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Preface

This is a book on mathematical physics for a reader with a good background in
mathematics, but possibly a minimal knowledge of physics. The subject matter is
quantum physics and includes non-relativistic quantum mechanics, quantum statisti-
cal mechanics, relativistic quantum mechanics, and quantum field theory. The book
only contains material which meets the twin criteria of being basic physics and being
treatable with complete mathematical rigor. For each topic there is a straightforward
statement of basic principles followed by simple examples. There is also background
material in analysis, classical mechanics, relativity, and probability.

The book does not prove deep mathematical theorems. The book does not consider
the complicated models of mathematical physics. The book does not enter into the
fascinating speculative topics on the frontiers of physics, for example string theory.
Finally the book does not consider questions concerning the foundations or philoso-
phy of quantum physics. However the book does help prepare the reader for a journey
in any of these directions.

The book assumes knowledge of elementary analysis, measure theory, linear
algebra, some group theory, and some knowledge of differential equations. Some
reference is made to manifolds, differential geometry, and Lie groups. Not much
knowledge of physics is assumed beyond an introductory course. However one
probably needs more than this to really appreciate the material.

The book is suitable for a graduate course in mathematics. In this connection there
are problems scattered throughout the text. These serve the dual function of further
developing the material and providing a study aid. The level of difficulty is quite
variable.

Books which cover similar ground are Gustafson and Sigal (2003) and Takhtajan
(2008). The mathematical level is about the same, but they have different points of
emphasis.






Introduction

At the end of the nineteenth century most macroscopic phenomena could be

explained in terms of a few basic equations. For the behavior of matter there was

Newton’s equation which said that the location of an object, modeled by a point
x € R3, evolves in time according to the equation

d*x

"

Here m > 0 is the mass of the object and F = F(t,x,dx/dt) is the sum of all the

forces on the object. Forces were either gravitational or electromagnetic. In the

=F 0.1)

electromagnetic case the force due to an electric field £ : R® — R? and a mag-
netic field B : R? — R3 on a particle with charge e was given by the Lorentz force
F = eE+e/c(dx/dt x B). Here ¢ is the speed of light, approximately 3 x 10'0 cm/sec.
In this case Newton’s equations were

d*x o e (dx < B 02)
m— =e - — .
dr? c \ dt

The electric and magnetic force fields (£, B) themselves might depend on time,
and were determined by Maxwell’s equations

V-E=p
V-B=0
10B
VXE=——
c Jt
1 /0E .
VxB:—(——i—]) 0.3)
c \ ot

where p : R® — Randj : R® — R? are specified charge densities and current
densities which necessarily obey the conservation law

- 4vi=0 0.4)

If p,j are expressed in terms of the positions of a number of particles obeying
(0.2), the system of equations (0.2),(0.3) provide a model for an enormous range
of phenomena.

However large velocity and large-scale gravitational phenomena were not
accurately explained and it took the invention of special relativity (1905) and general
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relativity (1915) by Einstein to rectify matters. Furthermore microscopic phenomena
such as the structure of atoms were not accurately described and it took the invention
of quantum mechanics by deBroglie, Schrodinger, Heisenberg, and others in the
1920s to rectify the situation. For phenomena involving both large velocities and tiny
particles there is a synthesis known as quantum field theory which is still undergoing
development.

Quantum mechanics does not itself contain physical laws. Rather it is a general
framework in which physical laws should be formulated. As such it has a certain
mysterious and ad hoc character; there is not much insight into why it is the way it
is. However it is not ambiguous or inconsistent, and it has been very successful in
describing microscopic phenomena.

In this book we explain quantum mechanics with particular mathematical care. In
the first part of the book it is quantum mechanics without relativity. Here we take a
historical, empirical approach to the subject and develop the theory as an extension of
the classical equations (0.1), (0.2). After a discussion of general principles, the theme
here is increasing complexity as the number of particles is increased, culminating in
an introduction to quantum statistical mechanics.

In the second part of the book we add relativity to the mix studying quantum fields
obeying various linear field equations such as (0.3) (which is already relativisitic,
although its formulation predated relativity). A theme here is to develop the comple-
mentary field-particle aspects of the various cases. In this part we also make some
attempt at understanding why the basic equations are natural from a mathematical
point of view.

In the third part of the book we introduce some stochastic processes useful for
analyzing various quantum problems. These are in fact essential for treating quantum
fields obeying a nonlinear field equation. This is the interesting case since the non-
linearity corresponds to particle interactions. We illustrate the key role of stochastic
processes by developing a two-dimensional model at some length.
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Mathematical prelude

We begin with a survey of some of the mathematics we will need. The reader may
wish to read it lightly and come back for details as needed.

Vector spaces can be real or complex, usually complex. A Banach space is a
complete normed vector space. A Hilbert space is a Banach space in which the norm
comes from an inner product. We review some basic facts about Hilbert spaces and
Banach spaces in appendix A.

We are particularly interested in linear operators on a Hilbert space. Many of the
results we present also hold for linear operators on a Banach space, but we will not
need the more general result, and the proofs are sometimes easier for a Hilbert space.

1.1 Bounded operators
 ——

1.1.1 Definitions

A linear operator T from a Hilbert space H; to a Hilbert space H; is a mapping
T : Hi — H> such that

T(af + bg) = aT(f) + bT(g) f.geHi, abeC (1.1)

The operator is injective or one-to-one (that is Tf = Tg implies f = g) iff T has
kernel {0} (that is 7f = O implies f = 0). The operator is surjective or onto if the
range is H». The operator is bijective if it is injective and surjective and then there is
an inverse 7! : H, — H; which is also linear. (If H; = H, is finite dimensional,
then T is injective iff it is surjective, but not in general.)

A linear operator is bounded if there is a constant M such that

1771l < MIfIl (1.2)

for all f € H;. Linear operators are continuous iff they are bounded.

The set of all bounded operators T : H; — 'H» is itself a vector space with
(aD)f = a(Tf) and (T + To)f = Tif + Tof. It is denoted B(H, Ha) or B(H) if
‘H1 = H> = H. We define the norm of a bounded operator by
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.
IT|l = sup —— = sup [|Tf]| (1.3)
20 Il rp=t

Then we have
NI < N7 (1.4)

and ||T| is the smallest possible constant here. With this norm, B(H1,H3) is a
normed vector space. We will see that it is complete and hence is a Banach space.

If T € B(H1,H>), then by the Schwarz inequality |(f, Tg)| < ||T|lIIf]lllgll- Hence
for f € 'H> the mapping g — (f,Tg) is a bounded linear functional on H; and by
the Riesz representation theorem (theorem A.3) there is a unique vector f* € H; so
that (f, Tg) = (f*, g). We define T*f = f*. Then T* : Hp — H; is a linear operator
called the adjoint of T and we have

(Tf.8) = (f,Tg) (1.5)
Then |(T*f,g)| < |IT|l|If]lllgll and hence also by Riesz

171 = ”Shlpl I(T*f, )1 < ITIIf (1.6)
g =

Thus T* is bounded, T* € B(H,, H1), and ||T*|| < ||T.

Now we look at some special classes of bounded operators.

1. Let M C 'H be a closed linear subspace. Then any vector f € H can be uniquely
written f = fi +f where f| € M and f, € M (theorem A .2). Define Pp(f = fi.
This is a bounded linear operator with norm 1 called the projection onto M. It
satisfies P}\/t = P and Py, = P o and has range M.

More generally any bounded operator satisfying P> = P and P = P* is called
an orthogonal projection. One can show that any orthogonal projection has closed
range M and that P = P 4.

2. A linear operator T is an isometry if it is norm preserving, that is ||Tf] = ||f]l.
Since the norm determines the inner product by the polarization identity (A.5),
it is equivalent to say that it is inner product preserving (7f,Tg) = (f,g). An
isometry is bounded and injective.

The range of an isometry is always closed. To see this suppose 7f, — g. Then
e — fl = ITfu — Tfmll — 0. Hence f, is Cauchy and has a limit . Then
Tf, — Tf by the continuity of 7' and hence g = Tf.

An isometry satisfies (f,(T*T —1I)g)=0 for any f,g, hence it satisfies
(T*T — I)g =0 for any g, and hence

T*T =1 (1.7)

It follows that P = TT™ is an orthogonal projection. The range is the same as the
range of T (since Tf = (TT*)Tf) and so
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TT* = Py (1.8)

3. If an isometry is also surjective, then the operator is called unitary or a Hilbert
space isomorphism. In this case

T*T = TT* =1 (1.9)

and T* = T~

Problem 1.1 Let (M, 1) be a measure space and suppose k(x, y) is an element of
L*(M x M, x x ). Show that
(Kf)(x) = / ke, y)f (0)dp(y) (1.10)

defines a bounded operator on L2(M, ).

Problem 1.2 LetT,S € B(H).

1. Show that 7S is bounded and || 7S|| < ||T||||S]l.
2. Show that || T*|| = || .
3. Show that ||T*T| = ||T|>.

1.1.2 Sequences

A sequence of bounded operators {7,} converges strongly if 7,f converges for
all f € H. The sequence converges in norm if ||7,, — T),]| — 0 as n,m — oo.
This is uniform convergence on the unit sphere. Norm convergence implies strong
convergence since || T,f — Tnf | < T — Tl |If]l-

Theorem 1.1  Let T, € B(H1, Ho).

1. If T,, converges strongly, then it has a strong limit, that is there is a bounded
operator T such that Tf = lim,— Ty f.
2. If T, converges in norm and T is the strong limit, then | T, — T|| — 0 as n — oo.

Remark We will use the principle of uniform boundedness which says that if || 7,,f]|
is bounded for each f, then there is a constant M such that |7, < M.

Proof For the first point define Tf = lim,_, oo Ty and check that T is linear. Since
T,f converges for each f, it is bounded for each f and so by the remark || T, || < M.
Now by the reverse triangle inequality, we can take the limit of ||7,,f| < M]||f| and
get || Tf|| < M||f|l. Hence T is bounded.
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For the second point given € choose N so that if n,m > N, then ||T,, — T),|| < €.
Then ||T,,f — Tf || < € forall ||f|| < 1. Take the limit m — oo and conclude that for
n > N we have ||T,f — Tf|| < e forall ||f|| <1 and hence ||T, — T|| < e. ]

The second part of the theorem shows that B(H, H>) is a Banach space. If H| =
‘H> = 'H, then B(H) has even more structure. Since we can multiply operators and
TSI < TS|, we say that B(H) is a Banach algebra. Since also ||T|| = |||, we
have a Banach x-algebra. Since also || T*T|| = || T||>, we have a so-called C*-algebra.

Theorem 1.2 Let T € B(H) satisfy |T|| < 1. Then I — T is bijective and the inverse
is also a bounded operator.

Proof Start by defining

S, =Y T* (1.11)
k=0
Then forn > m
n n
ISh—=Sull =1 Y. T < > ITIF>0 (1.12)
k=m+1 k=m+1

as n,m — oo. Thus S, is a Cauchy sequence and since B(H) is complete, it has a
limit which is a bounded operator

o0
I H _ k
S_nlggosn:ZT (1.13)
k=0
We then compute
n n+l1
(I—T)SH=ZT"—ZT"=I—T”+1 (1.14)
k=0 k=1

Now take the limit n — oo and use || 7"F!|| < ||T|**! — 0. Then (I — T)S = I so
I—T is surjective. Similarly S(/ —T) = [ so [ —T is injective and S is the inverse. []

1.1.3 Extensions

A subspace D C H has a closure D, which is also a subspace. D is dense if D = H.
We consider the problem of extending a linear operator defined on a dense subspace.

Theorem 1.3 Let D be a dense subspace of a Hilbert space H1 and let T : D — H»
be a bounded linear operator.

1. T has a unique extension to a bounded linear operator T € B(H1,H3) and the
extension has the same bound.
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2. If T is norm preserving, then so is the extension, that is it is an isometry.
3. If T is norm preserving and has dense range, the extension is unitary.

Proof Our assumption is that ||7f|| < M||f| for all f € D. For f € Hj, choose a
sequence f; € D so that f; — f. Then

I17f; = Thill = MIfj — fill = O (1.15)

as j,k — oo. Hence there is a limit f* = lim;_, o Tf; and we define Tf = f*. The
definition is independent of the sequence since if ];-/ is another sequence converging
to f, we have

I7f — T || < MIf; = Il = O (1.16)

Now linearity and boundedness for 7" on H follow by taking limits of the same
relations for 7" on D.

The second assertion follows by taking the limit of ||7fj|| = ||f;ll. The third
assertion follows since the range of the extension is closed and dense and hence
itis H. O

1.1.4 Fourier transform

We want to define the Fourier transform as a unitary operator on L2(R"), but we start
with a smaller space.

Let S(R") be the Schwartz space of smooth rapidly decreasing functions on R".
These are complex valued C*° functions f on R" with the property that for any

multi-indices &« = («y,...,a,) and B = (B1,..., Bn)
P D*f oo < 00 (1.17)
where
o= D =D ... D% (1.18)
and D; = —id/dx;. For N > n/4 we can write
S =10+ ™A + Y] (1.19)

This exhibits f as a product of an L?> function and an L*® function and hence
feL*(RY). Similarly P DYf ||, < oo for any multi-indices. Indeed we could have
used these conditions to define the space. Examples of functions in S(R") are those
of the form f(x) = P()c)e_“'"|2 where P is a polynomial. Another example is the
infinitely differentiable functions of compact support,’ denoted CoP(R™). We have
the inclusion of subspaces

CO(R™ € S(R™) € L*(R™) (1.20)

1 The support of a function f, written supp f, is the closure of {x € R" : f(x) # 0}.
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One can show Cj°(R") is dense in L2(R™) and so the same is true for S(R").
Now for f € S(R") we define the Fourier transform f : R" — C by

7o) = (FH@) = @r) "2 f P () (1.21)

Since f € LI(R") by (1.19) with N > n/2, the integral converges and f is bounded.
The mapping Ff = f is a linear operator.
More generally we compute

P DY (Ff) = ()P F D<) (1.22)

This exhibits p"‘D,’;3 Ff as the Fourier transform of a Schwartz function, hence it is
bounded as well, and hence Ff € S(R"). Thus the Fourier transform maps S(R") to
itself.

Next define

FFp) =F(—p) = @) / P (0dx (123)

which also maps S(R") to itself. The basic inversion theorem says F is the inverse
of F.

Theorem 1.4

. FF=FF=1soFisa bijection on S(R™).
2. F,F extend to unitary operators on L*(R") satisfying FF = FF =1I.
(SoF=F'=F*)

Proof For f € S(R") we compute
(FFf(x) = 111%(271)—"/2 / ke =€ k212 1y )k
— lim(27)" k(=) ,—€lkI*/2 gt 4
lim )" [ gkt e x o
= lim(2re) " / Fe P2 gy
=f(x)

Here in the first step we regularize the F integral. In the second step we insert the
definition of Ff and use Fubini’s theorem to change the order of integration. In the
third step we explicitly do the integral over k. The last step is a standard estimate
using the facts that (27r€)™"/2¢~ Y */2¢ has integral one and peaks around x = y as
€ — 0. Details are left to the problems.

For the second point we compute that for f, g € S(R")

. Fg) = (Ff. g (1.25)
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Then (Ff, Fg) = (f,g) and the same for . Hence they are norm preserving and by
theorem 1.3 they extend to a unitary operators on L>(R"). The identity FF = FF =1
still holds since it holds on a dense set. O

Problem 1.3 Show that in R”

@n) /2 / eikre /2 gt — =2 g=IxP/2¢ (1.26)

Problem 1.4 Show that if f is bounded and continuous on R”

lim (27 €) /2 / P21y dy = F(x) (1.27)

e—>0

Problem1.5 Iff € L' N L2, then the Fourier transform can be defined directly by
(1.21). Show that this definition coincides with our definition on L2.

Problem 1.6 For f, g € S(R") define the convolution

F % 9)x) = f = 200 (128)
Show that f * g € S(R") and that
F(f % g) = Qu)"*(Ff)(Fg) (1.29)

1.2 Unbounded operators
|

1.2.1 Closed operators

We consider linear operators 7 from 7 to H; defined on a subspace D(T) C H;.
The operator is not necessarily bounded, but we would like it to be closed. An
operator is closed if for any sequence f, € D(T) we have that f, — f and Tf, — g
imply f € D(T) and Tf = g. A bounded operator T : H; — H> is easily seen to be
closed. Furthermore if D(T) = H, we have:

Theorem 1.5  (Closed graph theorem) If T : Hy — Ha is closed, then it is bounded.

Thus if the operator is closed and unbounded, D(T) must be a proper subspace
of H;. Usually it will be a dense subspace. Here is an example:
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Example 1.1 Let H = L*(R) and let

D(T)={feH: / x| 2|f (0)2dx < oo} (1.30)

Define T : D(T) — H by
(THx) = xf(x) (1.31)

This is not bounded since if f;, is the characteristic function of [n,n + 1], then
ITf, || = n|\f,|l. However suppose f, is a sequence such that f,, € D(T) — f and
Tf, — g. After passing to a subsequence we have fy,(x) — f(x) and xfy,(x) —
g(x) for almost every x. Hence xf(x) = g(x) for almost every x so f € D(T) and
Tf = g. Thus T is closed.

The graph of an operator T : D(T) — Hj is the subset of H| x H; defined by

'T)={<f.g>feDD),If =g} (1.32)

This is in fact a subspace of H; x H>. A subspace of H; x Hp is the graph of an
operator iff it has no elements of the form < 0, g > with g # 0.

An operator S is an extension of an operator 7 written 7 C S if the domains satisfy
D(T) C D(S) and Tf = Sf forf € D(T). Then T C Sift I'(T) C I'(S).

An operator is closed iff every sequence < f,,7f, > in ['(T) converging to
< f,g > €H; & Hp has < f,g >€ [(T). Thus an operator is closed iff
its graph is closed. It follows that an injective operator T is closed iff 77! is
closed.

An operator T that is not closed may have a closed extension. This is true iff
the closure of the graph is the graph of an operator, that is T'(T) = I'(T). In this
case we say the operator is closable and call T the closure of T. If T is a closed
operator, a subspace D C D(T) is a core for T if T | D = T. This is the same as the
statement that for every ¢ € D(T) there is a sequence v, € D so that ¥, — ¥ and
Ty, — T.

Example 1.2 In the Hilbert space H = L?[—1, 1], consider the subspace D(T) of
bounded continuous functions and the operator 7' : D(T) — ‘H defined by

(THx) = £(0) (1.33)

Let f, € D(T) be the “tent function” which is piecewise linear and satisfies
fu(£1)=0,f(£1/n) =0,£,(0) = 1. Thenasn — oo, f, - Oand Tf, = 1 — 1,
so < 0,1 > is in the closure of the graph, which is therefore not the graph of an
operator. Thus T is not closable.
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1.2.2 Spectrum of a closed operator

For D(T) C Hlet T : D(T) — H be a closed operator. The resolvent set p(T) is all
complex z such that 7 — z : D(T)) — 'H is a bijection and the inverse is bounded

o(T)={zeC:(T—2"" € BH)} (1.34)

(This would be empty if 7" were not closed.) The spectrum o (T) is the complement
of the resolvent set.

A complex number z is an eigenvalue for T if (T — z)f = 0 for some f* # 0. Then
T — zis not injective and so z is in the spectrum. The set of all eigenvalues is a subset
of the spectrum called the point spectrum. If z is not an eigenvalue, then T — z is
injective, but z still may not be in the resolvent set since the range of 7 — z may not
be all of H. In this case we make a further distinction and specify that z is in the
continuous spectrum if the range of T — z is dense and otherwise z is in the residual
spectrum.

Theorem 1.6  o(T) is open and o (T) is closed.
Proof Suppose zo € p(T). Then on the domain of T
(T —2) =~ (z— 20)T — 20)"" )T = 20) (1.35)

By theorem 1.2 the operator I — (z — zo)(T — 20) Lisa bijection and has a bounded
inverse if

Iz = 20)(T —2z0) "l < 1 (1.36)
Hence T — z has a bounded inverse under the same condition which we write
2 —z0l < (T —20) "7 (1.37)

Hence this disc is in the resolvent set which is therefore open. O

Problem 1.7 Show that if T is bounded, o(T) C {z € C : |z| < |IT||}.

Problem 1.8 Show that if U is unitary, o(U) C {z € C : |z| = 1}.

1.2.3 Adjoints

We generalize the notion of adjoint to unbounded operators. For D(T) C H let T :
D(T) — 'H be densely defined, but not necessarily closed. Let D(T*) be all vectors
g € 'H such that the function f € D(T) — (g, Tf) is continuous. Equivalently

D(T*) = {g € H : AC so |(g. Tf)| < C||f| for all f € D(T)} (1.38)
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Then the linear functional has an extension to all of H and by the Riesz representation
theorem (theorem A.3) if g € D(T™), then there is a unique g* such that (g*,f) =
(g, Tf). We define a new operator T* : D(T*) — H by T*g = g*. Then T* is a linear
operator called the adjoint of T. It is defined so that

(T*s.f) = (& Tf) feD(T),ge DT (1.39)
Theorem 1.7 Define VonH x HbyV < f,g >=< —g,f >. Then
I(T*) = VIT(D)I+ (1.40)

Proof < f,g >e V[I'(T)]* is equivalent to (—g, h) + (f, Th) = O for all h € D(T).
But by definition this is equivalent to f € D(T*) and T*f = g, thatis < f,g >€
(T™). O

Corollary 1.1 7% is closed.

Proof I'(T)' is closed and V is unitary. O
Corollary 1.2 IfT C S, then S* C T*.

Proof I'(T) c I'(S) implies ['(S)* c I'(T)*. O

Corollary 1.3 If D(T*) is dense so T** exists, then T is closable and T** = T.

Proof
D(T*) = VIVE (' 1+ =[O =T(@) (L41)
Since I'(T) is the graph of an operator, T is closable and the closure is that operator,
thatis T = T**. O
Corollary 1.4
Ker T* = [Ran(T)]* (1.42)

Proof The kernel of T* is all g so (g,0) € I'(T*). By the theorem this is the same as
(0,8) € T(T)*, that is g € [Ran(T)]™*. O

1.3 Self-adjoint operators
I

1.3.1 Definitions

A densely defined operator is symmetric if

(& 1f) = (Tg./) (1.43)
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forallf,g € D(T). Then g € D(T*) and T*g = Tg so that T C T*. If the domains are
the same, that is if 7 = T, then the operator is said to be self-adjoint . A self-adjoint
operator is necessarily closed.

Self-adjoint operators have nice properties not shared by symmetric operators as
we will see. A symmetric operator T fails to be self-adjoint because its domain is
too small. Indeed if S is a symmetric extension of 7,then T C S C $* C T*so S is
closer to being self-adjoint. A general problem is to find a large enough symmetric
extension of T so that it is self-adjoint.

If T is symmetric, then D(T*) is dense so the closure 7** exists. Then T C T*
implies 7** C T* and we have the situation

TCcTr™*CT* (1.44)

Now T** is always symmetric (T** C T***). The simplest possibility for a self-
adjoint extension for T is that T** = T is self-adjoint, that is 7** = T***. We say
that 7 is essentially self-adjoint. Since T* is closed T*** = T* and an equivalent
statement is that 7** = T*, that is T* is self-adjoint.

Example 1.3 Let H = L*[0,1] and let T = id/dx defined on C' functions with
compact support in (0,1). Then integration by parts shows that T is symmetric.
However if we let i(x) = ¢*, then integration by parts also gives (i, Tf) = (ih,f).
Hence h € D(T*) and T*h = ih. The imaginary eigenvalue means that 7* is not
symmetric and hence T is not essentially self-adjoint.

We quote without proof some further results.” Consider the subspace

AC[0, 1] = {f € L*[0, 1] : f is absolutely continuous and f’ € L*[0,1]}. (1.45)

(Absolutely continuous implies /' € L'[0, 1]. Since L[0,1] c L'[0, 1], we are
assuming a bit more.) Let S = id/dx now defined on the larger domain

D(S) = {f € AC[0, 1] : £(0) = £(1) = 0} (1.46)

One can still integrate by parts and show that this operator is symmetric. It turns
out it is also closed, but it is not self-adjoint. The adjoint has the domain D(S*) =
ACI[O, 1]. A further extension is a family of operators S, indexed by a complex
number o with |o| = 1. We have S, = id/dx with domain

D(Sy) = {f € AC[0, 1] : f(0) = af(1)} (1.47)

These turn out to be self-adjoint. Thus there is a family of self-adjoint extensions
and we have

TCSCSy=S8,CcScCT* (1.48)

2 See Reed and Simon (1975: 141) for details.
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This example has a property typical of differential operators in a region with a
boundary, namely the choice of a self-adjoint extension corresponds to a choice of
boundary conditions.

Problem 1.9 Show that if T is essentially self-adjoint and S is a symmetric exten-
sion, then § is essentially self-adjoint and §** = T7**. (Thus if T is essentially
self-adjoint, then it has a unique self-adjoint extension.)

1.3.2 Properties

If T is symmetric, then for f € D(T) the quantity (f, Tf) is real since (f,Tf) =
(Tf.f) = (f,If). 1t follows that any eigenvalue must be real. For self-adjoint
operators we have the following stronger statement.

Theorem 1.8  The spectrum of a self-adjoint operator is a subset of the real line.

Proof We have to show that a complex number z with Imz # 0 is in the resolvent
set. First we note that for f € D(T)

[Imz||[f]|* = |Im((T — 2)f. ) < |(T = 2f. 01 < KT = 2f 1If (1.49)
and so
[Imzl|[f ] < (T — 2)f |l (1.50)

Hence (T — z)f = 0 implies f = 0 so T is injective.
The inequality also implies that 7 — z has a closed range since if (T — z)f;, is a
sequence in the range converging to g, then

Iy = finll < Mmz| =M [T = 2)(fy = fu)ll = O (1.51)

as n,m — oo. Then f; is Cauchy and so converges to some f. Since 7T is closed,
T — zis closed. Then f, — f and (T — z)f, — g imply f € D(T — z) = D(T) and
(T — z)f = g. Hence g is in the range and so the range is closed.

Now by (1.42) we have

[Ran(T — 2)]* = Ker(T* — 7) = Ker(T — 7) = {0} (1.52)

Hence Ran(T — z) = [Ran(T — 2)]++ = H.
Thus T — z is a bijection from D(T) to H. Now in (1.50) let f = (T — z)~'g for
any g € H. This gives

(T —2)""gll < |Imz] ™" |lgll (1.53)

which shows that the inverse is bounded. ]

The following is a test for self-adjointness:
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Theorem 1.9 A symmetric operator T is self-adjoint iff Ran(T + i) = H.

Proof If T is self-adjoint, then i is in the resolvent set by the previous theorem and
hence the result.

For the converse suppose 7 is symmetric and the range of 7 £ i is H. We must
show D(T*) € D(T). If g € D(T™), choose f € D(T) so that

(T* =g = (T —i)f (1.54)
Since also f € D(T*) and T*f = Tf, this says
T =D —g =0 (1.55)

But by (1.42) we have Ker(T* — i) = [Ran(T + Dt = {0} so f = g and hence
g € D(T). ]

Problem 1.10 A self-adjoint operator is positive if (f, Tf) > 0 for all f € D(T).
Show that in this case o (T) C [0, 00).

Problem 1.11  Let 7 be self-adjoint. Show that z € o (T) iff for every € > O there
exists af € H with ||f|| = 1 such that ||(T — 2)f|| < e.

Problem 1.12 Show that if 7 is symmetric and Ran(7T = i) is dense, then 7 is
essentially self-adjoint.

Problem 1.13 Let 7 be symmetric and suppose the domain contains a complete
set of eigenvectors e, e, ... with eigenvalues A1, Ap,.... Show that T is essen-
tially self-adjoint and that the spectrum of the closure is the closure of the set of
eigenvalues.

Problem 1.14 Let (M, 1) be a measure space and let T : M — R be a measur-
able function. Define an operator [7] on L2(M, ) by ([z]/)(x) = T(x)f(x) with
domain

D([z]) = {f € L*(M, p) : of € L*(M, )} (1.56)
1. Show that [r] is self-adjoint.

2. Show that the spectrum is the essential range of 7. (The essential range of 7 is
all & € R such that u(t_l(A — €, A+ 6)) is positive for all € > 0.)
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1.3.3 Spectral theorem

Suppose that 7" is a bounded self-adjoint operator on a Hilbert space H and suppose T
has a complete set of eigenvectors e, ez, ... with eigenvalues A1, A2, ..., which are
bounded but not necessarily distinct. (For example suppose 7T is a compact operator
which we study in the next section.) Then we have for any f € 'H

o
= (einflei
i=1
- (1.57)
Tf =) (eif)riei
i=1
The operator V : H — (2 defined by
Vi = (e, f) (1.58)
is unitary. Define a multiplication operator [A] : £> — 2 by
(215 = Aifi (1.59)
Then VT = [A]V or
T=v'nv (1.60)

Thus T is unitarily equivalent to a multiplication operator.
The content of the spectral theorem is that something similar is true for any
bounded self-adjoint operator.

Theorem 1.10  (Spectral theorem — bounded operator) Let T be a bounded self-
adjoint operator on a Hilbert space H. Then there exists a measure space
(M, ), a bounded measurable function t : M —R, and a unitary operator
Vi H— L*(M,dp) such that T = V= '[t]V where [t] is the operator multiplication
by t.

In the example, (M, ) is the integers with counting measure. There is also a
version for unbounded operators:

Theorem 1.11  (Spectral theorem — unbounded operators) Let T be a self-adjoint
operator on a Hilbert space H. Then there exists a measure space (M, 1), a mea-
surable function T © M — R, and a unitary operator V : H — L*(M,dp) such
that VD(T) = D([t]) as defined in (1.56) and T = V™ '[z]V.

For proofs see Reed and Simon (1980). The representation as a multiplication
operator is not unique.

The spectral theorem allows us to define functions of a self-adjoint operator. Sup-
pose T is self-adjoint, bounded or not, and let # : R — C be a bounded Borel
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function.’ Then % o 7 is measurable and we define i(T) by
WT) =V~ 'hotlV (1.61)
Then h(T) is a bounded operator for we have

IA(Df | = IVR(Df ll2 = Itho T]Vfll2 < llho Tl IVfll2 < lIAlloollfFIl (1.62)

If & is unbounded, we can still use (1.61) to define A(T) but now restrict the domain
to V-ID([h o T]).
The definition A(7T) has the following properties (known as the functional

calculus):

L (h1 + ho)(T) = hi(T) + hao(T)
2. (Mh)(T) = AW(T) reC

3. (hy - ho)(T) = hi(T)ho(T)

4. (T)=1

5. W(T)* = ().

An important case is when /% is the characteristic function of a Borel set B C R.
We define

EB) = x5(T) (1.63)
Then we have by the functional calculus
E(B)* =EB) E(B)* = E(B) (1.64)

Thus E(B) is an orthogonal projection. The E(B) are called the spectral projections
for T. The projections E(L) = E((—o0, A]) are increasing and satisfy E(—o0) = 0
and E(oc0) = 1.

For f € H we define Borel measures (f, E(B)f) of total mass [|f||%. These are called
the spectral measures for the operator. The integral of a function & with respect to
such a measure is denoted

f hO(f, EO) (1.65)

Problem 1.15 Let 7 be a self-adjoint operator with spectral projections E(B).

1. Show that u(B) = (f, E(B)f) defines a Borel measure.
2. Show that for bounded &

(. WD) = / hOA(f, EQ)
(1.66)
IR(Df 11> = / lh(A)*d(f, EQ)f)

3 The Borel sets in R are the smallest o-algebra of subsets which contains the open sets. A function
h : R — R is Borel measurable if h~1(©) is a Borel set for any open O. If f is a measurable real-valued
function on any measure space, and / is Borel, then % o f is also measurable.
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3. Show that f € D(T) iff f A2d(f, E(Vf) is finite in which case
(. If) = f rd(f, E(L)Y)

(1.67)
VTFI? = / A2d(f, EQOf)

1.3.4 One-parameter groups

A one-parameter unitary group is defined to be a representation of the additive group
R by unitary operators. More precisely a one-parameter unitary group is a function
U from R to unitary operators on a Hilbert space such that U(r)U(s) = U(t + s) and
U(0) = I. Then U(t)* = U(t)~! = U(—1).

A self-adjoint operator determines a one-parameter unitary group as follows:

Theorem 1.12  Let T be self-adjoint on 'H and define U(t) = exp(itT).

1. U(¢) is a one-parameter unitary group.

2. t — U()f is strongly continuous from R to 'H for any f € H.

3. Iff € D(T), then f(t) = U(t)f € D(T) and solves the differential equation
ar
dr

Proof U(r) is defined via the spectral theorem as U(f) = V=™ V. Tt is straight-

forward to check that this defines a one-parameter unitary group. For the continuity
we use the dominated convergence theorem to show that

1Ut + h)f — UOFI* =II(Uh) — Df|1?
= / TR 112 (VE)m)) 2dp(m) (1.69)

iTf (1.68)

—0ash— 0
For the last point U(t)f € D(T) by the spectral theorem and we have

U h)—U
|| <M>f UM

h
Uth)—1
= [% - iT]fn2
i (1.70)
it(mh __
= / i — iwm)| 1V Pdpa(m)

—0ash— 0

Here again we use the dominated convergence theorem, using |¢”* — 1| < |x| and the
fact that |7|?|Vf)? is integrable. O
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The operator T is called the generator of the unitary group. The last theorem has
a converse known as Stone’s theorem.

Theorem 1.13  Let U(t) be a strongly continuous one-parameter unitary group. Then
there is a unique self-adjoint operator T such that U(f) = €',

Proof (sketch) For the existence part of Stone’s theorem follow the steps below:

1. Define D(T) to be all f € H such that ! (U(t) — I)f converges as t — 0
and for f € D(T) define

-0
m-——-r

Tf = li f

t—0 it

Show that D(T) is a subspace and that 7 is a linear operator.
2. For A > 0 define

1 * —As
Rif = - / e MU ds
0

i
Show that the integral exists as a Hilbert space valued Riemann integral and

defines a bounded operator.
3. Show that R,f € D(T) and that

(T+iMRSf =f

4. Show that for any f € H we have AR,f — f as A — oo and conclude that D(T’)
is dense.
5. Show that if f € D(T), then U(t)f € D(T) and

1d
-—UOf =TU@Df = UOTSf
idt
6. Show that 7' is symmetric by verifying for f € D(T)
1d )
0= ;d—tIIU(t)fII = Tf./) — (f. Tf)

7. Show that T is self-adjoint by verifying Ran(7T £ iX) = ‘H. (We already know this
with the plus sign.)
8. Show that U(r) = ¢'”* by defining h(f) = (U(r) — ¢T)f and showing that

d
— D> =0
dtll()ll

Problem 1.16  Supply the details in the above argument.

Here is a variation of the above. Let H be a positive self-adjoint operator. Then
V() = e ™ is bounded and self-adjoint for + > 0 and gives a representation of
the additive semi-group R™ = [0, co) (‘‘semi-group” since there are no inverses).
Conversely we have as in Stone’s theorem:
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Theorem 1.14  Let V(¢) be a semi-group of bounded self-adjoint operators defined
fort > 0 satisfying:

L vl =1

2. V(O)=1

3. VOV(s) = V(t + )

4. t — V()f is continuous for all f € 'H.

Then there is a unique positive self-adjoint operator H such that V(f) = e 1.

1.4 Compact operators
|

1.4.1 Properties

A Hilbert space is a metric space and so a subset K C H is compact iff every
sequence in K has a convergent subsequence. In a finite-dimensional Hilbert space,
a subset is compact iff it is closed and bounded. But in an infinite-dimensional
Hilbert space, closed and bounded is not sufficient. For example an orthonormal
basis {¢1, ¢2, . .. } is closed and bounded, but since ||¢; — <])j||2 = 2 forall i # j, there
can be no convergent subsequence.

An bounded operator T : 'H; — H» is compact if it maps bounded sequences
in H; into sequences in H, with convergent subsequences. An operator is finite
rank if the range is finite dimensional. By the above remarks a finite rank opera-
tor is compact. More generally a norm limit of finite rank operators is compact. This
follows from:

Lemma 1.1 The compact operators form a closed subspace of B(H1, H>).

Proof Tt is straightforward to show that sums of compacts are compact, and it is
trivial to show that multiplication by a scalar preserves compactness. Thus they form
a subspace.

To show that it is a closed subspace let T, be a sequence of compact operators such
that ||7,, — T|| — 0 as n — oo. We must show that 7 is compact. Let f;, be a bounded
sequence in . Then there is a subsequence fn(l) such that TLf,gl) is Cauchy. Then this
sequence has a subsequence f,Ez) so that T’ zf,£2> is Cauchy (as is Tlf,gz)). Continuing
in this fashion we get for each k a subsequence f,gk) such that ka,§"> is Cauchy. The
diagonal sequence g, = ,E") is then a subsequence of each f,fk) and so Tyg, is Cauchy
for all k.

Now given € > 0, choose k so that ||[T — Tk|| < €, and choose N so that for
n,m > N we have ||Txg, — Tkgml|l < €. Let M = sup,, ||f,||. Then for n,m > N

1Tgn — Tgmll <I(T — Ti)gnll + ITk(8n — &m)Il + 1Tk — T)gmll

(1.71)
<M + 1)e
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Since € is arbitrary, Tg, is Cauchy, and since g, is a subsequence of f;, this shows T
is compact. O

Lemma 1.2 The compact operators on 'H are a (two-sided) *-ideal in the Banach
algebra B(H). That is:

1. The compacts are a subspace of B(H).
2. If T is compact and S is bounded, then TS and ST are compact.
3. If T is compact, then so is T*.

We already noted the first. The second is easy. We will not need the third, so we
omit it.

Lemma 1.3 Let T € B(H) be compact. If A is not an eigenvalue and ) # 0, then
Ran(T — )) is closed.

Proof Suppose f, € D(T) and (T — \)f, — g. We show g € Ran(T — 1).

If f,, is not bounded, then there is a subsequence going to infinity, so we may as well
assume ||f, || — oo. Then h, = fu/||fn|l is bounded and so there is a subsequence hy;
so that Thy,; converges. We also have that (T — M)y, = (T — A)fy;/ |Ify; 1| converges to
zero. Combining these statements and the fact that A # 0 we conclude that h,, — h
with ||k|| = 1. But also (T — A)h = 0, which contradicts the assumption that A is not
an eigenvalue.

Thus we may assume f, is bounded. Then 7}, has a convergent subsequence Tfy,.
Since 2 # 0, it follows that f,, — f. Then g = Lm{(T — A)fy, = (T — 1)f as
required. U

The next result characterizes the spectrum of a compact operator:
Theorem 1.15 (Riesz—Schauder) Let T € B(H) be compact.

1. Complex ) # 0 is either an eigenvalue or else is in the resolvent set.
2. Eigenvalues ). # O have finite multiplicity (that is dim Ker(T — 1) < 00).
3. Eigenvalues have no limit point except possibly zero.

Proof We give the proof with the simplification that 7 is self-adjoint so the spectrum
is real. Suppose X is real, is not an eigenvalue, and A # 0. Then T — A is injective.
Ran(7T — 1) is closed by the lemma, and since Ran(7T — M1t = Ker(T — 1) = {0}
by (1.42), it follows that Ran(7" — A) = ‘H. The inverse (T — 1)~ ! is bounded by the
closed graph theorem and hence A is in the resolvent set. This proves the first point.

For the second point suppose dim Ker(7' — A) = oco. Let ¢, be an orthonormal
basis for this space. Then there is a subsequence so T¢,; converges and it follows
that ¢,; = 2! T¢n; converges. But this is impossible for an orthonormal set.

For the third point suppose A, is a sequence of distinct eigenvalues such that
A — A #0. Choose eigenfunctions ¢, such that T¢, = A,¢,. These are necessar-
ily orthogonal and we may assume they are orthonormal. Then A;1¢>n is bounded
and hence T(A;; L$,) = ¢, has a convergent subsequence. But this is impossible. [
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Problem 1.17 Let T be a bounded operator with a complete set of eigenfunctions
{#,} and eigenvalues A, so 1, — 0 as n — oo. Show that 7" is compact.

1.4.2 Hilbert-Schmidt operators

A bounded operator T € B(H |, H>) is said to be Hilbert—Schmidt if
o0
1Tl = D IT¢ill* < o0 (1.72)
i=1

for some orthonormal basis {¢;} in . The condition is independent of basis since
if {1} is an orthonormal basis for H>, then

DUIToill> =D 10 Tonl> = D [Ty ¢l = Y IT > (1.73)
i i i ij
This also shows that if T is Hilbert-Schmidt, then so is 7%. In fact restricting to the
case H; = H, we have:

Lemma1.4 The Hilbert—Schmidt operators on H are a *-ideal in B(H):

1. If T, S are Hilbert—Schmidt, then so is aT + bS for a,b € C.
2. If T is Hilbert—Schmidt and S is bounded, then TS and ST are Hilbert—Schmidst.
3. If T is Hilbert—Schmidt, then so is T*.

The proof is straightforward.
Lemma 1.5 A Hilbert—Schmidt operator is compact.

Proof  Given a Hilbert—Schmidt operator T, let {1/;} be an orthonormal basis for H5.
Then

TF =Y (W THY; (1.74)
j=1
We also define
Tof =Y (WU THY; (1.75)
j=1

Each T, has finite-dimensional range and hence is compact. We have

T =T 1> = D 1R TH> < | D2 1Tyl | IF1> - (1.76)

Jj=n+1 Jj=n+1
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Hence
(e.¢]
1T =Tl < [ D 1T y01* | -0 (1.77)
Jj=n+1
as n — oo. Since T is a norm limit of compacts, it is compact by lemma 1.1. O

Now suppose T is a bounded operator on a Hilbert space H, which has a basis of
eigenfunctions {¢;} with eigenvalues A;. Taking this basis in (1.72) we see that T is
Hilbert—Schmidt iff

Z|,\l-|2 <00 (1.78)

Here is another test for Hilbert—Schmidt.

Lemma 1.6 Let (M, 1) be a measure space and suppose k(x,y) is an element of
L2(M x M, ju x ). Then

(KP)() = / ko) O)dR0) (1.79)

defines a Hilbert—Schmidt operator on L*(M, j1) and
IKllzs = lIkll2 (1.80)

Proof We have seen in problem 1.1 that K is a bounded operator. Let {¢;} be
an orthonormal basis for L*(M, ). Then d?,- ® ¢; is an orthonormal basis for
L>(M x M, jx x 1v); see the proof of theorem B.1 in the appendix. We compute

IKIZs =D IKI* = 1 Kyl
! ) Y (1.81)
= |tk ¢ ® ¢)I* = [IKII3

iy

1.4.3 Trace class

Let 7 be a bounded positive self-adjoint operator on a Hilbert space H. (Recall that
positive means (f, 7f) > 0 for all f € H.) We say that T is trace class if

THT) =Y (¢, T¢h) < 00 (1.82)

for some orthonormal basis {¢;}. By the spectral theorem, T = V=1tV for a
function t satisfying r > 0 almost everywhere. Then T has a positive self-adjoint
square root TY? = v=1[z1/21V and the condition is equivalent to the statement that
T'/2 is Hilbert—Schmidt. It follows that the sum is independent of the basis. If T
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has a complete set of eigenfunctions {¢;} with nonnegative eigenvalues 1;, then the
condition for trace class is equivalent to

ZM < 00 (1.83)

More generally if T is a bounded operator on H, then 7*T is a positive operator
and we say that T is trace class if |T| = (T*T)!/ 2 is trace class. This reduces to the
previous definition if 7T is positive self-adjoint.

To investigate this concept we need to know more about the relation between 7 and
|T|. A bounded operator U is a partial isometry if it is an isometry when restricted
to (Ker U)*.

Lemma 1.7 (Polar decomposition) If T is a bounded operator, there are partial
isometries U,V such that T = U|T| and |T| = VT.

Proof Define U : Ran(|T|) — Ran(T) by U(|T|f) = Tf. Since
NTIFI1* = (. ITI*) = (f, T*T) = IITf |1 (1.84)

this is well-defined (that is |T|f = |T|g implies Tf = Tg) and norm preserving. It
extends to an isometry from Ran|7| to RanT. Define U to be zero on (Ran|T|)* =
Ker|T| = Ker T. Then U is a partial isometry and U|T| = T. For V, reverse the roles
of T and |T|. ]

Lemma 1.8 A bounded operator is trace class iff it is the product of two Hilbert—
Schmidt operators. In particular a trace class operator is Hilbert—Schmidt and hence
compact.

