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Preface

This is a book on mathematical physics for a reader with a good background in

mathematics, but possibly a minimal knowledge of physics. The subject matter is

quantum physics and includes non-relativistic quantum mechanics, quantum statisti-

cal mechanics, relativistic quantum mechanics, and quantum field theory. The book

only contains material which meets the twin criteria of being basic physics and being

treatable with complete mathematical rigor. For each topic there is a straightforward

statement of basic principles followed by simple examples. There is also background

material in analysis, classical mechanics, relativity, and probability.

The book does not prove deep mathematical theorems. The book does not consider

the complicated models of mathematical physics. The book does not enter into the

fascinating speculative topics on the frontiers of physics, for example string theory.

Finally the book does not consider questions concerning the foundations or philoso-

phy of quantum physics. However the book does help prepare the reader for a journey

in any of these directions.

The book assumes knowledge of elementary analysis, measure theory, linear

algebra, some group theory, and some knowledge of differential equations. Some

reference is made to manifolds, differential geometry, and Lie groups. Not much

knowledge of physics is assumed beyond an introductory course. However one

probably needs more than this to really appreciate the material.

The book is suitable for a graduate course in mathematics. In this connection there

are problems scattered throughout the text. These serve the dual function of further

developing the material and providing a study aid. The level of difficulty is quite

variable.

Books which cover similar ground are Gustafson and Sigal (2003) and Takhtajan

(2008). The mathematical level is about the same, but they have different points of

emphasis.

xi





Introduction

At the end of the nineteenth century most macroscopic phenomena could be

explained in terms of a few basic equations. For the behavior of matter there was

Newton’s equation which said that the location of an object, modeled by a point

x ∈ R3, evolves in time according to the equation

m
d2x

dt2
= F (0.1)

Here m> 0 is the mass of the object and F=F(t, x, dx/dt) is the sum of all the

forces on the object. Forces were either gravitational or electromagnetic. In the

electromagnetic case the force due to an electric field E : R3 →R3 and a mag-

netic field B : R3 →R3 on a particle with charge e was given by the Lorentz force

F= eE+e/c(dx/dt×B). Here c is the speed of light, approximately 3× 1010 cm/sec.

In this case Newton’s equations were

m
d2x

dt2
= eE + e

c

(
dx

dt
× B

)
(0.2)

The electric and magnetic force fields (E, B) themselves might depend on time,

and were determined by Maxwell’s equations

∇ · E = ρ

∇ · B = 0

∇ × E = −1

c

∂B

∂t

∇ × B = 1

c

(
∂E

∂t
+ j

)
(0.3)

where ρ : R3 → R and j : R3 → R3 are specified charge densities and current

densities which necessarily obey the conservation law

1

c

∂ρ

∂t
+ ∇ · j = 0 (0.4)

If ρ, j are expressed in terms of the positions of a number of particles obeying

(0.2), the system of equations (0.2),(0.3) provide a model for an enormous range

of phenomena.

However large velocity and large-scale gravitational phenomena were not

accurately explained and it took the invention of special relativity (1905) and general
1
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relativity (1915) by Einstein to rectify matters. Furthermore microscopic phenomena

such as the structure of atoms were not accurately described and it took the invention

of quantum mechanics by deBroglie, Schrödinger, Heisenberg, and others in the

1920s to rectify the situation. For phenomena involving both large velocities and tiny

particles there is a synthesis known as quantum field theory which is still undergoing

development.

Quantum mechanics does not itself contain physical laws. Rather it is a general

framework in which physical laws should be formulated. As such it has a certain

mysterious and ad hoc character; there is not much insight into why it is the way it

is. However it is not ambiguous or inconsistent, and it has been very successful in

describing microscopic phenomena.

In this book we explain quantum mechanics with particular mathematical care. In

the first part of the book it is quantum mechanics without relativity. Here we take a

historical, empirical approach to the subject and develop the theory as an extension of

the classical equations (0.1), (0.2). After a discussion of general principles, the theme

here is increasing complexity as the number of particles is increased, culminating in

an introduction to quantum statistical mechanics.

In the second part of the book we add relativity to the mix studying quantum fields

obeying various linear field equations such as (0.3) (which is already relativisitic,

although its formulation predated relativity). A theme here is to develop the comple-

mentary field-particle aspects of the various cases. In this part we also make some

attempt at understanding why the basic equations are natural from a mathematical

point of view.

In the third part of the book we introduce some stochastic processes useful for

analyzing various quantum problems. These are in fact essential for treating quantum

fields obeying a nonlinear field equation. This is the interesting case since the non-

linearity corresponds to particle interactions. We illustrate the key role of stochastic

processes by developing a two-dimensional model at some length.



Part I

Non- r e l a t i v i s t i c





1 Mathematical prelude

We begin with a survey of some of the mathematics we will need. The reader may

wish to read it lightly and come back for details as needed.

Vector spaces can be real or complex, usually complex. A Banach space is a

complete normed vector space. A Hilbert space is a Banach space in which the norm

comes from an inner product. We review some basic facts about Hilbert spaces and

Banach spaces in appendix A.

We are particularly interested in linear operators on a Hilbert space. Many of the

results we present also hold for linear operators on a Banach space, but we will not

need the more general result, and the proofs are sometimes easier for a Hilbert space.

1.1 Bounded operators

1.1.1 Definitions

A linear operator T from a Hilbert space H1 to a Hilbert space H2 is a mapping

T : H1 → H2 such that

T(af + bg) = aT(f ) + bT(g) f , g ∈ H1, a, b ∈ C (1.1)

The operator is injective or one-to-one (that is Tf = Tg implies f = g) iff T has

kernel {0} (that is Tf = 0 implies f = 0). The operator is surjective or onto if the

range is H2. The operator is bijective if it is injective and surjective and then there is

an inverse T−1 : H2 → H1 which is also linear. (If H1 = H2 is finite dimensional,

then T is injective iff it is surjective, but not in general.)

A linear operator is bounded if there is a constant M such that

‖Tf‖ ≤ M‖f‖ (1.2)

for all f ∈ H1. Linear operators are continuous iff they are bounded.

The set of all bounded operators T : H1 → H2 is itself a vector space with

(aT)f = a(Tf ) and (T1 + T2)f = T1f + T2f . It is denoted B(H1,H2) or B(H) if

H1 = H2 = H. We define the norm of a bounded operator by
5
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‖T‖ = sup
f �=0

‖Tf‖
‖f‖ = sup

‖f‖=1
‖Tf‖ (1.3)

Then we have

‖Tf‖ ≤ ‖T‖‖f‖ (1.4)

and ‖T‖ is the smallest possible constant here. With this norm, B(H1,H2) is a

normed vector space. We will see that it is complete and hence is a Banach space.

If T ∈ B(H1,H2), then by the Schwarz inequality |(f , Tg)| ≤ ‖T‖‖f‖‖g‖. Hence

for f ∈ H2 the mapping g → (f , Tg) is a bounded linear functional on H1 and by

the Riesz representation theorem (theorem A.3) there is a unique vector f ∗ ∈ H1 so

that (f , Tg) = (f ∗, g). We define T∗f = f ∗. Then T∗ : H2 → H1 is a linear operator

called the adjoint of T and we have

(T∗f , g) = (f , Tg) (1.5)

Then |(T∗f , g)| ≤ ‖T‖‖f‖‖g‖ and hence also by Riesz

‖T∗f‖ = sup
‖g‖=1

|(T∗f , g)| ≤ ‖T‖‖f‖ (1.6)

Thus T∗ is bounded, T∗ ∈ B(H2,H1), and ‖T∗‖ ≤ ‖T‖.

Now we look at some special classes of bounded operators.

1. Let M ⊂ H be a closed linear subspace. Then any vector f ∈ H can be uniquely

written f = f1+ f2 where f1 ∈M and f2 ∈M⊥ (theorem A.2). Define PMf = f1.

This is a bounded linear operator with norm 1 called the projection onto M. It

satisfies P2
M = PM and P∗M = PM and has range M.

More generally any bounded operator satisfying P2 = P and P = P∗ is called

an orthogonal projection. One can show that any orthogonal projection has closed

range M and that P = PM.

2. A linear operator T is an isometry if it is norm preserving, that is ‖Tf‖ = ‖f‖.

Since the norm determines the inner product by the polarization identity (A.5),

it is equivalent to say that it is inner product preserving (Tf , Tg) = (f , g). An

isometry is bounded and injective.

The range of an isometry is always closed. To see this suppose Tfn → g. Then

‖fn − fm‖ = ‖Tfn − Tfm‖ → 0. Hence fn is Cauchy and has a limit f . Then

Tfn → Tf by the continuity of T and hence g = Tf .

An isometry satisfies (f , (T∗T − I)g)= 0 for any f , g, hence it satisfies

(T∗T − I)g= 0 for any g, and hence

T∗T = I (1.7)

It follows that P = TT∗ is an orthogonal projection. The range is the same as the

range of T (since Tf = (TT∗)Tf ) and so
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TT∗ = PRan(T) (1.8)

3. If an isometry is also surjective, then the operator is called unitary or a Hilbert

space isomorphism. In this case

T∗T = TT∗ = I (1.9)

and T∗ = T−1.

Problem 1.1 Let (M,μ) be a measure space and suppose k(x, y) is an element of
L2(M × M,μ× μ). Show that

(Kf )(x) =
∫

k(x, y)f (y)dμ(y) (1.10)

defines a bounded operator on L2(M,μ).

Problem 1.2 Let T , S ∈ B(H).

1. Show that TS is bounded and ‖TS‖ ≤ ‖T‖‖S‖.
2. Show that ‖T∗‖ = ‖T‖.
3. Show that ‖T∗T‖ = ‖T‖2.

1.1.2 Sequences

A sequence of bounded operators {Tn} converges strongly if Tnf converges for

all f ∈H. The sequence converges in norm if ‖Tn − Tm‖ → 0 as n, m → ∞.

This is uniform convergence on the unit sphere. Norm convergence implies strong

convergence since ‖Tnf − Tmf‖ ≤ ‖Tn − Tm‖‖f‖.

Theorem 1.1 Let Tn ∈ B(H1,H2).

1. If Tn converges strongly, then it has a strong limit, that is there is a bounded
operator T such that Tf = limn→∞ Tnf .

2. If Tn converges in norm and T is the strong limit, then ‖Tn − T‖→ 0 as n →∞.

Remark We will use the principle of uniform boundedness which says that if ‖Tnf‖
is bounded for each f , then there is a constant M such that ‖Tn‖ ≤ M.

Proof For the first point define Tf = limn→∞ Tnf and check that T is linear. Since
Tnf converges for each f , it is bounded for each f and so by the remark ‖Tn‖ ≤ M.
Now by the reverse triangle inequality, we can take the limit of ‖Tnf‖ ≤ M‖f‖ and
get ‖Tf‖ ≤ M‖f‖. Hence T is bounded.
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For the second point given ε choose N so that if n, m ≥ N, then ‖Tn − Tm‖ < ε.
Then ‖Tnf − Tmf‖ ≤ ε for all ‖f‖ ≤ 1. Take the limit m →∞ and conclude that for
n ≥ N we have ‖Tnf − Tf‖ ≤ ε for all ‖f‖ ≤ 1 and hence ‖Tn − T‖ ≤ ε.

The second part of the theorem shows that B(H1,H2) is a Banach space. If H1 =
H2 = H, then B(H) has even more structure. Since we can multiply operators and

‖TS‖ ≤ ‖T‖‖S‖, we say that B(H) is a Banach algebra. Since also ‖T‖ = ‖T∗‖, we

have a Banach ∗-algebra. Since also ‖T∗T‖ = ‖T‖2, we have a so-called C∗-algebra.

Theorem 1.2 Let T ∈ B(H) satisfy ‖T‖ < 1. Then I − T is bijective and the inverse
is also a bounded operator.

Proof Start by defining

Sn =
n∑

k=0

Tk (1.11)

Then for n > m

‖Sn − Sm‖ = ‖
n∑

k=m+1

Tk‖ ≤
n∑

k=m+1

‖T‖k → 0 (1.12)

as n, m → ∞. Thus Sn is a Cauchy sequence and since B(H) is complete, it has a
limit which is a bounded operator

S = lim
n→∞ Sn ≡

∞∑
k=0

Tk (1.13)

We then compute

(I − T)Sn =
n∑

k=0

Tk −
n+1∑
k=1

Tk = I − Tn+1 (1.14)

Now take the limit n → ∞ and use ‖Tn+1‖ ≤ ‖T‖n+1 → 0. Then (I − T)S = I so
I−T is surjective. Similarly S(I−T) = I so I−T is injective and S is the inverse.

1.1.3 Extensions

A subspace D ⊂ H has a closure D, which is also a subspace. D is dense if D = H.

We consider the problem of extending a linear operator defined on a dense subspace.

Theorem 1.3 Let D be a dense subspace of a Hilbert space H1 and let T : D → H2

be a bounded linear operator.

1. T has a unique extension to a bounded linear operator T ∈ B(H1,H2) and the
extension has the same bound.
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2. If T is norm preserving, then so is the extension, that is it is an isometry.
3. If T is norm preserving and has dense range, the extension is unitary.

Proof Our assumption is that ‖Tf‖ ≤ M‖f‖ for all f ∈ D. For f ∈ H1, choose a
sequence fj ∈ D so that fj → f . Then

‖Tfj − Tfk‖ ≤ M‖fj − fk‖ → 0 (1.15)

as j, k → ∞. Hence there is a limit f ∗ = limj→∞ Tfj and we define Tf = f ∗. The
definition is independent of the sequence since if f ′j is another sequence converging
to f , we have

‖Tfj − Tf ′j ‖ ≤ M‖fj − f ′j ‖ → 0 (1.16)

Now linearity and boundedness for T on H follow by taking limits of the same
relations for T on D.

The second assertion follows by taking the limit of ‖Tfj‖ = ‖fj‖. The third
assertion follows since the range of the extension is closed and dense and hence
it is H.

1.1.4 Fourier transform

We want to define the Fourier transform as a unitary operator on L2(Rn), but we start

with a smaller space.

Let S(Rn) be the Schwartz space of smooth rapidly decreasing functions on Rn.

These are complex valued C∞ functions f on Rn with the property that for any

multi-indices α = (α1, . . . ,αn) and β = (β1, . . . ,βn)

‖xβDαf‖∞ <∞ (1.17)

where

xβ = xβ1
1 . . . xβn

n Dα = Dα1
1 . . .Dαn

n (1.18)

and Di = −i∂/∂xi. For N > n/4 we can write

f (x) = [(1 + |x|2)−N][(1 + |x|2)Nf (x)] (1.19)

This exhibits f as a product of an L2 function and an L∞ function and hence

f ∈ L2(Rn). Similarly ‖xβDαf‖2 < ∞ for any multi-indices. Indeed we could have

used these conditions to define the space. Examples of functions in S(Rn) are those

of the form f (x) = P(x)e−a|x|2 where P is a polynomial. Another example is the

infinitely differentiable functions of compact support,1 denoted C∞0 (Rn). We have

the inclusion of subspaces

C∞0 (Rn) ⊂ S(Rn) ⊂ L2(Rn) (1.20)

1 The support of a function f , written supp f , is the closure of {x ∈ R
n : f (x) �= 0}.
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One can show C∞0 (Rn) is dense in L2(Rn) and so the same is true for S(Rn).

Now for f ∈ S(Rn) we define the Fourier transform f̃ : Rn → C by

f̃ (p) = (F f )(p) = (2π )−n/2
∫

e−ipxf (x)dx (1.21)

Since f ∈ L1(Rn) by (1.19) with N > n/2, the integral converges and f̃ is bounded.

The mapping F f = f̃ is a linear operator.

More generally we compute

pαDβp (F f ) = (−1)|β|F(Dαxβ f ) (1.22)

This exhibits pαDβpF f as the Fourier transform of a Schwartz function, hence it is

bounded as well, and hence F f ∈ S(Rn). Thus the Fourier transform maps S(Rn) to

itself.

Next define

(F f )(p) = f̃ (−p) = (2π )−n/2
∫

eipxf (x)dx (1.23)

which also maps S(Rn) to itself. The basic inversion theorem says F is the inverse

of F .

Theorem 1.4

1. FF = FF = I, so F is a bijection on S(Rn).
2. F ,F extend to unitary operators on L2(Rn) satisfying FF = FF = I.

(So F = F−1 = F∗.)

Proof For f ∈ S(Rn) we compute

(FF f )(x) = lim
ε→0

(2π )−n/2
∫

eikxe−ε|k|2/2(F f )(k)dk

= lim
ε→0

(2π )−n
∫

f (y)eik(x−y)e−ε|k|2/2dk dx

= lim
ε→0

(2πε)−n/2
∫

f (y)e−|x−y|2/2εdx

= f (x)

(1.24)

Here in the first step we regularize the F integral. In the second step we insert the
definition of F f and use Fubini’s theorem to change the order of integration. In the
third step we explicitly do the integral over k. The last step is a standard estimate
using the facts that (2πε)−n/2e−|x−y|2/2ε has integral one and peaks around x = y as
ε → 0. Details are left to the problems.

For the second point we compute that for f , g ∈ S(Rn)

(f ,Fg) = (F f , g) (1.25)
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Then (F f ,Fg) = (f , g) and the same for F . Hence they are norm preserving and by
theorem 1.3 they extend to a unitary operators on L2(Rn). The identity FF =FF = I
still holds since it holds on a dense set.

Problem 1.3 Show that in Rn

(2π )−n/2
∫

eikxe−ε|k|2/2dk = ε−n/2e−|x|2/2ε (1.26)

Problem 1.4 Show that if f is bounded and continuous on Rn

lim
ε→0

(2πε)−n/2
∫

e−|x−y|2/2ε f (y) dy = f (x) (1.27)

Problem 1.5 If f ∈ L1 ∩ L2, then the Fourier transform can be defined directly by
(1.21). Show that this definition coincides with our definition on L2.

Problem 1.6 For f , g ∈ S(Rn) define the convolution

(f ∗ g)(x) =
∫

f (x − y)g(y)dy (1.28)

Show that f ∗ g ∈ S(Rn) and that

F(f ∗ g) = (2π )n/2(F f )(Fg) (1.29)

1.2 Unbounded operators

1.2.1 Closed operators

We consider linear operators T from H1 to H2 defined on a subspace D(T) ⊂ H1.

The operator is not necessarily bounded, but we would like it to be closed. An

operator is closed if for any sequence fn ∈ D(T) we have that fn → f and Tfn → g

imply f ∈ D(T) and Tf = g. A bounded operator T : H1 → H2 is easily seen to be

closed. Furthermore if D(T) = H1, we have:

Theorem 1.5 (Closed graph theorem) If T : H1 → H2 is closed, then it is bounded.

Thus if the operator is closed and unbounded, D(T) must be a proper subspace

of H1. Usually it will be a dense subspace. Here is an example:
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Example 1.1 Let H = L2(R) and let

D(T) = {f ∈ H :
∫
|x|2|f (x)|2dx <∞} (1.30)

Define T : D(T) → H by

(Tf )(x) = xf (x) (1.31)

This is not bounded since if fn is the characteristic function of [n, n + 1], then
‖Tfn‖≥ n‖fn‖. However suppose fn is a sequence such that fn ∈ D(T) → f and
Tfn → g. After passing to a subsequence we have fnj(x) → f (x) and xfnj(x) →
g(x) for almost every x. Hence xf (x) = g(x) for almost every x so f ∈ D(T) and
Tf = g. Thus T is closed.

The graph of an operator T : D(T) → H2 is the subset of H1 ×H2 defined by

�(T) = {< f , g >: f ∈ D(T), Tf = g} (1.32)

This is in fact a subspace of H1 × H2. A subspace of H1 × H2 is the graph of an

operator iff it has no elements of the form < 0, g > with g �= 0.

An operator S is an extension of an operator T written T ⊂ S if the domains satisfy

D(T) ⊂ D(S) and Tf = Sf for f ∈ D(T). Then T ⊂ S iff �(T) ⊂ �(S).

An operator is closed iff every sequence < fn, Tfn > in �(T) converging to

< f , g > ∈H1 ⊕ H2 has < f , g >∈ �(T). Thus an operator is closed iff

its graph is closed. It follows that an injective operator T is closed iff T−1 is

closed.

An operator T that is not closed may have a closed extension. This is true iff

the closure of the graph is the graph of an operator, that is �(T) = �(T̄). In this

case we say the operator is closable and call T̄ the closure of T . If T is a closed

operator, a subspace D ⊂ D(T) is a core for T if T | D = T . This is the same as the

statement that for every ψ ∈ D(T) there is a sequence ψn ∈ D so that ψn → ψ and

Tψn → Tψ .

Example 1.2 In the Hilbert space H = L2[−1, 1], consider the subspace D(T) of
bounded continuous functions and the operator T : D(T) → H defined by

(Tf )(x) = f (0) (1.33)

Let fn ∈ D(T) be the “tent function” which is piecewise linear and satisfies
fn(±1)= 0, fn(±1/n) = 0, fn(0) = 1. Then as n →∞, fn → 0 and Tfn = 1 → 1,
so < 0, 1 > is in the closure of the graph, which is therefore not the graph of an
operator. Thus T is not closable.
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1.2.2 Spectrum of a closed operator

For D(T) ⊂ H let T : D(T) → H be a closed operator. The resolvent set ρ(T) is all

complex z such that T − z : D(T) → H is a bijection and the inverse is bounded

ρ(T) = {z ∈ C : (T − z)−1 ∈ B(H)} (1.34)

(This would be empty if T were not closed.) The spectrum σ (T) is the complement

of the resolvent set.

A complex number z is an eigenvalue for T if (T − z)f = 0 for some f �= 0. Then

T− z is not injective and so z is in the spectrum. The set of all eigenvalues is a subset

of the spectrum called the point spectrum. If z is not an eigenvalue, then T − z is

injective, but z still may not be in the resolvent set since the range of T − z may not

be all of H. In this case we make a further distinction and specify that z is in the

continuous spectrum if the range of T − z is dense and otherwise z is in the residual

spectrum.

Theorem 1.6 ρ(T) is open and σ (T) is closed.

Proof Suppose z0 ∈ ρ(T). Then on the domain of T

(T − z) = (I − (z − z0)(T − z0)−1)(T − z0) (1.35)

By theorem 1.2 the operator I − (z − z0)(T − z0)−1 is a bijection and has a bounded
inverse if

‖(z − z0)(T − z0)−1‖ < 1 (1.36)

Hence T − z has a bounded inverse under the same condition which we write

|z − z0| < ‖(T − z0)−1‖−1 (1.37)

Hence this disc is in the resolvent set which is therefore open.

Problem 1.7 Show that if T is bounded, σ (T) ⊂ {z ∈ C : |z| ≤ ‖T‖}.

Problem 1.8 Show that if U is unitary, σ (U) ⊂ {z ∈ C : |z| = 1}.

1.2.3 Adjoints

We generalize the notion of adjoint to unbounded operators. For D(T) ⊂ H let T :

D(T) → H be densely defined, but not necessarily closed. Let D(T∗) be all vectors

g ∈ H such that the function f ∈ D(T) → (g, Tf ) is continuous. Equivalently

D(T∗) = {g ∈ H : ∃C so |(g, Tf )| ≤ C‖f‖ for all f ∈ D(T)} (1.38)
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Then the linear functional has an extension to all of H and by the Riesz representation

theorem (theorem A.3) if g ∈ D(T∗), then there is a unique g∗ such that (g∗, f ) =
(g, Tf ). We define a new operator T∗ : D(T∗) → H by T∗g = g∗. Then T∗ is a linear

operator called the adjoint of T . It is defined so that

(T∗g, f ) = (g, Tf ) f ∈ D(T), g ∈ D(T∗) (1.39)

Theorem 1.7 Define V on H×H by V < f , g >=< −g, f >. Then

�(T∗) = V[�(T)]⊥ (1.40)

Proof < f , g >∈ V[�(T)]⊥ is equivalent to (−g, h) + (f , Th) = 0 for all h ∈ D(T).
But by definition this is equivalent to f ∈ D(T∗) and T∗f = g, that is < f , g >∈
�(T∗).

Corollary 1.1 T∗ is closed.

Proof �(T)⊥ is closed and V is unitary.

Corollary 1.2 If T ⊂ S, then S∗ ⊂ T∗.

Proof �(T) ⊂ �(S) implies �(S)⊥ ⊂ �(T)⊥.

Corollary 1.3 If D(T∗) is dense so T∗∗ exists, then T is closable and T∗∗ = T̄.

Proof

�(T∗∗) = V[V�(t)⊥]⊥ = [�(T)]⊥⊥ = �(T) (1.41)

Since �(T) is the graph of an operator, T is closable and the closure is that operator,
that is T̄ = T∗∗.

Corollary 1.4

Ker T∗ = [Ran(T)]⊥ (1.42)

Proof The kernel of T∗ is all g so (g, 0) ∈ �(T∗). By the theorem this is the same as
(0, g) ∈ �(T)⊥, that is g ∈ [Ran(T)]⊥.

1.3 Self-adjoint operators

1.3.1 Definitions

A densely defined operator is symmetric if

(g, Tf ) = (Tg, f ) (1.43)
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for all f , g ∈ D(T). Then g ∈ D(T∗) and T∗g = Tg so that T ⊂ T∗. If the domains are

the same, that is if T = T∗, then the operator is said to be self-adjoint . A self-adjoint

operator is necessarily closed.

Self-adjoint operators have nice properties not shared by symmetric operators as

we will see. A symmetric operator T fails to be self-adjoint because its domain is

too small. Indeed if S is a symmetric extension of T , then T ⊂ S ⊂ S∗ ⊂ T∗ so S is

closer to being self-adjoint. A general problem is to find a large enough symmetric

extension of T so that it is self-adjoint.

If T is symmetric, then D(T∗) is dense so the closure T∗∗ exists. Then T ⊂ T∗

implies T∗∗ ⊂ T∗ and we have the situation

T ⊂ T∗∗ ⊂ T∗ (1.44)

Now T∗∗ is always symmetric (T∗∗ ⊂ T∗∗∗). The simplest possibility for a self-

adjoint extension for T is that T∗∗ = T̄ is self-adjoint, that is T∗∗ = T∗∗∗. We say

that T is essentially self-adjoint. Since T∗ is closed T∗∗∗ = T∗ and an equivalent

statement is that T∗∗ = T∗, that is T∗ is self-adjoint.

Example 1.3 Let H = L2[0, 1] and let T = id/dx defined on C1 functions with
compact support in (0,1). Then integration by parts shows that T is symmetric.
However if we let h(x) = ex, then integration by parts also gives (h, Tf ) = (ih, f ).
Hence h ∈ D(T∗) and T∗h = ih. The imaginary eigenvalue means that T∗ is not
symmetric and hence T is not essentially self-adjoint.

We quote without proof some further results.2 Consider the subspace

AC[0, 1] = {f ∈ L2[0, 1] : f is absolutely continuous and f ′ ∈ L2[0, 1]}. (1.45)

(Absolutely continuous implies f ′ ∈ L1[0, 1]. Since L2[0, 1] ⊂ L1[0, 1], we are
assuming a bit more.) Let S = id/dx now defined on the larger domain

D(S) = {f ∈ AC[0, 1] : f (0) = f (1) = 0} (1.46)

One can still integrate by parts and show that this operator is symmetric. It turns
out it is also closed, but it is not self-adjoint. The adjoint has the domain D(S∗) =
AC[0, 1]. A further extension is a family of operators Sα indexed by a complex
number α with |α| = 1. We have Sα = id/dx with domain

D(Sα) = {f ∈ AC[0, 1] : f (0) = αf (1)} (1.47)

These turn out to be self-adjoint. Thus there is a family of self-adjoint extensions
and we have

T ⊂ S ⊂ Sα = S∗α ⊂ S∗ ⊂ T∗ (1.48)

2 See Reed and Simon (1975: 141) for details.
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This example has a property typical of differential operators in a region with a

boundary, namely the choice of a self-adjoint extension corresponds to a choice of

boundary conditions.

Problem 1.9 Show that if T is essentially self-adjoint and S is a symmetric exten-
sion, then S is essentially self-adjoint and S∗∗ = T∗∗. (Thus if T is essentially
self-adjoint, then it has a unique self-adjoint extension.)

1.3.2 Properties

If T is symmetric, then for f ∈ D(T) the quantity (f , Tf ) is real since (f , Tf ) =
(Tf , f ) = (f , Tf ). It follows that any eigenvalue must be real. For self-adjoint

operators we have the following stronger statement.

Theorem 1.8 The spectrum of a self-adjoint operator is a subset of the real line.

Proof We have to show that a complex number z with Imz �= 0 is in the resolvent
set. First we note that for f ∈ D(T)

|Imz|‖f‖2 = |Im((T − z)f , f )| ≤ |((T − z)f , f )| ≤ ‖(T − z)f‖‖f‖ (1.49)

and so

|Imz|‖f‖ ≤ ‖(T − z)f‖ (1.50)

Hence (T − z)f = 0 implies f = 0 so T is injective.
The inequality also implies that T − z has a closed range since if (T − z)fn is a

sequence in the range converging to g, then

‖fn − fm‖ ≤ |Imz|−1‖(T − z)(fn − fm)‖ → 0 (1.51)

as n, m → ∞. Then fn is Cauchy and so converges to some f . Since T is closed,
T − z is closed. Then fn → f and (T − z)fn → g imply f ∈ D(T − z) = D(T) and
(T − z)f = g. Hence g is in the range and so the range is closed.

Now by (1.42) we have

[Ran(T − z)]⊥ = Ker(T∗ − z̄) = Ker(T − z̄) = {0} (1.52)

Hence Ran(T − z) = [Ran(T − z)]⊥⊥ = H.
Thus T − z is a bijection from D(T) to H. Now in (1.50) let f = (T − z)−1g for

any g ∈ H. This gives

‖(T − z)−1g‖ ≤ |Imz|−1‖g‖ (1.53)

which shows that the inverse is bounded.

The following is a test for self-adjointness:
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Theorem 1.9 A symmetric operator T is self-adjoint iff Ran(T ± i) = H.

Proof If T is self-adjoint, then ±i is in the resolvent set by the previous theorem and
hence the result.

For the converse suppose T is symmetric and the range of T ± i is H. We must
show D(T∗) ⊂ D(T). If g ∈ D(T∗), choose f ∈ D(T) so that

(T∗ − i)g = (T − i)f (1.54)

Since also f ∈ D(T∗) and T∗f = Tf , this says

(T∗ − i)(f − g) = 0 (1.55)

But by (1.42) we have Ker(T∗ − i) = [Ran(T + i)]⊥ = {0} so f = g and hence
g ∈ D(T).

Problem 1.10 A self-adjoint operator is positive if (f , Tf ) ≥ 0 for all f ∈ D(T).
Show that in this case σ (T) ⊂ [0,∞).

Problem 1.11 Let T be self-adjoint. Show that z ∈ σ (T) iff for every ε > 0 there
exists a f ∈ H with ‖f‖ = 1 such that ‖(T − z)f‖ < ε.

Problem 1.12 Show that if T is symmetric and Ran(T ± i) is dense, then T is
essentially self-adjoint.

Problem 1.13 Let T be symmetric and suppose the domain contains a complete
set of eigenvectors e1, e2, . . . with eigenvalues λ1, λ2, . . . . Show that T is essen-
tially self-adjoint and that the spectrum of the closure is the closure of the set of
eigenvalues.

Problem 1.14 Let (M,μ) be a measure space and let τ : M → R be a measur-
able function. Define an operator [τ ] on L2(M,μ) by ([τ ]f )(x) = τ (x)f (x) with
domain

D([τ ]) = {f ∈ L2(M,μ) : τ f ∈ L2(M,μ)} (1.56)

1. Show that [τ ] is self-adjoint.
2. Show that the spectrum is the essential range of τ . (The essential range of τ is

all λ ∈ R such that μ
(
τ−1(λ− ε, λ+ ε)

)
is positive for all ε > 0.)
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1.3.3 Spectral theorem

Suppose that T is a bounded self-adjoint operator on a Hilbert space H and suppose T

has a complete set of eigenvectors e1, e2, . . . with eigenvalues λ1, λ2, . . . , which are

bounded but not necessarily distinct. (For example suppose T is a compact operator

which we study in the next section.) Then we have for any f ∈ H

f =
∞∑

i=1

(ei, f )ei

Tf =
∞∑

i=1

(ei, f )λiei

(1.57)

The operator V : H → 
2 defined by

(Vf )i = (ei, f ) (1.58)

is unitary. Define a multiplication operator [λ] : 
2 → 
2 by

([λ]f )i = λifi (1.59)

Then VT = [λ]V or

T = V−1[λ]V (1.60)

Thus T is unitarily equivalent to a multiplication operator.

The content of the spectral theorem is that something similar is true for any

bounded self-adjoint operator.

Theorem 1.10 (Spectral theorem – bounded operator) Let T be a bounded self-
adjoint operator on a Hilbert space H. Then there exists a measure space
(M,μ), a bounded measurable function τ : M→R, and a unitary operator
V : H→L2(M, dμ) such that T = V−1[τ ]V where [τ ] is the operator multiplication
by τ .

In the example, (M,μ) is the integers with counting measure. There is also a

version for unbounded operators:

Theorem 1.11 (Spectral theorem – unbounded operators) Let T be a self-adjoint
operator on a Hilbert space H. Then there exists a measure space (M,μ), a mea-
surable function τ : M → R, and a unitary operator V : H → L2(M, dμ) such
that VD(T) = D([τ ]) as defined in (1.56) and T = V−1[τ ]V.

For proofs see Reed and Simon (1980). The representation as a multiplication

operator is not unique.

The spectral theorem allows us to define functions of a self-adjoint operator. Sup-

pose T is self-adjoint, bounded or not, and let h : R → C be a bounded Borel
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function.3 Then h ◦ τ is measurable and we define h(T) by

h(T) = V−1[h ◦ τ ]V (1.61)

Then h(T) is a bounded operator for we have

‖h(T)f‖ = ‖Vh(T)f‖2 = ‖[h ◦ τ ]Vf‖2 ≤ ‖h ◦ τ‖∞‖Vf‖2 ≤ ‖h‖∞‖f‖ (1.62)

If h is unbounded, we can still use (1.61) to define h(T) but now restrict the domain

to V−1D([h ◦ τ ]).

The definition h(T) has the following properties (known as the functional

calculus):

1. (h1 + h2)(T) = h1(T) + h2(T)

2. (λh)(T) = λh(T) λ ∈ C

3. (h1 · h2)(T) = h1(T)h2(T)

4. 1(T) = I

5. h(T)∗ = h(T).

An important case is when h is the characteristic function of a Borel set B ⊂ R.

We define

E(B) = χB(T) (1.63)

Then we have by the functional calculus

E(B)2 = E(B) E(B)∗ = E(B) (1.64)

Thus E(B) is an orthogonal projection. The E(B) are called the spectral projections

for T . The projections E(λ) ≡ E((−∞, λ]) are increasing and satisfy E(−∞) = 0

and E(∞) = I.

For f ∈ H we define Borel measures (f , E(B)f ) of total mass ‖f‖2. These are called

the spectral measures for the operator. The integral of a function h with respect to

such a measure is denoted ∫
h(λ)d(f , E(λ)f ) (1.65)

Problem 1.15 Let T be a self-adjoint operator with spectral projections E(B).

1. Show that μ(B) = (f , E(B)f ) defines a Borel measure.
2. Show that for bounded h

(f , h(T)f ) =
∫

h(λ)d(f , E(λ)f )

‖h(T)f‖2 =
∫

|h(λ)|2d(f , E(λ)f )
(1.66)

3 The Borel sets in R are the smallest σ -algebra of subsets which contains the open sets. A function
h : R → R is Borel measurable if h−1(O) is a Borel set for any open O. If f is a measurable real-valued
function on any measure space, and h is Borel, then h ◦ f is also measurable.



20 Mathematical prelude
�

3. Show that f ∈ D(T) iff
∫
λ2d(f , E(λ)f ) is finite in which case

(f , Tf ) =
∫
λ d(f , E(λ)f )

‖Tf‖2 =
∫
λ2d(f , E(λ)f )

(1.67)

1.3.4 One-parameter groups

A one-parameter unitary group is defined to be a representation of the additive group

R by unitary operators. More precisely a one-parameter unitary group is a function

U from R to unitary operators on a Hilbert space such that U(t)U(s) = U(t + s) and

U(0) = I. Then U(t)∗ = U(t)−1 = U(−t).

A self-adjoint operator determines a one-parameter unitary group as follows:

Theorem 1.12 Let T be self-adjoint on H and define U(t) = exp(itT).

1. U(t) is a one-parameter unitary group.
2. t → U(t)f is strongly continuous from R to H for any f ∈ H.
3. If f ∈ D(T), then f (t) ≡ U(t)f ∈ D(T) and solves the differential equation

df

dt
= iTf (1.68)

Proof U(t) is defined via the spectral theorem as U(t) = V−1[eiτ ]V . It is straight-
forward to check that this defines a one-parameter unitary group. For the continuity
we use the dominated convergence theorem to show that

‖U(t + h)f − U(t)f‖2 =‖(U(h) − I)f‖2

=
∫
|eiτ (m)h − 1|2|(Vf )(m)|2dμ(m)

→0 as h → 0

(1.69)

For the last point U(t)f ∈ D(T) by the spectral theorem and we have

‖
(

U(t + h) − U(t)

h

)
f − iTU(t)f‖2

=‖
[

U(h) − I

h
− iT

]
f‖2

=
∫ ∣∣∣∣eiτ (m)h − 1

h
− iτ (m)

∣∣∣∣2 |(Vf )(m)|2dμ(m)

→0 as h → 0

(1.70)

Here again we use the dominated convergence theorem, using |eix − 1| ≤ |x| and the
fact that |τ |2|Vf |2 is integrable.
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The operator T is called the generator of the unitary group. The last theorem has

a converse known as Stone’s theorem.

Theorem 1.13 Let U(t) be a strongly continuous one-parameter unitary group. Then
there is a unique self-adjoint operator T such that U(t) = eiTt.

Proof (sketch) For the existence part of Stone’s theorem follow the steps below:

1. Define D(T) to be all f ∈ H such that t−1(U(t) − I)f converges as t → 0
and for f ∈ D(T) define

Tf = lim
t→0

(U(t) − I)

it
f

Show that D(T) is a subspace and that T is a linear operator.
2. For λ > 0 define

Rλf = 1

i

∫ ∞

0
e−λsU(s)f ds

Show that the integral exists as a Hilbert space valued Riemann integral and
defines a bounded operator.

3. Show that Rλf ∈ D(T) and that

(T + iλ)Rλf = f

4. Show that for any f ∈ H we have λRλf → f as λ→ ∞ and conclude that D(T)
is dense.

5. Show that if f ∈ D(T), then U(t)f ∈ D(T) and

1

i

d

dt
U(t)f = TU(t)f = U(t)Tf

6. Show that T is symmetric by verifying for f ∈ D(T)

0 = 1

i

d

dt
‖U(t)f‖2 = (Tf , f ) − (f , Tf )

7. Show that T is self-adjoint by verifying Ran(T ± iλ) = H. (We already know this
with the plus sign.)

8. Show that U(t) = eiTt by defining h(t) = (U(t) − eiTt)f and showing that

d

dt
‖h(t)‖2 = 0

Problem 1.16 Supply the details in the above argument.

Here is a variation of the above. Let H be a positive self-adjoint operator. Then

V(t) = e−tH is bounded and self-adjoint for t ≥ 0 and gives a representation of

the additive semi-group R+ = [0,∞) (“semi-group” since there are no inverses).

Conversely we have as in Stone’s theorem:
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Theorem 1.14 Let V(t) be a semi-group of bounded self-adjoint operators defined
for t ≥ 0 satisfying:

1. ‖V(t)‖ ≤ 1
2. V(0) = I
3. V(t)V(s) = V(t + s)
4. t → V(t)f is continuous for all f ∈ H.

Then there is a unique positive self-adjoint operator H such that V(t) = e−tH.

1.4 Compact operators

1.4.1 Properties

A Hilbert space is a metric space and so a subset K ⊂ H is compact iff every

sequence in K has a convergent subsequence. In a finite-dimensional Hilbert space,

a subset is compact iff it is closed and bounded. But in an infinite-dimensional

Hilbert space, closed and bounded is not sufficient. For example an orthonormal

basis {φ1,φ2, . . . } is closed and bounded, but since ‖φi−φj‖2 = 2 for all i �= j, there

can be no convergent subsequence.

An bounded operator T : H1 → H2 is compact if it maps bounded sequences

in H1 into sequences in H2 with convergent subsequences. An operator is finite

rank if the range is finite dimensional. By the above remarks a finite rank opera-

tor is compact. More generally a norm limit of finite rank operators is compact. This

follows from:

Lemma 1.1 The compact operators form a closed subspace of B(H1,H2).

Proof It is straightforward to show that sums of compacts are compact, and it is
trivial to show that multiplication by a scalar preserves compactness. Thus they form
a subspace.

To show that it is a closed subspace let Tn be a sequence of compact operators such
that ‖Tn−T‖ → 0 as n →∞. We must show that T is compact. Let fn be a bounded
sequence in H1. Then there is a subsequence f (1)

n such that T1f (1)
n is Cauchy. Then this

sequence has a subsequence f (2)
n so that T2f (2)

n is Cauchy (as is T1f (2)
n ). Continuing

in this fashion we get for each k a subsequence f (k)
n such that Tkf (k)

n is Cauchy. The
diagonal sequence gn = f (n)

n is then a subsequence of each f (k)
n and so Tkgn is Cauchy

for all k.
Now given ε > 0, choose k so that ‖T − Tk‖ < ε, and choose N so that for

n, m ≥ N we have ‖Tkgn − Tkgm‖ ≤ ε. Let M = supn ‖fn‖. Then for n, m ≥ N

‖Tgn − Tgm‖ ≤‖(T − Tk)gn‖ + ‖Tk(gn − gm)‖ + ‖(Tk − T)gm‖
≤(2M + 1)ε

(1.71)
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Since ε is arbitrary, Tgn is Cauchy, and since gn is a subsequence of fn, this shows T
is compact.

Lemma 1.2 The compact operators on H are a (two-sided) ∗-ideal in the Banach
algebra B(H). That is:

1. The compacts are a subspace of B(H).
2. If T is compact and S is bounded, then TS and ST are compact.
3. If T is compact, then so is T∗.

We already noted the first. The second is easy. We will not need the third, so we

omit it.

Lemma 1.3 Let T ∈ B(H) be compact. If λ is not an eigenvalue and λ �= 0, then
Ran(T − λ) is closed.

Proof Suppose fn ∈ D(T) and (T − λ)fn → g. We show g ∈ Ran(T − λ).
If fn is not bounded, then there is a subsequence going to infinity, so we may as well

assume ‖fn‖ → ∞. Then hn = fn/‖fn‖ is bounded and so there is a subsequence hnj

so that Thnj converges. We also have that (T − λ)hnj = (T − λ)fnj/‖fnj‖ converges to
zero. Combining these statements and the fact that λ �= 0 we conclude that hnj → h
with ‖h‖ = 1. But also (T − λ)h = 0, which contradicts the assumption that λ is not
an eigenvalue.

Thus we may assume fn is bounded. Then Tfn has a convergent subsequence Tfnj .
Since λ �= 0, it follows that fnj → f . Then g = limj(T − λ)fnj = (T − λ)f as
required.

The next result characterizes the spectrum of a compact operator:

Theorem 1.15 (Riesz–Schauder) Let T ∈ B(H) be compact.

1. Complex λ �= 0 is either an eigenvalue or else is in the resolvent set.
2. Eigenvalues λ �= 0 have finite multiplicity (that is dim Ker(T − λ) <∞).
3. Eigenvalues have no limit point except possibly zero.

Proof We give the proof with the simplification that T is self-adjoint so the spectrum
is real. Suppose λ is real, is not an eigenvalue, and λ �= 0. Then T − λ is injective.
Ran(T − λ) is closed by the lemma, and since Ran(T − λ)⊥ = Ker(T − λ) = {0}
by (1.42), it follows that Ran(T − λ) = H. The inverse (T − λ)−1 is bounded by the
closed graph theorem and hence λ is in the resolvent set. This proves the first point.

For the second point suppose dim Ker(T − λ) = ∞. Let φn be an orthonormal
basis for this space. Then there is a subsequence so Tφnj converges and it follows
that φnj = λ−1Tφnj converges. But this is impossible for an orthonormal set.

For the third point suppose λn is a sequence of distinct eigenvalues such that
λn → λ �= 0. Choose eigenfunctions φn such that Tφn = λnφn. These are necessar-
ily orthogonal and we may assume they are orthonormal. Then λ−1

n φn is bounded
and hence T(λ−1

n φn)=φn has a convergent subsequence. But this is impossible.
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Problem 1.17 Let T be a bounded operator with a complete set of eigenfunctions
{φn} and eigenvalues λn so λn → 0 as n →∞. Show that T is compact.

1.4.2 Hilbert–Schmidt operators

A bounded operator T ∈ B(H1,H2) is said to be Hilbert–Schmidt if

‖T‖2
HS ≡

∞∑
i=1

‖Tφi‖2 <∞ (1.72)

for some orthonormal basis {φi} in H1. The condition is independent of basis since

if {ψj} is an orthonormal basis for H2, then∑
i

‖Tφi‖2 =
∑

i,j

|(ψj, Tφi)|2 =
∑

i,j

|(T∗ψj,φi)|2 =
∑

i,j

‖T∗ψj‖2 (1.73)

This also shows that if T is Hilbert–Schmidt, then so is T∗. In fact restricting to the

case H1 = H2 we have:

Lemma 1.4 The Hilbert–Schmidt operators on H are a ∗-ideal in B(H):

1. If T , S are Hilbert–Schmidt, then so is aT + bS for a, b ∈ C.
2. If T is Hilbert–Schmidt and S is bounded, then TS and ST are Hilbert–Schmidt.
3. If T is Hilbert–Schmidt, then so is T∗.

The proof is straightforward.

Lemma 1.5 A Hilbert–Schmidt operator is compact.

Proof Given a Hilbert–Schmidt operator T , let {ψj} be an orthonormal basis for H2.
Then

Tf =
∞∑

j=1

(ψj, Tf )ψj (1.74)

We also define

Tnf =
n∑

j=1

(ψj, Tf )ψj (1.75)

Each Tn has finite-dimensional range and hence is compact. We have

‖(T − Tn)f‖2 =
∞∑

j=n+1

|(ψj, Tf )|2 ≤
⎛⎝ ∞∑

j=n+1

‖T∗ψj‖2

⎞⎠ ‖f‖2 (1.76)



25 1.4 Compact operators
�

Hence

‖T − Tn‖2 ≤
⎛⎝ ∞∑

j=n+1

‖T∗ψj‖2

⎞⎠→ 0 (1.77)

as n →∞. Since T is a norm limit of compacts, it is compact by lemma 1.1.

Now suppose T is a bounded operator on a Hilbert space H, which has a basis of

eigenfunctions {φi} with eigenvalues λi. Taking this basis in (1.72) we see that T is

Hilbert–Schmidt iff ∑
i

|λi|2 <∞ (1.78)

Here is another test for Hilbert–Schmidt.

Lemma 1.6 Let (M,μ) be a measure space and suppose k(x, y) is an element of
L2(M × M,μ× μ). Then

(Kf )(x) =
∫

k(x, y)f (y)dμ(y) (1.79)

defines a Hilbert–Schmidt operator on L2(M,μ) and

‖K‖HS = ‖k‖2 (1.80)

Proof We have seen in problem 1.1 that K is a bounded operator. Let {φj} be
an orthonormal basis for L2(M,μ). Then φ̄i ⊗ φj is an orthonormal basis for
L2(M × M,μ× μ); see the proof of theorem B.1 in the appendix. We compute

‖K‖2
HS =

∑
j

‖Kφj‖2 =
∑

i,j

|(φi, Kφj)|2

=
∑

i,j

|(k, φ̄i ⊗ φj)|2 = ‖k‖2
2

(1.81)

1.4.3 Trace class

Let T be a bounded positive self-adjoint operator on a Hilbert space H. (Recall that

positive means (f , Tf ) ≥ 0 for all f ∈ H.) We say that T is trace class if

Tr(T) =
∑

i

(φi, Tφi) <∞ (1.82)

for some orthonormal basis {φi}. By the spectral theorem, T = V−1[τ ]V for a

function τ satisfying τ ≥ 0 almost everywhere. Then T has a positive self-adjoint

square root T1/2 = V−1[τ 1/2]V and the condition is equivalent to the statement that

T1/2 is Hilbert–Schmidt. It follows that the sum is independent of the basis. If T
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has a complete set of eigenfunctions {φi} with nonnegative eigenvalues λi, then the

condition for trace class is equivalent to∑
i

λi <∞ (1.83)

More generally if T is a bounded operator on H, then T∗T is a positive operator

and we say that T is trace class if |T| = (T∗T)1/2 is trace class. This reduces to the

previous definition if T is positive self-adjoint.

To investigate this concept we need to know more about the relation between T and

|T|. A bounded operator U is a partial isometry if it is an isometry when restricted

to (Ker U)⊥.

Lemma 1.7 (Polar decomposition) If T is a bounded operator, there are partial
isometries U, V such that T = U|T| and |T| = VT.

Proof Define U : Ran(|T|) → Ran(T) by U(|T|f ) = Tf . Since

‖|T|f‖2 = (f , |T|2f ) = (f , T∗Tf ) = ‖Tf‖2 (1.84)

this is well-defined (that is |T|f = |T|g implies Tf = Tg) and norm preserving. It
extends to an isometry from Ran|T| to RanT . Define U to be zero on (Ran|T|)⊥ =
Ker|T| = Ker T . Then U is a partial isometry and U|T| = T . For V , reverse the roles
of T and |T|.
Lemma 1.8 A bounded operator is trace class iff it is the product of two Hilbert–
Schmidt operators. In particular a trace class operator is Hilbert–Schmidt and hence
compact.

Proof If T is trace class, then T = (U|T|1/2)(|T|1/2) exhibits the operator as a prod-
uct of Hilbert–Schmidt operators. On the other hand suppose T = A∗B with A, B
Hilbert–Schmidt. First if T is positive, then∑

i

(φi, Tφi) =
∑

i

(Aφi, Bφi) ≤
∑

i

‖Aφi‖‖Bφi‖

≤
(∑

i

‖Aφi‖2

)1/2 (∑
i

‖Bφi‖2

)1/2

<∞
(1.85)

and hence T is trace class. In the general case if T = A∗B, then |T| = (VA∗)(B)
exhibits |T| as a product of two Hilbert–Schmidts. Thus |T| is trace class and hence
T is trace class.

Lemma 1.9 The trace class operators are a ∗-ideal in B(H):

1. If T , S are trace class, then so is aT + bS for a, b ∈ C.
2. If T is trace class and S is bounded, then TS and ST are trace class.
3. If T is trace class, then so is T∗.
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Proof The only tricky part is showing that S + T is again trace class. To see this
write S = A∗1B1 and T = A∗2B2 with Ai, Bi Hilbert–Schmidt. Then A = A1 ⊕ A2 and
B = B1⊕B2 are Hilbert–Schmidt operators from H to H⊕H and T+S = A∗B. This
is sufficient to conclude that T + S is trace class as in the proof of lemma 1.8.

If T is trace class but not positive, we again define the trace by (1.82). This makes

sense because:

Lemma 1.10 Let T be trace class.

1. Tr(T) ≡ ∑
i(φi, Tφi) is absolutely convergent and independent of the choice of

basis.
2. Tr is a linear functional on the trace class operators.
3. (cyclicity) If T = AB with A, B Hilbert–Schmidt, then

Tr(AB) = Tr(BA) (1.86)

Proof Write T = A∗B as a product of Hilbert–Schmidt operators. Then the absolute
convergence of the sum is demonstrated as above in (1.85). If {ψj} is another basis,
we have

Tr(A∗B) =
∑

i

(Aφi, Bφi) =
∑

i,j

(Aφi,ψj)(ψj, Bφi)

=
∑

i,j

(B∗ψj,φi)(φi, A∗ψj) =
∑

j

(B∗ψj, A∗ψj) = Tr(BA∗)
(1.87)

This shows the independence of the basis and also establishes the cyclicity.

Problem 1.18 Show that if T is trace class and S is bounded, then Tr(ST) =
Tr(TS).

Notes on chapter 1: A good general reference is the four volume

set Reed and Simon (1980), Reed and Simon (1975), Reed and Simon (1979),

Reed and Simon (1978). Other books that cover this material are Kato (1966), Yosida

(1966), and Taylor (1996).



2 Classical mechanics

2.1 Hamiltonianmechanics

We start by reviewing some classical physics, specifically mechanics. Classical

mechanics is the study of the motions of macroscopic bodies under the influence

of certain specified forces. Mathematically it is formulated in terms of ordinary

differential equations. These equations can be presented in one of three general

forms: Newtonian, Hamiltonian, or Lagrangian. Here we emphasize the Hamiltonian

form, which is most easily connected with quantum mechanics.

In Hamiltonian mechanics the states of the system are specified by points in a

phase space which we take to be P = O×Rn for some integer n and some open set

O in Rn. (More generally the phase space is a 2n-dimensional manifold.) Points in

the phase space have the form (x, p) where the point x ∈ O describes the location or

configuration of the various objects in the system and the point p ∈ Rn describes the

momenta of the various objects in the system.

The evolution of the system in time is specified by a function (x(t), p(t)) from

(an interval in) R to P called a trajectory. The fundamental dynamical principle is

that the allowed trajectories obey Hamilton’s equations. These are a system of 2n

ordinary differential equations of the form

dxi

dt
= ∂H

∂pi

dpi

dt
= −∂H

∂xi

(2.1)

where H = H(x, p) is a function on phase space called the Hamiltonian. The choice

of the Hamiltonian depends on the system we are trying to describe, and we will see

a number of examples shortly.

An immediate advantage of formulating the dynamics in this way is that the

Hamiltonian H(t) = H(x(t), p(t)) is constant in time. Indeed we have

dH

dt
=

n∑
i=1

∂H

∂xi

dxi

dt
+ ∂H

∂pi

dpi

dt
28
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=
n∑

i=1

∂H

∂xi

∂H

∂pi
− ∂H

∂pi

∂H

∂xi
(2.2)

= 0

The usual interpretation is that the Hamiltonian is the energy of the system, and this

property represents conservation of energy.

