( x ,  y;  G)  = n holds. 

We need also the result indicated in [7, Theorem 5b]. 

Lemma 13. Each finite, n-minimal pseudograph G with IG1>2 has at least two 
uertices of degree a. 

Proof. We use induction on the number of vertices. We can assume that an 
element k E E(G) ,  say k € [ a ,  61, exists with d ( a ;  G ) >  n and d ( a ;  G)> n. Since 
h ( a , C ; G - k ) < n  thereexistsAEV(G)withaEA, i i ~ A  a n d d ( A ; G ) = n . T h e  
multigraph G,, resp. G,, arises from G by identification of A to a, resp. A to 6. 

By Lemma 2 G, is n-minimal, since A(x ,  a ;  G) = n for all X E A  (or since 
d ( a ;  G,)= n ) .  Since IAlz2 (as d ( a ;  G)> n )  there are two vertices of degree n in 
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G,, by the induction hypothesis. The same is true of G, and so G also has two 
vertices of degree n. 

Let G be finite pseudograph and z a non-separating vertex of G with 
d ( z ;  G) = 2m such that z has no loops attached. By Theorem 10: G admits successive 
admissible liftings at z so as to get a pseudograph G' with ( N ( z ;  G')IS 1. (After 
the lifting z remains a non-separating vertex.) The pseudograph G' arises from 
G ' - z  by addition of 4 d ( z ;  G') loops at the (possibly non-existent) vertex of 
N ( z ;  GI). We say that G' arises from G by admissible splitting of z, and call G" an 
admissible splitting of G at z. For all x f  y in G', h(x ,  y ;  G') = h(x ,  y ;  G). We 
now consider the following three operations on pseudographs. 

0,. Choose m different edges k,, . . . , k ,  of G, divide ki by a vertex zt& G and 
identify { z , ,  . . . , z,} to a vertex ZE? G. 

0;. Act as in Om, then choose an a E V(G) and add an edge between z and a. 
0:'. Act as in Om, thereby constructing G'. Now choose m different edges 

h l , .  . . , h, of G '  with {hl , .  . . , h,}sZE(z; G'), divide h, by a vertex v i& G', 
identify { u , ,  . . . , u,} to a vertex u @  G' and add exactly one (further) edge between 
v and z. 

(Note that in 0, and 0; and 0:) the chosen ki and hi may also be loops. For 
m = 0 the operation 0, is simply the addition of a new vertex 2.) 

If the pseudograph G' arises by 0, from a pseudograph G with A(G)32m, 
then h (G ' )32m also, by Lemma 5 .  We will now show that conversely each 
(2m)-fold edge-connected pseudograph may be obtained from the graph G with 
\GI = 1 by successive addition of edges and repeated application of 0,. The next 
corollary was announced by Lovhsz in Prague. 

Corollary 14. Let G be a finite, (2m)-minimal multigraph with IGla 2. Then there 
is a pseudograph G' with A(G') 3 2m and IG'I = /GI - 1, from which G arises by 

o m .  

Proof. By Lemma 13 there is a Z E  G with d ( z ;  G ) = 2 m ;  z cannot be a cutver- 
tex. Thus there is an admissible splitting G' at z. Further A(G') 2 2m holds. As 0, 
is the opposite operation to splitting, G' is the pseudograph we are looking for. 

If G is a (2m)-regular multigraph with A(G)z=2m and ] G I 3 3  then the 
pseudograph which exists by Corollary 14 is also (2m)-regular and so likewise has 
no loops. These successive constructions of all (2m)-fold edge connected (2m)- 
regular multigraphs were displayed by Kotzig in [3] and cited [4, Theorem 81, 
(See also [ll, Conjecture 11). 

To obtain a similar construction of all (2m + 1)-fold edge-connected pseudo- 
graphs, we need the following result. 

Lemma 15. Let G be a (2m + 1)-minimal, finite multigraph with /GI 3 3, and let a ,  
be a non-separating vertex of G. Then there exists a k E E ( G  - a,), say k E [a,  (z], 

w i t h d ( a ; G ) = 2 m + l ,  such tha tA(x ,y ;G-k)*2m+l  fo ra l lx#y inG- (a , i i ) ,  
and furthermore for all x f  y in G - a  in the case d(ci;  G ) > 2 m + l .  
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Proof. We assume that Lemma 15 is already proven for all multigraphs G‘ with 

By Lemma 13 there is a b f a, with d ( b ;  G) = 2m + 1. Since a, doesn’t separate 
the multigraph G, N ( b ;  G) # {ao}. Thus there exists h E E ( b ;  G - ao), say h E [b ,  61. 
We can assume that u # ii exist in G - b with A (  u, ii; G - h )  c 2m, where further 
b&(u, i i }  if d ( b ; G ) = 2 m + l .  Then there exists a UEV(G)  with U E U ,  i i ~  
0, d ( U ;  G ) = 2 m + l  and h E E ( U ;  G); let say b~ U and b~ u. Since u #  b, 
I UI 3 2. Since either ii# b or d(b; G) > 2m + 1, 1 2 also holds. In the following 
we make use only of I UI 3 2, I ul3 2, and d (  U ;  G) = 2m + 1, so we may assume 
say U,E U. Let G, arise from G by identification of U to u. By Lemma 1, G, is 
also (2m + 1)-minimal and 3 s  lGUl < IGI holds. Since G, - u = G( u) is connected, 
there is by the induction hypothesis a kEE(G,-u), say kE[a, CIG, with the 
properties (in G,) described in the statement of Lemma 15. 

We now show that k also has these properties in G. Clearly for all X E  

u, d ( x ;  G,) = d ( x ;  G) holds, in particular d ( a ;  G) = 2m + 1. We observe that 
there is a U ’ E ~  with A(u,u’;GU-k)=2m+1. The case IG,134 each U ’ E  

U-{a, 6}#  9 will do. In the case IGI = 3, d(ii; G,)> 2m + 1 holds, since not all 
three vertices of G, can have degree 2m + 1. Then d ( u ;  G, - k)  = 2m + 1 and 
d ( 6 ;  G , - k ) s 2 m + l ,  and since IG,I=3 we have A ( &  u ;  GU-k)=2m+1.  Now 
for each such U ’ E  u with A(u, u ‘ ;  G , - k ) = 2 m + l  it is obvious that 
h ( u r , x ; G - k ) = 2 m + l  for all XEU. By Lemma 2, A(x,y;G-k)= 
A ( x ,  y ;  G, - k )  for all {x, y } ~  u. Since identification of 0 to ii in G - k yields the 
same graph as does the same operation in G, Lemma 2 also implies that 
A ( x ,  y ; G - k )  = A ( x ,  y; G) for all {x, y } ~  U. Hence k has the desired properties in 
G. 

I G’l< P I .  

Remark 16. A multigraph G with A(G) 2m need by no means possess an edge 
k E G with the property that for all x #  y in G -  V(k), A(x ,  y ;  G -  k)32m holds. 
For consider any graph G with A(G) 3 2 and subdivide each edge by exactly three 
vertices. If we then replace each edge by a set of m parallel edges we obtain a 
multigraph G‘ with A(G’) 3 2m, but no edge in G’ has the above property. 

We now consider a pseudograph G with A(G) = 2m + 1. For a pseudograph G’ 
which arises from G by OL, we have A(G’) 3 2m + 1 by Lemma 5. Analogously it 
is easily seen that A(Gr)32m+ 1 if G‘ arises from G by 0:). We will now see 
that conversely each finite pseudograph G with A(G)32m+l  may be obtained 
from a vertex by addition of edges and by use of 0; and 0:). 

Corollary 17. Let G be a finite, (2m+l)-minimal multigraph with (Gl32 .  Then 
either there is a pseudograph GI with A(G,)32rn+l and IG1l=IGI-l, from 
which G arises by Ot,, or else there is a pseudograph G2 with A(G,) 3 2m + 1 and 
IG21 = IGI-2, from which G arises by 0:). 
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Proof. If IGl=2, G arises from a vertex with m loops by 0;. Let thus IGIa3 .  
There exists a non-separating vertex a ,  of G. Let kE[a,  i i ] ~  E(G-a,)  with 
d ( a ;  G ) = 2 m + l ,  where k is the edge described in Lemma 15. Let H = G - k .  
Since d ( a ;  G) = 2m + 1, H -  a = G - a is connected, and so there is an admissible 
splitting H" of H at a. 

Case (i). d ( 6 ;  G ) > 2 m + l .  
Then h ( x , y ; H ) ~ 2 m + l  holds for all x # y  in G-a .  Hence A ( H a ) a 2 m + l  

and G arises from H a  by 0;. 
Case (ii). d ( 6 ;  G)  = 2m + 1. 
This can only occur for m > 0. Now d ( a ;  H " )  = 2m and h(6,  x;  H a )  = 2m for 

x E H a  - a # 8. Thus H a  has no loops at 6 and since m 3 1 Ha - 6 is connected. 
Hence there is an admissible splitting (Ha)" at 6. But then A((H")Q) 3 2m + 1 holds 
and G arises from ( H a ) z  by 0:). 

Let G'  be a pseudograph with h(G')  2 2m + 1 and (G' l3  2. If G arises from G' 
by 0; then there is a vertex x E G with d(x;  G )  > 2m + 1. If G arises from G' by 
0:) then there are two adjacent vertices in G of degree 2 m + l .  Whilst the 
1-minimal finite graphs may be constructed by O;, alone, we cannot manage in 
Corollary 17 for m > 0 with just one of the operations 0; and 0:). (The complete 
bipartite graph KZm+l,s with s > 2m + 1 is (2m + 1)-minimal, and contains no two 
adjacent vertices of degree 2m + 1.) 

The situation is different, though, if we restrict ourselves to the class km(m 2 1) 
of all (2m + 1)-fold edge connected finite pseudographs whose vertices all have 
degree 2 m + l ,  with the possible exception of one vertex of degree 2 m + 2 .  If 
G E R, has loops, then G is a single vertex with m + 1 loops. Let G E &, with IGI 
even, [GI 3 4. Then G is (2m + 1)-regular and arises by 0:) from a pseudograph 
G '  with h ( G ' ) a 2 m + l ,  by Corollary 17. Since G' is also (2m+l)-regular, it 
follows that G'ER,.  Now let G ER,,, with lGl odd, / G 1 2 3 .  Then G has exactly 
one vertex b of degree 2m +2.  Since m 3 1 b is not a cutvertex. Thus we can 
assume a, = b, where a. is the vertex described in the proof of Corollary 17. Then 
case (ii) will occur and G arises by 0:) from a pseudograph G' with h(G')* 
2m + 1. With the exception of d ( b ;  G') = 2m +2 ,  all vertices of G' have degree 
2 m + l  and so G ' E ~ , .  Thus we see that the graphs k, arise by repeated 
application of 0:) either from a vertex with m + l  loops or from the graph 
consisting of two vertices joined by exactly 2m + 1 edges.' 

In particular this settles [ l l ,  Conjecture 21. (This conjecture states that each 
G E ~ ,  with JG1>4 may be obtained from an appropriate G ' E ~ ,  by the 
following operations: choose 2m different edges k , ,  . . . , k,, of G', subdivide k,  
by a vertex z,, identify {zl , .  . . , z,} to a vertex z and {zmtl , .  . . , z2,}  to a vertex 
z' # z ,  and join z and z' by exactly one edge. As stated this construction is not 
possible, however, since it implies that each G E ~ ,  with / G I 2 4  must contain 
vertices x f  y with I[x, y lGl  = 1, and this is only fulfilled when m = 1 or m = 2. 

This successive construction of all G E k m  with /GI even had already been found by Kotzig in [ 3 ]  
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Consider for r n s 3  a polygonal prism where each edge of both polygons 
has been replaced by [ (2m+1) /3]  parallel edges and each other edge by 
(2m + 1 - 2[(2m + 1)/3)]  parallel edges.) One might suppose that each G E &,,, with 
/GI odd arises by 0; from a G ' E &  with /G ' /=/GI- l .  The following graph 
shows that this is not true. Let C be a cycle of length 12 with vertices a,,  . . . , a12 
(in cyclic order) and let a& C. Join a to the vertices a2, a5, a8 and a, ,  by a single 
edge and add further the edges [a,, an.+2] for n = 1, 4, 7, lO-'Naturally it is 
possible, however, to obtain each GER,,,  with IG123 odd from a G ' E R ,  by 
Omtl,  and conversely applying Omtl to a pseudograph G'ekm with /G'/ even 
always results in another element of k,,,. 

We now turn to the theorem of Nash-Williams mentioned at the start. A 
multidigraph G is said to be strongly connected if A ( x ,  y ;  G )  3 1 and A(y, x ;  G )  3 1 
for all x # y  in G. Robbins shows in [lo] that each 2-fold edge-connected 
multigraph admits a strongly connected orientation. Let G be a multigraph and 
let $3 # A c V(G).  Let Gal, resp. G,, arise from G by identification of A to a ,  E A, 
resp. A to a2E A. Furthermore let in be an associative bijection 

i , , : E ( a n ; G a m ) + E ( A ; G )  for n = l , 2  

and let eQn be an orientation of G,". We say that G,, and ea2 are compatibly 
oriented if for all k e  E ( A ;  G), i; ' (k)EE'(a,;  GQ,) if and only if i;'(k)E 
E-(a,; GQ2). Then obviously for all k E E ( A ;  G),  i;l(k)E E-(a,; Gal) if and only if 
i;'(k)E E f ( a , ;  6,J and Gal arrd GQ2 yield in a natural manner an orientation of 
G. Let C be a (continuously directed) cycle in the multidigraph G. G' arises from G 
by reversing the direction of each edge of C and leaving the other edges of G 
unchanged. We say that G' arises from G by reorientation of C. The dual 
multidigraph G' arises from G by reversing the direction of every edge of G. 

We shall need the following simple lemmata. 

Lemma 18. Let be an admissible orientation of the multigraph G. Let C be u 
cycle of e and let 6 arise from 6 by reorientation of C. Then 6 is an admissible 
orientation of G. 

Proof. For all A c V(G) ,  ( E ' ( A ;  G) fl E(C) (  = lE-(A;  &) r l  E(C)(  holds. Thus 
d f ( A ;  G) = d ' ( A ;  6 )  for all A G V(G) ,  and the lemma follows by Menger's 
Theorem. 

Lemma 19. Let a be a vertex of the multidigraph G with 

A(a,ii; G ) = A ( i i , a ;  G ) = d ' ( a ;  G ) = d - ( a ;  G )  foracertaini iEG-a.  

Then for each E + z  E + ( a ;  G )  and each E - c  E - ( a ;  G )  with IE'I = IE-l= m there 
exist edge-disjoint cycles C, ,  . . . , C, with E'U E - E  U,"=, E(C,). 

(Since by the definition of a cylce no vertex is passed through twice it follows 
that a E C, for p = 1,. . . , m.) 
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Proof. Let E, = E ( a ;  G)-(E+U E-) and let Go = G - E,. We split a in Go into 
vertices a and a'& Go to obtain a multidigraph G' thus: add to G,-E- the vertex 
a' and let (x, a'),. = (x,  a)Go for all x E G,  and let (a ' ,  x) = P, for all x E G'. Since 
however, A(a, ii; G') = A(i i ,  a ' ;  G ' )  = m holds, it follows that A(a, a ' ;  G') = m by 
Lemma 1,  and so the existence of the cycles C, follows also. 

Lemma 20. Let a be a vertex of the multidigraph G with the property that for all 
E+G E'(a; G )  and E-G E- (a ;  G )  with IE'1= IE-/= m there exist edge-disjoint 
cycles C1,.  . . , C,,, with E + U E - c  Ur=l E(C,) .  Then for each E,,G E ( a ;  G )  with 
IEol = d'(a; G )  there is a multidigraph G' ,  obtained by reorienting cycles, with 
E'(a; G ' )  = Eo. 

Proof. Let E + = E + ( a ;  G ) - E ,  and E - = E , - E + ( a ;  G). Since IE,l=d'(a; G )  we 
have IE+I = IE-l= m. Thus edge-disjoint cycles C1, . . . , C, exist with Et U E-  G 

u E(C,) ,  and reorienting C1,.  . . , C, yields the desired G'. 

Lemma 21. Let G be a multigraph with A E T(a ,  li; G )  for certain a, a E G, and let 
d ( A  ; G )  = A(a, ii; G )  be even. Let G,, resp. G,, arise from G by identification of A 
to a, resp. A to a. If G, and G, possess admissible orientations then so does G. 

Proof. Let i and be associative bijections of G, and G, respectively, and let G,, 
resp. G, be an admissible orientation of G,, resp. G,. Since A(a, ii; G) = 2n then 

A ( a ,  a ; GJ = A (5, u ; d,) = n = A ( a ,  ii ; = A (a, u ; d8) 
by Lemma 2. Consider say G,. By Lemma 19 the conditions of Lemma 20 for the 
vertex a in d, are fulfilled. We choose E,  = i-'( r(E-(ii; G,))). Since lEol = n we 
obtain by Lemma 20 an orientation d,  with E+(a;  G,) = E,. Then ea and e6 
are compatibly oriented and by Lemma 18 G, is also an admissible orientation. 
The orientations G, and yield in a natural way an orientation G of G. We 
now show that G is an admissible orientation of G. First of all A(x, y; G) = 

A(x, y; Gc) for all {x, y } ~  A by Lemma 19 (this lemma implies that x, y-paths in 
C?'i can be transferred to x, y-paths in G), and so 

A ( x ,  y; G)a[$A(x, Y ;  G,)I=E$A(x, Y ;  (31 
by Lemma 2. Similarly A(x, y ;  G)*[iA(x, y ;  G)] for x, y €2. By the above 
we have A ( a , i i ; G ) = d ' ( A ; G ) = n = A ( a , a ; G ) .  Let now, say, x c A  and Y E A  
andletm=[$A(x,y;G)].ThensinceA(x, y ;  G)sh(x,ii;G,)wehaveA(x,ii;G,)s 
2m, similarly A(a, y; G a ) 3 2 m ,  and so A(x, a ;  da)am and A(a, y; G a ) 3  rn. 
Hence A(x ,  2 ;  G)a m and A(a, y; G ) a  m. Since E ( A ;  G )  separates x from y we 
have 2n = A(a, a ;  G)22m, and so 

A ( X ,  y; G ) a m i n { ~ ( x ,  a ;  d ) , ~ ( i i ,  a ;  d ) , ~ ( a ,  y; d ) > a m ,  

as required. 
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Theorem 22 (Nash-Williams). Each finite multigraph has an admissible orien- 
tation. 

Proof. We suppose that Theorem 22 is false. Let G be a counter-example to 
Theorem 22 with IG] + (E(G)I as small as possible. It is easily seen that G has no 
cutvertex and A(G) 3 2. Obviously [GI 2 3 ,  so IN(x, G)I 2 2 for all x E G. Further it 
is easily seen that 6(G)  3 3.  By Lemma 21 we have the following result. 

( a )  If A E T(a,  6 ;  G )  and if d ( A ;  G )  is even, then IAl= 1 or IAI = 1. 
Let kEE(G)  and consider G - k .  We cannot have [&h(x,  y ; G - k ) ] =  

[ $ A ( x ,  y ;  G ) ]  for all x ,  y E G, since otherwise an admissible orientation of G - k 
yields one such for G. Hence there exist a f 5 in G with A(a, ii; G )  even 
and A ( a , i i ; G - k ) < h ( a , i i ; G ) .  Let A ~ T ( a , i i ; G - k ) .  Then k e E ( A ; G )  and 
d ( A ;  G )  is even. Thus by (a) either A = { a }  or else A ={a } ,  and so either 
k E E ( a ;  G )  and d ( a ;  G )  is even or k E E ( 6 ;  G )  and d(6; G )  is even. Hence we 
have the following. 

( p )  Every edge of G is incident with a vertex of even degree. 
By the result of Robbins [lo] (and anyway from ( p ) )  there exist in G vertices of 

degree greater than 3 ;  let 

V , , = { ~ E  V ( G ) :  d ( x ;  G ) > 3 }  

and let do = min,,, d ( x ;  G ) .  We now prove the following: 
( 7 )  There is no Z E  V(G) with d ( z ;  G ) =  d o  and A(z, x ;  G ) =  do for all X E  

We assume there were such a z.  By Theorem 10 we may obtain a multigraph H 
from G by successive admissible liftings at z, in which d ( z ;  H )  = 3 or IN(z;  H)I G 

1. Since IE(H)I<IE(G)I there is an admissible orientation fi of H.  Let E(H)-  
E ( G )  = {itl , .  . . , hs}. We divide the edges h, in the directed multigraph by a 
vertex z, identify {zl,. . . , z,) to z,  thus obtaining &. Obviously C? is an orienta- 
tion of G ;  we now show that it is admissible. For x Z  y in G - z we have 

V o - { Z } .  

h ( x , y ;  ~ ) 2 A ( ~ , y ; f i f ) Z [ ~ h ( x ,  y ; H ) ] = [ $ A ( x ,  y ; G ) ] .  

In the case d ( z ; H ) > 2  we have A ( H ) > 2  by Lemma 5 ,  and so also h ( G ) a  
2, and then fi is strongly connected and l d + ( z ; f i ) - d - ( z ; @ \ < l .  If 
d ( z  ; H )  < 2 we have A ( H  - z )  3 2, and so - z is strongly connected. Hence in 
both cases G is strongly connected and both d + ( z ;  G) 2 m = [ id0]  and d - ( z ;  G) 3 
m hold. We have to show besides that A(z, x ;  G ) z [ $ A ( z ,  x ;  G ) ]  and h(x, z ;  G ) a  
[ $ A ( x ,  z ;  G ) ]  for all x E G - z. For x E G - V, this is on account of the strong 
connectivjty of G, By our assumptions and by Lemma 1 A(x, y ;  G ) a  do for all 
{ x ,  y } ~  VO-{z}, and hence A ( x ,  y ;  G)> rn. We now deduce a contradiction, say, 
from the assumption A(z, Z; G)< m for some Z E  V,)-{z}. Let Z E  T(z ,  2 ;  G )  be 
minimal with respect to inclusion. Since A ( x ,  y ;  G)> m for {x, y } ~  V,-{z}, and 
FEZ, we have V o - { z } ~ Z ,  and so d ( x ;  G ) = 3  for all x ~ Z - { z } .  By ( p )  we have 
E ( G ( Z ) ) c E ( z ;  G ) .  Since d' (z ;  C ) > m  we have / Z \ 3 2 ;  let keZ-{z} .  Since 2 
is minimal we have d' (2- {x} ,  G)> d + ( Z ;  G) and so d(z,  x ;  G)> d(x,  2; G). If 
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d ( x , Z ; G ) > O  we have ( [ z , x ] , (=2 .  If d ( x , Z ; G ) = O  we have d ( x , z ; G ) > O  by 
the strong connectivity of G, so again l[z, XI,/ 3 2. But I[z, XI/ 2 2 is in contradic- 
tion to A ( z ,  2 ;  G )  = d,, = d ( z ;  G )  since d ( x ;  G )  = 3. 

By ( y )  the set 

P = { { x ,  y ) c  V (G) :h (x ,  y ;  G)<min{d(x; G) ,d (y ;  G)}} 

is non-empty. Let {a,  i i } ~  P with 

h(a ,  6 ;  G )  = min A ( x ,  y ;  G ) .  
{x. Y k P 

By (a ) ,  A(u, 6; G) is odd, say h(a ,  ii; G ) = 2 n + l .  Since h(G)*2 we have 
n a 1,  and so {a,  E } G  V,. Let A E T(a,  a ;  G). The multigraph G,, resp. G,, arises 
from G by identification of A to a, resp. A to 6. G, and G, have admissible 
orientations C?, and Ga respectively. By Lemma 2 A(G,)>2 holds and 
h(a ,  5 ;  G,) = 2n + 1. Thus 6, is strongly connected and both h(a,  u ;  e,)> n and 
A ( &  a ;  (?,)a n hold; in particular d'(a; 6,)z n and &(a;  C,)z n. Similar con- 
siderations hold for e& 

(6) Each (non-empty) set X C  V(G,  - a )  with d' (X;  G,) < n contains only 
vertices x with d ( x ;  G )  = 3 .  
(6) remains true if d' is replaced by d -  or a by a. 

Proof of (6). For X E X ,  A ( x , a ; G , ) < n .  By Lemma 2 A(x,a;G)=A(x,a;G,)< 
2n, since 6, is an admissible orientation of G,. By choice of {a,  ii} we have 
{x, a } &  P, and so 

h ( x ,  a ;  G)=min{d(x;  G), d ( a ;  G)} .  

Hence d ( x ;  G)<2n since h ( x ,  a ;  G)<2n<d(a; G).  However, then d ( x ;  G)=3,  
for if d ( x ;  G ) > 3  we would have d , < 2 n .  In the case d , 6 2 n  though we would 
have for all z E G with d ( z ;  G )  = do and y E G - z  that {z,  y } & P ,  by choice of 
{a ,  a}, and so 

A ( z ,  y ;  G) = min { d ( z ;  G) ,  d ( y ;  G)}  for all y E G - z ,  

in contradiction to (y). 

( F )  Let E ' c  E+(a;  C?,) and E-G E - ( a ;  G,) with IEfl= IE-l= rn. Then there 
exist edge-disjoint cycles C1,.  . . , C,,, with E f U  E - G  U,"=, E(C,) ;  
(E) holds similarly with c, replaced by Ga. 

Proof of (E). Let H =  G, - ( E ( a ;  G , ) - ( E + U  E-)). The multidigraph D arises in 
the following way from H :  add to H -  E -  a vertex a '& H and set (x, a') ,  = (x, a ) H  
for all X E H  and let d'(a';D)=O. Let & ( a ;  & , ) = n ;  the case d ' (a ;  & , ) = n  
follows dually. Let B E T(a,  a ' ;  D )  be minimal w.r.t. inclusion. It suffices to 
deduce a contradiction from the assumption d'(B; D)< rn. Since d'(a; D )  = rn 
we have B - { a } # @  and since d - ( a ;  D)=O we have d'(J3-{a};D)<rn. Since 

&(a;  G,) = n = rn + ~ E - ( U ;  G,) - E-1, 
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d + ( B  - {a} ;  Ga)< n follows. By (6) then d(b'; G )  = 3 for all brE B - {a}  and by ( p )  
B-{a}  is a set of independent vertices. Let b ~ B - { a ) # g .  By choice of B, 
d + ( B - { b } ;  D ) > d + ( B ;  D),  and so d(a ,  b ;  D ) >  d(b,  V ( D ) - B ;  D ) ,  and in particu- 
lar ( a ,  b),# $4. Since Ga is strongly connected there is a k E E'(b; G,). If 
k E E ( D ) ,  then k E E ( b ,  V ( D ) - B ; D )  since d - ( a ; D ) = O ,  so I ( a , b ) , ] a 2 .  If 
kbfE(D) ,  then k E E ( a ;  Ga), so again [[a,  b ] , l a 2 .  Since d ( b ;  G ) = 3 ,  b # i i  and 
\[a, b I G a ( ~ 2  contradicts A(a, ii; G a ) = 2 n + l  = d ( a ;  Ga). 

We now conclude the proof of Theorem 22. We can suppose d + ( a ;  Ga) = 

d-(ii; G8), for otherwise we may replace say Ga by its dual. Since by (E) the 
conditions in Lemma 20 are fulfilled for a E Ga we may suppose, in view of 
Lemma 2 0  and Lemma 18, that ea and &a are compatibly (and admissibly) 
oriented. G arises naturally from Ga and G8. We will now show that G is an 
admissible orientation of G .  For {x, y } c  A, it follows easily by ( E )  and Lemma 2 
that 

and similarly for {x, y } ~  A. Next we show that A(a,  ii; @ a n  and A ( &  a ;  6)a n. 
We deduce a contradiction from the assumption that A(a, ii; 6) < n, say. Since 
A (a ,  ii; C?*) Z= n and A(a, a ;  &a) 2 n we see immediately that if d + ( A ;  G) = n then 
A(a, ii; (?)an. Thus d'(A; G) = II + 1 must hold. Let B E  T(a, ii; G) with 

A ( x ,  y ;  @ = A ( x ,  y;  (?, )Z=[@(x,  Y ;  G,)I=[;A(x,  y ;  G)1, 

IB n A (  + IB n A (  = max{\B'n A \  + IB'n A \  : B'E T(u, ii; G)}. 
Since A ( ~ , i i ; C ? ~ ) a n  we have BnA#$I and since A(u, i i ;Ga)3n  we 
B f l  A # $4. Since 

d + ( B  n .? ; 6) + d - ( B  fl A ;  G )  S d - ( A  ; &) + d'(B ; G) n + n - 1, 

have 

it follows that d + ( B n A ;  G ) < n  or d - ( B n A ;  G)<n.  Let say d - ( B n A ;  G < n ;  
the case d + ( B  n A ;  c) < nleadssimilar1ytoacontradiction.Thend-(B n A ;  c,) < n 
also and by ( 6 )  we have d ( x ;  G ) = 3  for all xEBn A. Let b E B n A # ( d .  By 
choice of B it follows that B U{b}& T(a, ii; 6), so d+(B U {b} ;  e) a d'(B; C?) and 
so by ( p )  then d ( b , B n A ;  6 ) > d ( B ,  b ;  6); in particular d ( b ; B n A ;  G ) 2 1 .  
Since A E T(a,  ii; G), we have d(b ,  A; G ) S  1 since d ( b ;  G )  = 3 and b# a. There- 
fore d ( b , s n A ; C ? ) = l  and d ( A , b ; & ) = O .  Thus d ( B , b ; G ) = O ,  and by (/?) 
d - ( b ;  G) = 0, contradicting the strong connectivity of &a. 

Let now x E A and y E A, and let rn = [iA(x, y ;  G ) ] s  n. Then A(x, ii; G ) z  2rn, so 
by Lemma 1 A ( y , i i ; G ) a 2 m  and so by the above, A ( y , i i ; G ) a m  and 
A (  ii, y ; G) rn. Since similarly A( a, x ; G) 3 m and A (x, a ; G )  3 rn, we have by 
Lemma 1 that A ( x ,  y;  G ) a  m and A(y, x; 6)a rn. 

Note added in proof 

Many thanks to Dr. Bollobhs for translating my paper from German into 
English. The original German version may be obtained from the author upon 
request. 
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ANOTHER CRITERION FOR MARRIAGE 
IN DENUMERABLE SOCIETIES 

C. St. J. A. NASH-WILLIAMS 
Department of Mathematics, University of Reading, Whiteknights, Reading RG6 ZAX, Great 
Britain 

A society is an ordered triple (M, W, K )  of sets such that M, W are disjoint and K c M x  W. 
An espousal of ( M ,  W, K )  is a subset of K of the form {(a,  E(a ) ) :  a EM) where E(a, )  f E(a,) 
whenever a,  * a,. For every transfinite sequence f of distinct elements of W, we define (in a 
somewhat complicated manner) a number q(f). We prove that a necessary and, if M is 
countable. sufficient condition for (M,  W, K )  to have an espousal is that q ( f l 3 0  for every 
countable transfinite sequence f of distinct elements of W. 

1. Introduction 

We shall use the following set-theoretic conventions. A relation is a set of 
ordered pairs. Let R be a relation, A and B be sets and a be an element. Then 
R(a)  denotes { y :  (a ,  Y)ER) ,  R ( a )  denotes the element of R ( a )  if IR(a)l= 1, and 
R[A]  denotes UaeA R(a) .  The domain dom R and range rge R of R are 
{ x :  (x, t )  E R for some t }  and { y :  ( t ,  y )  E R for some t }  respectively. A function is a 
relation f such that I f (x) l=  1 for every x E dom f. A function f from A into B or 
function f :  A + B is a function f such that dom f = A, rge f c B. A function from 
A onto B is a function with domain A and range B. A function f is injective if 
there do not exist distinct elements x, y of dom f such that f ( x )  =f(y) .  A set S is 
countable if 1.51 5 No. The axiom of choice will be assumed in this paper. 

A society is an ordered triple (M,  W, K )  such that M, W are disjoint sets and K 
is a subset of M x W. Elements of M are men of a society r= (M, W, K )  and 
elements of W are women of r, and a man rn will be said to know a woman w if 
(rn, w )  E K. An espousal of r is an injective function E :  M-+ W such that E E K 
(i.e., intuitively, a prescription for finding wives for all the men so that each man 
marries a woman whom he knows). A society is espousable if it has an espousal. A 
society (M,  W, K )  is male-countable if M is countable. 

Damerell and Milner [l] proved a conjecture of [2] that a certain condition 
would be necessary and sufficient for a male-countable society to be espousable. 
In [ 3 ] ,  I gave an alternative version of this proof and conjectured another 
necessary and sufficient condition for a male-countable society to be espousable. 
In fact, this conjecture is clearly false in the form suggested in [3], but it requires 
only a minor modification and the present paper proves the modified conjecture. 
This criterion for espousability of male-countable societies has perhaps a some- 
what more direct character than the previous one (which involved a transfinite 
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sequence of functions called “margin functions”) and its proof seems a little 
shorter. 

Further discussion of the background and history of this work may be found in 

We shall assume ordinals (ordinal numbers) to have been defined so that an 
ordinal a is the set of all ordinals less than a. In particular, the ordinal 0 is the 
empty set. An ordinal ,6 is a successor ordinal if p = a  + 1 for some ordinal a. A 
limit ordinal is an ordinal which is neither 0 nor a successor ordinal. We define a 
transfinite sequence to be a function whose domain is an ordinal number. If f is a 
transfinite sequence and A is an ordinal less than or equal to domf, then f, will 
denote the transfinite sequence {(a,  f ( a ) ) :  a <A}, i.e. the restriction of f to A. We 
define a queue to be a countable injective transfinite sequence, i.e. an injective 
transfinite sequence whose domain is a countable ordinal. A queue in a set A is a 
queue whose range is a subset of A. The transfinite sequence whose domain is the 
ordinal 0 will be denoted by 0. In fact, since the ordinal 0 is the empty set, it 
follows that 0 is also the empty set, but we denote the empty set by 0 and not fl 
when it plays the r61e of a transfinite sequence. 

Let 9 denote a set whose elements are the integers and two further “numbers” 
30 and -a. Elements of 9 will be called quasi-integers. The size IlAll of a set A is 
defined to be its cardinality [ A /  if A is finite and to be if A is infinite: thus 
IIAlI E 9 for every set A. The sum a, +. . . + a, of n quasi-integers a, ,  . . . , a, has 
its usual meaning if the ai are all integers, is defined to be if at least one ai is 00, 

and is defined to be --3c if no ai is -3c but at least one is --co. The difference a - b of 
two quasi-integers is the sum of a and -b;  and likewise the sum of the 
quasi-integers a, -b, c may be denoted by a - b + c, etc. For our purposes, the 
most important distinctive feature of these definitions is that m-00 is defined to be 
=, since we wish to think of ~0-30 as the largest possible value of IIA \Bll for sets 
A, B such that B G A and / /A/\  = I\B\/ = x. Inequalities between quasi-integers are 
defined in the obvious way. The infimum inf d of a non-empty subset d of 9 is 
the greatest quasi-integer q such that q s a  for every a ~ d ,  and the supremum 
sup d is analogously defined. If A is a limit ordinal and a, E 22 for every 8 < A, we 
define lim inf,,, a, to be sup{i,: 4<A}, where i, denotes inf {ao: 4<6<A}.  

