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SUPERSYMMETRY IN PARTICLE PHYSICS

Supersymmetry has been a central topic in particle physics since the early 1980s,
and represents the culmination of the search for fundamental symmetries that has
dominated particle physics for the last 50 years. Traditionally, the constituents
of matter (fermions) have been regarded as essentially different from the parti-
cles (bosons) that transmit the forces between them. In supersymmetry, however,
fermions and bosons are unified.

This is the first textbook to provide a simple pedagogical introduction to what has
been a formidably technical field. The elementary and practical treatment brings
readers to the frontier of contemporary research, in particular, to the confrontation
with experiments at the Large Hadron Collider. Intended primarily for first-year
graduate students in particle physics, both experimental and theoretical, this vol-
ume will also be of value to researchers in experimental and phenomenological
supersymmetry. Supersymmetric theories are constructed through an intuitive ‘trial
and error’ approach, rather than being formal and deductive. The basic elements of
spinor formalism and superfields are introduced, allowing readers to access more
advanced treatments. Emphasis is placed on physical understanding, and on de-
tailed, explicit derivations of all important steps. Many short exercises are included
making for a valuable and accessible self-study tool.

IaN ArTcHISON is Emeritus Professor of Physics at the University of Oxford.
His research interests include time-dependent effective theories of superconductors,
field theories at finite temperature and topological aspects of gauge theories.
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Preface

This book is intended to be an elementary and practical introduction to supersymme-
try in particle physics. More precisely, I aim to provide an accessible, self-contained
account of the basic theory required for a working understanding of the ‘Minimal
Supersymmetric Standard Model’ (MSSM), including ‘soft” symmetry breaking.
Some simple phenomenological applications of the model are also developed in
the later chapters.

The study of supersymmetry (SUSY) began in the early 1970s, and there is now
a very large, and still growing, research literature on the subject, as well as many
books and review articles. However, in my experience the existing sources are gen-
erally suitable only for professional (or intending) theorists. Yet searches for SUSY
have been pursued in experimental programmes for some time, and are prominent
in experiments planned for the Large Hadron Collider at CERN. No direct evidence
for SUSY has yet been found. Nevertheless, for the reasons outlined in Chapter 1,
supersymmetry at the TeV scale has become the most highly developed framework
for guiding and informing the exploration of physics beyond the Standard Model.
This dominant role of supersymmetry, both conceptual and phenomenological, sug-
gests a need for an entry-level introduction to supersymmetry, which is accessible
to the wider community of particle physicists.

The first difficulty presented by conventional texts on supersymmetry — and it
deters many students — is one of notation. Right from the start, discussions tend
to be couched in terms of a spinor notation that is generally not familiar from
standard courses on the Dirac equation — namely, that of either ‘dotted and undot-
ted 2-component Weyl spinors’, or ‘4-component Majorana spinors’. This creates
something of a conceptual discontinuity between what most students already know,
and what they are trying to learn; it becomes a pedagogical barrier. By contrast,
my approach builds directly on knowledge of Dirac spinors in a conventional rep-
resentation, using 2-component (‘half-Dirac’) spinors, without necessarily requir-
ing the more sophisticated dotted and undotted formalism. The latter is, however,

X
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introduced early on (in Section 2.3), but it can be treated as an optional extra; the
essential elements of SUSY and the MSSM (contained in Sections 3.1, 3.2, 4.2,
4.4, 5.1 and Chapters 7 and 8) can be understood quite reasonably without it.

Apart from its simple connection to standard Dirac theory, a second advantage of
the 2-component formalism is, I think, that it is simpler to use than the Majorana one
for motivating and establishing the forms of simple SUSY-invariant Lagrangians.
Again, a more powerful route is available via the superfield formalism, to which I
provide access in Chapter 6, but the essentials do not depend on it.

On the other hand, I don’t think it is wise to eschew the Majorana formalism
altogether. For one thing, there are some important sources which adopt it exclu-
sively, and which students might profitably consult. Furthermore, the Majorana
formalism appears to be the one generally used in SUSY calculations, since, with
some modifications, it allows the use of short-cuts familiar from the Dirac case. So
I provide an early introduction to Majorana spinors as well, in Section 2.5; and at
various places subsequently I point out the Majorana equivalents for what is going
on. I make use of Majorana forms in Section 8.2, where I recover the Standard
Model interactions in the MSSM, and also in the calculations of Section 5.2 and of
Chapter 12. I believe that the indicated arguments justify the added burden, to the
interested reader, of having to acquire some familiarity with a second language.

Moving on from notation, my approach is generally intuitive and constructive,
rather than formal and deductive. It is very much a do-it-yourself treatment. Thus
in Sections 2.1 and 2.2 I provide a gentle and detailed introduction to the use of
Weyl spinors in the ‘half-Dirac’ notation. Care is taken to introduce a simple (free)
SUSY theory very slowly and intuitively in Section 3.1, and this is followed by an
appetite-whetting preview of the MSSM, as a relief from the diet of formalism. The
simple SUSY transformations learned in Section 3.1 are used to motivate the SUSY
algebra in Section 4.2 (rather than just postulating it), and simple consequences for
supermultiplet structure are explained in Section 4.4. The more technical matter of
the necessity for auxiliary fields (even in such a simple case) is discussed at the end
of Chapter 4.

The introduction of interactions in a chiral multiplet follows reasonably straight-
forwardly in Section 5.1 (the Wess—Zumino model). The more technical — but the-
oretically crucial — property of cancellation of quadratic divergences is illustrated
for some simple cases in Section 5.2.

After the optional detour into chiral superfields, the main thread is taken up
again in Chapter 7, where supersymmetric gauge theories are introduced via vector
supermultiplets, which are then combined with chiral supermultiplets. Here the
superfield formalism has been avoided in favour of a more direct try-it-and-see
approach similar to that of Section 3.1.
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At roughly the half-way stage in the book, all the elements necessary for
understanding the construction of the MSSM (or variants thereof) are now in
place. The model is defined in Chapter 8, and immediately applied to exhibit
gauge-coupling unification. Elementary ideas of SUSY breaking are introduced in
Chapter 9, together with the phenomenolgically important notion of ‘soft’
supersymmetry-breaking parameters. The remainder of the book is devoted to sim-
ple applications: Higgs physics (Chapter 10), sparticle masses (Chapter 11) and
sparticle production processes (Chapter 12).

Throughout, emphasis is placed on providing elementary, explicit and detailed
derivations of important formal steps wherever possible. Many short exercises are
included, which are designed to help the reader to engage actively with the text,
and to keep abreast of the formal development through practice at every stage.

In keeping with the stated aim, the scope of this book is strictly limited. A list
of omitted topics would be long indeed. It includes, for example: the superfield
formalism for vector supermultiplets; Feynman rules in super-space; wider phe-
nomenological implications of the MSSM; local supersymmetry (supergravity);
more detail on SUSY searches; SUSY and cosmology; non-perturbative aspects of
SUSY; SUSY in dimensions other than 4, and for values of N other than N = 1. For-
tunately, a number of excellent and comprehensive monographs are now available;
readers interested in pursuing matters beyond where I leave them, or in learning
about topics I omit, can confidently turn to these professional treatments.

I am very conscious that the list of references is neither definitive nor compre-
hensive. In a few instances (for example, in reviewing the beginnings of SUSY and
the MSSM) I have tried to identify the relevant original contributions, although I
have probably missed some. Usually, I have not attempted to trace priorities care-
fully, but have referred to more comprehensive reviews, or have simply quoted such
references as came to hand as I worked my own way into the subject. I apologize to
the many researchers whose work, as a consequence, has not been referenced here.

The book has grown out of lectures to graduate students at Oxford working in
both experimental and theoretical particle physics. In this, its genesis is very similar
to my book with Tony Hey, Gauge Theories in Particle Physics, first published in
1982 and now in its third (two-volume) edition. The present book aims to reach a
similar readership: in particular, I have tried to design the level so that it follows
smoothly on from the earlier one. Indeed, as the title suggests, this book may be
seen as ‘volume 3’ in the series.

However, I would expect theorists and experimentalists to use the book differ-
ently. For theorists, it should be a relatively easy read, setting them up for immediate
access to the professional literature and more advanced monographs. On the other
hand, many experimentalists are likely to find some of the formal parts indigestible,
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even with the support provided. They should be able to find a reasonably friendly
route to the physics they want to learn via the ‘essential elements’ mentioned earlier
(thatis, Sections 2.1,2.2,3.1,3.2,4.2,4.4,5.1 and Chapters 7 and 8), to be followed
by whatever applications they are most interested in. Much of this material should
not be beyond final year maths or physics undergraduates who have taken courses
in relativistic quantum mechanics, introductory quantum field theory, and gauge
theories. By the same token, the book may also be useful to a wide range of physi-
cists in other areas, who wish to gain a first-hand appreciation of the excitement
and anticipation which surround the possible discovery of supersymmetry at the
TeV scale.

Tan J. R. Aitchison
February 2007
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1

Introduction and motivation

Supersymmetry (SUSY) — a symmetry relating bosonic and fermionic degrees of
freedom — is a remarkable and exciting idea, but its implementation is technically
rather complicated. It can be discouraging to find that after standard courses on,
say, the Dirac equation and quantum field theory, one has almost to start afresh
and master a new formalism, and moreover one that is not fully standardized. On
the other hand, 30 years have passed since the first explorations of SUSY in the
early 1970s, without any direct evidence of its relevance to physics having been
discovered. The Standard Model (SM) of particle physics (suitably extended to
include an adequate neutrino phenomenology) works extremely well. So the hard-
nosed seeker after truth may well wonder: why spend the time learning all this
intricate SUSY formalism? Indeed, why speculate at all about how to go ‘beyond’
the SM, unless or until experiment forces us to? If it’s not broken, why try and fix
it?

As regards the formalism, most standard sources on SUSY use either the ‘dotted
and undotted’ 2-component (Weyl) spinor notation found in the theory of represen-
tations of the Lorentz group, or 4-component Majorana spinors. Neither of these is
commonly included in introductory courses on the Dirac equation (although per-
haps they should be), but it is perfectly possible to present simple aspects of SUSY
using a notation which joins smoothly on to standard 4-component Dirac equation
courses, and a brute force, ‘try-it-and-see’ approach to constructing SUS Y-invariant
theories. That is the approach to be followed in this book, at least to start with. How-
ever, as we go along the more compact Weyl spinor formalism will be introduced,
and also (more briefly) the Majorana formalism. Later, we shall include an intro-
duction to the powerful superfield formalism. All this formal concentration is partly
because the simple-minded approach becomes too cumbersome after a while, but
mainly because discussions of the phenomenology of the Minimal Supersymmet-
ric Standard Model (MSSM) generally make use of one or other of these more
sophisticated notations.



2 Introduction and motivation

What of the need to go beyond the Standard Model? Within the SM itself, there
is a plausible historical answer to that question. The V-A current—current (four-
fermion) theory of weak interactions worked very well for many years, when used
at lowest order in perturbation theory. Yet Heisenberg [1] had noted as early as 1939
that problems arose if one tried to compute higher-order effects, perturbation theory
apparently breaking down completely at the then unimaginably high energy of some
300 GeV (the scale of G 1 2). Later, this became linked to the non-renormalizability
of the four-fermion theory, a purely theoretical problem in the years before ex-
periments attained the precision required for sensitivity to electroweak radiative
corrections. This perceived disease was alleviated but not cured in the ‘Intermedi-
ate Vector Boson’ model, which envisaged the weak force between two fermions
as being mediated by massive vector bosons. The non-renormalizability of such a
theory was recognized, but not addressed, by Glashow [2] in his 1961 paper propos-
ing the SU(2) x U(1) structure. Weinberg [3] and Salam [4], in their gauge-theory
models, employed the hypothesis of spontaneous symmetry breaking to generate
masses for the gauge bosons and the fermions, conjecturing that this form of sym-
metry breaking would not spoil the renormalizability possessed by the massless
(unbroken) theory. When ’t Hooft [5] demonstrated this in 1971, the Glashow—
Salam—Weinberg theory achieved a theoretical status comparable to that of quan-
tum electrodynamics (QED). In due course the precision electroweak experiments
spectacularly confirmed the calculated radiative corrections, even yielding a re-
markably accurate prediction of the top quark mass, based on its effect as a virtual
particle . . . but note that even this part of the story is not yet over, since we have still
not obtained experimental access to the proposed symmetry-breaking (Higgs [6])
sector. If and when we do, it will surely be a remarkable vindication of theoretical
preoccupations dating back to the early 1960s.

It seems fair to conclude that worrying about perceived imperfections of a theory,
even a phenomenologically very successful one, can pay off. In the case of the SM,
a quite serious imperfection (for many theorists) is the ‘SM fine-tuning problem’,
which we shall discuss in a moment. SUSY can suggest a solution to this perceived
problem, provided that supersymmetric partners to known particles have masses
no larger than a few TeV (roughly).

In addition to the ‘fine-tuning’ motivation for SUSY — to which, as we shall see,
there are other possible responses — there are some quantitative results (Section 1.2),
and theoretical considerations (Section 1.3) , which have inclined many physicists
to take SUSY and the MSSM (or something like it) very seriously. As always,
experiment will decide whether these intuitions were correct or not. A lot of work has
been done on the phenomenology of such theories, which has influenced the Large
Hadron Collider (LHC) detector design. Once again, it will surely be extraordinary
if, in fact, the world turns out to be this way.
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1.1 The SM fine-tuning problem

The electroweak sector of the SM contains within it a parameter with the dimensions
of energy (i.e. a ‘weak scale’), namely

v & 246 GeV, (1.1

where v/+/2 is the vacuum expectation value (or ‘vev’) of the neutral Higgs field,
(0]¢°|0) = v/+/2. The occurrence of the vev signals the ‘spontaneous’ breaking of
electroweak gauge symmetry (see, for example [7], Chapter 19), and the associated
parameter v sets the scale, in principle, of all masses in the theory. For example,
the mass of the W* (neglecting radiative corrections) is given by

My = gv/2 ~ 80GeV, (1.2)

and the mass of the Higgs boson is

M—\/x 1.3
H=UV 57 ()

where g is the SU(2) gauge coupling constant, and A is the strength of the Higgs
self-interaction in the Higgs potential

, A
v=—ww¢+ﬂw@a (1.4)

where A > 0 and u? > 0. Here ¢ is the SU(2) doublet field

+
¢=(&), (15)

and all fields are understood to be quantum, no ‘hat’ being used.

Recall now that the negative sign of the ‘mass®>’ term —u? in (1.4) is essential
for the spontaneous symmetry-breaking mechanism to work. With the sign as in
(1.4), the minimum of V interpreted as a classical potential is at the non-zero value

6] = V21/VA = v/V2, (1.6)

where yu = \/ﬁ This classical minimum (equilibrium value) is conventionally
interpreted as the expectation value of the quantum field in the quantum vacuum
(i.e. the vev), at least at tree level. If ‘—u? in (1.4) is replaced by the positive
quantity ‘u?’, the classical equilibrium value is at the origin in field space, which
would imply v = 0, in which case all particles would be massless. Hence it is vital
to preserve the sign, and indeed magnitude, of the coefficient of ¢f¢ in (1.4).

The discussion so far has been at tree level (no loops). What happens when we
include loops? The SM is renormalizable, which means that finite results are ob-
tained for all higher-order (loop) corrections even if we extend the virtual momenta
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Figure 1.1 One-loop self-energy graph in ¢* theory.

in the loop integrals all the way to infinity; but although this certainly implies that
the theory is well defined and calculable up to infinite energies, in practice no one
seriously believes that the SM is really all there is, however high we go in energy.
That is to say, in loop integrals of the form

A
/ d*k f (k, external momenta) (1.7)

we do not think that the cut-off A should go to infinity, physically, even though the
reormalizability of the theory assures us that no inconsistency will arise if it does.
More reasonably, we regard the SM as part of a larger theory which includes as
yet unknown ‘new physics’ at high energy, A representing the scale at which this
new physics appears, and where the SM must be modified. At the very least, for
instance, there surely must be some kind of new physics at the scale when quantum
gravity becomes important, which is believed to be indicated by the Planck mass

Mp = (Gn)"V? ~ 1.2 x 10" GeV. (1.8)

If this is indeed the scale of the new physics beyond the SM or, in fact, if there
is any scale of ‘new physics’ even several orders of magnitude different from the
scale set by v, then we shall see that we meet a problem with the SM, once we go
beyond tree level.

The 4-boson self-interaction in (1.4) generates, at one-loop order, a contribution
to the ¢'¢ term, corresponding to the self-energy diagram of Figure 1.1, which is
proportional to

A 4 1
x/ d*k ——. (1.9
k2 — M2

This integral clearly diverges quadratically (there are four powers of k in the nu-
merator, and two in the denominator), and it turns out to be positive, producing a
correction

~ AAN2pig (1.10)
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to the ‘bare” —u’¢T¢ term in V. (The ‘~’ represents a numerical factor, such as
1/4m2, which is unimportant for the argument here: we shall include such factors
explicitly in a later calculation, in Section 5.2.) The coefficient —u> of ¢ ¢ is then
replaced by the one-loop corrected ‘physical’ value — uf)hys, where (ignoring the
numerical factor) —pu2y - = —pu* + LA, or equivalently

Moy = 1 — AAZ. (1.11)

Re-minimizing V, we obtain (1.6) but with u replaced by pphys =,/ Mf,hys- Con-
sider now what is the likely value of pipnys. With v fixed phenomenologically by
(1.1), equation (1.6), as corrected to involve fiphys, provides a relation between
the two unknown parameters ftpnys and A: pphys & V2123 GeV. It follows that if
we want to be able to treat the Higgs coupling A perturbatively, wpnys can hardly
be much greater than a few hundred GeV at most. (A value considerably greater
than this would imply that A is very much greater than unity, and the Higgs sector
would be ‘strongly interacting’; while not logically excluded, this possibility is
generally not favoured, because of the practical difficulty of making reliable non-
perturbative calculations.) On the other hand, if A ~ Mp ~ 10" GeV, the one-loop
correction in (1.11) is then vastly greater than ~ (100 GeV)?, so that to arrive at a
value ~ (100 Gev)? after inclusion of this loop correction would seem to require
that we start with an equally huge value of the Lagrangian parameter 2, relying
on a remarkable cancellation, or fine-tuning, to get us from ~ (10'° GeV)? down
to ~ (10> GeV)?.

In the SM, this fine-tuning problem involving the parameter ppnys affects not
only the mass of the Higgs particle, which is given in terms of ptypys (combining
(1.3) and (1.6)) by

My = V2 tphys, (1.12)
but also the mass of the W,
My = gjtpnys/ V2, (1.13)

and ultimately all masses in the SM, which derive from v and hence pypys. The
serious problem posed for the SM by this ‘unnatural’ situation, which is caused by
quadratic mass divergences in the scalar sector, was pointed out by K. G. Wilson
in a private communication to L. Susskind [8].!

! From a slightly different perspective, 't Hooft [9] also drew attention to difficulties posed by theories with
‘unnaturally’ light scalars. In the context of Grand Unified gauge theories, Weinberg [10] emphasized the
difficulty of finding a natural theory (i.e. one that is not fine-tuned) in which scalar fields associated with
symmetry breaking are elementary, and some symmetries are broken at the GUT scale ~ 10'¢ GeV whereas
others are broken at the very much lower weak scale; this is usually referred to as the ‘gauge hierarchy problem’.
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This fine-tuning problem would, of course, be much less severe if, in fact, ‘new
physics’ appeared at a scale A which was much smaller than Mp. How much
tuning is acceptable is partly a subjective matter, but for many physicists the only
completely ‘natural’ situation is that in which the scale of new physics is within an
order of magnitude of the weak scale, as defined by the quantity v of equation (1.1),
i.e. no higher than a few TeV. The question then is: what might this new physics
be?

Within the framework of the discussion so far, the aim of an improved theory
must be somehow to eliminate the quadratic dependence on the (assumed high)
cut-off scale, present in theories with fundamental (or ‘elementary’) scalar fields.
In the SM, such fields were introduced to provide a simple model of spontaneous
electroweak symmetry breaking. Hence one response — the first, historically — to
the fine-tuning problem is to propose [8] (see also [11]) that symmetry breaking
occurs ‘dynamically’; that is, as the result of a new strongly interacting sector with
a mass scale in the TeV region. In such theories, generically called ‘technicolour’,
the scalar states are not elementary, but rather fermion—antifermion bound states.
The dynamical picture is analogous to that in the BCS theory of superconductivity
(see, for example, Chapters 17, 18 and 19 of [7]). In this case, the Lagrangian for
the Higgs sector is only an effective theory, valid for energies significantly below
the scale at which the bound state structure would be revealed, say 1-10 TeV.
The integral in (1.9) can then only properly be extended to this scale, certainly
not to a hierarchically different scale such as Mp, or the GUT scale. This scheme
works very nicely as far as generating masses for the weak bosons is concerned.
However, in the SM the fermion masses also are due to the coupling of fermions
to the Higgs field, and hence, if the Higgs field is to be completely banished from
the ‘fundamental’ Lagrangian, the proposed new dynamics must also be capable of
generating the fermion mass spectrum. This has turned out to require increasingly
complicated forms of dynamics, to meet the various experimental constraints. Still,
technicolour theories are not conclusively ruled out. Reviews are provided by Fahri
and Susskind [12], and more recently by Lane [13]; see also the somewhat broader
review by Hill and Simmons [14].

If, on the other hand, fundamental scalars are to be included in the theory, how
might the quadratic divergences be controlled? A clue is provided by consider-
ing why such divergences only seem to affect the scalar sector. In QED the pho-
ton self-energy diagram of Figure 1.2 is apparently quadratically divergent (there
are two fermion propagators, each of which depends linearly on the integrated 4-
momentum). As in the scalar case, such a quadratic divergence would imply an
enormous quantum correction to the photon mass. In fact this divergence is absent,
provided the theory is regularized in a gauge-invariant way (see, for example [15],
Section 11.3). In other words, the symmetry of gauge invariance guarantees that no
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Figure 1.2 One-loop photon self-energy diagram in QED.

term of the form
m> AF A, (1.14)

can be radiatively generated in an unbroken gauge theory: the photon is massless.
The diagram of Figure 1.2 is divergent, but only logarithmically; the divergence is
absorbed in a field strength renormalization constant, and is ultimately associated
with the running of the fine structure constant (see [7], Section 15.2).

We may also consider the electron self-energy in QED, generated by a one-loop
process in which an electron emits and then re-absorbs a photon. This produces
a correction dm to the fermion mass m in the Lagrangian, which seems to vary
linearly with the cut-off:

dm ~ o — ~aA. (1.15)

(Here we have neglected both the external momentum and the fermion mass, in
the fermion propagator, since we are interested in the large k behaviour.) Although
perhaps not so bad as a quadratic divergence, such a linear one would still lead to
unacceptable fine-tuning in order to arrive at the physical electron mass. In fact,
however, when the calculation is done in detail one finds

dm ~ amln A, (1.16)

so that even if A ~ 10" GeV, we have §m ~ m and no unpleasant fine-tuning is
necessary after all.

Why does it happen in this case that §m ~ m? It is because the Lagrangian for
QED (and the SM for that matter) has a special symmetry as the fermion masses
go to zero, namely chiral symmetry. This is the symmetry under transformations
(on fermion fields) of the form

U — ey (1.17)
in the U(1) case, or

Y — Ty, (1.18)
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Figure 1.3 Fermion loop contribution to the Higgs self-energy.

in the SU(2) case. This symmetry guarantees that all radiative corrections to m,
computed in perturbation theory, will vanish as m — 0. Hence §m must be pro-
portional to m, and the dependence on A is therefore (from dimensional analysis)
only logarithmic.

In these two examples from QED, we have seen how unbroken gauge and chiral
symmetries keep vector mesons and fermions massless, and remove ‘dangerous’
quadratic and linear divergences from the theory. If we could find a symmetry which
grouped scalar particles with either massless fermions or massless vector bosons,
then the scalars would enjoy the same ‘protection’ from dangerous divergences
as their symmetry partners. Supersymmetry is precisely such a symmetry: as we
shall see, it groups scalars together with fermions (and vector bosons with fermions
also). The idea that supersymmetry might provide a solution to the SM fine-tuning
problem was proposed by Witten [16], Veltman [17] and Kaul [18].

We can understand qualitatively how supersymmetry might get rid of the
quadratic divergences in the scalar self-energy by considering a possible fermion
loop correction to the —u¢’¢ term, as shown in Figure 1.3. At zero external
momentum, such a contribution behaves as

A 1 s A k2+m2
02 d4kT |: :|) tp = [ —4 4/ d4k f 1 )
( gf/ Lm0 0= w—my)?
(1.19)

The sign here is crucial, and comes from the closed fermion loop. The term with
the k? in the numerator in (1.19) is quadratically divergent, and of opposite sign to
the quadratic divergence (1.10) due to the Higgs loop. Ignoring numerical factors,
these two contributions together have the form

(A —gf)A%0'o. (1.20)

The possibility now arises that if for some reason there existed a boson—fermion
coupling g¢ related to the Higgs coupling by

g =X (1.21)

then this quadratic sensitivity to A would not occur.
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A relation between coupling constants, such as (1.21), is characteristic of a
symmetry, but in this case it must evidently be a symmetry which relates a purely
bosonic vertex to a boson—fermion (Yukawa) one. Relations of the form (1.21) are
indeed just what occurin a SUSY theory, as we shall see in Chapter 5. In addition, the
masses of bosons and fermions belonging to the same SUSY multiplet are equal,
if SUSY is unbroken; in this simplified model, then, we would have m¢ = My.
Note, however, that the cancellation of the quadratic divergence occurs whatever
the values of m¢ and My, since these masses do not enter the expression (1.20).
We shall show this explicitly for the Wess—Zumino model [19] in Chapter 5. It
is a general result in any SUSY theory, and has the important consequence that
SUSY-breaking mass terms (as are certainly required phenomenologically) can be
introduced ‘by hand’ without spoiling the cancellation of quadratic divergences. As
we shall see in Chapter 9, other SUSY-breaking terms which do not compromise
this cancellation are also possible; they are referred to generically as ‘soft SUSY-
breaking terms’.

To implement this idea in the context of the (MS)SM, it will be necessary
to postulate the existence of new fermionic ‘superpartners’ of the Higgs field —
‘Higgsinos’ — as discussed in Chapters 3 and 8. But this will by no means deal with
all the quadratic divergences present in the —u’¢{¢ term. In principle, every SM
fermion can play the role of ‘f” in (1.19), since they all have a Yukawa coupling
to the Higgs field. To cancel all these quadratic divergences will require the intro-
duction of scalar superpartners for all the SM fermions, that is, an appropriate set
of squarks and sleptons. There are also quadratic divergences associated with the
contribution of gauge boson loops to the ‘—pu?’ term, and these too will have to
be cancelled by fermionic superpartners, ‘gauginos’. In this way, the outlines of a
supersymmetrized version of the SM are beginning to emerge.

After cancellation of the A? terms via (1.21), the next most divergent contribu-
tions to the ‘—u>’ term grow logarithmically with A, but even terms logarithmic
in the cut-off can be unacceptably large. Consider a simple ‘one Higgs — one new
fermion’ model. The In A contribution to the ‘— %’ term has the form

~ A(aMj — bmi)In A, (1.22)

where a and b are numerical factors. Even though the dependence on A is now
tamed, a fine-tuning problem will arise in the case of any fermion (coupling to the
Higgs field) whose mass my is very much larger than the weak scale. In general, if
the Higgs sector has any coupling, even indirect via loops, to very massive states
(as happens in Grand Unified Theories for example), the masses of these states
will dominate radiative corrections to the ‘—u?’ term, requiring large cancellations
once again.



10 Introduction and motivation

This situation is dramatically improved by SUSY. Roughly speaking, in a su-
persymmetric version of our ‘one Higgs — one new fermion’ model, the boson and
fermion masses would be equal (My = my), and so would the coefficients a and b
in (1.22), with the result that the correction (1.22) would vanish! Similarly, other
contributions to the self-energy from SM particles and their superpartners would all
cancel out, if SUSY were exact. More generally, in supersymmetric theories only
wavefunction renormalizations are infinite as A — o0, as we shall discuss further
in the context of the Wess—Zumino model in Section 5.2; these will induce corre-
sponding logarithmic divergences in the values of physical (renormalized) masses
(see, for example, Section 10.4.2 of [15]). However, no superpartners for the SM
particles have yet been discovered, so SUSY — to be realistic in this context — must
be a (softly) broken symmetry (see Chapter 9), with the masses of the superpartners
presumably lying at too high values to have been detected yet. In our simple model,
this means that Mﬁ #* m% In this case, the quadratic divergences still cancel, as
previously noted, and the remaining correction to the physical ‘—u?’ term will be
of order )‘(Mle — m%) In A. We conclude that (softly) broken SUSY may solve the
SM fine-tuning problem, provided that the new SUSY superpartners are not too
much heavier than the scale of v (or My), or else we are back to some form of fine-
tuning.? Of course, how much fine-tuning we are prepared to tolerate is a matter
of taste, but the argument strongly suggests that the discovery of SUSY should be
within the reach of the LHC —if not, as it now seems, of either LEP or the Tevatron.
Hence the vast amount of work that has gone into constructing viable theories, and
analysing their expected phenomenologies.

In summary, SUSY can stabilize the hierarchy My w < Mp, in the sense that
radiative corrections will not drag My w up to the high scale A; and the argument
implies that, for the desired stabilization to occur, SUSY should be visible at a
scale not much greater than a few TeV. The origin of this latter scale (that of SUSY-
breaking — see Chapter 9) is a separate problem. It is worth emphasizing that a
theory of the MSSM type, with superpartner masses no larger than a few TeV, is a
consistent effective field theory which is perturbatively calculable for all energies up
to, say, the Planck, or a Grand Unification, scale without requiring fine-tuning (but
see Section 10.3 for further discussion of this issue, within the MSSM specifically).
Whether such a post-SUSY ‘desert’ exists or not is, of course, for experiment to
decide.

Notwithstanding the foregoing motivation for seeking a supersymmetric version
of the SM (a view that became widely accepted from the early 1980s), the reader
should be aware that, historically, supersymmetry was not invented as a response to

2 The application of the argument to motivate a supersymmetric SU(5) grand unified theory (in which A is now
the unification scale), which is softly broken at the TeV mass scale, was made by Dimopoulos and Georgi [20]
and Sakai [21]. Well below the unification scale, the effective field content of these models is that of the MSSM.
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the SM fine-tuning problem. Supersymmetric field theories, and the supersymmetry
algebra (see Section 1.3 and Chapter 4), had been in existence since the early 1970s:
in two dimensions, in the context of string theory [22-24]; as a graded Lie algebra in
four dimensions [25, 26]; in a non-linear realization [27]; and as four-dimensional
quantum field theories [19, 28, 29]. Indeed, Fayet [30-33] had pioneered SUSY
extensions of the SM before the fine-tuning problem came to be regarded as so
central, and before the phenomenological importance of soft SUSY breaking was
appreciated; and Farrar and Fayet had begun to explore the phenomenology of the
superpartners [34-36].

It may be that, if experiment fails to discover SUSY at the TeV scale, supersym-
metry itself may still turn out to have physical relevance. At all events, this book is
concerned with the SUSY response to the SM fine-tuning problem, in the specific
form of the MSSM. We should however note that, in addition to technicolour, other
possibilities have been proposed more recently, in particular the radical idea that
the gravitational (or string) scale is actually very much lower than (1.8), perhaps
even as low as a few TeV [37]. The fine-tuning problem then evaporates since the
ultraviolet cut-off A is not much higher than the weak scale itself. This miracle
is worked by appealing to the notion of ‘large’ hidden extra dimensions, perhaps
as large as sub-millimetre scales. This and other related ideas are discussed by
Lykken [38], for example. Nevertheless, it is fair to say that SUSY, in the form
of the MSSM, is at present the most highly developed framework for guiding and
informing explorations of physics ‘beyond the SM’.

1.2 Three quantitative indications

Here we state briefly three quantitative results of the MSSM, which together have
inclined many physicists to take the model seriously; as indicated, we shall explore
each in more detail in later chapters.

(a) The precision fits to electroweak data show that My is less than about 200 GeV, at the
99% confidence level. The ‘Minimal Supersymmetric Standard Model” (MSSM) (see
Chapter 8), which has two Higgs doublets, predicts (see Chapter 10) that the lightest
Higgs particle should be no heavier than about 140 GeV. In the SM, by contrast, we
have no constraint on My.>

(b) At one-loop order, the inverse gauge couplings &, '(Q?), &, '(Q?), a5 ' (Q?) of the SM
run linearly with In 0. Although afl decreases with 02, and oy Uand a; ! increase, all
three tending to meet at high Q% ~ (10'® GeV)?, they do not in fact meet convincingly

3 Not in quite the same sense (i.e. of a mathematical bound), at any rate. One can certainly say, from (1.3), that
if A is not much greater than unity, so that perturbation theory has a hope of being applicable, then My can’t
be much greater than a few hundred GeV. For more sophisticated versions of this sort of argument, see [7],
Section 22.10.2.
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in the SM. On the other hand, provided the superpartner masses are in the range
100 GeV —10 TeV, in the MSSM they do meet, thus encouraging ideas of unifica-
tion: see Section 8.3, and Figure 8.1. It is notable that this estimate of the SUSY scale
is essentially the same as that coming from ‘fine-tuning’ considerations.

(c) In any renormalizable theory, the mass parameters in the Lagrangian are also scale-
dependent (they ‘run’), just as the coupling parameters do. In the MSSM, the evolution
of a Higgs (mass)? parameter from a typical positive value of order v? at a scale of the
order of 10'® GeV, takes it to a negative value of the correct order of magnitude at scales
of order 100 GeV, thus providing a possible explanation for the origin of electroweak
symmetry breaking, specifically at those much lower scales. Actually, however, this
happens because the Yukawa coupling of the top quark is large (being proportional to
its mass), and this has a dominant effect on the evolution. You might ask whether, in
that case, the same result would be obtained without SUSY. The answer is that it would,
but the initial conditions for the evolution are more naturally motivated within a SUSY
theory, as discussed in Section 9.3 (see Figure 9.1). Once again, this result requires that
the superpartner masses are no larger than a few TeV. There is therefore a remarkable
consistency between all these quite different ways of estimating the SUSY scale.

1.3 Theoretical considerations

It can certainly be plausibly argued that a dominant theme in twentieth-century
physics was that of symmetry, the pursuit of which was heuristically very success-
ful. It is natural to ask if our current quantum field theories exploit all the kinds of
symmetry which could exist, consistent with Lorentz invariance. Consider the sym-
metry ‘charges’ that we are familiar with in the SM, for example an electromagnetic
charge of the form

0= e/d3x vy, (1.23)

or an SU(2) charge (isospin operator) of the form

T= gfd3x vitr/ 2y, (1.24)

where in (1.24) v is an SU(2) doublet, and in both (1.23) and (1.24) v is a fermionic
field. All such symmetry operators are themselves Lorentz scalars (they carry no
uncontracted Lorentz indices of any kind, for example vector or spinor). This implies
that when they act on a state of definite spin j, they cannot alter that spin:

Qlj) = | same j, possibly different member of symmetry multiplet ). (1.25)

Need this be the case?
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We certainly know of one vector ‘charge’, namely the 4-momentum operators P,
which generate space-time displacements, and whose eigenvalues are conserved 4-
momenta. There are also the angular momentum operators, which belong inside an
antisymmetric tensor M,,,. Could we, perhaps, have a conserved symmetric tensor
charge Q,,,7 We shall provide a highly simplified version (taken from Ellis [39])
of an argument due to Coleman and Mandula [40] which shows that we cannot.
Consider letting such a charge act on a single-particle state with 4-momentum p:

qu|p> = (app.pv + ﬂguv”p)a (1.26)

where the right-hand side has been written down by ‘covariance’ arguments (i.e. the
most general expression with the indicated tensor transformation character, built
from the tensors at our disposal). Now consider a two-particle state | p"), p®), and
assume the Q,,, values are additive, conserved, and act on only one particle at a
time, like other known charges. Then

Qu [P, ) = (a(p’pi" + P P)7) + 2Bgw) [P p). (1.27)

In an elastic scattering process of the form 1 4+ 2 — 3 4 4 we will then need (from
conservation of the eigenvalue)

(1 2) (2 3) 3 4) (4
p )+l = pl Y + P (1.28)
But we also have 4-momentum conservation:

P;(Ll) +pff) — pff) + p,(f). (1.29)

The only common solution to (1.28) and (1.29) is

P =pd pY = ps orpl) = pit pl? = piY, (1.30)
which means that only forward or backward scattering can occur, which is obviously
unacceptable.

The general message here is that there seems to be no room for further con-
served operators with non-trivial Lorentz transformation character (i.e. not Lorentz
scalars). The existing such operators P, and M, do allow proper scattering pro-
cesses to occur, but imposing any more conservation laws over-restricts the possible
configurations. Such was the conclusion of the Coleman—Mandula theorem [40],
but in fact their argument turns out not to exclude ‘charges’ which transform un-
der Lorentz transformations as spinors: that is to say, things transforming like a
fermionic field 1. We may denote such a charge by Q,, the subscript a indicating
the spinor component (we will see that we’ll be dealing with 2-component spinors,
rather than 4-component ones, for the most part). For such a charge, equation (1.25)
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will clearly not hold; rather,

Qalj) =17 £1/2). (1.31)

Such an operator will not contribute to a matrix element for a 2-particle — 2-
particle elastic scattering process (in which the particle spins remain the same), and
consequently the above kind of ‘no-go’ argument can not get started.

The question then arises: is it possible to include such spinorial operators in a
consistent algebraic scheme, along with the known conserved operators P, and
M,,,? The affirmative answer was first given by Gol’fand and Likhtman [25], and
the most general such ‘supersymmetry algebra’ was obtained by Haag et al. [26].
By ‘algebra’ here we mean (as usual) the set of commutation relations among the
‘charges’ — which, we recall, are also the generators of the appropriate symmetry
transformations. The SU(2) algebra of the angular momentum operators, which
are generators of rotations, is a familiar example. The essential new feature here,
however, is that the charges that have a spinor character will have anticommutation
relations among themselves, rather than commutation relations. So such algebras
involve some commutation relations and some anticommutation relations.

What will such algebras look like? Since our generic spinorial charge Q, is a
symmetry operator, it must commute with the Hamiltonian of the system, whatever
itis:

[0., H] =0, (1.32)
and so must the anticommutator of two different components:

[{Qa, Ob}, H] = 0. (1.33)

As noted above, the spinorial Q terms have two components, so as a and b vary the
symmetric object {Q,, Op} = Q,0p + OpQ, has three independent components,
and we suspect that it must transform as a spin-1 object (just like the symmetric
combinations of two spin-1/2 wavefunctions). However, as usual in a relativistic
theory, this spin-1 object should be described by a 4-vector, not a 3-vector. Further,
this 4-vector is conserved, from (1.33). There is only one such conserved 4-vector
operator (from the Coleman—Mandula theorem), namely P,. So the Q, terms must
satisfy an algebra of the form, roughly,

{Qa, Op} ~ P,. (1.34)

Clearly (1.34) is sloppy: the indices on each side do not balance. With more than
a little hindsight, we might think of absorbing the °,’ by multiplying by y*, the
y-matrix itself conveniently having two matrix indices, which might correspond to
a, b. This is in fact more or less right, as we shall see in Chapter 4, but the precise
details are finicky.



1.3 Theoretical considerations 15

Accepting that (1.34) captures the essence of the matter, we can now begin to see
what aradical idea supersymmetry really is. Equation (1.34) says, roughly speaking,
that if you do two SUSY transformations generated by the Q terms, one after the
other, you get the energy-momentum operator. Or, to put it even more strikingly (but
quite equivalently), you get the space—time translation operator, i.e. a derivative.
Turning it around, the SUSY spinorial Q’s are like square roots of 4-momentum, or
square roots of derivatives! It is rather like going one better than the Dirac equation,
which can be viewed as providing the square root of the Klein-Gordon equation:
how would we take the square root of the Dirac equation?

It is worth pausing to take this in properly. Four-dimensional derivatives are
firmly locked to our notions of a four-dimensional space—time. In now entertaining
the possibility that we can take square roots of them, we are effectively extending
our concept of space—time itself, just as, when the square root of —1 is introduced,
we enlarge the real axis to the complex (Argand) plane. That is to say, if we take
seriously an algebra involving both P, and the Q’s we shall have to say that the
space—time co-ordinates are being extended to include further degrees of freedom,
which are acted on by the Q’s, and that these degrees of freedom are connected to
the standard ones by means of transformations generated by the Q’s. These further
degrees of freedom are, in fact, fermionic. So we may say that SUSY invites us
to contemplate ‘fermionic dimensions’, and enlarge space—time to ‘superspace’.
SUSY is often thought of in terms of (approximately) degenerate multiplets of
bosons and fermions. Of course, that aspect is certainly true, phenomenologically
important, and our main concern in this book; nevertheless, the fermionic enlarge-
ment of space—time is arguably a more striking concept, and we shall provide an
introduction to it in Chapter 6.

One final remark on motivations: if you believe in String Theory (and it still seems
to be the most promising framework for a consistent quantum theory of gravity),
then the phenomenologically most attractive versions incorporate supersymmetry,
some trace of which might remain in the theories that effectively describe physics
at presently accessible energies.
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Spinors: Weyl, Dirac and Majorana

Let us begin our Long March to the MSSM by recalling in outline how symmetries,
such as SU(2), are described in quantum field theory (see, for example, Chapter 12
of [7]). The Lagrangian involves a set of fields ¥, — they could be bosons or
fermions — and it is taken to be invariant under an infinitesimal transformation on
the fields of the form

86 wr = _iekrsww (21)

where a summation is understood on the repeated index s, the A,; are certain
constant coefficients (for instance, the elements of the Pauli matrices), and € is an
infinitesimal parameter. Supersymmetry transformations will look something like
this, but they will transform bosonic fields into fermionic ones, for example

S ~ &Y, (2.2)

where ¢ is a bosonic (say spin-0) field, ¥ is a fermionic (say spin-1/2) one, and § is
an infinitesimal parameter. The alert reader will immediately figure out that in this
case the parameter £ has to be a spinor. In due course we shall spell out the details
of the ‘~’ here, but one thing should already be clear at this stage: the number of
(field) degrees of freedom, as between the bosonic ¢ fields and the fermionic v
fields, had better be the same in an equation of the form (2.2), just as the number
of fields r =1, 2, ..., N on the left-hand side of (2.1) is the same as the number
s =1,2,..., N on the right-hand side. We can not have some fields being ‘left
out’. Now the simplest kind of bosonic field is of course a neutral scalar field,
which has only one component, which is real: ¢ = ¢' (see [15], Chapter 5); there
is only one degree of freedom. On the other hand, there is no fermionic field with
just one degree of freedom: being a spinor, it has at least two (‘spin-up’ and ‘spin-
down’, in simple terms). So that means that we must consider, at the very least, a
two-degree-of-freedom bosonic field, to go with the spinor field, and that takes us
to a complex (charged) scalar field (see Chapter 7 of [15]).

16



Spinors: Weyl, Dirac and Majorana 17

But exactly what kind of a fermionic field could we ‘match’ the complex scalar
field with? When we learn the Dirac equation, among the first results we arrive
at is that Dirac wave functions, or fields, have four degrees of freedom, not two:
in physical terms, spin-up and spin-down particle, and spin-up and spin-down an-
tiparticle. Thus we must somehow halve the number of spinor degrees of freedom.
There are two ways of doing this. One is to employ 2-component spinor fields,
called Weyl spinors in contrast to the four-component Dirac ones. The other is
to use Majorana fields, for which particle and antiparticle are identical. Both for-
mulations are used in the SUSY literature, and it helps to be familiar with both.
Nevertheless, it is desirable to opt for one or the other as the dominant language,
and we shall mainly use the Weyl spinor formulation, which we shall develop in
the next three sections. However, we shall also introduce some Majorana formal-
ism in Section 2.5. The reader is encouraged, through various exercises, to learn
some equivalences between quantities expressed in the Weyl and in the Majorana
language. As we proceed, we shall from time to time give the equivalent Majorana
forms for various results (for example, in Sections 4.2, 4.5 and 5.1). These will
eventually be required when we perform some simple SUSY calculations in Sec-
tion 5.2 and in Chapter 12; for these the Majorana formalism is preferred, because
itis close enough to the Dirac formalism to allow familiar calculational tricks to be
used, with some modifications.

We have been somewhat slipshod, so far, not distinguishing clearly between
‘components’ and ‘degrees of freedom’. In fact, each component of a 2-component
(Weyl) spinor is complex, so there are actually four degrees of freedom present;
there are also four in a Majorana spinor. If the spinor is assumed to be on-shell —i.e.
obeying the appropriate equation of motion — then the number of degrees of freedom
is reduced to two, the same as in a complex scalar field. Generally in quantum field
theory we need to go ‘off-shell’, so that to match the minimal number (four) of
spinor degrees of freedom will require two more bosonic degrees of freedom than
just the two in a complex scalar field. We shall ignore this complication in our first
foray into SUSY in Chapter 3, but will return to it in Chapter 4.

The familiar Dirac field uses two 2-component fields, which is twice too many.
Our first, and absolutely inescapable, task is therefore to ‘deconstruct’ the Dirac
field and understand the nature of the two different 2-component Weyl fields which
together constitute it. This difference has to do with the different ways the two
‘halves’ of the 4-component Dirac field transform under Lorentz transformations.
Understanding how this works, in detail, is vital to being able to write down SUSY
transformations which are consistent with Lorentz invariance. For example, the
left-hand side of (2.2) refers to a scalar (spin-0) field ¢; admittedly it’s com-
plex, but that just means that it has a real part and an imaginary part, both of
which have spin-0. Hence it is an invariant under Lorentz transformations. On the
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right-hand side, however, we have the 2-component spinor (spin-1/2) field ¢, which
is certainly not invariant under Lorentz transformations. But the parameter £ is also
a 2-component spinor, in fact, and so we shall have to understand how to put the
2-component objects £ and i together properly so as to form a Lorentz invariant,
in order to be consistent with the Lorentz transformation character of the left-hand
side. While we may be familiar with how to do this sort of thing for 4-component
Dirac spinors, we need to learn the corresponding tricks for 2-component ones. The
next two sections are therefore devoted to this essential groundwork.

2.1 Spinorsand Lorentz transformations

We begin with the Dirac equation in momentum space, which we write as
EV =(a-p+ pm)¥, (2.3)

where of course we are taking ¢ = A = 1. We shall choose the particular represen-

tation
o 0 0 1

0 —0o 1 0
’Y=<U 0), and )/5=<0 _1>. (2.5)

This is one of the standard representations of the Dirac matrices (see for example
[15] page 91, and [7] pages 31-2, and particularly [7] appendix M, Section M.6). It
is the one which is commonly used in the ‘small mass’ or ‘high energy’ limit, since
the (large) momentum term is then (block) diagonal. As usual, o = (01, 03, 03) are
the 2 x 2 Pauli matrices. Note that

which implies that

{rs. B} ={ys,7} =0. (2.6)
We write
w = (‘/’ ) . @)
X
The Dirac equation is then
(E—o-p)Y =mx (2.8)

(E+o0-p)x =my. (2.9
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Notice that as m — 0, (2.8) becomes o - pyg = Evy, and E — |p]|, so the zero
mass limit of (2.8) is

(o - p/IpD¥o = Vo, (2.10)

which means that v is an eigenstate of the helicity operator o - p/|p| with eigen-
value 41 (“positive helicity’). Similarly, the zero-mass limit of (2.9) shows that yg
has negative helicity.

Form # 0, ¥ and x of (2.8) and (2.9) are plainly not helicity eigenstates: indeed
the mass term (in this representation) ‘mixes’ them. However, as we shall see shortly,
it is these two-component objects, ¥ and y, that have well-defined (but different)
Lorentz transformation properties. They are, indeed, examples of precisely the
2-component Weyl spinors we shall be dealing with.

Although not helicity eigenstates, ¥ and x are eigenstates of ys, in the sense that

(D)) ()= ()

These two ys-eigenstates can be constructed from the original ¥ by using the
projection operators Pr and P, defined by

. 1+ s (1 0
Pr = ( > ) = (0 0) (2.12)
B 1 —ys _ (0 0
pL_< 5 >_<0 1). (2.13)
PR\DZ(‘/’>, PL‘D:<O). (2.14)
0 X

It is easy to check that PrPL = 0, PZ = Pg, P? = P.. The eigenvalue of ys is
called ‘chirality’; ¥ has chirality +1, and x has chirality —1. In an unfortunate
terminology, but one now too late to change, ‘+’ chirality is denoted by ‘R’ (i.e
right-handed) and ‘-’ chirality by ‘L’ (i.e. left-handed), despite the fact that (as
noted above) ¥ and x are not helicity eigenstates when m # 0. Anyway, a ‘¢’
type 2-component spinor is often written as g, and a ‘x’ type one as yr. For
the moment, we shall not use these R and L subscripts, but shall understand that
anything called v is an R-type spinor, and a x is L-type.