More generally let F(p, q) be an arbitrary smooth function on the phase space,

sometimes called a “classical observable.” Let (x(t), p(t)) be a solution of Hamilton’s

equations, and let F(t) = F(x(t), p(t)) be the time evolution of the quantity F. Then

we have

dF

dt
=

n∑
i=1

∂F

∂xi

dxi

dt
+ ∂F

∂pi

dpi

dt

=
n∑

i=1

∂F

∂xi

∂H

∂pi
− ∂F

∂pi

∂H

∂xi

(2.3)

We write this as
dF

dt
= {F, H} (2.4)

where the right side is evaluated at (x(t), p(t)) and where we define the Poisson

bracket of F and G to be the function on P

{F, G} =
n∑

i=1

∂F

∂xi

∂G

∂pi
− ∂F

∂pi

∂G

∂xi
(2.5)

For future reference we note that the Poisson bracket is anti-symmetric and

satisfies the Jacobi identity

{F, G} + {G, F} = 0

{{F, G}, H} + {{H, F}, G} + {{G, H}, F} = 0 (2.6)

Also the coordinate functions satisfy

{xi, xj} = 0

{pi, pj} = 0

{xi, pj} = δij

(2.7)

where δij = 1 if i = j and is zero otherwise.

2.2 Examples

Example 2.1 Single particle in an external field We consider a single particle
in an external force field. The particle is considered small enough that its state can
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be described by its position which is a point x ∈ Rd. The force is modeled by a
vector field, that is a function F : O → Rd. The particle at x feels a force F(x).
The time evolution of the system is given by Newton’s second law

m
d2x

dt2
= F(x) (2.8)

Suppose further that F is a gradient, that is F = −∇V for some function
V : O → R. We say that the force is conservative and call V a potential for
the problem. For example in R3 if the particle has charge q1 and the force is
the electrostatic force due to another particle of charge q2 at the origin, then
F(x) = q1q2x/|x|3 and V(x) = q1q2/|x|. For a conservative force we can write
Newton’s law as a Hamiltonian system. We define p = m(dx/dt) and then (2.8) is
equivalent to

dx

dt
= p

m
dp

dt
= −∇V

(2.9)

This is a Hamiltonian system on P = O × Rd with

H(x, p) = |p|2
2m

+ V(x) (2.10)

Example 2.2 Single particle in electric and magnetic fields In O ⊂ R3 suppose
that the magnetic field B is static, ∂B/∂t = 0. Then Maxwell’s third equation (0.3)
says that ∇ × E = 0. If O is simply connected, it follows that there exists a
scalar function� called the electrostatic potential so that E = −∇�. Furthermore
Maxwell’s second equation says that ∇ ·B = 0 and it follows that there is a vector
field A called the the magnetic potential so that B = ∇ × A. (These potentials are
not unique. Indeed we could replace A by A+∇λ for any scalar function λ. This
is called a gauge transformation, about which more later.)

For a single particle of charge e in such a field the Lorentz force equation
(0.2) becomes

m
d2x

dt2
= −e∇�+ e

c

(
dx

dt
×∇ × A

)
(2.11)

This can be written as the system of equations (r, s = 1, 2, 3)

dxr

dt
=
(

pr − e

c
Ar

)
/m

dpr

dt
= e

mc

∑
s

(
ps − e

c
As

) ∂As

∂xr
− e

∂�

∂xr

(2.12)
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This is a Hamiltonian system on P = O × R3 with

H(x, p) = 1

2m

∣∣∣p − e

c
A(x)

∣∣∣2 + e�(x) (2.13)

Note that if A = 0, then this example reduces to the previous example with
V = e�.

Example 2.3 Many particles Next consider a collection of n particles in Rd

interacting with each other. The location of the particles is given by a point
(x1, ..., xn) ∈ Rnd and the momenta is given by a point (p1, ..., pn) ∈ Rnd. The
phase space is Rnd × Rnd.

The force of the jth particle on the ith particle is assumed to depend only on
the relative positions and have the form F(xi − xj) for some force F as in the first
example. We assume that F(−x) = −F(x) so that the force of the ith particle on
the jth particle is minus the force of the jth particle on the ith particle (Newton’s
third law). Newton’s equations for this problem take the form

mi
d2xi

dt2
=
∑
j �=i

F(xi − xj) (2.14)

where mi is the mass of the ith particle.
If we further assume that the force F is conservative with F=−∇V and

V(−x)= (x), then this equation can be written

dxi

dt
= pi

mi

dpi

dt
= −∇i

⎛⎝∑
j �=i

V(xi − xj)

⎞⎠ (2.15)

This is a Hamiltonian system with

H(x1, . . . , xn, p1, . . . , pn) =
∑

i

|pi|2
2mi

+ 1

2

∑
j �=i

V(xi − xj) (2.16)

2.3 Canonical transformations

Let ξ = (x, p) be a point in a phase space P = O × Rn and let J be the 2n × 2n

matrix

J =
(

0 I

−I 0

)
(2.17)
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Then Hamilton’s equations can be written in the form

dξ

dt
= J∇H (2.18)

We want to investigate transformations which preserve the form of this equation.

First define a 2n×2n matrix M to be symplectic if MTJM= J. Products of symplec-

tic matrices are symplectic. Symplectic matrices are non-singular since | det M| = 1,

and the inverse is also symplectic. Thus symplectic matrices form a group. The

inverse and the transpose are related by M−1 =−JMTJ or MT =−JM−1J. Thus MT

is symplectic as well.

A smooth mapping ξ ′ =φ(ξ ) is a canonical transformation if the derivative

Dφ={dξ ′i /dξj} is symplectic, that is if

(Dφ)TJ(Dφ) = J (2.19)

Since | det Dφ| = 1, a canonical transformation is volume preserving. By the inverse

function theorem, a canonical transformation is at least locally invertible, and can be

thought of as a change of coordinates in phase space.

Canonical transformations preserve the form of Hamilton’s equations as the

following result shows:

Theorem 2.1 Let φ be a canonical transformation and suppose ξ (t) solves Hamil-
ton’s equations (2.18). Then the transformed solution ξ ′(t) = φ(ξ (t)) solves

dξ ′/dt = J∇H′ (2.20)

where H′ = H ◦ φ−1.

Proof Since H = H′ ◦ φ, we have

∇H = (∇H′ ◦ φ)Dφ = (Dφ)T (∇H′ ◦ φ) (2.21)

Thus for ξ ′(t) = φ(ξ (t)) we have

dξ ′

dt
= (Dφ)(ξ (t))

dξ

dt
= (Dφ)(ξ (t))(J∇H)(ξ (t))

= ((Dφ)J(Dφ)T )(ξ (t))∇H′(ξ ′(t))
= J∇H′(ξ ′(t))

(2.22)

where we use that (Dφ)T is symplectic.

Theorem2.2 Let φ∗F = F◦φ be the pull-back of F. A smooth function φ is canonical
iff

φ∗{F, G} = {φ∗F,φ∗G} (2.23)

for all smooth functions F, G.
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Proof We have the representation

{F, G} = −(∇F)J∇G (2.24)

Since ∇(φ∗G) = (Dφ)T (∇G) ◦ φ, the equation (2.23) can be written as

((∇F)J(∇G)) ◦ φ = ((∇F) ◦ φ)(Dφ)J(Dφ)T ((∇G) ◦ φ) (2.25)

If φ is canonical, then (Dφ)J(Dφ)T = J and the identity holds. On the other hand
suppose (2.25) holds. Take F(ξ ) = ξi, G(ξ ) = ξj so that (∇F)k = δik, (∇G)k = δjk.
Then we get [(Dφ)J(Dφ)T ]ij = Jij so that φ is canonical.

Before continuing we introduce some additional concepts. Let X be a vector field

on P , that is a function from P to R2n. Let φt be the flow of X. That is ξ (t) = φt(ξ )

is the solution of dξ/dt = X(ξ ) starting at ξ and defined for t sufficiently small. For

any smooth function F on P define the Lie derivative LXF to be the function

(LXF)(ξ ) = d

dt
F(φt(ξ ))|t=0 (2.26)

Applying the chain rule in (2.26) we have the representation

LXF =
∑

i

Xi(ξ )
∂F

∂ξi
(2.27)

This is the vector field X regarded as a differential operator. The flow satisfies φt ◦
φs = φt+s = φs ◦ φt, and from this it is straightforward to deduce that φ∗t (LXF) =
LX(φ∗t F) and that

d

dt
(φ∗t F) = LX(φ∗t F) (2.28)

Now our solution of Hamilton’s equations is the flow φt of the vector field

XH = J∇H, called a Hamiltonian vector field. The evolution equation (2.4) can be

written

d

dt
(φ∗t F) = φ∗t {F, H} (2.29)

and specializing to t = 0 we have

LXH F = {F, H} (2.30)

Then φ∗t {F, H} = {φ∗t F, H} and either (2.28) or (2.29) becomes

d

dt
(φ∗t F) = {φ∗t F, H} (2.31)

Theorem 2.3 The flow φt of Hamilton’s equations is canonical for each t.
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Proof Let Ft = φ∗t F = F ◦ φt so dFt/dt = {Ft, H}. Using the Jacobi identity we
compute

d

dt
{Ft, Gt} =

{
dFt

dt
, Gt

}
+
{

Ft,
dGt

dt

}
= {{Ft, H}, Gt} + {Ft, {Gt, H}}
= {{Ft, Gt}, H} = LXH {Ft, Gt}

(2.32)

Thus U(t, ξ ) = {Ft, Gt}(ξ ) satisfies the first-order linear partial differential equation
with initial condition(

∂

∂t
− LXH

)
U = 0 U(0, ξ ) = {F, G}(ξ ) (2.33)

This is also satisfied by U(t, ξ ) = {F, G}t(ξ ). Solutions are unique and thus {F, G}t =
{Ft, Gt}. Since the Poisson bracket is preserved, the flow is canonical.

Remark Suppose the phase space is the vector space R2n and suppose that the
Hamiltonian flow φt is linear, that is suppose that the Hamiltonian is a quadratic
polynomial. Then Dφt = φt and the statement that Dφt is symplectic becomes
φT

t Jφt = J. Another way to formulate it is to define a skew-symmetric bilinear form
(a symplectic form) by σ (ξ1, ξ2) = ξ1 ·Jξ2. Then σ is invariant under time evolution:
σ (φtξ1,φtξ2) = σ (ξ1, ξ2). An infinite-dimensional version of this will be of interest
when we study quantum field theory.

Problem 2.1 On R2 consider the Hamiltonian H(x, p) = 1
2 (p2 +ω2x2) where ω is

a constant. Find an explicit expression for the flow φt and verify directly that it is
canonical.

2.4 Symmetries

We continue to let φt be the flow of Hamilton’s equations. For any smooth function

F on phase space P we have d(φ∗t F)/dt = φ∗t {F, H} and from this it follows that

φ∗t F = F ⇐⇒ {F, H} = 0 (2.34)

In this case we say that F is a conserved quantity or a constant of the motion.

There may be other Hamiltonian flows occurring naturally in the problem.

Suppose G is a smooth function on P and let ψt be the flow of XG = J∇G. We

say that G is the generator of ψt. Then ψ∗
t F = F iff {F, G} = 0. Combining these

facts we have

φ∗t G = G ⇐⇒ {G, H} = 0 ⇐⇒ ψ∗
t H = H (2.35)

We can paraphrase this by saying that a function G is a constant of motion iff the

flow ψt that it generates leaves the Hamiltonian invariant. This suggests that we look
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for constants of the motion by looking for symmetries of the Hamiltonian. We now

proceed to look at some special cases.

In our models we will generally have an action of translations on the phase space,

that is an action of the additive group R3. Translations in a particular direction are

a Hamiltonian flow and the generator of this flow will be called the total momentum

in that direction. If the Hamiltonian is invariant under translations in that direction,

then the associated total momentum is conserved.

Example 2.4 We continue with a single particle in an external field (example 2.1).
The phase space is P = R3 × R3 and the Hamiltonian is H = |p|2/2m + V(x).
A translation by a ∈ R3 acts on P by Ta(x, p) = (x + a, p). We consider one-
parameter subgroups of the form Ttn(x, p) = (x + tn, p) with |n| = 1. These are
the flow of the vector field (n, 0) and this is a Hamiltonian vector field since it
can be written J∇(p · n). Thus the total momentum in direction n is the particle
momentum p · n in the direction n. The translation takes the Hamiltonian to H ◦
Ttn = |p|2/2m + V(x + tn). The Hamiltonian is invariant if V is constant in the
direction n, that is there is no force in the direction n. In this case the momentum
p · n is conserved.

Example 2.5 Now consider again n particles interacting with each other
(example 2.3). The phase space is P = R3n × R3n and the Hamiltonian is given
by (2.16). Translations by a ∈ R3 act on P by

Ta(x1, ..., xn, p1, ..., pn) = (x1 + a, ..., xn + a, p1, ..., pn) (2.36)

and we consider the one-parameter subgroups of the form Ttn for |n| = 1.
The action of Ttn is the flow of the vector field (n, . . . , n, 0, . . . , 0). This is a
Hamiltonian vector field since it can be written J∇(P · n) where

P =
n∑

i=1

pi (2.37)

is identified as the total momentum. The Hamiltonian is invariant under transla-
tions since the potentials V(xi − xj) only depend on the differences xi − xj. Hence
P · n is conserved for any n and so P conserved.

Also we will generally have an action of the rotation group on the phase

space. Rotations around a particular axis are Hamiltonian flows and the genera-

tor will be called the total angular momentum for the system around that axis. If

the Hamiltonian is invariant under rotations, then the total angular momentum is

conserved.
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Before getting into examples we review some facts about the rotation group on R3.

The orthogonal group O(3) is all 3×3 matrices R, preserving lengths or equivalently

so that RTR = I. It inherits a topology as a subset of R9 and is in fact a Lie group,

that is a manifold. Such R have det R = ±1 and this divides O(3) into two con-

nected components. The component with det R = 1 is a subgroup called the rotation

group or special orthogonal group and is denoted SO(3). One-parameter subgroups

are rotations about a fixed axis n ∈ R3, |n| = 1. For example a rotation by an angle θ

around the axis e3 = (0, 0, 1) is

R(e3, θ ) =
⎛⎜⎝cos θ − sin θ 0

sin θ cos θ 0

0 0 1

⎞⎟⎠ (2.38)

Then

X3 ≡ dR(e3, θ )

dθ

∣∣∣
θ=0

=
⎛⎜⎝0 −1 0

1 0 0

0 0 0

⎞⎟⎠ (2.39)

is an element of the Lie algebra (tangent space to the group at the identity). The

matrix X3 is the generator of the subgroup in the sense that R(e3, θ ) = exp(θX3).

Similarly we have generators X1, X2 for the rotations R(e1, θ ), R(e2, θ ) around the

other axes. They are

X1 =
⎛⎜⎝0 0 0

0 0 −1

0 1 0

⎞⎟⎠ X2 =
⎛⎜⎝ 0 0 1

0 0 0

−1 0 0

⎞⎟⎠ (2.40)

The matrices X1, X2, X3 are a basis for the Lie algebra of SO(3), the skew-symmetric

matrices. The Lie algebra has a bracket operation inherited from the group structure

and determined by the commutators1

[X1, X2] = X3 [X2, X3] = X1 [X3, X1] = X2 (2.41)

Example 2.6 We consider again a single particle in an external field (example 2.4
continued). The phase space is P =R3 × R3 and the Hamiltonian is
H= |p|2/2m + V(x). A rotation by R ∈ SO(3) acts on ξ = (x, p) ∈ P by
R̂ξ = (Rx, Rp). The one-parameter subgroup R(e3, θ ) acts by

R̂(e3, θ )ξ = (R(e3, θ )x, R(e3, θ )p) (2.42)

This is the flow of the vector field

X̂3ξ = (X3x, X3p) (2.43)

1 [A, B] = AB − BA.
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This is a Hamiltonian vector field since it has the form J∇L3 where

L3 = −1

2
(ξ , JX̂3ξ ) = x1p2 − x2p1 (2.44)

The generator L3 is identified as the angular momentum around e3. Similarly
associated with R(e1, θ ), R(e2, θ ) we have

L1 = x2p3 − x3p2 L2 = x3p1 − x1p3 (2.45)

Thus L = (L1, L2, L3) is the cross product L = x × p. For rotations around a unit
vector n the angular momentum turns out to be L · n.

Is the Hamiltonian invariant under rotations? The term |p|2/2m is invariant.
If the potential is also invariant, V(Rx) = V(x), then the Hamiltonian is invariant,
L · n is conserved for any n, and so the vector L is conserved.

For multiparticle systems as in example 2.5 one finds that the total angular
momentum is the sum of the angular momenta for the individual particles.

Problem 2.2 On the phase space R4 consider the Hamiltonian

H(x1, x2, p1, p2) = a(p2
1 + x2

1) + b(p2
2 + x2

2) + c(p1p2 − x1x2) (2.46)

Find a constant of motion by showing that H is invariant under the rotations(
x1(θ )
p1(θ )

)
=
(

cos θ − sin θ
sin θ cos θ

) (
x1

p1

)
(

x2(θ )
p2(θ )

)
=
(

cos θ sin θ
− sin θ cos θ

) (
x2

p2

) (2.47)

and then finding a generator for this flow.

Notes on chapter 2: For a modern treatment of classical mechanics try

Abraham and Marsden (1978), Gallavotti (1983), or Marsden and Ratiu (1994).

A good general reference for mathematical physics is the two volume set by

Choquet-Bruhat et al. (1977) and Choquet-Bruhat and DeWitt-Morette (1989). In

particular they discuss Lie groups. For a more elementary treatment of Lie groups

see Miller (1972) or Hall (2003).



3 Quantummechanics

3.1 Principles of quantummechanics

We now begin with the main subject of the book: quantum mechanics. Quantum

mechanics is a fundamental framework for describing physical phenomena.

Although in principle it is needed for all phenomena, its features are especially

evident in microscopic phenomena such as the structure of atoms.

The fundamental principle is that some attributes of a physical system, for

example the position, cannot be specified exactly, but only by a probability den-

sity. Furthermore it is not the probability density itself which is fundamental, but

rather a complex valued function ψ called a “probability amplitude” or a “wave

function” whose modulus squared |ψ |2 gives the probability density. These ideas are

encompassed in the following axiom:

Axiom I: The states of the system are described by vectors of norm one in a

complex Hilbert space H.

Actually we do not distinguish states which differ by a phase. Two vectors

ψ1,ψ2 ∈H are considered as equivalent if ψ1 = eiθψ2 for some real θ . It is equiva-

lence classes of unit vectors, called rays, which describe the states of the system.

As an example for a single particle, say an electron, the Hilbert space would be

H = L2(R3). A particle in the state ψ ∈ H with ‖ψ‖ = 1 is located with a prob-

ability distribution |ψ(x)|2. In particular the probability of finding the particle in a

measurable set B ⊂ R3 is
∫

B |ψ(x)|2dx.

As a second example suppose we have two different particles, say a proton and an

electron. In this case the Hilbert space would be H = L2(R3 × R3). If the particles

are in a state ψ with ‖ψ‖ = 1, then
∫

B1×B2
|ψ(x1, x2)|2dx1dx2 is the probability of

finding the first particle in the set B1 and the second particle in the set B2.

The wave function contains information about all observable quantities, not just

the position. This information is extracted according to the following principle.

Axiom II: Properties of physical measurements of a system correspond to pro-

jection operators on H. Physically measurable quantities for a system correspond to

self-adjoint operators on H.
38
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We elaborate on the meaning of the first point. If the state of the system is ψ and

one experimentally tests for a property corresponding to a projection operator P, then

the probability that the result of the test is positive is

(ψ , Pψ) = ‖Pψ‖2 (3.1)

A special case is that one tests whether the the system is in some other state φ. In

this case the projection operator is the projection onto φ which is Pφ = φ(φ, ·). (Note

that this depends only on the ray.) Thus if the system is in the state ψ , the probability

of finding it in the state φ is

(ψ , Pφψ) = |(φ,ψ)|2 (3.2)

For the second point suppose that a physically measurable quantity (e.g. position,

momentum, etc. ) corresponds to a self-adjoint operator A. For short we say A is an

observable. By the functional calculus, we have an associated family of projection

operators E(B) = χB(A) indexed by Borel sets B ⊂ R. The basic interpretation is

that if the system is in the state ψ , then the probability that a measurement of the

observable A yields a result in B is

(ψ , E(B)ψ) = ‖E(B)ψ‖2 (3.3)

These quantities constitute the spectral measures introduced earlier. By the spectral

theorem (see problem 1.15)

(ψ , Aψ) =
∫
λ d(ψ , E(λ)ψ) (3.4)

As in classical probability theory, (ψ , Aψ) is interpreted as the average value of

repeated measurements. It is called the expectation value of the observable A.

If we have several commuting self-adjoint operators A1, ..., An, then it turns out

they have a joint spectral resolution, that is there is a unitary operator which trans-

forms all of them to multiplication operators on the same L2 space. Then we define

projection operators E(B) = χB(A1, ..., An) for B ⊂ Rn and (ψ , E(B)ψ) is inter-

preted as the probability that a simultaneous measurement of observables A1, . . . , An

will yield a value in B. However if self-adjoint operators do not commute, there is

no joint spectral resolution and no probability density for simultaneous measure-

ments. Indeed arbitrarily precise simultaneous measurements are not possible. This

is a complete departure from classical probability theory.

As an example, for a single particle with Hilbert space L2(R3) let [xr] be the

operator of multiplication by the coordinate xr. Then for B ⊂ R the projection oper-

ators are χB([xr]) = χB(xr) and the probability of finding the rth coordinate in B is∫
xr∈B |ψ(x)|2dx. For B ⊂ R3 the joint projection operators are χB([x1], [x2], [x3]) =
χB(x1, x2, x3) and the probability of finding the particle in B is

∫
B |ψ(x)|2dx just as

before.
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Now there is the question of how we associate physically measurable quantities

with self-adjoint operators. This is one of the more obscure areas of the subject.

However a few general principles suffice to cover most of the situations that arise

in practice. One way of systematizing these principles is as follows. We know how

to associate classical observables with actual physical attributes. Thus a correspon-

dence between classical observables (that is functions on phase space) and quantum

observables (that is self-adjoint operators) serves our purpose. This correspondence

is known as “canonical quantization” and is discussed in the next section.

Next we turn to the question of how the system evolves in time. We assume that

external influences on the system are independent of time. (Otherwise the following

needs modification.)

Axiom III: The time evolution of a system is given by a one-parameter group of

unitary operators U(t) on H such that if ψ ∈ H is the state of the system at time

zero, then ψt = U(t)ψ is the state at time t.

The fact that time evolution is given by a family of linear operators (even for sys-

tems which are classically nonlinear) is perhaps mysterious, but once this is accepted

we are more or less forced to admit that it is unitary to preserve the probabilistic

interpretation.

We have formulated dynamics so that the states evolve in time and operators cor-

responding to observables are fixed in time. The expectation of an observable given

by a self-adjoint operator A in a state ψ at time t is (ψt, Aψt). This is known as

the Schrödinger picture. There is also the Heisenberg picture in which the operators

evolve in time and the states are fixed. For any operator A on the H we define the

operator at time t by At = U(t)−1AU(t). Now the expectation of A in the state ψ at

time t is (ψ , Atψ). This is the same as the Schrödinger picture. The two pictures are

equivalent in the sense that they have the same expectation values.

By Stone’s theorem (Theorem 1.13) the time evolution U(t) will be generated by

a self-adjoint operator H. We write

U(t) = e−itH/h (3.5)

Here h̄ is a small fundamental constant of nature, which sets the scale on which

quantum effects are important. In CGS units it is h̄ = 1.05 × 10−27erg · seconds.

In the Schrödinger picture we have ψt = e−itH/hψ and so if ψ ∈ D(H), the state

satisfies the Schrödinger equation,

ih̄
dψt

dt
= Hψt (3.6)

In the Heisenberg picture we have At = eitH/hAe−itH/h, which satisfies

− ih̄
dAt

dt
= [H, At] (3.7)
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on a suitable domain. Note the analogy with the time evolution of observables in

a classical Hamiltonian system as in (2.4). Poisson brackets are replaced by com-

mutators and the operator H plays the role of the Hamiltonian. Indeed H is called

the (quantum) Hamiltonian and corresponds to the energy of the system. This cor-

respondence is further developed in the framework of canonical quantization in the

next section.

In addition to this continuous unitary time evolution the system also changes in a

discontinuous way when a measurement is made upon it. Roughly the state jumps

to a state which is specified by the results of the measurement. This is known as

“reduction of the wave function.” The question of which physical processes consti-

tute measurements in this sense is rather unsettled, as well as the question of finding

a correct mathematical description. Nevertheless it turns out that one can solve most

practical problems without entering into these issues.

This completes our survey of the basic principles in the form of three axioms

which list the kind of mathematical structures we are interested in and how they

are supposed to model the physical world. They are not meant to be exhaustive or

inflexible, but only a general point of reference.

3.2 Canonical quantization

Canonical quantization is a recipe for passing from a classical Hamiltonian system

to a quantum mechanical system. We should say at the outset that there are lim-

its to how seriously one should take this procedure. We do not mean to say that

the classical system is fundamental and it is somehow modified for microscopic

phenomena. Rather it is the quantum system which is fundamental. The classical

system is an approximation, which however is excellent for macroscopic bodies.

Canonical quantization is just a sophisticated method for guessing the correct quan-

tum description from its classical manifestation. As such it need not be too sharply

drawn.

We begin with a classical Hamiltonian system with phase space P = Rn × Rn

with points (x, p) = (x1, . . . , xn, p1, . . . , pn) and a Hamiltonian H(x, p). The first step

of quantization consists of associating with each of the coordinates (unbounded)

linear operators (x̂, p̂) = (x̂1, . . . , x̂n, p̂1, . . . , p̂n) on a Hilbert space H such that the

commutators satisfy the relations

[
x̂i, x̂j

] = 0[
p̂i, p̂j

] = 0[
x̂i, p̂j

] = ih̄δij (3.8)
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The relations (3.8) are known as the canonical commutation relations or CCR. Note

the analogy with the Poisson brackets of the classical coordinates given in (2.7). Note

also the presence of the fundamental constant h̄.

The second step is to substitute (x̂, p̂) into the classical Hamiltonian H(x, p) to

form the quantum Hamiltonian Ĥ = H(x̂, p̂). This is just a formal expression which

we must give a meaning as a self-adjoint operator. The time evolution operator is

then taken to be U(t) = e−itĤ/h in accordance with our general principles. In the

Heisenberg picture we then define canonical operators (x̂t, p̂t) at time t by

x̂t = eitĤ/h̄x̂e−itĤ/h

p̂t = eitĤ/h̄p̂e−itĤ/h (3.9)

These also satisfy the CCR and obey the equations

−ih̄
d

dt
x̂t = [Ĥ, x̂t]

−ih̄
d

dt
p̂t = [Ĥ, p̂t]

(3.10)

Example 3.1 As an example consider the quantization of the classical system in
example 2.1. This is a single particle in R3 with mass m and under the influence
of a potential V . The classical coordinates xr, pr with 1 ≤ r ≤ 3 can be quantized
as the operators x̂r, p̂r defined by

x̂r = [xr] ≡ multiplication by xr

p̂r = −ih̄
∂

∂xr

(3.11)

When defined on a suitable domain in L2(R3), say the Schwartz space S(R3),
these satisfy the canonical commutation relations (3.8). The classical Hamiltonian
H(x, p) = |p|2/2m + V(x) becomes the quantum Hamiltonian

Ĥ = |p̂|2
2m

+ V(x̂)

= −h̄2 �

2m
+ [V(x)]

(3.12)

In the next chapter we will define Ĥ as a self-adjoint operator and so specify the
dynamics. In any case proceeding formally and using that [H, At] = [H, A]t we
find that the equations (3.10) become in this case

d

dt
x̂r,t = p̂r,t

m
d

dt
p̂r,t = − ∂V

∂xr
(x̂t) (3.13)
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(Here we use the formal identity [∂V/∂xr]t = ∂V/∂xr(x̂t).) Thus the quan-
tum operators (x̂r, p̂r) obey the classical Hamilton’s equations. This is a general
principle known as Ehrenfest’s theorem.

Let us consider the momentum operators p̂r in more detail. These satisfy on
S(R3)

p̂r = F−1
h [pr]Fh (3.14)

where Fh is the Fourier transform defined with the exponent exp(−ipx/h̄) rather
than exp(−ipx). Since the multiplication operator [pr] is naturally a self-adjoint
operator, this formula can be used to define p̂r as a self-adjoint operator on L2(R3)
with domain

D(p̂r) = {ψ :
∫

p2
r |ψ̃(p)|2dp <∞} (3.15)

The joint spectral projections for p̂ = (p̂1, p̂2, p̂3) are the operators E(B) =
F−1

h̄ [χB(p1, p2, p3)]Fh and so the probability of finding the momentum in the

set B ⊂ R3 in the state ψ is

(ψ , E(B)ψ) =
∫

B
|ψ̃(p)|2dp (3.16)

Thus |ψ̃(p)|2 gives probability density for momentum. We say that the Fourier
transform ψ̃(p) is the wave function in momentum space. This interpretation
of the Fourier transform is not special to this example, but pervades quantum
physics.

Problem 3.1 In the above example let ψ ∈ S(R3) with ‖ψ‖ = 1 and define
the expectations x̄r = (ψ , x̂rψ) and p̄r = (ψ , p̂rψ). Further define the variances
(�xr)2 = (ψ , (x̂r − x̄r)2ψ) and (�pr)2 = (ψ , (p̂r − p̄r)2ψ). Show that

�xr�pr ≥ h̄

2
(3.17)

This result, known as the Heisenberg uncertainty principle, shows that position

and momentum cannot simultaneously be constrained arbitrarily sharply.

The value of h̄ depends on which system of units we are using. Hereafter we

choose units in which h̄ = 1 so that h̄ disappears from our equations.

3.3 Symmetries

We want to consider symmetries and conserved quantities for quantum systems.

Our discussion parallels the classical discussion of section 2.4, but with canonical
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flows replaced by one-parameter unitary groups and Poisson brackets replaced by

commutators.

Suppose we have a quantum system with Hilbert space H and time evolution e−iHt.

Let

αt(A) = At = eiHtAe−iHt (3.18)

be the time evolution of the observable A. Since −idAt/dt = [H, A]t, we deduce that

αt(A) = A ⇐⇒ [H, A] = 0 (3.19)

Thus A is constant in time iff it commutes with H. We say that A represents a

conserved quantity. To find such quantities we consider other group actions on H.

Suppose e−iGt is another one-parameter unitary group on H with self-adjoint

generator G. The action on an observable A is

βt(A) = eiGtAe−iGt (3.20)

and the observable is invariant iff [G, A] = 0. Combining the above we have

αt(G) = G ⇐⇒ [H, G] = 0 ⇐⇒ βt(H) = H (3.21)

Thus an observable is conserved iff it generates a symmetry of the Hamiltonian.

Now we get more specific. The translation group R3 acts on R3 by x → x + a.

We suppose that we have a continuous representation of this group by unitary

operators U(a) on H, that is U(a)U(a′) = U(a + a′). For any state ψ the state

U(a)ψ is interpreted as the state translated by a. For any basis vector er, U(ter) is a

one-parameter unitary group and by Stone’s theorem there is a self-adjoint operator

Pr such that

U(ter) = exp(−iPrt) (3.22)

Then Pr is interpreted as the rth component of the total momentum of the system, in

analogy with the classical situation. If the Hamiltonian is invariant under translations

in the direction er, then Pr is conserved.

We also suppose that we have a continuous representation of the rotation

group, that is unitary operators U(R) on H for each R∈ SO(3) such that

U(R)U(R′)=U(RR′). For a state ψ the state U(R)ψ is the state rotated by R.

If R(er, θ ) is the rotation by θ around a basis vector er, then U(R(er, θ )) is a

one-parameter unitary group and by Stone’s theorem there is a self-adjoint operator

denoted Jr such that

U(R(er, θ )) = exp(−iθJr) (3.23)

Then Jr is interpreted as the r-component of the total angular momentum of the

system, again in analogy with the classical situation. If the Hamiltonian is invariant

under rotations around er, then Jr is conserved.
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Example 3.2 We continue the example of a single particle in an external potential,
example 3.1. The translation group on L2(R3) is represented by

(U(a)ψ)(x) = ψ(x − a) (3.24)

The generator in the direction er is for suitable ψ

(Prψ)(x) = i
d

dt
(U(ter)ψ)(x)|t=0 = −i

∂ψ

∂xr
(x) (3.25)

Thus the total momentum Pr is just the momentum p̂r of the single particle as
we might expect. The Hamiltonian H is invariant under U(ter) if the potential
satisfies V(x + ter) = V(x). In this case Pr is conserved.

The rotation group is represented by

(U(R)ψ)(x) = ψ(R−1x) (3.26)

which is unitary since det R = 1. The third component of the angular momentum,
denoted L3 rather than J3 in this example, is

(L3ψ)(x) = i
d

dθ
ψ(R(e3, θ )−1x)|θ=0 =

(
x1

(
−i

∂

∂x2

)
− x2

(
−i

∂

∂x1

))
ψ(x)

(3.27)
If H is invariant under R(e3, θ ), that is if V(R(e3, θ )x) = V(x), then L3 is
conserved. Rotations around other axes are treated similarly.

Note that L3 = x̂1p̂2−x̂2p̂1. Thus we can get the quantum angular momentum
by making the substitution xr → x̂r, pr → p̂r in the classical angular momen-
tum (2.44), just as we did with the Hamiltonian. However it has proved difficult
to elevate this substitution rule into a general principle for generating quantum
observables. Canonical quantization is not a universal recipe.

Problem 3.2 It is generally true that −iJr give a representation of the Lie algebra
of SO(3) as in (2.41), that is

[J1, J2] = iJ3 [J2, J3] = iJ1 [J3, J1] = iJ2 (3.28)

Check that this is true for Jr = Lr in the above example.

3.4 Perspectives and problems

If one wants to give a quantum mechanical model for a physical system one proceeds

as follows. First one selects a Hilbert space of states H and a Hamiltonian H. Possibly

this would be by applying the method of canonical quantization to a classical model

or possibly by experience or guesswork. This is the job of the physicist.
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Then there are three mathematical problems:

1. (Self-adjointness) The Hamiltonian will typically be given as a formal operator

and the first task, at least for a mathematician, is to give it a rigorous meaning as

a self-adjoint operator. Then one has the existence of the time evolution operator

U(t) = e−itH .

2. (Spectrum) The next task is to study the spectrum of H. In particular one looks

for eigenvalues Hψ = Eψ . These are the states of definite energy. Such a state

would evolve in time according to ψt = e−iEtψ . Since the phase factor e−iEt does

not change the ray, the state is stationary. These are the states one would look for

in nature. Differences in energy levels can often be observed directly since if the

system changes from one state to another, it usually emits light with exactly the

energy difference.

3. (Scattering) For states which are not eigenvectors or linear combinations of eigen-

vectors, we ask instead for the long time behavior of the state. Thus we ask for the

asymptotic behavior of e−iHtψ as t →±∞. This leads to the scattering problem:

given a state with specified asymptotic behavior as t →−∞, find the asymptotic

behavior as t →∞.

In the next chapter we take up these problems for the case of a single particle in

an external potential.

Notes on chapter 3: The original mathematical treatment of quantum mechanics

was von Neumann (1955). Other books on the mathematical foundations are Jauch

(1968) and Isham (1995).



4 Single particle

4.1 Free particle

We start with the case of a single particle with no forces – a free particle. To begin

we work in Rd so the Hilbert space is L2(Rd) and the Hamiltonian from (3.12) with

V = 0 is

H0 = − �

2m
(4.1)

Our first task is to choose a domain for this operator so it is self-adjoint. On S(Rd)

we have

H0 = F−1
[ |p|2

2m

]
F (4.2)

The multiplication operator |p|2/2m has a natural domain of self-adjointness and we

just define D(H0) to be the transform of this domain. Thus H0 is defined by (4.2)

with domain

D(H0) = {ψ :
∫
|p|4|ψ̃(p)|2dp <∞} (4.3)

As the unitary transform of a self-adjoint operator, it is self-adjoint. The operator is

defined by its spectral representation.

Time evolution as defined by the spectral theorem is given by

e−iH0tψ = F−1[e−i(|p|2/2m)t]F (4.4)

or if ψ ∈ S(Rd)

(e−iH0tψ)(x) = (2π )−d/2
∫

eipxe−i(|p|2/2m)tψ̃(p)dp (4.5)

Lemma 4.1 For ψ ∈ S(Rd) and t �= 0

(e−iH0tψ)(x) =
( m

2π it

)d/2
∫

ei|x−y|2m/2tψ(y)dy (4.6)

and so as |t| → ∞
‖e−iH0tψ‖∞ ≤ O(|t|−(d/2)) (4.7)

47
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Remark The estimate says that amplitude of the wave function goes to zero at
t→±∞. Since the L2 norm is conserved, this means that the region of concentration
of the wave function must increase. This loss of localization is known as spreading
of the wave function.

Proof Suppose instead of the Schrödinger equation dψ/dt = −iH0ψ we were solv-
ing the heat equation dψ/dτ = −H0ψ . Then we would have as the solution for
τ > 0

(e−H0τψ)(x) = (2π )−d/2
∫

eipxe−(|p|2/2m)τ ψ̃(p)dp

=
( m

2πτ

)d/2
∫

e−|x−y|2m/2τψ(y)dy
(4.8)

Here in the second step we insert the definition of ψ̃(p) and do the integral over p,
see problem 1.3. This calculation holds equally well for τ complex, Re τ > 0. Now
exp(−H0(ε + it))ψ converges to exp(−iH0t))ψ in L2(Rd) as ε → 0. Hence we have
pointwise convergence for a subsequence εn. Take τ = εn + it above and let εn → 0.
Using the dominated convergence theorem on the right we obtain (4.6). (And we also
see that the right side is in L2.)

Problem 4.1 Define for ψ ∈ S(Rd) and t �= 0

(Vtψ)(x) =
(m

it

)d/2
exp

(
i
m|x|2

2t

)
ψ̃
(mx

t

)
(4.9)

Show that
lim

t→±∞‖e−iH0tψ − Vtψ‖2 = 0 (4.10)

This result shows that in spite of the spreading of the wave function, some locali-

zation is preserved. Suppose that |ψ̃(p)| is peaked at some momentum p0 ∈ Rd.

Then the asymptotic form of |(e−iH0tψ)(x)| is peaked at points where mx/t = p0 or

x = (p0/m)t. This special point moves with velocity p0/m just as for the classical

trajectory.

Problem 4.2 Show that the spectrum of H0 is [0,∞) and that it is all continuous
spectrum.

4.2 Particle in a potential

Now we specialize to d = 3 and study a single particle in a potential. As explained

in the previous section this means our Hamiltonian has the form

H = H0 + V = −�
2m

+ V (4.11)
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where V is the potential function. The first task is to define it as a self-adjoint

operator. For this we need:

Theorem 4.1 (Kato’s theorem) Let T be a self-adjoint operator on a Hilbert space
and let S be symmetric. Suppose that D(T) ⊂ D(S) and for some constants 0 ≤ a < 1
and 0 ≤ b and all f ∈ D(T) we have

‖Sf‖ ≤ a‖Tf‖ + b‖f‖ (4.12)

Then T + S is self-adjoint on D(T).

Proof The operator T + S is symmetric on D(T) so it suffices to show that Ran(T +
S ± iμ) = H for some μ > 0 by theorem 1.9. (Actually theorem 1.9 is stated for
μ = 1, but it holds as well for any μ.)

For any g ∈ H we have that (T ± iμ)−1g ∈ D(T) and by the inequality

‖S(T ± iμ)−1g‖ ≤ a‖T(T ± iμ)−1g‖ + b‖(T ± iμ)−1g‖ (4.13)

On the right side we have certain bounded functions of T , which we estimate by the
spectral theorem using ‖h(T)‖ ≤ ‖h‖∞. In particular

‖T(T ± iμ)−1‖ ≤ sup
λ∈R

|λ(λ± iμ)−1| ≤ 1

‖(T ± iμ)−1‖ ≤ sup
λ∈R

|(λ± iμ)−1| ≤ μ−1
(4.14)

Therefore

‖S(T ± iμ)−1g‖ ≤
(

a + b

μ

)
‖g‖ (4.15)

Since a + b/μ < 1 for μ sufficiently large, we conclude that ‖S(T ± iμ)−1‖ < 1.
Hence by theorem 1.2

Ran(I + S(T ± iμ)−1) = H (4.16)

Now for any f ∈ D(T) we have

(T + S ± iμ)f = (I + S(T ± iμ)−1)(T ± iμ)f (4.17)

On the right side we have the composition of two surjective operators, hence
T + S ± iμ is surjective as required.

Theorem 4.2 H = H0+V on L2(R3) is self-adjoint on D(H0) in any of the following
circumstances:

1. V ∈ L∞(R3)
2. V ∈ L2(R3)
3. V = V1 + V2 where V1 ∈ L2(R3) and V2 ∈ L∞(R3).

Proof Take m = 1/2 for simplicity. If V ∈ L∞, then it determines a bounded
operator and ‖Vf‖ ≤ ‖V‖∞‖f‖. The hypotheses of Kato’s theorem are satisfied with
a = 0, b = ‖V‖∞, hence the result.
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Now suppose V ∈ L2(R3). If ψ ∈ D(H0), then |p|2ψ̃(p) is in L2(R3). We write for
any α > 0

ψ̃(p) = (α2 + |p|2)−1((α2 + |p|2)ψ̃(p)
)

(4.18)

This exhibits ψ̃(p) as the product of two L2 functions and hence it is in L1 as well
as L2. Hence the Fourier inversion formula ψ(x) = (2π )−3/2

∫
eipxψ̃(p)dp holds

pointwise. By a Schwarz inequality we get1

|ψ(x)| ≤ (2π )−3/2
(∫

(α2 + |p|2)−2dp

)1/2 (∫
(α2 + |p|2)2|ψ̃(p)|2dp

)1/2

= cα−1/2‖(H0 + α2)ψ‖
≤ cα−1/2‖H0ψ‖ + cα3/2‖ψ‖

(4.19)

for some constant c. Hence |ψ(x)| is bounded and so is in the domain of V . Thus
D(H0) ⊂ D(V). Furthermore for ψ ∈ D(H0) we have

‖Vψ‖ ≤ ‖V‖2‖ψ‖∞ ≤ ‖V‖2

(
cα−1/2‖H0ψ‖ + cα3/2‖ψ‖

)
(4.20)

For α sufficiently large Kato’s inequality holds and we conclude that H is self-adjoint
on D(H0).

For the last result treat V2 as a bounded perturbation of H0 + V1.

Example 4.1 Consider the Yukawa potential

V(x) = c

|x|e
−μ|x| (4.21)

This is supposed to provide a crude model of nuclear forces transmitted by a
particle of massμ > 0. We have V ∈ L2(R3) and hence H = H0+V is self-adjoint
on D(H0) by the theorem.

Example 4.2 Consider the Coulomb potential

V(x) = −e2

|x| (4.22)

This is supposed to describe an electron of charge −e in the electrostatic field of
a proton of charge e. This is a simple model of the Hydrogen atom. If B is the unit
ball, then V = V 1B + V 1Bc exhibits the potential as the sum of an L2 function
and an L∞ function. Hence H = H0 +V is self-adjoint on D(H0) by the theorem.

We also consider a particle in a magnetic field B = ∇×A. Applying our canonical

quantization procedure to the Hamiltonian (2.13) with � = 0 we find the quantum

Hamiltonian

1 This is an example of a Sobolev inequality.
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H = 1

2m

(
−i∇ − e

c
A
)2

≡ H0 + e

2mc
(2iA · ∇ + i∇ · A)+ e2

2mc2
|A|2

(4.23)

Problem 4.3 Suppose A and all its first derivatives are bounded functions. Show
that the Hamiltonian (4.23) is self-adjoint on D(H0).

4.3 Spectrum

We study the spectrum of H = H0 + V . First we need a variation of the Riesz–

Schauder theorem, theorem 1.15.

A function F(z) from an open set O ⊂ C to a Banach space is said to be analytic

if the derivative F′(z) = limh→0(F(z + h) − F(z))/h exists for all z ∈ O. Analytic

functions in this sense enjoy many of the same properties of complex-valued analytic

functions, e.g Cauchy’s theorem, power series representation, etc.

Theorem 4.3 (Analytic Fredholm theorem) Let F(z) be an analytic function from a
connected open set O ⊂ C to B(H) such that F(z) is compact for all z ∈ O. Then
one of the following holds:

1. (I + F(z))−1 does not exist for any z ∈ O.
2. (I + F(z))−1 exists except for a discrete set S ⊂ O with no limit points in O. For

z ∈ S the operator F(z) has eigenvalue −1 with finite multiplicity.

For the proof see Reed and Simon (1980: 201).

Problem 4.4 Show that the Riesz–Schauder theorem follows from the analytic
Fredholm theorem. (Hint: (T − z) = −z(I − T/z).)

Theorem 4.4 Let V ∈ L2(R3) and let H = H0 + V on H = L2(R3). Then σ (H) ∩
(−∞, 0) is a bounded countable set E1 < E2 < E3 < · · · < 0 (possibly empty) with
no limit points except possibly zero. Each Ej is an eigenvalue with finite multiplicity.

Remark We characterize σ (H) ∩ [0,∞) in section 4.5.

Proof H is self-adjoint by theorem 4.2. Consider E < 0. On D(H) = D(H0) we
have the identity

(H − E) = (I + V(H0 − E)−1)(H0 − E) (4.24)

Since E is in the resolvent set for H0, we see that E is in the resolvent set for H iff
(I + V(H0 − E)−1)−1 exists as a bounded operator. Furthermore (H − E)ψ has a
nonzero solution in D(H) iff (I + V(H0 − E)−1)φ = 0 has a nonzero solution in H,
that is iff V(H0 − E)−1 has eigenvalue −1.
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First we show that the spectrum is bounded below. In Kato’s inequality ‖Vψ‖ ≤
a‖H0ψ‖ + b‖ψ‖ insert ψ = (H0 − E)−1φ and obtain

‖V(H0 − E)−1φ‖ ≤
(

a + b

|E|
)
‖φ‖ (4.25)

Thus if E is sufficiently negative, ‖V(H0 − E)−1‖ < 1 and so (I + V(H0 − E)−1)−1

exists and E is in the resolvent set for H.
We next note that V(H0 − E)−1 is an analytic function in C − [0,∞). Indeed one

can compute directly that the derivative is V(H0 − E)−2.
We claim V(H0 − E)−1 is compact for all such E in C − [0,∞). It suffices to

show the momentum space version FV(H0 − E)−1F−1 is compact, and we show it
is Hilbert–Schmidt. Since the Fourier transform of a product is the convolution of
the transforms, we have

(FV(H0 − E)−1F−1ψ)(p) = (2π )−3/2(Ṽ ∗ (F(H0 − E)−1F−1)ψ)(p)

= (2π )−3/2
∫

Ṽ(p − q)

( |q|2
2m

− E

)−1

ψ(q) dq

≡
∫

k(p, q)ψ(q) dq

(4.26)

This is Hilbert–Schmidt since

‖k‖2
2 = (2π )−3

∫ ∣∣∣∣∣Ṽ(p − q)

( |q|2
2m

− E

)−1
∣∣∣∣∣
2

dp dq

= (2π )−3‖V‖2
2

∫ ∣∣∣∣ |q|22m
− E

∣∣∣∣−2

dq

<∞

(4.27)

Now we can apply the analytic Fredholm theorem for V(H0 − E)−1 in the region
C−[0,∞). The alternative that (I+V(H0−E)−1)−1 does not exist anywhere is ruled
out for E very negative by (4.25). Thus we conclude V(H0−E)−1 has eigenvalue −1
at a bounded discrete set of points E1, E2, . . . necessarily real and with no accumu-
lation point except possibly zero. Hence H has these eigenvalues. The multiplicity
is finite for V(H0 − Ej)−1 and hence the Ej have finite multiplicity as eigenvalues
of H.

Note that the theorem holds in particular for the Yukawa potential, example 4.1.

Problem 4.5 Prove the same result if for every ε > 0 there exists a split V =
V1 + V2 such that V1 ∈ L2 and V2 ∈ L∞ with ‖V2‖∞ < ε.

Example 4.3 Consider the Coulomb potential of example 4.2 with the Hamilto-
nian

H = −�
2m

− e2

|x| (4.28)
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The potential V(x) = −e2/|x| satisfies the conditions of the previous problem as
we see by letting BR be the ball of radius R and writing V = V 1BR + V 1Bc

R
with

R large depending on ε. We conclude that the negative spectrum is purely discrete
with finite multiplicity.

Actually for this problem the spectrum can be computed exactly. Solving the
differential equation (H − E)ψ = 0 by separation of variables one finds that the
eigenvalues are

En = −me4

2n2
n = 1, 2, 3, . . . (4.29)

and the dimension of the eigenspace for En is n2. For details see any textbook on
quantum mechanics.

These are the energy levels for hydrogen. Differences of these energies
determine the frequencies of light emitted by hydrogen, something which is
experimentally observable. The success of these predictions was one of the
original triumphs of quantum mechanics.

Problem 4.6 Let V be the rank-one operator Vψ = λχ (χ ,ψ) where λ is real
and ‖χ‖ = 1. Define H = H0 + V as a self-adjoint operator. Find the negative
spectrum.

4.4 The harmonic oscillator

The harmonic oscillator potential is

V(x) = k|x|2/2 (4.30)

The classical Hamiltonian |p|2/2m + k|x|2/2 describes a particle with equilibrium

position x = 0 subject to a linear restoring force −kx. The quantum Hamiltonian is

H = −�
2m

+ k

2
|x|2 (4.31)

This potential is not a small perturbation of H0 and is not covered by any of our

analysis so far. However we can analyze it directly. For simplicity take m = 1, k = 1

and dimension d = 1.

Theorem 4.5 The Hamiltonian

H = 1

2

(
− d2

dx2
+ x2

)
(4.32)

is essentially self-adjoint on S(R) ⊂ L2(R) and has spectrum 1
2 , 1, 3

2 , 2, . . . .
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Proof Introduce the operators

a∗ = 1√
2

(
x − d

dx

)
a = 1√

2

(
x + d

dx

) (4.33)

and then

H = a∗a + 1

2
(4.34)

We can find one eigenfunction by solving a�0 = 0, for then H�0 = 1
2�0. The

normalized solution is

�0(x) = (π )−1/4e−x2/2 (4.35)

From this we can generate more eigenfunctions defining

�n = (a∗)n�0 (4.36)

Since [a, a∗] = 1, we have [H, a∗] = a∗ and hence can compute

H�n =
(

n + 1

2

)
�n (4.37)

Thus the spectrum of H consists of at least the positive half integers.
In fact the �n are the Hermite polynomial and form a complete orthogonal set.

A proof of the completeness is sketched in the following problem. Since H has
a complete set of eigenfunctions, it is essentially self-adjoint and the spectrum is
exactly the eigenvalues 1

2 , 1, 3
2 , 2, . . . ; see problem 1.13.

Problem 4.7 Show that the eigenfunctions �n form a complete set by the
following steps:

1. Show that the subspace spanned by finite linear combinations is the space P
of all functions of the form P(x) exp(−x2/2) where P(x) is a polynomial with
complex coefficients.

2. Show that for any k ∈ R the function eikxe−x2/2 is in the closure P .
3. Show that P = L2(R) by showing that the orthogonal complement is {0}.

Theorem 4.5 readily generalizes to any number of dimensions. The features of

this example will surface again in quantum field theory. A scalar quantum field can

be thought of as an infinite collection of coupled harmonic oscillators, one for each

point in space. The displacement is not in physical space, but in field strength.

Problem 4.8 Find the spectrum for the harmonic oscillator in d = 3.

Finally we note that there is an explicit formula for the kernel of the semi-group

e−tH known as Mehler’s formula. It is
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(e−tHf )(x) =
∫

qt(x, y)f (y)dy (4.38)

where

qt(x, y) = (2π sinh t)−1/2 exp

(
−1

2
(coth t)(x2 + y2) + (sinh t)−1xy

)
(4.39)

Problem 4.9 Check Mehler’s formula by verifying the following:

1. For t > 0 (
∂

∂t
+ H

)
qt(x, y) = 0 (4.40)

2. For f ∈ S(R)

lim
t→0

∫
qt(x, y)f (y)dy = f (x) (4.41)

4.5 Scattering

4.5.1 Wave operators

We continue to consider the single particle in a potential with Hamiltonian H =
H0 + V and ask for the behavior of the state e−iHtψ as t → ∞. One possibility is

that ψ is an eigenvector Hψ = Eψ and in this case e−iHtψ = e−iEtψ . The state is

localized and stationary and is called a bound state.

Another possibility is that the particle escapes the potential and behaves like a free

particle. In this case there would be a free state e−iH0tφ such that

lim
t→∞‖e−iHtψ − e−iH0tφ‖ = 0 (4.42)

This is equivalent to

lim
t→∞‖ψ − eiHte−iH0tφ‖ = 0 (4.43)

This motivates the definition of wave operators �± as the limits

�±φ = lim
t→±∞ eiHte−iH0tφ (4.44)

when they exist for φ in H. Given φ let ψ = �±φ. Then ‖e−iHtψ − e−iH0tφ‖ → 0

as t → ±∞. Thus we have found a state with given asymptotic behavior either in

the past or the future. Note also that

‖�±φ‖ = lim
t→±∞‖eiHte−iH0tφ‖ = ‖φ‖ (4.45)

Thus �± is an isometry if it exists.
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Theorem 4.6 In H = L2(R3), if V ∈ L2(R3), then �± exists.

Proof Let �t = eiHte−iH0t. We must show that �tφ has a limit as t → ±∞. Since
‖�t‖ = 1, we can approximate �tφ by �tφ

′ with φ′ ∈ S(R3) uniformly in t. Thus it
suffices to prove the result for φ ∈ S(R3).