Proof If T is trace class, then T = (U|T|'/?)(|T|'/?) exhibits the operator as a prod-
uct of Hilbert—Schmidt operators. On the other hand suppose 7 = A*B with A, B
Hilbert—Schmidt. First if T is positive, then

D (@i Te) =) (Agi, Bg) < Y _ 1Al B

1/2 1/2 (1.85)
S<Z||A¢i||2> <Z||B¢i||2> < o0

and hence T is trace class. In the general case if T = A*B, then |T| = (VA*)(B)
exhibits |T| as a product of two Hilbert—Schmidts. Thus |7 is trace class and hence
T is trace class. ]

Lemma 1.9 The trace class operators are a *-ideal in B(H):

1. If T, S are trace class, then so is aT + bS for a,b € C.
2. If T is trace class and S is bounded, then TS and ST are trace class.
3. If T is trace class, then so is T*.
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Proof The only tricky part is showing that S + T is again trace class. To see this
write S = A7By and T = A%B, with A;, B; Hilbert-Schmidt. Then A = A; @ A and
B = B| ® B are Hilbert—Schmidt operators from H to H@®H and T+ S = A*B. This
is sufficient to conclude that 7 4 § is trace class as in the proof of lemma 1.8. O

If T is trace class but not positive, we again define the trace by (1.82). This makes
sense because:

Lemma1.10 Let T be trace class.

1. Tr(T) = Y (i, T¢;) is absolutely convergent and independent of the choice of
basis.

2. Tris a linear functional on the trace class operators.
3. (cyclicity) If T = AB with A, B Hilbert—Schmidt, then

Tr(AB) = Tr(BA) (1.86)

Proof Write T = A*B as a product of Hilbert-Schmidt operators. Then the absolute
convergence of the sum is demonstrated as above in (1.85). If {1} is another basis,
we have

TrA*B) = ) (Adi, Boi) = Y _(Adi, ¥))(j, Bi)

i
(1.87)
= (B* Y )i, A™Y) = Y (B Y, A™ysj) = Tr(BA*)
i J
This shows the independence of the basis and also establishes the cyclicity. O

Problem 1.18 Show that if 7 is trace class and S is bounded, then Tr(ST) =
Tr(TS).

Notes on chapter 1: A good general reference is the four volume
set Reed and Simon (1980), Reed and Simon (1975), Reed and Simon (1979),
Reed and Simon (1978). Other books that cover this material are Kato (1966), Yosida
(1966), and Taylor (1996).
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We start by reviewing some classical physics, specifically mechanics. Classical
mechanics is the study of the motions of macroscopic bodies under the influence
of certain specified forces. Mathematically it is formulated in terms of ordinary
differential equations. These equations can be presented in one of three general
forms: Newtonian, Hamiltonian, or Lagrangian. Here we emphasize the Hamiltonian
form, which is most easily connected with quantum mechanics.

In Hamiltonian mechanics the states of the system are specified by points in a
phase space which we take to be P = O x R” for some integer n and some open set
O in R"™. (More generally the phase space is a 2n-dimensional manifold.) Points in
the phase space have the form (x, p) where the point x € O describes the location or
configuration of the various objects in the system and the point p € R" describes the
momenta of the various objects in the system.

The evolution of the system in time is specified by a function (x(¢), p(t)) from
(an interval in) R to P called a trajectory. The fundamental dynamical principle is
that the allowed trajectories obey Hamilton’s equations. These are a system of 2n
ordinary differential equations of the form

dxi _ 0H
dr api

2.1
dpi _ oH @D
dt - 0x;

where H = H(x, p) is a function on phase space called the Hamiltonian. The choice
of the Hamiltonian depends on the system we are trying to describe, and we will see
a number of examples shortly.

An immediate advantage of formulating the dynamics in this way is that the
Hamiltonian H(t) = H(x(), p(?)) is constant in time. Indeed we have

dH <~ 0Hdx;  0H dp;

@ T oy opr di
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2.2 Examples

n

0HoH 0HoH
B Nk 2.2)
—/ 0% 0pi  Opi x;

1

=0

The usual interpretation is that the Hamiltonian is the energy of the system, and this
property represents conservation of energy.

More generally let F(p, g) be an arbitrary smooth function on the phase space,
sometimes called a “classical observable.” Let (x(¢), p(?)) be a solution of Hamilton’s
equations, and let F(¢) = F(x(t), p(t)) be the time evolution of the quantity F. Then
we have

dF <\ 0F dx;  OF dp;

dr £ ox; di +8_pidt

R 2.3)
B oF 0H OF 0H
B = 9xi dpi  Opi Ix;
‘We write this as
ar _ {F,H} 2.4)
v '

where the right side is evaluated at (x(7), p(f)) and where we define the Poisson
bracket of F and G to be the function on P

n
oF 0G o0F 0G
Fr.Gl=) ————— (2.5)
= 9xi dpi  Opi Ax;

For future reference we note that the Poisson bracket is anti-symmetric and
satisfies the Jacobi identity
{F.G} +{G,F} =0
{{F.G},H} + {({H,F},G} + {{G,H},F} =0 (2.6)

Also the coordinate functions satisfy

{xi,x;} =0
{pi,pj} =0 @.7
{xi,pj} = 3jj

where §;; = 1 if i = j and is zero otherwise.

2.2 Examples

Example 2.1 Single particle in an external field We consider a single particle
in an external force field. The particle is considered small enough that its state can
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be described by its position which is a point x € R?. The force is modeled by a
vector field, that is a function F : @ — R?. The particle at x feels a force F(x).
The time evolution of the system is given by Newton’s second law

2

X
Suppose further that F' is a gradient, that is ¥ = —VV for some function

V : O — R. We say that the force is conservative and call V a potential for
the problem. For example in R3 if the particle has charge ¢ and the force is
the electrostatic force due to another particle of charge ¢, at the origin, then
F(x) = q1g2x/|x]> and V(x) = ¢14g>/|x|. For a conservative force we can write
Newton’s law as a Hamiltonian system. We define p = m(dx/dt) and then (2.8) is
equivalent to

dx _p
dim 2.9)
d _ -VvV
da
This is a Hamiltonian system on P = O x R¢ with
_IpP?
H(x,p)= 5—+ V() (2.10)
2m

Example 2.2 Single particle in electric and magnetic fields In O c R? suppose
that the magnetic field B is static, dB/d¢ = 0. Then Maxwell’s third equation (0.3)
says that V x E = 0. If O is simply connected, it follows that there exists a
scalar function @ called the electrostatic potential so that E = —V ®. Furthermore
Maxwell’s second equation says that V - B = 0 and it follows that there is a vector
field A called the the magnetic potential so that B = V x A. (These potentials are
not unique. Indeed we could replace A by A + VA for any scalar function A. This
is called a gauge transformation, about which more later.)
For a single particle of charge e in such a field the Lorentz force equation
(0.2) becomes
2

X e (dx

This can be written as the system of equations (r,s = 1,2, 3)

o am

dp; e e 0Ag 0D
ar _ © 4 ) _ .22
dt mc XS: (pS ¢’ 0x, eax,

2.12)
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This is a Hamiltonian system on P = O x R3 with

1 2
Hep) = 3 - p- §A<x)( +edW) (2.13)

Note that if A = 0, then this example reduces to the previous example with
V=ed.

Example 2.3 Many particles Next consider a collection of n particles in R?
interacting with each other. The location of the particles is given by a point
(X1, ., Xy) € R™ and the momenta is given by a point (py,...,pn) € R The
phase space is R" x R,

The force of the jth particle on the ith particle is assumed to depend only on
the relative positions and have the form F'(x; — x;) for some force F as in the first
example. We assume that F(—x) = —F(x) so that the force of the ith particle on
the jth particle is minus the force of the jth particle on the ith particle (Newton’s
third law). Newton’s equations for this problem take the form

dzx,'
mi—s = > Fxi—x) (2.14)
JFI
where m; is the mass of the ith particle.
If we further assume that the force F is conservative with F=—VV and
V(—x) = (x), then this equation can be written

dxi _ pi
dt m;
(2.15)
dpi
="V ZV(xi - x;)
JF#
This is a Hamiltonian system with
pil* 1
H(xl,...,xn,pl,...,pn)zZ%+EZV(x,'—Xj) (2.16)
1

i i

2.3 Canonical transformations

Let & = (x,p) be a point in a phase space P = O x R" and let J be the 2n x 2n

0 I
J= (—I 0) (2.17)

matrix
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Then Hamilton’s equations can be written in the form

ﬁ =JVH (2.18)
dt
We want to investigate transformations which preserve the form of this equation.
First define a 21 x 2n matrix M to be symplectic if MT JM = J. Products of symplec-
tic matrices are symplectic. Symplectic matrices are non-singular since | det M| =1,
and the inverse is also symplectic. Thus symplectic matrices form a group. The
inverse and the transpose are related by M~! = —JM7J or MT = —JM~'J. Thus M”
is symplectic as well.
A smooth mapping & =¢(&) is a canonical transformation if the derivative

D¢ = {d&]/d&;} is symplectic, that is if
(DT I(DY) = J (2.19)

Since | det D¢| = 1, a canonical transformation is volume preserving. By the inverse
function theorem, a canonical transformation is at least locally invertible, and can be
thought of as a change of coordinates in phase space.

Canonical transformations preserve the form of Hamilton’s equations as the
following result shows:

Theorem 2.1 Let ¢ be a canonical transformation and suppose &(t) solves Hamil-
ton’s equations (2.18). Then the transformed solution &'(f) = ¢(&(1)) solves

d&'/dt = JVH' (2.20)
where H = Ho ¢~ 1.
Proof Since H = H' o ¢, we have
VH = (VH o ¢$)D¢ = (D)  (VH' o ) (2.21)

Thus for £'(f) = ¢(£(1)) we have

dg’ di
— = PHED)_-
= (DP)EM)IVH)(E(D) (2.22)
= (DY) (DY) )(E (1) VH' (€' (1))
= JVH'(§'(1)
where we use that (D¢)” is symplectic. O

Theorem2.2 Let ¢p*F = Fog be the pull-back of F. A smooth function ¢ is canonical
iff
¢*{F,G) = (¢"F,¢* G} (2.23)

for all smooth functions F, G.
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Proof We have the representation
(F,G) = —(VF)JVG (2.24)
Since V(¢*G) = (D$)T(VG) o ¢, the equation (2.23) can be written as
(VF)J(VG)) o ¢ = ((VF) 0 $)(D$)J (D) (VG) o ) (2.25)

If ¢ is canonical, then (D¢$)J(D¢p)T = J and the identity holds. On the other hand
suppose (2.25) holds. Take F(§) = &;,G(§) = &; so that (VF); = i, (VG = .
Then we get [(D¢)J(D¢)T],-j = Jjj so that ¢ is canonical. ]

Before continuing we introduce some additional concepts. Let X be a vector field
on P, that is a function from P to R?". Let ¢; be the flow of X. That is &(f) = ¢(£)
is the solution of d& /dt = X(&) starting at & and defined for ¢ sufficiently small. For
any smooth function F on P define the Lie derivative LxF to be the function

d
(LxF)(§) = at (9:(E))Ni=0 (2.26)

Applying the chain rule in (2.26) we have the representation

OF
LxF = in(S)B_E- (2.27)

This is the vector field X regarded as a differential operator. The flow satisfies ¢; o
¢s = @145 = ¢5 0 ¢y, and from this it is straightforward to deduce that ¢, (LxF) =
Lx(¢;F) and that

d *k k
7= Lx(¢;F) (2.28)

Now our solution of Hamilton’s equations is the flow ¢, of the vector field
Xy =JVH, called a Hamiltonian vector field. The evolution equation (2.4) can be
written

d * *
E(tﬁt F)=¢/{F,H} (2.29)
and specializing to = 0 we have
Lx,F = {F,H} (2.30)
Then ¢;{F,H} = {¢;F, H} and either (2.28) or (2.29) becomes
d * *
E(qﬁt F)={¢/F,H} (2.31)

Theorem 2.3 The flow ¢, of Hamilton’s equations is canonical for each t.
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Proof Let F; = ¢F = F o ¢, so dF,/dt = {F, H}. Using the Jacobi identity we

compute
d dFt th
—F, G} =y —. Fy, —
dt{ 1. G} { i Gt}+{ b }

= {{FZ’H}’GI} + {Fl’{Gt’H}}
= {Fi, Gi}, H} = Lx,{F1, Gi}

(2.32)

Thus U(t,&) = {F;, G;}(§) satisfies the first-order linear partial differential equation
with initial condition

0
(E - EXH> U=0 U(0,8) = {F,G}(&) (2.33)
This is also satisfied by U(t, &) = {F, G};(§). Solutions are unique and thus {F, G}; =
{F, G;}. Since the Poisson bracket is preserved, the flow is canonical. O

Remark Suppose the phase space is the vector space R?" and suppose that the
Hamiltonian flow ¢; is linear, that is suppose that the Hamiltonian is a quadratic
polynomial. Then D¢; = ¢, and the statement that D¢, is symplectic becomes
@l J¢, = J. Another way to formulate it is to define a skew-symmetric bilinear form
(a symplectic form) by o (&1, &2) = & -J&. Then o is invariant under time evolution:
o (pi&1, pi&2) = o (&1, &»). An infinite-dimensional version of this will be of interest
when we study quantum field theory.

Problem2.1  On R? consider the Hamiltonian H(x, p) = %(p2 + w?x?) where w is
a constant. Find an explicit expression for the flow ¢; and verify directly that it is
canonical.

2.4 Symmetries
-____________________________________________________________________________|

We continue to let ¢, be the flow of Hamilton’s equations. For any smooth function
F on phase space P we have d(¢;F)/dt = ¢;{F, H} and from this it follows that

¢$;F=F < {F,H =0 (2.34)

In this case we say that F' is a conserved quantity or a constant of the motion.

There may be other Hamiltonian flows occurring naturally in the problem.
Suppose G is a smooth function on P and let v, be the flow of Xg = JVG. We
say that G is the generator of ;. Then F = F iff {F, G} = 0. Combining these
facts we have

$'G=G < (GH =0 < y‘H=H (2.35)

We can paraphrase this by saying that a function G is a constant of motion iff the
flow v that it generates leaves the Hamiltonian invariant. This suggests that we look
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for constants of the motion by looking for symmetries of the Hamiltonian. We now
proceed to look at some special cases.

In our models we will generally have an action of translations on the phase space,
that is an action of the additive group R3. Translations in a particular direction are
a Hamiltonian flow and the generator of this flow will be called the fotal momentum
in that direction. If the Hamiltonian is invariant under translations in that direction,
then the associated total momentum is conserved.

Example 2.4 We continue with a single particle in an external field (example 2.1).
The phase space is P = R? x R? and the Hamiltonian is H = |p|?/2m + V(x).
A translation by a € R3 acts on P by T,(x,p) = (x + a,p). We consider one-
parameter subgroups of the form 73,(x,p) = (x + tn, p) with |n] = 1. These are
the flow of the vector field (n,0) and this is a Hamiltonian vector field since it
can be written JV(p - n). Thus the total momentum in direction » is the particle
momentum p - n in the direction n. The translation takes the Hamiltonian to H o
Tin = |p|?/2m + V(x + tn). The Hamiltonian is invariant if V' is constant in the
direction n, that is there is no force in the direction n. In this case the momentum
p - nis conserved.

Example 2.5 Now consider again n particles interacting with each other
(example 2.3). The phase space is P = R x R¥ and the Hamiltonian is given
by (2.16). Translations by a € R? act on P by

Ta(xl ) '"’x}‘hpl ) ---’Pn) = (xl + a, ""xn + a’pl El ""pn) (2'36)

and we consider the one-parameter subgroups of the form T3, for |n| = 1.
The action of Ty, is the flow of the vector field (n,...,n,0,...,0). This is a
Hamiltonian vector field since it can be written JV(P - n) where

n
P=>pi (2.37)
i=1
is identified as the total momentum. The Hamiltonian is invariant under transla-

tions since the potentials V(x; — x;) only depend on the differences x; — x;. Hence
P - nis conserved for any n and so P conserved.

Also we will generally have an action of the rotation group on the phase
space. Rotations around a particular axis are Hamiltonian flows and the genera-
tor will be called the fotal angular momentum for the system around that axis. If
the Hamiltonian is invariant under rotations, then the total angular momentum is
conserved.
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Before getting into examples we review some facts about the rotation group on R3.
The orthogonal group O(3) is all 3 x 3 matrices R, preserving lengths or equivalently
so that RTR = I. It inherits a topology as a subset of R” and is in fact a Lie group,
that is a manifold. Such R have detR = =1 and this divides O(3) into two con-
nected components. The component with det R = 1 is a subgroup called the rotation
group or special orthogonal group and is denoted SO(3). One-parameter subgroups
are rotations about a fixed axis n € R3, || = 1. For example a rotation by an angle 6
around the axis e3 = (0,0, 1) is

cosf —sinf O
R(e3,0) = | sinf cosf O (2.38)
0 0 1
Then
-1
X, = WOy g (2.39)
3T T4 lo=0 '
0 O

is an element of the Lie algebra (tangent space to the group at the identity). The
matrix X3 is the generator of the subgroup in the sense that R(e3,0) = exp(6X3).
Similarly we have generators X, X» for the rotations R(ej,0), R(ez,6) around the
other axes. They are

00 0 0 0 1
Xi=|0 0 -1 Xx=|0 0 0 (2.40)
01 0 -1 0 0

The matrices X1, X2, X3 are a basis for the Lie algebra of SO(3), the skew-symmetric
matrices. The Lie algebra has a bracket operation inherited from the group structure
and determined by the commutators!

X1, X]=X3 [X0.X3]1=X1 [X3,Xi1]l=X> (2.41)

Example 2.6 'We consider again a single particle in an external field (example 2.4
continued). The phase space is P=R?® x R?® and the Hamiltonian is
H= |p|2/2m + V(x). A rotation by R € SO(3) acts on § = (x,p) € P by
Ré;‘ = (Rx, Rp). The one-parameter subgroup R(e3, 6) acts by

R(e3,0)¢ = (R(e3,0)x, R(e3, 0)p) (2.42)
This is the flow of the vector field

X3& = (X3x,X3p) (2.43)

1 [A,B] = AB — BA.
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This is a Hamiltonian vector field since it has the form JV L3 where

1 N
Ly = —§($JX3§) = X1p2 — X2p1 (2.44)

The generator L3 is identified as the angular momentum around e3. Similarly
associated with R(eq, 6), R(ep, ) we have

Ly =xop3 —x3p2 Lo = x3p1 — x1p3 (2.45)

Thus L = (L1, Ly, L3) is the cross product L = x x p. For rotations around a unit
vector n the angular momentum turns out to be L - n.

Is the Hamiltonian invariant under rotations? The term |p|?/2m is invariant.
If the potential is also invariant, V(Rx) = V(x), then the Hamiltonian is invariant,
L - nis conserved for any n, and so the vector L is conserved.

For multiparticle systems as in example 2.5 one finds that the total angular
momentum is the sum of the angular momenta for the individual particles.

Problem2.2  On the phase space R* consider the Hamiltonian
H(x1,x2,p1.p2) = apf + 1) + b3 +3) +cpipr —xix2)  (2.46)

Find a constant of motion by showing that A is invariant under the rotations
x1(@) \ [ cost —sinf X1
p1®) )\ sin® cos6 p1
x0@) \ cosf sinf X2
pa®) )\ —sin® cos® ”

and then finding a generator for this flow.

(2.47)

Notes on chapter 2: For a modern treatment of classical mechanics try
Abraham and Marsden (1978), Gallavotti (1983), or Marsden and Ratiu (1994).
A good general reference for mathematical physics is the two volume set by
Choquet-Bruhat et al. (1977) and Choquet-Bruhat and DeWitt-Morette (1989). In
particular they discuss Lie groups. For a more elementary treatment of Lie groups
see Miller (1972) or Hall (2003).
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We now begin with the main subject of the book: quantum mechanics. Quantum
mechanics is a fundamental framework for describing physical phenomena.
Although in principle it is needed for all phenomena, its features are especially
evident in microscopic phenomena such as the structure of atoms.

The fundamental principle is that some attributes of a physical system, for
example the position, cannot be specified exactly, but only by a probability den-
sity. Furthermore it is not the probability density itself which is fundamental, but
rather a complex valued function v called a “probability amplitude” or a “wave
function” whose modulus squared |v/|> gives the probability density. These ideas are
encompassed in the following axiom:

Axiom I: The states of the system are described by vectors of norm one in a
complex Hilbert space H.

Actually we do not distinguish states which differ by a phase. Two vectors
Y1, Yo € H are considered as equivalent if | = et Yr» for some real 6. It is equiva-
lence classes of unit vectors, called rays, which describe the states of the system.

As an example for a single particle, say an electron, the Hilbert space would be
H = L*(R?). A particle in the state v € H with ||| = 1 is located with a prob-
ability distribution |y/(x)|?. In particular the probability of finding the particle in a
measurable set B C R? is [, [y(x)[*dx.

As a second example suppose we have two different particles, say a proton and an
electron. In this case the Hilbert space would be H = L?>(R? x R?). If the particles
are in a state ¢ with ||| = 1, then fleBz |¥ (x1, x2)|>dx1dx> is the probability of
finding the first particle in the set B and the second particle in the set B;.

The wave function contains information about all observable quantities, not just
the position. This information is extracted according to the following principle.

Axiom II: Properties of physical measurements of a system correspond to pro-
jection operators on H. Physically measurable quantities for a system correspond to
self-adjoint operators on H.
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We elaborate on the meaning of the first point. If the state of the system is i and
one experimentally tests for a property corresponding to a projection operator P, then
the probability that the result of the test is positive is

W, Py) = IPY | (3.1)

A special case is that one tests whether the the system is in some other state ¢. In
this case the projection operator is the projection onto ¢ which is Py = ¢(¢, -). (Note
that this depends only on the ray.) Thus if the system is in the state v, the probability
of finding it in the state ¢ is

W, Po¥r) = (¢, )| (3.2)

For the second point suppose that a physically measurable quantity (e.g. position,
momentum, etc. ) corresponds to a self-adjoint operator A. For short we say A is an
observable. By the functional calculus, we have an associated family of projection
operators E(B) = xp(A) indexed by Borel sets B C R. The basic interpretation is
that if the system is in the state 1, then the probability that a measurement of the
observable A yields a result in B is

W, EBY) = |[EBY|* (3.3)

These quantities constitute the spectral measures introduced earlier. By the spectral
theorem (see problem 1.15)

(w,AW)Z//\d(lﬂ,E()»)lﬂ) (34

As in classical probability theory, (1,Avy) is interpreted as the average value of
repeated measurements. It is called the expectation value of the observable A.

If we have several commuting self-adjoint operators Ay, ..., A,, then it turns out
they have a joint spectral resolution, that is there is a unitary operator which trans-
forms all of them to multiplication operators on the same L? space. Then we define
projection operators E(B) = xp(Ay,...,A,) for B C R" and (¢, E(B)Y) is inter-
preted as the probability that a simultaneous measurement of observables Ay, ..., A,
will yield a value in B. However if self-adjoint operators do not commute, there is
no joint spectral resolution and no probability density for simultaneous measure-
ments. Indeed arbitrarily precise simultaneous measurements are not possible. This
is a complete departure from classical probability theory.

As an example, for a single particle with Hilbert space L>(R%) let [x,] be the
operator of multiplication by the coordinate x,. Then for B C R the projection oper-
ators are xp([x;]) = xp(x,) and the probability of finding the rth coordinate in B is
fx,eB |1ﬁ(x)|2dx. For B C R3 the joint projection operators are xg([x1], [x2], [x3]) =
xB(x1,x2,x3) and the probability of finding the particle in B is f B |1ﬂ(x)|2dx just as
before.
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Now there is the question of how we associate physically measurable quantities
with self-adjoint operators. This is one of the more obscure areas of the subject.
However a few general principles suffice to cover most of the situations that arise
in practice. One way of systematizing these principles is as follows. We know how
to associate classical observables with actual physical attributes. Thus a correspon-
dence between classical observables (that is functions on phase space) and quantum
observables (that is self-adjoint operators) serves our purpose. This correspondence
is known as “canonical quantization” and is discussed in the next section.

Next we turn to the question of how the system evolves in time. We assume that
external influences on the system are independent of time. (Otherwise the following
needs modification.)

Axiom III: The time evolution of a system is given by a one-parameter group of
unitary operators U(f) on H such that if ¥ € H is the state of the system at time
zero, then ¥, = U(t)y is the state at time ¢.

The fact that time evolution is given by a family of linear operators (even for sys-
tems which are classically nonlinear) is perhaps mysterious, but once this is accepted
we are more or less forced to admit that it is unitary to preserve the probabilistic
interpretation.

We have formulated dynamics so that the states evolve in time and operators cor-
responding to observables are fixed in time. The expectation of an observable given
by a self-adjoint operator A in a state Y at time ¢ is (Y, Ay;). This is known as
the Schrodinger picture. There is also the Heisenberg picture in which the operators
evolve in time and the states are fixed. For any operator A on the H we define the
operator at time 7 by A; = U()~'AU(t). Now the expectation of A in the state Y at
time ¢ is (Y, A;¥). This is the same as the Schrodinger picture. The two pictures are
equivalent in the sense that they have the same expectation values.

By Stone’s theorem (Theorem 1.13) the time evolution U(f) will be generated by
a self-adjoint operator H. We write

U(t) = e tH/h (3.5)

Here 7 is a small fundamental constant of nature, which sets the scale on which
quantum effects are important. In CGS units it is 7 = 1.05 x 10~ erg - seconds.
In the Schrodinger picture we have ¥, = e /"y and so if ¥ € D(H), the state
satisfies the Schrodinger equation,

LAY
h— =H 3.6
l di 1z (3.6)
In the Heisenberg picture we have A; = /" Ae~#H/h which satisfies
. dA,
—in® —H. A 3.7)

dt
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on a suitable domain. Note the analogy with the time evolution of observables in
a classical Hamiltonian system as in (2.4). Poisson brackets are replaced by com-
mutators and the operator H plays the role of the Hamiltonian. Indeed H is called
the (quantum) Hamiltonian and corresponds to the energy of the system. This cor-
respondence is further developed in the framework of canonical quantization in the
next section.

In addition to this continuous unitary time evolution the system also changes in a
discontinuous way when a measurement is made upon it. Roughly the state jumps
to a state which is specified by the results of the measurement. This is known as
“reduction of the wave function.” The question of which physical processes consti-
tute measurements in this sense is rather unsettled, as well as the question of finding
a correct mathematical description. Nevertheless it turns out that one can solve most
practical problems without entering into these issues.

This completes our survey of the basic principles in the form of three axioms
which list the kind of mathematical structures we are interested in and how they
are supposed to model the physical world. They are not meant to be exhaustive or
inflexible, but only a general point of reference.

3.2 (Canonical quantization
|

Canonical quantization is a recipe for passing from a classical Hamiltonian system
to a quantum mechanical system. We should say at the outset that there are lim-
its to how seriously one should take this procedure. We do not mean to say that
the classical system is fundamental and it is somehow modified for microscopic
phenomena. Rather it is the quantum system which is fundamental. The classical
system is an approximation, which however is excellent for macroscopic bodies.
Canonical quantization is just a sophisticated method for guessing the correct quan-
tum description from its classical manifestation. As such it need not be too sharply
drawn.

We begin with a classical Hamiltonian system with phase space P = R” x R”
with points (x, p) = (x1,... ,Xs,P1,- .- ,Pn) and a Hamiltonian H(x, p). The first step
of quantization consists of associating with each of the coordinates (unbounded)
linear operators (X,p) = (X1,... ,Xn, P1,--. »Pn) On a Hilbert space H such that the
commutators satisfy the relations

#.3] =0
pi.pi] =0

[%i.bj] = ins;; (3.8)
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The relations (3.8) are known as the canonical commutation relations or CCR. Note
the analogy with the Poisson brackets of the classical coordinates given in (2.7). Note
also the presence of the fundamental constant 7.

The second step is to substitute (%,p) into the classical Hamiltonian H(x, p) to
form the quantum Hamiltonian H = H(, D). This is just a formal expression which
we must give a meaning as a self-adjoint operator. The time evolution operator is
then taken to be U(t) = e~tH/h in accordance with our general principles. In the
Heisenberg picture we then define canonical operators (X;, ;) at time 7 by

)%t ellH/h)Ace_”H/h

b= eitH/hlf\)e—itH/h (3.9)
These also satisfy the CCR and obey the equations

d .
_lhd_.%t = [H, .%[]
! (3.10)

A
A

ih 4, = [H,p:]
—ih—p, = [H,
dtpt Pr

Example3.1 As an example consider the quantization of the classical system in
example 2.1. This is a single particle in R? with mass m and under the influence
of a potential V. The classical coordinates x,, p, with 1 < r < 3 can be quantized
as the operators X, p, defined by

Xy = [x,] = multiplication by x,
ad (3.11)
pr = —ih—
Dr ox,
When defined on a suitable domain in L2(R3), say the Schwartz space S(R3),
these satisfy the canonical commutation relations (3.8). The classical Hamiltonian
H(x,p) =| p|2 /2m + V(x) becomes the quantum Hamiltonian

A2
= '5—' + V(%)
m A (3.12)
= —hzz— + V()]
m

a

In the next chapter we will define Hasa self-adjoint operator and so specify the
dynamics. In any case proceeding formally and using that [H,A,] = [H,A]; we
find that the equations (3.10) become in this case

i;c _ bre

" m

d. av .

—Drp = —7— (%) (3.13)

dt 0x,
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3.3 Symmetries

(Here we use the formal identity [0V /dx,]; = 90V /dx,(X;).) Thus the quan-
tum operators (X, p,) obey the classical Hamilton’s equations. This is a general
principle known as Ehrenfest’s theorem.
Let us consider the momentum operators p, in more detail. These satisfy on
S[R3)
br=F; ' pr1Fn (3.14)

where F, is the Fourier transform defined with the exponent exp(—ipx/#) rather
than exp(—ipx). Since the multiplication operator [p,] is naturally a self-adjoint
operator, this formula can be used to define p, as a self-adjoint operator on L>(R?)
with domain

Dpy) = (¥ : / P (p)dp < oo} (3.15)

The joint spectral projections for p = (p1,p2,p3) are the operators E(B) =
f{l[XB(pl,pz,pg)]fh and so the probability of finding the momentum in the
set B C R? in the state v is

W, EB)Y) = /B 9 (p)Pdp (3.16)

Thus | (p)| gives probability density for momentum. We say that the Fourier
transform ¥ (p) is the wave function in momentum space. This interpretation
of the Fourier transform is not special to this example, but pervades quantum
physics.

Problem 3.1 In the above example let v € S(R3) with ||| = 1 and define
the expectations x, = (Y, %) and p, = (¥, p,v¥). Further define the variances

(Ax)? = (Y, Gy — X)%Y) and (Ap,)* = (W, (Pr — pr)>¥). Show that

h
AxApy > 3 (3.17)

This result, known as the Heisenberg uncertainty principle, shows that position
and momentum cannot simultaneously be constrained arbitrarily sharply.

The value of 7/ depends on which system of units we are using. Hereafter we
choose units in which 7 = 1 so that /i disappears from our equations.

3.3 Symmetries
- |

We want to consider symmetries and conserved quantities for quantum systems.
Our discussion parallels the classical discussion of section 2.4, but with canonical
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flows replaced by one-parameter unitary groups and Poisson brackets replaced by

commutators.
Suppose we have a quantum system with Hilbert space 7 and time evolution e~/
Let
a(A) = A, = A (3.18)

be the time evolution of the observable A. Since —idA;/dt = [H,A];, we deduce that
(A=A < [H,A]=0 (3.19)

Thus A is constant in time iff it commutes with H. We say that A represents a
conserved quantity. To find such quantities we consider other group actions on H.
—iGr

Suppose e is another one-parameter unitary group on H with self-adjoint

generator G. The action on an observable A is
Bi(A) = ' Ae™! (3.20)
and the observable is invariant iff [G, A] = 0. Combining the above we have
0 (G)=G << [H,G]=0 <<~ p(H)=H (3.21)

Thus an observable is conserved iff it generates a symmetry of the Hamiltonian.

Now we get more specific. The translation group R> acts on R3 by x — x + a.
We suppose that we have a continuous representation of this group by unitary
operators U(a) on H, that is U(a)U(¢') = U(a + o). For any state v the state
U(a)y is interpreted as the state translated by a. For any basis vector e, U(te,) is a
one-parameter unitary group and by Stone’s theorem there is a self-adjoint operator
P, such that

U(te,) = exp(—iP,t) (3.22)

Then P, is interpreted as the rth component of the fotal momentum of the system, in
analogy with the classical situation. If the Hamiltonian is invariant under translations
in the direction e,, then P, is conserved.

We also suppose that we have a continuous representation of the rotation
group, that is unitary operators U(R) on H for each ReSO(3) such that
UR)U(R')=U(RR'). For a state { the state U(R)y is the state rotated by R.
If R(e;,0) is the rotation by 6 around a basis vector e, then U(R(e,,6)) is a
one-parameter unitary group and by Stone’s theorem there is a self-adjoint operator
denoted J, such that

U(R(er,0)) = exp(—i6J,) (3.23)
Then J, is interpreted as the r-component of the total angular momentum of the

system, again in analogy with the classical situation. If the Hamiltonian is invariant
under rotations around e,, then J, is conserved.
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3.4 Perspectives and problems

Example 3.2 We continue the example of a single particle in an external potential,
example 3.1. The translation group on L*(R3) is represented by

U@ y)x) =¥ (x —a) (3.24)

The generator in the direction e, is for suitable ¥

d ad
Pry)(x) = iz(U(ter)l//)(x)b:O = —i—l'// (x) (3.25)
t ax,

Thus the total momentum P, is just the momentum p, of the single particle as
we might expect. The Hamiltonian H is invariant under U(te,) if the potential
satisfies V(x + te;) = V(x). In this case P, is conserved.

The rotation group is represented by

(URY)@) = YR 'x) (3.26)

which is unitary since det R = 1. The third component of the angular momentum,
denoted L3 rather than J3 in this example, is

L3y)(x) = iiw(R(es,Q)fl)C)Ie:o = <X1 (—ii) — X2 (—ii» ¥ (x)
do dx2 X1
(3.27)
If H is invariant under R(e3,6), that is if V(R(e3,0)x) = V(x), then L3 is
conserved. Rotations around other axes are treated similarly.

Note that L3 = X1 p> —X2p1. Thus we can get the quantum angular momentum
by making the substitution x, — X,,p, — p, in the classical angular momen-
tum (2.44), just as we did with the Hamiltonian. However it has proved difficult
to elevate this substitution rule into a general principle for generating quantum
observables. Canonical quantization is not a universal recipe.

Problem 3.2 1t is generally true that —iJ, give a representation of the Lie algebra
of SO(3) as in (2.41), that is

Vi, 2l=il3 [, zsl=i/1 [J3, il =il (3.28)

Check that this is true for J, = L, in the above example.

3.4 Perspectives and problems
|

If one wants to give a quantum mechanical model for a physical system one proceeds
as follows. First one selects a Hilbert space of states { and a Hamiltonian H. Possibly
this would be by applying the method of canonical quantization to a classical model
or possibly by experience or guesswork. This is the job of the physicist.
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Then there are three mathematical problems:

1. (Self-adjointness) The Hamiltonian will typically be given as a formal operator
and the first task, at least for a mathematician, is to give it a rigorous meaning as
a self-adjoint operator. Then one has the existence of the time evolution operator
Ut = e "™,

2. (Spectrum) The next task is to study the spectrum of H. In particular one looks
for eigenvalues Hyr = E. These are the states of definite energy. Such a state
would evolve in time according to ¥, = e~'F/4)r. Since the phase factor e =% does
not change the ray, the state is stationary. These are the states one would look for
in nature. Differences in energy levels can often be observed directly since if the
system changes from one state to another, it usually emits light with exactly the
energy difference.

3. (Scattering) For states which are not eigenvectors or linear combinations of eigen-
vectors, we ask instead for the long time behavior of the state. Thus we ask for the
asymptotic behavior of e~y as t — +o0. This leads to the scattering problem:
given a state with specified asymptotic behavior as t — —oo, find the asymptotic
behavior as t — oo.

In the next chapter we take up these problems for the case of a single particle in
an external potential.

Notes on chapter 3: The original mathematical treatment of quantum mechanics
was von Neumann (1955). Other books on the mathematical foundations are Jauch
(1968) and Isham (1995).
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We start with the case of a single particle with no forces — a free particle. To begin
we work in R? so the Hilbert space is L>(R?) and the Hamiltonian from (3.12) with
V=0is
A
Hy=—— 4.1)
2m
Our first task is to choose a domain for this operator so it is self-adjoint. On S(R?)
we have
2
Hy=7F" [ﬂ] F (4.2)
2m
The multiplication operator |p|?/2m has a natural domain of self-adjointness and we
just define D(Hp) to be the transform of this domain. Thus H is defined by (4.2)
with domain

D(Ho) = {y : / IpI* 1 (p)|Pdp < oo} (4.3)

As the unitary transform of a self-adjoint operator, it is self-adjoint. The operator is
defined by its spectral representation.
Time evolution as defined by the spectral theorem is given by

e—iHoty, — ]:—l[e—i(lplz/Zm)t] T (4.4)
orif y € S(RY)
(7)) = (2m) /2 f e WE 2 (p)dp (4.5)
Lemmad.l Fory € SRY andt#0
(™Ml )(x) = (%.t)d/2 f MRy (y)dy (4.6)

and so as |t| — oo

lle=Holy |l oo < O([r| /) (4.7)
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Remark The estimate says that amplitude of the wave function goes to zero at
t — 400. Since the L2 norm is conserved, this means that the region of concentration
of the wave function must increase. This loss of localization is known as spreading
of the wave function.

Proof Suppose instead of the Schrddinger equation dvr/dt = —iHyy we were solv-
ing the heat equation dv/dt = —Hpy. Then we would have as the solution for
>0

(107 ) ) = 2y / e~ UPP2mT G )i

— (ﬂ)d/2/6—|x—)’\2m/21w(y)dy

2nt

(4.8)

Here in the second step we insert the definition of ¥ (p) and do the integral over p,
see problem 1.3. This calculation holds equally well for r complex, Re ¢ > 0. Now
exp(—Ho(e + it))yr converges to exp(—iHot))Y in L2(Rd) as € — 0. Hence we have
pointwise convergence for a subsequence €,. Take t = ¢, + it above and let €, — 0.
Using the dominated convergence theorem on the right we obtain (4.6). (And we also
see that the right side is in L2.) O

Problem 4.1 Define for ¥ € S(RY) and 7 # 0

a2 2, .
o = (3" o (25 5(2)
Show that
Jim (e 0y — Vil =0 (4.10)

This result shows that in spite of the spreading of the wave function, some locali-
zation is preserved. Suppose that [¢(p)| is peaked at some momentum py € RY,
Then the asymptotic form of |[(e~H0'yr)(x)| is peaked at points where mx/t = pg or
x = (po/m)t. This special point moves with velocity po/m just as for the classical
trajectory.

Problem 4.2 Show that the spectrum of Hy is [0, c0) and that it is all continuous
spectrum.

4.2 Particle in a potential
|

Now we specialize to d = 3 and study a single particle in a potential. As explained
in the previous section this means our Hamiltonian has the form

—A
H=Hy+V=—+YV 4.11)
2m
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where V is the potential function. The first task is to define it as a self-adjoint
operator. For this we need:

Theorem 4.1 (Kato’s theorem) Let T be a self-adjoint operator on a Hilbert space
and let S be symmetric. Suppose that D(T) C D(S) and for some constants 0 < a < 1
and 0 < b and all f € D(T) we have

ISF1l < allZfll + bIIf Il (4.12)
Then T + S is self-adjoint on D(T).

Proof The operator T + S is symmetric on D(T') so it suffices to show that Ran(T +
S +in) = H for some u > 0 by theorem 1.9. (Actually theorem 1.9 is stated for
w = 1, but it holds as well for any u.)

For any g € H we have that (T + in)~'g € D(T) and by the inequality

IS(T + i)'l < al T(T + i)' gl + bIT £ in) gl (4.13)

On the right side we have certain bounded functions of 7', which we estimate by the
spectral theorem using ||A(T)|| < ||A||co- In particular

IT(T i)~ < sup AL £ i)' < 1
R

o re o B (4.14)
(T xiw)~ | <sup|(A£in) | <
reR
Therefore
o b
IS(T + i)~ 'gll < <a+;> gl (4.15)

Since a + b/ < 1 for u sufficiently large, we conclude that ||S(T £ i)~ < 1.
Hence by theorem 1.2

Ran(I + S(T +ipn) ) =H (4.16)
Now for any f € D(T) we have
(T+S+in)f =1 +STxipn) NT +in)f (4.17)

On the right side we have the composition of two surjective operators, hence
T + S £ iu is surjective as required. U

Theorem4.2 H = Hy+ V on L*(R3) is self-adjoint on D(Hy) in any of the following
circumstances:

1. Ve L®R3)
2. VeL*XR3
3. V=V, + Vo where Vi € L*(R3) and V> € L¥(R?).

Proof Take m = 1/2 for simplicity. If V € L, then it determines a bounded
operator and || V|| < ||V« |lf]l- The hypotheses of Kato’s theorem are satisfied with
a = 0,b = |V|co, hence the result.
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Now suppose V € L2(R3). If v € D(Hy), then |p|>v/(p) is in L*(R3). We write for
anya > 0

V(p) = @ + pIH 7 (@ + PP (P) (4.18)

This exhibits 1/ (p) as the product of two L? functions and hence it is in L! as well
as L?. Hence the Fourier inversion formula ¥ (x) = (27) /2 f eP*yr(p)dp holds
pointwise. By a Schwarz inequality we get'

1/2 ~ 1/2
[y ()] < 2m)~3/? ( f (@ + |p|2)—2dp) ( / (@ + |p|2)2|w<p)|2dp>

= ca”"2||(Hy + Py ||
< ca” V2| Hop || 4 ca®? |y

(4.19)

for some constant c. Hence |{/(x)| is bounded and so is in the domain of V. Thus
D(Hy) € D(V). Furthermore for ¢ € D(Hp) we have

VI < IVIRIW oo < IVI2 (ca™ P 1How | + ca2 19 (4.20)

For « sufficiently large Kato’s inequality holds and we conclude that H is self-adjoint
on D(Hp).
For the last result treat V; as a bounded perturbation of Hy + V7. O

Example 4.1  Consider the Yukawa potential
Vix) = |;—|e_”|x| 421)

This is supposed to provide a crude model of nuclear forces transmitted by a
particle of mass u > 0. We have V e L*(R3)and hence H = Hy+V is self-adjoint
on D(Hy) by the theorem.

Example4.2 Consider the Coulomb potential

—e2
Vix) = — (4.22)
|x|
This is supposed to describe an electron of charge —e in the electrostatic field of
a proton of charge e. This is a simple model of the Hydrogen atom. If B is the unit
ball, then V = V 1p + V 1pc exhibits the potential as the sum of an [? function

and an L* function. Hence H = H( + V is self-adjoint on D(Hy) by the theorem.

We also consider a particle in a magnetic field B = V x A. Applying our canonical
quantization procedure to the Hamiltonian (2.13) with & = 0 we find the quantum
Hamiltonian

! This is an example of a Sobolev inequality.
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e 2
H=—(=iv- -A)
¢ ) (4.23)
=Ho+ —— (QUA-V+iV-A)+ AP
2mc 2mc?
Problem 4.3 Suppose A and all its first derivatives are bounded functions. Show
that the Hamiltonian (4.23) is self-adjoint on D(H).

4.3 Spectrum
- |

We study the spectrum of H = Hy + V. First we need a variation of the Riesz—
Schauder theorem, theorem 1.15.

A function F(z) from an open set O C C to a Banach space is said to be analytic
if the derivative F'(z) = limy—o(F(z + h) — F(2))/h exists for all z € O. Analytic
functions in this sense enjoy many of the same properties of complex-valued analytic
functions, e.g Cauchy’s theorem, power series representation, etc.

Theorem 4.3  (Analytic Fredholm theorem) Let F(z) be an analytic function from a
connected open set O C C to B(H) such that F(z) is compact for all z € O. Then
one of the following holds:

1. (I + F)~! does not exist for any z € O.
2. (I + F(2))"! exists except for a discrete set S C O with no limit points in O. For
z € S the operator F(z) has eigenvalue —1 with finite multiplicity.

For the proof see Reed and Simon (1980: 201).

Problem 4.4 Show that the Riesz—Schauder theorem follows from the analytic
Fredholm theorem. (Hint: (7' — z) = —z(I — T/2).)

Theorem4.4 Let V € L*(R?) and let H = Hy + V on H = L*(R3). Then o(H) N
(—00,0) is a bounded countable set E\ < E» < E3 < --- < 0 (possibly empty) with
no limit points except possibly zero. Each Ej is an eigenvalue with finite multiplicity.

Remark We characterize o (H) N [0, 00) in section 4.5.

Proof H is self-adjoint by theorem 4.2. Consider E < 0. On D(H) = D(Hg) we
have the identity

(H—E)=(+V(Hy— E)""Hy — E) (4.24)

Since E is in the resolvent set for Hy, we see that E is in the resolvent set for H iff
(I + V(Hy — E)~1)~! exists as a bounded operator. Furthermore (H — E)i has a
nonzero solution in D(H) iff (I + V(Ho — E)~")¢ = 0 has a nonzero solution in H,
that is iff V(Hy — E)~! has eigenvalue —1.
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First we show that the spectrum is bounded below. In Kato’s inequality || V|| <
a|lHoyr|| + b||v| insert = (Ho — E)~'¢ and obtain

IV(Ho — E)"'¢|| < <a + %) g (4.25)
Thus if E is sufficiently negative, ||V(Hy — E)~!|| < 1 and so (I + V(Hy — E)~")~!
exists and F is in the resolvent set for H.