Now, we said above that ¥ and x had well-defined Lorentz transformation
character. Let’s recall how this goes (see [7] Appendix M, Section M.6). There
are basically two kinds of transformation: rotations and ‘boosts’ (i.e. pure velocity

and

Then
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transformations). It is sufficient to consider infinitesimal transformations, which
we can specify by their action on a 4-vector, for example the energy—momentum
4-vector (E, p). Under an infinitesimal three-dimensional rotation,

E—E=E, p—>p =p—e€xp, (2.15)

where € = (€1, €, €3) are three infinitesimal parameters specifying the infinitesimal
rotation; and under a velocity transformation

E—-E=E—-n-p, p—>p =p—nE, (2.16)
where 1 = (11, m2, n3) are three infinitesimal velocities. Under the Lorentz
transformations thus defined, v and x transform as follows (see equations (M.94)
and (M.98) of [7], where however the top two components are called ‘¢’ rather
than “y’):

Vv —>vY' =(+ie-a/2—n- -0/ (2.17)
and

x—x' =(+ie-a/2+n-0/2)x%. (2.18)

Equations (2.17) and (2.18) are extremely important equations for us. They tell us
how to construct the spinors " and x’ for the rotated and boosted frame, in terms
of the original spinors ¥ and x. That is to say, the ¥’ and x’ specified by (2.17)
and (2.18) satisfy the ‘primed’ analogues of (2.8) and (2.9), namely

(E'—o-pYW =my (2.19)
(E'+0-p)x =my'. (2.20)

Let’s pause to check this statement in a special case, that of a pure boost. Define
Vy = (1 — - 0/2). Then since 7 is infinitesimal, Vn_l =(+mn-0o0/2).Now take
(2.8), multiply from the left by V,-!, and insert the unit matrix Vn_l V,, as indicated:

[V, " (E—o-p)V, Vg =mV, " x. (2.21)

If (2.17) is right, we have ' = V,,v, and if (2.18) is right we have x' = V, ',
in this pure boost case. So to establish the complete consistency between (2.17),
(2.18) and (2.19), we need to show that

V, (E—o-p)V,'=(E' —0o-p), (2.22)
that is,
(I+n-0/2(E—-0-p)l+n-0/2)=(E—-n-p)—0-(p—En (223

to first order in 7, since the right-hand side of (2.23) is just E’ — o - p’ from (2.16).
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Exercise2.1 Verify (2.23).

Returning now to equations (2.17) and (2.18), we note that ¥ and yx actually
behave the same under rotations (they have spin-1/2!), but differently under boosts.
The interesting fact is that there are rwo kinds of 2-component spinors, distinguished
by their different transformation character under boosts. Both are used in the Dirac
4-component spinor W. In SUSY, however, the approach we shall mainly follow
works with the 2-component Weyl spinors ¥ and x which (as we saw above)
may also be labelled by ‘R’ and ‘L’ respectively. The alternative approach using
4-component Majorana spinors will be introduced in Section 2.5.

Before proceeding, we note another important feature of (2.17) and (2.18). Let
V be the transformation matrix appearing in (2.17):

V=0+ie-o/2—n-0/2). (2.24)
Then
Vii=(—-ie-0/24+n 0/2) (2.25)
since we merely have to reverse the sense of the infinitesimal parameters, while
Vi=(l—-ie-0/2—n-0/2) (2.26)
using the hermiticity of the o’s. So
vit'lcv T — (1 tie 0241 0/2), (2.27)
which is the matrix appearing in (2.18). Hence we may write, compactly,
W=V, K =vii=viy (2.28)

In summary, the R-type spinor ¢ transforms by the matrix V, while the L-type
spinor y transforms by V~!1,

2.2 Constructing invariants and 4-vector s out of
2-component (Weyl) spinors

Let’s start by recalling some things which should be familiar from a Dirac equation
course. From the 4-component Dirac spinor W we can form a Lorentz invariant

U = wigy, (2.29)
and a 4-vector

Uyhw = WigB, o)V = Ui(l, a)W. (2.30)
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In terms of our 2-component objects i and x (2.29) becomes

Lorentz invariant (¢ x ") ((1) (1)) (ﬁ) =vix + xTy. (2.31)

Using (2.28) it is easy to verify that the right-hand side of (2.31) is invariant. Indeed,
perhaps more interestingly, each part of it is:

! +/ / n =1 K
Yix > v =y vivl y =ylix, (2.32)

and similarly for x 'y/. Again, (2.30) becomes

o003 )5 210

=W +x'x. vlov — xTox)
=ylohy + xTa"y, (2.33)

where we have introduced the important quantities

ct=1,0), "=(1,—-0), (2.34)

0 G
ph = (a“ ) ) (2.35)

As with the Lorentz invariant, it is actually the case that each of YT #1/ and x 6" x
transforms, separately, as a 4-vector.

in terms of which

Exercise 2.2 Verify that last statement.

Indeed, since only the transformation character of the ¥r’s and x ’s matters, quan-
tities such as Yy (DTa @ and x Dig#H x @ are also 4-vectors, just as WDy W@ i,
In this ‘o*, &’ notation, the Dirac equation (2.8) and (2.9) becomes
olpyr=my (2.36)
" pux = my. (2.37)
So we can read off the useful news that ‘o p,’ converts a ¥-type object to a x -
type one, and 6 p,, converts a x to a Y — or, in slightly more proper language, the
Lorentz transformation character of o* p, ¥ is the same as that of x, and the LT
character of 6# p,, x is the same as that of .

Lastly in this re-play of Dirac formalism, the Dirac Lagrangian can be written
in terms of ¢ and y:

U(iy"d, —mW = ylicta, v + x'ic o, x — m x + x ). (2.38)

Note how * belongs with x, and o* with .
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An interesting point may have occurred to the reader here: it is possible to
form 4-vectors using only v’s or only x’s (see Exercise 2.2), but the invariants
introduced so far (¥ x and x ') make use of both. So we might ask: can we make
an invariant out of just x-type spinors, for instance? This is important precisely
because we want (for reasons outlined in the previous section) to construct theories
involving the number of degrees of freedom present in one two-component Weyl
(but not four-component Dirac) spinor. It is at this point that we part company with
what is usually contained in standard Dirac courses.

Another way of putting our question is this: is it possible to construct a spinor
from the components of, say, x, which has the transformation character of a ?
(and of course vice versa). If it is, then we can use it, with x-type spinors, in
place of y-type spinors when making invariants. The answer is that it is possible.
Consider how the complex conjugate of x, denoted by x *, transforms under Lorentz
transformations. We have

X =(+ie-6/24+n-0/2)x. (2.39)
Taking the complex conjugate gives
=0 —ie-a*/24+n-0*/2)x* (2.40)

Now observe that o] =01, 0) = —02, 0f =03, and that 0,03 = —030, and
010, = —0oy07. It follows that

o2x™ = 0a(1 —ie- (01, —02,03)/2 + m - (01, —02,03)/2)x*  (2.41)
=(+ie-0/2—n-0/20x" (2.42)
= VUZX*’ (2.43)

referring to (2.24) for the definition of V, which is precisely the matrix by which
Y transforms.
We have therefore established the important result that

o, x ¥ transforms like a . (2.44)
So let’s at once introduce ‘the yr-like thing constructed from x’ via the definition
Yy, =ionx™, (2.45)

where the i has been put in for convenience (remember o, involves i’s). Then we
are guaranteed by (2.32) that the quantity

+ . T . T .
Viwx® = (ioax )" x? = (io2x V) %@ = xVT(—io2)x (2.46)

where T denotes transpose, is Lorentz invariant, for any two x-like things x V), x@,
just as ¥y was. (Equally, so is X(Z)wam.) Equation (2.46) is important, because
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it tells us how to form the Lorentz invariant scalar product of two x’s. This is the
kind of product that we will need in SUSY transformations of the form (2.2).
Before proceeding, we note that the quantity x (VT(—io»)x® is in a sense very

familar. Let us write
(D) ?2)
n_ [ X% 2 _ [ %1
X()— ( (1))7 X()— ( (2))’ (247)
X Xy

adopting the ‘spin-up’, ‘spin-down’ notation used in elementary quantum mechan-

ics. Then since
0 -1
—io, = 2.4
oy (1 0 ) , (2.48)

we easily find

. 1 2 1 2
x M=o @ = =3 + 1)1 (2:49)

The right-hand side of (2.49) is recognized as (proportional to) the usual spin-0
combination of two spin-1/2 states. This means that it is invariant under spatial
rotations. What the previous development shows is that it is actually also invariant
under Lorentz transformations (i.e. boosts).

In particular, w; x 1s Lorentz invariant, where the y’s are the same. This quantity
is

(o) x = (i02))"x = xT(—ion)x. (2.50)

Let’s write it out in detail. We have

. (0 1 _(x
102_(_1 0), and X_(Xz)’ (2.51)

ioax = ( _X;l), and (i02X)"x = x2x1 = X1 20- (2.52)

so that

The right-hand side of (2.52) vanishes if x; and yx, are ordinary functions, but not
if they are anticommuting quantities, as appear in (quantized) fermionic fields. So
certainly this is a satisfactory invariant in terms of two-component quantized fields,
or in terms of Grassmann numbers (see Appendix O of [7]). From now on, we shall
assume that spinors are quantum fields. Strictly speaking, then, although the symbol
< * is perfectly suitable for the complex conjugates of the wavefunction parts in the
free-field expansions, it should be understood as * T which includes hermitian
conjugation of quantum field operators and complex conjugation of wavefunctions.
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We shall spell this out in more detail in Section 3.1, but — with the indicated
understanding — we shall continue for the moment to use just the simple ‘ * .

It is natural to ask: what about 1/*? Performing manipulations analogous to those
in (2.40-2.43), you can verify that

ory* transforms like . (2.53)

This licenses us to introduce a x -type object constructed from a i, which we define
by

Xy = —ioay*. (2.54)

Then for any two ¥’s ¥V, 1@ say, we know that
. o\ #T . T .
(_ 1021#(1) )* w(Z) — (_ 1sz(l)) 1/,(2) — lll(l)Tlazl//Q) (2.55)

is an invariant. In particular, for the same i, the quantity

(—ioy)'y (2.56)

1s an invariant.

2.3 A more streamlined notation for Weyl spinors

It looks as if it is going to get pretty tedious keeping track of which two-
component spinor is a x -type one and which is 1-type one, by writing things like
x D x@ W @ all the time, and (even worse) things like 1//}((]))((2). A
first step in the direction of a more powerful notation is to agree that the components
of x-type spinors have lower indices, as in (2.51). That is, anything written with
lower indices is a  -type spinor. So then we are free to name them how we please:
Xas Ea» - - -, €VEN Yy,

We can also streamline the cumbersome notation ‘meT x®”. The point here is
that this notation was — at this stage — introduced in order to construct invariants
out of just x-type things. But (2.46) tells us how to do this, in terms of the two
x’s involved: you take one of them, say x ", and form io, x 1. Then you take the
matrix dot product (in the sense of ‘uTv’) of this quantity and the second x-type
spinor. So, starting from a y with lower indices, x,, let’s define a x with upper
indices via (see equation (2.52))

Xl . X2
=i0ry = 2.57
(Xz) 102 X ( Xl)’ ( )

xX'=x. x*=-x. (2.58)

that is,
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Suppose now that £ is a second y -type spinor, and

(&
£ = ( 52) . (2.59)

Then we know that (io, x)'£ is a Lorentz invariant, and this is just

x'x* (2) =161+ x°6 = X%, (2.60)
where a runs over the values 1 and 2. Equation (2.60) is a compact notation for this
scalar product: it is a ‘spinor dot product’, analogous to the ‘upstairs—downstairs’
dot-products of special relativity, like A#B,,. We can shorten the notation even
further, indeed, to x - &, or even to x& if we know what we are doing. Note that
if the components of x and & commute, then it does not matter whether we write
this invariant as x - & = x'&; + x2& or as & x' + & x%. However, if they are an-
ticommuting these will differ by a sign, and we need a convention as to which we
take to be the ‘positive’ dot product. It is as in (2.60), which is remembered as
‘summed-over x-type (undotted) indices appear diagonally downwards, top left to
bottom right’.

The four-dimensional Lorentz-invariant dot product A*B,, of special relativity
can also be written as g*” A, B,,, where g"" is the metric tensor of special relativity
with components (in one common convention!) g% = +1, g'! = g?? = ¢33 = —1,
all others vanishing (see Appendix D of [7]). In a similar way we can introduce
a metric tensor €’ for forming the Lorentz-invariant spinor dot product of two
2-component L-type spinors, by writing

X =€ (2.61)
(always summing on repeated indices, of course), so that
X€a = € xpba (2.62)
For (2.61) to be consistent with (2.58), we require
=41, =1, =e? =0. (2.63)

Clearly €?, regarded as a 2 x 2 matrix, is nothing but the matrix io» of (2.51). We
shall, however, continue to use the explicit ‘io,’ notation for the most part, rather
than the ‘€“’ notation.

We can also introduce €., via

Xa = €arx”, (2.64)
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which is consistent with (2.58) if
€pn=—1,6 =41,€1 =€ =0. (2.65)
Finally, you can verify that
e’ =8¢, (2.66)

as one would expect. It is important to note that these ‘e’ metrics are antisymmetric
under the interchange of the two indices a and b, whereas the SR metric g"” is
symmetric under p <> v.

Exercise 2.3 (a) Whatis & - x in terms of x - & (assuming the components anti-
commute)? (b) What is x,&¢ in terms of x“&,? Do these both by brute force via
components, and by using the € dot product.

Given that x transforms by V ~!T of (2.27), it is interesting to ask: how does the
‘raised-index’ version, io, x, transform?

Exercise2.4 Show that io, x transforms by V*.

We can use the result of Exercise 2.4 to verify once more the invariance of
(io2x)T&: (1020)"E = (i02x)"¢" = (io20)"(V*)TV g, But (V¥)T = V1, and so
the invariance is established.

We can therefore summarize the state of play so far by saying that a downstairs
x-type spinor transforms by V=, while an upstairs x-type spinor transforms by
V*.

Clearly we also want an ‘index’ notation for ¥ -type spinors. The general con-
vention is that they are given ‘dotted indices’ i.e. we write things like ¥¢. By
convention, also, we decide that our ¥ -type thing has an upstairs index, just as it
was a convention that our x-type thing had a downstairs index. Equation (2.55)
tells us how to form scalar products out of two y-like things, %" and ¥®, and
invites us to define downstairs-indexed quantities

vi\_ . (0 =1\ [y
(4:) =i = (] 0)(%) oD

vi=—y2 Y=yl (2.68)

Then if ¢ (‘zeta’) is a second -type spinor, and

i
= <§2>, (2.69)

so that
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we know that (—io»y)T¢ = ¥ Tio»¢ is a Lorentz invariant, which is

i

<mwy<§>=wwi+wg2=wg% (2.70)

where a runs over the values 1, 2. Notice that with all these conventions, the
‘positive’ scalar product has been defined so that the summed-over dotted indices
appear diagonally upwards, bottom left to top right.

As in Exercise 2.4, we can ask how (in terms of V') the downstairs dotted spinor
—ioy Y transforms.

Exercise2.5 Show that —io»r transforms by V~!T, and hence verify once again
that (—io»¥)T¢ is invariant.

We can introduce a metric tensor notation for the Lorentz-invariant scalar product
of two 2-component R-type (dotted) spinors, too. We write

Vo = e’ @71

where, to be consistent with (2.68), we need

€ip = —1,6i=+1,€jj =€, =0. (2.72)
Then
Vagt = ea¥’c’. (2.73)
We can also define
2=, =1, =2 =, (2.74)
with
€™ = 8L (2.75)

Again, the €’s with dotted indices are antisymmetric under interchange of their
indices.

We could of course think of shortening (2.70) further to ¥ - ¢ or ¥ ¢, but without
the dotted indices to tell us, we would not in general know whether such expressions
referred to what we have been calling ¥- or x-type spinors. So a * ~ ’ notation for
Y-type spinors is commonly used. That is to say, we define

yl=y'
V=90 (2.76)

Then (2.70) would be just ¥ - ¢. It is worth emphasizing at once that this ‘bar’
notation for dotted spinors has nothing to do with the ‘bar’ used in 4-component
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Dirac theory, as in (2.29), nor with the ‘bar’ often used to denote an antiparticle
name, or field.

Exercise2.6 (a) What is v -  in terms of £ - ¥ (assuming the components anti-
commute)? (b) What is ¥,Z¢ in terms of ¥“Z;? Do these by components and by
using € symbols.

Altogether, then, we have arrived at four types of two-component Weyl spinor:
x“ and x, transforming by V* and V ~!1, respectively, and ¥ and 1, transforming
by V and V~!T, respectively. The essential point is that invariants are formed by
taking the matrix dot product between one quantity transforming by M say, and
another transforming by M~'T.

Consider now y: since x, transforms by Vv~ it follows that X, transforms by
the complex conjugate of this matrix, which is V~!T. But this is exactly how a ‘i,
transforms! So it is consistent to define

Xa = X5 2.77)

We can then raise the dotted index with the matrix io,, using the inverse of (2.67) —
remember, once we have dotted indices, or bars, to tell us what kind of spinor we are
dealing with, we no longer care what letter we use. In a similar way, ¥%* transforms
by V*, the same as x“, so we may write

1//(1 15[1* (278)

and lower the index a by —io».

It must be admitted that (2.78) creates something of a problem for us, given
that we want to be free to continue to use the ‘old’ notation of Sections 2.1 and
2.2, as well as, from time to time, the new streamlined one. In the old notation,
‘Y’ stands for an R-type dotted spinor with components wi, wj; but in the new
notation, according to (2.78), the unbarred symbol ‘i’ should stand for an L-type
undotted spinor (the ‘old’ v becoming the R-type dotted spinor ). A similar
difficulty does not, of course, arise in the case of the y spinors, which only get
barred when complex conjugated (see (2.77)). This is fortunate, since we shall be
using y - or L-type spinors almost exclusively. As regards the dotted R-type spinors,
our convention will be that when we write dot products and other bilinears in terms
of ¥ and ¥ (or ¥*) we are using the ‘old’ notation, but when they are written in
terms of ¥ and v we are using the new one.

Definitions (2.77) and (2.78) allow us to write the 4-vectors ¥ fo*v and x 6" x
in ‘bar’ notation. For example,

X6 x = 115"y = %a6" Yy = X5" X, (2.79)
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with the convention that the indices of 6* are an upstairs dotted followed by an
upstairs undotted (note that this adheres to the convention about how to sum over
repeated dotted and undotted indices). Similarly (but rather less obviously)

violty = Yol (2.80)

with the indices of o# being a downstairs undotted followed by a downstairs dotted.
As an illustration of a somewhat more complicated manipulation, we now show
how to obtain the sometimes useful result

Ea'y = —xo"é. (2.81)

The quantity on the left-hand side is £,6"%® ;. On the right-hand side, however,
o carries downstairs indices, so clearly we must raise the indices of both € and .
We write

£ —pab Zé = uab d
£.6"Y xp = €4cE T epax

= —E%:6" P epax . (2.82)

At this point it is easier to change to matrix notation, using the fact that both €.,
and €, are the same as (the matrix elements of) the matrix —io,. The next step is
a useful exercise.

Exercise 2.7 Verify that
06" 0y = T, (2.83)
Equation (2.82) can therefore be written as
£ty = _CG”éTdXd = —Xda’éééé, (2.84)

where in the last step the minus sign comes from interchanging the order of the
fermionic quantities. The right-hand side of (2.84) is precisely —x o *£.
In the new notation, then, the familiar Dirac 4-component spinor (2.7) would be

written as
¥ = <1// ) . (2.85)
Xa

The conventions of different authors typically do not agree here. The notation
we use is the same as that of Shifman [41] (see his equation (68) on page 335).
Many other authors, for example Bailin and Love [42], use a choice for the Dirac
matrices which is different from equations (2.4) and (2.5) herein, and which has the
effect of interchanging the position, in W, of the L (undotted) and R (dotted) parts —
which, furthermore, they call ‘¢’ and  x’ respectively, the opposite way round from
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here — so that for them
Vg, = (j) . (2.86)

Furthermore, Bailin and Love’s € symbols, and hence their spinor scalar products,
have the opposite sign from that used herein.

2.4 Dirac spinorsusing x- (or L-) type spinorsonly

In the “Weyl spinor’ approach to SUSY, the simplest SUSY theory (which we
shall meet in the next chapter) involves a complex scalar field and a 2-component
spinor field. This is in fact the archetype of SUSY models leading to the MSSM. By
convention, one uses x -type spinors, i.e. undotted L-type spinors, no doubt because
the V—A structure of the electroweak sector of the SM distinguishes the L parts of
the fields, and one might as well give them a privileged status, although of course
there are the R parts (dotted y-type spinors) as well. In a SUSY context, it is very
convenient to be able to use only one kind of spinors, which in the MSSM is (for
the reason just outlined) going to be L-type ones — but in that case how are we going
to deal with the R parts of the SM fields?

Consider for example the electron field which we write in the unstreamlined

notation as
e = <‘/’) . (2.87)
Xe

Instead of using the R-type electron field in the top two components, we can just as
well use the charge conjugate of the L-type positron field, which is in fact of R-type,
as we shall see. For a 4-component Dirac spinor, charge conjugation is defined by

Ve =Cy = CyV¥* (2.88)
where!
_ . 2p _ iO'z 0 a2 0 iO’2
C= lyﬂ—(o _ioz>, Co = —iy —(_iaz 0). (2.89)
Thus if we write generally
V= <W) (2.90)
X

! This choice of Cy has the opposite sign from the one in equation (20.63) of [7] page 290; the present choice is
more in conformity with SUSY conventions. We are sticking to the convention that the indices of the y -matrices
as defined in (2.5) appear upstairs; no significance should be attached to the position of the indices of the
o -matrices — it is common to write them downstairs.
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then

We = < 1021 ) 2.91)

—ioy Y™

Note that the upper two components here are precisely v, of (2.45), and the lower
two are yy of (2.54).
We can therefore define charge conjugation at the 2-component level by

X =iox*, Y¢=—ioy*. (2.92)

Now we recall (and will show explicitly in Section 2.5.2) that particle and antipar-
ticle operators in W are replaced by antiparticle and particle operators, respectively,
in Wc. In just the same way, x and x° carry opposite values of conserved charges.
Thus instead of (2.87) we may choose to write

we — (Xé ) : (2.93)
Xe
where
Xs =lioax? (2.94)

and ‘€’ stands for the antiparticle of e. Our previous work (cf. (2.45)) guarantees, of
course, that the Lorentz transformation character of (2.93) is correct: that is, io, g
is indeed a ‘¢4 -type (i.e. R-type) object.

Particle fields are sometimes denoted simply by the particle label so that ef is
used in place of x. (the ‘L’ character must now be shown), and e[ in place of x¢,
but note that e is R-type!

In terms of the choice (2.93), a mass term for a Dirac fermion is (omitting now
the ‘L’ subscripts from the x’s)

©Ogy© ot (0 1 © . Tt Xe
myOw® — v — iy i
(1 0 (o2 xe) Xxe) ioax?

=mlxz - Xe + xJio2x21. (2.95)

In the first term on the right-hand side of (2.95) we have used the quick ‘dot’
notation for two x-type spinors introduced in Section 2.3. The second term can be
similarly re-written in the bar notation:

T

xTioaxE = ReaXd = Xe - Xe- (2.96)

So the ‘Dirac’ mass has here been re-written wholly in terms of two L-type spinors,
one associated with the e mode, the other with the € mode.
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2.5 Majorana spinors
2.5.1 Definition and simple bilinear equivalents

We stated in (2.54) that xy, = —iooy* transforms like a yx-type object. It follows
that it should be perfectly consistent with Dirac theory to assemble v and x., into
a 4-component object:

v o_ 4
W= (_iozw> ) (2.97)

This must behave under Lorentz transformations just like an ‘ordinary’ Dirac 4-
component object W built from a i and a x. However, llfﬁ of (2.97) has fewer
degrees of freedom than an ordinary Dirac 4-component spinor W, since it is fully
determined by the 2-component object . In a Dirac spinor ¥ involving a v and
a x, as in (2.7), there are two 2-component spinors, each of which is specified by
four real quantities (each has two complex components), making eight in all. In
\IJI\‘/,’[, by contrast, there are only four real quantities, contained in the single (dotted)
spinor v; explicitly,

_w2*
wi*

What this means physically becomes clearer when we consider the operation of

= (2.98)

charge conjugation, defined as in (2.88). For example,

v 0 iO’Q w* . w -
e = <—iffz 0 ) (—1021#) = (—iayﬂ*) = Wy (2.99)

So \Ill\l/,’I describes a spin-1/2 particle which is even under charge conjugation, that
is, it is its own antiparticle. Such a particle is called a Majorana fermion, and (2.97)
is a Majorana spinor field.

This charge-self-conjugate property is clearly the physical reason for the differ-
ence in the number of degrees of freedom in \IJ;/,’[ as compared with ¥ of (2.3).
There are four physically distinguishable modes in a Dirac field, for example
e;,ex, €, en. However, in a Majorana field there are only two, the antiparticle
being the same as the particle; for example v, vg, supposing, as is possible (see [7],
Section 20.6), that neutrinos are Majorana particles.

We could also construct

1 *
vl = (“’;X ) (2.100)
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which satisfies

Wl = W (2.101)
In this case,
X2
=] "N (2.102)
X1
X2

A formalism using x’s only must be equivalent to one using Wy5’s only, and one
using v’s is equivalent to one using Wl\le[’s. The invariant ‘U’ constructed from
Wi, for instance, is

- . . 0 1 1o x * ) . "
By = o)) (1 o> ( X ) = x (o) + x(ox". (2.103)

The first term on the right-hand side of the last equality in (2.103) is just x - x; the
second is similar to the one in (2.96) and is x - . We have therefore established
an equivalence (the first of several) between bilinears involving Weyl spinors and
a Majorana bilinear:

Vv =x-x+x-X (2.104)

The expression mP{; Wy represents a possible mass term in a Lagrangian, for a
Majorana fermion. More generally, when £ is a x -type spinor,

=k x+E- X (2.105)
Similarly, the invariant made from \Ifl\lel would be
WYl = W—iowy ) ((1’ (1)) (_i;/; w*) = ¢l (—ioy” + ¥ o)y
=V -y +v-y, (2.106)
which can also serve as a mass term, and if 7 is a Y -type (dotted) spinor then
Wy =n-v 477 (2.107)

Note that all the terms in (2.104) and (2.106) would vanish if the field components
did not anticommute.

The 4-component version of the Lorentz-invariant product of two Majorana
spinors Wy and Wy has an interesting form. Consider

Wy = Wi, AWy (2.108)
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Equations (2.88) and (2.99) tell us that
Wiy = —iy \IJIM, (2.109)
and hence
Wi, = vl (—iy?) (2.110)
using y 2t = —y2. It follows that
Wiy BWam = Wiy (—iy?B)¥om = Wiy C¥y. (2.111)

The matrix C therefore acts as a metric in forming the dot product of the two Wy,’s.
It is easy to check that (2.111) is the same as (2.103) when Wy = Vo = \Ifﬁ(,[, and
the same as (2.106) when ¥V = Wom = \Ifl\'///[.

We have seen how the Majorana invariant \Pg vy is expressible in terms of
the 2-component spinors £ and x as & - x + £ - . We leave the following further
equivalences as an important exercise.

Exercise 2.8 Verify

Uhys W = 6 x +& - % 2.112)

i Wl =161 — xlote =Eaty — 75" 2.113)

UL ysy Wi = £lat x + xlore = Eaty + ga"e. (2.114)

[Hint: use 0,00, = —o ', and the fact that a quantity such as £ x *, being itself a

single-component object, is equal to its transpose, apart from a minus sign from
changing the order of fermionic fields.]
Obtain analogous results for products built from 1/-type Majorana spinors.

From (2.105) and (2.112)—(2.114) we easily find

& x = Uy PV (2.115)
E.x =W, PRV (2.116)
Eoly = Wiy PLW) (2.117)
xo1E = —Wiy "  PRUL. (2.118)

The last relation may be re-written, using (2.81), as
Eoly = My“PR\IJX (2.119)

Relation (2.113) allows us to relate kinetic energy terms in the Weyl and Majorana
formalisms. Beginning with the Majorana form (modelled on the Dirac one) we
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have
/d4x Uy, v =/d4x 16" 8, x — 0u0)'6" )
= 2/d4x x16"0,x. (2.120)

where we have done a partial integration in the last step, throwing away the surface
term. Hence, in a Lagrangian, a Weyl kinetic energy term x Tiél‘aﬂ X, which is sim-
ply the relevant bit of (2.38), is equivalent to the Majorana form 1/2®{iy#9, Wy

We have now discussed Lagrangian mass and kinetic terms for Majorana fields.
How are these related to the corresponding terms for Dirac fields? Referring back
to (2.38) we see that in the Dirac case a mass term couples the i (R-type) and x
(L-type) fields, as noted after equation (2.10). It cannot be constructed from either
Y or x alone. This means that we cannot represent it in terms of just one Majorana
field: we shall need two, one for the x degrees of freedom, and one for the 1. For
that matter, neither can the kinetic terms in the Dirac Lagrangian (2.38). This must
of course be so physically, because of the (oft-repeated) difference in the numbers of
degrees of freedom involved. To take a particular case, then, if we want to represent
the mass and kinetic terms of a (Dirac) electron field in terms of Majorana fields
we shall need two of the latter:

‘//e _ We
e (—iozw: = ws) =
as in (2.97), and
W = (“’”‘ex = Xe) (2.122)

as in (2.100), where ‘¢’ is defined in (2.92). Note that the L-part of llllff consists
of the charge-conjugate of the R-field ¥¢. Clearly

WO = ppwle 4 p ol (2.123)

Exercise 2.9 then shows how to write Dirac ‘mass’ and ‘kinetic’ Lagrangian
bilinears in terms of the indicated Majorana and Weyl quantities (as usual, necessary
partial integrations are understood).

Exercise2.9 Verify
@)

- 1, - -
TGO = [l + U] (2.124)

[\
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(i1)
- 1.- -
PP = S [TNpO + DU (2.125)
All the bilinear equivalences we have discussed will be useful when we come to

locate the SM interactions inside the MSSM (Section 8.2) and when we perform
elementary calculations involving MSSM superparticle interactions (Chapter 12).

2.5.2 Quantization

Up to now we have not needed to look more closely into how a Majorana field is
quantized (other than that it is obviously fermionic in nature), but when we come
to consider some SUSY calculations in Chapter 12 we shall need to understand
(for instance) the forms of propagators for free Majorana particles. This is the main
purpose of the present section.

Let us first recall how the usual 4-component Dirac field W, (x, t) is quantized
(here « is the spinor index). We shall follow the notational conventions used in
Section 7.2 of [15]. The following equal time commutation relations are assumed:

{(W,(x, 1), lllg(y, 1} =08(x — y)dup, (2.126)
and
{(Wolx, 1), We(y, 1)} = {\Ill(x, 1), \I!;(y, 1)} =0. (2.127)

W may be expanded in terms of creation and annihilation operators via

U(x, 1) D leatutk, e ™ + dl(kyv(k, De**], (2.128)

B / d’k
Qn ) V2Ex ;57

where A is a spin (or helicity) label, E; = (m? + k*)'/2, ¢, (k) destroys a particle
of 4-momentum k and spin A, while di(k) creates the corresponding antiparticle.
Relations (2.126) and (2.127) are satisfied if the c; (k)’s obey the anticommutation
relations

{en k), C,T\Z(kz)} = 2m)*8(ky — k2)8;.,2, (2.129)
and

{en k). cx, ()} = {e] (k). ] (k)} =0 (2.130)



38 Spinors: Weyl, Dirac and Majorana

and similarly for the d’s and d'’s. The charge conjugate field (cf. (2.88)) is
We(x, 1) = —ip Wit

_ &’k ; o o
- / Qn)Y2E; AZZM[CA("X—W (k. A))e

+ d; (k)(—iy,v*(k, A)e **]. (2.131)

It is straightforward to verify the results (see Section 20.5 of [7] — the change of
sign in Cy is immaterial)

_iVZU*(k, }\') = l/l(k, )")s _iVZM*(ks )") = U(k, )")s (2132)
which may also be written as
Cv'=u, Ciu'=v. (2.133)

It follows that

_ &k —ik-x T ik-x
We(x, 1) = / SNy A;Z[dk(k)u(k, Ve K el ((k, e ). (2.134)
Clearly (as stated earlier) the field W¢ is the same as W but with particle and
antiparticle operators interchanged.
As we have seen, a Majorana field is charge self-conjugate, which means that
there is no distinction between particle and antiparticle, that is, di(k) = ci(k) in
(2.128), giving the equivalent expansion of a Majorana field Wy (x, ¢):

Wy(x, 1) Z [ex(uk, Me ™ + ¢l (kw(k, Me*™], (2.135)

&k
- / Qn)V2E: o,
which of course satisfies
Uy e =CUy, = Wy (2.136)

We now turn to the propagator question. We remind the reader that in quantum
field theory all propagators are of the form ‘vacuum expectation value of the time-
ordered product of two fields’. Thus for a real scalar field ¢(x) the propagator is
(O|T (¢p(x1)p(x2))|0), while for a Dirac field itis (0|7 (W, (xl)\flﬁ(x2))|0). Asregards
a Majorana field Wy(x), it is in some way like a Dirac field (because of its spinorial
character), but in another like the real scalar field (because in that case too there is
no distinction between particle and antiparticle). The consequence of this is that for
Majorana fields there are actually three non-vanishing propagator-type expressions:
in addition to the Dirac-like propagator (0|7 (Wpe (X )\IJM,g (x2))]0), there are also
(OIT (Wma (x1)WMmp(x2))[0) and (O|T(®Ma(x1)qlM,g(xz))|O). Intuitively this must be
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the case, simply by virtue of the relation (2.136) between Wy and Wy;. Indeed that
relation can be used to obtain the second two propagators in terms of the first, as
we shall now see.

It is plausible that the expression for the Dirac-like propagator is in fact the same
as it would be for a Dirac field, namely

(01T (WMo (x1)WMp(x2))|0) = Spap(x) — x2) (2.137)

where Sgug(x1 — X2) is the function whose Fourier transform (in the variable x; —
XZ) is

i +m)

—mieT =

(2.138)

for a field of mass m (see, for example, Section 7.2 of [15]). The reader can check
this (in a rather lengthy calculation) by inserting the expansion (2.135) in the left-
hand side of (2.137), and using the anticommutation relations for the ¢ and cf
operators, together with the vacuum conditions ¢, (k)|0) = (0|CI (k) = 0. Consider
now the quantity (0|Wwq(x1)Wmp(x2)]0). From (2.136) we have

V() = CAW; (), (2.139)
or in terms of components

Wmp(x2) = Cﬂyﬁya‘l’g/m(xz)
= Wi5(x2)Bs, Crg
= Uy, (12)Cp. (2.140)

Hence we obtain

(01T (Wnma (X1)Wiip(x2))]0) = (01T (Wna (X1) Wty (22)[0) Cy = Sy (x1 — X2)C .
(2.141)

Exercise 2.10 Verify the relations

C'=-c=c". (2.142)
Hence show that (2.136) can also be written as

Uy = Wi C, (2.143)
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and use this result to show that
(01T (W o (1) Wnip(x2))]0) = ngSFyﬂ(xl — X2). (2.144)

When reducing matrix elements in covariant perturbation theory using Wick’s
theorem (see [15], Chapter 6), one has to remember to include these two non-Dirac-
like contractions.

We are at last ready to take our first steps in SUSY.



3
Introduction to supersymmetry and the MSSM

3.1 Simple supersymmetry

In this section we will look at one of the simplest supersymmetric theories, one
involving just two free fields: a complex spin-0 field ¢ and an L-type spinor field
X, both massless. The Lagrangian (density) for this system is

L=0,0""p + x'i5"8,x. (3.1)

The ¢ part is familiar from introductory quantum field theory courses: the yx bit,
as noted already, is just the appropriate part of the Dirac Lagrangian (2.38). The
equation of motion for ¢ is of course O¢ = 0, while that for x is i6#9,x =0
(compare (2.37)). We are going to try and find, by ‘brute force’, transformations
in which the change in ¢ is proportional to x (as in (2.2)), and the change in x is
proportional to ¢, such that £ is invariant — or, more precisely, such that the Action
S is invariant, where

S:/£d4x. (3.2)

To ensure the invariance of S, it is sufficient that £ changes by a total derivative,
the integral of which is assumed to vanish at the boundaries of space—time.

As a preliminary, it is useful to get the dimensions of everything straight. The
Action is the integral of the density £ over all four-dimensional space, and is dimen-
sionless in units 2z = ¢ = 1. In this system, there is only one independent dimension
left, which we take to be that of mass (or energy), M (see Appendix B of [15]).
Length has the same dimension as time (because ¢ = 1), and both have the dimen-
sion of M~! (because i = 1). It follows that, for the Action to be dimensionless,
£ has dimension M*. Since the gradients have dimension M, we can then read off
the dimensions of ¢ and x (denoted by [¢] and [x]):

[l =M, [x]=M"2 (3.3)

41
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Now, what are the SUSY transformations linking ¢ and x ? Several considerations
can guide us to, if not the answer, then at least a good guess. Consider first the change
in ¢, 8¢¢, which has the form (already stated in (2.2))

d¢¢ = parameter § x other field y, 3.4

where we shall take £ to be independent of x.! On the left-hand side, we have a
spin-0 field, which is invariant under Lorentz transformations. So we must construct
a Lorentz invariant out of x and the parameter £. One simple way to do this is to
declare that £ is also a x - (or L-) type spinor, and use the invariant product (2.46).
This gives

8¢ = &' (—ion)x, (3.5)

or in the notation of Section 2.3
Scp =8"% =8 x. (3.6)

It is worth pausing to note some things about the parameter €. First, we repeat
that it is a spinor. It doesn’t depend on x, but it is not an invariant under Lorentz
transformations: it transforms as a x-type spinor, i.e. by V~'T. It has two compo-
nents, of course, each of which is complex; hence four real numbers in all. These
specify the transformation (3.5). Secondly, although & doesn’t depend on x, and is
not a field (operator) in that sense, we shall assume that its components anticom-
mute with the components of spinor fields; that is, we assume they are Grassmann
numbers (see [7] Appendix O). Lastly, since [¢] = M and [x] = M?3/2, to make the
dimensions balance on both sides of (3.5) we need to assign the dimension

[E]=M""/? (3.7)

to £.
Now let us think what the corresponding 6 x might be. This has to be something
like

8¢ x ~ product of & and ¢. 3.8)

On the left-hand side of (3.8) we have a quantity with dimensions M*/2, whereas
on the right-hand side the algebraic product of & and ¢ has dimensions M~!/2+! =
M!/2_ Hence we need to introduce something with dimensions M! on the right-hand
side. In this massless theory, there is only one possibility — the gradient operator d,,,
or more conveniently the momentum operator id,,. But now we have a ‘loose’ index

! That is to say, we shall be considering a global supersymmetry, as opposed to a local one, in which case &
would depend on x. For the significance of the global/local distinction in gauge theories, see [15] and [7]. In
the present case, making supersymmetry local leads to supergravity, which is beyond our scope.
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w on the right-hand side! The left-hand side is a spinor, and there is a spinor (§)
also on the right-hand side, so we should probably get rid of the ¢ index altogether,
by contracting it. We try

Sex = (i0"0,9) &, (3.9)

where o is given in (2.34). Note that the 2 x 2 matrices in o* act on the 2-
component column & to give, correctly, a 2-component column to match the left-
hand side. But although both sides of (3.9) are 2-component column vectors, the
right-hand side does not transform as a x-type spinor. If we look back at (2.36)
and (2.37), we see that the combination 0#9,, acting on a v transforms as a x (and
o109, ona x transforms as a v). This suggests that we should let the 0#9,,¢ in (3.9)
multiply a ¥ -like thing, not the L-type &, in order to get something transforming as
a x. However, we know how to manufacture a v -like thing out of £! We just take
(see (2.45)) io»&*. We therefore arrive at the guess

SEXa = A[io-ﬂ(ioéé*)]aau(b’ (310)

where A is some constant to be determined from the condition that £ is invariant
(up to a total derivative) under (3.5) and (3.10), and we have indicated the y-type
spinor index on both sides. Note that ‘d,¢’ has no matrix structure and has been
moved to the end.

Exercise 3.1 Check that in the bar notation of Section 2.3, (3.8) is (omitting the
indices)

Sex = Aic"Ed, . 3.11)

Equations (3.5) and (3.10) give the proposed SUSY transformations for ¢ and y,
but both are complex fields and we need to be clear what the corresponding trans-
formations are for their hermitian conjugates ¢! and x . There are some notational
concerns here that we should pause over. First, remember that ¢ and x are quantum
fields, even though we are not explicitly putting hats on them; on the other hand, &
is not a field (it is x-independent). In the discussion of Lorentz transformations of
spinors in Chapter 2, we used the symbol * to denote complex conjugation, it being
tacitly understood that this really meant ! when applied to creation and annihilation
operators. Let us now spell this out in more detail. Consider the (quantum) field ¢
with a mode expansion

d3k . o
= | —— [a(k)e ™ + bT(k)e*]. 3.12
o) /(271)3«/% [a(k)e™ " + b'(k)e™ ] (3.12)

Here the operator a(k) destroys (say) a particle with 4-momentum k, and bi(k)
creates an antiparticle of 4-momentum k, while exp[+ik - x] are of course ordinary
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wavefunctions. For (3.12) the simple complex conjugation * is not appropriate,
since ‘a*(k)’ is not defined; instead, we want ‘a’(k)’. So instead of ‘¢*” we deal
with ¢, which is defined in terms of (3.12) by (a) taking the complex conjugate of
the wavefunction parts and (b) taking the dagger of the mode operators. This gives

3
¢! = / (271?375/270 [a'(k)e™ + b(k)e *7], (3.13)
the conventional definition of the hermitian conjugate of (3.12).

For spinor fields like x, on the other hand, the situation is slightly more com-
plicated, since now in the analogue of (3.12) the scalar (spin-0) wavefunctions
exp[=ik - x] will be replaced by (free-particle) 2-component spinors. Thus, sym-
bolically, the first (upper) component of the quantum field y will have the form

X1 ~ mode operator x first component of free-particle spinor of x-type, (3.14)

where we are of course using the ‘downstairs, undotted’ notation for the components
of x. In the same way as (3.13) we then define

)(lT ~ (mode operator)! x ( first component of free-particle spinor)*.  (3.15)

With this in hand, let us consider the hermitian conjugate of (3.5), that is (SSqﬁT.
Written out in terms of components (3.5) is

so=e (] 7)) (1) =—ae+an (3.16)
X2

We want to take the ‘dagger’ of this, but we are now faced with a decision about how

to take the dagger of products of (anticommuting) spinor components, like &; x». In

the case of two matrices A and B, we know that (AB)" = BTA'. By analogy, we

shall define the dagger to reverse the order of the spinors:

e = —xaEf + 165 (3.17)

ko

& isn’t a quantum field and the ‘*’ notation is suitable for it. Note that we here do
not include a minus sign from reversing the order of the operators. Now (3.17) can
be written in more compact form:

80! = xl6r — xJEf

0 1 *
(% )(E)

= x'(on)E™, (3.18)
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where in the last line the T symbol, as applied to the 2-component spinor field y, is
understood in a matrix sense as well: that is

T
xh= (’“) = O ad). (3.19)
X2

Equation (3.18) is a satisfactory outcome of these rather fiddly considerations be-
cause (a) we have seen exactly this spinor structure before, in (2.95), and we are
assured its Lorentz transformation character is correct, and (b) it is nicely consis-
tent with ‘naively’ taking the dagger of (3.5), treating it like a matrix product. In
particular, the right-hand side of the last line of (3.18) can be written in the notation
of Section 2.3 as i - £ (making use of (2.68)) or equally as & - ¥ . Referring to (3.6)
we therefore note the useful result

E =& =E-1=xE (3.20)
Then (3.6) and (3.18) become
Ssp =6 -x=x 8¢ =E-x=7"E (3.21)

In the same way, therefore, we can take the dagger of (3.10) to obtain
Sex' = AB,0'E Tiomio ", (3.22)

where for later convenience we have here moved the 3,,¢1 to the front, and we have
taken A to be real (which will be sufficient, as we shall see).

Exercise 3.2 Check that (3.22) is equivalent to
8ex = Ad,pGME. (3.23)

We are now ready to see if we can choose A so as to make £ invariant under
(3.5), (3.10), (3.18) and (3.22).
We have

8¢ L = 8,(8:9")0" ) + 8,8'9" (5¢¢) + B x Hi6" 0 x + x 11678, (3¢ x)
= 0,(x 10269 + 9,07 9"(€" (—io2)X)
+ A3,0'ETiomic )iz 0, x + Ax 116", (i0 i02E*)D, 0. (3.24)
Inspection of (3.24) shows that there are two types of term, one involving the

parameters £* and the other the parameters £T. Consider the term involving A&*.
In it there appears the combination (pulling 9, through the constant £*)

53,08, =@ — 0 V)8 +0o- V)= — V> =3," (3.25)
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We can therefore combine this and the other term in £* from (3.24) to give
8eLler = 8, xli0E* 0" p — 1A% 10,0  02E% . (3.26)

This represents a change in £ under our transformations, so it seems we have
not succeeded in finding an invariance (or symmetry), since we cannot hope to
cancel this change against the term involving £, which involves quite independent
parameters. However, we must remember (see (3.2)) that the Action is the space—
time integral of £, and this will be invariant if we can arrange for the change in £
to be a total derivative. Since & does not depend on x, we can indeed write (3.26)
as a total derivative

8¢ Lle- = 0,(x Tioa€ 9" ¢) (3.27)
provided that
A=-1. (3.28)
Similarly, if A = —1 the terms in €T combine to give
8¢ Ller = 8,0T9"(ET(—io2)x) + 8,¢'E Mo "G, . (3.29)

The second term in (3.29) we can write as
3,(pTETi020"5 8, x) + TET(—i02)0 5V 8,8, X (3.30)
= 0,(¢'ETi020"G 0, ) + ¢1ET (—i02)8, 0" . (3.31)

The second term of (3.31) and the first term of (3.29) now combine to give the total
derivative

3,(TET(—i02)d" x), (3.32)
so that finally
8eLler = 3,(¢1ET(—i02)8" x) + 8, (¢'E 0205V, ), (3.33)

which is also a total derivative. In summary, we have shown that under (3.5), (3.10),
(3.18) and (3.22), with A = —1, L changes by a total derivative:

8L = 0,(x 102" P + $TE (—i02)d" x + ¢'ETio20"5 0, x)  (3.34)

and the Action is therefore invariant: we have a SUSY theory, in this sense. As we
shall see in Chapter 4, the pair (¢, spin-0) and (), L-type spin-1/2) constitute a left
chiral supermultiplet in SUSY.
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Exercise 3.3 Show that (3.34) can also be written as
8L = 8,(x 102" 0" p + ETi020" 6" x 3,01 + ET(—i02) x 3" D). (3.35)

The reader may well feel that it has been pretty heavy going, considering espe-
cially the simplicity, triviality almost, of the Lagrangian (3.1). A more professional
notation would have been more efficient, of course, but there is a lot to be said
for doing it the most explicit and straightforward way, first time through. As we
proceed, we shall speed up the notation. In fact, interactions don’t constitute an
order of magnitude increase in labour, and the manipulations gone through in this
simple example are quite representative.

3.2 A first glance at the MSSM

Before continuing with more formal work, we would like to whet the reader’s
appetite by indicating how the SUSY idea is applied to particle physics in the
MSSM. The only type of SUSY theory we have discussed so far, of course, contains
just one massless complex scalar field and one massless Weyl fermion field (which
could be either L or R — we chose L). Such fields form a SUSY supermultiplet,
called a chiral supermultiplet. Thus far, interactions have not been included: that
will be done in Chapter 5. Other types of supermultiplet are also possible, as we
shall learn in the next chapter (Section 4.4). For example, one can have a vector
(or gauge) supermultiplet, in which a massless spin-1 field, which has two on-shell
degrees of freedom, is partnered with a massless Weyl fermion field. The allowed
(renormalizable) interactions for massless spin-1 fields are gauge interactions, and
the theory can be made supersymmetric when Weyl fermion fields are included,
as will be explained in Chapter 7. In fact, only these two types of supermultiplet
are used in the MSSM. So we now need to consider how the fields of the SM,
which comprise spin-0 Higgs fields, spin—% quark and lepton fields, and spin-1
gauge fields, might be assigned to chiral and gauge supermultiplets. (Masses will
eventually be generated by Higgs interactions, and by SUSY-breaking soft masses,
as described in Section 9.2.)

A crucial point here is that SUSY transformations do not change SU(3)., SU(2).,
or U(1) quantum numbers: that is to say, each SM field and its partner in a SUSY
supermultiplet must have the same SU(3). x SU(2);. x U(1) quantum numbers.
Consider then the gluons, for example, which are the SM gauge bosons associated
with local SU(3). symmetry. They belong (necessarily) to the eight-dimensional
‘adjoint’ representation of SU(3) (see [7] chapter 13, for example), and are flavour
singlets. None of the SM fermions have these quantum numbers, so — to create a
supersymmetric version of QCD — we are obliged to introduce a new SU(3) octet of
Weyl fermions, called ‘gluinos’, which are the superpartners of the gluons. Similar
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considerations lead to the introduction of an SU(2), triplet of Weyl fermions, called
‘winos’ (W*, W), and a U(l), ‘bino’ (B).
Turning now to the SM fermions, consider first the left-handed lepton fields, for
example the SU(2)., doublet
("CL). (3.36)
eL

These cannot be partnered by new spin-1 fields, since the latter would (in the inter-
acting case) have to be gauge bosons, belonging to the three-dimensional adjoint
representation of SU(2), not the doublet representation. Instead, in a SUSY theory,
we must partner the doublet (3.36) with a doublet of spin-0 bosons having the same
SM quantum numbers. In the MSSM, this is done by introducing a new doublet of
scalar fields to go with the lepton doublet (3.36), forming chiral supermultiplets:

( Vel ) partnered by ( Vel ) (3.37)
er €L

where ‘D’ is a scalar partner for the neutrino (‘sneutrino’), and ‘@’ is a scalar partner
for the electron (‘selectron’). Similarly, we will have smuons and staus, and their
sneutrinos. These are all in chiral supermultiplets, and SU(2);, doublets, and (though
bosons) they all carry the same lepton numbers as their SM partners.

What about quarks? They are a triplet of the SU(3). colour gauge group, and
no other SM particles are colour triplets. They cannot be partnered by new gauge
fields, which must be in the octet representation of SU(3), not the triplet. So we
will need new spin-0 partners for the quarks too, called squarks, which are colour
triplets with the same baryon number as the quarks, belonging with them in chiral
supermultiplets; they must also have the same electroweak quantum numbers as
the quarks.