Such φ are in D(H) = D(H0) and so we may compute the derivative

d

dt
�tφ = d

dt
(eiHte−iH0tφ)

= eiHt(iH − iH0)e−iH0tφ

= eiHtiVe−iH0tφ

(4.46)

Here we use the fact that e−iH0t leaves D(H0) invariant.
Now we write for t′ > t > 0

(�t′ −�t)φ =
∫ t′

t
eiHsiVe−iH0sφ ds (4.47)

Here the integral can be understood as a Hilbert space valued Riemann integral since
the integrand is a continuous Hilbert space valued function. It follows that

‖(�t′ −�t)φ‖ ≤
∫ t′

t
‖Ve−iH0sφ‖ds

≤
∫ t′

t
‖V‖2‖e−iH0sφ‖∞ds

≤ 2c‖V‖2(t−1/2 − t′−1/2)

(4.48)

Here we have used the bound (4.7) which says

‖e−iH0sφ‖∞ ≤ cs−3/2 (4.49)

Thus �tjφ is a Cauchy sequence for any tj → ∞ and hence the limits limt→∞�t

exists. The limit t →−∞ is similar.

Problem 4.10 Let V be a rank-one operator as in problem 4.6, now with χ ∈
L1 ∩ L2. Show that �± exist.

4.5.2 Asymptotic completeness

Suppose the wave operators exist. We define

H± = Ran(�±) (4.50)

Since the range of an isometry is closed, this is a closed subspace of H. These

are states which become free as t → ±∞. We also define a subspace of bound

states

Hbd = closed subspace spanned by eigenvectors of H (4.51)
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Lemma 4.2 H± and Hbd are orthogonal subspaces.

Proof Let ψ = �+φ and let Hχ = Eχ . We show that (χ ,ψ) = 0. We have

(χ ,ψ) = lim
t→∞(χ , eiHte−iH0tφ) = lim

t→∞ eiEt(χ , e−iH0tφ) (4.52)

Thus it suffices to show for χ ,φ ∈ L2(R3) that limt→∞(χ , e−iH0tφ) = 0. We can
assume that χ ,φ ∈ S(R3) since we can approximate the general case uniformly in t.
Then the result follows from the bound (4.49) since

|(χ , e−iH0tφ)| ≤ ‖χ‖1‖e−iH0tφ‖∞ → 0 (4.53)

It is possible that these subspaces exhaust the Hilbert space, that is

H = H± ⊕Hbd (4.54)

If this is true, we say that the system exhibits asymptotic completeness. Note that this

entails that H+ = H−. Roughly it means that either a state is stationary or it goes

out to infinity both in the distant past and in the distant future.

Asymptotic completeness is generally true. For example if V ∈ L1 ∩ L2, it is true,

although not especially easy to prove.

4.5.3 The scattering operator

Next we discuss actual scattering experiments, for example scattering a neutron off

a nucleus, which we model as scattering the neutron off the potential created by the

nucleus. We prepare the neutron in a certain state, which we model by the condition

that it behaves like e−iH0tφ as t → −∞. Thus the prepared state (at time zero) is

�−φ. After the scattering has taken place we measure the state of the system to be

something with asymptotic behavior e−iH0tχ as t →∞. Thus the measured state (at

time zero) is �+χ . By (3.2) the probability of this occurring is

|(�+χ ,�−φ)|2 = |(χ , Sφ)|2 (4.55)

Here we have introduced the scattering operator

S ≡ (�+)∗�− (4.56)

One can then study the structure of the nucleus by hypothesizing a potential V ,

computing the scattering operator S for the potential, and then comparing the scat-

tering probabilities |(χ , Sφ)|2 with the observed events. A more ambitious program

is the so-called inverse scattering problem which asks to find V given S.

Lemma 4.3 If H+ = H−, then S is unitary.
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Proof Since �± are isometries, we have

(�±)∗�± = I �±(�±)∗ = PH± (4.57)

Then we compute

S∗S = (�−)∗�+(�+)∗�− = (�−)∗�− = I (4.58)

Similarly SS∗ = I. Hence S is unitary.

4.5.4 Continuous spectrum

Finally we complete our characterization of the spectrum using the wave operators.

Theorem 4.7 Suppose that �± exist.

1. eiHt�± = �±eiH0t.
2. H restricted to H± has continuous spectrum [0,∞).

Proof

1. This follows from the computation

eiHt�±φ = lim
s→±∞ eiH(t+s)e−iH0sφ

= lim
u→±∞ eiHue−iH0(u−t)φ

= �±eiH0tφ

(4.59)

2. �± : H → H± is unitary. Then eiHt restricted to H± is unitarily equivalent to
eiH0t on H by

eiHt = �±eiH0t(�±)−1 (4.60)

It follows that the generators H|H± and H0 are unitarily equivalent. Since H0 has
continuous spectrum [0,∞) (problem 4.2), the same is true for H|H±.

4.6 Spin

4.6.1 Representations of the rotation group

As noted earlier the natural representation of the rotation group SO(3) on our Hilbert

space H = L2(R3) is (U(R)ψ)(x) = ψ(R−1x). There are however other possibilities

for a single particle. Suppose that R → T(R) is a representation of SO(3) by unitary

m×m matrices so that T(R1)T(R2) = T(R1R2). Then we could take the Hilbert space
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to be H = L2(R3, Cm), the square integrable Cm valued functions on R3, and define

a unitary representation on H by

(U(R)ψ)(x) = T(R)ψ(R−1x) R ∈ SO(3) (4.61)

If we want our particle to be elementary (that is not composite), we would add the

requirement that T is irreducible.

It turns out that the most common elementary particles (electrons, protons, neu-

trons) do behave nontrivially under rotations, but not exactly in the manner suggested

above. Instead there is a representation of the universal covering group of SO(3).

This is SU(2), the 2 × 2 complex matrices A satisfying A∗A = 1 and det A = 1.

As we explain below there is a two-to-one homomorphism A → R(A) from SU(2)

onto SO(3) such that R(−A) = R(A). If T(A) is an m-dimensional unitary represen-

tation of SU(2), then there is a unitary representation of SU(2) on the Hilbert space

H = L2(R3, Cm) defined by

(U(A)ψ)(x) = T(A)ψ(R(A)−1x) A ∈ SU(2) (4.62)

This also gives a representation of SO(3) if we recall that the states are really rays.

To find the action of R ∈ SO(3) choose ±A so R(±A) = R and define (U(R)ψ)(x) =
T(±A)ψ(R−1x). For an irreducible representation, T(−A) = ±T(A). Thus the choice

of ±A at worst changes the sign, and this has no effect on the ray.

It turns out there is an m-dimensional irreducible representation of SU(2) for

all positive integers m. The dimension is written m = 2s + 1 with s = 0, 1/2, 1, 3/2,

2, . . . and we say that the particle has spin s; more on this terminology later.

For spin zero we have T(A) = I. This is the case we have been discussing and

describes pions. For spin 1/2 we have T(A) = A; this is the case that describes elec-

trons, protons, neutrons, etc. For spin one we have T(A) = R(A) and we are back

to a special case of (4.61). A modification of this describes photons; see section 9.4.

Higher spins are also possible.

4.6.2 The covering group

Now we explain the covering map. First define Pauli matrices by

σ1 =
(

0 1

1 0

)
σ2 =

(
0 −i

i 0

)
σ3 =

(
1 0

0 −1

)
(4.63)

These form a basis for the real vector space of self-adjoint traceless 2 × 2 matrices.

(The matrices −iσ1/2,−iσ2/2,−iσ3/2 form a standard basis for the skew-adjoint

traceless matrices, the Lie algebra of SU(2).) With any x ∈ R3 associate the matrix

σ · x =
3∑

i=1

σixi =
(

x3 x1 − ix2

x1 + ix2 −x3

)
(4.64)
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Note that

det(σ · x) = −|x|2 (4.65)

Now for A ∈ SU(2) we have that A(σ ·x)A−1 is again a self-adjoint traceless matrix

and thus it has the form σ · y for a unique y ∈ R3. The map x → y is easily seen to

be linear and so y = R(A)x for some matrix R(A). Thus R(A) is defined by2

A(σ · x)A−1 = σ · (R(A)x) (4.66)

Lemma 4.4 The map A → R(A) is a two-to-one homomorphism from SU(2) onto
SO(3).

Proof First R(A) is a homomorphism because

σ · (R(AB)x) = (AB)(σ · x)(AB)−1

= A(σ · R(B)x)A−1

= σ · (R(A)R(B)x)

(4.67)

which implies R(AB) = R(A)R(B). Second R(A) is orthogonal because

|R(A)x|2 = − det(σ · (R(A)x)) = − det(σ · x) = |x|2 (4.68)

To see that R(A) is a rotation we need det(R(A)) = 1. This follows from the facts that
det(R(I)) = det I = 1 and that A → det(R(A)) is continuous from SU(2) to {±1} and
that SU(2) is connected (see problem 4.11).

Next note that

exp

(−iσ3θ

2

)
=
(

e−iθ/2 0
0 eiθ/2

)
(4.69)

is an element of SU(2). By explicit computation we find that

exp

(−iσ3θ

2

)
(σ · x) exp

(
iσ3θ

2

)
= σ · (R(e3, θ )x) (4.70)

where R(e3, θ ) is the rotation by θ around the e3 axis (2.38), and so

R

(
exp

(−iσ3θ

2

))
= R(e3, θ ) (4.71)

Rotations about the other axes are generated similarly. Since rotations about the three
axes generate SO(3), the homomorphism is onto.

To show that the homomorphism is two-to-one it suffices to check that R(A) = I
implies A = ±I which we omit.

Problem 4.11 Show that every element of SU(2) can be written in the form

A =
(

α β

−β̄ ᾱ

)
(4.72)

2 Essentially we are defining R(A) as the adjoint representation of SU(2).
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for complex α,β satisfying |α|2 + |β|2 = 1. Thus SU(2) can be identified with
the three-sphere S3 and hence is simply connected.

4.6.3 Spin 1/2 particles

Now we discuss quantum mechanics for a spin 1/2 particle. The Hilbert space is

H = L2(R3, C2) and the representation of SU(2) is

(U(A)ψ)(x) = Aψ(R(A)−1x) A ∈ SU(2) (4.73)

Our definition of angular momentum should now be modified. The third component

is the generator of rotations around the third axis and is now given by

(J3ψ)(x) = i
d

dθ

[
exp

(−iσ3θ

2

)
ψ(R(e3, θ )−1x)

]
θ=0

(4.74)

This is computed as

J3 = L3 + σ3

2
(4.75)

Here L3 is the “orbital” angular momentum computed in (3.27). To this is added

an intrinsic angular momentum σ3/2 called spin. The spin operator has eigenvalues

±1/2 hence the term “spin 1/2.” Other components are treated similarly. Spin has no

classical analog.

A spin 1/2 particle has a modified Hamiltonian in the presence of electric and

magnetic fields with potentials (�, A). This is the Pauli Hamiltonian

H = 1

2m

(
−i∇ − e

c
A
)2 + e�− e

mc

(σ
2
· B
)

(4.76)

where B = ∇ × A is the magnetic field. This arises naturally as an approximation to

a relativistic Dirac Hamiltonian.

Problem 4.12 Suppose that the magnetic field B is constant with A = (B × x)/2.
Show that for e/c small

1

2m

(
−i∇ − e

c
A
)2 = −�

2m
− e

2mc
(L · B) +O(e2/c2) (4.77)

This problem shows that in the Pauli Hamiltonian the spin angular momentum

σ/2 couples to a magnetic field in the same way as the orbital angular momentum L,

except for a factor of 2 known as the “gyromagnetic ratio.”

Notes on chapter 4: See Reed and Simon (1980), Reed and Simon (1975),

Reed and Simon (1979), Reed and Simon (1978), and Cycon et al. (1987) for much
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more about self-adjointness, spectra, and scattering. For spin and representations of

SU(2), see Miller (1972). Besides potentials that are functions one can also study

delta function potentials, see Albeverio et al. (1988).

The expression −i∇ − ec−1A in (4.23) or (4.76) can be interpreted as a covariant

derivative on a complex line bundle. See section 7.4
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5.1 Two particles

5.1.1 A first look

Suppose we have two (spinless) particles. As explained in example 2.3 the classical

Hamiltonian for the system might have the form

H(p1, p2, x1, x2) = p2
1

2m1
+ p2

2

2m2
+ V(x1 − x2) (5.1)

Here pi ∈ R3, xi ∈ R3 are the momentum and position of the ith particle, mi is

the mass of the ith particle and V is a potential giving the interaction between them.

Following our canonical quantization procedure we replace p1, p2, x1, x2 by operators

p̂1, p̂2, x̂1, x̂2 satisfying the canonical commutation relations. We take p̂i = −i∇xi and

x̂i = [xi] acting in the Hilbert space H = L2(R3 × R3) = L2(R6). With this choice

the quantum Hamiltonian becomes

H = −�1

2m1
+ −�2

2m2
+ V(x1 − x2) (5.2)

where �i is the Laplacian in xi. If V = 0, then the Hamiltonian is

H0 = −�1

2m1
+ −�2

2m2
(5.3)

This can be defined as a self-adjoint operator with the Fourier transform on R6 by

H0 = F−1

[
p2

1

2m1
+ p2

2

2m2

]
F (5.4)

where the multiplication operator has the natural domain.

Problem 5.1 If V ∈ L2(R3), show that H = H0 + V is self-adjoint on D(H0).

63
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5.1.2 Generalization

Now we give a more general treatment. Suppose we have two particles: the first with

Hilbert space H1 and time evolution U1(t) = exp(−iH1t) and the second with Hilbert

space H2 and time evolution U2(t) = exp(−iH2t). The Hilbert spaces may allow spin

or other internal degrees of freedom like charge. To describe the two particle system,

the prescription is that the Hilbert space is the tensor product

H = H1 ⊗H2 (5.5)

(See appendix B for the definition of tensor product.) If the particles do not interact,

then they should evolve in time just as they would by themselves, that is

U(t) = U1(t) ⊗ U2(t) (5.6)

This is a strongly continuous unitary group and so by Stone’s theorem it has a self-

adjoint generator U(t) = exp(−iHt). We compute H� = i d/dt[U(t)�]t=0 when it

exists. For example if ψ ∈ D(H1) and φ ∈ D(H2)

H(ψ ⊗ φ) = (H1ψ ⊗ φ) + (ψ ⊗ H2φ) (5.7)

More generally let D(H1) ⊗ D(H2) be the algebraic tensor product of D(H1) and

D(H2), that is finite linear combinations of ψ ⊗ φ as above. On this dense domain

we have

H = (H1 ⊗ I) + (I ⊗ H2) (5.8)

Let us see how this reproduces the earlier treatment. Suppose we have two free

spinless particles so that Hi = L3(R3) and Hi = −�/2mi. In this case we have a

natural identification

H1 ⊗H2 = L2(R3) ⊗ L2(R3) ⇐⇒ L2(R6) (5.9)

The identification is given by a unitary operator which sends the vector ψ ⊗ φ ∈
L2(R3) ⊗ L2(R3) to the function ψ ⊗ φ ∈ L2(R6) defined by

(ψ ⊗ φ)(x1, x2) = ψ(x1)φ(x2) (5.10)

(See appendix B for details.) Under this identification we have

H1 ⊗ I =
(−�

2m1
⊗ I

)
⇐⇒ −�1

2m1

I ⊗ H2 =
(

I ⊗ −�
2m2

)
⇐⇒ −�2

2m2

(5.11)
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Thus the Hamiltonian H = H1 ⊗ I + I ⊗ H2 is identified with the Hamiltonian

H0 = −�1/2m1 −�2/2m2 on L2(R6) as defined earlier.

5.1.3 Center of mass coordinates

How can we incorporate potentials into this tensor product structure? We give one

answer now and another answer later in section 5.4.2. Working on L2(R6) we make

a change of coordinates

X = m1x1 + m2x2

m1 + m2
x = x1 − x2 (5.12)

Then X represents the center of mass of the system and x is the relative displacement

of the particles. If M = m1 + m2 is the total mass, then the inverse is

x1 = X + m2

M
x x2 = X − m1

M
x (5.13)

The coordinate change is implemented by the operator

(Vψ)(X, x) = ψ
(

X + m2

M
x, X − m1

M
x
)

(5.14)

The operator V is unitary on L2(R6) since the Jacobian determinant for the

transformation has absolute value one.

If H is the full two particle Hamiltonian (5.2), we find in the new coordinates

H′ ≡ VHV−1 = Hcm + Hrel (5.15)

where on �(X, x) ∈ L2(R6)

Hcm = −�X

2M

Hrel = −�x

2μ
+ V(x)

(5.16)

and where

μ = m1m2

m1 + m2
(5.17)

is called the reduced mass.

Now under the correspondence L2(R6) ↔ L2(R3)⊗L2(R3) with the identification

φ(X)ψ(x) ↔ φ ⊗ ψ we find as before

e−iH′t = exp(−iHcmt) ⊗ exp(−iHrelt)

H′ = (Hcm ⊗ I) + (I ⊗ Hrel)
(5.18)

Thus the center of mass and a fictitious relative particle evolve in time independently

of each other. The motion of the center of mass is free. The motion of the relative

particle is the same as that of a single particle in a potential which we have studied
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at length in the previous chapter. The only change is that we have the relative mass

μ instead of the actual mass. If m2 is much larger than m1, then μ ≈ m1. This is

the case for the hydrogen atom where the mass of the proton is much larger than the

mass of the electron.

Problem 5.2 Verify (5.15).

5.2 Identical particles

Until now we have been implicitly assuming that our two particles are distinguishable

in the sense that they have a different mass or spin or charge. But suppose that this is

not the case, for example suppose we have two electrons. Empirically there is no way

to tell which is which. This statement is true in the strong sense that there is no way

to label the particles and follow their individual evolution through the course of an

experiment. This seems to be a deep fact and not just a reflection of our limited skill

at experiments. Then describing the two particle system by a Hilbert space H ⊗H,

which effectively labels the particles, would be a substantial over-description. Indeed

nature does not choose this Hilbert space, but rather a subspace which is invariant

under permutation of the labels.

We define a permutation operator P on H⊗H by

P(ψ1 ⊗ ψ2) = ψ2 ⊗ ψ1 (5.19)

This satisfies P2 = I and P∗ = P. We restrict to the subspace which is invariant

under P. The orthogonal projection onto this subspace is

�+ = 1

2
(I + P) (5.20)

since this is a projection and Pψ = ψ iff ψ ∈ Ran �+. Thus our Hilbert space is

H+
2 = �+(H⊗H) (5.21)

and is called the symmetric tensor product. An example of an element of this

space is

�+(f ⊗ g) = 1

2
(f ⊗ g + g ⊗ f ) (5.22)

Particles for which this is the correct Hilbert space are called bosons. Examples are

pions and photons.

Remarkably this is not the only interesting possibility. Another possibility is that

the state changes sign under the permutation operator P. A change of sign still gives
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the same ray so our description is still invariant under P. The projection onto the

subspace which changes signs under P is

�− = 1

2
(I − P) (5.23)

Now the Hilbert space is

H−
2 = �−(H⊗H) (5.24)

and is called the anti-symmetric tensor product. An example of an element of this

space is

�−(f ⊗ g) = 1

2
(f ⊗ g − g ⊗ f ) (5.25)

Particles for which this is the correct Hilbert space are called fermions. Examples are

electrons, protons, and neutrons.

The choice of the symmetric or anti-symmetric tensor product is called the statis-

tics of the particle. It turns out that particles with integer spin are always bosons,

and particles with half-integer spin are always fermions. This fact has an expla-

nation in quantum field theory, but for us it is just an empirical fact. In spite of

this spin-statistics connection we will sometimes find it useful to consider spinless

fermions.

5.3 n-particles

Starting with a Hilbert space for a single particle we want to construct a Hilbert space

for n identical particles. Consider the n-fold tensor product

Hn = H⊗ · · · ⊗H (5.26)

We define operators on Hn by

�+(f1 ⊗ · · · ⊗ fn) = 1

n!

∑
π

fπ (1) ⊗ · · · ⊗ fπ (n)

�−(f1 ⊗ · · · ⊗ fn) = 1

n!

∑
π

sgn(π )fπ (1) ⊗ · · · ⊗ fπ (n)

(5.27)

where the sum is over permutations π of (1, . . . , n) and sgn(π ) is the sign of the

permutation.1 One can check that this defines an operator on the dense domain of

finite combinations of vectors f1 ⊗ · · · ⊗ fn. One also checks that (�±)2 = �±

and (�±)∗ = �±. It follows that ‖�±ψ‖ ≤ ‖ψ‖ and hence �± extends to a

1 A permutation π is a bijection on (1, . . . , n). The sign sgn(π ) depends on the number of elementary
exchanges to return π (1), . . . ,π (n) to its original order. It is ±1 depending on whether the number is
even or odd. We have sgn(π ◦ σ ) = sgn(π )sgn(σ ).
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bounded operator on Hn (theorem 1.3). The extensions are projection operators since

the identities hold for the extensions.

The Hilbert space for n identical particles is taken as

H±
n = �±Hn = �±(H⊗ · · · ⊗H) (5.28)

with the plus sign for bosons and the minus sign for fermions. Exchanging two

entries in this space has no effect for bosons, and changes the sign for fermions

�±(f1 ⊗ · · · ⊗ fi ⊗ · · · ⊗ fj ⊗ · · · ⊗ fn)

= ±�±(f1 ⊗ · · · ⊗ fj ⊗ · · · ⊗ fi ⊗ · · · ⊗ fn)
(5.29)

For fermions this means that if fi = fj for some i �= j, then

�−(f1 ⊗ · · · ⊗ fn) = 0 (5.30)

This is the Pauli exclusion principle: two identical fermions cannot be in the same

state.

Next we consider a simple dynamics on H±
n . In general if U is a unitary operator

on H, then

�n(U) ≡ U ⊗ · · · ⊗ U (5.31)

defines a unitary operator on Hn which preserves the subspaces H±
n . In particular if

e−iHt is a time evolution on the single particle space H, and if the particles do not

interact with each other, then

�n(e−iHt) ≡ e−iHt ⊗ · · · ⊗ e−iHt (5.32)

is the time evolution on H±
n . This is a one-parameter unitary group and so has a

self-adjoint generator Hn such that

e−iHnt = �n(e−iHt) (5.33)

On D(H) ⊗ · · · ⊗ D(H) we compute by taking derivatives

Hn = d�n(H) ≡ H ⊗ · · · ⊗ I + · · · + I ⊗ · · · ⊗ H (5.34)

Example 5.1 Atoms An atom with atomic number N is described by N-electrons
each moving under the influence of a central potential created by an atomic
nucleus of charge N

V(x) = −e2N

|x| (5.35)

The single particle Hamiltonian is H = (−�/2m) + V on H = L2(R3) as in
example 4.3. (Or we could take the Pauli Hamiltonian (4.76) on H = L2(R3, C2).)
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Since electrons are fermions, the multiparticle Hamiltonian is then HN = d�N(H)
on H−

N as above.
Now H has the spectrum of the hydrogen atom but with e2 replaced by e2N.

Thus it has eigenfunctions {φk} with eigenvalues {ek} labeled so that e1 ≤ e2 ≤
e3 ≤ . . . . The multiparticle Hamiltonian HN has eigenfunctions

φα1,...,αN = �−(φα1 ⊗ · · · ⊗ φαn ) (5.36)

with eigenvalues

eα1,...,αN =
N∑

i=1

eαi (5.37)

Here α1, . . . ,αN is a sequence of positive integers. However because of the Pauli
exclusion principle they must be distinct integers. Thus the lowest energy states,
physically the stable states, will be states like φ1,2,...,N . The electrons fill the lowest
energy levels (“shells”).

This is the starting point for chemistry. Our model of an atom still needs
refinement since we have neglected a number of additional effects, starting with
the interaction between the electrons themselves.

Example 5.2 Interacting particles Consider the case of N spinless bosons or
fermions interacting only with each other. The single particle Hilbert space is
H = L2(R3) with Hamiltonian H0 = −�/2m. The N-particle Hilbert space is
H±

N and the free Hamiltonian is H0,N = d�N(H0). However H±
N is isomorphic

to L2±(R3N) the symmetric or anti-symmetric subspace of L2(R3N). Under this
isomorphism we have

H0,N =
N∑

i=1

−�i

2m
(5.38)

If v is the potential between two particles with v(x) = v(−x), then the total
potential is VN defined by

VN(x1, . . . , xN) =
∑

1≤i<j≤N

v(xi − xj) (5.39)

This acts on L2±(R3N) and the total Hamiltonian on this space is

HN = H0,N + VN (5.40)

As in problem 5.1 we can show that this is self-adjoint on D(H0,N).

Problem 5.3 In the previous example define representations of the translation
and rotation groups. Find the total momentum and angular momentum. Are they
conserved? (This is an extension of example 3.2.)
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Problem 5.4 From the definition (5.27) check that �± is well-defined, that
(�±)2 = �± and (�±)∗ = �±, and deduce that ‖�±ψ‖ ≤ ‖ψ‖.

5.4 Fock space

5.4.1 Definitions

In non-relativistic quantum mechanics, for a closed system, the number of particles

is fixed. Nevertheless it is convenient to introduce a formalism in which there are an

indefinite number of particles. There are several reasons for this:

1. The formalism for an indefinite number of particles has some elegant features

which can be used even when the particle number is fixed.

2. The number of particles may undergo statistical fluctuations due to contact with

an external system (more about this later).

3. It makes contact with relativistic quantum systems where the number of particles

in a closed system can actually change.

Start with a single particle Hilbert space H, and define the n-particle Hilbert space

H±
n to be the symmetric or anti-symmetric n-fold tensor product as in the last section.

Then the (boson/fermion) Fock space over H is the infinite direct sum of the H±
n . It is

F±(H) =
∞⊕

n=0

H±
n (5.41)

where H±
0 ≡ C corresponds to no particles. The elements are sequences ψ =

(ψ0,ψ1,ψ2, . . . ) with ψn ∈ H±
n such that

‖ψ‖2 =
∞∑

n=0

‖ψn‖2 <∞ (5.42)

This is a Hilbert space with inner product

(ψ ,χ ) =
∞∑

n=0

(ψn,χn) (5.43)

The no-particle state

�0 = (1, 0, 0, . . . ) (5.44)

is also called the vacuum.
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We describe some operators on this space:

(1) The number operator N is defined by

N(ψ0,ψ1,ψ2,ψ3, . . . ) = (0,ψ1, 2ψ2, 3ψ3, . . . ) (5.45)

or equivalently

(Nψ)n = nψn (5.46)

It is self-adjoint on

D(N) = {ψ :
∑

n

n2‖ψn‖2 <∞} (5.47)

It describes the number of particles in the state. For ‖ψ‖ = 1 the quantity ‖ψn‖2 is

the probability of finding n-particles in the state.

(2) In general if U is a unitary operator on H, then �(U) is the unitary operator on

F±(H) defined by

�(U) =
∞⊕

n=0

�n(U) (5.48)

where �n is defined in (5.31). In particular if e−iH1t is a time evolution on H, then

we define a time evolution on F±(H) as

�(e−iH1t) =
∞⊕

n=0

�n(e−iH1t) (5.49)

This is a strongly continuous one-parameter unitary group and so has a self-adjoint

generator H such that e−iHt = �(e−iH1t). On a domain with a finite number of parti-

cles and with wave functions in the algebraic tensor product D(H) ⊗ · · · ⊗ D(H) we

find that

H = d�(H1) ≡
∞⊕

n=0

Hn (5.50)

where Hn = d�n(H1) is defined in (5.34). This turns out to be a domain of

essential self-adjointness and so determines the operator completely. Note also that

N = d�(1)

(3) We introduce creation and annihilation operators, at first without statistics on

Hn = H⊗· · ·⊗H. For h ∈ H define α∗(h) : Hn → Hn+1 and α(h) : Hn → Hn−1 by

α∗(h)(f1 ⊗ · · · ⊗ fn) = √
n + 1 h ⊗ f1 ⊗ · · · ⊗ fn

α(h)(f1 ⊗ · · · ⊗ fn) = √
n (h, f1) f2 ⊗ · · · ⊗ fn

(5.51)
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One checks that these formulas do indeed define operators. Furthermore the opera-

tors are bounded with

‖α∗(h)‖ ≤ √
n + 1‖h‖ ‖α(h)‖ ≤ √

n‖h‖ (5.52)

They are adjoint to each other because for ψ ∈ Hn and χ ∈ Hn+1 we have

(α∗(h)ψ ,χ ) = (ψ ,α(h)χ ). Note also that α∗(h) is linear in h while α(h) is anti-linear

in h.

Next we define a∗(h) : H±
n → H±

n+1 and a(h) : H±
n → H±

n−1 by

a∗(h) = �±α∗(h)

a(h) = �±α(h)
(5.53)

These are still bounded operators with the same bound and they are still adjoint to
each other. We need a more explicit expression for these operators

Lemma 5.1

a∗(h)�±
n (f1 ⊗ · · · ⊗ fn)

= √
n + 1 �±

n+1(h ⊗ f1 ⊗ · · · ⊗ fn)

a(h)�±
n (f1 ⊗ · · · ⊗ fn)

= 1√
n

n∑
j=1

(±1)j+1(h, fj)�
±
n−1(f1 ⊗ · · · ⊗ f̂j ⊗ · · · ⊗ fn)

(5.54)

where the “hat” on f̂j means omit this entry.

Proof We give the proof for fermions; bosons are easier. With h = f0 we have

α∗(f0)�−
n (f1 ⊗ · · · ⊗ fn)

=
√

n + 1

n!

∑
π

sgn(π )f0 ⊗ fπ (1) ⊗ · · · ⊗ fπ (n)

=
√

n + 1

n!

∑
π ′:π ′(0)=0

sgn(π ′)fπ ′(0) ⊗ fπ ′(1) ⊗ · · · ⊗ fπ ′(n)

(5.55)

In the second expression we have replaced the sum over permutations π on (1, . . . , n)
with a sum over permutations π ′ on (0, 1, . . . , n) that leave 0 fixed. Now to get
a∗(f0)�−

n (f1 ⊗ · · · ⊗ fn) we apply �−
n+1. However

�−
n+1(sgn(π ′) fπ ′(0) ⊗ fπ ′(1) ⊗ · · · ⊗ fπ ′(n)) = �−

n+1(f0 ⊗ f1 ⊗ · · · ⊗ fn) (5.56)

and
1

n!

∑
π ′:π ′(0)=0

1 = 1 (5.57)

so we have the first result.
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For the second result we compute

α(f0)�−
n (f1 ⊗ · · · ⊗ fn)

=
√

n

n!

∑
π

sgn(π )(f0, fπ (1))fπ (2) ⊗ · · · ⊗ fπ (n)

=
√

n

n!

∑
j

(−1)j+1(f0, fj)
∑
σ

sgn(σ )fσ (2) ⊗ · · · ⊗ fσ (n) (5.58)

= 1√
n

∑
j

(−1)j+1(f0, fj)�
−
n−1(f2 ⊗ · · · f̂j · · · ⊗ fn)

Here in the second step we have replaced the sum over permutations π of
(1, . . . , n) by a sum over j = π (1) and a sum over bijections σ from (2, . . . , n) to
(1, . . . , ĵ, . . . , n). We have also used sgn(π ) = (−1)j+1sgn(σ ) where sgn(σ ) is the
number of elementary exchanges to return σ (2), . . . , σ (n) to its natural order. (It takes
j−1 exchanges to move π (1) = j back to the first position, and (−1)j−1 = (−1)j+1.)

Thus α(h) already maps into the symmetrized subspace, hence a(h) = α(h), and
hence the result.

The operators a∗(h), a(h) on H±
n induce operators on the boson/fermion Fock

spaces F±(H) by letting them act on each component. We make the convention that

a(h) = 0 on H0. As a dense domain for these operators we take the finite particle

vectors

D0 = {ψ ∈ F±(H) : ∃N so ψn = 0 for n ≥ N} (5.59)

The operators preserve this domain. From (5.54) we have

�±
n (f1 ⊗ · · · ⊗ fn) = 1√

n!
a∗(f1) · · · a∗(fn)�0 (5.60)

Thus we can create a dense set of states by acting on the vacuum with creation

operators and taking the linear span.

Lemma 5.2 With [A, B]± = AB ± BA the following commutation or anti-
commutation relations hold on F±(H)

[a(g), a(h)]∓ = 0

[a∗(g), a∗(h)]∓ = 0

[a(g), a∗(h)]∓ = (g, h)

(5.61)

Proof To check the last we compute using (5.54)

a(g)a∗(h)�±
n (f1 ⊗ · · · ⊗ fn)

= (g, h)�±
n (f1 ⊗ · · · ⊗ fn)

+
n∑

j=1

(±1)j(g, fj)�
±
n (h ⊗ f1 ⊗ · · · ⊗ f̂j ⊗ · · · ⊗ fn)

(5.62)
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On the other hand

a∗(h)a(g)�±
n (f1 ⊗ · · · ⊗ fn)

=
n∑

j=1

(±1)j+1(g, fj)�
±
n (h ⊗ f1 ⊗ · · · ⊗ f̂j ⊗ · · · ⊗ fn)

(5.63)

Comparing these gives the result [a(g), a∗(h)]∓ = (g, h).

We still have that a∗(h) is linear in h, that a(h) is anti-linear in h, and that for

ψ ,χ ∈ D0

(a∗(h)ψ ,χ ) = (ψ , a(h)χ ) (5.64)

This says that (a(h))∗ ⊃ a∗(h) and (a∗(h))∗ ⊃ a(h). Since the adjoints are densely
defined, the operators a(h), a∗(h) have closures which we denote by the same symbol.
To characterize the closure we have the following:

Lemma 5.3

1. For bosons D(
√

N) ⊂ D(a∗(h)), also for a(h), and for ψ ∈ D(
√

N)

‖a∗(h)ψ‖ ≤ ‖h‖‖√N + 1ψ‖ ‖a(h)ψ‖ ≤ ‖h‖‖√Nψ‖ (5.65)

2. For fermions the closed operators are bounded and satisfy

‖a∗(h)ψ‖ ≤ ‖h‖‖ψ‖ ‖a(h)ψ‖ ≤ ‖h‖‖ψ‖ (5.66)

Proof

1. (Bosons) The inequality holds for ψ ∈ D0 by (5.52). But D0 is a core for
√

N,
which means that given ψ ∈ D(

√
N) there are sequences ψk ∈ D0 such that

ψk → ψ ,
√

Nψk →
√

Nψ as k → ∞. (For example let ψk be the truncation of
ψ at the kth entry.) Then we have

‖a∗(h)(ψj − ψk)‖ ≤ ‖h‖‖√N + 1(ψj − ψk)‖ → 0 (5.67)

as j, k →∞. Thus limk→∞ a∗(h)ψk exists and since a∗(h) is closed it follows that
ψ ∈ D(a∗(h)) and that a∗(h)ψ = limk→∞ a∗(h)ψk. Hence D(

√
N) ⊂ D(a∗(h)).

Taking the limit in ‖a∗(h)ψk‖ ≤ ‖h‖‖√N + 1ψk‖ we get the inequality for ψ .
2. (Fermions) The anti-commutation relation a∗(h)a(h) + a(h)a∗(h) = ‖h‖2 implies

for ψ ∈ D0

‖a(h)ψ‖2 + ‖a∗(h)ψ‖2 = ‖h‖2‖ψ‖2 (5.68)

Hence the inequalities hold for ψ ∈ D0 and it follows that closures are bounded
operators satisfying the same bound.

Problem 5.5 Verify the claims made for α∗(h),α(h).
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Problem 5.6 If U is unitary on H, show that

�(U)a(h)�(U−1) = a(Uh)

�(U)a∗(h)�(U−1) = a∗(Uh)
(5.69)

Problem5.7 Let T be a contraction on H, that is ‖T‖ ≤ 1. Show that �(T) defines
a contraction on F±(H). Show that �(T) may not be bounded if ‖T‖ > 1.

5.4.2 Fock space over L2

We now specialize to the case where the one-particle Hilbert space is H = L2(R3).

In this case H±
n is identified with the symmetric or anti-symmetric subspace L2±(R3n)

of L2(R3n).

Lemma 5.4 If ψ ∈ H±
n is identified with ψ ∈ L2±(R3n), then a(h)ψ ∈ H±

n−1 is
identified with a(h)ψ ∈ L2±(R3(n−1)) given by

(a(h)ψ)(x1, . . . , xn−1) = √
n
∫

h(x)ψ(x, x1, . . . , xn−1) dx (5.70)

Proof We give the proof for fermions. Consider ψ = �−(f1 ⊗ · · · ⊗ fn) which is
identified with

ψ(x1, . . . , xn) = 1

n!

∑
π

sgn(π )fπ (1)(x1) · · · fπ (n)(xn) (5.71)

Then a(h)ψ is identified with

(a(h)ψ)(x2, . . . , xn)

= 1√
n

n∑
j=1

(−1)j+1(h, fj)[�
−
n−1(f1 ⊗ · · · f̂j · · · ⊗ fn)](x2, . . . , xn)

= 1√
n

n∑
j=1

(−1)j+1(h, fj)
1

(n − 1)!

∑
σ

sgn(σ )fσ (2)(x2) · · · fσ (n)(xn)

= √
n
∫

h(x1)

[
1

n!

∑
π

sgn(π )fπ (1)(x1) · · · fπ (n)(xn)

]
dx1

= √
n
∫

h(x1)ψ(x1, . . . , xn)dx1

(5.72)

The fourth line follows as in (5.58).
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If ψ ∈ L2±(R3n) is a continuous function, then in a(h)ψ we can take h to be a

δ-function and define an operator a(x) by

(a(x)ψ)(x1, . . . , xn−1) = √
nψ(x, x1, . . . , xn−1) (5.73)

We recover the original operator by a(h)ψ = ∫
h(x)(a(x)ψ)dx. We also get an

operator a(x) on the Fock space by (a(x)ψ)n = a(x)ψn+1. Then

(a(x)ψ)n(x1, . . . , xn) = √
n + 1 ψn+1(x, x1, . . . , xn)dx (5.74)

As a suitable dense domain we might take finite particle vectors with wave functions

in Schwartz space

DS = {ψ ∈ D0 : ψn ∈ S(R3n)} (5.75)

The operator a(x) has no adjoint; the formal adjoint creates delta functions which

are not in L2. Nevertheless we can define a∗(x) as the bilinear form on DS × DS ,

anti-linear in the first factor, which sends ψ ,φ to

(ψ , a∗(x)φ) ≡ (a(x)ψ ,φ) (5.76)

With this interpretation we have an elegant representation of some of our basic

operators:

Lemma 5.5 In F±(H), H = L2(R3), as bilinear forms on DS ×DS :

1. The number operator satisfies

N =
∫

a∗(x)a(x)dx (5.77)

2. The free Hamiltonian H0 = d�(−�/2m) satisfies

H0 =
∫

a∗(x)

(−�
2m

)
a(x)dx (5.78)

3. Let v be an interparticle potential, for n ≥ 2 let Vn be the associated n-particle
potential defined in (5.39), and let V = ⊕nVn be the Fock space potential. Then

V = 1

2

∫
a∗(x)a∗(y)v(x − y)a(x)a(y)dxdx (5.79)

Proof Let ψ ,φ ∈ DS . Then we have

(ψ , (
∫

a∗(x)a(x)dx)φ) ≡
∫

(a(x)ψ , a(x)φ)dx

=
∞∑

n=0

∫
((a(x)ψ)n, (a(x)φ)n)dx

=
∞∑

n=0

(n + 1)
∫
ψn+1(x, x1, . . . , xn)φn+1(x, x1, . . . , xn)dxdx1 . . . dxn

= (ψ , Nφ)

(5.80)
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This proves the identity for N, and the identity for H0 is similar. For the last
we have∫

1

2
(a(x)a(y)ψ , a(x)a(y)φ) v(x − y)dxdy

=
∞∑

n=0

(n + 1)(n + 2)

2

∫
ψn+2(x, y, x1, . . . , xn)φn+2(x, y, x1, . . . , xn)

v(x − y) dxdy dx1 . . . dxn

=
∞∑

n=2

n(n − 1)

2

∫
ψn(x1, . . . , xn)φn(x1, . . . , xn)v(x1 − x2) dx1 . . . dxn (5.81)

=
∞∑

n=2

∑
1≤i<j≤n

∫
ψn(x1, . . . , xn)φn(x1, . . . , xn)v(xi − xj) dx1 . . . dxn

=
∞∑

n=2

(ψn, Vnφn)

= (ψ , Vφ)

Notes on chapter 5: For more on multiparticle quantum mechanics see

Reed and Simon (1979), Reed and Simon (1978), or Gustafson and Sigal (2003).
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6.1 Mixed states

Until now the states of a physical system have been described by unit vectors (actu-

ally rays) in a Hilbert space. These are states which are prepared so that we have

as much knowledge about them as possible. They are also called pure states. But

we also want to consider states whose preparation is incomplete. We only know the

probability that it is in any of various pure states. These are known as mixed states.

The mathematical definition is that a mixed state is a positive trace class operator Q

on the Hilbert space H with Tr(Q) = 1. The operator Q is called a density operator.

If {φn} is an orthonormal basis of eigenvectors for Q with eigenvalues μn ≥ 0, then

Qψ =∑∞
n=1 μnφn(φn,ψ) which we write as

Q =
∞∑

n=1

μnφn(φn, ·) (6.1)

The condition Tr(Q) = 1 means that∑
n

μn = 1 (6.2)

If a property of a physical measurement is described by a projection operator P,

then the probability of a positive result in state Q is taken to be

Tr(PQ) =
∞∑

n=1

μn(φn, Pφn) (6.3)

Taking P = Pψ = ψ(ψ , ·), the projection onto ψ , the probability of finding the

system in the pure state ψ is

Tr(PψQ) =
∞∑

n=1

μn|(ψ ,φn)|2 (6.4)

In particular μn is the probability of finding the system in the state φn.

Observable quantities are still described by self-adjoint operators A. If E(B) are

the spectral projections for A, then the probability that a measurement of A in the

state Q gives a value in B is
78
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Tr(E(B)Q) =
∞∑

n=1

μn(φn, E(B)φn) (6.5)

The expected value of repeated measurements of A in the state Q is

Tr(AQ) =
∞∑

n=1

μn(φn, Aφn) (6.6)

if it exists. It exists if A is bounded, and it may or may not exist for unbounded

operators.

Note that we can identify pure states with mixed states of rank one via the map

ψ → Qψ = ψ(ψ , ·). This is defined on rays: ψ and eiθψ give the same mixed state.

The probabilities Tr(PQψ ) = (ψ , Pψ) are the same as before.

6.2 Equilibrium states

We describe some mixed states appropriate for describing large numbers of parti-

cles called equilibrium states. In this section we give a general discussion of both

the classical and quantum versions, but in subsequent sections we only consider the

quantum version in detail. In the classical versions the states are probability mea-

sures on phase space – the measure of a set is the probability of finding the system in

that set. In the quantum versions the states are density operators as described above –

we assign a probability to finding the system in various pure states.

For this discussion we suppose that we are in a bounded open region � ⊂ R3 or

possibly the torus� = R3/L Z3 of width L. The important point is that� have finite

volume.

6.2.1 Microcanonical ensemble

The first case is a system which is isolated from its surroundings and has a fixed

energy E and a fixed number of particles N. With no further knowledge of the system

an appropriate state is one which assigns equal weight to all states with this energy

and particle number. States which enter into such a description with fixed E and N

are said to constitute a microcanonical ensemble. One can create such states in either

a classical or a quantum version. However we do not go into details.

6.2.2 Canonical ensemble

In the second case the system still has a fixed number of particles N, but now the

energy E is not fixed due to interactions with its surroundings. The surroundings
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are taken to be a heat bath at a temperature T . The temperature is a measure of the

average kinetic energy of particles in the bath. We do not attempt a mathematical

description of the heat bath or of its interaction with the system, but we do make

a hypothesis about the probabilities for states of the system in this circumstance.

The fundamental hypothesis is that the probability of finding the system in a state

with energy E is proportional to e−E/kT . Here k = 1.38×10−16 ergs/◦K is a constant

which sets the temperature scale and is known as Boltzmann’s constant. We usually

let β = 1/kT and write e−E/kT = e−βE. With probabilities assigned in this fashion

the states are called Gibbs states and are said to constitute a canonical ensemble. We

now spell out the construction in more detail.

In the classical case the phase space is P = �N ×R3N and we have a Hamiltonian

HN(x, p) on this space. We define a probability measure on P by

dμβ (x, p) = 1

Z(β)
e−βHN (x,p)dxdp (6.7)

The normalizing factor is known as the partition function and it is given by

Z(β) =
∫

e−βHN (x,p)dxdp (6.8)

This integral is required to converge. A classical observable A is a function on phase

space, hence a random variable, and its expected value is

< A >β=
∫

A(x, p)dμβ (x, p) =
∫

A(x, p)e−βHN (x,p)dxdp∫
e−βHN (x,p)dxdp

(6.9)

In the quantum case there is a single particle space H, for example H = L2(�),

and an N-particle space H±
N = �±(H ⊗ · · · ⊗H). The Hamiltonian HN is required

to be a self-adjoint operator on this space. The basic hypothesis is that the state at

inverse temperature β has the density operator

Qβ = Z(β)−1e−βHN (6.10)

where the partition function is now

Z(β) = Tr(e−βHN ) (6.11)

For this to make sense we need e−βHN to be trace class. An observable A is a self-

adjoint operator on HN and the expected value is

< A >β ≡ Tr(AQβ ) = Tr(Ae−βHN )

Tr(e−βHN )
(6.12)

The quantum state is invariant under time evolution in the following sense. If At =
eiHN tAe−iHN t is the time evolution of A in the Heisenberg picture, then

< At >β=< A >β (6.13)

This follows from the cyclicity of the trace. We say that the state is a stationary state.
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6.2.3 Grand canonical ensemble

In the third case neither E or N is fixed. Instead the system is supposed to be in con-

tact with a heat bath and a particle bath. The basic hypothesis is that the probability

of finding the system in a state with energy E and particle number N is proportional

to exp(−β(E − μN)). Here β is again the inverse temperature, and μ is a parameter

called the chemical potential. A particle has energy −μ just by its presence in the

system. States weighted in this fashion constitute a grand canonical ensemble.

In the classical case the phase space is the disjoint union of the n-particle phase

spaces � = ∪∞n=0�n. A measure μβ,μ is defined on � by stipulating that its

restriction to �n is

dμβ,μ | �n = Z(β,μ)−1 exp(−β(H(x, p) − μn))dxdp (6.14)

The partition function which gives the overall normalization factor is

Z(β,μ) =
∞∑

n=0

∫
�n

exp(−β(H(x, p) − μn))dxdp (6.15)

One can also define expectations of classical observables.

In the quantum case the Hilbert space is taken to be the Fock space F±(H) =
⊕nH±

n and the Hamiltonian is H = ⊕nHn where Hn is the n-particle Hamiltonian.

The density operator has the form

Qβ,μ = Z(β,μ)−1e−β(H−μN) (6.16)

where now N is the number operator. The partition function is

Z(β,μ) = Tr(e−β(H−μN)) (6.17)

An observable is a self-adjoint operator A on the Fock space and has the expectation

< A >β,μ≡ Tr(AQβ,μ) = Tr(Ae−β(H−μN))

Tr(e−β(H−μN))
(6.18)

This is also a stationary state.

6.2.4 General problems

One set of problems is concerned with motivating the above discussion. A great deal

of effort has been expended over the years attempting to derive the various ensembles

from more basic hypotheses, and to study the relation between them. There are many

interesting developments here but it would take us too far afield to explore them. We

just take the ensembles as defined as our starting point.
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Another class of problems is concerned with picking specific models or classes of

models and studying detailed properties of the states. We do this for a few simple

models working in the grand canonical ensemble. This will just give a taste of what

is a very large subject.

Let us first mention some items of interest for the quantum grand canonical

ensemble. We define a free energy in terms of the partition function by

F(β,μ) = −β−1 log Z(β,μ) (6.19)

It turns out this can be interpreted as the amount of energy available to do work. The

pressure is defined as minus the free energy per unit volume and is given by1

p(β,μ) = −|�|−1F(β,μ) = β−1|�|−1 log Z(β,μ) (6.20)

where |�| is the volume of �. The expected number of particles is

< N >β,μ= Z(β,μ)−1Tr(N e−β(H−μN)) (6.21)

It can be computed from the partition function by

< N >β,μ= 1

β

∂

∂μ
log Z(β,μ) (6.22)

The density is the expected number of particles divided by the volume

ρ(β,μ) = |�|−1 < N >β,μ (6.23)

Recall that the number operator can be expressed as N = ∫
a∗(x)a(x)dx. We

could also consider the number of particles in a region B ⊂ R3 defined by

NB = ∫
B a∗(x)a(x)dx or the kinetic energy in B which would be defined by∫

B a∗(x)(−�/2m)a(x)dx. Thus if we knew the expectations < a∗(x)a(y) >β,μ, we

could compute expectations of many interesting observables. More generally we

would like to compute correlation functions defined by

< a∗(x1) · · · a∗(xn)a(y1) · · · a(yn) >β,μ (6.24)

These may or may not be well-defined. The situation is improved if we replace a(x)

by the more regular a(f ) = ∫ f (x)a(x)dx, f ∈ S(R3). Then the correlation functions

are

< a∗(f1) · · · a∗(fn)a(g1) · · · a(gn) >β,μ (6.25)

If it exists, this gives (6.24) a meaning as a distribution. Indeed it is a multilinear

functional on S(R3) and hence by the kernel theorem determines a distribution in

S ′(R3n). (See appendix C for the basic facts about distributions.)

1 The definition says that pressure has dimensions of energy/volume. But since energy has dimensions of
force × distance, pressure has dimensions of force/area as expected.
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All these quantities depend on the volume �, and generally the volume must be

finite in order that they be well-defined. At first this seems to correlate well with

actual physical situations where the volume really is finite. However volumes are

typically very large on an atomic scale, and so it is a good idealization to treat the

system as infinite. If it can be done mathematically, it is worthwhile because then

one avoids uninteresting boundary effects. Furthermore collective phenomena like

phase transitions generally have more dramatic manifestations at infinite volume. In

short it is not enough to study the quantities p(β,μ), ρ(β,μ) and correlation func-

tions in a finite volume �, one should also take the limit � → R3, known as the

thermodynamic limit.

6.3 Free boson gas

We consider the case of free bosons in detail. We take � to be the torus � =
R3/L Z3. Making this choice is the same as taking � to be the cube [−L/2, L/2]3

and imposing periodic boundary conditions. This might not seem like a good start-

ing point for an actual gas. Perhaps a better model would be the cube with some

local boundary conditions. We make the choice anyway with the idea that the infinite

volume limit should be independent of the boundary conditions.

For a single particle the Hilbert space is H = L2(�) and specializing to m = 1/2

the Hamiltonian is −� as for the R3 construction. The trigonometric polynomials

are functions in L2(�) of the form

φk(x) = eikx

L3/2
k ∈ 2π

L
Z3 (6.26)

These form a complete orthonormal set in L2(�). This statement is equivalent to the

L2- convergence of Fourier series. Furthermore the φk are eigenfunctions of −�
−�φk = |k|2φk (6.27)

Thus −� is naturally a positive self-adjoint operator by problem 1.13. As in the R3

construction, the k are called momenta.

Now consider n such particles. The Hilbert space for bosons is now H+
n =

�+(H ⊗ · · · ⊗ H) and the Hamiltonian is Hn = d�n(−�). States φk1 ⊗ · · · ⊗ φkn

form a basis for H⊗ · · · ⊗H and so states

�k1,...,kn = �+(φk1 ⊗ · · · ⊗ φkn) (6.28)

span H+
n . Note that �k1,...,kn depends only on the collection {k1, . . . , kn}, not on the

ordering. Different collections give orthogonal states. They are eigenfunctions of Hn

and satisfy
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Hn�k1,...,kn =
(

n∑
i=1

|ki|2
)
�k1,...,kn (6.29)

We reformulate as follows. First identify H+
n as a subspace of the Fock space

F+(H) and write �k1,...,kn as a constant times a∗(φk1 ) . . . a∗(φkn)�0 (see (5.60)).

Then label these basis vectors by the number of times a particular momentum occurs.

Thus let {nk} be a collection of nonnegative integers indexed by k ∈ (2π/L)Z3 such

that
∑

k nk = n. For each such collection define

�({nk}) =
(∏

k

1√
nk!

)∏
k

a∗(φk)nk�0 (6.30)

With this choice of normalization the �({nk}) form an orthonormal basis for H+
n

(problem 6.1). We have

Hn�({nk}) =
(∑

k

nk|k|2
)
�({nk}) (6.31)

Finally consider the full Fock space. We drop the restriction
∑

k nk = n and

instead take infinite sequences {nk} with the condition that nk = 0 except for a finite

number of k. Then the �({nk}) form an orthonormal basis for the entire Fock space.

Furthermore �({nk}) is an eigenvector for the full Hamiltonian H with eigenvalue∑
k nk|k|2. Note also that �({nk}) is an eigenvector for N with eigenvalue

∑
k nk.

Now we are ready to calculate the partition function in the grand canonical

ensemble. We have for μ < 0

Z(β,μ) = Tr(e−β(H−μN))

=
∑
{nk}

(�({nk}), e−β(H−μN)�({nk}))

=
∑
{nk}

exp

(
−β
∑

k

nk(|k|2 − μ)

)

=
∑
{nk}

∏
k

e−βnk(|k|2−μ)

=
∏

k

∞∑
n=0

e−βn(|k|2−μ)

=
∏

k

1

1 − e−β(|k|2−μ)

(6.32)

The infinite product converges since

∑
k

(
1

1 − e−β(|k|2−μ)
− 1

)
=
∑

k

e−β(|k|2−μ)

1 − e−β(|k|2−μ)
<∞ (6.33)
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From the partition function we compute the pressure (6.20) and the density (6.23)

and find

p(β,μ) = |�|−1β−1
∑

k

log

(
1

1 − e−β(|k|2−μ)

)

ρ(β,μ) = |�|−1
∑

k

e−β(|k|2−μ)

1 − e−β(|k|2−μ)

(6.34)

These expressions also have a nice infinite volume limit. As L →∞ the sum over

k ∈ (2π/L)Z3 becomes an integral over k ∈ R3 and we find

p(β,μ) = (2π )−3β−1
∫

log

(
1

1 − e−β(|k|2−μ)

)
dk

ρ(β,μ) = (2π )−3
∫

e−β(|k|2−μ)

1 − e−β(|k|2−μ)
dk

(6.35)

Returning to finite volume, the correlation functions can also be computed. We

illustrate with the two-point function.