Throughout this paper, it will be understood that we are discussing a society 
r = ( M ,  W, K )  and the symbols r, M ,  W, K should henceforward be interpreted 
accordingly. 

The demand-set D ( X )  of a subset X of W is (rn E M :  K ( m ) c  X } ,  i.e., intui- 
tively, the set of all men who demand wives from X when an espousal of r is 
sought. If f is a queue in W, then A(f) will denote D(rgef).  

With any queue f i n  W we shall associate a quasi-integer q ( f ) ,  called the margin 
of f, which is defined as follows. Define q ( 0 )  to be -llD(g)11.If now dorn f is an 
ordinal A > 0 and q ( f ’ )  has been defined for every queue f ’  in W whose domain is 
less than A, then define q ( f )  to be 

~31. 

(i) q(f,)+ 1 - - ~ ~ A ( f ) \ A ( f K ) ~ l  if A is a successor ordinal K +  1, 
(ii) lim inf,,, q(f,) -llA(f)\ U e<,A(fe)l/ if A is a limit ordinal. 
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Roughly speaking, q ( f )  is the largest number of women whom we could hope to 
leave unmarried in rge f after working along the sequence f term by term, trying 
at each stage to ensure that wives have been found for all the men who demand 
them from amongst the set of women so far considered. Of course, if D(p)) f 8, 
then the men in D(9) know no women at all and we encounter, so to speak, a 
shortfall of 11D(@)11 women before we even start working along the sequence f :  
hence q ( 0 )  is defined to be -IlD(fl)/l. Intuitively, (i) expresses the idea that, when 
the men in A ( f , )  have been married to women in rgef ,  with the maximum 
possible number q(f,) of such women left unmarried, then adding f ( ~ )  to these 
unmarried women gives us q ( f K )  + 1 women amongst whom to find wives for the 
men in A(f) \A(f , ) ,  which we might at best hope to achieve leaving q(f,)+ 1 - 
I)A(f)\A(f,>ll of these women still unmarried. If, now, dom f is a limit ordinal A as 
in (ii), and if, for 8 < A, q(h,) is the maximum number of women who could be left 
unmarried in rgef, after wives have been found for the men in A(f,), then we 
could at most hope, after working along the sequence f, to leave I =  
lim inf,,, q(fe) women in rge f unmarried to men in C = U ,,,A(f,), and amongst 
these 1 women we must still find wives for the men in A ( f ) \  C, which can leave at 
most 1 -IlA(f)\ CII unmarried women in rge f, The proof of our first lemma 
translates this informal explanation into a more precise argument. 

Lemma 1.1. I f  E is an espousal of r and f is a queue in W then 

Il(rge f, \ HA(f ) l l l  q(f3. (1) 

Proof. The assumed existence of E implies that, for every rn E M, E(rn) E K(rn) 
and therefore K ( m )  f @ and therefore rng D(@>. Hence 0 = -IlD(@)II = q(D), so 
that (1) is true when f =O, i.e. when dom f = 0. 

To continue the proof by transfinite induction on dom f, suppose now that 
dom f =  A > 0 and assume the inductive hypothesis that Il(rge g)\ E[A(g)]l( S q(g)  
for every queue g in W with domain less than A. 

Suppose first that A is a successor ordinal ~ + 1 .  Then 

H A ( f J 1 G  “ ( f J l c rge f ,  =(rgef)\{f(K)l. (2) 

E[D(rge fK)l E E[D(rge f)l E rge f, 

ECA (f, 11 G E [ A  (f3l c rge f. 

q ( f )  = q(f,)+ 1 -llA(f)\A(f,)Il 

Moreover rge f, c rge f and therefore 

i.e. 
(31 

Using the inductive hypothesis, (2) and (3), we see that 

3 Il(rge fK)\EIA(fK)l l l+ 1 -1IE[A(f)l\E[A(f,)lll 

= / h e  f ) \ECA(f , )I / /  -llECAcnl\E[A(f,)Ill 

= /I(rge n \ ECA(f)ll/. 

ll((rge f)\EIA(fK)l)\  (EIA(f)l\ EIA(fK)l)II 
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Now suppose that A is a limit ordinal. Let i, denote inf {q(fe): C#J 8 < A }  for 
every 4<A, and let V denote UBxA A(fO). Since rgef ,c rgef  and consequently 
A(fe) E A(f) for every 8 < A, it follows that V G  A(f>. Therefore 

E[V]E E [ A ( f ) ] c  K[A(f ) ]~ rge  f. (4) 

q(f0)3 Il(rgefe)\E[A(f0)lll~Il(rge f+)\E[VIIl. 

For 4 4 8 < A, the inductive hypothesis gives 

Therefore i, 3 Il(rge f,) \ E[ V]ll for every C#J < A, and consequently 

lim infq(fO)=sup{i,: 4<A} 
0-A 

 SUP {ll(rgef,)\ECVllI: #<A)=Il(rgef)\E[VlII 
Hence 

df) =lim infq(fO)-IIA(f)\ VII 
0-A 

a ll(rge f ) \  E[VlII -llE[A(Rl\ E[VlII 

VI>ll 

= I h e  f) \ E[A(f)lll 

//((rge f )  \ a VII \ (E[A m1\ 

in view of (4). 
We shall say that a society (M,  W, K )  is good if q ( f )  2 0 for every queue f in W, 

and is bad if q ( f ) < O  for some queue f in W. Lemma 1.1 implies that every 
espousable society is good. The purpose of this paper is to establish the following 
theorem. 

Theorem 1.2. A male-countable society is  espousable if and only if it is good. 

Thus, if a male-countable society (M,  W, K )  is not espousable, then there is a 
queue f in W with q(f)<O. Informally speaking, f is a countable transfinite 
sequence of women which provides a fairly obvious obstruction to the existence of 
an  espousal, because an impossibility is encountered when we work along this 
sequence term by term, trying at  each stage to ensure that wives have been found 
for all the men who demand them from amongst the women so far considered. 

In essence, Theorem 1.2 is a conjecture of [3]; but in [3] I mistakenly suggested 
taking q ( 0 )  = 0 as the first step in the definition of q(f). 

2. Preliminary lemmas 

Definition 2.1. If f ’ ,  f 2 , .  . . , f ”  are queues with disjoint ranges and dom f ‘  = 

a ,  ( i  = 1 , .  . . . n )  then f” *f‘*. . . *f‘ will denote the queue h with domain a ,  + 
a’ + .  . . +a,, such that 

h(a ,+a?_+.  ’ .+a,-, + O ) = f ’ ( O ) ,  i =  1 , 2 , .  . . , n ;  8<a, 
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(where a, + a' +. . . + aiPl + 8 means 8 if i = 1). Informally, the terms of the 
queue f '  * f'*. . . * f "  are the terms of f '  followed by those of f' followed by 
those of f' etc. The queue ((0,  x)} will be denoted by [XI: in other words, [XI is the 
queue f such that dom f = 1 = {0}, f(0) = x. 

If A c M, U E  W then T[A, U] will denote the society (A, U, K f l  ( A  x U)) ;  
and T - A ,  T-U,  T - A - U  will denote T[M\A, W], r[M, W\U], 
T[M\A,  W\ U ]  respectively. If U E  M, U E  W then T - a ,  r-u, T - a - u  will 
denote r - { a } ,  T-{u},  T - ( a } - { u }  respectively. I f f  is a queue in W then r/f will 
denote T-A(f)-rge f and r[f] will denote r [ A ( f ) ,  rge f]. 

As previously stated, we shall throughout this paper be considering a society 
denoted by both T and (M, W , K ) ;  but we may also wish to consider other 
societies, such as T - A  where A G M. In such situations, the name of a society in 
which the symbols D, A, q are to be interpreted may be attached to these symbols 
as a suffix. However, if no suffix is attached, then D, A and q should be 
interpreted in the society denoted by I' and by (M,  W, K). For example, Lemma 
2.2 below asserts that Dr-A(X) = D r ( X )  \A. 

Lemma 2.2. If A G M, X C  W, then D,-,(X) = D ( X ) \ A .  

Proof. Let KA = K\(A X W). Then T - A  =(M\A,  W, KA). Moreover K, (m)=  
K ( m )  for each mEM\A. Hence, for any mEM\A, we have mE 

DrPA(X)  iff K A ( m )  E X ,  which occurs iff K ( m )  G X ,  which occurs iff m E D(X). 
Therefore 

D r - A ( X ) = D ( X ) n  ( M \ A ) = D ( X ) \ A .  

Corollary 2.3. If A c M and f is a queue in W then Ar-ACf) = A ( f )  \ A. 

Lemma 2.4. If U, X are disjoint subsets of W then Dr-AX) = D(XU U).  

Proof. Let K " = K \ ( M x U ) .  Then T - U = ( M ,  W\U,KU). Moreover K U ( m ) =  
K(m)\ U for each mEM. Hence, for any mEM, we have mE 
DI--u(X) iff K"( m )  E X ,  which occurs iff K ( m )  \ U E X ,  which occurs iff K( m )  E 

X U  U, i.e. m E D ( X U  U ) .  

Corollary 2.5. If f, g are queues in W with disjoint ranges then ArPrgeg(f)= 
A(g*f). 

Proof. By Lemma 2.4, 

Lemma 2.6. If A s  M and U, X are disjoint subsets of W then Dr-A-u(X)= 
D(XU U)\A.  
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Proof. By Lemmas 2.2 and 2.4, 

Dr-,-dX)=D,-A(XU U)=D(XU U)\A.  

Corollary 2.7. If f, g are queues in  W with disjoint ranges then Ar/Ag)= 
A (f * g) \ A (f) . 

Lemma 2.8. If A i s  a finite subset of M and f is a queue  in  W then 

qT-A(f)=q(f)+(IAnA(f)II. ( 5 )  

Proof. By Lemma 2.2, 

qr-A(O) = -IIDr-A(@>II= -llD(@)\All 

= - 11D(9)11+ IIA n D(@)ll= q ( 0 )  + IIA n A(0)II. 

Hence ( 5 )  is true when f =O, i.e. when dom f = 0. 
To continue the proof by transfinite induction on domf, suppose now that 

dom f = A > 0 and assume the inductive hypothesis that qr-a( g) = 

q(g)+l(A nA(g) l l  for every queue g in W with domain less than A. 
If A is a successor ordinal K + 1, then the inductive hypothesis and Corollary 2.3 

give 

41'-A(f) = qr-A(fK)+ -IIAr-A(f)\'r-A(fK)I/ 

= df,)+llA n A(f,)ll+ 1 

= 4 Cf, 1 + I1 A n A (f, )I I + 1 - I I A (f) \ A ( fK Ill 
- ll(A(f) \ A ) \  (A(fK 1 \ All1 

+ 11.4 n (A(f) \ A(f,j)Il 

=4(fK)+l- l lA(f) \A(f~)I I+I IA nA(f)ll 

=q(f)+llA nA(f) l l .  

Now suppose that A is a limit ordinal. Let V denote U,,, A ( f , ) .  Since A is 
finite, there exists E < A  such that A r l  V G  A(f,) and consequently A n V = 

A n A(f,) for F s 8 < A. Therefore 

= lim inf q,...,(fo) 
H-A 
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Lemma 2.9. Let f, g be queues in W with disjoint ranges. Suppose that dom f = 6 
and dom g is a limit ordinal A. Then 

Proof. Let us write 

1 = lim inf qo, 
8-4i i .A 

1' = lim inf q;. 
8-A 

If 8 < A then f *  g, = (f * g)s+e  and therefore q:, = qste. Therefore Q$ = QS+* 

and consequently 

i$= i,++ for every $ < A .  (6) 

Therefore 

1' =sup { i k :  $ < A }  =sup { i , :  6 C 4 < 6 + A}<sup {i4: 4 < 6 + A }  = 1. 

For every 4 such that 6 
p ( 4 )  < A and therefore, by (6), 

4 < 6 + A ,  we have 4 = 6 + p ( 4 )  for some ordinal 

i, = i;,,, < sup { i ; :  9 < A} = 1 ' .  

For every ordinal 4 < 8, we have Qs c 0, and therefore, using (6), 

i ,  S i, = i:, Ssup { i t :  $ < A }  = 1 ' .  

It follows that 1' 3 sup { i , :  4 < 6 + A} = 1. Since we have already proved that 1' 
we conclude that 1 = 1'. 

1, 

Lemma 2.10. If u E W and f is a queue in W\{u), then 

4([~1*f) = 1 +qr-Jf)-  (7) 
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Proof. By the definition of q([u] )  and Lemma 2.4, 

Hence (7) is true when dom f = 0. 
To continue the proof by transfinite induction on domf,  suppose now that 

dom f = A > 0 and assume the inductive hypothesis that q( [u  I* g) = 1 + q r P U ( g )  for 
every queue g in W\{u} with domain less than A. 

If A is a successor ordinal K + 1, then the inductive hypothesis and Corollary 2.5 
give 

q([ ' ]* f )  = ~ ~ [ u ~ * f K ) + l - ~ ~ A ( [ u l * f ) \ A ( [ u I * f , ) / ~  

= ' + q , - - U ( f K ) +  - i l A , - U ( f ) \ A I - - - U ( f K ) / /  

= 1 + 4 F U ( f ) .  

Since A(([u]*f)J G A(([u]*f),), it follows that 

u A ( ( [ U l * f ) p )  = u A(([ul*f),) = u A([ul*fa). (8) 
( ? < l + A  I SoCl + A  a <A 

If A is a limit ordinal, then Lemma 2.9, (8) ,  the inductive hypothesis and 
Corollary 2.5 give 

= 1 + lim inf q,.-,,(f,) - llA,.-K(f)\ U Ar-,,(fa)II 

= 1 + qt.-ucf,- 

t)+x a < h  

( In  fact, I + h = A when A is a limit ordinal, but this fact is not needed in the 
above argument, although we use the fact that 1 t A  is a limit ordinal in applying 
the definition of q([u]* f ) . )  

Lemma 2.11. If f, g are queues in W such that q(f) = 0 and (rge f )  fl (rge g) = @ 
then 

4,7 fk )  = 4(f* g ) .  (9) 
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Proof. Using Lemma 2.6 we obtain 

Hence (9) is true if dom g = 0. 
To continue the proof by transfinite induction on dom g, suppose now that 

dom g = A > 0 and assume the inductive hypothesis that q,,(h) = q(f* h )  for every 
queue h in W\,(rgef) with domain less than A. 

Let dom f'= 6. It is clear that 

A((f*g)O)cA((f*g)+) ,  if O G + G 6 + A .  (10) 

In particular, 

A ( f ) c  A(f*g), 

A(f) G A ( f *  G), if a < A .  

Moreover, it follows from (10) that 

Corollary 2.12. If r is good and f is a queue in W such that q(f) = 0 then r/f is  
good. 

u A((f*g),)= u A((f*g),)= u A(f*&) .  (13) 
, < 8 + A  S r p < S + A  OL <A 

If A is a successor ordinal ~ + l  then the inductive hypothesis, Corollary 2.7, 
(1 1) and (12) give 

qi-/f(g) =qr/f(gK)' -IIA,./f(g)\Ar/f(gK)II 

= q(f * 8,) + 1 - II(A(f* 8)  \ A  (fl) \ (A(f*  gK) \ A(fl)II 

= q(f* gK)+ -IIA(f* g) \  '(f* gK)ll = q(f* 8). 

If A is a limit ordinal, then the inductive hypothesis, Corollary 2.7, Lemma 2.9, 
(11), (12) and (13) give 
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Proof. For every queue g in Wirge  f, Lemma 2.11 and the goodness of r imply 
that qnr(g) = q(f* g )  2 0. 

Lemma 2.13. If V G W and I7 = T[D( V) ,  V] and f is a queue in V then 

df) = df). (14) 

Proof. Let K, = K n (D(  V) x V). If m E D( V) then K ( m )  G V and therefore 
K , ( m ) = K ( m ) .  Let X be a subset of V. If ~ E D ( X )  then K ( m ) c X s  V: 
therefore m e D ( V )  and K , ( m ) = K ( m ) c X  and so mED,(X). If m'eD,(X) 
then K(m' )  = K,( m') G X and so m' E D ( X ) .  We conclude that, for every subset X 
of v, 

Dn(X)  = D ( X ) .  (15) 

d o )  = - Il~n(8)11= - 11~(8~11= 4 ( 0 ) ,  

Consequently 

and therefore (14) is true when dom f = 0. 
To continue the proof by transfinite induction on domf, suppose now that 

dom f = A > 0 and assume the inductive hypothesis that q , (g )  = q(g) for every 
queue g in V with domain less than A. By (15), A,(f) = A(f) and An(fe) = A(f8) 
for every 8 < A. From this remark and the inductive hypothesis, we see that 

(i) if A is a successor ordinal K + 1 then 

qn(f) = qm(fK) + -IlAfl(f) \ ' n ( f K ) I I  

= 4 ( f K )  + - \ I A  (f) \ A (fK 111 = 4 (fl ; 
(ii) if A is a limit ordinal then 

d f l =  lim inf d f e )  - IlArr(f)i u Arr(f8)ll 
8-h % < A  

=liminfs(fe>-IlA(f)\ u A(f,)ll=df). 
8-h %==A 

Corollary 2.14. If r is good and g is a queue in W then Qg] is good. 

Proof. Let f be any queue in rge g. Then q ( f l 3  0 since r is good. Taking 
V = rge g in Lemma 2.13 gives qrrgl(f) = q(f) 3 0. 

3. Selecting a wife for a 

To prove the existence of an espousal in a good male-countable society r, we 
might begin by considering one man a and trying to find a woman u E K ( a )  such 
that r- a - u is good. Then a could be married to u and we could re-commence 
work in the good male-countable society r- a - u by seeking a suitable wife for a 
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second man. This process could be continued until all the men are married. This is 
approximately the method of proof which we shall use, but we shall need to 
replace the notion of a good society by an apparently more general notion of a 
"piecewise good" society in order to make the argument work. However, after 
Theorem 1.2 has been proved, it is fairly easy to show that a society is piecewise 
good if and only if it is good. This can be done by first deducing from Theorem 
1.2 that a society r = (M,  W, K )  is good if and only if nL, W ]  is espousable for 
every countable subset L of M-which is not surprising since the definition of 
goodness considers countable transfinite sequences only. 

Lemma 3.1. Zf r is good and mule-countable, U E M  and IK(a)l>X,, then 
r- a - u is good for some u E K ( u ) .  

Proof. Let M * = { m e M :  IK(rn) l~X,} .  Since IM*ISIMIGrCo and IK(rn)lSK, for 
every m E W ,  it follows that IK[W]I SX,< JK(u)l  and so we can select u E 

K(u)\K[MX]. Let f be a queue in W\{u}. We shall show that 

q I - - u ( f )  = 4f). (16) 

Let X be any countable subset of W\{u}. Then D(X) and D(XU{u}) are 
subsets of W. Moreover, since uaK[MY"], it follows that an element of M* 
belongs to D(XU{u}) if andonly if it belongs to D ( X ) .  Hence D(XU{u}) =D(X), 
from which it follows by Lemma 2.4 that 

D r - J X )  = D ( X ) .  (17) 

q , - -u(o  = -llDr-u(fvll = -llD(B)ll= 4 0 ) .  

Taking X = P, in (1 7) gives 

Hence (16) is true if dom f = 0. 
To continue the proof of (16) by transfinite induction on dom f, suppose now 

that dom f =  A > 0 and assume the inductive hypothesis that qrPu(g) = q ( g )  for 
every queue g in W\{u} with domain less than A. The subsets rge f, rge f, (a < A )  
of W\{u} are countable by the definition of a queue, and so it follows from (17) 
that Ar-,(f) = A(f) and Ar-Jfa) = A(&) for every cr < A. From this remark and 
the inductive hypothesis, we see that 

(i) if A is a successor ordinal K + 1 then 

q r - - u ( f ) =  qr -u( fK)+ 1 ~ l l~ r -u~ f l \~ r -u~ fK~ l l  
= 9 (fK 1 + 1 - ll A ( f )  \ A (fK )I1 = df) ; 

qr-U(fl = lim inf q r - u ( f e )  - l lAr-Jf) \  U Ar-u(fe>ll 

(ii) if A is a limit ordinal then 

%-A % < A  
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We have now proved (16) by transfinite induction. 
If f is a queue in W\{u} then 

~ r - u - - U ( f ) = ~ r ~ U ( f > + l l ~ a ~ ~ A r - , ( f ) l l ~  qr-u(f )  =q( f )*o  

by Lemma 2.8, (16) and the hypothesis that r is good. Therefore r- a - u is 
good. 

Lemma 3.2. If r is good, a E M, u E W and r- a - u is bad then there exists a 
queue g in W such that u E rge g, a& A(g )  and q(g)  = 0. 

Proof. Since r- a - u is bad, there is a queue h in W\{u} such that qr-a-u(h)< 
0. By Lemmas 2.8 and 2.10, 

q"ul*h)+ll{a)n A([uI* h)ll=q,-,([ul*h) 

- - 1 + qr-a-u( h )  0. 

From this and the fact that q ( [ u ] * h ) s O  since r is good, we conclude that 
q([u]* h )  = Il{a}n A([u]*  h)ll= 0,  so that [u]*  h is a queue g with the properties 
asserted by Lemma 3.2. 

Lemma 3.3. If r is good, f is a queue in W, q ( f )  = 0, a E M\A(f), u E W\rge f and 
( r / f ) - a  - u is bad, then there exists a queue g in W\rge f such that u ~ r g e  g, 
a a A ( f * g )  and q( f*g)=O.  

Proof. By Corollary 2.12, r/f is good. Therefore, by Lemma 3.2 (with r/f 
replacing r) there exists a queue g in W\rge f such that u E rge g, a& A,Xg) and 
qr,r(g) = O .  Since a E M\A(f) and a& Ar/f(g), it follows by Corollary 2.7 that 
a a A ( f * g ) .  By Lemma 2.11, q(f*g)=O. 

Lemma 3.4. If r is good and male-countable and a E M then there exist a queue f 
in Wand a woman u such that a& A( f ) ,  u E K(a)\rge f and (r/f) - a - u is good. 

Proof. Suppose that 

(t) ( T / f ) - a - u  is bad for every pair f, u such that f is a queue in Wand a& A(f) 
and u E K ( a )  \ rge f. 

We observe that - 1[D(8)11= q(U)  3 0 since r is good. Therefore 

@ = D(@) = A ( 0 ) .  (18) 

Therefore a&A(U) and r/O=r and so, taking f = O  in (i), it follows that 
r- a - u is bad for every u E K(a) .  Therefore IK(a)l s X, by Lemma 3.1. There- 
fore there exists a queue h in K ( a )  such that dom h s w, rge h = K ( a )  [i.e. either 
the finite sequence h(O), h(l) ,  . . . , h(lK(a)l- 1)  or the infinite sequence h(O), 
h ( l ) ,  . . . is an enumeration of K(a>].  

By (18), a& D(8). Therefore K ( a )  # @ and so h(0) exists. Let i ,  = 0. Since we 
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have observed that r- a - u is bad for every u E K(a) ,  it follows that r- a - h(i,) 
is bad. Therefore, by Lemma 3.2, there exists a queue f '  in W such that 
h(i,) Erge f ' ,  a& A(f l )  and q(fl) = 0. 

Since a& A(f') ,  there exists an i for which h(i)&rge f ' ;  let i, be the least such i. 

By (t), (I'/f') - a - h(i,) is bad. Therefore, by Lemma 3.3, there exists a queue 
f'in W\rge f '  such that h(i,)Erge f2, a @ A ( f ' * f 2 )  and q(f'*f')=o. 

Since a a A ( f ' * f " ) ,  there exists an i for which h(i)&rge (f'*f'); let i, be the 
least such i. By (t), (I'/(f'*f'))--a - h(i3) is bad. Therefore, by Lemma 3.3, there 
exists a queue f' in W\rge(f'*f') such that h(i,)Ergef3, aiCA(f'*f2*f3) and 

Since a& A(fl  *f2*f3), there exists an i for which h(i)& rge (f'*f'*f'); let i4 be 
the least such i. By (t), (r/(f '*f"*f3))-a-h(i4) is bad. Therefore, by Lemma 
3.3, there exists a queue f" in W\rge(f '*f2*f3)  such that h( i , )~rgef" ,  
a iZ A(f' * f' * f 3  * f") and q(f'  * f'* f 3  * f") = 0. 

Continuing this process, we define f', i, for every positive integer r. Let Fa 
denote 0. let F' denote f'*f'*. . -*f' for each positive integer r, and let 
F=f'*f2*. . .with the obvious interpretation, i.e. F is a queue with domain 
dom f '  +dom f' + * * such that F(dom F'-' + a) = f ' ( a )  whenever r is a positive 
integer and a! E dom f '. 

Our procedure ensures that h(i,) E rge f '  for every positive integer r: therefore 
no f '  is and so dom F is a limit ordinal. Our procedure also ensures that 
q(F ' )  = 0 for every positive integer r and therefore 

q(fl*f'*f3) = 0. 

lim inf q(Fa) s 0. 
a-dom F 

Since h(i,)Erge f' for each r, it follows that i , ,  i,, . . . a re  distinct. Since h(i)E 
rge Fr-' whenever i < i,, it follows that h(O), h(l), . . . all belong to rge F, i.e. 
K ( a )  c rge F and consequently a E A ( F ) .  On the other hand, since the element 
h(i,) of K ( a )  belongs to rgefr  for each positive integer r, there can be no 
8<dom F for which K ( a ) ~ r g e F , ;  and therefore a& Ue<d, ,FA(Fe) .  Hence 
a E A ( F ) \  Ue<dornFA(Fe) and SO 

Since dom F is a limit ordinal, it follows from (19) and (20) that q(F)<O, 
contradicting the goodness of r. Hence (t) leads to a contradiction and Lemma 
3.4 is proved. 

Lemma 3.5. If r is good and male-countable and a E M  then there exist u E K ( a )  
and disjoint sets M', MI, W', Wr such that 

M\{a}=M'UM", W\{u}= W'U w 
and T[M', W'], nM", W ]  are both good. 



178 C.St.J.A. Nash- Williams 

Proof. There exist f ,  u as specified in Lemma 3.4. Let 

M ‘ = A ( f ) ,  M“=M\({a}UA(f)), 

W’=rge f, W =  W\({u}Urgef). 

Then nM‘, W’] = flf], which is good by Corollary 2.14, and T[M”, W”] = 

( U f )  - a - u, which is good since f ,  u are chosen in accordance with Lemma 3.4. 

Definition 3.6. r is piecewise good if, for some positive integer r, there exist 
disjoint sets M , ,  W,, M2, W,, . . . , M,, W, such that 

MI U M 2 U .  . . U M,. = M, W, U W, U . . .U W, = W 

and f[M,, Wi] is good for i = 1,. . . , r. 

Lemma 3.1. If r is  piecewise good and male-countable and a E M then r- a - u is 
piecewise good for some u E K(a) .  

Proof. Since f is piecewise good, there exist disjoint sets M,, W,, M,, 
W2,. . . , Mr, W, such that 

M , U . . . U M , = M ,  W , U . . . U  W,= W 

and the society r, = f [ M , ,  W,] is good for i = 1, . . . , r. For some k, a E Mk and, by 
Lemma 3.5 applied to f , ,  there exist u ~ K ( a ) n  wk and disjoint sets M‘, 
M ,  W‘, W” such that 

Mk \{a} = M ’ U  M”, W, \ { u }  = W’U W” 

and f k [ M ’ ,  W’], f k [ M ” ,  W”] are both good. Let f * = r- a - u. Then 

P [ M ’ ,  w’]= r k [ M ’ ,  w’], f * [ M ” ,  w”] = f k [ M “ ,  w”], 

r“[Mi, W,] = r, ( i f  k )  

and the goodness of these societies ensures that r* is piecewise good. 

4. Proof of Theorem 1.2 

If r is espousable then it is good by Lemma 1.1. 
To prove the converse for male-countable societies, suppose that I is good and 

male-countable. Let M ={a,:  i E I), where I={l, 2 , .  . . , IMI} if M is finite, I is the 
set of all positive integers if M is infinite, and a, $ a, when i f  j .  Since f is good, it 
is piecewise good. Consequently, if IM121, then r - a , - u ,  is by Lemma 3.7 
piecewise good for some u1 E K(a,) .  Let f - a ,  - u ,  = f ,  = (MI, W,,  K,) .  If IMI 3 
2, then Ti - a2- u2 is by Lemma 3.7 piecewise good for some u2 E Kl(a2). Let 
f , - a , - u , = f 2 = ( M 2 ,  W,,K,). If IMIZ3, then f 2 - a 7 - u 7  is by Lemma 3.7 
piecewise good for some u7 E K,(a,). Let f ,  - a,  - u7 = f ,  = (M7,  W,, K7). If /MI 2 

4, then f 7 - a 4 - u 4  is by Lemma 3.7 piecewise good for some u 4 ~ K , ( a , ) ,  etc. 
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Continuing this argument, we obtain an espousal {(ai, ui): i E I> of I'. Therefore r 
is espousable. 
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1. Introduction 

One form of the Dirichlet’s principle states the following. 
For every positive integer n there exists a positive integer N such that for every 

set X with at least N elements the following holds: for every mapping c : X +  
{1,2} (i.e. for every partition of X into two parts) there exists Y E  X ,  (Y(= n, such 
that the mapping c restricted to the set Y is a constant mapping. (Of course, we 
may put N = 2 n  - 1.) 

This theorem was generalized to the B-property of hypergraphs (see e.g. [3]), to 
the chromatic number of graphs and hypergraphs (a theorem typical for our 
purposes is the existence of highly chromatic graphs and hypergraphs which are 
locally sparse; this was started by [ l ,  21, and in full generality proved in [4,6]), 
and to Ramsey theory (started by [12]). 

All these concepts and theorems are dealing with partitions of subobjects of a 
certain “type” (such as vertices, edges) into a small number of parts. Shortly, the 
above concepts and theorems are related to restricted partitions. 

In this paper we are interested in unrestricted partitions. 
We try to develop results and theory analogous to the above one for restricted 

partitions. Some of the stones in this project are already known. These are 
Dirichlet’s principle itself and the Erdos-Rado canonization Lemma which are 
stated below. 

Dirichlet’s principle. For every positive integer n there a exists a positive integer N 
such that for every set X with at least N elements the following holds: for every 
mapping c : X -+ X (i.e. for every partition of a set X into any number of parts) there 
exists a subset Y c X ,  1 Y1= n, such that the mapping c restricted to the set Y is either 
a constant or a 1-1 mapping. (Of course, it suffices to put N = ( n  - I)’ + I.) 

Erdos-Rado Canonization Lemma. Put 

( ; ) = { Y . X ;  (YI= k } .  

181 
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For all positive integers n, k there exists a positive integer N such that for every set X 
with at least N elements the following holds: For every mapping 

there exists a subset Y E X ,  J Y (  = n, a (total) ordering S of Y, and a set w E 
(1,. . . , k} such that 

i f  and only if mi = m{ for i E W .  

We include these theorems into a more general framework. This can be done 
by means of the following definitions. 

Definition 1.1. A hypergraph (“X, A) is a called selective if for every mapping 
c : X +  X there exists an edge M E  A such that the mapping c l M  is either a 
constant or  a 1-1 mapping. 

A constant with no stress on its actual value will be denoted by the symbol 3. A 
1-1 mapping will be denoted by 1-1. Using this convention we may rewrite the 
last part of Definition 1.1 as follows: “such that either c I M  = Q or c I M  = 1-1”. 

Definition 1.2. Let (X, A) be a hypergraph. A hypergraph (X,  A’) is said to be 
selective for ( X , A )  if  for every mapping c : XI-+ X‘ there exists an embedding 
f:(X, Ju)-+(X‘, A’) such that either c o f =  0 or co f=  1-1. 

Here, a mapping f :  X -+ X ‘  is said to be an embedding if f ( M )  E A‘ iff M E  A 

The fact that ( X ‘ ,  A’) is selective for ( X ,  A) will be denoted by ( X ,  A) -+se, 

and f is 1-1. 

(XI, J i l l ) .  

Definition 1.3. Let X be a class of hypergraphs. X is said to have the selective 
property if for every B E X there exists a C E  X such that B -+sel C. 

Remark 1.4. In many respects the selective property of a hypergraph is analogous 
to the B-property of a hypergraph. 

It is easy to see that x ( X ,  A)z= k for every selective k-uniform hypergraph 
( X ,  m) .  On the other hand the hypergraph 

( X ,  (3) is e-selective iff 1x1 3 ( k  - 1)’ + 1. 

From these two facts P.Erdos personal communication deduced that there are 
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constants cl, c2 such that c , k s ( s ( k ) ) ” k s  c,k for all sufficiently large k. Here s(k) 
is the minimal number of hyperedges of a k-uniform selective hypergraph. This is 
analogous to results related to B-property. 

On the other hand a “large” chromatic number of a hypergraph does not imply 
selectivity. An example is provided by 3-uniform hypergraphs 

These hypergraphs fail to be selective for every set X. 

In Section 3 we characterize nearly all classes of hypergraphs which have the 
selective property. This will be proved by means of the Existence Theorem of 
Section 2. In Section 4 we further generalize the above concepts so as to include 
Erdos-Rado Canonization Lemma. We prove also that the class of all finite 
graphs has the edge-selective property (see Definition 4.2 below). 

2. Sparse and selective hypergraphs 

Theorem 2.1. For all positive integers k, r, k 3 2, there exists a hypergraph (X, A) 
with the following properties: 

(i) ( X , A )  is k-uniform; 
(ii) (X, A )  is selective; 

(iii) ( X ,  A) does not contain cycles of length ZG r. 

Proof. Let X be a set with n elements, k a 2 .  Let c : X +  X be a colouring. A 
k-tuple M E  (f) is said to be c-selective if either c l M  = Q or c I M  = 1-1. 

We claim that there exists a positive constant a > 0 which dcpends on k only 
such that the number of c-selective k-tuples is greater than a(;) for any colouring 
c:x-+x. 

In order to prove this we distinguish two cases. 
( i )  Icp’(x)l<n/2k for every XEX. Find a colouring E:X+ X such that c 

refines C (i.e. c(x) = c(y) implies E(x) = E(y))  and such that lC-’(x)l > n/k - n/2k 
whenever C-‘(x) # (a. Clearly every c-selective edge is c-selective and the number 
of c-selective edges is at least 

(“-2)‘ k 2k >a,( ;), 
where a ,  does not depend on n. 