The electroweak interactions of both leptons and quarks are ‘chiral’, which means
that the ‘L’ parts of the fields interact differently from the ‘R’ parts. The L parts
belong to SU(2),. doublets, as above, while the R parts are SU(2) singlets. So we
need to arrange for scalar partners for the L and R parts separately: for example
(er, &), (uR, iir), (dr, dr), etc.; and

uy, l:iL
(dL) ’ <67L) (:38)
and so on.

Finally, the Higgs sector: the scalar Higgs fields will need their own ‘higgsinos’,
i.e. fermionic partners forming chiral supermultiplets. In fact, a crucial consequence

2

2 As noted in Section 2.4, the ‘particle R parts’ will actually be represented by the charge conjugates of the
‘antiparticle L parts’.
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of making the SM supersymmetric, in the MSSM, is that, as we shall see in Chap-
ter 8, two separate Higgs doublets are required. In the SM, Yukawa interactions
involving the field

0 (¢+) (3:39)
=) .
give masses to the 13 = —1/2 components of the fermion doublets when ¢° acquires
a vev, while corresponding interactions with the charge-conjugate field
¢°
¢czin¢”::(_¢) (3.40)

give masses to the 13 = +1/2 components (see, for example, Section 22.6 of [7]).
But in the supersymmetric version, the Yukawa interactions cannot involve both a
complex scalar field ¢ and its hermitian conjugate ¢! (see Section 5.1). Hence use
of the charge-conjugate ¢¢ is forbidden by SUSY, and we need two independent
Higgs chiral supermultiplets:

H 7+
m:(ﬁ),(%) (3.41)

o Hi H}
m.<%>,<m). (3.42)

This time, of course, the fields with tildes have spin 1/2. (The apparently ‘wrong’
labelling of H, and Hy will be explained in Section 8.1.)

The chiral and gauge supermultiplets introduced here constitute the field content
of the MSSM. The full theory includes supersymmetric interactions (Chapters 5,
7 and 8) and soft SUSY-breaking terms (see Section 9.2). It has been around for
over 25 years: early reviews are given in [43], [44] and [45]; a more recent and very
helpful ‘supersymmetry primer’ was provided by Martin [46], to which we shall
make quite frequent reference in what follows. A comprehensive review may be
found in [47]. Finally, there are two substantial monographs, by Drees et al. [48]
and by Baer and Tata [49].

We will return to the MSSM in Chapter 8. For the moment, we should simply note
that (a) none of the ‘superpartners’ has yet been seen experimentally, in particular
they certainly cannot have the same mass as their SM partner states (as would
normally be expected for a symmetry multiplet), so that (b) SUSY, as applied in
the MSSM, must be broken somehow. We will include a brief discussion of SUSY
breaking in Chapter 9, but a more detailed treatment is beyond the scope of this book.

and
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The supersymmetry algebra and supermultiplets

A fundamental aspect of any symmetry (other than a U(1) symmetry) is the algebra
associated with the symmetry generators (see for example Appendix M of [7]). For
example, the generators 7; of SU(2) satisfy the commutation relations

[T, T;] = i€;i Tk, 4.1)

where i, j and k run over the values 1, 2 and 3, and where the repeated index k is
summed over; €;; is the totally antisymmetric symbol such that €123 = +1, €313 =
—1, etc. The commutation relations summarized in (4.1) constitute the ‘SU(2)
algebra’, and it is of course exactly that of the angular momentum operators in
quantum mechanics, in units 4 = 1. Readers will be familiar with the way in which
the whole theory of angular momentum in quantum mechanics — in particular, the
SU(2) multiplet structure — can be developed just from these commutation relations.
In the same way, in order to proceed in a reasonably systematic way with SUSY,
and especially to understand what kind of ‘supermultiplets’ occur, we must know
what the SUSY algebra is. In Section 1.3, we introduced the idea of generators
of SUSY transformations, Q,, and their associated algebra, which now involves
anticommutation relations, was roughly indicated in (1.34). The main work of this
chapter is to find the actual SUSY algebra, by a ‘brute force’ method once again,
making use of what we have learned in Chapter 3.

4.1 One way of obtaining the SU(2) algebra

In Chapter 3, we arrived at recipes for SUSY transformations of spin-0 fields ¢ and
¢!, and spin-1/2 fields x and x. From these transformations, the algebra of the
SUSY generators can be deduced. To understand the method, it is helpful to see it
in action in a more familiar context, namely that of SU(2), as we now discuss.

50
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Consider an SU(2) doublet of fields

u
q= ( d) “2)

where u and d have equal mass, and identical interactions, so that the Lagrangian is
invariant under (infinitesimal) transformations of the components of g of the form
(see, for example, equation (12.95) of [7])

q—q =(1—ie-7/2)qg =q+ 84, (4.3)
where
Seq = —ie-T/24. (4.4)

Here, as usual, the three matrices 7 = (11, T2, T3) are the same as the Pauli o matri-
ces, and € = (€, €3, €3) are three real infinitesimal parameters specifying the trans-
formation. For example, for € = (0, €2, 0), ,,q1 = —(€2/2)g2. The transformed
fields ¢’ satisfy the same anticommutation relations as the original fields ¢, so that
g’ and g are related by a unitary transformation

g =UqU'. (4.5)
For infinitesimal transformations, U has the general form
U = (1 +1i€-T) (4.6)
where
T=N,T1T,T3) 4.7)

are the generators of infinitesimal SU(2) transformations; the unitarity of U implies
that the T’s are Hermitian. For infinitesimal transformations, therefore, we have
(from (4.5) and (4.6))

g = +ie-T)g(l —ie-T)
=qg+ie-Tq —ie-gT tofirst order in €
=q +ie-[T,ql]. (4.8)

Hence from (4.3) and (4.4) we deduce (see equation (12.100) of [7])
deq =i€-[T,q]l=—ie-1/24. 4.9)

It is important to realize that the T’s are themselves quantum field operators, con-
structed from the fields of the Lagrangian; for example in this simple case they
would be

T= /qT(T/z)q d*x (4.10)
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as explained for example in Section 12.3 of [ 7], and re-derived in Section 4.3 below,
equation (4.68).

Given an explicit formula for the generators, such as (4.10), we can proceed to
calculate the commutation relations of the T’s, knowing how the ¢’s anticommute.
The answer is that the T’s obey the relations (4.1). However, there is another way
to get these commutation relations, just by considering the small changes in the
fields, as given by (4.9). Consider two such transformations

be,q = 1€1[T1, q] = —ie(11/2)q (4.11)

and

8e,q = i62[T, q] = —iex(12/2)q. (4.12)

We shall calculate the difference (8¢, 6., — 8¢,9¢,)g in two different ways: first via
the second equality in (4.11) and (4.12), and then via the first equalities. Equating
the two results will lead us to the algebra (4.1).

First, then, we use the second equality of (4.11) and (4.12) to obtain

8e,06,9 = 8¢ {—i€2(12/2}q
= —iex(12/2)é¢,q
= —i€x(12/2). —i€1(11/2)g
= —(1/4)e1e213114. (4.13)

Note that in the last line we have changed the order of the € parameters as we are
free to do since they are ordinary numbers, but we cannot alter the order of the 7’s
since they are matrices which do not commute. Similarly,

86,069 = e, {—le1(1/2)q
= —iEl(‘L'l/Z)(SeZq
= —(1/4)61621’11’2q. (414)

Hence

(861 862 - 862861)q = 6162[1’]/2, TZ/Z]C]
= €16i(13/2)q
= —i€1e[T3, ql, (4.15)

where the second line follows from the fact that the quantities %r;, as matrices,
satisfy the algebra (4.1), and the third line results from the ‘3’ analogue of (4.11)
and (4.12).
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Now we calculate (8,8, — &¢,0¢, )q using the first equality of (4.11) and (4.12).
We have

561862q == 861 {iGQ[Tz» q]}
=1€20¢,{[T2, q1}

=i€jiex[T, [T2, q]]. (4.16)
Similarly,
86,06, = i€11€2[ T2, [T, q]]. (4.17)
Hence
(8e,8e, = 8e,0¢)q = —€1€2{[Th, [T2, 11 — [T2, [Th, ¢11}. (4.18)

Now we can rearrange the right-hand side of this equation by using the identity
(which is easily checked by multiplying it all out)

[A,[B,C]]+[B,I[C, A]]+[C,[A, B]] =0. (4.19)
We first write

[12, [T, q1] = =12, [g, T1]] (4.20)

so that the two double commutators in (4.18) become

[T\, [T, q1] — [T2, [T1, q1] = [Th, [T2, q1] + [T, [g, T1]] = —lq, [T}, T>]],
4.21)

where the last step follows by use of (4.19). Finally, then, (4.18) can be written as
(8¢,8e, — 8e,8¢,)g = —e16[[Th, T2, q], (4.22)

which can be compared with (4.15). We deduce
[T, T5] =iT3 (4.23)

exactly as stated in (4.1).
This is the method we shall use to find the SUSY algebra, at least as far as it
concerns the transformations for scalar and spinor fields found in Chapter 3.

4.2 Supersymmetry generators (‘charges’) and their algebra

In order to apply the preceding method, we need the SUSY analogue of (4.9).
Equations (3.5) and (3.10) (with A = —1) provide us with the analogue of the
second equality in (4.9), for 8z ¢ and for &¢ x ; what about the first? We want to write
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something like

S ~iEQ, ¢l = £T(—io)x, (4.24)

where Q is a SUSY generator. In the first (tentative) equality in (4.24), we must
remember that £ is a y-type spinor quantity, and so it is clear that Q must be a
spinor quantity also, or else one side of the equality would be bosonic and the other
fermionic. In fact, since ¢ is a Lorentz scalar, we must combine & and Q into a
Lorentz invariant. Let us suppose that Q transforms as a x-type spinor also: then
we know that £T(—io»)Q is Lorentz invariant. So we shall write

Sep = il (—i02)Q, ¢ = ET(—io)x (4.25)
or in the faster notation of Section 2.3
dep=1[§- Q0,01 =6-x. (4.26)

We are going to calculate (8,8¢ — 8:6,)¢, so (since §¢p ~ x) we shall need (3.10)
as well. This involves £*, so to get the complete analogue of ‘ie - T* we shall need
to extend ‘i€ - Q’ to

(6T (—i02)Q + &1(i02) Q") =i(E - Q0 +&- Q). (4.27)
We first calculate (8,6; — 8:6,)¢ using (3.5) and (3.10) (with A = —1):
(848 — 8:8,)¢p = 8,(§" (—ioayx) — (n < &)

= &' (—io)io " (—io)n* 3. — (n < )
= (ETcoten* — nTeotcEN)id, g, (4.28)

where we have introduced the notation

c=—iop = (? _01> . (4.29)

(4.28) can be written more compactly by using (see equation (2.83))
cotc = —6"T. (4.30)

Note that £T6#Ty* is a single quantity (row vector times matrix times column vector)
so it must equal its formal transpose, apart from a minus sign due to interchanging
the order of anticommuting variables.! Hence

(8,05 — 8:8,)p = (n'61E — £76")id . (4.31)

' Check this statement by looking at (n"(—ion)€)T, for instance.
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Just to keep our ‘Majorana’ hand in, we note that (4.31) is simply
(8,0 — 8:6,)p = \D&wadiam, (4.32)

using (2.113).
On the other hand, we also have

8:¢ =il - 0 +E&- 0, 9] (4.33)

and so

(8,8: = 8809 = —{n-Q+7-0,[6-Q+E-0, ¢l
—[E-0+E&-0,[n-0+1n- 0,911} (4.34)

Just as in (4.21), the right-hand side of (4.34) can be rearranged using (4.19) and
we obtain

- Q+1-0.6-Q+E&-0l¢l=1n"co"ct* — & co’cn*)id, ¢
= —(ntcotcE* — STCO'”’CH*)[PM, ¢l (4.35)

where in the last step we have introduced the 4-momentum operator P,, which is
also the generator of translations, such that

[P, ¢] = —i0,¢ (4.36)

(we shall recall the proof of this equation in Chapter 6, see (6.9)).
It is tempting now to conclude that, just as in going from (4.15) and (4.22) to
(4.23), we can infer from (4.35) the result

- O+7-0,6-0+&-Ql=—(n"co’ct* — g colcn*)P,. (4.37)

However, for (4.37) to be true as an operator relation, it must hold when applied to
all fields in the supermultiplet. But we have, so far, only established the right-hand
side of (4.35) by considering the difference 6,6 — 8:4, acting on ¢ (see (4.28)). Is
it also true that

(8,8: — 8:8,)x = (§Tcoten* — ntcotcE*)id, x ? (4.38)

Unfortunately, the answer to this is no, as we shall see in Section 4.5, where we
shall also learn how to repair the situation. For the moment, we proceed on the basis
of (4.37).

In order to obtain, finally, the (anti)commutation relations of the Q’s from (4.37),
we need to get rid of the parameters n and £ on both sides. First of all, we note
that since the right-hand side of (4.37) has no terms in n...& or n*...&* we can
deduce

[n-0Q.8-0l=[7-0Q.5§-0]=0. (4.39)
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The first commutator is
0=0'01+n02)E' 01 +5202) — (' Q1 + 870" Q1 +11°Q2)

=—'€'(20101) — n'E*(Q102 + 0201)
—’6'(0201 + 0102) — N*E%(2020), (4.40)

remembering that all quantities anticommute. Since all these combinations of pa-
rameters are independent, we can deduce

{Qa, 0} =0, (4.41)

and similarly

{Qu, 03} =0. (4.42)

Notice how, when the anticommuting quantities £ and # are ‘stripped away’ from
the QO and Q, the commutators in (4.39) become anticommutators in (4.41) and
(4.42).

Now let’s look at the [ - Q, & - Q] term in (4.37). Writing everything out long-
hand, we have

§-0=¢l00" =05 -§07 (4.43)
and
n-Q=-m@+mnQ. (4.44)
So
[n-Q,&- 0l =mé&(Q205 + 0502) — m& (0207 + 07 02)
—m&[ (0105 + Q501 + mé&3 (0107 + Q7 Q1).  (4.45)
Meanwhile, the right-hand side of (4.37) is

0 -1 0 —1 Ef
— 1 1

am (7 9) (1) (&)

— u _52*

= —(n —m)o il

§i

= [m2&; (") 11 — m2&[ (012 — m&y (0" )21 + mé&f(0")22] Py, (4.46)
where the subscripts on the matrices o* denote the particular element of the matrix,
as usual. Comparing (4.45) and (4.46) we deduce

{Qa’ QZ} = (O—M)abP/L- (447)
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We have been writing Q* throughout, like £* and n*, but the Q’s are quantum field
operators and so (in accord with the discussion in Section 3.1) we should more
properly write (4.47) as

{Quas O} = (0")ap Py (4.48)

Once again, the commutator in (4.45) has led to an anticommutator in (4.48).

Equation (4.48) is the main result of this section, and is a most important equa-
tion; it provides the ‘proper’ version of (1.34). Although we have derived it by
our customary brute force methods as applied to a particular (and very simple)
case, it must be emphasized that equation (4.48) is indeed the correct SUSY al-
gebra (up to normalization conventions?). Equation (4.48) shows (to repeat what
was said in Section 1.3) that the SUSY generators are directly connected to the
energy-momentum operator, which is the generator of translations in space—time.
So it is justified to regard SUSY as some kind of extension of space—time symme-
try, the Q’s generating ‘supertranslations’. We shall see further aspects of this in
Chapter 6.

The foregoing results can easily be written in the more sophisticated notation of
Section 2.3. In parallel with equation (2.77) we can define

0. = Q). (4.49)
Then (4.42) is just
{Q4. Q) =0, (4.50)
while (4.48) becomes
{Qa. 03} = (0")4 Pyi- (4.51)

Note that the indices of o* follow correctly the convention mentioned after equation
(2.80).

The SUSY algebra can also be written in Majorana form. Just as we can construct
a 4-component Majorana spinor from a y (or of course a /), so we can make a
4-component Majorana spinor charge Qy from our L-type spinor charge Q, by

2 Many authors normalize the SUSY charges differently, so that they get a 2 on the right-hand side. For com-
pleteness, we take the opportunity of this footnote to mention that more general SUSY algebras also exist,
in which the single generator Q, is replaced by N generators Q(’;‘ (A=1,2,..., N). Equation (4.48) is then

replaced by {fo, Qf"'} =848 (a")p Py,.. The more significant change occurs in the anticommutator (4.41),
which becomes {Qf, Qg} =€, Z28 whereejp = —1, €21 = +1, €11 = €2 = 0and the ‘central charge’ ZAB
is antisymmetric under A <> B. The reason why only the N = 1 case seems to have any immediate physical
relevance will be explained at the end of Section 4.4.



58 The supersymmetry algebra and supermultiplets

setting (c.f. (2.100))

a

_ (=27 _ | -2 452

Qv ( 0 ) o | (*32)
0>

Let us call the components of this Oy, so that Qg = Q;, Ome = —QI, etc. It
is not completely obvious what the anticommutation relations of the Qy,’s ought
to be (given those of the Q,’s and Q,’s), but the answer turns out to be

{Oma, Omp} = (P (Y2 Y°)ap Pus (4.53)

as can be checked with the help of (4.41), (4.42), (4.48) and (4.52). Note that
‘—iy2y " is the ‘metric’ we met in Section 2.5. The anticommutator (4.53) can be

re-written rather more suggestively as

{OMas Omp} = (V" ap P (4.54)

where (compare (2.111))
Omp = (On(=iv*y"), = (QLy")p- (4.55)

We note finally that the commutator of two P’s is zero (translations commute),
and that the commutator of a Q and a P also vanishes, since the Q’s are independent
of x:

[Q4, P.1 =10}, P,]1=0. (4.56)

So all the commutation or anticommutation relations between Q’s, Q1’s, and P’s are
now defined, and they involve only these quantities; we say that ‘the supertranslation
algebra is closed’.

4.3 The supersymmetry current

In the case of ordinary symmetries, the invariance of a Lagrangian under a trans-
formation of the fields (characterized by certain parameters) implies the existence
of a 4-vector j* (the ‘symmetry current’), which is conserved: 9, j* = 0. The
generator of the symmetry is the ‘charge’ associated with this current, namely the
spatial integral of j°. An expression for j* is easily found (see, for example, [7],
Section 12.3.1). Suppose the Lagrangian £ is invariant under the transformation

b — ¢, + 54, (4.57)
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where ‘¢, stands generically for any field in £, having several components labelled
by r. Then

oL
0=46L=—16¢ +
A, (3" ¢r)

But the equation of motion for ¢, is

9"(8¢,) + hermitian conjugate. (4.58)

oL oL
=0, ( ) . (4.59)
A, (3. 9r)
Using (4.59) in (4.58) yields
.t = (4.60)
where
Jjh = oL 8¢, + hermitian conjugate (4.61)
A(utpr) ' '
For example, consider the Lagrangian
L=4gGg—m)q (4.62)
where

u
g = (d). (4.63)

This is invariant under the SU(2) transformation (4.4), which is characterized by
three independent infinitesimal parameters, so there are three independent sym-
metries, three currents, and three generators (or charges). Consider for instance a
transformation involving €; alone. Then

8q = —iei(11/2)q, (4.64)
while from (4.62) we have
oL
=giy"*. (4.65)
9(8,9)
Hence from (4.61) and (4.64) we obtain the corresponding current as
e1qy"(t1/2)q. (4.66)

Clearly the constant factor ¢ is irrelevant and can be dropped. Repeating the same
steps for transformations associated with €, and €3 we deduce the existence of the
isospin currents

" =qv"(t/2q (4.67)
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and charges (generators)

T= / q'(r/2)q &x (4.63)

just as stated in (4.10).

We can apply the same procedure to find the supersymmetry current associated
with the supersymmetry exhibited by the simple model considered in Section 3.1.
However, there is an important difference between this example and the SU(2)
model just considered: in the latter, the Lagrangian is indeed invariant under the
transformation (4.3), but in the SUSY case we were only able to ensure that the
Action was invariant, the Lagrangian changing by a total derivative, as given in
(3.34) or (3.35). In this case, the ‘0’ on the left-hand side of (4.58) must be replaced
by 0, K* say, where K* is the expression in brackets in (3.34) or (3.35).

Furthermore, since the SUSY charges are spinors Q,, we anticipate that the
associated currents carry a spinor index too, so we write them as J', where a is
a spinor index. These will be associated with transformations characterized by the
usual spinor parameters &. Similarly, there will be the hermitian conjugate currents
associated with the parameters £*.

Altogether, then, we can write (forming Lorentz invariants in the now familiar

way)
. oL oL
T(—igy)JH* + EVigy JH* = S+ 8o +
5 (Ho) P+ 5o 50,07 T 36,0 T 30,0
= "¢ ET(—ion)x +xi026* 9" ¢ + x 116" (—io")io2E* 3,0
— ((Ti02* 3" p + ETi020" 6" x 8,91 +E T (—ion) x 8 )
= x16"0 1026 3,0 + £ (—i0on)0 "6  x 0,0T, (4.69)

Sy — K"

whence we read off the SUSY current as
JH =" %0, (4.70)

As expected, this current has two spinorial components, and it contains an unpaired
fermionic operator .

Exercise 4.1 The supersymmetry charges (generators) are given by the spatial
integral of the u = 0 component of the supersymmetry current (4.70), so that

0. = / (0" x()a D )Y @71)

Verify that these charges do indeed generate the required transformations of the
fields, namely

(a) i[§- 0,00 =§&- x(x) (4.72)
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(you will need to use the bosonic equal-time commutation relations

[p(x, 1), §T(y, D] = i8> (x — y)), (4.73)

and

(b) i[£-0+&- 0, x(0)] = —io"(i025™)3,p(x) (4.74)

(you will need the fermionic anti-commutation relations

(X 1), X0y, D) = 858> (X — y).) (4.75)

4.4 Supermultiplets

We proceed to extract the physical consequences of (4.41), (4.42), (4.48) and (4.56).
First, note from (4.56) that the operator P> commutes with all the generators Q,,
so that states in a supermultiplet, which are connected to each other by the action
of the generators, must all have the same mass (and, more generally, the same 4-
momentum). However, since the Q,’s are spinor operators, the action of a Q, or
QZ on one state of spin j will produce a state with a spin differing from j by % In
fact, we know that under rotations (compare equation (4.9) for the case of isospin
rotations, and equations (6.8) and (6.10) below for spatial translations)

50 = —(ie- 0/2)0 = ie- [J, O], (4.76)

where the J’s are the generators of rotations (i.e. angular momentum operators).
For example, for a rotation about the 3-axis,

1
_§U3Q = []37 Q]7 (477)
which implies that
1 1
[/3, O1] = _EQI, [/3, Q2] = §Q2- (4.78)
It follows that if | jm) is a spin-j state with J3 = m, then
: 1 :
(301 — 01J3)|jm) = —§Q1|Jm), 4.79)
whence
: 1 .
J3(Q1ljm)) = (m - 5) Q1ljm), (4.80)

showing that Q|jm) has J; = m — % —thatis, Q; lowers the m-value by % (like an
annihilation operator for a ‘u’-state). Similarly, Q, raises it by % (like an annihilation
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operator for a ‘d’-state). Likewise, since
o Lot
[J3, Q11 = EQ" (4.81)

we find that Qi raises the m-value by %; and by the same token Qg lowers it by %

We now want to find the nature of the states that are ‘connected’ to each other by
the application of the operators Q, and Q,t, that is, the analogue of the (2 + 1)-
fold multiplet structure familiar in angular momentum theory. Our states will be
labelled as | p, A), where we take the 4-momentum eigenvaluetobe p = (E, 0, 0, E)
since the fields are massless, and where A is a helicity label, equivalent here to the
eigenvalue of J3. Let |p, —j) be a normalized eigenstate of J; with eigenvalue
A = —J, the minimum possible value of A for given j. Then we must have

0llp, —j) =0=Qilp, —j). (4.82)

This leaves only two states connected to |p, —j) by the SUSY generators, namely
QT1 |p, —j)and Q,|p, —j). The first of these must vanish. This follows by consid-
ering the SUSY algebra (4.48) witha = b = 1:

0101+ 0,01 =" P, (4.83)

The only components of o** which have a non-vanishing ‘11’ entry are (¢%);; = 1
and (6%);; = 1, so we have

0101+ 00 =P+ P =P~ P (4.84)
Hence, taking the expectation value in the state |p, —j), we find
(p, —jl101 01 + 0, 0Ip. —j) =0 (4.85)

since the eigenvalue of PO — P3 vanishes in this state. But from (4.82) we have
(p, —Jjl Qi = 0, and hence we deduce that

(p,—jl0:10l1p, —j) =0. (4.86)

It follows that either the state Qr |p, —Jj) has zero norm (which is not an acceptable
state), or that

0llp,—j) =0, (4.87)

as claimed.
This leaves just one state connected to our starting state, namely

Qalp, —J). (4.88)
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We know that Q5 raises A by 1/2, and hence

. o1
Qalp. —j) o |p. =i+ 5) (4.89)
Consider now the action of the generators on this new state |p, —j + %), which is
proportional to Q;|p, —j). Obviously, the application of Q5 to it gives zero, since
0,0, = 0 from (4.41). Next, note that

0102lp —j)=—0201lp,—j) =0, (4.90)
using (4.41) and (4.82). Now consider
0! 0alp. ). (4.91)

Given the chosen momentum eigenvalue, the a = 1, b = 2 element of (4.48) gives
0,0} = —010,, and hence

010:lp, —j) = —0:0}1p. —j) =0, (4.92)
using (4.87). We are left with only Q; to apply to |p, —j + %). This in fact just
takes us back to the state we started from:

1 s
Q;‘P, —J+ 5) o Q1 Qalp. —j) < QE — Q20D)Ip. —j) o« Ip. —j).  (4.93)

where we have used (4.48) with a = b = 2. So there are just two states in a su-
permultiplet of massless particles, one with helicity — j and the other with helicity
—j+ % However, any local Lorentz invariant quantum field theory must be invari-
ant under the combined operation of TCP: this implies that for every supermultiplet
of massless particle states with helicities —j and —j + % there must be a corre-
sponding supermultiplet of massless antiparticle states with helicities j and j — %.3

Consider the case j = % Then we have one supermultiplet consisting of the two
states |p, A = —%) and |p, A = 0). The second of these states cannot be associated
with spin 1, since there is no A = 0 state for a massless spin-1 particle. Hence it
must be a spin-0 state. This is, in fact, the left chiral supermultiplet, containing a
massless left-handed spin-% state and a massless scalar state. The corresponding
fields are an L-type Weyl fermion x and a complex scalar ¢, as in the simple model
of Section 3.1.

As already indicated in Section 3.2, we may assign the fermions of the SM to
chiral supermultiplets, partnered by suitable squarks and sleptons. Consider, for

example, the electron and neutrino states. The left-handed components form an

3 We could equally well have started with the state of maximum helicity for given j, namely |p, A = j), ending
up with the supermultiplet |p, A = j), [p, A = j — %), and their TCP-conjugates.
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SU(2),, doublet, which is partnered by a corresponding doublet of scalars (denoted
by the same symbol as the SM states, but with a tilde), in left chiral supermultiplets:

("eL) and <‘~’5L> . (4.94)
€L €L

TCP-invariance of the Lagrangian guarantees the inclusion of the antiparticle states

Er er
(DeR> and (‘:)eR) ) (4.95)

Note that the ‘R’ or ‘L’ label on the sleptons doesn’t refer to their chirality (they are
spinless) but rather to that of their superpartners. The right-handed component eg is
an SU(2), singlet, however, and so cannot be partnered by the doublet selectron state
&_ introduced above. Instead, it is partnered by a new selectron state &g, forming a
right chiral supermultiplet:

er and é&g. (4.96)
The corresponding antiparticle states
€. and & 4.97)

form a left chiral supermultiplet. Similar assignments are made for the other SM
fermions.

In constructing the MSSM Lagrangian (see Section 8.1) it is conventional to
describe all the SM fermions by L-type Weyl spinor fields. Thus for the electron we
shall use fields y. (which destroys e and creates €g) and y (Which destroys & and
creates er). As we saw in Section 2.4, the R-type field . which destroys er and
creates €, is given in terms of xe by Y. = io, xZ'. For the accompanying selectron
fields, we use & (which destroys & and creates €g) and & (which destroys &
and creates &g). Bearing in mind that & is the super-partner of the antiparticle of
€r, the field e;. can equally well be denoted by é}i (which creates &g and destroys
the superpartner of the antiparticle of eg). The other slepton and squark fields are
treated similarly.

In the case j = 1, the supermultiplet consists of two states |p, A = —1) and
|p, A = — %), which pairs a massless spin-1 state with a massless left-handed spin—%
state. This is the vector, or gauge supermultiplet. In terms of fields, the supermulti-
plet contains a massless gauge field and a massless Weyl spinor. The gauge bosons
of the SM are assigned to gauge supermultiplets. In this case, TCP-invariance guar-
antees the appearance of both helicities, while the antiparticle states are contained
in the same (adjoint) representation of the gauge group as the particle states (for
example, the antiparticle of the W is the W™). In the MSSM, the SM gauge bosons
are partnered by massless Weyl spinor states, also in the adjoint representation of
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the gauge group. When interactions are included, we arrive at supersymmetrized
versions of the SM gauge theories (see Chapter 7).

This is an appropriate point to explain why only N = 1 SUSY (see the preceding
footnote) has been considered. The reason is thatin N = 2 SUSY the corresponding
chiral multiplet contains four states: A = +%, A= —% and two states with A = 0.
The phenomenological problem with this is that the R (A = %) and L (A = —%)
states must transform in the same way under any gauge symmetry (similar remarks
hold for all N > 1 supermultiplets). But we know that the SU(2);, gauge symmetry
of the SM treats the L. and R components of quark and lepton fields differently. So
if we want to make a SUSY extension of the SM, it can only be the simple N = 1
SUSY, where we are free to treat the left chiral supermultiplet (A = —%, r=0)
differently from the right chiral supermultiplet (A = 0, A = —I—%). Further details of
the representations for N > 1 are given in [42] Section 1.6, for example.

One other case of possible physical interest is the gravity supermultiplet, contain-
ing a spin-2 graviton state with A = —2 and a spin—% gravitino state with A = —%.
The interacting theory here is supergravity, which however lies beyond our scope.

We must now take up an issue raised after (4.36).

4.5 A snag, and the need for a significant complication

In Section 4.2 we arrived at the SUSY algebra by calculating the difference 8,6 —
8¢8, two different ways. We explicitly evaluated this difference as applied to ¢,
but in deducing the operator relation (4.37), it is crucial that a consistent result be
obtained when §,6; — 8:8, is applied to x. In fact, as noted after (4.38), this is not
the case, as we now show. This will necessitate a significant modification of the
SUSY transformations given so far, in order to bring about this desired consistency.

Consider first §, 8¢ x,, where we are indicating the spinor component explicitly:

8085)(61 = 80(_10M(i02g*))a8u¢
= (10"(—102£")),0,.6,¢
= (io"(—i026))a(n" (=i02)0), X). (4.98)

There is an important identity involving products of three spinors, which we can
use to simplify (4.98). The identity reads, for any three spinors A, ¢ and p,

Aa(£ T (—i02)p) + La(p" (—io2)H) + pa(MT (—i02)¢) = 0, (4.99)
or in the faster notation
Aa(§ - p)+ Calp - 2) + pa(A - £) =0. (4.100)

Exercise 4.2 Check the identity (4.99).



66 The supersymmetry algebra and supermultiplets

We take, in (4.99),

ro = (0"(=102)6 )0, Lo =May Pa = duXa- (4.101)
The right-hand side of (4.98) is then equal to
—i{na 0, x " (—i02)0 " (—102)E™ + B xa (0" (—ic2E ™)) (—ion)n}. (4.102)
But we know from (4.30) that the first term in (4.102) can be written as
.8, x 6" TE*) = —ina(§76" 8, %), (4.103)

where to reach the second equality in (4.103) we have taken the formal transpose of
the quantity in brackets, remembering the sign change from re-ordering the spinors.
As regards the second term in (4.102), we again take the transpose of the quantity
multiplying 9,, x,, so that it becomes

—i8), xa(—1 1020 (—i02)E*) = —in" cocE* Dy Xa- (4.104)
After these manipulations, then, we have arrived at
8,0: Xa = —ina(é%“aﬂx) — inTca"cg*Ban, (4.105)
and so

(8,85 — 858, Xa = (€ coten* — n'cotcE*)id, xa
+i&,(n'6 3, x) — ina (51618, x). (4.106)

We now see the difficulty: the first term on the right-hand side of (4.106) is
indeed exactly the same as (4.28) with ¢ replaced by yx, as hoped for in (4.38), but
there are in addition two unwanted terms.

The two unwanted terms vanish when the equation of motion 69, =0 is
satisfied (for a massless field), i.e. ‘on-shell’. But this is not good enough — we
want a symmetry that applies for the internal (off-shell) lines in Feynman graphs,
as well as for the on-shell external lines. Actually, we should not be too surprised
that our naive SUSY of Section 4.2 has failed off-shell, for a reason that has already
been touched upon: the numbers of degrees of freedom in ¢ and y do not match
up properly, the former having two (one complex field) and the latter four (two
complex components). This suggests that we need to introduce another two degrees
of freedom to supplement the two in ¢ — say a second complex scalar field F. We
do this in the ‘cheapest’ possible way (provided it works), which is simply to add
aterm F'F to the Lagrangian (3.1), so that F has no kinetic term:

Lr=20,0'0"p + x'iG"d,x + F'F. (4.107)
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The strategy now is to invent a SUSY transformation for the auxiliary field F,
and the existing fields ¢ and yx, such that (a) L is invariant, at least up to a total
derivative, and (b) the unwanted terms in (6,0 — 8:6,)x are removed.

We note that F has dimension M?, suggesting that 8¢ F' should probably be of
the form

8eF ~ &3, x, (4.108)

which is consistent dimensionally. But as usual we need to ensure Lorentz covari-
ance, and in this case that means that the right-hand side of (4.108) must be a Lorentz
invariant. We know that 6#9,, x transforms as a ‘y’-type spinor (see (2.37)), and
we know that an object of the form ‘& 4 is Lorentz invariant (see (2.31)). So we
try (with a little hindsight)

8 F = —igl61d, x (4.109)
and correspondingly
8:F' =1id,x6"¢. (4.110)

The fact that these changes vanish if the equation of motion for x is imposed (the
on-shell condition) suggests that they might be capable of cancelling the unwanted
terms in (4.106). Note also that, since £ is independent of x, the changes in F' and
F1 are total derivatives: this will be important later (see the end of Section 6.3).

We must first ensure that the enlarged Lagrangian (4.107), or at least the corre-
sponding Action, remains SUSY-invariant. Under the changes (4.109) and (4.110),
the FTF term in (4.107) changes by

(8 F)YF + F'(8: F) = (10, x'6"&)F — F'G&'6" 8, x). (4.111)

These terms have a structure very similar to the change in the x term in (4.107),
which is

8e(x 1678, x) = (8e x i6" 8, x + xTi6"9,(8% ). (4.112)
We see that if we choose
(Sg)(T = previous change in xI+ FTgT 4.113)

then the F' part of the first term in (4.112) cancels the second term in (4.111). As
regards the second term in (4.112), we write it as

X*i&"aﬂ(&g}() = ﬂi&“aﬂ(previous change in y + & F), “4.114)
where we have used the dagger of (4.113), namely

8¢ x = previous change in x +&F. 4.115)
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The new term on the right-hand side of (4.114) can be written as
x1i6"8,EF = 8, (xTi6"EF) — (8, )iG"EF. (4.116)

The first term of (4.116) is a total derivative, leaving the Action invariant, while
the second cancels the first term in (4.111). The net result is that the total change
in the last two terms of (4.107) amount to a harmless total derivative, together
with the change in XTiél‘au x due to the previous changes in x and x . Since the
transformation of ¢ has not been altered, the work of Section 3.1 then ensures the
invariance (up to a total derivative) of the full Lagrangian (4.107).

Let us now re-calculate (6,6¢ — 8:6,)x, including the new terms involving the
auxiliary field F. Since the transformation of ¢ is unaltered, 8,6 x will be the same
as before, in (4.105), together with an extra term

8y(EaF) = —i€a(n'6%9, X). (4.117)
So (8,0 — 8¢8,)x will be as before, in (4.106), together with the extra terms
ina (€160, x) — i&(n'6" 0y 0). (4.118)

These extra terms precisely cancel the unwanted terms in (4.106), as required.
Similar results hold for the action of (§,8¢ — 8¢8,) on ¢ and on F, and so with this
enlarged structure including F' we can indeed claim that (4.37) holds as an operator
relation, being true when acting on any field of the theory.

For convenience, we collect together the SUSY transformations for ¢, x and F
which we have finally arrived at:

Sep=6-x, Sl =E-%; (4.119)

8:F = —it'a"d, x, 8:F' =id,x'6"&; (4.120)

Sex = —io (i09E")0,p + EF, S:x! = 10,9 (—iop)o” + FlgT.  (4.121)
Exercise 4.3 Show that the changes in x and x ' may be written as

Sex = —i0c"Ed,¢ +EF, 8% = —i9,0'G"E + FIE. (4.122)

Exercise 4.4 Verify that the supercurrent for the Lagrangian of (4.107) is still
(4.70).

We end this chapter by translating the Lagrangian £, and the SUSY transforma-
tions (4.119)—(4.122) under which the Action is invariant, into Majorana language,
using the results of Section 2.5. Let us write

1

= —(A —iB), 4.123
¢ fz( iB) (4.123)



4.5 A snag, and the need for a significant complication
where A and B are real scalar fields, and similarly
F — F —iG.
The Lagrangian (4.107) then becomes
Lrm = %aﬂAaﬂA + %E)MBE)“B + %@{Aiyﬂaﬂqjgd + F? + G,
with the conventional normalization for the scalar fields, while clearly

1 i
8eA = —Us Wl 8B =——U5ysWl,

V2 V2
and
S F = — ATy W 8.6 = ST sy, W
5—2MVMMvE—2MV5VMM'
As regards the transformations of x and x T, we first rewrite them as
s = (SeloaxD) _ ( F+iG  —ighd, ¢l (iont*
§ 8¢ x —io"d,¢ F—iG g )
The rest follows as Exercise 4.5.

Exercise 4.5 Verify that the transformation of Wy is

. i 1
Se Wl = FUS, +iGys W5, — —y "0, AWS, + —ys5y"9, BYS,.

72 72

69

(4.124)

(4.125)

(4.126)

4.127)

(4.128)

(4.129)

The reader is warned that while these transformations have the same general
structure as those given in other sources, definitions and conventions differ at many

points.
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The Wess—Zumino model

5.1 Interactions and the superpotential

The Lagrangian (4.107) describes a free (left) chiral supermultiplet, with a massless
complex spin-0 field ¢, a massless L-type spinor field x, and a non-propagating
complex field F. As we saw in Section 3.2, the MSSM places the quarks, leptons
and Higgs bosons of the SM, labelled by gauge and flavour degrees of freedom,
into chiral supermultiplets, partnered by the appropriate ‘sparticles’. So our first
step towards the MSSM is to generalize (4.107) to

Liree wz = 0u) 0" + 116" 3, x: + F, F, (5.1)

where the summed-over index i runs over internal degrees of freedom (e.g. flavour,
and eventually gauge; see Chapter 7), and is not to be confused (in the case of x;)
with the spinor component index. The corresponding Action is invariant under the
SUSY transformations

Sepi = £ - xiv Sexi = —ioMionE 0,y + EF;, 8 F, = —i&'6" 0,0, (5.2)

together with their hermitian conjugates.

The obvious next step is to introduce interactions in such a way as to preserve
SUSY, thatis, invariance of the Lagrangian (or the Action) under the transformations
(5.2). This was first done (for this type of theory, in four dimensions) by Wess and
Zumino [19] in the model named after them, to which this chapter is devoted; it is
a fundamental component of the MSSM. We shall largely follow the account given
by [46], Section 3.2.

We shall impose the important condition that the interactions should be renor-
malizable. This means that the mass dimension of all interaction terms must not be
greater than 4, or, equivalently, that the coupling constants in the interaction terms
should be dimensionless, or have positive dimension (see [15] Section 11.8). The
most general possible set of renormalizable interactions among the fields ¢, x and

70



5.1 Interactions and the superpotential 71

F is, in fact, rather simple:
1 +
Line = Wi(¢. ¢"F; — EWij((i)’ @')xi - x; + hermitian conjugate (5.3)

where there is a sum on i and on j. Here W; and W;; are, for the moment, arbitrary
functions of the bosonic fields; we shall see that they are actually related, and have
a simple form. There is no term in the ¢;’s alone, because under the transformation
(5.2) this would become some function of the ¢;’s multiplied by §:¢; =& - x;
or 5,3(1); =& - x; but these terms do not include any derivatives 9, or F; or E'
fields, and it is clear by inspection of (5.2) that they couldn’t be cancelled by the
transformation of any other term.

As regards W; and W;;, we first note that since F; has dimension 2, W; cannot
depend on x;, which has dimension 3/2, nor on any power of F; other than the
first, which is already included in (5.1). Indeed, W; can involve no higher powers
of ¢; and ¢j than the second. Similarly, since x; - x; has dimension 3, W;; can only
depend on ¢; and qﬁj , and contain no powers higher than the first. Furthermore,
since x; - x; = X;j - xi (see Exercise 2.3), W;; must be symmetric in the indices i
and j.

Since we know that the Action for the ‘free’ part (5.1) is invariant under (5.2),
we consider now only the change in Li, under (5.2), namely 8¢ Liy. First, consider
the part involving four spinors, which is

10W;; 10W;; _ _ .. .
-5 ! E-x0x)— = TJ (¢ - Xi)(xi - xj) + hermitian conjugate. (5.4)
2 Iy 2 3¢,

Neither of these terms can be cancelled by the variation of any other term. However,
the first term will vanish provided that

W,'j
k

is symmetric in Z, j and k. (5.5

The reason is that the identity (4.99) (with A — xx, ¢ — x;, p — x;) implies

& - x00G - x) + G- X)) - xw) + (€ - x) O - xi) =0, (5.6)

from which it follows that if (5.5) is true, then the first term in (5.4) will vanish
identically. However, there is no corresponding identity for the 4-spinor product
in the second term of (5.4). The only way to get rid of this second term, and thus
preserve SUSY for such interactions, is to say that W;; cannot depend on ¢,1, only
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on ¢.! Thus we now know that W;; must have the form
Wij = M;j + yijkd (5.7)

where the matrix M;; (which has the dimensions and significance of a mass) is
symmetric in i and j, and where the ‘Yukawa couplings’ y;x are symmetric ini, j
and k. It is convenient to write (5.7) as

W W
Y 3¢i0¢;

which is automatically symmetric in i and j, and where? (bearing in mind the
symmetry properties of W;;)

(5.8)

1 1
W= EMijd’id)j + 8)’1‘jk¢i¢j¢k' (5.9
Exercise 5.1 Justify (5.9).

Next, consider those parts of 8z Li,; which contain one derivative d,,. These are
(recall ¢ = —io»)

Wi(—igT6", xi) — %W,,- {xcio"c*}o,¢; + %Wi,chiaTﬂaﬂ@cxj +h.c.,
(5.10)
where h.c. means hermitian conjugate. Consider the expression in curly brackets,
{x."...&*}. Since this is a single quantity (after evaluating the matrix products), it
is equal to its transpose, which is

—&lcioc" ey = gligh x;, (5.11)

where the first minus sign comes from interchanging two fermionic quantities, and
the second equality uses the result co*Tc = —&* (cf. (4.30)). So the second term
in (5.10) is

1 et =
—EWijlg o X,-aquj, (512)
and the third term is

1 T uT 1 iet=p
EWUE C10 cxjaugb,- = —EWijl‘é g Xj8ﬂ¢,-. (513)

! This is a point of great importance for the MSSM: as mentioned at the end of Section 3.2, the SM uses both the
Higgs field ¢ and its charge conjugate, which is related to ¢ by (3.40), but in the MSSM we shall need to have
two separate ¢’s.

2 A linear term of the form A;¢; could be added to (5.9), consistently with (5.8) and (5.7). This is relevant to one
model of SUSY breaking, see Section 9.1.
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These two terms add to give

s ow
~Wiig'6" xi0,¢; = —i'6" xi9, (a¢ > : (5.14)
i
where in the second equality we have used
8<8W>— 82W8¢—W8¢ (5.15)
" a¢l 8¢[a¢] w¥j LY’ @ .

Altogether, then, (5.10) has become

ow
—iW;ETGH 8, x; —iET6" X0, <8¢> ) (5.16)
This variation cannot be cancelled by anything else, and our only chance of saving
SUSY is to have it equal a total derivative (giving an invariant Action, as usual).
The condition for (5.16) to be a total derivative is that W; should have the form

ow
W, = —, (5.17)
A
in which case (5.16) becomes
ow
3, { 5 (—ISTG“X,-)} . (5.18)
Referring to (5.9), we see that the condition (5.17) implies
1
Wi = M;;¢; + Eyijk¢j¢k (5.19)

together with a possible constant term A; (see the preceding footnote).
Exercise 5.2 Verify that the remaining terms in §¢ £ do cancel.

In summary, we have found conditions on W; and W;; (namely equations (5.17)
and (5.8) with W given by (5.9)) such that the interactions (5.3) give an Action
which is invariant under the SUSY transformations (5.2). The quantity W, from
which both W; and W;; are derived, encodes all the allowed interactions, and is
clearly a central part of the model; for reasons that will become clearer in the
following chapter, it is called the ‘superpotential’.

Exercise 5.3  Verify that the supersymmetry current for the Lagrangian of (5.1)
together with (5.3) is

T, (5.20)

i

JH = 0”6“)(1-8”(]5; —iF;otioy

Consider now the part of the complete Lagrangian (including (5.1)) containing
F; and FiT, which is just FiFiT + W, F; + WiT Fl.T. Since this contains no gradients,
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the Euler—Lagrange (E-L) equations for F; and F; are simply

oL
=0, or F| + W; = 0. 5.21
Hence F; = —W;, and similarly Ff = —W,. These relations, coming from the

E-L equations, involve (again) no derivatives, and hence the canonical commutation
relations will not be affected, and it is permissible to replace F; and FiT in the
Lagrangian by these values determined from the E-L equations. This results in the
complete [Wess—Zumino (W-2) [19]] Lagrangian now having the form

1
Lwz = Liweewz = |Wil* = S (Wijxi - xj +he). (5.22)
It is worth spending a little time looking in more detail at the model of (5.22).

For simplicity we shall discuss just one supermultiplet, dropping the indices i and
j. In that case, (5.9) becomes

1 2 1 3
W =-M¢p> + —yp>, (5.23)
2 6
and hence
wo= Y et Ly (5.24)
T T 27 '
and
W<—82W—M+ ¢ (5.25)
1 - 8¢2 - y N *

First, consider the terms which are quadratic in the fields ¢ and y, which corre-
spond to kinetic and mass terms (rather than interactions proper). This will give us
an opportunity to learn about mass terms for 2-component spinors. The quadratic
terms for a single supermultiplet are

Lwz,quad = 3M¢>T3“¢> + )(Tic?“B,Lx — MM*¢'¢

iy Lty T
2MX (—102)x 2M x'(o2)x ", (5.26)

where we have reverted to the explicit forms of the spinor products. In (5.26), x '
is as given in (3.19), while evidently

]
XM= (XIT), (5.27)
X2
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where ‘1’ and 2’, of course, label the spinor components. The E-L equation for

AR
oL oL
o (g ~ 397 = o2

which leads immediately to
0,0"¢ + |M|*p =0, (5.29)

which is just the standard free Klein—Gordon equation for a spinless field of mass
|M]|.

In considering the analogous E-L equation for (say) x, we need to take care in
evaluating (functional) derivatives of £ with respect to fields such as x or x T which
anticommute. Consider the term —(1/2)M x - x in (5.26), which is

1 0 -1\ (xi 1
—EM(X1X2) = _EM(_XI)Q + xox1) = —Mxax1 = +M x1 x2.

Lo X2
(5.30)
We define
0
— X1 x2) = X2 (5.31)
X
and then necessarily
]
8—(X1X2) =—Xi- (5.32)
X2
Hence
d 1
8)(] 2
and
0 1
8X2 2
Equations (5.33) and (5.34) can be combined as
0 1 .
—=My - x ¢ = M(io2x)a- (5.35)
0Xa 2
Exercise 5.4 Show similarly that
0 1 B 1T * : 1T
— —=M*xlior x = M*(—iozx " )a. (5.36)
Ixa U 2
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We are now ready to consider the E-L equation for x ', which is

oy (%) — B_ET =0. (5.37)
03y Xa) 0 Xa

Using just the quadratic parts (5.26) this yields
1618, x = M*ioyx'T. (5.38)

As a notational check, we know from Section 2.3 that y transforms by V~!f,
and hence T transforms by V~!T, which is the same as a ‘lower dotted’ spinor of
type ¥;. The lower dotted index is raised by the matrix io,. Hence the right-hand
side of (5.38) transforms like a ¢ spinor, and this is consistent with the left-hand
side, by (2.37).

Exercise 5.5 Similarly, show that
018, (i)™ = My. (5.39)
It follows from (5.38) and (5.39) that
i019,(16"8, x) = 0", (M*ioy 1)
= |M|*x. (5.40)
So, using (3.25) on the left-hand side we have simply
3,0 x + |M|*x =0, (5.41)

which shows that the y field also has mass | M |. So we have verified that the quadratic
parts (5.26) describe a free spin-0 and spin-1/2 field which are degenerate, both
having mass |M|. It is perhaps worth pointing out that, although we started (for
simplicity) with massless fields, we now see that it is perfectly possible to have
massive supersymmetric theories, the bosonic and fermionic superpartners having
(of course) the same mass.