Lemma 6.1 Let f , g ∈ C∞(�) and let h = −�. Then for μ < 0

< a∗(f )a(g) >β,μ=
(

g,

(
e−β(h−μ)

1 − e−β(h−μ)

)
f

)
(6.36)

Remark Explicitly

< a∗(f )a(g) >β,μ=
∑

k

ḡk

(
e−β(|k|2−μ)

1 − e−β(|k|2−μ)

)
fk (6.37)

where fk = (φk, f ) are the Fourier coefficients for f . The expression (6.36) also holds
in the infinite volume limit, but now defined with the Fourier transform instead of
Fourier series.

Proof Since e−β(H−μN) = �(e−β(h−μ)), we can compute (cf. problem 5.6)

e−β(H−μN)a∗(f ) = a∗(e−β(h−μ)f )e−β(H−μN) (6.38)

Using the cyclicity of the trace and then the commutation relations for a, a∗, (5.61)
yields

Tr(a∗(f )a(g)e−β(H−μN)) = Tr(a(g)e−β(H−μN)a∗(f ))

=Tr(a(g)a∗(e−β(h−μ)f )e−β(H−μN))

=Tr(a∗(e−β(h−μ)f )a(g)e−β(H−μN)) + Z(β,μ)(g, e−β(h−μ)f )

(6.39)
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Dividing by Z(β,μ) this can be written

< a∗((1 − e−β(h−μ))f )a(g) >β,μ= (g, e−β(h−μ)f ) (6.40)

Now replacing f by (1 − e−β(h−μ))−1f gives the result.

Problem 6.1 Check that ‖�({nk})‖ = 1.

Problem 6.2 Prove that pressure and density in (6.35) really are the infinite
volume limits of the finite volume expressions (6.34) as claimed.

Problem6.3 Take� = [0, L]N . On H = L2(�) define−� as a self-adjoint opera-
tor by taking eigenfunctions with Dirichlet boundary conditions, that is vanishing
on the boundary. Compute the grand canonical partition function in this case.

Problem 6.4 Compute the n-point correlation functions (6.25) for the free boson
gas by establishing first that

< a∗(f1) · · · a∗(fn)a(g1) · · · a(gn) >β,μ

=
n∑

j=1

< a∗(f1)a(gj) >β,μ< a∗(f2) · · · a∗(fn)a(g1) · · · â(gj) · · · a(gn) >β,μ
(6.41)

where the factor a(gj) is omitted in the last expectation. Then show that

< a∗(f1) · · · a∗(fn)a(g1) · · · a(gn) >β,μ=
∑
π

n∏
i=1

< a∗(fi)a(gπ (i)) >β,μ (6.42)

where the sum is over permutations π of (1, . . . , n).

6.4 Free fermion gas

We consider noninteracting fermions. For simplicity we neglect spin and take the

one particle space to be H = L2(�). The treatment is the same as for bosons except

that the full Hilbert space is now the anti-symmetric Fock space F−(H). We still

have the basis vectors �({nk}) given by (6.30) but now the Pauli exclusion principle

means that each nk can only take the values zero and one.

The partition function in the grand canonical ensemble is now computed just as

in (6.32)
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Z(β,μ) = Tr(e−β(H−μN))

=
∑
{nk}

∏
k

e−βnk(|k|2−μ)

=
∏

k

∑
n=0,1

e−βn(|k|2−μ)

=
∏

k

(
1 + e−β(|k|2−μ)

)
(6.43)

This converges for all β > 0 and all μ ∈ R since∑
k

e−β(|k|2−μ) <∞ (6.44)

For the pressure and the density we compute

p(β,μ) = |�|−1β−1
∑

k

log(1 + e−β(|k|2−μ))

ρ(β,μ) = |�|−1
∑

k

e−β(|k|2−μ)

1 + e−β(|k|2−μ)

(6.45)

One can also compute the two-point function as for bosons and we find with h = −�

< a∗(f )a(g) >β,μ=
(

g,

(
e−β(h−μ)

1 + e−β(h−μ)

)
f

)
(6.46)

Note that the only difference from bosons is the plus sign in the denominator.

Next we investigate the zero temperature limit. Let Nk be the number of particles

with momentum k defined by Nk�({nk}) = nk�({nk}). Then Nk = a∗(φk)a(φk) and

from (6.46) the expectation is

< Nk >β,μ= e−β(|k|2−μ)

1 + e−β(|k|2−μ)
(6.47)

For μ > 0 we have the zero temperature limit

lim
β→∞ < Nk >β,μ=

⎧⎨⎩1 |k|2 < μ

0 |k|2 > μ
(6.48)

This is saying that at zero temperature all states with energy |k|2 < μ are occupied

while states with energy |k|2 > μ are empty. This corresponds to the lowest energy

state and is referred to as the Fermi sea.

The situation for bosons is quite different as there is no exclusion principle. A

more extensive analysis shows that at fixed density below a certain critical temper-

ature a substantial fraction of particles occupy the lowest energy state k = 0, and

at zero temperature they all occupy it. This phenomenon is known as Bose–Einstein

condensation.
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6.5 Interacting bosons

Now we consider the statistical mechanics of interacting bosons on the three-

dimensional torus � = R3/L Z3; there is a similar treatment for fermions. The

n-particle Hilbert space is now L2+(�n), the symmetric subspace of L2(�n). The

n-particle Hamiltonian is

Hn = H0,n + Vn =
n∑

i=1

−�i

2m
+

∑
1≤i<j≤n

v(xi − xj) (6.49)

where the interparticle potential v is taken to be in L2(�). Then one can show that

Hn is self-adjoint on the domain of H0. (See example 5.2 and problem 5.1 for the R3

result.)

We assume that the following stability condition is satisfied: there is a constant B

such that for all n and all points xi ∈ �∑
1≤i<j≤n

v(xi − xj) ≥ −Bn (6.50)

This is a fairly restrictive condition. It is trivially satisfied if v ≥ 0 and obviously

false if v(0) < 0 (take all {xi} coincident and n large). Physically it means that

particles have a hard core repelling other particles.

Problem 6.5 v is said to be of positive type if the Fourier series has nonnegative
coefficients. Show that the stability condition is satisfied if v is of positive type

For a stable interaction we have2

0 ≤ H0,n − (B + μ)n ≤ Hn − μn (6.51)

where the first inequality holds if μ < −B. Under the same assumption the full

Hamiltonian on the Fock space satisfies

0 ≤ H0 − (B + μ)N ≤ H − μN (6.52)

Our modest goal is to prove the existence of the grand canonical ensemble on the

torus, that is we want to show that exp(−β(H − μN)) is trace class. First we have:

Lemma 6.2 For μ < −B the Hamiltonian H − μN has pure point spectrum with
finite multiplicity and no accumulation points.

Proof Let S = H−μN+1 and T = H0−(μ+B)N+1 so 1 ≤ T ≤ S. We have seen in
our treatment of the free boson gas that T has point spectrum with finite multiplicity
and no accumulation points. Hence T−1/2 is compact (see problem 1.17).

2 T ≤ S means D(S) ⊂ D(T) and (ψ , Tψ) ≤ (ψ , Sψ) for ψ ∈ D(S).
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Now D(T) = D(S) is contained in both D(T1/2) and D(S1/2) by the spectral
theorem. The inequality T ≤ S implies that for ψ ∈ D(S)

‖T1/2ψ‖ ≤ ‖S1/2ψ‖ (6.53)

But D(S) is a core for D(S1/2) again by the spectral theorem. It follows that D(S1/2) ⊂
D(T1/2) and that the inequality (6.53) holds for ψ ∈ D(S1/2). (We made a similar
argument in lemma 5.3.) Replacing ψ by S−1/2χ for any χ we see that T1/2S−1/2 is
a bounded operator with ‖T1/2S−1/2‖ ≤ 1.

Now write

S−1/2 = T−1/2(T1/2S−1/2) (6.54)

This exhibits S−1/2 as the product of a compact operator and a bounded opera-
tor. Hence it is compact and has point spectrum with finite multiplicity and no
accumulation points except zero. The result for H−μN = (S−1/2)−2−1 follows.

We also need:

Theorem 6.1 (min–max theorem) Let T be a self-adjoint operator on a Hilbert space
with pure point spectrum

λ0 ≤ λ1 ≤ λ2 ≤ . . . (6.55)

repeated by multiplicity. Then

λn = sup
ξ1,...,ξn−1

[
inf

ψ∈[ξ1,...,ξn−1]⊥,‖ψ‖=1
(ψ , Tψ)

]
(6.56)

where the infimum is over ψ ∈ D(T).

The theorem is useful because it gives control over the eigenvalues without know-

ing the eigenvectors. We do not give the full proof.3 But observe that for n = 0

it says

λ0 = inf‖ψ‖=1
(ψ , Tψ) (6.57)

This is true since if φn are a basis of eigenvectors with Tφn = λnφn, then for any

ψ ∈ D(T) with ‖ψ‖ = 1

(ψ , Tψ) =
∑

n

λn|(ψ ,φn)|2 ≥
∑

n

λ0|(ψ ,φn)|2 = λ0‖ψ‖2 = λ0 (6.58)

On the other hand the lower bound λ0 is actually attained at ψ = φ0.

Corollary 6.1 Let T , S satisfy the hypotheses of the theorem and suppose T ≤ S. Then
the eigenvalues λn(T), λn(S) satisfy λn(T) ≤ λn(S).

3 For the proof see Reed and Simon (1978: 76).
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Proof We have

inf
ψ∈[ξ1,...,ξn−1]⊥,‖ψ‖=1

(ψ , Tψ) ≤ inf
ψ∈[ξ1,...,ξn−1]⊥,‖ψ‖=1

(ψ , Sψ) (6.59)

Now take the supremum over ξ1, . . . , ξn−1.

Now we have the main result:

Theorem6.2 If the two particle potential is stable with constant B and if the chemical
potential satisfies μ < −B, then the grand canonical partition function Z(β,μ) =
Tr(exp(−β(H − μN))) exists.

Proof Let λn(H − μN) be the eigenvalues of H − μN repeated by multiplicity. By
(6.52) and the corollary we have

λn(H − μN) ≥ λn(H0 − (μ+ B)N) (6.60)

Then

Tr
(

e−β(H−μN)
)
=
∑

n

e−βλn(H−μN)

≤
∑

n

e−βλn(H0−(μ+B)N)

= Tr
(

e−β(H0−(μ+B)N)
) (6.61)

The last expression is finite by our results on the free boson gas.

6.6 Further developments

Suppose we are working in the grand canonical ensemble as defined in (6.18). Let

K = H − μN be the Hamiltonian, let A, B be observables, and let

αt(B) = eiKtBe−iKt (6.62)

be the time evolution of B. Then we have

< A αt(B) >β,μ= Tr(AeiKtBe−(β+it)K)

Tr(e−βK)
(6.63)

Assuming that K ≥ 0 the function eiKt is the boundary value on the real axis of an

analytic function from the upper half plane to the bounded operators on Fock space.

Then (6.63) is the boundary value on the real axis of a function analytic in the strip

0 < Im t < β. But by the cyclicity of the trace we also have

Tr(AeiKtBe−(β+it)K) = Tr(Be−(β+it)KAeiKt) (6.64)
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Taking the boundary value at t = iβ we obtain the identity

< A αt(B) >β,μ |t=iβ =< BA >β,μ (6.65)

This is known as the KMS condition.4 It turns out that the KMS condition completely

characterizes the expectation < · · · >β,μ, and so gives an alternate definition of

equilibrium states. An advantage is that it also makes sense in infinite volume.

Let us discuss further the general problem of infinite volume. We would like to

have a full quantum theory in infinite volume, rather than just certain special limits

of finite volume quantities. This turns out to be possible and we sketch the idea. One

must modify the basic quantum structure founded on a Hilbert space. Instead the

basic object is taken to be a C∗ algebra5 A whose self-adjoint elements correspond

to observables. For example it might be the C∗ algebra generated by creation and

annihilation operators on Fock space. A state is now specified by giving the expec-

tations of all the elements of A. More precisely a state ω is a continuous positive6

linear functional on A with norm one. Finite volume Gibbs states are states in this

sense and so are infinite volume limits of Gibbs states. Time evolution is given by a

family αt of automorphisms of A such that α0 = id and αtαs = αt+s. For example

αt could be generated by a Hamiltonian as in (6.62). Finally ω is defined to be an

equilibrium state at inverse temperature β if the β-KMS condition is satisfied, that

is if for A, B ∈ A the function t → ω(A αt(B)) is the boundary value of a function

analytic in 0 < Im t < β such that

ω(A αt(B))|t=iβ = ω(BA) (6.66)

These ideas can be carried a great deal further with beneficial results.

Notes on chapter 6: For the basic structure of statistical mechanics see Ruelle

(1969). For quantum statistical mechanics as we have presented it see Bratteli and

Robinson (1981); for the algebraic approach consult Bratteli and Robinson (1981)

and Haag (1992); for stability bounds with realistic potentials see Lieb and Seiringer

(2010).

For physics books on statistical mechanics, try Landau and Lifschitz (1969) or

Huang (2009).

There are important topics in statistical mechanics which have not been discussed

at all. These include phase transitions, critical phenomena, and nonequilibrium

statistical mechanics.

4 KMS stands for Kubo–Martin–Schwinger.
5 A C∗ algebra is a Banach ∗-algebra with ‖A∗A‖ = ‖A‖2. Think of a closed subalgebra of the algebra

of bounded operators on a Hilbert space.
6 Positive means ω(A∗A) ≥ 0 for all A ∈ A.
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7 Relativity

7.1 Principles of relativity

Einstein arrived at the principles of relativity by thinking about the relationship

between measurements made by observers in uniform motion relative to each other.

We depart from this historical path and instead start with Maxwell’s equations (0.3).

In the absence of charges and currents (ρ = 0, j = 0) one can deduce from

Maxwell’s equations that any component u of the electric or magnetic field obeys

the wave equation (
− 1

c2

∂2

∂t2
+�

)
u = 0 (7.1)

Disturbances propagate with the velocity c which is the speed of light. Hence light

is explained as a wave in the electric and magnetic fields.

Suppose we think of space and time as a single entity called spacetime and mod-

eled by R4. A point is labeled x = (x0, x1, x2, x3) with x0 = ct a scaled time with

units of distance. Then the wave equation can be written∑
μν

ημν
∂

∂xμ
∂

∂xν
u = 0 (7.2)

where ημν is the diagonal matrix with entries (−1, 1, 1, 1). We take these coefficients

in the wave equation above as a clue to the structure of spacetime. The coefficients

can be interpreted as coming from a metric on R4 given by

η =
∑
μν

ημνdxμdxν = −(dx0)2 + (dx1)2 + (dx2)2 + (dx3)2 (7.3)

This is not a positive definite metric, but a Lorentzian metric, that is a metric which

has signature −+++. The basic postulate of special relativity is that spacetime is to

be modeled by the pair (R4, η). The idea is that field equations are to be built out of

this metric as above. Furthermore free particles should respect the metric in the sense

that their trajectories should be geodesics for the metric. All the structure of special

relativity follows from these assumptions, some of which we develop as we go on.

The scope of special relativity is limited as the name suggests. It is only supposed

to be valid in situations where there is no gravitational field, or more precisely where
95
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the effect of gravitational fields is negligible. The effect of the gravitational field

is to distort the metric and indeed possibly even distort the topology of spacetime.

The basic postulate of general relativity is that spacetime is to be modeled by a

Lorentzian manifold (M, g) consisting of a four-dimensional manifold M and a

Lorentzian metric g which in local coordinates takes the form

g =
∑
μν

gμνdxμdxν (7.4)

Field equations are to be constructed out of the metric. For example the wave

equation would have the form∑
μν

| det g|−1/2 ∂

∂xμ

(
| det g|1/2gμν

∂u

∂xν

)
= 0 (7.5)

where {gμν} is the inverse matrix to {gμν}. Again free particles should travel on

geodesics. The metric itself is determined by the distribution of energy and matter

by an equation known as Einstein’s equation.

A manifold is anyway the best model for spacetime with or without gravity. Man-

ifolds are defined to treat all coordinate systems equally and this is matched by the

phenomenon that nature has no distinguished coordinate systems. In constructing

the basic equations to describe nature one should take care that the construction is

not tied to any particular coordinate system. This naturalness condition is sometimes

known as the principle of general covariance. Einstein’s theory of gravity outlined

above respects it. Quantum mechanics has a more difficult time with it, primarily

because it has a more rigid notion of time.

In the next three chapters we concentrate on combining quantum mechanics with

special relativity and ignore gravitational effects. It is appropriate in any case because

on microscopic scales gravity is much weaker than electromagnetic or nuclear forces

and thus is usually negligible for elementary particle physics.

7.2 Minkowski space

7.2.1 Definitions

We start by developing some general features of (R4, η) called Minkowksi space. The

tangent space to any point R4 can be taken to be R4 itself. The metric determines

an indefinite inner product on the tangent space by defining for tangent vectors

v= (v0, . . . , v3) and w = (w0, . . . ,w3)

v · w =
∑
μν

ημνv
μwν = −v0w0 + v1w1 + v2w2 + v3w3 (7.6)
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We employ the summation convention that repeated indices are summed over, so this

is written v · w = ημνv
μwν . We also write v = (v0, v) and w = (w0, w) and then

v · w = −v0w0 + v · w (7.7)

where the second dot product v · w is the usual scalar product in R3.

There are also linear functions on tangent vectors called cotangent vectors. These

are also identified with R4 and written θ = (θ0, . . . , θ3). The cotangent vector θ

sends tangent vector v to θμvμ. The metric enables us to identify tangent vectors and

cotangent vectors by vμ = ημνv
ν or θμ = ημνθν . Then for tangent vectors v,w we

have v · w = ημνv
μwν = vμwμ.

Tangent vectors are defined to be spacelike, lightlike, or timelike according to

whether v · v = −(v0)2 + v · v is positive, zero, or negative. The timelike vec-

tors form a double cone in R4. The component with v0 > 0 is called future directed

and the component with v0 < 0 is called past directed.

We consider parametrized curves x : [a, b] → R4. If the tangent vector dx/dt

is always spacelike, then the curve is spacelike and we define the length of the

curve to be

L(x) =
∫ b

a

√
dx

dτ
· dx

dτ
dτ (7.8)

If the tangent vector dx/dτ is always timelike, then the curve is timelike and we

define the elapsed proper time to be

T(x) =
∫ b

a

√
− dx

dτ
· dx

dτ
dτ (7.9)

Such curves are past or future directed according to whether dx/dτ is past or

future directed. Future directed timelike curves are possible trajectories of massive

particles. The curve is called the worldline of the particle.

Finally if the tangent vector dx/dτ is always lightlike, then the curve is lightlike.

Future directed lightlike curves are possible trajectories of light rays and massless

particles.

7.2.2 Free particles

In the absence of external forces massive particles travel on the timelike geodesics

of the metric. These geodesics are the forward directed timelike curves between

two given points (x, y) in spacetime which maximize the proper time among all

such curves. To find the geodesics note that the proper time does not depend on

the parametrization of the curve. Thus it suffices to consider curves for which

−dx/dτ · dx/dτ is a positive constant. Such a curve is parametrized proportional

to proper time.
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Theorem 7.1 Let x : [a, b] → R4 be a future directed timelike geodesic that is
parametrized proportional to proper time with x(a) = x, x(b) = y. Then d2x/dτ 2 = 0
and hence x is a straight line. The elapsed proper time is√−(x − y) · (x − y) (7.10)

Proof Let η : [a, b] → R4 be any smooth function with η(a) = η(b) = 0. Then for
s sufficiently small

xs(τ ) = x(τ ) + sη(τ ) (7.11)

is also a forward timelike curve from x to y. Then we can compute the proper time
T(xs). This has a maximum at s = 0 and so d/ds[T(xs)]s=0 = 0. We compute

d

ds
T(xs) = 1

2

∫ b

a

(
−dxs

dτ
· dxs

dτ

)−1/2 d

ds

(
−dxs

dτ
· dxs

dτ

)
dτ (7.12)

At s = 0 this becomes

0 = −
∫ b

a

dη

dτ
· dx

dτ
dτ =

∫ b

a
η · d2x

dτ 2
dτ (7.13)

Since η is arbitrary, it follows that dx2/dτ 2 = 0. Then the solution is

x(τ ) = x +
(
τ − a

b − a

)
(y − x) (7.14)

For this curve, T(x) has the value (7.10).

We still have some freedom in the parametrization of our geodesics. We use this

to make a choice of the constant −dx/dτ · dx/dτ . For particles of mass m > 0 a

convenient choice is to set

− dx

dτ
· dx

dτ
= m2c2 (7.15)

which we now assume.

We write the dynamical equation d2x/dτ 2 = 0 as the first-order system

dxμ

dτ
= pμ

dpμ
dτ

= 0 (7.16)

where pμ = ημνpν . This is a Hamiltonian system with variables xμ, pμ and Hamil-

tonian p · p/2 = ημνpμpν/2 = ημνpμpν/2, not now the energy. The constant

p = (p0, p1, p2, p3) = (p0, p) is called the four-momentum. For a forward directed

solution of mass m we have

− p · p = m2c2 p0 > 0 (7.17)

Once we restrict to solutions of mass m we can reduce the number of variables by

eliminating x0 and p0 = −p0. By (7.17) we have p0 = ω(p) where for p ∈ R3

ω(p) =
√
|p|2 + m2c2 (7.18)
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The x0 equation is then dx0/dτ = ω(p), which we use to replace the parameter τ by

the time coordinate x0. We have then dx/dx0 = (dx/dτ )(dτ/dx0) = p/ω(p). Finally

with x0 = ct the remaining equations become

dx
dt

= c p
ω(p)

dp
dt

= 0 (7.19)

This is a Hamiltonian system with Hamiltonian c ω(p). It is interpreted as describing

particle of mass m, position x, momentum p, and energy

E = c ω(p) =
√
|p|2c2 + m2c4 (7.20)

Note that the four-momentum (p0, p) = (E/c, p) is an energy–momentum vector.

Next we make the connection with the corresponding non-relativistic concepts.

For |p|/mc small we have the expansion

E = mc2 + |p|2
2m

+ . . . (7.21)

Thus for small momenta the energy is the same as the non-relativistic energy

|p|2/2m, but shifted by the constant amount mc2. The latter is the energy of the

particle at rest and comes only from the mass.

Also note that according to (7.19) the velocity v = dx/dt of a particle of

momentum p is

v = pc2

E
= pc√|p|2 + m2c2

(7.22)

Note that |v|/c < 1, that is velocities of massive particles are always less than the

speed of light. Eliminating p in favor of v we find instead of (7.20), (7.22)

E = mc2√
1 − |v|2/c2

p = mv√
1 − |v|2/c2

(7.23)

These also reduce to the non-relativistic definitions of energy and momentum for

|v|/c small.

Finally consider free particles of mass m = 0 modeled by solutions of

d2x/dτ 2 = 0 satisfying −dx/dτ · dx/dτ = 0. This still can be written as the Hamil-

tonian system (7.16) but now restricted to solutions with p · p = 0. Energy and

momentum are related by E = |p|c. The velocity is still v = pc2/E, but now |v| = c

so massless particles travel at the speed of light. There is no non-relativistic approx-

imation for these particles. An example of a massless particle is a photon which is a

particle of light. These are quantum mechanical entities, but for some purposes can

be treated as classical particles as we have done here.

The value of c depends on which system of units we are using. Hereafter we

choose units so that c = 1 and the parameter c disappears from our equations.
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7.2.3 Forces

There is no fully consistent theory of interacting classical relativistic particles. Hence

in this framework we do not attempt to use symmetries of a system to identify con-

served quantities such as total momentum, as we did in the non-relativistic case

(section 2.4). Nevertheless one can assign a total four-momentum to a system of rel-

ativistic particles by adding the individual four-momenta. It is an empirical fact that

this total four-momentum is conserved in collisions of elementary particles, even

when particles are created or destroyed. This feature emerges naturally in quantum

field theory.

What we can do now is consider relativistic particles acted on by external forces.

Suppose a massive charged particle is acted on by external electric and magnetic

fields E, B. We combine these fields into a single entity, the electromagnetic field. It

is a matrix of functions Fμν : R4 → R given by

{Fμν} =

⎛⎜⎜⎜⎝
0 −E1 −E2 −E3

E1 0 B3 −B2

E2 −B3 0 B1

E3 B2 −B1 0

⎞⎟⎟⎟⎠ (7.24)

Note that this is anti-symmetric Fμν = −Fνμ.

The electromagnetic force on a particle with world line xμ(τ ) and charge e is

given by the Lorentz force eFμν dxν/dτ where Fμν = ημρFρν . With a parametrization

satisfying −dx/dτ · dx/dτ = m2, the equation of motion of the particle is

d2xμ

dτ 2
= eFμν

dxν

dτ
(7.25)

Note that the value of dx/dτ · dx/dτ is preserved by the time evolution, since if x(τ )

is a solution, then

d

dτ

(
dx

dτ
· dx

dτ

)
= 2

d2x

dτ 2
· dx

dτ
= 2eFμν

dxμ

dτ

dxν

dτ
= 0 (7.26)

by the anti-symmetry of Fμν . The equation (7.25) is the relativistic generalization of

the Lorentz equation (0.2).1

Now suppose that Fμν is derived from a potential Aμ by2

Fμν = ∂μAν − ∂νAμ (7.27)

1 If we reparametrize by σ = mτ , then dx/dσ · dx/dσ = −1 so the worldline is parametrized by proper
time. In this case the equation takes the form

m d2x
dσ2 = eFμν

dxν
dσ

which shows the mass dependence.
2 This relation is naturally expressed in terms of differential forms. If we consider the two-form F =

Fμνdxμdxν and the one-form A = Aμdxμ, then (7.27) says that F = dA, that is F is the exterior
derivative of A.
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where ∂μ = ∂/∂xμ. If A = (�, A), then this says

E = ∂A
∂x0

−∇� B = ∇ × A (7.28)

so we can identify � as the electrostatic potential and A as the magnetic potential.

In addition a time-dependent A induces an electric field ∂A/∂x0.

Line integrals of A over curves C are naturally defined by∫
C

Aμdxμ =
∫ b

a
Aμ(x(τ ))

dxμ

dτ
dτ (7.29)

whenever x : [a, b] → Rd is a parametrization of C. The integral is independent of

parametrization. This makes it natural to consider integrals such as

I(x) =
∫ b

a

[
m

√
− dx

dτ
· dx

dτ
− eAμ(x(τ ))

dxμ

dτ

]
dτ (7.30)

Then the next problem gives an indication of why the Lorentz equation is natural.

Problem 7.1 Let x : [a, b] → R4 be forward timelike parametrized so that
−dx/dτ · dx/dτ = m2. Show that if x maximizes the integral I(x) among all
forward timelike curves between the same endpoints, then x satisfies the Lorentz
equation (7.25) with Fμν given by (7.27).

7.2.4 Lorentz transformations

Now consider the isometries (symmetries) of the spacetime (R4, η). These are maps

y = κ(x) which preserve the metric or equivalently preserve proper time intervals

and distances. Thus they satisfy

(κ(x1) − κ(x2)) · (κ(x1) − κ(x2)) = (x1 − x2) · (x1 − x2) (7.31)

for all x1, x2 ∈ R4. Translations y = x + a are isometries and linear transforma-

tions y = �x, also written yμ = �
μ
νxν , are isometries if �x · �x = x · x. This is

equivalent to

�Tη� = η (7.32)

also written ημν�
μ

μ′�
ν
ν′ = ημ′,ν′ . These are called Lorentz transformations. They

form a group known as the Lorentz group.

It turns out these are all the isometries, that is the general isometry has the form

{a,�}x = �x + a (7.33)

The group of all such transformations is called the Poincaré group denoted P . The

group law is
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{a,�}{a′,�′} = {�a′ + a,��′} (7.34)

It is the semi-direct product of the Lorentz group and the translation group.

The Lorentz group is denoted L or O(1, 3). It inherits a topology as a subset of R16

and is in fact a Lie group. It follows from the defining relation (7.32) that elements of

the group satisfy det� = ±1 and this condition divides the group into disjoint sets

denoted L±. An example of � ∈ L− is a reflection through a hyperplane. The set

L+ contains the identity and is a subgroup. Furthermore (7.32) implies that (�0
0)2 =

1 +∑3
k=1(�k

0)2 so L+ is divided into disjoint sets with ±�0
0 > 1 and denoted

respectively L↑+ and L↓+. Elements of L↓+ involve time reversal. The set L↑+ contains

the identity and is a subgroup known as the proper Lorentz group. Correspondingly

there is a proper Poincaré group P↑
+.

An example of a proper Lorentz transformation is a rotation of the form

�R =
(

1 0

0 R

)
(7.35)

where R is a rotation on R3. Another proper Lorentz transformation is a boost along

the first axis of the form

�β =

⎛⎜⎜⎜⎝
coshβ sinhβ 0 0

sinhβ coshβ 0 0

0 0 1 0

0 0 0 1

⎞⎟⎟⎟⎠ (7.36)

There are also boosts in any spacelike direction. It turns out that any element of

� ∈ L↑+ can be written in the form

� = �R1�β�R2 (7.37)

for some R1, R2,β. Since each of these special transformations can be continuously

connected to the identity, it follows that any element of L↑+ can be continuously

connected to the identity and hence the group is connected.

Physical laws are differential equations built from the metric η and will have the

proper Poincaré transformations as a symmetry. This means that the proper Poincaré

group acts on the space of solutions. More precisely this is true when there are no

forces external to the system we are describing. For a simple example suppose x(τ ) =
pτ+b is a solution of dx2/dτ 2 = 0 describing a free particle of energy–momentum p

with mass m so−p·p = m2 and p0 > 0. If {a,�} is a proper Poincaré transformation,

then the transformed world line x′(τ ) ≡ �x(τ ) + a = (�p)τ + �b + a is also a

solution, now with energy–momentum p′ = �p and still satisfying −p′ · p′ = m2

and (p′)0 > 0.

The physical interpretation of Poincaré transformations can be made in either an

active sense or a passive sense. In the active sense they carry physical configurations

to different physical configurations. In the passive sense they describe the same



103 7.3 Classical free fields
�

physical system in new coordinates. For boosts the new coordinates are associated

with an observer in relative motion with respect to the original coordinates, hence

the term “relativity.”

Problem 7.2 Show that if �Tη� = η, then the same holds for �−1,�T .

Problem 7.3 Show that if qμ = �
μ
νpν , then qμ = pν(�−1)νμ.

Problem 7.4 Show that the boost �β takes a particle at rest to a particle with
velocity v = (tanhβ, 0, 0).

7.3 Classical free fields

We now begin a discussion of various fields on spacetime. Mathematically these

are functions on spacetime. Physically they model some sort of local disturbance,

often not directly observable. Although we introduce them in a classical context the

complete physical interpretation involves quantum mechanics.

7.3.1 Scalar fields

A scalar field φ is a function φ : R4 → R, which is a solution of the Klein–Gordon

equation

(−�+ m2)φ = 0 (7.38)

Here � = ∂ · ∂ is the Laplacian for the Minkowski metric, called the d’Alembertian.

Written out with ∂μ = ∂/∂xμ it is

� = ημν∂μ∂ν = −∂2
0 + ∂2

1 + ∂2
2 + ∂2

3 (7.39)

The parameter m is called the mass. This is related to the definition of mass for

particles (think pμ ↔ −i∂μ) but we do not make the connection precise until we

quantize.

There is a basic existence and uniqueness theorem which says that given smooth

functions f , g on R3 there is a unique smooth function u(x) = u(x0, x) on R4 such

that (−� + m2)u = 0 with intial values u(0, x) = f (x) and (∂0u)(0, x) = g(x). In

addition influence propagates with unit speed. We explore some variations of these

facts in the following.
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We also note Green’s identity for the d’Alembertian, which says that for suitable

functions u, v ∫
[a,b]×R3

u(−�+ m2)v − v(−�+ m2)u

=
∫

x0=b
u∂0v − v∂0u −

∫
x0=a

u∂0v − v∂0u
(7.40)

This is proved by integration by parts.

Problem 7.5 Show that if φ satisfies the Klein–Gordon equation, the Poincaré
transformed function φa,�(x) ≡ φ(�−1(x − a)) is also a solution.

7.3.2 Charged scalar fields

The next simplest possibility is a charged scalar field φ of mass m, which is a function

from R4 to R2. We write φ = (φ1,φ2) and require each component to solve the

Klein–Gordon equation: (−�+ m2)φi = 0.

By Green’s identity if φ = (φ1,φ2) is a solution, then

Q =
∫

x0=t
φ1∂

0φ2 − φ2∂
0φ1 (7.41)

is independent of t and is called a charge. There is an associated charge-current

density j = (j0, j) = (j0, j1, j2, j3) defined by

jμ(φ) = φ1∂
μφ2 − φ2∂

μφ1 (7.42)

This satisfies the conservation law ∂μjμ = ∂0j0 + ∇ · j = 0 and the conservation of

Q = ∫x0=t j0 can also be understood from

dQ

dt
=
∫

x0=t
∂0j0 = −

∫
x0=t

∇ · j = 0 (7.43)

Multiples of (j0, j) will be identified with the actual electric charge density and

current density when the field φ is coupled to the electromagnetic field.

It will also be useful to write the field as a single complex valued function φ =
(φ1 + iφ2)/

√
2. In this case the current is given by

jμ = −i(φ̄∂μφ − φ∂μφ̄) (7.44)

These considerations generalize to fields φ : R4 → Rn with each component

satisfying (−�+ m2)φα = 0. In this case there are n(n − 1)/2 conserved charges

Qαβ =
∫

x0=t
φα∂

0φβ − φβ∂0φα (7.45)
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7.3.3 Dirac fields

Next consider fields which solve the Dirac equation. The equation is based on a

first-order linear differential operator whose square is the d’Alembertian.

The starting point is the Clifford algebra for Minkowski space. The algebra is gen-

erated by complex matrices γ μ with μ = 0, 1, 2, 3 satisfying the anti-commutation

relations3

{γ μ, γ ν} = 2ημνI (7.46)

For a ∈ R4 we define

γ · a = γ μaμ = γ 0a0 + γ 1a1 + γ 2a2 + γ 3a3 (7.47)

These satisfy

{γ · a, γ · b} = 2ημνaμbν = 2a · b (7.48)

In particular (γ · a)2 = a · a and thus γ · a provides a linear square root of the

Minkowski inner product. Note also that (γ 0)2 = −I and (γ k)2 = I for k = 1, 2, 3.

There are various possibilities for the gamma matrices. One possible choice is the

4 × 4 matrices

γ 0 = −i

(
0 I

I 0

)
γ k = −i

(
0 σk

−σk 0

)
(7.49)

where σk are the Pauli matrices (4.63). These satisfy (γ 0)∗ = −γ 0 and (γ k)∗ = γ k

and we usually assume we have a representation which has this property.

If γ̃ μ is another choice of 4 × 4 gamma matrices, then there is a nonsingular matrix

M such that4

γ̃ μ = Mγ μM−1 (7.50)

The operator γ · ∂ = γ μ∂μ has the desired property

(γ · ∂)2 = ∂ · ∂ = � (7.51)

The Dirac equation is now defined by

(γ · ∂ + m)ψ = 0 (7.52)

for some function ψ : R4 → C4 called a spinor field. Applying the operator

(−γ · ∂ + m) we see that any solution of the Dirac equation also satisfies the

Klein–Gordon equation (−�+ m2)ψ = 0. Hence m is again a mass.

3 The anticommutator is {A, B} = [A, B]+ = AB + BA.
4 See for example Miller (1972: 363).
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Next let β = iγ 0 and define an indefinite inner product on C4 by u, v → u†βv.

Here if u is a column vector, then u† is the conjugate transpose row vector so

u†βv =
∑
ab

ūaβabvb (7.53)

The γ matrices are skew-adjoint with respect to this inner product

(γ μu)†βv = −u†β(γ μv) (7.54)

Green’s identity for the Dirac operator says∫
[a,b]×R3

χ†β(γ · ∂ + m)ψ − ((γ · ∂ + m)χ )†βψ

=
∫

x0=b
χ†β(γ 0ψ) −

∫
x0=a

χ†β(γ 0ψ)
(7.55)

Then if ψ is a solution of the Dirac equation, the quantity

Q =
∫

x0=t
ψ†β[iγ 0]ψ =

∫
x0=t

|ψ |2 (7.56)

is positive definite and independent of t. A multiple will be interpreted as the electric

charge. The associated conserved current

jμ = ψ†β[iγ μ]ψ (7.57)

satisfies Q = ∫x0=t j0 and ∂μjμ = 0.

Problem 7.6

1. Show that Tr(γ μγ ν) = ημνTr(I).
2. Show that the γ μ are linearly independent.

7.3.4 The electromagnetic field

We have already noted that the electromagnetic field can be described by a matrix

of functions Fμν . If the total charge density ρ and the total current density j are

combined into a spacetime vector field j = (j0, j1, j2, j3) = (ρ, j), then Maxwell’s

equations can be written in the form5

∂σFμν + ∂μFνσ + ∂νFσμ = 0

∂νFμν = jμ
(7.58)

In this form the necessity of the charge conservation law ∂μjμ = 0 is transparent.

5 In terms of the two-form F = Fμνdxμdxν , the one-form j = jμdxμ, the exterior derivative d, and its
adjoint δ these say dF = 0 and δF = j.
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In a simply connected region the first equation says that

Fμν = ∂μAν − ∂νAμ (7.59)

for some functions Aμ.6 We identify A = (A0, A) with the electric potential and

the magnetic potential as in section 7.2.3. The potential can be assumed to satisfy

∂μAμ = 0 (see problem 7.7). Then Maxwell’s equations are replaced by the pair of

equations

�Aμ = −jμ ∂μAμ = 0 (7.60)

It is just the wave equation with a source and a constraint. This is the equation we

will eventually quantize (for j = 0).

Problem 7.7 In R4 let Fμν = ∂μAν − ∂νAμ.

1. Show that if A′μ = Aμ + ∂μχ for any smooth function χ , then Fμν = ∂μA′ν −
∂νA′μ.

2. Show that one can choose χ so that ∂μA′μ = 0.

Problem 7.8 Show that if Aμ solves (7.60) with j = 0, then so does A′μ(x) =
(�−1)νμAν(�−1(x − a)).

7.4 Interacting classical fields

7.4.1 The gauge principle

The equations (7.58) or (7.60) show how the charge-current density acts as the source

of the electromagnetic field. But the electromagnetic field also affects charges and

in particular charged fields. This occurs in a geometrically natural way as we now

explain.

Let us start with the charged scalar field whose configuration is a function u :

R4 → Rn. Just as the vector space R4 is not the best model for spacetime, yielding

that honor to a manifold, so the vector space Rn is not the best model for charge

space. We continue to treat it as an inner product space, but now do not single out

any special oriented orthonormal basis. Instead we consider all possible oriented

orthonormal bases denoted {eα}, and instead of a fixed vector in Rn we consider its

expression v =∑α vαeα in each of these bases. The bases are related to each other

by an element of the rotation group SO(n) in Rn and hence so are the components

6 Every closed form dF = 0 is exact F = dA.
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relative to each choice of basis. Thus what we want is an assignment to each oriented

orthonormal basis {eα} a vector v ∈ Rn such that if

eβ =
∑
α

Rαβe′α (7.61)

for some R ∈ SO(n), then

v′α =
∑
β

Rαβvβ (7.62)

For then we have ∑
β

vβeβ =
∑
α

v′αe′α (7.63)

Next we want to allow the possibility of choosing a different basis at each point

in spacetime. Thus we consider functions from x ∈ R4 to orthonormal bases {eα(x)}.
Two such functions are related by a function R : R4 → SO(n) such that

eβ (x) =
∑
α

Rαβ (x)e′α(x) (7.64)

The function R(x) is known as a (local) gauge transformation and is assumed to be

smooth. Now if our charged scalar field is expressed as
∑
β uβ (x)eβ (x) and also as∑

α u′α(x)e′α(x), then

u′α(x) =
∑
β

Rαβ (x)uβ (x) (7.65)

This is the structure of a trivial SO(n) vector bundle. If we allow R4 to be a man-

ifold and allow different choices of bases in Rn in different open subsets of the

manifold, we would have the general definition of an SO(n) vector bundle. In the

terminology of vector bundles the functions u(x) are sections of the vector bundle

in a particular trivialization and the gauge transformations R(x) are the transition

functions for a change of trivialization.

Let us specialize now to the case n = 2 in which case φ : R4 → R2 is the charged

scalar field and the gauge group is SO(2). We regard R2 as the complex numbers C.

Then SO(2) is identified with the group U(1), the complex numbers of modulus one,

under the identification (
cos θ − sin θ

sin θ cos θ

)
↔ eiθ (7.66)

Thus we consider families of functions φ : R4 → C assigned to oriented orthonor-

mal bases in C (that is choices of the real axis) such that if two bases are related by

the gauge transformation eiθ(x), then the functions are related by

φ′(x) = eiθ(x)φ(x) (7.67)
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A family of functions with this transformation law is called a section of a complex

line bundle.

Next we want to write a differential equation for a section of a complex line bun-

dle. The equation will be expressed in terms of a particular function representing the

section, but should be natural in the sense that it should not matter which function

we take.

To build such an equation we need the notion of a connection. A connection is

given by a family of functions Aμ each associated with choice of basis. Under a

change of basis given by eiqλ(x) the connection changes (by definition) by

A′μ(x) = Aμ(x) + ∂μλ(x) (7.68)

Here we have inserted a constant q in the transformation eiqλ(x) to allow a different

weighting for fields and connections.

The connection determines a covariant derivative ∂μ − iqAμ. If φ′ = eiqλφ, then

(∂μ − iqA′μ)φ′ = (∂μ − iqAμ − iq∂μλ)eiqλφ

= eiqλ(∂μ − iqAμ)φ
(7.69)

Thus the functions (∂μ − iqAμ)φ give a new section of the complex line bundle.

Now we can define a differential equation for the charged field φ : R4 → C by

treating it as a section of a complex line bundle. Take the Klein–Gordon equation

and replace the derivatives by covariant derivatives. Then we have

(−(∂ − iqA) · (∂ − iqA) + m2)φ = 0 (7.70)

The interpretation is that the connection Aμ is the electromagnetic potential, that the

equation is describing the time evolution of the charged field φ in the presence of A,

and that q is the charge measuring the strength of the coupling.

Recall that potentials A, A′ related by a gauge transformation (7.68) have the same

field strength Fμν = ∂μAν − ∂νAμ. Thus it is possible to regard the different ver-

sions of (7.70) as describing the same physical situation. The field strength Fμν
also has a natural interpretation in the vector bundle language. Namely it is the

curvature of the connection defined as the commutator of the covariant derivative.

We have

− iqFμν = [(∂μ − iqAμ), (∂ν − iqAν)] (7.71)

This all generalizes to SO(n) and indeed any Lie group G. Suppose G is repre-

sented by n × n real or complex matrices. A section of a G-bundle is a family of

functions φ : R4 → Rn or Cn connected by gauge transformations g : R4 → G by

φ′(x) = g(x)φ(x) (7.72)
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Let G be Lie algebra of G; for example if G = SO(n), then G is the skew-symmetric

n × n matrices. A connection or gauge potential is given by a family of functions

Aμ : R4 → G which are related by7

A′μ(x) = g(x)Aμ(x)g−1(x) − (∂μg)(x)g−1(x) (7.73)

The covariant derivative ∂μ + Aμ again maps sections to sections in the sense that

(∂μ + A′μ)φ′ = g(∂μ + Aμ)φ (7.74)

One can form a dynamical equation by

(−(∂ + A) · (∂ + A) + m2)φ = 0 (7.75)

This describes a field with a generalized charge. The curvature is now

Fμν = [(∂μ + Aμ), (∂ν + Aν)]

∂μAν − ∂νAμ + [Aμ, Aν]
(7.76)

and it is interpreted as the field strength of the potential. Equivalent connections A, A′

do not now give the same field strength. We have instead F′μν = gFμνg−1.

7.4.2 Systems

Now we can put together some of our equations to form complete systems in which

each field has a dynamics and influences the other fields.

To start, consider a system consisting of a charged Dirac field ψ : R4 → C4 inter-

acting with an electromagnetic field A : R4 → R. In this case the charge-current

density jμ = qψ†β[iγ μ]ψ is the source for the electromagnetic field in Maxwell’s

equations (7.58). The influence of A on ψ is given by replacing the ordinary

derivative by the covariant derivative in the Dirac equation. Thus we have

(γ · (∂ − iqA) + m)ψ = 0

∂νFμν = qψ†β[iγ μ]ψ
(7.77)

Note that the same charge q is used in both equations. Because of this the system of

equations can be derived from a simple variational principle. Define an action by

S(ψ , A) =
∫ t1

t0

∫
R3

(
ψ†β(γ · (∂ − iqA) + m)ψ + 1

4
FμνFμν

)
dx (7.78)

The least action principle says that dynamical fields must minimize the action and

these turn out to be exactly the fields satisfying (7.77).

7 A′ is again in the Lie algebra G. To see that vμ(∂μg)(x)g−1(x) is in G for any x, v ∈ R
4 let x(t) be a

curve in R
4 with x(0) = x, x′(0) = v. Then γ (t) = g(x(t))g−1(x) is a curve in G with γ (0) = I, γ ′(0) =

vμ(∂μg)(x)g−1(x) and hence the latter is in G.
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Next consider a charged scalar field φ : R4 → C interacting with an electro-

magnetic potential A. The influence of A on the φ field is given by taking covariant

derivatives in the Klein–Gordon equation as in (7.75). We complete the system by

taking jμ = −iq(φ̄∂μφ−φ∂μφ̄) as the source for the electromagnetic field. Thus we

have the system:

(−(∂ − iqA) · (∂ − iqA) + m2)φ = 0

∂νFμν = −iq(φ̄∂μφ − φ∂μφ̄)
(7.79)

Usually one also adds a term −2q2Aμ|φ|2 to the right side of the second equation.

Then the equations can be derived from a least action principle with action

S(φ, A) =
∫ t1

t0

∫
R3

(
1

2
(∂ − iqA)φ · (∂ − iqA)φ + m2|φ|2 + 1

4
FμνFμν

)
dx (7.80)

The equations were constructed in accordance with the gauge principle for gauge

group SO(2) = U(1). For a general gauge group G we would replace φ or ψ by a

vector valued function and A by a Lie algebra valued function. The actions (7.80) or

(7.78) still hold with Fμν now given by (7.76) and 1
4 FμνFμν replaced by the gauge

invariant 1
4 tr(FμνFμν). Variation of the action leads to a system of equations similar

to (7.77) or (7.79), but even more nonlinear. These are known as nonabelian gauge

theories. With the gauge group SU(3)×SU(2)×U(1) a quantized version provides a

model for the strong, weak, and electromagnetic interactions of elementary particles,

known as the standard model.

These are difficult systems of nonlinear equations. A simpler case is a single scalar

field which interacts with itself according to the equation

(−�+ m2)φ + 4λφ3 = 0 (7.81)

with λ > 0. This can be derived from the action

S(φ) =
∫ t1

t0

∫
R3

(
1

2
(∂φ · ∂φ + m2φ2) + λφ4

)
(7.82)

Problem 7.9 Consider smooth functions φ(t, x) such that for t0 ≤ t ≤ t1 the
function φ(t, ·) has compact support and so φ(t0, x) = f0(x),φ(t1, x) = f1(x) Show
that if φ(t, x) minimizes the action (7.82) among all such functions, then it satisfies
the equation (7.81).

7.5 Fundamental solutions

In this last section we depart from general considerations to treat a specific problem.

We define and study certain fundamental solutions of the Klein–Gordon equation.
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For any x ∈ R4 define

J±(x) = {y ∈ R4 : (x − y) · (x − y) ≤ 0, ±(y0 − x0) ≥ 0} (7.83)

This is the causal future or past of the point x, that is the point which can be reached

by a future or past directed timelike curve. For any subset A ⊂ R4 we define

J±A = ∪x∈AJ±x (7.84)

Theorem 7.2 Then there exist linear operators E± : C∞0 (R4) → C∞(R4) such that

(−�+ m2)(E±f ) = f

supp (E±f ) ⊂ J±(supp f )
(7.85)

Proof We first define a distribution E±0 by

E±0 (x) = (2π )−4
∫
�±×R3

eip·x

p · p + m2
dp (7.86)

where �± is the contour R ± iα with α > 0, and we use the Lorentz inner product
in the exponential. The Fourier transform is in the sense of distributions so for f ∈
C∞0 (R4)

< E±0 , f >= (2π )−2
∫
�±×R3

f̂ (−p)

p · p + m2
dp (7.87)

where the Fourier transform is with the Lorentz inner product

f̂ (p) = (2π )−2
∫

R4
e−ip·xf (x)dx (7.88)

Note that p · p+m2 = −(p0)2 + |p|2 +m2 has zeros at p0 = ±ω(p), which we avoid
by the choice of the contour �±. The function f̂ is an entire function which is rapidly
decreasing in real directions.. Thus < E±0 , f > is well-defined and independent of
the choice of α.

The operator is defined by the convolution E±f = E±0 ∗ f , which means

(E±f )(x) =< E±0 , f (x − ·) >. Replacing f by f (x − ·) means replacing f̂ (p) by

e−ip·xf̂ (−p) and so we obtain

(E±f )(x) = (2π )−2
∫
�±×R3

eip·xf̂ (p)

p · p + m2
dp (7.89)

It satisfies (−� + m2)(E±f )(x) = f (x) since after taking the derivatives we get
(2π )−2

∫
�±×R3 eip·xf̂ (p)dp in which we can take α = 0 to identify f (x).

The statement about supports is equivalent to supp E±0 ⊂ J±(0). We consider E+0
and first show that supp E+0 is contained in the set x0 ≥ 0. Thus we want to show
that if suppf ⊂ {x0 < 0}, then < E+0 , f >= 0. If x0 < 0, then | exp(−ip · x)| =
exp(−Im p0x0) is bounded in Im p0 < 0 and so f̂ (p) is bounded in Im p0 < 0.
Then f̂ (−p) is bounded in Im p0 > 0, and in the formula (7.87) we can complete the
contour �+ in the upper half plane and get zero.
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Finally we use the fact that E+0 is Lorentz invariant, E+0 (�x) = E+0 (x). It follows
that if E+0 (x) vanishes on a neighborhood of a point x, then it vanishes on a neigh-
borhood of any point �x in the orbit of x. Hence we can enlarge the region where it
vanishes from {x0 < 0} to �{x0 < 0}. The latter is the complement of J+(0), hence
the support of E+0 is in J+(0). The argument for E−0 (x) is similar.

From these fundamental solutions we construct the propagator8

E = E+ − E− (7.90)

If f ∈ C∞0 (R4), then u = Ef is a C∞ solution of the Klein–Gordon equation with the

property that for any t the function u(t, ·) has compact support. Such a solution will

be called a regular solution.

It will be useful to have an alternate expression for (Ef )(x). It is given by the

expression (7.89) but now integrated over (�+−�−)×R3. The p0 contour (�+−�−)

can be shrunk down to circles around p0 = ±ω(p) and evaluated. After a change of

variables we have

(Ef )(x) = i

2π

∫
R3

ei(−ω(p)x0+p·x) f̂ (ω(p), p)
dp

2ω(p)

− i

2π

∫
R3

ei(ω(p)x0−p·x) f̂ (−ω(p),−p)
dp

2ω(p)

(7.91)

Problem 7.10 Show that every regular solution of the Klein–Gordon equation has
the form u = Ef for some f ∈ C∞0 (R4)

Notes on chapter 7: Special relativity is best understood as general relativity with

a special metric. References are Misner et al. (1973) and Sachs and Wu (1977).

For gauge theories see Drechsler and Mayer (1977) or Frankel (2004).

It is also common to use the metric η′ = −η instead of η. Then the Klein–Gordon

equation (−�η + m2)φ = 0 becomes (�η′ + m2)φ = 0. The Dirac matrices γ μ

are replaced by (γ ′)μ = iγ μ. The Dirac equation (γ μ∂μ + m)u = 0 becomes

(−i(γ ′)μ∂μ + m)u = 0.

8 Not to be confused with the Feynman propagator.



8 Scalar particles and fields

In this chapter we develop a quantum mechanical description of both scalar particles

and scalar fields, in each case without interaction. In fact there is a deep connection

between particles and fields. Mathematically it is reflected in the fact that field oper-

ators naturally act on a multiparticle Hilbert space. Physically it is the fact that fields

and particles are complementary manifestations of the same underlying reality. The

prime example is electromagnetism which exists as electric and magnetic fields or

as massless spin 1 particles called photons. This is taken up in the next chapter, after

we treat the simpler case of scalars.

As we develop this and other relativistic field theories we will encounter states

with arbitrarily negative energies. If present, these would lead to serious instabilities

when our system is coupled to other systems. Our system could serve as an infinite

energy source by dropping to lower and lower levels. This is completely unphysical

so one of our tasks is to find a consistent way to discard or reinterpret the negative

energy states.

8.1 Scalar particles

8.1.1 Canonical quantization

We consider a single free relativistic particle of mass m in the spacetime (R4, η)

and start with a canonical quantization procedure. Recall from section 7.2.2 that in

reduced form the phase space is R3 ×R3 and the Hamiltonian for a particle of mass

m is H(x, p) = ω(p) = √|p|2 + m2. Correspondingly we take the Hilbert space

L2(R3, dx) and the representation of the CCR

x̂i = [xi] p̂i = −i∂/∂xi (8.1)

just as in (3.11). The quantum Hamiltonian is then

H =
√
|p̂|2 + m2 =

√
−�+ m2 (8.2)
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This is defined in terms of the Fourier transform by H = F−1[ω(p)]F and time

evolution is

e−iHt = F−1[e−iω(p)t]F (8.3)

Alternatively we can work directly in momentum space. Then the Hilbert space is

L2(R3, dp), the position and momentum operators are

x̂i = i∂/∂pi p̂i = [pi] (8.4)

The Hamiltonian is

H =
√
|p̂|2 + m2 = [ω(p)] (8.5)

and time evolution is e−iHt = [e−iω(p)t]. The two constructions are of course unitarily

equivalent via the Fourier transform.

Problem 8.1 (Non-relativistic limit) If we reinstate the speed of light c as a
parameter, then ω(p) is replaced by ωc(p) = √|p|2c2 + m2c4. Show that for
ψ ∈ L2(R3, dp)

L2 − lim
c→∞ eimc2te−iωc(p)tψ(p) = e−i|p|2t/2mψ(p) (8.6)

Thus when adjusted by the phase factor eimc2t the relativistic dynamics converges
to the non-relativistic dynamics.