We next note that V(Hy — E)~! is an analytic function in C — [0, c0). Indeed one
can compute directly that the derivative is V(Hy — E)~2.

We claim V(Hy — E)~! is compact for all such E in C — [0, c0). It suffices to
show the momentum space version FV(Hy — E)y~lF-lig compact, and we show it
is Hilbert—Schmidt. Since the Fourier transform of a product is the convolution of
the transforms, we have

(FV(Ho — E)"' F~'y)(p) = @u) 2V * (F(Hy — E) ' F~ Yy ()
an [+ q? N\
=02 [V -g) <% —E) V@ da (426)
= / k(p, 9)¥ (q) dq

This is Hilbert—Schmidt since

o
Ik = @2m)3 / 7 —q) (% - E)

-2
- IS
= 1vig [ |4 - £ g

4.27)

<

Now we can apply the analytic Fredholm theorem for V(Hy — E)~! in the region
C —[0, 00). The alternative that (I+ V(Ho— E)~!)~! does not exist anywhere is ruled
out for E very negative by (4.25). Thus we conclude V(Hy — E)~! has eigenvalue —1
at a bounded discrete set of points E1, E>, . .. necessarily real and with no accumu-
lation point except possibly zero. Hence H has these eigenvalues. The multiplicity
is finite for V(Hy — E/)_1 and hence the E; have finite multiplicity as eigenvalues
of H. O

Note that the theorem holds in particular for the Yukawa potential, example 4.1.

Problem 4.5 Prove the same result if for every e > 0 there exists a split V =
Vi + Vs such that Vi € L? and V, € L™ with [|[Va[le < €.

Example 4.3 Consider the Coulomb potential of example 4.2 with the Hamilto-
nian
A &

= — - — 4.28
2m x| ( )
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4.4 The harmonic oscillator

The potential V(x) = —e?/|x| satisfies the conditions of the previous problem as
we see by letting Bg be the ball of radius R and writing V =V 1, + V lg¢ with
R large depending on €. We conclude that the negative spectrum is purely discrete
with finite multiplicity.

Actually for this problem the spectrum can be computed exactly. Solving the
differential equation (H — E)y = 0 by separation of variables one finds that the
eigenvalues are

4
—me
Ey= n=1,23,... (4.29)

and the dimension of the eigenspace for E,, is n”. For details see any textbook on
quantum mechanics.

These are the energy levels for hydrogen. Differences of these energies
determine the frequencies of light emitted by hydrogen, something which is
experimentally observable. The success of these predictions was one of the
original triumphs of quantum mechanics.

Problem 4.6 Let V be the rank-one operator Viy = Ax(x,v) where A is real
and [|x|| = 1. Define H = Hy + V as a self-adjoint operator. Find the negative
spectrum.

4.4 The harmonic oscillator
|

The harmonic oscillator potential is
V(x) = k|x|?/2 (4.30)

The classical Hamiltonian |p|?/2m + k|x|?/2 describes a particle with equilibrium
position x = 0 subject to a linear restoring force —kx. The quantum Hamiltonian is
Ak 5
H:m—l—ilxl (4.31)
This potential is not a small perturbation of Hy and is not covered by any of our
analysis so far. However we can analyze it directly. For simplicity take m = 1,k = 1
and dimension d = 1.

Theorem 4.5 The Hamiltonian

1 d?
H=1 (‘E —|—x2> (4.32)

is essentially self-adjoint on S(R) C LZ(R) and has spectrum %, 1, %, 2, ...
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Proof Introduce the operators

X
2 (4.33)
1 d
‘=7 (” dx)
and then
He=aat (4.34)

2

We can find one eigenfunction by solving a2gp = 0, for then HQy = %Qo. The
normalized solution is

Qo(x) = (m)~ V412 (4.35)
From this we can generate more eigenfunctions defining
Q, = (@")"Qo (4.36)

Since [a,a*] = 1, we have [H, a*] = a* and hence can compute
1
HQ, = (n —+ 5) Qu 4.37)

Thus the spectrum of H consists of at least the positive half integers.

In fact the 2, are the Hermite polynomial and form a complete orthogonal set.
A proof of the completeness is sketched in the following problem. Since H has
a complete set of eigenfunctions, it is essentially self-adjoint and the spectrum is
exactly the eigenvalues %, 1, %, 2,...;see problem 1.13. O

Problem 4.7 Show that the eigenfunctions €2, form a complete set by the
following steps:

1. Show that the subspace spanned by finite linear combinations is the space P
of all functions of the form P(x) exp(—x2 /2) where P(x) is a polynomial with
complex coefficients.

2. Show that for any k € R the function ¢*¢=¥/2 is in the closure P.

3. Show that P = L*(R) by showing that the orthogonal complement is {0}.

Theorem 4.5 readily generalizes to any number of dimensions. The features of
this example will surface again in quantum field theory. A scalar quantum field can
be thought of as an infinite collection of coupled harmonic oscillators, one for each
point in space. The displacement is not in physical space, but in field strength.

Problem4.8 Find the spectrum for the harmonic oscillator in d = 3.

Finally we note that there is an explicit formula for the kernel of the semi-group
e~ known as Mehler’s formula. It is
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()00 = / (e )y 4.38)

where

. —-1/2 ( 1 2, .2 . -1 )
q:(x,y) = (2 sinh?) exp —E(coth H(x~ 4+ y°) 4+ (sinh )™ "xy (4.39)

Problem4.9 Check Mehler’s formula by verifying the following:

1. Fort> 0
(% - H) q:(x,y) =0 (4.40)
2. Forf € S(R)
tim [ 4.0 = (441)

4.5 Scattering

4.5.1 Wave operators

We continue to consider the single particle in a potential with Hamiltonian H =
Hp + V and ask for the behavior of the state e "f'y as t — 00. One possibility is
that v is an eigenvector Hyr = E+ and in this case e 'yy = e~y The state is
localized and stationary and is called a bound state.

Another possibility is that the particle escapes the potential and behaves like a free
particle. In this case there would be a free state e0’¢ such that

lim |le "y — el =0 (4.42)
11— 00
This is equivalent to
Jim [y — eflte=itol g =0 (4.43)
— 00

This motivates the definition of wave operators Q7 as the limits

Q% = lim He iy (4.44)

t—+oo

when they exist for ¢ in . Given ¢ let ¥y = Q¥ ¢. Then |le~ 1y — e~ Holg| — 0
as t — =o00. Thus we have found a state with given asymptotic behavior either in
the past or the future. Note also that

Il = lim [le™e™g| = g (4.45)

Thus Q% is an isometry if it exists.
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Theorem4.6 InH = L*(R%), if V € L2(R3), then Q7 exists.

Proof Let ©, = ¢/f’e~iHo! 'We must show that ;¢ has a limit as r — +o00. Since
1€2;| = 1, we can approximate ;¢ by ;¢ with ¢’ € S(R?) uniformly in 7. Thus it
suffices to prove the result for ¢ € S (R3).

Such ¢ are in D(H) = D(Hy) and so we may compute the derivative

—-Q [ iHt ,—iHot

7 19 dt(e e )
— eiHT(l'H _ iHO)efiHol(ﬁ (446)
— eiH[l'Ve—iH0[¢

—iHyt

Here we use the fact that e leaves D(H() invariant.

Now we write for ¢ >t > 0
t/
(Q — Q) = f M5y iHos g g (4.47)
t

Here the integral can be understood as a Hilbert space valued Riemann integral since
the integrand is a continuous Hilbert space valued function. It follows that

/

t
1@ — Qdll < / Ve 05 ds

t

< / Vil 056 ocds (49
13
< 2|V~ = 1712
Here we have used the bound (4.7) which says
[ (4.49)

Thus €2;,¢ is a Cauchy sequence for any #; — oo and hence the limits lim;—, o0 €2
exists. The limit t — —o0 is similar. L]

Problem 4.10 Let V be a rank-one operator as in problem 4.6, now with x €
L' NL?. Show that Q4 exist.

4.5.2 Asymptotic completeness

Suppose the wave operators exist. We define
HE = Ran(Qh) (4.50)

Since the range of an isometry is closed, this is a closed subspace of H. These
are states which become free as t — Zoo. We also define a subspace of bound
states

Hpa = closed subspace spanned by eigenvectors of H 4.51)
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Llemma4.2 H* and Hpq are orthogonal subspaces.
Proof Lety = Q*¢ and let Hy = Ex. We show that (), ¥) = 0. We have
(6w = lim (x, e™e ') = Tim ™ (x, e "'g) (4.52)
t—00 1—00

Thus it suffices to show for x,¢ € L2(R3) that lim,_ o (x, e H0'p) = 0. We can
assume that x, ¢ € S(R?) since we can approximate the general case uniformly in 7.
Then the result follows from the bound (4.49) since

G e ™)) < Nl le 'l — 0 (4.53)
O

It is possible that these subspaces exhaust the Hilbert space, that is
H =H" ® Hpa (4.54)

If this is true, we say that the system exhibits asymptotic completeness. Note that this
entails that H+ = H~. Roughly it means that either a state is stationary or it goes
out to infinity both in the distant past and in the distant future.

Asymptotic completeness is generally true. For example if V € L' N L?, it is true,
although not especially easy to prove.

4.5.3 The scattering operator

Next we discuss actual scattering experiments, for example scattering a neutron off
a nucleus, which we model as scattering the neutron off the potential created by the
nucleus. We prepare the neutron in a certain state, which we model by the condition
that it behaves like e /#0'¢) as t — —oo. Thus the prepared state (at time zero) is
Q7 ¢. After the scattering has taken place we measure the state of the system to be

—iHpt

something with asymptotic behavior e x as t — oo. Thus the measured state (at

time zero) is QT x. By (3.2) the probability of this occurring is
(@ X, Q)P = 1(x. ¢ (4.55)
Here we have introduced the scattering operator
S=(QH*Q~ (4.56)

One can then study the structure of the nucleus by hypothesizing a potential V,
computing the scattering operator S for the potential, and then comparing the scat-
tering probabilities |(y, S¢)|> with the observed events. A more ambitious program
is the so-called inverse scattering problem which asks to find V given S.

Lemmad.3 IfH™ = H", then S is unitary.
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Proof Since QT are isometries, we have

@HQt=1 QE(QT)" = Py (4.57)

Then we compute
'S =(@H)yQt@H* QT =@ )*Q =1 (4.58)
Similarly SS* = 1. Hence S is unitary. O

4.5.4 Continuous spectrum

Finally we complete our characterization of the spectrum using the wave operators.

Theorem 4.7  Suppose that QF exist.
1. ethQi — QieiHot‘
2. H restricted to H* has continuous spectrum [0, 00).

Proof

1. This follows from the computation

elHtQi(ﬁ = lim elH(Z+S)e—lHOS¢
s—£00

= lim eHeHou=10y (4.59)
u—=+o00
— QieiHol‘¢
2. QF : H — HT is unitary. Then ¢/’ restricted to H7 is unitarily equivalent to
¢! on ‘H by
eiHl — Q:I:eiHol(Q:‘:)fl (460)
It follows that the generators H|H* and Hy are unitarily equivalent. Since Hy has
continuous spectrum [0, 00) (problem 4.2), the same is true for H |'Hi.

O

4.6 Spin

4.6.1 Representations of the rotation group

As noted earlier the natural representation of the rotation group SO(3) on our Hilbert
space H = L*(R3)is (U R)Y)(x) = l/f(R_lx). There are however other possibilities
for a single particle. Suppose that R — T(R) is a representation of SO(3) by unitary
m x m matrices so that T(R1)T(R,) = T(R1R2). Then we could take the Hilbert space
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tobe H = L2(R3, C™), the square integrable C” valued functions on R3, and define
a unitary representation on H by

(URY)(x) = TR (R™"x) R € SO(3) (4.61)

If we want our particle to be elementary (that is not composite), we would add the
requirement that 7" is irreducible.

It turns out that the most common elementary particles (electrons, protons, neu-
trons) do behave nontrivially under rotations, but not exactly in the manner suggested
above. Instead there is a representation of the universal covering group of SO(3).
This is SU(2), the 2 x 2 complex matrices A satisfying A*A = 1 and detA = 1.
As we explain below there is a two-to-one homomorphism A — R(A) from SU(2)
onto SO(3) such that R(—A) = R(A). If T(A) is an m-dimensional unitary represen-
tation of SU(2), then there is a unitary representation of SU(2) on the Hilbert space
H = L*(R?,C™) defined by

(UA)(x) = TAYRA) %) A€ SUQ2) (4.62)

This also gives a representation of SO(3) if we recall that the states are really rays.
To find the action of R € SO(3) choose A so R(+A) = R and define (UR)¥)(x) =
T(+A)¥ (R~ 'x). For an irreducible representation, 7(—A) = £T7(A). Thus the choice
of +A at worst changes the sign, and this has no effect on the ray.

It turns out there is an m-dimensional irreducible representation of SU(2) for
all positive integers m. The dimension is written m = 2s + 1 withs = 0,1/2,1,3/2,
2,... and we say that the particle has spin s; more on this terminology later.
For spin zero we have T(A) = I. This is the case we have been discussing and
describes pions. For spin 1/2 we have T(A) = A; this is the case that describes elec-
trons, protons, neutrons, etc. For spin one we have T(A) = R(A) and we are back
to a special case of (4.61). A modification of this describes photons; see section 9.4.
Higher spins are also possible.

4.6.2 The covering group

Now we explain the covering map. First define Pauli matrices by

0 1 0 —i 1 0
01=<1 0) 02=<i Ol) a3=<0 _1) (4.63)

These form a basis for the real vector space of self-adjoint traceless 2 x 2 matrices.
(The matrices —io/2, —ion /2, —io3/2 form a standard basis for the skew-adjoint
traceless matrices, the Lie algebra of SU(2).) With any x € R3 associate the matrix

3 .
oox=Y om= < S ) (4.64)
i=1

X1+ ixo —X3
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Note that
det(o - x) = —|x|? (4.65)
Now for A € SU(2) we have that A(o -x)A~! is again a self-adjoint traceless matrix
and thus it has the form o - y for a unique y € R3. The map x — y is easily seen to
be linear and so y = R(A)x for some matrix R(A). Thus R(A) is defined by”
Ao -0A™ =0 - (R(A)x) (4.66)
Lemma 4.4 The map A — R(A) is a two-to-one homomorphism from SU(2) onto
SO(3).
Proof First R(A) is a homomorphism because
o - (R(AB)x) = (AB)(c - x)(AB)™!
= A(o - R(B)x)A™! (4.67)
=0 - (R(A)R(B)x)
which implies R(AB) = R(A)R(B). Second R(A) is orthogonal because
[R(A)x)? = — det(o - (R(A)x)) = — det(o - x) = |x]? (4.68)

To see that R(A) is a rotation we need det(R(A)) = 1. This follows from the facts that
det(R(I)) = detl = 1 and that A — det(R(A)) is continuous from SU(2) to {£=1} and
that SU(2) is connected (see problem 4.11).

Next note that

—io30 e 0
exp ( > ) = ( 0 40/ (4.69)
is an element of SU(2). By explicit computation we find that
—io30 io36
exp > (o - x)exp - =0 - (R(e3,0)x) 4.70)

where R(e3, 0) is the rotation by 6 around the e3 axis (2.38), and so

R <exp <_i(2’39>> = R(e3.0) 4.71)

Rotations about the other axes are generated similarly. Since rotations about the three
axes generate SO(3), the homomorphism is onto.

To show that the homomorphism is two-to-one it suffices to check that R(A) = I
implies A = %I which we omit. O

Problem4.11  Show that every element of SU(2) can be written in the form

_( « B
A_<_/§ &) 4.72)

2 Essentially we are defining R(A) as the adjoint representation of SU(2).
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for complex «, B satisfying la|? + |B|> = 1. Thus SU(2) can be identified with
the three-sphere S* and hence is simply connected.

4.6.3 Spin1/2 particles

Now we discuss quantum mechanics for a spin 1/2 particle. The Hilbert space is
H = L*(R3?,C?) and the representation of SU(2) is

(UA)() = AP (RA) ) A eSUQ2) (4.73)

Our definition of angular momentum should now be modified. The third component
is the generator of rotations around the third axis and is now given by

d —io36 _
(3y)(x) = i@ [eXp< 23 )1#(1?(63,9) 1X)] (4.74)
0=0
This is computed as
Ji=1Ls+ %3 (4.75)

Here L3 is the “orbital” angular momentum computed in (3.27). To this is added
an intrinsic angular momentum o3 /2 called spin. The spin operator has eigenvalues
+1/2 hence the term “spin 1/2.” Other components are treated similarly. Spin has no
classical analog.
A spin 1/2 particle has a modified Hamiltonian in the presence of electric and
magnetic fields with potentials (&, A). This is the Pauli Hamiltonian
1 . e \2 e [0
H=— (—zV - -A) Fed — — (— -B) (4.76)
2m c me \2
where B = V x A is the magnetic field. This arises naturally as an approximation to
a relativistic Dirac Hamiltonian.

Problem 4.12  Suppose that the magnetic field B is constant with A = (B x x)/2.
Show that for e/c small

1 e \2 —A e
— (=iV—-A) =——-_—"—(-B 2/c? 4.
2m< ! c ) 2m 2mc( )+ 0/ @.77)

This problem shows that in the Pauli Hamiltonian the spin angular momentum
o /2 couples to a magnetic field in the same way as the orbital angular momentum L,
except for a factor of 2 known as the “gyromagnetic ratio.”

Notes on chapter 4: See Reed and Simon (1980), Reed and Simon (1975),
Reed and Simon (1979), Reed and Simon (1978), and Cycon et al. (1987) for much
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more about self-adjointness, spectra, and scattering. For spin and representations of
SU(2), see Miller (1972). Besides potentials that are functions one can also study
delta function potentials, see Albeverio ef al. (1988).

The expression —iV — ec™ 1A in (4.23) or (4.76) can be interpreted as a covariant
derivative on a complex line bundle. See section 7.4
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5.1.1 Afirstlook

Suppose we have two (spinless) particles. As explained in example 2.3 the classical
Hamiltonian for the system might have the form
2 2
p p
H(p1,p2,x1,%0) = 5= + 52 4+ V(x1 —x2) (5.1)
2m;p  2mp
Here p; € R3,x; € R? are the momentum and position of the ith particle, m; is
the mass of the ith particle and V is a potential giving the interaction between them.
Following our canonical quantization procedure we replace p1, p2, X1, x2 by operators
D1. P2, X1, X satisfying the canonical commutation relations. We take p; = —iV,; and
% = [x;] acting in the Hilbert space H = L*(R? x R3) = L*(R®). With this choice
the quantum Hamiltonian becomes
—Ap —Ay

H=—+ — 4V —x) 5.2)
2m 2my

where A; is the Laplacian in x;. If V = 0, then the Hamiltonian is

Hy = 21, A2 (53)
0= 2m 2m> '

This can be defined as a self-adjoint operator with the Fourier transform on R® by

2 2
Ho=r"' |2+ B2\ (5.4)
2mp  2mo

where the multiplication operator has the natural domain.

Problem5.1 If V € L>(R?), show that H = Hy + V is self-adjoint on D(Hy).
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5.1.2 Generalization

Now we give a more general treatment. Suppose we have two particles: the first with
Hilbert space H and time evolution U;(f) = exp(—iH;¢) and the second with Hilbert
space H» and time evolution U;(f) = exp(—iH>t). The Hilbert spaces may allow spin
or other internal degrees of freedom like charge. To describe the two particle system,
the prescription is that the Hilbert space is the tensor product

H=H; ®H> (5.5)

(See appendix B for the definition of tensor product.) If the particles do not interact,
then they should evolve in time just as they would by themselves, that is

U = Ui() ® U2(1) (5.6)

This is a strongly continuous unitary group and so by Stone’s theorem it has a self-
adjoint generator U(t) = exp(—iHr). We compute HV = i d/dt{[U(1)¥];—o when it
exists. For example if v € D(H1) and ¢ € D(H»)

HW ® ¢) = (H1y ® ¢) + (¥ ® Ha¢p) (5.7

More generally let D(H) ® D(H3) be the algebraic tensor product of D(H{) and
D(H>), that is finite linear combinations of ¥ ® ¢ as above. On this dense domain
we have

H=H D)+ (®H>) (5.8)

Let us see how this reproduces the earlier treatment. Suppose we have two free
spinless particles so that 7; = L3(R3) and H; = —A /2m;. In this case we have a
natural identification

Hi Q@ Ho = LX(RY) ® L*(R?) <= L*(R%) (5.9)

The identification is given by a unitary operator which sends the vector ¥ ® ¢ €
L2(R3) ® L*(R3) to the function ¥ ® ¢ € L*(R®) defined by

(V ®@ @)(x1,x2) = Y (x1)p(x2) (5.10)

(See appendix B for details.) Under this identification we have

—A —A
H®I= 2—®I = —

mi 2m

—A — Ao
IQH = [IQ — | &= ——
2my 2my

.11
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Thus the Hamiltonian H = H; ® I + I ® H, is identified with the Hamiltonian
Hy=—A1/2my — Ay /2my on Lz(RG) as defined earlier.

5.1.3 Center of mass coordinates

How can we incorporate potentials into this tensor product structure? We give one
answer now and another answer later in section 5.4.2. Working on L*(R®) we make

a change of coordinates
mixy + mpx
x=TRR L —x (5.12)
my + mp
Then X represents the center of mass of the system and x is the relative displacement
of the particles. If M = m| + my is the total mass, then the inverse is

ny n
x1 =X+ ﬁx xp=X— ﬁx (5.13)
The coordinate change is implemented by the operator
ny ny
VX0 = v (X + e X = o) (5.14)

The operator V is unitary on L?(R®) since the Jacobian determinant for the
transformation has absolute value one.
If H is the full two particle Hamiltonian (5.2), we find in the new coordinates

H = VHV™' = Hup + Hyel (5.15)
where on W(X, x) € L*(R%)
—Ax
Hcm = M
ZA (5.16)
Hyy = — + V(x)
2p
and where
mpny
h=—7 - (5.17)
my + mp

is called the reduced mass.
Now under the correspondence L*(R%) < L*(R?)® L*(R?) with the identification
XY (x) < ¢ ® Y we find as before

e = exp(—iHmt) ® exp(—iHeit)

(5.18)
H =Hem @D+ (I Q Hpy)

Thus the center of mass and a fictitious relative particle evolve in time independently
of each other. The motion of the center of mass is free. The motion of the relative
particle is the same as that of a single particle in a potential which we have studied
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at length in the previous chapter. The only change is that we have the relative mass
W instead of the actual mass. If my is much larger than my, then u ~ mj. This is
the case for the hydrogen atom where the mass of the proton is much larger than the
mass of the electron.

Problem5.2  Verify (5.15).

5.2 Identical particles
I

Until now we have been implicitly assuming that our two particles are distinguishable
in the sense that they have a different mass or spin or charge. But suppose that this is
not the case, for example suppose we have two electrons. Empirically there is no way
to tell which is which. This statement is true in the strong sense that there is no way
to label the particles and follow their individual evolution through the course of an
experiment. This seems to be a deep fact and not just a reflection of our limited skill
at experiments. Then describing the two particle system by a Hilbert space H ® H,
which effectively labels the particles, would be a substantial over-description. Indeed
nature does not choose this Hilbert space, but rather a subspace which is invariant
under permutation of the labels.
We define a permutation operator P on H ® H by

P @ ¥r2) = Yo @ Yy (5.19)

This satisfies P> = I and P* = P. We restrict to the subspace which is invariant
under P. The orthogonal projection onto this subspace is

+ 1
mh=a+p) (5.20)
since this is a projection and Py = v iff ¥ € Ran I1™. Thus our Hilbert space is
Hy =TT (H®H) (5.21)

and is called the symmetric tensor product. An example of an element of this
space is

1
ntfeyg = S ®g+g®f) (5.22)

Particles for which this is the correct Hilbert space are called bosons. Examples are
pions and photons.

Remarkably this is not the only interesting possibility. Another possibility is that
the state changes sign under the permutation operator P. A change of sign still gives
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the same ray so our description is still invariant under P. The projection onto the
subspace which changes signs under P is

n = %(1 - P) (5.23)

Now the Hilbert space is
Hy =IT"(H®H) (5.24)

and is called the anti-symmetric tensor product. An example of an element of this
space is

1
nfeg = §(f®g—g®f) (5.25)

Particles for which this is the correct Hilbert space are called fermions. Examples are
electrons, protons, and neutrons.

The choice of the symmetric or anti-symmetric tensor product is called the statis-
tics of the particle. It turns out that particles with integer spin are always bosons,
and particles with half-integer spin are always fermions. This fact has an expla-
nation in quantum field theory, but for us it is just an empirical fact. In spite of
this spin-statistics connection we will sometimes find it useful to consider spinless
fermions.

5.3 n-particles

Starting with a Hilbert space for a single particle we want to construct a Hilbert space
for n identical particles. Consider the n-fold tensor product

Hi=H® ---QH (5.26)

We define operators on H,, by

1

N7 @ Qfp) = i D O ® @ faw
i (5.27)

_ 1

7¢I ® ®f) = — 3 sen(fz)y ® -+ @ frim

where the sum is over permutations 7w of (1,...,n) and sgn(m) is the sign of the
permutation.’ One can check that this defines an operator on the dense domain of
finite combinations of vectors fi ® - -+ ® f,. One also checks that (IT*)? = IT*
and (ITF)* = IT*. It follows that ||Hi1ﬂ|| < |||l and hence [T* extends to a

LA permutation 7 is a bijection on (1,..., n). The sign sgn(rr) depends on the number of elementary
exchanges to return (1), ..., m(n) to its original order. It is ££1 depending on whether the number is
even or odd. We have sgn(mw o o) = sgn(m)sgn(o).
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bounded operator on H,, (theorem 1.3). The extensions are projection operators since
the identities hold for the extensions.
The Hilbert space for n identical particles is taken as

HE=TF*H,=TT*(H® - - ®H) (5.28)

with the plus sign for bosons and the minus sign for fermions. Exchanging two
entries in this space has no effect for bosons, and changes the sign for fermions

M e - Qfi® - ®f Q- ®f)

N (5.29)
— 411 (fl®"'®]?®"'®fi®"'®fn)
For fermions this means that if f; = f; for some i # j, then
IHe® - f)=0 (5.30)

This is the Pauli exclusion principle: two identical fermions cannot be in the same
state.

Next we consider a simple dynamics on ’H,jf. In general if U is a unitary operator
on H, then

r,W=U®- -®U (5.31)

defines a unitary operator on H,, which preserves the subspaces Hf. In particular if

e~ is a time evolution on the single particle space 7, and if the particles do not

interact with each other, then
Fn(e—iH[) = e—th ® . ® e—iH[ (532)

is the time evolution on ;. This is a one-parameter unitary group and so has a
self-adjoint generator H, such that

et = 1, (¢7H (5.33)
On D(H) ® - - - ® D(H) we compute by taking derivatives

Hy=dl,H)=H® - @I+ - +1® - ®H (5.34)

Example 5.1 Atoms An atom with atomic number N is described by N-electrons
each moving under the influence of a central potential created by an atomic
nucleus of charge N
—e’N
|x]

V(x) = (5.35)

The single particle Hamiltonian is H = (—=A/2m) + V on H = L2(R?) as in
example 4.3. (Or we could take the Pauli Hamiltonian (4.76) on H = L*(R3,C?).)
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Since electrons are fermions, the multiparticle Hamiltonian is then Hy = dI'n(H)
on H,, as above.

Now H has the spectrum of the hydrogen atom but with ¢> replaced by ¢?N.
Thus it has eigenfunctions {¢;} with eigenvalues {e;} labeled so that e < ey <

e3 < ....The multiparticle Hamiltonian Hy has eigenfunctions
¢a1 ..... oy — Hi(‘ﬁoq QX ¢a,,) (536)
with eigenvalues
N
Copoay = ) €y (5.37)
i=1
Here o1, ..., ap is a sequence of positive integers. However because of the Pauli

exclusion principle they must be distinct integers. Thus the lowest energy states,
physically the stable states, will be states like ¢ 2, . The electrons fill the lowest
energy levels (“shells™).

This is the starting point for chemistry. Our model of an atom still needs
refinement since we have neglected a number of additional effects, starting with
the interaction between the electrons themselves.

Example5.2 Interacting particles Consider the case of N spinless bosons or
fermions interacting only with each other. The single particle Hilbert space is
H = L*(R?) with Hamiltonian Hy = —A /2m. The N-particle Hilbert space is
Hff, and the free Hamiltonian is Hoy = dI'n(Hp). However Hff] is isomorphic
to Li(RW ) the symmetric or anti-symmetric subspace of L>(R3V). Under this
isomorphism we have

N A;

Hon = —_— (5.38)

— 2m

i=1
If v is the potential between two particles with v(x) = v(—x), then the total
potential is Vjy defined by

VNG L) = Y ol — X)) (5.39)

1<i<j<N
This acts on in (R3N) and the total Hamiltonian on this space is
Hy = Hon + VN (5.40)

As in problem 5.1 we can show that this is self-adjoint on D(Ho n).

Problem 5.3 1In the previous example define representations of the translation
and rotation groups. Find the total momentum and angular momentum. Are they
conserved? (This is an extension of example 3.2.)
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Problem 5.4 From the definition (5.27) check that IT* is well-defined, that
(IT*)? = [+ and ([T*)* = 1%, and deduce that |TI=y || < |||

5.4 Fockspace

5.4.1 Definitions

In non-relativistic quantum mechanics, for a closed system, the number of particles
is fixed. Nevertheless it is convenient to introduce a formalism in which there are an
indefinite number of particles. There are several reasons for this:

1. The formalism for an indefinite number of particles has some elegant features
which can be used even when the particle number is fixed.

2. The number of particles may undergo statistical fluctuations due to contact with
an external system (more about this later).

3. It makes contact with relativistic quantum systems where the number of particles
in a closed system can actually change.

Start with a single particle Hilbert space H, and define the n-particle Hilbert space
H,jf to be the symmetric or anti-symmetric n-fold tensor product as in the last section.
Then the (boson/fermion) Fock space over H is the infinite direct sum of the H,ﬂf. Itis

(0¢]
FEH) = P H; (5.41)
n=0
where H(ﬂf = C corresponds to no particles. The elements are sequences ¥ =

(Yo, V1,2, ... ) with ¥, € HE such that

o0
I =" ll® < oo (5.42)
n=0
This is a Hilbert space with inner product
[e¢)
W0 =D (Y xn) (5.43)
n=0
The no-particle state
Qo = (1,0,0,...) (5.44)

is also called the vacuum.
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We describe some operators on this space:

(1) The number operator N is defined by

NWo, ¥1,¥2,¥3,...) = (0,91, 292,3¢3,...) (5.45)
or equivalently
(NY)n = nn (5.46)
It is self-adjoint on
DIN) = {y : Y n?[[Yall* < o0} (5.47)
n
It describes the number of particles in the state. For ||| = 1 the quantity ||, ]|* is

the probability of finding n-particles in the state.

(2) In general if U is a unitary operator on H, then I'(U) is the unitary operator on
F*E(H) defined by

rw) =@ r.u (5.48)
n=0

—iHqt

where [, is defined in (5.31). In particular if e is a time evolution on H, then

we define a time evolution on F*(H) as

(e ity = @ (e H10 (5.49)
n=0

This is a strongly continuous one-parameter unitary group and so has a self-adjoint
generator H such that e"# = I"(e~H1"). On a domain with a finite number of parti-
cles and with wave functions in the algebraic tensor product D(H) ® - - - ® D(H) we

find that
o0
H=dI'(H)) = @Hn (5.50)
n=0

where H, = dI',(H;) is defined in (5.34). This turns out to be a domain of
essential self-adjointness and so determines the operator completely. Note also that
N =drQ)

(3) We introduce creation and annihilation operators, at first without statistics on
H, = H®---QH.For h € H define «*(h) : H, — Hp4+1 and a(h) : H, — Hp—1 by
CMAH R @f)=vVn+1h@fi® - ®fy

(5.51)
aW)(fi ® - Qf)=/nhf) L@ ®fr
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One checks that these formulas do indeed define operators. Furthermore the opera-
tors are bounded with

le* (W < vn+ 1A la() | < /nllhl (5.52)

They are adjoint to each other because for v € H, and x € H,4+1 we have
(a*(h)yr, x) = (¥, a(h)x). Note also that o*(h) is linear in & while «(h) is anti-linear
in h.
Next we define a*(h) : H,T — Hiﬂrl and a(h) : H,jf — Hil by
* + ok
a*(h) =IT7a™(h) (5.53)
a(h) = TFa(h)

These are still bounded operators with the same bound and they are still adjoint to
each other. We need a more explicit expression for these operators

Lemma 5.1
FMWIER @ ®f)
=Vn+ 1L (h®fi® - ®fy)
aWTER @ - @ 1) (5.54)

1 <& . N
=7 S EYTHIT (i@ Rfi® - ®f)

J=1
where the “hat” on f; means omit this entry.
Proof We give the proof for fermions; bosons are easier. With & = f we have

PO, (i @ -+ @ f)

Vn+1
= , ngn(ﬂ)fo Rfr1) ® @ fr(n)
n. T (5.55)
Vn+1
= , Z sgn(T ) 0) @ fr (1) ® -+ @ frr(y
n!
w’:’(0)=0
In the second expression we have replaced the sum over permutations 7 on (1,...,n)
with a sum over permutations 7z’ on (0, 1,...,n) that leave O fixed. Now to get

a*(fo)I1, (fi ® - - - ® fn) we apply I . However

0, (sgn(t") frr) @ frr(y @ -+ @ frrin) = T, (o ®Fi ® -+~ ®f)  (5.56)

and
1
= /Z 1=1 (5.57)

so we have the first result.
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For the second result we compute

(o)L, (i Q@ - ®fn)

- “r{_'ﬁ Z sgn(T)fo. fr()fr@) ® -+ @ fr(n)
v +1
= 2V ) ) sene o ® - @ ot (5.58)
J I

1 . R
v Y T G I (B ® i @)
j

Here in the second step we have replaced the sum over permutations m of

(1,...,n) by a sum over j = m(1) and a sum over bijections o from (2,...,n) to
(1,... ,}, ...,n). We have also used sgn(mw) = (—1)/+1sgn(a) where sgn(o) is the
number of elementary exchanges to return o (2), . . ., o(n) to its natural order. (It takes

Jj— 1 exchanges to move 7 (1) = j back to the first position, and (— 1y-! = (=1y*h)
Thus «(h) already maps into the symmetrized subspace, hence a(h) = «(h), and
hence the result. ]

The operators a*(h),a(h) on H,jf induce operators on the boson/fermion Fock
spaces F(H) by letting them act on each component. We make the convention that
a(h) = 0 on Hyp. As a dense domain for these operators we take the finite particle
vectors

Do = {y € FE(H) : AN so ¥, = 0 for n > N} (5.59)

The operators preserve this domain. From (5.54) we have

1
MER @ ®fy) = NG a*(fi) - a* (f) (5.60)

Thus we can create a dense set of states by acting on the vacuum with creation
operators and taking the linear span.

Lemma 5.2 With [A,Bly = AB =+ BA the following commutation or anti-
commutation relations hold on F*(H)

la(g), a(h)]5 = 0
[a*(g),a*(M)]+ =0 (5.61)
la(g),a* (W] = (g, h)

Proof To check the last we compute using (5.54)

a(@a*(WITER ® -+ @ f)

= (g NIEA ® - ®f)
(5.62)

+Y EYEHIEMRA®  Rf® - ®f)
J=1
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On the other hand
a* (Wa@T (i ® - ® f)

Z , (5.63)
= EYN@AHTFhRAR - ®fi® - ®f) '
j=1
Comparing these gives the result [a(g), a*(h)]x = (g, h). ]

We still have that a*(h) is linear in A, that a(h) is anti-linear in 4, and that for
V., x € Do

(@MY, x) = (W, alhx) (5.64)

This says that (a(h))* D a*(h) and (a*(h))* D a(h). Since the adjoints are densely
defined, the operators a(h), a*(h) have closures which we denote by the same symbol.
To characterize the closure we have the following:

Lemma5.3
1. For bosons D(«/ﬁ) C D(a*(h)), also for a(h), and for r € D(\/N)
la* )yl < IAlIVN + 19|l latyw || < Ikl IVNy | (5.65)

2. For fermions the closed operators are bounded and satisfy

la*myll < IRl la(myr |l < ANl (5.66)

Proof

1. (Bosons) The inequality holds for ¥ € Dy by (5.52). But Dy is a core for VN,
which means that given ¢ € D(«/N) there are sequences Y € Dy such that
Vi — ¥, VNyx — /Ny as k — oo. (For example let ¥ be the truncation of
Y at the kth entry.) Then we have

lla* (N5 — Yl < IAllIVN + 15 — Yl — 0 (5.67)

as j,k — o0o. Thus limy_ o a*(h)yy exists and since a*(h) is closed it follows that
W € D(a*(h)) and that a*(h)y = limy_, o0 a*(h)Yx. Hence D(v/'N) C D(a*(h)).
Taking the limit in [|a*(W) Y| < |AIv/N + 1y we get the inequality for 1.

2. (Fermions) The anti-commutation relation a*(h)a(h) + a(h)a*(h) = ||| implies
for ¥ € Dy

lamy1? + la* Wy l* = Al 1y (5.68)

Hence the inequalities hold for i € Dy and it follows that closures are bounded
operators satisfying the same bound.

O

Problem5.5 Verify the claims made for a*(h), a(h).
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Problem5.6 If U is unitary on H, show that
C(U)a(h)T (U™ = a(Uh
(D)a(h)I'( 1) a(Uh) (5.69)
C(U)a* (WU = a*(Uh)

Problem5.7 Let T be a contraction on 7, thatis ||7|| < 1. Show that I'(T) defines
a contraction on F+(H). Show that I'(T) may not be bounded if || T > 1.

5.4.2 Fock space over [2

We now specialize to the case where the one-particle Hilbert space is H = L*(R3).
In this case Hf is identified with the symmetric or anti-symmetric subspace in (R3™)
of L2(R3").

Lemma 5.4 If ¢ € HF is identified with € LIL(R®), then a(hyy € HE | is
identified with a(h)yr € Li(Rw’_l)) given by

(a(MY)(xts ..o Xn—1) = ﬁf@!ﬂ(x,xu---,xn—l)dx (5.70)

Proof We give the proof for fermions. Consider ¢ = I17(f; ® - - - ® f,,) which is
identified with

_ ! 5.71
YO, ) = — D SgnOT )1 - Fr () (5.71)

e

Then a(h)y is identified with
(@MY@, - - Xn)
[ , .
= —= > VY rHI, (i@ f- ®fl(x2, .., )
\/ﬁ = ] 1

1 < . 1
= ﬁ ]ZI:(_I)/JFl(h’f]‘) n—1)! ;sgn(o')fd(Z)(XZ) e 'fﬂ(n)(xn) (5.72)

— |1
=n / h(xr) [; > sgn(m)frayxn) - -.fm)(xn)} dxy

e

= ﬁfmw(xl,...,xn)dxl

The fourth line follows as in (5.58). ]
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Ify e in(R3”) is a continuous function, then in a(h)yr we can take & to be a
d-function and define an operator a(x) by

(@@)Y)x1, ooy Xn—1) = /NP X1, X 1) (5.73)

We recover the original operator by a(h)y = f h(x)(a(x)¥)dx. We also get an
operator a(x) on the Fock space by (a(x)¥),, = a(x)¥,+1. Then

(@)Y )nx1, ... x0) = V41 Y1 (xr, .., x,)dx (5.74)

As a suitable dense domain we might take finite particle vectors with wave functions
in Schwartz space

Ds ={¢ € Dy : Y, € SR*)} (5.75)

The operator a(x) has no adjoint; the formal adjoint creates delta functions which
are not in L?. Nevertheless we can define a*(x) as the bilinear form on Dg x Dg,
anti-linear in the first factor, which sends v, ¢ to

(., a*(0¢) = (@)Y, ¢) (5.76)

With this interpretation we have an elegant representation of some of our basic
operators:

Lemma5.5 In FX(H), H = L>(R>), as bilinear forms on Dg x Dgs:
1. The number operator satisfies
N = / a*(x)a(x)dx (5.77)
2. The free Hamiltonian Hy = dT'(— A /2m) satisfies
" —A
Hy= [ a(x)| — | alx)dx (5.78)
2m

3. Let v be an interparticle potential, for n > 2 let V,, be the associated n-particle
potential defined in (5.39), and let V = &,V be the Fock space potential. Then

V= % / a*(x)a* (y)v(x — y)a(x)a(y)dxdx (5.79)

Proof Letvr,¢ € Ds. Then we have

W.( / a*(Na(x)dx)¢) = / (a(x)yr, a(x)p)dx

=Y [t aopnax
= (5.80)

o
= Z(n + 1) [ Yt 1 (6 X1 - v o X)) P 1 (X, X1 - - oy Xp)dxdxy - . . dxy,

n=0

= (¥,N¢)
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This proves the identity for N, and the identity for Hp is similar. For the last
we have

1
/ 3 @@, aat)p) vix — yddy

oo
(n+D(n+2)
= Z f / wn+2(x9y,xl’ oo 9xn)¢n+2(xvy,xl7- . ~,-xn)
n=0

v(x —y) dxdy dx ...dxy

“nn—-1) f—u
= Z / Yn(X1y .o X)X, . .o, Xp) V(X — Xx2) dxy ... dx, (5.81)

2
n=2

= Z Yn(Xt, .o X)) @n(x, .o X)) u(x; —Xj) dxy ...dx,

n=2 1<i<j<n

= (U Vushn)

n=2
=W.Vo)
]

Notes on chapter 5: For more on multiparticle quantum mechanics see
Reed and Simon (1979), Reed and Simon (1978), or Gustafson and Sigal (2003).
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6.1 Mixed states

78

Until now the states of a physical system have been described by unit vectors (actu-
ally rays) in a Hilbert space. These are states which are prepared so that we have
as much knowledge about them as possible. They are also called pure states. But
we also want to consider states whose preparation is incomplete. We only know the
probability that it is in any of various pure states. These are known as mixed states.
The mathematical definition is that a mixed state is a positive trace class operator Q
on the Hilbert space H with Tr(Q) = 1. The operator Q is called a density operator.
If {¢,} is an orthonormal basis of eigenvectors for Q with eigenvalues u, > 0, then

QY = 3"°° | 1nu(dp. ) which we write as a

Q=" tnbu(¢n.") 6.1)

n=1

The condition 7r(Q) = 1 means that
n

If a property of a physical measurement is described by a projection operator P,
then the probability of a positive result in state Q is taken to be

o0
Tr(PQ) = ) _ ttn(¢n, Pn) (6.3)
n=1
Taking P = Py = ¥(¥,-), the projection onto v, the probability of finding the
system in the pure state ¥ is

o0
Tr(Py Q) = Y tal(¥r, é)I? (6.4)
n=1
In particular p,, is the probability of finding the system in the state ¢,,.
Observable quantities are still described by self-adjoint operators A. If E(B) are
the spectral projections for A, then the probability that a measurement of A in the
state Q gives a value in B is
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Tr(E(B)Q) = Z Hn(@n> E(B)n) (6.5)

n=1

The expected value of repeated measurements of A in the state Q is

TrAQ) = ) 1tn($n Adn) (6.6)

n=1
if it exists. It exists if A is bounded, and it may or may not exist for unbounded
operators.
Note that we can identify pure states with mixed states of rank one via the map
Y — Oy = ¥ (¥, ). This is defined on rays: ¥ and ¢4 give the same mixed state.
The probabilities 7r(PQy ) = (¥, Pyr) are the same as before.

6.2 Equilibrium states
- |

We describe some mixed states appropriate for describing large numbers of parti-
cles called equilibrium states. In this section we give a general discussion of both
the classical and quantum versions, but in subsequent sections we only consider the
quantum version in detail. In the classical versions the states are probability mea-
sures on phase space — the measure of a set is the probability of finding the system in
that set. In the quantum versions the states are density operators as described above —
we assign a probability to finding the system in various pure states.

For this discussion we suppose that we are in a bounded open region A C R3 or
possibly the torus A = R3/L Z? of width L. The important point is that A have finite
volume.

6.2.1 Microcanonical ensemble

The first case is a system which is isolated from its surroundings and has a fixed
energy E and a fixed number of particles N. With no further knowledge of the system
an appropriate state is one which assigns equal weight to all states with this energy
and particle number. States which enter into such a description with fixed £ and N
are said to constitute a microcanonical ensemble. One can create such states in either
a classical or a quantum version. However we do not go into details.

6.2.2 Canonical ensemble

In the second case the system still has a fixed number of particles N, but now the
energy E is not fixed due to interactions with its surroundings. The surroundings
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are taken to be a heat bath at a temperature 7. The temperature is a measure of the
average kinetic energy of particles in the bath. We do not attempt a mathematical
description of the heat bath or of its interaction with the system, but we do make
a hypothesis about the probabilities for states of the system in this circumstance.
The fundamental hypothesis is that the probability of finding the system in a state
with energy E is proportional to e /X" Here k = 1.38 x 107! ergs/°K is a constant
which sets the temperature scale and is known as Boltzmann’s constant. We usually
let 8 = 1/kT and write e £/¥T" = ¢=PE_With probabilities assigned in this fashion
the states are called Gibbs states and are said to constitute a canonical ensemble. We
now spell out the construction in more detail.