(ii) J c - ’ ( x ) ~ ~  n/2k for an x E X. Then the number of c-selective edges is at least 

We put a = min (a , ,  a2). 
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In the proof of Theorem we shall apply the method used by Erdos and Hajnal 

Let G = (X, A) be a hypergraph, c : X + X a colouring. Denote by Glc  the set 

Let k ,  r be fixed. Let 6 n , k , p =  G be a random subset of the set 

in [4]. 

of all c-selective edges of G. 

where for each k-tuple M holds P [ M E  GI = p = nl-'+', where 0 < 6 < r Y 1 .  Put 

y = P [ c  : (1, . . . , n }  + { 1, . . . , n}  implies IG/cl* n ] .  

Then 

where a > O  is a constant given by the above claim. 
On the other hand if we denote by c ( G )  the number of edges of a hypergraph 

G which are contained in cycles of lengtht, 2 S t S r, then one can show that the 
expected value is 

E (c(G",k,p)) - o ( n )  (* *) 

(see ~41). 
It follows from (*) and (*  *) the existence of a k-uniform hypergraph which has 

for every partition of its vertices at least n selective edges and which has at most n 
edges in circular cycles of length S r .  After deleting these edges we get a 
hypergraph with the required properties. 

3. Selective classes of graphs and hypergraphs 

We shall consider the following classes of hypergraphs (see [S, 101). 

Definition 3.1. Let 8 be a set of k-uniform hypergraphs. Denote by Forb (a) the 
class of all k-uniform hypergraphs (X, A) which do not contain any member of 8 
as an induced subhypergraph. 

Explicitly: (X, A) E Forb ('8) iff A -+ (X, A) for no A E 8 (A -+ (X, A) means 
that there is an embedding A into ( X , A ) ) .  

Theorem 3.2. Let k 3 2 be a positive integer. Let '8 be a finite set of 2-connected 
k-uniform hypergraphs. Then the class Forb (8) has the selective property. 

A hypergraph ( X , A )  is 2-connected i f  the hypergraph 

(X\{x},  {M: x& M E  A}) 

is a connected hypergraph for every x E X .  
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Proof. Put r = max {IAI: A E a}+ 2. Let ( X ,  A) E Forb (a). Put 1x1 = K .  Let 
(Y,X) be a k-uniform selective hypergraph without cycles of length S r  (use 
Theorem 2.1). Let z N : X - + N  be a fixed bijection for each NEX. Define a 
hypergraph (Y, A’) by M’ E A’ iff there exist N E  X and M E  A such that TN(M) = 

M .  

Claim 1. (X, 4) -+sel (Y ,  A’). 

Let c : Y -+ Y be a mapping. By the selectivity of (Y, X )  there exists N E X such 
that either c I N  = 0 or c I N  = 1-1. But TN : X - +  N is a desirable embedding 
(x,.IU)-+(Y,A‘) as for k a 2  ( Y , X )  does not contain 2-cycles: it is either 
C O ~ N  = 5 or  COY^= 1-1. 

Claim 2. (Y, 4’) E Forb (a). 

Let there exist A E 3 and an embedding f : A -+ (Y,  A’). As A is 2-connected 
and (Y, X )  does not contain a (non-trivial) 2-connected subhypergraph of size IAI, 
it follows that there exists N E X such that f (A)  s N. But (Y, A’) restricted to the 
set N is a hypergraph isomorphic to ( X ,  A). This contradicts ( X ,  A) E Forb (a). 

Remark 3.3. Theorem 3.2 is, in several respects, the best possible. If 8 fails to be 
finite than Forb (a) need not be selective. Consider k = 2, a = {C2k+l: k 2 l}. 
Then Forb (3) is the class of all bipartite graphs, which obviously fails to be a 
selective class. On the other side if k = 2, ‘8 = {P,}  (P ,  is the path of length n), 
then G E Forb (a)+x(G)S n and it is easy to see that Forb (a) fails to be a 
selective class for every n 2 1. 

Theorem 3.2. generalizes a previous result of the authors asserting that the class 
Gra(k)  of all graphs which do not contain a complete graph with k vertices is a 
selective class (see [ 111). This result was established by means of type representa- 
tions of graphs (see also [9]). 

4. A generalized selective property 

For simplicity we relate concepts and results of this part to graphs only. In a full 
generality we hope to do this elsewhere. 

Notation. For graphs G, H denote by (g) the set of all (induced) subgraphs of H 
which are isomorphic to G. 

Definition 4.1. Let F, G be graphs. We say that a graph H is selective for G with 
respect to F if for every mapping 
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there exist a subgraph G’ of H isomorphic to G (i.e. there exists G’E(~)), an 
ordering of V(G’) and w ~ { 1 , 2 , .  . . , n = IGl} such that the following holds: 

c (F , )  = c(FJ iff V ( F , )  = {x:,. . . ,xL}, i = 1,2,  and x i  = x: for j e  W .  

In this case we write shortly 

C 1 = can. 

The validity of the statement in Definition 4.1 will be denoted by G ~ E I H .  

Remark. Clearly G -+sel H iff G +:; H.  

Definition 4.2. A class X is said to have the F-selective property if F E  X and for 
every G E X there exists H E X  such that G -+:, H. 

Theorem 3.2 describes many classes of graphs which have the K,-selective 
property. For F f  K ,  it is very hard to prove the F-selective property even for the 
simplest classes of graphs. In this paper we sketch a proof that the class Gra of all 
finite graphs has the K,-selective property (that is the edge-selective property). In 
order to do this we have to introduce some more concepts. 

Definition 4.3. Denote by Re1 the class of all finite relations ( X ,  R ) ,  R c X X  X ,  
which do not contain a directed cycle. 

A 1-1 mapping f : X +  X’  is called an embedding of a relation ( X ,  R )  into a 
relation (X’ ,  R’) if 

( f ( X ) , f ( Y ) ) E R ’ e ( x ,  Y)ER.  

( X ,  R )  is said to be a subrelation of ( X ’ ,  R’)  if  X c  X ’  and the inclusion is a n  
embedding. 

Denote by 

r;: 3 
the set of all subrelations of ( X ‘ ,  R’) which are isomorphic to ( X ,  R) .  
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Theorem 4.4. Let i E {1 ,2 ,3 ,4}  be fixed. Then for every ( X ,  R )  E Re1 there exists a 
relation (Y ,  S )  E Re1 such that the following statement holds: 

For every mapping 

there exists 

such that the mapping c restricted to the set ( ( X ,  R'), Fi) is a constant mapping. 

The validity of the statement of Theorem 4.4 for particular (X ,  R) and (Y, S )  

Using this theorem we prove the promised result. 
will be denoted by ( X ,  R )  + 2 (Y, S). 

Theorem 4.5. The class Gra has edge-selective property. 

Proof. Let G = (V, E )  be a fixed graph, V =  { v l ,  . . . , v,}. 
Define the relation (V, R )  by 

R = {(q, vi): {ui, ui}e E, i < j } .  

We may assume without loss of generality that the relation (V, R )  has the 
following properties: 

(i) there exists a vertex a E V such that (a ,  v )  E R for all a# v E V ;  
(ii) there exists a vertex b E V such that (v ,  b )  E R for all b# v E V ;  

(iii) (V, R) contains graphs GI, GZ,  G3 depicted on Fig. 1 as induced subgraphs. 
(i), (ii) and (iii) may be assumed as we may, eventually, enlarge G by new 

G2 
Fig. 1 

Let ( Vi, Ri), i = 1 , 2 , 3 , 4 ,  be relations satisfying 

( V , ~ ) ~ ~ ( V , , ~ l ) ~ ~ ( V z , R z ) - , ~ ( V 3 , ~ 3 ) + ~ . 4 ~ 4 7 ~ 4 ) .  

Put (V4, R4) = (V', R') and define the graph (V', E') by E' = {{x, y } :  (x ,  y )  E R'}. 
We prove (V, E )  +,"e; (V', E').  Let s be a fixed ordering of V' which satisfies 

R'G s .  
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This ordering C exists since (V‘,  R’) is acyclic. Let c :I?’+ E’ be a fixed 
mapping. Write the same letter c for the mapping c : R’+ R’ defined by 

Each of the relations F,, i = 1, 2 ,3 ,4 ,  contains at most 3 arrows and for a 

(1) d is a constant mapping; 
(2) d is 1-1 mapping; 
(3) N O ,  1)) = d( (0 ,  2)) and 
(4) d((O,2))  = d(( l ,2))  and 4 ( O ,  1)) f ,2)) .  

c((x, y))  = c({x, Y}). 

partition d : E ( F , ) + E ( F , ) ,  i = 1 ,2 ,3 ,4 ,  there are the following possibilities: 

1)) f &((I, 2)); 

Denote the partition which corresponds to a mapping d with property (1) by vi, 

Now define the mapping 
i = 1 ,2 ,3 ,4 .  (The partitions 7r3 and v, are related only to the arrows of Fl.) 

c, : (‘vFt”’) -3 {1,2,3,4} 

as follows. Put 

and the partition c restricted to the edge set of F‘ coincides with 7rk. 

Using the above definition of (V’, R’) we find a 

such that for every i E {1,2,3,4} there exists a constant 9, with the property that 
the mapping c, restricted to the set ((V, R), F,) is the constant 9,. 

However the values sl, 02, s3 and 9, are not arbitrary. We distinguish four 
cases. 

(a) %= 1. 
Then, since the relations G1 and G2 which are subrelations of (V, R ) ,  we have 
S 1 , =  $ 2 = 9 3 = § 4 =  1. Consequently the mapping c restricted to the set R is a 
constant mapping. 

Then (because of the relation G2) we have O 1  = 3 and (because of the relation G,) 
we have 9, = 2. 

Finally, let c((x, y))  = c((x’, y’)) and x #  x‘ for some (x, y) ,  (x’, y’) E R.  It follows 
from §,= 1 that 

(b) §2 = 2 and § 3 =  1. 

c((x, Y ) )  = c((x, b) )  = c((x‘, Y’)) = c((x’, b)), 
where 6 is the  vertex of (v, I?) which corresponds to the vertex b of (V, R). From 
this it follows that §,# 2,9,  # 3, which is a contradiction. 

Consequently c((x, y)) = c((x’, y‘)) iff x = x’ for all (x, y )  E R, (x’, y’) E R. 
(c) § * = 2 ,  § ,=2  and §4L 1. 
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Then S 1 = 4  by the relations GI and G,. As in the case (b) one can show that 
c((x, y))  = c((x', y')) iff y = y'  for all (x, y), (x', y') E R. 

It follows that O 1  = 2 and it is easy to see that in this case c restricted to the set I? 
is a 1-1 mapping. 

(d) §* = §3 = §4 = 2. 

As the above cases exhaust all possible cases, we have 

Concluding remarks. (1) Using a similar argument we may prove that for every 
positive integer k the class Gra ( k )  of all graphs which do not contain a complete 
graph with k vertices, has the edge-selective property. 

However for edge-selectivity we do not have a theorem similar to Theorem 3.2 
for vertex-selectivity. 

(2) We may prove that the class Gra has the F-selective property only if either 
F = K ,  or F = D ,  =({l, 2 , .  . . , k } ,  $3). 

This and other related results are going to appear elsewhere. 
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MONOCHROMATIC PATHS IN GRAPHS 

Richard RADO 
Department of Mathematics, Uniuersity of Reading, Whiteknights, Reading RG6 ZAX, 
Great Britain 

P. Erdos kindly communicated to the author the following result. 

Theorem 1. Let r be a complete denumerable graph and suppose every edge of I' 
receives one of the two colours co, cI .  Then there are two paths T,), T , ,  each finite or 
simply infinite, such that every vertex of I' occurs exactly once in either T~, or T, and 
every edge of ri has the colour c, for i E {O, 1). 

A close study of the proof sketched by Erdos reveals that Theorem 1 is a rather 
special case of a more general proposition, Theorem 2 below, in which the graph 
is directed and is only approximately complete and in which there may be more 
than two colours. 

Italic capitals denote sets and IAl is the cardinal of A. Put L =  
{ 1 ,3 ,5 , .  . .)U{w), where w is the least infinite ordinal. 

Theorem 2. Let A E V and IA 1 X,, d I V1 and let I be a directed graph of the form 

I . =  ( V ,  E ) ,  

where E c A x V. Suppose that, for every x E A, 

I I Y  E V : ( x ,  Y ) ~ E l l < / V I ,  

and every edge of  I' receives a colour from the colour set I. Then there is a set J G I 
and, for every j c :  J ,  a m, E L and x , (v)  E V for 06 v <  m,, such that 

(i) every x E A occurs among the x,(v),  
(ii) x , ( p )  = x , ( v )  implies (i, p )  = ( j ,  v), 
(iii) if j E J and 0 < Y < mJ and v is odd, then 

(x , (v -  I), x,(v)L ( x , ( v +  11, x , ( v ) )  

are two edges, each of colour j .  

The condition (iii) means that the path belonging to a value j E J (monochroma- 
tic of colour j )  has its edges alternately directed one way and the other: 

-+ ++ t"' 

Theorem 1 is obtained by putting in Theorem 2 A = V ;  1 VI = N o ;  E = 

V X  V - { ( x ,  x ) :  x E V} ;  1 ={c0, cl} and making the colour of every edge indepen- 
dent of its orientation. 

191 
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Proof of Theorem 2. We begin by disposing of a trivial case. If )I1 > IAl then we 
can choose a set J s I with IJ( = [A] .  We put m, = 1 for j E J. We can write 

A = { x , ( O ) : j € J ) ,  

where x,(O)fx,(O) for i f  j .  Then assertion (iii) holds vacuously because there is 
no odd number v with O <  v <  m,. 

So we may suppose 

/ I (  < / A  1 d k”,, d 1 VI 

A = { a , : O d h < p }  ( 3 )  

(2) 

and write 

for some p s w .  For ~ E A  put 

f j ( x )  = { y E V :  (x, y )  has colour 1 )  for i E I ,  

fb)= u i c x ) = c y €  V : ( x .  Y ) E E ) .  
5 7 1  

We shall now define systems of paths which have some of the desired properties 
and which will be used to construct a system of paths as required in Theorem 2. 

Denote by i2 the set of all triples of the form 

(R ,  ( m, : p E R ), ( xp ( v )  : p E R ; 0 c v < m,)), (4) 

where: R s I ;  mp E { 1 ,3 ,5 ,  . . .} for p E R ; x,(v) E V for p E R ; 0 d u < m, ; and we 
have the conditions: x,(v) = x, . (v‘)  implies (p ,  u )  = ( p ’ ,  v’); if p E R and O <  v <  m,; 
v odd. then 

~ , , ( v - l ) , x , , ( v + l ) ~ A ,  

x p  ( v )  E fi, (x, ( v - I ) n f, ( x,, ( + 1 ) ) ; 

and tin a I I y 

We notc that the paths constructed from the triple (4) already satisfy the 
conditions (ii) and (iii) of the theorem to be proved. The “factor” V on the 
left-hand side of ( 5 )  is added in order that the case R = fJ should be covered. This 
enables us to assert that f2 is not empty, since the triple (4, 8, 8 )  belongs to 0, 
where H denotes the empty family. 

I now describe a recursive construction. Let the triple (4) belong to f2. 
Moreover, let it be chosen in such a way that the set R is maximal by inclusion. If 

A G { x, ( v ) : p E R : () u < m, }, 

then the  assertion holds with J = R. So we may suppose 

A { x , , ( v ) :  p t R ;  0s v <  m,}. 
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Then there is a least number v,, < p such that a”(, Z x p (  v) for all p, v with p E R and 
0 s  v <  m,. Put a = avo. 

Case 1. For every p0e I we have 

Put 

Case 2. There is p ( , ~  I with 

Case 2a. po& R. Then put m,, = 1 ; x,(O) = a ;  R‘ = R U {p(,}. It follows that the 
triple 

(R‘, ( m, : p E R’), (x,( v) : p E R’; 0 < v < m,)) 

belongs to f2, which contradicts the maximality of R .  

Case 2b. P<,E R. By (7) we can choose an element x,(mR,) of the set 

Put x,,(m,,+l)=a; mb,=m,,+2; rnL=m, for p ~ R - { p ~ } .  Then the triple 

(R, ( m i  : p E R) ,  ( x p  ( v )  : p E R ; 0 s v < m:)) 

belongs to l2. 
It has now been shown that, if we are given any triple of a having a maximal 

set R and if the triple does not give rise to a system of paths with the required 
properties, then we can lengthen one of its paths by adding two more vertices. In 
doing this we shall have incorporated in our paths the first vertex of A in the 
enumeration (3)  which has not yet occurred in our paths. A moment’s considera- 
tion shows that if we iterate this procedure, starting with a triple of 0 whose R is 
maximal, we shall continue to lengthen some of our paths, always maintaining the 
truth of (ii) and (iii) of Theorem 2. We shall have satisfied the requirements of 
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that theorem if we take as J our set R and as paths the limits of the paths which 
are being constructed by our procedure. 0 

It would be of interest to decide whether Theorem 1 can be extended to the 
case of monochromatic paths of length greater than w. Let n be an ordinal number 
and let, for every ordinal v < n, x, be a vertex of the edge-coloured complete 
graph r. The family (x, : v < n )  might be called a path in the colour c if x, f x, for 
p < v <  n and i f ,  for every ordinal v with v + 1 < n, the edge { x u ,  x u + , }  has colour c 
and, for every limit ordinal v <  n, the supremum of the set { p  < v : { x , ,  xu}  has 
colour c} has the value v. The conditions are equivalent to saying that. whenever 
p < v < n, we have x, # x, and {xA, x,} has colour c for some A in p A < v. 
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Gallia est omnis divisa in partes tres (J .  Caesar). 

0. Introduction 

In this paper we present a general study of a natural partition of the edges of a 
graph G into three classes-the principal tripartition of G-which is defined 
canonically from the cycle space of G. 

For ease of visualization we shall employ the graph-theoretic concepts of cycles 
and cocycles, but unless otherwise stated the results hold also for binary matroids. 
We prove a number of theorems concerning this principal tripartition and indicate 
that the results are of more than merely academic interest by applying them to 
obtain a criterion for the planarity of a graph to solve a conjecture of Gauss 
concerning the sequence of crossing points of a closed curve. The tripartition can 
also be used to obtain many “Parity Theorems” - theorems concerning the parity 
of certain numbers associated with a graph, such as the number of spanning trees. 
A Parity Theory for graphs may be regarded as promising for networks 
engineering. 

1. Definitions and notation 

By a graph G = (V, E) we shall mean a finite set E (the edges of G), each 
element of which is incident to two elements (not necessarily distinct) of another 
finite set V (the set of vertices). Thus we allow our graphs to have loops and 
multiple edges (see Berge [l]). 

Let 8 = 2 E  be the free vector space over GF(2), with the elements e of E as 
basis. In other words, any subset A of E is represented by a vector whose 
e-component, A,, is 1 if e E A and 0 otherwise. We shall use the same symbol to 

* This research was supported by NATO Research Grant No. 637. 
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denote the set or the corresponding vector. Moreover, a lower-case letter denot- 
ing an edge in E will also denote the set consisting of that edge alone, as well as 
the corresponding vector. A set will be called ’even’ or ‘odd’ according as it has 
even or odd cardinality. 

Clearly e + e = 0 (the zero vector) for any e E E and A + A = 0 for any A E 8. 
For A, B E  8 we write 

(A, B ) =  c A, . Be 
e s E  

(the “scalar” product of A and B). If (A, B )  = 0, i.e., if A and B have an even 
number of common elements, we say that A and B are orthogonal. 

If 9 is a subspace of 8, write 

9 d l = { B ~ 2 ? l ( A , B ) = 0  for all A E ~ } .  

gdl is called the orthogonal subspace of 9. We have [6] 

d i r n 9 + d i m g d L = c a r d E  

and 

(W)l= 9. 

Similar results to the above hold for the space 7 f  = 2” defined over the set V of 
vertices of G (or, for that matter, over any finite set). 

The boundary de of an edge e is defined as the sum of its incident vertices. The 
boundary mapping a: 8+Sr is the linear mapping defined on the basis of 8 as 
above, i.e., 

The coboundary 6v of a vertex v is defined by the relation 

(e ,  6v) = (ae, v), 

i.e., the edge e E 6v if, and only if, u E ae. The coboundary mapping Y:$+-+ ‘iR is 
the linear mapping defined on the basis of 7’f as above, i.e., 

as= c 6v. 
v e s  

It follows that for any A E % and S E  7“ 

(A, 6s) = @A, S ) .  (1.1) 

The space % = ker d will be called the cycle space of G, and the space Im 6 will 
be called the cocycle space of G. Since Im 6 is the orthogonal complement of 
ker 6 the cocycle space is denoted by %l. The elements of V are called cycles of 
G;  those of %l are called cocycles. There may be some sets of edges that are both 
cycles and cocycles. Such sets, belonging to the space % n VL, are of particular 
importance and will be called bicycles. In Fig. 1.1. in heavy lines bicycles X are 
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0 1 

1 

0 

1 

J 

(3) ( b )  ( c )  

Fig. 1.1 

displayed, which do not include other nonzero bicycles; vertices labels display S, 
such that SS = X. In Fig. 1.2. the sets {d ,  e} ,  {b, c, d } ,  {b, c, e, k ,  1) are cycles, the 
sets {b, c} ,  {b, d, e , f } ,  {c,  b, h, i, j ,  k,  l }  are cocycles, and the set {b, c , f ,  g,  h, i }  is a 
bicycle. 

If A E %  and there is an edge e such that A + e ~ % l ,  then A is called a 
principal cycle of G. The edge e and the principal cycle A will be said to be 
associated, each with the other. Similarly, if B E  %l and there is an edge e such 
that B + e E % then B is called a principal cocycle of G. In Fig. 1.2 the cycle 
{b, c, f, g, h, i, k, 1) is principal because the addition of edge j makes it into a 
cocycle; the cycle {b, c, d }  is also principal since the deletion of edge d makes it 
into a cocycle. The cocycles {b, c, f, g, h, i, j ,  k, I} and {b, c}  are principal cocycles. 

A tree in a graph is a minimal subset of E which meets every nonzero cocycle. 
A cotree is a minimal subset of E which meets every nonzero cycle. If Y is a tree 
then Z = Y + E is a cotree. If e E Y, denote by Y" the unique cocycle which meets 

Fig. 1.2 
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Y in e alone; if e E Z ,  denote by Z' the unique cycle which meets 2 in e alone. 
The family { Ye}eGy  is a basis - called a fundamental basis -for %I; similarly the 
family {Ze}eeZ  is called a fundamental basis for V. 

A dendroid of V n  VL is a minimal subset of E which meets every nonzero 
bicycle. A fundamental basis for V f l  VL is also defined as above. 

2. The edge tripartition of a graph 

By d+ 93 we mean the subspace of 8 which is the sum of the subspaces d and 
93 of 8. Then it is known [6] that for any subspace V of 8 we have 

( V n V i ) L = V +  vL. (2.1) 

Let us now consider what status an edge e may have with respect to V + VL. 
If e belongs to a bicycle X then e is not orthogonal to X .  Hence e is not a 

vector of V + Vl. If e does not belong to any bicycle, e is orthogonal to every 
bicycle, and hence e is a vector in V +  VL. In the latter case there exist a cycle 
y ( e )  and a cocycle w(e)  such that 

e = y ( e )  + w(e).  

Clearly y ( e )  is a principal cycle and w(e)  is a principal cocycle. 

be called a decomposition of e. In general it is not unique, for we also have 
Such an expression of e as the sum of a principal cycle and principal cocycle will 

e = M e )  + X )  + (w(e)+ X I ,  (2.2) 

where X is any bicycle. Moreover, it is easily verified that any decomposition of e 
is of the form (2.2) for some bicycle X .  

From (2.2) we deduce that all principal cycles associated with e are of the form 
y ( e ) + X ,  while all principal cocycles associated with e are of the form o ( e ) + X ,  
where X E  (e f l  gi. Hence if e belongs to one of its associated principal cycles, it 
belongs to all of them, and similarly for its associated principal cocycles. Thus we 
have the following theorem. 

Theorem 2.1. For any edge e of G, exactly one of the following statements holds: 
(i) e belongs to a cycle which becomes a cocycle when e is omitted from it, 

( i i )  e belongs to a cocycle which becomes a cycle when e is omitted from it, 
(iii) e belongs to a bicycle. 

In this way we define the principal tripartition of G, denoted {P,  Q, R } .  We have 

P = { e l 3 y E ( e ,  e E y  and e + y E ( e l } ,  

Q = { e / 3 w E % ' ,  e E w  and e + o E % } ,  

R = { e  I ~ X E  'GnW:', e E X } .  
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From Theorem 2.1 we have P+ Q + R = E. Since %l is defined from %, Theorem 
2.1 can be stated in terms of cycles only. 

Theorem 2.2. For any graph there exists a tripartition {P, Q, R}  of its edges such 
that 

(i) e E P  if there is a cycle, containing e, which is orthogonal to every cycle not 
containing e and is not orthogonal to any cycle containing e, 

(ii) e E Q if there is a cycle, not containing e, which is orthogonal to every cycle 
not containing e, and is not orthogonal to any cycle containing e, 

(iii) e E R if there is a cycle containing e which is orthogonal to every cycle. 

In Fig. 2.1 the principal tripartition of the edges of the graph is displayed. In 
this graph there is one bicycle {a, 6, c, d ,  e, f, g, h, i, j } .  Thus the edge p can be 
decomposed in two ways, viz. 

cycle cocycle 
p = a + c + e + f +  g +  i + k + l + n + q  

p = b + d + h + j + k + l + n + q  

+ a + c + e + f +  g +  i + k + I +  n + p + q ,  

+ b + d  + h +  j +  k +  l + n + p + q .  
and 

We give below some elementary properties of the principal tripartition. First, 
note that obviously every loop (edge which is a cycle) belongs to P, and every 
bridge (edge which is a cocycle) belongs to Q; more we have the following 
theorem. 

Fig. 2.1 

Theorem 2.3. (i) The zero cocycle is a principal cocycle associated with e if and 
only if e is a loop. 

(ii) The zero cycle is a principal cycle associated with e i f  and only i f  e is a bridge. 

Theorem 2.4. (i) If e E P every principal cycle associated with e is odd and every 
principal cocycle associated with e is even. 

(ii) If e c  Q the parities in (i) are reversed. 
(iii) Every bicycle is even. 
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Proof. This is a direct consequence of the orthogonality of cycles and cocycles. 

Theorem 2.5. Given e, f cP+Q,  and e = y ( e ) + w ( e )  and f =  y( f )+w(f )  two 
decompositions of e and f :  

(9 e E r(f) i f ,  and only if f~ ?(el, 
(ii) e E w ( f )  i f ,  and only i f f €  w ( e ) .  

which is equivalent to (i). It follows immediately that 

which is equivalent to (ii). 
When e f  f then 

If these scalar products all have the value 1 we say that e and f are ‘interlaced’. 
The set of edges interlaced with e in G will be denoted by h ( e ) .  Thus, for 
e E P+ Q, we have 

A(e)= y ( e ) n w ( e ) n ( P + Q ) .  (2.5) 

From (2.1) we also deduce that any set A E 8 which is orthogonal to all bicycles 
can be decomposed, i.e. written as 

A = y W ) +  @(A), (2.6) 

where ~ ( A ) E  % and ~ ( A ) E  %l. y(A) is called a decomposition cycle associated 
with A, and w ( A )  is called a decomposition cocycle associated with A. 

Theorem 2.6. Given two sets A, B E  (% n %L)L, and any decomposition of them 
A = y(A) + @(A), B = y ( B )  + w ( B ) ,  then 
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Proof. Consider 

201 

Then, by orthogonality 

(A, y ( B ) ) = ( y ( A ) ,  B). 

The same holds for w ( A ) ,  w ( B ) .  

Since %I is defined from %, then the decomposition formula (2.6) can be stated in 
terms of cycles only, or in terms of cocycles only. 

Theorem 2.7. (i) Given A c E, a cycle y(A) is a decomposition cycle associated 
with A, if and only if y(A) is orthogonal to every cycle orthogonal to A, and not 
orthogonal to every cycle not orthogonal to A. 

(ii) Given A c E, a cocycle w ( A )  is a decomposition cocycle associated with A, if 
and only if w ( A )  is orthogonal to every cocycle orthogonal to A, and not orthogonal 
to every cocycle not orthogonal to A. 

Proof. (?(A), y )  = (A, y )  is equivalent to (y(A) + A, y )  = 0. And (y(A) + A, y )  = 
0 for every y E % means that ?(A) + A is a cocycle, which also means that y(A) is 
a decomposition cycle associated with A. The proof of (ii) is similar. 

Theorem 2.7 stated for A = e, or simply Theorem 2.2., gives the following 
theorem. 

Theorem 2.8. (i) A cycle y ( e )  is a principal cycle associated with e i f  and only i f  
y ( e )  is orthogonal to every cycle not containing e and not orthogonal to every cycle 
containing e. 

(ii) A cocycle w(e)  is a principal cocycle associated with e if and only i f  w ( e )  is 
orthogonal to every cocycle not containing e and not orthogonal to every cocycle 
containing e. 

3. Graphs without bicycles 

Let us consider graphs for which R = O .  The importance of this restriction will 
appear more clearly in Section 7 where it is shown that by a slight manipulation of 
its edges any graph can be converted into a graph without bicycles. 

If R =0 ,  % is the direct sum of ’& and %I. The decomposition of any edge e, 

e = r(e> + d e ) ,  (3.1) 

is unique, and we can speak of the principal cycle and cocycle of e. And for any 
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A E 8, A has the unique decomposition, 

A = Y ( A )  + 4 A ) ,  (3 .2 )  

where 

This defines two linear projection mappings y: 8+% and w :  %+(el. Clearly 
Im y =  (e and Ker y =  (eL, Im w = (el, and Ker w = (e, and also y 2 =  y and w 2 =  o. 

In terms of principal cycles and cocycles we have the following theorem. 

Theorem 3.1. In  a graph without bicycles 

zero sum, i.e., 
(i) A E 8 is a cycle i f  and only i f  the principal cocycles of the edges of A have 

(ii) B E 8 is a cocycle if and only i f  the principal cycles of the edges of B have 
zero sum, i.e., 

Notice that this theorem can be used to derive principal cycles or cocycles from 
others. For example, the principal cycle for an edge belonging to a cocycle B can 
be found if the principal cycles for the other edges of B are known. 

Theorem 3.2. Let G be a graph without bicycles, and let Y be a tree of G and Z the 
corresponding cotree. The family of cycles {y(e>},,z is a basis for U: and, similarly, 
{w(e)}e,,y is a basis for Cei. 

Proof. {y(e)}e,E generate (e since Im y = %. Let us consider, for f~ Y, the 
fundamental cocycle Yf. Since Ker y = (el, we have y(Yf) = 0. Since Yf = 

f + Z n  Yf, y ( f )  is expressible as a sum of y ( e )  for some edges eE  2. Hence 
{y(e)}e,,Z also generate %. Moreover, {y(e)},EZ is minimal since its cardinality is 
the dimension of (e. 

Theorem 3.3. If R = 0, then the number of edges interlaced with an edge e is 
always even, i.e., 

0 = h ( e )  (mod 2). 

Proof. Since P +  Q = E, Eq. (2.5) becomes h ( e )  = y ( e )  n w(e) .  By orthogonality 
h ( e )  is even. 
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4. The generalized tree and cotree functions 

Given a tree Y and its corresponding cotree Z in a graph G, consider the 
fundamental bases { of %' and { Z e } e s Z  of %. For an edge e E E we define 

y(e)= Ye  if e E Y, 

y (e )=  C Y" if e E Z ,  
a e Z ' + e  

and 

z (e )  = Z' if e E Z ,  

( 4 . 1 )  

z ( e ) =  C Z" if eE Y. 
aeY'+e 

By linearity we can extend these definitions from edges to sets of edges and 
obtain functions 

y : $ + % l ,  z : $ + % .  

We call y the generalized tree function since it extends to edges not in Y the 
well-known isomorphism y I y  of 2 y  to For a similar reason z is called the 
generalized cotree function, extending the isomorphism z , ~  of 2= to %. Clearly 
I m y = % I  and Im z = % .  

Theorem 4.1. (i) A E 8 is a cycle if and only if the cocycles y (e)  for e E A have zero 
sum, i.e., 

(ii) B E % is a cocycle i f  and only i f  the cycles z ( e )  for e E B have zero sum, i.e., 

Proof. Left to the reader. 

There exists a convenient relation between the generalized tree and cotree 
functions and the decomposition ( 2 . 6 ) .  

Theorem 4.2. For any edge e E E of a graph without bicycles 

(i) The cocycle y (e)  is a decomposition cocycle associated with Y n y'(e). 
(ii) The cycle z ( e )  is a decomposition cycle associated with 2 n z*(e). 

(iii) The union of the two families { Y fl y2(e)},e,and { Z  n zz(e)},Ez is a basis of 8. 

Proof. By the definition of y ,  for any B E %I we have B = y (  Y n B).  Hence, since 
y'(e) E %', put B = y2(e): 

y'(e)= y ( Y n y ' ( e ) ) ,  
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Y - 2 - - -  P -  Q- 

Fig. 4.1 

which means that y ( e )  and Y n y ” ( e )  have the same image under y :  since 
ker y = %, we have 

Y n y 2 ( e )  = A ;t y ( e > ,  

where A E % (and y ( e )  E qL): which is a decomposition (2 .6 )  of Y n y’(e). 

The proof of (ii) is similar, the proof of (iii) follows easily. 

Theorem 4.3. If G is a graph without bicycles, 

(i) There exists an integer CY such that y a  = w. 

(ii) There exists an integer p such that z p  = y. 

Proof. Left to the reader. 

Theorem 4.3 and Theorem 4.2 provide means for computing the projections 
y and w when R = O .  

For the graph of Fig. 4.1., take the tree Y = { a ,  b, c, d} and the cotree Z = {1,2}. 
Corresponding to Z the fundamental basis of cycles is displayed in the window of 
first column of Table 1. From it, the whole Table 1 is generated. 

Table I 

z ( e )  e y(e) Y ( A )  y ( e )  w ( e )  PQR e 
= w ( A )  

l a c  a a 1  ac l  bcd2 abcd2 Q a 
2bcd b b2 bcd2 abd12 ad12 P b 
12abd c c12 abd l2  a c l  a 1  P c  
2bcd d d2  bcd2 abdl2  ab12 P d 

ac l  bcd2 bcdl2 0 1 
bcd2 abdl2  abdl  P 2 

5. Bipartition of the edges into a cycle and a cocycle 

Let us consider the decomposition of E into a cycle and a cocycle. 
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Theorem 5.1.' There exists a bipartition of the edges of a graph into a cycle and a 
cocycle, i. e., 

E = ( y ( E )  + X )  + (43 +XI, 

where X E  % n%' 

Proof. Any bicycle X being even (Theorem 2.4), we have (X, E)=O for any 
bicycle; thus E belongs to (% n%*),. Then, by Eq. (2.6), E has the decomposi- 
tion given in the theorem. 

It is usual to say that a graph (or a binary matroid) is even if E is a cycle, and 
bipartite if E is a cocycle. Then in an even graph there exists a decomposition with 
y ( E )  = E and o ( E )  = 0; and in a bipartite graph there exists a decomposition with 
y ( E )  = 0 and o ( E )  = E. 