Next, let us consider briefly the interaction terms in (5.22), again just for the case
of one chiral superfield. These terms are
2

1 1
- ‘Md) - 5y¢2 — (M +yd)x - x +hel. (5.42)

In addition to the quadratic parts |M|?¢'¢ and —(1/2)M x - x + h.c. which we
have just discussed, (5.42) contains three true interactions, namely

(i) a ‘cubic’ interaction among the ¢ fields,

1 * i2 * 42 1ty
—E(My 9"+ M yp~o'); (5.43)
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(ii) a ‘quartic’ interaction among the ¢ fields,

1
—Z|y|2¢2¢ﬁ2; (5.44)

(iii) a Yukawa-type coupling between the ¢ and x fields,

1
—E{yqﬁx -x +hc.l}. (5.45)

It is noteworthy that the same coupling parameter y enters into the cubic and
quartic bosonic interactions (5.43) and (5.44), as well as the Yukawa-like fermion—
boson interaction (5.45). In particular, the quartic coupling constant appearing in
(5.44) is equal to the square of the Yukawa coupling in (5.45). This is exactly the
relationship noted in (1.21), as being required for the cancellation (between bosonic
and fermionic contributions) of quadratic divergences in a bosonic self-energy.

We shall demonstrate such a cancellation explicitly in the next section, for the
W-Z model. For this purpose, it is convenient to express the Lagrangian in Majorana
form, with ¢ given by (4.123). We take the parameters M and y to be real. The
quadratic parts (5.26) are then (cf. (4.125))

1 1 1 1 1
E%(iy“au — M)V + " A A — 5MzA2 + 59" BB — EMzBZ, (5.46)

showing that the fermion and the two real scalars have the same mass M, while the
interactions (5.43) and (5.44) become

L.=—MgA(A*> + B?) (5.47)
and
Ly= —%gz(Az + B?)?, (5.48)
where we have defined g = y/2+/2. We leave the third interaction as Exercise 5.6.
Exercise 5.6 Verify that the interaction (5.45) becomes
Ly = —g[AVL WY +iBUgys W] (5.49)

We note that the y5 coupling in the second term of (5.49) shows that B is a
pseudoscalar field (see, for example, Section 20.3 of [7]); A is a scalar field.

5.2 Cancellation of quadratic divergences in the W-Z model

We shall consider the one-loop (O(g?)) contributions to the perturbative expansion
of A-particle propagator, defined as (2| T (A(x)A(y))|2), where |€2) is the ground
state (vacuum) of the interacting theory, and T is the time-ordering operator. The
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general expression for the propagator is (see, for example, [50] Section 4.4)

(OIT{A)A) expli [ d*zL'(2)1}10)
(OIT {expli / d*zL'(2)1}10)

(QUT(A(x)A()I2) = (5.50)

where L’ is the interaction Lagrangian density, and it is understood that all fields on
the right-hand side of (5.50) are in the interaction picture. In the present case, £’ is
just the sum of the three terms (5.47), (5.48) and (5.49). Perturbation theory proceeds
by expanding the exponentials in (5.50) in powers of the coupling constant g, and
by reducing the resulting time-ordered products by Wick’s theorem. We recall that
the role of the denominator in (5.50) is to remove contributions to the numerator
from all vacuum to vacuum processes that are disconnected from the points x and
y; we therefore need only consider the connected contributions to the numerator.

To lowest order (g°) the right-hand side of (5.50) is just the free A propagator
Da(x — y), which has the Fourier (momentum—space) expansion

Da(x —y) = /(2 e e ke ”k IMQ, (5.51)

where the addition of the infinitesimal quantity i€ in the denominator is understood.
The terms of order g from (5.47) and (5.49) both vanish. At order g2, contributions
arise from expanding the exponential of (5.48) to first order (it already contains a
factor of g2), and from expanding the exponential of the sum of of (5.47) and (5.49)
to second order. The contribution from (5.48) is

2
—i%<0|T<A<x)A<y> d*z[A*(z) + 24%(2) B*(2) + B(2)]|0). (5.52)

In the Wick reduction of the B* term in (5.52), one B(z) can only be paired with
another, which leads to a disconnected contribution. In the A2B? term, we may
contract A(x) with the first A(z) and A(y) with the second, or the other way around;
these contributions are identical. The two B’s must be contracted together. The A2 B2
term in (5.52) therefore becomes

—2ig? / d*z Da(x — 2)Da(y — 2)Dg(z — 2) (5.53)

where Dg is the B propagator, also given by (5.51). Substituting the Fourier expan-
sions of D and Dg into (5.53) we obtain

] d4p je"ip(x—2) d*g ie 402 Pk je-ikG2)
_21g2 / d4 p q

Qm)* p2—M? | Qn)* g2 —M? | Qn)* k2 — M?
(5.54)



5.2 Cancellation of quadratic divergences in the W-Z model 79

Figure 5.1 B-loop contribution to the A self-energy.

The integration over z yields (277)*8*(p + ¢), allowing the g-integration to be done.
(5.54) then becomes

d4p —ip-(x—y) H(B) i 5.55
Q) pz_Mz(_1 A)pz_Mz’ (5.53)
where
d*k 1
—in® =2 2/ - 5.56
1 A 8 (277)4 k2 _ M2 ( )

is the B-loop contribution to the A self-energy (see, for example, [15] Section
10.1). This corresponds to the diagram of Figure 5.1, which is of the same type as
Figure 1.1; as expected, the integral in (5.56) is essentially the same as in (1.9).
Simple power-counting (four powers of k in the numerator, two in the denominator)
suggests that the integral is quadratically divergent, but before proceeding with the
remaining O(g?) contributions to the A propagator it will be useful to evaluate the
integral in (5.56) explicitly.
The integral to be evaluated is

&’k 0

dk 5 —.
(2m)* (k92 — k= — M2 +ie
One way of proceeding, explained in Section 10.3 of [15], is to perform the k°

integral by contour integration. Borrowing the result given in equation (10.48) of
that reference, we find that (5.57) is equal to

(5.57)

. d’k 1
—mi ) (k2 n M2)1/2' (5.58)

Changing to polar coordinates in k-space, we may write this as

—i (A u?du (5.59)
42 0 (uz + M2)1/2’ '
where u = |K|, and we have now included the integration limits, with a cut-off A

at the upper end. The integral in (5.59) may be evaluated by elementary means,
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Figure 5.2 A-loop contribution to the A self-energy.

leading to the result

1
ny =2¢>— [A2(1 + M?/AH'? — M?1n (

A+ A(1 + M? /A2
872 '

M
(5.60)

For large values of A (> M) the square roots may be expanded in powers of M /A;
(5.60) then reduces to

1'[23) = 2g2#[1\2 — M?*In(A/M) + finite terms as A — oc]. (5.61)
We have confirmed that the leading divergence is quadratic (in powers of the cut-off),
and that its coefficient is independent of the mass M appearing in the denominator
of (5.56). This mass does however enter into the next-to-leading (logarithmic)
divergence.
We return to the remaining term in (5.52), which is

g2

—iZ0IT (AW A() / A(R)A(R)A(R)A(z) d*2})0). (5.62)

The connected contributions arise through contracting A(x) with any one of the four
A(z)’s and A(y) with any one of the remaining three A(z)’s, leaving one A(z)A(z)
contraction. These 12 contributions are identical, and (5.62) becomes

—6ig’ / Da(x —2)Da(y — 2)Da(z — 2). (5.63)

Following the same steps as in (5.53)—(5.56), we find that (5.63) has the same form
as (5.55) but with —il'Iff) replaced by —iHXX) where

d*k 1
S — (5.64)

A 2
S =087 | e e

which corresponds to the self-energy diagram of Figure 5.2. The contribution
of the boson loops to the quadratically divergent part of the A self-energy is
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Figure 5.4 B-loop tadpole contribution to the A propagator.

1

(b, quad) 2 2

IT =8g°——A".
A & 8n2

81

(5.65)

We now consider the O(g?) terms arising from the second-order term in the

expansion of the exponential of the sum of (5.47) and (5.49), that is from

1
- f d*zd*Z/ (OIT{A)A(Y)(Le(2) + Ly())Le(Z) + Ly(ZNI0).  (5.66)

Since there are two terms in each of L. and Ly, there are 16 products of the
form ‘A(x)A(y) f(z)g(z’)” in (5.66), each with a large number of terms in their
Wick expansion. It is helpful to think first in terms of (connected) diagrams, which
can then be associated with terms in (5.66) to be evaluated. First of all, there are
three ‘tadpole’ diagrams shown in Figures 5.3, 5.4 and 5.5. The first of these has
the structure Da(x — z)Da(y — z2)Da(z — 2')Da(z’ — Z’), which arises in the Wick
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Figure 5.5 yx-loop tadpole contribution to the A propagator.

expansion of the term

—%Mzg2 / d*zd*Z (OIT{A(x)A(y)A’ () A*(Z)}]0). (5.67)

This structure is obtained by contracting A(x) with any one of the three A(z)’s, and
A(y) with either of the two remaining A(z)’s; then the last A(z) can be contracted
with any of the three A(z)’s, leaving one A(z")A(z’) pair. This gives 18 identical
contributions, and there are a further 18 in which z and 7z’ (which are integration
variables) are interchanged. Thus Figure 5.3 corresponds to the amplitude

—18M%g? / d*zd'2’ Da(x — 2)Da(y — DDAz — 2)Da(z' = 7). (5.68)
Exercise 5.7 By inserting the Fourier expansions for the D,’s and performing

the integrals over z and z’ show that (5.68) can be written in the form (5.55) with
—il'[f) replaced by

k1
Y = —18 2/ —. 5.69
A 8] et —m? (5.69)
We note that (5.69) contains a quadratic divergence.
The second tadpole contribution is from Figure 5.4 which has the structure
Da(x — 2)Da(y — 2)Da(z — 7')Dg(z’ — Z’) (it is clear that all three tadpoles share
the first three factors). This arises from the Wick expansion of the term

—%Mzgzz / d*zd*z/ (OIT{A(x)A(y»)A’(2)A(Z)B*(Z)}|0). (5.70)

We can contract A(x) with any of the three A(z)’s, and then A(y) with either of the
two remaining ones; this leaves just one way for the last A(z) to be contracted with
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Figure 5.6 A-loop contribution to the A propagator.

A(Z), and B(z)) with B(z'). Hence (5.70) contributes
—6M*g? / d*zd*' Da(x — 2)Da(y —2)Daz —2)Dp(z' —2),  (5.71)

which leads to the self-energy contribution

d*k 1
s7tB) 2
—ify ™ = —6g /(2n)4k2 7 (5.72)

also containing a quadratic divergence.
The third tadpole arises from the reduction of the term

—%2Mg2 f d*zd*Z (0] T{A) AN A @A) T EHYEED0).  (5.73)

Once again, there are six ways of getting the structure of Figure 5.5, and the
associated self-energy contribution is

1 d*k 1
—in%* = 6Mg>— / Tr—
Qm)* k-M

d*k 1
Qr)* k2 — M2’

= 244> (5.74)
the minus sign relative to (5.69) and (5.72) being characteristic of a fermionic
loop, and arising from the re-ordering of the fermionic fields for the contraction
(2.137). This contribution of the fermion-loop tadpole therefore exactly cancels the
combined contributions (5.69) and (5.72) of the boson-loop tadpoles; in particular,
their quadratic divergences are cancelled.

There remain the non-tadpole connected graphs from (5.66). There are two purely
bosonic ones, shown in Figures 5.6 and 5.7. The corresponding self-energies are
both proportional to (see, for example, Section 10.1.1 of [15])

d*k 1 1
Qm)* (k* — M?) ((k — p)> — M?)’

(5.75)
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Figure 5.8 x-loop contribution to the A propagator.

This integral is only logarithmically divergent (four powers of k in the numerator
and in the denominator), and we do not need to consider these contributions any
further.

We are left with Figure 5.8, which arises from the term

1 , . - . s

3 /d4z d*z/ (0| T{A) A (—ig AT ()W (2)) (— ig A )T ()W)} 0).
(5.76)

since the term ‘B2(¥ W)’ gives a disconnected piece, while the term ‘AU W BY ¥’

contains an odd number of A or B fields and vanishes. In (5.76), A(x) may be

contracted with A(z) and A(y) with A(z’), or vice versa. These contributions are
the same, so that (5.76) becomes

-’ / / d*zd*z’ Da(x — 2)Da(y — (0] T (3, ()W, ()4 4(2))0),
(5.77)

where we have indicated the spinor indices explicitly. We must now recall the
discussion of Section 2.5.2 concerning propagators (contractions) for Majorana
fields. The T-product in (5.77) yields two distinct contractions:
(oﬁ(@;‘da(z)w (DWW 4(2))|0)
= —{0[ 7 (W3 () B35 (D) [0)O]T (i () ¥ () [0)
O[T (B, T ) 00| (¥ D, @)0). (578

where the signs of the terms on the right-hand side are determined by the number
of corresponding interchanges of fermionic fields. The first term on the right-hand
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side of (5.78) is, from (2.137),

—Srap(z — 2)Srpa(z — 2) = —Tr(Se(z — 2)Se(z’ — 2)) (5.79)
where “Tr’ means the sum over the diagonal elements of the matrix product SgSg.
The second term in (5.78) is, from (2.141) and (2.144),

Cory Seyp(z — 2)Seps(z' — 2)Csy = Tr(CT Se(z — 2) Sz’ — 2)CT)
= Tr(CTC" Sp(z — 2)Sk(z' — 2)) = —Tr(Sp(z — 2)Sp(z’ —2))  (5.80)

using (2.142). The two terms in (5.78) are therefore the same, and the contribution
of (5.77) 1s

+2¢° / d*zd*z’ Da(x — 2)Da(y — 2)Tr(Se(z — 2)Se(z’ — 2)). (5.81)

The next step is left to Exercise 5.8.

Exercise 5.8 By inserting the Fourier expansions for D and Sg (see (2.138)),
show that (5.81) can be written in the form (5.55) with —il'[f) replaced by —iHX()
where

k1 1
) A~ 2
w-en | e a O

is the x-loop contribution to the A self-energy.

It is clear that (5.82) contains a quadratic divergence (four powers of k in the
numerator, two in the denominator). Following Appendix D of [45], we may isolate
it as follows. We have

Ak T + M) —f + M)
Q@m)* (2 — M2)(k — p)? — M?)
_ g [ 4% K2 —k-p+ M
- f Qm)* (kK2 — M2)(k — p)* — M?)

) [ Ak [P = M)+ ((k — p)? — M?) — p? + 4M?]

Qn) (2 — M2)(k — p)? — M?)

&% 1o [
ot ke—m2 % | Qn ke—m?

—inY = —2¢%Tr

= —4g? + remainder, (5.83)
where we have changed variable to ¥’ = k — p in the second term, and where the
‘remainder’ is at most logarithmically divergent. The quadratically divergent part
of the x-loop contribution to the A self-energy is therefore

; 1
(x> quad) 2 2
ITy = —8g 3 2A . (5.84)
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Quite remarkably, we see from (5.65) and (5.84) that the contribution from the
fermion () loop exactly cancels that from the boson loops. The dedicated reader
may like to check that the quadratic divergences also cancel in the one-loop cor-
rections to the B self-energy. Another example is provided by Exercise 5.9.

Exercise 5.9 Show thatin the W—Z model the bosonic and fermionic contributions
to the zero point energy exactly cancel each other. (This is a particular case of the
general result that the vacuum energy of a SUSY-invariant theory vanishes; see
Section 9.1.)

In their original paper, Wess and Zumino [19] remarked (with an acknowledge-
ment to B. W. Lee) on the fact that their model turned out to have fewer divergences
than a conventional renormalizable theory: the interactions were of standard renor-
malizable types, but there were special relations between the masses and coupling
constants. They noted the cancellation of quadratic divergences in the A and B
self-energies, and also pointed out that the logarithmic divergence of the vertex
correction to the spinor—scalar and spinor—pseudoscalar interactions in (5.49) was
also cancelled, leaving a finite vertex correction. They verified these statements in
a one-loop approximation, using the theory with the auxiliary fields eliminated —
the procedure we have followed in reproducing one of their results.

However, Wess and Zumino [19] then went on to explore (at one-loop level)
the divergence structure of their model before the auxiliary fields (i.e. F and G of
(4.125)) are eliminated. It then transpired that there were even more cancellations in
this case, and that the only renormalization constant needed was a logarithmically
divergent wavefunction renormalization, the same for all fields in the theory. For
example, no mass corrections for the A or B particles were generated: the quadratic
divergences in the self-energies cancelled as before, but also the remaining logarith-
mically divergent contribution was proportional to p?, and hence associated with a
wavefunction (or field-strength) renormalization (see, for example, Section 10.1.3
of [15]).

These one-loop results of Wess and Zumino [19] were extended to two loops by
Iliopoulos and Zumino [51], who also gave a general proof, to all orders in per-
turbation theory, to show that the single, logarithmically divergent, wavefunction
renormalization constant was sufficient to renormalize the theory, when analyzed
without eliminating the auxiliary fields. What this means is that only the kinetic
energy terms are renormalized, there being no renormalization of the other terms
at all; that is to say, there is no renormalization of the superpotential W. This is
one form of the ‘SUSY non-renormalization theorem’, which is now understood
to hold generally (in perturbation theory) for any SUSY-invariant theory. This the-
orem was first established by ‘supergraph’ methods [52], which allow Feynman
graphs involving all the fields in one supermultiplet, including auxiliary fields, to be



5.2 Cancellation of quadratic divergences in the W—Z model 87

calculated simultaneously. The first step towards this formalism is the introduction
of ‘superfields’, which group together these supermultiplet components into one
object. This will be the subject of the following chapter. However, the supergraph
proof of the SUSY non-renormalization theorem is beyond our scope; we refer
interested readers to Chapter 6 of [48].



6
Superfields

Thus far we have adopted (pretty much) a ‘brute force’, or ‘do-it-yourself’ approach,
retreating quite often to explicit matrix expressions, and arriving at SUS Y-invariant
Lagrangians by direct construction. We might well wonder whether there is not
a more general procedure which would somehow automatically generate SUSY-
invariant interactions. Such a procedure is indeed available within the superfield
approach, to which we now turn. This formalism has other advantages too. First, it
gives us more insight into SUSY transformations, and their linkage with space—time
translations; second, the appearance of the auxiliary field F is better motivated; and
finally, and in practice rather importantly, the superfield notation is widely used in
discussions of the MSSM.

6.1 SUSY transformations on fields

By way of a warm-up exercise, let’s recall some things about space—time transla-
tions. A translation of coordinates takes the form

x™" = x"+a* (6.1)

where a* is a constant 4-vector. In the unprimed coordinate frame, observers use
states |a), |B), ..., and deal with amplitudes of the form (B|¢(x)|a), where ¢(x)
is scalar field. In the primed frame, observers evaluate ¢ at x’, and use states
la) = Ula), ..., where U is unitary, in such a way that their matrix elements (and
hence transition probabilities) are equal to those calculated in the unprimed frame:

(BIUT' (W) = (Blp(x)|e). (6.2)

Since this has to be true for all pairs of states, we can deduce
U™ o = () 6.3)

88
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or
Up()U ™ = ¢(x') = p(x + a). (6.4)
For an infinitesimal translation, x’* = x* 4 €, we may write
U=1+ie,P" (6.5)

where the four operators P are the generators of this transformation (cf. (4.6));
(6.4) then becomes

(1 +1ie, PM)p(x)(1 — i€, P*) = Pp(x" + €")

= p(x") + eM%; (6.6)
that s,
P(x) + 8¢ (x) = p(x) + €"8,¢(x), (6.7)
where (cf. (4.9))
S8(x) = i€ [P*, p(x)] = €,0"p(x). (6.8)
We therefore obtain the fundamental relation
i[P¥, p(x)] = 0" p(x). (6.9)

In (6.9) the P* are constructed from field operators — for example PP is the
Hamiltonian, which is the spatial integral of the appropriate Hamiltonian density —
and the canonical commutation relations of the fields must be consistent with (6.9).
We used (6.9) in Section 4.2; see (4.36).

We can also look at (6.8) another way: we can say

8¢ =€, 0"p = —ie, P"p, (6.10)

where P" isa differential operator acting on the argument of ¢. Clearly P* = ig*
as usual.

We are now going to carry out analogous steps using SUSY transformations.
This will entail enlarging the space of coordinates x* on which the fields can
depend to include also fermionic degrees of freedom — specifically, spinor degrees
of freedom 6 and 6*. Fields which depend on these spinorial degrees of freedom
as well as on x are called superfields, and the extended space of x*, 6 and 6* is
called superspace. Just as the operators P* generate (via the unitary operator U of
(6.4)) a shift in the space—time argument of ¢, so we expect to be able to construct
analogous unitary operators from Q and QF, which should similarly effect shifts in
the spinorial arguments of the field. Actually, we shall see that the matter is rather
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more interesting than that, because a shift will also be induced in the space—time
argument x; this is to be expected, given the link between the SUSY generators and
the space—time translation generators P* embodied in the SUSY algebra (4.48).
Having constructed these operators and seen what shifts they induce, we shall then
look at the analogue of (6.10), and arrive at a differential operator representation of
the SUSY generators, say O and QT, the differentials in this case being with respect
to the spinor degrees of freedom of superspace (i.e. 0 and 6*). We can close the
circle by checking that the generators Q and O defined this way do indeed satisfy
the SUSY algebra (4.48) (this step being analogous to checking that the angular
momentum operators L = —ix x V obey the SU(2) algebra).
The basic idea is simple. We may write (6.4) as

e*Pp(0)e P = p(x). (6.11)

In analogy to this, let us consider a ‘U’ for a SUSY transformation which has the
form

U(x, 6, 0%) = e Pel?Qeif-0 6.12)

Here Q and Q* (or Q') are the (spinorial) SUSY generators metin Section 4.2, and
6 and 6* are spinor degrees of freedom associated with these SUSY ‘translations’.
Note that, as usual,

0-0=0"(-i02)Q, (6.13)
and
0.0 =0"G10)0. (6.14)

When the field ¢(0) is transformed via ‘U(x, 6, 0%)¢(0)U ' (x, 0, 6*)’, we expect
to obtain a ¢ which is a function of x, but also now of the ‘fermionic coordinates’
6 and 6*, so we shall write it as &, a superfield:

Ux,0,0")®0)U ' (x,0,0%) = d(x,0,0%). (6.15)
Now consider the product of two ordinary spatial translation operators:
ei)ﬁPeia-P — ei(x+a)»P’ (616)

since all the components of P commute. We say that this product of translation
operators ‘induces the transformation x — x + a in parameter (coordinate) space’.
We are going to generalize this by multiplying two U’s of the form (6.12) together,
and asking: what transformations are induced in the space—time coordinates, and
in the spinorial degrees of freedom?
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Such a product is
Ua, €, EU(x, 0, 0%) = el@Teif Ceif QpivPei0-0gi0-0 (6.17)

Unlike in (6.16), it is not possible simply to combine all the exponents here, because
the operators Q and Q' do not commute — rather, they satisfy the algebra (4.48).
However, as noted in Section 4.2, the components of P do commute with those of
Q and Qf, so we can freely move the operator exp[ix - P] through the operators
to the left of it, and combine it with exp[ia - P] to yield exp[i(x + a) - P], as in
(6.16). The non-trivial part is

eif Qeit 0ei0-0ei0-0 (6.18)
To simplify this, we use the Baker—Campbell-Hausdorff (B—C-H) identity:

1 1
eAeB — eA+B+E[A,B]-‘rg[[A,B],B]-‘r---. (619)

Let’s apply (6.19) to the first two products in (6.18), taking A =i£ - Q and B =
i€ - 0. We get
6 Qi€ 0 :eiE-Q+i§~Q—%lé‘Q,E_'QJ-i-"- (6.20)
Writing out the commutator in detail, we have
0.8 01=[£'01 +£05, £ 0] - £ 0]

= [£'01 + €05, —§70] — £ 0]]

= [£“Qa, —§" 0}

= —£“Q." 0} + " 0160,

= £6"(0, 0} + 0, Q)

= £ (0")ap Py (6.21)

using (4.48). This means that life is not so bad after all: since P commutes with Q
and QF, there are no more terms in the B-C—H identity to calculate, and we have
established the result

o6 Qeif0 _ (JAPIEQ+EQ) (6.22)
where
1
Al = Qié“’(ff")abéb*- (6.23)

Note that we have moved the exp[iA - P] expression to the front, using the fact that
P commutes with Q and Q7.
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We pause in the development to comment immediately on (6.22): under this kind
of transformation, the spacetime coordinate acquires an additional shift, namely A*,
which is built out of the spinor parameters £ and £*.

Exercise 6.1 Explain why £(c*),,&"* is a 4-vector.
[Hint: We know from Section 2.2 that the quantity £'G*£ is a 4-vector, but the
combination £%(0*),,E"* isn’t quite the same, apparently. Actually it turns out to

be the same, apart from a minus sign. First note that £9(c#),,£"* = —§b(a“)ab§“.
Now lower both the indices on the §’s using the € symbols. You reach the expression
£.€(oc"T);,€%E,. Now use the relation between € and io (i.e. the matrix —c of
Section 4.2), together with (4.30) to show that the expression is equal to —£5H&,
or equivalently —&TGH& ]
Continuing on with the reduction of (6.18), we consider
ol6 Qif 0i0: 000 _ GiAPiE0+E0)i0:0,i0-0 (6.24)
and apply B—C—H to the second and third terms in the product on the right-hand
side:
ei(S-Q+§~Q)ei9~Q — ei(§~Q+§-Q+9'Q)*%[E~Q+§~Q,9~Q]+~~~
— ei(E‘Q+§-Q+9-Q)+%9“(0“)(11;%‘}’*1’# (6.25)

using (6.21) and (4.39). The expression (6.18) is now
e 260" )apE" P+ 300" )apE" P g6 Q +£:0+6-0)4i0-0 (6.26)
We now apply B—-C-H ‘backwards’ to the penultimate factor:
el Q+E0+0-0) _ i +0)04iE-0451(E+0)-0.8-01 (6.27)
Evaluating the commutator as before leads to the final result
Qi 0aiE 04i0-00i0-0 _ Gil—=i0%(0")us§" P i(& +0)-Q i +6)-0 (6.28)
where in the final product we have again used (4.39) to add the exponents.
Exercise 6.2 Check (6.28).

Inspecting (6.28), we infer that the product U(a, &, £*)U(x, 6, 6*) induces the
transformations

0—>60—>0+¢

0 — x* — x* 4+ a" —i0%(o™) ", (6.29)



6.2 SUSY generators as differential operators 93

That is to say,

Ua, & 69U (x,0,0MP0)U " (x,0,09U (a, &, &%)
=U(a, & E99(x,0,09U '(a, &, &)
= O(x* 4+ at —i10%(cM) €™, 0 + £, 0% + £7). (6.30)

We now proceed with the second part of our SUSY extension of ordinary trans-
lations, namely the analogue of equation (6.10).

6.2 A differential operator representation of the SUSY generators

Equation (6.10) provided us with a differential operator representation of the gener-
ators of translations, by considering an infinitesimal displacement (the reader might
care to recall similar steps for infinitesimal rotations, which lead to the usual repre-
sentation of the angular momentum operators as L = —ix x V). Analogous steps
applied to (6.30) will lead to an explicit representation of the SUSY generators as
certain differential operators. We will then check that they satisfy the anticommu-
tation relations (4.48), just as the angular momentum operators satisfy the familiar
SU(2) algebra.

We regard (6.30) as the result of applying the transformation parametrized by
a, &, £ to the field ®(x, 8, 0*). For an infinitesimal such transformation associated
with £ and &%, the change in & is

3> 9P
2ge TS 90

8D = —i0(0 ") pE"* 8, D + £° (6.31)
Before proceeding, we check the notational consistency of (6.31). In Section 2.3
we stated the convention for summing over undotted labels, which was ‘diagonally
from top left to bottom right, as in £ x,’. For (6.31) to be consistent with this
convention, it should be the case that the derivative d/00“ behaves as a ‘x,’-type
object. A quick way of seeing that this is likely to be correct is simply to calculate

a
a6

Consider a = 1. Now 60, = —20'6? and so

6°6p). (6.32)

9
w(ebeb) = —20% = 20,. (6.33)

Similarly,

d
@w”eb) = 26,, (6.34)
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or generally
9 ©-60)=26 (6.35)
80a - as .

which at least checks the claim in this simple case. Similarly we stated the conven-
tion for products of dotted indices as ¥, ¢ %, and we related dotted-index quantities to
complex conjugated quantities, via x, = x,;. Consider the last term in (6.31): since
£F = &,, it should be the case that 9/36* behaves as a ‘¢ a’—type (or equivalently as
a ‘¢%*’) object.

Exercise 6.3 Check this by considering 3/30(0 - 0).

In analogy with (6.10), we want to write (6.31) as

5 = (=it - 0 —iE - ) = (—i&"Q, — iEr Q). (6.36)
Comparing (6.31) with (6.36), it is easy to identify O, as
0, =i (6.37)
=i—. .
¢ 004
There is a similar term in Qw, namely
A 0
[ (6.38)
00
and in addition another contribution given by
—i£* 0 ® = —i6%(c" )yt 0, . (6.39)

Our present objective is to verify that these Q operators satisfy the SUSY anticom-
mutation relations (4.48). To do this, we need to deal with the lower-index operators

Q; rather than Qm.
Exercise 6.4 Check that (6.38) can be converted to

At .
Qa=_1

. 6.40
gar (6.40)

As regards (6.39), we use & QTa = & QZ (see Exercise 2.6 (b) after equation
(2.76)), and 6°£%* = —£b*6¢, followed by an interchange of the indices a and b to
give finally

At .0
0 = —ion 8 (0" )pa . (6.41)
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Itis now a useful exercise to check that the explicit representations (6.37) and (6.41)
do indeed result in the required relations

(0. O = i(6™)apdy = (") Py, (6.42)

as well as [Qa, Qb] = [QZ QZ] = 0. We have therefore produced a representation
of the SUSY generators in terms of fermionic parameters, and derivatives with
respect to them, which satisfies the SUSY algebra (4.48).

6.3 Chiral superfields, and their (chiral) component fields

Suppose now that a superfield ®(x, 8, 6*) does not in fact depend on 6%, only on
x and 0: ®(x, 6).! Consider the expansion of such a ® in powers of 6. Due to the
fermionic nature of the variables #, which implies that (6,)> = (6,)* = 0, there will
only be three terms in the expansion, namely a term independent of 6, a term linear
in 6 and a term involving %9 -0 = —6,16,:

P(x,0) =¢d(x)+0 - x(x)+ %9 -0 F(x). (6.43)

This is the most general form of such a superfield (which depends only on x and
0), and it depends on three component fields, ¢, x and F. We have of course
deliberately given these component fields the same names as those in our previous
chiral supermultiplet. We shall now verify that Fhe transformation law (6.36) for
the superfield ®, with O given by (6.37) and o' by (6.41), implies precisely the
previous transformations (5.2) for the component fields ¢, x and F, thus justifying
this identification.
We have

5 = (—iE"Q, —iE Q') = (=iE" 0, + i 0D
a0 a0 asnb . 1
=(&— + & —— + €0 (0" )pady | | P(x) + 0 Xc—l—EG-HF

004 06
1
=0:¢ + 60“8: xu + 59 66 F. (6.44)
We evaluate the derivatives in the second line as follows. First, we have
. 1
964 |:0CXC + 59 : 9i| = Xa + 64, (6.45)

! Such a superfield is usually called a ‘left-chiral superfield’, because (see (6.43)) it contains only the L-type
spinor x, and not the R-type spinor ¥ (or x ).
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using (6.35), so that the £0/06“ term yields
E%q + 09, F. (6.46)

Next, the term in 9/06“* vanishes since ® doesn’t depend on 6*. The remaining
term is

E*07 (0" )pa @ + 1607 (0 )pab 0 e (6.47)

note that the fermionic nature of 6 precludes any cubic term in 6. The first term in
(6.47) can alternatively be written as

—i0”(0")paE* 3, (6.48)
Referring to (6.44) we can therefore identify the part independent of 6 as
3¢t = & Xa (6.49)
and the part linear in 6 as
08¢ Xa = 0 (EaF — (0" a8, ). (6.50)

Since (6.50) has to be true for all & we can remove the 6 throughout, and then (6.49)
and (6.50) indeed reproduce (5.2) for the fields ¢ and x (recall that (ic,£*), = & by,

We are left with the second term of (6.47), which is bilinear in 6, and which
ought to yield §; F'. We manipulate this term as follows. First, we write the general
product #96% in terms of the scalar product € - § by using the result of Exercise 6.5
which follows.

Exercise 6.5 Show that 690” = —3€%%0 - 0, where €'? =1,€*' = —1,¢'' =
€2 = 0; also that 07*9"* = 43¢0 - .

The second term in (6.47) is then
—iE* (0" ) 1p€”8), XC%@ -6. (6.51)
Comparing this with (6.44) we deduce
8¢ F = —iE™ (0" ) up€™ 8, % (6.52)

Exercise 6.6 Verify that this is in fact the same as the §¢ F' givenin (5.2) (remember
that ‘67> means (¢}, &), not (§1*, £2%)).

So the chiral superfield ®(x, 6) of (6.43) contains the component fields ¢, x
and F transforming correctly under SUSY transformations; we say that the chiral
superfield provides a linear representation of the SUSY algebra. Note that three
component fields (¢, x and F) are required for this result: here is a more ‘deductive’
justification for the introduction of the field F.



6.4 Products of chiral superfields 97

We close this rather formal section with a most important observation: the change
in the F field, (6.52), is actually a total derivative, since the parameters & are inde-
pendent of x; it follows that, in general, the ‘F-component’ of a chiral superfield,
in the sense of the expansion (6.43), will always transform by a total derivative,
and will therefore automatically correspond to a SUSY-invariant Action.

We now consider products of chiral superfields, and show how to exploit the
italicized remark so as to obtain SUSY-invariant interactions; in particular, those
of the W—Z model introduced in Chapter 5.

6.4 Products of chiral superfields
Let ®; be a left-chiral superfield where, as in Chapter 5, the suffix i labels the gauge

and flavour degrees of freedom of the component fields. ®; has an expansion of the
form (6.43):
1
Qi(x,0) = ¢i(x) +0 - xi(x) + 59 O F;(x). (6.53)
Consider now the product of two such superfields:

1 1
D,;P; = (¢i+9'Xi+§9'9Fi) (¢j+6'Xj+§9‘9Fj>- (6.54)

On the right-hand side there are the following terms:

independent of 6: ¢;¢;; (6.55)
linearin 0: 6 - (x;¢; + x;di); (6.56)
1
bilinear in 9: 5«9 0P F;+¢iF)+0-x 0-x;. (6.57)

In the second term of (6.57) we use the result given in Exercise 6.5 above to write
it as

0% 0-xj=0"%ia0" xjp = —0°0" Xia X )b

1 1
= Eéabé’ “OXiaXjp = 59 O Xj2 — Xi2Xj1)
1

Hence the term in the product (6.54) which is bilinear in 6 is

1
70 0@iFj+&jFi = Xi - x))- (6.59)
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Exercise 6.7 Show that the terms in the product (6.54) which are cubic and quartic
in 6 vanish.

Altogether, then, we have shown that if the product (6.54) is itself expanded in
component fields via

QP =¢i; +0 xij + %9 -0 F;;, (6.60)
then
Gij = $ibjs Xij = Xi®j +@jxi» Fij =&iFj+¢iFi—xi-x;. (661
Suppose now that we introduce a quantity W,,q defined by

1
unad = EMichiq)j ’ (662)
F
where ‘|’ means ‘the F'-component of” (i.e. the coefficient of %9 - 0 in the product).
Here M;; is taken to be symmetric in i and j. Then

1
Wauad = 7 ij(@iF;+¢iF; — xi - xj)

1
= Mij$iFj — = Mijxi - Xj- (6.63)

Referring back to the italicized comment at the end of the previous subsection, the
fact that (6.63) is the F-component of a chiral superfield (which is the product of
two other such superfields, in this case), guarantees that the terms in (6.63) provide
a SUSY-invariant Action. In fact, they are precisely the terms involving M;; in the
W-Z model of Chapter 5: see (5.3) with W; given by the first term in (5.19), and
W;; given by the first term in (5.7). Note also that our Wg,,q has exactly the same
form, as a function of ®; and @, as the M;; part of W in (5.9) had, as a function
of ¢; and ¢;.

Thus encouraged, let us go on to consider the product of three chiral superfields:

1
O,P; P, = |:¢i¢j +6 - (g + xjoi) + 59 0P Fj + ¢ Fi — xi 'Xj):|
1
X |:d)k +60 - xx+ 59 . QFk] . (6.64)

As our interest is confined to obtaining candidates for SUS Y-invariant Actions, we
shall only be interested in the F' component. Inspection of (6.64) yields the obvious
terms

GipjFr + i Fi + dubi Fj — Xi - XjPr- (6.65)
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In addition, the term 6 - (x;¢; + x;¢:)0 - xi can be re-written as in (6.58) to give

1
—59 Ok + XjPi) * Xk (6.66)
So altogether

DD, =i Fi + & Fi + i Fj — Xi - X — Xj - Xebi — Xi * XxP;-
(6.67)
Let us now consider the cubic analogue of (6.62), namely

1
Wewvic = —ijk @i ®; Py | (6.68)
6 F
where the coefficients y;; are totally symmetric in 7, j and k. Then from (6.67) we
immediately obtain

1 1
Weubic = Eyijkqbi(bij = S ViikXi - XjPr- (6.69)

Sure enough, the first term here is precisely the first term in (5.3) with W; given by
the second (y;;x) term in (5.19), while the second term in (6.69) is the second term
in (5.3) with W;; given by the y;;; term in (5.7). Note, again, that our Weypic has
exactly the same form, as a function of the ®’s, as the y;;; part of the W in (5.9),
as a function of the ¢’s.

Thus we have shown that all the interactions found in Chapter 5 can be expressed
as F-components of products of superfields, a result which guarantees the SUSY-
invariance of the associated Action. Of course, we must also include the hermitian
conjugates of the terms considered here. As all the interactions are generated from
the superfield products in Wgyaq and Weupic, such W’s are called superpotentials.
The full superpotential for the W—Z model is thus

1 1
W= EMUCDI'CD,' + g)ﬁjkq)iq’jq% (6.70)

it being understood that the F-component is to be taken in the Lagrangian.
That understanding is often made explicit by integrating over 6, and 6,. Integrals
over such anticommuting variables are defined by the following rules:

/d@ll = 0;/d01 0 = 1;/d01 /d92 6,0, =1 (6.71)

(see Appendix O of [7], for example). These rules imply that

/d@]/de2 —0-0= /dGI/dOQ 6,0, = 1. (6.72)
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On the other hand, we can write
1
do, do, = —db, do, = —Ede .do = d%. (6.73)
It then follows that

/ d*0 W = coefficient of %9 -0 in W (i.e. the F component). (6.74)

Such integrals are commonly used to project out the desired parts of superfield
expressions.

As already noted, the functional form of (6.70) is the same as that of (5.9),
which is why they are both called W. Note, however, that the W of (6.70) includes,
of course, all the interactions of the W—Z model, not only those involving the ¢
fields alone. In the MSSM, superpotentials of the form (6.70) describe the non-
gauge interactions of the fields — that is, in fact, interactions involving the Higgs
supermultiplets; in this case the quadratic and cubic products of the ®’s must be
constructed so as to be singlets (invariant) under the gauge groups.

The reader might suspect that, just as the interactions of the W—Z model can
be compactly expressed in terms of superfields, so can the terms of the free La-
grangian (5.1). This can certainly be done, but it requires the formalism of the next
section.

6.5 A technical annexe: other forms of chiral superfield

The thoughtful reader may be troubled by the following thought. Our development
has been based on the form (6.12) for the unitary operator associated with finite
SUSY transformations. We could, however, have started, instead, from

Ueal(x, 0, 0%) = ¥ Peil0-0+0:01 (6.75)

and since Q and Q' do not commute, (6.75) is not the same as (6.12). Indeed,
(6.75) might be regarded as more natural, and certainly more in line with the an-
gular momentum case, which also involves non-commuting generators, and where
the corresponding unitary operator is exp[ic - J]. In this case, we shall write the
superfield as @, (x, 6, 0%), where (cf. (6.11) and (6.15))

®pea(x, 0, 0%) = P2+ @y, ) il0-Q+0-01, (6.76)

Now note that if ®f(x,0,0) = ®(x, 0, 0), then dDIeal(x, 0,0%) = Orealx, 0,0%).
For this reason a superfield generated in this way is called ‘real type’ superfield.

It is easy to check that an analogous statement is not true for the superfield &
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generated via (6.15): the latter is called a ‘type-I” superfield, denoted (if necessary)
by ®(x, 0, 6*). Similarly, the U of (6.12) may be denoted by Uj(x, 6, 6%).
In the case of (6.75), the induced transformation corresponding to (6.29) is

0—>0—>0+¢
0—6*— 6*+¢&*
1 1
0— x* — x* 4+a* + 515“(0“)@9}’* - Eiea(ﬁﬂ)abfb*

1. 1.,
= x" 4+ a" + Eigfﬁﬂe — Eimaﬂs (6.77)

where the last line follows via Exercise 6.1 above.>? Note that the quantity
i('6"0 — 61G1¢€) is real, again in contrast to the analogous shift (6.29) for a
type-1I superfield. We can again find differential operators representing the SUSY
generators by expanding the change in the field up to first order in & and &%, as in
(6.31), and this will lead to different expressions from those given in (6.37) and
(6.41). However, the new operators will be found to satisy the same SUSY algebra
(4.48).
We could also imagine using

Un(x, 0, 0*) = e Pel?el? Q. (6.78)
which is not the same either, and for which the induced transformation is

0—>0—>0+¢&
0— 60" — 0" +&*
0 — x* = x* 4+ a* + i ™) p0"". (6.79)
The corresponding superfield is of ‘type-II’, denoted by ®y(x, 6, 0*). Yet a third
set of (differential operator) generators will be found, but again they’ll satisfy the
same SUSY algebra (4.48).
The three types of superfield are related to each other in a simple way. We have
Dreal(x, 0, 0%) = LT DP(x, 0, 0)e @000
= ¢ B P00 0p(x, 0,007 20T (6.80)
where we have used (6.22) and (6.23) with & — 6 so that

1
B* = EiQ“(o“)abe*. (6.81)

2 The x* transformation is essentially the one introduced by Volkov and Akulov [27].
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But the second line of (6.80) can be written as
e BPdi(x, 0,07 = @ (x“ - %i@“(d“)abeb*, 0, 9*) : (6.82)
Similar steps can be followed for @y, and we obtain
Prea(x, 0, 0%) = Py <x“ — %i@“(o“)abeh*, 0, 9*)
= @y (x“ + %iea(a“)abeb*, 0, 9*) : (6.83)

Any of the three superfields ®.,(x, 6, 8%), ®1(x, 6, 0%), Pu(x, 8, 6*) can be
expanded as a power series in 6 and 6%, just as we did for ®(x, 8). But such
an expansion will contain a lot more terms than (6.43), and will involve more
component fields than ¢, x and F. These general superfields (depending on both 8
and 0*) will provide a representation of the SUSY algebra, but it will be a reducible
one, in the sense that we’d find that we could pick out sets of components that
only transformed among themselves — such as those in a chiral supermultiplet, for
example. The irreducible sets of fields can be selected out from the beginning by
applying a suitable constraint. For example, we got straight to the irreducible left
chiral supermultiplet by starting with what we now call ®y(x, 6, 6*) and requiring
it not to depend on 6*. That is to say, we required

ad
dy(x,0,0%) = 0. 6.84
207 1(x ) (6.84)

The reason that this works is that the operator d/06F commutes with the SUSY
transformation (6.31): that is,

9
30

d
Py =946 (87’; CIDI) . (6.85)

Hence if @ does not depend on 6*, neither does § @1, which means that the surviving
components form a representation by themselves.

We know that the components of ®;(x, 6) are precisely those of the L-chiral
multiplet. A natural question to ask is: how is an L-chiral multiplet described by a
real superfield @, (x, 6, 0%)? The answer is provided by (6.83), namely

1
q’i;al(x, 0,60%) = Py (x“ — EiG“(U“)abe*, 9) (6.86)
where

di(x,0) = d(x) + 0 - x(x) + %9 O F (x). (6.87)
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Hence
1 1
oL (x,0,0) =¢ (x“ — Ei@“(aﬂ)abe"*) +6-x (x“ — 5i@“(o—#)a,,e”*>
1 1. b
+ 59 COF xH* — 519“(al*)a,,9 . (6.88)

The fields on the right-hand side of (6.88) may be expanded as a Taylor series about
the point x, and we obtain

L * 1 1 ag | bx
Da(x,0,0%) =p(x)+6 - x(x)+ 59 -0F(x) — 510 (0")ap07" 0,0

1 1 X
—5i0 - X 0% (0 ")ap0"* — gea(a“)abeb*e‘(o”>cd0d*auav¢,
(6.89)

since terms of higher degree than the second in 6 or * vanish. Using equation
(6.58), the penultimate term can be written as

1- ac | bx
+119-98MX (") (6.90)

The last term can be simplified as follows:
0(0")ap0" 0 (0 ")ea0 ™ = 000" 0" (6" )ap(0")ea
1 1,
=——=€“0-0 ) (+=€"6-0 ) (6")ap(0")ea
2 2
1 _
=—70-00-0“(0")ue"(0")ea
1 ) —uT\ed/ v :
= —19-99-0(—& Y4 (6")eq using (4.30)
1 | S
= 7000 - 0Tr(6"0") = 59-99-95"‘ . (691)
Finally therefore
L * 1 1 a bx
P, 0,07%) = () +6 - x(x) + 50 -6 F(x) — it (0")ap0”" 3,9
1 1 _
+ Zie 03, x (M) — EQ -06-63%. (6.92)

It turns out that a similar story can be told for the R-chiral field, using ®y;(x, 6, 6*)
restricted to be independent of 6. Indeed we have

}r, 0,6%) = [0 p(x, 0, 0)eCe 0]
= "0 0l (x, 0, 0)e 0 Ce 100 (6.93)
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which is a type-I superfield built on ®f(x, 0, 0), whereas ®y(x, 6, 6*) was built on
®(x, 0, 0). In a sense, type-I and type-II fields are conjugates of each other, and the
simplest description of an R-chiral field is via the conjugate of ®}(x, ):

OR(x,0") =¢'(x) + 6 - 7(x) + %9‘ LOF(x). (6.94)

X is of course an R-chiral (dotted spinor) field (see Section 2.3).

We can now return to the question of representing the free Lagrangian (5.1) in
terms of superfields. A glance at (6.92) suggests that the desired terms may be
contained in the product

(Prea(x, 6, 9*))" oL (x,0, 6. (6.95)

The essential point is that, in such a product, the field of highest dimension must
transform as a total derivative. In the expansion of ®(x, 8) = ®(x, 0) this is the
coefficient of 6 - 0, namely the field F'. Similarly, in the product ®;(x, 0)®;(x, 0)
it is the ‘F-component’. In the case of the product (6.95) it is the coefficient of
66080 -6, which is called the ‘D-component’ (the terminology is taken from the
superfield formalism for vector supermultiplets; see [42] Chapter 3). Writing out
the product (6.95), the terms which contribute to the D-term are (dropping the
subscripts on the component fields)

—i¢fa2¢—iaz¢¢f+lF*F 0-60-0 (6.96)
16 16 4 '
| 1 _
+Zix 0608, x" (")t — Zi@“(oﬂ)abauxb*e 00-x (697
1 ‘
+Z3¢T9“(a“)ab9b*9‘(G”)Cdﬁd*avqﬁ. (6.98)
The first two terms of (6.96) are equivalent to
1 _
+§aﬂ¢faﬂ¢ 0-06-6 (6.99)
by partial integrations. The first term of (6.97) can be written as
1. i}
—Zie.ze-eeﬂaﬂx (6.100)

using the result of Exercise 6.1. The expression (6.100) can be further reduced by
using the formula
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which is analogous to (6.58); (6.100) becomes
1 _
+§i)26“8u)(0 00 -0. (6.102)
Similarly, the second term of (6.97) can be reduced to
1 _
—giaux(i"x@ﬂ@ﬂ. (6.103)

This is equivalent to (6.102) by a partial integration. Finally using (6.91) the term
(6.98) becomes

Lo _
Q0019 90060, (6.104)

Putting together the above results we see that indeed the free part of the W-Z
Lagrangian can be written as

4 o L

real — real D .

(6.105)

The D-component of a superfield may be projected out by a Grassmann inte-
gration analogous to the one used in (6.74) to project the F-component. We define
(compare (6.73))

1

@0 = —df - df = d52dd’, (6.106)
from which it follows (compare (6.72)) that
=1
d050~9:1. (6.107)
Then combining (6.72) and (6.107) and defining
d*e = d*0d’e, (6.108)
the free part of the W—Z Lagrangian may be written as
/ d'o o @k . (6.109)

It is time to consider other supermultiplets, in particular ones containing gauge
fields, with a view to supersymmetrizing the gauge interactions of the SM.
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Vector (or gauge) supermultiplets

Having developed a certain amount of superfield formalism, it might seem sensi-
ble to use it now to discuss supermultiplets containing vector (gauge) fields. But
although this is of course perfectly possible (see for example [42], Chapter 3), it is
actually fairly complicated, and we prefer the ‘try it and see’ approach that we used
in Section 3.1, which (as before) establishes the appropriate SUSY transformations
more intuitively. We begin with a simple example, a kind of vector analogue of the
model of Section 3.1.

7.1 Thefree Abelian gauge supermultiplet

Consider a simple massless U(1) gauge field A*(X), like that of the photon. The spin
of such a field is 1, but on-shell it contains only two (rather than three) degrees of
freedom, both transverse to the direction of propagation. As we saw in Section 4.4,
we expect that SUSY will partner this field with a spin-1/2 field, also with two
on-shell degrees of freedom. Such a fermionic partner of a gauge field is called
generically a ‘gaugino’. This one is a photino, and we’ll denote its field by A, and
take it to be L-type. Being in the same multiplet as the photon, it must have the
same ‘internal’ quantum numbers as the photon, in particular it must be electrically
neutral. So it doesn’t have any coupling to the photon. The photino must also have
the same mass as the photon, namely zero. The Lagrangian is therefore just a sum
of the Maxwell term for the photon, and the appropriate free massless spinor term
for the photino

1
Lyp= =7 FuF" + irfgra, A, (7.1)
where as usual F*¥ = 9* A’ — 9” A*. We now set about investigating what might

be the SUSY transformations between A* and A, such that the Lagrangian (7.1) (or
the corresponding Action) is invariant.