In the classical case the phase space is P = AN x R3*N and we have a Hamiltonian
Hpy(x, p) on this space. We define a probability measure on P by

e PHNCD) g (6.7)

1
Z(p)

The normalizing factor is known as the partition function and it is given by

dug(x,p) =

Z(B) = / e PANCD) gy dp (6.8)
This integral is required to converge. A classical observable A is a function on phase
space, hence a random variable, and its expected value is

[ Ax, p)e PANGCD) dxdp
fe_ﬁHN(va)dxdp

<A >g= /A(x,p)du,g(x,p) = (6.9)

In the quantum case there is a single particle space H, for example H = L*(A),
and an N-particle space HE = N*(H ® - - - ® H). The Hamiltonian Hy is required
to be a self-adjoint operator on this space. The basic hypothesis is that the state at
inverse temperature 8 has the density operator

0p = Z(B)~ e PHN (6.10)
where the partition function is now
Z(B) = Tr(e™P1IN) (6.11)

For this to make sense we need e PN (o be trace class. An observable A is a self-
adjoint operator on Hy and the expected value is
Tr(Ae PHNV)

(6.12)

The quantum state is invariant under time evolution in the following sense. If A; =
e/fNt Ae—HNT 5 the time evolution of A in the Heisenberg picture, then

<A >pg=<A >g (6.13)

This follows from the cyclicity of the trace. We say that the state is a stationary state.
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6.2.3 Grand canonical ensemble

In the third case neither E or N is fixed. Instead the system is supposed to be in con-
tact with a heat bath and a particle bath. The basic hypothesis is that the probability
of finding the system in a state with energy E and particle number N is proportional
to exp(—B(E — uN)). Here g is again the inverse temperature, and p is a parameter
called the chemical potential. A particle has energy —u just by its presence in the
system. States weighted in this fashion constitute a grand canonical ensemble.

In the classical case the phase space is the disjoint union of the n-particle phase
spaces = U™ Q,. A measure ug, is defined on by stipulating that its
restriction to £2,, is

diig | Qn=Z(B, 1)~ exp(—B(H(x, p) — wn))dxdp (6.14)

The partition function which gives the overall normalization factor is
oo
Z(B. ) = Z / exp(—B(H(x, p) — pun))dxdp (6.15)
Q
n O n

One can also define expectations of classical observables.

In the quantum case the Hilbert space is taken to be the Fock space F*(H) =
EBnH,jf and the Hamiltonian is H = @,H, where H,, is the n-particle Hamiltonian.
The density operator has the form

Opu = Z(B, )~ e PH=1Y (6.16)
where now N is the number operator. The partition function is
Z(B, ) = Tr(e PV (6.17)

An observable is a self-adjoint operator A on the Fock space and has the expectation

Tr(Ae™PUH—1N))
< A >ﬁ’/‘vE Tr(AQﬂ,/L) = Tr(e_ﬂ(H_“N)) (618)

This is also a stationary state.

6.2.4 General problems

One set of problems is concerned with motivating the above discussion. A great deal
of effort has been expended over the years attempting to derive the various ensembles
from more basic hypotheses, and to study the relation between them. There are many
interesting developments here but it would take us too far afield to explore them. We
just take the ensembles as defined as our starting point.



82

Statistical mechanics

Another class of problems is concerned with picking specific models or classes of
models and studying detailed properties of the states. We do this for a few simple
models working in the grand canonical ensemble. This will just give a taste of what
is a very large subject.

Let us first mention some items of interest for the quantum grand canonical
ensemble. We define a free energy in terms of the partition function by

F(B, ) = —p " log Z(B, ) (6.19)

It turns out this can be interpreted as the amount of energy available to do work. The
pressure is defined as minus the free energy per unit volume and is given by’

p(B. 1) = —IAI'F(B, ) = B AI™ log Z(B, 1) (6.20)
where |A| is the volume of A. The expected number of particles is
<N >p,=Z(B, W)~ ' Tr(N e PH1N)) (6.21)

It can be computed from the partition function by

10
N = ——1logZ(B, 6.22
<N >B.u Bou 0g Z(B, 1) ( )

The density is the expected number of particles divided by the volume

p(B. ) =AI"" <N >p, (6.23)

Recall that the number operator can be expressed as N = f a*(x)a(x)dx. We
could also consider the number of particles in a region B C R3 defined by
Np = fB a*(x)a(x)dx or the kinetic energy in B which would be defined by
/, 5 @ (X)(=A/2m)a(x)dx. Thus if we knew the expectations < a*(x)a(y) >g ., we
could compute expectations of many interesting observables. More generally we
would like to compute correlation functions defined by

< a*(xy)---a*(xpayr) - alyn) >pu (6.24)

These may or may not be well-defined. The situation is improved if we replace a(x)
by the more regular a(f) = f f()a(x)dx, f € S(R3). Then the correlation functions
are

<da*(fi)---a*(fualgr) - a(gn) >pu (6.25)

If it exists, this gives (6.24) a meaning as a distribution. Indeed it is a multilinear
functional on S(R3) and hence by the kernel theorem determines a distribution in
S’(R3). (See appendix C for the basic facts about distributions.)

! The definition says that pressure has dimensions of energy/volume. But since energy has dimensions of
force x distance, pressure has dimensions of force/area as expected.
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All these quantities depend on the volume A, and generally the volume must be
finite in order that they be well-defined. At first this seems to correlate well with
actual physical situations where the volume really is finite. However volumes are
typically very large on an atomic scale, and so it is a good idealization to treat the
system as infinite. If it can be done mathematically, it is worthwhile because then
one avoids uninteresting boundary effects. Furthermore collective phenomena like
phase transitions generally have more dramatic manifestations at infinite volume. In
short it is not enough to study the quantities p(8, u), p(B, n) and correlation func-
tions in a finite volume A, one should also take the limit A — R?, known as the
thermodynamic limit.

6.3 Free boson gas
- |

We consider the case of free bosons in detail. We take A to be the torus A =
R3/L73. Making this choice is the same as taking A to be the cube [—L/2,L/2]?
and imposing periodic boundary conditions. This might not seem like a good start-
ing point for an actual gas. Perhaps a better model would be the cube with some
local boundary conditions. We make the choice anyway with the idea that the infinite
volume limit should be independent of the boundary conditions.

For a single particle the Hilbert space is H = L*(A) and specializing to m = 1/2
the Hamiltonian is —A as for the R? construction. The trigonometric polynomials
are functions in L2(A) of the form

ek 2

G0 =555 ke TZ3 (6.26)

These form a complete orthonormal set in L>(A). This statement is equivalent to the
L2- convergence of Fourier series. Furthermore the ¢ are eigenfunctions of —A

— A¢r = kI ¢x (6.27)

Thus — A is naturally a positive self-adjoint operator by problem 1.13. As in the R?
construction, the k are called momenta.

Now consider n such particles. The Hilbert space for bosons is now H,) =
N7 (H® -+ ® H) and the Hamiltonian is H, = dI',(—A). States ¢, ® -+ ® ¢,
form a basis for H ® - - - ® H and so states

q)kl ----- kn = H+(¢k| ® ttt ® ¢kn) (628)

span ‘H;". Note that @y,
ordering. Different collections give orthogonal states. They are eigenfunctions of H,

k, depends only on the collection {ki, ..., k,}, not on the

.....

and satisfy
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n
H, @y, .. kn=<2|k,~|2> T (6.29)
i=1

We reformulate as follows. First identify H," as a subspace of the Fock space
Ft(H) and write Pk, 4, as a constant times a*(¢x,) . ..a*(¢x,)Q0 (see (5.60)).
Then label these basis vectors by the number of times a particular momentum occurs.

.....

Thus let {n;} be a collection of nonnegative integers indexed by k € (27r/L)Z> such
that ), ny = n. For each such collection define

1
o = —_ * QY 6.30
(i) <1:[ W) ];[a ()" Q0 (6.30)

With this choice of normalization the ®({n;}) form an orthonormal basis for ’H,T
(problem 6.1). We have

Hy®({mi}) = (an|k|2) o ((ni)) (6.31)
k

Finally consider the full Fock space. We drop the restriction ) , ny = n and
instead take infinite sequences {n;} with the condition that n; = 0 except for a finite
number of k. Then the ®({ny}) form an orthonormal basis for the entire Fock space.
Furthermore ®({n;}) is an eigenvector for the full Hamiltonian H with eigenvalue
> nk|k|2. Note also that ®({nt}) is an eigenvector for N with eigenvalue ), ng.

Now we are ready to calculate the partition function in the grand canonical
ensemble. We have for u < 0

Z(B, ) = Tr(e™PH10)

= > (@({m)), e PN ()
{ng}

=D exp <—ﬁ >kl — u))
{ni} k

- 1—[ o~ Bkl =) (6.32)
{me} &

oo
=11> PSR

k n=0
-T1 1
- . 1 — e—BUkP—w)

The infinite product converges since

e~ BUKP =)

1
_— 1) = — ]
2 (1 — =Pk ) Zk: | — epiP—m = (6.33)

k
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From the partition function we compute the pressure (6.20) and the density (6.23)
and find

_ —lp-1 1
p(B.w) = [AITB Zlog<m>

e—BUK*—
— e BUP—p)

(6.34)
p(B, ) =1A]"! Z

These expressions also have a nice infinite volume limit. As L — oo the sum over
k € (27/L)Z3 becomes an integral over k € R3 and we find

_ 31 1
ppo = ny ! [ log(]_eﬂ(lkzm) dk

o BUKP—10)
——dk
1 — e—BUk2—p)

(6.35)
p(B, ) = (2m) 3 /

Returning to finite volume, the correlation functions can also be computed. We
illustrate with the two-point function.

Lemma6.1 Letf,g € C°(A) and let h = —A. Then for p < 0

. o~ Bh—11)
< a (fa@) >pu= <g, (m)f) (6.36)
Remark Explicitly
) e~ PUKP =)
<@ (Na(®) >pu= ) % ( T—epar | R (37
k

where fi = (¢x.f) are the Fourier coefficients for f. The expression (6.36) also holds
in the infinite volume limit, but now defined with the Fourier transform instead of
Fourier series.

Proof Since e PH—1N) = [ (¢=A=1)) we can compute (cf. problem 5.6)

e PHZIN g (fy = g* (e P=10f)e=PH=IN) (6.38)

Using the cyclicity of the trace and then the commutation relations for a,a*, (5.61)
yields

Tr(a*(f)a(g)e PAN)) = Tr(a(g)e PHHN) g* ()
=Tr(a(g)a* (e PU=1Wf)e=PH=1N) (6.39)
=Tr(a* (e PhMf)a(g)e PHHN) 1 Z(B, u)(g, e PE=My)
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Dividing by Z(8, 1) this can be written
<a* (1 — e PP Ma(g) > ,= (g, e PH=1p) (6.40)

Now replacing f by (1 — e P=1)~1¢ gives the result. O

Problem 6.1 Check that | ®({ni})| = 1.

Problem 6.2 Prove that pressure and density in (6.35) really are the infinite
volume limits of the finite volume expressions (6.34) as claimed.

Problem6.3 Take A = [0,L]Y. OnH = L*(A) define — A as a self-adjoint opera-
tor by taking eigenfunctions with Dirichlet boundary conditions, that is vanishing
on the boundary. Compute the grand canonical partition function in this case.

Problem 6.4 Compute the n-point correlation functions (6.25) for the free boson
gas by establishing first that
< a*(fi)---a*(fa(gr) - - - a(gn) > B

- . . . . (6.41)
=" <a"(falg) >pu< a*(f2) - a*(fa(gr) - a(gy) -~ algn) >p.p

j=1

where the factor a(g;) is omitted in the last expectation. Then show that

<a*(fi)---a*(fa@) - algn) >pu= Y _ [ | < @ (FIa(gz@) >pu (6:42)

T =1

where the sum is over permutations 7 of (1,...,n).

6.4 Free fermion gas

We consider noninteracting fermions. For simplicity we neglect spin and take the
one particle space to be H = L*(A). The treatment is the same as for bosons except
that the full Hilbert space is now the anti-symmetric Fock space F~(H). We still
have the basis vectors ®({n}) given by (6.30) but now the Pauli exclusion principle
means that each n; can only take the values zero and one.

The partition function in the grand canonical ensemble is now computed just as
in (6.32)
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Z(p, w) = Tr(e”PH=)

_ZH — B[k~ )

{ne} k

= H Z o~ Bk =) (6.43)

k n=0,1
_ H (1 n e—ﬂ(lk\z—u)>
k

This converges for all 8 > 0 and all « € R since

Z e BUP =) _ oo (6.44)
k

For the pressure and the density we compute

p(B. ) = A1 Zlog(l 4 o BUkE=w)

k
1 o BUkE—p) (6.43)
Al-
p(B. 1) = A Z s
One can also compute the two-point function as for bosons and we find withh = —A
. e Blh—11)
<a (Pa@ >pu= (8, (m)f) (6.46)

Note that the only difference from bosons is the plus sign in the denominator.

Next we investigate the zero temperature limit. Let N be the number of particles
with momentum k defined by Ny ®({ng}) = np®({ng}). Then Ny = a*(Pr)a(¢r) and
from (6.46) the expectation is

o BUKP=10)
N, = 6.47
B () 47
For i > 0 we have the zero temperature limit
. L kP < p
lim < Ny >g,= (6.48)
B—o0 0 |k?2>pu

This is saying that at zero temperature all states with energy |k|> < w are occupied
while states with energy |k|> > ju are empty. This corresponds to the lowest energy
state and is referred to as the Fermi sea.

The situation for bosons is quite different as there is no exclusion principle. A
more extensive analysis shows that at fixed density below a certain critical temper-
ature a substantial fraction of particles occupy the lowest energy state k = 0, and
at zero temperature they all occupy it. This phenomenon is known as Bose—Einstein
condensation.
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6.5 Interacting bosons

Now we consider the statistical mechanics of interacting bosons on the three-
dimensional torus A = R3 /L 73 there is a similar treatment for fermions. The
n-particle Hilbert space is now Li(A"), the symmetric subspace of L?>(A™"). The
n-particle Hamiltonian is

n —Al
H, = H Vi = - v(x; — Xj
» = Hon + ; o+ 1<§'<n (xi — %)) (6.49)
where the interparticle potential v is taken to be in L>(A). Then one can show that
H, is self-adjoint on the domain of Hy. (See example 5.2 and problem 5.1 for the R3
result.)
We assume that the following stability condition is satisfied: there is a constant B
such that for all n and all points x; € A

> vxi—x)=—Bn (6.50)

1<i<j<n
This is a fairly restrictive condition. It is trivially satisfied if v > 0 and obviously

false if v(0) < O (take all {x;} coincident and »n large). Physically it means that
particles have a hard core repelling other particles.

Problem 6.5 v is said to be of positive type if the Fourier series has nonnegative
coefficients. Show that the stability condition is satisfied if v is of positive type

For a stable interaction we have?
0 < Hyp—(B+un < Hy —un (6.51)

where the first inequality holds if @ < —B. Under the same assumption the full
Hamiltonian on the Fock space satisfies

0 < Hy—(B+mwN < H—puN (6.52)

Our modest goal is to prove the existence of the grand canonical ensemble on the
torus, that is we want to show that exp(—B(H — uN)) is trace class. First we have:

Lemma 6.2 For u < —B the Hamiltonian H — uN has pure point spectrum with
finite multiplicity and no accumulation points.

Proof LetS=H-—puN+landT = Hy—(u+B)N+1so1 < T < S. We have seen in
our treatment of the free boson gas that 7" has point spectrum with finite multiplicity
and no accumulation points. Hence 7~!/2 is compact (see problem 1.17).

2 T < Smeans D(S) C D(T) and (, TY) < (., S¥) for ¥ € D(S).
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Now D(T) = D(S) is contained in both D(T'/?) and D(S'/?) by the spectral
theorem. The inequality 7 < S implies that for ¢ € D(S)

T2y < 152y | (6.53)

But D(S) is a core for D(S'/?) again by the spectral theorem. It follows that D(S'/?)

D(T'/?) and that the inequality (6.53) holds for ¥ € D(S'/?). (We made a similar

argument in lemma 5.3.) Replacing ¢ by S~1/2

a bounded operator with | T'/25~1/2| < 1.
Now write

x for any x we see that T'/2571/2 is

V2 = U2 pl/2g-12) (6.54)

This exhibits S~!/? as the product of a compact operator and a bounded opera-
tor. Hence it is compact and has point spectrum with finite multiplicity and no
accumulation points except zero. The result for H—uN = (S~'/2)2—1 follows. [

We also need:

Theorem 6.1 (min—max theorem) Let T be a self-adjoint operator on a Hilbert space
with pure point spectrum

MSA <A <... (6.55)
repeated by multiplicity. Then
Ay = sup inf W, Ty) (6.56)
E1yensdnat | VEELEn1 1H IV [1=1

where the infimum is over ¥ € D(T).

The theorem is useful because it gives control over the eigenvalues without know-
ing the eigenvectors. We do not give the full proof.” But observe that for n = 0
it says

ro = ”ﬁ;(w, Ty) (6.57)

This is true since if ¢, are a basis of eigenvectors with T¢, = X*,¢,, then for any
Y e D(T) with ||[¥] = 1

W TY) =D 2l g)l> = D Aol (W, 0> = roll¥II* = 2o (6.58)

On the other hand the lower bound A is actually attained at Y = ¢y.

Corollary 6.1  Let T, S satisfy the hypotheses of the theorem and suppose T < S. Then
the eigenvalues An(T), 1n(S) satisfy An(T) < An(S).

3 For the proof see Reed and Simon (1978: 76).
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Proof We have

inf W, Ty) < inf (. S5¢) (6.59)
Velér.. gy lI=1 VElELbn 1LY =1

Now take the supremum over &1,...,&,—1. O]
Now we have the main result:

Theorem6.2  If the two particle potential is stable with constant B and if the chemical
potential satisfies i < —B, then the grand canonical partition function Z(8, ) =
Tr(exp(—B(H — uN))) exists.

Proof Let A,(H — uN) be the eigenvalues of H — N repeated by multiplicity. By
(6.52) and the corollary we have

An(H — uN) > Ap(Ho — (0 + B)N) (6.60)
Then
Tr(gﬁ(HfuN)) = 3 e Pt
n
S Z eiﬂ)“n(Hof(M‘l’B)N) (6.61)
n
— Tr(e*ﬂ(HO*(M+B)N))
The last expression is finite by our results on the free boson gas. O

6.6 Further developments

Suppose we are working in the grand canonical ensemble as defined in (6.18). Let
K = H — N be the Hamiltonian, let A, B be observables, and let

o/(B) = /XK' Be~ K (6.62)

be the time evolution of B. Then we have

Tr(AeiKtBe—(ﬁ+it)K)
Tr(e—PK)

<Aa/B) >pgu= (6.63)

Assuming that K > 0 the function ¢X is the boundary value on the real axis of an
analytic function from the upper half plane to the bounded operators on Fock space.
Then (6.63) is the boundary value on the real axis of a function analytic in the strip

0 < Imt < B. But by the cyclicity of the trace we also have

Tr(Ae'K Be=(BFDKY — Tr(Be=(BHIDK g (iKT) (6.64)
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Taking the boundary value at r = i we obtain the identity
<Aa/B) >pu li=ip =< BA >p, (6.65)

This is known as the KMS condition.* It turns out that the KMS condition completely
characterizes the expectation < --- >g ,, and so gives an alternate definition of
equilibrium states. An advantage is that it also makes sense in infinite volume.

Let us discuss further the general problem of infinite volume. We would like to
have a full quantum theory in infinite volume, rather than just certain special limits
of finite volume quantities. This turns out to be possible and we sketch the idea. One
must modify the basic quantum structure founded on a Hilbert space. Instead the
basic object is taken to be a C* algebra’ A whose self-adjoint elements correspond
to observables. For example it might be the C* algebra generated by creation and
annihilation operators on Fock space. A state is now specified by giving the expec-
tations of all the elements of .A. More precisely a state  is a continuous positive®
linear functional on A with norm one. Finite volume Gibbs states are states in this
sense and so are infinite volume limits of Gibbs states. Time evolution is given by a
family «; of automorphisms of A such that &g = id and o0y = ;. For example
a; could be generated by a Hamiltonian as in (6.62). Finally o is defined to be an
equilibrium state at inverse temperature 8 if the B-KMS condition is satisfied, that
is if for A, B € A the function 1 — (A o(B)) is the boundary value of a function
analytic in 0 < Im ¢ < f such that

(A oy(B))|i=ip = w(BA) (6.66)
These ideas can be carried a great deal further with beneficial results.

Notes on chapter 6: For the basic structure of statistical mechanics see Ruelle
(1969). For quantum statistical mechanics as we have presented it see Bratteli and
Robinson (1981); for the algebraic approach consult Bratteli and Robinson (1981)
and Haag (1992); for stability bounds with realistic potentials see Lieb and Seiringer
(2010).

For physics books on statistical mechanics, try Landau and Lifschitz (1969) or
Huang (2009).

There are important topics in statistical mechanics which have not been discussed
at all. These include phase transitions, critical phenomena, and nonequilibrium
statistical mechanics.

4 KMS stands for Kubo—Martin—Schwinger.

SAcCH algebra is a Banach x-algebra with [|[A*A|| = ||AH2. Think of a closed subalgebra of the algebra
of bounded operators on a Hilbert space.

6 Positive means w(A*A) > 0 forall A € A.
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7.1 Principles of relativity
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Einstein arrived at the principles of relativity by thinking about the relationship
between measurements made by observers in uniform motion relative to each other.
We depart from this historical path and instead start with Maxwell’s equations (0.3).

In the absence of charges and currents (p = 0, j = 0) one can deduce from
Maxwell’s equations that any component u of the electric or magnetic field obeys
the wave equation

1 92
282+A u=0 (7.1)

Disturbances propagate with the velocity ¢ which is the speed of light. Hence light
is explained as a wave in the electric and magnetic fields.

Suppose we think of space and time as a single entity called spacetime and mod-
eled by R*. A point is labeled x = (x%,x!,x%,x3) with x° = ¢z a scaled time with
units of distance. Then the wave equation can be written

Y u=2~0 7.2
ZU dxH Bx" (7.2)

where n*" is the diagonal matrix with entries (—1, 1, 1, 1). We take these coefficients
in the wave equation above as a clue to the structure of spacetime. The coefficients
can be interpreted as coming from a metric on R* given by

n=) muddd’ = @ + @' + (@) + (@) (7.3)
j7aY

This is not a positive definite metric, but a Lorentzian metric, that is a metric which
has signature — + 4-+. The basic postulate of special relativity is that spacetime is to
be modeled by the pair (R, 1). The idea is that field equations are to be built out of
this metric as above. Furthermore free particles should respect the metric in the sense
that their trajectories should be geodesics for the metric. All the structure of special

relativity follows from these assumptions, some of which we develop as we go on.
The scope of special relativity is limited as the name suggests. It is only supposed
to be valid in situations where there is no gravitational field, or more precisely where
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the effect of gravitational fields is negligible. The effect of the gravitational field
is to distort the metric and indeed possibly even distort the topology of spacetime.
The basic postulate of general relativity is that spacetime is to be modeled by a
Lorentzian manifold (M, g) consisting of a four-dimensional manifold M and a
Lorentzian metric g which in local coordinates takes the form

g = Z guvdxdx” (7.4)
nv
Field equations are to be constructed out of the metric. For example the wave
equation would have the form

_ a ou
Z | detg| 1/2w <|detg|1/2g’“’@) =0 (7.5)
j7AY

where {g/V} is the inverse matrix to {g,,}. Again free particles should travel on
geodesics. The metric itself is determined by the distribution of energy and matter
by an equation known as Einstein’s equation.

A manifold is anyway the best model for spacetime with or without gravity. Man-
ifolds are defined to treat all coordinate systems equally and this is matched by the
phenomenon that nature has no distinguished coordinate systems. In constructing
the basic equations to describe nature one should take care that the construction is
not tied to any particular coordinate system. This naturalness condition is sometimes
known as the principle of general covariance. Einstein’s theory of gravity outlined
above respects it. Quantum mechanics has a more difficult time with it, primarily
because it has a more rigid notion of time.

In the next three chapters we concentrate on combining quantum mechanics with
special relativity and ignore gravitational effects. It is appropriate in any case because
on microscopic scales gravity is much weaker than electromagnetic or nuclear forces
and thus is usually negligible for elementary particle physics.

7.2 Minkowski space

7.2.1 Definitions

We start by developing some general features of (R*, ) called Minkowksi space. The
tangent space to any point R* can be taken to be R* itself. The metric determines
an indefinite inner product on the tangent space by defining for tangent vectors
v:(vo,...,v3)andw = (wo,...,w3)

v-w :anv“w” = %% + vlw! + v2w? + v3w? (7.6)
Y
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We employ the summation convention that repeated indices are summed over, so this
is written v - w = 1, v*w". We also write v = (9, v) and w = (w°, w) and then

vow=—0"w+v-w (7.7)

where the second dot product v - w is the usual scalar product in R.

There are also linear functions on tangent vectors called cotangent vectors. These
are also identified with R* and written = (Ao, . . .,603). The cotangent vector 6
sends tangent vector v to 6, v*. The metric enables us to identify tangent vectors and
cotangent vectors by v, = n,,v"” or 8* = n*V6,. Then for tangent vectors v, w we
have v - w = n v w’ = vFw,.

Tangent vectors are defined to be spacelike, lightlike, or timelike according to
whether v - v = —(v°)? 4 v - v is positive, zero, or negative. The timelike vec-
tors form a double cone in R*. The component with v° > 0 is called future directed
and the component with v0 < 0 is called past directed.

We consider parametrized curves x : [a,b] — R*. If the tangent vector dx/dt

is always spacelike, then the curve is spacelike and we define the length of the

b [dx dx
L(x) = / el Edr (7.8)

If the tangent vector dx/dt is always timelike, then the curve is timelike and we

curve to be

define the elapsed proper time to be

T(x) = / dx dx (7.9)
Such curves are past or future directed according to whether dx/dt is past or
future directed. Future directed timelike curves are possible trajectories of massive
particles. The curve is called the worldline of the particle.
Finally if the tangent vector dx/dt is always lightlike, then the curve is lightlike.
Future directed lightlike curves are possible trajectories of light rays and massless
particles.

7.2.2 Free particles

In the absence of external forces massive particles travel on the timelike geodesics
of the metric. These geodesics are the forward directed timelike curves between
two given points (x,y) in spacetime which maximize the proper time among all
such curves. To find the geodesics note that the proper time does not depend on
the parametrization of the curve. Thus it suffices to consider curves for which
—dx/dt - dx/dt is a positive constant. Such a curve is parametrized proportional
to proper time.



98

Relativity

Theorem 7.1 Let x : [a,b] — R* be a future directed timelike geodesic that is
parametrized proportional to proper time with x(a) = x, x(b) = y. Then d*x/dt? = 0
and hence x is a straight line. The elapsed proper time is

V=) (x—=y) (7.10)

Proof Let n : [a,b] — R* be any smooth function with 5(a) = n(b) = 0. Then for
s sufficiently small

Xs(7) = x(7) + sn(7) (7.11)

is also a forward timelike curve from x to y. Then we can compute the proper time
T(xs). This has a maximum at s = 0 and so d/ds[T(x;)]s=0 = 0. We compute

d 1 [P/ dx, dx,\" V% d [ dx, dx,
ST = = T T el (e R [ (7.12)
ds 2 Ja dt drt ds dr dt

At s = 0 this becomes

b d d b d2
—”.—xdr=/ n- S lar (7.13)
, dr dr p dr?

Since 7 is arbitrary, it follows that dx?/dt? = 0. Then the solution is

0=—

T—a
x(t)=x+ <—) y—x) (7.14)
b—a

For this curve, T(x) has the value (7.10). ]

We still have some freedom in the parametrization of our geodesics. We use this
to make a choice of the constant —dx/dt - dx/dt. For particles of mass m > 0 a

convenient choice is to set

dx dx 29
-T2 .1
I m“c (7.15)

which we now assume.
We write the dynamical equation d?x/dt? = 0 as the first-order system

dit d
a—— P9 (7.16)

dr dr

where p* = n"Vp,. This is a Hamiltonian system with variables x*, p,, and Hamil-

tonian p - p/2 = n*'pupy/2 = nup*p”/2, not now the energy. The constant
p = (po,p1,p2,p3) = (po,p) is called the four-momentum. For a forward directed
solution of mass m we have

—p-p:mzc2 p0 >0 (7.17)

Once we restrict to solutions of mass m we can reduce the number of variables by
eliminating x° and pg = —p. By (7.17) we have p° = w(p) where for p € R3

w(p) =/ [p> + m?c? (7.18)
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The x° equation is then dx°/dt = w(p), which we use to replace the parameter 7 by
the time coordinate x°. We have then dx/dx’ = (dx/d7)(dt/dx") = p/w(p). Finally
with x% = ¢r the remaining equations become

dx cp dp

dt  o(p) dt

(7.19)

This is a Hamiltonian system with Hamiltonian ¢ w(p). It is interpreted as describing
particle of mass m, position X, momentum p, and energy

E = c w(p) =/ |p|?c? + m%c* (7.20)

Note that the four-momentum (p°, p) = (E/c, p) is an energy—momentum vector.
Next we make the connection with the corresponding non-relativistic concepts.
For |p|/mc small we have the expansion
Ip?

E=mc*+— +... (7.21)
2m

Thus for small momenta the energy is the same as the non-relativistic energy
Ip|?/2m, but shifted by the constant amount mc?. The latter is the energy of the
particle at rest and comes only from the mass.

Also note that according to (7.19) the velocity v = dx/dt of a particle of
momentum p is

2
v=P ____ B¢ (7.22)

E P +me
Note that |v|/c < 1, that is velocities of massive particles are always less than the
speed of light. Eliminating p in favor of v we find instead of (7.20), (7.22)

m02 mv

e YT e 729
These also reduce to the non-relativistic definitions of energy and momentum for
|v|/c small.

Finally consider free particles of mass m = 0 modeled by solutions of
d*x/dt?* = 0 satisfying —dx/dt - dx/dt = 0. This still can be written as the Hamil-
tonian system (7.16) but now restricted to solutions with p - p = 0. Energy and
momentum are related by E = |p|c. The velocity is still v = pc/E, but now |v| = ¢
so massless particles travel at the speed of light. There is no non-relativistic approx-
imation for these particles. An example of a massless particle is a photon which is a
particle of light. These are quantum mechanical entities, but for some purposes can
be treated as classical particles as we have done here.

The value of ¢ depends on which system of units we are using. Hereafter we
choose units so that ¢ = 1 and the parameter ¢ disappears from our equations.
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7.2.3 Forces

There is no fully consistent theory of interacting classical relativistic particles. Hence
in this framework we do not attempt to use symmetries of a system to identify con-
served quantities such as total momentum, as we did in the non-relativistic case
(section 2.4). Nevertheless one can assign a total four-momentum to a system of rel-
ativistic particles by adding the individual four-momenta. It is an empirical fact that
this total four-momentum is conserved in collisions of elementary particles, even
when particles are created or destroyed. This feature emerges naturally in quantum
field theory.

What we can do now is consider relativistic particles acted on by external forces.
Suppose a massive charged particle is acted on by external electric and magnetic
fields E, B. We combine these fields into a single entity, the electromagnetic field. It
is a matrix of functions F,,, : R* — R given by

0 —E; —-E, —Ej
E 0 B —B

Fut=| o (7.24)
E, —Bj3 0 B

Es By —Bj 0

Note that this is anti-symmetric F,, = —Fy,.

The electromagnetic force on a particle with world line x*(7) and charge e is

given by the Lorentz force eF", dx” /dt where F';, = n**F ,,. With a parametrization
satisfying —dx/dt - dx/dt = m?, the equation of motion of the particle is

2 L v
% = eF" ‘% (7.25)
Note that the value of dx/dt - dx/dt is preserved by the time evolution, since if x(7)
is a solution, then

d (dx dx d’x  dx dx dx"

4 (b)) ey, ded

dt \dt drt dt- drt dt dr

by the anti-symmetry of F;,,. The equation (7.25) is the relativistic generalization of

=0 (7.26)

the Lorentz equation (0.2).!
Now suppose that F,, is derived from a potential A, by’

Fuy = 0,A, — 0,A, (7.27)

L If we reparametrize by o = mr, then dx/do - dx/do = —1 so the worldline is parametrized by proper
time. In this case the equation takes the form
a2 I dx”
mda—’zc =eF', G
which shows the mass dependence.
2 This relation is naturally expressed in terms of differential forms. If we consider the two-form F =
Fvdxtdx” and the one-form A = A, dx", then (7.27) says that F = dA, that is F is the exterior
derivative of A.
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where 0, = 0/0x*. If A = (®, A), then this says

oA
E=——-Vo B=VxA (7.28)
9x0
so we can identify @ as the electrostatic potential and A as the magnetic potential.
In addition a time-dependent A induces an electric field A /9x.

Line integrals of A over curves C are naturally defined by
b dx*
/ Aydxt = / AL(x(T))——dt (7.29)
C a dt

whenever x : [a,b] — R? is a parametrization of C. The integral is independent of
parametrization. This makes it natural to consider integrals such as

b
1) = / |:m —j—i.j—j—eAM(x(r))%} dt (7.30)

Then the next problem gives an indication of why the Lorentz equation is natural.
Problem 7.1 Let x : [a,b] — R* be forward timelike parametrized so that
—dx/dt - dx/dt = m®. Show that if x maximizes the integral I(x) among all

forward timelike curves between the same endpoints, then x satisfies the Lorentz
equation (7.25) with F,, given by (7.27).

7.2.4 Lorentz transformations

Now consider the isometries (symmetries) of the spacetime (R*, n). These are maps
y = k(x) which preserve the metric or equivalently preserve proper time intervals
and distances. Thus they satisfy

(ke (x1) — K (x2)) - (ke (x1) — K (x2)) = (x1 — x2) - (x1 — x2) (7.31)
for all x;,x, € R*. Translations y = x + a are isometries and linear transforma-

tions y = Ax, also written y* = A" xV, are isometries if Ax - Ax = x - x. This is
equivalent to

ATyA =9 (7.32)

also written n,wA“ M,A"v, = nu,v. These are called Lorentz transformations. They
form a group known as the Lorentz group.
It turns out these are all the isometries, that is the general isometry has the form

{a, A} x=Ax+a (7.33)

The group of all such transformations is called the Poincaré group denoted P. The
group law is
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{a, AMd, A} = {Ad +a, AN (7.34)

It is the semi-direct product of the Lorentz group and the translation group.

The Lorentz group is denoted £ or O(1, 3). It inherits a topology as a subset of R!6
and is in fact a Lie group. It follows from the defining relation (7.32) that elements of
the group satisfy det A = =£1 and this condition divides the group into disjoint sets
denoted L£4. An example of A € L_ is a reflection through a hyperplane. The set
L contains the identity and is a subgroup. Furthermore (7.32) implies that (AOO)2 =
1+ Zi:l(Ako)z so L4 is divided into disjoint sets with :tAOO > 1 and denoted
respectively EI_ and £i. Elements of Lﬁi involve time reversal. The set EI_ contains
the identity and is a subgroup known as the proper Lorentz group. Correspondingly
there is a proper Poincaré group PI_.

An example of a proper Lorentz transformation is a rotation of the form

1 0
AR = ( 0 R ) (7.35)

where R is a rotation on R?. Another proper Lorentz transformation is a boost along
the first axis of the form

coshpg sinhg 0 O

Ap= sinhf coshg 0 O (7.36)
0 0 1 0
0 0 0 1

There are also boosts in any spacelike direction. It turns out that any element of
A e El can be written in the form

A = Ag,AgAg, (7.37)

for some Rp, Ry, B. Since each of these special transformations can be continuously
connected to the identity, it follows that any element of Ei can be continuously
connected to the identity and hence the group is connected.

Physical laws are differential equations built from the metric n and will have the
proper Poincaré transformations as a symmetry. This means that the proper Poincaré
group acts on the space of solutions. More precisely this is true when there are no
forces external to the system we are describing. For a simple example suppose x(t) =
pT+bis asolution of dx?/dt* = 0 describing a free particle of energy—momentum p
with mass m so —p-p = m* and p® > 0.1If {a, A} is a proper Poincaré transformation,
then the transformed world line x'(t) = Ax(t) +a = (Ap)t + Ab + a is also a
solution, now with energy—-momentum p’ = Ap and still satisfying —p’ - p’ = m?
and (p')° > 0.

The physical interpretation of Poincaré transformations can be made in either an
active sense or a passive sense. In the active sense they carry physical configurations
to different physical configurations. In the passive sense they describe the same
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physical system in new coordinates. For boosts the new coordinates are associated
with an observer in relative motion with respect to the original coordinates, hence
the term “relativity.”

Problem7.2 Show that if A”nA = 5, then the same holds for A~", AT,
Problem7.3  Show that if ¢ = A’,p”, then g, = p,(A~1)",.

Problem 7.4  Show that the boost Ag takes a particle at rest to a particle with
velocity v = (tanh 8, 0, 0).

7.3 (lassical free fields

We now begin a discussion of various fields on spacetime. Mathematically these
are functions on spacetime. Physically they model some sort of local disturbance,
often not directly observable. Although we introduce them in a classical context the
complete physical interpretation involves quantum mechanics.

7.3.1 Scalar fields

A scalar field ¢ is a function ¢ : R* — R, which is a solution of the Klein—-Gordon
equation

(—O0+mPp =0 (7.38)

Here [J = 9 - 0 is the Laplacian for the Minkowski metric, called the d’Alembertian.
Written out with 9, = d/dx" itis

O =n"8,8, = —35 + 37 + 85 + 07 (7.39)

The parameter m is called the mass. This is related to the definition of mass for
particles (think p,, <> —id,) but we do not make the connection precise until we
quantize.

There is a basic existence and uniqueness theorem which says that given smooth
functions f, g on R3 there is a unique smooth function u(x) = u(x%,x) on R* such
that (-0 4+ m?)u = 0 with intial values u(0,x) = f(x) and (dou)(0,x) = g(x). In
addition influence propagates with unit speed. We explore some variations of these
facts in the following.
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We also note Green’s identity for the d’Alembertian, which says that for suitable
functions u, v

/ u(—0 4 m*pv — v(—+ mz)u
[a,b]xR3

:/ ua()v - vaou - / uaov - va()u
WO=b O=a

This is proved by integration by parts.

(7.40)

Problem 7.5 Show that if ¢ satisfies the Klein—-Gordon equation, the Poincaré
transformed function ¢, A (x) = d(A~(x — a)) is also a solution.

7.3.2 Charged scalar fields

The next simplest possibility is a charged scalar field ¢ of mass m, which is a function
from R* to R%. We write ¢ = (¢1,¢>) and require each component to solve the
Klein—Gordon equation: (—[J + m*)p; = 0.
By Green’s identity if ¢ = (¢, ¢2) is a solution, then
Q= [ $10°— 20" (7.41)
xU=t

is independent of ¢ and is called a charge. There is an associated charge-current
density j = (j°,j) = (;°,j1,j%./°) defined by

(@) = 910" ¢ — 20" ) (7.42)

This satisfies the conservation law 9,j* = 90/° + V - j = 0 and the conservation of
0= [o_, 7% can also be understood from

d
9 _ aoj(’:—/ V.j=0 (7.43)
dt O—¢ O—;

Multiples of (°,j) will be identified with the actual electric charge density and
current density when the field ¢ is coupled to the electromagnetic field.

It will also be useful to write the field as a single complex valued function ¢ =
(¢1 + ig)/~/2. In this case the current is given by

J'=—igd" ¢ — 93" p) (7.44)

These considerations generalize to fields ¢ : R* — R” with each component
satisfying (—0 + m*)¢o = 0. In this case there are n(n — 1)/2 conserved charges

Qup = | | #ud’0p = 05300 (7.45)
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7.3.3 Diracfields

Next consider fields which solve the Dirac equation. The equation is based on a
first-order linear differential operator whose square is the d’ Alembertian.

The starting point is the Clifford algebra for Minkowski space. The algebra is gen-
erated by complex matrices y* with u = 0, 1,2, 3 satisfying the anti-commutation

relations’
vy =22""1 (7.46)
For a € R* we define
y-a=ya, =y’ +y'a +yia+yia (7.47)
These satisty
{y -a, y-by=20""a,b,=2a-b (7.48)

In particular (y - a)> = a - a and thus y - a provides a linear square root of the
Minkowski inner product. Note also that ()/O)2 = —[ and (yk)2 =[fork=1,2,3.
There are various possibilities for the gamma matrices. One possible choice is the

0 I 0 o
0 . k . k

[ 7.49
v l([ O) v l<—0k 0 ) ( )

where oy are the Pauli matrices (4.63). These satisfy (y%)* = —y? and (y*)* = p*

4 x 4 matrices

and we usually assume we have a representation which has this property.
If y* is another choice of 4 x 4 gamma matrices, then there is a nonsingular matrix
M such that*

7= Myrm! (7.50)
The operator y - 9 = y*9, has the desired property
(y-9Y¥=09-0=0 (7.51)
The Dirac equation is now defined by
(y-9+my =0 (7.52)

for some function ¥ : R* — C* called a spinor field. Applying the operator
(—=y -9 +m) we see that any solution of the Dirac equation also satisfies the
Klein—-Gordon equation (—1 4+ m?)y = 0. Hence m is again a mass.

3 The anticommutator is {A,B} = [A,B]l+ = AB + BA.
4 See for example Miller (1972: 363).
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Next let 8 = iy? and define an indefinite inner product on C* by u,v — u'pv.
Here if u is a column vector, then u is the conjugate transpose row vector so

u'Bv ="y iaPusve (7.53)

ab

The y matrices are skew-adjoint with respect to this inner product
'w)' po = —u' By"v) (7.54)

Green’s identity for the Dirac operator says

/[ ) R3x*ﬂ(y-a +myy — (v -9 +m)x) By

(7.55)
= / xBO Y — / X By
xV=b W=q
Then if v is a solution of the Dirac equation, the quantity
o= [ e[ e (7.56)
0—¢

is positive definite and independent of . A multiple will be interpreted as the electric
charge. The associated conserved current

Jt =y Bliv (7.57)
satisfies @ = [,o_,j* and 9,,j"* = 0.

Problem 7.6

1. Show that Tr(y*y") = n* Tr(I).
2. Show that the y* are linearly independent.

7.3.4 The electromagnetic field

We have already noted that the electromagnetic field can be described by a matrix
of functions F,. If the total charge density p and the total current density j are
combined into a spacetime vector field j = (°,;',/2,73) = (p.j), then Maxwell’s
equations can be written in the form’

3o Fpuv + 0 F o + 0vFg, =0

(7.58)
dyFIY = ji

In this form the necessity of the charge conservation law d,,j* = 0 is transparent.

5 In terms of the two-form F = F wvdxt*dx" , the one-form j = j,dx/*, the exterior derivative d, and its
adjoint § these say dF = 0 and 6F = j. u
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In a simply connected region the first equation says that
Fuy = 0,4, — 0,A, (7.59)

for some functions AM.6 We identify A = (Ao, A) with the electric potential and
the magnetic potential as in section 7.2.3. The potential can be assumed to satisfy
0y A" = 0 (see problem 7.7). Then Maxwell’s equations are replaced by the pair of
equations

OA, = —ju "4, =0 (7.60)
It is just the wave equation with a source and a constraint. This is the equation we
will eventually quantize (for j = 0).
Problem7.7 InR*let Fp,, = 3,4, — 3,A,.
1. Show that if A}, = A, + 9, x for any smooth function yx, then Fy,, = 3,4, —

BUA;L.
2. Show that one can choose x so that B“A’u =0.

Problem 7.8  Show that if A, solves (7.60) with j = 0, then so does A;L(x) =
(A~ AA T (x —a)).

7.4 Interacting classical fields
|

7.4.1 The gauge principle

The equations (7.58) or (7.60) show how the charge-current density acts as the source
of the electromagnetic field. But the electromagnetic field also affects charges and
in particular charged fields. This occurs in a geometrically natural way as we now
explain.

Let us start with the charged scalar field whose configuration is a function u :
R* — R”. Just as the vector space R* is not the best model for spacetime, yielding
that honor to a manifold, so the vector space R" is not the best model for charge
space. We continue to treat it as an inner product space, but now do not single out
any special oriented orthonormal basis. Instead we consider all possible oriented
orthonormal bases denoted {e¢,}, and instead of a fixed vector in R"” we consider its
expression v = ), g€y in each of these bases. The bases are related to each other
by an element of the rotation group SO(n) in R” and hence so are the components

6 Every closed form dFF = 0 is exact F = dA.
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relative to each choice of basis. Thus what we want is an assignment to each oriented
orthonormal basis {e,} a vector v € R” such that if

ep =Y Rupe, (7.61)
o

for some R € SO(n), then

vy =Y Rapup (7.62)
B

For then we have
Z vgeg = Z v, e, (7.63)
B o

Next we want to allow the possibility of choosing a different basis at each point
in spacetime. Thus we consider functions from x € R* to orthonormal bases {eq(x)}.
Two such functions are related by a function R : R* — SO(n) such that

ep(x) = D Ruyp(x)el,(x) (7.64)

The function R(x) is known as a (local) gauge transformation and is assumed to be
smooth. Now if our charged scalar field is expressed as ) gl g(x)eg(x) and also as

Dy U (e, (x), then
w,(x) =) Rop(0up(x) (7.65)
p

This is the structure of a trivial SO(n) vector bundle. If we allow R* to be a man-
ifold and allow different choices of bases in R” in different open subsets of the
manifold, we would have the general definition of an SO(n) vector bundle. In the
terminology of vector bundles the functions u(x) are sections of the vector bundle
in a particular trivialization and the gauge transformations R(x) are the transition
functions for a change of trivialization.