Theorem 2.7 can be stated for A = E. 

Theorem 5.2. (i) A cycle y ( E )  is a decomposition cycZe associated with E if and 
only if y ( E )  is not orthogonal to every odd cycle. 

(ii) A cocycle o ( E )  is a decomposition cocycle associated with E if and only if 
w ( E )  is not orthogonal to every odd cocycle. 

And for graphs without bicycles we have the following. 

Theorem 5.3. Given a graph without bicycles, 

y ( E )  is orthogonal to every even cycle, 

only i f  w ( E )  is orthogonal to every even cocycle. 

(i) a nonzero cycle y ( E )  is a decomposition cycle associated with E i f  and only if 

(ii) a nonzero cocycle w ( E )  is a decomposition cocycle associated with E i f  and 

Theorem 5.4. For any bipartition of a graph, E = y(E) + w ( E ) ,  

P c  y ( E ) ,  Q c w ( E ) .  

In case R = O ,  

P = y ( E ) ,  Q = w ( E ) .  

The proofs of Theorems 5.3 and 5.4 are immediate. 

It follows from the theorem above that if R is known, and a bipartition is given, 
the principal tripartition is known. The knowledge of R for graphs comes simply 

' The appearance of this Bipartition Theorem among graph theorists has been both recent and 
reticent. Pla proposed to us a proof in the context of flow theory, independently of the paper [2] by 
Chen. Later we learned from Lovasz that Gallai had proved the theorem in 1965, and that P6sa had 
given a combinatorial algorithm for finding bipartitions. We shall describe P6sa's algorithm, with 
proof, in the next section. 
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Fig. 5.1 

from the fact that bicycles are coboundaries of the elements of Ker 86 = (Im 
and a generating system of Im a6 is obviously (aSv),,,. For the graph of Fig. 5.1, 
while taking a fundamental basis for Im dS (with dendroid 1 + 3 + 2 + 4, in Table 
2), bicycles appear given by SS, such that d8S = 0 (S = 1 + 3 + 5 or 2 + 4 + 6; then 
R = a + b + c + d + 1 +f.). Also appears w ( E ) ,  given by 6s such that d6S = d E  = 
1 + 2 + 4 + 5  ( S = 2 3 4  or 156 or 23 or 1245; then w ( E ) = a + d ) .  So the tripartition 
is: 

P = g + h ,  Q = O ,  R = a + b + c + d + l + f .  

And also appears a principal cocycle associated with g, given by SS such that 
dSS = 8g = 1 + 5  (S = 2 + 4 ;  then w ( g )  = a + b + c + d ) .  

Table 2 

1 1256 1*5" 24 
2 1234 3*5" 34 
3 24 2*6" 124 
4 2345 4*6" 1234 
5 1456 - 135 
6 15 - 246 

* Stars indicate ele- 
ments of the dendroid 
of Im 38. 

The next section is devoted to an algorithm for computing combinatorially 
rather than algebraically the decomposition of E. 

6. A combinatorial bipartition algorithm for graphs 

Throughout this section we shall consider only graphs, rather than binary 
matroids in general, since we shall need to consider vertices and the boundary and 
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coboundary mappings. We shall also assume that these graphs have no loops or 
multiple edges. 

The problem of finding a bipartition of the edges of a graph G is that of finding 
a set F of vertices such that 

E=6F+A,  (6.1) 

aE = a6F. (6.2) 

where A B %, which is equivalent to finding F c V such that 

A set F of vertices satisfying (6.2) will be called a foot of G. 
Now the edges in SF are those that join a vertex in F to a vertex in V + F ,  and 

the graph resulting from their removal (which has edge set A) is an even graph, 
since A € % .  Hence a foot F of a graph G is a set of vertices such that the 
subgraphs induced by F and by V + F  are both even graphs. 

The following theorem is a direct corollary of Theorem 5.1. The constructive 
proof of it given below is due to L. Pdsa (personal communication). 

Theorem 6.1. Every graph has a foot. 

Proof. The proof is by mathematical induction on the number of vertices in the 
graph. The theorem is true for graphs with 1 edge and 2 vertices; suppose it 
true for graphs having n - 1 vertices, and consider a graph G having n vertices. 

If all the vertices of G have even degree then there is nothing to prove. If not, 
then let z1 be a vertex of odd degree, and let H be the set of vertices adjacent to 
v. We now modify G to obtain a new graph G‘, as follows. Delete the vertex v, 
and hence any edges incident with v, and replace the graph induced by H by its 
complement. Thus two vertices of H will be joined in G‘ if, and only if, they were 
not joined in G. Edges incident with at least one vertex not in H U { u }  are not 
affected. 

Since G’ has n - 1  vertices it has a foot F’. The vertices of H are therefore 
divided into two classes, H n F’ and H n (V’+ F’), where V’ is the vertex set of 
G’. One of these has an odd number of vertices, the other an even number, since 
the cardinality of H is odd. 

We now assert that the set (either F’ or V’+ F’) which contains an odd number 
of vertices of H is a foot F of G. For consider what happens when we reconstruct 
G from G’. In the subgraph induced by F only the vertices of F n  H are affected, 
each to the extent of reversing its adjacencies with the even number of other 
vertices of F n  H .  Hence the degrees of these vertices, and hence of all vertices in F 
remain even (see Fig. 6.1). In the subgraph induced by V ‘ + F  the degrees of the 
vertices of (V’+ F )  f l  H are changed in parity by the complementing operation; 
but the restoration of the vertex u to the set V + F  increases by 1 the degrees of 
these vertices, and moreover the degree of v in the subgraph induced by V +  F is 
even. Hence the subgraphs induced by F and V + F  are even, and F is a foot of 
G. This completes the proof of the theorem. 
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3 63 t- 63 f- 52 c 

Fig. 6.1 

It is clear that this theorem also gives rise to an algorithm (also due to P6sa) for 
determining a foot of a graph G on n vertices. We use the operation described 
above to construct a sequence of graphs of decreasing numbers of vertices until 
we obtain an even graph. This must happen in at most n steps - possibly with an 
empty graph. By retracing this sequence of graphs we can construct a foot of each 
from a foot of the preceding one and hence find a foot of G (see Fig. 6.1.). 

The crucial step is that of taking the local complement, and this could require a 
time O(n2).  Hence the whole algorithm can be completed in O(n’) time. 

7. The effect of edge manipulation on the tripartition 

We consider here four manipulations of an edge e (illustrated in Fig. 7.1) and 

(a) G:e denotes the graph obtained from a graph G by bisecting the edge e, i.e., 

(b) G.e denotes the graph obtained from G by contracting the edge e, i.e., 

introduce the following notation for them. 

replacing e by two edges, el and e2, in series. 

deleting e and identifying its ends. 
(c) G&e 

replacing e 
(d) G - e  

denotes the graph obtained from G by doubling the edge e, i.e., 
by two edges, el and e2, in parallel. 
denotes the graph obtained from G by deleting the edge e. 

G 

G:e G-e G&e G-e 

Fig. 7.1 
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Table 3 

Manip e in e l  & e,in new P new Q new R * q  

G:e 
G. e 
G & e  
G - e  

G: e 
G. e 
G & e  
G - e  

G: e 
G. e 
G & e  
G - e  

P R 
P 
P P 
P 

Q Q 
Q 
Q R 
Q 

R P 
R 
R Q 
R 

P + e + P n A ( e )  
P + e + P n A ( e )  
P+ e + e, + e2 + A(e) 
P + e +  X(e) 

P+h(e )  
P + h ( e )  
P + P n h ( e )  
P +  P n A(e) 

P+cL+(e) 
P +  p+(e) 
P+ p - ( e )  
P+p-(e)  

Q + Q n h ( e )  R+e ,+e ,+h(e )  + 1  
Q +  Qn A(e) R + h ( e )  +la 
Q+A(e) R 0 
Q+A(e) R 0 

Q+ e + e, + e,+ A(e) R 0 
Q + e + h ( e )  R 0 

Q + e + Q n h(e) 
Q +  e +  Q n  hfe) R + e, + e Z +  h(e) +1 

+ l b  R + h(e) 

Q + K ( e )  R + p ( e )  -1 
Q + pL-(e) R + p ( e )  - 1  
Q + p+(e) R + p ( e )  -1 
Q + R + p ( e )  -1  

a If e is not a loop. 
If e is not a bridge. 

The effect of these four operations on the graph depends strongly on the status 
of the edge e relative to the tripartition. Hence there are 12 cases to consider. 
The results are displayed in Table 3; proofs are immediate. 

The new symbols used in Table 3 are defined as follows. By A q  is meant the 
change in the dimension q of the bicycle space; by p ( e )  is meant the set of edges 
isobicyclic to e, i.e. the set of f E R such that for any bicycle X,  e E X e  f E X ;  by 
p+(e)  is meant the set of f E R such that in any decomposition of E, e and f 
occur in the same part (thus p + ( e )  is a subset of p ( e ) ) ;  by p - ( e )  is meant the set 
of edges f such that in any decomposition of E, e and f do not occur in the same 
part (thus p - ( e )  is also a subset of p ( e ) ) .  

From Table 1 we see that for any one manipulation the change in the 
dimension of the bicycle space is -1 ,0  or +1 depending on which of the classes P, 
Q, R (not necessarily in that order) contains the edge being manipulated. Hence 
we have: 

Theorem 7.1. Given any of the four manipulations and any edge e, the class (P, Q 
or R )  to which e belongs can be determined from the change in the dimension of the 
bicycle space when the manipulation is performed. 

Manipulations produce relations between the principal cycles and the decom- 
position cycles associated with E, as follows. 

Theorem 7.2. (i) i f  e E P :  y ( e )  = y ( E ( G  - e ) )  + y ( E ( G ) ) ,  
(ii) If e E Q :  o ( e )  = w ( E ( G . e ) ) +  o ( E ( G ) ) .  

Proof. Note that cycles of G - e are cycles of G, and cocycles of G.e are cocycles of 
G. Therefore Theorem 7.2. is a consequence of Theorems 2.8 and 5.2. 
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A manipulation can be performed on several edges, and is then calied manipu- 

Let us consider the problem of withdrawing all the bicycles from a graph. 
lation on a set of edges A c E ( G :  A, G.A, G & A, G - A). 

Theorem 7.3. Given a graph G with bicycles, and A c E;  i f  A is a dendroid of  the 
bicycle space of G, then G :  A, G&A, G.A and G - A are graphs without bicycles. 

Proof. The theorem is proved by simple inspection of Table 3 and the use of a 
fundamental basis of bicycles. 

8. Bicycles and the parity of the tree number 

In this section we shall make use of Table 3 of Section 7 to establish some 
assertions concerning the parity of the tree number N ( G )  - the number of 
spanning trees of the graph G. (In what follows the word ‘spanning’ will be 
understood). 

The following theorem was first proved by W. K. Chen [2]. 

Theorem 8.1. If G is connected, N ( G )  is  odd if and only if R = 0 

Chen’s proof of this theorem is algebraic, depending on the calculation of a 
determinant; here we give a combinatorial proof. 

Proof. We know that if an edge e is not a bridge or a loop, then 

N (  G )  = N (  G . e )  + N (  G - e ) .  

For any tree T of G either contains e, in which case it remains a tree when e is 
contracted, i.e., T.e is a tree of G . e ;  or it does not, in which case it is also a tree of 
G - e. Moreover the number of trees is not changed when a bridge of a graph is 
contracted, or when a loop of a graph is deleted. 

The proof of the theorem is made by mathematical induction on the number of 
edges. We first observe that the theorem is true for the connected graphs with two 
edges. Note also that the theorem is true for a connected graph where each edge 
is either bridge or loop. 

Now suppose that the theorem is true for graphs having at most m edges, and 
consider any edge e which is not a bridge or a loop in a graph having m + 1 edges. 

If e E P ,  then G.e has bicycles and N1G.e) is therefore even, by hypothesis. 
Hence N ( G )  has the same parity as N ( G  - e ) .  But G - e is connected, and G has 
the same bicycles as G - e, and hence the theorem is true for G. 

If e E Q, we obtain the same result by interchanging the operations of deletion 
and contraction. 



Principal edge tripartition of a graph 211 

If e E R, G.e and G - e are connected and have same bicycle space dimension. 
Therefore N(G.e )  and N ( G -  e )  have the same parity; hence their sum is even. 

Theorem 8.2. (a) Let A be a non-empty subset of E ( G )  not containing any cycle of 
G. The number of trees of G that contain A (or cotrees disjoint from A )  is odd i f  
and only i f  G.A has no bicycles. 

(b) Let B be a nonempty subset of E ( G )  not containing any cocycle of G. The 
number of trees of G that are disjoint from B (or cotrees containing B )  is odd i f  and 
only i f  G -  B has no bicycles. 

Proof. In fact the trees containing A (or the cotrees disjoint from A) are in 
bijection with the trees (or cotrees) of G.A; the trees disjoint from B (or the 
cotrees containing B )  are in bijection with the trees (or the cotrees) of G-€3. 
Therefore Theorem 8.2. is a corollary of Theorem 8.1. 

For other results on parity and principal tripartition, see de Fraysseix [3]. 

9. Bicycles and the Tutte' polynomial 

We now show that the dimension q of the bicycle space of G is related to the 
Tutte polynomial (or dichromate, see [12]) of More, precisely: 

Theorem 9.1. If a graph has m edges and 2q bicycles, then 

/y(-l,-l)=(-l)m(-2)q. 

Proof. For a graph in which every edge is either a bridge or a loop (say that there are 
a! bridges and p loops, where a! + @ = m )  it is known that the Tutte polynomial 
reduces to x " y p ,  and certainly q = O ,  so that the result of the theorem holds. 

Suppose now that the theorem is true for graphs having at  most A edges which 
are neither bridge nor loop; let us consider a graph G with A + 1 edges which are 
neither bridge nor loop, and let e be one of them. Then it suffices to show that the 
recurrence relation for the Tutte polynomial is satisfied, that is to say that 

(- 1)m(G.e)(-2)q(G.e) + (- l)m(G--e)(-2)q(G-e) = (- 1)"(_2)dG). (9.1) 

In G.e and G - e  the number of edges which are neither bridge nor loop is 
smaller than or equal to A. Then by recurrence hypothesis and from Table 3 we 
have the following values for the left-hand side of (9.1). 

If e E P :  (-1)"- '(-2)q+' + (-1)m-'(-2)q, 
if eE Q: (-1)m--1(-2)q +(-1)m-1(-2)q*1, 
if e E R :  (-1)m--1(-2)q-1 +(-1)m-1(-2)q-1. 

*We dedicate a new value of the Tutte Polynomial to Professor W. T. Tutte on the occasion of his 

and 

60th birthday. 
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In each case this reduces to the right-hand side of (9.1) and the recurrence is 
therefore satisfied. 

10. Characterization of planar graphs by the algebraic diagonal 

A graph is planar in the sense of Whitney [13] if there exists a graph G", called 
the algebraic dual of G, and a bijection 4 of E ( G )  onto E(G*),  called duality, 
such that 

(i) every cocycle of a vertex of G has, as dual, a cycle of G", and 
(ii) every elementary cycle (i.e. minimal under inclusion) of G* is the dual of a 

cocycle of G. 
By an algebraic diagonal of a connected graph G having no bicycles will be 

meant a walk S on G including each edge exactly twice, such that between two 
occurrences of the same edge e in the walk, the set of edges occurring exactly 
once makes, with e, the set y ( e )  if e E P and w ( e )  if e E Q. 

Theorem 10.1. A connected graph without bicycles is planar i f  and only i f  i t  has an 
algebraic diagonal. 

(The proof below has been very briefly described in [91). 

Proof. (a) Let G be a planar connected graph without bicycles. Then G and G" 
admit dual plane realizations where the dual edges e and e *  cross each other and 
each is incident to two vertices (distinct or coincident) of one graph, correspond- 
ing to faces of the dual graph. We associate with these edges a set of four 
elements, denoted by Ie, Je, T e ,  U e  (represented by the arrows in Fig. 10.1) on 
which operates the Klein group ( I ,  J ,  T, U )  ( I  = identity, J = inverse, T = traverse 
and U = transverse). Each of the four elements is incident with a face and a vertex 
incident with e, such that, a being any one of them, a and T a  are incident with 
the same vertex, while a and Ja are incident with the same face. Thus with G and 
G* represented in the plane, we associate a quadrialphabet d on which operates 
the Klein group ( I ,  J, T, U) .  J and T interchange under duality. 
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Fig. 10.2 

A word in d, Z = cocl . . . ci . . . c,, such that every letter has its incident vertex 
in G (respectively G”) in common with the inverse (respectively traverse) of the 
following letter is called a word of G;  it describes a walk in G in one of two 
senses. The walk is closed if co is considered as following c,. Denote by IZ( the set 
of edges encountered an odd number of times in 2. If 2 is a closed walk in G 
then I Z I ~ k e r a .  For any permutation 7~ on d, if b is on the orbit of a, i.e. if 
r k a  = b for some integer k ,  the interval from a (not included) to b (included), 
denoted by ( a ,  b]“ is defined as the shortest word ?ra, r 2 a ,  m3u,. . . , b. ( a ,  a].. 
denotes the orbit of r that contains a. Denote by la, bl” the set of edges 
encountered an odd number of times in (a ,  b]“. 

It is known that for a plane representation of G there is associated with each 
vertex a cyclic permutation of the edges incident with that vertex, and hence [7] 
an involution p without fixed points on 1 which interchanges the letters having 
the same incidences (see Fig. 10.2). The permutation T =  U.p has the following 
property. 

Property 10.2. For every a E d, (U.7)’ = I  and TU Z Ua. 

It appears that ‘ a  TU’ is a word of G and of G”; in fact, a and J.TU have the 
same incident vertex in G, since J . T ~  = J. U.pa = T.pa; moreover a and T.TU have 
the same incident vertex in G* (i.e. face of G) since T.TU = T. U.pa = J.pa. An 
orbit ( a ,  aIT of T therefore describes simultaneously a closed walk of G and of 
G*. It follows that la, aI7 is the zero bicycle- the only bicycle in G, by 
hypothesis. Thus we have: 

Property 10.3. For every a ~ d ,  la, alT = 0. 

It follows [8] that T has exactly two orbits, transverses of each other, one being 
. . . abc. .  . , the other . . . Uc Ub U a . .  .(see Figs. 10.3 and 10.4) constituting a 
particular closed walk of G and G* in which each edge occurs twice. This walk is 
called the Petrie polygon or geometric diagonal A of the plane representations of 
G and G*. An argument similar to that used to obtain Property (10.3), taken 
together with Eq. (3.1), namely e = y ( e ) +  w ( e ) ,  shows that A has the following 
properties. 
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a b 

i 7 . .  2 i 

Fig. 10.3 Fig. 10.4 

Property 10.4. For every a E d 

(i) i f  lul E P, then Ta is  on the orbit of a and la, Tu('= y(lal), 
(ii) i f  la1 E Q, then Ja is on the orbit of a and la, Jal' = w(lu1). 

Thus A is an algebraic diagonal of G. 

For the proof of Property 10.4(i) note that if lalE P, then in G, (a ,  Ta]' is a 
closed walk. In G* it is a walk plus the last edge ITaI; Hence (a ,  ~ - 'Ta]7  is a 
closed walk. Thus la, Tal' is a cycle of G and (a ,  TaI'+lul is a cocycle of G, 
whence (a ,  Tai' = y(lu1). The proof of (ii) is similar. 

(b) Conversely we show that, given a connected graph G without bicycles, 
having an algebraic diagonal S, we can associate with it a graph G*(S) having the 
properties of an algebraic dual in the sense of Whitney. To do this we associate 
with E ( G )  a quadrialphabet d on which operates a Klein group ( I , J ,  T, V) with 
the same incidence conventions for each quadruplet and its edge as were given in 
Part (a) of the proof. The walk S, meeting each edge exactly twice, is closed. S 
induces a permutation T (Fig. 10.4) on d consisting of two transverse orbits. One 
of these is constructed by describing S, starting at an initial edge and in an 
arbitrary sense, and by substituting for any edge e encountered for the first time 
the letter Ie (which fixes the vertex of incidence of Te and Ve),  and by 
substituting for any edge e encountered for the second time the letter Te if the 
vertex of incidence of Te agrees, and the letter Je if not. Since, by construction, T 

has the Properties (10.2), the permutation p = T.T has the following property. 

Property 10.5. For every a E d, (J .pl2 = I and pu f Ja. 

Since is a word of G, 'apu' is also a word of G; in fact J.pu and J.ru 
have the same incident vertex in G since J.pa = J.T.Ta = T.J.ra. The orbits of p 
describe walks on G. It follows that the orbits of p containing a and Ja are 
distinct (inverses of each other) and constitute a particular closed walk of G, 
called a face of G relative to S. This face is said to be incident to the letters a and 
Ja. An arbitrary edge e is incident to two faces relative to S (distinct or 
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coincident), said to be adjacent. Then G*(S) is, by definition, the graph whose 
vertices are the faces defined above and whose edges correspond to adjacent 
faces: an edge e* of G*(S) corresponds to each edge e of G having the same 
incidence with the faces of G (that is to say with the vertices of G*).  The edges e 
and e* are said to be duals. 

It remains to verify that G*(S) satisfies the Whitney conditions (i) and (ii). 
(i) Consider a vertex v E V(G). The permutation a = 3.7 has, by Property 

(10.2), the following properties: 
for every a ESZ, (T.a)’ = I and o a f  Ta. 

Since ‘ a m ’  is a word of G*(S) so is ‘ a a a ’ ;  in fact T.aa and T.TU have the 
same incident vertex in G*(S) since T.aa = T.3.7~ = J.T.Tu. It follows that the 
orbits of c containing the letters a and Ta, incident with the vertex v, are distinct 
(each the transverse of the other), comprise only letters incident with u, and 
make up a closed walk of G*(S).  The set of edges of G that are incident with v 
exactly once (a cocycle of G) therefore has, as dual, a cycle of G*(S). 

(ii) An elementary cycle A* of G*(S) corresponds, by definition, to a sequence 
of distinct faces of G, say f,), f, , .  . . fi, . . . . f,, all distinct, where, if n = 0, there is 
an edge e, incident twice with f,, and, if n > 0, there is an edge e,  incident with fn 

and f,, and an edge ei(i  = 1 , 2 , .  . . , n )  incident with fiPl and fi (see Figs. 10.5 and 
10.6). It is now a matter of showing that A = (e,, e l , .  . . , en) is a cocycle of G. 

Consider the following two words of G associated with A: 

M(x)  = (Ua,, p-la,]PalUa,(Ual ,  p-1a2y a2Ua2 * * * 

. . . (Uui_,, (Fig. 10.5) or x = Ju, (Fig. 10.6). 
and 

N ( x ) = ( U a , ,  p-’a,lP(Ua,, p-la2]P . . . (UUi -1 ,  P-lailP. * * (Van, p - l x l p ,  

where a, is one of the two letters of e,  incident with f,,, a,, for 1 S i S n, is the first 
letter of ei encountered by the orbit of p starting at Uui-,, and x is the first letter 
of e, encountered by the orbit of p starting at Uu,. M ( x )  and N ( x )  are not 
necessarily closed. Since x is, like a,, a letter of e,  incident with fn  we have two 
cases to consider: either x = a,, (Fig. 10.5) or x = Ja,, (Fig. 10.6). 

Fig. 10.5 Fig. 10.6 



216 P. Rosenstiehl, R.C. Read 

Fig. 10.7 

At this point we digress slightly to extend our definition of an interval (a, b]' 
over T. It was defined above as the portion of the orbit of T from a to b, and this 
definition applies only when a and b are on the same orbit, i.e. when b E ( a ,  a]. 
(see Fig. 10.4). We now extend this definition to cover the case b&(a ,  a ]  (see Fig. 
10.7) as follows. If b is not on the same orbit as a then Ub is, i.e. Ub E (a, a]', and 
we define (a, b]' to be (a, Ubl'b. 

Hence the interval from a to b on the diagonal includes the backtrack 'Ub b' on 
the edge Ibl, which is therefore traversed twice. This means that JbJ& la, bl'. 

In this new notation Properties (10.3) imply at once a 'Chasles formula', 
namely: 

Property 10.6. For a, b E I, la, bl'+ Ib, c1' = la, clr. 

Properties (10.4), which r satisfies by hypothesis, generalize now to 

Property 10.7. For all a E I, la, Tal' = y( la l ) ,  and la, Ja(' = w ( l a ( ) .  

For, if l a ( & P  then Ta$(a ,  a]. and 

la, Tal' = la, U.Ta)'+la( = o(lal)+la(= y( la l ) ,  

while if lal& Q, then J a $ ( a ,  a ] .  and 

(a,JaI'= la, U.Ja)'+JaJ= y( (aJ)+ la l=  w(la1). 

We also have, as consequences, the following two useful results: 

Property 10.8. For every a E d, la, UaI'= la(. 

This property holds since (a, Ua]' = (a, a]' Ua, whence la, Ua(' = O +  (al .  

Property 10.9. For every a E 04, Ip- la ,  a\' = w ( \ a ( ) .  

This property holds since (p-'a, a]. = Ta(Ta, a?, whence (p- la ,  a/' = / a / +  y(1al) 
by virtue of Property (10.7). 

We now resume the proof of the second part of the theorem. 
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In the case x = a,, consider the two closed walks K = M(ao)Uao and L = N(ao),  
(see Fig. 10.5). Write K = cocl . * . ci . * c,, where c, E d, and consider the expression 

c I Y ( c ~ ,  C Z Y .  * * (Cj-1, cjl' * * * (cr-1, cr17(cr, 0, 
which is a closed walk over the diagonal with occasional backtracking. The sum of 
the edges over the whole walk is zero, by virtue of Properties (10.6) and (10.3), 
i.e. 

(10.1) 

We distinguish two kinds of terms in (10.1). Corresponding to a factor 
(Uai-,,  p-lu,]p in N(a,) we have terms with c,-~=p-'Cj and thus I C , - ~ , C , \ ~ =  
w(lcil), by virtue of Property (10.9). These terms therefore give on summation: 

Corresponding to the pair of terms ai U ai in M ( x )  we have, for i = 0, 1 , .  . . , 

Ip-lai, ailT + lai, UaiI' = o(laiI) + [ail = ~(lai l ) ,  

by virtue of Properties (10.11, (10.8) and Eq. (3.1). Summing for all these terms, 
we have 

i = O  e e A  

Hence from (10.9) we have 

o =  4LI) + 744). (10.2) 

L is a closed walk in G; ILI is therefore a cycle of G, and belongs to the kernal 
of o. Hence by (10.2) A belongs to the kernel of 7, i.e. it is a cocycle of G, which 
is what was to be proved. 

In the case x = J a , ,  consider the two closed walks K'=M(J, )  and L '=  
N(Ja,) Ua, (see Fig. 10.6). Write K' = c,c,. . . c, . . . c, and consider the closed 
walk 

(Cn, CJ(c1, ~ 2 3 '  . . (cj-1, cjY * * . ( ~ ~ - 1 ,  ~ ~ 1 7 ,  
on which the sum of the edges is zero by Properties (10.6) and (10.3), i.e. 

(10.3) 

Now we distinguish two kinds of terms in (10.3). There are the terms 
corresponding to the cj E N(Ja,), where, for cj # co, cjPl = p-lci, whence 

cil' 

Icj-1, CjlT = w(lcjl)y 
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by virtue of Property (10.9); while for ci = co, cj-l = c, = Ja, = T.p- 'co,  whence 

IC,, c a r  = IJao, Uaol' + Jp-lco, car, 

IC,? COI' = r(laoI)+ 4lcoI),  

by virtue of Property (10.6), or again 

by virtue of Properties (10.7) and (10.9). On summation we get 

C ~ ( I c I ) + r ( i a ~ l ) =  C w ( e ) + e o =  w ( I L ~ I ) + ~ ~ ,  
c s N ( J a o )  eslL'I 

by virtue of Eq. (3.1). The other terms, taken in pairs for i = 1 , 2 , .  . . , n are equal 
to 

I p-l a ,  ai IT + 1 Uai I T  = w (1 a; 1) + I I = ?(I ai I), 
by virtue of Properties (10.9), (10.8) and Eq. (3.1), and in addition there is the 
term corresponding to i = 0, namely 

Jp-lJao, Jaol' = dlaol). 

On summation we obtain 

2 Y(IaiI)+u(IaoI)= y(lail)+laol= C y(e)+eo= y(A)+eo 
i = l  i = O  e c A  

by virtue of Eqs. (3.1) and (3.3). The equation (10.3) becomes 

o= 4lL'I) + ?(A), 

which is similar in form to (10.2) and implies the same conclusion. This completes 
the proof of Theorem 10.1. 

Note. The above theorem applies only to graphs without bicycles, but it can be 
applied to graphs in general by making a slight modification to the graph in 
question as mentioned in Theorem 7.3. 

11. Proof of the interlace conjecture of Gauss 

Consider in the plane a closed curve C - a continuous image of a circle - 
which has a finite number of points of self intersection (see Fig. 11.1), each 
intersection being of two portions of the curve only. These points will be called 
crossings. Suppose that these crossings have been labelled with arbitrary distinct 
symbols, such as letters of the alphabet, as in Fig. 11.1, where the letters a, b, c, d 
and e have been used. Let the curve now be traversed exactly once, and the labels 
recorded in the order in which they are encountered during the traversal. Then we 
obtain a sequence of labels in which each symbol occurs exactly twice. Thus for 
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Fig. 11.1 

the curve of Fig. 11.1, we obtain the sequence abcdbaeedc. The problem of 
Gauss, with which this section is concerned, is that of determining which se- 
quences can arise in the above manner from some closed curve in the plane. 

First we shall need a few definitions. In what follows the term sequence will be 
used to denote an ordered sequence of symbols in which each symbol occurs 
exactly twice. A crossing sequence is a sequence which can be obtained in the 
manner described above from some self-intersecting closed curve in the plane. 

We shall denote by S" the set of symbols that occur exactly once in S between 
the two occurrences of the symbol e. Clearly, if f E S" then e E Sf (compare S' to 
A(e) of Section 3.); we shall then say that e and f are "interlaced". Given a 
sequence S we define a graph, denoted by I ( S )  and called the interlace graph of S,  
whose vertices correspond to the symbols in S and in which two vertices are 
adjacent if and only if the corresponding symbols are interlaced. 

Gauss [ S ]  observed that if a sequence is a crossing sequence then the following 
interlace property holds: 

Property 11.1. For every symbol e, S" is even. 

This implies that the interlace graph of a crossing sequence is an even graph, 
i.e. every vertex has even degree. By exhibiting the sequence abcdecdabe Gauss 
showed that the necessary condition (11.1) is not sufficient, and propounded the 
problem of finding other interlace properties to be added to Property (11.1.) in 
order to form a necessary and sufficient condition for a sequence to be a crossing 
sequence. We call the conjecture that such interlace conditions exist the interlace 
conjecture of Gauss. 

In 1936 Dehn gave a solution to the recognition of crossing sequences [4]. This 
solution was of an algorithmic nature, giving a method for determining whether or 
not a given sequence was a crossing sequence. This solution has been discussed by 
us elsewhere (see [7]), along with other approaches to this problem that rely, as 
does Dehn's, on topological transformations of the curve, and the corresponding 
transformations of the sequence S. Below we give an algebraic solution to the 
Gauss crossing problem, one that relies only on the properties of the sets S' 
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defined above, in the spirit of the Gauss condition (1 1.1). Therefore the conjec- 
ture is proved that interlace properties can characterize crossing sequences. 

The essentials of this solution are embodied in the following theorem. 

Theorem 11.2. A sequence S is a crossing sequence if and only if the interlace 
graph I ( S )  has the following properties: 

(i) for every e, S" is even (this is Gauss's condition), 
(ii) for every e and f that are not adjacent in I ( S ) ,  S" n S' is even, 

(iii) the edges (e, f )  for which S' f l  S' is even form a cocycle. 

(The proof below has been very briefly described in [lo]). 

Proof. Let E denote the set of symbols occurring in S. 

following property. 
(a) We first show that properties (i), (ii) and (iii) are together equivalent to the 

Property 11.3. There exists a bipartition (P, Q) of E, with P n Q = $4 and P U Q = 
E, such that every element of the family {y(e)}eEE defined by 

-y(e)= S'u{e} if e~ P, 

and 

-y(e) = S' if e E Q, 

has an  even intersection with every element of the family {w(e)}esE defined by 

w ( e )  = S' if e E P, 

and 

w(e) = S" U{e} if e E Q. 

On the one hand we show that Property (11.3) implies (i), (ii) and (iii) of 
Theorem 11.2. For every e, y ( e )  f l  w(e) = S" is even, which gives (i). If f $! S' then 
the two sets S" n(Sf U{f}) and S' n Sf are equal. Hence since one of them is 
even, so is the second, and this gives (ii). Finally, if f E S' then S' n (S'U (f}) and 
S' n Sf differ exactly in the element f. Hence e belongs to one class ( P  or Q) and 
f belongs to the other if and only if S" f l  S' is even. This gives (iii). 

On the other hand, (i), (ii) and (iii) of Theorem 11.2 together imply Property 
(11.3). The cocycle referred to in (iii) defines a partition of E into two classes P 
and Q. Consider the sets y(e) and w ( e )  defined by P and Q in accordance with 
Property (11.3), and suppose that one intersection, say y(e) n w( f ) ,  is odd. 
Then f #  e, by (i). Moreover, f~ S', since otherwise y(e) f l  ~ ( f )  = S" fl S' would be 
even, by (ii). Hence S" n (Sf U {f}) and S' n Sf have opposite parity. We now 
distinguish two cases. If e and f belong to the same class, then S' fl Sf is odd, by 
(iii), and y ( e )  n w(f) = S' n (Sf U {f}) is even -which is not possible; but if e and f 
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Fig. 11.2 

belong to distinct classes, then S‘ n Sf is even, by (iii), and -y(e) n w(f),  which has 
the same parity as S‘ fl S’, is also even - again a contradiction. 

(b) We next show that a crossing sequence of a curve C satisfies Property 
(11.3). It is well-known that the curve C divides the plane into regions colourable 
in two colours, so that two regions incident with a common portion of C have 
different colours (see Fig. 11.1). 

Consider the graph G(S) whose vertices are the regions with colour different 
from that of the infinite region, and whose edge set E is defined as follows: e E E 
is incident with the two vertices of G(C)  which represent the regions which have 
the intersection point e in common. Then G ( C )  is a plane graph which can be 
realized in the plane in a natural way by making the edge e pass through the point 
e of C (as in Fig. 11.2, heavy lines). Let G*(C) be the plane graph defined as for 
G ( C )  but using the regions with the other colour (see Fig. 11.2, dotted lines). 
Then G ( C )  and G*(C) are dual graphs, and C is seen to be the geometric 
diagonal of these two graphs, as defined in Section 10. 