106
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We anticipate that, as with the chiral supermultiplet, we shall not be able con-
sistently to ignore the off-shell degree of freedom of the gauge field but we shall
start by doing so. First, consider 8¢ A*. This has to be a 4-vector, and also a real
rather than complex quantity, linear in £ and £*. We try (recalling the 4-vector
combination from Section 2.2)

Se A = gTgHa 4 ATale, (7.2)
where £ is also an L-type spinor, but has dimension M~!/2 as in (3.7). The spinor
field A has dimension M%?2, so (7.2) is consistent with A* having the desired
dimension M.

What about 6z A? This must presumably be proportional to A*, or better, since A
is gauge-invariant, to the gauge-invariant quantity F*", so we try

Seh ~ EFMY. (7.3)
Since the dimension of F*” is M2, we see that the dimensions already balance on
both sides of (7.3), so there is no need to introduce any derivatives. We do, however,
need to absorb the two Lorentz indices ¢ and v on the right-hand side, and leave
ourselves with something transforming correctly as an L-type spinor. This can be
neatly done by recalling (Section 2.2) that the quantity 6 "£ transforms as an R-type
spinor V¥, while o# transforms as an L-type spinor. So we try

5¢h = Cab6"EF ) (7.4)
where C is a constant to be determined. Then we also have
seal = C*E1GVa"F,,. (7.5)

Consider the SUSY variation of the Maxwell term in (7.1). Using the antisym-
metry of F*¥ we have

8¢ (—%FWF‘“> = —%F,w(a“ag A" — 378 A%
= —F,,0"8: A
= —F,,0"(&'a 1 + 116"¢). (7.6)
The variation of the spinor term is
(862169, +1r1649,(8: 1)
=1i(C*¢16"0"F,,)578,A +iCAIG70,(0"G EF,,). (1.7)

The & part of (7.6) must cancel the & part of (7.7) (or else their sum must be
expressible as a total derivative), and the same is true of the &' parts. So consider
the &f part of (7.7). It is

iC*¢16V 0" F,,0,h = —iC*E16 0"G"F,,0,A. (7.8)
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Now the o’s are just Pauli matrices, together with the identity matrix, and we know
that products of two Pauli matrices will give either the identity matrix or a third
Pauli matrix. Hence products of three o’s as in (7.8) must be expressible as a linear
combination of ¢’s. The identity we need is

5lo’eP = g’ — gG" + gt — i€ PGy, (7.9)

When (7.9) is inserted into (7.8), some simplifications occur. First, the term in-
volving ... g"*" ... F,, vanishes, because g"" is symmetric in its indices while
F,. is antisymmetric. Next, we can do a partial integration to re-write F,,d,A
as — (9, Fu)A = —(9,0, A, — 9,0, A, )A. The first of these two terms is symmetric
under interchange of p and p, and the second is symmetric under interchange of p
and v. However, they are both contracted with €#'*°, which is antisymmetric under
the interchange of either of these pairs of indices. Hence the term in € vanishes,
and (7.8) becomes

—iC*¢TF,,[—6 0" A + 618 A]. (7.10)

In the second term here, if you interchange the indices p and v throughout, and
then use the antisymmetry of F,, you will find that the second term equals the first,
so that this ‘£1* part of the variation of the fermionic part of L, is

2iC* 16V F,, 0" M. (7.11)

This will cancel the &' part of (7.6) if C = i/2, and the £ part of (7.6) will then also
cancel. So the required SUSY transformations are (7.2) and

1
Seh = EiO"MO_’VSFlw, (7.12)
S PR
il = —SiEIG o F. (7.13)

However, if we try to calculate (as in Section 4.5) §,8: — 8¢, as applied to the
fields A* and A, we shall find that consistent results are not obtained unless the
free-field equations of motion are assumed to hold, which is not satisfactory. Off-
shell, A* has a third degree of freedom, and so we expect to have to introduce one
more auxiliary field, call it D(X), which is a real scalar field with one degree of
freedom. We add to £, ,, the extra (non-propagating) term

1
Lp = 5DZ. (7.14)

We now have to consider SUSY transformations including D.
First note that the dimension of D is M2, the same as for F. This suggests that
D transforms in a similar way to F, as given by (4.109). However, D is a real field,
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so we modify (4.109) by adding the hermitian conjugate term, arriving at
8:D = —i(g*&“auk — (BMA)Tﬁ"S). (7.15)
As in the case of ¢ F, this is also a total derivative. Analogously to (4.113) and
(4.115), we expect to modify (7.12) and (7.13) so as to include additional terms
S¢h=£ED, 8:AT=¢&TD. (7.16)

The variation of Lp is then
1 et _
8¢ <§ D2> = D8:D = —iD(£T6" 9,1 — (3,1)51¢), (7.17)

and the variation of the fermionic part of £, , gets an additional contribution which
is

i£'6"9,AD +irla#9,£D. (7.18)

The first term of (7.18) cancels the first term of (7.17), and the second terms also
cancel after either one has been integrated by parts.

7.2 Non-Abelian gauge super multiplets

The preceding example is clearly unrealistic physically, but it will help us in guess-
ing the SUSY transformations in the physically relevant non-Abelian case. For
definiteness, we will mostly consider an SU(2) gauge theory, such as occurs in the
electroweak sector of the SM. We begin by recalling some necessary facts about
non-Abelian gauge theories.

For an SU(2) gauge theory, the Maxwell field strength tensor F,, of U(1) is
generalized to (see, for example, [7] Chapter 13)

Fr, = 8, W' — 8, W — ge*”WIWY, (7.19)

where «, B and y have the values 1, 2 and 3, the gauge field W, = (W, Wﬁ, Wﬁ)
is an SU(2) triplet (or ‘vector’, thinking of it in SO(3) terms), and g is the gauge
coupling constant. We write the SU(2) indices as superscripts rather than subscripts,
but this has no mathematical significance; rather, it is to avoid confusion, later, with
the spinor index of the gaugino field A3 . Equation (7.19) can alternatively be written
in ‘vector’ notation as

Fow = 9, W, — 3,W, — gW, x W,. (7.20)

If the gauge group was SU(3) there would be eight gauge fields (gluons, in the
QCD case), and in general for SU(N) there are N> — 1. Gauge fields always belong
to a particular representation of the gauge group, namely the regular or adjoint
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one, which has as many components as there are generators of the group (see
pages 400401 of [7]).
An infinitesimal gauge transformation on the gauge fields W takes the form

W2 (X) = WS (X) — 0,€%(X) — g7 e’ ()W (x), (7.21)

where we have here indicated the X-dependence explicitly, to emphasize the fact
that this is a local transformation, in which the three infinitesimal parameters €*(X)
depend on X. In U(1) we would have only one such €(X), the second term in (7.21)
would be absent, and the field strength tensor F,, would be gauge-invariant. In
SU(2), the corresponding tensor (7.20) transforms by

Fo(x) = F2,(0) — ge*’7 e’ (X)F), (), (7.22)

which is nothing but the statement that F,, transforms as an SU(2) triplet. Note
that (7.22) involves no derivative of €(X), such as appears in (7.21), even though the
transformations being considered are local ones. This fact shows that the simple
generalization of the Maxwell Lagrangian in terms of F,,,

1 1_, o
—Z F/,w ° FMV == —Z FILWFMV ) (723)
is invariant under local SU(2) transformations; i.e. is SU(2) gauge-invariant.

We now need to generalize the simple U(1) SUSY model of the previous
subsection. Clearly the first step is to introduce an SU(2) triplet of gauginos,
A = (A1, A2, A%), to partner the triplet of gauge fields. Under an infinitesimal SU(2)

gauge transformation, A* transforms as in (7.22):
A% (X) = A4(X) — ge*P P (XA (). (7.24)

The gauginos are of course not gauge fields and so their transformation does not
include any derivative of €(X). So the straightforward generalization of (7.1) would
be

1 O = o
L, = _ZF;fUFMW + AT 9,0, (7.25)

However, although the first term of (7.25) is SU(2) gauge-invariant, the second is
not, because the gradient will act on the X-dependent parameters €”(X) in (7.24) to
leave uncancelled 9,€f(X) terms after the gauge transformation. The way to make
this term gauge-invariant is to replace the ordinary gradient in it by the appropriate
covariant derivative; for instance see [7], page 47. The general recipe is

9, — D, =9, +igTV - w,, (7.26)

where the three matrices TV%, o = 1,2, 3, are of dimension 2t + 1 x 2t + 1 and
represent the generators of SU(2) when acting on a2t 4 1-component field, which is
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in the representation of SU(2) characterized by the ‘isospin’ t (see [7], Section M.5).
In the present case, the A*’s belong in the triplet (t = 1) representation, for which
the three 3 x 3 matrices TV are given by (see [7], equation (M.70))

(T%)

Thus, in (7.25), we need to make the replacement

—ie®Pr (7.27)

By element =

32" — (D) = 3,4 +ig(TV - W,,) AP

aff element
= 0,2% +ig( — ie"PWY )P
= 0,A% 4 ge"PW2F
= 0, A% — ge"PrWELY. (7.28)

With this replacement for 9, A% in (7.25), the resulting L, is SU(2) gauge-invariant.
What about making it also invariant under SUSY transformations? From the
experience of the U(1) case in the previous subsection, we expect that we will need
to introduce the analogue of the auxiliary field D. In this case, we need a triplet of
D’s, D%, balancing the third off-shell degree of freedom for each Wy. So our shot
at a SUSY- and gauge-invariant Lagrangian for an SU(2) gauge supermultiplet is

1 1
Longe = =7 Fi, F 4+ 12516(D,A) + DD (7.29)

Confusion must be avoided as between the covariant derivative and the auxiliary
field!

What are reasonable guesses for the relevant SUSY transformations? We try the
obvious generalizations of the U(1) case:

SeWHe = gTgrp% 4 ) T51E,
1
8h" = io!G €, +£D°
8:DY = —i(§T6" (D, A)* — (D, M) G1E); (7.30)

note that in the last equation we have replaced the ‘d,,” of (7.15) by ‘D,,’, so as to
maintain gauge-invariance. This in fact works, just as it is! Quite remarkably, the
Action for (7.29) is invariant under the transformations (7.30), and (6,6 — J¢9,) can
be consistently applied to all the fields Wi, A and D in this gauge supermultiplet.
This supersymmetric gauge theory therefore has two sorts of interactions: (i) the
usual self-interactions among the W fields as generated by the term (7.23); and
(ii) interactions between the W’s and the A’s generated by the covariant derivative
coupling in (7.29). We stress again that the supersymmetry requires the gaugino
partners to belong to the same representation of the gauge group as the gauge bosons
themselves; i.e. to the regular, or adjoint, representation.
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We are getting closer to the MSSM at last. The next stage is to build Lagrangians
containing both chiral and gauge supermultiplets, in such a way that they (or the
Actions) are invariant under both SUSY and gauge transformations.

7.3 Combining chiral and gauge super multiplets

We do this in two steps. First we introduce, via appropriate covariant derivatives, the
couplings of the gauge fields to the scalars and fermions (‘matter fields’) in the chiral
supermultiplets. This will account for the interactions between the gauge fields
of the vector supermultiplets and the matter fields of the chiral supermultiplets.
However, there are also gaugino and D fields in the vector supermultiplets, and
we need to consider whether there are any possible renormalizable interactions
between the matter fields and gaugino and D fields, which are both gauge- and
SUS Y-invariant. Including such interactions is the second step in the programme
of combining the two kinds of supermultiplets.

The essential points in such a construction are contained in the simplest case,
namely that of a single U(1) (Abelian) vector supermultiplet and a single free chiral
supermultiplet, the combination of which we shall now consider.

7.3.1 Combining one U(1) vector supermultiplet and
one free chiral supermultiplet

The first step is accomplished by taking the Lagrangian of (5.1), for only a single
supermultiplet, replacing d,, by D,, where (compare (7.26))

D, = 3, +igA,. (7.31)

where ¢ is the U(1) coupling constant (or charge), and adding on the Lagrangian
for the U(1) vector supermultiplet (i.e. (7.1) together with (7.14)). This produces
the Lagrangian

. 1 1
L =(D,p)(D"¢) +ix'6"D,x + F'F — ZF"”FW +irfera,n + ED2.
(7.32)

‘We now have to consider possible interactions between the matter fields ¢ and y,
and the other fields A and D in the vector supermultiplet. Any such interaction terms
must certainly be Lorentz-invariant, renormalizable (i.e. have mass dimension less
than or equal to 4), and gauge-invariant. Given some terms with these characteristics,
we shall then have to examine whether we can include them in a SUSY-preserving
way.
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Since the fields A and D are neutral, any gauge-invariant couplings between
them and the charged fields ¢ and x must involve neutral bilinear combinations of
the latter fields, namely ¢'¢, ¢Tx, xT¢ and xx. These have mass dimension 2,
5/2,5/2 and 3 respectively. They have to be coupled to the fields A and D which
have dimension 3/2 and 2 respectively, so as to make quantities with dimension
no greater than 4. This rules out the bilinear x ", and allows just three possible
Lorentz- and gauge-invariant renormalizable couplings: (¢! x) - A, AT - (x¢), and
#'¢D. In the first of these the Lorentz invariant is formed as the ‘-’ product of
the L-type quantity ¢ x and the L-type spinor A, while in the second it is formed
asa ‘Al . x1-type product. We take the sum of the first two couplings to obtain a
hermitian interaction, and arrive at the possible allowed interaction terms

AQl(@ %) - 1+ AT (xT¢)] + BaggD. (7.33)

The coefficients A and B are now to be determined by requiring that the com-
plete Lagrangian of (7.32) together with (7.33) is SUSY-invariant (note that for
convenience we have extracted an explicit factor of g from A and B).

To implement this programme we need to specify the SUSY transformations of
the fields. At first sight, this seems straightforward enough: we use (7.2), (7.12),
(7.13) and (7.15) for the fields in the vector supermultiplet, and we ‘covariantize’
the transformations used for the chiral supermultiplet. For the latter, then, we pro-
visionally assume

Sep =& - x, Sex = —io(i0)E "D, +EF, 8:F = —ig'6"D,x, (7.34)

together with the analogous transformations for the hermitian conjugate fields. As
we shall see, however, there is no choice we can make for A and B in (7.33) such
that the complete Lagrangian is invariant under these transformations. One may not
be too surprised by this: after all, the transformations for the chiral supermultiplet
were found for the case q = 0, and it is quite possible, one might think, that one or
more of the transformations in (7.34) have to be modified by pieces proportional to
g. Indeed, we shall find that the transformation for F does need to be so modified.
There is, however, a more important reason for the ‘failure’ to find a suitable A
and B. The transformations of (7.2), (7.12), (7.13) and (7.15), on the one hand,
and those of (7.34) on the other, certainly do ensure the SUSY-invariance of the
gauge and chiral parts of (7.32) respectively, in the limit g = 0. But there is no
a priori reason, at least in our ‘brute-force’ approach, why the ‘£’ parameter in
one set of transformations should be exactly the same as that in the other. Either
‘€’ can be rescaled by a constant multiple, and the relevant sub-Lagrangian will
remain invariant. However, when we combine the Lagrangians and include (7.33),
for the case q # 0, we will see that the requirement of overall SUSY-invariance
fixes the relative scale of the two ‘£€’s’ (up to a sign), and without a rescaling in one
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or the other transformation we cannot get a SUS Y-invariant theory. For definiteness
we shall keep the ‘£’ in (7.34) unmodified, and introduce a real scale parameter o
into the transformations for the vector supermultiplet, so that they now become

8¢ A = (87610 + AT51E) (7.35)
Seh = %l(o%“g)a,, +atD (7.36)
Serl = _%i(gfavaﬂ)lzw +at'D (7.37)
8:D = —ai(€T6" 9,1 — (3,01)5"€). (7.38)

Consider first the SUSY variation of the ‘A’ part of (7.33). This is
AQIBedDx - A+ TG x) - 2+ T x - (Be 1)
+ @GAD - xTo + 4T Gex Do + 4T (TGl (7.39)

Among these terms there are two which are linear in q and D, arising from
@' x - (8¢1) and its hermitian conjugate, namely

Adlag'x -£D +ag' - x'Dgl. (7.40)
Similarly, the variation of the ‘B’ part is

Bal(8:¢)¢D + ¢'(8:0)D + ¢ ¢(3¢ D]
=Balx'-£'¢D +¢'¢ - xD + ¢ p(—ai)(E'6" 9, — (3,A1)6"8)].  (7.41)

The ‘D’ part of (7.41) will cancel the term (7.40) if (using x' - &f =& . ' and
E-x=x-6)

Ax = —B. (7.42)
Next, note that the first and last terms of (7.39) produce the changes
Adix"- &My -a4+aT-xTE - x1. (7.43)

Meanwhile, there is a corresponding change coming from the variation of the term
—qxtary A, namely

—ax'6" x (e A = —Qaex 16" x (E7G, 0 + 116,8). (7.44)
This can be simplified with the help of Exercise 7.1.

Exercise 7.1 Show that

(x'a"(r1a,8) = 2(x" - ANy - £). (7.45)
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So (7.44) becomes
—2qalx"- €T x A+ xT- AT x - &) (7.46)
which will cancel (7.43) if (again using x - & =& - x and ' - AT = AT. xT)
A= 2a. (7.47)

So far, there is nothing to prevent us from choosing o = 1, say, in (7.42) and
(7.47). However, a constraint on « arises when we consider the variation of the
A* — ¢ interaction term in (7.32), namely

—i08s (A 98,0 — (3,.0)' A“). (7.48)
The terms in §¢ A* yield a change
9a[(, ¢ )ETG" A + AT6"E)p — (TG A + AT51E)¢1, ). (7.49)

A similar change arises from the terms AQ[¢'(8: x) - & + AT - (8¢ x )] in (7.39),
namely

AQlp' (—io"ionE M9, p) - A + AT - 8,01ET (—iomic $)]. (7.50)
The first spinor dot product is
£ (—io)(—ic" ) (—io)A = 116" A, (7.51)

using (4.30). The second spinor product is the hermitian conjugate of this, so that
(7.50) yields a change

Aqilp'(3,0)E 16" 1 — (3,9Np ATG"E]. (7.52)

Along with (7.49) and (7.52) we must also group the last two terms in (7.41), which
we write out again here for convenience

Balp'¢(—ai)(E 679, — (3,115 £)], (7.53)
and integrate by parts to yield
aiBa{[(3,0)¢ + ¢8,01(ET3" 1) — [(3.0N)p + @10, P16 E)).  (7.54)

Consider now the terms involving the quantity & fGH A in (7.49), (7.52) and (7.54),
which are

908,01 — ¢'9,61 + AQip'8,¢ + @iBal(B,.0Ne +¢'d.61.  (7.55)
These will all cancel if the condition (7.47) holds, and if in addition

B=-1. (7.56)
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From (7.47) and (7.42) it now follows that

az—l (7.57)
=3 .

We conclude that, as promised, the combined Lagrangian will not be SUSY-
invariant unless we modify the scale of the transformations of the gauge supermul-
tiplet, relative to those of the chiral supermultiplet, by a non-trivial factor, which
we choose (in agreement with what seems to be the usual convention) to be

1
o0 =——. (7.58)
V2
'With this choice, the coefficient A is determined to be
A=—V2, (7.59)

and our combined Lagrangian is fixed.

We have, of course, not given a complete analysis of all the terms in the SUSY
variation of our Lagrangian, an exercise we leave to the dedicated reader, who will
find that (with one more adjustment to the SUSY transformations) all the variations
do indeed vanish (after partial integrations in some cases, as usual). The need for
the adjustment appears when we consider the variation associated with the terms
AQlo'(8e x) - A + AT - (8 x @] in (7.39), which includes the term

Aqlo'e - AF + AT ETFTo]. (7.60)

This cannot be cancelled by any other variation, and we therefore have to modify the
transformation for F and F' so as to generate a cancelling term from the variation
of FTF in the Lagrangian. This requires

8:F = —2grt - £t + previous transformation (7.61)
and
3¢ Fi = —\/iqé - A" + previous transformation, (7.62)

where we have now inserted the known value of A.
In summary then, our SUSY-invariant combined chiral and U(1) gauge super-
multiplet Lagrangian is

1 1
L= (D) (D"¢)+ix'6"Dux + F'F - 7 P F ixfa"a, + 5D2

—V2al(¢" ) - A+ 2T - (x ') — qpieD. (7.63)

Note that the terms in the last line of (7.63) are interactions whose strengths are
fixed by SUSY to be proportional to the gauge-coupling constant g, even though
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they do not have the form of ordinary gauge interactions; the terms coupling the
photino A to the matter fields may be thought of as arising from supersymmetrizing
the usual coupling of the gauge field to the matter fields.

The equation of motion for the field D is

D =q¢¢. (7.64)

Since no derivatives of D enter, we may (as in the W-Z case for F; and FiT, cf.
equations (5.21) and (5.22)) eliminate the auxiliary field D from the Lagrangian
by using (7.64). The effect of this is clearly to replace the two terms involving D
in (7.63) by the single term

1
—30@'9)". (7.65)

This is a ‘(¢ '¢)?’ type of interaction, just as in the Higgs potential (1.4), but here
appearing with a coupling constant, which is not an unknown parameter but is
determined by the gauge coupling g. In the next section we shall see that the same
feature persists in the more realistic non-Abelian case. Since the Higgs mass is (for
a fixed vev of the Higgs field) determined by the (pi¢)? coupling (see (1.3)), it
follows that there is likely to be less arbitrariness in the mass of the Higgs in the
MSSM than in the SM. We shall see in Chapter 10, when we examine the Higgs
sector of the MSSM, that this is indeed the case.

7.3.2 The non-Abelian case

Once again, we proceed in two steps. We start from the W-Z Lagrangian for a
collection of chiral supermultiplets labelled by i, and including the superpotential
terms:

Fon b ; oW 1 9°W
0. 0" i + xjic" 9, xi + F F + 3—¢| L — mei - xj +hec. (7.66)
into which we introduce the gauge couplings via the covariant derivatives
i = Dugi = 0, +1igA (T )i (7.67)
dxi = Duxi = duxi +1gAL (T )i, (7.68)

where g and A7, are the gauge coupling constant and gauge fields (for example, gs
and gluon fields for QCD), and the T* are the hermitian matrices representing the
generators of the gauge group in the representation to which, for given i, ¢ and x;
belong (for example, if ¢; and x; are SU(2) doublets, the T*’s would be the 7¢/2,
with o running from 1 to 3). Recall that SUSY requires that ¢, x; and F must all
be in the same representation of the relevant gauge group. Of course, if, as is the



118 \ector (or gauge) supermultiplets

case in the SM, some matter fields interact with more than one gauge field, then
all the gauge couplings must be included in the covariant derivatives. There is no
covariant derivative for the auxiliary fields F;, because their ordinary derivatives
do not appear in (7.66). To (7.68) we need to add the Lagrangian for the gauge
supermultiplet(s), equation (7.29), and then (in the second step) additional ‘mixed’
interactions as in (7.33).

We therefore need to construct all possible Lorentz- and gauge-invariant renor-
malizable interactions between the matter fields and the gaugino (A%) and auxiliary
(D*) fields, as in the U(1) case. We have the specific particle content of the SM
in mind, so we need only consider the cases in which the matter fields are either
singlets under the gauge group (for example, the R parts of quark and lepton fields),
or belong to the fundamental representation of the gauge group (that is, the triplet
for SU(3) and the doublet for SU(2)). For matter fields in singlet representations,
there is no possible gauge-invariant coupling between them and A* or D%, which are
in the regular representation. For matter fields in the fundamental representation,
however, we can form bilinear combinations of them that transform according to
the regular representation, and these bilinears can be ‘dotted’ into A“ and D to give
gauge singlets (i.e. gauge-invariant couplings). We must also arrange the couplings
to be Lorentz invariant, of course.

The bilinear combinations of the ¢; and x; which transform as the regular rep-
resentation are (see, for example, [7] Sections 12.1.3 and 12.2)

ST, & T %, % T, and % T xi, (7.69)

where, for example, T® = 7%/2 in the case of SU(2), and where the 7%, (¢ =
1, 2, 3) are the usual Pauli matrices used in the isospin context. These bilinears
are the obvious analogues of the ones considered in the U(1) case; in particular
they have the same dimension. Following the same reasoning, then, the allowed
additional interaction terms are

AQL( T xi) - A% 4+ 2T (x| T¢)] + Ba(g T*i) D, (7.70)

where A and B are coefficients to be determined by the requirement of SUSY-
invariance.

In fact, however, a consideration of the SUSY transformations in this case shows
that they are essentially the same as in the U(1) case (apart from straightforward
changes involving the matrices T“). The upshot is that, just as in the U(1) case, we
need to change the SUSY transformations of (7.30) by replacing £ by —£/+/2, and
by modifying the transformation of FiT to

3¢ FiT = —\/quf TYE - A* + previous transformation, (7.71)
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and similarly for 8¢ F;. The coefficients A and B in (7.70) are then —+/2 and —1,
respectively, as in the U(1) case, and the combined SUSY-invariant Lagrangian is

[fgauge + chiral = Egauge(equation (7.29))
+ Lw_7. covariantizea(€quation (7.66), with 9, — D, as in (7.67) and (7.68))
— V201 Txi) - A%+ 2T (| T“¢1)] — 9(¢ T*1)D". (7.72)

We draw attention to an important consequence of the terms —+/2g[. . .]in (7.72),
for the case in which the chiral multiplets (¢, xi) are the two Higgs supermultiplets
H, and Hg, containing Higgs and Higgsino fields (see Table 8.1 in the next chapter).
When the scalar Higgs fields H? and H(? acquire vevs, these terms will be bilinear
in the Higgsino and gaugino fields, implying that mixing will occur among these
fields as a consequence of electroweak symmetry breaking. We shall discuss this
in Section 11.2.

The equation of motion for the field D¢ is

D =g (4/T*¢). (7.73)

where the sum over i (labelling a given chiral supermultiplet) has been re-instated
explicitly. As before, we may eliminate these auxiliary fields from the Lagrangian
by using (7.73). The complete scalar potential (as in ‘L =7 —)) is then

V. ¢) = IW[* + % YUY (b TER) (0] TEP)) (7.74)
G o i,

where in the summation we have recalled that more than one gauge group G will
enter, in general, given the SU(3) xSU(2) x U(1) structure of the SM, with different
couplings gg and generators Tg. The first term in (7.74) is called the ‘F-term’,
for obvious reasons; it is determined by the fermion mass terms M;j and Yukawa
couplings (see (5.19)). The second term is called the ‘D-term’, and is determined
by the gauge interactions. There is no room for any other scalar potential, inde-
pendent of these parameters appearing in other parts of the Lagrangian. It is worth
emphasizing that V is a sum of squares, and is hence always greater than or equal
to zero for every field configuration. We shall see in Section 10.2 how the form of
the D-term allows an important bound to be put on the mass of the lightest Higgs
boson in the MSSM.
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The MSSM

8.1 Specification of the superpotential

We have now introduced all the interactions appearing in the MSSM, apart from
specifying the superpotential W. We already assigned the SM fields to supermul-
tiplets in Sections 3.2 and 4.4; let us begin by reviewing those assignments once
more.

All the SM fermions, i.e. the quarks and the leptons, have the property that their
L (‘x’) parts are SU(2). doublets, whereas their R (‘iy°) parts are SU(2), singlets.
So these weak gauge group properties suggest that we should treat the L and R
parts separately, rather than together as in a Dirac 4-component spinor. The basic
‘building block’ is therefore the chiral supermultiplet, suitably ‘gauged’.

We developed chiral supermultiplets in terms of L-type spinors x: this is clearly
finefore; , u; , ur, di,etc.,but whatabout ey, py,etc.? These R-type particle fields
can be accommodated within the ‘L-type’ convention for chiral supermultiplets by
regarding them as the charge conjugates of L-type antiparticle fields, which we use
instead. Charge conjugation was mentioned in Section 2.3; see also Section 20.5
of [7] (but note that we are here using Co = —iy»). If (as is often done) we denote
the field by the particle name, then we have ey = .-, while eff = Xe+. On the other
hand, if we regard ey, as the charge conjugate of e;”, then (compare equation (2.94))

eq = Ve = () =iony,!. (8.1)

To remind ourselves of how this works (see also Section 2.4), consider a Dirac mass
term for the electron:

= (e )apy (e t . T\ » T
TOWE) =yl o+ x4l e = (ioax D) e + xlioax ]!
. . T

= XeT+(_1(72)Xe* + X;(JO—ZX;&

=Xt Xe + 101l (8.2)
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Table 8.1 Chiral supermultiplet fields in the MSSM.

Names spin 0 spin 1/2 SU@B3)c, SUQR), U(1),
squarks, quarks 0 (i, d1) (uy, dy) 3, 2, 1/3
(x 3 families) or (Xu, Xd)
ii i = it} i, = (ugp)* 3, 1, —4/3
d dy=d}, di = (dr)° 3,1, 2/3
or xa = Vg
sleptons, leptons L (DeL, L) (VeL, €1) 1, 2, -1
(x 3 families) or (Xv.» Xe)
e (:é‘L = él]; ey, = (eR)C 1, 1, 2
or Xe = Vg
Higgs, Higgsinos  H, (H,, H?) (A}, HY) 1, 2, 1
Hy (HY, Hy) (HY, Hy) 1, 2, —1

Table 8.2 Gauge supermultiplet fields in the MSSM.

Names spin 1/2 spin 1 SU@3)., SUR)L, U(1),
gluinos, gluons _ g ~ g 8, 1, 0
winos, W bosons w*, wo w*, wo 1, 3, 0
bino, B boson B B 1, 1, 0
So it is all expressed in terms of x’s. It is also useful to note that
Py = e g 2l 2l 8.3)

The notation for the squark and slepton fields was explained in Section 4.4, follow-
ing equation (4.97).

In Table 8.1 we list the chiral supermultiplets appearing in the MSSM (our y
is twice that of [46], following the convention of [7], Chapter 22). Note that the
‘bar’ on the fields in this table is merely a label, signifying ‘antiparticle’, not (for
example) Dirac conjugation: thus x.- and x.+, for instance, now become x. and xz.
The subscript ; can be added to the names to signify the family index: for example,
UL = UL, Uy, = cL, Uz, = t, and similarly for leptons. In Table 8.2, similarly, we
list the gauge supermultiplets of the MSSM. After electroweak symmetry breaking,
the W° and the B fields mix to produce the physical Z° and y fields, while the
corresponding ‘s’-fields mix to produce a zino (Z°) degenerate with the Z°, and a
massless photino 7.
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So, knowing the gauge groups, the particle content, and the gauge transforma-
tion properties, all we need to do to specify any proposed model is to give the
superpotential W. The MSSM is specified by the choice

W =yJa;Q; Hy—y'd;Q; - Hy— y/&L; - Hy+ juH, - Hy. (8.4)

The fields appearing in (8.4) are the chiral superfields indicated under the ‘Names’
column of Table 8.1. In this formulation, we recall from Section 6.4 that the F-
component of W is to be taken in the Lagrangian. We can alternatively think of
W as being the same function of the scalar fields in each chiral supermultiplet, as
explained in Section 6.4. In that case, the W; of (5.17) and W;; of (5.8) generate
the interaction terms in the Lagrangian via (5.3). In either case, the y’s are 3 x 3
matrices in family (or generation) space, and are exactly the same Yukawa couplings
as those which enter the SM (see, for example, Section 22.7 of [7]).! In particular, the
terms in (8.4) are all invariant under the SM gauge transformations. The ‘-’ notation
means that SU(2)-invariant coupling of two doublets;? also, colour indices have
been suppressed, so that “it; @ ;”, for example, is really ito; QF, where_ the upstairs
o =1, 2, 3isacolour 3 (triplet) index, and the downstairs « is a colour 3 (antitriplet)
index. These couplings give masses to the quarks and leptons when the Higgs fields
H? and HC? acquire vacuum expectation values: there are no ‘Lagrangian’ masses
for the fermions, since these would explicitly break the SU(2); gauge symmetry.

In summary, then, at the cost of only one new parameter [, we have got an
exactly supersymmetric extension of the SM. This is, of course, not the same ‘u’
as appeared in the Higgs potential of the SM, equation (1.4). We follow a common
notation, although others are in use which avoid this possible confusion.

[In parenthesis, we note a possibly confusing aspect of the labelling adopted

for the Higgs fields. In the conventional formulation of the SM, the Higgs
+
field ¢ = < 8 ) generates mass for the ‘down’ quark, say, via a Yukawa

interaction of the form (suppressing family labels)
8d C?L¢dR + h.c. (85)

! However, we stress once again — see Section 3.2 and footnote 1 of Chapter 5, page 72 — that whereas in the SM
we can use one Higgs doublet and its charge conjugate doublet (see Section 22.6 of [7]), this is not allowed in
SUSY, because W cannot depend on both a complex scalar field ¢ and its Hermitian conjugate ¢! (which would
appear in the charge conjugate via (3.40)). By convention, the MSSM does not include Dirac-type neutrino mass
terms, neutrino masses being generally regarded as ‘beyond the SM’ physics.

To take an elementary example: consider the isospin part of the deuteron’s wavefunction. It has I = 0; i.e. it is
1) (2)
the SU(2)-invariant coupling of the two doublets N = (5(1) ) , N@ = <5(2) ) . This I = 0 wavefunction

[S)

is, as usual, \%(p(”n(z) — nDp®@), which (dropping the 1/+/2) we may write as NDTingp N@ = NO . NO,
Clearly this isospin-invariant coupling is basically the same as the Lorentz-invariant spinor coupling ‘x D . x®"

(see (2.47)—(2.49)), which is why we use the same ‘-’ notation for both, we hope without causing confusion.
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where — ("
qL = dy
which is plainly invariant under gp — Uqr, ¢ — U¢. Now q{(ﬁ =

u£¢+ + dﬁ(ﬁo; so when ¢° develops a vev, (8.5) contributes

). In this case, the SU(2) dot product is simply q{qﬁ,

2a{¢°)drdg + h.c. (8.6)

+
which is a d-quark mass. Why, then, do we label our Higgs field (Z“O )
with a subscript ‘0’ rather than ‘d’? The point is that, in the SUSY VCI'SuiOIl
(8.4), the SU(2) dot product involving the superfield H, is taken with the
superfield Q which has the quantum numbers of the quark doublet g rather
than the antiquark doublet q{. If we revert for the moment to the procedure
of Section 5.1, and write W just in terms of the corresponding scalar fields,

the first term in (8.4) is
yliljli]_i (ﬁLj Hl? — CiLj Hu+) (87)

The first term here will, via (5.8) and (5.3), generate a term in the Lagrangian
(cf. (5.45))

1. ,
—Eyi.’ (Xas * Xun, + Xuy - Xa,)VHY + heee = =y (xa, - xu ) HL + h.c.
(8.8)

When Hl? develops a (real) vacuum value v, (see Section 10.1), this will
become a Dirac-type mass term for the u-quark (cf. (8.2)):

_(mllinﬁLi : Xlle + h.C) (8‘9)
where
Myij = VoYL . (8.10)

Transforming to the basis which diagonalizes the mass matrices then
leads to flavour mixing exactly as in the SM (see Section 22.7 of [7], for
example).]

The fermion masses are evidently proportional to the relevant y parameter, so
since the top, bottom and tau are the heaviest fermions in the SM, it is sometimes
useful to consider an approximation in which the only non-zero y’s are

Y=V Ve = Y = e (8.11)



124 The MSSM

Writing W now in terms of the scalar fields, and omitting the p term, this gives

Wiy = BB )] = wo[bL(LHy — BLH])] = yo[FL(eHy — 2H])].
(8.12)

The minus signs in W have been chosen so that the terms yt?LfL, ybELEL and
y: T have the correct sign to generate mass terms for the top, bottom and tau
when (Hl?) # 0 and (H(?) # 0. Note that 7L, by, and % could equally well have
been written as 7}, b} and #}.

It is worth recalling that in such a SUSY theory, in addition to the Yukawa
couplings of the SM, which couple the Higgs fields to quarks and to leptons, there
must also be similar couplings between Higgsinos, squarks and quarks, and between
Higgsinos, sleptons and leptons (i.e. we change two ordinary particles into their
superpartners). There are also scalar quartic interactions with strength proportional
to ytz, as noted in Section 5.1, arising from the term ‘|W;|?’ in the scalar potential
(7.74). In addition, there are scalar quartic interactions proportional to the squares
of the gauge couplings g and g’ coming from the ‘D-term’ in (7.74). These include
quartic Higgs couplings such as are postulated in the SM, but now appearing with
coefficients that are determined in terms of the parameters g and g’ already present in
the model. The important phenomenological consequences of this will be discussed
in Chapter 10.

Although there are no conventional mass terms in (8.4), there is one term which is
quadratic in the fields, the so-called ‘i term’, which is the SU(2)-invariant coupling
of the two different Higgs superfield doublets:

W(n term) = uH, - Hy = p(Hy Hop — Hu Har), (8.13)

where the subscripts 1 and 2 denote the isospinor component. This is the only such
bilinear coupling of the Higgs fields allowed in W, because the other possibilities
HJ - Hy,and HJ - H4 involve hermitian conjugate fields, which would violate SUSY.
As always, we need the F-component of (8.13), which is (see (6.61))

u[(H'Fy + H{ F} — H)F) — H)F)) — (A} - Ay — H) - H})].  (8.14)

and we must include also the hermitian conjugate of (8.14). The second term in
(8.14) will contribute to (off-diagonal) Higgsino mass terms. The first term has the
general form ‘W; F;’ of Section 5.1, and hence (see (5.22)) it leads to the following
term in the scalar potential, involving the Higgs fields:

P HS 1P+ 1 Hy 1P+ | H + |HY)). (8.15)

But these terms all have the (positive) sign appropriate to a standard ‘m?¢f¢’
bosonic mass term, not the negative sign needed for electroweak symmetry breaking
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via the Higgs mechanism (recall the discussion following equation (1.4)). This
means that our SUS Y-invariant Lagrangian cannot accommodate electroweak sym-
metry breaking.

Of course, SUSY itself — in the MSSM application we are considering — cannot
be an exact symmetry, since we have not yet observed the s-partners of the SM
fields. We shall discuss SUSY breaking briefly in Chapter 9, but it is clear from
the above that some SUSY-breaking terms will be needed in the Higgs potential, in
order to allow electroweak symmetry breaking. This very fact even suggests that a
common mechanism might be responsible for both symmetry breakings.

The ‘u term’ actually poses something of a puzzle [53]. The parameter u should
presumably lie roughly in the range 100 GeV-1 TeV, or else we’d need delicate can-
cellations between the positive || terms in (8.15) and the negative SUS Y-breaking
terms necessary for electroweak symmetry breaking (see a similar argument in Sec-
tion 1.1). We saw in Section 1.1 that the general ‘no fine-tuning’ argument suggested
that SUS Y-breaking masses should not be much greater than 1 TeV. But the  term
does not break SUSY! We are faced with an apparent difficulty: where does this
low scale for the SUSY-respecting parameter © come from? References to some
proposed solutions to this ‘u problem’ are given in [46] Section 5.1, where some
further discussion is also given of the various interactions present in the MSSM;
see also [47] Section 4.2, and particularly the review of the x problem in [54].

8.2 The SM interactions in the MSSM

By now we seem to have travelled a long way from the Standard Model, and it
may be helpful, before continuing with features of the MSSM which go beyond the
SM, to take a slight backwards detour and reassure ourselves that the familiar SM
interactions are indeed contained (in possibly unfamiliar notation) in the MSSM.

We start with the QCD interactions of the SM quarks and gluons. First of all,
the 3- and 4-gluon interactions are as usual contained in the SU(3). field strength
tensor —iFuuchfL " (cf. (7.29)), where the colour index ‘a’ runs from 1 to 8; see,
for example, Section 14.2.3 of [7]. Next, consider the SU(3), triplet of ‘up’ quarks,
described by the 4-component Dirac field

v, = (1//“) . (8.16)
Xu

We shall not indicate the colour labels explicitly on the spinor fields. The covariant
derivative (7.68) is (see, for example, Section 13.4 of [7])

1
Dy =+ Sig A Ay (8.17)
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where g; is the strong interaction coupling constant,and A, = (A1, A2y, ..., Agy)
are the eight gluon fields. Then the gauge-kinetic term for the field y, yields the
interaction

1 .
—Egsxgﬁ")\- A Xu- (8.18)

In (8.18) the 3 x 3 A matrices act on the colour labels of y,, while the 2 x 2 6#
matrices act on the spinor labels. As regards the R-part y,,, we write it as the charge
conjugate of the L-type field for @ (cf. (2.93) and (2.94))

Yu=x

We now need the interaction term for the field xg. Antiquarks belong to the 3
representation of SU(3), and the matrices representing the generators in this rep-
resentation are —\* /2 (see [7], page 21). Hence the QCD interaction term for the
L-chiral multiplet containing yg is

= ionx.. (8.19)

[=1IreY

1
—Egsxié“(—k*) - Auxa. (8.20)

We can rewrite (8.20) in terms of the field x; which appears in W, by inverting
(8.19):

1 . _ . 1 _
——gs( - 102)(1_?*)%“(—)\*) . Au( — 102)(5*) = g xToaG A" - AL xSt

2 2
(8.21)

Now take the transpose of (8.21), remembering the minus sign from interchanging
fermion operators, and use (2.83) together with the fact that the A matrices are
hermitian; this converts (8.21) to

1
—Egs)(ga“)\ - AuXs- (8.22)

On the other hand, the QCD interaction for the Dirac field

C
W, = (Xﬁ) (8.23)
Xu
is
LeiBuy A A, = — g [xSlo A~ Auxt + x/64A - A
_Egs uY am u—_igs[Xﬁo' CAuXg T Xu0 : MXu]- (8.24)
We see that (8.24) is recovered as the sum of (8.18) and (8.22).

It may be useful, in passing, to show the analogous steps in the Majorana for-
malism. As explained in Section 2.5.1, we need two Majorana fields to represent
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the degees of freedom in W, namely

Wl = (Xﬁ = oo ) (8.25)
Xu
and
vl = (wg :‘/figzw> , (8.26)
so that
W, = PR + PO, (8.27)

Now, we already know from Section 2.4 that a Weyl kinetic energy term of the form
x1i6#0,, x is equivalent to the Majorana expression 3 ¥{iy**9, Wy, and similarly
for lﬂiol‘auw. Thus the QCD interactions for (8.25) and (8.26) are contained in

1. |
5 Wiy DL + E‘Ifﬁ“iy“Dﬂ\Dl\"&“. (8.28)

In evaluating (8.28) we must remember that although the R-part of \DI\‘[,’[“ and the
L-part of W' transform as 3’s of SU(3), the L-part of \Dl\lﬁ“ and the R-part of W}
transform as 3’s. The interaction part of the first term of (8.28) is therefore

1.
—Z\IJK(/[U]/M[A . AMPL — )\* . AMPR]\I"K(/IU

1 —oHA* A 0
— Xut w Xu
=3 ( 0 6“)\-AM>WM

1 . Ly . * — I
= —Z[XUT(—MZ)(—U‘ A* A ooy + XJG‘ A A,L)(u]. (8.29)

Exercise 8.1 Show that the first term of (8.29) is equal to the second, and hence
that the interaction part of the first term in (8.28) is

1
_EngJ5MA : AH.XU’ (830)
as in (8.18).
In a similar way the interaction part of the second term of (8.28) is just
1
— &V A Ay, (8.31)

and we have again recovered the full (Dirac) QCD term (this time using ., rather
than x;).

The electroweak interactions of the SM particles emerge very simply. The trilin-
ear and quadrilinear self-interactions of the weak gauge bosons are contained in the
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SU2)L x U(1), field strength tensors. Consider the interaction of the left-handed

electron-type doublet
(“&) (8.32)
Xe

with the SU(2) gauge field W#, which is given by
1 4 v,
=58 (x! x)e"r-w, (X ) (8.33)
Xe

Here the 7’s act in the two-dimensional ‘v.—e’ space, while &/ acts on the spinor
components of x, and x.. On the other hand, in 4-component Dirac notation the
interaction is

1 v L)
——g(¥, LV b W ), 8.34
2g( veL eL)V w ( "IjeL ( )

weL=<1_2”5)\pe:(§) (8.35)

and similarly for ¥, . Now for any two Dirac fields ¥; and ¥, we have

_ 0 1 0 o+ 0 _
Yoy WL = (0 X;) (1 O) (o“ 0 ) (Xl) = XerO'“)(]. (8.36)

It is therefore clear that (8.33) is the same as (8.34).
The U(1), covariant derivative takes the form

where

1
0, + Eig/YLfBu on ‘L’ SU(2) doublets (8.37)
and
1
0y + Eig'nyBM on ‘R’ SU(2) singlets, (8.38)
where for example yp . = —1 and yr. = —2. For the doublet (8.32), therefore, the

U(1), interaction is

1, i )
—58 yee(x) x0)6" By, (f{) , (8.39)

which is the same as the 4-component version

1 / T, T, " "IIVEL
58 Yee(UhLWe)y" By, (‘I’eL> . (8.40)
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We replace the singlet . by xs as before. If we denote the y-value of xz by yre,
we have

YL& = —)Re- (8.41)

The U(1), interaction for xg is therefore

1, t o
58 (=YRe)Xe 0" By X (8.42)
Performing the same steps as in (8.20)—(8.22) we find that (8.42) is the same as
1
—Eg/YReXé:U”BMXé: (8.43)

which is the correct interaction for the R-part of the electron field (2.93).

In the quark sector, electroweak interactions will be complicated by the usual
intergenerational mixing, but no new point of principle arises; the simple examples
we have considered are sufficient for our purpose. We now proceed to discuss one
of the key predictions of the MSSM.

8.3 Gauge coupling unification in the MSSM

As mentioned in Section 1.2(b), the idea [55] that the three scale-dependent
(‘running”) SU3) x SU(2) x U(1) gauge couplings of the SM should converge
to a common value — or unify — at some very high energy scale does not, in fact,
prove to be the case for the SM itself, but it does work very convincingly in the
MSSM [56]. The evolution of the gauge couplings is determined by the numbers
and types of the gauge and matter multiplets present in the theory, which we have
just now given for the MSSM; we can therefore proceed to describe this celebrated
result.
The couplings a3 and o, are defined by

a3 = g2 /A, oy = g*/4w (8.44)

where g is the SU(3). gauge coupling of QCD and g is that of the electroweak
SU(2)L. The definition of the third coupling «; is a little more complicated. It
obviously has to be related in some way to g’>, where g’ is the gauge coupling
of the U(1), of the SM. The constants g and g’ appear in the SU(2);, covariant
derivative (see equation (22.21) of [7] for example)

D, =8, +ig(t/2)- W, +ig'(y/2)B,. (8.45)

The problem is that, strictly within the SM framework, the scale of ‘g’” is arbitrary:
we could multiply the weak hypercharge generator y by an arbitrary constant c,
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and divide g’ by ¢, and nothing would change. In contrast to this, the normalization
of whatever couplings multiply the three generators 7', 72 and 72 in (8.45) is fixed
by the normalization of the 7’s:

N R DR (8.46)
\272) 7 2% '

Since each generator is normalized to the same value, the same constant g must
multiply each one; no relative rescalings are possible. Within a ‘unified’ framework,
therefore, we hypothesize that some multiple of y, say ¥ = c¢(y/2), is one of the
generators of a larger group (SU(5) for instance), which also includes the generators
of SU(3). and SU(2),, all being subject to a common normalization condition; there
is then only one (unified) gauge coupling. The quarks and leptons of one family
will all belong to a single representation of the larger group, although this need not
necessarily be the fundamental representation. All that matters is that the generators
all have a common normalization. For example, we can demand the condition

Tr(c*(y/2)?) = Tr(13)? (8.47)

say, where #3 is the third SU(2);, generator (any generator will give the same result),
and the Trace is over all states in the representation: here, u, d, v, and e~. The
Traces are simply the sums of the squares of the eigenvalues. On the right-hand
side of (8.47) we obtain

3 1+1 +1+1—2 (8.48)
4 4 4 4 7 '
where the ‘3’ comes from colour, while on the left we find from Table 8.1
e (AR E L S P R (8.49)
36 36 9 9 4 4) " 6 '

It follows that

c= \/g (8.50)

so that the correctly normalized generator is

Y = \Ey/z. (8.51)
., 5
ig \/;Y B, (8.52)

The B, term in (8.45) is then
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indicating that the correctly normalized o is

3 5 g/2 _ g%
34w 4An’
Equation (8.53) can also be interpreted as a prediction for the weak angle 6y at

the unification scale: since g tanfyw = g’ = /3/5g, and g = g at unification, we
have tan 6y = /3/5, or

o (8.53)

3
sin® Oy (unification scale) = 3 (8.54)

We are now ready to consider the running of the couplings «;. To one loop order,
the renormalization group equation (RGE) has the form (for an introduction, see
Chapter 15 of [7], for example)

dOl,' . bl‘ 2
a2
where t = In Q and Q is the ‘running’ energy scale, and the coefficients b; are
determined by the gauge group and the matter multiplets to which the gauge bosons
couple. For SU(N) gauge theories with matter (scalars and fermions) in multiplets
belonging to the fundamental representation, we have (see [50], for example)

11 1 1

by = —N — —ns — —ng 8.56
N=7 3T gh (8.56)

where n; is the number of fermion multiplets (counting the two chirality states
separately), and ng is the number of (complex) scalar multiplets, which couple to
the gauge bosons. For a U(1)y gauge theory in which the fermionic matter particles
have charges Y and the scalars have charges Y, the corresponding formula is

(8.55)

2 , 1 2
blz—gzyf _EZYS' (8.57)
To examine unification, it is convenient to rewrite (8.55) as
—(a") = 2, 8.58
dr (al ) 2 (8.58)

which can be immediately integrated to give

b;
o Q) =o' (Qo) + 5, In(2/ Qo). (8.59)

where Qj is the scale at which running commences. We see that the inverse cou-
plings run linearly with In Q. Qy is taken to be myz, where the couplings are well
measured. ‘Unification’ is then the hypothesis that, at some higher scale Qy = my,
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the couplings are equal:
a1 (my) = aa(my) = az(my) = au. (8.60)

This implies that the three equations (8.59), fori = 1, 2, 3, become

b
ap' = ai'(my) + ﬁ In(my/mz) (8.61)
-1 -1 by
ay =, (mz)+ o In(my/myz) (8.62)
L b
o' = oy (mg) + ﬁ In(my /mz). (8.63)

Eliminating ay and In(my/mz) from these equations gives one condition relating
the measured constants o, Y(my) and the calculated numbers b;, which is

oy (mz) —az'(mz) by —bs

— = = . (8.64)
oy (mz) —ay (mz) bi—b
Checking the truth of (8.64) is one simple way [57] of testing unification quantita-
tively (at least, at this one-loop level).
Let us call the left-hand side of (8.64) Bcy,, and the right-hand side By,. For By,
we use the data

sin? By (myz) = 0.231 (8.65)
az(mz) = 0.119, or a5 '(mz) = 8.40 (8.66)
a,l(mz) = 128. (8.67)

We are not going to bother with errors here, but the uncertainty in a3(myz) is about
2%, and that in sin’ Ow(myz) and aep(mz) is much less. Here ., is defined by
Oem = €% /47, where e = g sin Oy, Hence

a;y '(mz) = ag!(my) sin® By (mz) = 29.6. (8.68)
Finally,
g% = g’ tan’ by (8.69)
and hence
—1 3 r—1 3 -1 2
a, (mz) = ga (my) = §a2 (mz) cot” Bw(mz) = 59.12. (8.70)

From these values we obtain

Bexp = 0.72. (8.71)
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Now let us look at By,. First, consider the SM. For SU(3). we have

1
M =11 — J12="7. (8.72)
For SU(2);. we have
22 1 19
PM=""_4__=_—", 8.73
2 3 6 6 (8.73)
and for U(1)y we have
23
BV ==55D 002 = 5 5 Z(ys/z) (8.74)
f
2.20 11 41

3— === =—— (8.75)
5 6 52 10

Hence, in the SM, the right-hand side of (8.64) gives

By = 11 _ 0508 (8.76)
h=og T Y '

which is in very poor accord with (8.71).