Let us specialize now to the case n = 2 in which case ¢ : R* — R? is the charged
scalar field and the gauge group is SO(2). We regard R? as the complex numbers C.
Then SO(2) is identified with the group U(1), the complex numbers of modulus one,
under the identification

sinf cos@

(cos@ —sin0> o o (7.66)

Thus we consider families of functions ¢ : R* — C assigned to oriented orthonor-
mal bases in C (that is choices of the real axis) such that if two bases are related by
the gauge transformation ¢, then the functions are related by

¢'(x) = "D (x) (7.67)
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A family of functions with this transformation law is called a section of a complex
line bundle.

Next we want to write a differential equation for a section of a complex line bun-
dle. The equation will be expressed in terms of a particular function representing the
section, but should be natural in the sense that it should not matter which function
we take.

To build such an equation we need the notion of a connection. A connection is
given by a family of functions A,, each associated with choice of basis. Under a
change of basis given by ¢*®) the connection changes (by definition) by

AL() = A @) + 9,0 (0) (7.68)

Here we have inserted a constant ¢ in the transformation ¢*™ to allow a different
weighting for fields and connections.
The connection determines a covariant derivative 9, — igA,,. If ¢’ = e'?* ¢, then

(O — igA))$" = (3, — igA, — iqd,M)e' ¢

‘ 7.69
= (9, — igA,)¢ (7:69)

Thus the functions (9,, — igA, )¢ give a new section of the complex line bundle.

Now we can define a differential equation for the charged field ¢ : R* — C by
treating it as a section of a complex line bundle. Take the Klein—Gordon equation
and replace the derivatives by covariant derivatives. Then we have

(—(d — igA) - (0 — igA) + m*)p = 0 (7.70)

The interpretation is that the connection A, is the electromagnetic potential, that the
equation is describing the time evolution of the charged field ¢ in the presence of A,
and that ¢ is the charge measuring the strength of the coupling.

Recall that potentials A, A’ related by a gauge transformation (7.68) have the same
field strength F,, = 9,A, — 9,A,. Thus it is possible to regard the different ver-
sions of (7.70) as describing the same physical situation. The field strength F,,
also has a natural interpretation in the vector bundle language. Namely it is the
curvature of the connection defined as the commutator of the covariant derivative.
We have

—igFu = [0, — igA), (8, — igA,)] (7.71)

This all generalizes to SO(n) and indeed any Lie group G. Suppose G is repre-
sented by n x n real or complex matrices. A section of a G-bundle is a family of
functions ¢ : R* — R or C” connected by gauge transformations g : R* — G by

@' (x) = g(X)P(x) (7.72)
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Let G be Lie algebra of G; for example if G = SO(n), then G is the skew-symmetric
n X n matrices. A connection or gauge potential is given by a family of functions
Ay R* — G which are related by7

AL) = g4, Wg ' @) — B,9Wg ' W) (7.73)
The covariant derivative 9, + A, again maps sections to sections in the sense that
(0 +A;¢)¢/ =g +AL)P (7.74)
One can form a dynamical equation by
(—@+A) - O+A)+mHp=0 (7.75)
This describes a field with a generalized charge. The curvature is now

F;Lv = [(au +Au,)’ 3y +A,)]
Ay — WAL + [Ay, Ayl

(7.76)

and it is interpreted as the field strength of the potential. Equivalent connections A, A’

do not now give the same field strength. We have instead F' ;w =gF ,wg_l.

7.4.2 Systems

Now we can put together some of our equations to form complete systems in which
each field has a dynamics and influences the other fields.

To start, consider a system consisting of a charged Dirac field ¢ : R* — C* inter-
acting with an electromagnetic field A : R* — R. In this case the charge-current
density j* = gy Bliy*]y is the source for the electromagnetic field in Maxwell’s
equations (7.58). The influence of A on i is given by replacing the ordinary
derivative by the covariant derivative in the Dirac equation. Thus we have

(y - (@ — igA) +m)yy =0
WF" = qy Bliy* 1y

Note that the same charge ¢ is used in both equations. Because of this the system of

(7.77)

equations can be derived from a simple variational principle. Define an action by

1
S(y,A) = / /R (1//Tﬁ(y - (0 —igA) + m)yr + %F””F,w> dx (7.78)
fo 3

The least action principle says that dynamical fields must minimize the action and
these turn out to be exactly the fields satisfying (7.77).

T A is again in the Lie algebra G. To see that v“(aﬂg)(x)g_l(x) is in G for any x,v € R?* let x(t) be a
curve in R* with x(0) = x,x'(0) = v. Then y(r) = g(x(1)g ™~ (x) is a curve in G with y(0) = 1, y/(0) =
v"((‘)ug)(x)g_1 (x) and hence the latter is in G.
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Next consider a charged scalar field ¢ : R* — C interacting with an electro-
magnetic potential A. The influence of A on the ¢ field is given by taking covariant
derivatives in the Klein—Gordon equation as in (7.75). We complete the system by
taking j* = —ig(¢d"$ — ¢3"¢) as the source for the electromagnetic field. Thus we
have the system:

(—(3 — igA) - (3 — igA) + mP)p = 0

§ _ (7.79)
WF"" = —ig(d"p — p3"¢)

Usually one also adds a term —2gA*|¢|? to the right side of the second equation.
Then the equations can be derived from a least action principle with action

S(¢,A) = / / ( @ — igA)g - (3 — igA)p + m?|¢|? —I—iF’“’F,w)dx (7.80)

The equations were constructed in accordance with the gauge principle for gauge
group SO(2) = U(1). For a general gauge group G we would replace ¢ or by a
vector valued function and A by a Lie algebra valued function. The actions (7.80) or
(7.78) still hold with F,,,, now given by (7.76) and %F MVF,,, replaced by the gauge
invariant %tr(F MVF ). Variation of the action leads to a system of equations similar
to (7.77) or (7.79), but even more nonlinear. These are known as nonabelian gauge
theories. With the gauge group SU(3) x SU(2) x U(1) a quantized version provides a
model for the strong, weak, and electromagnetic interactions of elementary particles,
known as the standard model.

These are difficult systems of nonlinear equations. A simpler case is a single scalar
field which interacts with itself according to the equation

(—O+mhp + 429> =0 (7.81)

with A > 0. This can be derived from the action

S(¢) = / / ( (3¢ - D + m*$?) + Agp > (7.82)

Problem 7.9 Consider smooth functions ¢(z,x) such that for 7y < t < #; the
function ¢(#, -) has compact support and so ¢(#g, X) = fo(X), d(#1,X) = f1(x) Show
that if ¢ (¢, x) minimizes the action (7.82) among all such functions, then it satisfies
the equation (7.81).

7.5 Fundamental solutions
]

In this last section we depart from general considerations to treat a specific problem.
We define and study certain fundamental solutions of the Klein—Gordon equation.
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For any x € R* define
JFo=peR 1 (x—y) (x—y) <0, £6° —x% >0} (7.83)

This is the causal future or past of the point x, that is the point which can be reached
by a future or past directed timelike curve. For any subset A C R* we define

JEA = UpenJtx (7.84)
Theorem 7.2 Then there exist linear operators E* Cs° (R*) — C®(R*) such that

(O + m?)EXf) =f

(7.85)
supp (E*f) C J*(supp f)
Proof We first define a distribution EOi by
eip-x
Ef()=@r)™* / - dp (7.86)
0 FexR3 PP+ m?

where I'y is the contour R £ io with @ > 0, and we use the Lorentz inner product
in the exponential. The Fourier transform is in the sense of distributions so for f €
CORY

< Ey.f >=(@n)7? f Jen (7.87)
r.xR3 P -p+m
where the Fourier transform is with the Lorentz inner product
fp)=@n)2 fR L€ T dx (7.88)

Note that p - p+m? = —(p®)% + |p|> + m? has zeros at p° = +w(p), which we avoid
by the choice of the contour I'1. The function f is an entire function which is rapidly
decreasing in real directions.. Thus < E(j)t, f > is well-defined and independent of
the choice of «.

The operator is defined by the convolution E¥f = ESE x f, which means
(ETf)(x) =< Eoi,f(x — +) >. Replacing f by f(x — -) means replacing f(p) by
e~ P*f(—p) and so we obtain

EEH) = 27)2 / e, (7.89)

ruxR3 p-p+m?
It satisfies (—00 4+ m?)(E®f)(x) = f(x) since after taking the derivatives we get
Qmn)~2 fFiXRg eip'xf (p)dp in which we can take o = 0 to identify f(x).

The statement about supports is equivalent to supp EOi C J*(0). We consider EJ
and first show that supp E(J)r is contained in the set xX > 0. Thus we want to show
that if suppf C {x% < 0}, then < Ea',f >=0.If % < 0, then |exp(—ip - x)| =
exp(—Im p°x?%) is bounded in Im p° < 0 and so f‘(p) is bounded in Im p° < 0.
Then f (—p) is bounded in Im p® > 0, and in the formula (7.87) we can complete the
contour I' in the upper half plane and get zero.
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Finally we use the fact that E(')" is Lorentz invariant, E(')" (Ax) = Eg (x). It follows
that if E(J)r (x) vanishes on a neighborhood of a point x, then it vanishes on a neigh-
borhood of any point Ax in the orbit of x. Hence we can enlarge the region where it
vanishes from {x° < 0} to A{x? < 0}. The latter is the complement of J*(0), hence
the support of E(')|r is in J*(0). The argument for Ej (x) is similar. O

From these fundamental solutions we construct the propagator®
E=E" —E (7.90)

Iff e Cy° (R*), then u = Ef is a C* solution of the Klein-Gordon equation with the
property that for any ¢ the function u(#, -) has compact support. Such a solution will
be called a regular solution.

It will be useful to have an alternate expression for (Ef)(x). It is given by the
expression (7.89) but now integrated over (' —I'~) x R3. The pO contour ('t —I"7)
can be shrunk down to circles around p° = +w(p) and evaluated. After a change of
variables we have

_ i(—(O+px) dp
(Ef)(x) = o /R L€ f (w(p),P)zw(p)
O iem®—pp oy oy 9P
e R3e f(—w(p), p)zw(p)

(7.91)

Problem7.10  Show that every regular solution of the Klein—-Gordon equation has
the form u = Ef for some f € Cgo(R4)

Notes on chapter 7: Special relativity is best understood as general relativity with
a special metric. References are Misner ef al. (1973) and Sachs and Wu (1977).

For gauge theories see Drechsler and Mayer (1977) or Frankel (2004).

It is also common to use the metric n” = —n instead of n. Then the Klein—-Gordon
equation (=L, + m2)¢ = 0 becomes (L,y + m2)¢ = 0. The Dirac matrices y*
are replaced by (y')* = iy*. The Dirac equation (y*d, + m)u = 0 becomes
(—i(y" o, + mu = 0.

8 Not to be confused with the Feynman propagator.
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In this chapter we develop a quantum mechanical description of both scalar particles
and scalar fields, in each case without interaction. In fact there is a deep connection
between particles and fields. Mathematically it is reflected in the fact that field oper-
ators naturally act on a multiparticle Hilbert space. Physically it is the fact that fields
and particles are complementary manifestations of the same underlying reality. The
prime example is electromagnetism which exists as electric and magnetic fields or
as massless spin 1 particles called photons. This is taken up in the next chapter, after
we treat the simpler case of scalars.

As we develop this and other relativistic field theories we will encounter states
with arbitrarily negative energies. If present, these would lead to serious instabilities
when our system is coupled to other systems. Our system could serve as an infinite
energy source by dropping to lower and lower levels. This is completely unphysical
so one of our tasks is to find a consistent way to discard or reinterpret the negative
energy states.

8.1 Scalar particles

14

8.1.1 Canonical quantization

We consider a single free relativistic particle of mass m in the spacetime (R*, )
and start with a canonical quantization procedure. Recall from section 7.2.2 that in
reduced form the phase space is R? x R3 and the Hamiltonian for a particle of mass
mis H(x,p) = w(p) = /|p|? + m?. Correspondingly we take the Hilbert space
L[%(R3, dx) and the representation of the CCR

=[x pi = —id/dx' (8.1)
just as in (3.11). The quantum Hamiltonian is then

H=\/|p?+m?=+v—-A+m? (8.2)



115

8.1 Scalar particles

This is defined in terms of the Fourier transform by H = F “Nw(p)]F and time
evolution is

e~ iH — 1 [e*iw(P)t]]_‘ (8.3)

Alternatively we can work directly in momentum space. Then the Hilbert space is
L*(R3, dp), the position and momentum operators are

H=idfopi pi=Ipi (8.4)
The Hamiltonian is

H = /p]> +m? = [o(p)] (8.5)
and time evolution is e~ = [¢~1@®)"]. The two constructions are of course unitarily

equivalent via the Fourier transform.

Problem 8.1 (Non-relativistic limit) If we reinstate the speed of light ¢ as a
parameter, then w(p) is replaced by w.(p) = +/|p|>c? + m?c*. Show that for
¥ € LR, dp)

L2 — lim eimczte—ia)c(p)tw(p) — e—i|p|21/2mw(p) (86)

c—> 00

Thus when adjusted by the phase factor €™Mt the relativistic dynamics converges
to the non-relativistic dynamics.

8.1.2 Quantization from Klein-Gordon

Another way to approach quantization is to start with the Klein—-Gordon equation
(=0 + m?)¢ = 0 and try to interpret solutions as wave functions. To find solutions
take the partial Fourier transform

d(t.p) = Q)2 / PR, x)dx (8.7)
This satisfies
92 _
(W +1pl* + m2> ¢=0 (8.8)
and has solutions
¢t p) = e P'p, (p) + ¢ P'p_(p) (8.9)

for any ¢+(p). Hence a general complex valued solution of the Klein—Gordon
equation is

8% = @) [ N (WG )4 V) dp (810
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with ¢ (p) determined by a pair of initial conditions. Real solutions have ¢_(p) =
¢+ (—p).

For the quantum interpretation we specialize to positive energy solutions which
have ¢_(p) = 0. Then the solution is determined by a single complex valued
initial condition. The solution (8.9) with initial condition ¥ (p) € L2(R3,dp) is
Y (t,p) = e Py (p) which agrees with our momentum space quantization. The
solution (8.10) with initial condition ¥ (x) € L*>(R3, dx) is given by

V(%) = Q)2 / P3P () dp 8.11)

which agrees with our configuration space quantization (8.3).

Now consider the effect of spacetime translations by a = (a°,a) € R* and rota-
tions R € SO(3). The transformation {a, R} on R* forms a subgroup of the proper
Poincaré group; we exclude boosts for the time being. Define a representation of this
subgroup on L*(R3, dp) by

(uo(a, Ry )(p) = e @®" POy (g=1p) (8.12)

These operators are unitary since the Lebesgue measure is invariant under rotations
and one checks that ug(a, Ryug(a’,R') = uo(a + Ra’, RR).
On L2(R3, dx) we define a representation

ioa,R) = F~ ' ug(a,R) F (8.13)

Then 1p(a, R) implements the action of these transformations on our wave functions.
If ¥ (2, x) is a complete wave function given by (8.11), then

(0@ R (1.9) 00 = (s —a. R~ (x =) (8.14)

Note that the representation of the rotation group corresponds to spin zero.

8.1.3 Covariant quantization

There is a third way to arrive at the quantization of a single relativistic particle.
This begins with the idea that associated with any isolated system there should be a
unitary representation of the proper Poincaré group describing the effect of Poincaré
transformations. Since time translation is included the representation contains the
complete dynamics of the system. Elementary particles are supposed to correspond
to irreducible representations. These are labeled by two parameters interpreted as
mass and spin. Here we want to find the irreducible representation for particle of
mass m and spin zero.
Working in momentum space R* note that the mass shell

Vi=p=0"pppHeR ip.p=—m*p’ >0} (8.15)
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is invariant under the proper Lorentz group L‘l. (In fact V! is the orbit of the point
(m,0,0,0).) Then we can define a representation of the proper Poincaré group 731 on
functions on V,} by

(u(a, MY)(p) = e 7Y (A""p) (8.16)
where p - a = —p%a® 4 p - a. One checks that
u(a, Mu(d', A = u(a+ Ad', AN (8.17)

There is an essentially unique measure on V,” which is invariant under the Lorentz
group which we denote w,,. Then u(a, A) is a unitary representation of the proper
Poincaré group on LZ(V;; , Wm) and it turns out to be irreducible.

We can be more specific about the measure j1,,. First note that the map

¢(p) = (0(p), p) (8.18)

from R3 to V;}" provides a global set of coordinates for V. For measurable B C R?

we define
dp

no@By = [ TP
1 B(B)) /B o

(8.19)

Then ¥ — v o ¢ is a unitary map from LZ(V,‘,'[, wm) to L*(R3, dp/2w(p)) and the
representation (8.16) becomes the representation on L>(R3, dp/2w(p)) given by

(u(a, MY)(p) = e PPy @~ A~ p(p)) (8.20)

Problem 8.2 Check that the measure dp/2w(p) on R3 is invariant under Lorentz
transformations p — ¢~ ' A~!¢(p). (Hint: Use the decomposition (7.37).)

Problem8.3 Check that u(a, A) as defined in (8.16) is a unitary representation of
the proper Poincaré group on LZ(V,‘,t s Mm)-

8.1.4 Comparison

We now compare the different approaches. In the first two the Hilbert space can be
taken as Ho = L*(R3, dp) the same as for non-relativistic problems. In this case there
are position operators X’ = id/dp; and a representation uq(a, R) of spacetime transla-
tions and rotations. In the third approach the Hilbert space is H = L*(R>, dp/2w(p))
and there is a representation of the proper Poincaré group u(a, A).

These two possibilities are equivalent via the unitary operator V : Hy — H
defined by

Vy)(p) = v 20 ()Y (p) (8.21)
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This connects the representations since
V~'u(a,R) V = ug(a,R) (8.22)

If we want a representation of the full Poincaré group on Hy, we can extend the
representation on the subgroup by defining

uola, A) = V'u(a, A) V (8.23)
If we want a position operator on H, we can take the Newton—Wigner operator
X=viv! (8.24)

Note that if Y € Hy is strictly localized (that is if 7~ has compact support), it is
not true in general that uo(0, A) is strictly localized. Strict localization of particles
is not a Lorentz invariant concept. We will do better with fields.

Problem 8.4 Find explicit expressions for X’ and ug(a, A).

8.1.5 Many particles

Now suppose we want to describe many free bosons of mass m and spin zero. The
Hilbert space would be the Fock space F(Hg) or 7+ (H). The time evolution would
be given by the one-parameter unitary group

e~ Hl — P([e~i@®))) (8.25)

where I' is defined in (5.48). The Hamiltonian is the generator

H = dI'([o(p)]) = f w(p)a*(p)a(p)dp (8.26)

Here the second expression is a bilinear form, a(p) is defined as in (5.74) (now in
momentum space), and the identity can be verified as in lemma 5.5. There is also a
representation of the Poincaré group which on the relativistic Fock space F(H) is

U(a, A) =T'(u(a, A)) (8.27)

8.2 Scalar fields

8.2.1 Hamiltonian formulation

In section 7.3.1 we introduced the classical scalar field ¢(z,x) on R* satisfying the
Klein—Gordon equation
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(—-O+m>)p =0 (8.28)
This can also be written as a pair of first-order equations for functions ¢(x), 7 (x)
d¢
dr
d
7’: — (A +mP)p (8.29)

This is an infinite-dimensional Hamiltonian system with the Hamiltonian

_ 1 2 2 242
H(p,m) = 5 /Rs(rr (x) + (Vo(x))” + m~¢p~(x))dx (8.30)

That is we have the functional derivatives dH/dm(x) = m(x) and 0H/d¢(x) =
(—A+ m2)¢>)(x). We are computing these derivatives formally, although they could
be given a rigorous meaning without too much trouble.

In terms of the pair ® = (¢, ) the Hamiltonian can be written

1 N
H(®) = E(QD,HCID) (8.31)
where the inner product is in (real) L2(R?) @ L>(R?) and where
. —A+m?) 0
H:<( ) ) (832)
0 1
The equations become with Vg = (9/9¢, d/07)
dq)—JV H=JH = %! (8.33)
ar T “\-ro '

Let @, be the solution of this equation with &g = & € S[R3) x S(R?). Time
evolution preserves this space and ®; is linear in ® so we can write

@, = T(1)P (8.34)

where T(¢) is a linear operator on S(R3) x S(R?). It satisfies T(1)T(s) = T(t + s) and
T(0) = I. An explicit expression for 7(¢) is given below.

Since we have a linear Hamiltonian system there is a symplectic form invariant
under time evolution, see the remarks at the end of section 2.3. It is given by

o (D1, Py) = (P1,JD2) = (@1, m2) — (711, ¢2) (8.35)

The invariance o (P, P2;) = o (P, Py) follows from Green’s identity (7.40).
Alternatively note that JH is skew-symplectic

o(JH®|, @) = (HP), ®2) = (01, HD) = —0 (@1, JHD,) (8.36)
Hence
d N N
E U(q)l,t, <D2,t) = U(JHCDIJ, (D2,t) + U(cbl,t,JHCDZ,t) =0 (8.37)

which gives the invariance.
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Problem8.5 With & = +/—A + m? show that
A A _1 . A
() = ( cos(dt) @& !sin(@t) ) (838)

—@ sin(@r) cos(@r)

Problem8.6 Show that 7(r) commutes with JH.

8.2.2 (anonical quantization

To quantize this Hamiltonian system by our canonical procedure we would begin
with a representation of the CCR which we interpret as

[9p(x), 9(y)] = [7(x), w(y)] =0
[pX), (Y] =ib(x—y)

Then put these operators in the classical Hamiltonian (8.30) to get a quantum

(8.39)

Hamiltonian H. Then define field operators in the Heisenberg picture at time ¢ by
o(1,x) = e p(x)e ! 7(t,x) = ' (x)e ! (8.40)

However H constructed in this manner is rather ill-defined.

For an alternate strategy recall that the operators ¢(z,x), 7 (¢,x) should satisfy
the classical dynamical equations (Ehrenfest’s theorem). Thus we look for operator
valued solutions of (8.29) which satisfy the CCR (8.39) at time zero.

Furthermore we treat the fields as distributions and consider averaged fields

d(h) = / POhX)dx  7(h) = f 7 (X)h(X)dx (8.41)

where the test functions / are in the (real) Schwartz space S (R3). The interpretation
of the CCR is now that ¢(h),  (h) should be symmetric operators on a dense invariant
domain in some Hilbert space satisfying

[Pp(h), ()] = [ (h), w(e)] =0

[¢(h), w(g)] = i(h, g)

The dynamical equations are also interpreted in the sense of distributions.

(8.42)

We also consider the pair ® = (¢, ). As a test function for the pair we take a pair
F = (f,g) of elements in S(R?). Then we form the particular combination

o (P, F) =¢(g) —n(f) (8.43)
corresponding to the symplectic form. Then the CCR (8.42) imply

[o(D,F1),0(P, Fr)] =io(F1,F?) (8.44)
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Conversely if we have a representation o (P, F) of (8.44), then the operators ¢(g) =
0(9,(0,9) and 7 (f) = —o (D, (f,0)) satisfy (8.42). The problem is now to find a
distribution solution of d®/dr = JH® with initial conditions satisfying (8.44).

If we have a representation of the CCR, then a formal solution is ®; = T(t)®
and we take this as the definition of ®; interpreted in the sense of distributions. Thus
taking into account the invariance of the symplectic form on functions we define

o(®, F) = o(®,T(—NHF) (8.45)
Taking into account that it is skew-symplectic, we define JH® as a distribution by
oc(JHD,F) = —o(®,JHF) (8.46)

Then we have
d

Zo(®,F) = %G(CD,T(—t)F) = —o(®, JHT(—1)F)

dt (8.47)

= —o(®, T(—1)JHF) = o (JH®,, F)

which is the result we want.

There are many quantizations corresponding to different representations of the
CCR. In the finite-dimensional case it does not matter which we take since (as it
turns out) they are all unitarily equivalent and so physically equivalent. In the present
infinite-dimensional case this is not true and different choices correspond to different
physics. Which should we choose?

We have two criteria. The first is that we want a representation which differs only
locally from empty space. This is the appropriate choice to describe a finite number
of free elementary particles. For statistical mechanics or for interacting fields we
would want to make a different choice. The second criterion is that the energy (that
is the spectrum of the Hamiltonian) should be positive.

Our choice is based on a Fock space for a free relativistic particle, thus realiz-
ing the field-particle duality. As in section 8.1.5 we take the symmetric Fock space
FH(Ho) where Ho = L*(R3, dp). If a*, a are the creation and annihilation operators
on this Fock space, we define on the domain Dy of finite particle vectors (see (5.59))

o(®,F) = i(a(KoF) — a*(KoF)) (8.48)
where with w(p) = /|p|? + m?
| 127, + —1/2=
Ko(f,g) = ﬁ (a) f+iow g) (8.49)

The operator Ky : S(R?) x S(R?) — L*(R3,dp) is selected to satisfy two criteria.
The first is that it is symplectic from (real) S(R3) x S(R?) with symplectic form o
to (complex) L>(R?) with symplectic form which is twice the imaginary part of the
inner product, that is

2 Im(KoF1,KoF>) = o(F1,F>) (8.50)



122

Scalar particles and fields

This will give the CCR. Second it maps a real solution F; = T(#)F of the Klein—
Gordon equation to a complex positive energy solution (in momentum space), that is

KoF; = e ™ KyF (8.51)

This will give the positive energy. Both of these are easily checked.
Let us see that this works:

Theorem 8.1 The operators o (®, F) defined by (8.48) (8.49) satisfy the CCR, and
time evolution is implemented by the free particle Hamiltonian H = dTI"(w) > 0 in
the sense that

o (&, F) = Mo (D, Fe ! (8.52)
Proof It gives a representation of the CCR since
[o(D, F1),0(D, F2)] = (KoF'1, KoF2) — (KoF2, KoF1)
= 2ilm(KoF1, KoF>) (8.53)
=io(F1,F>)
The time evolution is
0(®y, F) = o(®, T(—DF)
= i(a(KoT(—)F) — a*(KoT(—1)F))

. iwt %/ lwt (854)
= i(a(e"” KoF) — a” (' KyF))
— eiHlU(cD, F)efiHl
the last step by e~ = I'(e~") and (5.69). O

The field ¢(t, h) = o (P, (0, h)) and the momentum 7 (¢, h) = o (P, (—h,0)) are
given by

(Z')(t h) =a ﬂ + a eia)til
W Vo (8.55)
7(1,h) = —ia (/26" F) + ia* (Vo 2e'h)

The first can also be written as the distribution identity

— -3/2 —i(@(p)t—px) * i(@(p)1—px) d—p
8% = 2 [ (atpre +a*(p)e ) o ©5
Thatis ¢(t,h) = f ¢(t,X)h(x)dx has a meaning and the meaning is (8.55). But (8.56)
can also be understood pointwise as a bilinear form on Dgs x Dg as in section 5.4.2.
Our time evolution is generated by H = dI'(w). But is this the quantization of the
classical Hamiltonian (8.30)? Indeed it is, suitably interpreted. The claim is that with
¢(x) = ¢(0,x) and 7 (x) = (d¢/dt)(0,x) given by (8.56)

1
3 / L (TX) + (VX)) + mPp*(x)) - dx = / a*(p)o(p)a(p)dp (8.57)
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Here on the left the symbol : - - - : is Wick ordering which means move all creation
operators to the left and all annihilation operators to the right. Then both sides of the
equation are well-defined as bilinear forms on Dg x Dg and the claim is that they
are equal. We leave the details as a problem.

Problem8.7  Verify (8.50), (8.51). (For the latter use (8.38) or KoJH = —iwK.)

Problem 8.8 Verify (8.57).

8.2.3 Generalization

Next we digress and give a more abstract version of the construction we used in
theorem 8.1. Let (S, o) be a real vector space with symplectic form o, that is o is a
bilinear form on S which is skew-symmetric and nondegenerate. Let H be a complex
Hilbert space taken as a real vector space with symplectic form which is twice the
imaginary part of the inner product. Let K : § — 'H be symplectic with dense range.
Then for F € §

o(®,F) = i(a(KF) — a*(KF)) (8.58)
on Dy C FT(H) satisfies the CCR (8.44).

Further suppose 7'(¢) is a linear symplectic time evolution on S and that K7(t) =
e~ MK for some self-adjoint operator 4 on . Then the time evolution defined by
o(®;,F) = o(®, T(—1)F) is unitarily implemented with U(r) = T'(e~) in the
sense that

(P, F) = U@ 'o(@, FU®) (8.59)
The following problems refer to this abstract construction.
Problem 8.9 Let (H,K,h) and (H',K’, k") be two such structures for (S, o, 7(£))
with fields o (®, F), o (®’, F). Establish the following:

1. If there is a unitary operator V : H — H’ such that VK = K’, then there is a
unitary U : FT(H) — FT(H') so

Uo(®, U = o(®), F) (8.60)

2. If b, i’ are both positive, then V exists.' (So a positive energy representation is
essentially unique.)

I See Kay (1979).
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Problem 8.10 Suppose we want to quantize a field which satisfies the equation
(=04 m? + V)¢ = 0 where V = V(x) in L*(R?) only depends on the spatial
variables. Construct a suitable field operator satisfying the CCR at time zero, and
show that the time evolution is unitarily implemented.

8.2.4 Covariant quantization

Now we give a more covariant construction of the scalar quantum field. The quanti-
zation problem is just as before but now we define the field operator on a different
space. We start with the relativistic single particle space H = L2(V,Jnr ,d{Lm) which
is identified with H = L*(R3,dp/2w(p)). Our map K from S(R3) to H is now
taken to be

K(f,8) = of +ig (8.61)

and we still have

2 Im(KF1,KF,) = o(F1, F2)
pRm AL (8.62)
KF; = e ''KF
The field operator is again
o(®,F) = i(a(KF) — a*(KF)) (8.63)

on Dy C FT(H). Time evolution is defined by o (®,, F) = o (®, T(—1)F) as before
and we find that ¢(z, h) = o (P, (0, h)) is given by

(1, h) = a(e™h) + a*(€“'h) (8.64)

Since the operator V = [/2w(p)] is unitary from Hy to H and satisfies VKy = K,
the field operators are unitarily equivalent to those of the previous section by I'(V).
(This is a special case of problem 8.9.)

It is also useful to consider a field smeared in space and time. Formally we
have ¢(t,h) = f (1, X)h(x)dx, so for real f € S(R*) the operator ¢(f) =
f ¢(t, x)f (¢, x)dtdx would be defined by

Mﬂ=/¢mm»wr (3.65)
This is evaluated as
¢(f) = a(T14f) + a*(T1f) (8.66)

where

(IL4A)(p) = V27 f(w(p), p) (8.67)
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and where f‘ is again the Fourier transform with the Lorentz inner product (see
(7.88)). Thus I14f is essentially the restriction of the Fourier transform of f to the
mass shell V,\'. Since (=0 + m?)f has a Fourier transform which vanishes on the
mass shell we have

(-0 +m*)f) =0 (8.68)

This says that ¢ satisfies the Klein—Gordon equation (—J 4+ m?)¢ = 0 in the sense
of distributions.

We can also exhibit the covariance under proper Poincaré transformations (a, A).
If fun(x) = f(A_l(x — a)) is the transformed test function, then IT (f, o) =
u(a, A)(ITyf) where u(a, A) is the unitary representation defined in (8.16). Hence
with U(a, A) = I'(u(a, A)) we have

O (fan) = Ula, N(f)U(a, )™ (8.69)

This shows that the Poincaré transformed field is unitarily equivalent to the original
field.
Finally we consider the commutator of two fields. We compute taking into account

the reality condition f(p) = f‘ (—=p)
[¢(g), d()]
= (M4g, NN — T4f, T4 g
dp (8.70)

. f (&), —p@®). p) — F(—o®), ~p2(®). p) s

1
=-<gEf>
i

where < g,f >= [ g(x)f(x)dx and E = E* — E~ is the propagator (7.91). If f, g
have spacelike separated supports, that is if supp g N J*(supp f) = @, then supp g N
supp E*f = @; hence < g, Ef >= 0, and so [¢(g), ¢(f)] = 0. This strict locality
result is a manifestation of the basic fact that influence cannot propagate faster than
the speed of light.

Let us summarize writing (8.68), (8.69), (8.70) in distribution form:

Theorem 8.2  (The free field) Let ¢ be the field operator by (8.66). Then in the sense
of distributions

1. (Field equation)
(-O0+4m»p =0 (8.71)
2. (Covariance) For any proper Poincaré transformation (a, A) € 771
Ula, Npx)U(a, A)~' = ¢p(Ax + a) (8.72)
3. (Locality) In the region of spacelike separation (x —y) - (x —y) > 0
[p(x), 6] =0 (8.73)
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8.3 (Charged scalar field

8.3.1 Hamiltonian formulation

First we write the equations for the classical charged scalar field as a Hamiltonian
system. We have four functions (¢1,71) and (¢, m2) each pair of which satisfies
(8.29). This is a Hamiltonian system with Hamiltonian

H(p,7) = % > / (0 + (Vo)? + m*p})dx (8.74)
=12

Since 80¢>l~ = —0dp¢; = —m;, the charge (7.41) is

0= /(¢2m — ma¢1)dx (8.75)

It is essentially the symplectic form (8.35) but has a new interpretation in this context.
Here is another formal way to arrive at a conserved charge. Note that the Hamil-

tonian is invariant under rotations in R, that is with ¢ = (¢1,¢2) and T = (771, 72)

we have H(¢(0), (0)) = H(¢p, ) where ¢p(0) = R(—60)¢ and w(0) = R(—6)r and

R(—@):( cos6 sin 6 ) (8.76)

—sin@ cos 6

This is a global (that is constant) gauge transformation. But ¢(0),(6) are the
solutions of the equations

do dm

—— =¢ —— =

do do 877
deo " dmy .

a0~ 7 a0 — !

This is a Hamiltonian system with generator Q given by (8.75), thatis 0Q/dm| = ¢»
and —0Q/d¢; = m; and so forth. As explained in section 2.4 the invariance of H
under the flow of Q implies that {H, Q} = 0, which in turn implies that Q is invariant
under the flow of H, that is charge is conserved.

It will also be useful to regard the field as complex valued and introduce

¢:¢1+i¢2 ¢*:¢1—i¢2

v2 V2 (8.78)
L el ot Tt im

V2 V2

Then (¢, ) and (¢p*, 7*) are pairs of conjugate variables. The Hamiltonian is

H= / ("7 + Vo' - Vo + m*¢p*p)dx (8.79)
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and the charge is
0= i/(qb*n* — ¢m)dx (8.80)

The gauge transformations generated by Q now take the form ¢ — e ¢,

7* — e 7% and ¢* — €%¢* m — €7 and they are still a symmetry of the

Hamiltonian.

8.3.2 (anonical quantization

For quantization we look for symmetric operators ¢, w1 and ¢2, 72, each pair satis-
fying the field equations (8.29) and the CCR, and commuting self-adjoint operators
H, Q implementing time evolution and gauge transformations. With ®; = (¢;, 7)),
i = 1,2and F = (f,g) in real S(R?) x S(R?) the combination o(P;, F) =
¢i(g) — mi(f) should satisfy

[0(®;, F),0(D;, F))] = io(F, F')

[0(®1, F),0(P2, F)] =0

Mo (@;, Fe ! = o(®;, T(—1)F) (8.81)

eng o(P,F) e_iQG — R(—6) o(P,F)
o(D2, F) o(D2, F)

We can also formulate this in terms of ® = (&) + i@z)/ﬁ = (¢, 7*) and its
adjoint ®* = (¥ — i<I>2)/«/§ = (¢*, ). It is equivalent to ask for operators o (®, F)
and o (®*, F), which are adjoint to each other and self-adjoint H, Q which satisfy

[0(®,F),0(®*, F)] = io(F,F)
[0(®,F),0(P,F)] =0

Mo (d, Fe M = 6(d, T(—1)F)
é6(0,F)e™ = ¢ 5 (D, F)

(8.82)

The first three equations in (8.81) or (8.82) are familiar from the discussion of the
neutral scalar field. The last is the quantum version of the classical statement that
charge generates global gauge transformations.

To realize this structure we introduce a second particle and follow the treatment of
section 8.2.2. On the Hilbert space F+(Hg) ® F1(Ho) we define

af)=al)RI b(f)=1Q a(f) (8.83)
The operators a(f), a*(f), b(f), b*(f) satisfy

[a(f), a* ()] = (. &) [b(), b*()] = (£, 8) (8.84)
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with all other commutators equal to zero. Then we define
o (®,F) = i(a(KoF) — b*(KoF))

(8.85)

o (9%, F) = i(b(KoF) — a*(KoF))
These are adjoint to each other and the identities (8.82) are satisfied with e~/
(e @) @ I'(e~ ) and 7Y = I'(e=) ® I'(¢?). The first three follow as before.

For the last, note that

Ht

¢ 5 (@, F)e—'20 = i(a(eieKoF) _ b*(e*ieKoF))
- e—"“)i(a(KoF) - b*(KoF)) (8.86)
=e¢ V5D, F)
The Hamiltonian and the charge are given by

H=dTN(o)Q@I+1®dl'(w)
- / o@)la*@)a(p) + b* (P)b(p)ldp
OQ=N®I—-I®N

_ / [a*(p)a(p) — b*(p)b(p)]dp

(8.87)

The charge can also be written as Q = N, — N, where N, = N ® [ is the
number of a particles and N, = I ® N is the number of b particles. Thus we see
that the a particles carry charge +1 (in natural units) while the b particles carry
charge —1. Charge takes integer values — “charge is quantized.” The b particles are
called the anti-particles of the a particles. Both are necessary to get the structure we
want.

Problem 8.11

1. Find expressions for ¢(z,x), 7 (t,X), $*(t,Xx), 7*(¢,x) as bilinear forms on
Ds x Dg. as in (8.56).

2. Show that the quantum charge Q in (8.87) regarded as a bilinear form on Dg x
Dg has the same form as the classical charge (8.80), that is

0= i/ (@7 (X) — ¢ (X)) : dx (8.88)

where ¢(x) = ¢(0, x), etc. (Wick ordering was defined after equation (8.57).)

Notes on chapter 8: In general charge can be defined as the labels for the irre-

ducible representations of the internal symmetry group, see Haag (1992). In our

case the symmetry group is U(1) and the irreducible representations ¢ — ¢

are labeled by integers n.
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Everything in this chapter could be done in a spacetime (R<, 1) with d > 2 instead
of specifically d = 4.

There are many physics texts on quantum field theory. Early works by
Schweber (1962) and Roman (1969) are still useful. Some more recent books are
Itzykson and Zuber (1980), Weinberg (1995) and Peskin and Schroeder (1995). Our
notation mostly agrees with Weinberg.

A mathematical treatment of free fieclds can be found in Baez er al. (1992).



Electrons and photons

In this chapter we explore the quantum mechanical description of free electrons and
photons and associated fields.

However we start with a digression developing the transformation properties of
spinors under the Lorentz group, or more precisely the covering group of the Lorentz
group. The discussion extends the discussion of spin in section 4.6 and the Dirac
equation in section 7.3.

9.1 Spinors
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Given 4 x 4 gamma matrices satisfying {y*, y"} = 2n*", let V be the real vector
space of all matrices of the form y - a = n,,y"a" witha € R*. Consider the group
of nonsingular 4 x 4 matrices S so that S(y - a)S~ s again in V, called Pin(1, 3).!
Since the y matrices are a basis (problem 7.6) this means that S(y - S~ = y-d
for a unique @’ € R*. The map a — ' is linear and so @’ = A(S)a for some matrix
A(S). Thus A(S) is defined by

Sy -a)S~ =y AS)a 9.1)

Lemma9.1 The map S — A(S) is a two-to-one homomorphism from Pin(1,3) onto
the Lorentz group L = O(1,3).

Proof The map is a homomorphism since

Y - A(ST)a = ST(y - a)(ST)™!
=Sy - A(Da)s™! 9.2)
=y - (ASAD))a
which implies A(ST) = A(S)A(T). The matrix A(S) is a Lorentz transformation

since

AS)a-AS)a=(y-AS)a) =Sy -a)S )Y =a-a 9.3)

! The name Pin(1, 3) is a truncation of Spin(1, 3) defined below.
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To see that the mapping is onto note that for A € £ we have that (y)* =
(A=Y yY is also a set of gamma matrices. But any two such are related by
(y")* = My*M~" for some M and so we have

My oM™ =AYy a=y - (Aa) 9.4)

Hence M € Pin(1,3) and A(M) = A.
The mapping is at least two-to-one since A(—S) = A(S). To see it is exactly
two-to-one it suffices to show that A(S) = I implies S = %/, which we omit. ]

Recall that £ has a subgroup £, = SO(1, 3) defined by the condition det A = 1.
This is covered by

Spin(1,3) = {S € Pin(1,3) : A(S) € L4} 9.5)

which is a subgroup of Pin(1,3). Furthermore £ has a connected subgroup El
defined by AO0 > 1, which is covered by

Spin®(1,3) = {S € Spin(1,3) : A(S) € L]} (9.6)

This is a subgroup of Spin(1, 3) and is connected as well (problem 9.4).
Next consider the indefinite inner product u’ Bv of (7.53) on the spinor space C*.
We show it is invariant under Spin' (1, 3).

Lemma9.2 ForS € Spin'(1,3), u,v,e C* and p = iy°
Su) BSv = u'Bv 9.7)
Equivalently if S* is the adjoint with the usual inner product
5*y08 =50 9.8
Proof Take the adjoint of S(y - x)S™! = y - A(S)x. Then with X = (—xo, x) we find
(S-S =y - AW 99

However y -3 = y°(y - x)y?, so we have

YOSyl - 0l 'Syl =y - (A (9.10)
This implies that
yos Y = &8 9.11)
and so
508 = +9° (9.12)

The sign is a continuous function of S on the connected set SpinT(l, 3). Since it is
+1 at the identity, it is 4+1 everywhere. ]
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9.2 Electrons

9.2.1 Solutions of the Dirac equation

‘We consider the Dirac equation (y - d + m)yr = 0 defined in section 7.3.3 and try to
interpret it as describing the quantum time evolution for a single electron or proton
or any other massive spin 1/2 particle. We begin by rewriting it and exhibiting some
solutions.

Consider the self-adjoint 4 x 4 matrices

B =iy° of = —yOpk k=1,2,3 9.17)
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These have the anti-commutation relations
(o, o} = 257 (&, 8y =0 gr=1 (9.18)

and they are traceless. Multiplying the Dirac equation by iy, it takes the form

iaa—ll; = (—iV-a+ Bm)y (9.19)

To solve it, note that the partial Fourier transform v/(z, p) satisfies the equation

Y _
lE =P o+ Bmy (9.20)

The matrix p - o + Bm is self-adjoint and satisfies
-+ pm)? = [p* +m’ = w(p)’ 9:21)

It follows that the eigenvalues of p - « + Bm can only be +w(p). Furthermore since
tr(p-a+ pm) = 0, both +w(p) must occur, each with multiplicity 2. For each p € R?
let Wp + be the two-dimensional eigenspace for the positive or negative eigenvalue.
Then we have

4 _ ot -
C' = W, @W, (9.22)
Now a general solution of (9.20) is

U (t,p) = e Py (p) + Py (p) (9.23)

with ¥ (p) € Wgc. A general solution of the Dirac equation is

vex) = 2m) =2 / X (TP Y (p) + Py _(p) ) (9:24)

9.2.2 Quantum interpretation

Now we give the quantum interpretation. First we work with the Fourier trans-
formed variable, which we interpret as momentum space. The Hilbert space is
Ho = L*(R3,C*, dp), the C*-valued square integrable functions on R3. Equation
(9.20) has the form of a Schrodinger equation if we take as the Hamiltonian

H=I[p o+ pm (9.25)
The Hilbert space splits into positive and negative energy subspaces

Ho=Hg ®H, (9.26)
where

Hy ={¥ € Ho: ¥(p) € Wy) 9.27)



134

Electrons and photons

With respect to this splitting the Hamiltonian is H = [w(p)] & [—w(p)], which is
self-adjoint on its natural domain. Time evolution is exp(—th) = exp(—iw(p)t) &
exp(io(p)f) as in (9.23). To write it another way, note that the projection onto Hgﬁ is

+ (p -
pE_ [w(p) (p-oa+ ﬁm)} 9.28)
20(p)
Then for any ¥ € Hy we have
e_”:ltl// — e—ith-‘rw 4 eiwl‘P—w (929)
Return to configuration space ﬂo = L*(R3,C* dx) with a Fourier transform

F~1': Hy — H. The Dirac Hamiltonian is Hp = F~HF, which on S(R3) is
Hp = —iV -a+ Bm (9.30)

The time evolution is exp(—iHpt) = F~! exp(—if{t)f as in (9.24).