If the curve C is traversed once in the sense given by the sequence S,  then the 
two directions in which a given edge of G(C)  is crossed by C can be described as 
being “the same” (as in Fig. 11.3a) or ‘‘opposite’’ (as in Fig. 11.3b). Let P be the 
set of edges that are crossed in the same direction by C-for example the edge 
‘d ’  in Fig. 11.2), and let Q be the set of edges that are crossed in opposite 

Fig. 11.3 
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directions by C-for example the edge ‘b’ in Fig. 11.2. Then the families 
{ y ( e ) } e e E  and {o(e)},,E defined by Property (11.3) are the families of cycles and 
cocycles of G ( C )  respectively. This is clear for y(e), which, by definition, has zero 
boundary in G(C);  as for o(e) ,  since it has, in the same way, zero boundary in 
G*(C), it is a cycle in G*(C), and hence is a cocycle in G(C) .  

Hence Property (1 1.3) is satisfied by S by virtue of the orthogonality of cycles 
and cocycles in G(C).  

(c) Finally we show, conversely, that if a sequence S satisfies Property (11.3) 
then it is a crossing sequence. 

Let P and Q be defined for S as in Property (11.3), giving rise to the mutually 
orthogonal sets y(e) and o(e). Associate with S the graph G(S) induced by the 
sequence S on the set E considered as a set of edges, S being a walk on the graph 
G(S) such that an edge e is described twice in the same direction if e e P ,  and 
once in each direction if e E Q. To see that this is always possible, consider the 
process of drawing such a graph G(S) edge by edge, adding the edges in the order 
in which the symbols occur in S.  If an edge x is about to be drawn, and the next 
edge e has already been drawn, then the membership of e (in P or in Q) 
determines at which end vertex of e the edge x must end. Moreover, if the walk 
so far drawn ends at a vertex A, and the next edge f to be included in the walk is 
already drawn but is not incident with A, then one end of f (and again the 
membership of f indicates which one) must be identified with A. It follows from 
this that the vertex set V of G(S) is also determined. 

We now show that the sets y(e) and o(e)  are respectively the cycles and 
cocycles of G(S).  

First, y(e) E ker 13, since the boundary of y (e )  is that of a closed walk in G(S),  
by the definition of y ( e )  in Property (1 1.3). 

Second, o(e)E(ker d ) l ,  since w ( e )  is, by virtue of Property (11.3), orthogonal to 
each element of the family {y(e)}eGE, which includes a base for ker 3, as we shall 
now show. 

To this end, describe the sequence S from the beginning, and note the 
incidences of the edges that appear in S.  Their 2)EI extremities reduce, by 
successive identifications as indicated above, to IVI vertices of G(S).  With the 
exception of the first edge, every edge occurring for the first time in S gives rise to 
one such identification (with one end of the preceding edge) - /El - 1 identifica- 
tions in all. An edge occurring for the second time may or may not imply an 
identification; let el, e2, . . . , e, be those that do. Hence the total number of 
identifications 2 IEI- I VI is (El - 1 + r, whence r = IEl- I V1+ 1 = dim ker 13. The 
second occurrence of an edge ei produces the cycle y(e,) and a vertex identifica- 
tion, and it follows that the cycle y(e,) has a nonzero boundary in the graph 
induced by the portion of S up to, but not including, ei, and hence y(ei) is 
independent of the y(ej) for j < i. Thus {y(ei)}osis, is a base for ker I3 by virtue of 
this independence and the dimension; and it is certainly included in {y(e)}eEE. 

Finally we show that G(S) is a planar graph. From Property (11.3) we have, for 
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every e, 

r(e) + w ( e )  = e, 

where r(e) is a cycle of G(S),  and w ( e )  a cocycle of G(S),  as proved above. Thus 
in virtue of Theorem 2.1, G(S) is a graph without bicycles whose principal cycles 
are the y ( e )  and whose principal cocycles are the w ( e ) .  Moreover 

{e 1 e E y ( e ) }  = P, {e 1 e E w (e)} = Q. 

Hence S is an algebraic diagonal for G(S) as defined in Section 10. Hence, by 
Theorem 10.1, G(S) is planar. It admits a plane representation in which the 
geometric diagonal crosses the edges in the order given by the sequence S. Hence 
S is a crossing sequence. 

Theorem 11.2 above does more than just give a necessary and sufficient 
condition for a sequence to be a crossing sequence; it gives also a practical 
method for constructing a curve C of which the sequence S is the crossing 
sequence. This can be done in three stages. 

Stage 1. Find classes P and Q. From Theorem {11.2(iii) we see that if e and f 
are interlaced, then they will belong in the same class, if and only if S“ n Sf is odd. 
Choose any partition (P, Q) consistent with these requirements. (If I ( S )  is not 
connected then each of its components will be partitioned, and there will be more 
than one way of putting the parts together to form P and Q). Thus for the 
sequence abcdbaeedc of Fig. 11.1 we may take P =  {c,  d ,  e }  and Q ={a ,  b} .  

Stage 2. Construct G(S).  In S, underline the second occurrence of elements of 
Q, to indicate which edges are to be traversed once in each direction. Place a 
prime ( I )  against every other element of S, to indicate that an edge following a 
primed edge is the first one encountered when one turns in an agreed sense at 
their common vertex (any, for example, that it is the ‘first on the left’ following 
the primed edge), and that an edge following an unprimed edge will be the ‘first 
on the right’. From the sequence above we now have afbcfdbf_aefed’c. 

If G(S) exists it is determined uniquely by this sequence (see Fig. 11.4) and S is 

Fig. 11.4 
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a walk described by the ‘first on the left-first on the right’ algorithm of Shank 

Stage 3. Construct C. The geometric diagonal C can now be traced by going 
along each edge, first along one side as far as the midpoint and then crossing to 
the other side to complete the traversal of the edge. Since every edge is traversed 
twice, this procedure effectively replaces each edge by two portions of C which 
cross at the midpoint, these portions being joined up near the vertices of G(S) in 
the manner shown in Fig. 11.5. 

c111. 

In this way a curve C which gives rise to the sequence S is constructed. 
The analogous problem for several closed curves in the plane that intersect 

themselves and each other can be solved by reducing it to the problem for a single 
curve. We now have a family C ={Ci}, i = 1,2,. . . , k, of curves, supposed 
oriented, and for each curve Ci there is a sequence Si of points of intersection in 
the cyclic order in which they are encountered on Ci, these points being rep- 
resented by symbols from a set E. Each symbol in E occurs exactly twice in the 
collection S = {Si}. 

As before, these curves define regions of the plane, colourable in two colours, 
and we denote by G ( C )  the graph defined by the regions of one colour. This 
graph has, as diagonals, the family C of curves. Denote by ]Sil the set of symbols 
occurring exactly once in Si. We may assume, without loss of generality, that the 
family of sets (IS,l} is connected, since otherwise the problem will break up into 
smaller independent problems for which the assumption is true. 

Now any k - 1 sets ISi[ form a base for the bicycle space of G(C).  Choose a 
dendroid of this space by taking a minimal transversal of the ISi\. For example, 
choose an element a, of IS,[; it will belong to some other set, say IS2]. If k = 2, we 
are finished. If not, then IS,(+/S,(# 0, and we choose u,EIS,(+IS,I. Now a2 
belongs to some other lSil, say IS3/. We now choose a3 in IS1( + lS,l + IS3), and so 
on. 

If, in G ( C ) ,  we bisect the edge corresponding to the intersection a,, replacing it 
by two edges, a;  and a‘; in series, the the two curves C, and C, are ‘merged’ to 

Fig. 11.5 



Principal edge tripartirion of a graph 225 

C1 and C p  separate C1 and C p  merged 

Fig. 11.6 

become a single curve, and the element pair aiay is traversed twice in this order 
(see Fig. 11.6). Bisection of a2 will now merge this curve with C,, and so on. In 
this way, by successive mergings, we eventually obtain a single curve. 

Conversely, given a family of k sequences {Si} over a set E, such that each 
element of E occurs exactly twice, we can determine whether it is representable 
as the set of points of intersection of k closed curves in the plane. We do so by 
reducing the problem to that of a single curve by successive mergings of one curve 
with another, as described above. The corresponding operation on the sequences 
is as follows. If a, is the chosen element of IS1/ + IS2/, we replace its occurrence in 
S2 by the sequence aiSlay, and drop the sequence S1 from the family. This 
process is repeated with the chosen elements a,, a,, etc. until a single sequence 
S* is obtained. From this we construct the graph G(S*), and, on suppressing the 
midpoints of the chosen edges, we obtain the graph G(S) whose set of diagonals is 
the required family of curves. 

This process of reducing a set of curves to a single curve is similar, though not 
identical, to the procedure, based on Dehn's algorithm, described in [7] for the 
same problem. 
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PERCOLATION PROBABILITIES ON THE SQUARE 
LATTICE 

P.D. SEYMOUR and D.J.A. WELSH 

Merton College, Oxford, England 

1. Introduction 

This paper deals mainly with bond percolation on the square lattice. This model 
is a special but perhaps the most interesting case of the general theory of 
percolation introduced by Broadbent and Hammersley [4] in 1957. In Section 2 
we review briefly the general percolation model; for further details see Frisch and 
Hammersley [13], Shante and Kirkpatrick [24], Essam [9] or Welsh [29]. 

In Section 3 we introduce the FKG inequality of Fortuin, Kasteleyn and 
Ginibre [12]. In Section 4 we introduce the problem of percolation through an 
n x n  sponge (loosely speaking, when is it possible to move from one side to 
another of a randomly dammed chessboard?). We examine two of the possible 
critical probabilities pT, pH defined in [29] and use the theory developed for the 
sponge problem to prove the result 

PT+PH = 1. 

Since Harris [18] has proved pHz=i and since intuitively one expects the numbers 
to be equal this suggests that all the critical probabilities for bond percolation on 
the square lattice have the common value i. 

2. The percolation model 

If G is a graph, finite or infinite, we let V =  V ( G )  be its set of vertices and 
E = E(G)  its set of edges. The little graph terminology we use is standard (see for 
example Berge [2] or Bondy and Murty [3]). 

By the percolation model on G we mean the assignment of open or closed to 
each edge of G with probabilities p and q = 1 - p  respectively, the assignments to 
be independent for each edge. If an edge is open we picture it as allowing fluid to 
pass along it; if closed it does not allow fluid to move along it. Thus if A is any 
subset of edges of the finite graph G, the probability that A is exactly the set of 
open edges is 

*(A) = plAlqIE\*l. 

227 
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If 0 denotes the set of all possible assignments, we identify a typical member o of 
0 with the subset of edges which are open in w. We shall be dealing throughout 
with a graph G in which E ( G )  is at most countable and the random variables are 
on the space 0. There is never any problem with the measurability or lack of it 
for the random variables which we shall be discussing and hence we shall usually 
write X for X ( w )  and so on. For details of similar such arguments see for example 

If G is a graph and A, B are subsets of V(G) and U is a subgraph of G, 
~171. 

denotes the fact that there is a path lying entirely in U which connects some vertex 
x in A to some vertex y in B. Occasionally we abuse notation and U is not a 
subgraph of G but just a set of vertices. In such cases we interpret the expression 

as {A J B} where 0 is the graph induced by U. 
If 0 is the probability space of the percolation model on G the event {A -+ B }  

is the event of R that there is some path of open edges linking a vertex of A to a 
vertex of B. 

Throughout 2 will denote the square lattice, that is the set of points (x, y)  of 
the plane having integer coordinates x and y and having edges joining each point 
(x, y)  to its nearest neighbours (x + 1, y), ( x  - 1, y), (x ,  y - l), (x ,  y + 1). 

As usual in this theory it is convenient to regard 2 as the “limit” of a sequence 
of finite graphs. One suitable sequence is (2,,: 0 s  n <a) where LEn is the 
restriction of 9 to the set of vertices {(x, y): - n S x G n, -n  S y S n}. LE itself is 
self-dual; that is, if we consider a new infinite graph 2’* whose vertices are the 
points (x +$, y +$) where x, y run through the integers, and whose edges are again 
those lines joining nearest neighbours, then 2* has the following properties. 

0 

(a) It is isomorphic to 2. 
(b) There is an obvious geometric duality between 2 and 9* inasmuch as they 

can be drawn as geometric duals in the plane, see for example [3]. 
Almost exclusively in this paper we shall restrict ourselves to percolation on 9, 

or some sequence of subgraphs of 2 which approach 2. 
Suppose we now regard the origin 0 as a source of fluid. We say that a point v 

of 2 is wet by fluid from the origin if there is a path consisting of open edges from 
0 to u, and otherwise v is dry. 

Let us now fix p,  O s p s l .  We let P,(p)  be the probability that at least n points 
are wet by fluid from the origin. Clearly 

so that 

P ( p )  = lim P, (p) 
n-m 
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exists, and satisfies 

O s P ( p ) s l .  

However, though each P,(p) is a polynomial in p and can be calculated, it still is 
not known for example whether or not P(p)  is continuous in p. Broadbent and 
Hammersley [4] show that there exists a critical probability pH defined by 

pH = inf p :  P(p)  > 0. 

Harris [18] proved that 

1 
2 P H  

and Hammersley [16] that 

PH s 0.646790. 

As pointed out in [29] there are several other “critical probabilities” in the 
literature, and the relationships among them are obscure to say the least. First 
consider V(p) ,  the expected number of points wet by the source at the origin- 
that is, 

We define pT by 

pT=infp: V(p)=m. 

Since V ( p )  is infinite if P ( p )  > 0, we have immediately that 

pT PH‘ 

One of our results below will be that 

(3) 

This has an easy proof, but also follows from our main theorem: 

Theorem 2.1. In percolation on the square lattice the critical probabilities pT, pH 
satisfy pT + PH = 1. 

Our proof of this is quite long and is given in Section 5.  Thus on an intuitive 
level at least there is strong evidence to support the following conjecture. 
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Conjecture 2.2. pr = pH = +, 

We should emphasize that for several years there has been a folklore belief that 
the above conjecture was proved by Sykes and Essam [25] in 1964. Sykes and 
Essam in fact show that under certain (as yet unproven) assumptions a third 
quantity pE associated with percolation on the square lattice is equal to 5. 
Although various attempts have been made (see for example Grimmett [ 141) to 
prove that the assumptions demanded by Sykes and Essam are correct it is a much 
more difficult (in fact, as far as we can see, hopelessly intractable) problem to 
relate pE with pH or pT. Even the very definition of pE is shrouded with mystery. 

3. The FKG inequality 

In 1971 Fortuin, Kasteleyn and Ginibre [12] proved a remarkable inequality 
showing that non-decreasing functions on a finite distributive lattice are positively 
correlated by all positive measures which have a certain convexity property. This 
inequality was originally applied to Ising ferromagnets in an arbitrary magnetic 
field, but as pointed out in [12] it is also closely related to a lemma used by Harris 
[18] in proving Theorem 2.1. In [23]  we showed that the inequality has diverse 
applications in combinatorial theory, and Kempermann [20] has given some new 
applications in probability theory. In this section we shall use it to obtain some 
new results in percolation, first passage percolation, and random graph theory. It 
is also used repeatedly in the proof of our main result in Section 5.  

Two random variables X and Y are covariant if % ( X Y ) 2 ( % X ) ( % Y ) .  Two 
events A, B are covariant if their respective indicator functions are covariant. 
Clearly (if P(B) f 0) A, B are covariant if and only if 

P(A I B )  P ( A ) .  

A set { X , ,  . . . , X , }  of random variables is covariant if for any subset I G  

Let D be a distributive lattice, where obviously we are using “lattice” in its 
algebraic sense. A function f : D -+ R is called increasing if f ( x )  S f (  y)  for any pair 
of elements x, y of D such that x i  y. A function f is decreasing if -f is 
increasing. 

When D is finite and p : D-+ R’, the p-average of a function f :  D-+ R is given 

(1, .  . . > kl,  ~(rI,EIx,)~rI,d~(x,). 

by 

The original version of the FKG inequality proved in [12] is as follows. 
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Theorem 3.1 (The FKG inequality). Let D be a finite distributive lattice and let 
p : D-+ R’ satisfy 

( 5 )  P ( ~ ) c L ( Y )  G ~ ( x  A Y>P(X  v Y )  ( x ,  Y E D).  

(fg) 3 ( f>(  g ) .  (6) 

Then i f f ,  g are both increasing or both decreasing functions, then 

An obvious corollary of this is that if f and g are functions on D which are 
monotone but in the opposite sense, then 

( f g )  (f)(g). 

Before proceeding to give some applications of Theorem 3.1 we prove a 
lemma. The proof is elementary, but we give it because we use the result several 
times later. 

Lemma 3.2. If  A,, A2 are covariant events in 0 with P(Al) = P(A2) then 

P(Al)a  1 -[I -P(Al U A,)]”’ 

which completes the proof. 

Example 3.3 (Random graphs). For each positive integer n let D, be the lattice 
of subsets of En, the set of edges of the complete graph K,. Now let p be defined 
as 

IAI IE\Al P A = P  9 . 

Consider the following events about the random graphs w on n vertices in which 
each edge of K, exists or does not exist with probabilities p ,  1 - p ;  

A: w is planar, 
B: w is hamiltonian, 
C: w is 4-colourable. 

It is clear that whereas A and C have decreasing indicator functions, B has an 
increasing indicator function. Hence the FKG inequality gives such statements as 

P[random graph w is hamiltonian I w is planar] 

=s P[random graph w is hamiltonian]. (7) 
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P[random graph w is 4 colourable I w is hamiltonian] 

P[random graph w is 4 colourable]. (8) 

Although intuitively appealing, such results do not seem easy to prove directly 
and serve to indicate the power of the FKG inequality. 

Now the reader will notice that in the FKG inequality as stated in Theorem 3.1 
the lattice D is restricted to being finite. Various infinite extensions of the 
inequality and of a stronger result of Holley [19] have been made recently by 
Batty [ 11, Cartier [ S ] ,  Edwards [7], Kempermann [20] and Preston [22]. However, 
as far as the main theorems of this paper are concerned the only infinite extension 
w e  need is the following covariance inequality first proved by Fortuin [lo]. 

Theorem 3.4. Let G be a countable graph and let P be the probability measure 
induced by a percolation model on G. Let f and g be increasing functions on the 
partially ordered probability space associated with this model. Then i f  8 is the 
expectation operator associated with P, 

whenever the expectations exist. 

Immediately from this we see that the results obtained in Example 3.3 above 
hold when G is a countably infinite graph. 

We close this section by sketching a proof of an extension of Harris’ correla- 
tion result to first passage percolation theory as defined by Hammersley and 
Welsh [17]. One interest of this extension is that Theorem 3.5 below was the 
original “physical result’’ which motivated Batty’s infinite extension [ 11 of the 
FKG inequality. 

Let G be a (finite or countably infinite) graph directed or undirected, with 
vertex set V and edge set E. Suppose that to each edge e, of G we assign a 
random variable ui drawn, independently for each edge, from a distribution F(x) .  
We call ui the time coordinate of ei. 

The set f2 of E-tuples w,  defined by w ( e , )  = ui, e, E E, is called the phase space 
and can be ordered by 

w s w ‘ e w ( e , ) ~ w ’ ( e ~ )  V e , E E .  

If x, y are any two vertices of G we write txy ( w )  to denote the first passage 
(shortest) time between x and y over paths of G, when it is in state w .  More 
precisely 

t .<”(w) = inf r(P, w ) ,  

where t(P, w )  is the sum of the time coordinates of the edges making up the path 
P, and the infimum is over all paths P joining x and y .  

Now for any points x , ,  x2, y , ,  y 2  of V(G) it is obvious that tX+,(w) and ty,,.(w) 
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are monotone on 0, in the sense that 

Thus we can apply the infinite version of the FKG inequality implicit in the work 
of Batty [l] and Edwards [7] to get the result that the pair of random variables 
t,,,, and t y ,y2  are covariant. More generally, if A, B are two subsets of V and 

tas(w) = inf tx,(w) 
* € A  
YES 

represents the first passage time between A and B when G is in state w we have 
the following general result: 

Theorem 3.5. For any sets A, B, C, D of vertices of the countable graph G the first 
passage times tas and tcD are covariant random variables. 

4. The sponge problem 

In this section we consider a new variant of the percolation problem. It is of 
some interest in its own right; indeed we studied it purely for its own sake before 
realising that it was a useful tool in giving insight into the relationship between pT 
and pH. Most of the results of this section will be used in proving our main result, 
Theorem 2.1. The vertex or atom percolation version of this problem has also 
been studied numerically by Kurkijarvi and Padmore [2 11. However, they assume 
as physically obvious certain results which we have found impossible to prove 
rigorously. 

The m x n sponge consists of the subgraph T ( m ,  n )  of 2 induced on the mn 
points 

{(x, y):  1 c x s n, 1 6  y G m}. 

Each of the m points (1, y ) ,  1 G y =s m, is regarded as an infinite source of fluid 
which may percolate through those edges of the sponge which are open. The 
probability that any edge is open is p ,  independently for each edge. 

We let S,(m, n )  = S(m, n )  denote the probability that some of the points (n, k ) ,  
1 s k S m, become wet by fluid. 

Trivial inequalities are 

S ( m ,  n + 1 )  c S(m, n ) ,  

S(m,  n ) <  S ( m  + 1, n ) .  

(9) 

(10) 

A basic, but extremely useful, result is the following. 
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Theorem 4.1. For all p ,  O s p c  1, and all positive integers m 3  1, n 3 2 ,  

S,(m, n ) +  S,(n - 1, m + 1) = 1, 

where 4 = 1 - p .  

Proof. Construct a new graph G(m, n )  from the m X n sponge T(m, n )  as follows. 
Identify all the vertices (1, y ) ,  1 s y s m, in a new vertex x,.  (Remove all edges 
which become loops.) Similarly identify all vertices (n ,  y ) ,  1 s y s rn, in a vertex 
x,. Add a new edge e joining x, and x2. The graph G(m, n )  is planar, and its 
planar ddal G* is isomorphic to G(n  - 1, m + 1). Now consider any assignment w 

of open and closed values to the edges of T(m, n ) .  There is a path of open edges 
from one of the vertices (1, y ) ,  1 s y 5 rn, to one of (n,  y ) ,  1 G y m, if and only if 
there is a cycle in G(m, n )  consisting of e and otherwise edges which are open in 
w. But, by the elementary max-flow min-cut theorem, either there is such a cycle 
in G(m, n ) ,  or there is a cycle in G* consisting of e and otherwise edges closed in w 

(and not both). But since G* is isomorphic to G ( n -  1, m + l ) ,  and an edge of 
T(m, n )  is closed with probability 4, the result follows. 

Hence if we define 

S , ( p )  = S,(n, n + 11, 

S,(p)+S,(l-p)= 1 (Osp<1) .  

we have for all positive integers n, 

In particular 

S,,($) =$ (1 < n <m). (11) 

It is also clear that S , ( p )  is a monotonic increasing function of p, satisfying for 
all n, 

S,(O)=O, S,(l)= 1.  

However we have noz been able to prove: 

Conjecture 4.2. For all p ,  0 < p < 1, lim S, ( p )  exists. ( W e  have shown that, even if 
the limit always exists, it is not continuous.) 

Conjecture 4.3. For p < $  (respectively>;), S , ( p )  is a monotone decreasing (re- 
spectively increasing) function of n. 

We now relate S , ( p )  with P,,(p). 

Theorem 4.4. For any positive integer n and 0 s p G 1 

S , , ( P ) G  1 - ( I  -Pm+l(P)Y. 
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Proof. Consider the n x (n + 1) sponge and let 

X = { ( x ,  y): x = 1, l s y s n } ,  

Y ={(x ,  y): x = n+ 1, 1 6 y S  n}. 

1 - S" (p) = P ( X +  Y )  

Then 
$. 

Y 

where A, = ((1, i) + Y}, 1 s i =s n. 

But by the FKG inequality the A, are covariant events, each having probability 
2 1  -Pn+, (p) .  Hence 

1 - S" ( P )  2 (1 - p,+ ,(P))" 

and the result follows. 

Suppose now we define the critical sponge probability p, by 

ps = inf p :  lim sup Sn(p) > 0. 
n-a. 

Then we know from (11) that 

PsCk (12) 

0.353210spTspp, .  (13) 

S(n, n ) < 8 S ( n - l ,  n-1).  (14) 

It will follow from the proof of Theorem 2.1 that 1 

One final result which we need before proving the main theorem is the 
following: For any n, 

To see this consider the n x n sponge. If there is a path across it, then there must 
be a path across one of the four ( n  - 1) x ( n  - 1) sponges inside it or there must be 
a path from the top to the bottom of one of these sponges. Considering the union 
of these events gives (14). 

5. Proof of Theorem 2.1 

We shall prove Theorem 2.1 by the series of Lemmas 5.1-5.6 below. However, 

First in Lemma 5.1, which is relatively straightforward, we show that 
it is probably instructive to show the broad outline here. 

PT+PH==1. (15) 
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In Lemmas 5.2-5.4 we prove various inequalities about the S(m, n )  which 
enable us to show in Lemma 5.5 that if p < 1 -pH not only does the sequence 
S,  ( p )  converge, but 

lim S,(p) = 0. 
n-m 

In Lemma 5.6, we show that if p > pT, 

lim sup S,(p) 3 6 > 0. 
n- 

Thus we have l-pH=zpT which with (15) proves our final result that 

P T + P H =  1. 

Lemma 5.1. pr+pH 6 1 

Proof. Let L be the set of points {(i, 0): i 3 0} of 9 and for 1 s M < 00 let L, be the 
set of points {(-i, 0): i 3 n} .  We choose a fixed p < pT; and then 

Choose N so that zIa,,,P,(p)< 1. Now 

Y Y 
P{ (- i,0) + L }  = P((0,O) -3 L, } F2 P, ( p )  . 

Hence 

Hence 

P{L,Z L}< 1. 

Now let Bi (1 s i < 00) be the points (-i +$, 4) (0 i < x) which are the vertices of 
the dual lattice 9*. For each assignment w of open and closed to the edges of 2 
we will consider 2* in state w * ,  where if e is closed in 2 under w then the 
corresponding edge e* of 2'* is closed in 2*. 

Let B * = B * ( w )  be the set of points of the dual lattice which are joined by a 
path of closed edges of 2'* to one of B,, . . . , B,. Suppose that we assume that 
with probability one B* is finite. Then if B* is finite let P* be those edges of 2* 
joining vertices of B" to vertices of 2*\B*. Then every edge in P* must be open 
in Z*. 
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Now since B* is finite P* must cut LN and must also cut L. Hence by 
elementary graph theory arguments there is an open path in 2 connecting LN with 
L. But we have chosen N so that the event LN+ L has probability strictly less 
than 1. Hence the assumption that B* is finite with probability one is false and we 
must have 

P(IB*] = to) > 0. 

But if for l S i S N  we let 

Ai ={a: Bi is connected in 2?* by a closed path to an infinite 
number of points of 2*}, 

then 

N 

P(IB*l= a) s P(A,) .  
i = l  

Since P ( A , )  = P(q) ,  we must have 

which implies 

so that pT + pH s 1 as required. 

Lemma 5.2. I f S ( 2 n , 2 n ) = ~ ,  then S ( 2 n , 4 n ) ) ~ ~ ( 1 - ( 1 - 7 ) ” ~ ) ’ .  

Proof. Consider the following regions of the square lattice. 

R ={(x, y) :  I ~ x s 4 n ,  1 c y S 2 n } ,  

X = { ( x , y ) : x = l ,  1 s y s 2 n } ,  

z = {(x, y 1: x = 2n, 1 s y G 2n},  

w = ((x. y ): x = n + 1,152 y sz 2n}, 

w, ={(x, y) :  x = n +  1 , 1  52y G n } ,  

W , = ( ( x ,  y ) : x = n + l , n + l < y s z 2 n ) ,  

U, = {(x, y ): n + 1 G x 4 3 n, y = l}, 

U ,  = {(x, y ) :  n + 1 G x 6 3n, y = 2n}, 

s ,  = ((x, y ): 1 G x c 2n, 1 s y G 2n}, 

S = {(x, y): n t 1 G x 3n, 1 y 4 2n}. 
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Fig. 1. 

We illustrate the situation in Fig. 1. 

Now for any subset of vertices A of 3' let A' be defined by 

Af=((4n+1-x,  y): (x, Y ) E A ) .  

so that for example 

W = { ( x , y ) :  x = 3 n , l s y s 2 n } ,  

X ' = { ( x ,  y ) : x = 4 n ,  l s y s 2 n j ,  

S : = { ( x , y ) : 2 n + l ~ x ~ 4 n ,  l S y s 2 n )  

Consider now the events Al,  A,, A, of 0 defined by 

s 
A , = { w :  W- W'} 

A, = { w :  there is an open path from X to Z in S, which 
meets an open path from U, to U2 in S}, 

A, = { w :  there is an open path from X' to 2' in S ;  
which meets an open path from U ,  to U, in S}. 

Then since A,, A,, A, are monotone in the same sense they are covariant and 
since also 

R 
A ,  f l  A, f l  A, c { X -  X'j, 

we have 
~ ( 2 n ,  4 n ) = = ~ ( ~ ,  n ~ , n ~ , )  

== P(Al)(P(A,))2 

= S(2n, 2n)(P(A,)),. 

We now consider P(A,) .  We wish to show 

P(A,)  3 (1 - (1 - T ) ' " ) ~ .  

Let (Pi: 1 S i S k )  be the collection of paths in S, which join X to 2 and which 
have the additional property that their last point Qi of intersection with W is a 
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point of W,. For 1 c is k let F, be the section of P, from 0, to 2. Then each F, is 
a path from W, to 2. 

Let X ,  be the event that there is an open path in S from F, to U, which uses 
only one vertex of F, and no vertex of F:. Let X :  be the event that there is an 
open path in S from F: to U2 which uses only one vertex of F: and no vertex of 

Now the set of points F, U F: separates U ,  from U, in S.  Hence if there is an 
Ft- 

open path in S from U ,  to U, then either X, or X:  occurs. Hence 

S 
P ( X ,  u x:) t P( U ,  - U,) 

= S(2n, 2 n )  = 7. 

But X,,  X :  are covariant, and by symmetry have equal probabilities; hence by 
Lemma 3.2, 

P(x,) = P( x:) 2 1 - J( 1 - 7).  

Let us now fix i and consider the three events, 

B, = By'= { w :  path P, is open}, 

B, = B:"' = { w :  for each j #  i such that P, lies in the 
region bounded by P, and y = 1, P, is not open}, 

B,  = B$) = x,. 

We assert 

P ( B ,  n B,n B,) a (1  -J(i - T))P(B, n B,). 

P ( B ,  n B, n B3) = P(B, n B3 I B, )P(B , ) ,  

For 

and if B ,  occurs, then the occurrence of &.depends only on the state of the edges 
of 2 strictly below Pi in S , ,  and the occurrence of B, depends only on the state of 
edges strictly above F, U F: in S. Since these two sets of edges are disjoint 

P(B,  n B, I B,) = P(B2 I B, )P(B ,  I B,).  

Hence 
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Now consider the event C that at least one of the Pi is open. Let {pi: 1 i k )  
be the collection of paths in S, which join X to 2 and which have the property that 
their last point of intersection with W is a point of W,. 

The event C that at least one of the pi is open is covariant with C and by 
symme try 

P(C) = P(C).  

Also P(CU C) = S(2n, 2 n )  = 7 so that by Lemma 5.1, 

P ( C ) a  l-d(l-7),  

and 

P(BY'nB2'for some i)>(l--J(l-~))~ 

Let E ,  be the event that there is a point w E W, such that 

.s , P 7 

w* x, W J  u,, w* 2. 

Let E2 be the event that there is a point D E  W, such that 

s ,  S s 
D d X ,  v-+ ul, U J Z .  

Now 

El n E ~ c  A2 

and hence the proof of Lemma 5.2 is complete if we show that 

P (  El n E,) 3 ( 1 - J( 1 - T ) ) ~ .  
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But E, ,  E, are covariant and by symmetry 

P(Ei)  = P(E2). 

Hence it is enough to show that 

P ( E , )  3 (1 - J( 1 - 7 ) ) 2 .  

But (by drawing a picture) E ,  occurs if,  for some i, P, is open and F, is joined to 
U2 by an open path in S. That is 

P ( E J  3 P u (B:"n ~ $ 1 ) ) .  L 
Thus with (16) we have the required result. 

Lemma 5.3. S(2n, 6n)>[S(2n, 2n)I3 ( l - J ( l -S (2n ,  2n)))16 

Proof. Consider the following regions of 2 (see Fig. 2): 
U = {( x, y ): y = 2n, 2 n + 1 < x S 4n}, 
V = {(x, y ): y = 1 , 2  n + 1 S x s 4n}, 
S={(x, y): 2 n + l S x s 4 n ,  l S y < 2 n } ,  
R = {(x, y): 1 =S x G 6n, 1 s y =S 2n}, 
x ={x, y) :  x = 1,1 =s y s2n} ,  
2 = {(x, y): x = 2n, 1 G y S 2 4 ,  
W = {(x, y ): x = 4n, 1 s y s 2n}, 
Y = {(x, y): x = 6n, 1 s y 6 2n}. 

Let 
R 

A = { w :  X -  W), 

R 
B = { o :  2- Y},  

C = { w :  u: V}. 

Then 
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and since A, B, C are monotone in the same sense and hence covariant we have 

= [S(2n, 4n)I2S(2n, 2n). 

which with Lemma 5.2 proves the result. 

Let R(n)  be the annulus of the square lattice 9 shown in Fig. 2 bounded by the 
squares C,,, D,, where C,, consists of the lines 

y=-3n+1,  x=3n,  y=3n,  x=-3n+1 

and 0, consists of the lines 

y=-n,  x = n + l ,  y = n + l ,  x = - n .  

Lemma 5.4. The probability that there is an open cycle around the annulus R ( n ) ,  
that is a cycle of open edges encircling the square D, and encircled by C,, is at least 

~ ( 2 ~ ,  2n)12(1 -d(i - ~ ( 2 ~ ,  2n)))64. 

Proof. Let A, B, C, D be the regions of R(n)  defined as follows (see Fig. 3): 

A =((x, y ) :  -3n+ 1 < x  < -n, -3n + 1 s y <3n},  
B = {(x, y ) :  -3 n + 1 s x s 3 n, -3 n + 1 =G y =Z -n}, 
C={(x,  y ) :  n + l S x = G 3 n , - 3 n + l c y ~ 3 n } ,  
D ={(x, y ) :  -3n+ 16.x ~ 3 n ,  n +  1 4  y ~ 3 n ) .  

X = { ( x ,  y ) :  - 3n+lsx=G-n ,  y=-3n+1},  
X’ = {(x, y ) :  -3n + 1 s x s -n, y = 3n}, 
Y={(x ,  y ) :  x=-3n+1,  n + l < y < 3 n } ,  
Y = {(x, y ) :  x = 3n, n + 1 6 y s 3 n}, 
U = { ( x ,  y ) :  x = -3n + 1, -3n + 1 s y =s -n}, 
U’ = {(x, y ) :  x = 3 n, -3 n + 1 s y s -n}, 
W = { ( x , y ) :  n + l ~ x ~ 3 n , y = - 3 n + I } ,  
W’={(x,  y ) :  n + l c x s 3 n ,  y=3n}.  