8.1.2 Quantization from Klein-Gordon

Another way to approach quantization is to start with the Klein–Gordon equation

(−� + m2)φ = 0 and try to interpret solutions as wave functions. To find solutions

take the partial Fourier transform

φ̃(t, p) = (2π )−3/2
∫

e−ip·xφ(t, x)dx (8.7)

This satisfies (
∂2

∂t2
+ |p|2 + m2

)
φ̃ = 0 (8.8)

and has solutions

φ̃(t, p) = e−iω(p)tφ+(p) + eiω(p)tφ−(p) (8.9)

for any φ±(p). Hence a general complex valued solution of the Klein–Gordon

equation is

φ(t, x) = (2π )−3/2
∫

eip·x (e−iω(p)tφ+(p) + eiω(p)tφ−(p)
)

dp (8.10)
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with φ±(p) determined by a pair of initial conditions. Real solutions have φ−(p) =
φ+(−p).

For the quantum interpretation we specialize to positive energy solutions which

have φ−(p) = 0. Then the solution is determined by a single complex valued

initial condition. The solution (8.9) with initial condition ψ(p) ∈ L2(R3, dp) is

ψ(t, p) = e−iω(p)tψ(p) which agrees with our momentum space quantization. The

solution (8.10) with initial condition ψ(x) ∈ L2(R3, dx) is given by

ψ(t, x) = (2π )−3/2
∫

eip·xe−iω(p)tψ̃(p)dp (8.11)

which agrees with our configuration space quantization (8.3).

Now consider the effect of spacetime translations by a = (a0, a) ∈ R4 and rota-

tions R ∈ SO(3). The transformation {a, R} on R4 forms a subgroup of the proper

Poincaré group; we exclude boosts for the time being. Define a representation of this

subgroup on L2(R3, dp) by

(u0(a, R)ψ)(p) = ei(ω(p)a0−p·a)ψ(R−1p) (8.12)

These operators are unitary since the Lebesgue measure is invariant under rotations

and one checks that u0(a, R)u0(a′, R′) = u0(a + Ra′, RR′).
On L2(R3, dx) we define a representation

û0(a, R) = F−1 u0(a, R) F (8.13)

Then û0(a, R) implements the action of these transformations on our wave functions.

If ψ(t, x) is a complete wave function given by (8.11), then(
û0(a, R)ψ(t, ·)

)
(x) = ψ(t − a0, R−1(x − a)) (8.14)

Note that the representation of the rotation group corresponds to spin zero.

8.1.3 Covariant quantization

There is a third way to arrive at the quantization of a single relativistic particle.

This begins with the idea that associated with any isolated system there should be a

unitary representation of the proper Poincaré group describing the effect of Poincaré

transformations. Since time translation is included the representation contains the

complete dynamics of the system. Elementary particles are supposed to correspond

to irreducible representations. These are labeled by two parameters interpreted as

mass and spin. Here we want to find the irreducible representation for particle of

mass m and spin zero.

Working in momentum space R4 note that the mass shell

V+
m = {p = (p0, p1, p2, p3) ∈ R4 : p · p = −m2, p0 > 0} (8.15)
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is invariant under the proper Lorentz group L↑+. (In fact V+
m is the orbit of the point

(m, 0, 0, 0).) Then we can define a representation of the proper Poincaré group P↑
+ on

functions on V+
m by

(u(a,�)ψ)(p) = e−ip·aψ(�−1p) (8.16)

where p · a = −p0a0 + p · a. One checks that

u(a,�)u(a′,�′) = u(a +�a′,��′) (8.17)

There is an essentially unique measure on V+
m which is invariant under the Lorentz

group which we denote μm. Then u(a,�) is a unitary representation of the proper

Poincaré group on L2(V+
m ,μm) and it turns out to be irreducible.

We can be more specific about the measure μm. First note that the map

φ(p) = (ω(p), p) (8.18)

from R3 to V+
m provides a global set of coordinates for V+

m . For measurable B ⊂ R3

we define

μm(φ(B)) =
∫

B

dp
2ω(p)

(8.19)

Then ψ → ψ ◦ φ is a unitary map from L2(V+
m ,μm) to L2(R3, dp/2ω(p)) and the

representation (8.16) becomes the representation on L2(R3, dp/2ω(p)) given by

(u(a,�)ψ)(p) = e−iφ(p)·aψ(φ−1�−1φ(p)) (8.20)

Problem 8.2 Check that the measure dp/2ω(p) on R3 is invariant under Lorentz
transformations p → φ−1�−1φ(p). (Hint: Use the decomposition (7.37).)

Problem 8.3 Check that u(a,�) as defined in (8.16) is a unitary representation of
the proper Poincaré group on L2(V+

m ,μm).

8.1.4 Comparison

We now compare the different approaches. In the first two the Hilbert space can be

taken as H0 = L2(R3, dp) the same as for non-relativistic problems. In this case there

are position operators x̂i = i∂/∂pi and a representation u0(a, R) of spacetime transla-

tions and rotations. In the third approach the Hilbert space is H = L2(R3, dp/2ω(p))

and there is a representation of the proper Poincaré group u(a,�).

These two possibilities are equivalent via the unitary operator V : H0 → H
defined by

(Vψ)(p) = √2ω(p)ψ(p) (8.21)
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This connects the representations since

V−1u(a, R) V = u0(a, R) (8.22)

If we want a representation of the full Poincaré group on H0, we can extend the

representation on the subgroup by defining

u0(a,�) ≡ V−1u(a,�) V (8.23)

If we want a position operator on H, we can take the Newton–Wigner operator

Xi = V x̂i V−1 (8.24)

Note that ifψ ∈ H0 is strictly localized (that is if F−1ψ has compact support), it is

not true in general that u0(0,�)ψ is strictly localized. Strict localization of particles

is not a Lorentz invariant concept. We will do better with fields.

Problem 8.4 Find explicit expressions for Xi and u0(a,�).

8.1.5 Many particles

Now suppose we want to describe many free bosons of mass m and spin zero. The

Hilbert space would be the Fock space F+(H0) or F+(H). The time evolution would

be given by the one-parameter unitary group

e−iHt = �([e−iω(p)t]) (8.25)

where � is defined in (5.48). The Hamiltonian is the generator

H = d�([ω(p)]) =
∫
ω(p)a∗(p)a(p)dp (8.26)

Here the second expression is a bilinear form, a(p) is defined as in (5.74) (now in

momentum space), and the identity can be verified as in lemma 5.5. There is also a

representation of the Poincaré group which on the relativistic Fock space F+(H) is

U(a,�) = �(u(a,�)) (8.27)

8.2 Scalar fields

8.2.1 Hamiltonian formulation

In section 7.3.1 we introduced the classical scalar field φ(t, x) on R4 satisfying the

Klein–Gordon equation
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(−�+ m2)φ = 0 (8.28)

This can also be written as a pair of first-order equations for functions φ(x),π (x)

dφ

dt
= π

dπ

dt
= −(−�+ m2)φ (8.29)

This is an infinite-dimensional Hamiltonian system with the Hamiltonian

H(φ,π ) = 1

2

∫
R3

(π2(x) + (∇φ(x))2 + m2φ2(x))dx (8.30)

That is we have the functional derivatives ∂H/∂π(x) = π (x) and ∂H/∂φ(x) =
((−�+m2)φ)(x). We are computing these derivatives formally, although they could

be given a rigorous meaning without too much trouble.

In terms of the pair � = (φ,π ) the Hamiltonian can be written

H(�) = 1

2
(�, Ĥ�) (8.31)

where the inner product is in (real) L2(R3) ⊕ L2(R3) and where

Ĥ =
(

(−�+ m2) 0

0 I

)
(8.32)

The equations become with ∇� = (∂/∂φ, ∂/∂π )

d�

dt
= J∇�H = JĤ� J =

(
0 I

−I 0

)
(8.33)

Let �t be the solution of this equation with �0 = � ∈ S(R3) × S(R3). Time

evolution preserves this space and �t is linear in � so we can write

�t = T(t)� (8.34)

where T(t) is a linear operator on S(R3)×S(R3). It satisfies T(t)T(s) = T(t+ s) and

T(0) = I. An explicit expression for T(t) is given below.

Since we have a linear Hamiltonian system there is a symplectic form invariant

under time evolution, see the remarks at the end of section 2.3. It is given by

σ (�1,�2) = (�1, J�2) = (φ1,π2) − (π1,φ2) (8.35)

The invariance σ (�1,t,�2,t) = σ (�1,�2) follows from Green’s identity (7.40).

Alternatively note that JĤ is skew-symplectic

σ (JĤ�1,�2) = (Ĥ�1,�2) = (�1, Ĥ�2) = −σ (�1, JĤ�2) (8.36)

Hence
d

dt
σ (�1,t,�2,t) = σ (JĤ�1,t,�2,t) + σ (�1,t, JĤ�2,t) = 0 (8.37)

which gives the invariance.
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Problem 8.5 With ω̂ = √−�+ m2 show that

T(t) =
(

cos(ω̂t) ω̂−1 sin(ω̂t)
−ω̂ sin(ω̂t) cos(ω̂t)

)
(8.38)

Problem 8.6 Show that T(t) commutes with JĤ.

8.2.2 Canonical quantization

To quantize this Hamiltonian system by our canonical procedure we would begin

with a representation of the CCR which we interpret as

[φ(x),φ(y)] = [π (x),π (y)] = 0

[φ(x),π (y)] = iδ(x − y)
(8.39)

Then put these operators in the classical Hamiltonian (8.30) to get a quantum

Hamiltonian H. Then define field operators in the Heisenberg picture at time t by

φ(t, x) = eiHtφ(x)e−iHt π (t, x) = eiHtπ (x)e−iHt (8.40)

However H constructed in this manner is rather ill-defined.

For an alternate strategy recall that the operators φ(t, x),π (t, x) should satisfy

the classical dynamical equations (Ehrenfest’s theorem). Thus we look for operator

valued solutions of (8.29) which satisfy the CCR (8.39) at time zero.

Furthermore we treat the fields as distributions and consider averaged fields

φ(h) =
∫
φ(x)h(x)dx π (h) =

∫
π (x)h(x)dx (8.41)

where the test functions h are in the (real) Schwartz space S(R3). The interpretation

of the CCR is now that φ(h),π (h) should be symmetric operators on a dense invariant

domain in some Hilbert space satisfying

[φ(h),φ(g)] = [π (h),π (g)] = 0

[φ(h),π (g)] = i(h, g)
(8.42)

The dynamical equations are also interpreted in the sense of distributions.

We also consider the pair� = (φ,π ). As a test function for the pair we take a pair

F = (f , g) of elements in S(R3). Then we form the particular combination

σ (�, F) = φ(g) − π (f ) (8.43)

corresponding to the symplectic form. Then the CCR (8.42) imply

[σ (�, F1), σ (�, F2)] = iσ (F1, F2) (8.44)
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Conversely if we have a representation σ (�, F) of (8.44), then the operators φ(g) =
σ (�, (0, g)) and π (f ) = −σ (�, (f , 0)) satisfy (8.42). The problem is now to find a

distribution solution of d�/dt = JĤ� with initial conditions satisfying (8.44).

If we have a representation of the CCR, then a formal solution is �t = T(t)�

and we take this as the definition of �t interpreted in the sense of distributions. Thus

taking into account the invariance of the symplectic form on functions we define

σ (�t, F) = σ (�, T(−t)F) (8.45)

Taking into account that it is skew-symplectic, we define JĤ� as a distribution by

σ (JĤ�, F) = −σ (�, JĤF) (8.46)

Then we have

d

dt
σ (�t, F) = d

dt
σ (�, T(−t)F) = −σ (�, JĤT(−t)F)

= −σ (�, T(−t)JĤF) = σ (JĤ�t, F)
(8.47)

which is the result we want.

There are many quantizations corresponding to different representations of the

CCR. In the finite-dimensional case it does not matter which we take since (as it

turns out) they are all unitarily equivalent and so physically equivalent. In the present

infinite-dimensional case this is not true and different choices correspond to different

physics. Which should we choose?

We have two criteria. The first is that we want a representation which differs only

locally from empty space. This is the appropriate choice to describe a finite number

of free elementary particles. For statistical mechanics or for interacting fields we

would want to make a different choice. The second criterion is that the energy (that

is the spectrum of the Hamiltonian) should be positive.

Our choice is based on a Fock space for a free relativistic particle, thus realiz-

ing the field-particle duality. As in section 8.1.5 we take the symmetric Fock space

F+(H0) where H0 = L2(R3, dp). If a∗, a are the creation and annihilation operators

on this Fock space, we define on the domain D0 of finite particle vectors (see (5.59))

σ (�, F) = i(a(K0F) − a∗(K0F)) (8.48)

where with ω(p) = √|p|2 + m2

K0(f , g) = 1√
2

(
ω1/2 f̃ + iω−1/2g̃

)
(8.49)

The operator K0 : S(R3) × S(R3) → L2(R3, dp) is selected to satisfy two criteria.

The first is that it is symplectic from (real) S(R3) × S(R3) with symplectic form σ

to (complex) L2(R3) with symplectic form which is twice the imaginary part of the

inner product, that is

2 Im(K0F1, K0F2) = σ (F1, F2) (8.50)
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This will give the CCR. Second it maps a real solution Ft = T(t)F of the Klein–

Gordon equation to a complex positive energy solution (in momentum space), that is

K0Ft = e−iωtK0F (8.51)

This will give the positive energy. Both of these are easily checked.
Let us see that this works:

Theorem 8.1 The operators σ (�, F) defined by (8.48) (8.49) satisfy the CCR, and
time evolution is implemented by the free particle Hamiltonian H = d�(ω) ≥ 0 in
the sense that

σ (�t, F) = eiHtσ (�, F)e−iHt (8.52)

Proof It gives a representation of the CCR since

[σ (�, F1), σ (�, F2)] = (K0F1, K0F2) − (K0F2, K0F1)

= 2iIm(K0F1, K0F2)

= iσ (F1, F2)

(8.53)

The time evolution is

σ (�t, F) = σ (�, T(−t)F)

= i(a(K0T(−t)F) − a∗(K0T(−t)F))

= i(a(eiωtK0F) − a∗(eiωtK0F))

= eiHtσ (�, F)e−iHt

(8.54)

the last step by e−iHt = �(e−iωt) and (5.69).

The field φ(t, h) = σ (�t, (0, h)) and the momentum π (t, h) = σ (�t, (−h, 0)) are

given by

φ(t, h) = a

(
eiωth̃√

2ω

)
+ a∗

(
eiωth̃√

2ω

)
π (t, h) = −ia

(√
ω/2eiωth̃

)
+ ia∗

(√
ω/2eiωth̃

) (8.55)

The first can also be written as the distribution identity

φ(t, x) = (2π )−3/2
∫ (

a(p)e−i(ω(p)t−px) + a∗(p)ei(ω(p)t−px)
) dp√

2ω(p)
(8.56)

That is φ(t, h) = ∫ φ(t, x)h(x)dx has a meaning and the meaning is (8.55). But (8.56)

can also be understood pointwise as a bilinear form on DS ×DS as in section 5.4.2.

Our time evolution is generated by H = d�(ω). But is this the quantization of the

classical Hamiltonian (8.30)? Indeed it is, suitably interpreted. The claim is that with

φ(x) = φ(0, x) and π (x) = (dφ/dt)(0, x) given by (8.56)

1

2

∫
: (π2(x) + (∇φ(x))2 + m2φ2(x)) : dx =

∫
a∗(p)ω(p)a(p)dp (8.57)
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Here on the left the symbol : · · · : is Wick ordering which means move all creation

operators to the left and all annihilation operators to the right. Then both sides of the

equation are well-defined as bilinear forms on DS × DS and the claim is that they

are equal. We leave the details as a problem.

Problem 8.7 Verify (8.50), (8.51). (For the latter use (8.38) or K0JĤ = −iωK0.)

Problem 8.8 Verify (8.57).

8.2.3 Generalization

Next we digress and give a more abstract version of the construction we used in

theorem 8.1. Let (S, σ ) be a real vector space with symplectic form σ , that is σ is a

bilinear form on S which is skew-symmetric and nondegenerate. Let H be a complex

Hilbert space taken as a real vector space with symplectic form which is twice the

imaginary part of the inner product. Let K : S → H be symplectic with dense range.

Then for F ∈ S

σ (�, F) = i(a(KF) − a∗(KF)) (8.58)

on D0 ⊂ F+(H) satisfies the CCR (8.44).

Further suppose T(t) is a linear symplectic time evolution on S and that KT(t) =
e−ihtK for some self-adjoint operator h on H. Then the time evolution defined by

σ (�t, F) = σ (�, T(−t)F) is unitarily implemented with U(t) = �(e−iht) in the

sense that

σ (�t, F) = U(t)−1σ (�, F)U(t) (8.59)

The following problems refer to this abstract construction.

Problem 8.9 Let (H, K, h) and (H′, K′, h′) be two such structures for (S, σ , T(t))
with fields σ (�, F), σ (�′, F). Establish the following:

1. If there is a unitary operator V : H → H′ such that VK = K′, then there is a
unitary U : F+(H) → F+(H′) so

Uσ (�t, F)U−1 = σ (�′
t, F) (8.60)

2. If h, h′ are both positive, then V exists.1 (So a positive energy representation is
essentially unique.)

1 See Kay (1979).
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Problem 8.10 Suppose we want to quantize a field which satisfies the equation
(−� + m2 + V)φ = 0 where V = V(x) in L2(R3) only depends on the spatial
variables. Construct a suitable field operator satisfying the CCR at time zero, and
show that the time evolution is unitarily implemented.

8.2.4 Covariant quantization

Now we give a more covariant construction of the scalar quantum field. The quanti-

zation problem is just as before but now we define the field operator on a different

space. We start with the relativistic single particle space H = L2(V+
m , dμm) which

is identified with H = L2(R3, dp/2ω(p)). Our map K from S(R3) to H is now

taken to be

K(f , g) = ωf̃ + ig̃ (8.61)

and we still have

2 Im(KF1, KF2) = σ (F1, F2)

KFt = e−iωtKF
(8.62)

The field operator is again

σ (�, F) = i(a(KF) − a∗(KF)) (8.63)

on D0 ⊂ F+(H). Time evolution is defined by σ (�t, F) = σ (�, T(−t)F) as before

and we find that φ(t, h) = σ (�t, (0, h)) is given by

φ(t, h) = a(eiωth̃) + a∗(eiωth̃) (8.64)

Since the operator V = [
√

2ω(p)] is unitary from H0 to H and satisfies VK0 = K,

the field operators are unitarily equivalent to those of the previous section by �(V).

(This is a special case of problem 8.9.)

It is also useful to consider a field smeared in space and time. Formally we

have φ(t, h) = ∫
φ(t, x)h(x)dx, so for real f ∈ S(R4) the operator φ(f ) =∫

φ(t, x)f (t, x)dtdx would be defined by

φ(f ) =
∫
φ(t, f (t, ·))dt (8.65)

This is evaluated as

φ(f ) = a(�+f ) + a∗(�+f ) (8.66)

where

(�+f )(p) = √
2π f̂ (ω(p), p) (8.67)
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and where f̂ is again the Fourier transform with the Lorentz inner product (see

(7.88)). Thus �+f is essentially the restriction of the Fourier transform of f to the

mass shell V+
m . Since (−� + m2)f has a Fourier transform which vanishes on the

mass shell we have

φ((−�+ m2)f ) = 0 (8.68)

This says that φ satisfies the Klein–Gordon equation (−� + m2)φ = 0 in the sense

of distributions.

We can also exhibit the covariance under proper Poincaré transformations (a,�).

If fa,�(x) = f (�−1(x − a)) is the transformed test function, then �+(fa,�) =
u(a,�)(�+f ) where u(a,�) is the unitary representation defined in (8.16). Hence

with U(a,�) = �(u(a,�)) we have

φ(fa,�) = U(a,�)φ(f )U(a,�)−1 (8.69)

This shows that the Poincaré transformed field is unitarily equivalent to the original

field.

Finally we consider the commutator of two fields. We compute taking into account

the reality condition f̂ (p) = f̂ (−p)

[φ(g),φ(f )]

= (�+g,�+f )H − (�+f ,�+g)H

= 2π
∫ (

ĝ(−ω(p),−p)f̂ (ω(p), p) − f̂ (−ω(p),−p)ĝ(ω(p), p)
) dp

2ω(p)

= 1

i
< g, Ef >

(8.70)

where < g, f >= ∫
g(x)f (x)dx and E = E+ − E− is the propagator (7.91). If f , g

have spacelike separated supports, that is if supp g ∩ J±(supp f ) = ∅, then supp g ∩
supp E±f = ∅; hence < g, Ef >= 0, and so [φ(g),φ(f )] = 0. This strict locality

result is a manifestation of the basic fact that influence cannot propagate faster than

the speed of light.

Let us summarize writing (8.68), (8.69), (8.70) in distribution form:

Theorem 8.2 (The free field) Let φ be the field operator by (8.66). Then in the sense
of distributions

1. (Field equation)

(−�+ m2)φ = 0 (8.71)

2. (Covariance) For any proper Poincaré transformation (a,�) ∈ P↑
+

U(a,�)φ(x)U(a,�)−1 = φ(�x + a) (8.72)

3. (Locality) In the region of spacelike separation (x − y) · (x − y) > 0

[φ(x),φ(y)] = 0 (8.73)
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8.3 Charged scalar field

8.3.1 Hamiltonian formulation

First we write the equations for the classical charged scalar field as a Hamiltonian

system. We have four functions (φ1,π1) and (φ2,π2) each pair of which satisfies

(8.29). This is a Hamiltonian system with Hamiltonian

H(φ,π ) = 1

2

∑
i=1,2

∫
(π2

i + (∇φi)
2 + m2φ2

i )dx (8.74)

Since ∂0φi = −∂0φi = −πi, the charge (7.41) is

Q =
∫

(φ2π1 − π2φ1)dx (8.75)

It is essentially the symplectic form (8.35) but has a new interpretation in this context.

Here is another formal way to arrive at a conserved charge. Note that the Hamil-

tonian is invariant under rotations in R2, that is with φ = (φ1,φ2) and π = (π1,π2)

we have H(φ(θ ),π (θ )) = H(φ,π ) where φ(θ ) = R(−θ )φ and π (θ ) = R(−θ )π and

R(−θ ) =
(

cos θ sin θ

− sin θ cos θ

)
(8.76)

This is a global (that is constant) gauge transformation. But φ(θ ),π (θ ) are the

solutions of the equations

dφ1

dθ
= φ2

dπ1

dθ
= π2

dφ2

dθ
= −φ1

dπ2

dθ
= −π1

(8.77)

This is a Hamiltonian system with generator Q given by (8.75), that is ∂Q/∂π1 = φ2

and −∂Q/∂φ1 = π2 and so forth. As explained in section 2.4 the invariance of H

under the flow of Q implies that {H, Q} = 0, which in turn implies that Q is invariant

under the flow of H, that is charge is conserved.

It will also be useful to regard the field as complex valued and introduce

φ = φ1 + iφ2√
2

φ∗ = φ1 − iφ2√
2

π = π1 − iπ2√
2

π∗ = π1 + iπ2√
2

(8.78)

Then (φ,π ) and (φ∗,π∗) are pairs of conjugate variables. The Hamiltonian is

H =
∫

(π∗π + ∇φ∗ · ∇φ + m2φ∗φ)dx (8.79)
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and the charge is

Q = i
∫

(φ∗π∗ − φπ )dx (8.80)

The gauge transformations generated by Q now take the form φ → e−iθφ,

π∗ → e−iθπ∗, and φ∗ → eiθφ∗, π → eiθπ and they are still a symmetry of the

Hamiltonian.

8.3.2 Canonical quantization

For quantization we look for symmetric operators φ1,π1 and φ2,π2, each pair satis-

fying the field equations (8.29) and the CCR, and commuting self-adjoint operators

H, Q implementing time evolution and gauge transformations. With �i = (φi,πi),

i = 1, 2 and F = (f , g) in real S(R3) × S(R3) the combination σ (�i, F) =
φi(g) − πi(f ) should satisfy

[σ (�i, F), σ (�i, F′)] = iσ (F, F′)
[σ (�1, F), σ (�2, F′)] = 0

eiHtσ (�i, F)e−iHt = σ (�i, T(−t)F)

eiQθ

(
σ (�1, F)

σ (�2, F)

)
e−iQθ = R(−θ )

(
σ (�1, F)

σ (�2, F)

) (8.81)

We can also formulate this in terms of � = (�1 + i�2)/
√

2 = (φ,π∗) and its

adjoint�∗ = (�1− i�2)/
√

2 = (φ∗,π ). It is equivalent to ask for operators σ (�, F)

and σ (�∗, F), which are adjoint to each other and self-adjoint H, Q which satisfy

[σ (�, F), σ (�∗, F′)] = iσ (F, F′)
[σ (�, F), σ (�, F′)] = 0

eiHtσ (�, F)e−iHt = σ (�, T(−t)F)

eiQθσ (�, F)e−iQθ = e−iθσ (�, F)

(8.82)

The first three equations in (8.81) or (8.82) are familiar from the discussion of the

neutral scalar field. The last is the quantum version of the classical statement that

charge generates global gauge transformations.

To realize this structure we introduce a second particle and follow the treatment of

section 8.2.2. On the Hilbert space F+(H0) ⊗ F+(H0) we define

a(f ) = a(f ) ⊗ I b(f ) = I ⊗ a(f ) (8.83)

The operators a(f ), a∗(f ), b(f ), b∗(f ) satisfy

[a(f ), a∗(g)] = (f , g) [b(f ), b∗(g)] = (f , g) (8.84)
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with all other commutators equal to zero. Then we define

σ (�, F) = i(a(K0F) − b∗(K0F))

σ (�∗, F) = i(b(K0F) − a∗(K0F))
(8.85)

These are adjoint to each other and the identities (8.82) are satisfied with e−iHt =
�(e−iωt) ⊗ �(e−iωt) and e−iQθ = �(e−iθ ) ⊗ �(eiθ ). The first three follow as before.

For the last, note that

eiQθσ (�, F)e−iQθ = i
(

a(eiθK0F) − b∗(e−iθK0F)
)

= e−iθ i
(

a(K0F) − b∗(K0F)
)

= e−iθσ (�, F)

(8.86)

The Hamiltonian and the charge are given by

H = d�(ω) ⊗ I + I ⊗ d�(ω)

=
∫
ω(p)[a∗(p)a(p) + b∗(p)b(p)]dp

Q = N ⊗ I − I ⊗ N

=
∫

[a∗(p)a(p) − b∗(p)b(p)]dp

(8.87)

The charge can also be written as Q = Na − Nb where Na = N ⊗ I is the

number of a particles and Nb = I ⊗ N is the number of b particles. Thus we see

that the a particles carry charge +1 (in natural units) while the b particles carry

charge −1. Charge takes integer values – “charge is quantized.” The b particles are

called the anti-particles of the a particles. Both are necessary to get the structure we

want.

Problem 8.11

1. Find expressions for φ(t, x),π (t, x),φ∗(t, x),π∗(t, x) as bilinear forms on
DS ×DS . as in (8.56).

2. Show that the quantum charge Q in (8.87) regarded as a bilinear form on DS×
DS has the same form as the classical charge (8.80), that is

Q = i
∫

: (φ∗(x)π∗(x) − φ(x)π (x)) : dx (8.88)

where φ(x) = φ(0, x), etc. (Wick ordering was defined after equation (8.57).)

Notes on chapter 8: In general charge can be defined as the labels for the irre-

ducible representations of the internal symmetry group, see Haag (1992). In our

case the symmetry group is U(1) and the irreducible representations eiθ → einθ

are labeled by integers n.
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Everything in this chapter could be done in a spacetime (Rd, η) with d ≥ 2 instead

of specifically d = 4.

There are many physics texts on quantum field theory. Early works by

Schweber (1962) and Roman (1969) are still useful. Some more recent books are

Itzykson and Zuber (1980), Weinberg (1995) and Peskin and Schroeder (1995). Our

notation mostly agrees with Weinberg.

A mathematical treatment of free fields can be found in Baez et al. (1992).



9 Electrons and photons

In this chapter we explore the quantum mechanical description of free electrons and

photons and associated fields.

However we start with a digression developing the transformation properties of

spinors under the Lorentz group, or more precisely the covering group of the Lorentz

group. The discussion extends the discussion of spin in section 4.6 and the Dirac

equation in section 7.3.

9.1 Spinors

Given 4 × 4 gamma matrices satisfying {γ μ, γ ν} = 2ημν , let V be the real vector

space of all matrices of the form γ · a = ημνγ
μaμ with a ∈ R4. Consider the group

of nonsingular 4 × 4 matrices S so that S(γ · a)S−1 is again in V , called Pin(1, 3).1

Since the γ matrices are a basis (problem 7.6) this means that S(γ · a)S−1 = γ · a′

for a unique a′ ∈ R4. The map a → a′ is linear and so a′ = �(S)a for some matrix

�(S). Thus �(S) is defined by

S(γ · a)S−1 = γ ·�(S)a (9.1)

Lemma 9.1 The map S → �(S) is a two-to-one homomorphism from Pin(1, 3) onto
the Lorentz group L = O(1, 3).

Proof The map is a homomorphism since

γ ·�(ST)a = ST(γ · a)(ST)−1

= S(γ ·�(T)a)S−1

= γ · (�(S)�(T))a

(9.2)

which implies �(ST) = �(S)�(T). The matrix �(S) is a Lorentz transformation
since

�(S)a ·�(S)a = (γ ·�(S)a)2 = (S(γ · a)S−1)2 = a · a (9.3)

1 The name Pin(1, 3) is a truncation of Spin(1, 3) defined below.
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To see that the mapping is onto note that for � ∈ L we have that (γ ′)μ =
(�−1)μνγ ν is also a set of gamma matrices. But any two such are related by
(γ ′)μ = Mγ μM−1 for some M and so we have

M(γ · a)M−1 = �−1γ · a = γ · (�a) (9.4)

Hence M ∈ Pin(1, 3) and �(M) = �.
The mapping is at least two-to-one since �(−S) = �(S). To see it is exactly

two-to-one it suffices to show that �(S) = I implies S = ±I, which we omit.

Recall that L has a subgroup L+ = SO(1, 3) defined by the condition det� = 1.

This is covered by

Spin(1, 3) = {S ∈ Pin(1, 3) : �(S) ∈ L+} (9.5)

which is a subgroup of Pin(1, 3). Furthermore L+ has a connected subgroup L↑+
defined by �0

0 ≥ 1, which is covered by

Spin↑(1, 3) = {S ∈ Spin(1, 3) : �(S) ∈ L↑+} (9.6)

This is a subgroup of Spin(1, 3) and is connected as well (problem 9.4).

Next consider the indefinite inner product u†βv of (7.53) on the spinor space C4.

We show it is invariant under Spin↑(1, 3).

Lemma 9.2 For S ∈ Spin↑(1, 3), u, v,∈ C4, and β = iγ 0

(Su)†βSv = u†βv (9.7)

Equivalently if S∗ is the adjoint with the usual inner product

S∗γ 0S = γ 0 (9.8)

Proof Take the adjoint of S(γ · x)S−1 = γ ·�(S)x. Then with x̂ = (−x0, x) we find

(S−1)∗(γ · x̂)S∗ = γ · ̂(�(S)x) (9.9)

However γ · x̂ = γ 0(γ · x)γ 0, so we have

[γ 0(S−1)∗γ 0](γ · x)[γ 0S∗γ 0] = γ · (�(S)x) (9.10)

This implies that

γ 0(S−1)∗γ 0 = ±S (9.11)

and so

S∗γ 0S = ±γ 0 (9.12)

The sign is a continuous function of S on the connected set Spin↑(1, 3). Since it is
+1 at the identity, it is +1 everywhere.
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Problem 9.1 If S = γ · y with y · y �= 0, show that S ∈ Pin(1, 3) and find �(S).

Problem 9.2 Show that

e−γ 2γ 3θ/2 = cos(θ/2) − γ 2γ 3 sin(θ/2) (9.13)

is in Spin↑(1, 3) and that

�(e−γ 2γ 3θ/2) = R(e1, θ ) (9.14)

where R(e1, θ ) is the rotation by θ around the first axis.

Problem 9.3 Show that

eγ
0γ 1β/2 = cosh(β/2) + γ 0γ 1 sinh(β/2) (9.15)

is in Spin↑(1, 3) and that

�(eγ
0γ 1β/2) = �β (9.16)

where �β is the boost (7.36).

Problem 9.4 Show that Spin↑(1, 3) is connected by showing that every element
can be joined to the identity by a continuous path.

Problem 9.5 Show that if ψ is a solution of (γ · ∂ + m)ψ = 0, then ψa,S(x) =
Sψ(�(S)−1(x − a)) is also a solution.

9.2 Electrons

9.2.1 Solutions of the Dirac equation

We consider the Dirac equation (γ · ∂ + m)ψ = 0 defined in section 7.3.3 and try to

interpret it as describing the quantum time evolution for a single electron or proton

or any other massive spin 1/2 particle. We begin by rewriting it and exhibiting some

solutions.

Consider the self-adjoint 4 × 4 matrices

β = iγ 0 αk = −γ 0γ k k = 1, 2, 3 (9.17)
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These have the anti-commutation relations

{αj,αk} = 2δjk {αk,β} = 0 β2 = I (9.18)

and they are traceless. Multiplying the Dirac equation by iγ 0, it takes the form

i
∂ψ

∂t
= (−i∇ · α + βm)ψ (9.19)

To solve it, note that the partial Fourier transform ψ̃(t, p) satisfies the equation

i
∂ψ̃

∂t
= (p · α + βm)ψ̃ (9.20)

The matrix p · α + βm is self-adjoint and satisfies

(p · α + βm)2 = |p|2 + m2 = ω(p)2 (9.21)

It follows that the eigenvalues of p · α + βm can only be ±ω(p). Furthermore since

tr(p·α+βm) = 0, both±ω(p) must occur, each with multiplicity 2. For each p ∈ R3

let Wp,± be the two-dimensional eigenspace for the positive or negative eigenvalue.

Then we have

C4 = W+
p ⊕ W−

p (9.22)

Now a general solution of (9.20) is

ψ̃(t, p) = e−iω(p)tψ+(p) + eiω(p)tψ−(p) (9.23)

with ψ±(p) ∈ W±
p . A general solution of the Dirac equation is

ψ(t, x) = (2π )−3/2
∫

eip·x(e−iω(p)tψ+(p) + eiω(p)tψ−(p)
)

dp (9.24)

9.2.2 Quantum interpretation

Now we give the quantum interpretation. First we work with the Fourier trans-

formed variable, which we interpret as momentum space. The Hilbert space is

H0 ≡ L2(R3, C4, dp), the C4-valued square integrable functions on R3. Equation

(9.20) has the form of a Schrödinger equation if we take as the Hamiltonian

H̃ = [p · α + βm] (9.25)

The Hilbert space splits into positive and negative energy subspaces

H0 = H+
0 ⊕H−

0 (9.26)

where

H±
0 = {ψ ∈ H0 : ψ(p) ∈ W±

p } (9.27)
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With respect to this splitting the Hamiltonian is H̃ = [ω(p)] ⊕ [−ω(p)], which is

self-adjoint on its natural domain. Time evolution is exp(−iH̃t) = exp(−iω(p)t) ⊕
exp(iω(p)t) as in (9.23). To write it another way, note that the projection onto H±

0 is

P± =
[
ω(p) ± (p · α + βm)

2ω(p)

]
(9.28)

Then for any ψ ∈ H0 we have

e−iH̃tψ = e−iωtP+ψ + eiωtP−ψ (9.29)

Return to configuration space Ĥ0 ≡ L2(R3, C4, dx) with a Fourier transform

F−1 : H0 → Ĥ0. The Dirac Hamiltonian is HD = F−1H̃F , which on S(R3) is

HD = −i∇ · α + βm (9.30)

The time evolution is exp(−iHDt) = F−1 exp(−iH̃t)F as in (9.24).

At this point we remember that we only want positive energy solutions. Thus

instead of H0, the Hilbert space is H+
0 , the Hamiltonian is [ω(p)], and the time

evolution is [exp(−iω(p)t)]. Taking the inverse Fourier transform gives a Hilbert

space Ĥ+
0 = F−1H+

0 , a Hamiltonian HD = F−1[ω(p)]F , and a time evolution

F−1[exp(−iω(p)t)]F . The wave function with initial condition ψ ∈ Ĥ+
0 is

ψ(t, x) = (2π )−3/2
∫

e−i(ω(p)−p·x)ψ̃(p)dp (9.31)

which still satisfies the Dirac equation.

But there is a problem with this restriction to positive energy. The operator [xk] can

no longer be precisely interpreted as representing the kth coordinate of the particle.

This is because it does not act on Ĥ+
0 . To put it another way, F[xk]F−1 = i∂/∂pk

does not act on the positive energy subspace H+
0 . To remedy this we stay in momen-

tum space and define a new coordinate operator – the Newton–Wigner operator. It

involves the projection operator at zero momentum which is (1 + β)/2 and it is

defined by

Xk = 2P+
√

ω

ω + m

(
1 + β

2

)(
i
∂

∂pk

)√
ω

ω + m
P+ (9.32)

This is a symmetric operator mapping H+
0 ∩ S(R3) to itself and is supposed to

represent the kth coordinate of the particle. This interpretation is supported by the

following result:

Problem 9.6 Show that Xk, [pj] satisfy the the canonical commutation relations.
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9.2.3 Translations and rotations

Next we investigate the effect of spacetime translations and rotations on solutions,

excluding boosts for now.

Note that the positive energy condition (p · α + βm − ω(p))ψ(p) = 0 can be

multiplied by β = iγ0 and written (iγ · φ(p)+m)ψ(p) = 0 where φ(p) = (ω(p), p).

If ψ(p) satisfies the condition and S ∈ Spin↑(1, 3) is a spinor rotation covering R ∈
SO(3), then Sψ(R−1p) also satisfies the condition. This follows since S−1(γ · a)S =
γ · R−1a and so(

iγ · φ(p) + m
)

Sψ(R−1p) = S
(

iγ · φ(R−1p) + m
)
ψ(R−1p) = 0 (9.33)

Now we can define a representation of translations and rotations on H+
0 . For a =

(a0, a) and a spinor rotation S covering a rotation R, we define

(u0(a, S)ψ)(p) = ei(ω(p)a0−p·a)S ψ(R−1p) (9.34)

One checks that u0(a, S) is unitary using the facts that the Lebesgue measure is rota-

tion invariant and that S∗S = I. (For a rotation, [S,β] = 0 so S∗S = S∗βSβ =
β2 = I.) One also checks that u0(a, S)u0(a′, S′) = u0(a + Ra′, SS′) so we have a

representation.

A unitary representation on Ĥ+
0 is defined by û0(a, S) = F−1u0(a, S)F . If ψ(t, x)

is the complete wave function given by (9.31), then

(û0(a, S)ψ(t, ·))(x) = Sψ(t − a0, R−1(x − a)) (9.35)

Furthermore the Newton–Wigner operator X = (X1, X2, X3) satisfies

u0((0, a), S)−1Xu0((0, a), S) = RX + a (9.36)

This is a consistency check on the interpretation of both u0(a, S) and X.

Now specialize to the rotation Rθ = R(e1, θ ) around the first axis. By problem 9.2

this is covered by Sθ = e−γ2γ3θ/2 and so (9.34) becomes

(u0(0, Sθ )ψ)(p) = e−γ2γ3θ/2ψ(R−1
θ (p)) (9.37)

The first component of angular momentum is i(J1ψ)(p) = id/dθ [· · · ]|θ=0 and we

find as in (4.74)

J1 = p3

(
i
∂

∂p2

)
− p2

(
i
∂

∂p3

)
− i

2
γ2γ3 (9.38)

The first component of spin is the internal part �1 = −iγ2γ3/2. Similarly the other

components are �2 = −iγ3γ1/2 and �3 = −iγ1γ2/2. In each case we have �2
i =

1/4 so �i has eigenvalues ±1/2, which confirms that we are describing a particle of

spin 1/2.
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Now we have operators on H+
0 for position, momentum, and angular momentum

(but not spin alone, which does not act on this space). This is all we need. It is not

required or particularly useful to try to give a meaning to the individual components

of our spinor-valued wave function.

9.2.4 A covariant formulation

Next we give an alternative more covariant construction for the free electron. Our

goal is a unitary representation of the extended proper Poincaré group defined as all

pairs {a, S} with a ∈ R4 and S ∈ Spin↑(1, 3) with the group law

{a, S}{a′, S′} = {a +�(S)a′, SS′} (9.39)

We know that u†βv is invariant under Spin↑(1, 3). We next show that it is postive

definite on the positive energy subspace.

Lemma 9.3 For u, v ∈ W+
p

ω(p) u†βv = m u†v (9.40)

Proof Since (α · p + βm)v = ω(p)v

ω(p) u†βv = u†β(α · p + βm)v (9.41)

and since (α · p + βm)u = ω(p)u

ω(p) u†βv = ((α · p + βm)u)†βv

= u†(α · p + βm)βv

= u†β(−α · p + βm)v

(9.42)

Adding these equations and using β2 = I gives the result.

Now consider L2
(
R3, C4, m ω(p)−1dp

)
as a candidate for the single particle

space. Here we have used a slightly different normalization for the Lorentz invari-

ant measure; compare the dp/(2ω(p)) that we used in the scalar case. There is again

a positive energy subspace defined by the condition ψ(p) ∈ W+
p . On this positive

energy subspace we introduce the relativistic inner product

(ψ ,χ )β =
∫
ψ(p)†βχ (p)

m

ω(p)
dp

=
∫
ψ(p)†χ (p)

(
m

ω(p)

)2

dp

(9.43)

This is positive definite and we let H+ be the completion in the associated norm. We

have the identification

H+ = {ψ ∈ L2
(
R3, C4, m2ω(p)−2dp

)
: ψ(p) ∈ W+

p } (9.44)
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An alternative is to identify R3 with the mass shell V+
m via the function φ(p) =

(ω(p), p). As in section 8.1 the measure mω(p)−1dp becomes the measure 2m μm on

V+
m . The condition u ∈ W+

p says (iγ · φ(p) + m)u = 0 as noted earlier, and thus we

can define H+ as the completion of

{ψ ∈ L2(V+
m , C4, 2m μm) : (iγ · p + m)ψ(p) = 0} (9.45)

with the inner product

(ψ ,χ )β =
∫
ψ(p)†βχ (p) 2m dμm(p) (9.46)

Theorem 9.1 On H+ there is a unitary representation of the extended proper
Poincaré group defined by

(u(a, S)ψ)(p) = e−ip·aSψ(�(S)−1p) (9.47)

Proof To see that u(a, S) maps H+ to itself, we compute as in (9.33)(
iγ · p + m

)
Sψ(�(S)−1p) = S

(
iγ · (�(S)−1p) + m

)
ψ(�(S)−1p) = 0 (9.48)

To see that U(a, S) is unitary, use (Su)†β(Sv) = u†βv from (9.7) and the Lorentz
invariance of the measure to compute

‖u(a, S)ψ‖2
β =

∫ (
Sψ(�(S)−1p)

)†
β
(

Sψ(�(S)−1p)
)

2m dμm(p)

=
∫
ψ(p)†βψ(p) 2m dμm(p)

= ‖ψ‖2
β

(9.49)

One also checks that u(a, S)u(a′, S′) = u(a +�(S)a′, SS′) to finish the proof.

Remark Identify the new Hilbert space with the old Hilbert space by the unitary
operator V : H+

0 → H+ defined by

(Vψ)(p) = ω(p)

m
ψ(p) (9.50)

With this identification the new representation of translations and rotations in (9.47)
extends the old representation (9.34).

9.2.5 Charge conjugation

We close this section with some special results about charge conjugation, which we

need in the next section. Let us temporarily return to the classical Dirac equation

with an external electromagnetic potential A. This has the form (from (7.77))

(γ · (∂ − ieA) + m)ψ = 0 (9.51)
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We want to find a charge conjugation operator which maps solutions of this equation

with charge e to solutions with the opposite charge −e. Start by taking the complex

conjugate which yields

(γ · (∂ + ieA) + m)ψ = 0 (9.52)

Now let C be a nonsingular matrix which satisfies Cγ μC−1 = γ μ. Such a matrix

exists since γ μ is again the possible choice of the gamma matrices. In fact we can

choose C = C = C−1 = C∗. For example in the representation (7.49) where γ 2 is

real and the other γ μ are imaginary we could take C = γ 2. Applying C we get

(γ · (∂ + ieA) + m)Cψ = 0 (9.53)

Thus the charge conjugation operator we seek is

Cψ = C ψ (9.54)

It is anti-linear and satisfies Cγ μ = γ μC and C2 = 1.

Return now to the free case A = 0 and the quantum interpretation. Then C defined

on L2(R3, C4, dx) by (9.54) is an anti-unitary operator which is a conjugation in the

mathematical sense that (Cψ , Cχ ) = (χ ,ψ). It satisfies CαiC = αi and CβC = −β
and hence we have

C(−i∇ · α + βm)C = −(−i∇ · α + βm) (9.55)

This shows that C maps positive energy states into negative energy states and vice-

versa. Thus it does not act on our positive energy Hilbert space. However charge

conjugation will find a place in the quantum field theory.

We also will need the momentum space version of (9.55). Let C̃ = FCF−1 be

conjugation in L2(R3, C4, dp). Explicitly

(C̃ψ)(p) = C ψ(−p) (9.56)

Then we have

C̃[p · α + βm]C̃ = −[p · α + βm] (9.57)

Problem 9.7 Let H = HD + βV = −i∇ · α + β(m + V) where V is is a real
function with ‖V‖∞ < m.

1. Show that H is self-adjoint on D(HD) ⊂ Ĥ0.
2. Show that zero is in the resolvent set for H.
3. Show that CH = −HC.
4. (hard) Let P± be the projection onto the positive and negative energy subspaces

for H. Show that CP± = P∓C.
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9.3 Dirac fields

9.3.1 The problem

Now we want solutions of the Dirac equation which are quantum field operators.

We seek Dirac field operators ψα(x) = ψα(t, x) indexed by x ∈ R4,α = 1, . . . , 4

such that

i
∂ψ

∂t
= (−i∇ · α + βm)ψ

{ψα(0, x),ψ∗
β (0, y)} = δ(x − y)δαβ

(9.58)

This is roughly analogous to what we did with the scalar field, except that now we use

the anti-commutator instead of the commutator. This turns out to be necessary for a

consistent theory. It means that the associated particles are fermions as we shall see.

These equations should be interpreted in the sense of distributions. We formally

integrate with complex test functions h ∈ S(R3, C4) in space only and define

ψ(t, h) =
∫ ∑

α

ψα(t, x)hα(x)dx

ψ∗(t, h) =
∫ ∑

α

ψ∗
α (t, x)hα(x)dx

(9.59)

Thus we seek operators ψ(t, h) anti-linear in h with adjoints ψ∗(t, h) linear in h such

that

i
∂

∂t
ψ(t, h) = ψ(t, (−i∇ · α + βm)h)

{ψ(0, h),ψ∗(0, g)} = (h, g)
(9.60)

where (h, g) is the L2(R3, C4, dx) inner product.

Example 9.1 Here is a construction that accomplishes these goals. With H0 =
L2(R3, C4, dp) take the anti-symmetric Fock space F−(H0). Define the fields in
terms of the bounded creation and annihilation operators a, a∗ by

ψ(h) = a(h̃) ψ∗(h) = a∗(h̃) (9.61)

Then {ψ(h),ψ∗(g)} = (h̃, g̃) = (h, g) as required. Time evolved field operators
are defined by ψ(t, h) = ψ(eiHDth) where HD = −i∇ · α + βm is the self-adjoint
Hamiltonian defined in section 9.2.2. Then i∂/∂t ψ(t, h) = ψ(t, HDh) as required.

This construction is not satisfactory because of the presence of the negative energy

particles. If we suppress them entirely, we do not get the commutator we want.

An alternative picture is that all the negative energy states are present, but they
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are already filled, thereby stabilizing the theory. (The idea invokes the exclusion

principle again.) Because this sea of negative energy fermions is homogeneous, its

presence is not manifest. It is possible however to have unoccupied states or holes

in this negative energy sea. These holes propagate as if they have positive energy

and the opposite charge. They are identified as the anti-particles. If the particles

are electrons, the anti-particles are called positrons. The observed electron-positron

annihilation into photons is then identified with an electron falling to a negative

energy state, filling the hole and emitting a photon. The theory is known as hole

theory and the negative energy background is called the Dirac sea. It is reminiscent

of the Fermi sea encountered in section 6.4, but here it is a more radical concept

since there is no lowest energy state.

We do not attempt to make direct mathematical sense of this picture. Instead take

a standard shortcut and give a construction in which the anti-particles are introduced

as elementary particles, just as for the charged scalar field. Our goal is again field

operators ψ(t, h) satisfying (9.60) but now such that time evolution is implemented

with positive energy.

9.3.2 The field operator

Let H+
0 be the positive energy Hilbert space (9.27) and consider the fermion Fock

space

F0 = F−(H+
0 ) ⊗ F−(H+

0 ) (9.62)

The first factor represents particles and the second factor represents anti-particles.

We introduce annihilation operators for h ∈ H+
0 by

a(h) = a(h) ⊗ I b(h) = (−1)N ⊗ a(h) (9.63)

where N is the number operator. These satisfy

{a(h), a∗(g)} = (h, g) {b(h), b∗(g)} = (h, g) (9.64)

with all other anti-commutators equal to zero. In particular we have

{a(h), b(g)} = 0 (9.65)

This is the reason we have introduced the factor (−1)N in the definition; otherwise the

commutator would be zero rather than the anti-commutator. This anti-commutator is

a reflection of the deep connection between particles and anti-particles, which is

natural in hole theory.

Now for h ∈ S(R3, C4) define the time zero field operator on F0 by

ψ(h) = a(P+h̃) + b∗(C̃P−h̃) (9.66)
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Here P± is the projection onto H±
0 as in (9.28) and C̃ is charge conjugation in

momentum space as in (9.56). Note that C̃P−h does have positive energy since it

follows from (9.57) that C̃P± = P∓C̃. The field has the desired anti-commutator

since

{ψ(h),ψ∗(g)} = (P+h̃, P+g̃) + (C̃P−g̃, C̃P−h̃)

= (P+h̃, P+g̃) + (P−h̃, P−g̃)

= (h̃, g̃) = (h, g)

(9.67)

To satisfy the field equation, time evolution is again defined by

ψ(t, h) = ψ(eiHDth) (9.68)

But F(eiHDth) = eiH̃th̃ and P+eiH̃t = eiωtP+ and C̃P−eiH̃t = C̃P−e−iωt = eiωtC̃P−

and so we have

ψ(t, h) = a(eiωtP+h̃) + b∗(eiωtC̃P−h̃) (9.69)

In this form we can see that time evolution is generated by a Hamiltonian with

positive energy. We collect this and other properties of the field in a theorem.

Theorem 9.2

1. ψ(t, h) satisfies the field equation and anti-commutation relations (9.60).
2. Time evolution is unitarily implemented by

ψ(t, h) = eiHtψ(h)e−iHt (9.70)

where e−iHt = �(e−iωt) ⊗ �(e−iωt) and

H = d�(ω) ⊗ I + I ⊗ d�(ω) ≥ 0 (9.71)

3. Gauge transformations are implemented by

e−iθψ(t, h) = eiQθψ(t, h)e−iQθ (9.72)

where e−iQθ = �(e−iθ ) ⊗ �(eiθ ) and the charge is

Q = Na − Nb = N ⊗ I − I ⊗ N (9.73)

The last point follows just as for the charged scalar field, see (8.86). As in prob-

lem 8.11, Q can be identified with
∫

x0=t : ψ∗ψ : which is the quantization of (7.56).

From (9.73) we see that each particle contributes charge +1 (in natural units), while

each anti-particle contributes charge −1. These are the conventions for a positively

charged fermion like a proton. For electrons replace Q by −Q and change signs

elsewhere.

Note the reversal from the construction of example 9.1. There Q is positive and H

is not. Now H is positive and Q is not.
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Problem 9.8 Consider the Dirac equation with a bounded real potential V = V(x)
satisfying ‖V‖∞ < m

i
∂ψ

∂t
= (−iα · ∇ + β(m + V))ψ = 0 (9.74)

Using the results of problem 9.7 construct a distribution solution ψ(t, h) with the
canonical anti-commutator at t = 0 and with positive energy.

9.3.3 Locality

Let us also smear in space and time and define for f ∈ S(R4, C4)

ψ(f ) =
∫
ψ(t, f (t, ·))dt = a(P+�+f ) + b∗(C̃P−�−f ) (9.75)

where as in (8.67)

(�±f )(p) = √
2π f̂ (±ω(p), p) (9.76)

Note that ψ(f ) is anti-linear in f .

Then we compute

{ψ(f ),ψ∗(g)} = (P+�+f , P+�+g) + (C̃P−�−g, C̃P−�−f )

= (P+�+f , P+�+g) + ( P−�−f , P−�−g)

= (P+�+f ,�+g) + ( P−�−f ,�−g)

(9.77)

Now use the identity

(P±�±f )(p) = ± 1

2ω(p)
(�±(i∂t + HD)f )(p) (9.78)

where again HD = −iα · ∇ + βm. Then (9.77) becomes(
�+(i∂t + HD)f ,

1

2ω
�+g

)
−
(
�−(i∂t + HD)f ,

1

2ω
�−g

)
(9.79)

However (
�+f ,

1

2ω
�+g

)
−
(
�−f ,

1

2ω
�−g

)
= 1

i
(f , Eg) (9.80)

where E is the scalar propagator (7.91) and on the right side the inner product is in

L2(R4, C4). Then we have

{ψ(f ),ψ∗(g)} = 1

i

(
(i∂t + HD)f , Eg

) = 1

i

(
f , (i∂t + HD)Eg

)
(9.81)

Since (i∂t + HD) does not enlarge supports, this vanishes if f , g have spacelike

separated supports. This is our locality result.
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9.3.4 A covariant formulation

Now we give an alternate construction in which the Lorentz covariance is manifest.