At this point we remember that we only want positive energy solutions. Thus
instead of Hy, the Hilbert space is HT, the Hamiltonian is [w(p)], and the time
evolution is [exp(—iw(p)?)]. Taking the inverse Fourier transform gives a Hilbert
space 7:[3' = F ’IH(J{ , a Hamiltonian Hp = F~! [w(p)]F, and a time evolution
F~exp(—iw(p)t)].F. The wave function with initial condition ¥ € 7%3' is

Y(t,x) = 2m) 32 / e~ @P=PX) ) (p)dp (9.31)

which still satisfies the Dirac equation.

But there is a problem with this restriction to positive energy. The operator [xX] can
no longer be precisely interpreted as representing the kth coordinate of the particle.
This is because it does not act on ﬂar . To put it another way, F[x*]1F~! = id/dp
does not act on the positive energy subspace HS’ . To remedy this we stay in momen-
tum space and define a new coordinate operator — the Newton—Wigner operator. It
involves the projection operator at zero momentum which is (1 + £)/2 and it is

defined by
1 0
xt=opt [0 (LEAY (2 @ pt (9.32)
w+m 2 0Pk w~+m

This is a symmetric operator mapping H(J{ N S(R3) to itself and is supposed to

represent the kth coordinate of the particle. This interpretation is supported by the
following result:

Problem9.6 Show that XX, [p/] satisfy the the canonical commutation relations.
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9.2.3 Translations and rotations

Next we investigate the effect of spacetime translations and rotations on solutions,
excluding boosts for now.
Note that the positive energy condition (p - o + Bm — w(p))¥(p) = 0 can be

multiplied by 8 = iyy and written (iy - ¢(p) + m)¥(p) = 0 where ¢(p) = (w(p), p)-
If ¥ (p) satisfies the condition and S € Spin'(1,3) is a spinor rotation covering R €
SO(3), then Sw(R’lp) also satisfies the condition. This follows since §~! (y-a)sS =
y - R~ 'a and so

(iv - @) +m)sy®~'p) = S(iy - ¢R'D)+m)yR D) =0 (933)

Now we can define a representation of translations and rotations on Hg .Fora =
(a®, a) and a spinor rotation S covering a rotation R, we define

(uo(a, S)Y)(p) = e @P" Py (R~1p) (9.34)

One checks that ug(a, S) is unitary using the facts that the Lebesgue measure is rota-
tion invariant and that S*S = I. (For a rotation, [S,8] = 0 so $*S = S§*BSB =
B% = I.) One also checks that ug(a, S)uo(d’,S'") = uo(a + Rd’,SS’) so we have a
representation.

A unitary representation on ﬂaL is defined by ip(a,S) = F “Yug(a, S)F. If Y(1,x)
is the complete wave function given by (9.31), then

(fo(a, Y (t, Nx) = Syt — a”, R~ (x — a)) (9.35)
Furthermore the Newton—Wigner operator X = (X 1 x2, X3) satisfies
uo((0,a), )™ Xuo((0,a),5) = RX +a (9.36)

This is a consistency check on the interpretation of both ug(a, S) and X.

Now specialize to the rotation Rg = R(ey, ) around the first axis. By problem 9.2
this is covered by Sg = e~ 12739/ and so (9.34) becomes

(0(0, Sp)¥)(p) = e 27302y (R (p)) (9.37)

The first component of angular momentum is i(J1¥ )(p) = id/dO[- - - 1lp=0 and we
find as in (4.74)

a 0 i
J1=p3 (l—> - (l—> — 5NV (9.38)

ap2 aps/) 2
The first component of spin is the internal part ¥ = —iy»>y3/2. Similarly the other
components are Xy = —iy3y]/2 and X3 = —iyjy2/2. In each case we have El-z =

1/4 so X; has eigenvalues +1/2, which confirms that we are describing a particle of
spin 1/2.
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Now we have operators on H(J)r for position, momentum, and angular momentum
(but not spin alone, which does not act on this space). This is all we need. It is not
required or particularly useful to try to give a meaning to the individual components
of our spinor-valued wave function.

9.2.4 A covariant formulation

Next we give an alternative more covariant construction for the free electron. Our
goal is a unitary representation of the extended proper Poincaré group defined as all
pairs {a, S} with a € R* and S € Spin'(1,3) with the group law

{a,SH{d',S'} = {a + A©S)d, S5} (9.39)

We know that u ' Bv is invariant under Spin' (1, 3). We next show that it is postive
definite on the positive energy subspace.
Llemma9.3 Foru,v e W;f

7

wp) u'Bv=mutv (9.40)

Proof Since (« - p + Bm)v = w(p)v
o) u'pv=u'Bla - p+ pmpw (9.41)
and since (« - p + fm)u = w(p)u
@) u' B = (o p+ pmyu)’ pv
=u'(a-p+ BmPv (9.42)
=u'p(—a-p+ pmyv
Adding these equations and using 2 = I gives the result. ]

Now consider L2 (R3,C4,m a)(p)’ldp) as a candidate for the single particle
space. Here we have used a slightly different normalization for the Lorentz invari-
ant measure; compare the dp/(2w(p)) that we used in the scalar case. There is again
a positive energy subspace defined by the condition ¥ (p) € W;‘ . On this positive
energy subspace we introduce the relativistic inner product

w4m=/w®Wmmliw
o(p)

2
=fw@um%11)@
w(p)

This is positive definite and we let H be the completion in the associated norm. We

(9.43)

have the identification

HY =(y el? (R3,(C4,m2a)(p)_2dp> Y(p) € Wi (9.44)
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An alternative is to identify R3 with the mass shell V. via the function ¢(p) =
(w(p), p). As in section 8.1 the measure ma(p)~ ' dp becomes the measure 2m i, on
V.. The condition u € Wl;“ says (iy - ¢(p) + m)u = 0 as noted earlier, and thus we
can define H™ as the completion of

(Y € L2(V,F,C* 2m ) : (iy - p+m)y(p) = 0} (9.45)

with the inner product

W x0p = / v () Bx () 2m dpm(p) (9.46)

Theorem 9.1 On 'H™ there is a unitary representation of the extended proper
Poincaré group defined by

(u(a, S)Y)(p) = e P Sy (AS)™'p) (9.47)
Proof To see that u(a, S) maps H™ to itself, we compute as in (9.33)
(iv - p+m)sva® ™ =S(iv - (AS T P +m)uAS =0 (©948)

To see that U(a, S) is unitary, use (Su)T,B(Sv) = uT,Bv from (9.7) and the Lorentz
invariance of the measure to compute

:
lua. w1} = [ (Sa® ') B(SUAS ) 20 dintr)

= / Y () B (p) 2m dpnm(p) (9.49)
_ 2
= v}

One also checks that u(a, Syu(@', §') = u(a + A(S)d’, SS') to finish the proof. [

Remark Identify the new Hilbert space with the old Hilbert space by the unitary
operator V : Hy — H™ defined by

VY)p) = % ) (9.50)

With this identification the new representation of translations and rotations in (9.47)
extends the old representation (9.34).

9.2.5 Charge conjugation

We close this section with some special results about charge conjugation, which we
need in the next section. Let us temporarily return to the classical Dirac equation
with an external electromagnetic potential A. This has the form (from (7.77))

(y (@ —ieA)+myy =0 (9.51)
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We want to find a charge conjugation operator which maps solutions of this equation
with charge e to solutions with the opposite charge —e. Start by taking the complex
conjugate which yields

(7 - (3 + ieA) +m)y =0 (9.52)

Now let C be a nonsingular matrix which satisfies Cy*C~! = y*. Such a matrix
exists since y# is again the possible choice of the gamma matrices. In fact we can
choose C = C = C~! = C*. For example in the representation (7.49) where y? is
real and the other y# are imaginary we could take C = 2. Applying C we get

(y - (8 +ieA) +m)Cy =0 (9.53)
Thus the charge conjugation operator we seek is
Cy=Cvy (9.54)

It is anti-linear and satisfies Cy* = y*C and C* = 1.

Return now to the free case A = 0 and the quantum interpretation. Then C defined
on L2(R3,C*, dx) by (9.54) is an anti-unitary operator which is a conjugation in the
mathematical sense that (C,Cx) = (x, ¥). It satisfies Ca’C = o’ and CAC = —B
and hence we have

C(=iV - o + Bm)C = —(—iV - a + Bm) (9.55)

This shows that C maps positive energy states into negative energy states and vice-
versa. Thus it does not act on our positive energy Hilbert space. However charge
conjugation will find a place in the quantum field theory.

We also will need the momentum space version of (9.55). Let C = FCF ! be
conjugation in L>(R3, C*, dp). Explicitly

Cy)(Pp) = C ¥ (—p) (9.56)

Then we have

Clp-a+ pmlC =—[p-a+ Bm] 9.57)

Problem 9.7 Let H = Hp + BV = —iV - a + B(m + V) where V is is a real
function with ||V|s < m.

Show that H is self-adjoint on D(Hp) C ’I—A[o.

Show that zero is in the resolvent set for H.

Show that CH = —HC.

(hard) Let P* be the projection onto the positive and negative energy subspaces
for H. Show that CPT = P¥C.

s> @ =



139

9.3 Dirac fields

9.3 Diracfields

9.3.1 The problem

Now we want solutions of the Dirac equation which are quantum field operators.
We seek Dirac field operators ¥4 (x) = ¥4 (t,x) indexed by x € RYta =1,...,4
such that

iaa—l/tf =(—iV-a+ Bmy

{¥(0,%), ¥5(0,y)} = 8(x — ¥)dap

This is roughly analogous to what we did with the scalar field, except that now we use

(9.58)

the anti-commutator instead of the commutator. This turns out to be necessary for a

consistent theory. It means that the associated particles are fermions as we shall see.
These equations should be interpreted in the sense of distributions. We formally

integrate with complex test functions € S(R?, C*) in space only and define

v = [ 3 vt 0
¢ (9.59)
V) = / D Vet X0hg (X)dx

Thus we seek operators v(, h) anti-linear in /4 with adjoints ¥ *(, h) linear in & such
that

i%l//(t, h) = ¥(t,(—iV - o + Bm)h)
{¥(0,h), ¥*(0,8)} = (h,g)

where (h, g) is the L*(R3, C*, dx) inner product.

(9.60)

Example 9.1 Here is a construction that accomplishes these goals. With Hy =
L*(R3,C*, dp) take the anti-symmetric Fock space F~(H). Define the fields in
terms of the bounded creation and annihilation operators a, a* by

W (h) = a(h) Y*(h) = a*(h) (9.61)

Then {y(h), ¥*(g)} = (h, g) = (h,g) as required. Time evolved field operators
are defined by (¢, h) = Y (e'f'?'h) where Hp = —iV - a + Bm is the self-adjoint
Hamiltonian defined in section 9.2.2. Then id/dt ¥ (¢, h) = ¥ (¢, Hph) as required.

This construction is not satisfactory because of the presence of the negative energy
particles. If we suppress them entirely, we do not get the commutator we want.
An alternative picture is that all the negative energy states are present, but they
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are already filled, thereby stabilizing the theory. (The idea invokes the exclusion
principle again.) Because this sea of negative energy fermions is homogeneous, its
presence is not manifest. It is possible however to have unoccupied states or holes
in this negative energy sea. These holes propagate as if they have positive energy
and the opposite charge. They are identified as the anti-particles. If the particles
are electrons, the anti-particles are called positrons. The observed electron-positron
annihilation into photons is then identified with an electron falling to a negative
energy state, filling the hole and emitting a photon. The theory is known as hole
theory and the negative energy background is called the Dirac sea. It is reminiscent
of the Fermi sea encountered in section 6.4, but here it is a more radical concept
since there is no lowest energy state.

We do not attempt to make direct mathematical sense of this picture. Instead take
a standard shortcut and give a construction in which the anti-particles are introduced
as elementary particles, just as for the charged scalar field. Our goal is again field
operators (¢, h) satisfying (9.60) but now such that time evolution is implemented
with positive energy.

9.3.2 The field operator

Let HBL be the positive energy Hilbert space (9.27) and consider the fermion Fock
space

Fo=F (HJ)®F (Hy) (9.62)

The first factor represents particles and the second factor represents anti-particles.
We introduce annihilation operators for /i € Hg by

ath)y =a(th)®1 b(h) = (=N ® a(h) (9.63)
where N is the number operator. These satisfy
{a(h),a*(g)} = (h,8) {b(h), b*(9)} = (h, ) (9.64)
with all other anti-commutators equal to zero. In particular we have
{a(h), b(g)} =0 (9.65)

This is the reason we have introduced the factor (— 1) in the definition; otherwise the
commutator would be zero rather than the anti-commutator. This anti-commutator is
a reflection of the deep connection between particles and anti-particles, which is
natural in hole theory.

Now for & € S(R3, C*) define the time zero field operator on Fy by

W(h) = a(P*h) + b*(CP™h) (9.66)
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Here P* is the projection onto H(jf as in (9.28) and C is charge conjugation in
momentum space as in (9.56). Note that CP~h does have positive energy since it
follows from (9.57) that CPE = PTC. The field has the desired anti-commutator

since
W), ¥*@) = (PTh,P*g)+ (CP"g,CP™h)
=P h,PYg) + P h,P"}) (9.67)
=(h,3) = (h,g)
To satisfy the field equation, time evolution is again defined by
Y (t,h) = P(e™™'h) (9.68)
But F(e0'h) = ¢ifl']; and P+eiflt = ¢! P+ and CP~efl! = CP=ei! = ¢@ICP~
and so we have
V(t,h) = a(e® Pt h) 4+ b*(e™'CP™h) (9.69)

In this form we can see that time evolution is generated by a Hamiltonian with
positive energy. We collect this and other properties of the field in a theorem.

Theorem 9.2

1. ¥ (t, h) satisfies the field equation and anti-commutation relations (9.60).
2. Time evolution is unitarily implemented by

w.h) = My e (9.70)
where e~ Ht = (e~ @ T'(e~") and
H=dlN'(o)@I+1®dl'(w) >0 (9.71)
3. Gauge transformations are implemented by
et h) = ey (e 9.72)
where e = I'(e=?) @ T'(¢'?) and the charge is
Q=Ny—Npy=N®I—-I®N (9.73)

The last point follows just as for the charged scalar field, see (8.86). As in prob-
lem 8.11, Q can be identified with fx o_, - ¥*¢ : which is the quantization of (7.56).
From (9.73) we see that each particle contributes charge +1 (in natural units), while
each anti-particle contributes charge —1. These are the conventions for a positively
charged fermion like a proton. For electrons replace Q by —Q and change signs
elsewhere.

Note the reversal from the construction of example 9.1. There Q is positive and H
is not. Now H is positive and Q is not.
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Problem 9.8 Consider the Dirac equation with a bounded real potential V = V(x)
satisfying ||V]co < m

i% = (—ia -V + Bm+ V) =0 (9.74)

Using the results of problem 9.7 construct a distribution solution v (#, #) with the
canonical anti-commutator at # = 0 and with positive energy.

9.3.3 Locality

Let us also smear in space and time and define for f € S(R*, C*)

V() = f Y[t )dt = a(PT L) + b (CPTTIf) 9.75)

where as in (8.67)
(M+f)(P) = v27f(xw(p), p) (9.76)

Note that v (f) is anti-linear in f.
Then we compute

W ¥* () = (PTTLLf, PT T g) + (CP T_g,CP TI_f)
=P 4 f, P Tl g) + (P TI_f,P Tl_g) 9.77)
= (P T4f, Tyg) 4+ (PTT_f,T_g)

Now use the identity

1
(PETLL)(P) = £=——(T1L(id; + Hp)f)(P) (9.78)
20(p)
where again Hp = —ia - V + m. Then (9.77) becomes
. 1 . 1
(Mo + Hpf. 5-Tg) = (M-8 + Hp)f. 7-T-g)  (9.79)
However
1 1 1
<H+f, 2—H+g> - (H—f, —H—g) = —(f.Eg) (9.80)
w 2w i

where E is the scalar propagator (7.91) and on the right side the inner product is in
LZ(R4, C*). Then we have

. 1, L
W @) = - (0, + Hp)f . Eg) = —(f.Gds + Hp)Eg) ~ (O81)

Since (id; + Hp) does not enlarge supports, this vanishes if f, g have spacelike
separated supports. This is our locality result.
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9.3.4 A covariant formulation

Now we give an alternate construction in which the Lorentz covariance is manifest.
Again let H™ be the positive energy relativistic Hilbert space defined in (9.43)—(9.46)
and set

F=F (HH®F (H" (9.82)

The unitary map V : Ha' — H* defined in (9.50) induces a unitary map I'*(V) =
I'(V) ® I'(V) from Fq to F. Thus starting with the field operator on Fy defined in
(9.75) and now denoted vo(f) we define an equivalent field operator ¥ (f) on F by

Y (f) = T2(V)go(HH)T2(V)~! (9.83)
Then

() = a(VPIILf) + b*(CVPTI_f) (9.84)

where now the creation and annihilation operators are on . However by (9.78)

1
VPEIL = iz—ni(ia, + Hp) = I+ AB (9.85)
m
where
A= _V—M (9.86)
2m

Therefore

¥ (f) = a(TLL ABf) — b*(CTI_ ABf) (9.87)

These have the following properties:

Theorem 9.3  The Dirac fields y(f) = [ W (x)f (x)dx satisfy in the sense of distribu-
tions:

1. (Field equation) (y - 0 +m){y =0
2. (Covariance) There is a unitary representation U(a,S) of the extended proper
Poincaré group such that

Ula, )y (0)U(a,S) ' = S~ v (AS)x + a) (9.88)

3. (Locality) With y/(f) = Y*(Bf) (the “Dirac adjoint”) and scalar propagator E

- 1
W, ¥ @) = - (=y -9 +mkEg) (9-89)

Proof These operations translate nicely to the test function if we consider
Y (Bf) rather than ¥ (f). For the field equation ((y - d + m)¥)(Bf) = 0 says that
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Y(B(y - 3 +m)f) = 0. (Think of Green’s identity (7.55) at times +00.) We compute
using (=0 4+ m?)f =0

Y(B(y - 0 +m)f)
= a(TIL A(y - 3 +m)f) — b*(CTI_A(y - 3 + m)f)
- (a(l'[+(—D L m2)f) — b*(C_(—0 + m2)f))/2m
—0

(9.90)

For the second we set U(a, S) = I'(u(a, S)) where u(a, S) is defined in (9.47). Then
with £, s(x) = SF(A(S)~!(x — a)) we have
Ua, )y (BU(a, )™ = a(u(a, S)TT4 Af) — b*(u(a, S)CTI_Af)
= a(Tl4 Af,5) — b*(CTI_Af,s) 9.91)
=V (Bfas)
This is the meaning of (9.88). We have also used [é, u(a,S)] =0.

For the third point refer back to the result (9.81) for ¥(f). Then ¥ (f) must have
the same anti-commutator and so

~ 1 1
. v} = 7(f, (id; + Hp)BEg) = 7()’,(—)/ -0 +m)Eg) (9.92)

O

9.4 Photons

Recall that in the absence of charges the electromagnetic potential A satisfies the
wave equation [JA = 0 and a constraint 0#A, = 0. Following the scalar case we
want to interpret positive energy solutions as wave functions for a massless spin one
particle — the photon. Again there is more than one way to accomplish this.

9.4.1 Coulomb gauge

Our first quantization starts with the observation that potentials A,A” which are
gauge equivalent A;L = A, + 0, represent the same physical situation. Any
potential A is gauge equivalent to a potential A" with Aj = 0; one has only to
take A(f,x) = — fé Ao(s, x)ds. Thus it suffices to consider solutions with constraint
Ag = 0 and A = (A}, A»,A3). Making this choice we are working in the Coulomb
gauge.
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In the Coulomb gauge the equations for A(z, x) become

82
— —A)JA=0 V-A=0 9.93
(52-2) ©.93)
The partial Fourier transform A(t, p) satisfies
9? 5\ = .
— A=0 CA=0 9.94
< ozt Ipl ) p (9.94)

For quantization we consider complex square integrable positive energy solutions.
In the Fourier transform variable, identified as momentum, the Hilbert space is the
closed subspace

Ho = (W € L>(R?,C3,dp) : p- U(p) = 0} (9.95)

The time evolution is W(r,p) = e P'WU(p). It does preserve the constraint
p - Y(p) = 0 and is unitary on the Hilbert space. The Hamiltonian is [|p|]. In
configuration space the Hilbert space is Ho = F~'"Hy, the time evolution is

U@t = F e P F (9.96)
and the Hamiltonian is
H=F""[IplF = (-a)' (9.97)
We define a representation of spacetime translations and rotations on Hg by
(uo(a, RYW)(p) = ¢ IP’ PYRY(R"p) (9.98)

This preserves the constraint since if p - ¥(p) = 0, then p - RU(R"'p) = R~ !p -
W(R™'p) = 0. It is unitary since "R = I. On Ho the representation is

io(a,R) = F~ ' up(a, RF (9.99)

The definitions implement these symmetries since if W(,x) = (U({®)W¥)(x) is a
complete time evolved wave function, then

(fig(a, AW (t, ))(X) = R W(t — ap, R~ (x — a)) (9.100)

The representation of the rotation group is characteristic of a spin one particle.

However we have again lost the position operator. Multiplication by x* does
not preserve the Fourier transformed space 7:10. In this case the difficulty cannot
be avoided. There is no Newton—Wigner operator and photons cannot be precisely
localized.

Problem 9.9

1. Show that H) is a closed subspace of L2(R3, C3, dp).
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2. Show that the projection onto Hy is

PY)(P) =) (8, _ %) Wi(p) (9.101)
j

9.4.2 A covariant formulation

Next we give a more covariant construction with the zeroth component restored. Start
with the light cone

Vi=peR:p-p=0p">0) (9.102)
Consider the Hilbert space
H = L*(Vy,C* o) (9.103)
where (¢ is the invariant measure on V(;F . Let H’ be the closed subspace
H ={y € H:p"Yup) =0} (9.104)

We want a representation of the Poincaré group on this space consistent with
(9.98). Our first choice would be to take on H

(u(a, MY)up) = e P4A™H" ¥ (A7 'p) (9.105)
which can also be written (u(a, A)Y)(p) = e P4 A~ (A~ p). This preserves
H’ since if p*yr,,(p) = 0 for all p, then

PHATD AT D) = AT Y (AT ) = 0 (9.106)

If A = R is a rotation, then (R~!)” = R and the representation is unitary. However
for boosts the representation is not unitary since A~ (A~ = [ fails.
To fix this we introduce an indefinite inner product on L2(V(;|r ,C*, o) by

W 30 = fv V@) x () duo(p) = /V V" @ drop)  (9.107)
0 0

This is well-defined and since A~!n(A~")T = 5 we do have the invariance

(ula, My, u(a, A)x)y = (¥, Xy (9.108)

But if we adopt the indefinite inner product, we no longer have a Hilbert space.
We proceed as follows. Consider the closed subspace

H' ={y e H': Yu(p) = puf (p)} (9.109)

where f is some measurable function from VS‘ to C. These are null vectors:
(. ¥), = 0 for ¥ € H”. Then consider the factor space H'/H". Elements of
this space are equivalence classes [v/] of vectors in H' with ¢ ~ ¢/ if v — ' € H.
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Theorem 9.4

1. The indefinite inner product is well-defined and positive definite on the factor
space H'/H" and with this inner product it is a Hilbert space denoted

thys == H//H// (9.1 10)

2. The operators u(a, A) defined by (9.105) on 'H' determine unitary operators
u(a, N) on Hppys, which give an (irreducible) representation of the proper
Poincaré group.

Proof ~With the usual L? inner product let M be the orthogonal complement of "
in ‘H' so that H' = M @ H”. The projection from H’ onto M has kernel H” and so
gives an identification of H'/H" and M as vector spaces. The inverse sends ¥ € M
to[y] e H /H".

To identify M, note that the condition that ¢ = (Y9, ¥) € H' be orthogonal to H”
is the condition that p, v, (p) = 0. Since pg = —p® = —|p|, this says —|p|vo(p) +
p-¥(p) = 0. On the other hand because y € H’ we have p*v,,(p) = 0 or |p|¥o(p)+
p - ¥(p) = 0. Together these imply that Yo(p) = 0 and p - ¥(p) = 0. Thus we have

M=y =¥ eH :¢=0p ¥ (p) =0} (9.111)

Now consider the indefinite inner product. If ¥ is in H" and ¥/,;(p) = p,f(p) is in
H”, then

W'Yy = /V+ Py (P (p)dpo(p) =0 (9.112)
0

It follows that the indefinite inner product is well defined on H'/H” and for vy, ¥, €
H' we have (Y1, ¥2), = ([¥1], [¥2])y- So the map from M to H'/H" preserves the
indefinite inner product. But the indefinite inner product on M coincides with the
L? inner product since there is no zeroth component and hence it is positive definite.
Hence the indefinite inner product is positive definite on H'/H”. Furthermore M
is complete with the indefinite inner product since M is a closed subspace of L?.
Hence the same is true for H'/H” and it is a Hilbert space. Thus we have the first
result and have identified H,4ys and M as Hilbert spaces.

We have already noted that u(a, A) preserves H'. It also preserves H” since if

Y () = puf(p) = Muep®f(p) is in H/, then
(A™H" (AT p) = (AT e (A7), pPF(A™ )
= NupP"f(A™'p) = puf(A~'p)

is again in H". It follows that we have a representation on H,py,, and since it
preserves the inner product, it is unitary. ]

(9.113)

Remarks

1. Hpnys is the basic Hilbert space, called the physical Hilbert space. This procedure
of going to the factor space is known as Gupta—Bleuler quantization.
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2. When we form the factor space, equivalence classes are formed with ¥ ~ ' if
Y = w; + p,f. Returning to spacetime with an inverse Fourier transform this
says that ¥ and v are related by a gauge transformation. Thus the mathemati-
cal equivalence in the construction of the Hilbert space is mirrored by physical
equivalence in the sense that equivalent vectors have the same field strength.

3. The identification of H s with M also gives the equivalence with the quantiza-
tion in the Coulomb gauge on Hy. First identify R> with V(;r by ¢(p) = (|pl.p)-
Then define a unitary map V : Hy — M given by

(V¥)(@®) = v/2IpI (0, W) (9.114)

One checks that for spacetime translations and rotations
V- 'u(a,R)V = up(a,R) (9.115)

which establishes the equivalence.

9.5 Electromagnetic field

Now we undertake the quantization of the electromagnetic field, again as represented
by a potential A satisfying the wave equation [JA = 0 and a constraint 0*A,, = 0. We
skip a Coulomb gauge construction and proceed with a covariant construction. The
strategy is to first ignore the constraint, carry out the quantization, and then impose
the constraint after quantization.

The quantization of [JA = 0 proceeds as in the scalar case except that now we
use the indefinite inner product. Start with the single particle Hilbert space H =
LZ(VS' ,C* 1o) and form the symmetric Fock space F = Ft(H). The indefinite
inner product (h, ), = (h,ng) on H induces an indefinite inner product (/, x), =
(¢, TC(n)x) on F. If we then define creation and annihilation operators a’(h),a(h)
as in (5.54), but now with the indefinite inner product, we find that on Dy

[a(h),a’"(W)] = (h, '),

. (9.116)
(a" (W, x)n = W alh)x)y
So a' is the formal adjoint with respect to the indefinite inner product.
Now as in (8.66) we define field operator A(f) = [ A, (x)n*"f, (x) dx by
A() = a' (L) + a(TL4f) (9.117)
where I1_f € H is defined by
(MN)u(P) = V27 (p) (9.118)

We summarize the results for this field.
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Theorem 9.5 For real f € S(R*,R*) let A(f) be the symmetric operator valued
distribution defined on (F,(-,-)y) by (9.117). Then

1. (Field equation) (=0 4+ m>)A = 0.
2. (Covariance) There is a representation U(a, A) of the proper Poincaré group
preserving the indefinite inner product (-, -), such that

Ula, M)A, (x)U(a, A= A”MAV(Ax + a) (9.119)
3. (Locality)
1
[A(f), A(®)] = 777’” <fu-Egv > (9.120)

The representation of the Poincaré group is U(a, A) = I'(u(a, A)) where u(a, A)
is defined in (9.105) and the covariance (9.119) is equivalent to

Ula, MA(F)U(a, A~ = A(fun) 9.121)

where (f, A ) (x) = (A~ )”JU(A_l (x — a)). All statements can be checked as for the
scalar field, Theorem 8.2.

Now we impose the constraint 9“A, = 0 not as an operator identity but on
wavefunctions by passing to the subspace

F=FtH) (9.122)

where H’ defined in (9.104) has p",(p) = 0. The indefinite inner product is
nonnegative on F'. We consider the null subspace

F'={yeF (¥, ¥), =0} (9.123)

By the Schwarz inequality, elements of F” are orthogonal to any element of F'.
Then the indefinite inner product is well-defined on F'/F” with ([¥11, [¥2]);, =
(Y1, ¥2)yy. Furthermore it is positive definite. The physical Hilbert space is the
completion

Fonys = F'[F" (9.124)
We will see later that the completion is unnecessary.
Theorem 9.6

1. The representation U(a, A) on F determines a unitary representation of the
Poincaré group on Fppys.
2. If 0%f,, = O, then the field operator A(f) acts on a dense domain in Fppys.

Proof U(a, A) preserves F’ with its inner product and " and hence determines an
inner product preserving operator on F'/F" which extends to a unitary on Fppys.
If 9#f,, = 0, then

PHrIIf0)p) = (M (—id"f,))(p) =0 (9.125)
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so I4f € H'. Hence A(f) preserves finite particle vectors in F’. Furthermore it
preserves finite particle vectors in F” since if (¥, ¥), =0, then

APV, APV, = (W, A ),

< (W), FAD L AN ), ? (9.126)
=0
Thus A(f) gives an operator on finite particle vectors in F'/F". O

Remark  Without the restriction 9*f;, = 0, field operators A(f) do not act on Fpy;.
However the field strength F,,, = 9,A, — d,A;, does act on Fys. For a family of
test functions £, we have F(h) = A(6h) where (8h),, = 0" (hyy — hy;,) and this does
satisfy 9#(8h),, = 0.

We also can identify our physical Hilbert space Fpuys as a multi-photon Fock
space.

Theorem 9.7  There is a natural identification
Fohys = f+(thys) 9.127)
where Hppys = H'/H" is the single photon Hilbert space.

Proof First work with the usual inner product. Since H' = M @ H” we have the
identification of Fock spaces (see problem 9.10)

F =FrH)~ FrM)®@ FH(H") (©.128)

Separate off the vacuum component and write FT(H") = C @ F. ; (H"") and make
the identification C ® F (M) ~ FT(M) and we have

F = FH M) @ (FT (M) ® FL(H") (9.129)

Every element of FH(M) ® .7:; \(H") is in F” since all entries have at least one
element in 7{”. No element of F (M) is in F”. We conclude that 7/ = FF (M) ®
}'; (H") and have the identification

F~FrMeaeF' (9.130)

It follows that FT (M) ~ F'/F" as vector spaces under the map v — [v¢]. The
identification preserves the indefinite inner product as we have seen. Thus F'/F”
with the indefinite inner product inherits completeness from F (M), the completion
in (9.124) was unnecessary, and F (M) ~ F'/F" = F,py as Hilbert spaces. Since
also FH(M) &~ F(Hpnys) we have the result. O

Problem9.10  Show that if a Hilbert space splits as H = H; @ Ha, then there is
a unitary operator V : F1T(H) — FT(H1) ® FT(Ho) such that
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1. If U = Uy ® U, is unitary on H, then
Vo)V~ =T(U) @ T(Uy)
2. If h = (hy, hy), then
Va(V™" = a(h) ® I +1 ® a(hy)

Problem 9.11  Show that U(a, A)F,,(x)U(a, A)~" = A% A" Fyp(Ax + a).

Remarks For both electrons and photons we have two kinds of fields. The fields
¥, A are basic for the construction, but are not self-adjoint operators on a Hilbert
space and are not regarded as observables. From them one can construct current den-
sities j* = iy 1 (we only did Q = fjo) and field strengths F,, = 3,A, — d,A,
which are self-adjoint operators on a Hilbert space and are regarded as observables.

The natural next step would be to quantize the combined system of electrons and
photons as described by the equations (7.77). This is known as quantum electro-
dynamics. There has been very little mathematical progress on this problem. There
are expressions for scattering amplitudes given as formal expansions in the charge e.
The coefficients in these expansions are given by formal integrals, some of which are
badly divergent. Nevertheless physicists have developed consistent methods for inter-
preting these integrals known as renormalization. When renormalized, the scattering
amplitudes for the interactions of electrons and photons agree with experiments with
an accuracy of up to 11 significant figures. This spectacular agreement is one reason
that quantum field theory continues to be a fascinating subject.

Notes on chapter 9: For a discussion of the groups O(n,m), Spin(n, m), see
Choquet-Bruhat and DeWitt-Morette (1989).

The universal covering group of ﬁl can be identified as SL(2, C) the complex 2 x 2
matrices with determinant 1. Our group Spin'(1,3) is the so-called (%,O) @ (0, %)
reducible representation of SL(2, C).

The general treatment of irreducible representations of the Poincaré group was
originally due to Wigner and can be found in many places, for example Ohnuki
(1988).

For Newton—Wigner coordinates see Newton and Wigner (1949).

There is a fairly large literature on quantum fields with external potentials, but no
definitive reference. The examples of problem 8.10 and problem 9.8 were chosen
more for simplicity than physical relevance.

For a discussion of the quantization of the electromagnetic field in various gauges,
see Stocchi and Wightman (1974).



Field theory on a manifold

In this chapter we construct a scalar quantum field operator on a general class of
manifolds.! This is the mathematics appropriate for modeling the propagation of
quantum particles and fields in a gravitational field. It is particularly relevant for
extreme situations like black holes and the early universe where quantum effects are
important. However we confine the treatment to basic constructions.

10.1 Lorentzian manifolds
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A Lorentzian manifold is a pair (M, g) consisting of a d-dimensional manifold M
and a Lorentzian metric g. The latter is a symmetric nondegenerate 2-tensor with
signature (—, +, . . ., +). This means that for each point p € M there is a symmetric
nondegenerate bilinear form g,(v, w) on the tangent space M,, such that the associ-
ated matrix has one negative and d — 1 positive eigenvalues. Local coordinates {x*}
give a basis {3/0x"} for M, and the matrix in this basis is

8uv(p) = gp(3/0x",0/9x") (10.1)

A general tangent vector v € M, is written v = v/*9/dx" (summation convention)
and then

gV, v) = gu(Pv” (10.2)

In terms of the dual basis {dx"} for the cotangent space we have
gp = &uv(p)dxtdx” (10.3)

Minkowski space is the special case M = R*, &uv = Nuv-

We classify the tangent vectors according to the sign of g,(v,v). The vector
v € M, is spacelike if g,(v,v) > 0, it is lightlike if g,(v,v) = 0, and it is
timelike if g,(v,v) < 0. The timelike vectors form a cone with two components.
One component is designated as future directed and one component is designated as

! This chapter assumes more knowledge about manifolds than elsewhere in the book. In particular we
assume the reader is familiar with the definitions and basic properties of manifolds, tensors, metrics,
etc. This chapter is not referred to elsewhere and can be skipped.
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past directed. We assume that this can be done in a continuous way over the whole
manifold, that is the manifold has a fime orientation. There is an associated splitting
of lightlike vectors.

A curve x : [a,b] — M is timelike if the tangent vectors dx/dt = x.(d/dt) are
timelike at all points on the curve. Similarly we define lightlike and spacelike curves.
A curve is causal if its tangent vectors are either timelike or lightlike. A causal curve
is future directed if the tangent vectors are all future directed. Future directed causal
curves are the possible world lines of particles. If x is future directed and timelike,
the elapsed proper time is defined as

—&x(r) (10.4)

de’ dt
Timelike curves with fixed endpoints minimizing proper time are geodesics. These
are the trajectories of freely falling objects.

For any point p € M define the future and past of the point by

Ji(p) = {g € M : 3 a future/past causal curve from p to q} (10.5)

We also define JE(A) = U,,EAJi(p) forany A C M.

A hypersurface ¥ is a submanifold of dimension d — 1. For p € ¥ the tangent
space X, is identified as a d — 1-dimensional subspace of M),. There is also a one-
dimensional subspace of normal vectors N defined by the condition g,(N, v) = 0 for
all v € Z,. The hypersurface X is spacelike if the nonzero tangent vectors X, are
spacelike for all p € X. It is equivalent to say that the nonzero normal vectors N are
timelike.

A spacelike hypersurface is a Cauchy surface if every endless causal curve
intersects it exactly once.

Theorem 10.1 The following conditions on a Lorentzian manifold (M,g) are
equivalent.

1. There exist no closed causal curves” and the set J*(p) N J~(q) is compact for all
p.q € M.

2. There is Cauchy surface X.

3. (M, g) is diffeomorphic to a manifold (R x X, g’) for which ¥; = {t} x X is a
Cauchy surface for all t.

If these conditions hold, we say that (M, g) is globally hyperbolic.

2 This includes a prohibition on “almost closed” causal curves; see Bir Ginoux and Pfiffle (2007) for the
definition.
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10.2 Classical fields on a manifold
|

We study the Klein—Gordon equation on a globally hyperbolic Lorentzian manifold
(M, g). It has the form

(—O04+mPHu=0 (10.6)
where in local coordinates

9 3
Ou = |detg|_1/2a— <| detg|1/2g“”—u> (10.7)
Xy axy

and {g""} is the inverse matrix to {g,.}.
Let X be a spacelike hypersurface and let n be the vector field of forward directed
unit normal vectors on ¥. A real solution u of (= + m*)u = 0 has data on
(X,n) consisting of the restriction uy and the normal derivative given in local

coordinates by
u _ 0w

= 10.8

on axH 1% ( )
We call a solution regular if it is C* and if the data on any Cauchy surface have
compact support.

The basic existence and uniqueness theorem is:

Theorem 10.2  Let (M, g) be globally hyperbolic and let (X, n) be a Cauchy surface
with forward unit normal n. Then for any f, g € C;°(X) there exists a unique regular
solution u of (—O + m*)u = 0 such that us, = f and du/dn = g.

For any smooth functions #, v on M and any Cauchy surface ¥ define

= [ (222 a 109
UZ(M’U)_/:; u%—%v I (10.9)

where py is the measure on ¥ induced by the Riemannian volume form on X. Let
O be an open set in M bounded by two Cauchy surfaces X1, X, and say X lies to
the future of ;. Then Green’s identity says that for any smooth functions u, v

2 2 _ _
/O [u(—D +m¥—v(—O+m )u] dit =05 @) =0y (o) (10.10)

Here p 4 is the measure on M induced by the Lorentzian volume form, in local
coordinates dupq = |detg|'/?dx. If u,v are regular solutions, then the left side
vanishes. Hence o (1, v) is independent of ¥ and we can denote it just by o (u, v).

Next we need advanced and retarded fundamental solutions. In theorem 7.2 these
have already been constructed for Minkowski space.

Theorem 10.3  Let (M, g) be globally hyperbolic. Then there exist linear operators
E*: CP(M) — C®(M) such that
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(—O+4 mHETf = EX(-O+m?>)f =f (10.11)
and such that
supp (E*f) C J*(supp f) (10.12)

From these fundamental solutions we construct the propagator
E=E"—E~ (10.13)

For any f € C;°(M) the function u = Ef is a regular solution of the Klein—-Gordon
equation, and it turns out every regular solution has this form.

Let u be a regular solution regarded as a distribution. For a test function f €
C5° (M) we have

, = d 10.14
<uf> /Muf oy (10.14)

Then we have the following result which expresses the solution in terms of its data
on any Cauchy surface.

Lemma10.1 Let u be a regular solution of (—+m*)u = 0 on a globally hyperbolic
manifold. Then for any f € C5°(M)

<u,f >=o(u, Ef) (10.15)

Proof We can assume that the manifold has the form R x ¥ with Cauchy surfaces
¥, = {t} x X. By Green’s identity we have

+ +ry —
GEO(M,E f)_“z_,(”’E ) —/

uf du (10.16)
(=1,0)x 2 M

But E*f vanishes on ¥_, for ¢ sufficiently large. Thus taking the limit  — 0o we

have
oo (u,ETf) =/ uf du (10.17)
) (—00,0)x 2 M
Similarly
oo W, E™f)= —/ uf du (10.18)
o (0,00)x = M
Taking the difference of the last two equations gives the result. L]

10.3 Quantum fields on a manifold
]

We want to quantize the classical field theory just discussed. Generalizing the
Minkowski space case we seek to solve the Klein—-Gordon equation with data on
some Cauchy surface ¥ which satisfy the CCR.
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For the Cauchy data we suppose we have a pair of operator valued distributions
¢(h), 7w (h). For each h € C3°(X) these are symmetric operators on a dense domain in
some complex Hilbert space H. They are required to satisfy

[¢(h1), p(h2)] =0
[ (hy), w(hy)] =0 (10.19)
[p(h1),m(ho)l =i < hi,hy >5

where < hi,hy >x= f hihadpy . Equivalently if we define for & = (¢, ) and
H = (h1,h)

o(®,H) = ¢(hy) — 7 (hy) (10.20)
and define
UE(H,H/) =<hi,ly >x — < hy,h} >3 (10.21)
then
[d@mﬁ@ﬂﬂzmﬂmﬁ) (10.22)
Now we evolve in time and define ¢(f) for f € C°(M) by analogy with (10.15) as
9() = 0(®. p(EN) (10.23)
where
ou
'OE(M) = <u2, %) (10.24)

are the data on X for a solution u.
Theorem 10.4  For f € C5°(M) the field operator ¢(f) satisfies the field equation
(—O0+m*p =0 (10.25)
and
[o(f1), ¢(2)] = —i < f1, Ef2 > (10.26)

In particular the commutator vanishes if f1,f> have spacelike separated supports,
that is if suppfi N J=(suppfz) = @ (locality).

Proof The operator [ is symmetric for the inner product (10.14) so the meaning of
the field equation is ¢((—0 + m?)f) = 0. This follows from E(—O + m?) = 0.
For the second point we compute

B 2] = [0(@, p L (B0 (@, (ER))]

= io o, (P (Ef). 0 o (ER)) (1027)
= io (Ef1, Ef2)
=—i<fl,Ef >

where the last step follows from (10.15). ]
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Remarks

1. The construction does not depend on the choice of Cauchy surface. Indeed we
can formulate it so that there is no reference to a particular Cauchy surface as
follows. Consider the space of regular solutions u of the Klein—Gordon equation
with symplectic form o (u, v). Let R(u) be a representation of the CCR over this
space, that is we have a family of densely defined operators R(u) on a Hilbert
space ‘H such that R(u«) is linear in # and

[R(u), R(v)] = io(u,v) (10.28)
Define the field operator ¢(f) by

¢(f) = R(Ef) (10.29)

This satisfies the field equation (10.25) and has the commutator (10.26) just as in
the theorem.

Now if we pick a Cauchy surface ¥, we can define o (®, H) = R(py, ]H) where
Px 'H is the unique regular solution with data H on X. Then

[0(®,H),o(D,H)] = ia(pz_lH,pE_lH/) = io L (H, H) (10.30)

and ¢(f) = o (P, px(Ef)) so we recover our earlier construction.

2. There is still the question of which representation of the CCR to take. In this
generality there is no definitive answer. Without a timelike symmetry there is no
Hamiltonian and so we cannot ask for a positive energy representation as we did
before. There is also no vacuum to use as a reference point so it is also difficult to
identify particles. One has to proceed on a case by case basis.

3. The construction does respect the principle of general covariance mentioned at
the beginning of chapter 7. We made no special choice of coordinates.

Problem 10.1 Show that representations of the CCR as defined by (10.19) or
(10.22) exist by making an explicit construction.

Problem 10.2  In the special case of Minkowksi space (R*, ), take ¥ = {0} x R3
and take o (®, H) given by (8.63). Show that the new definition of the field ¢(f) =
o (D, px(Ef)) agrees with the old definition (8.66).

Notes on chapter 10: These topics are covered by Wald (1994) and by
Bir Ginoux and Pfiffle (2007).

In spite of the uncertainty in the choice of a representation of the CCR it has
been possible to identify a class of representations with desirable physical properties.
These are characterized by the requirement that correlation functions have certain
prescribed “Hadamard singularities” at coinciding points, see Wald (1994).
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Field theory on a manifold

For a mathematical formulation of the principle of general covariance, see Dimock
(1980) or Brunetti Fredenhagen and Verch (2003).

By studying a scalar field on the spacetime manifold for a collapsing black hole,
Hawking was led to his famous prediction that black holes emit thermal radiation.
See Bachelot (1999).
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Path integrals

As we have seen quantum mechanics is fundamentally probabilistic, but it is a special
kind of noncommutative probability. Nevertheless the techniques of standard proba-
bility theory can also be useful. In the remainder of the book we explore some of the
ways this occurs.