Let 

Then if F, is the event that there is an open cycle around R ( n )  we have 

A 

F , , ~ { x +  x’}n{u: u’)n{w-S, w~}n{YfL,y~}. 

Now the events on the right hand side are monotone in the same sense and thus 
covariant and each has probability S(2n,  6n) ,  so that 

P(F,,) 2 (S(2n, 

which with Lemma 5.3 proves Lemma 5.4. 
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4 b - - - - - - -  I -n , -n)  I n + l , - n )  

! I  I 

I 

I T  

Lemma 5.5. If p < 1 -pH, then S(n,  n )  exists and is zero, in other words 

Proof. If p < 1 -pH, then q > pH so that there is a positive probability of an 
infinite closed path from the origin in the dual lattice 3*. Suppose that for some 
E > O ,  S(n,  n ) > 8 E  for infinitely many n. Choose n,, n 2 , .  . . so that R(n, ) ,  
R(n,), . . . , are disjoint annuli and S(2ni ,  2 q ) >  E for each i. This is possible by 

Now by Lemma 5.4, the probability that there is an open path around R(ni)  is 
(14). 

at least 

€I2(  1 - J( 1 - €)y4 
for each i. Since the disjointness of the R(ni) makes these events independent, the 
Borel-Cantelli lemmas imply that with probability one there can be no closed 
infinite path from the origin in S*. Thus we have a contradiction. 

Lemma 5.6. If E > 0 and p 3 pr, then for infinitely many values of n, 

( 1  - ~ ( 2 n ,  2n))12(1 - J s ( 2 n ,  2 n ) ) 6 4 4 + ~ .  

In other words if  p ah, then lim sup,, S(2n,  2 n )  3 6, where 6 is a little bit 
bigger than 5 X 

Proof. Suppose the lemma is false, and choose N so that for all n s 3 N  the 
inequality fails. Now by Theorem 4.1 if 4 = 1 - p ,  

Sq(2n, 2 n ) a  Sq(2n - 1 , 2 n  + 1) = 1 -Sp(2n ,  2n). 
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Hence by Lemma 5.4 if 3' 3 3N then the probability that there is a closed cycle 
around the annulus R(3') is at least $+ E .  

Hence by the duality theory of graphs the probability of the event 0, that in 2* 
there is an open path from the origin through R(3') is not more than 6-6. 

If the number of points in 2* which are wet by a source at the origin is G, 
then we have 

G4X332N+ c 4x3*N(4-€)n--N 
t=N 

<a 

which contradicts p 3 pT. 
As our final corollary note that from Lemma 5.6 we know that 

p > p T j  lim sup Sn (p) 3 6 > 0, 
n-- 

whereas if p < fi then 

lim S,,(p) = 0. 
n-w 

Hence we have shown that even if Conjecture 4.2 is true and limn-- S , ( p )  exists 
and equals S ( p )  say, then S ( p )  must be a discontinuous function of p. 

Note also that our proof gives the result (13) and we can sum up the situation 
with the set of inequalities 

0.353210 spT=zpsS$ s p H s  0.646790 (17) 

which with Lemma 5.5 imply that for p > 0.646790, 

lim Sn(p) = 1.  
n-m 
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ON TU’ITE’S DICHROMATE POLYNOMIAL 

Cedric A.B. SMITH 
Galton Laboratory, University College London, London NW1 ZHE, England 

A simplified method of defining the Tutte dichromate polynomial is described, together with 
direct proofs of its principal properties. It is related to the fragmentation of a matroid. The 
method includes graphs and sets of vectors as special cases. 

1. Introduction 

The object of this paper is to give a short, unified and simplified presentation of 
the definition and properties of Tutte’s dichromate polynomial. Comparatively 
few completely new results are obtained. 

Tutte [lo] introduced this polynomial in graph theory. (It is now commonly 
known simply as the “Tutte polynomial”, but Tutte’s own choice of name reminds 
us on  the one hand that it is a polynomial in 2 variables related to the chromatic 
polynomial, and on the other hand that Tutte graduated in chemistry before he 
graduated to mathematics. It is also clear from an earlier paper of Tutte’s [9] that 
he was partly led to the discovery of the polynomial through the theory of the 
solution of electrical networks by means of trees (Kirchhoff [5],  Brooks et al. [l]), 
where the recurrence relations for the complexity (=number of spanning trees) 
are similar to those for the dichromate.) 

It is surprising that Tutte, who is a pioneer in the study of matroids, should not 
have noticed that the dichromate immediately generalizes to them in tho obvious 
way. An extension to sets of vectors was given by Smith [6] and the extension to 
arbitrary matroids by Crapo [ 3 ] .  In addition, Smith [7] also showed that the 
electrical network theory generalizes to regular matroids. However, Tutte’s and 
Crapo’s approaches are complicated, involving a theory of “internal” and “exter- 
nal” activity, See also Heron [4]. A rather simpler approach is given by Heron [4] 
and Welsh [ll],  but this is still fairly complicated. We show here that the 
existence and standard properties of the dichromate polynomial are straightfor- 
ward consequences of standard matroid theorems. 

2. Definitions 

We briefly recall the standard definitions and properties of matroids, in the 
form which will be most convenient to us. 

247 
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Throughout the paper the following symbolism is used consistently (and is to be 
understood in this way, even where, for brevity, this is not explicitly stated). E 
stands for a set of elements e,, M for a (typical) matroid over E. S is a subset of E. 
We write Sk-J for {e,}U S\{ei}, Bb( c E )  is a (typical) base of M( = maximal 
independent set). Rj, C, stand respectively for the operations of removing and 
contracting the element eP 

The simplest definition of a matroid is that its independent sets obey the 
axioms: 

Axiom 2.1. A subset of an independent set is independent. 

Axiom 2.2. The maximal independent subsets of any given S (  c E )  have the same 
number of elements, called rank S. 

An element eh of M is a loop if it belongs to no independent set, and an isthmus 
or coloop if it belongs to every base (maximal independent set). Loops and 
coloops are degenerate elements. 

The following standard properties of bases are immediate consequences of 
Axioms 2.1 and 2.2. 

Property 2.3. If nondegenerate e, belongs to B,, then there exists eh& Bb such that 
f g - i =  eh U Bb \ ei is a base. 

(N.B. conventionally this is written {eh} U Bb\{ei}, but the notation used here 
seems unambiguous.) 

Property 2.4. I f  nondegenerate eh& Bb, there exists e, E B,, such that Bk-J is a base. 

The matroids R,M( = “M with e, removed”) and C F  (= “M with e, contracted”) 
are defined over the set E\ ei. The matroid R,M is defined only when e, is not an 
isthmus; its bases are identical with the bases of M which do not include ej. The 
matroid C,h4 is defined only when e, is not a loop. Its bases are obtained from the 
bases of M which do include e, by deleting ep 

The Tutte dichromate polynomial TM= TM(x, y )  of a matroid M is a polyno- 
mial in 2 variables, x, y, satisfying the relations: 

2.5. If ei is nondegenerate, 

TM = TR,M + TC,M 

2.6. If all elements e, are degenerate, I of them being isthmuses (coloops) and L 
being loops, 

TM(x, y )  = x’yL. 
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If, for the moment, we take for granted that 2.5 and 2.6 define a unique 
polynomial, then the following well-known properties follow straightforwardly by 
induction: 

Property 2.7. T in inuariant. That is, with the obvious definition of isomorphism, 

M==M’$  T M =  TM’. 

Property 2.8. All coefficients in TM(x,  y )  are nonnegatiue. 

Property 2.9. TM(  1,l)  = the complexity of M = the number of bases. 

Property 2.10. If M D  = the dual of M, ( ie .  the bases of M” are the complements of 
the bases of M ) ,  

TMD(y, x) = TM(x,  y ) .  

Notice that all this discussion applies equally well to sets of vectors (considered 
as “representable matroids”) and to connected graphs (with “element” = edge, 
“base” = spanning tree). For the relation to the chromatic polynomial of a graph, 
see, for example, Tutte [lo], Heron [4], or Welsh [ l l ] .  

3. Existence and uniqueness 

We now demonstrate inductively. 

Theorem 3.1. There exists a unique polynomial satisfying 2.5-7 (and hence also 
2.3-1 0). 

Proof. This is trivially true for [El 6 1. Hence set IEl= n 3 2, and assume true for 
all smaller matroids. If all elements of M are degenerate, the existence and 
uniqueness follow from 2.6. Otherwise we have to prove 

Lemma 3.2. If e,, e, are nondegenerate elements, 

TRiM + TCiM = TRhM + TC,M. 

Proof. Note first that if R,R,M is defined, it is the matroid on the set E’= 
E \ (e, U ek), whose bases are identical with the bases of M which do not include 
either eh or el. 

Hence R,R,M = R,RhM, provided that both are defined. (Actually, it is suffi- 
cient that either should be defined, but we do not need this stronger formulation.) 
Similarly, provided that both are defined, ChRiM = RIChM = the Matroid on E’ 
whose bases are those subsets S which become bases of M after adding eh. And 
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similarly ChCJM = CJChM when both are defined. It follows that, provided that all 
terms are defined, we have a "one-line" proof of Lemma 3.2 

TR,M + TC,M = (TR,R,M + TChRfM)  + (TR,C,M + TChC,M) 

= ( TR,R,M + TC,R,M) + ( TR,C,,M + TC,C,M) 

= TRhM + TC,M. (3.1) 

The proof is now completed by: 

Lemma 3.3. If  any of the terms in eq. (3.1) are not defined, then interchange of el 
and e,, ( i e .  interchanging sufixes h, j )  is an isomorphism of M. 

(For then it immediately follows from Property 2.7 that R,M -1 R,M, C,M 2- ChM, 
whence Lemma 3.2 follows.) 

Proof. When, for example, IS RIRhM not defined'? When e, is an isthmus (coloop) 
in R,M. That is, when every base B, of M ,  which does not include eh must 
include e l ;  that is, every base of M includes at least one of e,, el. If, as above, B, 
inclues e, but not e,, then by Property 2.3 there exists ek such that B, = B;-'= 
ek U B, \ e, is a base; and we must have k = h, otherwise B, would contain neither 
e, nor e,. Conversely, if B, is a base containing e,, but not e,, then Bh = B:-h 
contains e, but not e,,. Hence an interchange of eh and el interchanges the bases 
B,, B,. The remaining bases B, are those containing both e, and e,, which are left 
invariant under the interchange. Hence the interchange of e, and el maps bases 
onto bases, i.e., is an isomorphism. 

A similar argument, but using Property 2.4, shows that the interchange is an 
isomorphism when ChCJM is undefined, i.e., when no base contains both el, eh. 
And (remembering that by hypothesis e,, e, are nondegenerate in M ) ,  it is easy to 
see that Properties 2.3 and 2.4 imply that RIC,M, C,R,M, etc., always exist. This 
completes the proof of Lemma 3.3, hence also of Lemma 3.2, hence also of 
existence and uniqueness (Theorem 3.1). 

4. Fragmentation of sets of matroids 

The argument developed above proves some slightly stronger results than 
Theorem 3.1. We begin with some definitions. 

Let Z be a set of matroids, (M,,,}. (The argument which follows will remain 
valid for multisets, i.e., sets with repetitions allowed.) We define the dzchromate of 
Z to be the sum of the dichromates of its members, 

T Z  = TM,. 

If el is a nondegenerate element in some M ,  in Z, we define the fracture of Z 
(through e,)  to be the replacement of M, in Z by the pair of matroids RjMm, 
C,M, (i.e. formally, replacing 2 by 

Z' = Z U (RjM,,,} U {C,M,,,}\{M,}. 
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a new set with one more matroid member than 2.) By (2.5), this fracture leaves 
the dichromate unchanged: TZ‘  = TZ.  If there is any nondegenerate element in 
Z ’ ,  we choose one such, say ehr and fracture 2’ through eh, to give 2”. We 
continue in this way until all remaining elements are degenerate; the set Z” . . ’ of 
matroids then remaining is a fragmentation FZ of 2, and its elements are the 
fragments of Z ;  each fragment contains no nondegenerate elements, and there- 
fore has a dichromate of the form (2.6). 

Given Z ,  we can in general perform the fractures leading to a fragmentation in 
various orders; instead of beginning with a fracture through Z, ;  we could fracture 
through some other nondegenerate edge z h ,  and so on. But the argument leading 
to Theorem 3.1 is readily modified to give 

4.1. The fragments of Z are uniquely determined by Z to within an isomorphism, 
i.e., they do not depend in structure on the particular sequence of fractures used. 

Also we have 

4.2. The dichromate T Z  of Z is the sum of the dichromates of all the fragments of 
Z .  

(Note: 4.2 can be used as an alternative definition of the dichromate, and 4.1 
immediately shows that it gives a unique value.) 

In particular, when the set Z consists of a single matroid M, we have: 

4.3. The nurnhers of fragments of M (in one fragmentation) = TM(1,l) = the 
complexity of M = the number of bases of M. 

This suggests that there may be a one-one correspondence between the 
fragments of M and the bases of M. To verify this, we proceed as follows. We 
assume that the order in which the fractures of M are done is given. We note that 
the process of repeatedly fracturing M can be represented by a rooted directed 
tree, tFM, as follows. The root node is the original matroid M. 

If, first M is fractured through eJ, we introduce two new nodes, RJM and CJM, 
and two directed edges from M to R,M and M to C,M respectively. If, subse- 
quently, R,M is fractured through eh, we introduce two new nodes, RhRJM and 
C,R,M, and two new edges from RJM to R,RJM and from RJM to C,RjM 
respectively. We do similarly if CJM is fractured through e,. 

When this construction has been carried as far as it will go, each tip of the 
directed graph (=node with no outgoing edge) is a fragment of M, and there is a 
unique directed path from M to this fragment, representing the sequence of 
operations of removal and contraction of elements by which this fragment is 
obtained from M. Hence the number of tips of tm = the number of fragments of 
M. 
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First, suppose that a base B, is given (and hence the complementary cobase 
B, = E \ B,); we require to construct a corresponding fragment fb. We begin with 
the complete matroid M =  the root of digraph. If the first edge through which we 
fracture, in the fragmentation process is eJ, we move from M to RJM or C,M 
according as e, belongs to B, or to B, respectively. 

If, say, we have gone to RJM, and eh is the next edge through which we 
fracture, we go to R,,RJM or ChRJM according as eh belongs to B,, or B,. We 
continue in this way until the process ends at a fragment f,. Now the removal R, 
of the element e, deletes the element e, from any cobase to which it belongs, but 
leaves bases not including e, unaltered, and a similar remark applies to contrac- 
tion C,, with the words “base” and “cobase” interchanged. Hence any element of 
the base B, of the original matroid M will either be deleted (by contraction) at 
some stage of the sequence of operations leading to f,, or will be a member of a 
base of f,, i.e., an isthmus in f,. Similarly every element of the cobase E, will 
either be removed or will survive as a loop in f,. 

Conversely, if we are given a fragment f, we can divide the elements of M into 
4 classes, K,, KfR, KfI, KfL, namely those elements which are respectively 
contracted or removed in the sequence of operations leading from M to f, and 
those which are respectively isthmuses and loops in f. The converse argument 
(starting from f and replacing elements in turn to go back to M )  then shows that 
B = K, U Kfl is a base of M, and B = KfR U KfL a cobase. Thus these construc- 
tions give a bijection of bases onto fragments. 

All these arguments extend straightforwardly to “matroids with multiple ele- 
ments” (integral polymatroids, see Welsh [ 1 13). 

Suppose that, in an ordinary matroid M, there is a set q of m elements, 
e , ,  e 2 , .  . . , em, such that any permutation of these elements is an isomorphism of 
the matroid. Then we can (if we wish) call q a multiple element of multiplicity m. 
If all elements of M are removed, other than q, then 77 will have a certain rank p,, 
its autorank, and a certain corank, K,, its autocorank. 

Clearly 

p, + K, = m. (4.1) 

A multiple element with K, = 0 is a multiple isthmus, with p, = 0, a multiple 
loop, otherwise it is nondegenerate. (A set of parallel edges in a graph, often 
known as a multiple edge, has autorank 1). If qA is a multiple element, we can 
naturally define RAM, CAM to mean RIM, CIM, respectively. where er is some 
ordinary element belonging to the set qA. That is, the removal operation RA 
replaces r), by a new multiple element r);  whose autorank is 1 less than the 
autorank of qA, but whose autocorank is unaltered. The multiplicity is therefore 
reduced by 1. (If is the null set, it can be omitted from the matroid). Similar 
remarks (with “autorank” and “autocorank” interchanged) apply to C,. 

Using these ideas, we can extend the theory developed above to matroids with 
multiple edges in the obvious way: for example, all elements of fragments of M 
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will be multiple isthmuses and multiple loops, and the dichromate of M can be 
defined as the sum of the dichromates of its fragments. 

The theory of fragmentation can also be used to give another definition of the 
bichromate polynomial (Smith [7]), and its relation to patroid nets (Smith [7, 81) 
although the treatment is not so simple as for the dichromate, but corresponds 
more closely to Heron’s [4] and Welsh’s [11] definition of a dichromate. 

In bichromate theory, each element ej is assigned two numbers, its proconduc- 
tance cj and its proresistance rj, Now we have seen that every fragment f divides 
the elements of M into 4 classes, Kf,, KfR, K,,, KfL. With this fragment we can 
associate the product 

VV)= fl (ca) fl ( r b )  fl (ci+riX) fl (ciy+r[).  (4.2) 
eaEKfc ebcKrn e,tKfr el E K ~ I .  

The bichromate is then the sum of the q ( f )  taken over all fragments f ;  it is a 
polynomial in the variables X,  Y. To show that it is independent of the particular 
fragmentation, we can observe that this definition is equivalent to Smith’s [7] 
form. For any subset S G  E, write s= E\S, and let v= the  nullity of S in 
M = IS1 - rank S, and similarly p =the nullity of s in the dual of M. 

Then the bichromate of M is 

From these forms it is easy to prove the main properties of the bichromate, 
namely that if eJ is nondegenerate 

bic M = bic R,M + bic C,M, 

bic M = bic MI 9 bic M2; 

(4.4) 

that if M is separable into M ,  and M2, 

(4.5) 

that if M is a one-element matroid consisting of a single isthmus e,, 

bic M = c, + r,X; (4.6) 

(and similarly c ,Y+  r, for a single loop); and that if we set all cJ = 1 = rJ, the 
polynomial bic M (  1 + x, 1 + y )  is the dichromate. We will not go into the formal 
proofs of these results here: for one method of proof, see Smith [7]. 

However, by taking el to be the first element to be removed or contracted in 
the fragmentation process, the expression (4.2) gives an immediate proof of (4.4); 
and clearly (4.5) and (4.6) are also immediate consequences of (4.2). 

These relations can also be extended in the obvious way to matroids with 
multiple elements, thus if e,, e2, . . . . , em all have the same proconductance c and 
the same proresistance r, and the matroid is invariant under any permutation of 
these edges, they may together be considered as a multiple element with proresis- 
tance r and proconductance c. For example, a matroid consisting of one triple 
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element will have bichromate 

( c + ~ X ) ~  = c’+3c2rX+3cr2X2+r3X3, 

if this is a triple isthmus, but 

c3Y+3c2r+3cr2X+r3P,  

if it has autorank 2 and autocorank 1, and so on. 

5. Separation 

If E is partitioned into (at least two disjoint) subsets E, in such a way that, for 
each E,, every base B, meets E,, in the same number of elements, p, = IE, f l  Bbl, 
then the matroid M is separable, and is in fact separated by the partition {E,,} of E. 
The following standard properties of separation are simple consequences of this 
definition and the matroid axioms: 

Property 5.1. 1 p,, = rank M. 

Property 5.2. There is a matroid M, over E,, having rank p,,, whose bases are the 
intersections of the bases of M with E,. we call M, the component of M in E,. 

Property 5.3. Conversely, i f  we choose, for each M,, an arbitary base B,, the union 
of the 3, is a base of M. 

Property 5.4. If IEls 2, every degenerate edge is a component of M. 

Property 5.5. If M is separated by the {E,}, and ej is in the component MA, then 
R,M and C,M are matroids also separated by the {E,} and having the same 
components M, as M,  except that MA is replaced by R,MA, CiMA respectively. 

As far as the dichromate is concerned, we have the following results: 

5.6. TM = n T(TM,,). 
TI 

This follows from Property 5.5 and the definition 2.5, 2.6 of M. Since the 
dichromate of a non-empty matroid contains no constant term, we see that: 

5.7. If M is separated into c components, TM(x,  y )  contains no term of degree < c. 

We now require a result effectively due to Crapo [2], which is virtually a converse 
of Property 5.5. 

Theorem 5.8. Suppose that ei is nondegenerate, RiM is separated by a pair of sets 
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(EP, EF) and CIM by (EF, E a .  Then M, R,M and C,M are all separated either by 
(EP, EF), or by (EF, E a ,  or by both. 

Proof. Crapo gives a rather sophisticated proof. A proof based more directlyon 
the matroid axioms is as follows. 

For S E E define 

NA,~ (s)  == 1 ' E,? E & l  > (5.1) 

and let N ( S )  be the 2 X 2 matrix with elements NA,(S), 1 S (A, p )  S 2. We wish to 
investigate what are the possible values of N(Br) for bases B, of R,M. Choose one 
such base, say Bo, and set N(B,) = n. Because R,M is separated by (EP, EF), 

N*,(Br)+NAp(B,)=IE,?nB,I = P ? .  (5.2) 

independently of B,, i.e. the row sums of the matrices N(B,) are independent of 
B,. Hence in general N(B,)  can be written in the form 

for some integers P,, Q,. However, by Property 5.3 there is another base, B,s, 
consisting of the part of B, in EP and the part of B, in EF. Hence 

is also a possible value of N(base of R,M). 
Now if b, is a base of C,R, be definition b, U e, is a base of M which includes el. 

Hence by Properties 2.3 and 2.4, given B, there exists at least one element e,, and 
one base b, of C,M such that 

B, = b, U eh, (5.4) 

and conversely for any base b, of C,M we can find at least one eh and B,, a base of 
R,M satisfying eq. (5.4). Thus, each N(b,) is obtained from some N(B,)  by 
subtracting 1 from exactly one of the 4 elements NA,(Br), i.e. for some A, p, 

(5 .5)  

while for the other 3 elements Nap(B,)  = NaD(br); and N(B,) is similarly related to 
some N(b,). In particular we will assume that 

N A I L  (B, = NA, (b, + 1 > 

(as can always be arranged by relabeling rows and columns if need be). Since 
b, = a typical base of C,M is separated by (EF, E a ,  the column sums of N(b,) are 
independent of b,, and in particular, the sum of the elements in the second 
column is always nI2+n,,. Hence, for every N(B,) given by eq. (5.3) it must be 
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possible to subtract 1 from just one element to make the second column sum to 
n12 + nZ2. Remembering that by definition P, = 0 = Q,, this implies that the only 
other possible value for P, or for Q, would be 1 ,  but we cannot have both 
P, = 1 = Q,. A similar argument shows that the general form of N(b,,) = N(base of 
CiM) is 

and that p ,  = 0 or 1, q, = 0 or 1, but not P, = 1 = qu. Now suppose if possible that 
we could have both P, = 1 = p u ;  then we would have the possible values for the 
matrices N(base of R,M),  N(base of CiM),  namely 

Recall that the bases of M take the forms B, and (b, U e g ) .  Now the ( 1 , 2 )  element 
of N(B,), namely N12(Br) = n12+ 1, is greater than the N , ,  element of matrices of 
all other forms in (5.7); hence B, interects E F U  e, in a maximal independent set 
containing (nl, + nI2) elements. But (b, U e , )  intersects Ef U e, in an independent 
set of n , ,+n , ,+ l  elements, thus contradicting the matroid axioms. Hence we 
cannot have P, = 1 = p,. 

Similarly from a consideration of the intersections of B, and b, with EY U e,, we 
see that we cannot have P, = 1 = 4,; and by considering the intersections of B,  
and b, with E: U e,, we cannot have Q, = 1 = p ,  or 4,. Thus, at most one of P,, Q,, 
p,, q,, can differ from 0. But P, = 0 = 0, for all r, s implies that M, R,M and C,M 
are all separated by ( E y ,  E a ,  while p ,  = 0 = q, implies that they are all separated 
by (EP, EF), establishing Theorem 5.8. 

The result 5.7 is completed by the following theorem due to Crapo [ 2 , 3 ] :  

Theorem 5.9. If a matroid M has at least 2 elements, the first degree terms in the 
polynomial TM(x, y) are of the form (@M)(x + y ) ,  where @M, the Crapo invariant 
of M, is a nonnegative integer. Also @M>O i f  and only i f  M is nonseparable. 

Proof. For IEl= 2, true by direct verification. Hence proceed by induction, assuming 
that lEl>2, and that Theorem 5.9 holds for the matroids RjM, C,M. If M is 
nonseparable, then by Theorem 5.8, at least one of RjM, CjM are nonseparable. 
Hence 2.5 and 5.7 show that Theorem 5.9 holds also for M, completing the 
induction. 

Corollary. If IEl> 2, there are exactly 2PM one-element fragments of M in any 
one fragmentation, and of these, PM are isthmuses and PM are loops. 
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0. Introduction 

A theorem of Smith (see Tutte [8]) states that in any cubic graph the number of 
hamiltonian cycles containing a given edge is even. If the graph is cubic and 
bipartite, a theorem of Kotzig (see Bosik [2]) tells us that the total number of 
hamiltonian cycles in the graph is even too. These two theorems are in fact 
consequences of a more general result, which we prove in Section 1 below. We 
also look at sets of edge-disjoint hamiltonian cycles in multigraphs (loops are 
allowed). Let m 3 2 and for two edges x and y of a multigraph G (with at least 
three vertices) let P(x, y )  be the set of all collections of rn edge-disjoint hamilto- 
nian cycles in G. The main result of Section 2 states that IP(x, y)l is even. 

These results were discovered whilst investigating uniquely edge colourable 
graphs. We denote by x’(G) the edge chromatic number of a graph G. (We adopt 
the terminology of [l].) If G has no isolated vertices, and if all edge colourings of 
G induce the same partition of the edges into independent sets, we say that G is 
uniquely k-edge colourable (where k = x’(G)); this is sometimes abbreviated to 
uniquely edge colourable. Let a and p be two of the colours used to colour a 
uniquely k-edge colourable graph, and let Cap be the subgraph induced by the 
edges of colour a and the edges of colour p. We may swap the colours a and f? in 
any component of Cap and get another edge colouring of G; hence Cap is 
connected, and is a path or an (even) cycle. If G is k-regular then Cas is a 
hamiltonian cycle, since there is an edge of colour cy (and one of colour 8) at each 
vertex. 

Obviously any uniquely 2-edge colourable graph is a path or an even cycle; it is 
clear also that the star K l , k  is uniquely k-edge colourable ( K l , k  has vertex set 
{u}U{ul,. . . , u k }  and edge set {uv,, . . . , uvk}). Suppose now that G is uniquely 
3-edge colourable. If G contains a triangle we may contract the triangle to a 
single vertex and get another uniquely 3-edge colourable multigraph; conversely 
we may replace any vertex of degree 3 by a triangle to get a larger uniquely 
3-edge colourable graph. This fact led Greenwell and Kronk [4] to conjecture that 
every uniquely 3-edge colourable graph other than Kl ,3  contains a triangle; they 
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Fig. 1. Tutte's counterexample 

also conjectured that every cubic graph with exactly three hamiltonian circuits is 
uniquely edge colourable. A counterexample to the first conjecture was found by 
Tutte [9]; see Fig. 1. 

A conjecture of Cantoni (see [9]) states that every cubic planar graph with 
exactly three hamiltonian cycles contains a triangle. This leads naturally to the 
conjecture stated by Fiorini [3], that every uniquely 3-edge colourable planar 
graph other than Kl ,3  contains a triangle. 

For ,y'(G) 2 4 the stars are the only uniquely edge colourable graphs; we prove 
this in Section 3. It was first stated by Wilson [lo] as a conjecture. 

1. Hamiltonian cycles 

Throughout this section we shall be concerned with hamiltonian paths in a 
multigraph G = (V, E )  which begin with a certain sequence of edges. (Paths and 
cycles are always considered as sequences or sets of edges, rather than as 
sequences of vertices.) We select a path s = e l , .  . . , em in G, where the endvertices 
of the edge ei are ui and u ~ + ~ ,  1 S i S m .  The path s is called a stick. The 
definitions to follow, and the statement of Theorem 1.1, depend on our choice of 
s;  we obtain corollaries to Theorem 1.1 by making suitable specific choices of s. 

Let IVl= n, and for a vertex v E V let d ( u )  be the degree of u in G. Further let 
E ( U )  be the number of edges between u and the set of vertices { u l , .  . . , u,,,}, that 
is, all the vertices of the stick except the last. Let h = e l , .  . . , en-l be a hamilto- 
nian path beginning with the stick s, where the edge ei has endvertices ui and vit l ,  
1 S i S n - 1. Let en be another edge with endvertices u, and uk, k 3 rn + 1, where 
entie,-,. Then the set ?={el , .  . . ,en} is called a lollipop.' It contains two 
hamiltonian paths beginning with the stick s, namely h = el, . . . , en and h'= 
e l , .  . . , ek-l, en, en-l , .  . . , ektl. Note that if en is a loop then h = h'; we regard P 
as then containing two copies of h. 

We now define the lollipop graph P (G,  s) to be a multigraph whose vertex set is 
the set of hamiltonian paths of G beginning with the stick s. ? (G, s) has an edge e 
for each lollipop Y of G, the endvertices of e being the vertices h and h' of 
P(G, s). Again, note that if h = h' then e will be a loop of P (G, s). 

The letter ? (koppa) is an episemon, originally coming between T and p in the Greek alphabet. 
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Suppose h is a hamiltonian path in G beginning with the stick s and ending in a 
vertex u,. Then the degree of h in ? (G, s) is exactly the number of copies of h 
contained in the lollipops, namely d ( u n ) - & ( u , ) - l ;  this holds even if there are 
loops in G at u,. 

Theorem 1.1. The number of hamiltonian paths in G beginning with the stick s and 
ending in a vertex of the set W = { w  E V :  d ( w ) -  E ( W )  is even} is euen. 

Proof. These paths are exactly the vertices of odd degree in P(G, s). 

Corollary 1.2. Let G be a multigraph, let u, u E V, and suppose that d ( w )  is odd for 
each vertex w E V - { u ,  u }  f $3. Then the number of hamiltonian paths in G from u to 
u is euen. 

Proof. We may assume that u and u are adjacent vertices (if they are not we may 
add an edge between them); let e be an edge between u and u. We choose the 
stick s to be the edge e with u = u1 and u = u2; if w E V then E ( W )  is the number 
of edges from u to w. Consequently a hamiltonian path h beginning with s and 
ending in w gives rise to exactly E ( W )  hamiltonian paths from u to v. But by 
Theorem 1.1 the number of such paths ending in the set W={w E V :  E ( W )  is odd} 
is even. 

Note that the case of Corollary 1.2 in which G is cubic and u is adjacent to u is 
precisely Smith’s theorem. 

Corollary 1.3. Let G be a multigraph with n vertices, n 3 4. Let u, u, w E V and 
suppose that d ( x )  is odd i f  x E V - { u ,  u, w}. Suppose that every path of length n -2  
from u to w passes through the vertex u. Then the number of paths of length n - 2 
from u to u which do not contain w is euen. 

We prove Corollary 1.3 in the following equivalent form. 

Corollary 1.4. Let G be a multigraph with n vertices, n 3 4. Let u, u, w E V, with 
uw, wu E E, and let d ( x )  be odd if x E V-{u,  u, w}. Suppose that every ( n  - 1)-cycle 
in G passes through the vertex u. Then the number of hamiltonian cycles containing 
both the edges uw and wu is even. 

Proof. We take our stick to be s = e l ,  e2 where e ,  = uw, e2 = wv, u1 = u, u2 = w 
and u3 = u. Let h be a hamiltonian path starting with s and ending in a vertex u,. 
Then u, cannot be joined to w since there is no ( n  - 1)-cycle in G which doesn’t 
pass through the vertex u. Thus u, is joined to u by E ( u , )  edges and so h gives 
rise to ~ ( u , )  hamiltonian cycles containing the edges el and e2. By Theorem 1.1, 
the number of such paths ending in the set W = {x E V: E(X) is odd} is even, and 
the result then follows. 
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In the particular case when G is cubic and bipartite, let w E V, and let w have 
neighbours ul ,  u2 and u3. By Corollary 1.4 the number of hamiltonian cycles 
containing the edges ulw and wu2 is even; similarly for ulw and wu3 and for u2w 
and wu3. Thus the total number of hamiltonian cycles in G is even, and we obtain 
Kotzig’s theorem. 

If we restrict ourselves to cubic graphs we can obtain the following stronger 
result. 

Corollary 1.5. Let G be a cubic graph, and let H be the number of hamiltonian cycles 
in G. For any vertex v E V, let g (v)  be the number of ( n  - 1)-cycles not containing v ,  
and for any two incident edges e and f let h(e, f )  be the number of hamittonian 
cycles containing both e and f .  Then 

g(v)  = h(e, f )  = H(mod 2). 

Proof. Let s = e l ,  e2 be a stick in G. Let a be the number of hamiltonian paths 
beginning with s and ending in a vertex adjacent to v1 but not v2. Let b be the 
number of hamiltonian paths beginning with s and ending in a vertex adjacent to 
v2 but not vl. Let c be the number of hamiltonian paths beginning with s and 
ending in a vertex adjacent to both v1 and v2. Then h(el ,  ez)  = a + c, and since G 
is cubic, g(vo)= b+c. By Theorem 1.1, a+b  is even, and so h(el ,  e2)= 
g(vo) (mod 2). Let now f i ,  f 2  and f3 be the edges incident with a vertex w. The 
number of hamiltonian cycles not containing the edge f l  is h(f2, f3), so by Smith’s 
theorem H =  h(f2, f3) (mod 2) ,  and the proof is complete. 

Corollary 1.6. Let G be a graph in which every vertex has even degree. Let u be a 
vertex of G, and let e be an edge incident to u. Then the number of hamiltonian 
paths in G which begin at u, contain e, and end in a vertex not adjacent to u, is 
even. 

Given a multigraph G and a hamiltonian path h beginning with a stick s we can 
always construct the lollipops which contain h and thus find the vertices adjacent 
to h in the lollipop graph ?(G, s); thus we have an algorithm for constructing the 
component of ?(G, s) which contains h. This is particularly simple in the case 
when G is cubic, since then the components of ?(G, s) are paths and cycles. This 
algorithm is illustrated in Fig. 2, where given one hamiltonian cycle containing the 
two dark edges we may find another, since there is no 9-cycle which doesn’t 
contain the vertex x. (This algorithm, applied to cubic planar graphs, was 
discovered independently by Price [6].) 
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Fig. 2.  An algorithm illustrated. 