What about the MSSM? Expression (8.56) must be modified to take account
of the fact that, in each SU(N), the gauge bosons are accompanied by gauginos
in the regular representation of the group. Their contribution to by is —2N /3. In
addition, we have to include the scalar partners of the quarks and of the leptons, in
the fundamental representations of SU(3) and SU(2); and we must not forget that we
have two Higgs doublets, both accompanied by Higgsinos, all in the fundamental
representation of SU(2). These changes give

PYSSM =7 2 — élZ: 3, (8.77)
and

A AT Y S | (8.78)
It is interesting that the sign of b, has been reversed. For b}55M, there is no contri-

bution from the gauge bosons or their fermionic partners. The left-handed fermions
contribute as in (8.74), and are each accompanied by corresponding scalars, so that

3
pMSSM (fermions and sfermions) = —3 10 = —6. (8.79)

The Higgs and Higginos contribute

bllvlSSM(Higgs and Higgsinos) = —

| W
N

——é (8.80)
=-3 .

Bl =
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Figure 8.1 (a) Failure of the SM couplings to unify. (b) Gauge coupling unification
in the MSSM. The blob represents model-dependent threshold corrections at the
GUT scale. [Figure reprinted with permission from the review of Grand Unified
Theories by S. Raby, Section 15 in The Review of Particle Physics, W.-M. Yao
et al. Journal of Physics G33: 1-1232 (2006), p. 175, IOP Publishing Limited.]

In total, therefore,

33
pMSSM — - (8.81)
From (8.77), (8.78) and (8.81) we obtain [57]
5
BYSSM — 5 =0714 (8.82)

which is in excellent agreement with (8.71).

This has been by no means a ‘professional’ calculation. One should consider
two-loop corrections. Furthermore, SUSY must be broken, presumably at a scale
of order 1 TeV or less, and the resulting mass differences between the particles
and their s-partners will lead to ‘threshold’ corrections. Similarly, the details of
the theory at the high scale (in particular, its breaking) may be expected to lead to
(high-energy) threshold corrections. A recent analysis by Pokorski [58] concludes
that the present data are in good agreement with the predictions of supersymmetric
unification, for reasonable estimates of such corrections. Figure 8.1, which is taken
from Raby’s review of grand unified theories [59], illustrates the situation.

Returning to (8.62) and (8.63), and inserting the values ofotz_1 (mz) and ozl_l (my),
we can obtain an estimate of the unification scale my. We find

10
In(my/mz) = —[ar" nz) — a7 (my)] = 33.1, (8.83)
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which implies
my =~ 2.2 x 10'° GeV. (8.84)

The first estimates of my with essentially the field content of the MSSM were made
by Dimopoulos et al. [60], Dimopoulos and Georgi [20] and Sakai [21]; see also
Ibafiez and Ross [61] and Einhorn and Jones [62].

Of course, one can make up any number of models yielding the experimental
value By, but there is no denying that the prediction (8.82) is an unforced con-
sequence simply of the matter content of the MSSM, and agreement with (8.71)
was clearly not inevitable. It does seem to provide support both for the inclusion
of supersymmetric particles in the RGE, and for gauge unification.

8.4 R-parity

As stated in Section 8.1, the ‘minimal’ supersymmetric extension of the SM is spec-
ified by the choice (8.4) for the superpotential. There are, however, other gauge-
invariant and renormalizable terms which could also be included in the superpo-
tential, namely ([46] Section 5.2)

Waroi = ALy - Lige + 2L - Qdi + ui L - H, (8.85)
and
Wap=1 = ngﬁiﬁzﬂk- (8.86)

The superfields Q; carry baryon number B = 1/3 and ii, d carry B = —1/3, while
L; carries lepton number L = 1 and e carries L = —1. Hence the terms in (8.85)
violate lepton number conservation by one unit of L, and those in (8.86) violate
baryon number conservation by one unit of B. Now, B- and L-violating processes
have never been seen experimentally. If both the couplings A; and A g were present,
the proton could decay via channels such as etn? utn® ..., etc. The non-
observance of such decays places strong limits on the strengths of such couplings,
which would have to be extraordinarily small (being renormalizable, the couplings
are dimensionless, and there is no natural suppression by a high scale such as
would occur in a non-renormalizable term). It is noteworthy that in the SM, there
are no possible renormalizable terms in the Lagrangian which violate B or L; this
is indeed a nice bonus provided by the SM. We could of course just impose B
and L conservation as a principle, thus forbidding (8.85) and (8.86), but in fact
both are known to be violated by non-perturbative electroweak effects, which are
negligible at ordinary energies but which might be relevant in the early universe.
Neither B nor L can therefore be regarded as a fundamental symmetry. Instead, an
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alternative symmetry is required, which forbids (8.85) and (8.86), while allowing
all the interactions of the MSSM.

This symmetry is called R-parity [33, 34], which is multiplicatively conserved,
and is defined by

R = (_)3B+L+2S (887)

where s is the spin of the particle. One quickly finds that R is +1 for all conven-
tional matter particles, and (because of the (—)> factor) —1 for all their s-partners
(‘sparticles’). Since the product of (—)* is 41 for the particles involved in any
interaction vertex, by angular momentum conservation, it is clear that both (8.85)
and (8.86) do not conserve R-parity, while the terms in (8.4) do. In fact, every
interaction vertex in (8.4) contains an even number of R = —1 sparticles, which
has important phenomenological consequences:

* The lightest sparticle (‘LSP’) is absolutely stable, and if electrically uncharged it could
be an attractive candidate for non-baryonic dark matter.

¢ The decay products of all other sparticles must contain an odd number of LSP’s.

¢ In accelerator experiments, sparticles can only be produced in pairs.

In the context of the MSSM, the LSP must lack electromagnetic and strong
interactions; otherwise, LSP’s surviving from the Big Bang era would have bound
to nuclei forming objects with highly unusual charge to mass ratios, but searches for
such exotics have excluded all models with stable charged or strongly interacting
particles unless their mass exceeds several TeV, which is unacceptably high for the
LSP. An important implication is that in collider experiments LSP’s will carry away
energy and momentum while escaping detection. Since all sparticles will decay into
at least one LSP (plus SM particles), and since in the MSSM sparticles are pair-
produced, it follows that at least 2m 0 missing energy will be associated with each
SUSY event, where m 0 is the mass of the LSP (often taken to be a neutralino; see
Section 11.2). In e~ e’ machines, the total visible energy and momentum can be
well measured, and the beams have very small spread, so that the missing energy
and momentum can be well correlated with the energy and momentum of the LSP’s.
In hadron colliders, the distribution of energy and longitudinal momentum of the
partons (i.e. quarks and gluons) is very broad, so in practice only the missing
transverse momentum (or missing transverse energy £ ) is useful.

Further aspects of R-parity, and of R-parity violation, are discussed in [46—49].
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SUSY breaking

Since SUSY is manifestly not an exact symmetry of the known particle spectrum,
the issue of SUSY breaking must be addressed before the MSSM can be applied
phenomenologically. We know only two ways in which a symmetry can be bro-
ken: either (a) by explicit symmetry-breaking terms in the Lagrangian, or (b) by
spontaneous symmetry breaking, such as occurs in the case of the chiral symme-
try of QCD, and is hypothesized to occur for the electroweak symmetry of the
SM via the Higgs mechanism. In the electroweak case, the introduction of explicit
symmetry-breaking (gauge non-invariant) mass terms for the fermions and massive
gauge bosons would spoil renormalizability, which is why in this case spontaneous
symmetry breaking (which preserves renormalizability) is preferred theoretically —
and indeed is strongly indicated by experiment, via the precision measurement of
finite radiative corrections. We shall give a brief introduction to spontaneous SUSY
breaking, since it presents some novel features as compared, say, to the more ‘stan-
dard’ examples of the spontaneous breaking of chiral symmetry in QCD, and of
gauge symmetry in the electroweak theory. But in fact there is no consensus on how
‘best’ to break SUSY spontaneously, and in practice one is reduced to introducing
explicit SUSY-breaking terms as in approach (a) after all, which parametrize the
low-energy effects of the unknown breaking mechanism presumed (usually) to op-
erate at some high mass scale. We shall see in Section 9.2 that these SUSY-breaking
terms (which are gauge invariant and super-renormalizable) are quite constrained
by the requirement that they do not re-introduce quadratic divergences which would
spoil the SUSY solution to the SM fine-tuning problem of Section 1.1; nevertheless,
over 100 parameters are needed to characterize them.

9.1 Breaking SUSY spontaneously

The fundamental requirement for a symmetry in field theory to be spontaneously
broken (see, for example, [7] Part 7) is that a field, which is not invariant under the

137
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symmetry, should have a non-vanishing vacuum expectation value. That is, if the
field in question is denoted by ¢’, then we require (0|¢’(x)|0) # 0. Since ¢’ is not
invariant, it must belong to a symmetry multiplet of some kind, along with other
fields, and it must be possible to express ¢’ as

¢'(x) =i[Q, p(x)], 9.1)

where Q is a hermitian generator of the symmetry group, and ¢ is a suitable field
in the multiplet to which ¢’ belongs. So then we have

(019"10) = (0l[Q, ¢110) = (0liQ¢ — ip Q|0) # 0. 9.2)

Now the vacuum state |0) is usually assumed to be such that Q|0) = 0, since this
implies that |0) is invariant under the transformation generated by Q, but if we take
010) = 0, we violate (9.2). Hence for spontaneous symmetry breaking we have to
assume Q|0) £ 0.

Itis tempting to infer, in the latter case, that the application of Q to a vacuum state
|0) gives, not zero, but another vacuum state |0)’, leading to the physically suggestive
idea of ‘degenerate vacua’. But this notion is not mathematically correct. There are,
in fact, only two alternatives: either Q|0) = 0, or the state Q]0) has infinite norm,
and hence cannot be regarded as a legitimate state. A fuller discussion is provided
on pages 197-8 of [7], for example.

In the case of SUSY, there is a remarkable connection between the symmetry
generators Q,, Q}; of Chapter 3, and the Hamiltonian. The SUSY algebra (4.48) is

{Qar O} = (6™)ap Py 9.3)
So we have
QIQ]; + Q¥Q1 = (") 1P, = P+ Ps
0,0 + 010, = (6" P, = Py — Ps, (9.4)

and consequently

1 N
H=P=5(0:10]+ 0101+ 0,00 + 010, 9.5)

where H is the Hamiltonian of the theory considered. Hence we find

1
(0IH10) = S((01Q1 10} + (012} 2110) + -+ )
1 T 2 2
= 5( [(Q110DI” + 1(Q1 10" + - - -). 9.6)
It follows that the vacuum energy of a SUS Y-invariant theory is zero.
Now we may assume that the kinetic energy parts of the Hamiltonian density

do not contribute to the vacuum energy. On the other hand, the SUSY-invariant



9.1 Breaking SUSY spontaneously 139

potential energy density V is given by (7.74) (which could equally well be written
in terms of the auxiliary fields F; and D*). We remarked at the end of Section 7.3
that the form (7.74) implies that V is always greater than or equal to zero — and we
now see that V' = 0 corresponds to the SUSY-invariant case.

For SUSY to be spontaneously broken, therefore, V must have no SUS Y-invariant
minimum: for, if it did, such a configuration would necessarily have zero energy, and
since this is the minimum value of 1V, SUSY breaking will simply not happen, on
energy grounds. In the spontaneously broken case, when some field develops a non-
zero vev, the minimum value of VV will be a positive constant, and the vacuum energy
will diverge. This is consistent with (9.6) and the infinite norm (in this case) of Q,|0).

What kinds of field ¢’ could have a non-zero value in the SUSY case? Returning
to (9.1), with Q now a SUSY generator, we consider all such possible commutation
relations, beginning with those for the chiral supermultiplet. The commutation
relations of the Q’s with the fields are determined by the SUSY transformations,
which are

Sep =il - 0,01 =6 -x
Sex =il§ - Q, x]1 = —i0"i026"0, 0 + EF
S:F =i[&-Q, F]= —i&'6"d,x. 9.7)

Now Lorentz invariance implies that only scalar fields may acquire vevs, since
only such vevs are invariant under Lorentz transformations. Considering the terms
on the right-hand side of each of the three relations in (9.7), we see that the only
possibility for a symmetry-breaking vev is

(0| F]0) # 0. 9.8)

This is called ‘F-type SUSY breaking’, since it is the auxiliary field F which
acquires a vev.

Recall now that in W—Z models, with superpotentials of the form (5.9) such as
are used in the MSSM, we had

z—_(a¢i) —_< lj¢j+§yljk¢j¢k> ’ ()

and V(¢) = | F;|?, which has an obvious minimum when all the ¢’s are zero. Hence
with this form of W, SUSY can not be spontaneously broken. To get spontaneous
SUSY breaking, we must add a constant to F;, that is a linear term in W (see
footnote 2 of Chapter 5, page 72). Even this is tricky, and it needs ingenuity to
produce a simple working model. One (due to O’Raifeartaigh [63]) employs three
chiral supermultiplets, and takes W to be

W =me1¢s + 8o (3 — M?), (9.10)
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where m and g may be chosen to be real and positive, and M is real. This
produces

—F =mgs, —F] = g(¢3 — M?), —F{ = me, + 2g¢2¢5. (9.11)
Hence

V=|F*+ B+ | B
2
=m?|s* + &°|93 — M?|” + Im¢y + 2g¢r3/*. 9.12)

The first two terms in (9.12) cannot both vanish at once, and so there is no possible
field configuration giving V = 0, which is the SUSY-preserving case. On the other
hand, the third term in (9.12) can always be made to vanish by a suitable choice of
¢1, given ¢, and ¢3. Hence to find the (SUSY breaking) minimum of V it suffices
to examine just the first two terms of (9.12), which depend only on ¢3. Introducing
the real and imaginary parts of ¢ via

¢3 = (A+1B)/V?2, 9.13)
these terms are
1 1 2
Vs = E(mz . 2g2M2)A2 + E(mz +2g2M2)82 + %(Az + Bz)z +g2M4.
9.14)

The details of the further analysis depend on the sign of the coefficient
(m?* — 2g>M?). We shall consider the case

m? > 2g°M?; (9.15)

the reader may pursue the alternative one (or consult Section 7.2.2 of [49]).
Assuming (9.15) holds, V; clearly has a (SUSY breaking) minimum at

A=B=0 ie ¢3=0, (9.16)
which implies from (9.12) that we also require
¢1=0. 9.17)

Conditions (9.16) and (9.17) are interpreted as the corresponding vevs. Note, how-
ever, that ¢, is left undetermined (a so-called ‘flat’ direction in field space). This
solution therefore gives

(0| F110) = (0| 110y = 0, 9.18)
but

(O|F110) = gM?. (9.19)
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The minimum value of V is g2M*, which is strictly positive, as expected. The
parameter M does indeed have the dimensions of a mass: it can be understood as
signifying the scale of spontaneous SUSY breaking, via (0| Fg |0) # 0, much as the
Higgs vev sets the scale of electroweak symmetry breaking.

Now all the terms in W must be gauge-invariant, in particular the term linear in
¢, in (9.10), but there is no field in the SM which is itself gauge-invariant (i.e. all
its gauge quantum numbers are zero, often called a ‘gauge singlet’). Hence in the
MSSM we cannot have a linear term in W, and must look beyond this model if we
want to pursue this form of SUSY breaking.

Nevertheless, it is worth considering some further aspects of F-type SUSY break-
ing. We evidently have

0 # (OI[Q, x(x)]|0) = Z(O|Q|")(”|X(X)|0) — (Olx()In)(n]Q10),  (9.20)
where |n) is a complete set of states. It can be shown that (9.20) implies that there
must exist among the states |n) a massless state |g) which couples to the vacuum via
the generator Q: (0| Q|g) # 0. This is the SUSY version of Goldstone’s theorem
(see, for example, Section 17.4 of [7]). The theorem states that when a symmetry
is spontaneously broken, one or more massless particles must be present, which
couple to the vacuum via a symmetry generator. In the non-SUSY case, they are
(Goldstone) bosons; in the SUSY case, since the generators are fermionic, they
are fermions, ‘Goldstinos’.! You can check that the fermion spectrum in the above
model contains a massless field x, — it is in fact in a supermultiplet along with F>,
the auxiliary field which gained a vev, and the scalar field ¢,, where ¢ is the field
direction along which the potential is ‘flat’ — a situation analogous to that for the
standard Goldstone ‘wine-bottle’ potential, where the massless mode is associated
with excitations round the flat rim of the bottle.

Exercise9.1 Show that the mass spectrum of the O’Raifeartaigh model consists of
(a) six real scalar fields with tree-level squared masses 0, O (the real and imaginary
parts of the complex field ¢,) m?, m? (ditto for the complex field ¢;) and m? —
2g°M?, m? 4 2g>M? (the no longer degenerate real and imaginary parts of the
complex field ¢3); (b) three L-type fermions with masses 0 (the Goldstino ),
m, m (linear combinations of the fields x; and yx3). (Hint: for the scalar masses,
take (¢,) = 0for convenience, expand the potential about the point ¢ = ¢, = ¢3 =
0, and examine the quadratic terms. For the fermions, the mass matrix of (5.22)
is Wiz = W3, = m, all other components vanishing; diagonalize the mass term

! Note the (conventionally) different use of the ‘-ino’ suffix here: the Goldstino is not the fermionic superpartner of
a scalar Goldstone mode, but is itself the (fermionic) Goldstone mode. In general, the Goldstino is the fermionic
component of the supermultiplet whose auxiliary field develops a vev.
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by introducing the linear combinations x_ = (x; — 13)/V2, x+ = G+ x3)/V2.
See also [49] Section 7.2.1.)

In the absence of SUSY breaking, a single massive chiral supermultiplet consists
(as in the W—Z model of Chapter 5) of a complex scalar field (or equivalently two
real scalar fields) degenerate in mass with an L-type spin-1/2 field. It is interesting
that in the O’Raifeartaigh model the masses of the ‘3’ supermultiplet, after SUSY
breaking, obey the relation

(m? —2¢*M?) + (m* + 2¢°M?) = 2m?* = 2m?> (9.21)

X3’

which is evidently a generalization of the relation that would hold in the SUSY-
preserving case g = 0. Indeed, there is a general sum rule for the tree-level (mass)?
values of complex scalars and chiral fermions in theories with spontaneous SUSY
breaking [64]:

E 2 _ E : 2
M eal scalars — 2 M chiral fermions (922)

where it is understood that the sums are over sectors with the same electric charge,
colour charge, baryon number and lepton number. Unfortunately, (9.22) implies that
this kind of SUSY breaking cannot be phenomenologically viable, since it requires
the existence of (for example) light scalar partners of the light SM fermions — and
this is excluded experimentally.

We also need to consider possible SUSY breaking via terms in a gauge super-
multiplet. This time the transformations are

SeWH = i[g - 0, WH] = —%@TM“ +a%lgrE)

1 1
e Y =1i[E- 0, A" = — olGVEFS, + —ED”
& 2«/§ 7Y \/E
8: D% = i[£ - 0, D] = ——(&T6"(Da)* — (D) 6"e).  (9.23)
V2
Inspection of (9.23) shows that, as for the chiral supermultiplet, only the auxiliary
fields can have a non-zero vev:

(0|D*(0) # 0, (9.24)

which is called D-type symmetry breaking.

At first sight, however, such a mechanism can not operate in the MSSM, for
which the scalar potential is as given in (7.74). ‘F-type’ SUSY breaking comes
from the first term |W;|?, D-type from the second, and the latter clearly has a
SUSY-preserving minimum at } = 0 when all the fields vanish. But there is an-
other possibility, rather like the ‘linear term in W’ trick used for F-type breaking,
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which was discovered by Fayet and Iliopoulos [65] for the U(1) gauge case. The
auxiliary field D of a U(1) gauge supermultiplet is gauge-invariant, and a term in the
Lagrangian proportional to D is SUS Y-invariant too, since (see (7.38)) it transforms
by a total derivative. Suppose, then, that we add a term M?> D, the Fayet—Iliopoulos
term, to the Lagrangian (7.72). The part involving D is now

1
Lp =MD+ 5D2 — 1D eipld:. (9.25)

where e; are the U(1) charges of the scalar fields ¢; in units of g;, the U(1) coupling
constant. Then the equation of motion for D is

D=—M"+g ) eidor (9.26)

The corresponding potential is now

2
Vp = % (—M2 + g Ze,-qjj(/)i) : (9.27)
Consider for simplicity the case of just one scalar field ¢, with charge eg;. Ifeg; > 0
there will be a SUSY-preserving solution, i.e. with Vp = 0, and (0| D|0) = 0, and
hence |(0|¢|0)| = (M?/eg,)"/?. This is actually a Higgs-type breaking of the U(1)
symmetry, and it will also generate a mass for the U(1) gauge field. On the other
hand, if eg; < 0, we find the SUSY-breaking solution Vp = %M“ when (0|D|0) =
—M? and (0|¢|0) = 0, which is U(1)-preserving. In fact, we then have

1
Lp=—M"—legi|M*¢ + - - 9.28)

showing that the ¢ field has a mass M (|eg;|)!/2. The gaugino field A and the gauge
field A* remain massless, and A can be interpreted as a Goldstino.

This mechanism can not be used in the non-Abelian case, because no term of the
form M2 D® can be gauge-invariant (it is in the adjoint representation, not a singlet).
Could we have D-term breaking in the U(1), sector of the MSSM? Unfortunately
not. What we want is a situation in which the scalar fields in (9.27) do not acquire
vevs (for example, because they have large mass terms in the superpotential), so
that the minimum of (9.27) forces D to have a non-zero (vacuum) value, thus
breaking SUSY. In the MSSM, however, the squark and slepton fields have no
superpotential mass terms, and so would not be prevented from acquiring vevs
en route to minimizing (9.27). However, this would imply the breaking of any
symmetry associated with quantum numbers carried by these fields, for example
colour, which is not acceptable.
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One common viewpoint seems to be that spontaneous SUSY breaking could
occur in a sector that is weakly coupled to the chiral supermultiplets of the MSSM.
For example, it could be (a) via gravitational interactions — presumably at the
Planck scale, so that SUSY-breaking mass terms would enter as (the vev of an
F- or D-type field which has dimension M2, and is a singlet under the SM gauge
group)/Mp, which gives +/(vev) ~ 10! GeV, say; or (b) via electroweak gauge
interactions. These possibilities are discussed in [46] Section 6. Recent reviews,
embracing additional SUSY-breaking mechanisms, are contained in [47] Section 3,
[48] Chapters 12 and 13, and [49] Chapter 11.

9.2 Soft SUSY-breaking terms

In any case, however the necessary breaking of SUSY is effected, we can always
look for a parametrization of the SUSY-breaking terms which should be present
at ‘low’ energies, and do phenomenology with them. It is a vital point that such
phenomenological SUSY-breaking terms in the (now effective) Lagrangian should
be ‘soft’, as the jargon has it — that is, they should have positive mass dimension,
for example ‘M2¢>’, ‘M¢>’, ‘M x - x’, etc. The reason is that such terms (which
are super-renormalizable) will not introduce new divergences into, for example,
the relations between the dimensionless coupling constants which follow from
SUSY, and which guarantee the cancellation of quadratic divergences and hence
the stability of the mass hierarchy, which was one of the prime motivations for
SUSY in the first place. As we saw in Section 1.1, a typical leading one-loop
radiative correction to a scalar (mass)? is

sz ~ (}\scalar - gfzermion)Az’ (929)

where A is the high-energy cutoff. In SUSY we essentially have Agcqar = gfzermion,
and the dependence on A becomes safely logarithmic. Suppose, on the other
hand, that the dimensionless couplings Agcalar O gfermion themselves received di-
vergent one-loop corrections, arising from renormalizable (rather than super-
renormalizable) SUS Y-breaking interactions.? Then Acatar and germion Would differ
by terms of order In A, with the result that the mass shift (9.29) becomes very
large indeed, once more. In general, soft SUSY-breaking terms maintain the can-
cellations of quadratically divergent radiative corrections to scalar (mass)’ terms,
to all orders in perturbation theory [66]. This means that corrections §m? go like

2 One example of such a renormalizable SUSY-breaking interaction would be the Standard Model Yukawa
interaction that generates mass for ‘up’ fermions and which involves the charge-conjugate of the Higgs doublet
that generates mass for the ‘down’ fermions. The argument being given here implies that we do not want to
generate ‘up’ masses this way, but rather via a second, independent, Higgs field.
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mgoﬁ In(A /mgon), Where mgog is the typical mass scale of the soft SUSY-breaking

terms. This is a stable shift in the sense of the SM fine-tuning problem, provided
of course that (as remarked in Section 1.1) the new mass scale m g is not much
greater than 1 TeV, say. The origin of this mass scale remains unexplained.

The forms of possible gauge invariant soft SUSY-breaking terms are quite lim-
ited. They are as follows.

(a) Gaugino masses for each gauge group:
1 L - .
_E(M3ga . gd + MQW“ - we + M]B -B+ hC) (930)

where in the first (gluino) term a runs from 1 to 8 and in the second (wino) term it runs
from 1 to 3, the dot here signifying the Lorentz invariant spinor product. The fields g,
W¢ and B are all L-type spinors, in a slightly simpler notation than Xz €etc. As in the
case of the spinor field in the W—Z model (cf. (5.41)), the gaugino masses are given
by the absolute values |M;|. For simplicity, we shall assume that the parameters M;
are all real, which implies that they will not introduce any new CP-violation. There is,
however, no necessity for the M; to be positive, and we shall discuss how to deal with
the possibility of negative M; in Section 11.1.1.
(b) Squark (mass)? terms:

2 ~f A 2 =7 = 2 of =
—m;Qp - Q) — mp;uy UL — mgijdLidLj’ (9.31)

where i and j are family labels, colour indices have been suppressed, and the first
term is an SU(2), -invariant dot product of scalars in the 2 and 2 representations; for
example,

Ol 0y =ie +disu. (9.32)

We remind the reader that all fields f: L; can equally well be written as f Li.
(c) Slepton (mass)? terms:

—mi L} L;—m} &2 (9.33)
(d) Higgs (mass)? terms:
—m} Hf - H, —m} H] - Hy — (bH, - Hy +h.c.) (9.34)
where the SU(2); -invariant dot products are
H - H, = [H}|> + |H°]” (9.35)
and similarly for HdT - Hy, while

H,-Hy= H}'Hy — H HY. (9.36)
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(e) Triple scalar couplings®
—aéjftu Qj . Hu + aéjju Qj . Hd + aéngiZ,j . Hd + h.c. (937)

The five (mass)? matrices are in general complex, but must be hermitian so
that the Lagrangian is real. All the terms (9.30)—(9.37) manifestly break SUSY,
since they involve only the scalars and gauginos, and omit their respective
superpartners.

On the other hand, it is important to emphasize that the terms (9.30)—(9.37)
do respect the SM gauge symmetries. The b term in (9.34) and the triple scalar
couplings in (9.37) have the same form as the ‘u’ and “Yukawa’ couplings in the
(gauge-invariant) superpotential (8.4), but here involving just the scalar fields, of
course. It is particularly noteworthy that gauge-invariant mass terms are possible
for all these superpartners, in marked contrast to the situation for the known SM
particles. Consider (9.30) for instance. The gluinos are in the regular (adjoint) rep-
resentation of a gauge group, like their gauge boson superpartners: for example, in
SU(2) the winos are in the ¢+ = 1 (‘vector’) representation. In this representation,
the transformation matrices can be chosen to be real (the generators are pure imag-
inary, (T(l)) jk = —i€;ji), which means that they are orthogonal rather than unitary,
just like rotation matrices in ordinary three-dimensional space. Thus quantities of
the form ‘W - W’ are invariant under SU(2) transformations, including local (i.e.
gauge) ones since no derivatives are involved; similarly for the gluinos and the
bino. Coming to (9.31) and (9.33), squark and slepton mass terms of this form
are allowed if i and j are family indices, and the m ’s are hermitian matrices in
family space, since under a gauge transformation b —> Ugi, ¢; — Ugj, where
U'U =1, and the ¢’s stand for a squark or slepton flavour multiplet. Higgs mass
terms like —mﬁu H) H, are of course present in the SM already, and (as we saw in
Chapter 8 — see the remarks following equation (8.15)) from the perspective of the
MSSM we need to include such SUSY-violating terms in order to have any chance
of breaking electroweak symmetry spontaneously (the parameter written as ‘my; ’
can of course have either sign). The b term in (9.34) is like the SUSY-invariant
w term of (8.13), but it only involves the Higgs, not the Higgsinos, and is hence
SUSY breaking. Mass terms for the Higgsinos themselves are forbidden by gauge
invariance, but the p-term of (8.13) is gauge invariant and does, as noted after
(8.14), contribute to off-diagonal Higgsino mass terms.

The upshot of these considerations is that mass terms which preserve electroweak
symmetry can be written down for all the so-far unobserved particles of the MSSM.

3" A further set of triple scalar couplings is also possible, namely —c,ﬂjﬁu Q;- H; + cfjjdzu Qj . HJ + céjELiZj .

HJ + h.c. However, these are generally omitted, because it turns out that they are either absent or small in many
models of SUSY-breaking (see [46] Section 4, for example).
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By contrast, of course, similar mass terms for the known particles of the SM would
all break electroweak symmetry explicitly, which is unacceptable (as leading to
non-renormalizability, or unitarity violations; see, for example, [7] Sections 21.3,
21.4 and 22.6): the masses of the known SM particles must all arise via spontaneous
breaking of electroweak symmetry. Thus it could be argued that, from the viewpoint
of the MSSM, it is natural that the known particles have been found, since they are
‘light’, with a scale associated with electroweak symmetry breaking. The masses
of the undiscovered particles, on the other hand, can be significantly higher.* As
against this, it must be repeated that electroweak symmetry breaking is not possible
while preserving SUSY: the Yukawa-like terms in (8.4) do respect SUSY, but will
not generate fermion masses unless some Higgs fields have a non-zero vev, and
this will not happen with a potential of the form (7.74) (see also (8.15)); similarly,
the gauge-invariant couplings (7.67) are part of a SUSY-invariant theory, but the
electroweak gauge boson masses require a Higgs vev in (7.67). So some, at least,
of the SUSY-breaking parameters must have values not too far from the scale of
electroweak symmetry breaking, if we don’t want fine tuning. From this point of
view, then, there seems no very clear distinction between the scales of electroweak
and of SUSY breaking.

Unfortunately, although the terms (9.30)—(9.37) are restricted in form, there are
nevertheless quite a lot of possible terms in total, when all the fields in the MSSM
are considered, and this implies very many new parameters. In fact, Dimopoulos
and Sutter [67] counted a total of 105 new parameters describing masses, mixing
angles and phases, after allowing for all allowed redefinitions of bases. It is worth
emphasizing that this massive increase in parameters is entirely to do with SUSY
breaking, the SUSY-invariant (but unphysical) MSSM Lagrangian having only one
new parameter (u) with respect to the SM.

One may well be dismayed by such an apparently huge arbitrariness in the
theory, but this impression is in a sense misleading since extensive regions of
parameter space are in fact excluded phenomenologically. This is because generic
values of most of the new parameters allow flavour changing neutral current (FCNC)
processes, or new sources of CP violation, at levels that are excluded by experiment.
For example, if the matrix m% in (9.33) has a non-suppressed off-diagonal term
such as

(m}),,.2l i (9.38)
(on the basis in which the lepton masses are diagonal), then unacceptably large

lepton flavour changing (1 — e) will be generated. We can, for instance, envisage

4 The Higgs is an interesting special case (taking it to be unobserved as yet). In the SM its mass is arbitrary
(though see footnote 3 of Chapter 1, page 11), but in the MSSM the lightest Higgs particle is predicted to be no
heavier than about 140 GeV (see Section 10.2).
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aloop diagram contributing to © — e + y, in which the p first decays virtually (via
its L-component) to fip + bino through one of the couplings in (7.72), the ji;. then
changing to & via (9.38), followed by & re-combining with the bino to make an
electron (L-component), after emitting a photon. The upper limit on the branching
ratio for 4 — e + y is 1.2 x 107!, and our loop amplitude will be many orders
of magnitude larger than this, even for sleptons as heavy as 1 TeV. Similarly, the
squark (mass)” matrices are tightly constrained both as to flavour mixing and as to
CP-violating complex phases by data on K — K® mixing, D° — D® and B® — B
mixing, and the decay b — sy . For arecent survey, with further references, see [47]
Section 5.

The existence of these strong constraints on the SUSY-breaking parameters at
the SM scale suggests that whatever the actual SUSY-breaking mechanism might
be, it should be such as to lead naturally to the suppression of such dangerous
oft-diagonal terms. One framework which guarantees this is that of supergravity
unification [68—70], specifically the ‘minimal supergravity (nSUGRA)’ theory [69,
70], in which the parameters (9.30)—(9.37) take a particularly simple form at the
GUT scale:

M3 = My = My = my; (9.39)

g=Mi=mi=m:=m;=mgl, (9.40)

My

where ‘1’ stands for the unit matrix in family space;
my = mpy, = mg; (9.41)
and

= AoYu, & = AoYd, @ = AoYe, (9.42)

where the y matrices are those appearing in (8.4). Relations (9.40) imply that at
mp all squark and sleptons are degenerate in mass (independent of both flavour and
family, in fact) and so, in particular, squarks and sleptons with the same electroweak
quantum numbers can be freely transformed into each other by unitary transforma-
tions. All mixings can then be eliminated, apart from that originating via the triple
scalar terms, but conditions (9.42) ensure that only the squarks and sleptons of
the (more massive) third family can have large triple scalar couplings. If m /2, Ag
and b of (9.34) all have the same complex phase, the only CP-violating phase
in the theory will be the usual Cabibbo—Kobayashi—-Maskawa (CKM) one (leav-
ing aside CP-violation in the neutrino sector). Somewhat weaker conditions than
(9.39)—(9.42) would also suffice to accommodate the phenomenological constraints.
(For completeness, we mention other SUSY-breaking mechanisms that have been
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proposed: gauge-mediated [71], gaugino-mediated [72] and anomaly-mediated [ 73]
symmetry breaking.)

We must now remember, of course, that if we use this kind of effective Lagrangian
to calculate quantities at the electroweak scale, in perturbation theory, the results
will involve logarithms of the form>

In[(high scale, for example the unification scale my)/low scale mz],  (9.43)

coming from loop diagrams, which can be large enough to invalidate perturbation
theory. As usual, such ‘large logarithms’ must be re-summed by the renormalization
group technique (see Chapter 15 of [7] for example). This amounts to treating all
couplings and masses as running parameters, which evolve as the energy scale
changes according to RGEs, whose coefficients can be calculated perturbatively.
Conditions such as (9.39)-(9.42) are then interpreted as boundary conditions on
the parameters at the high scale.

This implies that after evolution to the SM scale the relations (9.39)—(9.42) will
no longer hold, in general. However, RG corrections due to gauge interactions will
not introduce flavour-mixing or CP-violating phases, while RG corrections due
to Yukawa interactions are quite small except for the third family. It seems to be
generally the case that if FCNC and CP-violating terms are suppressed at a high
0y, then supersymmetric contributions to FCNC and CP-violating observables are
not in conflict with present bounds, although this may change as the bounds are
improved.

9.3 RGE evolution of the parametersin the (softly broken) M SSM

It is fair to say that the apparently successful gauge unification in the MSSM (Sec-
tion 8.3) encourages us to apply a similar RG analysis to the other MSSM couplings
and to the soft parameters (9.39)—(9.42). One-loop RGEs for the MSSM are given
in [47] Appendix C.6; see also [46] Section 5.5.

A simple example is provided by the gaugino mass parameters M; (i =1, 2, 3)
whose evolution (at 1-loop order) is determined by an equation very similar to
(8.55) for the running of the ¢;, namely

dM; b;

_ 2w M, 44
ar 27 i ©.44)

5 Expression (9.43) may be thought of in the context either of running the quantities ‘down’ in scale; i.e. from
a supposedly ‘fundamental’ high scale Qo ~ my to a low scale ~ mz; or, as in (8.61)—(8.63), of running ‘up’
from a low scale Q¢ ~ mz to a high scale ~ my (in order, perhaps, to try and infer high-scale physics from
weak-scale input). Either way, a crucial hypothesis is, of course, that no new physics intervenes between ~ mz
and ~ my.
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From (8.55) and (9.44) we obtain

1 dMi 1 dOl,'
— - M —— =0, (9.45)
a; dr af dr
and hence
d
—(M; /o) = 0. 9.46
dt( /i) (9.46)

It follows that the three ratios (M;/a;) are RG-scale independent at 1-loop order.
In mSUGRA-type models, then, we can write

M;
(Q) _ _mip ’ 9.47)
a;(Q) a;(mp)
and since all the ¢;’s are already unified below Mp we obtain
M M. M
1(Q)  Mx(Q)  Ms3(0) (9.48)

ai(Q) (@) a3(Q)
at any scale Q, up to small 2-loop corrections and possible threshold effects at high
scales.
Applying (9.48) at Q = mz we find

5
Mi(mz) = z;&zg Ma(imz) = 3 tan’ b (mz) Ma(mz) = 0.5Ma(mz)  (949)
and
. 29
Ms(mz) = zizg Ma(mz) = %aﬂmz%(m) ~ 3.5M(my),

(9.50)

where we have used (8.65)—(8.67). Equations (9.49) and (9.50) may be summarized
as

M3(mz) . Mz(mz) . M](mz) ~7:2:1. (951)

This simple prediction is common to most supersymmetric phenomenology. It im-
plies that the gluino is expected to be heavier than the states associated with the
electroweak sector. (The latter are ‘neutralinos’, which are mixtures of the neutral
Higgsinos (H?, IEI(?) and neutral gauginos (B, W°), and ‘charginos’, which are mix-
tures of the charged Higgsinos (FIUJF, I:Ig) and winos (W, W™); see Sections 11.2
and 11.3.)

A second significant example concerns the running of the scalar masses. Here the
gauginos contribute to the RHS of ‘dm?/dt’ with a negative coefficient, which tends
to increase the mass as the scale Q is lowered. On the other hand, the contributions
from fermion loops have the opposite sign, tending to decrease the mass at low
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scales. The dominant such contribution is provided by top quark loops since y; is
so much larger than the other Yukawa couplings. If we retain only the top quark
Yukawa coupling, the 1-loop evolution equations for mf; , m& and m? are

Qs
dm%u [3X,
Pl reaie 60, M5 — —alM /4n (9.52)
dm? X, 32 2
Qs t
Tw =l ?a3M32 — 60, M3 — Eale] /471 (9.53)
dm?  [2x, 32 32
oo |22 ZEM? — o M / 4r, (9.54)
d |47 3 15
where
X = 2|yl*(mpy, +m3, +m3 + A7) (9.55)

and we have used (9.42). In contrast, the corresponding equation for mﬁd, to which
the top quark loop does not contribute, is

2
A, _ [—6a2M22 - gale] / dr. (9.56)
dr 5

Since the quantity X, is positive, its effect is always to decrease the appropriate
(mass)? parameter at low scales. From (9.52)—(9.54) we can see that, of the three
masses, mé is (a) decreased the most because of the factor 3, and (b) increased
the least because the gluino contribution (which is larger than those of the other
gauginos) is absent. On the other hand, m%[d will always tend to increase at low
scales. The possibility then arises that m%lu could run from a positive value at
Qo ~ 10'° GeV to a negative value at the electroweak scale, while all the other
(mass)? parameters of the scalar particles remain positive.® This can indeed happen,
thanks to the large value of the top quark mass (or equivalently the large value of
y,): see [74-80]. Such a negative (mass)? value would tend to destabilize the point
H? = 0, providing a strong (although not conclusive; see Section 10.1) indication
that this is the trigger for electroweak symmetry breaking. A representative example
of the effect is shown in Figure 9.1 (taken from [80]).

The parameter y; in (9.52)—(9.54), and the other Yukawa couplings in (8.4),
all run too; consideration of the RGEs for these couplings provides some further
interesting results. If (for simplicity) we make the approximations that only third-
family couplings are significant, and ignore contributions from o and o, the 1-loop

6 Negative values for the squark (mass)? parameters would have the undesirable consequence of spontaneously
breaking the colour SU(3).
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Figure 9.1 The running of the soft MSSM masses from the GUT scale to the
electroweak scale, for a sample choice of input parameters (see [80]). The three
gaugino masses M, M, and M are labelled by B, W and g respectively. Similarly,
the squark and slepton masses are labelled by the corresponding field label. The
dashed lines labelled Hy and Hy represent the evolution of the masses my, and
my,. For convenience, negative values of mlz_I are shown on this plot as negative

values of my,: that is, the figure shows sign(mﬁu) \/ |mﬁu | [ Figure reprinted with

permission from G. L. Kane et al., Phys. Rev. D49 page 6183 (1994). Copyright
(1994) by the American Physical Society.]

RGEs for the parameters yt, y, and y, are

d 16

% - 4y—7; [(6y§ +y2) /A — ?as:| (9.57)
dy, W 16

W [(6y§ + 3¢+ 2) /AT — ?xs] (9.58)
dyr Ve

- = 167T2[4y$+3y§]. (9.59)

Asin equations (9.52)—(9.54) the Yukawa couplings and the gauge coupling o; enter
the right-hand side of (9.57)—(9.59) with opposite signs; the former tend to increase
the y’s at high scales, while o tends to reduce y; and yy. It is then conceivable that,
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starting at low scales with y; > y, > y., the three y’s might unify at or around my;.
Indeed, there is some evidence that the condition y,(my) = y.(my), which arises
naturally in many GUT models, leads to good low-energy phenomenology [81-84].

Further unification with y,(my) must be such as to be consistent with the known
top quark mass at low scales. To get a rough idea of how this works, we return to
the relation (8.10), and similar ones for mg;; and m.;;, which in the mass-diagonal
basis give

nmy My My

BZ=— YW=" Ye=—, (9.60)
Uy U4 V4

where vy is the vev of the field H(? . Itis clear that the viability of y; ~ y, will depend
on the value of the additional parameter v, /v4 (denoted by tan §; see Section 10.1).
It seems that “Yukawa unification’ at my may work in the parameter regime where
tan B ~ m/my, [85-91].

In the following chapter we shall discuss the Higgs sector of the MSSM where,
even without assumptions such as (9.39)—(9.42), only a few parameters enter, and
one important prediction can be made: namely, an upper bound on the mass of the
lightest Higgs boson, which is well within reach of the Large Hadron Collider.
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The Higgs sector and electroweak symmetry
breaking in the MSSM

10.1 The scalar potential and the conditions for
electroweak symmetry breaking

We largely follow the treatment in Martin [46], Section 7.1. The first task is to find
the potential for the scalar Higgs fields in the MSSM. As frequently emphasized,
there are two complex Higgs SU(2) doublets which we are denoting by H, =
(H;, H?) which has weak hypercharge y = 1, and Hy = (H?, H;)whichhasy =
—1. The classical (tree-level) potential for these scalar fields is made up of several
terms. First, quadratic terms arise from the SUS Y-invariant (‘F-term’) contribution
(8.15) which involves the p parameter from (8.4), and also from SUSY-breaking
terms of the type (9.34). The latter two contributions are

my, (Hr [P+ | HOP) +md (|H) + [Hy ). (10.1)

where despite appearances it must be remembered that the arbitrary parameters
‘my.” and ‘mf; * may have either sign, and

b(HHy — HHY) +h.c. (10.2)

To these must be added the quartic SUS Y-invariant ‘D-terms’ of (7.74), of the form
(Higgs)?> (Higgs)?, which we need to evaluate for the electroweak sector of the
MSSM.

There are two groups G, SU(2);, with coupling g and U(1), with coupling g'/2
(in the convention of [7]; see equation (22.21) of that reference). For the first, the
matrices 7% are just %/2, and we must evaluate

> (H{(x*/2)Hy + Hj(x*/2) H)(H](z* /2) Hy + H{(z" /2)Hy)

= (H[(T/2)H,) - (Hi(1/2)H,) + (H](T/2)Hy) - (H}(/2)Hy)
+2(HJ(T/2)HU) . (H;(T/Z)Hd). (10.3)
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a c
Hu:(b):Hd:(d>, (104)

then brute force evaluation of the matrix and dot products in (10.3) yields the result

If we write

1 2 2 2 2512 * * * *
Z{[(Ial + 1b7) = (Ic]” + |d|9)]” + 4(ac™ + bd™)(a"c + b*d)}, (10.5)

so that the SU(2) contribution is (10.5) multiplied by g2/2. The U(1) contribution
is

1 g/2
5§/ (H]Hy = H{HiF = S (a4 b)) = (e +1dP)P. - (106)
Re-writing (10.5) and (10.6) in the notation of the fields, and including the quadratic
pieces, the complete potential for the scalar fields in the MSSM is
2 2 _
V= (Il + my ) (1HS T+ [HY) + (1l + mig ) (| HE|™ + 1HG 1)
(8> +¢%
8

2
 (1H P | HD [ 1B P+ S B P 07

+[b(HfHy — HHY) +he]+

We prefer not to re-write () + mﬁu) and (|u|* + mfld) as m% and m%, say, so as
to retain a memory of the fact that |u|? arises from a SUS Y-invariant term, and is
necessarily positive, while mﬁu and m%{d are SUSY-breaking and of either sign a
priori.

We must now investigate whether, and if so under what conditions, this potential
can have a minimum which (like that of the simple Higgs potential (1.4) of the SM)
breaks the SU(2). x U(1), electroweak symmetry down to U(1)en.

We can use the gauge symmetry to simplify the algebra somewhat. As in the
SM (see, for example, Sections 17.6 and 19.6 of [7]) we can reduce a possible vev
of one component of either H, or Hy to zero by an SU(2), transformation. We
choose H,- = 0 at the minimum of V. The conditions H,- = 0 and dV/dH; =0
then imply that, at the minimum of the potential, either

Hy =0 (10.8)
or
e
b+ 7ltl(?mrff =0. (10.9)
The second condition (10.9) implies that the b term in (10.7) becomes
2 2
| HY||HY)| (10.10)
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which is definitely positive, and unfavourable to symmetry-breaking. As we shall
see, condition (10.8) leads to a negative b-contribution. Accepting alternative (10.8)
then, it follows that neither Hu+ nor H; acquire a vev, which means (satisfactorily)
that electromagnetism is not spontaneously broken. We can now ignore the charged
components, and concentrate on the potential for the neutral fields which is

Vo = (I +m3 ) |HO|P + (1l + m3) | HY)

2 72
— (bHYH? +h.c.) + %(\Hﬂz —|[HP)’. a0

This is perhaps an appropriate point to note that the coefficient of the quartic
term is not a free parameter, but is determined by the known electroweak couplings
(g% + g'%)/8 ~ 0.065). This is of course in marked contrast to the case of the SM,
where the coefficient A /4 in (1.4) is a free parameter. Recalling from (1.3) that, in
the SM, the mass of the Higgs boson is proportional to ~/A, for given Higgs vev,
this suggests that in the MSSM there should be a relatively light Higgs particle. As
we shall see, this is indeed the case, although the larger field content of the Higgs
sector in the MSSM makes the analysis more involved.

Consider now the b-term in (10.11), which is the only one that depends on the
phases of the fields. Without loss of generality, b may be taken to be real and positive,
any possible phase of b being absorbed into the relative phase of H? and Hé) .Fora
minimum of V,, the product Hl? H(? must be real and positive too, which means that
(at the minimum) the vev’s of H? and HY must have equal and opposite phases.
Since these fields have equal and opposite hypercharges, we can make a U(1),
gauge transformation to reduce both their phases to zero. All vev’s and couplings
can therefore be chosen to be real, which means that CP is not spontaneously broken
by the 2-Higgs potential of the MSSM, any more than it is in the 1-Higgs potential
of the SM.!