In this chapter we return to the consideration of a single non-relativistic parti-
cle and develop some new representations of the dynamics. These are the Feynman
path integrals which express the quantum dynamics as an integral over all possi-
ble classical paths with a special weighting. For the single particle Hamiltonian
H=—A/2+Vand, x € L*(R?) a typical integral is

. o t
W, e M) = / ¥ (w(0)) exp <—i fo V(w(S))dS> x(@(0)dw (1L.1)

Here the “integral” is over all possible paths w : [0,7] — R> and “dw” is supposed
to be some kind of measure on these paths. Actually it has not been possible to make
sense of this within the context of standard measure theory. But if one replaces the
time evolution e~ by ¢~ that is if we go to imaginary time, then one can give a
rigorous formulation. This is what we study in this chapter. This gets us away from
the basic dynamics but still can be useful in an indirect way. For example one can
study properties of the Hamiltonian through the semi-group e~ as represented by
path integrals. Similar representations occur in quantum field theory where they are
crucial for a mathematical analysis. We explore this in subsequent chapters.

11.1 Probability

161

We start by reviewing some definitions. A measure space is a triple (M, X, ) con-
sisting of a set M, a o-algebra of subsets X, and a measure  : ¥ — [0, 00]. We
consider probability measure spaces which have u(M) = 1. In applications M rep-
resents all possible outcomes, A € X represent events, and (A) is interpreted as the
probability that A occurs.
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Random variables are measurable functions X : M — R. The probability that X
takes values in a Borel set B is

P(X € B) = n(X~'[B])) = m(B) (11.2)

The set function m(B) is a probability measure on R called the distribution of X.
It contains all relevant information about X. For any Borel function f the function

f(X) =f o X is again a random variable and we have the expectation or mean

E(f(X))E/ f(X)dM=/f(X)dm(X) (11.3)
M R

if the integrals exist. The identity of the two integrals is a standard argument. First
verify it for simple functions, then by monotone limits for positive functions, and
finally for any integrable function. In particular there is the characteristic function of
X, which is a function on R defined by

O(s) = E(e™Y) = / e dm(x) (11.4)

As the Fourier transform of the measure m it uniquely determines m. Indeed the prob-
ability distribution m determines a tempered distribution m and the Fourier transform
is bijective on S’(R) — see appendix C.

More generally suppose we have n random variables X1, ..., X, on a probability
measure space (M, X, u). Equivalently we have a vector-valued random variable
X =X1,...,Xp) : M — R". Again the probability that the random variables take
values in a Borel set B C R" is

P((X1.. . Xo) € B) = (X' [BD) = m(B) (11.5)
The distribution m(B) is now a Borel measure on R”. For any Borel function f on R"
Ef(X)) = /Mf(Xl, oL Xpdp = /Rnf(xl, ooy Xp)dm(x) (11.6)

The characteristic function is ® : R* — R defined by
(s, ..., 5n) = E(e!2%%0) = f e 2215% dm(x) (11.7)

and it determines the distribution.
We generalize still further and suppose we have an infinite family {Xy}yea of
random variables on a space (M, X, u), called a stochastic process. For any finite

ordered subset I = (a1, ...,q,) from A we have the family of random variables
X; = Xy, - .., Xq,) and we consider their joint distribution

P(X; € B) = n(X; ' (B)) = mi(B) (11.8)
Then

E(f(Xp) = / JXDdu = / J()dmy(x) (11.9)
M R
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11.2 Gaussian processes

The joint distributions must satisfy some consistency conditions. Let 7 be a per-
mutation of (1, ..., n). This induces mappings 7w/ = (@x(1), - - - , 0z (n)) ON the index
set and wx = (Xz(1), . .., Xz(n)) o0 R". Then the event X () € wB is the same as the
event X; € B and hence

My (7 (B)) = my(B) (11.10)

Also if I’ = (I, @), then the event X;y = (X;,X,) € B x R is the same as the event
X; € B and hence

mp(B x R) = my(B) (11.11)

The family of all finite-dimensional distributions is enough to specify the full
structure for one has the following result on the existence of stochastic processes

Theorem 11.1 (Kolmogorov)  Let A be an index set and suppose for each finite ordered
subset I in A there is a Borel probability measure m; on R\, The measures are
assumed to satisfy the consistency conditions (11.10), (11.11). Then there exists a
probability measure space (M, X, n) and a family of random variables {Xy}qeA
such that for any finite ordered subset I in A the random variables X; have the
distributions my.

There is also a uniqueness result which says that (under some further conditions)
any two realizations are equivalent by an isomorphism of measure spaces.

11.2 Gaussian processes
I ———

Now consider a special class of random variables, the Gaussian random variables.
A random variable X is Gaussian if there are constants ¢, a such that for any Borel
B C R the distribution is the normal distribution

)
P(XeB):m(B):(znc)*‘/Z/Bexp (—(x 2Ca) )dx (11.12)

Then for any Borel function f : R — R we have that f(X) is integrable iff
f)exp(—(x — a)?/2c) is integrable on R in which case

(x — a)?

E(f(X)) = f Fx)dm(x) = 2me)~ /2 f f(x) exp (- )dx (11.13)
R

For the second step one again verifies the identity successively for simple functions,
positive functions, and integrable functions. In particular the characteristic function
is (see problem 1.3)

d(s) = E(e™*) = exp (ixa - %cs2> (11.14)
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Taking derivatives at s = 0 we find that X has mean E(X) = a and EX?) = ¢+ d°.
The variance is then

Var(X) = EX?) — EX)? = ¢ (11.15)

More generally a family of random variables X = (X1, ..., X,,) is jointly Gaussian
if there is an n x n positive definite symmetric matrix C = {C;;} and a € R" such
that for any Borel B C R” we have the joint distribution

P(X € B) =m(B)

11.16
:(2n)*”/2(detcr‘/2/exp (—%(x—a)-C‘(x—a)) dx ( )
B

(Positive definite means x - Cx > 0 and x - Cx = 0 iff x = 0.) It is clear that such
structures exist. Indeed we can take (M, ) = (R, m) and X;(x) = x;. For any Borel
function f : R” — R we have

E(f(X))

11.17
=(2n)_”/2(detC)_l/2/ fx)exp <—%(x—a)-C_l(x—a)> dx ( )
Rn

if the integral exists. In particular we find for the characteristic function ®(s) =
D(s1, ..., 50)

B(s) = E (")

. 1
= 2n) "?(detC)~!/? /R e“exp (—E(x —a)- C'(x - W) dx(11.18)

1
= is-a— —s-C
exp(zs a= s s)

Taking derivatives at s = 0 we find the mean and covariance are
EXi) = a;
E(X;Xj) — E(X)E(X)) = Cjj

(11.19)

The mean and the covariance completely characterize the family of Gaussian random
variables.

Finally suppose we have an infinite set .4 and functions a : A — R and symmetric
C: Ax A— Rsuch that for any a1, ..., a, € A the matrix C;; = C(a;, o)) is posi-
tive definite. Then we can define a Gaussian process with mean a and covariance C
to be a collection of random variables {X,} indexed by & € A such that for any finite

collection I = (ay,a2,...,a,) the random variables X; = (Xy,, ..., Xy,) are jointly
Gaussian with means a; = (a(ay), .. .,a(ay,)) and covariance C; = {C(a;, oj)}. In
particular then
EXy) = ala)
* (11.20)

E(XoXp) — E(Xo)E(Xp) = Cla, B)
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11.3 Brownian motion

Such a Gaussian process exists as a consequence of the theorem 11.1 once we
show that the consistency conditions on the finite-dimensional measures m; are
satisfied. To show such measures are equal it suffices to show that the character-
istic functions are equal. Thus it suffices to consider the characteristic function ®;
for X;, which is

n n
1
O(s) =exp|i E s;a(e) — 3 E 5;iClaj, j)sj (11.21)
i=1 ij=1

The permutation condition (11.10) translates as ®,;(wrs) = P;(s). The extension
condition (11.11) translates as @4, ,)(s,0) = ®;(s). Both are easily checked and
hence the process exists.

Problem 11.1 Let C be a symmetric positive definite matrix.

1. Show that C is invertible and that C~! is symmetric and positive definite.
2. Show that there exists M > 0 so that x - Cx > M|x|?, hence also for C~!.

Problem 11.2 Do the integral in (11.18). (Hint: diagonalize C.)

Problem 11.3

1. Show that a Gaussian random variable is in L7 for all 1 < p < oo.
2. Justify the differentiations in computing the mean and covariance in (11.19).

11.3 Brownian motion
]

This is a particular example of a Gaussian process indexed by R™ = [0, c0). A family
of random variables X;, t > 0 is a Brownian motion if it is Gaussian with mean and
covariance

EX,) =0 E(X,X,) = min(t, 5) (11.22)

For this to be well defined we need for any distinct #1,72,...,%, that the matrix
{min(7;, ¢;)} is positive definite. To verify this it suffices to assume t; < ) < --- < ;.
Then we have the identity (with 7y = 0)

2

n n
> xgmin(t ) =Y (i —ti) [ Y x (11.23)
ij i=1 j=i
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This vanishes iff } ', x; = 0 fori = 1,...,n which occurs iff x; = 0. Hence the
matrix is positive definite.

Now X; has mean zero and variance E(Xf) = t. Hence for t = 0, X takes the
constant value Xo = 0. If # > 0, we compute the probability that X, is in a Borel
set B as

P(X; € B) = /p,(x)dx (11.24)
B
where p; is the even function
p(x) = Q=122 (11.25)

This is saying that for  small X; takes values near the origin with high probability,
while for 7 large that probability is widely spread around the origin. These features
allow the interpretation that X; describes the location at time 7 of a diffusing particle
which starts at the origin at # = 0 and moves randomly as time evolves.

More generally a Brownian motion starting at x € R is a family of Gaussian
random variables X} with mean x and variance ¢ defined by

XF =X +x (11.26)

Then we find
P(X} € B) = P(X; € B—x)

(11.27)
= / pi(y)dy = f pi(y — x)dy
B—x B
Similarly if p;(x — -)f is integrable, we compute
E(f(X})) = E(f(X; + x))
(11.28)

_ / FO -+ 0p)dy = / pix — WF Oy

Note the following facts. The sum of two Gaussian random variables is again
Gaussian. Hence for s < 1, X; — Xi = X; — X, is Gaussian with mean zero and
variance

E(X) =X Y)=E(X;, — X)) =t—s—s+s=t—s (11.29)

Furthermore for s; < t; < s» < 1, we have that X;‘] — X;‘l and sz — sz are

uncorrelated since
E((Xfl — X5)(X —Xjfz)) — =1 —s 45 =0 (11.30)

For Gaussian random variables uncorrelated means independent so X;, — Xj, and
Xj, — X;, are independent, which means that the joint distribution is the product of
the individual distributions. One says that the process has independent increments.

In particular for 0 < s < ¢ the random variables X} — Xj and Xy = X{ — X{ are
independent and so
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E(f(X;‘,Xf - Xf)) = / Ps(x —y1) pr—s(y2) f(r1,¥2) dy1dy> (11.31)
Then we compute
E(fi(X)AhX;) = E(iX)ARX + (X — X()))
= /Ps(x — 1) Pi—s(y2) fi(y1)a(y1 + y2) dy1dy> (11.32)
= fps(x =y 101 pr—sO1 — y2) f2(v2) dyidy>

Similarly forO < #) <t < --- <ty

E(fi(X) - fulXD))

(11.33)
= /ptl (.X - yl)fl(yl) o -ptn_tn—l (yn_l - )’n)fn(Yn)dyl e dyn
Specializing to characteristic functions we have for the joint distribution
P(X;, € B,....X; € By)
(11.34)

:/ Py =y1)++ Pty—t,y On—1 = Yn)dy1 - - - dyn
By x--xBy

This gives an idea of the character of the measure on paths.
We quote the following regularity result which shows that Brownian paths are
continuous but nowhere differentiable.

Theorem 11.2  There is a construction of Brownian motion X; on a measure space
(M, ) with the following properties:

1. Let « < 1/2. Then for almost every € M the path t — X{(w) is Holder
continuous with exponent «, that is there is a constant C,, such that

1Xi(@) = Xs(w)| < Colt —s|” (11.35)

2. Let o > 1/2. Then for almost every v € M the path t — X,(w) is nowhere
Holder continuous with exponent o.

The construction needs more than the Kolmogorov theorem. Just for the continuity
one way to proceed is to take as the basic probability space the continuous functions
M = {w € C(R") : w(0) = 0} and then construct a measure so that the evaluation
maps X;(w) = w(t) give a Brownian motion. This gives a strong meaning to the idea
that we are integrating over a space of paths.

All the above is easily generalized to R?. We set

X, =X!,....x% (11.36)
where the X' are independent one-dimensional Brownian motions. All the above
formulas generalize. For example we have for a function f on R and a point x € R?

lx —yI?
2t

E(f (X)) = Quty~4/? / exp (— )f(y)dy (11.37)
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Problem 11.4  Verify (11.23).

11.4 The Feynman-Kac formula
- ______________________________________________________________________________|

The connection with single particle quantum mechanics comes via the Laplacian.
We work in d dimensions. With mass m = 1 the free Hamiltonian is Hy = —A /2
and for f € L*(RY) we have from (4.8)

2
(e H'f)(x) = Q)= / exp (— - Zty | )f(y)dy (11.38)

This is the same as (11.37). Thus if X} is Brownian motion in R4 starting at x, then

(e ™M) = E(F (X)) (11.39)

Taking into account that Xj = x another way to write this is

(g. ¢ H0'f) = / E (0G0 d (11.40)
Now we add a bounded potential to the Hamiltonian

Theorem 11.3  (Feynman—Kac formula) Let V be bounded and continuous on R¢ and
let H= Ho+ V. Then for f,g € L*(R%)

1
(g, e flf) = / E(g(xg)exp (— / V(Xf)ds) f(Xj‘)) dx (11.41)
0

Remark  For the proof we use the Trotter product formula' which says that if S and
T are self-adjoint and bounded below and S+ 7 defined on D(T)ND(S) is self-adjoint,
then as a strong limit

lim (eiS’/”eth/”)n = ¢ S+ (11.42)

n— o0

We apply this with § = Hy, T = V. The sum H = Hp + V is self-adjoint on
D(Hp) N D(V) = D(Hp) by theorem 4.1.

Proof By (11.33)forty <th <--- <ty
(A0 fuX5))

(11.43)
— (e*tlHOfle*(fZ*tl)Hsz o e*(tn*tn—l)HOfn) (x)

1 See for example Reed and Simon (1980: 295).
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Thus with t; = jt/n

—Htpyy _ 1; —Hot/n ,—Vt/n\"
(8.7 = lim (g, (e7H0r/me=v0In)" )

— lim / ¢@E [ [Texp (-}%wx;;)) roey | ax

j=1
. (11.44)
—lim [ E[e&Dexp [ —= S v | x| ax
T 8%o) exp n = U] !
J=
. t
- [z (g(xs> exp (— | veeas )f(Xi“) ) dx
0
Here in the last step we have used that
f — t
. . X\ X
lim nX;V(X,j)_ fo V(X3) ds (11.45)
=

holds almost everywhere. This follows by the continuity of V and the continuity of
paths with the integral interpreted as a Riemann integral. We have also used

e = S ve | )| = lexpliraxple (11.46)
=1
Then since
| Esexpira)ar = gl.e i) < oo (11.47)

we can use the dominated convergence theorem to take the limit inside the integrals
in (11.44). O

Problem 11.5 For h € L®(R%) and 0 < u < ¢ show that
(g’ e—uH h e—(t—u)Hf)

_ t (11.48)
= f E (g(xg)h(XiDexp (— fo V(X;‘)ds)f(X:‘)) dx

11.5 Oscillator process
|

The oscillator process (also called the Ornstein—Uhlenbeck process) is defined to be
the Gaussian process X; indexed by ¢ € R with mean and covariance

EX;) =0 E(XX;) = C(s,1) (11.49)



170

Path integrals

where
. eip(s—t) 1 s
C(s,t) = (2m) / JEn ldp = Ee (11.50)

The second version follows by closing the contour in the upper or lower half plane

depending on this sign of s — ¢. This is positive definite since for any sequence
X1,...,X, and any choice of points 71,...,t,
x;etPli|?
> xixiClti ) = Q2m) ™! |X:l2—l|dp > 0 (11.51)
— p-+1
ij
and it vanishes iff > ix,-ei’”i = 0 for all p which occurs iff x; = 0.
Note that X, has mean zero and constant variance 1/2. Thus if it is describing
the motion of a particle, it is not diffusive like Brownian motion but stays localized
around the origin. This process also has continuous paths.

The oscillator process is related to the semi-group e~ generated by the harmonic
oscillator Hamiltonian which we considered in section 4.4 and which is given by

d2

1
H=2(=25+2) 11.52
2 dx? tx ( )
Recall that the operator has discrete spectrum and that the lowest eigenvalue is 1/2
with eigenvector Qq(x) = /452

Theorem 11.4  Let X, be the oscillator process and let f, g be polynomially bounded
functions on R . Then fort > 0

(820, e = 21£Q0) = E(gX0)f (X)) (11.53)

Proof The covariance matrix for X, X; is

_( C0,00 C@O,n Y\ _1 1 et
= ( C(,0) C(t,1) ) - ‘( et ) (11.54)

Thus we compute by (11.17)
E(g(Xo)f (X1))
=Q2n) '(detC)"1/? f g(x))exp <—%x . C_lx) f(x)dx
— 7_[71 (] _ 6721‘)71/2
/ gtnyexp (= (1= e )70 43 = 2167 ) )y (11.55)
=¢'/>(27 sinh 1)~ 1/?
/ (gQ0)(x1) exp <—%(coth 1)(x7 + x3) + (sinh t)lxlxz) (F20)(x2)dx

— (g8, ¢~ H D Q)
The last step follows by Mehler’s formula (4.38). O]
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Remarks

1. There is also a Feynman—Kac formula for the oscillator process. If V is a bounded
continuous function on R and

H’=H+V=—(——+x2)+V (11.56)

Then
t
(80, ¢ H Q) = E (g(Xo) exp (— / V<xs>ds>f(xt)> (11.57)
0

2. The fact that Brownian motion and the oscillator process are related to semi-
groups is not accidental. In fact both are (time homogeneous) Markov processes
which roughly means that the future depends only on the present and not on the
past. Such Markov processes always give rise to semi-groups of operators.

11.6 Application: ground states

If a quantum mechanical system has a Hamiltonian for which the bottom of the
spectrum is an eigenvalue, then states in the corresponding eigenspace are called
ground states. These are the states most likely to be occupied. In this section we give
some results about ground states for non-relativistic single particle systems using the
Feynman—Kac formula.

First some definitions. A function on a measure space (M, w) is positive, written
f = 0, if f(m) > 0 for almost every m and f is not identically zero. A function is
strictly positive, written f > 0, if f(m) > 0 for almost every m. A function f € L?
is strictly positive iff (f,g) > 0 for every positive g € L? (see problem below). A
bounded operator A on L*(M, du) is positivity improving Af > 0 whenever f > 0.
This is true iff (g, Af) > 0 whenever f > 0,g > 0.

Problem 11.6 Let (M, 1) be a o-finite measure space.” Show that f € L? is
strictly positive iff (f, g) > 0 for every positive g € L?.

For example on L2(R?) consider e~ o where Hy is the free Hamiltonian. The

—d)2

operator e "0 has a strictly positive kernel (277¢) exp(—|x — y|2/2t) and hence it

is positivity improving.

Lemma 11.1  Let A be a bounded self-adjoint operator on L*>(M, 1) which is posi-
tivity improving. If ||Al| is an eigenvalue, then the eigenspace is spanned by a single
strictly positive function.

2 o-finite means there is a sequence of subsets M; with finite measure so U;M; = M.
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Remark Since o(A) C (—||A]l, [|A]]), ||A]l is the largest possible eigenvalue.

Proof Let v be an eigenvector for A with eigenvalue ||A||. Since A is reality preserv-
ing both the real and imaginary parts are eigenvectors with eigenvalues ||A||. Hence
we may as well assume i is real. Then || &= ¢ > 0 hence A(|y¥/| £ ) > 0 and
hence

Ay | < Ay (11.58)

It follows that

IAIIYI? = Ay, ¥) < (AYLL YD < @l D < AT (11.59)
and hence

Ay, ¥) =AY ¥ (11.60)

Write v = ¥4 — ¥_ where ¥+ > 0. Then || = ¥4+ + ¥_ and the last identity
implies that

Ay v ) +AY . ¥) =0 (11.61)

If 1 are both nonzero, this contradicts the strict positivity. Thus one of them must
be zero and we may assume that /_ = 0. Thus ¥ > 0. Since ¥ = |A| Ay
we have ¥ > 0. Finally if ¢’ is another eigenvector, then by the same argument
conclude ¥’ > 0. Then v/’ cannot be orthogonal to ¥ so the eigenspace is one
dimensional. U

The next result shows that ground states are unique.

Theorem 11.5 Let Hy = —A /2 and let V be a bounded continuous function on R?
so that H = Hy + V is self-adjoint.

1. The operators e~ are positivity improving for all t > 0.

2. If H has an eigenvalue at the bottom of the spectrum, then the eigenspace is
spanned by a single strictly positive function.

Proof For f,g > 0 we have by the Feynman—Kac formula for Brownian motion
(11.41)

t
(g.e7f) = / E (g(XS) exp (— /0 V(Xé‘)d8>f (Xf)> dx

> IVl / E (e(Xp)f (X)) dx

_ e—THVHoo(g’ e_tHOf)

(11.62)

Hence (g,e "Ff) > 0 and e~ is positivity improving.

If E is a lowest eigenvalue for H, then e =% = ||e~"| is a highest eigenvalue for
e "M and the eigenspace is the same. The result now follows by lemma 11.1. This
proves the second point. O
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Notes on chapter 11: There are many books on the fundamentals of probability
and stochastic processes, for example Billingsley (1979) or Durrett (1996).

For more on path integrals and their application to physics, see Simon (1979) or
Glimm and Jaffe (1987).

It is possible to make some sense of Feynman’s original real time path integral
(11.1). See Albeverio et al. (2008).



Fields as random variables

Now we return to quantum field theory. The time zero scalar fields are a family of
commuting symmetric operators on Fock space. Thinking of the spectral theorem,
this suggests that it may be possible to represent them all as functions on some mea-
sure space. In this chapter we develop this representation, known as the Schrodinger
representation. This representation also leads to a path space representation for the
imaginary time dynamics analogous to that for a single particle.

12.1 More on Gaussian processes
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12.1.1 Indexing by an inner product space

We consider Gaussian processes indexed by a real vector space S. We are particularly
interested in the case when S is the Schwartz space S(R?) but proceed generally. The
covariance is a function C : S x § — R, which we suppose is an inner product on S.

For any collection 4y, ..., h, of linearly independent elements of S define an n x n
matrix C by

Cij = Clhi, hy) (12.1)
Then C is positive definite since for any s1,...,s,

Zsisjéij =C Zsihi, Zthj >0 (12.2)
i i J

and since it equals zero iff Zi s;h; = 0 which occurs iff s; = 0. We define a Gaussian
random process with covariance C (and mean zero) to be a probability measure space
(M, X, 1) and a family of random variables {¢(%)},cs linear in 4 such that for any
finite collection of linearly independent elements Ay, ..., h,, the random variables
¢(hy),. .., ¢(h,) are jointly Gaussian with mean zero and covariance matrix C. Thus

E(F@h), ... ¢(hn)
. . (12.3)
= 27)""*(det C)"1/? / FO1, .. X0) exp (—Ex- C_lx) dx
Rn
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12.1 More on Gaussian processes

The characteristic function is
. 1
E(®™) = exp (—EC(h, h)) (12.4)

and it follows that for any hy, ..., h, € H (not necessarily linearly independent)

E <exp (zz t,-¢>(h,-)>> — exp —% 3 tit;Clhi y) (12.5)

i=1 ij=1

We also have E(¢(h)) = 0 and E(¢(h1)p(ha)) = C(hy, hy).

In fact the characteristic function is enough to determine the process. Indeed
if a family of random variables {¢(h)};es satisfies (12.4) and is linear in h,
then (12.5) with Ay, ..., h, linearly independent says that the joint distribution for
¢(hy), ..., ¢(h,) is Gaussian with covariance 6‘,] = C(h;, hj) as required.

Theorem 12.1  Let S be a real vector space with inner product C. Then a Gaussian
random process {¢p(h)}nes with covariance C exists.

Remarks

1. Because of the linearity requirement and the restriction to linearly independent
elements, the existence does not follow directly from the Kolmogorov theorem.

2. Just as before (problem 11.3) the random variables ¢(h) are in L’(M, u) for all
1 < p < oo. Hence the same is true for polynomials in the ¢(h). If we assume
that X is the smallest o-algebra with respect to which the ¢ (k) are measurable,
then polynomials are dense in L?(M, 1), a result we need later.'

3. In the proof we show more. Let H be the real Hilbert space which is the comple-
tion of S in the inner product C. We construct a family of random variables ¢ (h)
indexed by h € ‘H with the stated properties.

Proof Pick an orthonormal basis {¢;} for . For any finite collection of basis ele-
ments the matrix C(e;,ej) = §;; is positive definite. Hence there exists a Gaussian
process {¢(e;)}7°, with identity covariance by the Kolmogorov theorem as explained
in section 11.2. We have

E(¢(end(e)) = Clei,ej) = b (12.6)

Any h € H has the expansion 7 = ) ; C(e;, h)e;. Hence we define

p(h) =Y Clei, hypes) (12.7)

i=1

! For this result see Segal (1956).
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The limit exists in L>(M, ) since if hy = Zf;l C(ej, h)e;, then for N > M

N N
lp(aw) — dtnDl® =11 D Clei, el = Y Clei, by’ (12.8)
i=M+1 i=M+1

and this converges to zero as N,M — oo. Note that ¢(h) is linear in h. Also we
compute

N
E(€i¢(hN)) —E (exp (i Z C(ej, h)¢(ei)>>

i=1

N
— exp <_% 3 Cles h)z) (12.9)

i=1
1
= exp —EC(hM hn)
There is a subsequence ¢(th) that converges to ¢(h) almost everywhere and passing

to this subsequence and using the dominated convergence theorem we take the limit
in (12.9) and conclude that E(e®®) = exp (—C(h, h)/2). This is sufficient to show

that ¢(h) is the desired Gaussian process. U
Theorem 12.2
0 n odd
E(phy)...phy)) = 12.10
(@) .. $(hn)) { S upep Clinly)  even } (12.10)
where the sum is over pairings P = {{i1,j1}, ..., {inj2.Jus2}} of (1,...,n).

Proof Take the partial derivative 3" /9y, - - - 9y,[. - . ;=0 of (12.5). On the left we get
i"E(p(hy) . .. ¢(hy)). On the right we get the coefficient of #1 - - - #,, in the power series
expansion of exp (—% Z?Fl tit;C(h;, hj)>. For this we can ignore terms with i = j.
Also we can drop the factor 1/2 and write it as a sum over unordered pairs {i,j} (two
element subsets) from (1, ..., n). Then we have

exp | — Z l,‘le(h,‘, hj) = l_[ exp (—titjC(h,‘, h]))
{iJ} {ig}

= ]_[ (1 — tit;C(his ) + ... (12.11)
(i}
=14+ ] (tiChi.hp) + ...
0 {ijjeQ
where the sum over Q is over collections of pairs {i,j} from (1,...,n). But only
collections which give a partition of (1,...,n) will contribute. This is only possible

if n is even in which case we get the announced sum over pairings. There is also a
factor (—1)"/2 which matches the i on the left. Hence the result. ]
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12.1.2 Wick monomials

We next introduce Wick monomials.” These are polynomials in the random variables
¢(h) with the property that monomials of different degree are orthogonal. First define

: 4 1
s e M) ey <§C(h, h)) (12.12)

This is defined so that
EG 9P ) =1 (12.13)

Then we define Wick monomials by

1 , _
F9(h). ) e = G o [: exp (i Y tig(h) -cj| 0
-

1

(12.14)

1 a" . 1

= Sa o | lzmp(h,-) +5 Ztl-sz(h,», hy)
! v =0

This looks like the generating function for Hermite polynomials and indeed Wick

monomials are a generalization of Hermite polynomials. We have explicitly

2o(h) :c = ¢(h)
p(h)@(h) :c = p(h1)p(h2) — C(h1, ha)

(12.15)
2 @(h)@(h2)p(h3) :c = Pp(h)d(ha)p(h3) — ¢(h1)Clhy, h3)
— ¢(h2)C(hy, h3) — ¢(h3)C(h1, ha)
and in general
op(hy) ... o(hy) :c= ¢(hy) ... d(h,) + lower order terms (12.16)

It follows that Wick monomials span the dense subspace of polynomials in
L*(M, ). Also note that : ¢(h1)...¢(h,) :c is linear in each #; and is invariant
under permutations of the A;.

Lemma 12.1
1. For a single Wick monomial

E( “d(hy). .. dlhy) :c) —0 (12.17)
2. For a pair of Wick monomials

E(: 9. 9(hn) ic: 9(31) - $(8m) ic )

0 n#m (12.18)
B { Y 2 Chi,gx1y) - - . Clhn, &x(ny) n=m }

2 There is a connection with Wick ordering explained in the next section
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where the sum is over permutations 7w of (1,2,...,n).

Proof The first follows by taking derivatives of
E( Lexp(i Y p(hy)) i ) -1 (12.19)
i

For the second note the identity.

9N o (98— i) o Clhg) (12.20)

Leth =}, t;h; and g = 37, 5;¢; and take the expectation which gives

E|:exp (iZtiqﬁ(hi)) ict exp (iZSj¢(gj)) Ho

’ (12.21)

=exp | = ) tisiClhi, &)
i

Now take a single derivative in each of #;, s at ; = s; = 0. On the left we get i+
times the desired expectation. On the right we get the coefficient of 71 - - - ;51 - - - 5,
in a power series expansion in s, . To identify this coefficient we write

exp | — Z tisiC(hi, g) | = H exp ( - tiSjC(hi,gj))

(i) (@)
=[]0 - usiChigp +...) (12.22)
(@)
=1+ Z 1_[ (—liSjC(hi,gj)) + ...

M (ij)ell

where the sum over IT is over collections of elements (i,j) from (1,...,n) x
(1,...,m). But only collections in which each element of (1,...,n) appears exactly
once in the first position and each element of (1, ...,m) appears exactly once in the
second position will contribute. This is only possible if » = m and then the sum over
such terms can be identified with a sum over permutations & of (1, ...,n). Hence we
get (—1)" = 2" times the right side of (12.18). ]

Problem 12.1 Show that
o(h) : p(hy) ... ¢p(hy) :c =: d(MP(h1) ... ¢(hy) ¢
“ — 12.23
+ > Chh) : ph) ... p(hy) ... p(hy) i (12.23)
j=1

where the hat on ¢ () means “omit this factor”.



179

12.1 More on Gaussian processes

Problem 12.2 Establish the identity
19 dhn) =Y [T (= i) [T o0 (12.24)
0 lijleQ k¢Q

where Q is a (possibly empty) collection of pairs from (1,...,n). Then establish
the special case

: n . < (=1n! i o3 \n—2j
P o= ) mah, hy$(h) (12.25)

j=0

Problem 12.3  Let {A{} be a collection from S indexed by pairs (c, i) with 1 <
a <rand1 <i < n,. Show that

E (1_[ :l_a[‘f’(h?‘) 3) =y I cmn (12.26)
a=l i=l G {(e.i)(B)}IEC

where the sum is over all graphs G on r vertices with legs («, i) at the ath vertex
and lines {(«,1);(B,/)}. Each leg must belong to exactly one line and the lines
must have @ # B, that is lines cannot join legs at the same vertex.

12.1.3 Realizationon S’

Depending on the real vector space S and the covariance C there may be more con-
crete representations of the Gaussian process. In particular suppose that S is the
Schwartz space S(R?). Tt turns out that in this case we can take our basic measure
space to be (Q, X, uc) where Q = S "(RY) is the space of real tempered distributions,
Y is the o-algebra generated by the functions ¢ — < ¢,f >, f € S(RY), and ¢ is a
Gaussian measure. The random variables ¢(f) are given by the evaluation map

(6H)(@) =< q.f > g€ o, (12.27)

so the distributions ¢ are the fields. With this choice, expectations will be written out
explicitly as

E(F) = / Fduc (12.28)
0

An advantage of this representation is that there is a natural definition of deriva-
tives with respect to the field. For any function F on Q = S’(R%) we define the
derivative along i € Q by

d
(VaF)(gq) = d_t[F(q + th)li=o (12.29)
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if it exists. We consider in particular functions on Q of the form

F=F(p(f),..., o) (12.30)

where F is a complex Borel function on R” and f; € S(R?). Equivalently we can
write

F(q):f?(< g f1 >, s < qofn >) (12.31)

Such functions are called cylinder functions. If F is differentiable, then V,F does
exist and by the chain rule we have

" oF
ViF =Y o). ... 0(0) < hfi > (12.32)
i— ax,-
Note that this is linear in /.

As a special case we can take h = §y, the delta function at x. Then Vs _F is denoted
dF /0¢(x). If F has the form (12.30), then

oF " oF
0600 ; o @UD- - S (12.33)

Hence dF/9p(x) is in S(R?) and for h € S'(RY)
oF
39 (x)

oF
ViF =< h,% >= /h(x) dx (12.34)

Problem 12.4 Establish the identities

V(80D 6G) = Y < hfy > $f1) . 6. $F)
i (12.35)
Vh<i¢(fl)---¢(fn) ic) =Z <hfi > ¢(f) ... 60 ... ¢ ic

=1

Next we develop an integration by parts formula for V;,.

Lemma 122 Ler C(f.g) =< f.Cg > where C is a bijection on S(R?). Let F =
F(p(f1), ....0()) be a cylinder function on Q = S'(RY) with F and its partial
derivatives continuous and exponentially bounded. Then for h € S(RY)

/ ViF dpe = / F$(C'h) duc (12.36)
0 0

Proof Let ey,...,e, be a basis for the subspace spanned by fi,...,f, and C~'h
such that C(e;, ej) = §;;. Such a basis can be constructed by the Gram-Schmidt pro-
cess. We can write F = F(d)(el), ...,®(en)) and evaluate the derivative by (12.32).
Then write the integral in R™ by (12.3), and integrate by parts to obtain
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/VhF duc
0
aF
=Y <her= [ SE@en. . dten) duc
i Q 9Xi

aF
= Z < h,e; > (271)_'"/2/]R B_(X]’ .. ,xm)e_lxlz/zdx
i

m 0Xj
(12.37)
=Y <tz @0 [ oo n e
1
= Z <h,e > / Fplen),....plem)dle) duc
i 0
1
= f F ¢(C™'hyduc
0
The last step follows by C~'h =", < h,e; > e;. O

Corollary 12.1  (Integration by parts) With F, G as in the lemma
/ F(V4G) duc = — / (ViF) G duc + / F G (C " hydpuc (12.38)
0 0 0

Proof 1In the lemma replace F by FG and use
Vi(FG) = (V4F)G + F(V;,G) (12.39)
O

12.2 The Schrodinger representation
|

12.2.1 Definitions and equivalence

As an application of the previous section we give another representation of the
time zero free scalar field. This is known as the Schrodinger representation and is
characterized by the feature that the field operators are all multiplication operators.

For the free scalar field in space dimension d we generalize the results of sec-
tion 8.2.2 for d = 3. The symmetric Fock space is FT(Ho) where Ho = L*(R?, dp).
On finite particle vectors Dy C F+(H) the field operator is defined as in (8.55) and
is now denoted ¢q(t, ). Thus

iwt 7, iwt 7,
do(t,h) = a (;%) +at (;%) (12.40)

where h € S(R?) is real and w(p) = /|p|? + m?. The field and its time derivative at
t=0are
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do(h) = a ()10 +a* (@) 2h)
(12.41)
7o(h) = —ia ((a)/2)1/2 12) +ia* ((a)/2)1/2 /3)

and these satisfy the canonical commutation relations. We will also want to consider
Wick ordered products : ¢o(h1) - - - ¢po(hy,) : on the vacuum €2p. These satisfy the
identity

o)+ polhn) s R0 = a* (@) ) @ (Qoy )00 (1242)
This follows since Wick ordering means move annihilation operators to the right,

and annihilation operators on 2 give zero.

To represent the ¢o(/) as multiplication operators we consider
O=v—-A+m?=F ' op)F (12.43)

and introduce the Gaussian process ¢(h) indexed by real h € S(R?) with mean zero
and covariance (2&)~!. Thus?

E@(@)p(h) =< g,(2&) 'h >= (3, 2w) ') (12.44)

Theorem 12.3  Let ¢(h) be a Gaussian process with covariance (20)~" on a measure
space (M, =, ). There is a unitary operator V : Ft(Hy) — L*(M, w) such that
VQo =1 and

V((: o)+ golln) : Q) =: $) -+ ) (2 (12.45)

Proof First define V on complex linear combinations of the vectors (12.42). These
can be written in the form ) ", ¢y : ¢0(ha;) - - - Po(he,) : Qo With = (a1, ..., a,) in
some index set and complex c,. We want to define

v (Z Ca * Polhay) -+~ olha,) - Qo) = cu i $lha) - Plha,) oyt (12.46)
o o
To see this is well-defined we first claim that both vectors have the same norm. For
this it suffices to show that

( @o(g1) -+ - Polgm) : R0, : do(h1) -+ - do(hy) : R0)
=E(: @1 d@m) 1ap)-1 2 Ph1) - d(hn) ‘051 )

In fact each side is zero if n # m. If n = m the left side of (12.47) is computed as

(12.47)

D @1, Qo) hr )+ @ns Q) hr ) (12.48)

3 Here and elsewhere we write < g h>= f g(x)h(x)dx as a reminder that it is the real inner product. But
since g, h are real it is the same as (g, h) = f g(xX)h(x)dx.
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where the sum is over permutations 7 of (1,...,n). This follows from (12.42) and
the commutation relations for a, a*, or more directly from (5.60). This is the same as
the right side of (12.47) by (12.18) and (12.44).

Since both sides have the same norm, it follows that if a sum is the zero vector,
then it is sent to the zero vector. Hence if a vector has two different representations
they are sent to the same place. Thus the mapping is well-defined.

The mapping has a dense domain since vectors a*(f}) - - - a* ()20 with f; € S(R%)
span a dense subspace of Fock space. Also the range is the subspace of all polynomi-
als in the ¢(h) which is dense in L*(M, ). Since V is norm preserving with dense
domain and dense range it extends to a unitary operator (theorem 1.3). ]

Remark Let Hy = dI'(w) be the free Hamiltonian on Fock space so imaginary time
evolution is e~H0! = T'(e=®"). Then by (12.42) and e 'a*(f) = a*(e~'f)eHo! or
directly from (5.60)

e~ po(hy) - - - do(hn) = Qo =: dole™hy) - - po(e P hy) = Qo (12.49)

Note that e_‘:”hj is still real. Then Ve Ho'v—1 defines a contraction on Lz(./\/l, nw,

also denoted e 0" and we have
e B(h) - ) )1 =2 ple” MR pe ) gy (12.50)
Problem 12.5
1. Show that

do(h) : po(hy) - - - po(hy) : Qo =: po(W)po(h1) - - - po(hy) : QLo

- X — 12.51
+ Y < Q@) By > goln) - - poly) - - polln) = R (1230
j=1
2. Show that ¢p(h) = Vd)o(h)V_1 on polynomials.
Problem 12.6 Show that
tp(h) - P(hn) 1opy-1=V  po(h1) - - - Po(hn) : v! (12.52)

12.2.2 The CCR

If the Gaussian process ¢(h) is realized on the space (Q, X, j4(p4)-1) With Q@ =
S’(R?), then we can construct a representation of the CCR. This is a representation
on L2(Q, M(za))fl) in which ¢(h) is multiplication by (¢(h))(q) =< ¢, h > and 7 (h) is
a derivative operator. However we cannot take m (h) = —iV), since this would not be
symmetric with respect to the Gaussian measure. Instead we take for real 7 € S(R?)
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¢(h) = [p(h)]

A (12.53)
w(h) = —iVy, + i[p(@h)]

with the polynomials as the domain.

Lemma 12.3  ¢(h), w(h) are densely defined symmetric operators on the Hilbert
space L*(Q, K(2@)-1) which satisfy the canonical commutation relations.

Proof ¢(h) is symmetric. To see that 7w (k) is symmetric use the integration by parts
formula (12.38) with C = (2®)~" to obtain

(F,m(h)G) = (F,(—=iVp)G) + i(F, p(@h)G)
= ((—=iVp)F, G) — i(F, p(®h)G) (12.54)
= (r(WF,G)

For the commutators we compute that [¢(g), —iV,] = i < g,h >. It follows that
[¢(g),m(h)] =i < g,h > and [7(g), w(h)] = 0. Since [¢(g), p(h)] = O is trivial, the
proof is complete. U

The next problem combined with problem 12.5 shows that the representation
¢(h), (h) of the CCR on L*(Q, K(2i)-1) is unitarily equivalent to the representation
¢o(h), wo(h) on Fock space.

Problem 12.7  Show that 7 (h) = Vmo(h)V~! on polynomials.

12.3 Path integrals — free fields
|

We continue to consider the free scalar field. The Schrodinger representation opens

—Hot i1y terms of ran-

the door for the representation of the imaginary time dynamics e
dom paths as in the Feynman—Kac formula. Recall from section 11.5 that the imagi-
nary time dynamics for the harmonic oscillator with Hamiltonian 1/2(p? + x2) could
be represented by a Gaussian process X; with covariance E(X;, X;,) = e~l2=nl/2 .
Our Hamiltonian Hy = 1/2 f (2 + ¢é)2¢) is an infinite-dimensional analog of the
harmonic oscillator. This suggests a similar representation which we now explain.
For ¢t € R and real 1 € S(RY) let ¢(t, h) be the Gaussian process with mean zero

and covariance E(¢(t1, h1)¢(t2, ho)) given by

e~ In—nld
Cti,h;to,h) =(h, | —— | 2
20
(12.55)

_ ln—tle® _
= fhl(P) T(m ha(p) dp
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This is positive definite since it can also be written in the form

— eirolti—12)

1 = -
Cltns s 12, o) = — / (@) Fa(®) dpo dp (12.56)
2 m2

pg+Ipl* +

To see that this is the same, evaluate the pg integral by closing the contour in the
upper or lower half plane depending on the sign of #; — f,. The Gaussian process
¢(t, h) exists by the Kolmogorov theorem as in our previous discussions. We also
give an alternate construction shortly.

Note that for fixed ¢ the random variables ¢(z, h) are Gaussian with covariance
(2®)~! and so are a realization of our basic scalar field on R?. Thus t — ¢(z, h) is
a random path through random scalar fields. Furthermore our basic Hilbert space is
square-integrable functions of these fixed time fields and so this structure is imbed-
ded at various times in a larger Hilbert space of time dependent fields. This leads to
a Feynman—Kac formula. The details are as follows:

Theorem 12.4  Let ¢(h) be a Gaussian process indexed by h € S(R?) with covari-
ance < hy, (2(?))_1h2 > on a measure space (M, X, ). Furthermore let ¢(t,h) be a
Gaussian process indexed by (t,h) € R x S(Rd) with covariance C(t1,hy;t, hy) on
a measure space (M, X', u'). Then

1. For each t there is an isometry J; : L> (M, ) — L*(M’, /') such that J,(1) = 1
and

i (- @(h1) -+ dhn) 1) =2 $(t. 1) - p(t ) :c (12.57)
2. Let F,G € L*(M, ) be states of the scalar field. Then for t > 0
(G, e ™' F) = E(JyG J,F) (12.58)

Proof For the first part we follow the strategy of theorem 12.3. We want to define
the map by

Ji (Z o Plhay) ... Plhg,) 1(2@)]) = ca:Plthay) ... Pt ha,) ¢ (12.59)

o o

This is well-defined if both vectors have the same norm and this follows from

E(: (1) 6(gm) it $h). . $n) 051 )
=E(: 9.8+ 9t 8) i Bl k)bt ) i )

Each side is evaluated by (12.18) and the result follows from the equal time identity

(12.60)

< g,2d)'h>=C(t,g;1,h) (12.61)

Hence J; is well defined. Since the domain is dense and it is norm preserving it
extends to an isometry.
For the second point first take

G=9@). . 6@ a1 F=¢0)...00) ps (1262
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Then we have using (12.50) and (12.18)
(G,e ™' F)
= E(: ¢+ 0 iy S Ph) 9 ha) s1)

Z< (5 iw) n<1>>-~-<gn,(%)hn(n>> (12.63)

= E(: 4080 60, g0) i Gt h) .. $(t ) i )
= E(JoG J,F)

The same holds for complex linear combinations of such vectors since monomials of
different degree are orthogonal. This is a dense domain and since both sides of the
equation are continuous bilinears on LZ(M, 1), the result follows. O

Problem 12.8 Show that J,[¢(h)] = [¢(t, h)]J; and hence

J($00)-+ $ta)) = $tt1. ) - @t ) (12.64)

Remarks  Starting with our Gaussian process ¢(#, h) with mean zero and covariance
C(t1, h1, 2, ho) we can consider real test functions f € S(R‘”l) and define”

() = / o(t.f(t, ))dr (12.65)

Then the ¢(f) are Gaussian with covariance from (12.56)
EG0G) = [ Cltfan. . 12,0 dinde

= 1 - 12.66
= fl@)mfz(l?)dl’ ( )

Rd+1
=<fl.(=A+m>) 7 >

In fact we could have started with a Gaussian process ¢(f) indexed by S(R4*1)
with covariance (— A+m?)~!. The sharp time fields can then be recovered as follows.
As in the proof of theorem 12.1 the ¢(f) are naturally defined for f in the completion
of S(R¥*1) in the norm (f, (—A + m*)~'f)1/2. This space can be identified as the
Sobolev space

HRY = {f e SR / F@IP@* +m*)~'dp < oo} (12.67)

For h € S(RY) the Fourier transform of the distribution 8, ® & is the function
@)~ 12e= (). Since [ |h(p)>(p2 + |pI> + m*)~'dp is finite, §, ® h is in the
Sobolev space and so ¢(8; ® h) is defined. If we set ¢(t,h) = ¢(5; ® h), we get
Gaussian fields with covariance C(t1, hy, 12, h2).