Again let H+ be the positive energy relativistic Hilbert space defined in (9.43)–(9.46)

and set

F = F−(H+) ⊗ F−(H+) (9.82)

The unitary map V : H+
0 → H+ defined in (9.50) induces a unitary map �2(V) =

�(V) ⊗ �(V) from F0 to F . Thus starting with the field operator on F0 defined in

(9.75) and now denoted ψ0(f ) we define an equivalent field operator ψ(f ) on F by

ψ(f ) = �2(V)ψ0(f )�2(V)−1 (9.83)

Then

ψ(f ) = a(VP+�+f ) + b∗(C̃VP−�−f ) (9.84)

where now the creation and annihilation operators are on F . However by (9.78)

VP±�± = ± 1

2m
�±(i∂t + HD) = ±�±�β (9.85)

where

� = −γ · ∂ + m

2m
(9.86)

Therefore

ψ(f ) = a(�+�βf ) − b∗(C̃�−�βf ) (9.87)

These have the following properties:

Theorem 9.3 The Dirac fields ψ(f ) = ∫ ψ(x)f (x)dx satisfy in the sense of distribu-
tions:

1. (Field equation) (γ · ∂ + m)ψ = 0
2. (Covariance) There is a unitary representation U(a, S) of the extended proper

Poincaré group such that

U(a, S)ψ(x)U(a, S)−1 = S−1 ψ(�(S)x + a) (9.88)

3. (Locality) With ψ̃(f ) = ψ∗(βf ) (the “Dirac adjoint”) and scalar propagator E

{ψ(f ), ψ̃(g)} = 1

i
(f , (−γ · ∂ + m)Eg) (9.89)

Proof These operations translate nicely to the test function if we consider
ψ(βf ) rather than ψ(f ). For the field equation ((γ · ∂ + m)ψ)(βf ) = 0 says that
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ψ(β(γ · ∂ +m)f ) = 0. (Think of Green’s identity (7.55) at times ±∞.) We compute
using �±(−�+ m2)f = 0

ψ(β(γ · ∂ + m)f )

= a(�+�(γ · ∂ + m)f ) − b∗(C̃�−�(γ · ∂ + m)f )

=
(

a(�+(−�+ m2)f ) − b∗(C̃�−(−�+ m2)f )
)
/2m

= 0

(9.90)

For the second we set U(a, S) = �(u(a, S)) where u(a, S) is defined in (9.47). Then
with fa,S(x) = Sf (�(S)−1(x − a)) we have

U(a, S)ψ(βf )U(a, S)−1 = a(u(a, S)�+�f ) − b∗(u(a, S)C̃�−�f )

= a(�+�fa,S) − b∗(C̃�−�fa,S)

= ψ(βfa,S)

(9.91)

This is the meaning of (9.88). We have also used [C̃, u(a, S)] = 0.
For the third point refer back to the result (9.81) for ψ0(f ). Then ψ(f ) must have

the same anti-commutator and so

{ψ(f ), ψ̃(g)} = 1

i
(f , (i∂t + HD)βEg) = 1

i
(f , (−γ · ∂ + m)Eg) (9.92)

9.4 Photons

Recall that in the absence of charges the electromagnetic potential A satisfies the

wave equation �A = 0 and a constraint ∂μAμ = 0. Following the scalar case we

want to interpret positive energy solutions as wave functions for a massless spin one

particle – the photon. Again there is more than one way to accomplish this.

9.4.1 Coulomb gauge

Our first quantization starts with the observation that potentials A, A′ which are

gauge equivalent A′μ = Aμ + ∂μλ represent the same physical situation. Any

potential A is gauge equivalent to a potential A′ with A′0 = 0; one has only to

take λ(t, x) = − ∫ t
0 A0(s, x)ds. Thus it suffices to consider solutions with constraint

A0 = 0 and A = (A1, A2, A3). Making this choice we are working in the Coulomb

gauge.
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In the Coulomb gauge the equations for A(t, x) become(
∂2

∂t2
−�

)
A = 0 ∇ · A = 0 (9.93)

The partial Fourier transform Ã(t, p) satisfies(
∂2

∂t2
+ |p|2

)
Ã = 0 p · Ã = 0 (9.94)

For quantization we consider complex square integrable positive energy solutions.

In the Fourier transform variable, identified as momentum, the Hilbert space is the

closed subspace

H0 = {� ∈ L2(R3, C3, dp) : p ·�(p) = 0} (9.95)

The time evolution is �(t, p) = e−i|p|t�(p). It does preserve the constraint

p · �(p) = 0 and is unitary on the Hilbert space. The Hamiltonian is [|p|]. In

configuration space the Hilbert space is Ĥ0 = F−1H0, the time evolution is

U(t) = F−1[e−i|p|t]F (9.96)

and the Hamiltonian is

H = F−1[|p|]F = (−�)1/2 (9.97)

We define a representation of spacetime translations and rotations on H0 by

(u0(a, R)�)(p) = ei(|p|a0−p·a)R�(R−1p) (9.98)

This preserves the constraint since if p · �(p) = 0, then p · R�(R−1p) = R−1p ·
�(R−1p) = 0. It is unitary since RTR = I. On Ĥ0 the representation is

û0(a, R) = F−1 u0(a, R)F (9.99)

The definitions implement these symmetries since if �(t, x) = (U(t)�)(x) is a

complete time evolved wave function, then

(û0(a, R)�(t, ·))(x) = R �(t − a0, R−1(x − a)) (9.100)

The representation of the rotation group is characteristic of a spin one particle.

However we have again lost the position operator. Multiplication by xk does

not preserve the Fourier transformed space Ĥ0. In this case the difficulty cannot

be avoided. There is no Newton–Wigner operator and photons cannot be precisely

localized.

Problem 9.9

1. Show that H0 is a closed subspace of L2(R3, C3, dp).
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2. Show that the projection onto H0 is

(P�)i(p) =
∑

j

(
δij − pipj

|p|2
)
�j(p) (9.101)

9.4.2 A covariant formulation

Next we give a more covariant construction with the zeroth component restored. Start

with the light cone

V+
0 = {p ∈ R4 : p · p = 0, p0 > 0} (9.102)

Consider the Hilbert space

H = L2(V+
0 , C4,μ0) (9.103)

where μ0 is the invariant measure on V+
0 . Let H′ be the closed subspace

H′ = {ψ ∈ H : pμψμ(p) = 0} (9.104)

We want a representation of the Poincaré group on this space consistent with

(9.98). Our first choice would be to take on H
(u(a,�)ψ)μ(p) = e−ip·a(�−1)νμψν(�−1p) (9.105)

which can also be written (u(a,�)ψ)(p) = e−ip·a(�−1)Tψ(�−1p). This preserves

H′ since if pμψμ(p) = 0 for all p, then

pμ(�−1)νμψν(�−1p) = (�−1p)νψν(�−1p) = 0 (9.106)

If � = R is a rotation, then (R−1)T = R and the representation is unitary. However

for boosts the representation is not unitary since �−1(�−1)T = I fails.

To fix this we introduce an indefinite inner product on L2(V+
0 , C4,μ0) by

(ψ ,χ )η =
∫

V+
0

ψ(p) · χ (p) dμ0(p) =
∫

V+
0

ψμ(p)ημνχν(p) dμ0(p) (9.107)

This is well-defined and since �−1η(�−1)T = η we do have the invariance

(u(a,�)ψ , u(a,�)χ )η = (ψ ,χ )η (9.108)

But if we adopt the indefinite inner product, we no longer have a Hilbert space.

We proceed as follows. Consider the closed subspace

H′′ = {ψ ∈ H′ : ψμ(p) = pμf (p)} (9.109)

where f is some measurable function from V+
0 to C. These are null vectors:

(ψ ,ψ)η = 0 for ψ ∈ H′′. Then consider the factor space H′/H′′. Elements of

this space are equivalence classes [ψ] of vectors in H′ with ψ ∼ ψ ′ if ψ−ψ ′ ∈ H′′.
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Theorem 9.4

1. The indefinite inner product is well-defined and positive definite on the factor
space H′/H′′ and with this inner product it is a Hilbert space denoted

Hphys = H′/H′′ (9.110)

2. The operators u(a,�) defined by (9.105) on H′ determine unitary operators
u(a,�) on Hphys, which give an (irreducible) representation of the proper
Poincaré group.

Proof With the usual L2 inner product let M be the orthogonal complement of H′′
in H′ so that H′ =M⊕H′′. The projection from H′ onto M has kernel H′′ and so
gives an identification of H′/H′′ and M as vector spaces. The inverse sends ψ ∈M
to [ψ] ∈ H′/H′′.

To identify M, note that the condition thatψ = (ψ0,�) ∈ H′ be orthogonal to H′′
is the condition that pμψμ(p) = 0. Since p0 = −p0 = −|p|, this says −|p|ψ0(p) +
p·�(p) = 0. On the other hand because ψ ∈ H′ we have pμψμ(p) = 0 or |p|ψ0(p)+
p ·�(p) = 0. Together these imply that ψ0(p) = 0 and p ·�(p) = 0. Thus we have

M = {ψ = (ψ0,�) ∈ H′ : ψ0 = 0, p ·�(p) = 0} (9.111)

Now consider the indefinite inner product. If ψ ′ is in H′ and ψ ′′
μ(p) = pμf (p) is in

H′′, then

(ψ ′,ψ ′′)η =
∫

V+
0

pμψ ′
μ(p)f (p)dμ0(p) = 0 (9.112)

It follows that the indefinite inner product is well defined on H′/H′′ and for ψ1,ψ2 ∈
H′ we have (ψ1,ψ2)η = ([ψ1], [ψ2])η. So the map from M to H′/H′′ preserves the
indefinite inner product. But the indefinite inner product on M coincides with the
L2 inner product since there is no zeroth component and hence it is positive definite.
Hence the indefinite inner product is positive definite on H′/H′′. Furthermore M
is complete with the indefinite inner product since M is a closed subspace of L2.
Hence the same is true for H′/H′′ and it is a Hilbert space. Thus we have the first
result and have identified Hphys and M as Hilbert spaces.

We have already noted that u(a,�) preserves H′. It also preserves H′′ since if
ψν(p) = pν f (p) = ηνσpσ f (p) is in H′, then

(�−1)νμψν(�−1p) = (�−1)νμηνσ (�−1)σρpρ f (�−1p)

= ημρpρ f (�−1p) = pμf (�−1p)
(9.113)

is again in H′′. It follows that we have a representation on Hphys, and since it
preserves the inner product, it is unitary.

Remarks

1. Hphys is the basic Hilbert space, called the physical Hilbert space. This procedure
of going to the factor space is known as Gupta–Bleuler quantization.
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2. When we form the factor space, equivalence classes are formed with ψ ∼ ψ ′ if
ψμ = ψ ′

μ + pμf . Returning to spacetime with an inverse Fourier transform this
says that ψ and ψ ′ are related by a gauge transformation. Thus the mathemati-
cal equivalence in the construction of the Hilbert space is mirrored by physical
equivalence in the sense that equivalent vectors have the same field strength.

3. The identification of Hphys with M also gives the equivalence with the quantiza-
tion in the Coulomb gauge on H0. First identify R3 with V+

0 by φ(p) = (|p|, p).
Then define a unitary map V : H0 →M given by

(V�)(φ(p)) = √2|p|
(

0,�(p)
)

(9.114)

One checks that for spacetime translations and rotations

V−1u(a, R)V = u0(a, R) (9.115)

which establishes the equivalence.

9.5 Electromagnetic field

Now we undertake the quantization of the electromagnetic field, again as represented

by a potential A satisfying the wave equation �A = 0 and a constraint ∂μAμ = 0. We

skip a Coulomb gauge construction and proceed with a covariant construction. The

strategy is to first ignore the constraint, carry out the quantization, and then impose

the constraint after quantization.

The quantization of �A = 0 proceeds as in the scalar case except that now we

use the indefinite inner product. Start with the single particle Hilbert space H =
L2(V+

0 , C4,μ0) and form the symmetric Fock space F = F+(H). The indefinite

inner product (h, g)η = (h, ηg) on H induces an indefinite inner product (ψ ,χ )η =
(ψ ,�(η)χ ) on F . If we then define creation and annihilation operators a†(h), a(h)

as in (5.54), but now with the indefinite inner product, we find that on D0

[a(h), a†(h′)] = (h, h′)η
(a†(h)ψ ,χ )η = (ψ , a(h)χ )η

(9.116)

So a† is the formal adjoint with respect to the indefinite inner product.

Now as in (8.66) we define field operator A(f ) = ∫ Aμ(x)ημν fν(x) dx by

A(f ) = a†(�+f ) + a(�+f ) (9.117)

where �+f ∈ H is defined by

(�+f )μ(p) = √
2π f̂μ(p) (9.118)

We summarize the results for this field.
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Theorem 9.5 For real f ∈ S(R4, R4) let A(f ) be the symmetric operator valued
distribution defined on (F , (·, ·)η) by (9.117). Then

1. (Field equation) (−�+ m2)A = 0.
2. (Covariance) There is a representation U(a,�) of the proper Poincaré group

preserving the indefinite inner product (·, ·)η such that

U(a,�)Aμ(x)U(a,�)−1 = �νμAν(�x + a) (9.119)

3. (Locality)

[A(f ), A(g)] = 1

i
ημν < fμ, Egν > (9.120)

The representation of the Poincaré group is U(a,�) = �(u(a,�)) where u(a,�)

is defined in (9.105) and the covariance (9.119) is equivalent to

U(a,�)A(f )U(a,�)−1 = A(fa,�) (9.121)

where (fa,�)μ(x) = (�−1)νμfν(�−1(x− a)). All statements can be checked as for the

scalar field, Theorem 8.2.

Now we impose the constraint ∂μAμ = 0 not as an operator identity but on

wavefunctions by passing to the subspace

F ′ ≡ F+(H′) (9.122)

where H′ defined in (9.104) has pμψμ(p) = 0. The indefinite inner product is

nonnegative on F ′. We consider the null subspace

F ′′ = {ψ ∈ F ′ : (ψ ,ψ)η = 0} (9.123)

By the Schwarz inequality, elements of F ′′ are orthogonal to any element of F ′.
Then the indefinite inner product is well-defined on F ′/F ′′ with ([ψ1], [ψ2])η =
(ψ1,ψ2)η. Furthermore it is positive definite. The physical Hilbert space is the

completion

Fphys = F ′/F ′′ (9.124)

We will see later that the completion is unnecessary.

Theorem 9.6

1. The representation U(a,�) on F determines a unitary representation of the
Poincaré group on Fphys.

2. If ∂μfμ = 0, then the field operator A(f ) acts on a dense domain in Fphys.

Proof U(a,�) preserves F ′ with its inner product and F ′′ and hence determines an
inner product preserving operator on F ′/F ′′ which extends to a unitary on Fphys.

If ∂μfμ = 0, then

pμ(�+fμ)(p) = (�+(−i∂μfμ))(p) = 0 (9.125)
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so �+f ∈ H′. Hence A(f ) preserves finite particle vectors in F ′. Furthermore it
preserves finite particle vectors in F ′′ since if (ψ ,ψ)η = 0, then

(A(f )ψ , A(f )ψ)η = (ψ , A(f )2ψ)η

≤ (ψ ,ψ)1/2
η (A(f )2ψ , A(f )2ψ)1/2

η

= 0

(9.126)

Thus A(f ) gives an operator on finite particle vectors in F ′/F ′′.

Remark Without the restriction ∂μfμ = 0, field operators A(f ) do not act on Fphys.
However the field strength Fμν = ∂μAν − ∂νAμ does act on Fphys. For a family of
test functions hμν we have F(h) = A(δh) where (δh)μ = ∂ν(hμν−hνμ) and this does
satisfy ∂μ(δh)μ = 0.

We also can identify our physical Hilbert space Fphys as a multi-photon Fock

space.

Theorem 9.7 There is a natural identification

Fphys ≈ F+(Hphys) (9.127)

where Hphys = H′/H′′ is the single photon Hilbert space.

Proof First work with the usual inner product. Since H′ = M ⊕ H′′ we have the
identification of Fock spaces (see problem 9.10)

F ′ = F+(H′) ≈ F+(M) ⊗ F+(H′′) (9.128)

Separate off the vacuum component and write F+(H′′) = C ⊕ F+
≥1(H′′) and make

the identification C⊗ F+(M) ≈ F+(M) and we have

F ′ ≈ F+(M) ⊕ (F+(M) ⊗ F+
≥1(H′′)) (9.129)

Every element of F+(M) ⊗ F+
≥1(H′′) is in F ′′ since all entries have at least one

element in H′′. No element of F+(M) is in F ′′. We conclude that F ′′ = F+(M)⊗
F+
≥1(H′′) and have the identification

F ′ ≈ F+(M) ⊕ F ′′ (9.130)

It follows that F+(M) ≈ F ′/F ′′ as vector spaces under the map ψ → [ψ]. The
identification preserves the indefinite inner product as we have seen. Thus F ′/F ′′
with the indefinite inner product inherits completeness from F+(M), the completion
in (9.124) was unnecessary, and F+(M) ≈ F ′/F ′′ = Fphys as Hilbert spaces. Since
also F+(M) ≈ F(Hphys) we have the result.

Problem 9.10 Show that if a Hilbert space splits as H = H1 ⊕H2, then there is
a unitary operator V : F+(H) #→ F+(H1) ⊗ F+(H2) such that
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1. If U = U1 ⊕ U2 is unitary on H, then

V�(U)V−1 = �(U1) ⊗ �(U2)

2. If h = (h1, h2), then

Va(h)V−1 = a(h1) ⊗ I + I ⊗ a(h2)

Problem 9.11 Show that U(a,�)Fμν(x)U(a,�)−1 = �σμ�
ρ
νFσρ(�x + a).

Remarks For both electrons and photons we have two kinds of fields. The fields
ψ , A are basic for the construction, but are not self-adjoint operators on a Hilbert
space and are not regarded as observables. From them one can construct current den-
sities jμ = iψ̃γ μψ (we only did Q = ∫ j0) and field strengths Fμν = ∂μAν − ∂νAμ
which are self-adjoint operators on a Hilbert space and are regarded as observables.

The natural next step would be to quantize the combined system of electrons and
photons as described by the equations (7.77). This is known as quantum electro-
dynamics. There has been very little mathematical progress on this problem. There
are expressions for scattering amplitudes given as formal expansions in the charge e.
The coefficients in these expansions are given by formal integrals, some of which are
badly divergent. Nevertheless physicists have developed consistent methods for inter-
preting these integrals known as renormalization. When renormalized, the scattering
amplitudes for the interactions of electrons and photons agree with experiments with
an accuracy of up to 11 significant figures. This spectacular agreement is one reason
that quantum field theory continues to be a fascinating subject.

Notes on chapter 9: For a discussion of the groups O(n, m), Spin(n, m), see

Choquet-Bruhat and DeWitt-Morette (1989).

The universal covering group of L↑+ can be identified as SL(2, C) the complex 2×2

matrices with determinant 1. Our group Spin↑(1, 3) is the so-called ( 1
2 , 0) ⊕ (0, 1

2 )

reducible representation of SL(2, C).

The general treatment of irreducible representations of the Poincaré group was

originally due to Wigner and can be found in many places, for example Ohnuki

(1988).

For Newton–Wigner coordinates see Newton and Wigner (1949).

There is a fairly large literature on quantum fields with external potentials, but no

definitive reference. The examples of problem 8.10 and problem 9.8 were chosen

more for simplicity than physical relevance.

For a discussion of the quantization of the electromagnetic field in various gauges,

see Stocchi and Wightman (1974).



10 Field theory on amanifold

In this chapter we construct a scalar quantum field operator on a general class of

manifolds.1 This is the mathematics appropriate for modeling the propagation of

quantum particles and fields in a gravitational field. It is particularly relevant for

extreme situations like black holes and the early universe where quantum effects are

important. However we confine the treatment to basic constructions.

10.1 Lorentzianmanifolds

A Lorentzian manifold is a pair (M, g) consisting of a d-dimensional manifold M
and a Lorentzian metric g. The latter is a symmetric nondegenerate 2-tensor with

signature (−,+, . . . ,+). This means that for each point p ∈M there is a symmetric

nondegenerate bilinear form gp(v,w) on the tangent space Mp such that the associ-

ated matrix has one negative and d − 1 positive eigenvalues. Local coordinates {xμ}
give a basis {∂/∂xμ} for Mp and the matrix in this basis is

gμν(p) = gp(∂/∂xμ, ∂/∂xν) (10.1)

A general tangent vector v ∈ Mp is written v = vμ∂/∂xμ (summation convention)

and then

gp(v, v) = gμν(p)vμvν (10.2)

In terms of the dual basis {dxμ} for the cotangent space we have

gp = gμν(p)dxμdxν (10.3)

Minkowski space is the special case M = R4, gμν = ημν .

We classify the tangent vectors according to the sign of gp(v, v). The vector

v ∈ Mp is spacelike if gp(v, v) > 0, it is lightlike if gp(v, v) = 0, and it is

timelike if gp(v, v) < 0. The timelike vectors form a cone with two components.

One component is designated as future directed and one component is designated as

1 This chapter assumes more knowledge about manifolds than elsewhere in the book. In particular we
assume the reader is familiar with the definitions and basic properties of manifolds, tensors, metrics,
etc. This chapter is not referred to elsewhere and can be skipped.
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past directed. We assume that this can be done in a continuous way over the whole

manifold, that is the manifold has a time orientation. There is an associated splitting

of lightlike vectors.

A curve x : [a, b] → M is timelike if the tangent vectors dx/dτ = x∗(d/dτ ) are

timelike at all points on the curve. Similarly we define lightlike and spacelike curves.

A curve is causal if its tangent vectors are either timelike or lightlike. A causal curve

is future directed if the tangent vectors are all future directed. Future directed causal

curves are the possible world lines of particles. If x is future directed and timelike,

the elapsed proper time is defined as

∫ b

a

√
−gx(τ )

( dx

dτ
,

dx

dτ

)
dτ (10.4)

Timelike curves with fixed endpoints minimizing proper time are geodesics. These

are the trajectories of freely falling objects.

For any point p ∈M define the future and past of the point by

J±(p) = {q ∈M : ∃ a future/past causal curve from p to q} (10.5)

We also define J±(A) = ∪p∈AJ±(p) for any A ⊂M.

A hypersurface � is a submanifold of dimension d − 1. For p ∈ � the tangent

space �p is identified as a d − 1-dimensional subspace of Mp. There is also a one-

dimensional subspace of normal vectors N defined by the condition gp(N, v) = 0 for

all v ∈ �p. The hypersurface � is spacelike if the nonzero tangent vectors �p are

spacelike for all p ∈ �. It is equivalent to say that the nonzero normal vectors N are

timelike.

A spacelike hypersurface is a Cauchy surface if every endless causal curve

intersects it exactly once.

Theorem 10.1 The following conditions on a Lorentzian manifold (M, g) are
equivalent.

1. There exist no closed causal curves2 and the set J+(p) ∩ J−(q) is compact for all
p, q ∈M.

2. There is Cauchy surface �.
3. (M, g) is diffeomorphic to a manifold (R × �, g′) for which �t = {t} × � is a

Cauchy surface for all t.

If these conditions hold, we say that (M, g) is globally hyperbolic.

2 This includes a prohibition on “almost closed” causal curves; see Bär Ginoux and Pfäffle (2007) for the
definition.
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10.2 Classical fields on amanifold

We study the Klein–Gordon equation on a globally hyperbolic Lorentzian manifold

(M, g). It has the form

(−�+ m2)u = 0 (10.6)

where in local coordinates

�u = | det g|−1/2 ∂

∂xμ

(
| det g|1/2gμν

∂u

∂xν

)
(10.7)

and {gμν} is the inverse matrix to {gμν}.
Let � be a spacelike hypersurface and let n be the vector field of forward directed

unit normal vectors on �. A real solution u of (−� + m2)u = 0 has data on

(�, n) consisting of the restriction u� and the normal derivative given in local

coordinates by

∂u

∂n
≡ nμ

∂u

∂xμ

∣∣∣
�

(10.8)

We call a solution regular if it is C∞ and if the data on any Cauchy surface have

compact support.

The basic existence and uniqueness theorem is:

Theorem 10.2 Let (M, g) be globally hyperbolic and let (�, n) be a Cauchy surface
with forward unit normal n. Then for any f , g ∈ C∞0 (�) there exists a unique regular
solution u of (−�+ m2)u = 0 such that u� = f and ∂u/∂n = g.

For any smooth functions u, v on M and any Cauchy surface � define

σ
�

(u, v) =
∫
�

(
u
∂v

∂n
− ∂u

∂n
v

)
dμ
�

(10.9)

where μ� is the measure on � induced by the Riemannian volume form on �. Let

O be an open set in M bounded by two Cauchy surfaces �1,�2 and say �2 lies to

the future of �1. Then Green’s identity says that for any smooth functions u, v∫
O

[
u(−�+ m2)v − v(−�+ m2)u

]
dμM = σ

�2
(u, v) − σ

�1
(u, v) (10.10)

Here μM is the measure on M induced by the Lorentzian volume form, in local

coordinates dμM = | det g|1/2dx. If u, v are regular solutions, then the left side

vanishes. Hence σ�(u, v) is independent of � and we can denote it just by σ (u, v).

Next we need advanced and retarded fundamental solutions. In theorem 7.2 these

have already been constructed for Minkowski space.

Theorem 10.3 Let (M, g) be globally hyperbolic. Then there exist linear operators
E± : C∞0 (M) → C∞(M) such that
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(−�+ m2)E±f = E±(−�+ m2)f = f (10.11)

and such that

supp (E±f ) ⊂ J±(supp f ) (10.12)

From these fundamental solutions we construct the propagator

E = E+ − E− (10.13)

For any f ∈ C∞0 (M) the function u = Ef is a regular solution of the Klein–Gordon

equation, and it turns out every regular solution has this form.

Let u be a regular solution regarded as a distribution. For a test function f ∈
C∞0 (M) we have

< u, f >=
∫
M

uf dμM (10.14)

Then we have the following result which expresses the solution in terms of its data

on any Cauchy surface.

Lemma10.1 Let u be a regular solution of (−�+m2)u = 0 on a globally hyperbolic
manifold. Then for any f ∈ C∞0 (M)

< u, f >= σ (u, Ef ) (10.15)

Proof We can assume that the manifold has the form R × � with Cauchy surfaces
�t = {t} ×�. By Green’s identity we have

σ
�0

(u, E+f ) − σ
�−t

(u, E+f ) =
∫

(−t,0)×�
uf dμM (10.16)

But E+f vanishes on �−t for t sufficiently large. Thus taking the limit t → ∞ we
have

σ
�0

(u, E+f ) =
∫

(−∞,0)×�
uf dμM (10.17)

Similarly

σ
�0

(u, E−f ) = −
∫

(0,∞)×�
uf dμM (10.18)

Taking the difference of the last two equations gives the result.

10.3 Quantum fields on amanifold

We want to quantize the classical field theory just discussed. Generalizing the

Minkowski space case we seek to solve the Klein–Gordon equation with data on

some Cauchy surface � which satisfy the CCR.
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For the Cauchy data we suppose we have a pair of operator valued distributions

φ(h),π (h). For each h ∈ C∞0 (�) these are symmetric operators on a dense domain in

some complex Hilbert space H. They are required to satisfy

[φ(h1),φ(h2)] = 0

[π (h1),π (h2)] = 0

[φ(h1),π (h2)] = i < h1, h2 >�

(10.19)

where < h1, h2 >�=
∫

h1h2dμ� . Equivalently if we define for � = (φ,π ) and

H = (h1, h2)

σ (�, H) = φ(h2) − π (h1) (10.20)

and define

σ
�

(H, H′) =< h1, h′2 >� − < h2, h′1 >� (10.21)

then

[σ (�, H), σ (�, H′)] = iσ
�

(H, H′) (10.22)

Now we evolve in time and define φ(f ) for f ∈ C∞0 (M) by analogy with (10.15) as

φ(f ) = σ (�, ρ
�

(Ef )) (10.23)

where

ρ
�

(u) =
(

u
�

,
∂u

∂n

)
(10.24)

are the data on � for a solution u.

Theorem 10.4 For f ∈ C∞0 (M) the field operator φ(f ) satisfies the field equation

(−�+ m2)φ = 0 (10.25)

and

[φ(f1),φ(f2)] = −i < f1, Ef2 > (10.26)

In particular the commutator vanishes if f1, f2 have spacelike separated supports,
that is if suppf1 ∩ J±(suppf2) = ∅ (locality).

Proof The operator � is symmetric for the inner product (10.14) so the meaning of
the field equation is φ((−�+ m2)f ) = 0. This follows from E(−�+ m2) = 0.

For the second point we compute

[φ(f1),φ(f2)] =
[
σ (�, ρ

�
(Ef1)), σ (�, ρ

�
(Ef2))

]
= iσ

�

(
ρ
�

(Ef1), ρ
�

(Ef2)
)

= iσ (Ef1, Ef2)

= −i < f1, Ef2 >

(10.27)

where the last step follows from (10.15).
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Remarks

1. The construction does not depend on the choice of Cauchy surface. Indeed we
can formulate it so that there is no reference to a particular Cauchy surface as
follows. Consider the space of regular solutions u of the Klein–Gordon equation
with symplectic form σ (u, v). Let R(u) be a representation of the CCR over this
space, that is we have a family of densely defined operators R(u) on a Hilbert
space H such that R(u) is linear in u and

[R(u), R(v)] = iσ (u, v) (10.28)

Define the field operator φ(f ) by

φ(f ) = R(Ef ) (10.29)

This satisfies the field equation (10.25) and has the commutator (10.26) just as in
the theorem.

Now if we pick a Cauchy surface �, we can define σ (�, H) = R(ρ−1
� H) where

ρ−1
� H is the unique regular solution with data H on �. Then

[σ (�, H), σ (�, H′)] = iσ (ρ
�
−1H, ρ

�
−1H′) = iσ

�
(H, H′) (10.30)

and φ(f ) = σ (�, ρ�(Ef )) so we recover our earlier construction.
2. There is still the question of which representation of the CCR to take. In this

generality there is no definitive answer. Without a timelike symmetry there is no
Hamiltonian and so we cannot ask for a positive energy representation as we did
before. There is also no vacuum to use as a reference point so it is also difficult to
identify particles. One has to proceed on a case by case basis.

3. The construction does respect the principle of general covariance mentioned at
the beginning of chapter 7. We made no special choice of coordinates.

Problem 10.1 Show that representations of the CCR as defined by (10.19) or
(10.22) exist by making an explicit construction.

Problem 10.2 In the special case of Minkowksi space (R4, η), take � = {0}×R3

and take σ (�, H) given by (8.63). Show that the new definition of the field φ(f ) =
σ (�, ρ�(Ef )) agrees with the old definition (8.66).

Notes on chapter 10: These topics are covered by Wald (1994) and by

Bär Ginoux and Pfäffle (2007).

In spite of the uncertainty in the choice of a representation of the CCR it has

been possible to identify a class of representations with desirable physical properties.

These are characterized by the requirement that correlation functions have certain

prescribed “Hadamard singularities” at coinciding points, see Wald (1994).
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For a mathematical formulation of the principle of general covariance, see Dimock

(1980) or Brunetti Fredenhagen and Verch (2003).

By studying a scalar field on the spacetime manifold for a collapsing black hole,

Hawking was led to his famous prediction that black holes emit thermal radiation.

See Bachelot (1999).
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11 Path integrals

As we have seen quantum mechanics is fundamentally probabilistic, but it is a special

kind of noncommutative probability. Nevertheless the techniques of standard proba-

bility theory can also be useful. In the remainder of the book we explore some of the

ways this occurs.

In this chapter we return to the consideration of a single non-relativistic parti-

cle and develop some new representations of the dynamics. These are the Feynman

path integrals which express the quantum dynamics as an integral over all possi-

ble classical paths with a special weighting. For the single particle Hamiltonian

H = −�/2 + V and ψ ,χ ∈ L2(R3) a typical integral is

(ψ , e−iHtχ ) =
∫
ψ(ω(0)) exp

(
−i
∫ t

0
V(ω(s))ds

)
χ (ω(t))dω (11.1)

Here the “integral” is over all possible paths ω : [0, t] → R3 and “dω” is supposed

to be some kind of measure on these paths. Actually it has not been possible to make

sense of this within the context of standard measure theory. But if one replaces the

time evolution e−iHt by e−Ht, that is if we go to imaginary time, then one can give a

rigorous formulation. This is what we study in this chapter. This gets us away from

the basic dynamics but still can be useful in an indirect way. For example one can

study properties of the Hamiltonian through the semi-group e−Ht as represented by

path integrals. Similar representations occur in quantum field theory where they are

crucial for a mathematical analysis. We explore this in subsequent chapters.

11.1 Probability

We start by reviewing some definitions. A measure space is a triple (M,�,μ) con-

sisting of a set M, a σ -algebra of subsets �, and a measure μ : � → [0,∞]. We

consider probability measure spaces which have μ(M) = 1. In applications M rep-

resents all possible outcomes, A ∈ � represent events, and μ(A) is interpreted as the

probability that A occurs.
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Random variables are measurable functions X : M → R. The probability that X

takes values in a Borel set B is

P(X ∈ B) = μ(X−1[B]) ≡ m(B) (11.2)

The set function m(B) is a probability measure on R called the distribution of X.

It contains all relevant information about X. For any Borel function f the function

f (X) = f ◦ X is again a random variable and we have the expectation or mean

E(f (X)) ≡
∫
M

f (X)dμ =
∫

R

f (x)dm(x) (11.3)

if the integrals exist. The identity of the two integrals is a standard argument. First

verify it for simple functions, then by monotone limits for positive functions, and

finally for any integrable function. In particular there is the characteristic function of

X, which is a function on R defined by

�(s) = E(eisX) =
∫

eisxdm(x) (11.4)

As the Fourier transform of the measure m it uniquely determines m. Indeed the prob-

ability distribution m determines a tempered distribution m and the Fourier transform

is bijective on S ′(R) – see appendix C.

More generally suppose we have n random variables X1, . . . , Xn on a probability

measure space (M,�,μ). Equivalently we have a vector-valued random variable

X = (X1, . . . , Xn) : M → Rn. Again the probability that the random variables take

values in a Borel set B ⊂ Rn is

P
(

(X1, . . . , Xn) ∈ B
)
= μ(X−1[B]) ≡ m(B) (11.5)

The distribution m(B) is now a Borel measure on Rn. For any Borel function f on Rn

E(f (X)) =
∫
M

f (X1, . . . , Xn)dμ =
∫

Rn
f (x1, . . . , xn)dm(x) (11.6)

The characteristic function is � : Rn → R defined by

�(s1, . . . , sn) = E(ei
∑

i siXi) =
∫

ei
∑

i sixidm(x) (11.7)

and it determines the distribution.

We generalize still further and suppose we have an infinite family {Xα}α∈A of

random variables on a space (M,�,μ), called a stochastic process. For any finite

ordered subset I = (α1, . . . ,αn) from A we have the family of random variables

XI = (Xα1 , . . . , Xαn ) and we consider their joint distribution

P(XI ∈ B) = μ(X−1
I (B)) ≡ mI(B) (11.8)

Then

E(f (XI)) =
∫
M

f (XI)dμ =
∫

Rn
f (x)dmI(x) (11.9)
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The joint distributions must satisfy some consistency conditions. Let π be a per-

mutation of (1, . . . , n). This induces mappings π I = (απ (1), . . . ,απ (n)) on the index

set and πx = (xπ (1), . . . , xπ (n)) on Rn. Then the event Xπ (I) ∈ πB is the same as the

event XI ∈ B and hence

mπ (I)(π (B)) = mI(B) (11.10)

Also if I′ = (I,α), then the event XI′ = (XI , Xα) ∈ B × R is the same as the event

XI ∈ B and hence

mI′ (B × R) = mI(B) (11.11)

The family of all finite-dimensional distributions is enough to specify the full

structure for one has the following result on the existence of stochastic processes

Theorem11.1 (Kolmogorov) Let A be an index set and suppose for each finite ordered
subset I in A there is a Borel probability measure mI on R|I|. The measures are
assumed to satisfy the consistency conditions (11.10), (11.11). Then there exists a
probability measure space (M,�,μ) and a family of random variables {Xα}α∈A
such that for any finite ordered subset I in A the random variables XI have the
distributions mI.

There is also a uniqueness result which says that (under some further conditions)

any two realizations are equivalent by an isomorphism of measure spaces.

11.2 Gaussian processes

Now consider a special class of random variables, the Gaussian random variables.

A random variable X is Gaussian if there are constants c, a such that for any Borel

B ⊂ R the distribution is the normal distribution

P(X ∈ B) = m(B) = (2πc)−1/2
∫

B
exp

(
− (x − a)2

2c

)
dx (11.12)

Then for any Borel function f : R → R we have that f (X) is integrable iff

f (x) exp(−(x − a)2/2c) is integrable on R in which case

E(f (X)) =
∫

f (x)dm(x) = (2πc)−1/2
∫

R

f (x) exp

(
− (x − a)2

2c

)
dx (11.13)

For the second step one again verifies the identity successively for simple functions,

positive functions, and integrable functions. In particular the characteristic function

is (see problem 1.3)

�(s) = E(eisX) = exp

(
ixa − 1

2
cs2
)

(11.14)
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Taking derivatives at s = 0 we find that X has mean E(X) = a and E(X2) = c + a2.

The variance is then

Var(X) ≡ E(X2) − E(X)2 = c (11.15)

More generally a family of random variables X = (X1, . . . , Xn) is jointly Gaussian

if there is an n × n positive definite symmetric matrix C = {Cij} and a ∈ Rn such

that for any Borel B ⊂ Rn we have the joint distribution

P(X ∈ B) = m(B)

= (2π )−n/2(det C)−1/2
∫

B
exp

(
−1

2
(x − a) · C−1(x − a)

)
dx

(11.16)

(Positive definite means x · Cx ≥ 0 and x · Cx = 0 iff x = 0.) It is clear that such

structures exist. Indeed we can take (M,μ) = (Rn, m) and Xi(x) = xi. For any Borel

function f : Rn → R we have

E(f (X))

= (2π )−n/2(det C)−1/2
∫

Rn
f (x) exp

(
−1

2
(x − a) · C−1(x − a)

)
dx

(11.17)

if the integral exists. In particular we find for the characteristic function �(s) =
�(s1, . . . , sn)

�(s) = E
(
eis·X)

= (2π )−n/2(det C)−1/2
∫

Rn
eis·x exp

(
−1

2
(x − a) · C−1(x − a)x

)
dx

= exp

(
is · a − 1

2
s · Cs

) (11.18)

Taking derivatives at s = 0 we find the mean and covariance are

E(Xi) = ai

E(XiXj) − E(Xi)E(Xj) = Cij
(11.19)

The mean and the covariance completely characterize the family of Gaussian random

variables.

Finally suppose we have an infinite set A and functions a : A→ R and symmetric

C : A×A→ R such that for any α1, . . . ,αn ∈ A the matrix Cij = C(αi,αj) is posi-

tive definite. Then we can define a Gaussian process with mean a and covariance C

to be a collection of random variables {Xα} indexed by α ∈ A such that for any finite

collection I = (α1,α2, . . . ,αn) the random variables XI = (Xα1 , . . . , Xαn ) are jointly

Gaussian with means aI = (a(α1), . . . , a(αn)) and covariance CI = {C(αi,αj)}. In

particular then

E(Xα) = a(α)

E(XαXβ ) − E(Xα)E(Xβ ) = C(α,β)
(11.20)
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Such a Gaussian process exists as a consequence of the theorem 11.1 once we

show that the consistency conditions on the finite-dimensional measures mI are

satisfied. To show such measures are equal it suffices to show that the character-

istic functions are equal. Thus it suffices to consider the characteristic function �I

for XI , which is

�I(s) = exp

⎛⎝i
n∑

i=1

sia(αi) − 1

2

n∑
i,j=1

siC(αi,αj)sj

⎞⎠ (11.21)

The permutation condition (11.10) translates as �π I(πs) = �I(s). The extension

condition (11.11) translates as �(I,αn+1)(s, 0) = �I(s). Both are easily checked and

hence the process exists.

Problem 11.1 Let C be a symmetric positive definite matrix.

1. Show that C is invertible and that C−1 is symmetric and positive definite.
2. Show that there exists M > 0 so that x · Cx ≥ M|x|2, hence also for C−1.

Problem 11.2 Do the integral in (11.18). (Hint: diagonalize C.)

Problem 11.3

1. Show that a Gaussian random variable is in Lp for all 1 ≤ p <∞.
2. Justify the differentiations in computing the mean and covariance in (11.19).

11.3 Brownianmotion

This is a particular example of a Gaussian process indexed by R+ = [0,∞). A family

of random variables Xt, t ≥ 0 is a Brownian motion if it is Gaussian with mean and

covariance

E(Xt) = 0 E(XtXs) = min(t, s) (11.22)

For this to be well defined we need for any distinct t1, t2, . . . , tn that the matrix

{min(ti, tj)} is positive definite. To verify this it suffices to assume t1 < t2 < · · · < tn.

Then we have the identity (with t0 = 0)

∑
ij

xixj min(ti, tj) =
n∑

i=1

(ti − ti−1)

⎛⎝ n∑
j=i

xj

⎞⎠2

(11.23)
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This vanishes iff
∑n

j=i xj = 0 for i = 1, . . . , n which occurs iff xi = 0. Hence the

matrix is positive definite.

Now Xt has mean zero and variance E(X2
t ) = t. Hence for t = 0, X0 takes the

constant value X0 = 0. If t > 0, we compute the probability that Xt is in a Borel

set B as

P(Xt ∈ B) =
∫

B
pt(x)dx (11.24)

where pt is the even function

pt(x) = (2π t)−1/2e−x2/2t (11.25)

This is saying that for t small Xt takes values near the origin with high probability,

while for t large that probability is widely spread around the origin. These features

allow the interpretation that Xt describes the location at time t of a diffusing particle

which starts at the origin at t = 0 and moves randomly as time evolves.

More generally a Brownian motion starting at x ∈ R is a family of Gaussian

random variables Xx
t with mean x and variance t defined by

Xx
t = Xt + x (11.26)

Then we find

P(Xx
t ∈ B) = P(Xt ∈ B − x)

=
∫

B−x
pt(y)dy =

∫
B

pt(y − x)dy
(11.27)

Similarly if pt(x − ·)f is integrable, we compute

E(f (Xx
t )) = E(f (Xt + x))

=
∫

f (y + x)pt(y)dy =
∫

pt(x − y)f (y)dy
(11.28)

Note the following facts. The sum of two Gaussian random variables is again

Gaussian. Hence for s < t, Xx
t − Xx

s = Xt − Xs is Gaussian with mean zero and

variance

E((Xx
t − Xx

s )2) = E((Xt − Xs)
2) = t − s − s + s = t − s (11.29)

Furthermore for s1 ≤ t1 ≤ s2 ≤ t2 we have that Xx
t1 − Xx

s1
and Xx

t2 − Xx
s2

are

uncorrelated since

E
(

(Xx
t1 − Xx

s1
)(Xx

t2 − Xx
s2

)
)
= t1 − t1 − s1 + s1 = 0 (11.30)

For Gaussian random variables uncorrelated means independent so Xx
t1 − Xx

s1
and

Xx
t2 − Xx

s2
are independent, which means that the joint distribution is the product of

the individual distributions. One says that the process has independent increments.

In particular for 0 < s < t the random variables Xx
t − Xx

s and Xx
s = Xx

s − Xx
0 are

independent and so
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E
(

f (Xx
s , Xx

t − Xx
s )
)
=
∫

ps(x − y1) pt−s(y2) f (y1, y2) dy1dy2 (11.31)

Then we compute

E(f1(Xx
s )f2(Xx

t )) = E(f1(Xx
s )f2(Xx

s + (Xx
t − Xx

s )))

=
∫

ps(x − y1) pt−s(y2) f1(y1)f2(y1 + y2) dy1dy2

=
∫

ps(x − y1) f1(y1) pt−s(y1 − y2) f2(y2) dy1dy2

(11.32)

Similarly for 0 < t1 < t2 < · · · < tn

E
(
f1(Xx

t1 ) · · · fn(Xx
tn)
)

=
∫

pt1 (x − y1)f1(y1) · · · ptn−tn−1 (yn−1 − yn)fn(yn)dy1 · · · dyn

(11.33)

Specializing to characteristic functions we have for the joint distribution

P(Xx
t1 ∈ B1, . . . , Xx

tn ∈ Bn)

=
∫

B1×···×Bn

pt1 (x − y1) · · · ptn−tn−1 (yn−1 − yn)dy1 · · · dyn
(11.34)

This gives an idea of the character of the measure on paths.

We quote the following regularity result which shows that Brownian paths are

continuous but nowhere differentiable.

Theorem 11.2 There is a construction of Brownian motion Xt on a measure space
(M,μ) with the following properties:

1. Let α < 1/2. Then for almost every ω ∈ M the path t → Xt(ω) is Holder
continuous with exponent α, that is there is a constant Cω such that

|Xt(ω) − Xs(ω)| < Cω|t − s|α (11.35)

2. Let α > 1/2. Then for almost every ω ∈ M the path t → Xt(ω) is nowhere
Holder continuous with exponent α.

The construction needs more than the Kolmogorov theorem. Just for the continuity

one way to proceed is to take as the basic probability space the continuous functions

M = {ω ∈ C(R+) : ω(0) = 0} and then construct a measure so that the evaluation

maps Xt(ω) = ω(t) give a Brownian motion. This gives a strong meaning to the idea

that we are integrating over a space of paths.

All the above is easily generalized to Rd. We set

Xt = (X1
t , . . . , Xd

t ) (11.36)

where the Xi
t are independent one-dimensional Brownian motions. All the above

formulas generalize. For example we have for a function f on Rd and a point x ∈ Rd

E(f (Xx
t )) = (2π t)−d/2

∫
exp

(
−|x − y|2

2t

)
f (y)dy (11.37)
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Problem 11.4 Verify (11.23).

11.4 The Feynman–Kac formula

The connection with single particle quantum mechanics comes via the Laplacian.

We work in d dimensions. With mass m = 1 the free Hamiltonian is H0 = −�/2
and for f ∈ L2(Rd) we have from (4.8)

(e−H0tf )(x) = (2π t)−d/2
∫

exp

(
−|x − y|2

2t

)
f (y)dy (11.38)

This is the same as (11.37). Thus if Xx
t is Brownian motion in Rd starting at x, then

(e−H0tf )(x) = E
(
f (Xx

t )
)

(11.39)

Taking into account that Xx
0 = x another way to write this is

(g, e−H0tf ) =
∫

E
(

g(Xx
0)f (Xx

t )
)

dx (11.40)

Now we add a bounded potential to the Hamiltonian

Theorem11.3 (Feynman–Kac formula) Let V be bounded and continuous on Rd and
let H = H0 + V. Then for f , g ∈ L2(Rd)

(g, e−Htf ) =
∫

E

(
g(Xx

0) exp

(
−
∫ t

0
V(Xx

s )ds

)
f (Xx

t )

)
dx (11.41)

Remark For the proof we use the Trotter product formula1 which says that if S and
T are self-adjoint and bounded below and S+T defined on D(T)∩D(S) is self-adjoint,
then as a strong limit

lim
n→∞

(
e−St/ne−Tt/n

)n = e−(S+T)t (11.42)

We apply this with S = H0, T = V . The sum H = H0 + V is self-adjoint on
D(H0) ∩ D(V) = D(H0) by theorem 4.1.

Proof By (11.33) for t1 < t2 < · · · < tn

E
(

f1(Xx
t1 ) · · · fn(Xx

tn)
)

=
(

e−t1H0 f1e−(t2−t1)H0 f2 . . . e
−(tn−tn−1)H0 fn

)
(x)

(11.43)

1 See for example Reed and Simon (1980: 295).
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Thus with tj = jt/n

(g, e−Htf ) = lim
n→∞

(
g,
(
e−H0t/ne−Vt/n)n f

)
= lim

n→∞

∫
g(x)E

⎛⎝ n∏
j=1

exp
(
− t

n
V(Xx

tj )
)

f (Xx
t )

⎞⎠ dx

= lim
n→∞

∫
E

⎛⎝g(Xx
0) exp

⎛⎝− t

n

n∑
j=1

V(Xx
tj )

⎞⎠ f (Xx
t )

⎞⎠ dx

=
∫

E

(
g(Xx

0) exp

(
−
∫ t

0
V(Xx

s ) ds

)
f (Xx

t )

)
dx

(11.44)

Here in the last step we have used that

lim
n→∞

t

n

n∑
j=1

V(Xx
tj ) =

∫ t

0
V(Xx

s ) ds (11.45)

holds almost everywhere. This follows by the continuity of V and the continuity of
paths with the integral interpreted as a Riemann integral. We have also used∣∣∣∣∣∣g(Xx

0) exp

⎛⎝− t

n

n∑
j=1

V(Xx
tj )

⎞⎠ f (Xx
t )

∣∣∣∣∣∣ ≤ |g(Xx
0)||f (Xx

t )|et‖V‖∞ (11.46)

Then since ∫
E
(
|g(Xx

0)||f (Xx
t )|
)

dx = (|g|, e−H0t|f |) <∞ (11.47)

we can use the dominated convergence theorem to take the limit inside the integrals
in (11.44).

Problem 11.5 For h ∈ L∞(Rd) and 0 ≤ u ≤ t show that

(g, e−uH h e−(t−u)Hf )

=
∫

E

(
g(Xx

0)h(Xx
u) exp

(
−
∫ t

0
V(Xx

s )ds

)
f (Xx

t )

)
dx

(11.48)

11.5 Oscillator process

The oscillator process (also called the Ornstein–Uhlenbeck process) is defined to be

the Gaussian process Xt indexed by t ∈ R with mean and covariance

E(Xt) = 0 E(XsXt) = C(s, t) (11.49)
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where

C(s, t) = (2π )−1
∫

eip(s−t)

p2 + 1
dp = 1

2
e−|t−s| (11.50)

The second version follows by closing the contour in the upper or lower half plane

depending on this sign of s − t. This is positive definite since for any sequence

x1, . . . , xn and any choice of points t1, . . . , tn∑
ij

xixjC(ti, tj) = (2π )−1
∫ |∑i xieipti |2

p2 + 1
dp ≥ 0 (11.51)

and it vanishes iff
∑

i xieipti = 0 for all p which occurs iff xi = 0.

Note that Xt has mean zero and constant variance 1/2. Thus if it is describing

the motion of a particle, it is not diffusive like Brownian motion but stays localized

around the origin. This process also has continuous paths.

The oscillator process is related to the semi-group e−Ht generated by the harmonic

oscillator Hamiltonian which we considered in section 4.4 and which is given by

H = 1

2

(
− d2

dx2
+ x2

)
(11.52)

Recall that the operator has discrete spectrum and that the lowest eigenvalue is 1/2

with eigenvector �0(x) = π−1/4e−x2/2.

Theorem 11.4 Let Xt be the oscillator process and let f , g be polynomially bounded
functions on R . Then for t > 0

(g�0, e−(H− 1
2 )tf�0) = E(g(X0)f (Xt)) (11.53)

Proof The covariance matrix for X0, Xt is

C =
(

C(0, 0) C(0, t)
C(t, 0) C(t, t)

)
= 1

2

(
1 e−t

e−t 1

)
(11.54)

Thus we compute by (11.17)

E(g(X0)f (Xt))

= (2π )−1(det C)−1/2
∫

g(x1) exp

(
−1

2
x · C−1x

)
f (x2)dx

=π−1(1 − e−2t)−1/2∫
g(x1) exp

(
− (1 − e−2t)−1(x2

1 + x2
2 − 2x1x2e−t)

)
f (x2)dx

= et/2(2π sinh t)−1/2∫
(g�0)(x1) exp

(
−1

2
(coth t)(x2

1 + x2
2) + (sinh t)−1x1x2

)
(f�0)(x2)dx

= (g�0, e−(H− 1
2 )tf�0)

(11.55)

The last step follows by Mehler’s formula (4.38).
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Remarks

1. There is also a Feynman–Kac formula for the oscillator process. If V is a bounded
continuous function on R and

H′ = H + V = 1

2

(
− d2

dx2
+ x2

)
+ V (11.56)

Then

(g�0, e−(H′− 1
2 )tf�0) = E

(
g(X0) exp

(
−
∫ t

0
V(Xs)ds

)
f (Xt)

)
(11.57)

2. The fact that Brownian motion and the oscillator process are related to semi-
groups is not accidental. In fact both are (time homogeneous) Markov processes
which roughly means that the future depends only on the present and not on the
past. Such Markov processes always give rise to semi-groups of operators.

11.6 Application: ground states

If a quantum mechanical system has a Hamiltonian for which the bottom of the

spectrum is an eigenvalue, then states in the corresponding eigenspace are called

ground states. These are the states most likely to be occupied. In this section we give

some results about ground states for non-relativistic single particle systems using the

Feynman–Kac formula.

First some definitions. A function on a measure space (M,μ) is positive, written

f ≥ 0, if f (m) ≥ 0 for almost every m and f is not identically zero. A function is

strictly positive, written f > 0, if f (m) > 0 for almost every m. A function f ∈ L2

is strictly positive iff (f , g) > 0 for every positive g ∈ L2 (see problem below). A

bounded operator A on L2(M, dμ) is positivity improving Af > 0 whenever f ≥ 0.

This is true iff (g, Af ) > 0 whenever f ≥ 0, g ≥ 0.

Problem 11.6 Let (M,μ) be a σ -finite measure space.2 Show that f ∈ L2 is
strictly positive iff (f , g) > 0 for every positive g ∈ L2.

For example on L2(Rd) consider e−tH0 where H0 is the free Hamiltonian. The

operator e−tH0 has a strictly positive kernel (2π t)−d/2 exp(−|x− y|2/2t) and hence it

is positivity improving.

Lemma 11.1 Let A be a bounded self-adjoint operator on L2(M,μ) which is posi-
tivity improving. If ‖A‖ is an eigenvalue, then the eigenspace is spanned by a single
strictly positive function.

2 σ -finite means there is a sequence of subsets Mi with finite measure so ∪iMi =M.
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Remark Since σ (A) ⊂ (−‖A‖, ‖A‖), ‖A‖ is the largest possible eigenvalue.