2. Hamiltonian decompositions 

Given a multigraph G = (V, E ) ,  a partition of E into edge-disjoint hamiltonian 
cycles is called a hamiltonian decomposition of G. A pair {h, h} of edge-disjoint 
hamiltonian cycles is called a hamiltonian pair. Let now G be 4-regular, that is, 
d ( u )  = 4 for each 0 E V, and let P be the set of all hamiltonian pairs. Since G is 
4-regular a hamiltonian pair is a hamiltonian decomposition of G. For x, y E E, let 
P ( x ,  y)  be the set of hamiltonian pairs in which x and y lie in the same cycle, and 
let Q(x, y )  be the set of hamiltonian pairs in which x and y lie in different cycles; 
thus Q(x, y)  = P- P ( x ,  y). Note that if x, y,, yz and y3 are the edges incident to a 
vertex u E V, then P = U:=, P(x,  yi) and so /PI = C:=, IP(x, y i ) l ;  in particular if 
each (P(x ,  y,)l is even then so is IP(. 

I would like to express here my thanks to Mr. Richard Pinch, of Trinity 
College, Cambridge, whose computing work helped guide me towards the next 
theorem. 

Theorem 2.1. Let G be a 4-regular multigraph with at least three vertices, and let x 
and y be any two edges of G. Then the number of hamiltonian pairs in which x and 
y lie in the same cycle is even. 

Proof. Suppose that the theorem is false, and let G be a counter-example with 
fewest vertices. Then lPI>O, so G is connected and has no loops. Since the only 
loopless 4-regular multigraph on 3 vertices is the fat triangle (Fig. 3) it follows 
that 1 VI 3 4. 

Fig. 3.  The fat triangle. 
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Let z, and z, be edges with a common endvertex u ;  say u is joined to vertices 
u1 and u, by z1 and z ,  respectively and to vertices iil and ii, by edges Z1 and Z2 
respectively. The multigraph G' is constructed from G by removing u, zl, z2, Z1 
and Z,, and by then adding the edge z between u1 and u, and the edge Z between 
ii, and ii,. Given {h, K}E P(zl, z,) with zl, Z,E h, say, then Z,, Z,E h; and there is a 
corresponding hamiltonian pair {h', p} in G' with t E h' and 2 E p. Similarly it is 
clear that to each pair {k', I?}€ Q(z, 2 )  there corresponds a pair {k, E}E P(zl, z,), 
and so IP(z,,z,)J=(Q(z,Z!)(. But since G' is not a counterexample to the 
theorem it follows by the remarks made earlier that G' contains evenly many 
hamiltonian pairs, and so lQ(z, Z)( is even. Hence in G, (P( z , ,  z2)1 is even for any 
two incident edges z, and z2, and in particular ]PI is even. 

Let now x and y be any two edges of G, and let x, y , ,  y,, . . . , yr-l, yr = y be a 
sequence of edges forming a path whose end edges are x and y. Now for any edge 
z, the identity 

Q(x, Y )  = P(x,  z) A P ( z ,  Y )  

holds (where the triangle denotes symmetric difference) since z is in either the 
cycle containing x or that containing y.  Hence we have for 1 S i S r - 1, 

IP(x, Y ~ + I ) I  = IPI-IQ(x, Yi+l)I IQ(x, yi+l)I 

= IP(x, y i )  A P(Y,  yi+l)l ~P(x, Yi ) l+  IP(Yi, Yi+ l ) l  

IWx, yi>l (mod 21, 

since yi  and y,+, have a common endvertex. Thus 

Theorem 2.1 answers a question of Sloane [7], who asked whether the existence 
of a hamiltonian pair in a graph G implied the existence of another such pair. 
Sloane showed that if G contains a hamiltonian pair then it contains a third 
hamiltonian cycle; Sloane's result was improved somewhat by NinEBk [ S ]  who 
showed that G must contain at least six hamiltonian cycles. Corollary 2.2 includes 
a further improvement on the estimate of the number of hamiltonian cycles in G. 

Corollary 2.2. Let G be a 2m-regular multigraph with at least three uertices, where 
m 3 1. If G has a hamiltonian decomposition, then 

(i) each edge of G is in at least 3 m  - 2 hamiltonian cycles, 
(ii) G contains at least m(3m -2)  hamiltonian cycles, and 
(iii) G has at least (3m -2) (3m - 5 )  . 7.4s 3"-l(m - l)! hamiltonian decom- 

In particular if G has a unique hamiltonian decomposition then G is a cycle. 
positions. 
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Proof. We prove statements (i), (ii) and (iii) by induction on m;  they are obvious 
if rn = 1. Suppose rn =2.  By Theorem 2.1 the number /PI of hamiltonian decom- 
positions of G is even. Suppose e E E and { h l ,  GI}, {h,, G,}E P with e E hi, i = 1, 2.  
Then there is an edge f~ h,-h,, so {h,, h , } ~ P ( e , f ) ,  and since IP(e,f)l is even it 
follows that there is a third hamiltonian pair in G. Thus [PI 3 4, G has at least 8 
hamiltonian cycles and each edge is in at least 4 hamiltonian cycles. 

Now suppose k > 2 and the statements are true for all values of m s k - 1. Let 
e E E and let {h l ,  . . . , h k }  be the given hamiltonian decomposition, with e E h,, 
say. Let Gi be the 4-regular subgraph induced by hlUhi,  2 S i S  k. Gi has a 
hamiltonian decomposition, and there are at  least three further hamiltonian 
decompositions {hir, &}, 1 4  1 s 3 ,  where e E  hi,. Now if i #  j then hi, fl h j , , c  h, and 
so hi,# hjfF.  Let H={h,}U{hi , :2<i<k,  1<163};  then IHl=3k-2 and so state- 
ment (i) is proved. Since each hamiltonian cycle contains n = IVl edges it follows 
that G contains at least k n  (3k -2)/n hamiltonian cycles, and so statement (ii) is 
proved. Further, if h E H let Gh = (V, E-h) .  Then Gh is 2(k  - 1)-regular and has 
a hamiltonian decomposition, namely {h2 , .  . . , hk} if h = h, and { h 2 , .  . . , hi-,, 
hi,, hi+l,  . . . , h k }  if h = hi,, 2 s  i < k, 1 S 16 3. Thus Gh has at least (3k -5) . 7.4 
hamiltonian decompositions, and so G has at least (3k - 2) (3 k - 5 )  . . .7 .4 ,  
proving statement (iii). 

- 

An examination of a few arbitrarily chosen 4-regular graphs with fewer than 20 
vertices suggested that the number of hamiltonian pairs in a 4-regular graph with 
n vertices increases rapidly with n. However, for every n 3 10 there is a graph on 
n vertices with exactly 32 hamiltonian pairs. Consider first the 4-regular graph T,, 
n 3 5, with vertex set {0 ,1 , .  . . , n - l} and with the vertex j joined to the vertices 
jf 1 and j*2 (addition mod n) .  T,, is illustrated in Fig. 4. 

For O s k s n - 1 ,  the sequence of vertices 0 ,1 ,  ..., k-1 ,  k + l ,  k, k + 2 ,  
k + 3, . . . , n - 1 gives rise to a hamiltonian cycle, and the remaining edges also 
form a hamiltonian cycle; thus T,, has at least n hamiltonian pairs. If n is odd the 
cycle 0,1,2, . . . , n - 1 also yields a hamiltonian pair. Suppose now that {h, i} is a 
hamiltonian pair. It is easily shown that if neither h nor 5 is given by 0, 1, . . . , n - 
1 then h, say, must contain a path of the form j ,  j + 2, j + 1, j + 3, say the path 0, 2, 
1, 3. Since 3, 2, 4 is a path in h the edge (3,4) must be in h, so ( 3 , 5 ) ~  k, so 
( 4 , 5 ) ~  h etc., and we see that {h, h} is one of the pairs described above, and that 

Fig. 4. The graph TI, and a typical decomposition. 
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Fig. 5. A graph with 11 vertices and 32 hamiltonian pairs 

T,, has exactly 2{in} hamiltonian pairs, { r }  denoting the least integer greater than 
or equal to the real number r. 

Now let n 3 1 0 ,  and let n , + n , = n ,  with n , 3 5 ,  i = 1,2 .  Let G,, i =  1,2 ,  be 
formed from T,, by removing the vertex 0 and its incident edges and adding 
vertices u, and u,; u, is joined to 1 and n, - 1 in T,, and u, is joined to 2 and n, -2. 
Form G by identifying u, with uz and v1  with u2 (see Fig. 5). Then the number of 
hamiltonian pairs in G is 2p,pz,  where p ,  is the number of pairs in T,, in which the 
edges (0 , l )  and (0, n - 1) are in different cycles. But by the above remarks p ,  = 4 
and so G has exactly 32 hamiltonian pairs. 

3. Uniquely edge coloorable graphs 

Let G be a graph with ,y'(G) = 4, and suppose that G is edge coloured with the 
colours b, g, r and y .  We denote by u(b) ,  say, a vertex u of degree 3 none of 
whose incident edges are coloured b, and by u(g, r ) ,  say, a vertex u of degree 2 
whose incident edges are coloured neither g nor r ;  that is, they are coloured b 
and y. 

If G is uniquely edge colourable, then the subgraph induced by the edges of 
two given colours is connected, and so is a path or a cycle. We call these colour 
paths and colour cycles. 

Lemma 3.1. Suppose that K1,4 is not the only uniquely 4-edge colourable graph. 
Then there is a uniquely 4-edge colourable graph G satisfying one of the following 
two properties: 

(i) G is 4-regular, or 
(ii) There are two vertices u, v E V such that d ( w ) = 4  for each w E V - { u ,  v}; 

furthermore u and v both have degree 2 and their incident edges are coloured with 
the same two colours. 

Proof. Let H be a uniquely 4-edge colourable graph. We saw earlier that the 
subgraph induced by the edges of any two given colours is connected. In 
particular if H is a tree this means that H has no path of length three: thus 
H = Kl,4. Suppose now H #  K1,4. If u is a vertex of degree 1, then the removal of 
u and its incident edge gives a graph H' which is also uniquely 4-edge colourable; 
since then H is not a tree we may assume that each vertex of H has degree at 
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least 2. We set about adding edges and vertices to H to obtain uniquely edge 
colourable graphs with fewer vertices of degree less than 4. If at some stage our 
graph were to have two vertices of degree 3, u and v say, then either u = u(b)  and 
u = u(b)  or u = u(b)  and u = u(g). In the first case we add the b-coloured edge uu, 
and in the second we add the vertex w with a b-coloured edge uw and a g- 
coloured edge uw. This shows that we may assume H has a t  most one vertex of 
degree 3; since H cannot have just one vertex of odd degree, it has none a t  all. 

Let now H have q vertices of degree 2, all other vertices having degree 4. If 
q = 0 then H is regular and we may take G = H, so we assume q 3 1. Let H have 
p colour paths; then p s ( 2 ) = 6 .  Furthermore each vertex of degree 2 is an 
endvertex of exactly 4 colour paths (for instance, u(b, g) is an endvertex of the 
b-r, b-y, g-r and g-y colour paths), and so 2p = 4q; that is, p = 2q. Since q 3 1 
we have p 2 2, and since each path has two ends we must then have q 3 2;  thus 
q = 3  or q = 2 .  

Suppose that q = 3 (and so p = 6) and that u, v ,  w are the vertices of degree 2. 
If u = u(b, g) and 21 = v(b,  g), say, then neither u nor u is an endvertex of the 6-g 
colour path, which is impossible since the b-g colour path has two ends. Thus we 
may assume that u = u(b, g) and 21 = u(g, r). Then we may add a g-coloured edge 
UD. We now have two vertices of degree 3 and by the remarks above this reduces 
to the case q = 2. 

In the final case q = 2  let u and v be the vertices of degree 2, and let 
u = u(b, g). Then the colour paths are coloured 6-r,  b-y, g-r and g-y, and so 
either u = u(b, g) or v = u(r, y), since v is the other endvertex of each of these 
paths. If u = u(b, g) we may take G = H. If v = v(r, y )  we may identify u and u to 
get a 4-regular uniquely edge colourable graph. 

Theorem 3.2. The only uniquely k-edge colourable graph for k 2 4 is the star, KITk. 

Proof. If G is uniquely k-edge colourable and G' is the subgraph induced by the 
edges of k' of the colours, k ' s  k, then G' is uniquely k'-edge colourable, so we 
need prove Theorem 3.2 only in the case k = 4. 

Suppose then that G Z  K,,, is a uniquely 4-edge colourable graph. We may 
assume that G satisfies property (i) or property (ii) of Lemma 3.1. If G satisfies 
property (i) then any colour cycle of G is a hamiltonian cycle which is contained 
in a hamiltonian pair, hence G has at least 3 hamiltonian pairs. But given any 
hamiltonian pair we may colour one cycle b-g and the other r-y to get an edge 
colouring of G: this means that G has exactly 3 hamiltonian pairs. But this is 
impossible by Theorem 2.1 and so G must satisfy property (ii). 

Suppose then G has property (ii), and so has two vertices u(b, g) and u(b, g), 
say. Then the (b-g)-coloured subgraph of G is an (n - 2)-cycle C1 (recall that G 
has n vertices) and the (r-y)-coloured subgraph is a hamiltonian cycle C,. Let the 
neighbours of u and TJ be ul, u2 and ul, u2 respectively. Construct the multigraph G' 
from G by removing u and u and their incident edges and adding the edges 
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x = ulu2 and y = u1u2. Then C ,  and C, give rise to a hamiltonian pair { C ; ,  C;} in 
G' such that {x, y } c  C;. By Theorem 2.1 there is another hamiltonian pair 
{D;,  D;} in G' such that {x, y } r  0;. Hence there is an (n  -2)-cycle D ,  in G and 
an edge-disjoint hamiltonian cycle 0, such that {Cl, C,}#{D,, D2}. By colouring 
D ,  with b and g and colouring D, with r and y we get a new edge colouring of G. 
This contradiction completes the proof of the theorem. 
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1. Introduction 

In 1971 Fleischner [2] proved the Plummer and Nash-Williams conjecture 
asserting that the square of every finite block is Hamiltonian. This result has 
subsequently been extended in various directions. For example, Fleischner [3] has 
shown that for any vertex x of a block G, G2 contains a Hamiltonian cycle C such 
that the two edges of C incident with x are edges of G. 

Nash-Williams [7] proposed to study the analogue of Fleischner’s theorem for 
countable graphs. As demonstrated by the graph of [7, Fig. 21, it is not so that the 
square of every infinite block has a Hamiltonian path. An obvious necessary 
condition for a graph to possess a one-way infinite Hamiltonian path is that the 
deletion of any finite vertex set results in graph with only one infinite component. 
Nash-Williams [7] asked if this condition is also sufficient when the graph in 
question is the square of a countable block. The purpose of this paper is to answer 
this question in the affirmative when restricted to locally finite graphs. 

2. Terminology and preliminaries 

We adopt the notation and terminology of Harary [5] except that we say vertex 
and edge instead of point and line, respectively. The set of vertices and edges of 
the graph G are denoted by V(G) and E(G),  respectively. A graph contains no 
loops or multiple edges, a multigraph may contain multiple edges but no loops, 
and gseudograph may contain loops and multiple edges. An edge or multiple edge 
joining vertices x and y is denoted xy and is called an x - y  edge (or multiple edge). 
An x-loop is a loop incident with x. An x-y path or trail is a path or a trail with x 

and y as end vertices (we only consider open trails, i.e. x f  y) .  An x-y trail is 
denoted x,x2 . . . xk where x, = x, xk = y and x2, . . . , x ~ - ~  are the intermediate 
vertices. A 1-~a (one-way infinite) path or trail is a path or trail of the form 
x,x2- . . . A 2-00 (two-way infinite) path or trail is defined analogously. 

A multipath is a multigraph obtained from a path by replacing some edges with 
double edges. A Euler trail of a multigraph G is a trail containing all edges of G. 
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and a Hamiltonian path or, for short, an H-path, is a path containing all vertices 
of G. A Euler cover of a finite multigraph is a collection J , ,  J2,. . . , Jk of 
mutually edge disjoint trails such that each trail joins two vertices of odd degree 
in G and such that each edge of G is in one of the trails. A Hamiltonian cover of 
the graph G‘ is a collection of mutually disjoint paths PI, P2, . . . , P,,, such that 
each vertex of G’ is in one of the paths. The Hamiltonian cover of G’ is 
compatible to the Euler cover of G if V(G) = V(G’), k = m, and J, has the same 
end vertices as Pi for i = 1,2, . . . , k. It is an easy consequence of Euler’s theorem 
that every finite multigraph (with at least two vertices of odd degree in every 
component) has an Euler cover. 

If G is a multigraph and H is a subgraph of G, then an exterior path in G with 
respect to H is a path which has precisely its ends in common with H, and an 
exterior cycle with respect to H is a cycle having precisely one vertex in common 
with H.  

If G is a multigraph and A c_ E(G) ,  then (G, A)* is the graph with the same 
vertex set as G such that two vertices are adjacent if and only if they are adjacent 
in G, or if they are joined by a path of length 2 using only edges of A, or both. 
Thus G2 = (G, E(G))’. If xyz is a path of length 2 using only edges of A, then we 
may consider the graph G‘ obtained from G by deleting the edges x y  and yz  and 
adding the edge xz (if it is not already present), and we put A‘ = A\{xy, yz} .  We 
call the new edge xz a short-cut at y and observe that if (G’,A’)* has a 1-00 
H-path, then also (G, A)’ has. 

An infinite graph G is d-indivisible ( d  > 2)  if the deletion of any finite vertex 
set from G results in a graph with fewer than d infinite components. It is an easy 
exercise to show that if G is locally finite (i.e. every vertex of G has finite degree), 
then G is d-indivisible if and only if G2 is d-indivisible. 

We shall use the following results. 

Theorem 2.1. (Erdos et al. [l]). A countably infinite connected multigraph G has a 
1-00 Euler trail starting at x, if and only if x1 has odd or infinite degree, no other 
vertex has odd degree, and the deletion of a finite edge set from G results in a graph 
with only one infinite component. 

Theorem 2.2. Let G be a finite connected graph and S a subset of V(G) with at 
least two elements such that each endblock of G contains a vertex of S (distinct from 
the cutvertex of the block). Then G2 has a Hamiltonian cover each path of which 
connects two vertices of S. 

Proof (due to Fleischner). Let G‘ be the graph obtained from G by adding a new 
vertex x and joining x by edges to each vertex of S. Then G‘ is a block and by a 
result of Fleischner [ 3 ,  Theorem 31, G’ has a Hamiltonian cycle such that the two 
edges of C incident with x are edges of G’. But then C n G2 is a Hamiltonian 
cover of G2 with the desired property. 
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3. Characterization of infinite, locally finite, connected, d -indivisible graphs 

The theorem of this paper is based on the following characterization of infinite, 
locally finite, 2-indivisible connected graphs. 

Proposition 3.1. Let G be an infinite, locally finite, connected graph. Then G is 
2-indivisible if and only i f  for every vertex x, of G, G contains a 1-a path 
P : x1 x2 . . . such that every component of G - V ( P )  is finite. 

Proof. The “if” part is easy to prove so we proceed to the “only if” part. Since G 
is connected and locally finite, G is countable so we can enumerate the vertices of 
G :  y , ,  y, ,  . . . where y 1  = xl. We now define recursively a sequence P,, P 2 , .  . . of 
finite paths starting at x1 such that P, is a segment of PI+ ,  for i = 1 , 2 ,  . . . , and the 
end vertex of PI other than x1 is adjacent to the infinite component of G- V ( P , )  
(by assumption, there is only one infinite component in this graph). We let P ,  
consist of y 1  = x1 only. Having already defined P,, we define Plil  as follows: Let 2, 
denote the end vertex of P, other than x, and let k ( i )  be the smallest integer j 
such that y, belongs to the infinite component of G - V ( P , ) .  Then G - [ V(P,)\{z,}] 
contains a z, - Y k ( , )  path z,u1u2 - . . u, (u, = Y k ( , ) ) .  Now let l ( i )  be the largest integer 
j such that u, is adjacent to the infinite component of G -  
[ V ( P I ) U { u , , u ,  ,..., u,}].Then l ( i )<randi t i seasy tosee tha t  l ( i ) a l . L e t  P,+, 
be the union of P, and the path z,u1u2 . u ~ ( ~ ) .  Then either Y k ( , )  is in P,+, or it 
belongs to a finite component of G- V ( P % + J .  Now the 1-00 path P =  U:=lP, has 
the desired properties since for each i, the vertex y ,  is either in P, or in a finite 
component of G -V(P,)  and hence it is also in a finite component of G - V ( P ) .  

Proposition 3.1 can also be derived from a result of Jung [6, Satz 31 since 
a 2-indivisible graph has only one “Ende” in the sense of Halin [4] and thus a 1 - 00 

path of the type described in Proposition 3.1 is a “Hauptweg” in the sense of Jung 

From Proposition 3.1 we easily get a characterization of d-indivisible locally 
[a 
finite graphs. 

Proposition 3.2. The infinite, locally finite graph G is d-indivisible i f  and only i f  it 
contains a set of k 1-00 paths P,, P,, . . . , Pk, where k < d, such that every com- 
ponent of G -  U;=, V ( P i )  is finite. 

Proof. Again; the “if” part is easy so we now assume that G is d-indivisible and 
we let k be the smallest integer such that G is ( k  + 1)-indivisible. Then k < d and 
G contains a finite vertex set S such that G-S has k infinite components 
G,,  G,, . . . , Gk. By assumption, each Gi ( i  = 1, 2 ,  . . . , k )  is 2-indivisible and 
contains therefore, by Proposition 3.1, a 1-00 path Pi such that each component of 
Gi - V(P,) is finite. Then also each component of G - U ,“=, V ( P i )  is finite because 
S is finite and each vertex of S has finite degree. 
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4. Euler trails versus Hamiltonian paths in a certain infinite graphs 

In this section we show how Hamiltonian paths can be obtained from Euler 
trails in certain infinite graphs. We need the following lemma about finite graphs. 

Lemma 4.1. Let P :  x 1 x 2 .  . . x, ( n  -Z 2 )  be a multipath and let G be a graph 
obtained from P by adding a (possibly empty) system of pairwise disjoint exterior 
cycles and a new (possibly empty) set S of vertices and joining each vertex of S to 
precisely one vertex of P (by a single edge) such that G satisfies the conditions 
below. 

(i) No vertex of P is joined to more than two vertices of S and at most one vertex 

(ii) No vertex of P is at the same time joined to a vertex of S and contained in an 

(iii) Every vertex not in S U { x ~ ,  x,} has even degree in G. 
(iv) x, has not degree 3 in G, and if P contains a vertex which has degree 6 and 

which is adjacent to two vertices of S, then both of x , ,  x, has even degree (note that 
(i) and (ii) imply that no vertex of G has degree greater than 6 and that x, and x,, 
have degree at most 4). 

Let J , ,  J2,  . . . , Jk be a Euler cover of G such that at most one trail starts at x, .  
Then (G, A)2 has a compatible Hamiltonian cover PI, P2, . . . ,Pk, where A is the set 
of  edges incident with or contained in P. 

of P is joined to two vertices of S. 

exterior cycle. 

Proof. We prove the lemma by induction on the number of edges of G. The 
lemma is easily verified for n = 2 so we proceed to the induction step and assume 
n a 3 .  

n - 1) such that xj  is 
joined to each of xj- ,  and xi+, by a double edge and to two vertices u1 and u2 of 
S. If the path u,xju2 is one of  the trails J, (say J , ) ,  then we put P ,  equal to the 
path u lu ,  (in (G, A)’) and use induction on G - { u , ,  u,}. So assume w.1.g. that the 
trail J ,  starts with the path U , X ~ X ~ + ~  where 6 = f 1. Let J, be the trail starting with 
uL. Then J ,  contains a segment of the form u2xjx,+, where (T = + 1. If (T = 6, then 
some trail, say J,,,, distinct from J ,  and J, contains the segment xi~sxixjps .  We 
delete the double edge xjp8xj from G (and from J,) and apply the induction 
hypothesis on the components of the resulting multigraph. So we can assume 
without loss of generality that 6 = - 1, (T = 1. 

Now let J,,, be the frail containing the segment x, ~ ,xjxj+l ( m  may equal 1 or s or 
both). Vertex x j  partitions J,,, into two trails J!,, (containing an edge x j - , x j )  and J’, 
(containing an edge x,~,,,). Let GI be the subgraph of G induced by 
x , ,  x7, . . . , x,- , and all their neighbours and the exterior cycles containing an xi 
(1 s i < j )  and the vertex u , .  Let G, be the graph consisting of the edges not in G, 
and their ends. Then those of the trails J , ,  J 2 , .  . . , J,,,-!, J L ,  pm,. . . . Jk which are 

First we consider the case where P has a vertex xj (2 j 
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contained in GI (resp. G,) form an Euler cover of GI (resp. G,). By the induction 
hypothesis there is a compatible Hamiltonian cover of (Gz, [A n E(G,)])2 for 
i = 1,2.  Let Pt be the path corresponding to Jm ( i  = 1,2) and let P, be the path 
corresponding to J, (s = 1 ,2 , .  . . , k ;  s f  m). Then PI, P,, . . . , P!,,UP2,, 
Pm+,, , . . , Pk is a Hamiltonian cover of (G, A)’ compatible to J, ,  J 2 , .  . . , Jk. 

Next we consider the case where there is a j (2 S j S n - 1) such that x, and x I - ,  
are joined only by a single edge. Suppose J ,  is the trail containing this edge. As in 
the previous case, we write G as the union GI U G, where G, n G, = {x,} and if x, 
is adjacent to a vertex of S or contained in an exterior cycle, then we let this 
vertex (resp. cycle) be contained in G,. Vertex xJ partitions J ,  into two trails J : ,  
J: such that J ;  is contained in G, for i =  1,2.  By applying the induction 
hypothesis on each G, ( i  = 1,2), we get a Hamiltonian cover of G (one of the 
paths being the union of the paths corresponding to J :  and c, respectively). 

If x,-~ is joined to x, by a single edge, then we argue as in the previous case. 
The only difference is that now G, n G, ={x,-,} (instead of {x,}) and if x,-, is 
adjacent to a vertex of S or contained in an exterior cycle, then we let this vertex 
(resp. cycle) belong to G,. 

So we can assume that each edge of P is a double edge and that no vertex of 
{x,, xj, . . . , x, -~}  is adjacent to a vertex of S,  for if one of these vertices were 
adjacent to a vertex of S,  then it would be adjacent to two vertices of S and this 
situation we have already considered. This implies that k, the number of trails in 
the Euler cover, equals 1 or 2. Now the structure of G and its Euler cover is so 
simple that it is easy to find a compatible Hamiltonian cover. Let us here only 
consider the case where x1 is joined to precisely one vertex u, of S and x, is 
joined to precisely two vertices, say u2 and u3, of S, and J1 connects u1 with u,, 
and J,  connects x, with ug. Then (G, A)2 contains the two paths PI : u1x2x4. . * u2 
and P,: xlx3x5 . + . u3. If x , y , y 2 .  . .yrxJ is an exterior cycle, then we replace the 
edge ~ , - , x ~ + ~  (which is present in either PI or Pz> by the path x , - , y , y ,  * . . y r ~ J + I .  
By doing this for every exterior cycle, we obtain a Hamiltonian cover of (G, A)’ 
compatible to J , ,  J,. The other cases are treated analogously. 

This completes the proof of the lemma. 

Using this lemma we can prove the main result of this section. 

Proposition 4.2. Let G be a locally finite graph obtained from a 1-m path 
P : x,x2x3 . . . by adding exterior paths and cycles to P in such a way that no two 
exterior paths or cycles intersect outside P. Let A be the set of edges contained in or 
incident with P. Then (G, A)* has a 1-00 H-path starting at xl. 

Proof. Throughout the proof, the terms exterior path and exterior cycle mean 
exterior path (resp. cycle) with respect to P. An exterior z-cycle is an exterior 
cycle having z in common with P. In order to describe the system of exterior 
paths and cycles, we introduce a pseudograph T,(G) with vertex set V ( P )  such 
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that for every exterior x,-xJ path (resp. exterior x,-cycle) there is in I‘,(G) an 
xt -xJ  edge (resp. x, loop). The multigraph obtained from I‘,(G) by deleting all 
loops is denoted T(G). 

We first show that it is no loss of generality that T(G) is a forest. For otherwise, 
we consider a maximal system of mutually edge disjoint cycles (by Zorn’s lemma, 
such a system exists). Let C,, C,, C,, . . . by the cycles in this system and let z ,  be 
a vertex of C, (i = 1,2,  . . .). By making short-cuts at the vertices of C, (other than 
z,), we transform the exterior paths (in G)  corresponding to the edges of C, into 
an exterior 2,-cycle. By doing this for every cycle C,, we transform G into a graph 
G‘ such that r (G’)  is a forest. (Note that G‘ (and hence also G(G‘)) is locally 
finite because { i  : z, = zJ}  is finite for every j ) .  

So we assume that T(G) is a forest and show next that we can even assume 
without loss of generality that every component of T(G) is a path. For this, let Ii’ 
be any component of T(G) and let yo be a (fixed) vertex of IT. For any vertex z of 
II, let zl, z,, . . . , zZkcS (6 = 0 or 1) be the vertices of IZ adjacent to z and not in 
the yo-z path in IT. By making k short-cuts at z ,  we transform G into a graph G’ 
such that in T(G’), z is adjacent to precisely 6 of the vertices zl, z,, . . . , z ~ ~ + ~ .  
We do this for every vertex z of 111 and every component I7 of T(G). In this way 
G is transformed into a graph G” such that no vertex of T(G”) has degree greater 
than 2. It is easy to see that no component of T(G”) is a cycle, so every 
component is a path. 

We can therefore assume that each component of r (G)  is a path. Now, let 17 be 
such a path (of length 3 1). If a vertex z of I7 is incident with k loops of C(G) ,  
then by making k + 1 short-cuts at z (or k short-cuts if z is an end vertex of n), 
we can get rid of these loops and if IT is finite (say of length r ) ,  we can transform 
L7 into a path of length 1 by making r - 1 short-cuts. Similarly, k loops at a vertex 
can be transformed into just one loop. Combining these observations, we can 
assume without loss of generality: 

(1) Every component of I‘, is either a 2-00 path or a 1-00 path or a path of 
length 1 or a cycle of length 1 (i.e. a loop together with its incident vertex). 

We now denote by G M  the multigraph obtained from G by replacing some 
edges of P with double edges such that in G,, x1 has odd degree and every other 
vertex has even degree. It is easy to see that this can be done and that G, is 
uniquely determined. Let PM denote the multigraph in GM corresponding to P. It 
is easily verified that G M  satisfies the condition of Theorem 2.1 for a multigraph 
to contain a 1-00 Euler trail. For if S is any finite edge-set of GM and n is an 
integer such that no edge of S is incident with a vertex x , + ~  ( k  z 0), then all but 
finitely many vertices of G,- S belong to the same component as the vertices 
x,, & + I , .  . . . 

Separately we consider the cases where PM has finitely, respectively infinitely, 
many double edges. Consider first the case where there exists an integer no such 
that no edge between x, and x,-, is a double edge in GM for i 3 no. We can 
assume that in T(G) every x, with js no has degree one or zero. For otherwise we 
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achieve this by making a short-cut at every x, ( j  S no) which has degree 2 in T( G) .  
Now let J :  xlz2zj - . . be an Euler trail of GM. We shall modify J so as to obtain 

an H-path of (G, A)’. Let L be the subgraph of GM induced by the vertices and 
exterior cycles adjacent to (resp. containing) some of the vertices x,, x,, . . . , x,-, 
(in particular, X,E V(L)) .  By Lemma 4.1, we can modify that part J’ of J which is 
in L so as to obtain a system of disjoint paths in L2 such that these paths together 
with the part of J outside L form a trail J1 of (G, A)’ which includes every vertex 
of L and every edge outside L. We now transform J1 into an H-path of (G, A)2 by 
considering each segment z,-~z,z,+, of .TI such that z, E {x%, x,,,, . . .} and zCp1 E 
V(G)\V(P), and by replacing it with a short-cut at z,, when z,+, E V(G)\V(P) 
and when z , , ,  is the successor of 2, in P. 

Consider next the case where infinitely many edges of PM are double edges. We 
consider first the subcase where no component of T,(G) is an infinite path, i.e., 
every component of &(G) is a path or cycle of length 1. If x, and x,+, are joined 
by a double edge in G, then T(G)  contains an edge of the form x,x, where 
s i < t because GM has a Euler trail starting at xl. So we can select integers 
i,, i,, . . . and s,, s2, . . . and t,, t2, . . . such that s, s i, < t, and the vertices x,,, x,,+, 
are joined by a double edge in GM and xs,, xt, are adjacent in T(G) .  By choosing 
i,+, sufficiently large compared to i,, we can assume that t, < s,+, for each j. Let 
GM denote the graph obtained from GM by deleting all the double edges x,,x,,+, 
( j  = 1 , 2 , .  . .). Then GM is connected, x1 has odd degree in cM, and every other 
vertex has even degree. Moreover, the deletion from GM of any finite edge set 
results in a graph with only one infinite component. So GM has a Euler trail J. 
By using Lemma 4.1, we modify for each j = O ,  1,2, .  . . the part of J which is in 
the graph of GM induced by the vertices in {x, : i, + 1 s r s i,,,} and the exterior 
cycles containing one of these vertices and the neighbouring vertices (here i, = 0) ,  
and we thereby obtain an H-path of (G, A)’ starting at xl. 

Finally, we have to consider the case where PM has infinitely many double 
edges and T(G)  has at least one 1- path, say IIo. T(G) has only countably many 
1-00 paths, so we can write a sequence 17,, 112, . . . of 1-00 paths of T ( G )  such that 
every 1-a, path in T(G)  occurs infinitely often in this sequence. We define 
recursively sequences i , ,  i,, . . . and s,, s2,. . . and t , ,  t2,. . . of natural numbers as 
follows: We let s, be any vertex of IIo. Suppose we have already defined 
i,, . . . , i,-,, s,, s 2 , .  . . , s,, t , ,  t2, .  . . , t,-,. Then we let i, be the smallest integer 
greater than or equal to s, such that x5 and x,,+, are joined by a double edge and 
let 5 be any integer greater than 1, such that xt, is a vertex of n, and we let s,+, be 
any integer greater than t, such that x.,+~ is a vertex of 17,. 

We can assume that the vertices xsj, xt, ( j  = 1,2, . . .) are the only vertices of 
degree 2 in T(G),  for otherwise this can be achieved by making short-cuts at all 
other vertices of degree 2 in T(G).  By doing this, we still have a graph of the 
same type as described in the proposition because every 1-00 path of T(G)  occurs 
infinitely often in the sequence II,, I12 , .  . . .We now denote by GM the multigraph 
obtained from GM by deleting all double edges x,,xljtl ( j  = 1,2, . . .). Then GM is 
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connected (because each edge xt,x,,+, is compensated for by the exterior path 
corresponding to the edge x,,x5,+, of r ( G ) ) .  