The scalar potential now takes the more manageable form

( 2+ /2)
Ly

(10.12)

Vo = (Il + mi )x? + (|ul? +m}, ) y* — 2bxy +

where x = |HY|, y = |Hy|;itdepends on three parameters, ||* + mf , [u|* + m,
and b. We want to identify the conditions required for the stable minimum of V,
to occur at non-zero values of x and y. First note that, along the special (‘flat’)

! While this is true at tree level, CP symmetry could be broken significantly by radiative corrections, specifically
via loops involving third generation squarks [92]; this would imply that the three neutral Higgs eigenstates
would not have well defined CP quantum numbers (for the usual, CP conserving, case, see comments following
equation (10.96) below).
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direction x = y, the potential will be unbounded from below (no minimum) unless
2\ul* +myy +mjy, >2b> 0. (10.13)

Hence (|p)? + mlz_,u) and (|pu)* + m%{d) cannot both be negative. This implies, refer-
ring to (10.12), that the point x = y = 0 cannotbe a maximum of V,. If (|u|> + mzHu)
and (|u|> + mZHd) are both positive, then the origin is a minimum (which would be
an unwanted symmetry-preserving solution) unless

(Inl® + mi, ) (Inl® + myy,) < b2, (10.14)

which is the condition for the origin to be a saddle point. Equation (10.14) is
automatically satisfied if either (|ut|* 4+ mf; ) or (|u|> + m3; ) is negative.

The b-term favours electroweak symmetry breaking, but it is not required to be
non-zero. What can be said about m%{u and mlz_,d‘? A glance at conditions (10.13)
and (10.14) shows that they cannot both be satisfied if m%{u = mﬁd, a condition that
is typically taken to hold at a high scale ~10'® GeV. However, the parameter mflu
is, in fact, the one whose renormalization group evolution can drive it to negative
values at the electroweak scale, as discussed at the end of the previous chapter
(see Figure 9.1). It is clear that a negative value of mﬁ will tend to help condition
(10.14) to be satisfied, but it is neither necessary nor sufficient (|| may be too large
or b too small). A ‘large’ negative value for m%{ is a significant factor, but it falls
short of a demonstration that electroweak symmetry breaking will occur via this
mechanism.

Having established the conditions (10.13) and (10.14) required for |Hl? | and
|Hc?| to have non-zero vevs, say v, and vq4, respectively, we can now proceed to
write down the equations determining these vevs which follow from imposing the
stationary conditions

Vh Wy

= =0. 10.15
ox ay ( )

Performing the differentiations and setting x = v, and y = vgq we obtain
1
(Inl* + mf, Jva = bvg + Z(g2 + M (v = v2)v, (10.16)
1
(Il + iy, Jva = bvy — 2(8% + 8)(v — vg)va. (10.17)

One combination of v, and vy is fixed by experiment, since it determines the
mass of the W and Z bosons, just as in the SM. The relevant terms in the electroweak
sector are

(D, H,)' (D" H,) + (D, Hy)' (D" Hy) (10.18)
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where (see equation (22.21) of [7])
D, =29, +ig(T/2)-W, +i(g'/2)yB,. (10.19)

The mass terms for the vector particles come (in unitary gauge) from inserting the
vevs for H, and Hy, and defining

Z" = (—g'B"+gW)/(g" + g™ (10.20)

One finds
my = %(g2 +&?)(v; + ) (10.21)
my, = %gz(vﬁ + v3). (10.22)

Hence (see equations (22.29)—(22.32) of [7])

2m2 1/2
(W2 +3)" = (—2‘”) = 174GeV. (10.23)
g
Equations (10.16) and (10.17) may now be written as
(Inl* + mi; ) = beot B + (m3/2) cos 28 (10.24)
(Inl® + mpy,) = btan B — (m3/2) cos 28, (10.25)
where
tan B = v,/ vq. (10.26)

It is easy to check that (10.24) and (10.25) satisfy the necessary conditions (10.13)
and (10.14). We may use (10.24) and (10.25) to eliminate the parameters || and b
in favour of tan 8, but the phase of u is not determined. As both v, and vy are real
and positive, the angle g lies between 0 and /2.

We are now ready to calculate the mass spectrum.

10.2 The tree-level masses of the scalar Higgs states in the MSSM

In the SM, there are four real scalar degrees of freedom in the Higgs doublet (1.5);
after electroweak symmetry breaking (i.e. given a non-zero Higgs vev), three of
them become the longitudinal modes of the massive vector bosons W* and Z°,
while the fourth is the neutral Higgs boson of the SM, the mass of which is found
by considering quadratic deviations away from the symmetry-breaking minimum
(see Chapter 19 of [7], for example). In the MSSM, there are eight real scalar
degrees of freedom. Three of them are massless, and just as in the SM they get
‘swallowed’ by the W* and Z°. The masses of the other five are again calculated
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by expanding the potential about the minimum, up to second order in the fields.
Although straightforward, the work is complicated by the fact that the quadratic
deviations are not diagonal in the fields, so that some diagonalization has to be done
before the physical masses can be extracted.

To illustrate the procedure, consider the Lagrangian

Lo = 0,¢10"¢1 + 0020”2 — V(1 $2), (10.27)

where V(¢1, ¢2) has a minimum at ¢; = vy, ¢ = v,. We expand V about the
minimum, retaining only quadratic terms, and discarding an irrelevant constant;
this yields

Lo s = i 01+ 8,02 — 220 gy — )
12,quad wP1 1 P2 2 23¢>12 1 1
192V Vv
— 587%(@ — )’ - o5g, @1 W@ ) (1028)

where the derivatives are evaluated at the minimum (v;, v;). Defining
$1 = V21 —v1). 2= V2(¢2— v2), (10.29)

(10.28) can be written as
| DU P v &
L12,quad = 50,010"¢1 + £0,020" ¢ — (1 p2)M™ | 7~ |, (10.30)
2 2 2 03

where the (mass)? matrix M*! is given by

4 "
M = % (“2; Qi) , (1031)
where
V= 827‘/(1)1, V7). (10.32)
Yo 0¢idg;

The matrix M*! is real and symmetric, and can be diagonalized via an orthogonal
transformation of the form

¢y\ _ [cosa —sina &
(¢_>_(Sina cosoz)(@)' (10.33)

If the eigenvalues of M*! are mi and m?, we see that in the new basis (10.30)
becomes

1 1 1 1
Lioqua = 50,$+0" b4 + 50,0-0"¢ — 5<¢+>2mi - 5<¢7>2m2_, (10.34)
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from which it follows (via the equations of motion for ¢, and ¢_) that m%r and m?
are the squared masses of the modes described by ¢ and ¢_.

We apply this formalism first to the pair of fields (ImH_?, Ich?). The part of our
scalar potential involving this pair is

Va = (I +md ) (ImHY) + (Jul? +m3,) (ImHY)® + 2b(ImHY) (ImHY)

2 2
+ %[(Rehﬁ?)z + (ImHY)* — (ReHY)” — (ImHY)*]".  (1035)
Evaluating the second derivatives at the minimum point, we find the elements of

the (mass)> matrix:

M} = |ul® + my, + (gzjig/z)(vf —v3) = beot B, (10.36)
where we have used (10.16), and similarly
M} =b, M =btanp. (10.37)
The eigenvalues of M*! are easily found to be
mi =0, m =2b/sin2p. (10.38)

The eigenmode corresponding to the massless state is
x/i[ sin B(ImH_)) — cos B(ImHy)], (10.39)
and this will become the longitudinal state of the Z°. The orthogonal combination
V2[ cos B(ImH?) + sin f(ImHY)] (10.40)
is the field of a scalar particle ‘A% with mass
mao = (2b/ sin28)"/2. (10.41)

In discussing the parameter space of the Higgs sector of the MSSM, the pair of
parameters (b, tan B) is usually replaced by the pair (m 40, tan ).

Next, consider the charged pair (H,;f, Hy T). In this case the relevant part of the
Lagrangian is

N Y
Lonquas = O B G HD) o+ @ B 0 B = — e HIH
u u
R L i AT U o AR
—1 _d d + — Mt Hd +1 —+u d >
dOH; "0 H, dH9H, dH, "0 H,

(10.42)
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where we use (10.7) for V, and the derivatives are evaluated at H) = v,, H) =

vd, HuJr = Hy = 0. We write the potential terms as

H+
(H T H)M] (HET> (10.43)
d
where
ME M
qu:( s +> (10.44)
ch M M

with M3, = 92V /dH, "0 H; etc. Performing the differentiations and evaluating
the results at the minimum, we obtain

sq beot B+ g%v3/2 b+ g*v,va/2
Mch = .

10.45
b+ g*vyve/2  btan B + g*v2/2 ( )

2

This matrix has eigenvalues 0 and m%v + my,.

the superposition

The massless state corresponds to

Gt =sinBH} —cos BH; ', (10.46)
and it provides the longitudinal mode of the W+ boson. There is a similar state
G~ = (G™)T, which goes into the W~ . The massive (orthogonal) state is

H* = cos BH;} + sin BH, ", (10.47)
which has mass my+ = (m%v + mio)l/z, and there is a similar state H~ = (H ).
Note that after diagonalization (10.42) becomes

8,GHO"*GH+@HNO*H) —mi  HTTHT (10.48)

and the equation of motion for H* shows that mlz_l+ is correctly identified with the
physical squared mass, without the various factors of 2 that appeared in our example
(10.28)—(10.34) of two neutral fields.

Finally, we consider the coupled pair (Re H? — v,, ReHY — v4), which is of the
same type as our example, and as the pair ImH?, ImH}). The (mass)* matrix is

bcot B + m3 sin’ —b — (m2sin2B)/2
My = poymasin P (msin24)/ (10.49)
’ —b — (m% sm2,3)/2 btan B +m% cos’ 8
which has eigenvalues
1
mpy = E{mio +m3 — [(m3 + m%)2 — 4m3om7 cos” 2,8]1/2} (10.50)

and

1
mip = 5 {mio +mj + [(m} + m3) — 4m3,m3 cos26]?). (10.51)
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Equations (10.50) and (10.51) display the dependence of mypo and myo on the pa-
rameters m o and 8. The corresponding eigenmodes will be given in Section 10.4.

The crucial point now is that, whereas the masses m 0, mpe and my+ are uncon-
strained (since they all grow as b/ sin 8 which can in principle be arbitrarily large),

the mass myp is bounded from above. Let us write x = m?

Ao 4= m%; then

1
mi, = 5{x +a — [(x +a)* — 4ax cos* 281'/?}. (10.52)

It is easy to verify that this function has no stationary point for finite values of x.
Further, for small x we find

miy ~ x cos 2, (10.53)
whereas for large x

my, — acos® 2B — (a*/4x) sin”> 4. (10.54)

2

reached as m3,

Hence the maximum value of m?

ho> — 00, is a cos? 28; that is

myo < myz| cos2B| < my. (10.55)

Note that | cos 28| vanishes when tan 8 = 1, and is maximized for small or large
tan 8 (B ~ 0 or /2).

This is the promised upper bound on the mass of one of the neutral Higgs bosons
in the MSSM, and it is surely a remarkable result [93,94]. The bound (10.55) has,
of course, already been exceeded by the current experimental lower bound [95]

myg > 114.4 GeV (95% c.l.). (10.56)

Fortunately for the MSSM, the tree-level mass formulae derived above receive sig-
nificant 1-loop corrections, particularly in the case of the h®, whose mass is shifted
upwards, possibly by a substantial amount [96-99]. One important contribution
to mﬁo arises from the incomplete cancellation of top quark and top squark loops,
which would cancel in the exact SUSY limit (recall the paragraph following equa-
tion (1.22)). The magnitude of this contribution depends on the top squark masses,
which we shall discuss in Section 11.4. If, for simplicity, we neglect top squark
mixing effects (i.e. set the off-diagonal elements of the mass-squared matrix of
(11.59) to zero), then the inclusion of this contribution modifies the bound (10.55)
to

4
2 3m;

2
m, <m; + ———
ho V4 2(..2 2

2 (Uu + Ud)

< In(ms/my) (10.57)

where m is the top quark mass and mg = 3(m? + m? ) is the average of the squared
masses of the two top squarks. To get an idea of the orders of magnitude involved,
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letus set mg = 500 GeV, together with m, = 174 GeV =(v2 + v3)'/?. Then (10.57)
gives

miy < m3 + (70 GeV)? = (115 GeV)>. (10.58)

Evidently for this a priori not unreasonable value of the top squark mass parameter,
the (approximate) 1-loop corrected squared mass mﬁo just clears the experimental
bound (10.56).

These simple considerations indicate that the shiftin mﬁo required for consistency
with the bound (10.55) may be attributable to radiative corrections. However, the
shift must be almost as large as the tree-level value, so that higher order effects
cannot be neglected. More complete treatments (see, for example, [100] and [101])
show that the inclusion of only the 1-loop terms somewhat overestimates the true
upper bound on mﬁo. Equivalently, to reach a given value of mﬁo using the more
complete calculation requires a larger value of mg. For example, if squark mixing
is still relatively small, then the bound (10.55) requires mgs ~ 800-1200 GeV. This
estimate is further increased if a lower value of m; is used.

The magnitude of these radiative corrections is obviously very sensitive to the
value of m;. It also depends on the quark mixing parameters. The latter may be tuned
S0 as to maximize myo for each value of m o and tan 8 (see [102] for example).
Typically, an increase of about 15 GeV in myp is produced, compared with the no-
mixing case. This, in turn, allows the bound (10.56) to be met for a smaller value
of mg: mg ~ 400-500 GeV.

It is natural to wonder how large m;e can become in the MSSM, keeping mg <
2 TeV say. A recent summary [103] which includes leading 2-loop effects and takes
the average top squark squared mass to be (2 TeV)?, concludes that in the ‘my™’
scenario [102], with m; = 179.4 GeV, the bound (10.56) places no constraint on
tan B, and predicts mpo < 140 GeV (with an accuracy of a few GeV). This is still an
extremely interesting result. In the words of Drees [104]: “If experiments. . . . fail to
find at least one Higgs boson [in this energy region], the MSSM can be completely
excluded, independent of the value of its 100 or so free parameters.”

In concluding this section, we should note that, while the bound (10.56) is
generally accepted, alternative interpretations of the data do exist. Thus Drees has
suggested [105] that the 2.3 o excess of events around 98 GeV and the 1.7 o excess
around 115 GeV reported by the four LEP experiments [95] might actually be
the h® and HY respectively (see also footnote 4 below, page 170). More recently,
DermiSek and Gunion have proposed [106] that the 98 GeV excess correlates well
with there being a Higgs boson of that mass with SM-like ZZh° coupling, which
decays dominantly via h® — aa, where ‘a’ is a CP-odd Higgs boson of the kind
present in the ‘next to minimal supersymmetric standard model’ (NMSSM), and
m, < 2my,. These authors argue further that this scenario is phenomenologically
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viable for parameter choices in the NMSSM which yield the lowest possible ‘fine-
tuning ’. This is an appropriate moment to take a small detour in that direction.

10.3 The SM fine-tuning problem revisited, in the MSSM

The foregoing discussion has provided estimates of the scale of mg required to
accommodate Higgs mass values in the range 115-140 GeV in the MSSM. At first
sight, the indicated superpartner range (500 GeV < mg < few TeV) seems pretty
much as anticipated from the qualitative account given in Section 1.1 of how a
supersymmetric theory could solve the fine-tuning problem present in the SM. On
further reflection, however, this range of mg — particularly the upper end of it — may
seem to present something of a problem for the MSSM. For one thing, the natural
parameter for bosonic mass terms is (mass)?, and if indeed mg ~ 1 TeV then m§
may be up to two orders of magnitude larger than the weak scale (given by m% or
(v2 + vfl)). While certainly very far from the problem created by the scale of Mf,
or MéUT, this relatively large scale of m% consitutes, for many physicists, a ‘little
fine-tuning problem’. Correspondingly, within the specific context of the MSSM,
the indicated scale of m3 leads, in the view of many, to an ‘MSSM fine-tuning
problem’. We shall give a brief outline of these concerns.

Let us begin by formulating more precisely the argument of Section 1.1 regard-
ing the fine-tuning problem in the SM. The SM is viewed as an effective theory,
valid below some cut-off Agy. At one-loop order, the (mass)? parameter in the
Higgs potential, which we shall now call —Mﬁ, receives quadratically divergent
contributions from Higgs boson, gauge boson and (dominantly) top quark loops,
giving a total shift [17,107]

3
8q(— ng) = m(w&, + M7 + My — 4mi) Ady, (10.59)
where v = 246 GeV. The one-loop corrected physical value —/,L%{phys is then
—Mlz_lphys = —/LIZ_I + 5q(_:“12{)’ or equivalently
3

iiphys = Hi — m@M&, + Mg + M — 4m?) Ady (10.60)
(compare equation (1.11)). If delicate cancellations between the two terms on the
right-hand side of (10.60) are to be avoided (i.e. no fine-tuning), then neither term
should be (say) one order of magnitude greater than the left-hand side. Now we

saw in Section 1.1 that the natural scale of (g phys is of order v/2. Hence we require

2

v
Ten77 (M3 + Mz + Mg — 4m{) Agy | < 10, (10.61)
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These considerations imply that for My = 115-200 GeV,
ASM < 2-3 TeV. (1062)

This is the conventional estimate of the scale at which, to avoid fine-tuning, new
physics beyond the SM should appear.?

In any supersymmetric extension of the SM (provided SUSY is softly broken,
see Section 9.2) such quadratic divergences disappear — and with them, this (acute)
form of the fine-tuning problem; this was, of course, the primary motivation for
the MSSM, as sketched in Section 1.1. Nevertheless, there may still be quite large
(logarithmic) loop corrections to the tree-level parameters in the Higgs sector po-
tential, which might imply the necessity for some residual fine-tuning, albeit of a
much milder degree.

Within the context of the softly-broken MSSM, one such ‘large logarithm’ arises
from the evolution of the parameter mﬁu , which is approximately given (to one-loop
order) by equation (9.52) together with (9.55). Assuming that the dominant mass
terms are those of the top squarks, we may further approximate (9.52) by

2
dmi, ~ 12y
~ ms s
dr 1672
where mg is, as before, the average of the two top squark squared masses. Thus, in

running down from a high scale Ay to the weak scale, m% receives a contribution

(10.63)

2
smi, ~ —=2Lm2in (ﬂ> . (10.64)
T ms
If we take Ay ~ 10718 (as in an mSUGRA theory, see Section 9.2), and y, ~ 1,
then the magnitude of (10.64) is of order 2 — 3m§.

Consider now equations (10.16) and (10.17) which express the minimization
conditions on the Higgs potential at tree-level. Eliminating the parameter ‘b’ and
using (10.21) and (10.26) we obtain

2 2 2
my, — my, tan” B
tan? B — 1

For simplicity let’s consider the case of large tan 8, so that (10.65) becomes

ms = —|u* + (10.65)

N —

1
Emg = —|u’| — mj . (10.66)

In order to satisfy this minimization condition ‘naturally’ (no fine tuning) we may
demand that terms on the right-hand side of (10.66) are no more than an order

2 However, if, as noted by Veltman [17], My happens to lie close to the value that cancels Sq(fulz_[), namely
My ~ 316 GeV, then Agy could consistently be much higher than (10.62). The implications of such a value of
My are discussed in [108], for example.
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of magnitude larger than the left-hand side, analogously to (10.61). Applying this
criterion to the shift (10.64) in mg; , we find

mg < 10m3/(~ 5), (10.67)
which implies
mg < 150 GeV, say. (10.68)

Surprisingly, this is a substantially lower value than the one we arrived at for
the ‘scale of new physics’ according to the previous SM argument, equation
(10.62). Numerically, this is essentially because the large logarithm in (10.64),
the strong coupling y;, and the factor 12 combine to compensate the usual loop
factor 1/(16m2).3

Returning to (10.68), it is clear that such a relatively low value of mg will
prevent mpo from meeting the experimental bound (10.56). In fact, a significant
increase in mg above the value (10.68) is required, because this quantity enters only
logarithmically in (10.57). On the other hand, m§ enters linearly in the fine-tuning
argument involving Smﬁu. In short, within the context of the MSSM, fine-tuning
gets exponentially worse as myo increases. If we take mg ~ 500 GeV as roughly the
smallest value consistent with (10.56), then the factor of 10 in (10.67) is replaced
by about 150, suggesting that the MSSM is already fine-tuned at the percentage
level; and the tuning becomes rapidly more severe as mg is increased.

The foregoing discussion is intended to illustrate in simple terms the nature of
the perceived fine-tuning problem in the MSSM, and to give a rough idea of its
quantitative extent. In fact, concerns about fine-tuning in models which require
supersymmetry to be manifest not too far from the weak scale have been expressed
for some time, and there are now extensive sub-literatures analysing the problem in
detail, and proposing responses to it. Of course, there can be no absolute definition
of the amount of fine-tuning that is ‘acceptable’ (1 part in 10? in 100? in 10007?),
but, in the absence of new guidance from experiment, the relative amount of fine-
tuning has been widely invoked as a useful criterion for guiding the search for
physics beyond the SM, or for concentrating on certain regions of parameter space
(cf. [106], for example). However, these developments lie beyond our scope.

10.4 Tree-level couplings of neutral Higgs bosons to SM particles

The phenomenolgy of the Higgs-sector particles depends, of course, not only on
their masses but also on their couplings, which enter into production and decay

3 Recall that it was this term that was responsible for the mechanism of radiative electroweak symmetry breaking
via a significant and negative contribution to mzHu, as discussed in Section 9.3, following equation (9.56).
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processes. In this section we shall derive some of the more important couplings of
the neutral Higgs states h®, H® and A, for illustrative purposes.

First, note that after transforming to the mass-diagonal basis, the relation (8.10)
and similar ones for mg;; and m.;; become

Myt = VuYu,c,t (10.69)
M4 sb = VdYd,s,b (10.70)
Me, v = VdYe,u,t- (10.71)

In this basis, the Yukawa couplings in the superpotential are therefore (making use
of (10.22))

m m
Vuey = et SMwed (10.72)
Uy \/Emw sin 8
m m
Vagp = —dsb  8Mdsb (10.73)
Ud V2my cos B
Mepr 8Me 11t

(10.74)

Yeur Vg V2my cos 8 .
Relations (10.72) and (10.73) suggest that very rough upper and lower bounds may
be placed on tan 8 by requiring that neither y; nor y, is non-perturbatively large.
For example, if tan 8 > 1 then y, < 1.4, and if tan 8 < 50 then y, < 1.25. Some
GUT models can unify the running values of y, y, and y, at the unification scale;
this requires tan 8 ~ m/my =~ 40, as noted at the end of Section 9.3.

To find the couplings of the neutral MSSM Higgs bosons to fermions, we return
to the Yukawa couplings (8.8) (together with the analogous ones for yflj and yéj ),
and expand H? and H(? about their vacuum values. In order to get the result in
terms of the physical fields K%, H°, however, we need to know how the latter are
related to Re H? and ReHé) ; that is, we require expressions for the eigenmodes of
the (mass)? matrix (10.49) corresponding to the eigenvalues mﬁo and m%lo of (10.50)
and (10.51). We can write (10.49) as

. 1 /A+ Bc —As
sq __ —
Miw =5 ( _As A BC) : (10.75)

where A = (m3, +m3), B = (m3, —m3), ¢ =cos2B, s =sin2B, and we have
used (10.41). Expression (10.75) is calculated in the basis (ﬁ(ReHl? — V),
\/E(ReHdo — vg)). Let us denote the normalized eigenvectors of (10.75) by uy and

uy, where
up = ( cosw ) uy = (Slno‘), (10.76)
— SIino CoS o
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with eigenvalues m?2, and m?

o 10- respectively, where

1
myo = (4 = C) (10.77)
1
mip = 5(A +0), (10.78)
with C = [A? — (A? — B?)c?]'/2. The equation determining uy, is then
A+ Bc —As cosa cosa
( —As A—BC)(—Sinoz)_(A_C)<_Sina>’ (10.79)

which leads to

(C+ Bc)cosa = —Assina (10.80)
(—C + Bc)sina = Ascosa. (10.81)
It is conventional to rewrite (10.80) and (10.81) more conveniently, as follows.

Multiplying (10.80) by sin« and (10.81) by cos o and then subtracting the results,
we obtain

A m3y, +m;
sin2a = =2 = —M sin 28. (10.82)
¢ (mig = mip)

Again, multiplying (10.80) by cos« and (10.81) by sin« and adding the results
gives

B m%, — m>
cos 20 = —— = —% cos 2. (10.83)
¢ (i —mp)

Equations (10.82) and (10.83) serve to define the correct quadrant for the mixing
angle o, namely —m /2 < « < 0. Note that in the limit mio > m3 we have sin 2o ~
—sin2p and cos 2o &~ — cos 23, and so

o~ B —m/2 formi, > m3. (10.84)
The physical states are defined by
h° cosa —sina\ (ReH? —v
) u 4 10.
(H()) f(sinoe cos o ><ReH§—vd)’ (10-85)
which we can write as

1
ReHL? = [vu + ﬁ(coscx h° + sina HO)] (10.86)

1
ReH) = [vd + —(—sina h’ + cosa HO)] : (10.87)

NG
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We also have, from (10.39) and (10.40),

I .
ImH = E(sm B Hy + cos B A®) (10.88)
1
ImH? = —(—cos 8 Hy + sin B A?) (10.89)
=5 B Hz

where Hy is the massless field ‘swallowed’ by the Z°.
We can now derive the couplings to fermions. For example, the Yukawa coupling
(8.8) in the mass eigenstate basis, and for the third generation, is

—y[xiw - xw(ReH) +iIm HY) + x| - xi (ReH] —iIm H{)].  (10.90)

Substituting (10.86) for Re H?, the ‘v, part simply produces the Dirac mass m, via
(8.9), while the remaining part gives

_ﬂ(XEL s X+ )(T . )(—T )cosa h® 4 sina H)
V2v, L AL
—__ (8™ b0, Cf)SOl po 4 SN sin & 5O (10.91)
2mwy sin 8 sin 8

where ‘W, is the 4-component Dirac bilinear. The corresponding expression in
the SM would be just

g&my \ <
_ ( ) B, Hy, (10.92)
2mw

where Hsy is the SM Higgs boson. Equation (10.91) shows how the SM coupling
is modified in the MSSM. Similarly, the coupling to the b quark is

_( gmo G (- sin o po 4 S0 cos o HO (10.93)
2mwy cos f8 cos B
which is to be compared with the SM coupling
= (gmb ) Ty Wy, Hay. (10.94)
2mw

The coupling to the 7 lepton has the same form as (10.93), with the obvious re-
placement of my, by m .. Finally the t—-A° coupling is found by substituting (10.88)
into (10.90), with the result

8nmy
2mw

e R 0_ . : 0
—1—(xXw - X — X XEL) cosBA” =i ( ) cot W ysW A°, (10.95)
Uy V2

where we have used (8.3); and similarly the b-A° coupling is

. [ 8Mp - 0
i (—) tan B WyysWy, A, (10.96)
2mw
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Incidentally, the ys coupling in (10.95) and (10.96) shows that the A° is a pseu-
doscalar boson (CP = —1), while the couplings (10.91) and (10.93) show that
h® and H? are scalars (CP = +1). Once again, the 7—A® coupling is the same as
(10.96), with my, replaced by m..

The limit of large m 5o is interesting: in this case, o and 8 are related by (10.84),
which implies

sina & —cos (10.97)
cosa = sin B. (10.98)

It then follows from (10.91) and (10.93) that in this limit the couplings of h®
become those of the SM Higgs, while the couplings of H are the same as those
of the A°. For small m 50 and large tan 8 on the other hand, the h® couplings differ
substantially from the SM couplings, b-states being relatively enhanced and t-states
being relatively suppressed, while the H® couplings are independent of f3.

The couplings of the neutral Higgs bosons to the gauge bosons are determined
by the SU(2). x U(1), gauge invariance, that is by the terms (10.18) with D,, given
by (10.19). The terms involving W!, Wi, ReH? and ReH are easily found to be

2

S (Waw 4+ W[ (ReH])” + (ReH])']. (10.99)

Substituting (10.86) and (10.87), the v2 and v parts generate the W-boson (mass)?

term via (10.22), while trilinear W-W—(h®,H°) couplings are generated when one
of the neutral Higgs fields is replaced by its vacuum value:

2
gZ (W;W”‘—i— Win“)\/i[vu(cos a h'+sina H*)+vq(—sina h° + cos e HO)]
= ngW(W,iW“‘ + Wi W?)[sin(B — @) h® + cos(B —a) H°].  (10.100)
Similarly, the trilinear Z-Z—(h®,H®) couplings are
Zf::ZGW Z,Z"[sin(B — a) h° + cos(B — ) H]. (10.101)

Again, these are the same as the couplings of the SM Higgs to W and Z, but modified
by a factor sin(8 — «) for the h°, and a factor cos(8 — «) for the H.* Once again,
there is a simple large m3, limit:

sin(B —a)~ 1, cos(f—a)~0, (10.102)

4 This is essential for the viability of Drees’s suggestion [105]: the excess of events near 98 GeV amounts to
about 10% of the signal for a SM Higgs with that mass, and hence interpreting it as the h® requires that
sin® (B — @) &~ 0.1. It then follows that ZH° production at LEP would occur with nearly SM strength, if allowed
kinematically. Hence the identification of the excess at around 115 GeV with the HC.
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showing that in this limit h® has SM couplings to gauge bosons, while the H°
decouples from them entirely. At tree level, the A° has no coupling to pairs of
gauge bosons.

There are also quadrilinear couplings which are generated when both neutral
Higgs fields are varying:

1
g[gz(WliW”‘ + WiW?) + (g cos by + g’ sinOw)* Z, Z"|(h°* + H* + A%?).
(10.103)

Finally, there are trilinear couplings between the Z° and the neutral Higgs fields,
which involve derivatives of the latter:

1
E(g cos By + g’ sinOy)[cos(a — B)(A%3*h° — h9" A”)
—sin(e — B)(H"9"A° — A"9* H?)].  (10.104)

Note that couplings of Z° to h’h®, HY'H® and h®H pairs are absent due to the assumed
CP invariance of the Higgs sector; CP allows Z° to couple to a scalar boson and a
pseudoscalar boson. The complete set of Higgs sector couplings, including those
to superpartners, is given in Section 8.4.3 of [49].

We have seen that, in the MSSM, the mass of the h? state is expected to be smaller
than about 140 GeV. Consequently, the decays of the h° to tt, Z°Z° and W+W~
are kinematically forbidden, as are (most probably) decays to superpartners. Since
the strength of the h® interaction with any field is proportional to the mass of that
field, the dominant decays will be to bb and 7 pairs. The partial widths for these
channels are easily calculated from (10.93), at tree level. Let the 4-momenta and
spins of the final state b and bbe pi, s; and ps, 5». Then, borrowing formulae (12.7)
and (12.10) from Chapter 12, we have (for three colours)

3 g’mlsin’a

I'(h” — bb) = p Y lapr, s)v(pa, s>, (10.105)

2 2
8mmy, 4my, cos? B i
where p is the magnitude of the 3-momentum of the final state particles in the rest

frame of the h®. The spinor factor is
Tr[(B2 + mo)(Pr — mu)] = 2mi, (1 — 4my/myy). (10.106)

and
1
p=m(l - 4m2/m) ", (10.107)

Hence

_ 3 2.2 (32
F(h" — bb) = —5 oML (1 — dm?/m2,)>? (10.108)

32mwmg, cos? B
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in agreement with (C.1b) of [49]. The partial width to 77 is given by an analogous
formula, without the factor of 3, so that the branching ratio of these two modes (at
tree level) is

'(h® — bb) N 3m%
'h' - t7) - m?2

~ 20. (10.109)

The partial width for H® — bb is given by (10.108) with sin « replaced by cos o,

and My by mypo.

Exercise 10.1 Show that

3g’m} tan’ B
32nm%\,

I'(A® = bb) = 12

mpo (1 — dmg/m3,) (10.110)

The widths of the MSSM Higgs bosons depend sensitively on tan 8. The produc-
tion rate at the LHC also depends on tan 8. The dominant production mechanism,
as in the SM, is expected to be gluon fusion, proceeding via quark (or squark) loops.
In the SM case, the top quark loop dominates; in the MSSM, if tan g is large and
m o not too large, the bbh coupling is relatively enhanced, as noted after equation
(10.98), and the bottom quark loop becomes important. Searches for MSSM Higgs

bosons are reviewed by Igo-Kemenes in [59].



11
Sparticle masses in the MSSM

In the two final chapters, we shall give an introduction to the physics of the various
SUSY particle states — ‘sparticles’ — in the MSSM. The first step is to establish
formulae for the masses of the sparticles, which we do in the present chapter. In
the following one, we calculate some simple decay widths and production cross-
sections at tree level, and also discuss very briefly some of the signatures that have
been used in sparticle searches, together with some search results. We also mention
the idea of ‘benchmark sets’ of SUSY parameters.

As in the scalar Higgs sector, the discussion of sparticle masses is complicated
by mixing phenomena. In particular, after SU(2)p, x U(1)y breaking, mixing will
in general occur between any two (or more) fields which have the same colour,
charge and spin. We shall begin with the simplest case, that of gluinos, for which
no mixing occurs.

11.1 Gluinos

The gluino § is the only colour octet fermion and so, since SU(3). is unbroken, it
cannot mix with any other MSSM particle, even if R-parity is violated. Its mass
arises simply from the soft SUSY-breaking gluino mass term in (9.30):

1
—§M3ga-ga+h.c. (11.1)

where the colour index a runs from 1 to 8. The expression (11.1) is written in
2-component notation, but is easily translated to Majorana form, as usual:

1
—5M3\p§4"“\y&a. (11.2)

As noted after (9.30), even if we take M3 to be real, it need not be positive — that
is, of the sign to be conventionally associated with a mass term. The mass of the

173
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physical particle is | M3|. Suppose that M5 is negative, so that the mass term (11.1) is

1
+§|M3|ga-ga+h.c. (11.3)
The sign is easily reversed by a redefinition of the spinor field g2, for example

9 = —ig?, (11.4)

which will leave the kinetic energy term unchanged. In the equivalent Majorana
description, we have

. ax s

poo (1207 _ (1021077 g o (11.5)
g —ig

Hence, in the notation of Baer and Tata [49], we may generally allow for the

possibility of negative Majorana mass parameters by redefining the relevant field
for the sparticle p as

Wb — (iys)P ) (11.6)

where 65 = 0if my > 0, and 6; = 1 if mz < 0. We have discussed the evolution of
Mj in Section 9.3, in mSUGRA-type models.

11.2 Neutralinos

We consider next the sector consisting of the neutral Higgsinos H? and Hg, and
the neutral gauginos B (bino) and W° (wino) (see Tables 8.1 and 8.2). These are all
L-type spinor fields in our presentation (but they can equivalently be represented
as Majorana fields, as explained in Section 2.3). In the absence of electroweak
symmetry breaking, the B and W fields would have masses given by just the soft
SUSY-breaking mass terms of (9.30):

| B
—EMlB-B—EMQWO-WO—I—h.c. (11.7)

However, bilinear combinations of one of (B, W?) with one of (Hl(l) , |:|(?) are gen-
erated by the term ‘—\/ig[ ...... ]’ in (7.72), when the neutral scalar Higgs fields
acquire a vev. Such bilinear terms will, as in the Higgs sector, appear as non-
zero off-diagonal entries in the 4 x 4 mass matrix for the four fields B, WO, Izll? ,
and I:|(? ; that is, they will cause mixing. After the mass matrix is diagonalized,
the resulting four neutral mass eigenstates are called neutralinos, which we shall
denote by Xio (i =1,2,3,4), with the convention that the masses are ordered as
mﬂ) < ng < mxg < m)a).
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Consider for example the SU(2) contribution in (7.72) from the H, supermulti-
plet, witha = 3, T3 = 73/2, A3 = WO, which is

3 /a+\ .
—V2g(H;" HQT)% ( HUO) W+ hee. (11.8)

When the field Hl? f acquires a vev v, (which we have already chosen to be real),
expression (11.8) contains the piece

+ D p A WO 4 e, (11.9)

V2

which we shall re-write as
1 . S0 \R/O0 L R0 0
—5[—smﬁc0s9wmz](Hu WY+ W". H)) + hec., (11.10)

using (10.26) and (10.21), and the result of Exercise 2.3. In a gauge-eigenstate
basis

13
$w

&0 — (11.11)

T To
SfoRro

this will contribute a mixing between the (2,4) and (4,2) components. Similarly,
the U(1) contribution from the H, supermultiplet, after electroweak symmetry
breaking, leads to the mixing term

T
———uy,H; - B+h.c. (11.12)
V2ot
1 0 = =~
=—5[sin,3sin6WmZ](Hl?- B+B-H))+hec., (11.13)
which involves the (1,4) and (4,1) components. The SU(2) and U(1) contributions
of the Hy supermultiplet to such bilinear terms can be evaluated similarly.
In addition to this mixing caused by electroweak symmetry breaking, mixing
between Izll? and |:|0? is induced by the SUSY-invariant ‘i term’ in (8.14), namely

1 o~ o~
—5(—,u)(HL?- HY + AY - AY) +hec. (11.14)
Putting all this together, mass terms involving the fields in G° can be written as

1~ 3
—EGOTMGOGO +h.c. (11.15)



176 Soarticle masses in the MSSMI

where
Ml 0 —CgSwimz SgSwinz
M o= 0 M, CgCwmz —SgCwiMyz ’ (11.16)
—CgSwmz  CgCwmy 0 —u
SpSwimz —SgCwiMz —u 0

with Cg = cos B, S = sin B, Cw = cos Oy, and Sy = sin Oy.

In general, the parameters M, M, and u can have arbitrary phases. Most anal-
yses, however, assume the ‘gaugino unification’ condition (9.47) which implies
(9.49) at the electroweak scale, so that one of M; and M, is fixed in terms of the
other. A redefinition of the phases of B and WY then allows us to make both M,
and M, real and positive. The entries proportional to mz are real by virtue of the
phase choices made for the Higgs fields in Section 10.1, which made v, and vgq
both real. It is usual to take u to be real, but the sign of x is unknown, and not
fixed by Higgs-sector physics (see the comment following equation (10.26)). The
neutralino sector is then determined by three real parameters, M; (or M), tan 8
and u (as well as by mz and Oy, of course).!

However, while the eigenvalues of M o will now be real, there is no guarantee
that they will be positive. As for the gluinos, we allow for this by redefining the
Majorana fields for the neutralino mass eigenstates as

50 50
W s (iys) Wl (11.17)

where 030 = 0if mgo > 0, and 650 = 1if My < 0.

Clearly there is not alottobe galned by pursulng the algebra of this 4 x 4 mixing
problem, in general. A simple special case is that in which the mz-dependent terms
in (11.16) are a relatively small perturbation on the other entries, which would
imply that the neutralinos ¥ and %) are close to the weak eigenstates bino and
wino, respectively, with masses approximately equal to M; and M;, while the
Higgsinos are mixed by the u entries to form (approximately) the combinations

- 1, - ~ - | -
HY = —(HY + HY), and HY = —(HJ - HY), (11.18)
S \/E ( d u ) A \/§ ( d u )
each having mass ~ |u|.
Assuming it is the LSP, the lightest neutralino, ¥, is an attractive candidate for
non-baryonic dark matter [110]. 2 Taking account of the restricted range of Qcpym h?
consistent with the WMAP data, calculations show [111-113] that ¥ O’S provide the

U In the general case of complex M;, M; and u, certain combinations of phases must be restricted to avoid
unacceptably large CP-violating effects [109].

2 Other possibilities exist. For example, in gauge-mediated SUSY breaking, the gravitino is naturally the LSP.
For this and other dark matter candidates within a softly-broken SUSY framework, see [47] Section 6.
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desired thermal relic density in certain quite well-defined regions in the space of
the mSUGRA parameters (M 2, My, tan B and the sign of ©; Ay was set to zero).
Dark matter is reviewed by Drees and Gerbier in [59].

11.3 Charginos

The charged analogues of neutralinos are called ‘charginos’: there are two posi-
tively charged ones associated (before mixing) with (W, I:Iu+ ), and two negatively
charged ones associated with (W-, I:|d_). Mixing between I:|ljr and I:|d_ occurs via
the © term in (8.14). Furthermore, as in the neutralino case, mixing between the
charged gauginos and Higgsinos will occur via the ‘—+/2g[....]" term in (7.72)
after electroweak symmetry breaking. Consider for example the H, supermultiplet
terms in (7.72) involving W' and W?2, after the scalar Higgs H? has acquired a vev
vy. These terms are

_%{(Ovu)[rl(H{),Wlﬂz(':'%).wﬂ}m.c. (11.19)
g

= —\—fzvuﬂj (W' +iW?) +hc. (11.20)

= —gu,H" - W~ +he. (11.21)
1 N L

= —Efzsﬂmw(Hj W~ 4+W~- A +he. (11.22)

The corresponding terms from the Hy supermultiplet are
—gugH; - W + hec. (11.23)
1 - - - -
= —Eﬁcﬁmw(Hd— -W* + W+ Ay 4 hee. (11.24)

If we define a gauge-eigenstate basis

(11.25)

(@]

+

Il
N
T 1
S+ F
N——

_ W-
g = ( Hd_) (11.26)

for the negatively charged states, then the chargino mass terms can be written as

—%[g”xT 9 +0 X -9 +hec., (11.27)
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where

X — ( M, ﬁsﬁm‘”). (11.28)

V2csmy I

Since XT # X (unless tan 8 = 1), two distinct 2 x 2 matrices are needed for the
diagonalization. Let us define the mass-eigenstate bases by

X+
xF=Vvgt, "= (L) (11.29)
X2
N a
x =ug, x —(~_), (11.30)
X2
where U and V are unitary. Then the second term in (11.27) becomes
1
—5>~<‘TU*XV—l S (11.31)
and we require
m, 0
UXV-! = ( a ) (11.32)
0 my

‘What about the first term in (11.27)? It becomes
1
—§;~<+Tv*xTuT 5%, (11.33)
but since V*XTUT = (U*XV~HT it follows that the expression (11.33) is also di-

agonal, with the same eigenvalues M+ and my .
Now note that the hermitian conjugate of (11.32) gives

m*, 0
vxXiut=( o ). (11.34)
0 m* .
X2
Hence
) m, = |2 0
vx*xv—1=vxTUTu*xv—1=(| i | 2), (11.35)
0 |m)~(2i|

and we see that the positively charged states ¥ * diagonalize X'X. Similarly,

~ 2
UsXXIUT = usxv-tvxiuT = (Ml ). (11.36)
0 Im |2
X2

and the negatively charged states ¥ ~ diagonalize XX'. The eigenvalues of XX (or
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XXT) are easily found to be

|m)~<i|2 1 ) ’ 2 2 2 22
) L0341+ 205 % {0+ 1 + 203
X2

— 4uM, —mdsin287}?]. (11.37)

It may be worth noting that, because X is diagonalized by the operation U*XV~!,
rather than by VXV ~! or U*XUT, these eigenvalues are not the squares of the
eigenvalues of X.

The expression (11.37) is not particularly enlightening, but as in the neutralino
case it simplifies greatly if my can be regarded as a perturbation. Taking M, and
p to be real, the eigenvalues are then given approximately by m;+ ~ M,, and
My ~ || (the labelling assumes M, < |w|). In this limit, we have the approxi-
mate degeneracies My ~ Myo, and My+ ~ Mgo ~ Mpo. In general, the physics is
sensitive to the ratio M, /|u|.

11.4 Squarksand sleptons

The scalar partners of the SM fermions form the largest collection of new particles
in the MSSM. Since separate partners are required for each chirality state of the
massive fermions, there are altogether 21 new fields (the neutrinos are treated as
massless here): four squark flavours and chiralities O, Og, d, dg and three slepton
flavours and chiralities T, &, & in the first family, all repeated for the other two
families.> These are all (complex) scalar fields, and so the ‘L’ and ‘R’ labels do
not, of course, here signify chirality, but are just labels showing which SM fermion
they are partnered with (and hence in particular what their SU(2) x U(1) quantum
numbers are, see Table 8.1).

In principle, any scalars with the same electric charge, R-parity and colour quan-
tum numbers can mix with each other, across families, via the soft SUSY-breaking
parameters in (9.31), (9.33) and (9.37). This would lead to a 6 x 6 mixing problem
for the u-type squark fields (O, Og, €L, Cr, fr, fr), and for the d-type squarks and
the charged sleptons, and a 3 x 3 one for the sneutrinos. However, as we saw in
Section 9.2, phenomenological constraints imply that interfamily mixing among the
SUSY states must be very small. As before, therefore, we shall adopt the ‘mSUGRA’
form of the soft parameters as given in equations (9.40) and (9.42), which guar-
antees the suppression of unwanted interfamily mixing terms (although one must
remember that other, and more general, parametrizations are not excluded). As in

3 In the more general family-index notation of Section 9.2 (see equations (9.31), (9.33) and (9.37)), ‘Q;” is the
doublet (0, dp), ‘Qy" is (&, 3), Q3" is (fL, b), 01" is Or, “dy” is dg (and similarly for ‘0> 3* and ‘d»3"),
while ‘L’ is (DL, &), ‘€ is &R, etc.
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the cases considered previously in this section, we shall also have to include various
effects due to electroweak symmetry breaking.

Consider first the soft SUSY-breaking (mass)? parameters of the sfermions
(squarks and sleptons) of the first two families. In the model of (9.40) they are all
degenerate at the high (Planck?) scale. The RGE evolution down to the electroweak
scale is governed by equations of the same type as (9.53) and (9.54) but without
the X, terms, since the Yukawa couplings are negligible for the first two families.
Thus the soft masses of the first and second families evolve by purely gauge in-
teractions, which (see the comment following equation (9.56)) tend to increase the
masses at low scales. Their evolution can be parametrized (following [46] equations
(7.53)-(7.57)) by

|
méL,&L = mgL,gL =m; + Ks + Ky + §K1 (11.38)
16
m;, = Mg, = Mg+ Ks + ?Kl (11.39)
4
m, =M, =M K+ K (11.40)
M e = m%ML,;zL =m + Kz + K (11.41)
m;, = My, =m; + 4K, (11.42)

Here K3, K; and K are the RGE contributions from SU(3), SU(2) and U(1) gaug-
inos respectively: all the chiral supermultiplets couple to the gauginos with the
same (‘universal’) gauge couplings. The different numerical coefficients in front of
the K; terms are the squares of the y-values of each field (see Table 8.1), which
enter into the relevant loops (our Y is twice that of [46]). All the K’s are positive,
and are roughly of the same order of magnitude as the gaugino (mass)? parameter
m? 12> but with K3 significantly greater than K,, which in turn is greater than K,
(this is because of the relative sizes of the different gauge couplings at the weak
scale: g3 ~ 1.5, 93 ~ 0.4, g7 ~ 0.2, see Section 8.3). The large ‘K3’ contribution
is likely to be quite model-independent, and it is therefore reasonable to expect that
squark (mass)? values will be greater than slepton ones.

Equations (11.38)—(11.42) give the soft (mass)® parameters for the fourteen
states involved, in the first two families (we defer consideration of the third fam-
ily for the moment). In addition to these contributions, however, there are further
terms to be included which arise as a result of electroweak symmetry breaking.
For the first two families, the most important of such contributions are those com-
ing from SUS Y-invariant D-terms (see (7.74)) of the form (squark)?(Higgs)? and
(slepton)*(Higgs)?, after the scalar Higgs fields H? and HY have acquired vevs.
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Returning to equation (7.73), the SU(2) contribution to D is

@ _ Ay <t A T DL
o ol (3) s 2)

ot T¢ Hlj_ 0ty —t T¢ H0
+(Hu+THu')7<HL?> + (Hy"Hy )7 H;i (11.43)
gt TY (0L N ¢ (oL 1 1
~g {(uTLolL)7 (6IL> + (@@{)7 <éL> - Evgsag + Evgrsag} . (11.44)

after symmetry breaking. When this is inserted into the Lagrangian term —% D*D?,
pieces which are quadratic in the scalar fields — and are therefore (mass)? terms —
will come from cross terms between the ‘t%/2’ and ‘6,3’ terms. These cross terms
are proportional to 73/2, and therefore split apart the T3 = 41/2 weak isospin
components from the T?> = —1/2 components, but they are diagonal in the weak
eigenstate basis. Their contribution to the sfermion (mass)? matrix is therefore

1 1
+25(F - )T (11.45)

where T3 = 73/2. Similarly, the U(1) contribution to ‘D’ is
/ Lot 2 1.5 2
Dy=g Zif yff—i(vd—vu) , (11.46)

after symmetry breaking, where the sum is over all sfermions (squarks and sleptons).
Expression (11.46) leads to the sfermion (mass)’ term

1, 1\ 1
+§g22 <—§y> E(vg — ). (11.47)

Since y/2 = Q — T3, where Q is the electromagnetic charge, we can combine
(11.45) and (11.47) to give a total (mass)> contribution for each sfermion:

1 /. /.
Af = 5(v§ —v)[(@* + 9T — g°Q]

= mj cos 28[T? — sin? 6y Q], (11.48)

using (10.21). As remarked earlier, A7 is diagonal in the weak eigenstate basis,
and the appropriate contributions simply have to be added to the right-hand side
of equations (11.38)—(11.42). It is interesting to note that the splitting between the
doublet states is predicted to be

—m; + mgL =-m2 +m2 = —cos2fm3, (11.49)
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and similarly for the second family. On the assumption that tan 8 is most probably
greater than 1 (see the comments following equation (10.74)), the ‘down’ states are
heavier.

Sfermion (mass) terms are also generated by SUSY-invariant F-terms, after
symmetry breaking; that is, terms in the Lagrangian of the form

2

A
— ’ (11.50)

agi
for every scalar field ¢; (see equations (5.19) and (5.22)); for these purposes we
regard W of (8.4) as being written in terms of the scalar fields, as in Section 5.1.
Remembering that the Yukawa couplings are proportional to the associated fermion

masses (see (8.10) and (10.69)—(10.71)), we see that on the scale expected for the
masses of the sfermions, only terms involving the Yukawas of the third family can

contribute significantly. Thus to a very good approximation we can write

W~ Y (ILHY — BH) — yobh (fLHg — BUHY) — ye 2l (5 Hy — 2HY)
+u(H Hy — HYHY) (11.51)

as in (8.12) (with T, replaced by f}i etc.) and (8.13). Then we have, for example,

2
ALY e 2 e i
= Y E|HO" — —y22E T = —miEE, (11.52)

ot

after H? acquires the vev v,. The L-type top squark (‘stop’) therefore gets a (mass)>
term equal to the top quark (mass)?. There will be an identical term for the R-type
stop squark, coming from —|dW/df |*. Similarly, there will be (mass)? terms mg
for by and by, and m? for 7 and %, although these are probably negligible in this
context.