Proof Let ψ be an eigenvector for A with eigenvalue ‖A‖. Since A is reality preserv-
ing both the real and imaginary parts are eigenvectors with eigenvalues ‖A‖. Hence
we may as well assume ψ is real. Then |ψ | ± ψ ≥ 0 hence A(|ψ | ± ψ) > 0 and
hence

|Aψ | ≤ A|ψ | (11.58)

It follows that

‖A‖‖ψ‖2 = (Aψ ,ψ) ≤ (|Aψ |, |ψ |) ≤ (A|ψ |, |ψ |) ≤ ‖A‖‖ψ‖2 (11.59)

and hence

(Aψ ,ψ) = (A|ψ |, |ψ |) (11.60)

Write ψ = ψ+ − ψ− where ψ± ≥ 0. Then |ψ | = ψ+ + ψ− and the last identity
implies that

(Aψ+,ψ−) + (Aψ−,ψ+) = 0 (11.61)

If ψ± are both nonzero, this contradicts the strict positivity. Thus one of them must
be zero and we may assume that ψ− = 0. Thus ψ ≥ 0. Since ψ = ‖A‖−1Aψ
we have ψ > 0. Finally if ψ ′ is another eigenvector, then by the same argument
conclude ψ ′ > 0. Then ψ ′ cannot be orthogonal to ψ so the eigenspace is one
dimensional.

The next result shows that ground states are unique.

Theorem 11.5 Let H0 = −�/2 and let V be a bounded continuous function on Rd

so that H = H0 + V is self-adjoint.

1. The operators e−tH are positivity improving for all t > 0.
2. If H has an eigenvalue at the bottom of the spectrum, then the eigenspace is

spanned by a single strictly positive function.

Proof For f , g ≥ 0 we have by the Feynman–Kac formula for Brownian motion
(11.41)

(g, e−tHf ) =
∫

E

(
g(Xx

0) exp

(
−
∫ t

0
V(Xx

s )ds

)
f (Xx

t )

)
dx

≥ e−t‖V‖∞
∫

E
(
g(Xx

0)f (Xx
t )
)

dx

= e−t‖V‖∞ (g, e−tH0 f )

(11.62)

Hence (g, e−tHf ) > 0 and e−tH is positivity improving.
If E is a lowest eigenvalue for H, then e−tE = ‖e−tH‖ is a highest eigenvalue for

e−tH and the eigenspace is the same. The result now follows by lemma 11.1. This
proves the second point.
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Problem 11.7 Let H = H0 + V and let H′ = H0 + V ′ be as in the theorem with
isolated lowest eigenvalues E, E′ < 0 and with normalized eigenvectors ψ ,ψ ′.

1. Show that (ψ ,ψ ′) > 0.
2. Show that

E′ = lim
t→∞−1

t
log(ψ , e−tH′

ψ) (11.63)

3. Show that

ψ ′ = lim
t→∞

e−tH′
ψ

‖e−tH′
ψ‖ (11.64)

Problem 11.8 (Perturbation theory) As in the previous problem suppose ψ , E are
known and V ′ = V + λV1. We want to compute E′ = E′(λ) for λ small. More
precisely we want to compute the first-order term in an expansion

E′(λ) = E +
(

dE′

dλ
(0)

)
λ+ · · · (11.65)

Assuming one can exchange limits and derivatives use the representation (11.63)
and the Feynman–Kac formula to compute the first-order term.
(Answer: (dE′/dλ)(0) = (ψ , V1ψ).)

Notes on chapter 11: There are many books on the fundamentals of probability

and stochastic processes, for example Billingsley (1979) or Durrett (1996).

For more on path integrals and their application to physics, see Simon (1979) or

Glimm and Jaffe (1987).

It is possible to make some sense of Feynman’s original real time path integral

(11.1). See Albeverio et al. (2008).



12 Fields as random variables

Now we return to quantum field theory. The time zero scalar fields are a family of

commuting symmetric operators on Fock space. Thinking of the spectral theorem,

this suggests that it may be possible to represent them all as functions on some mea-

sure space. In this chapter we develop this representation, known as the Schrödinger

representation. This representation also leads to a path space representation for the

imaginary time dynamics analogous to that for a single particle.

12.1 More on Gaussian processes

12.1.1 Indexing by an inner product space

We consider Gaussian processes indexed by a real vector space S. We are particularly

interested in the case when S is the Schwartz space S(Rd) but proceed generally. The

covariance is a function C : S×S → R, which we suppose is an inner product on S.

For any collection h1, . . . , hn of linearly independent elements of S define an n × n

matrix Ĉ by

Ĉij = C(hi, hj) (12.1)

Then Ĉ is positive definite since for any s1, . . . , sn

∑
ij

sisjĈij = C

⎛⎝∑
i

sihi,
∑

j

sjhj

⎞⎠ ≥ 0 (12.2)

and since it equals zero iff
∑

i sihi = 0 which occurs iff si = 0. We define a Gaussian

random process with covariance C (and mean zero) to be a probability measure space

(M,�,μ) and a family of random variables {φ(h)}h∈S linear in h such that for any

finite collection of linearly independent elements h1, . . . , hn, the random variables

φ(h1), . . . ,φ(hn) are jointly Gaussian with mean zero and covariance matrix Ĉ. Thus

E
(

f (φ(h1), . . . ,φ(hn)
)

= (2π )−n/2(det Ĉ)−1/2
∫

Rn
f (x1, . . . , xn) exp

(
−1

2
x · Ĉ−1x

)
dx

(12.3)

174
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The characteristic function is

E(eiφ(h)) = exp

(
−1

2
C(h, h)

)
(12.4)

and it follows that for any h1, . . . , hn ∈ H (not necessarily linearly independent)

E

(
exp

(
i

n∑
i=1

tiφ(hi)
))

= exp

⎛⎝−1

2

n∑
i,j=1

titjC(hi, hj)

⎞⎠ (12.5)

We also have E(φ(h)) = 0 and E(φ(h1)φ(h2)) = C(h1, h2).

In fact the characteristic function is enough to determine the process. Indeed

if a family of random variables {φ(h)}h∈S satisfies (12.4) and is linear in h,

then (12.5) with h1, . . . , hn linearly independent says that the joint distribution for

φ(h1), . . . ,φ(hn) is Gaussian with covariance Ĉij = C(hi, hj) as required.

Theorem 12.1 Let S be a real vector space with inner product C. Then a Gaussian
random process {φ(h)}h∈S with covariance C exists.

Remarks

1. Because of the linearity requirement and the restriction to linearly independent
elements, the existence does not follow directly from the Kolmogorov theorem.

2. Just as before (problem 11.3) the random variables φ(h) are in Lp(M,μ) for all
1 ≤ p < ∞. Hence the same is true for polynomials in the φ(h). If we assume
that � is the smallest σ -algebra with respect to which the φ(h) are measurable,
then polynomials are dense in L2(M,μ), a result we need later.1

3. In the proof we show more. Let H be the real Hilbert space which is the comple-
tion of S in the inner product C. We construct a family of random variables φ(h)
indexed by h ∈ H with the stated properties.

Proof Pick an orthonormal basis {ei} for H. For any finite collection of basis ele-
ments the matrix C(ei, ej) = δij is positive definite. Hence there exists a Gaussian
process {φ(ei)}∞i=1 with identity covariance by the Kolmogorov theorem as explained
in section 11.2. We have

E(φ(ei)φ(ej)) = C(ei, ej) = δij (12.6)

Any h ∈ H has the expansion h =∑i C(ei, h)ei. Hence we define

φ(h) =
∞∑

i=1

C(ei, h)φ(ei) (12.7)

1 For this result see Segal (1956).
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The limit exists in L2(M,μ) since if hN =∑N
i=1 C(ei, h)ei, then for N > M

‖φ(hN) − φ(hM)‖2 = ‖
N∑

i=M+1

C(ei, h)φ(ei)‖2 =
N∑

i=M+1

C(ei, h)2 (12.8)

and this converges to zero as N, M → ∞. Note that φ(h) is linear in h. Also we
compute

E(eiφ(hN )) = E

(
exp

(
i

N∑
i=1

C(ei, h)φ(ei)
))

= exp

(
−1

2

N∑
i=1

C(ei, h)2

)

= exp

(
−1

2
C(hN , hN)

)
(12.9)

There is a subsequence φ(hNj ) that converges to φ(h) almost everywhere and passing
to this subsequence and using the dominated convergence theorem we take the limit
in (12.9) and conclude that E(eiφ(h)) = exp (−C(h, h)/2). This is sufficient to show
that φ(h) is the desired Gaussian process.

Theorem 12.2

E(φ(h1) . . . φ(hn)) =
{

0 n odd∑
P
∏

{i,j}∈P C(hi, hj) n even

}
(12.10)

where the sum is over pairings P = {{i1, j1}, . . . , {in/2, jn/2}} of (1, . . . , n).

Proof Take the partial derivative ∂n/∂t1 · · · ∂tn [. . . ]ti=0 of (12.5). On the left we get
inE(φ(h1) . . . φ(hn)). On the right we get the coefficient of t1 · · · tn in the power series

expansion of exp
(
− 1

2

∑n
i,j=1 titjC(hi, hj)

)
. For this we can ignore terms with i = j.

Also we can drop the factor 1/2 and write it as a sum over unordered pairs {i, j} (two
element subsets) from (1, . . . , n). Then we have

exp

⎛⎝−∑
{i,j}

titjC(hi, hj)

⎞⎠ =
∏
{i,j}

exp
(−titjC(hi, hj)

)
=
∏
{i,j}

(
1 − titjC(hi, hj) + . . .

)
= 1 +

∑
Q

∏
{i,j}∈Q

(−titjC(hi, hj)
)+ . . .

(12.11)

where the sum over Q is over collections of pairs {i, j} from (1, . . . , n). But only
collections which give a partition of (1, . . . , n) will contribute. This is only possible
if n is even in which case we get the announced sum over pairings. There is also a
factor (−1)n/2 which matches the in on the left. Hence the result.
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12.1.2 Wick monomials

We next introduce Wick monomials.2 These are polynomials in the random variables

φ(h) with the property that monomials of different degree are orthogonal. First define

: eiφ(h) :C= eiφ(h) exp

(
1

2
C(h, h)

)
(12.12)

This is defined so that

E(: eiφ(h) :C) = 1 (12.13)

Then we define Wick monomials by

: φ(h1) . . . φ(hn) :C = 1

in
∂n

∂t1 . . . ∂tn

[
: exp

(
i
∑

i

tiφ(hi)
)

:C

]
t=0

= 1

in
∂n

∂t1 . . . ∂tn

⎡⎣exp

⎛⎝i
∑

i

tiφ(hi) + 1

2

∑
ij

titjC(hi, hj)

⎞⎠⎤⎦
t=0

(12.14)

This looks like the generating function for Hermite polynomials and indeed Wick

monomials are a generalization of Hermite polynomials. We have explicitly

: φ(h) :C = φ(h)

: φ(h1)φ(h2) :C = φ(h1)φ(h2) − C(h1, h2)

: φ(h1)φ(h2)φ(h3) :C = φ(h1)φ(h2)φ(h3) − φ(h1)C(h2, h3)

− φ(h2)C(h1, h3) − φ(h3)C(h1, h2)

(12.15)

and in general

: φ(h1) . . . φ(hn) :C= φ(h1) . . . φ(hn) + lower order terms (12.16)

It follows that Wick monomials span the dense subspace of polynomials in

L2(M,μ). Also note that : φ(h1) . . . φ(hn) :C is linear in each hi and is invariant

under permutations of the hi.

Lemma 12.1

1. For a single Wick monomial

E
(

: φ(h1) . . . φ(hn) :C
)
= 0 (12.17)

2. For a pair of Wick monomials

E
(

: φ(h1) . . . φ(hn) :C: φ(g1) . . . φ(gm) :C
)

=
{

0 n �= m∑
π C(h1, gπ (1)) . . .C(hn, gπ (n)) n = m

} (12.18)

2 There is a connection with Wick ordering explained in the next section
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where the sum is over permutations π of (1, 2, . . . , n).

Proof The first follows by taking derivatives of

E
(

: exp(i
∑

i

tjφ(hj)) :C
)
= 1 (12.19)

For the second note the identity.

: eiφ(h) :C: eiφ(g) :C=: eiφ(h+g) :C e−C(h,g) (12.20)

Let h =∑n
i=1 tihi and g =∑m

j=1 sjgj and take the expectation which gives

E

⎛⎝: exp
(
i
∑

i

tiφ(hi)
)

:C: exp
(
i
∑

j

sjφ(gj)
)

:C

⎞⎠
= exp

⎛⎝−∑
ij

tisjC(hi, gj)

⎞⎠ (12.21)

Now take a single derivative in each of ti, sj at ti = sj = 0. On the left we get in+m

times the desired expectation. On the right we get the coefficient of t1 · · · tns1 · · · sm

in a power series expansion in s, t. To identify this coefficient we write

exp

⎛⎝−∑
(i,j)

tisjC(hi, gj)

⎞⎠ =
∏
(i,j)

exp
(
− tisjC(hi, gj)

)
=
∏
(i,j)

(
1 − tisjC(hi, gj) + . . .

)
= 1 +

∑
�

∏
(i,j)∈�

(−tisjC(hi, gj)
)+ . . .

(12.22)

where the sum over � is over collections of elements (i, j) from (1, . . . , n) ×
(1, . . . , m). But only collections in which each element of (1, . . . , n) appears exactly
once in the first position and each element of (1, . . . , m) appears exactly once in the
second position will contribute. This is only possible if n = m and then the sum over
such terms can be identified with a sum over permutations π of (1, . . . , n). Hence we
get (−1)n = i2n times the right side of (12.18).

Problem 12.1 Show that

φ(h) : φ(h1) . . . φ(hn) :C =: φ(h)φ(h1) . . . φ(hn) :C

+
n∑

j=1

C(h, hj) : φ(h1) . . . φ̂(hj) . . . φ(hn) :C
(12.23)

where the hat on φ(hj) means “omit this factor”.
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Problem 12.2 Establish the identity

: φ(h1) . . . φ(hn) :C=
∑

Q

∏
{i,j}∈Q

(
− C(hi, hj)

)∏
k/∈Q

φ(hk) (12.24)

where Q is a (possibly empty) collection of pairs from (1, . . . , n). Then establish
the special case

: φ(h)n :C=
[n/2]∑
j=0

(−1)jn!

(n − 2j)! j! 2j
C(h, h)jφ(h)n−2j (12.25)

Problem 12.3 Let {hαi } be a collection from S indexed by pairs (α, i) with 1 ≤
α ≤ r and 1 ≤ i ≤ nα . Show that

E

(
r∏

α=1

:
nα∏

i=1

φ(hαi ) :

)
=
∑

G

∏
{(α,i),(β,j)}∈G

C(hαi , hβj ) (12.26)

where the sum is over all graphs G on r vertices with legs (α, i) at the αth vertex
and lines {(α, i); (β, j)}. Each leg must belong to exactly one line and the lines
must have α �= β, that is lines cannot join legs at the same vertex.

12.1.3 Realization onS′

Depending on the real vector space S and the covariance C there may be more con-

crete representations of the Gaussian process. In particular suppose that S is the

Schwartz space S(Rd). It turns out that in this case we can take our basic measure

space to be (Q,�,μC) where Q = S ′(Rd) is the space of real tempered distributions,

� is the σ -algebra generated by the functions q →< q, f >, f ∈ S(Rd), and μC is a

Gaussian measure. The random variables φ(f ) are given by the evaluation map(
φ(f )

)
(q) =< q, f > q ∈ Q, (12.27)

so the distributions q are the fields. With this choice, expectations will be written out

explicitly as

E(F) =
∫

Q
F dμC (12.28)

An advantage of this representation is that there is a natural definition of deriva-

tives with respect to the field. For any function F on Q = S ′(Rd) we define the

derivative along h ∈ Q by

(∇hF)(q) = d

dt
[F(q + th)]t=0 (12.29)
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if it exists. We consider in particular functions on Q of the form

F = F̂(φ(f1), . . . ,φ(fn)) (12.30)

where F̂ is a complex Borel function on Rn and fi ∈ S(Rd). Equivalently we can

write

F(q) = F̂(< q, f1 >, . . . ,< q, fn >) (12.31)

Such functions are called cylinder functions. If F̂ is differentiable, then ∇hF does

exist and by the chain rule we have

∇hF =
n∑

i=1

∂F̂

∂xi
(φ(f1), . . . ,φ(fn)) < h, fi > (12.32)

Note that this is linear in h.

As a special case we can take h = δx, the delta function at x. Then ∇δx F is denoted

∂F/∂φ(x). If F has the form (12.30), then

∂F

∂φ(x)
=

n∑
i=1

∂F̂

∂xi
(φ(f1), . . . ,φ(fn))fi(x) (12.33)

Hence ∂F/∂φ(x) is in S(Rd) and for h ∈ S ′(Rd)

∇hF =< h,
∂F

∂φ
>=

∫
h(x)

∂F

∂φ(x)
dx (12.34)

Problem 12.4 Establish the identities

∇h

(
φ(f1) . . . φ(fn)

)
=

n∑
j=1

< h, fj > φ(f1) . . . φ̂(fj) . . . φ(fn)

∇h

(
: φ(f1) . . . φ(fn) :C

)
=

n∑
j=1

< h, fj >: φ(f1) . . . φ̂(fj) . . . φ(fn) :C

(12.35)

Next we develop an integration by parts formula for ∇h.

Lemma 12.2 Let C(f , g) =< f , Cg > where C is a bijection on S(Rd). Let F =
F̂(φ(f1), . . . ,φ(fn)) be a cylinder function on Q = S ′(Rd) with F̂ and its partial
derivatives continuous and exponentially bounded. Then for h ∈ S(Rd)∫

Q
∇hF dμC =

∫
Q

F φ(C−1h) dμC (12.36)

Proof Let e1, . . . , em be a basis for the subspace spanned by f1, . . . , fn and C−1h
such that C(ei, ej) = δij. Such a basis can be constructed by the Gram-Schmidt pro-
cess. We can write F = F̃(φ(e1), . . . ,φ(em)) and evaluate the derivative by (12.32).
Then write the integral in Rm by (12.3), and integrate by parts to obtain
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Q
∇hF dμC

=
∑

i

< h, ei >

∫
Q

∂F̃

∂xi
(φ(e1), . . . ,φ(em)) dμC

=
∑

i

< h, ei > (2π )−m/2
∫

Rm

∂F̃

∂xi
(x1, . . . , xm)e−|x|2/2dx

=
∑

i

< h, ei > (2π )−m/2
∫

Rm
F̃(x1, . . . , xm) xi e−|x|2/2dx

=
∑

i

< h, ei >

∫
Q

F̃(φ(e1), . . . ,φ(em))φ(ei) dμC

=
∫

Q
F φ(C−1h)dμC

(12.37)

The last step follows by C−1h =∑i < h, ei > ei.

Corollary 12.1 (Integration by parts) With F, G as in the lemma∫
Q

F(∇hG) dμC = −
∫

Q
(∇hF) G dμC +

∫
Q

F G φ(C−1h)dμC (12.38)

Proof In the lemma replace F by FG and use

∇h(FG) = (∇hF)G + F(∇hG) (12.39)

12.2 The Schrödinger representation

12.2.1 Definitions and equivalence

As an application of the previous section we give another representation of the

time zero free scalar field. This is known as the Schrödinger representation and is

characterized by the feature that the field operators are all multiplication operators.

For the free scalar field in space dimension d we generalize the results of sec-

tion 8.2.2 for d = 3. The symmetric Fock space is F+(H0) where H0 = L2(Rd, dp).

On finite particle vectors D0 ⊂ F+(H0) the field operator is defined as in (8.55) and

is now denoted φ0(t, h). Thus

φ0(t, h) = a

(
eiωth̃√

2ω

)
+ a∗

(
eiωth̃√

2ω

)
(12.40)

where h ∈ S(Rd) is real and ω(p) = √|p|2 + m2. The field and its time derivative at

t = 0 are
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φ0(h) = a
(

(2ω)−1/2h̃
)
+ a∗

(
(2ω)−1/2h̃

)
π0(h) = −ia

(
(ω/2)1/2 h̃

)
+ ia∗

(
(ω/2)1/2 h̃

) (12.41)

and these satisfy the canonical commutation relations. We will also want to consider

Wick ordered products : φ0(h1) · · ·φ0(hn) : on the vacuum �0. These satisfy the

identity

: φ0(h1) · · ·φ0(hn) : �0 = a∗
(

(2ω)−1/2h̃1

)
· · · a∗

(
(2ω)−1/2h̃n

)
�0 (12.42)

This follows since Wick ordering means move annihilation operators to the right,

and annihilation operators on �0 give zero.

To represent the φ0(h) as multiplication operators we consider

ω̂ =
√
−�+ m2 = F−1[ω(p)]F (12.43)

and introduce the Gaussian process φ(h) indexed by real h ∈ S(Rd) with mean zero

and covariance (2ω̂)−1. Thus3

E(φ(g)φ(h)) =< g, (2ω̂)−1h >= (g̃, (2ω)−1h̃) (12.44)

Theorem 12.3 Let φ(h) be a Gaussian process with covariance (2ω̂)−1 on a measure
space (M,�,μ). There is a unitary operator V : F+(H0) → L2(M,μ) such that
V�0 = 1 and

V
(

: φ0(h1) · · ·φ0(hn) : �0

)
=: φ(h1) · · ·φ(hn) :(2ω̂)−1 (12.45)

Proof First define V on complex linear combinations of the vectors (12.42). These
can be written in the form

∑
α cα : φ0(hα1 ) · · ·φ0(hαn ) : �0 with α = (α1, . . . ,αn) in

some index set and complex cα . We want to define

V

(∑
α

cα : φ0(hα1 ) · · ·φ0(hαn ) : �0

)
=
∑
α

cα : φ(hα1 ) · · ·φ(hαn ) :(2ω̂)−1 (12.46)

To see this is well-defined we first claim that both vectors have the same norm. For
this it suffices to show that

(: φ0(g1) · · ·φ0(gm) : �0, : φ0(h1) · · ·φ0(hn) : �0)

=E
(
: φ(g1) · · ·φ(gm) :(2ω̂)−1 : φ(h1) · · ·φ(hn) :(2ω̂)−1

) (12.47)

In fact each side is zero if n �= m. If n = m the left side of (12.47) is computed as∑
π

(g̃1, (2ω)−1h̃π (1)) · · · (g̃n, (2ω)−1h̃π (n)) (12.48)

3 Here and elsewhere we write < g, h >= ∫ g(x)h(x)dx as a reminder that it is the real inner product. But
since g, h are real it is the same as (g, h) = ∫ g(x)h(x)dx.
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where the sum is over permutations π of (1, . . . , n). This follows from (12.42) and
the commutation relations for a, a∗, or more directly from (5.60). This is the same as
the right side of (12.47) by (12.18) and (12.44).

Since both sides have the same norm, it follows that if a sum is the zero vector,
then it is sent to the zero vector. Hence if a vector has two different representations
they are sent to the same place. Thus the mapping is well-defined.

The mapping has a dense domain since vectors a∗(f1) · · · a∗(fn)�0 with fi ∈ S(Rd)
span a dense subspace of Fock space. Also the range is the subspace of all polynomi-
als in the φ(h) which is dense in L2(M,μ). Since V is norm preserving with dense
domain and dense range it extends to a unitary operator (theorem 1.3).

Remark Let H0 = d�(ω) be the free Hamiltonian on Fock space so imaginary time
evolution is e−H0t = �(e−ωt). Then by (12.42) and e−H0ta∗(f ) = a∗(e−ωtf )e−H0t or
directly from (5.60)

e−H0t : φ0(h1) · · ·φ0(hn) : �0 =: φ0(e−ω̂th1) · · ·φ0(e−ω̂thn) : �0 (12.49)

Note that e−ω̂thj is still real. Then Ve−H0tV−1 defines a contraction on L2(M,μ),
also denoted e−H0t, and we have

e−H0t : φ(h1) · · ·φ(hn) :(2ω̂)−1=: φ(e−ω̂th1) · · ·φ(e−ω̂thn) :(2ω̂)−1 (12.50)

Problem 12.5

1. Show that

φ0(h) : φ0(h1) · · ·φ0(hn) : �0 =: φ0(h)φ0(h1) · · ·φ0(hn) : �0

+
n∑

j=1

< h, (2ω̂)−1hj >: φ0(h1) · · · φ̂0(hj) · · ·φ0(hn) : �0
(12.51)

2. Show that φ(h) = Vφ0(h)V−1 on polynomials.

Problem 12.6 Show that

: φ(h1) · · ·φ(hn) :(2ω̂)−1= V : φ0(h1) · · ·φ0(hn) : V−1 (12.52)

12.2.2 The CCR

If the Gaussian process φ(h) is realized on the space (Q,�,μ(2ω̂)−1 ) with Q =
S ′(Rd), then we can construct a representation of the CCR. This is a representation

on L2(Q,μ(2ω̂)−1 ) in which φ(h) is multiplication by (φ(h))(q) =< q, h > and π (h) is

a derivative operator. However we cannot take π (h) = −i∇h since this would not be

symmetric with respect to the Gaussian measure. Instead we take for real h ∈ S(Rd)
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φ(h) = [φ(h)]

π (h) = −i∇h + i[φ(ω̂h)]
(12.53)

with the polynomials as the domain.

Lemma 12.3 φ(h),π (h) are densely defined symmetric operators on the Hilbert
space L2(Q,μ(2ω̂)−1 ) which satisfy the canonical commutation relations.

Proof φ(h) is symmetric. To see that π (h) is symmetric use the integration by parts
formula (12.38) with C = (2ω̂)−1 to obtain

(F,π (h)G) = (F, (−i∇h)G) + i(F,φ(ω̂h)G)

= ((−i∇h)F, G) − i(F,φ(ω̂h)G)

= (π (h)F, G)

(12.54)

For the commutators we compute that [φ(g),−i∇h] = i < g, h >. It follows that
[φ(g),π (h)] = i < g, h > and [π (g),π (h)] = 0. Since [φ(g),φ(h)] = 0 is trivial, the
proof is complete.

The next problem combined with problem 12.5 shows that the representation

φ(h),π (h) of the CCR on L2(Q,μ(2ω̂)−1 ) is unitarily equivalent to the representation

φ0(h),π0(h) on Fock space.

Problem 12.7 Show that π (h) = Vπ0(h)V−1 on polynomials.

12.3 Path integrals – free fields

We continue to consider the free scalar field. The Schrödinger representation opens

the door for the representation of the imaginary time dynamics e−H0t in terms of ran-

dom paths as in the Feynman–Kac formula. Recall from section 11.5 that the imagi-

nary time dynamics for the harmonic oscillator with Hamiltonian 1/2(p2+ x2) could

be represented by a Gaussian process Xt with covariance E(Xt1 Xt2 ) = e−|t2−t1|/2/2.

Our Hamiltonian H0 = 1/2
∫

(π2 + φω̂2φ) is an infinite-dimensional analog of the

harmonic oscillator. This suggests a similar representation which we now explain.

For t ∈ R and real h ∈ S(Rd) let φ(t, h) be the Gaussian process with mean zero

and covariance E(φ(t1, h1)φ(t2, h2)) given by

C(t1, h1; t2, h2) =
〈

h1,

(
e−|t2−t1|ω̂

2ω̂

)
h2

〉

=
∫

h̃1(p)
e−|t2−t1|ω(p)

2ω(p)
h̃2(p) dp

(12.55)
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This is positive definite since it can also be written in the form

C(t1, h1; t2, h2) = 1

2π

∫
h̃1(p)

eip0(t1−t2)

p2
0 + |p|2 + m2

h̃2(p) dp0 dp (12.56)

To see that this is the same, evaluate the p0 integral by closing the contour in the

upper or lower half plane depending on the sign of t1 − t2. The Gaussian process

φ(t, h) exists by the Kolmogorov theorem as in our previous discussions. We also

give an alternate construction shortly.

Note that for fixed t the random variables φ(t, h) are Gaussian with covariance

(2ω̂)−1 and so are a realization of our basic scalar field on Rd. Thus t → φ(t, h) is

a random path through random scalar fields. Furthermore our basic Hilbert space is

square-integrable functions of these fixed time fields and so this structure is imbed-

ded at various times in a larger Hilbert space of time dependent fields. This leads to

a Feynman–Kac formula. The details are as follows:

Theorem 12.4 Let φ(h) be a Gaussian process indexed by h ∈ S(Rd) with covari-
ance < h1, (2ω̂)−1h2 > on a measure space (M,�,μ). Furthermore let φ(t, h) be a
Gaussian process indexed by (t, h) ∈ R × S(Rd) with covariance C(t1, h1; t2, h2) on
a measure space (M′,�′,μ′). Then

1. For each t there is an isometry Jt : L2(M,μ) → L2(M′,μ′) such that Jt(1) = 1
and

Jt
(
: φ(h1) · · ·φ(hn) :(2ω̂)−1

) =: φ(t, h1) · · ·φ(t, hn) :C (12.57)

2. Let F, G ∈ L2(M,μ) be states of the scalar field. Then for t ≥ 0

(G, e−H0tF) = E(J0G JtF) (12.58)

Proof For the first part we follow the strategy of theorem 12.3. We want to define
the map by

Jt

(∑
α

cα : φ(hα1 ) . . . φ(hαn ) :(2ω̂)−1

)
=
∑
α

cα : φ(t, hα1 ) . . . φ(t, hαn ) :C (12.59)

This is well-defined if both vectors have the same norm and this follows from

E
(

: φ(g1) . . . φ(gm) :(2ω̂)−1 : φ(h1) . . . φ(hn) :(2ω̂)−1

)
=E
(

: φ(t, g1) . . . φ(t, gm) :C : φ(t, h1) . . . φ(t, hn) :C
) (12.60)

Each side is evaluated by (12.18) and the result follows from the equal time identity

< g, (2ω̂)−1h >= C(t, g; t, h) (12.61)

Hence Jt is well defined. Since the domain is dense and it is norm preserving it
extends to an isometry.

For the second point first take

G =: φ(g1) . . . φ(gn) :(2ω̂)−1 F =: φ(h1) . . . φ(hn) :(2ω̂)−1 (12.62)
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Then we have using (12.50) and (12.18)

(G, e−H0tF)

= E
(

: φ(g1) . . . φ(gn) :(2ω̂)−1 : φ(e−tω̂h1) . . . φ(e−tω̂hn) :(2ω̂)−1

)
=
∑
π

〈
g1,
(e−tω̂

2ω̂

)
hπ (1)

〉
· · ·
〈

gn,
(e−tω̂

2ω̂

)
hπ (n)

〉
= E

(
: φ(0, g1) . . . φ(0, gn) :C : φ(t, h1) . . . φ(t, hn) :C

)
= E(J0G JtF)

(12.63)

The same holds for complex linear combinations of such vectors since monomials of
different degree are orthogonal. This is a dense domain and since both sides of the
equation are continuous bilinears on L2(M,μ), the result follows.

Problem 12.8 Show that Jt[φ(h)] = [φ(t, h)]Jt and hence

Jt

(
φ(h1) · · ·φ(hn)

)
= φ(t1, h1) · · ·φ(tn, hn) (12.64)

Remarks Starting with our Gaussian process φ(t, h) with mean zero and covariance
C(t1, h1, t2, h2) we can consider real test functions f ∈ S(Rd+1) and define4

φ(f ) =
∫
φ(t, f (t, ·))dt (12.65)

Then the φ(f ) are Gaussian with covariance from (12.56)

E(φ(f1)φ(f2)) =
∫

C(t1, f (t1, ·), t2, f (t2, ·)) dt1dt2

=
∫

Rd+1
f̃1(p)

1

p2 + m2
f̃2(p) dp

=< f1, (−�+ m2)−1f2 >

(12.66)

In fact we could have started with a Gaussian process φ(f ) indexed by S(Rd+1)
with covariance (−�+m2)−1. The sharp time fields can then be recovered as follows.
As in the proof of theorem 12.1 the φ(f ) are naturally defined for f in the completion
of S(Rd+1) in the norm (f , (−� + m2)−1f )1/2. This space can be identified as the
Sobolev space

H−1(Rd+1) = {f ∈ S ′(Rd+1) :
∫
|f̃ (p)|2(p2 + m2)−1dp <∞} (12.67)

For h ∈ S(Rd) the Fourier transform of the distribution δt ⊗ h is the function
(2π )−1/2e−ip0th̃(p). Since

∫ |h̃(p)|2(p2
0 + |p|2 + m2)−1dp is finite, δt ⊗ h is in the

Sobolev space and so φ(δt ⊗ h) is defined. If we set φ(t, h) = φ(δt ⊗ h), we get
Gaussian fields with covariance C(t1, h1, t2, h2).

4 Formally φ(t, h) = ∫ φ(t, x)h(x) and so formally φ(f ) = ∫ φ(t, x)f (t, x).
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Thus the basic free dynamics are encoded in a Gaussian process with covariance
(−� + m2)−1. Expectations for this process can be thought of as integrals with
respect to the formal measure5, which is a constant times

e−S(φ)dφ

≡ exp

(
−1

2

∫ (
∂φ(x) · ∂φ(x) + m2φ(x)2)dx

) ∏
x∈Rd+1

dφ(x)
(12.68)

Note that S(φ) is just the classical action (7.82) (at λ = 0 and imaginary time). One
expects that integrals are dominated by the minima of S(φ) which come at solutions
of (−� + m2)φ = 0. This is just the Klein–Gordon equation we started with (now
at imaginary time). Thus the integral has a leading contribution from the classical
solutions, but there are also quantum corrections. This picture manifests itself in
other models as well.

12.4 Vacuum correlation functions

We now study correlation functions which are expectation values of products of

field operators in some distinguished state. They are of interest because all infor-

mation about a model can be recovered from them. They are particularly important

for nonlinear field theories because they are easier to control than states, fields, or

Hamiltonians directly. We explain these points in more detail in the next chapter.

Here we continue with the free scalar field φ0(t, h) defined by (12.40). Vacuum

correlation functions are defined for ti ∈ R, hi ∈ S(Rd) by(
�0,φ0(t1, h1) · · ·φ0(tn, hn)�0

)
(12.69)

Since φ0(t, h) = eiH0tφ0(h)e−iH0t and e−iH0t�0 = �0, this can also be written(
�0,φ0(h1)e−iH0(t1−t2)φ0(h2) . . . φ0(hn−1)e−iH0(tn−1−tn)φ0(hn)�0

)
(12.70)

Now suppose we go to imaginary time replacing each t by it. Then we have

S(t1, h1, . . . , tn, hn)

= (�0,φ0(h1)e−(t2−t1)H0φ0(h2) . . . φ0(hn−1)e−(tn−tn−1)H0φ0(hn)�0
) (12.71)

Now we impose the restriction that ti+1 − ti ≥ 0 so we can deal with bounded

operators e−tH0 for t ≥ 0 rather than unbounded operators for t < 0. In fact for

complex t with Re t > 0 the operators e−tH0 are bounded and analytic (by the spec-

tral theorem and the positivity of H0). The expression (12.71) is also analytic in

5 This can be made precise if we approximate R
d+1 by a finite lattice, say εZd+1/LZ

d+1 with ε small
and L large.
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Re(ti+1− ti) > 0, and the real time correlation functions (12.70) are boundary values

as Re(ti+1 − ti) → 0. The S(t1, h1, . . . , tn, hn) are called the Schwinger functions.

The result we are after is that the Schwinger functions are the moments for the

Gaussian process φ(t, h), which we have been discussing.

Theorem12.5 Let φ(t, h) be the Gaussian process indexed by R×S(Rd) with covari-
ance C(t1, h1; t2, h2) defined in (12.55), (12.56). Then for times t1 ≤ t2 · · · ≤ tn the
Schwinger functions for the free scalar field satisfy

S(t1, h1, . . . , tn, hn) =E
(
φ(t1, h1) . . . φ(tn, hn)

)
(12.72)

Proof Insert φ0(h1) = a((2ω)−1/2h̃1) + a∗((2ω)−1/2h̃1) in the expression (12.71).
Move the creation operator to the left where it becomes an annihilation operator and
gives zero on �0. Move the annihilation operator to the right using a(f )e−H0s =
e−H0sa(e−ωsf ) and the commutation relations for a, a∗ until it reaches the �0 where
it gives zero. This yields the identity

S(t1, h1, . . . , tn, hn)

=
n∑

j=2

(
h̃1,

e−(tj−t1)ω

2ω
h̃j

)
S(t2, h2, . . . , t̂j, hj, . . . , tn, hn)

(12.73)

The inner product here is identified as C(t1, h1, tj, hj). Iterating this relation we find
that S(t1, h1, . . . , tn, hn) is zero if n is odd and if n is even is given as a sum over
pairings P of (1, . . . , n)

S(t1, h1, . . . , tn, hn) =
∑

P

∏
{i,j}∈P

C(ti, hi; tj, hj) (12.74)

But this is the same as E(φ(t1, h1) . . . φ(tn, hn)) by (12.10).

Remark These results can be generalized. Working in the Schrödinger represen-
tation on a measure space (M,�,μ), let R1, . . . , Rn belong to some subspace of
L2(M,μ). We want to assert that for t1 ≤ t2 · · · ≤ tn

E(R1e−(t2−t1)H0 R2 · · ·Rn−1e−H0(tn−tn−1)Rn)

=E
(

(Jt1 R1) · · · (Jtn Rn)
) (12.75)

If n = 2, this is (12.58). If Rj = φ(hj), this is the result (12.72) just established.
(Recall that φ0(h) = φ(h) and �0 = 1 under the identification of Fock space with
L2(M,μ).) Since we allow coinciding times, the result also holds for monomials
R = φ(h1) · · ·φ(hn). Since both sides are linear, it then holds for R = polynomial.
By approximating with polynomials the result can be extended to R ∈ L∞(M,μ) or
R ∈ ∩p<∞Lp(M,μ), but we do not go into details.
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12.5 Thermal correlation functions

We continue with the free scalar field. Suppose now we want to represent not the

vacuum correlation functions, but thermal correlation functions in the grand canoni-

cal ensemble at chemical potential μ = 0 and inverse temperature β > 0. These are

expectations < · · · >β of products of field operators of the form

< · · · >β= Tr([· · · ]e−βH0 )

Tr(e−βH0 )
(12.76)

Working on Rd, the operator e−βH0 is not trace class, so this must be interpreted as a

limit from a sequence of tori Rd/L Zd as L →∞ just as in the non-relativistic case;

see section 6.3.

The KMS condition (6.65) for commuting observables can be interpreted as a

statement of periodicity in imaginary time. This suggests that we try to represent

the imaginary time correlation functions on the cylinder Sβ × Rd rather than Rd+1.

Here Sβ = R/βZ is a circle of circumference β. Indeed let Cβ = (−� + m2)−1

on L2(Sβ × Rd). The periodicity in t means we replace the Fourier transform with a

Fourier series and so instead of (12.56) we have for real hi ∈ S(Rd)

Cβ (t1, h1; t2, h2) = β−1
∑

p0∈(2π/β)Z

∫
h̃1(p)

e−ip0(t1−t2)

p2
0 + |p|2 + m2

h̃2(p)dp (12.77)

The path space representation is the following:

Theorem12.6 Let φ(t, h) be the Gaussian process indexed by Sβ×S(Rd) with covari-
ance Cβ (t1, h2, t2, h2). The thermal correlation functions for the free scalar field
< φ0(t1, h1) · · ·φ0(tn, hn) >β have an analytic continuation to 0 < Im t1 < · · · <
Im tn < β and at points tj = isj with 0 < s1 < · · · < sn < β[

< φ0(t1, h1) · · ·φ0(tn, hn) >β
]

tj=isj
= E

(
φ(s1, h1) · · ·φ(sn, hn)

)
(12.78)

Proof We first check it for n = 2. To compute the left side we note that for f , g ∈
S(Rd)

< a∗(f )a(g) >β =
(

g,
e−βω

(1 − e−βω)
f

)
< a(g)a∗(f ) >β =

(
g,

1

(1 − e−βω)
f

) (12.79)

and that < a∗(f )a∗(g) >β=< a(f )a(g) >β= 0. This computation is the same as in
the non-relativistic case lemma 6.1, except that we have ω(p) = √|p|2 + m2 instead
of |p|2/2m and μ = 0 is now allowed.
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The field operator from (12.40) then satisfies

< φ0(t1, h1)φ0(t2, h2) >β

=
〈

a∗
(

eiωt1 h̃1

2ω

)
a

(
eiωt2 h̃2

2ω

)
+ a

(
eiωt1 h̃1

2ω

)
a∗
(

eiωt2 h̃2

2ω

) 〉
β

=
(

h̃2,

(
e(−β−i(t2−t1))ω

2ω(1 − e−βω)

)
h̃1

)
+
(

h̃1,

(
ei(t2−t1)ω

2ω(1 − e−βω)

)
h̃2

) (12.80)

Since ω ≥ 0, this has the analytic continuation and[
< φ0(t1, h1)φ0(t2, h2) >β

]
t1=is1,t2=is2

=
(

h̃2,

(
e(−β+s2−s1)ω

2ω(1 − e−βω)

)
h̃1

)
+
(

h̃1,

(
e−(s2−s1)ω

2ω(1 − e−βω)

)
h̃2

) (12.81)

On the other hand the right side of (12.78) is E(φ(s1, h1)φ(s2, h2)) = Cβ (s1, h1;
s2, h2). But we can relate the covariance Cβ on Sβ ×Rd to the covariance C on Rd+1

defined in (12.55), (12.56) by

Cβ (s1, h1; s2, h2) =
∑
n∈Z

C(s1, h1; s2 + nβ, h2) (12.82)

To see this is true we first establish the identity for ω �= 0

β−1
∑

p0∈(2π/β)Z

eip0t

p2
0 + ω2

= (2π )−1
∑
n∈Z

∫
eip0(t+nβ)

p2
0 + ω2

dp0 (12.83)

The second expression can be written
∑

n e−ω|t+nβ|/2ω, which shows that the sum
over n converges. To establish the identity note that both sides are periodic functions
with period β and hence define functions on Sβ . Both sides satisfy the equation(

− d2

dt2
+ ω2

)
u =

∑
n∈Z

δ(t + nβ) (12.84)

in the sense of distributions. Such solutions are unique, hence the identity. (This is
the method of images.) Now in (12.83) let t = s1 − s2, let ω = ω(p), multiply by

h̃1(p)h̃2(p), and integrate over p to get (12.82).
Now we have

Cβ (s1, h1; s2, h2)

=
∑
n∈Z

(h̃1,

(
e−|s2−s1+βn|ω

2ω

)
h̃2)

=
−1∑

n=−∞

(
h̃1,

(
e(s2−s1)ω

2ω

)
enβωh̃2

)
+

∞∑
n=0

(
h̃1,

(
e−(s2−s1)ω

2ω

)
e−nβωh̃2

)

=
(

h̃1,

(
e(−β+s2−s1)ω

2ω(1 − e−βω)

)
h̃2

)
+
(

h̃1,

(
e−(s2−s1)ω

2ω(1 − e−βω)

)
h̃2

)
(12.85)
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Taking into account that h real implies h̃i(p) = h̃i(−p) this is the same as (12.81).
For general n the correlation function < φ0(t1, h1) · · ·φ0(tn, hn) >β can be

expressed as a sum over pairings
∑

P
∏

{i,j}∈P < φ0(ti, hi)φ0(tj, hj) >β by a vari-
ation of problem 6.4. Thus it continues to

∑
P
∏

{i,j}∈P Cβ (si, hi; sj, hj), which is

E
(
φ(s1, h1) · · ·φ(sn, hn)

)
by (12.10).

Problem 12.9

1. Check that both sides of (12.83) satisfy (12.84).
2. (uniqueness) Show that if u ∈ S ′(R) and (−d2/dt2 + ω2)u = 0, then u = 0.

Notes on chapter 12: A general reference is Glimm and Jaffe (1987). For Gaussian

measures on S ′(Rd), see Gelfand and Vilenkin (1964). There is an analogue of path

integrals for fermions, see for example Salmhofer (1999).



13 A nonlinear field theory

13.1 Themodel

In this chapter we give an example of a field theory governed by a nonlinear field

equation. In its particle aspect the nonlinearity means that particles can interact with

each other and can also be created and destroyed.

We take the simplest nontrivial case which is a scalar field on the spacetime (R2, η)

obeying the field equation (7.81)

(−�+ m2)φ + 4λφ3 = 0 (13.1)

Here λ is a positive coupling constant. As a first-order system it has the form

dφ

dt
= π

dπ

dt
= −(−�+ m2)φ − 4λφ3

(13.2)

This is an infinite-dimensional Hamiltonian system with the Hamiltonian

H = H0 + V

H0(φ,π ) = 1

2

∫ ∞

−∞

(
π (x)2 + (∇φ(x))2 + m2φ(x)2

)
dx

V(φ) = λ

∫ ∞

−∞
φ(x)4dx

(13.3)

This is formally positive, which is why we took φ3 in the field equation rather than

say φ2. The model is known as the φ4
2 model, the two for dimension d = 2. More

generally if we replace φ4 by a lower semi-bounded polynomial P(φ), it is called the

P(φ)2 model.

The problem is to construct operator valued solutions to this equation with

initial values π0(x),φ0(x), which satisfy the canonical commutation relations

[φ0(x),π0(y)] = iδ(x − y). From chapter 8 we already know the solution for

λ = 0. Start with the Fock space F+(H0) with H0 = L2(R3, dp). Define time

zero fields φ0,π0 as in (8.56). If the terms in H0 = H0(φ0,π0) are Wick-ordered,

then the operator H0 is well-defined as H0 = d�(ω) (problem 8.8) and the
192
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dynamical equations (13.2) are solved by φ(t, x) = eiH0tφ0(x)e−iH0t and π (t, x) =
eiH0tπ0(x)e−iH0t interpreted as distributions.

If we try to incorporate V into this picture, we would try to add a term

λ
∫∞
−∞ φ0(x)4dx to the Hamiltonian. But this is very poorly defined. In the first place

we are raising a (operator-valued) distribution to the fourth power, something with

no natural meaning. In the second place we are integrating something with no decay

over all of R. Our task is to explain how to deal with these problems.

First some comments about the physics. On states with low momentum

ω(p)=√p2 + m2 ≈ m. Hence in (8.56) for d = 1 the field is approximately

φ0(x) ≈ (2m)−1/2(a(x) + a∗(x)) (13.4)

where a(x) = (2π )−1/2
∫

eipxa(p) labels a particle at position x. Hence with Wick

ordering

λ

∫
: φ0(x)4 : dx ≈ 3λ

2m2

∫
a∗(x) a∗(x) a(x) a(x) dx + . . . (13.5)

This leading term preserves particle number and comparing it with (5.79) we see

that it describes pairs of particles interacting with a repulsive delta function potential

v(x−y) = 3λ/m2 δ(x−y). There are also other terms such as
∫

a∗(x)4dx which create

or annihilate particles, but these turn out to be less important at low momentum.

13.2 Regularization

We regularize the problem as follows. As mentioned, the first step is to replace

λ
∫∞
−∞ φ0(x)4dx with a Wick-ordered version

V = λ

∫ ∞

−∞
: φ0(x)4 : dx (13.6)

The second step is to restrict the integral to a finite interval by

VL = λ

∫ L

−L
: φ0(x)4 : dx (13.7)

The third step is to regularize the field. Let χ be an arbitrary positive function in

C∞0 (R) with
∫
χ (x)dx = 1. Then let

δκ (x) = κχ (κx) (13.8)

This is an approximate delta-function in the sense that any continuous function∫
f (y)δκ (x − y)dx → f (x) as κ → ∞ (problem 13.1). We define a regularized

field by

φ0,κ (x) = φ0(δk(· − x)) (13.9)
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and a regularized potential by

VL,κ = λ

∫ L

−L
: φ0,κ (x)4 : dx (13.10)

This is a well-defined operator on a dense domain on Fock space.

We now change to the Schrödinger representation as in section 12.2. The field

operators φ0(h) become a family of Gaussian random variables φ(h) with covari-

ance (2ω̂)−1 on a measure space (M,�,μ). The equivalence is provided by the

unitary map V from the Fock space to L2(M,μ) defined in theorem 12.3. The free

Hamiltonian is now VH0V−1 also denoted H0, and (problem 12.6) the interaction

becomes VVL,κV−1, which is multiplication by

VL,κ (φ) = λ

∫ L

−L
: φκ (x)4 :(2ω̂)−1 dx (13.11)

where φκ (x) is the random variable φκ (x) = φ(δκ (·−x)). Then VL,κ (φ) is well-defined

as a function in Lp(M,μ) for all 1 ≤ p <∞.

Our goal is to remove the regularizations by finding a meaning for the limits

κ→∞ and L→∞. The limit κ → ∞ is facilitated by the Wick monomials as

we now explain. Note that the random variables φκ (x) have a covariance

cκ (x − y) ≡ E(φκ (x)φκ (y))

=
〈
δκ (· − x), (2ω̂)−1

δκ (· − y)
〉

=
∫

eip(x−y)|χ̃(p/κ)|2(2ω(p))−1dp

(13.12)

Thus we have

: φκ (x)4 :(2ω̂)−1= φκ (x)4 − 6cκ (0)φκ (x)2 + 3
(
cκ (0)

)2 (13.13)

As κ → ∞ we have χ̃ (p/κ) → χ̃(0) = (2π )−1/2 and cκ (0) → ∞, in fact cκ (0)

grows like log κ . Thus in
∫ L
−L : φκ (x)4 :(2ω̂)−1 dx the constant and quadratic terms

develop infinite coefficients as κ →∞. The idea is that these should cancel the natu-

ral infinities in the quartic term
∫ L
−L φκ (x)4dx. This is an example of renormalization.

Theorem 13.1 The following limit exists in L2(M,μ)

VL = lim
κ→∞VL,κ (13.14)

Proof We first compute the L2 norm of VL,κ . We have by (12.18)

‖VL,κ‖2
2 = λ2

∫ L

−L
dx
∫ L

−L
dy E

(
: φκ (x)4 :(2ω̂)−1 : φκ (y)4 :(2ω̂)−1

)
= 4! λ2

∫ L

−L
dx
∫ L

−L
dy (cκ (x − y))4

= 4! λ2
〈
χ[−L,L], c4

κ ∗ χ[−L,L]

〉 (13.15)
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Using the Schwarz inequality and the bound ‖f ∗ g‖2 ≤ ‖f‖1‖g‖2 we have

‖VL,κ‖2
2 ≤ 4! λ2‖χ[−L,L]‖2

2‖c4
κ‖1 = 48λ2L‖cκ‖4

4 (13.16)

By the Hausdorff–Young inequality1 ‖cκ‖4 ≤ ‖c̃κ‖4/3. Furthermore

c̃κ (p) = (2π )1/2|χ̃(p/κ)|2(2ω(p))−1 ≤ (2ω(p))−1 (13.17)

and so

‖c̃κ‖4/3 ≤
(∫

(2ω(p))−4/3dp

)3/4

<∞ (13.18)

Hence ‖cκ‖4 is bounded in κ and hence so is ‖VL,κ‖2
2. This result fails in higher

dimensions (the integral (13.18) is infinite), which is why we have taken one space
dimension.

Similarly we have with cκ ,κ ′ (x − y) =< δκ (· − x), (2ω̂)−1
δκ ′ (· − y) >

‖VL,κ − VL,κ ′ ‖2
2

= 4! λ2
∫ L

−L
dx
∫ L

−L
dy
(

(cκ (x − y))4 − 2(cκ ,κ ′ (x − y))4 + (cκ ′ (x − y))4
)

(13.19)

Since χ̃ (p) has a bounded derivative, |χ̃(p) − χ̃ (p′)| is bounded by a constant times
|p − p′|. Since also |χ̃(p)| is bounded, we have that |χ̃(p) − χ̃ (p′)| is bounded by a
constant times |p− p′|ε for any 0 ≤ ε ≤ 1. Hence with κ ∧ κ ′ = min{κ , κ ′} we have
|χ̃(p/κ) − χ̃ (p/κ ′)| ≤ O((κ ∧ κ ′)−ε)|p|ε and therefore

|c̃κ (p) − c̃κ ,κ ′ (p)| ≤ O((κ ∧ κ ′)−ε)|p|εω(p)−1 (13.20)

For ε small the extra |p|ε does not spoil the convergence of our integrals and so

‖cκ − cκ ,κ ′ ‖4 ≤ ‖c̃κ − c̃κ ,κ ′ ‖4/3 ≤ O((κ ∧ κ ′)−ε) (13.21)

Using estimates like this in (13.19) gives that

‖VL,κ − VL,κ ′ ‖2
2 = O((κ ∧ κ ′)−ε) (13.22)

Hence ‖VL,κ − VL,κ ′ ‖2
2 → 0 as κ , κ ′ → ∞ and by the completeness of L2 there is a

limit VL in L2.

Convergence in Lp can also be established. Indeed one can show that for ε > 0

and small and any even integer p there is a constant c (depending on ε, λ, L) so that

‖VL,κ − VL,κ ′ ‖p
p ≤ cp(2p)! (κ ∧ κ ′)−εp (13.23)

The dependence on p can be understood as follows. One can evaluate the Gaussian

integrals in this norm as a sum over graphs on p vertices with four legs at each vertex

with the restriction that no lines join legs of the same vertex, see (12.26). The number

1 The Hausdorff–Young inequality says that if a function f is in Lp(Rd) for 1 ≤ p ≤ 2, then the Fourier
transform f̃ is in Lq(Rd) for p−1 + q−1 = 1 and ‖f̃‖q ≤ (2π )d/2−d/p‖f‖p. We use it for the inverse
transform.
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of such graphs is dominated by the number of graphs without the restriction which

is (4p − 1)(4p − 3) · · · 3 · 1 ≤ 22p(2p)!.

Completing the square in (13.13) gives : φκ (x)4 :≥ −6cκ (0)2 and hence

VL,κ ≥ −12λLcκ (0)2 ≥ −b(log κ)2 + 1 (13.24)

for some constant b. This is a sharp bound and so exp(−VL,κ ) becomes unbounded

as κ →∞. Nevertheless e−VL is integrable for we have:

Theorem 13.2 (Nelson)

E
(
e−VL

)
<∞ (13.25)

Proof The idea is to show that although VL is not bounded below it only becomes
very negative on a set with small measure. Using (13.24) have for any κ and any
even p

P
(

e−VL ≥ eb(log κ)2
)
= P

(
VL ≤ −b(log κ)2

)
≤ P

(
|VL − VL,κ | ≥ 1

)
≤ ‖VL − VL,κ‖p

p

≤ cp(2p)! κ−pε

(13.26)

In the last step we have used (13.23) at κ ′ = ∞. Choosing p close to κε/4 and using
Stirling’s formula for the asymptotics of (2p)! yields for κ sufficiently large

P
(

e−VL ≥ eb(log κ)2
)
≤ exp(−κε/4) (13.27)

or with t = eb(log κ)2

P
(
e−VL ≥ t

) ≤ exp
(
− exp

(ε
4

√
log t

b

))
(13.28)

Since

E
(
e−VL

) = ∫ ∞

0
P
(
e−VL ≥ t

)
dt (13.29)

this is sufficient to establish the integrability.