Furthermore, x, is the only vertex of odd degree in G, and the deletion of a 
finite set of edges of G, results in a graph with only one infinite component. So 
G ,  has an Euler trail J. By the choice of the integers i,, each vertex x,, has degree 

4 in GM. So for every j ( j  = 0 ,1 ,2 ,  . . ,) we modify, using Lemma 4.1, the part of J 
in the subgraph of GM induced by the vertices x,,+~, x,,+*, . . . , x,,,~ and the 
neighbouring vertices and the exterior cycles containing one of these vertices SO as 
to obtain an H-path of (G, A)2 starting at x,. 

The proof is complete. 

5. Hamiltonian paths in infinite 2-indivisible locally finite blocks 

By combining Theorem 2.2 and Propositions 3.1, 4.2, we easily prove the 
theorem of this paper. 

Theorem 5.1. Let G be an infinite, locally finite, 2-indivisible block, and let x1 be 
any vertex of G. Then G2 has a 1-00 Hamiltonian path starting at x,. 

Proof. By Proposition 3.1, G has a 1-00 path P : x , x , x ,  * . - such that each 
component of G- V ( P )  is finite. Consider such a component, say K. Let S be 
those vertices of K which are joined to P by edges. Then the pair K, S satisfies 
the assumption of Theorem 2.2 because G is a block so K2 contains a Hamilto- 
nian cover P , ,  P2, . . . , Pk such that each P, can be extended to an exterior cycle 
or path with respect to P by adding two edges of G. We form these exterior paths 
and cycles for every component K of G - V(P) and obtain a graph G’ satisfying 
the assumption of Proposition 4.2. By this proposition, (G’,A)2 has a 1-00 

Hamiltonian path starting at x1 where A is the set of edges incident with or 
contained in P. Since A E( G), this Hamiltonian path is also a Hamiltonian path 
of G2 and the proof is complete. 

6. Concluding remarks 

If G satisfies the assumption of Proposition 4.2, then also (G, A)’ has a 
two-way infinite Hamiltonian path. In order to prove this, we define in the proof 
of Proposition 4.2 the multigraph G, in such a way that every vertex has even 
degree and we replace “1-00 Euler trail” with “2-03 Euler trail” throughout the 
proof and we use the conditions [l] for the existence of such a trail. Using this 
result, we can modify the theorem to obtain the result that the square of every 
infinite locally finite 2-indivisible block has a two-way infinite Hamiltonian path. 
Moreover, by using Proposition 3.2 (with d = 3 ) ,  we can also prove by the 
methods of this paper that the square of every infinite, locally finite 3-indivisible 
block has a two-way infinite Hamiltonian path. 



Infinite locally finite blocks 277 

Acknowledgement 

The author is indebted to Dr. H. Fleischner for several stimulating discussions 
on the subject and, in particular, for the proof of Theorem 2.2. 

References 

P. Erdos, T. Griinwald and E. Vazsonyi, Uber Euler-Linien unendlicher Graphen, J .  Math. Phys. 
Mass. Inst. Technology 17 (1938) 59-75. 
H. Fleischner, The square of every two-connected graph is Hamiltonian, J. Combinatorial Theory, 

[3] H. Fleischner, In the square of graphs, Hamiltonicity and pancyclicity, Hamiltonian connectedness 
16(B) (1974) 29--34. 

and panconnectedness are equivalent concepts, Monatsh. Math. 82 (19761, 125-149. 
[4] R. Halin, Uber unendliche Wege in Graphen, Math. Ann. 157 (1964) 125-137. 
[5] F. Harary, Graph Theory, (Addison Wesley, Reading, MA, 1969). 

[6] H.A. Jung, Normale Wurzelbaume und unendliche Weg in Graphen, Math. Nachr. 41 (1969) 
1-22. 

[7] C:.St.J.A. Nash-Williams, Unexplored and semi-explored territories in graph theory, in: (F. Harary, 
ed.,) New Directions in the Theory of Graphs (Academic Press, New York, 1973) 149-186. 



This Page Intentionally Left Blank



Annals of Discrete Mathematics 3 (1978) 279-287. 
@ North-Holland Publishing Company. 
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A k-chromatic graph I’ is called v-critical if all vertices x of the graph are 
critical, i.e. x(T-x)<x(r)= k.  It is called e-critical if it is connected and all 
edges e of the graph are critical, i.e. x(T-e)<x(T).  It follows from these 
definitions that an e-critical graph is also v-critical. The critical 3-chromatic 
graphs are the odd circuits. It seems hopeless to try to determine the structure of 
all critical graphs with chromatic number 4 or more. 

G.A. Dirac observed that a graph r is the complement of a v-critical (e-critical) 
graph r if and only if each connected component of r is the complement of a 
v-critical (e-critical) graph. This result gives a method for constructing new critical 
graphs from known ones. Let us for example take two disjoint odd circuits and 
join them completely by edges. The result is an e-critical 6-chromatic graph r, 
and if the two circuits are of equal length then the number of edges of r is >an2, 
where n denotes the number of vertices of T. This shows the existence of 
e-critical 6-chromatic graphs with “many edges”, i.e. with more than c . nz edges, 
where c is a positive constant. 

The aim of this note is to give an account of an investigation of those critical 
graphs r, whose complements r have low vertex-connectivity, thus continuing the 
line of study initiated by Dirac’s result. The investigation has been carried through 
for r of connectivity s 2 ,  and the critical graphs of this structure have been 
characterized. 

The main-tool of the investigation is 

Lemma 1. Let r be a graph, and let C be a subset of the set of vertices of r s u c h  
that F -  C is disconnected. Let r, and r2 be subgraphs of r such that (cf. Fig. 1) 

(1) r, n r, is the subgraph of r spanned by C, 
(2) r , - C # @  and r2-C#(J, 
( 3 )  r consists of r, U I‘, together with all edges from rl - C to rz- C. 

Let S denote the set of all subsets of C including the empty set and the whole set. 
Then 
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Fig. 1 

Proof. Let A E S.  Colour r l - (C-A)  with x(Tl-(C-A) colours and r , - A  with 
x ( r , -A)  other colours. Each vertex of r has then got a colour. The result is 
a (x(T1 - ( C -  A)) + x(T2 - A))-colouring of r. Hence 

x(T) min {x(ri-(c-A>> + x(r,-A)>. 
A t S  

On the other hand, let K be a X(r)-colouring of r. A set A E S  is defined as 
follows. A vertex x of C is contained in A if and only if x has the same colour in 
K as at least one vertex of - C. Then in K the colours of the vertices of 
rl -(C-A)  are all different from the colours of the vertices of r2--A. Hence 

and the Lemma follows. 

Note that if in the Lemma r- C has 2 3  connected components, then the two 
graphs rl and r, satisfying (l), (2) and ( 3 )  are not uniquely determined from the 
structure of r. 

For r of connectivity ~1 the results of the investigation are: 

Theorem 2. A graph r is the complement of a v-critical graph r if and only if each 
block of r is the complement of a v-critical graph. Moreover, i f  r is v-critical then 

x ( n  = x(I;)) - ( b  - c ) ,  

where T I ,  r,, . . . , r, are the blocks of r and c is the number of connected 
components of F. 

Theorem 3. If r is e-critical then r has no cutvertices, i.e. each connected 
component of r consists of precisely one block. 

Proof of Theorem 2. The proof is by induction over the number b of blocks of r. 
If b = 1 then the theorem is obviously true. Suppose that b 2  2 and that the 
theorem is true for graphs containing < b  blocks. 

If r is disconnected then by the induction-hypothesis the theorem holds for 
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each connected component of F. By the above result of Dirac the theorem then 
holds for r. We may, therefore, assume that r is connected. 

Since i; is connected and has 3 2  blocks, r has the structure described in 
Lemma 1 with C consisting of a single vertex x. Then by Lemma 1 

(1) 

(2) 

~ ( r )  = min { x ( &  - x i  + ~ ( r , ) ,  x ( r J  + x ( G  - x)}. 

x(r)  = x(r-x) + 1 = x(rl - x) +x(rz -x) + I. 
Suppose first that r is v-critical. Then 

From this and (1) it follows that we may choose the notation such that x(Tl - x) = 
x ( r 1 ) - 1 .  Then by (1) 

(3)  x ( r )  = X(rA + X v - 2 )  - 1. 

By (2) and ( 3 )  x is critical vertex of both r, and r,. 

x ( r )  - 1 and (3) ,  it follows that 
Let z be a vertex of r, - x. Then by (1) used on r- 2, and by x(r- z )  = 

(4) x(r- z )  = min { x ( C  - z - x) + x(I',), x(T, - z )  + x(4 - x)} 
= x ( r l ) + x ( r 2 ) - 2 .  

By (4) either x(ri - z - x) = x ( r i )  - 2 or x ( r i  - z )  = x(&)  - 1. The first alternative 
also implies x(T, - 2) = x ( C )  - 1 .  Hence z is a critical vertex of &. 

We have then proved that both r, and r2 are v-critical. Both Fl and r, have 
< b  blocks, hence by the induction-hypothesis all blocks of Fl and F2, and 
therefore of r, are complements of v-critical graphs. The formula for x(r) follows 
from the corresponding formulas for x ( T J  and x(I',), which are true by the 
induction-hypothesis, and (3 ) .  

Suppose on the other hand that each block of r is the complement of a 
v-critical graph. Then by the induction-hypothesis rl and r, are v-critical. By (1) 
we get again (3) and, therefore, 

x (  r - x) = x(rl - x) + x ( r ,  - x) = x(rl) - 1 + x(r2) - 1 = x(r> - 1, 

i.e. x is a critical vertex of r. Again by (1) used on r-z, and by rl and r, 
v-critical, (4) follows. Then by (3) and (4) x(T- z )  = ~ ( 0 -  1 ,  thus z is a critical 
vertex of I'. Hence r is v-critical. This completes the proof of Theorem 2. 

Proof of Theorem 3. Suppose that the theorem is false. We shall obtain a 
contradiction. Let I' be e-critical and let x be a cutvertex of r. The vertex x is a 
cutvertex of the connected component of r in which it is contained, hence by the 
result of Dirac we may assume that I= is connected. 

Let again rl and r, be as in Lemma 1 with C = {x}. Since both rl and r, are 
connected and with 3 2  vertices, there exists for i = 1, 2 a vertex zi in & - x  such 
that (x, zi) is an edge of c. 

By ( 3 )  x ( r )  = x ( r l )  + x(r2) - 1, and hence, since e = (zl, z2) is a critical edge of 
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r, x(T- e) = x(T1) + x(T,) - 2. In a (x(fl) + x(T2) - 2)-colouring of r- e the 
vertices z1 and z2 necessarily have the same colour, moreover the only further 
vertex that can possibly have this colour is x. Hence 

x ( r - z , - z , - x ) ~ x ( r l ) + x ( r * ) - 3 .  

x(r- 2 ,  - z 2 - x )  = x(rl - z1 - x)  +x(r2- z 2 - x )  

On the other hand 

s x ( f l ) - l + x ( r 2 ) - l .  
The last inequality follows since zi and x are not joined by an edge of & for i = 1, 
2. 

A contradiction has then been obtained. This completes the proof of Theorem 
3. 

Like Dirac's result the above Theorem 2 gives a method for constructing new 
u-critical graphs from known ones. As an example, let r be a graph such that 
each block of is the complement of an odd circuit. By Theorem 2 r is v-critical 
and x(T) = 26 + c. If b = 2 and c = 1 then x(T) = 5, and if the two odd circuits are 
of equal length then the number of edges of r is >in2. 

Simonovits has described a more general construction-method [2, p. 71, proof 
of Theorem 21, that he obtained while studying large independent sets of vertices 
in critical graphs. 

It is also easy to prove that Theorem 2 implies: 

Corollary 4. If r is a connected complement of a v-critical k-chromatic graph r 
( k 2 5 )  and x is a vertex of r, then F-x may have anything up to ( k - 1 ) / 2  
connected components. Moreover, r- x has precisely ( k  - 1)/2 connected com- 
ponents i f  and only if r consists of the complements of odd circuits of lengths 2 5 ,  
each pair of which has just x in common. 

The result of Corollary 4 is in sharp contrast to Theorem 3 .  
Since K ,  is not the complement of a u-critical graph, Theorem 2 also has the 

consequence that if r is v-critical then r has no bridges. This generalizes the 
result of Dirac [1, p. 4631, that no vertex of a u-critical graph is joined to all other 
vertices except one. 

For r of connectivity s 2  the results of the investigation are more complicated, 
and perhaps rather unattractive. For v-critical graphs the characterization splits 
into four possible cases, and for e-critical graphs into two possible cases. Each of 
these six cases gives rise to one or more methods for constructions of critical 
graphs, and a variety of new examples of critical graphs can be obtained. 

We shall describe the four v-critical cases in constructive terms. 

Case 1. Let rl and I 2  be two graphs, each having 3 3  vertices, and T l n f ,  
consisting of two vertices x, and x2, these two vertices being independent in both 
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TI and r,. Let r be obtained from I', U r2 by joining all vertices of r, - x, - x2 to 
all vertices of r 2 - x 1 - x 2  by edges. If rl and r2 satisfy 

( 1 )  rl is v-critical, 

(2) x(r2 - xl) = x(r2 - x2) = x w 2 ) ,  
x(r2 - X I  - x2) = xu-,) - 1 ,  

Vz E V(r2 - x, - x2): either 

X V ,  - x, - 2) = x(r2)  - 1 

or 

x ( r 2 - x 2 - 4 = x ( r 2 ) - 1 ,  
then r is v-critical and x ( r )  = x(rl)+ x(r2) - 1 

Case 2. Let rl and r2 be two graphs, each having 2 3  vertices, and rl n r2 
consisting of two vertices x1 and x2 and the edge (xl, xz). Let r be obtained from 
r, U r2 as in Case 1. If rl and r2 satisfy 

or 

X W Z  - x, - z )  = X ( I - 2 )  - 1 ,  

then r is v-critical and x(r> = x ( r J  + x(r2) - 1. 

Case 3. Let r,, r2 and r be as in Case 2. If rl and T2 satisfy 

& is u-critical for i = 1, 2, and 

x ( ~ - x l - - x 2 ) = x ( & ) - 2  for i = l ,  2, 

then T is u-critical and x ( T ) = x ( T 1 ) + x ( r 2 ) - 2 .  
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Case 4. Let r,, r,, and r be as in Case 2. If rl and r2 satisfy 

(1) xV1- x1- x2) = X(T1) - 2, 

Xu-1 -XI - z) = x(Td-2 

Vz E V(T, - x1 - xz): either 

or  

x(~1-x , -z )=x(~1) -2 ,  

(in particular these conditions imply that rl is v-critical), 

(2) r2 is v-critical and x(T2 - x1 - x2) = x(T2) - 1, 

then r is v-critical and x(T) = x(TJ + x(T2) - 2. 

The verification of the four cases is based on Lemma 1. It is not difficult, and 
we leave it to the reader. Also based on Lemma 1 one can conversely prove: 

Theorem 5. Let I' be v-critical and 
r of size 2. Let r, and r2 be as  in Lemma 1. 

cases. In particular r is obtainable by one of the four constructions. 

2-fold-connected with C = {xl, x2} a cutset of 

Then the notation may be chosen so that rl and rz satisfy one of the above four 

As said above: for each of the four cases a variety of examples can be obtained. 
We shall not describe these examples here, however a few of them are indicated 
in the following corollary. 

Corollary 6. Let r be v-critical and i; 2-fold-connected with {x,, x2} a cutset of r 
of size 2. 

(a) For x ( r ) a 4  and (xl, x2) not an edge of r, the number of connected 
components of r - x l - x 2  may be anything from 2 up to x(T)-2.  It is equal to 
x ( r )  - 2 if and only if r consists of the complement of an odd circuit of length 2 5  
and x ( r )  - 3 circuits of length 4, each of these x(T)  - 2 graphs having pairwise just 
x,, x2 and (xl, x2) in common. 

(b) For x(T) 2 3 and (xl, x2) an edge of r, the number of connected components 
of r - x , - x 2  may be anything from 2 up to x ( T ) -  1. I t  is equal to x(T)- 1 if and 
only if rconsists of a path of length 2 and x(T)-2 paths of length 3, each of these 
x ( r )  - 1 paths having xl and x, as their end-vertices, and each pair of them having 
only x1 and x2 in common. 

We shall now turn to the e-critical case. Let thus r be an e-critical graph with r 
2-fold-connected and {x,, x,} a cutset of r. Since an e-critical graph is also 
v-critical it follows from Theorem 5 that r is obtainable by one of the Cases 1-4. 
However, by an argument similar to the one used in the proof of Theorem 3 ,  the 
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Cases 3 and 4 can be excluded. Moreover, of course, the conditions for r, and r, 
stated in the Cases 1 and 2 are only necessary, but not sufficient, for r to be 
e-critical. Some further necessary conditions can be obtained. 

Theorem 7. Let r be e-critical and l= 2-fold-connected with C = {xl, x2} a cutset of 
r of size 2. Let rl and r, be as in Lemma 1. Then the notation may be chosen so 
that rl and r, satisfy one of the above Cases 1 and 2. In particular r is obtainable 
by one of the constructions described in the Cases 1 and 2. 

Moreover, if the notation is as in Case 1 then r, and r, satisfy the following 
additional necessary conditions: 

( 1 )  r, is e-critical, and rl - xl - x2 is v-critical, 
(2 )  r 2 - x l  and T,-x2 are both v-critical. 

If the notation is as in Case 2 then rl satisfies the following additional necessary 

( 1 )  rl - xI - x2 is v-critical. 

condition: 

It is possible to further extend the necessary conditions of Theorem 7 to 
necessary and sufficient conditions for r to be e-critical; however, the additional 
conditions are very unattractive (some of them are “mixed” conditions for rl and 
r2), and we shall not discuss them here. 

Theorem 7 has the following corollary: 

Corollary 8. Let r be e-critical and r 2-fold-connected with {xl, x2} a curser of i; 
of size 2. 

(a) If (xl, x2) is not an edge of r then x ( T ) z  6 ,  and if x(r> = 6 then the number 
of vertices of r is odd and 311 (and there are precisely two non-isomorphic 
examples with 11 vertices, see Fig, 2). 

(b) If x ( r ) G 5 ,  then i; contains a vertex of valency 2,  i.e. r contains a vertex 
joined to all other vertices except 2. 

(c) r - x I  -- x,  has precisely two connected components. 

Only the proof of (c) presents some difficulties. We shall outline a proof of (c). 
Let rl and r, be as described in Theorem 7. If r, - x, - x2 has 2 or more than 2 

connected components, then by Theorem 7 each of these connected components 
is the complement of a v-critical graph. Let t ,  be a vertex of a connected 
component A, of r-  x, -x2 such that (t , ,  xl) is an edge of r. Let t, be a vertex of 
a, = r - x - x2 - A ,  such that (t,, x d  is an edge of r. Such vertices t ,  and t, exist, 
since x,, x, is a minimal cutset of r. By giving x1 and tl the same colour, and x2 
and t2 the same other colour, and using that A ,  and A ,  are both v-critical, it 
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Fig. 2 

follows that 

This is a contradiction, since by Theorem 7 x(r, - x1 - xz) = x(rJ - 1. 

If r- x,  - x2 has 3 or more than 3 connected components then, as noted after 
the proof of Lemma 1, there is a freedom in the choice of rl and r,. Using this 
freedom, the above fact that TI - x1 - x2 only has one connected component, and 
this component always being the complement of a v-critical graph, it follows that 
all connected components of r- x, - x2 are complements of v-critical graphs. 

From this it follows as above that if r2 - x, - x2 has 2 or more than 2 connected 
components, then 

contradicting that x(r2 - x1 - x2) = x(r2) - 1 by Theorem 7. This proves Corollary 
8(c). 

By a result in [S], Corollary X(b) implies that all e-critical 4-chromatic graphs 
whose complements are not 3-fold-connected are known. 

The investigation described above was started in 1968 in the hope that it would 
produce e-critical 4- and 5-chromatic graphs with many edges. However, it only 
succeeded for v-critical 5-chromatic graphs, cf. the remarks to Theorems 2 and 3. 
This was somewhat disappointing, also because the obtained graphs with many 
edges were already known. In fact, I learned later that Zeidl in 1957 had obtained 
examples of v-critical 4- and 5-chromatic graphs with more than i n 2  edges (see 
[6]). The existence of e-critical 4- and 5-chromatic graphs with many edges was 
established in 1969 using other methods. Thus in [3]  e-critical4-chromatic graphs 
with more than A n 2  edges were obtained. 
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The v-critical 4-chromatic graphs of Zeidl (or the e-critical 4-chromatic graphs 
of [3] )  and odd circuits can be combined as indicated in Theorem 2 to provide 
examples of v-critical 6-chromatic graphs with more than An2 edges (more than 
&sn’ edges). This shows that the graphs consisting of two disjoint odd circuits of 
equal length and completely joined by edges are not the v-critical 6-chromatic 
graphs with a maximum number of edges. Whether they are the e-critical ones is 
still an unsolved problem, however, in view of the above I suspect this not to be 

Because of the “failure” of the investigation to produce interesting critical 
graphs with many edges, perhaps the most striking feature of it is the exhibition of 
qualitative differences between o -critical and e-critical graphs (in terms of their 
complements), cf. Corollary 4 and Theorem 3, and Corollary 6 and Corollary 8(c). 

The proof-methods of the investigation are simple and straightforward, but 
somewhat tedious. In principle the investigation can be continued to cover critical 
graphs, whose complements contain cutsets of 3 ,  4, 5 , .  . . and so on vertices. 
Maybe a continued investigation could produce more light, in particular this 
would be desirable in the e-critical case. 

A rather detailed account of the investigation can be found in [4]. An improved 
and slightly extended version can be obtained on request from the author. 

so. 
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1. The 1-Factor Theorem 

A 1-factor of a finite graph G can be defined as a regular spanning subgraph of 
G of valency 1. Petersen’s Theorem [2, Chapter 10; 41 asserts that if a cubic 
graph is without a 1-factor then it has at least three isthmuses, not all in one arc. 

Let G be any finite graph, with vertex-set V(G). If S is any subset of V(G) let 
Gs be the graph obtained from G by deleting the vertices of S and their incident 
edges. Let a component of G, be called odd or even according as the number of 
its vertices is odd or even. Let us write IS1 for the number of elements of S, and 
h ( S )  for the number of odd components of G,. The following theorem is proved 
in [ 5 ] .  

Theorem 1.1. (1-Factor Theorem). G is without a 1-factor if and only if there is 
a subset S of V(G) such that h ( S ) >  ISI. 

Now if the number of vertices of G is odd there can be no 1-factor. And we 
then have h(L?)> 101, where 0 is the null subset of V(G). So in applications we 
can arrange, by excluding trivialities, that [ V(G)I is even. It then follows that 

h ( S ) =  IS1 mod 2, (1) 

for each subset S of V(G). 
Let us see how the 1-Factor Theorem can be used to prove Petersen’s Theorem. 

Let G be cubic and without a 1-factor. Then IV(G)l is even and, by the 1-factor 
Theorem, there is a subset S of V(G) such that \SIC h(S) .  Using (1) we deduce 
that IS1 h ( S )  -2. The number of edges joining a given odd component of G, to 
S must be odd. Let it be 1 in rn cases and 3 or more in n cases. Then IS( is at least 
3(m + 3n).  We now have 

$( rn + 3 n )  s 1 S1 G h( S )  - 2 = rn + n - 2, 

m s 3 r n - 6 ,  
m 2 3 .  

Accordingly G has at least 3 isthmuses and its isthmuses are not all in one arc, as 
Petersen’s Theorem asserts. 

289 
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2. The Subgraph Theorem 

In  this Section we generalize the notion of a 1-factor. 
Let us suppose given a mapping f of V (  G )  into the set of non-negative integers. 

We define an f-factor of G as a spanning subgraph of G in which the valency of x 
is f ( x ) ,  for each x in V(G). By the “subgraph problem” we mean the problem of 
finding a usable necessary and sufficient condition for the general finite graph G 
to have an f-factor. When f ( x )  = 1 for each vertex x an f-factor reduces to a 
1-factor. 

We define a graph-triple as an ordered triple (S, T, U ) ,  where S, T and LI are 
disjoint subsets of V(G) having V ( G )  as their union. The components of the 
subgraph of G induced by U are called simply the components of U. 

If x E V(G) and X G V(G) let us write A(X, x) for the number of edges having x 
as one end and with the other end in X .  If x E X  then loops on x are to be 
counted twice in the evaluation of h ( X ,  x). If X and Y are disjoint subsets of 
V ( G )  we write A(X, Y )  for the number of edges joining X to Y. 

Consider a graph-triple B = (S, T, U ) .  If C is any component of 

We then say that C is an odd or an even component of U, with 

U we write 

(2 ) 

respect to B, 
according as J(B;  C) is odd or even. We write h ( B )  for the number of odd 
components of U, with respect to B. 

We define the deficiency 6 ( B )  of B as follows. 

6 ( B ) =  h ( B ) -  2 f ( a )+  c { f ( c ) - A ( T ,  c ) - h ( U ,  c ) } .  (3) 

We call B an f-barrier of G if 6(B)>0 .  The main result of [6] can be stated as 

U C S  < E T  

follows. 

Theorem 2.1. (Subgraph Theorem). For a given f the graph G has either an f-factor 
or an f-barrier, but not both. 

This theorem is proved in [6] by the method of alternating paths. It is assumed 
in the proof that f ( x )  is never zero, and that G has no loops. But these restrictions 
are removed in [7]. 

Let us check the Subgraph Theorem in some trivial cases. If G is to have a 
1-factor it is clear that the sum of the “weights” f ( x )  over all the vertices of G 
must be even. And if the weight-sum is odd we have the f-barrier (O,O, V ( G ) ) ,  
of deficiency 1 .  

Let the valency of a vertex x of G be denoted by val (G, x). I f  G is to have an 
f-factor it is necessary that f ( x )  c Val (G, x)  for each x. But if f ( x )  > val (G, x )  for 
some x then G has the f-barrier (0, V ( G ) - { x } , { x } ) .  
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Neglecting the trivial cases just considered we may suppose that the weight-sum 
is even and that f ( x )  6 val (G, x) for each vertex x. We can then define a mapping 
f’ of V(G) into the set of non-negative integers such that 

(41 f ( x )  = Val (G, x)- f(x) 

for each vertex x. If F is any f-factor of G then the edges of G not belonging to F 
determine an ?-factor F of G. Evidently G has an f-factor if and only if it has an 
f -factor. 

We return to the graph-triple B = (S, T, U )  and the numbers h(B),  6 ( B )  and 
J(B;  C )  calculated for it in terms of f. When f is replaced by f let these numbers 
be replaced by h’(B), 6’(B)  and J’(B; C )  respectively. Let us also write B‘= 
(T ,  S, U ) .  We note that 

= 1 A ( U , b )  mod2 

= O  mod2 

b t  V(C) 

for any component C of U. 

nent C of U we deduce that 
The numbers J ( B ;  C) and J’(B’; C )  being of the same parity for each compo- 

h’(B’) = h(B) .  (51 

We can write A(S, c)-Val (G, c) for -A(T, c ) -A(U,  c )  on the right of (3) .  We 
can therefore rewrite that equation as 

wv = ~ ( B ) + A ( S ,  T ) -  1 f ( a ) -  C f(c>. 
a E S  CET 

Using (5) we can then deduce that 

6’(B’) = S ( B ) .  

These results lead to the following theorem. 

(7) 

Theorem 2.2. (Interchange Theorem). I fB is a maximal f-barrier of G then B’ is a 
maximal f-barrier of G, and conversely. 

3. The Transfer Theorem 

The Subgraph Theorem (2.1) is difficult to apply. Suppose for example that we 
wish to deduce the 1-Factor Theorem (1.1) from it. We put f ( x )  = 1 for each x, and 
assert that if no 1-factor of G exists then G has an f-barrier B = (S, T, U ) .  If T 
happens to be null then the 1-Factor Theorem follows immediately, h ( B )  being 
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the number h(S) of Section 1. But why should T be null, and what can we do if it 
is not? 

Some of the difficulties are overcome in 171. If G has an f-barrier, for a 
general f, then it has a maximal f-barrier, that is one with the greatest possible 
deficiency. In [7] we are recommended to use the Subgraph Theorem in the 
following form: G has either an f-factor or a maximal f-barrier, but not both. It is 
found that when the f-barrier B = (S ,  T, U )  is maximal the vertices of S and T 
have special properties, and these can be exploited in problems of graph- 
factorization. We arrive at them by considering the effect of transferring a vertex 
between S and U. 

Consider the graph-triple B = (S, T, U )  and let x be a vertex of S. We put 
B, = ( S  -{x}, T, U U {x}) and consider the relation between 6 ( B )  and 6 ( B x ) .  

Write p ( x )  for the number of odd components of U, with respect to B, that are 
joined to x by edges of G. In B, all such odd components are incorporated in a 
single component K of UU{x), and K includes also the vertex x. The other odd 
components of U remain as the odd components, other than K, of U U {x}. Some 
even components of U, with respect to B, may also be contained in K. 

It is easy to verify that 

J(B,, K)=p(x)+f(x)+A(T,  x )  mod2. (8) 

Let us define q ( x )  as the number 0 or 1 having the same parity as p ( x ) + f ( x ) +  
A(T, x). Then we can deduce from the foregoing results that 

h(B)-h(B,)= p ( x ) - q ( x ) .  (9) 

It now follows from ( 3 )  that 

6 ( B )  - 6(Bx) = P ( X )  - 71 - f ( x )  + A (T,  x). (10) 

It should be emphasized that the expression on the right of (10) is always even, by 
the definition of q ( x ) .  

If B is a maximal f-barrier the expression on the right cannot be negative; if B, 
is a maximal f-barrier the expression cannot be positive. If the expression is zero 
and one of the graph-triples B and B, is a maximal f-barrier then so is the other. 

We take account also of the case in which x belongs to U instead of S.  We then 
define p ( x )  and q ( x )  with respect to the graph-triple B ,  = (S{x}, T, U -{x}), and 
use (10) with B, replacing B and B replacing B,. 

We state the consequences of (10) in the following theorem. 

Theorem 3.1. (Transfer Theorem). Let B = (S, T, U )  be a maximal f-barrier. Ifx is 
in S then 

f (x) pL(x) + A (T,  x) - ix). 

lf x is in U then 

f(x 1 3 P (x) + A t T, x) - 9 (x 1. 
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i f  

f ( x )  = d x )  + A (T,  - d x >  

then x can be transferred between S and U without affecting the maximality of B. 

In the case of equality x is called in [7] a “left-neutral vertex”. 
In [7] we find some analogous results concerned with the transfer of a vertex 

between T and U. However, it is not necessary to state these separately; we can 
obtain them by applying the Transfer Theorem with f‘ replacing f and B’ replacing 
B. 

One consequence of the Transfer Theorem derived in [7], is that if G has no 
f-factor it has a maximal f-barrier B = (S, T, U )  such that f ( x ) >  1 for each x in 7’. 
Thus if f ( x )  = 1 for each vertex x we can arrange that T is null. This observation 
removes the difficulty we have encountered in proving the 1-factor Theorem as a 
consequence of the Subgraph Theorem. 

Starting with the Subgraph and Transfer Theorems we can construct short proofs 
of Berge’s extension of the 1-Factor Theorem (see [l, p. 1541) and of the 
Erdos-Gallai Theorem on valency-sequences [ 3 ] .  In the next section ye give a new 
example, a solution of a problem brought to the author’s attention by Erdos. 

4. A theorem on regular graphs 

Our purpose in this Section is to give an example of the application of the 
Subgraph and Transfer Theorems (2.1 and 3.1). We use them to establish the 
following result. 

Theorem 4.1. Let G be a regular graph of valency k .  Let r be an integer satisfying 
0 k. Then there exists a spanning subgraph H of G such that val (H,  x )  = r or 
r + 1 for each vertex x of G. 

r 

Neglecting trivial cases we may assume 0 < r < k. Suppose first that the number 
of vertices of G is an even number 2q. 

We introduce a new vertex w and join it to each vertex of G by a single new 
edge. We then attach q loops to w. Let the resulting graph be denoted by G,. 
Then the valency of w in G,  is 4q, and the valency of each other vertex of G, is 
k + l .  

Let f be the  mapping of V(G,) into the set of non-negative integers defined as 
follows. f (  w )  = 2q, and f ( x )  = r + 1 for each vertex x of G. Correspondingly we can 
write f ’ (  w )  = 2q and f ’ ( x )  = k - r. 

Let H be a spanning subgraph of G satisfying the conditions of Theorem 4.1. 
Then it has 2q vertices in all, and an even number of vertices of odd valency. It 
thus has an even number 2p  of vertices of valency r. We can derive an f-factor F 
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of GI from H by adding to it w and the edges joining w to vertices of valency r in 
H, and then adjoining q - p loops on w. Conversely if F is any f-factor of GI its 
intersection with G is a spanning subgraph H of G satisfying the conditions of the 
theorem. 

Assume that Theorem 4.1 fails. Then by the above reasoning G, can have no 
f-factor. Hence, by the Subgraph Theorem, G ,  has a maximal f-barrier B =  
( S ,  T, u). 

Suppose w in S. Then, by the Transfer Theorem, 

2qSCL(w)+A(T, w ) - d w ) .  (11) 

But ~ ( w )  cannot exceed A(U, w). Hence the expression on the right of (11) 
cannot exceed the number 2q of links incident with w. If (11) holds at all it must 
do so with strict equality. But then, by the Transfer Theorem, we can transfer w to 
U without destroying the maximality of B. 

If instead we suppose w in T we can apply similar reasoning with f' replacing f 
and B' replacing B. We get an equation identical with (11) except that T is 
replaced by S. Using the Interchange Theorem (2.2) we deduce that if w is in T it 
can be transferred to U. 

It is now permissible to assume that w is in U. But then U has only one 
component, since w is joined to every other vertex of GI. Hence h(B)  is at most 
1.  Since 6 ( B )  is at least 1 it follows from (6) that 

( r + l )  ISl+(k-r) ITISA(S, T). (12) 

Suppose first that A(S, T )  is not zero. Then S and T are both non-null. Let R 
be one of them, the smaller of the two if they have different sizes. Then, by (12), 

( k - t l )  JRlsA(S, T).  (13) 

We deduce from (13) that some vertex of R is incident with k + 1 or more 
edges joining S to T. But this is impossible since the valency of each vertex of G 
is only k(in G). 

In the remaining case h(S,  T) = 0. Hence S and T are both null, by (12). Since B 
is an f-barrier we must suppose GI to be the only odd component of U. This 
means that the sum of the weights f ( x )  over all vertices x of GI must be odd. But 
in fact the sum is 2q(r + 1)+2q. The foregoing contradictions establish the 
theorem in the special case for which G has an even number of vertices. 

Let us now suppose the number of vertices of G to be odd. Let G, be the union 
of two disjoint copies of G. The theorem holds for G, by the result already 
proved. It therefore holds for G. 
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