We also need to consider derivatives of W with respect to the Higgs fields. For
example, we have

2

oW ~ 5
= —|ytt£fL — uHY[" - —IytflifL — pvgl?, (11.53)

aH?

after symmetry breaking. The expression (11.53) contains the off-diagonal bilinear
term

pvaYe BT + £ ) = pmy cot BELEL + T Tr). (11.54)
which mixes the R and L fields. Similarly, —|dW/3dH?|* contains the mixing terms

ey, tan B(BY By, + Bl Br) (11.55)
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and
pm, tan B(FLE + 7 2r). (11.56)

Finally, bilinear terms can also arise directly from the soft triple scalar couplings
(9.37), after the scalar Higgs fields acquire vevs. Assuming the conditions (9.42),
and retaining only the third family contribution as before, the relevant terms from
(9.37) are

—Aoya B EL + ) = —Am(ELEL + T T), (11.57)

together with similar br — by and 7 — 7. mixing terms.

Putting all this together, then, the (mass)? values for the squarks and sleptons of
the first two families are given by the expressions (11.38)—(11.42), together with
the relevant contribution A ¢ of (11.48). For the third family, we discuss the , b and
% sectors separately. The (mass)? term for the top squarks is

—@thHm? (fL> , (11.58)
tr
where
m . +m2+ Ay m(A— t
2 (Mgt MOt A Ml — pcotf) ) (11.59)
' m(Ag —pcot f) M +mp+ Ag,
with
12 ., 5
Ay = 273 sin” Ow | m; cos 28 (11.60)
and
2
Ay =—3 sin® Bwm cos 2. (11.61)

Here mfZL,BL and msz are given approximately by (9.53) and (9.54) respectively. In
contrast to the corresponding equations for the first two families, the X, term is now
present, and will tend to reduce the running masses of t; and tr at low scales (the
second more than the first), relative to those of the corresponding states in the first
two families; on the other hand, the mf term tends to work in the other direction.

The real symmetric matrix M% can be diagonalized by the orthogonal transfor-

mation
f cosf, —sinb; L
=\ . ; 11.62
<f2 ) ( sinf;, cos6; tr ( )
the eigenvalues are denoted by m¢ and mZ, with m? < m?. Because of the large
value of m; in the off-diagonal positions in (11.59), mixing effects in the stop sector
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are likely to be substantial, and will probably result in the mass of the lighter stop,

M, , being significantly smaller than the mass of any other squark. Of course, the

mixing effect must not become too large, or else mle is driven to negative values,

which would imply (as in the electroweak Higgs case) a spontaneous breaking

of colour symmetry. This requirement places a bound on the magnitude of the

unknown parameter Ay, which cannot be much greater than my
Turning now to the b sector, the (mass)? matrix is

L,bL*

M2 = (Mo T Aa mu(Ag - ptanf) (11.63)
5 My(Ay — /1 tan B) ng +m4 Ay )
with
1 I ., )

Ay = —3 + 3 sin” Oy | m; cos 2 (11.64)

and
L., 2
Ag, = 3 sin” Bwm; cos 2. (11.65)

Here, since X, enters into the evolution of the mass of by, but not of bg, we expect
that the running mass of br will be much the same as those of dg and 3g, but that
m;, may be less than my and mg, . Similarly, the (mass)? matrix in the % sector is

M% = <m‘g)erfL+m%+AéL mT(AO_/“’Ltan:B)> (1166)
t m,(Ay — ptan B) m%R +m2 4+ Ag )’
with
1
Ag = <—§ + sin? 9w> m3 cos 28 (11.67)
and
1
Ag, = 3 sin® Gwm? cos 28. (11.68)

Mixing effects in the b and 7 sectors depend on how large tan g is (see the
off-diagonal terms in (11.63) and (11.66)). It seems that for tan 8 less than about
5(7), mixing effects will not be large, so that the masses of br, #r and 7 will all be
approximately degenerate with the corresponding states in the first two families,
while by will be lighter than d; and 3. For larger values of tan 8, strong mixing
may take place, as in the stop sector. In this case, b; and #; may be significantly
lighter than their analogues in the first two families (also, ;1. may be lighter than
Ve, and ¥,,1.). Neutralinos and charginos will then decay predominantly to taus and
staus.
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Some simple tree-level calculations in the MSSM

To complete our introduction to the physics of sparticles in the MSSM, we now
present some calculations of sparticle decay widths and production cross sec-
tions. We work at tree-level only, with the choice of unitary gauge in the gauge
sectors, where only physical fields appear (see, for example, [7] Sections 19.5
and 19.6). We shall see how the interactions written down in Chapters 7 and 8
in rather abstract and compressed notation translate into more physical expres-
sions, and there will be further opportunities to practise using Majorana spinors.
However, since we shall only be considering a limited number of particular pro-
cesses, we shall not derive general Feynman rules for Majorana particles (they
can be found in [45, 47, 114, 115], for example); instead, the matrix elements
which arise will be directly evaluated by the elementary ‘reduction’ procedure,
as described in Section 6.3.1 of [15], for example. Our results will be compared
with those quoted in the book by Baer and Tata [49], which conveniently con-
tains a compendium of tree-level formulae for sparticle decay widths and pro-
duction cross sections. Representative calculations of cross sections for sparticle
production at hadron colliders may be found in [116]. Experimental methods for
measuring superparticle masses and cross sections at the LHC are summarized
in [117].

12.1 Sparticle decays
12.1.1 Thegluinodecaysg — uf and § — tf,

We consider first (Figure 12.1) the decay of a gluino § of mass mz(= my), 4-
momentum ks, spin S; and colour label 3, to a quark u of mass m;(=m,), 4-
momentum K;, spin S; and colour label ¢;, and an anti-squark Gy of mass m(= mg, ),
4-momentum k; and colour label ¢;. We assume that the decay is kinematically
allowed. Squark mixing may be neglected for this first-generation final state; we
shall include it for § — tt.

185
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Figure 12.1 Lowest-order diagram for the decay § — udiy.

The gluino, quark and squark fields are denoted by the L-spinors §, x, and the
complex scalar Oy, respectively. The relevant interaction is contained in (7.72),
namely

o
V20,8 o5 Vs, (12.1)

where the colour indices are such that a runs from 1 to 8 and «, 8 run from 1 to
3. We note that the strength of the interaction is determined by the QCD coupling
constant gs. In calculating the decay rate it is convenient to make use of the trace
techniques for spin sums which are familiar from SM physics. We therefore begin
by converting (12.1) to 4-component form — Dirac (W) for the quark field, Majorana
(W) for the gluino. We have

- xl =1l 0% = U PRWE from (2.116)

o
= (i)' pUT
= (PLW,) pU¥  from (8.27)
= W, PRYP. (12.2)
We can allow for the possibility that the gluino mass parameter M3 of (11.1) is

negative by replacing \IJSI by (iys)% \I/SI, as discussed in Section 11.1.1. Then (12.2)
becomes

()% Uy PRUS, (12.3)
using Prys = Pr. This refinement will only be relevant when we include squark

mixing.
To lowest order in gs, the decay amplitude is then

B} _ 1
—iv20,0)%(u, ki, S1, €13 G, ko, © | / d*x \Ifua(x)Pquﬁa(x)ExgﬂuLﬁ(x)

8.ks. 83, G3).

(12.4)
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The matrix element may be evaluated by ‘reducing’ the particles in the initial and
final states. For example,

(u, ki, 1, 1| Wye(X)
3K’

OICuslcl(kl)\/ZET/(z )3J2Tk

+ dy s (KK, S (C)e K]
= (0|a(k;, s)w?(c)e™ ™ using (2.129); (12.5)

316 e (0K, 10 )k

here w(c) is the 3-component colour wavefunction for a colour triplet with
colour label ‘c’. Proceeding in the same way for the other two fields, (12.4)
reduces to

L1
—iv/2gy()%a(ki, s1) Pru(ks, $3)S2a(C3) (w'(cl)ikaw(Cz)) Q)8 ki + ko — ks)
= 27)*8* (K, + ko — k3)iM, (12.6)

where Q,(C3) (a=1,2,...8) is the colour wavefunction for the gluino, and iM
is the invariant amplitude for the process.
The decay rate (partial width) is given by (see equation (6.59) of [15])
d’k, d’k,

1
F = — 2 4 4 k k - k 2 12
2E3( 7‘[) /8 ( 1+ 2 3)|M| (277)32Ek1 (27T)32Ek2 ( 7)

where | M |? is the result of averaging over initial spins and colours, and summing
over final spins and colours:

| |= > Z|M| (12.8)

C1 ©,C Sl S

The colour factor is evaluated in problem 14.4 of [7], and is equal to 1/2. The spinor

part is
1 1 1—
ETT[< Z%) (Ks +m3)( ys)(k1 +m1)]

() (5

1 1+
= ETT [( VS) k3k1}

1 1
= JTrlksKi] = ks - ki = E(m% +m; —m3). (12.9)
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Finally, the phase space integral is (see equation (6.64) of [15])

&k, Fhy 1
(27)32Ey, 27)2Ey,  87m]

— Q) / 84k + ko — k3) k(my, my, ms),
2E3
(12.10)

where K is the magnitude of the 3-momentum of the final state particles 1,2 in the
rest frame of the decaying particle 3:

k(my, my, my) = [mf + mj + mj — 2mim3 — 2mim3 — 2m3m;]/2ms. (12.11)
In the present case, m; = My, My = Mg, and M3 = M;. So we find
_ ) m2 m?2
D& — ulip) = = [ 14+ —% — =2 ) kamy, ms,, mg), (12.12)
4 m; ms

in agreement with formula (B.1a) of [49]. If, for the sake of illustration, we take
k ~ 100 GeV, a5 ~ 0.1, then the partial width for this mode is ' ~ few GeV, with
a corresponding lifetime of order 10~>s

We turn now to the decay § — tT,. We recall that the fields f;.» which correspond
to the mass eigenstates are given in terms of the unmixed fields fg ;. by (11.62). In
addition to the amplitude for

g — i, (12.13)
we therefore also need the amplitude for

g — fig. (12.14)
The interaction responsible for (12.13) is simply (12.1) with ‘u’ replaced by ‘t’:

1 = 1
V208" - 13 ONeptis = —V200 B PO 0 plip. (1215
and the component for producing a T is
- 1
—20,()’% ¥, PRIIJ&aE(Aa)aﬁ cos 6, fi4. (12.16)

For (12.14), we note that the field fli creates the scalar partner of the weak singlet

quark and destroys the scalar partner of the weak singlet antiquark. So, in the nota-

tion of Sections 8.1 and 8.2, f; and x; form a chiral multiplet, which belongs to the 3

representation of SU(3).. The termin (7.72) responsible for the decay (12.14) is then
1

~V208ka 5 (2 ap i - O (12.17)

We now convert the spinors to 4-component form. We have

Xip - 0 = U PLUY, (12.18)
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as usual, where we recall from (8.19) that

xi = —io ], (12.19)
so that
Wl — oy = iGz(—.iaz)wt = Wt) _ 11,1//[’ 12.20
M ( Xt = —102%* M ( )
using (8.26). Hence
TSP = (PeWyy) B = (P B = 1P, (12.21)

where we have used (8.27). The interaction (12.17) can then be written as
1 -
2, tka S (A (=) Dy PLW®, (12.22)

where we have included the phase factor to_allow for negative M3, and used
PLys = —PL. The component for producing a t; is

_o 1 =
—+/2g,(—sin6, fia) 5 (=A% Do (=) By PLwd, (12.23)

The matrix element of (12.23) can be evaluated as before, in (12.4)—(12.6).
Consider in particular the colour part, which is

@a(C)(—=A")apw (Cr), (12.24)

where C;, C; are the colour labels of the quark and anti-squark. Since the w’s are
not operators, (12.24) can equally be written as

W (C)(—A2) g4 (C2) = —0! (€A% (Cy), (12.25)

where we have used the hermiticity of the A’s. We see that this is now the same as
the colour factor for (12.6), and hence for (12.16), but with a minus sign.

Putting all this together, we find that the amplitude for the decay § — tf; takes
the same form as the left-hand side of (12.6), but with the replacement

ack, s1)()% Pru(ks, S3) — Q(K;, $1)[(i)% Pg cos 6, + (—1)% PL sin 6,]u(ks, S3)
= 0(k;, s)[A+ BysJu(ks, s3), (12.26)

where
1, 1,
A= 5(1) ¢ cos b, + 5(—1) ¢ sin 6, (12.27)

1 1
B= 5(i)% cos b, — 5(—1)% sin 6.
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Mg, k3,53 N

RN
up ‘ m,,ky,Co
N
Figure 12.2 Lowest-order diagram for the decay )~(i0 — .

The spinor trace is then

1
ETY[(A + Bys)(Ks + m3)(—B*ys + AK, + my)]
= (A% + [B?)(m2 + m? —m3) + (AP — |B)2mim;,  (12.28)

and
2 1 2 2 0. 1 .
|AI” + |BI” = 7 |Al” — B =(—)g§ sin 26 (12.29)
The partial width I'(g — tt;) is then given by (12.12), but with the replacement
m2 m m2 m? m
(1 + - “;) - (1 + 2 — —k ) 4+2(—)%sin20, —,  (12.30)
mg;  m; mg  mg m;

in agreement with formula (B.1b) of [49].

There are of course many such two-body modes: these channels may be repeated
for all the other flavours. If all such two-body decays to squarks are kinematically
forbidden, the dominant gluino decay would be via a virtual squark, which then
decays weakly to charginos and neutralinos (we saw earlier, in Section 9.3, that
most models assume that the gluino mass is significantly greater than that of the
neutralinos and charginos).

12.1.2 Theneutralino decays 3 — ad. and 3 — 1§

We consider the decay (Figure 12.2) of a neutralino f(io of mass m;(= m)"(io)’ 4-
momentum kj and spin S3, to an anti-quark @ of mass m;(= m,), 4-momentum K,
spin S; and colour €, and a squark @i, of mass my(= My, ), 4-momentum kj, and
colour C,. The process is similar to the first gluino decay considered in the previous
subsection, and as in that case we shall neglect squark mixing in this first generation
process. By the same token, we shall only consider the W° and B components of
the neutralinos, neglecting the coupling to their Higgsino components which arises
from the first generation Yukawa coupling in the superpotential.
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The relevant interaction is contained in the electroweak part of (7.72), namely

L gv~v°+9/B X (12.31)
\/i L 3 us *

where a sum over the colour indices of the quark and squark fields is understood. We
re-write the gauge-eigenstate fields G° of (11.11) in terms of the mass-eigenstate

fields x° by
G'=vyi° (12.32)
where V is an orthogonal matrix, so that
B=> Vg and W'=> Vyux' (12.33)
i i

Then (12.31) becomes

1 g 8
_%Gi > (QV\/VOi + gVBi) % X
i

__Lg (gV i + gw) (=)L P, (12.34)
- \/5 La i WO 3 Bi M ua s .
where in the second line we have re-instated the colour indices, which are summed
over o = 1 to 3, and included the phase factor (11.17) to take care of negative mass
eigenvalues, using ys P = —Pp.
The amplitude for the decay of the i-th neutralino state is then obtained as in
(12.4)—(12.6), and we find the result

Q7)*8% (K + ks — ka)i AL ks, ) PLu(Ks , S0 (C2)a(Ch e (12.35)
where
A= Lt (v + Sve (12.36)
u \/E g Wi 3 Bi ° :

For the decay rate, the spinor trace is very similar to (12.9), and yields the same
answer:

1 1
5 2 litks, s)Prucky, s = = (m3 + mp — m3). (12.37)

S1,S3

The colour factor is

Y ol (e =3, (12.38)

C1,C

since of(C)w(c)) = 8c,c,- The phase space factor is as in (12.10), and the partial
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rate is obtained as

0 Pyt mﬁ_mﬁL N
F(Xl —> UUL) = = ‘Au ‘ 1 + m;io m?(i() k(mua muL, m)"(io)’ (1239)

in agreement with formula (B.66) of [49].
The calculation of the partial width for %¥ — 11, is complicated both by squark
mixing, as discussed for § — tt;, and by the inclusion of Higgsino components.
To include squark mixing, we require the amplitude for both
% -t (12.40)
and
70 — tik. (12.41)

The W° — B part of the interaction responsible for (12.40) is of course the same as
(12.31), with ‘u’ replaced by ‘t’. For (12.41), only B contributes, and the relevant
interaction is

—- ’f*np P, 12.42
\/_ 39 R W ( )
For the i -th neutralino mass-eigenstate field, the required interaction, so far, is then
50 _ 50 » 50 _ 50
B ACUEPW, +1T, B U Py, (12.43)
where
w_ 1
Bu f39 )PV, (12.44)

The relevant part of the superpotential is
W =y HO. .., (12.45)

where fsz could alternatively be written as f; . The resultant Yukawa couplings to
the Higgsino fields are

—th HY - X — y{[ Vi % _ytfRaVH(h (— 1) i ‘PX' PV, (12.46)
and
_ytf H Xt —> ytf Vi X. ythaVH‘H (1) i ‘I’X' PrWy,  (12.47)

using manipulations similar to those in (12.17)-(12.22). Combining (12.46) and
(12.47) with (12.43), and retaining the f; component only, we arrive at the
interaction

t, ‘f’fa‘o[a + bys| ¥y, (12.48)
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where

a= %[COS O(AL — YD) Vi) +sinbu — B +y ()T Ve)]  (12.49)
and

0.0

1 70 0 50 .
b= ~[ —sin6(BY + yi(—i)" Vo) — cos6i(AL 4+ yi@) *' Vigei)].  (12.50)

2
The decay amplitude is then the same as (12.35), but with

ok, )AL PLo(ki, s) (12.51)
replaced by
v(ks, s3)(@ + bys)v(ky, sp). (12.52)

The spinor trace calculation is similar to that in (12.28), and the partial width is
found to be

. 3
F(x’ —th) = 8rm2, {laP[(m; +my)* = m2 ] + bI2[(m, — myo)” — 2 ]}
Xi

x k(my, mg,, myo) (12.53)

in agreement with formula (B.65) of [49].

Exercise12.1 The squark decay t; — t§
The interaction responsible for this decay is closely related to that for % — Tf; —
in fact, it is the hermitian conjugate of (12.48), namely

flo U[a — brys W (12.54)

Assuming that the decay is kinematically allowed, m;, > m + Mo, show that

- 1
P = ) = . {1alP[m; = (mo+myo)] + IbP[me — (m—m2,)°])
4
x k(my, mgo, my,), (12.55)

in agreement with formula (B.39) of [49].

12.1.3 Theneutralino decay 7 — %; +Z°

We recall that the Z° field is given by the linear combination (10.20). Since B* has
weak hypercharge equal to zero, it does not couple to the corresponding gaugino
field B. On the other hand, the coupling of the SU(2);, gauge fields W* to the
gaugino triplet W is given by (7.28). Because of the antisymmetry of the € symbol,
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Figure 12.3 Lowest-order diagram for the decay Xio — )N(]-O + 70

it is clear that W4 couples only to W! and W2, not to W°. Hence the couplings of
Z° to neutralinos arise only via their Higgsino components.

The SU(2)1. x U(1)y gauge interactions of the two Higgsino doublets are given
by the terms (in 2-component notation)

~ Lo~ / ™~ +
(A TR G (igf W, + i% BM> (:u0>
Lo / 710
+i(AdATe (120w, i, ) (5. (12.56)
2 2 A

In converting to Majorana form via (2.120), we must remember that while the
L-parts of the doublets

H+ HO
W W,

“g . “: (12.57)
VAR VAR

transform as a 2-dimensional representation of SU(2), the R-parts transform as
a 2 (see for example (8.25)—(8.29)). The parts of (12.56) involving the neutral
Higgsinos then become

1 - {O o - Ao Fo
_Z(gz + 9/2)1/2[‘1’1\/]“ )/MVS\IIMu _ IIJMd yMVSlIJMd]ZM- (1258)

Finally, converting to the neutralino mass-eigenstate fields and including the phase
factors of (11.17), we obtain the interaction for 7’ — ¥} +Z° as

- %9 O.0+60.0+1 _ 30
Wi By v (v5) CH vz, (12.59)

where
1 030 .06
\Nij = Z(g2 + g/2)1/2(_1) X?(l) % (Vﬂé’ivﬂfj — Vﬂfivﬂg j)' (12.60)

We denote (see Figure 12.3) the mass, 4-momentum and spin of the decaying
)Zio by mj(= mfcio)’ ki and s, of the final )”(JO by mj(= mxjo), K; and s;, and the mass,
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4-momentum and polarization of the Z° by my, k and A. Evaluating the appropriate

matrix element of (12.59), we obtain the decay amplitude
i(2m)*54(k — ki — KW acky. 5y ) kL $)eptk, 1),
For the decay rate we need to evaluate the contraction
N = N*"Py,
where (see, for example, equation (19.19) of [7])

Puv = D €k, ef(k, 2) = — G + Kok /M2
A

and
1 0.0+6_0+ 0.0+6_0+1
v __ . X X5 Xi Xi .
N* —zé[u,yws) P ) T ]
1 +9
———Tr[(k,+m)y"( K+ (=) moy]
6.0+6.0

= 2(ki“kj” + ki"k’j* —g"'k - kj) — (=) " 12g""mim;.
Performing the contraction (12.62) yields the result

(e, — w2, )? = m}

A 0.0+0.0
2 2 2 i j { (
N = mxio + mf(? —mz + + 6(_) A mxiomxjo.

2
my

The decay rate is then
1
F(% — %) +2Z°) = ——IW > NK(mjo, mz, myo).
87'rm)~(_0 i i

This differs from formula (B.61b) of [49] by a factor of 4.

12.2 Sparticle production processes
12.2.1 Squark pair production in qg collisions

We begin by considering the process

4192 —> qiLqzr,

(12.61)

(12.62)

(12.63)

(12.64)

(12.65)

(12.66)

(12.67)

where q; and q; are non-identical quarks, belonging in practice to the first or second
generation. The relevant Feynman diagram is shown in Figure 12.4. The momenta,
spins and colour labels of the quarks are p;, S, C; and p,, S, C, and the momenta
and colour labels of the squarks are K;, ¢ and k,, C;. The interaction which produces
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Figure 12.4 Lowest-order diagram for the process q;q2 — qiLd2r-

the q is the hermitian conjugate of (12.15), namely
- 1
Ly = —fzgs(_i)"@q{ngaaixawq. (12.68)
Similarly, g,r is produced by the hermitian conjugate of (12.22), namely
. 1
Log = ++/2g,()%a, ¥ PREAawq. (12.69)
The amplitude for Figure 12.4 is then
(i, ki, €1; Gor. Ko, C /d4Xd4yT[iﬁlL(X)iﬁzR(Y)]“h, P1, S1, i3 Q2. P2, S, Ca).
(12.70)
After reducing the particles in the initial and final states, this becomes
2 4y g4 i(k~x+k~—-x—-)1/)‘a ]‘/)‘b
2g; | d*xd'ye!M XYY, (01)70)(01)0) (Cz)?w(CZ)
x (0| T [Wgh OB, (1)][0)Prapp(pr. S PrysUs(P2. ), (12.71)

where we have indicated the spinor indices explicitly. We use (2.144) to write the
spinor part as

8CT Sie, (X — Y)PLagUs(p1, S1)PrysUs(p2, S2)
= 8% (CPLU(P1, $1))" SH(X — Y)PRU(P2, ). (12.72)

Now

CPW' =u"P.CT =3CTP.CT = 3P.(CT)?> = —3P,, (12.73)
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where we have used Cys = y5C, and equations (2.133) and (2.142). Writing
S(X —y) in terms of its Fourier transform (2.138) allows us to perform the
integrals over X and Yy, and we obtain the amplitude

i2m)*8%(p1 + P2 — ki — k) Mg, (12.74)
where
5 ]L )\‘a J[ )\‘a _
Mg = —20; wl/?“)l C02'7602 v(pi, Sl)&m PrU(P2, ).  (12.75)

For the cross section, we require the modulus squared of the amplitude, summed
over final state colours and averaged over intial state colours and spins, which we
denote by | Mq|%. For the colour part, we note that

> (Cl)—a)(cl)w (Cl)—a)(cl) = lT AP = ;53”, (12.76)

Cy, Cl

and hence the colour factor is

D 65 = = (12.77)
ab

=
NY

The spinor factor is

1
2722“[[31 PL(Ki — 1 + mg) Pripo PL(K1 — 1 + M) Pr]
(t—mg)

1 1

T

t—m)(E—m;)— st (12.78)

where we are using the ‘hatted” Mandelstam variables (conventional in parton
kinematics) defined by

§=(pi+ P’ =k +k)? t=(p —k)?=(p—k)?,
0=(p —k)* = (p — k). (12.79)

The differential cross section in the centre of mass system is given in terms of
| Mgq1? by (see, for example, [15] Section 6.3.4)

do 1 p

_ 2
dQ ~ 4pW 1672W2 Tom2wz Ml (12.50)

where W = /8, and p, p’ are the magnitudes of the initial and final state momenta,
in the CM system. The kinematics is simplified if we neglect the quark masses, and
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Figure 12.5 Lowest-order exchange diagram for the process qq — Grqr.-

assume the final squarks have equal mass. Then
df = Wp'dcos6 = Wp'dQ/2n, p=W/2. (12.81)

Putting all this together, we arrive at

do 2o [ — (E—mg)(f—mg,) —&t]
— — JiL0oR) = 12.82
T (9192 = qiLdzr) Y t- mg)z ( )
g
in agreement with formula (A.7d) of [49].
Exercise 12.2 Show that the cross section for q;q2 — §i.JoL is
do( 1) 2ma? M8 (1283
— — = —_— .
dat 9192 = qiLqaL 9 (f _ mé)z

in agreement with formula (A.7e) of [49].

A new complication arises when we consider the analogous calculations for the
case in which the initial state quarks are identical, q; = q, for example

qq — qLdL. (12.84)

There is now a ‘direct’ amplitude of the form (12.75), corresponding to Figure 12.4,
which is obtained straightforwardly as

a

f A A8
,/\/l((%) =207 !, —w; a);?wz v(p1, S1)PL

5 -PLU(P2, $)(—)*%.

-
kl - pl - mg
(12.85)

In addition, to ensure antisymmetry for identical fermions, we must subtract from
this the ‘exchange’ amplitude, corresponding to the diagram of Figure 12.5, given by
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the interchanges p; <> P2, S| <> S, C; <> C, so that the total amplitude is M((%) +
MSZ]) where

M(e)_ 221)‘3 T)‘a -
e e (P2, S2)PL

; —1)%6%:
TR —— PLu(pr, sp(—1)7=.

(12.86)

This result can, of course, also be obtained by evaluating the matrix element of the
relevant interaction. The cross section will therefore involve the sum of three terms:
the square of the direct amplitude

(d)2
M| (12.87)
the square of the exchange amplitude
©)2
M| (12.88)
and the interference term
2Re[ Mg M) (12.89)

The part of the cross section arising from (12.87) is given by (12.83) as before, and
the part from (12.88) is the same but with f replaced by 0; we must also remember
to include an overall factor of 1/2 due to identical particles in the final state.
The evaluation of the interference contribution is more involved. Consider first
the colour factor, which (apart from the averaging factor 1/9) is
a b a b
Z w{,%wlw-{%a)zzw;}\—a)ga);k—wlr

2 2

C1,¢.C},C5.a,b

" 16

1
ol P2 ) = — 3 T TrGAPAY). (12.90)
g 16

1,a,b a,b

Now we have

APAR = 22D — 2i fpc)S, (12.91)

where the coefficients fapc are as usual the structure constants of SU(3). The part
of (12.90) not involving the fs is then

e 44
Tr;[(k /2)( /2)];[()?/2)@‘)/2)] :Tr[<§§> |3] =16/3  (12.92)

where |5 is the unit 3 x 3 matrix. In (12.92) we have used the fact that
Y al(A%/2)(23/2)] is the Casimir operator C, of SU(3) (see [7], Section M.5),
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having the value 4/3 |5 in the representation 3. The remaining part of (12.90) is

2i i
Te O foacTrOPA%) = == 3 7 foacTr([A, A%12)
a,b,c a,b,c
1 1
= —3 Z fbac fbadTr()\d)nc) = 7 Z fhac fhac- (12.93)
a,b,c.d a,b,c

To evaluate the product of fs, we note that the generators of SU(3) in the repres-
entation 8 are given by (see [7], equation (12.84))

(GP),. = —i farc, (12.94)

and that the value of C, in this representation is 31g, where lg is the unit 8 x 8
matrix, so that

Y (GF)(GP) = 24 (12.95)
a,b,c
Hence
Z fabe fane = 24, (12.96)
a,b,c

and expression (12.93) is equal to —6. Combining this result with (12.92), we find
that (12.90) equals —2/3.
The spinor part of the interference term (12.89) is

—v(pr, S)PL - PLu(p2. )0(p1, s1)Pr -Pro(p2, 9,

1 1
Ki — P — Mg Ki —pr — Mg
(12.97)

which has to be summed over S; and S, (with a factor of 1/4 for the spin average). As
it stands, (12.97) is not in a suitable form for using the standard Trace techniques:
first of all, spinors referring to the same spin and momenta variables need to be
adjacent to each other, and secondly we need expressions of the form ut and v,
not 90 and Uv. To deal with the first difficulty, we write out (12.97) including all
the spinor labels explicitly, and rearrange it as

_l_)oz(pl, Sl)uk(pl’ Sl)( PR))\}L < (PR)vrvf(sz 52)

e,
Ki—p—mg/

1 T
X Us(P2, SZ)(P]:F)BV [(m) j| (P]:r)ﬁa, (12.98)
vB

where ‘T” denotes the transpose. We now use

Ue(P1,S1) = ngua(pl, S1), and v (P2, ) = Crnun(pZ’ $) (12.99)
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from (2.133), which enables the spin-averaged expression to be written as

1 1
—  PCp P —————— PL} (12.100)
Ki —po — mg K —pr — my)T
where we have used )/5T = ys, and taken the quarks to be massless. We now note
that

1
—Tr {CT;zs1 Pr

Cy, =—C and CC' =1, (12.101)

so that (12.100) becomes
-1
4(0 — mg) (£ — mg)
= ™ Tr[pip. Pl = TS
4(0 — mg) (£ — mg) S - my ()
Remembering now the factor of 2 in (12.89), the result (12.83) (and the corres-

g
ponding one with f replaced by 0), and the overall factor of 1/2, we find that the
cross section for qq — G is

a2m [ 1 I 2/3 }

Tr[p; Pr(K — B2 + Mg) Prpo PL(Ky — 1 — Mg) PL]

(12.102)

do
df

(a9 — Guau) = - B
qq9 — ququ 98 (f _ mé)z (0 — mé)2 (f - mé) (0 - mé)

(12.103)

in agreement with formula (A.71) of [49]. Similar manipulations are presented in
Appendix E of [45].

Exercise12.3 Show that the interference term vanishes (in the limit of vanishing
quark mass) for the case qq — {L{r, and hence that the cross section is

do ( 1)

— —

df qq qLgr

_ 2nad [[— (t—m)(E ) ~s] [~ (0-m)@—m) —so]}
o (t—m)’ (0-m)’

(12.104)
in agreement with formula (A.7j) of [49].

The expressions for the cross sections of squark (or gluino) production in qq
collisions are very similar to those obtained from standard QCD tree graphs (see,
for example, [7] Section 14.3); the main qualitative difference is that the propagator
factor £72 for the massless gluon is replaced by (f — mg)~* for the massive gluino
(and similarly for the O-channel terms). For an order of magnitude estimate, we
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Figure 12.6 Cross sections for squark and gluino production at the CERN LHC pp
collider for mg = M (solid) and for Mg = 2m; (dashed). [Figure reprinted with
permission from Weak Scale Supersymmetry by H. Baer and X. Tata (Cambridge:
Cambridge University Press, 2006), p. 318.]

may set

2ol

o~ ~ 250 tb (12.105)
for ag ~ 0.15 and /8 = 5 TeV. The initial state quarks are, of course, constituents
of hadrons, and so these parton-level cross sections must be convoluted with ap-
propriate parton distribution functions to obtain the cross sections for physical
production processes in hadron—hadron collisions; see, for example, [118]. As an
illustration of the predictions, we show in Figure 12.6 (taken from [49]) the cross
sections for squark and gluino production at the CERN LHC pp collider. For ms
and Mg less than about 1 TeV, and an integrated luminosity of 10 fb~!, one expects
some thousands of g, { events at the LHC.
We now turn to sparticle production via electroweak interactions.

12.2.2 Slepton and sneutrino pair production in qg collisions

We consider first the production of a charged slepton in association with its sneutrino
partner

do — 1.9, (12.106)
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P1,S1

P2:S2

Figure 12.7 Lowest-order diagram for the process dii — I §y..

proceeding via W™ -exchange in the §-channel, as shown in Figure 12.7. The 4-
momenta and spins of the d and G quarks are p;, S; and p;, S, and the 4-momenta
of the slepton and sneutrino are K; and kj; colour labels are suppressed. The
SM interaction at the first vertex is contained in the quark analogue of (8.34),
and is

,qu = —ivud\DuL]/u\IJdLW s (12107)

V2
where (see, for example, [7] equation (22.25))
W, = (Wi, — iWh,)/+/2 (12.108)

is the field which destroys the W or creates the W, and V,q is the appropriate
element of the CKM matrix. The interaction at the sparticle vertex is contained in
the SU(2) gauge invariant kinetic term (see (7.67))

(Du¢1)' (D" ¢y) (12.109)
where
& = (:’L) , and D, =4, +igg W, (12.110)
L
The relevant term is
Ly = _%i(fﬁa”ﬁL — @ THi W (12.111)

Note that (12.111) is the same as the hermitian conjugate of (12.107) with the
fermionic current replaced by the corresponding bosonic one, and with V4 — 1.
The amplitude for Figure 12.7 is then

(L, ki DL, ko / d*xd*y T [iLqw0ilwa(V]|d, pr.Si T P2, ). (12.112)
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s
u s
:L: 7/
P1:S1 i A
ZO / 1
/
AN
\\
S u = ko
P2,S2 u 7, \\
AN

Figure 12.8 Z° exchange diagram for the process uii — % %,.

The reduction of the final state sleptons leads to a factor i(k} — K}) from the deriva-
tives in Ly, and (12.112) becomes

Qr)*s*(pr + P2 — ki — k2)iMengl, (12.113)

where
2

Meng = g_vudl_)(pZ» )y PLu(pr, 1) (

—Qu + kK, /m3 b
T ) (g k)

2 §—my, +imwlw
(12.114)
and k = k; + k; = p; + p2. The term
0(P2, )y " PLUu(pr, s)K, = (P2, S)(@1 + B2) PLu(ps, 1) (12.115)

vanishes in the massless quark limit. The spinor factor in the cross section is
1 1
ETr[pZ(kZ — K PLp1 Pr(Ka — Ki)] = ﬂTr[pz(kz —Kopi (ke — kil
1
= §(m —mim;], (12.116)

where f = (p; — k1)?, 0 = (p; — ko)?, and the factor of 1/3 comes from the colour
average. The cross section is then

d - = *1Vaal? 1
d—?(dﬁ S5 = 91 '2 ng S (fo-mm) (2117
2mS (8 —my)” + my Ty
in agreement with equation (A.14) of [49], setting V4 to unity.
An analogous neutral current process is
ul — 717, (12.118)

proceeding via Z° exchange in the § channel, as shown in Figure 12.8. We take the
4-momenta and spins of the u and G to be p;, S; and p,, S, and the 4-momenta of
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the %, and 7, to be K;, ky. The SM interaction at the quark vertex is'

Liz = —Wulawy" + Buy"vs1WuZ, (12.119)

where (see, for example, [7] equations (22.53) and (22.54))

__9 9
12 cos Oy 4cosBy

At the stau vertex, we need the SU(2) x U(1) gauge invariant kinetic term for the
L-doublet:

(3 — 8sin’Oy), Pu=

(12.120)

Oy

¢: = (”TLL) with D, = 8, + ig% W, — %g’BM, (12.121)
and also for the R-singlet g with
D, =29, —igB,. (12.122)
The 7, interaction comes out to be
— k(@) Zy, (12.123)
where
jho(f) = ofGiE 0 % + h.c.) (12.124)
and
g = cosgew (—1/2 + sin’ By). (12.125)

Note that the coupling strength (12.125) is exactly the same as the one for s in
the SM (see, for example, equations (22.38) and (22.39) of [7]); once again, the
bosonic current here replaces the fermionic one. Similarly, the 7r interaction is

— k(@) Z, (12.126)
where
Jic(TR) = OR(T58" T + h.c.) (12.127)
and (cf. equation (22.40) of [7])
T )
= Ow. 12.128
& cos by S fw ( )

! Our notation here is slightly different from that of [49]: they write ex, and €8, for our a, and S, and our Z,
field is the negative of theirs.
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We now convert (12.123) and (12.126) to the mass-basis fields 7; and 7, using the
analogue of (11.62) with 6, replaced by 6,. The required interaction is then

L7z =iB, sin20,(5]0"% + 7 0"%)Z, + h.c., (12.129)
where
g
— . 12.130
& 4 cos Oy ( )

Proceeding as before, the amplitude for the process (12.118) is

Q)8 (p1 + p2 — ki — K)iMyzz, (12.131)
where
. Ak, + Bk,
Myzz = Br sin20,0(pa, S)y"(oty + Buys)U(P1, S - = 12.132
7z = B sin20.0(P2, )y (au + Buys)U(P1 I)S—m%—i-imzr‘z ( )
and
A=(m} —m; —my)/my, B=(my+m; —my)/my.  (12.133)

In the limit of massless quarks, we find

(P2, S2)y " (au+ Buys)U(P1, S1(AK;, + Bkay) =20( P2, So)Ke(aty + Buys)U(Pr, Si).
(12.134)

The resulting spinor factor in the cross section is

1 1
ETr Pk + Buys)Bi(au — Buys)ie] = 6(0[3 + ﬂl%) (fﬂ — m%l m%z), (12.135)

and we obtain
o = 1 . 2 1 2 2
—(ul — {7 = B7 sin” 26, (o + By) (fa—m;mz)
7T (s —m2)” + m2r2

(12.136)

in agreement with (A.15b) of [49].

12.2.3 Stop and stau pair production in e*e~ collisions

Hadron colliders are suitable for broad searches for new physics, by virtue of their
high beam energy and relatively large sparticle production cross-sections. However,
if sparticles are found at the LHC (for example), precision studies of their properties
will be best undertaken with a TeV scale eTe™ collider, operating with polarizable
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Figure 12.9 Z° exchange diagram for the process e]fel; — T T).

beams. Here we shall consider just two simple processes:

efeg > Bita (12.137)
and

efeg — L. (12.138)

Figure 12.9 shows the Feynman diagram for (12.137). We take the 4-momentum
and spin of the e~ to be py, S, and those of the e to be p,, S,; the 4-momenta of
the %; and %, are k; and k,. The SM interaction at the electron vertex is

Loz = —Welaey" + Bey"ys1¥e Z,, (12.139)

where (see, for example, (22.41) and (22.42) of [7])
g

= 4in’ Ow — 1), = ) 12.140
e 4cos€w( S Pw ). Pe 4 cos Oy ( )
The stau vertex has been given in (12.129). The amplitude is
Qm)*8*(p1 + P2 — ki — kp)iMezz, (12.141)
where
. Ak;,, + Bk,
Mezz = B sin 20, 5(pa, Hlae + u(p:, s - —,
eZt ,Br T (pZ SZ)V (ae IBeVS)PR (pl I)S—m%-l-imzrz
(12.142)

where A and B are given in (12.133), and S = (p; + p»)?. The projection operator
Pr has been inserted before the initial state electron spinor; this selects out the R
polarization state in the limit in which the electron mass is neglected. In this limit,
and using ys Pr = Pg, we find (as in (12.134))

Mer = 2(“6 + IBe)IBT sin ZGID(pL S2)k2 PRU( P1, Sl) B . .
s—m; + imzI'z

(12.143)
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For the cross section, we now formally sum over initial spins rather than average
them: the operator Py eliminates the unwanted states. The Trace factor is then

Tr{paK Prpi PLio] = (tu — mZ mz) (12.144)
where t = (p; — k))> andu = (p1 — k»)?, and the cross section is
do o sin’ 26, 1

—(efeg = #it2) = (tu—mzmz). (12.145)

dt 482 cos? Oy (S _ m%)2 + m2r2
In this case, the order of magnitude of the cross section is

o ~a?/s~20fb (12.146)
for /s=1TeV.

Exercise 12.4 Stop pair production in e*e™ collisions
Show that the Z-stop interaction is

Lz =iBisin26(T110"%, +10°T))Z, + h.c. (12.147)
where
B = -9 , (12.148)
4 cos Oy

and hence that the cross section is
da( o T 3ma? sin? 26, 1
—— (& eg = i) =
t 452 cos? By (s— m%)2 + mr2

] (tu—mim). (12.149)
This agrees with (A.21c) of [49] after transforming the variable t to Z = cos @,
where 6 is the angle between the initial e~ and the final ; in the centre of mass
system (see (12.81)).

12.3 Signatures and searches

Our introductory treatment would be incomplete without even a brief discussion
of the extensive experimental searches for sparticles which have been made, and
of some characteristic signatures by which sparticle production events might be
distinguished from backgrounds due to SM processes.

(i) Gluinos
A useful signature for gluino pair (§d) production is the like-sign dilepton signal
[119-121]. This arises if the gluino decays with a significant branching ratio to hadrons
plus a chargino, which then decays to lepton + v + ¥} . Since the gluino is indifferent
to electric charge, the single lepton from each § decay will carry either charge with
equal probability. Hence many events should contain two like-sign leptons (plus jets
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plus ). This has a low SM background, because in the SM isolated lepton pairs come
from WHTW~, Drell-Yan or tt production, all of which give opposite sign dileptons.
Like-sign dilepton events can also arise from ¢ and §§ production.

Collider Detector at Fermilab (CDF) [122] reported no candidate events for like-sign
dilepton pairs. Other searches based simply on dileptons (not required to be like-sign)
plus two jets plus ¢ [123, 124] reported no sign of any excess events. Results were
expressed in terms of exclusion contours for mMSUGRA parameters.

(i1) Neutralinosand charginos
As an illustration of possible signatures for neutralino and chargino production (at
hadron colliders, for example), we mention the trilepton signal [125-130], which
arises from the production

pp (or pp) > X %s + X (12.150)

followed by the decays
o ey (12.151)
x5 — 1Tx). (12.152)

Here the two LSPs in the final state carry away 2myo of missing energy, which is
observed as missing transverse energy, Fr (see Section 8.4). In addition, there are
three energetic, isolated leptons, and little jet activity. The expected SM background is
small. Using the data sample collected from the 1992-3 run of the Fermilab Tevatron,
DO [131] and CDF [132] reported no candidate trilepton events after applying all
selection criteria; the expected background was roughly 2 + 1 events. Upper limits on
the product of the cross section times the branching ratio (single trilepton mode) were
set, for various regions in the space of MSSM parameters. Later searches using the
data sample from the 1994-5 run [133, 134] were similarly negative.
(iii) Squarksand sleptons

AteTe™ colliders the t; pair production cross section depends on the mixing angle 6;; for
example, the contribution from Z exchange actually vanishes when cos? 6; = % sin? By
[135]. In contrast, T;’s are pair-produced in hadron colliders with no mixing-angle
dependence. Which decay modes of the t; dominate depends on the masses of charginos
and sleptons. For example, if My, lies below all chargino and slepton masses, then the
dominant decay is

t—c+ix (12.153)
which proceeds through loops (a FCNC transition). If mg, > my-=,
tt > b+t (12.154)

is the main mode, with ¥* then decaying to |v%}. DO reported on a search for such
light stops [136]; their signal was two acollinear jets plus 1 (they did not attempt to
identify flavour). Improved bounds on the mass of the lighter stop were obtained by
CDF [137] using a vertex detector to tag c- and b-quark jets. More recent searches are
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reported in [138] and [139]. The bounds depend sensitively on the (assumed) mass of
the neutralino 5(?; data is presented in the form of excluded regions in a My — m;,
plot.

The search for a light b, decaying to b+ % is similar to that for T — ¢ + ¥}.
DO [140] tagged b-jets through semi-leptonic decays to muons. They observed five
candidate events consistent with the final state bb + F, as compared to an estimated
background of 6.0 = 1.3 events from tt and W and Z production; results were presented
in the form of an excluded region in the (Mo, Mg ) plane. Improved bounds were
obtained in the CDF experiment [137].

Searches for SUSY particles are reviewed by Schmitt in [59], including in
particular searches at LEP, which we have not discussed. Chapter 15 of [48] and
chapter 15 of [49] also provide substantial reviews. In rough terms, the present
status is that there is ‘little room for SUSY particles lighter than mz.” (Schmitt,
in [59].) With all LEP data analysed, and if there is still no signal from the Tevatron
collaborations, it will be left to the LHC to provide definitive tests.

12.4 Benchmarksfor SUSY searches

Assuming degeneracy between the first two families of sfermions, there are 25
distinct masses for the undiscovered states of the MSSM: seven squarks and sleptons
in the first two families, seven in the third family, four Higgs states, four neutralinos,
two charginos and one gluino. Many details of the phenomenology to be expected
(production cross sections, decay branching ratios) will obviously depend on the
precise ordering of these masses. These in turn depend, in the general MSSM,
on a very large number (over 100) of parameters characterizing the soft SUSY-
breaking terms, as noted in Section 9.2. Any kind of representative sampling of
such a vast parameter space is clearly out of the question. On the other hand, in
order (for example) to use simulations to assess the prospects for detecting and
measuring these new particles at different accelerators, some consistent model
must be adopted [141]. This is because, very often, a promising SUSY signal
in one channel, which has a small SM background, actually turns out to have a
large background from other SUSY production and decay processes. Faced with
this situation, it seems necessary to reduce drastically the size of the parameter
space, by adopting one of the more restricted models for SUSY breaking, such as
the mSUGRA one. Such models typically have only three or four parameters; for
instance, in mSUGRA they are, as we have seen, My, My 2, A, tan B, and the sign
of u.

But a complete sampling of even a three- or four-dimensional parameter space, in
order (say) to simulate experimental signatures within a detector, is beyond present
capabilities. This is why such studies are performed only for certain specific points
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in parameter space, or in some cases along certain lines. Such parameter sets are
called ‘benchmark sets’.

Various choices of benchmark have been proposed. To a certain extent, which one
is likely to be useful depends on what is being investigated. For example, the ‘mp***-
scenario’ [102] referred to in Section 10.2 is suitable for setting conservative bounds
on tan 8 and Muo, on the basis of the non-observation of the lightest Higgs state.
Another approach is to require that the benchmark points used for studying collider
phenomenology should be compatible with various experimental constraints — for
example [142] the LEP searches for SUSY particles and for the Higgs boson,
the precisely measured value of the anomalous magnetic moment of the muon,
the decay b — sy, and (on the assumption that %, is the LSP) the relic density
Q 70 h?. The authors of [142] worked within the mSUGRA model, taking Ay = 0
and considering 13 benchmark points (subject to these constraints) in the space
of the remaining parameters (M, My /2, tan B, sign ©). A more recent study [143]
updates the analysis in the light of the more precise dark matter bounds provided
by the WMAP data.

One possible drawback with this approach is that minor modifications to the
SUSY-breaking model might significantly alter the cosmological bounds, or the
rate for b — sy, while having little effect on the collider phenomenology; thus
important regions of parameter space might be excluded prematurely. In any case,
it is clearly desirable to formulate benchmarks for other possibilities for SUSY-
breaking, in particular. The ‘Snowmass Points and Slopes’ (SPS) [144] are a set of
benchmark points and lines in parameter space, which include seven mSUGRA-
type scenarios, two gauge-mediated symmetry-breaking scenarios (it should be
noted that here the LSP is the gravitino), and one anomaly-mediated symmetry-
breaking scenario. Another study [145] concentrates on models which imply that
at least some superpartners are light enough to be detectable at the Tevatron (for
2 fb~! integrated luminosity); such models are apparently common among effective
field theories derived from the weakly coupled heterotic string.

The last two references conveniently provide diagrams or tables showing the
SUSY particle spectrum (i.e. the 25 masses) for each of the benchmark points. They
are, in fact, significantly different. For example, Figure 12.10 (taken from [144])
shows two sparticle spectra corresponding to the parameter values

SPS 1a : my = 100 GeV, My, = 250 GeV, Ay = —100 GeV, tan 8 = 10, . > 0
(12.155)

and

SPS 2 : my = 1450 GeV, my, = 300 GeV, Ag =0, tan 8 = 10, u > 0.
(12.156)
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Such spectra may themselves be regarded as the benchmarks, rather than the values
of the high-scale parameters which led to them. If and when sparticles are discov-
ered, their masses and other properties may provide a window into the physics of
SUSY breaking. However, as emphasized in Section 9.4 of [47], there are in prin-
ciple not enough observables at hadron colliders to determine all the parameters of
the soft SUSY-breaking Lagrangian; for this, data from a future ete™ collider will
be required.

Ultimately, if supersymmetry is realized near the weak scale in nature, high
precision data in the sparticle sector will become available. A correspondingly
precise theoretical analysis will require the inclusion of higher-order corrections,
for which a well defined theoretical framework is needed; one — the Supersymmetry
Parameter Analysis Convention (SPA) — has already been proposed [146]. Such
efforts have the ambitious aim of reconstructing the fundamental supersymmetric
theory, and its breaking mechanism, from the data — as and when that may be
forthcoming.
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