The Hamiltonian for the model is now HL = H0 + VL on a dense domain in

L2(M,μ). The potential VL is not a Kato perturbation of H0. Nevertheless by a more

difficult proof2 which uses the result (13.25):

Theorem 13.3 HL is essentially self-adjoint on D(H0) ∩ D(VL) and HL is bounded
below.

This theorem and the next can actually be circumvented as we explain later.

2 See Glimm and Jaffe (1970), or Reed and Simon (1975: 267).
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Theorem13.4 Let EL = inf σ (HL) be the bottom of the spectrum for HL. Then EL< 0
is a simple eigenvalue with eigenvector �L which is a strictly positive function.

This is a generalization of theorem 11.5 to an infinite-dimensional measure space.3

The state �L is the vacuum for the model and can be thought of as the distortion

of the free vacuum �0. Well outside of the interval [−L, L] we have HL ≈ H0 and so

we expect �L to be close to �0, which has no particles. However inside the interval

[−L, L] the vacuum �L is filled with particles. The vacuum is not empty. (These

remarks are best visualized in the Fock representation.)

Problem 13.1 Let χ ∈ C∞0 (Rd) with
∫
χ = 1 and let δκ (x) = κdχ (κx). Show that

δκ is a family of approximate delta functions in the sense that for any function f
continuous on a neighborhood of the origin in Rd

lim
κ→∞

〈
δκ , f

〉 =< δ, f >≡ f (0) (13.30)

Problem 13.2 Fill in the details in the proof of theorem 13.2.

13.3 Infinite volume

13.3.1 Wightman functions

Now we would like to take the limit L →∞. The operators HL and vacuum vectors

�L actually have no limit in Fock space. But we use them to define some correlation

functions which do have limits. Then from these infinite volume correlation functions

we will give an abstract construction of a new Hilbert space, new field operators, and

a new vacuum vector, which reproduce the correlation functions.

The correlation functions are vacuum expectation values of products of field oper-

ators. The field operator is φL(t, x) = exp(iHLt)φ(x) exp(−iHLt) or smeared with

f ∈ S(R2)

φL(f ) =
∫
φL(t, x)f (t, x)dxdt =

∫
eiHLtφ(f (t, ·))e−iHLtdt (13.31)

One can show that φL(f ) is a well-defined operator mapping the dense domain

C∞(HL) = ⋂∞
n=1 D(Hn

L) to itself. If f is real, it is symmetric, but we can extend the

definition to complex f by linearity and then φL(f̄ ) ⊂ φL(f )∗. Since �L is a vector in

C∞(HL), we can define vacuum correlation functions or Wightman functions by

3 See Glimm and Jaffe (1970) or Reed and Simon (1978: p.208).
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Wn,L(f1, . . . , fn) = (�L,φL(f1) . . . φL(fn)�L) (13.32)

These Wightman functions are bounded multilinear functionals on S(R2) uniformly

in L. All these results follow from the “φ-bound”4, which says that there is a constant

C so for real h ∈ S(R1) and all L

± φ(h) ≤ C‖h‖1(HL + 1) (13.33)

We note some properties of these finite volume Wightman functions. By the kernel

theorem (see appendix C) there exist distributions Wn,L ∈ S ′(R2n) such that

Wn,L(f1 ⊗ · · · ⊗ fn) = Wn,L(f1, . . . , fn) (13.34)

Lemma13.1 The finite volume Wightman functions Wn,L(F) for F in complex S(R2n)
satisfy the following properties:

1. Let F∗(x1, . . . , xn) = F(xn, . . . , x1), then

Wn,L(F) = Wn,L(F∗) (13.35)

2. Let F0, F1, F2, . . . be a finite sequence with F0 ∈ C and Fn ∈ S(R2n). Then with
W0,L = 1 ∑

i,j

Wi+j,L(F∗i ⊗ Fj) ≥ 0 (13.36)

3. Let Ft(x0
1, x1

1, . . . , x0
n, x1

n) = F(x0
1 − t, x1

1, . . . , x0
n − t, x1

n) be the time translate of F.
Then for any t ∈ R

Wn,L(Ft) = Wn,L(F) (13.37)

Proof For an identity like (13.35) it suffices to prove the result for F = f1 ⊗· · ·⊗ fn
in which case it follows from φL(f̄ ) ⊂ φL(f )∗.

For the second point define

�n,L(f1, . . . , fn) = φL(f1) · · ·φL(fn)�L (13.38)

This is a continuous (vector-valued) multilinear functional on S(R2) and so by a
(vector-valued) kernel theorem there is a unique extension to a (vector-valued) linear
function �n,L(F) on S(R2n) such that

�n,L(f1 ⊗ · · · ⊗ fn) = �n,L(f1, . . . , fn) (13.39)

Then for F ∈ S(R2i) and G ∈ S(R2j) we have

Wi+j,L(F∗ ⊗ G) = (�i,L(F),�j,L(G)) (13.40)

again by φL(f̄ ) ⊂ φL(f )∗. Then for sequences F0, F1, F2, . . .

∑
i,j

Wi+j,L(F∗i ⊗ Fj) =
⎛⎝∑

i

�i,L(Fi),
∑

j

�j,L(Fj)

⎞⎠ ≥ 0 (13.41)

The third point follows by φL(ft) = eiHLtφL(f )e−iHLt and e−iHLt�L = �L.

4 Glimm and Jaffe (1972).
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We would like to show that Wn = limL→∞ Wn,L exists in S ′(R2n). This is possible,

but difficult. We will have more to say about it. For the moment suppose that the limit

does exist. The properties (13.35), (13.36), (13.37) established in the previous lemma

then carry over to the limit. These are sufficient to reconstruct a field theory as we

now explain.

13.3.2 Reconstruction

The reconstruction theorem is quite general and we state the result for a scalar field

in a d-dimensional spacetime. There are also versions for other spins.

Theorem 13.5 (Wightman reconstruction theorem) Let Wn ∈ S ′(Rnd) be a family of
distributions with W0 = 1. Suppose they satisfy

Wn(F) = Wn(F∗) (13.42)

and for any finite sequence F0, F1, F2, . . . with Fn ∈ S(Rnd)∑
i,j

Wi+j(F
∗
i ⊗ Fj) ≥ 0 (13.43)

Then there exists a Hilbert space H, a dense domain D ⊂ H, a family of field
operators φ(f ) : D → D for f ∈ S(Rd), and a vector � ∈ D such that

Wn(f1 ⊗ · · · ⊗ fn) = (�,φ(f1) . . . φ(fn)�) (13.44)

Furthermore φ(f̄ ) ⊂ φ(f )∗. In addition if the Wn are time translation invariant in the
sense that

Wn(Ft) = Wn(F) (13.45)

then there is a self-adjoint operator H such that e−iHt preserves D and satisfies

e−iHt� = � eiHtφ(f )e−iHt = φ(ft) (13.46)

Proof Let E be the space of sequences F = (F0, F1, F2, . . . ) with F0 ∈ C and
Fn ∈ S(Rnd). On E define

(F, G) =
∑
i, j

Wi+j(F
∗
i ⊗ Gj) (13.47)

By (13.42)

(F, G) =
∑
i, j

Wi+j(F∗i ⊗ Gj) =
∑
i, j

Wi+j(G
∗
j ⊗ Fi) = (G, F) (13.48)

and by (13.43) (F, F) ≥ 0. Thus (F, G) is an inner product except that it is not positive
definite. Let N be the subspace of all F with ‖F‖2 = (F, F) = 0 and form the factor
space E/N consisting of equivalence classes [F]. Using the Schwarz inequality one
shows that the inner product is well-defined on E/N by ([E], [F]) = (E, F). On this



200 A nonlinear field theory
�

space it is positive definite. Thus D ≡ E/N is a pre-Hilbert space and we let H be
the completion. � is the equivalence class of (1, 0, 0, . . . ).

The field operator is defined on E by

φ(f )F = (0, f ⊗ F0, f ⊗ F1, f ⊗ F2, . . . ) (13.49)

Then

(F,φ(f )G) =
∑

i,j

Wi+j+1(F∗i ⊗ f ⊗ Gj)

=
∑

i,j

Wi+j+1((f̄ ⊗ Fi)
∗ ⊗ Gj) = (φ(f̄ )F, G)

(13.50)

By the Schwarz inequality

‖φ(f )F‖2 = (φ(f )F,φ(f )F) = (F,φ(f̄ )φ(f )F) ≤ ‖F‖‖φ(f̄ )φ(f )F‖ (13.51)

Hence if F ∈ N , then φ(f )F ∈ N and so φ(f ) is defined on E/N and φ(f )[F] =
[f ⊗ F]. The identity (13.44) holds since φ(f1) . . . φ(fn)� is the equivalence class of
(0, 0, . . . , f1 ⊗ · · · ⊗ fn, 0, . . . ) and so

Wn(f1 ⊗ · · · ⊗ fn)

=
(
(1, 0, 0, · · · ) , (0, 0, . . . , f1 ⊗ · · · ⊗ fn, 0, . . . )

)
= (�,φ(f1) . . . φ(fn)�)

(13.52)

For the second point define Ft = (F0, F1,t, F2,t, . . . ). Then t → Ft is a represen-
tation of the group R on E and it preserves the inner product by (13.45). Hence it
preserves N and defines a representation of R on E/N by U(t)[F] = [Ft], which
also preserves the inner product. This extends to a one-parameter unitary group U(t)
on H, which is continuous since translations are continuous on the Schwartz space.
The Hamiltonian H is defined to be the generator U(t) = eiHt and the identities
(13.46) are easily checked.

We have given a bare bones version of the reconstruction theorem. The full

theorem5 has more features some of which we develop in the following problems.

Problem 13.3 (Poincaré invariance) The proper Poincaré group on (Rd, η) acts
on S(Rd) by fa,�(x) = f (�−1(x − a)). Show that if the Wightman functions in
theorem 13.5 are invariant in the sense that

Wn((f1)a,� ⊗ · · · ⊗ (fn)a,�) = Wn(f1 ⊗ · · · ⊗ fn) (13.53)

then there is a unitary representation U(a,�) of the Poincaré group on H such
that

U(a,�)� = � U(a,�)φ(f )U(a,�)−1 = φ(fa,�) (13.54)

5 See Streater and Wightman (1964).
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Problem 13.4 (locality) Show that if the Wightman functions in theorem 13.5
satisfy

Wn(f1 ⊗ · · · ⊗ fj ⊗ fj+1 ⊗ · · · ⊗ fn) = Wn(f1 ⊗ · · · ⊗ fj+1 ⊗ fj ⊗ · · · ⊗ fn) (13.55)

whenever fj and fj+1 have spacelike separated supports, then

[φ(f ),φ(g)] = 0 (13.56)

whenever f and g have spacelike separated supports.

13.3.3 Interpretation

Following these general considerations we return to the φ4
2 model. Assuming that the

infinite volume Wightman functions exist, the triple (H,�,φ(f )) of the reconstruc-

tion theorem forms the basic model. The physical picture is that the Hilbert space H
has a distinguished vacuum vector � which is invariant under time evolution. Since

it is in some sense the limit as L →∞ of the Fock vacua�L localized in [−L, L], we

can think of it as a sea of Fock particles (also called bare particles) filling all space.

States φ(f1) . . . φ(fn)� represent local disturbances in the vacuum. These states span

a dense set so the entire Hilbert space can be thought of as local distortions of the

vacuum.

Furthermore suppose that we could establish the Poincaré invariance. This would

not be straightforward since the finite volume Wightman functions are not invariant.

Nevertheless once it is known, we would have a representation of the Poincaré

group. Physical particles could be identified by finding irreducible subspaces for this

representation. A physical particle can be thought of as a cloud of bare particles.

13.4 Path integrals – interacting fields

Continuing with the φ4
2 model we seek to represent the imaginary time dynamics as

an integral over paths just as for the free field. That is we seek another version of the

Feynman–Kac formula as in theorem 12.4.

Again let φ(h) be a Gaussian process indexed by h ∈ S(R) with covariance

< h1, (2ω̂)−1h2 > on a measure space (M,�,μ) and let φ(t, h) be a Gaussian pro-

cess indexed by (t, h) ∈ R × S(R) with covariance C(t1, h1; t2, h2) (defined in

(12.55), (12.56)) on a measure space (M′,�′,μ′). We now define a potential on

fields φ(t, h) by

V[0,T]×[−L,L] = λ

∫ T

0

∫ L

−L
: φ(t, x)4 :C dtdx (13.57)
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This can be defined as a limit in L2(M′,μ′) of regularized potentials with : φ(t, x)4 :C
replaced by :φ(t, δκ (·−x))4:C. This is entirely similar to the treatment in theorem 13.1

of the potential VL in L2(M,μ) . In fact we have the identity

V[0,T]×[−L,L] =
∫ T

0
JtVLdt (13.58)

where Jt : L2(M,μ) → L2(M′,μ′) is defined in theorem 12.4. This holds with the

regularizations on both sides since

: φ(t, δκ (· − x))4 :C= Jt : φ(δκ (· − x))4 :(2ω̂)−1 (13.59)

and hence in the limit κ →∞.

Theorem 13.6

1. exp
(−V[0,T]×[−L,L]

)
is in Lp(M′,μ′) for all p <∞.

2. Let ψ ,χ ∈ L2(M,μ) be polynomials and let HL = H0 + VL. Then

(ψ , e−THLχ ) = E
(

J0ψ exp
(
−V[0,T]×[−L,L]

)
JTχ

)
(13.60)

Remark The proof of the first part is entirely similar to the proof of theorem 13.2
and is omitted. The second part is a Feynman–Kac formula. The proof given below is
analogous to the proof of theorem 11.3, but here it is just heuristic. It could be made
rigorous but this would probably not be the most efficient way to obtain the result.6

Proof We compute with tj = jT/n

(ψ , e−THLχ ) = lim
n→∞

(
ψ ,
(
e−TH0/ne−TVL/n

)n
χ
)

= lim
n→∞E

⎛⎝J0ψ

⎛⎝ n∏
j=1

Jtj e
−TVL/n

⎞⎠ JTχ

⎞⎠
= lim

n→∞E

⎛⎝J0ψ exp

⎛⎝−T

n

n∑
j=1

JtjVL

⎞⎠ JTχ

⎞⎠
= E

(
J0ψ exp

(
−
∫ T

0
JtVL dt

)
JTχ

)
(13.61)

Here the first step is the Trotter product formula. The second step is the free field
result (12.75). The third step uses Jt exp(−VL) = exp(−JtVL). In the last step we
take the limit inside the integral and identify a Riemann sum. Finally use (13.58) to
complete the proof.

A variation of this result for the imaginary time correlation functions is the

following. For

− T < t1 < · · · < tn < T (13.62)

6 See for example Simon (1975: 163).
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the bare vacuum correlation functions are (with �0 = 1 in our Schrödinger

representation)(
�0, e−(T+t1)HLφ(h1)e−(t2−t1)HLφ(h2) . . . φ(hn)e−(T−tn)HL�0

)
= E

(
φ(t1, h1) . . . φ(tn, hn) exp

(−V[−T ,T]×[−L,L]
) ) (13.63)

Formally this follows as in (13.61). In any case the expression on the left is well-

defined since the φ bound (13.33) implies (HL + 1)−1/2φ(h)(HL + 1)−1/2 is bounded

and since (HL + 1)1/2e−tHL (HL + 1)1/2 is bounded for t > 0. Next divide by

‖e−THL�0‖2 = E
(
exp

(−V[−T ,T]×[−L,L]
))

(13.64)

By theorem 13.4 the lowest eigenvalue of HL is simple with eigenvector �L and so

(cf. problem 11.7)

lim
T→∞

e−THL�0

‖e−THL�0‖ = �L (13.65)

Then we have for correlation functions with the physical vacuum(
�L,φ(h1)e−(t2−t1)HLφ(h2) . . . φ(hn−1)e−(tn−tn−1)HLφ(hn)�L

)
= lim

T→∞
E
(
φ(t1, h1) . . . φ(tn, hn) exp

(−V[−T ,T]×[−L,L]
))

E
(
exp

(−V[−T ,T]×[−L,L]
)) (13.66)

An advantage of this representation is that the L dependence is in a place where

we can get our hands on it. It is indeed possible to take the limit L → ∞ in this

form, see the notes for references. If the fields φ(t, x) were independent random vari-

ables, this would be easy since one could cancel the large distance contributions

from V[−T ,T]×[−L,L] in the numerator and denominator. They are not independent

but they are approximately independent as points separate since the covariance C is

exponentially decaying. This is the basic mechanism behind the result.

Now we can give an indication of why the Wightman functions have an infinite

volume limit as well.7 By the φ-bound the functions

(�L,φ(h1)e−(τ2−τ1)HLφ(h2) . . . φ(hn−1)e−(τn−τn−1)HLφ(hn)�L) (13.67)

are analytic and bounded uniformly in L on compact subsets of the complex region

Re(τi − τi−1) > 0. Since the functions converge as L → ∞ when the τi are real, it

follows by the Vitali convergence theorem8 that these functions have a limit for τi in

the entire region. Then for ε > 0 and fi ∈ S(R2)∫
dt1 . . . dtn (�L,φ(f1(t1, ·))e−i(t2−t1−iε)HLφ(f2(t2, ·)) · · ·φ(fn(tn, ·))�L) (13.68)

7 Glimm Jaffe and Spencer (1974).
8 See for example Titchmarsh (1939).
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also converges as L → ∞. However as ε → 0 this expression converges to the

Wightman function Wn,L(f1, . . . , fn) and by the φ-bound again one can show that the

limit is uniform in L. Hence the Wightman functions converge as L →∞.

13.5 A reformulation

The approach we have sketched for the φ4
2 model is the most intuitive, but it is not the

most efficient. We now explain a variation which involves constructing the Hilbert

space directly at imaginary time.

Start with the equivalent Gaussian random process φ(f ) indexed by real f ∈ S(R2)

with mean zero and covariance C = (−� + m2)−1. Define the unnormalized finite

volume Schwinger functions

S0
n,T ,L(f1, . . . , fn) = E

(
φ(f1) . . . φ(fn) exp

(−V[−T ,T]×[−L,L]
) )

(13.69)

and extend to complex test functions by linearity. By the kernel theorem this defines

a linear functional S0
n,T ,L on S(R2n) such that

S0
n,T ,L(f1 ⊗ · · · ⊗ fn) = S0

n,T ,L(f1, . . . , fn) (13.70)

It will be convenient to restrict attention to the algebraic tensor product ⊗nS(R2) =
S(R2) ⊗ · · · ⊗ S(R2) which is the subspace of S(R2n) consisting of finite combina-

tions of the f1 ⊗ · · · ⊗ fn.

If f1 ⊗ · · · ⊗ fn has support in the region (13.62), then we have the identity

S0
n,T ,L(f1 ⊗ · · · ⊗ fn)

=
∫ (

�0, e−(T+t1)HLφ(f1(t1, ·))e−(t2−t1)HL

φ(f2(t2, ·)) · · ·φ(fn(tn, ·))e−(T−tn)HL�0
)
dt1 · · · dtn

(13.71)

Indeed the field φ(f ) can be written in terms of the sharp time field φ(t, h) as φ(f ) =∫
φ(t, f (t, ·))dt and the result follows from (13.63).

Lemma 13.2 The finite volume Schwinger functions have the following properties:

1. Let F ∈ ⊗nS(R2) have support in −T < t1 < · · · < tn < T and define

(�F)(t1, x1, . . . , tnxn) = F(−tn, xn, . . . ,−t1, x1) (13.72)

Then

S0
n,T ,L(F) = S0

n,T ,L(�F) (13.73)
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2. (reflection positivity) Let F0, F1, F2, . . . be a finite sequence with F0 ∈ C and
Fn ∈ ⊗nS(R2) with support in 0 < t1 < · · · < tn < T. Then with S0

0,T ,L = 1∑
i,j

S0
i+j,T ,L(�Fi ⊗ Fj) ≥ 0 (13.74)

Proof It suffices to check the first identity for F = f1⊗· · ·⊗ fn. Then it follows from
the representation (13.71) and the facts that e−Ht is self-adjoint and φ(h̄) ⊂ φ(h)∗.

For the second point let f1, . . . , fn have supports in 0 < t1 < · · · < tn < T and
define

�n,T ,L(f1, . . . , fn) =
∫

dt1 · · · dtn

e−t1HLφ(f (t1, ·))e−(t2−t1)HLφ(f (t2, ·)) . . . φ(f (tn, ·))e−(T−tn)HL�0

(13.75)

As a multilinear functional this defines a linear function �n,T ,L(F) on the subspace
of ⊗nS(R2) of restricted supports satisfying

�n,T ,L(f1 ⊗ · · · ⊗ fn) = �n,T ,L(f1, . . . , fn) (13.76)

Now for F ∈ ⊗iS(R2) and G ∈ ⊗jS(R2) with restricted supports we have

S0
i+j,T ,L(�F ⊗ G) =

(
�i,T ,L(F),�j,T ,L(G)

)
(13.77)

Again this follows from the representation (13.71) and adjoint relations. Then for
sequences F0, F1, F2, . . .∑

i,j

S0
i+j,T ,L(�Fi ⊗ Fj) =

(∑
i

�i,T ,L(Fi),
∑

j

�j,T ,L(Fj)
)
≥ 0 (13.78)

Now consider the normalized Schwinger functions:

Sn,T ,L(f1, . . . , fn) =
E
(
φ(f1) . . . φ(fn) exp

(−V[−T ,T]×[−L,L]
) )

E
(

exp
(−V[−T ,T]×[−L,L]

) ) (13.79)

As noted earlier for these one can establish an infinite volume limit

Sn(f1, . . . , fn) = lim
T ,L→∞ Sn,T ,L(f1, . . . , fn) (13.80)

These infinite volume Schwinger functions again satisfy Sn(F) = Sn(�F) as well as

the reflection positivity condition∑
i,j

Si+j(�Fi ⊗ Fj) ≥ 0 (13.81)

Now we can sketch a reconstruction theorem; the details are a bit too much to

go into here. One uses (13.81) to define an inner product on sequences. Factoring

out the null space and completing in the resulting norm gives a Hilbert space. On
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the Hilbert space we can reconstruct field operators which reproduce the Schwinger

functions Sn. The infinite volume Schwinger functions Sn will be time translation

invariant (although the finite volume were not) and one can use this to construct

a semi-group e−tH which generates the time translations. All this is analogous to

the Wightman reconstruction theorem. Then using the semi-group one can make an

analytic continuation to real time and get a family of distributions Wn satisfying the

Wightman axioms and hence a full field theory. This reconstruction theorem exists

in various forms and was originally due to Osterwalder and Schrader.

This approach generalizes to other models and has a number of advantages:

1. It turns out to be relatively easy to prove the reflection positivity (13.81) directly

in path space without establishing the connection with Fock space as in (13.71).

Thus the whole Fock space construction can be dispensed with.

2. Properties of the Wightman functions can be deduced from simpler properties

of the Schwinger functions. In particular Poincaré invariance of the Wightman

functions can be deduced from the invariance of the Schwinger functions under

the Euclidean group (translations, rotations). Also locality for the Wightman

functions can be deduced from the symmetry of the Schwinger functions.

3. Expressions such as (13.79) for the finite volume Schwinger functions can be

thought of as the correlation functions for a problem in classical statistical

mechanics. The phase space is all field configurations on a Euclidean space.

Hence in studying the Schwinger functions one can sometimes use techniques

developed for classical statistical mechanics, for example in proving the existence

of the infinite volume limit. (This works the other way also: field theory tech-

niques have proved to be useful in statistical mechanics problems, both classical

and quantum.)

The φ4
2 model and more generally the P(φ)2 models have been completely con-

structed along the lines we have been discussing. Other nonlinear models have also

been treated with varying degrees of success. In higher dimensions the renormaliza-

tion problems become much more severe (for us Wick ordering was sufficient). The

model φ4
3 has been constructed, but φ4

4 probably does not exist. There is as yet no

model completely constructed in d = 4.

Once a model is constructed the next task is to find what particles are present.

Then one looks for states whose long time behavior consists of a finite number of

particles moving in separate trajectories. This is analogous to the construction of

wave operators in section 4.5 and is the content of the Haag–Ruelle scattering theory.

From these asymptotic states, one forms scattering amplitudes which can in principle

be compared with the results of scattering experiments (in d = 4).

Notes on chapter 13: For the P(φ)2 model see Glimm and Jaffe (1970), Nelson

(1973), Simon (1975), Glimm and Jaffe (1987).
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For an axiomatic treatment of quantum field theory see Streater and Wightman

(1964) or Bogolubov Logunov and Todorov (1975).

There is also a treatment of relativistic quantum physics in which fields are

displaced as the primary objects and replaced by C∗ algebras with a local struc-

ture. This has certain advantages and some believe is a more fundamental approach.

For this algebraic version of quantum field theory see Haag (1992).

There are also books which attempt to explain quantum field theory as practiced

by theoretical physicists to a mathematical audience, for example Folland (2008).



A Appendix A Normed spaces

A.1 Banach spaces

We review some basic facts. A Banach space X is a complete normed vector space.

The vector space can be real or complex, but is complex unless specified otherwise.

The norm is a real-valued function on X sending x ∈ X to ‖x‖ which satisfies:

1. ‖cx‖ = |c|‖x‖ for c ∈ C

2. ‖x + y‖ ≤ ‖x‖ + ‖y‖
3. ‖x‖ ≥ 0 and ‖x‖ = 0 iff x = 0.

The norm makes X into a metric space with distance function

d(x, y) = ‖x − y‖ (A.1)

As such it is a topological space and we have all the usual notions of open sets,

closed sets, dense sets, connected sets, compact sets, etc. To say X is complete

means that every Cauchy sequence in X has a limit in X. That is if ‖xn − xm‖ → 0

as n, m → ∞, then there exists a (unique) x ∈ X such that ‖xn − x‖ → 0 as

n →∞.

Examples:

1. For 1 ≤ p < ∞ let 
p be the space of infinite sequences of complex numbers
x = (x1, x2, . . . ) such that

‖x‖p =
( ∞∑

i=1

|xi|p
)1/p

(A.2)

is finite. Then 
p is a Banach space with this norm.
2. For 1 ≤ p <∞ let Lp(Rn) be the space of all complex measurable functions u on

Rn such that the integral with respect to Lebesgue measure

‖u‖p =
(∫

|u(x)|pdx

)1/p

(A.3)

is finite. If we identify functions which are equal almost everywhere, then Lp(Rn)
is a Banach space with this norm.
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3. Let L∞(Rn) be the space of all complex measurable functions u on Rn which
are bounded almost everywhere. Identifying functions which are equal almost
everywhere, this is a Banach space with the essential supremum norm

‖u‖∞ = ess supx|u(x)| (A.4)

4. Any closed subspace of a Banach space is a Banach space

Theorem A.1 Any normed vector space X0 can be identified as dense subspace of a
Banach space X = X0 called the completion of X0.

We sketch the construction. The space X is equivalence classes of Cauchy

sequences in X0 with {xi} ∼ {x′i} if ‖xi − x′i‖ → 0 as i → ∞. Then X is

naturally a vector space. One shows that limi→∞ ‖xi‖ exists and depends only

on the equivalence class. This gives a norm on X and one shows that X is

complete. X0 is identified as the subspace of (equivalence classes of) constant

sequences.

A.2 Hilbert spaces

A Hilbert space H is a complete inner product space. An inner product on a vector

space H is a map from pairs u, v ∈ H to (u, v) ∈ C such that

1. (u, v) is linear in v and anti-linear in u.

2. (u, v) = (v, u)

3. (u, u) ≥ 0 and (u, u) = 0 iff u = 0

The inner product defines a norm by ‖u‖ = √
(u, u). Thus an inner product space is

a normed space. Complete means complete as a normed space. Thus a Hilbert space

is a Banach space.

The inner product can be recovered from the norm by the polarization identity

(u, v) = 1

4

(
‖u + v‖2 − ‖u − v‖2 − i‖u + iv‖2 + i‖u − iv‖2

)
(A.5)

We also have the Schwarz inequality

|(u, v)| ≤ ‖u‖‖v‖ (A.6)

Examples:

1. 
2 is a Hilbert space with (x, y) =∑∞
i=1 x̄iyi.

2. L2(Rn) is a Hilbert space with (u, v) = ∫ u(x)v(x)dx.
3. Any closed subspace of a Hilbert space is a Hilbert space.
4. Let H1,H2 be Hilbert spaces then H1×H2 ( = all pairs< u1, u2 > with u1 ∈ H1

and u2 ∈ H2 ) is a Hilbert space when supplied with the inner product
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(< u1, u2 >,< v1, v2 >) = (u1, v1) + (u2, v2) (A.7)

This Hilbert space is denoted H1 ⊕H2.

If S is any subspace of a Hilbert space H, not necessarily closed, then

S⊥ = {u ∈ H : (u, v) = 0 for all v ∈ S} (A.8)

is the orthogonal subspace. Then S⊥ is closed and (S⊥)⊥ = S̄, the closure of S.

Theorem A.2 (Projection theorem) Given a closed subspace M of H, any u ∈H can
be uniquely written as a sum u = u1 + u2 where u1 ∈M and u2 ∈M⊥.

Then the map u →< u1, u2 > gives a natural isomorphism between H and M⊕
M⊥ and we write

H =M⊕M⊥ (A.9)

A linear functional L on H is a linear function from H to C. We say L is bounded

if |L(u)| ≤ C‖u‖ for some constant C. A bounded linear functional is a continu-

ous linear functional, and the converse is also true. The space of all bounded linear

functionals denoted H′ is a normed space with

‖L‖ = sup
u �=0

|L(u)|
‖u‖ = sup

‖u‖=1
|L(u)| (A.10)

Then ‖L(u)‖ ≤ ‖L‖‖u‖. The space H′ is also a Hilbert space called the dual space

of H. The dual space can be identified with H because:

Theorem A.3 (Riesz representation theorem) Let L be a bounded linear functional on a
Hilbert space H. Then there is a unique v ∈ H such that L(u) = (v, u). Furthermore
‖L‖ = ‖v‖.

An orthonormal set in H is a sequence of vectors {φi} with i = 1, 2, · · · such that

(φi,φj) = δij =
{

1 if i = j

0 if i �= j
(A.11)

Theorem A.4 The following conditions on an orthonormal set {φi} are equivalent

1. (φi, f ) = 0 for all i implies f = 0.
2. The subspace of finite linear combinations of the {φi} is dense.
3. f =∑∞

i=1(φi, f )φi for f ∈ H.
4. ‖f‖2 =∑∞

i=1 |(φi, f )|2 for f ∈ H.
5. (f , g) =∑∞

i=1(f ,φi)(φi, g) for f , g ∈ H.

If one and hence all of these conditions hold, the {φi} are said to be complete and

constitute an orthonormal basis.
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We give a definition of the tensor product of two Hilbert spaces H1,H2. Given

u ∈H1 and v ∈ H2 we define an anti-linear functional u ⊗ v on H1 ×H2 by

(u ⊗ v) < w1,w2 >= (w1, u)(w2, v) (B.1)

We have

u1 ⊗ v + u2 ⊗ v = (u1 + u2) ⊗ v
(αu ⊗ v) = α(u ⊗ v) = (u ⊗ αv)

(B.2)

for α ∈ C. The algebraic tensor product H1⊗̌H2 is defined to be the space of

functionals which are finite combinations of the u ⊗ v, that is all functionals of the

form
∑

j uj ⊗ vj. A particular functional may have more than one representation of

this form.

We want to define an inner product on the algebraic tensor product so that⎛⎝∑
j

uj ⊗ vj,
∑

k

u′k ⊗ v′k
⎞⎠ =

∑
j,k

(uj, u′k)(vj, v
′
k) (B.3)

Note that this entails

‖u ⊗ v‖ = ‖u‖‖v‖ (B.4)

Lemma B.1 Equation (B.3) defines an inner product on H1⊗̌H2.

Proof First we must check that it is well-defined, that is independent of the repre-
sentation. It suffices to show that if

∑
j uj ⊗ vj = 0, then the inner product with any

other element is zero. But this follows since⎛⎝∑
k

u′k ⊗ v′k,
∑

j

uj ⊗ vj

⎞⎠ =
∑

k

(∑
j

uj ⊗ vj
)
< u′k, v′k >= 0 (B.5)

It is straightforward to check that the inner product is bilinear. We must check that
it is positive definite. Given � ∈ H1⊗̌H2 we can pick orthonormal bases {φa} for
H1 and {ψb} for H2 such that

� =
∑
ab

cab φa ⊗ ψb (B.6)
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with only a finite number of the cab not equal to zero. Then

(�,�) =
∑

aba′b′
c̄abca′b′ (φa ⊗ ψb,φa′ ⊗ ψb′ ) =

∑
ab

|cab|2 ≥ 0 (B.7)

If the inner product is zero, then all cab = 0 and hence � = 0.

Now we define the tensor product H1 ⊗H2 to be the Hilbert space which is the

completion of H1⊗̌H2 in the inner product (B.3).

Lemma B.2

1. If D1 is a dense subspace of H1 and D2 is a dense subspace of H2, then the
algebraic tensor product D1⊗̌D2 is a dense subspace of H1 ⊗H2.

2. If {φa} is an orthonormal basis for H1 and {ψb} is an orthonormal basis for H2,
then φa ⊗ ψb is an orthonormal basis for H1 ⊗H2.

Proof Given � ∈ H1 ⊗H2 and ε > 0 choose
∑N

k=1 uk ⊗ vk so that

‖� −
N∑

k=1

uk ⊗ vk‖ < ε

3
(B.8)

Now let M = supk{‖uk‖, ‖vk‖} and choose u′k ∈ D1 and v′k ∈ D2 so that ‖uk−u′k‖ ≤
ε/3MN and ‖vk − v′k‖ ≤ ε/3MN. Then we have

‖
N∑

k=1

uk ⊗ vk −
N∑

k=1

u′k ⊗ v′k‖

≤
N∑

k=1

‖(uk − u′k) ⊗ vk‖ +
N∑

k=1

‖u′k ⊗ (vk − v′k)‖

≤ ε

3
+ ε

3

(B.9)

Combining the above gives

‖� −
N∑

k=1

u′k ⊗ v′k‖ < ε (B.10)

and proves the first point.
For the second point let D1 be the finite span of the first basis which is dense in H1

and let D2 be the finite span of the second basis which is dense in H2. Then D1 ⊗D2

is the finite span of {φa ⊗ ψb} which is therefore dense.

If the Hilbert spaces are L2 spaces, then we can also identify the tensor product as

an L2 space:

Theorem B.1 There is a unitary operator U from L2(R)⊗ L2(Rm) to L2(Rn+m) such
that (

U(u ⊗ v)
)

(x, y) = u(x)v(y) (B.11)
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Proof Let {φa(x)} be an orthonormal basis for L2(Rn) and let {ψb(y)} be an orthonor-
mal basis for L2(Rm). Then {φa(x)ψb(y)} is an orthonormal set in L2(Rn+m). We
define U on the finite span of the φa ⊗ ψb by

(
U
(∑

ab

cab φa ⊗ ψb

))
(x, y) =

∑
ab

cab φa(x)ψb(y) (B.12)

This is densely defined and norm preserving and so extends to an isometry. To show
U is unitary we have to show that the range is dense, that is that {φa(x)ψb(y)} are
complete in L2(Rn+m).

Suppose that f (x, y) ∈ L2(Rn+m) is orthogonal to all {φa(x)ψb(y)}. By Fubini’s
theorem ∫ (∫

f (x, y)φa(x)dx

)
ψb(y)dy = 0 (B.13)

Since the ψb are dense, this implies
∫

f (x, y)φa(x)dx = 0 for almost every y. Since
the φa are dense, this implies f (x, y) = 0 for almost every (x, y), hence f = 0 in
L2(Rn+m) as required.

It is now straightforward to check (B.11) to complete the proof.

If S is a bounded operator on H1 and T is a bounded operator on H2, then we

define an operator S ⊗ T on H1⊗̌H2 by

(S ⊗ T)

(∑
k

uk ⊗ vk

)
=
∑

k

Suk ⊗ Tvk (B.14)

This is well-defined since if
∑

k uk ⊗ vk = 0, then

(∑
k

Suk ⊗ Tvk

)
< w1,w2 >=

(∑
k

uk ⊗ vk

)
< S∗w1, T∗w2 >= 0 (B.15)

Lemma B.3 S ⊗ T is bounded and extends to a bounded operator on H1 ⊗ H2

satisfying

‖S ⊗ T‖ = ‖S‖‖T‖ (B.16)

Proof First consider the operator S⊗ I. Let {φa} be an orthonormal basis for H1 and
let {ψb} be an orthonormal basis for H2. Consider vectors which are finite sums of
basis vectors of the form

� =
∑
ab

cab φa ⊗ ψb (B.17)



214 Tensor product
�

Then we have

‖(S ⊗ I)�‖2 = ‖
∑
ab

cab Sφa ⊗ ψb‖2 = ‖
∑

b

(∑
a

cab Sφa

)
⊗ ψb‖2

=
∑

b

‖
∑

a

cab Sφa‖2 ≤ ‖S‖2
∑

b

‖
∑

a

cab φa‖2

= ‖S‖2
∑
ab

|cab|2 = ‖S‖2‖�‖2

(B.18)

Thus S ⊗ I is bounded. Similarly I ⊗ T is bounded. It follows that S ⊗ T is bounded
since S ⊗ T = (S ⊗ I)(I ⊗ T). Hence it extends to a bounded operator on H1 ⊗H2

and it is straightforward to check that the extension satisfies (B.14). We have also

‖S ⊗ T‖ ≤ ‖S‖‖T‖ (B.19)

We omit the proof that this is actually an equality.

Reference: Reed and Simon (1980).



C Appendix C Distributions

Distributions are a generalization of functions. In this appendix we consider a special

class of distributions called tempered distributions.

Recall from chapter 1 that the Schwartz space S(Rd) is the space of all complex-

valued infinitely differentiable functions on Rd such that for any choice of multi-

indices α,β we have ‖xβDαf‖∞ < ∞. A tempered distribution T is an element of

the dual space S ′(Rd), that is it is a continuous linear functional from S(Rd) to C.

To each f ∈ S(Rd) it assigns a complex number denoted T(f ) or < T , f >.

To complete the definition we have to specify what “continuous” means in this sit-

uation and this means specifying a topology for S(Rd). Since S(Rd) is not a Banach

space, we do not have a norm to help us. Instead the topology is specified by the

family of semi-norms ‖xβDαf‖∞. (A semi-norm ρ(f ) has the properties of a norm

except that ρ(f ) = 0 need not imply f = 0.) Skipping the exact definition of the

topology we say that a linear functional T on S(Rd) is continuous if there exists a

semi-norm

‖f‖nm = sup
|α|≤n,|β|≤m

‖xβDαf‖∞ (C.1)

and a constant C such that

|T(f )| ≤ C‖f‖nm (C.2)

for all f ∈ S(Rd).

Examples:

1. Let g be a polynomially bounded measurable function on Rd. Then there is an
associated distribution Tg defined by

< Tg, f >=
∫

g(x)f (x)dx (C.3)

Polynomially bounded means that h(x) = (1 + |x|2)−Ng(x) is in L1(Rd) for N
sufficiently large and so we have

|Tg(f )| ≤ ‖h‖1 sup
x
|(1 + |x|2)Nf (x)| (C.4)

This can be dominated by a constant times a norm ‖f‖nm and hence Tg is a
tempered distribution. Usually we would write < g, f > instead of < Tg, f >.
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2. Let μ be a measure on Rd such that for some N∫
(1 + |x|2)−Ndμ(x) <∞ (C.5)

Then we can define a tempered distribution by

Tμ(f ) =
∫

f (x)dμ(x) (C.6)

The proof is similar to the previous example.
3. The delta function δx0 at x0 ∈ Rd is the tempered distribution defined by

δx0 (f ) =< δx0 , f >= f (x0) (C.7)

This is a special case of the previous example. The measure is the point
measure at x.

4. Given complex numbers c1, . . . , cn, multi-indices α1, . . . ,αn, and points
x1, . . . , xn in Rd there is a tempered distribution defined by

T(f ) =
∑

i

ci(D
αi f )(xi) (C.8)

These are generally not given as functions or measures.

In the first example we have seen that polynomially bounded functions determine

distributions. In fact it turns out that the map g → Tg is injective in the sense

that if Tg = Th, then g = h almost everywhere.1 Thus we can identify such func-

tions as a subspace of S ′(Rd). Accordingly it is appropriate to refer to the tempered

distributions as generalized functions.

Even for distributions which are not functions it is sometimes convenient to write

< T , f > as if it were a function by < T , f >= ∫ T(x)f (x)dx with some suggestive

symbol T(x). In particular we write:

< δx0 , f >=
∫
δ(x − x0)f (x)dx (C.9)

Let O ⊂ Rd be open and let C∞0 (O) be the infinitely differentiable functions with

compact support in O. A distribution T is said to vanish on O if < T , f >= 0 for all

f ∈ C∞0 (O). The support of T is the smallest closed set such that T vanishes on the

complement. For example the support of δx0 is the single point x0.

Next we define some operations on tempered distributions.

1. (Multiplication by a smooth function) Suppose that h is a smooth polynomially

bounded function and T ∈ S ′(Rd). Then we can define hT ∈ S ′(Rd) by

< hT , f >=< T , hf > (C.10)

1 If g, h are in L2(Rd) this is immediate since Tg = Th implies that (ḡ − h̄, f ) = 0 for all f in the dense
set S(Rd), hence for all f ∈ L2, hence g − h = 0 in L2.
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This makes sense since if f ∈ S(Rd), then hf ∈ S(Rd). The definition satisfies

hTg = Thg.

2. (Derivatives) Any tempered distribution T has a partial derivative ∂μT = ∂T/∂xμ,

which is the tempered distribution defined by

< ∂μT , f >= − < T , ∂μf > (C.11)

If the distribution is a differentiable function, say Tg with g ∈ S(Rd), then

integrating by parts this is computed as

− < Tg, ∂μf >= −
∫

g(x)∂μf (x)dx =
∫
∂μg(x)f (x)dx =< T∂μg, f > (C.12)

Hence ∂μTg = T∂μg and the definition extends the definition on smooth functions.

It follows that any linear differential operator can be applied to a distribution,

even operators with smooth variable coefficients.

Examples: In d = 1 consider the distribution defined by the Heaviside function
θ which is the characteristic function of [0,∞). Then

<
dθ

dx
, f >= − < θ ,

df

dx
>= −

∫ ∞

0

df

dx
= f (0) (C.13)

and thus
dθ

dx
= δ0 (C.14)

3. (Fourier transform) Since the Fourier transform maps S(Rd) to itself (see

chapter 1), we can define the Fourier transform on a distribution T by

< FT , f >=< T ,F f > (C.15)

This agrees with the definition on functions, that is if g ∈ L2(Rd), then FTg =
TFg. To see this use the fact the F is unitary on L2(Rd) to compute for f ∈ S(Rd)

< FTg, f >=< Tg,F f >= (ḡ,F f )

= (F−1ḡ, f ) = (Fg, f ) =< TFg, f >
(C.16)

Also F is a bijection on S ′(Rd); this follows from the fact that F is a bijection on

S(Rd).

Examples: We have (Fδx)(p) = (2π )−d/2e−ipx since

< Fδx, f >=< δx,F f >= F f (x) = (2π )−d/2
∫

e−ipxf (p)dp (C.17)

Other examples are

F(1) = (2π )d/2δ0 F(∂μδ0) = ipμ(2π )−d/2 (C.18)

Next we quote the kernel theorem which says that a multilinear functional on S
has a kernel in S ′.
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Theorem C.1 Let T(f1, . . . , fn) be a multilinear functional continuous in each fi ∈
S(Rd). Then there is a unique T ∈ S ′(Rnd) such that

T(f1, . . . , fn) = T(f1 ⊗ · · · ⊗ fn) (C.19)

where f1 ⊗ · · · ⊗ fn ∈ S(Rnd) is defined by

(f1 ⊗ · · · ⊗ fn)(x1, . . . , xn) = f1(x1) · · · fn(xn) (C.20)

Examples: Let T be a bounded operator on L2(Rd). Then (f̄1, Tf2) is a continuous
bilinear function on S(Rd) × S(Rd) and so by the theorem there is a T ∈ S ′(R2d)
such that (f̄1, Tf2) = T(f1 ⊗ f2). Replacing f1 by f̄1 and denoting the distribution T by
T(x, y) this can also be written

(f1, Tf2) =
∫

f̄1(x)T(x, y)f2(y)dxdy (C.21)

Then T(x, y) is called the kernel of the operator. (Not to be confused with the null
space, which is also called the kernel.) For example the kernel of the identity is
δ(x − y).

For completeness we quote the general definition of distributions. These are

defined in open sets O ⊂ Rd. Let D(O) = C∞0 (O), the infinitely differentiable

functions on O with compact support. A distribution T is an element of the dual

space D′(O), that is it is a linear functional f → T(f ) on D(O) which is continuous

in the sense that for every compact subset K ⊂ O there are constants k, C such that

|T(f )| ≤ C sup
|α|≤k,x∈K

|(Dαf )(x)| (C.22)

for all f ∈ D(O) with supp f ⊂ K.

Tempered distributions are distributions in this sense: S ′(Rd) ⊂ D′(Rd).

References: Yosida (1966), Reed and Simon (1980), or Taylor (1996).
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action, 111, 187
algebra

C∗, 8, 91, 207
Clifford, 105
Lie, 36, 110

algebraic quantum field theory, 207
algebraic statistical mechanics, 91
analytic Fredholm theorem, 51, 52
angular momentum, 35, 44
annihilation operator, 71, 75, 148
anti-commutator, 73, 139
anti-particles, 128, 140
asymptotic completeness, 57
atoms, 68
axioms, 38

Banach space, 208
boost, 102
Borel

function, 19
set, 19

Bose–Einstein condensation, 87
bosons, 66, 83
bound state, 55
boundary conditions, 16, 83
Brownian motion, 165

in R
d , 167

regularity, 167

canonical commutation relations, 42, 114, 120,
157, 184, 192

canonical quantization, 41
canonical transformation, 32
Cauchy surface, 153
causal curve, 153
CCR, see canonical commutation relations
center of mass, 65
characteristic function, 162, 175
charge

from an internal symmetry group, 128
in classical field theories, 104, 106, 109, 110

in classical mechanics, 30
in quantum field theories, 128, 141

charge conjugation, 138
chemical potential, 81
conservation

angular momentum, 35, 44, 69
charge, 104, 126
energy, 29, 100
momentum, 35, 44, 69, 100

core, 12
correlation functions

Schwinger, 188, 204
thermal, 82, 189
vacuum, 187
Wightman, 197

covariance of random variables,
164, 174

creation operator, 71, 76, 148
current, 1, 104, 106
cylinder function, 180

d’Alembertian, 103
delta function, 197, 216
density, 82, 85
density operator, 78
Dirac equation, 105, 132

covariance, 132
Green’s identity, 106
positive energy solutions, 134

Dirac fields
classical, 105
covariance, 143
locality, 143
quantized, 139

Dirac sea, 140
distribution, 218

S ′(Rd), 215
as generalized function, 216
kernel theorem, 217
of a random variable, 162
tempered, 179, 215
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domains
D0, 73
DS , 76

Ehrenfest’s theorem, 43, 120
eigenvalue, 13
Einstein, 2, 96
electric field, 1, 30
electromagnetic field

classical, 100, 106, 109
covariance, 107, 149
locality, 149
quantized, 148

electromagnetic potential, see electromagnetic
field

electrons, 67, 132
energy, 29, 99
ensemble

canonical, 79
grand canonical, 81
microcanonical, 79

expectation
quantum, 39
random variable, 162

Fermi sea, 87
fermions, 67, 86
Feynman path integrals, 161, 173
Feynman–Kac formula, 168, 171, 185, 202
Fock space, 70
four-momentum, 98
Fourier series, 83
Fourier transform

on distributions, 217
on functions, 10

free energy, 82
free particle

quantum, 47
quantum and relativistic, 114
relativistic, 97

function spaces
Lp(Rn), 208
C∞0 (Rn), 9
H−1(Rn), 186
S(Rn), 9

fundamental constant
h̄, 40, 43
c, 1, 99
k, 80

gamma matrices, 105

gauge
Coulomb, 145
covariant, 146
potential, 110
transformation, 30, 108, 126, 141

Gaussian
measure, 179
process, 164, 174
random variable, 163

general relativity, 2, 96
generalized functions, 216
generator

of a semi-group, 21
of a unitary group, 21
of Hamiltonian flow, 34

geodesics, 97, 153
globally hyberbolic manifold, 153
graph of operator, 12
graphs, 179
Green’s identity, 104, 106, 154
ground states, 171
group

O(1, 3), 102
O(3), 36
Pin(1, 3), 130
SO(3), 36, 60
SO(n), 107
SU(2), 59
Spin(1, 3), 131
U(1), 108
L,L+, L↑+, 102

P , P↑
+, 102

SL(2, C), 151
Lie, 36, 37
one-parameter unitary, 20
symplectic, 32

Gupta–Bleuler quantization, 147

Hadamard singularity, 157
Hamiltonian

classical, 28
Dirac, 134
Pauli, 61
quantum, 41
vector field, 33

harmonic oscillator, 53, 170
Hausdorff–Young inequality, 195
Hawking, 158
Heisenberg picture, 40
Heisenberg uncertainty principle, 43
Hermite polynomials, 54, 177
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Hilbert space, 209
hydrogen atom, 50, 53, 66

indefinite inner product, 106, 131, 146
infinite volume limit, 83, 91, 197, 203
integration by parts, 180

Jacobi identity, 29

Kato’s theorem, 49
kernel theorem, 217
Klein–Gordon equation, 103

positive energy solutions, 116
covariance, 104
existence and uniqueness, 103, 154
fundamental solutions, 111, 154
Green’s identity, 104, 154
on a manifold, 154
propagator, 113, 155
with gauge potential, 109

KMS condition, 91, 189
Kolmogorov theorem, 163

Lie derivative, 33
locality, 125, 142, 143, 149, 156, 201
Lorentz force, 1, 30, 100
Lorentz group, 101
Lorentzian metric, 96, 152

magnetic field, 1, 30, 50, 61
many particles

classical, 31, 35
quantum, 67, 69
relativistic, 100, 118

Markov process, 171
mass shell, 116
Maxwell’s equations, 1, 106
measure space, 161
measurement, 41, 78
Mehler’s formula, 55, 170
min-max theorem, 89
Minkowski space, 96
models

P(φ)2, 192
φ4

2 , 192
φ4

3 , φ4
4 , 206

momentum, 28, 35, 44, 83, 99
momentum space, 43

Newton’s equation, 1
Newton–Wigner coordinates, 118, 134

nonabelian gauge theory, 111
non-relativistic limit, 115
number operator, 71

observable
classical, 29
quantum, 39

operator
adjoint, 14
bounded, 5
closed, 11
compact, 22
essentially self-adjoint, 15
finite rank, 22
graph, 12
Hilbert–Schmidt, 24
isometry, 6
kernel, 5, 218
linear, 5
partial isometry, 26
positive, 17
projection, 6
self-adjoint, 15
spectral projections, 19
spectrum, 13
symmetric, 14
trace class, 25
unitary, 7

Ornstein–Uhlenbeck process, see oscillator
process

orthonormal
basis, 210
set, 210

oscillator process, 169, 184

partition function, 80, 84, 86
Pauli

exclusion principle, 68
Hamiltonian, 61
matrices, 59

perturbation theory, 173
phase space, 28
phi-bound, 198
photon, 99, 144
Poincaré group, 101

extended, 136
representation, 117, 125, 137, 143, 200

Poisson bracket, 29
positive definite, 164
positive type, 88
positivity improving, 171



225 Index
�

positrons, 140
potential

Coulomb, 50, 52
delta function, 62, 193
harmonic oscillator, 53
rank one, 53, 56
Yukawa, 50

pressure, 82, 85
principle of general covariance, 96, 157
principle of least action, 110
propagator, 113, 155
proper time, 97
protons, 67, 141

quantum electrodynamics, 151

random variable, 162
ray, 38
reconstruction theorem

Osterwalder–Schrader, 206
Wightman, 199

reflection positivity, 205
renormalization, 151, 194, 206
resolvent set, 13
Riesz representation theorem, 210
Riesz–Schauder theorem, 23
rotation group, 36

scalar field
locality, 125
charged, 104
charged quantized, 126
classical, 103
covariance, 125
external potential, 124
nonlinear, 111, 192
on a manifold, 154
quantized, 118
Schrödinger representation, 182

scattering
Haag–Ruelle, 206
operator, 57
single particle, 55

Schrödinger
equation, 40
picture, 40
representation, 181

Schwartz space, 9
Schwinger functions, 188, 204
self-adjoint operator, 15
semi-group, 21

Sobolev
inequality, 50
space, 186

spacetime, 95
spectral theorem, 18
spectrum, 13

continuous, 13
of compact operator, 23
of self-adjoint operator, 16
of unitary operator, 13
point, 13
residual, 13

spin, 58, 135, 145
spin-statistics, 67
spinor, 105, 131
stability condition, 88
standard model, 111
states

on C∗ algebra, 91
equilibrium, 79
Gibbs, 80
ground, 171
mixed, 78
pure, 78
stationary, 80

statistics, 67
stochastic process, 162
Stone’s theorem, 21
strictly positive, 171
summation convention, 97
support

distribution, 216
function, 9

symmetries
in classical mechanics, 34
in quantum mechanics, 43
of spacetime, 101

symplectic
form, 34, 119, 123
group, 32
matrix, 32

tangent vector, 96, 152
temperature, 80
tensor product, 211

algebraic, 211
anti-symmetric, 67
symmetric, 66

thermodynamic limit, 83
time orientation, 153
trace, 25
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Trotter product formula, 168

vacuum, 70, 197, 201
vector bundle, 108

connection, 109
covariant derivative, 62, 109
line bundle, 62, 109

wave equation, 95, 107
wave operators, 55

wave function, 38
reduction, 41
spreading, 48

Wick
monomial, 177, 194
order, 123, 193

Wightman
functions, 197
reconstruction theorem, 199

worldline, 97
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