4 Formally ¢(t,h) = f¢(z, x)h(x) and so formally ¢(f) = f¢(z, x)f (1, X).
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Thus the basic free dynamics are encoded in a Gaussian process with covariance
(—A + m*)~!. Expectations for this process can be thought of as integrals with
respect to the formal measure”, which is a constant times

5D

1
= exp (—5 f (3¢(x)'3¢(x)+m2¢(x)2)dx> [T 460 (12.68)

xeRd+1

Note that S(¢) is just the classical action (7.82) (at A = 0 and imaginary time). One
expects that integrals are dominated by the minima of S(¢) which come at solutions
of (—A + m?)¢ = 0. This is just the Klein—Gordon equation we started with (now
at imaginary time). Thus the integral has a leading contribution from the classical
solutions, but there are also quantum corrections. This picture manifests itself in
other models as well.

12.4 Vacuum correlation functions
]

We now study correlation functions which are expectation values of products of
field operators in some distinguished state. They are of interest because all infor-
mation about a model can be recovered from them. They are particularly important
for nonlinear field theories because they are easier to control than states, fields, or
Hamiltonians directly. We explain these points in more detail in the next chapter.
Here we continue with the free scalar field ¢o(, #) defined by (12.40). Vacuum
correlation functions are defined for ; € R, h; € S(RY) by
(S0, o(t1,h1) - - poltn, hn)R0) (12.69)

Since ¢ (t, h) = e po(h)e~Ho! and e~ Ho'Qy = Q, this can also be written
(R0, go(he =g (o) ... po(hn—1)e™ 01" (hy) Q)  (12.70)
Now suppose we go to imaginary time replacing each ¢ by it. Then we have

S(tlah]’ ... »tn’hn)
= (Q0, go(h)e™ 27 H0 @0 () . . . po(hy—1)e ™~ m=DH0 g0 (1, )20)

Now we impose the restriction that 7,11 — #; > 0 so we can deal with bounded

(12.71)

operators ¢~"Ho for t > 0 rather than unbounded operators for ¢ < 0. In fact for
complex 7 with Re ¢ > 0 the operators ¢ "0 are bounded and analytic (by the spec-
tral theorem and the positivity of Hp). The expression (12.71) is also analytic in

5 This can be made precise if we approximate RY+! by a finite lattice, say ezd+! /LZ‘IJrl with € small
and L large.
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Re(ti+1 —t;) > 0, and the real time correlation functions (12.70) are boundary values
as Re(tjy1 — t;) = 0. The S(#1, hy, .. ., ty, hy) are called the Schwinger functions.

The result we are after is that the Schwinger functions are the moments for the
Gaussian process ¢(¢, h), which we have been discussing.

Theorem 12.5  Let ¢(t, h) be the Gaussian process indexed by R x S(RY) with covari-
ance C(t1,hy; 12, ho) defined in (12.55), (12.56). Then for times t| < ty--- < t, the
Schwinger functions for the free scalar field satisfy

St Rt T) =E(¢(t1,h1) b, h,,)) (12.72)

Proof Insert ¢o(h1) = a((2w)~'2hy) + a*((2w)~'/?hy) in the expression (12.71).
Move the creation operator to the left where it becomes an annihilation operator and
gives zero on 9. Move the annihilation operator to the right using a(f)e 0% =
e Hosg(¢=5f) and the commutation relations for a, a* until it reaches the €( where
it gives zero. This yields the identity

S(ti,hy, ... ,tn,hn)

—(lj—t] )15} -

n
- e — (12.73)
= 2; (hl, Thf> S(ta, ho, ..t byt )
=

The inner product here is identified as C(t1, h1, 1, hj). Iterating this relation we find
that S(t1, 1y, ..., 1, hy) is zero if n is odd and if # is even is given as a sum over
pairings P of (1,...,n)

Sttt =Y [ Cltihistihy) (12.74)
P {ijieP
But this is the same as E(¢(t1, h1) . . . ¢(ty, hy)) by (12.10). ]

Remark These results can be generalized. Working in the Schrodinger represen-
tation on a measure space (M, X, u), let Ry, ...,R, belong to some subspace of
L2(M, ). We want to assert that fort; <t --- < 1,

E(Rle*(trn)HoR2 . .Rn_le—HO(z,ﬁ,nfl)Rn)

(12.75)
=E(U R+ Ui, R))
If n = 2, this is (12.58). If R; = ¢(hy), this is the result (12.72) just established.
(Recall that ¢o(h) = ¢(h) and Q29 = 1 under the identification of Fock space with
L3(M, 1).) Since we allow coinciding times, the result also holds for monomials
R = ¢(hy)-- - ¢(hy). Since both sides are linear, it then holds for R = polynomial.
By approximating with polynomials the result can be extended to R € L°°(M, ) or
R € Np<oolP(M, 1), but we do not go into details.
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12.5 Thermal correlation functions
|

We continue with the free scalar field. Suppose now we want to represent not the
vacuum correlation functions, but thermal correlation functions in the grand canoni-
cal ensemble at chemical potential 1 = 0 and inverse temperature 8 > 0. These are
expectations < - -- >g of products of field operators of the form

Tr([- - - e~ PHo)

e~ ) 12.76
) (1270

Working on R?, the operator e~##0 is not trace class, so this must be interpreted as a
limit from a sequence of tori RY/LZ? as L — oo just as in the non-relativistic case;
see section 6.3.

The KMS condition (6.65) for commuting observables can be interpreted as a
statement of periodicity in imaginary time. This suggests that we try to represent
the imaginary time correlation functions on the cylinder Sg x R? rather than R4*!,
Here Sg = R/BZ is a circle of circumference §. Indeed let Cg = (—A + m?)~!
on L*(S R RRY). The periodicity in # means we replace the Fourier transform with a
Fourier series and so instead of (12.56) we have for real h; € S(Rd)

i e~polti—t)  _
Cptn.hin i) =7 Y / O s adp (1277)
o+ Ipl-+m
Po€r/B)Z

The path space representation is the following:

Theorem12.6  Let ¢(t, h) be the Gaussian process indexed by Sg xS (RY) with covari-
ance Cg(ty,h2, 12, hy). The thermal correlation functions for the free scalar field
< @o(t1, h) - - - poltn, hy) >p have an analytic continuation to 0 < Imty < --- <
Imt, < B and at points t; = is; with0 < s1 < --- <5, < B

[ < ott1.h) -+ goltnhn) =5 | = E(gGs1.m) -+ 9(sh))  (1278)

lj=1sj
Proof We first check it for n = 2. To compute the left side we note that for f, g €
S(RY)

e P
< a*(Ha(g) >p = (g, —_wf>
(1 —e7he) (12.79)

1
< a(g)a*(f) >p = (8’ mf)

and that < a*(f)a*(g) >p=< a(f)a(g) >g= 0. This computation is the same as in
the non-relativistic case lemma 6.1, except that we have w(p) = /|p|? + m? instead
of [p|>/2m and p = 0 is now allowed.
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The field operator from (12.40) then satisfies

< ¢o(t1, h)do(t2, o) >p

eiwtll':ll eiwtzilz eiwtll’:ll eiwtzil2
={(a" a +a a*
2w 2w 2w 2w p (12.80)
5 e(—B—ila—m)w\ _ N ella—tw N
=\, ——— | h,|m—— | h
( : (2w(1 —e—ﬂw>) 1) +< ! <2w<1—e—ﬁw)> 2)

Since w > 0, this has the analytic continuation and

[ < eotmp =5 |
1 =US1,12=182

N e(=Bts2—=spDw \ N e—(2=s1)w B
=, | ——— | h h,|—— | h
(2 (2w<1—eﬂw>> ‘>+( ! <2w<1—eﬁw>> 2)

On the other hand the right side of (12.78) is E(¢(s1, h1)p(s2,h2)) = Cg(s1, hy;
52, h7). But we can relate the covariance Cg on Sg x R4 to the covariance C on R4+!
defined in (12.55), (12.56) by

Cp(st.his s2.h0) = ) Csihs 52+ nB.h2) (12.82)
nez

(12.81)

To see this is true we first establish the identity for w 7~ 0

etpot !Po(H-nﬁ)

B> o (Zn)‘lzf dpo (12.83)

poe2r/B)Z I nez? Po o+ o’

The second expression can be written ), e~@l*nBl 24, which shows that the sum
over n converges. To establish the identity note that both sides are periodic functions
with period B and hence define functions on Sg. Both sides satisfy the equation

2
<_d_ to ) w=Y"5(+np) (12.84)

dr?
nez

in the sense of distributions. Such solutions are unique, hence the identity. (This is
the method of images.) Now in (12.83) let t = 51 — 52, let o = w(p), multiply by

le(p)ﬁz(p), and integrate over p to get (12.82).
Now we have

Cp(s1,h1; $2,h2)

e Is2=si+BnloN
> G, ( ) h2)

nez
1

(s2—51)® 0 —(s2—s1w (12.85)
~ e ~ ~ e ~

ﬂ - /3
E <hl,( 2 )en wh2>+ngo<h1,< 2 >e n a)hz)

n=—00

- e(—Btsa—=spw \ _ - e~ (25w 5
=(h,|—— )1 hh|— | h
( : (2w<1—e—ﬁw)> 2>+< : (2w<1 —e—ﬂ”>) 2>
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Taking into account that / real implies izi(p) = fzi(—p) this is the same as (12.81).
For general n the correlation function < ¢o(t1,h1) - - ¢o(ts, hy) >pg can be

expressed as a sum over pairings Y p [ [ 3cp < Go(ti, h)do(tj, hj) >p by a vari-

ation of problem 6.4. Thus it continues to » p [](; yep Cp(si, i s, hj), which is

E(§(s1,h) (s, b)) by (12.10), 0

Problem 12.9

1. Check that both sides of (12.83) satisfy (12.84).
2. (uniqueness) Show that if u € S'(R) and (—d?/dt* + w*)u = 0, then u = 0.

Notes on chapter 12: A general reference is Glimm and Jaffe (1987). For Gaussian
measures on S’ (R?), see Gelfand and Vilenkin (1964). There is an analogue of path

integrals for fermions, see for example Salmhofer (1999).
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13.1 The model
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In this chapter we give an example of a field theory governed by a nonlinear field
equation. In its particle aspect the nonlinearity means that particles can interact with
each other and can also be created and destroyed.

We take the simplest nontrivial case which is a scalar field on the spacetime (R, 1))
obeying the field equation (7.81)

(—O+m*)p +4r¢* =0 (13.1)

Here A is a positive coupling constant. As a first-order system it has the form

s

dt
dm

dr

(13.2)
= —(—=A +m)p — 4rg°

This is an infinite-dimensional Hamiltonian system with the Hamiltonian

H=Hy+V
o0

1
Ho(p,7) = 5/ (rr(x)2 + (Vo)) + m2¢(X)2)dx (13.3)
V(g) = 1 f $()*dx

This is formally positive, which is why we took ¢ in the field equation rather than
say ¢2. The model is known as the d)g model, the two for dimension d = 2. More
generally if we replace ¢* by a lower semi-bounded polynomial P(¢), it is called the
P(¢)> model.

The problem is to construct operator valued solutions to this equation with
initial values mo(x), po(x), which satisfy the canonical commutation relations
[¢o(x), mo(y)] = i8(x — y). From chapter 8§ we already know the solution for
A = 0. Start with the Fock space Ft(Hg) with Ho = L*(R3,dp). Define time
zero fields ¢g, mo as in (8.56). If the terms in Hy = Ho(¢o, 7o) are Wick-ordered,
then the operator Hp is well-defined as Hy = dI'(w) (problem 8.8) and the
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dynamical equations (13.2) are solved by ¢(t,x) = e'¢y(x)e~ 0" and 7 (t,x) =

eiHotno(x)e—iHot

interpreted as distributions.

If we try to incorporate V into this picture, we would try to add a term
A f_oooo $o(x)*dx to the Hamiltonian. But this is very poorly defined. In the first place
we are raising a (operator-valued) distribution to the fourth power, something with
no natural meaning. In the second place we are integrating something with no decay
over all of R. Our task is to explain how to deal with these problems.

First some comments about the physics. On states with low momentum

w(p)= \/]m ~ m. Hence in (8.56) for d = 1 the field is approximately
$o(0) ~ 2m) ™2 (a(x) + a* () (13.4)

where a(x) = (2n)~1/2 f e'P*a(p) labels a particle at position x. Hence with Wick
ordering
4 3A * *

A/ FPo(x)”T dx &~ o) a‘(x)a*(x)a(x)ax)dx + ... (13.5)
This leading term preserves particle number and comparing it with (5.79) we see
that it describes pairs of particles interacting with a repulsive delta function potential
v(x—y) =31/ m2 §(x— y). There are also other terms such as f a*(x)*dx which create
or annihilate particles, but these turn out to be less important at low momentum.

13.2 Regularization
- |

We regularize the problem as follows. As mentioned, the first step is to replace
A ffooo $o(x)*dx with a Wick-ordered version

v:x/oo S o) dx (13.6)

—00

The second step is to restrict the integral to a finite interval by

L
VL = x/ o)+ dx (13.7)
—L

The third step is to regularize the field. Let x be an arbitrary positive function in
Coo(R) with [ x(x)dx = 1. Then let

Sk (X) = Kk x(kx) (13.8)

This is an approximate delta-function in the sense that any continuous function
f fO)8c(x — y)dx — f(x) as k — oo (problem 13.1). We define a regularized
field by

$0,c(X) = Po(Sk(- — x)) (13.9)
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and a regularized potential by

L
Vi = )\f Lo (0 1 dx (13.10)
—L

This is a well-defined operator on a dense domain on Fock space.

We now change to the Schrodinger representation as in section 12.2. The field
operators ¢o(h) become a family of Gaussian random variables ¢ (/) with covari-
ance (2®)~! on a measure space (M, X, ). The equivalence is provided by the
unitary map V from the Fock space to L*(M, 1) defined in theorem 12.3. The free
Hamiltonian is now VHyV~! also denoted Hy, and (problem 12.6) the interaction
becomes VVp v—1, which is multiplication by

L
Vi) =2 / O s d (13.11)

where ¢, (x) is the random variable ¢, (x) = ¢(5,(-—x)). Then Vi ,(¢) is well-defined
as a function in L/(M, ) forall 1 < p < oo.

Our goal is to remove the regularizations by finding a meaning for the limits
k — o0 and L — oo. The limit k — oo is facilitated by the Wick monomials as
we now explain. Note that the random variables ¢, (x) have a covariance

(e — ¥) = E@e (9 (3)
= (8¢ = .25 = ) (13.12)
= [ iemoPeor) d
Thus we have

L e 200y 1= @) — 6000 (0 +3(c(0))? (13.13)

As k — oo we have 3(p/k) — %(0) = 27)~'/? and ¢(0) — o0, in fact ¢,(0)
grows like log k. Thus in f_LL : e ()t ‘(@)1 dx the constant and quadratic terms
develop infinite coefficients as k — oo. The idea is that these should cancel the natu-
ral infinities in the quartic term f f‘L R (x)*dx. This is an example of renormalization.

Theorem 13.1  The following limit exists in L>(M, 1)
Ve = lim Vi, (13.14)

K— 00

Proof ~We first compute the L? norm of V7. We have by (12.18)
2 2 [* t 4 4
VLl =2 /de/Ldy E( D (%) Qo)L e (y) ‘@)1 )
L L
= 41)2 / dx/ dy (cK()c—y))4 (13.15)
-L -L

= 4157 <X[—L,L], chx X[—L,L]>
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Using the Schwarz inequality and the bound ||f * gll2 < [Ifll1llgll2 we have

VLl < 41221 x-raill3 el = 482%Lllecl} (13.16)
By the Hausdorff—Young inequality' |lc. |4 < ¢« ll4/3. Furthermore

&(p) = @) 23 (p /0P op) ™" < o)™ (13.17)

and so
3/4
cellasz < </(2w(p))4/3dp) <00 (13.18)

Hence ||c.|l4 is bounded in « and hence so is ||V ||%. This result fails in higher
dimensions (the integral (13.18) is infinite), which is why we have taken one space
dimension.

Similarly we have with ¢, ,/(x —y) =< 8,(- — x), Q&) '8 (- — y) >

Ve = Vewll3
L L
=422 [ ax [ (et = 3 = Aewuwtr= )+ ot - ) 1319)
-L J-L

Since X (p) has a bounded derivative, |x(p) — x(p')] is bounded by a constant times
|[p — p'|. Since also | (p)| is bounded, we have that |x(p) — x(p')| is bounded by a
constant times |p — p’|¢ for any 0 < € < 1. Hence with k¥ A ¥’ = min{«x, ¥’} we have
X (/1) = X (/K" < Ok A k")~)|p|€ and therefore

Ec(p) = Eesr )] < Ol A k) pl (p) ™! (13.20)
For € small the extra |p|€ does not spoil the convergence of our integrals and so
llee — e lla < 18 — Ceperllagz < O AK')7) (13.21)
Using estimates like this in (13.19) gives that
IVew = Vil = O Ak)™) (13.22)

Hence ||V« — VL, II% — 0 as k,k’ — oo and by the completeness of L2 there is a
limit V, in L. O

Convergence in L7 can also be established. Indeed one can show that for € > 0
and small and any even integer p there is a constant ¢ (depending on €, A, L) so that

IVie = Ve llh < £ @p)t ik Ay~ (13.23)

The dependence on p can be understood as follows. One can evaluate the Gaussian
integrals in this norm as a sum over graphs on p vertices with four legs at each vertex
with the restriction that no lines join legs of the same vertex, see (12.26). The number

! The Hausdorff—Young inequality says that if a function f is in L Ry for 1 < p < 2, then the Fourier
transform £ is in LI@RY) for p~! + ¢~! = 1 and Ifllg < @m)4/2=4/P||f||p. We use it for the inverse
transform.
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of such graphs is dominated by the number of graphs without the restriction which
is(@p—1)dp—3)---3-1<222p)!.
Completing the square in (13.13) gives : ¢, (x)* :> —6¢,(0)? and hence
Vie > —120Lc(0)* > —b(logk)® + 1 (13.24)

for some constant b. This is a sharp bound and so exp(—V, ) becomes unbounded
as k — 00. Nevertheless eV~ is integrable for we have:

Theorem 13.2  (Nelson)
E(e"t) <00 (13.25)

Proof The idea is to show that although V/ is not bounded below it only becomes
very negative on a set with small measure. Using (13.24) have for any « and any
even p

P(e_VL > eh(logk)2> — P(VL < —b(IOgK)z)
< P(IVe = Vel 2 1)

< Ve = Vil

< 2p)kP¢

(13.26)

In the last step we have used (13.23) at k¥’ = oo. Choosing p close to k€/* and using
Stirling’s formula for the asymptotics of (2p)! yields for « sufficiently large

P (e—vL > eb(logx>2) < exp(—k</4) (13.27)

or witht = eb(log")2

P (e_VL > t) < exp ( — exp (Z@)) (13.28)

o]

E(e'r) =f P(e”t = 1)dr (13.29)
0

Since

this is sufficient to establish the integrability. U

The Hamiltonian for the model is now Hy = Hy + V; on a dense domain in
L*(M, ). The potential V; is not a Kato perturbation of Hy. Nevertheless by a more
difficult proof2 which uses the result (13.25):

Theorem 13.3  H; is essentially self-adjoint on D(Hy) N D(Vy) and Hy, is bounded
below.

This theorem and the next can actually be circumvented as we explain later.

2 See Glimm and Jaffe (1970), or Reed and Simon (1975: 267).
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Theorem13.4  Let E; = inf o (Hy) be the bottom of the spectrum for Hy. Then E; <0
is a simple eigenvalue with eigenvector Q21 which is a strictly positive function.

This is a generalization of theorem 11.5 to an infinite-dimensional measure space.’

The state 2, is the vacuum for the model and can be thought of as the distortion
of the free vacuum (. Well outside of the interval [—L, L] we have H; ~ Hj and so
we expect €2, to be close to €2¢, which has no particles. However inside the interval
[—L, L] the vacuum €2 is filled with particles. The vacuum is not empty. (These
remarks are best visualized in the Fock representation.)

Problem 13.1 Let x € C5°(RY) with | x = 1 and let §,(x) = x“ x (x). Show that
3, 1s a family of approximate delta functions in the sense that for any function f
continuous on a neighborhood of the origin in R¥

lim (8,.f) =< 8.1 >=(0) (13.30)

Problem 13.2  Fill in the details in the proof of theorem 13.2.

13.3 Infinite volume
]

13.3.1 Wightman functions

Now we would like to take the limit L — oo. The operators H; and vacuum vectors
€27 actually have no limit in Fock space. But we use them to define some correlation
functions which do have limits. Then from these infinite volume correlation functions
we will give an abstract construction of a new Hilbert space, new field operators, and
a new vacuum vector, which reproduce the correlation functions.

The correlation functions are vacuum expectation values of products of field oper-
ators. The field operator is ¢r(f,x) = exp(iHpt)¢(x)exp(—iHyt) or smeared with
feS®

() = / 1, 0)f (1, vt = / (1, e i (1331)

One can show that ¢r(f) is a well-defined operator mapping the dense domain
C°®(Hp) = ﬂ;’;] D(H}) to itself. If f is real, it is symmetric, but we can extend the
definition to complex f by linearity and then ¢>L(f ) C ¢r(f)*. Since 27, is a vector in
C®°(Hp), we can define vacuum correlation functions or Wightman functions by

3 See Glimm and Jaffe (1970) or Reed and Simon (1978: p.208).
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War(fts. ... fn) = QL. ¢r(f1) . . . dL(f)2L) (13.32)

These Wightman functions are bounded multilinear functionals on S(R?) uniformly
in L. All these results follow from the “¢>—bound”4, which says that there is a constant
Csoforreal h € S(R') and all L

+ () < Cllhl(HL + 1) (13.33)

We note some properties of these finite volume Wightman functions. By the kernel
theorem (see appendix C) there exist distributions W,,; € S '(R?") such that

Wir(i ® - @ fu) = Wur(f1,. ... n) (13.34)

Lemma13.1  The finite volume Wightman functions W, 1 (F) for F in complex S(R*")
satisfy the following properties:

1. Let F*(x1,...,x5) = F(xp,...,x1), then
Wi L(F) = W, 1(F") (13.35)

2. Let Fy,F1,F,... be a finite sequence with Fy € C and F, € S(R*"). Then with
Wor =1

> Wi (Ff @ Fj) = 0 (13.36)
iy
3. Let F[(x?,x{, . ,xg,x}l) = F(x(l) — t,x}, o ,x2 — t,x,ll) be the time translate of F.
Then for any t € R
WL (Fr) = Wy (F) (13.37)

Proof For an identity like (13.35) it suffices to prove the result for F =1 ® - - - ® f,
in which case it follows from ¢r.(f) C ¢r.(f)*.
For the second point define

Dpr(fis. o fn) = dL(f1) - dL)RL (13.38)

This is a continuous (vector-valued) multilinear functional on S (Rz) and so by a
(vector-valued) kernel theorem there is a unique extension to a (vector-valued) linear
function ®,, 1 (F) on & (R?") such that

@ 1(fi @ - ®fn) = Prlfi,- .. Sn) (13.39)
Then for F € S(R¥) and G € S(R¥) we have
Wi L(F* ® G) = (; L(F), ®;1(G)) (13.40)

again by oL(f) C ¢r(f)*. Then for sequences Fo, F1, Fa, ...

D Wi (Ff @ Fp)y= | Y ®in(F), Y ®j0(Fj) | =0 (13.41)
ij i J
The third point follows by ¢1.(f;) = el (F)eHi! and e HLIQ; = Q. O

4 Glimm and Jaffe (1972).
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We would like to show that W, = limy_, o, W), exists in &’ (Rz”). This is possible,
but difficult. We will have more to say about it. For the moment suppose that the limit
does exist. The properties (13.35), (13.36), (13.37) established in the previous lemma
then carry over to the limit. These are sufficient to reconstruct a field theory as we
now explain.

13.3.2 Reconstruction

The reconstruction theorem 1is quite general and we state the result for a scalar field
in a d-dimensional spacetime. There are also versions for other spins.

Theorem 13.5 (Wightman reconstruction theorem) Let W, € S'(R"?) be a family of
distributions with Wy = 1. Suppose they satisfy

Wu(F) = W,(F*) (13.42)
and for any finite sequence Fo, F1,Fs, ... with F,, € S(R"®)
Y Wi (Ff ® Fj) = 0 (13.43)
ij
Then there exists a Hilbert space 'H, a dense domain D C 'H, a family of field
operators ¢(f) : D — D forf € S(RY), and a vector Q € D such that

Wa(f1 @ -+ ® fn) = (2, 0(f1) . .. ¢(f)$2) (13.44)

Furthermore ¢(f) C ¢(f)*. In addition if the W,, are time translation invariant in the
sense that

Wa(Fr) = Wi(F) (13.45)

then there is a self-adjoint operator H such that e~ preserves D and satisfies

e HIQ =Q M pHre ™M = p(f) (13.46)

Proof Let £ be the space of sequences F = (Fo, Fy,Fa,...) with Fy € C and
F, € S(R"). On & define

(F.G) =Y W;(F} ® G)) (13.47)
i.j
By (13.42)
(F,G) =Y Wi (Ff ® G) = »_Wij(G} ® Fi) = (G, F) (13.48)
i,j i,j

and by (13.43) (F, F) > 0. Thus (F, G) is an inner product except that it is not positive
definite. Let A be the subspace of all F with ||F||> = (F, F) = 0 and form the factor
space £/N consisting of equivalence classes [F]. Using the Schwarz inequality one
shows that the inner product is well-defined on £/ by ([E], [F]) = (E, F). On this
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space it is positive definite. Thus D = £/N is a pre-Hilbert space and we let H be
the completion. €2 is the equivalence class of (1,0,0,...).
The field operator is defined on £ by

PNHF =0,f@Fo.fQF1,f®F,...) (13.49)
Then

(F.¢(NG) =Y _ Wisjr1(Ff ®f ® Gj)
i
=Y Wiiri(f ® F)* ® Gy) = (d(HF. G)

iy

(13.50)

By the Schwarz inequality

I$OFN* = (SNF, (N)F) = (F,$(d(F) < IFIlIp(¢(F| (13.51)

Hence if F € N, then ¢(f)F € N and so ¢(f) is defined on £/N and ¢(f)[F] =
[f ® F]. The identity (13.44) holds since ¢(f1) . .. ¢(f,)<2 is the equivalence class of
0,0,...,/1® - ®fn,0,...)and so

Wu(fi ® -+ ®fu)
- ((1,0,0,--~),(0,O,...,f1 ®-~®fn,0,...)) (13.52)
= (2,0(1) ... 06(f)S2)

For the second point define F; = (Fo, F14, Fay,...). Then t — F; is a represen-
tation of the group R on £ and it preserves the inner product by (13.45). Hence it
preserves A and defines a representation of R on £/N by U(f)[F] = [F;], which
also preserves the inner product. This extends to a one-parameter unitary group U(t)
on H, which is continuous since translations are continuous on the Schwartz space.
The Hamiltonian H is defined to be the generator U(r) = ¢ and the identities
(13.46) are easily checked. ]

We have given a bare bones version of the reconstruction theorem. The full
theorem® has more features some of which we develop in the following problems.

Problem 13.3  (Poincaré invariance) The proper Poincaré group on (R%, 1) acts
on S(RY) by fua(x) = f(A~!(x — a)). Show that if the Wightman functions in
theorem 13.5 are invariant in the sense that

Wn((fl)a,A ®---&® (fn)a,A) = Wn(fl (%) o0s ®fn) (1353)

then there is a unitary representation U(a, A) of the Poincaré group on H such
that

U(a, N2 = Q Ula, N)¢(f)U(a, A= O(far) (13.54)

5 See Streater and Wightman (1964).
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Problem 13.4 (locality) Show that if the Wightman functions in theorem 13.5
satisfy

Wn(fl & - ®fj" ®fj"+1 & - ®fn) = Wn(fl ®--- ®fj"+1 ®f]“ - ®fn) (13.55)
whenever f; and fj | have spacelike separated supports, then

[¢(F). ¢(8)] =0 (13.56)

whenever f and g have spacelike separated supports.

13.3.3 Interpretation

Following these general considerations we return to the ¢§ model. Assuming that the
infinite volume Wightman functions exist, the triple (H, €2, ¢(f)) of the reconstruc-
tion theorem forms the basic model. The physical picture is that the Hilbert space H
has a distinguished vacuum vector 2 which is invariant under time evolution. Since
it is in some sense the limit as L — oo of the Fock vacua €2, localized in [—L, L], we
can think of it as a sea of Fock particles (also called bare particles) filling all space.
States ¢(f1) . . . ¢(f,)S2 represent local disturbances in the vacuum. These states span
a dense set so the entire Hilbert space can be thought of as local distortions of the
vacuum.

Furthermore suppose that we could establish the Poincaré invariance. This would
not be straightforward since the finite volume Wightman functions are not invariant.
Nevertheless once it is known, we would have a representation of the Poincaré
group. Physical particles could be identified by finding irreducible subspaces for this
representation. A physical particle can be thought of as a cloud of bare particles.

13.4 Path integrals — interacting fields

Continuing with the qbg model we seek to represent the imaginary time dynamics as
an integral over paths just as for the free field. That is we seek another version of the
Feynman—Kac formula as in theorem 12.4.

Again let ¢(h) be a Gaussian process indexed by 7 € S(R) with covariance
< hy, (2(?))’1h2 > on a measure space (M, X, u) and let ¢(¢, h) be a Gaussian pro-
cess indexed by (r,h) € R x S(R) with covariance C(t1,h;t,h) (defined in
(12.55), (12.56)) on a measure space (M’, X', u'). We now define a potential on
fields ¢(t, h) by

T L
ViorIx[-LL] = A / / ot x)* ¢ drdx (13.57)
0 —L
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This can be defined as a limit in L2 (M, ') of regularized potentials with : ¢(z, 04 e
replaced by :¢(t, 6, (- —x))*:¢c. This is entirely similar to the treatment in theorem 13.1
of the potential V7 in L>(M, ) . In fact we have the identity

T
Vior)x[-LL) = /O JiVidt (13.58)

where J; : L2(M, ) — L2(M’, i) is defined in theorem 12.4. This holds with the
regularizations on both sides since

Lt 8- — ) o= T 1 (8- — 1) 1) (13.59)
and hence in the limit k — oo.
Theorem 13.6

1. exp (—V[o,r]x[,L,L]) isin P(M', 1) for all p < oc.
2. Let yr, x € L>(M, 1) be polynomials and let H;, = Hy + V. Then

ey = E(T exp (~Viorxi-zn) Jrx)  (13.60)

Remark The proof of the first part is entirely similar to the proof of theorem 13.2
and is omitted. The second part is a Feynman—Kac formula. The proof given below is
analogous to the proof of theorem 1.3, but here it is just heuristic. It could be made
rigorous but this would probably not be the most efficient way to obtain the result.®

Proof We compute with t; = jT/n

~THL .\ _ 1; —THo/n ,—TVL/n\"
WMy = tim (, (e7H0/ne V)" 5 )

n

_ 1 =TVp/n

= lim E | Jo¥ Hthe Jrx
j:

(13.61)

— lim E | 7 T~ v | s
= lim E [ Joy exp —;ZI: Ve | Irx
j:

T
:E(mexp <—f JiVL dl) JTX)
0

Here the first step is the Trotter product formula. The second step is the free field
result (12.75). The third step uses J; exp(—Vy) = exp(—J;Vr). In the last step we
take the limit inside the integral and identify a Riemann sum. Finally use (13.58) to
complete the proof. O

A variation of this result for the imaginary time correlation functions is the
following. For

—T<th<---<t,<T (13.62)

6 See for example Simon (1975: 163).
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the bare vacuum correlation functions are (with 29 = 1 in our Schrodinger
representation)

(QO, e_(T-I-Il)HL¢(hl)e—(lz—ll)HL¢(h2) o ¢(hn)e_(T_t”)HL QO)

(13.63)
= E(¢(l1, h1) ... ¢t hn) exp (—Vi—1.7)x[~L.L]) )

Formally this follows as in (13.61). In any case the expression on the left is well-
defined since the ¢ bound (13.33) implies (Hy + 1)~'2¢(h)(Hz, + 1)~ /% is bounded
and since (H; + 1)'/2e~"L(H; + 1)!1/? is bounded for ¢ > 0. Next divide by

le™ Q0 |1? = E (exp (—Vi-r1x1-L11)) (13.64)
By theorem 13.4 the lowest eigenvalue of Hy is simple with eigenvector €27, and so

(cf. problem 11.7)

e—THL Qo

lim —— =Q 13.
Tt e T (1269

Then we have for correlation functions with the physical vacuum

(QL, (e 2 HLY () .. p(hy—1)e™ " n=DHLY ()2 )
. E(¢@i, h) ... ¢t hy)exp (=Vi—r.11x[-L.11)) (13.66)
= lim
T—o0 E (exp (=Vi-1.11x(-L.11))

An advantage of this representation is that the L dependence is in a place where
we can get our hands on it. It is indeed possible to take the limit L — oo in this
form, see the notes for references. If the fields ¢(¢, x) were independent random vari-
ables, this would be easy since one could cancel the large distance contributions
from V|_77)x[-L,] in the numerator and denominator. They are not independent
but they are approximately independent as points separate since the covariance C is
exponentially decaying. This is the basic mechanism behind the result.

Now we can give an indication of why the Wightman functions have an infinite
volume limit as well.” By the ¢-bound the functions

(Qr, ¢(h)e™ VLY (o) . p(hy—1)e T T=DHLG (1) Q) (13.67)

are analytic and bounded uniformly in L on compact subsets of the complex region
Re(t; — ti—1) > 0. Since the functions converge as L — oo when the t; are real, it
follows by the Vitali convergence theorem® that these functions have a limit for z; in
the entire region. Then for € > 0 and f; € S(R?)

/ dy . ..dty (Q, ¢(fi(tr, )e T TOHLY P (13, ) - p(fultn, NRL)  (13.68)

7 Glimm Jaffe and Spencer (1974).
8 See for example Titchmarsh (1939).
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also converges as L — oo. However as € — 0 this expression converges to the
Wightman function W, 1 (f1, . .., f,) and by the ¢-bound again one can show that the
limit is uniform in L. Hence the Wightman functions converge as L — oo.

13.5 Areformulation
]

The approach we have sketched for the ¢§' model is the most intuitive, but it is not the
most efficient. We now explain a variation which involves constructing the Hilbert
space directly at imaginary time.

Start with the equivalent Gaussian random process ¢(f) indexed by real f € S(R?)
2 )~ 1

with mean zero and covariance C = (—A +m . Define the unnormalized finite

volume Schwinger functions

S g i(fise i fo) = E(¢(fl) o) exp (—Vi-T.rix(-LL)) ) (13.69)

and extend to complex test functions by linearity. By the kernel theorem this defines
a linear functional SS’T’ ronS (R?") such that

S A® - ®f) =S g s (i f) (13.70)

It will be convenient to restrict attention to the algebraic tensor product ®"S(R?) =
SR?) ® - -- ® S(R?) which is the subspace of S(R*") consisting of finite combina-
tions of the f1 ® - - - ® f;-

If f1 ® - - - ® f, has support in the region (13.62), then we have the identity

SO (i ® - ®f)
= / (Q0, e THHLG(f (11, ))e~ 27 DHL (13.71)
S(fa(12.) - pfultn, e T Qo)dty - - -ty

Indeed the field ¢(f) can be written in terms of the sharp time field ¢(¢, h) as ¢(f) =
[ ¢(t,f(z,-))dr and the result follows from (13.63).

Lemma13.2 The finite volume Schwinger functions have the following properties:

1. Let F € ®"S(R?) have supportin =T < t; < --- < t, < T and define

(OF)t1,x1, .. s tnXn) = F(=ty, Xn, ..., =11, X1) (13.72)

Then

S0 L (F) = S0 1(OF) (13.73)
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2. (reflection positivity) Let Fy, F1,Fa,... be a finite sequence with Fy € C and
Fp, € ®"S(R?) with support in0 <t < --- < t, < T. Then with Sg’TL =1

> S (OF; @ Fj) = 0 (13.74)
i
Proof It suffices to check the first identity for F = f; ® - - - ®f;,. Then it follows from
the representation (13.71) and the facts that e~ is self-adjoint and o(h) C p(h)*.

For the second point let f1, . ..,f, have supports in 0 < t; < --- < f, < T and
define

Wi (fis. .o fn) = /dh'--dtn
e ML (f(ty, - Ne” PTVHLG(F(12, ) . L P(f (1, e T WAL

As a multilinear functional this defines a linear function W, 7 .(F) on the subspace
of ®"S(R?) of restricted supports satisfying

Vorr(fi ® - ®fu) = Wurrlfi,....fn) (13.76)

Now for F € ®'S(R?) and G € ® S(R?) with restricted supports we have

(13.75)

S0 1 (OF ® G) = (Wiru(F), %1.0(G)) (13.77)

Again this follows from the representation (13.71) and adjoint relations. Then for
sequences Fg, F1, Fa,. ..

> S ir(OF; @ Fy) = ( > WirsF). Yy wj,T,L(Fj)) >0 (13.78)
ij i J

O

Now consider the normalized Schwinger functions:

E(¢(fl) () exp (=Vi—1.11x[-L.L]) )
Sn,T,L(fl, oo 7fn) = (1379)
E(exp (~Vier.rixi-La) )

As noted earlier for these one can establish an infinite volume limit

Sn(fl,...,fn) = T?Eloosn’T’L(fl"“’fn) (13.80)

These infinite volume Schwinger functions again satisfy S, (F) = S,(©OF) as well as
the reflection positivity condition

Y _Si/(OF; ® Fj) 2 0 (13.81)

i
Now we can sketch a reconstruction theorem; the details are a bit too much to
go into here. One uses (13.81) to define an inner product on sequences. Factoring
out the null space and completing in the resulting norm gives a Hilbert space. On
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the Hilbert space we can reconstruct field operators which reproduce the Schwinger
functions S,. The infinite volume Schwinger functions S, will be time translation
invariant (although the finite volume were not) and one can use this to construct

a semi-group e~ H

which generates the time translations. All this is analogous to
the Wightman reconstruction theorem. Then using the semi-group one can make an
analytic continuation to real time and get a family of distributions W,, satisfying the
Wightman axioms and hence a full field theory. This reconstruction theorem exists
in various forms and was originally due to Osterwalder and Schrader.

This approach generalizes to other models and has a number of advantages:

1. It turns out to be relatively easy to prove the reflection positivity (13.81) directly
in path space without establishing the connection with Fock space as in (13.71).
Thus the whole Fock space construction can be dispensed with.

2. Properties of the Wightman functions can be deduced from simpler properties
of the Schwinger functions. In particular Poincaré invariance of the Wightman
functions can be deduced from the invariance of the Schwinger functions under
the Euclidean group (translations, rotations). Also locality for the Wightman
functions can be deduced from the symmetry of the Schwinger functions.

3. Expressions such as (13.79) for the finite volume Schwinger functions can be
thought of as the correlation functions for a problem in classical statistical
mechanics. The phase space is all field configurations on a Euclidean space.
Hence in studying the Schwinger functions one can sometimes use techniques
developed for classical statistical mechanics, for example in proving the existence
of the infinite volume limit. (This works the other way also: field theory tech-
niques have proved to be useful in statistical mechanics problems, both classical
and quantum.)

The ¢§ model and more generally the P(¢)> models have been completely con-
structed along the lines we have been discussing. Other nonlinear models have also
been treated with varying degrees of success. In higher dimensions the renormaliza-
tion problems become much more severe (for us Wick ordering was sufficient). The
model qb§ has been constructed, but qbff probably does not exist. There is as yet no
model completely constructed in d = 4.

Once a model is constructed the next task is to find what particles are present.
Then one looks for states whose long time behavior consists of a finite number of
particles moving in separate trajectories. This is analogous to the construction of
wave operators in section 4.5 and is the content of the Haag—Ruelle scattering theory.
From these asymptotic states, one forms scattering amplitudes which can in principle
be compared with the results of scattering experiments (in d = 4).

Notes on chapter 13: For the P(¢)> model see Glimm and Jaffe (1970), Nelson
(1973), Simon (1975), Glimm and Jaffe (1987).
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For an axiomatic treatment of quantum field theory see Streater and Wightman
(1964) or Bogolubov Logunov and Todorov (1975).

There is also a treatment of relativistic quantum physics in which fields are
displaced as the primary objects and replaced by C* algebras with a local struc-
ture. This has certain advantages and some believe is a more fundamental approach.
For this algebraic version of quantum field theory see Haag (1992).

There are also books which attempt to explain quantum field theory as practiced
by theoretical physicists to a mathematical audience, for example Folland (2008).
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We review some basic facts. A Banach space X is a complete normed vector space.
The vector space can be real or complex, but is complex unless specified otherwise.
The norm is a real-valued function on X sending x € X to ||x|| which satisfies:

1. flex|| = |cl|lx|| for c € C
20 x4yl < il + iyl
3. |lx|l > 0and |x|| = 0iff x = 0.

The norm makes X into a metric space with distance function
d(x,y) =[x =yl (A.D)

As such it is a topological space and we have all the usual notions of open sets,
closed sets, dense sets, connected sets, compact sets, etc. To say X is complete
means that every Cauchy sequence in X has a limit in X. That is if ||x, — x,|| — O
as n,m — 00, then there exists a (unique) x € X such that ||x, — x|| — 0 as
n— oo.

Examples:

1. For 1 < p < oo let €7 be the space of infinite sequences of complex numbers
x = (x1,X2,...) such that

00 1/p
lxll, = (Z |xl-|1’> (A2)
i=1

is finite. Then ¢7 is a Banach space with this norm.
2. For 1 < p < oo let IP(IR") be the space of all complex measurable functions « on
R" such that the integral with respect to Lebesgue measure

1/p
lulp, = (/ Iu(X)I”dx) (A.3)

is finite. If we identify functions which are equal almost everywhere, then L7 (R")
is a Banach space with this norm.
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3. Let L>(R") be the space of all complex measurable functions u on R"” which
are bounded almost everywhere. Identifying functions which are equal almost
everywhere, this is a Banach space with the essential supremum norm

llulloo = ess sup,|u(x)| (A.4)
4. Any closed subspace of a Banach space is a Banach space

Theorem A.1  Any normed vector space X can be identified as dense subspace of a
Banach space X = X called the completion of X.

We sketch the construction. The space X is equivalence classes of Cauchy
sequences in Xo with {x;} ~ {x}} if lx; — x}|l — 0 as i — oo. Then X is
naturally a vector space. One shows that lim,;_, o ||x;|| exists and depends only
on the equivalence class. This gives a norm on X and one shows that X is
complete. Xo is identified as the subspace of (equivalence classes of) constant
sequences.

A.2 Hilbert spaces

A Hilbert space 'H is a complete inner product space. An inner product on a vector
space H is a map from pairs u, v € H to (u, v) € C such that

1. (u,v)is linear in v and anti-linear in u.
2. (u,v) = (v,u)
3. (u,u) >0and (u,u) =0iffu =0

The inner product defines a norm by ||u|| = +/(«, u). Thus an inner product space is
a normed space. Complete means complete as a normed space. Thus a Hilbert space
is a Banach space.

The inner product can be recovered from the norm by the polarization identity

1
,0) = 7 (Il + 0l = llu = vl = i+ iv]® + illu = ivl?) - (A5)
We also have the Schwarz inequality
G, V)] < Nluellllv]l (A.6)
Examples:

1. €% is a Hilbert space with (x,y) = > 2%, %;;.

2. L*(R") is a Hilbert space with (u,v) = [ u(x)v(x)dx.

3. Any closed subspace of a Hilbert space is a Hilbert space.

4. Let H1, H»> be Hilbert spaces then H | x Hy (= all pairs < uy,up > withuy € H;
and uy € H» ) is a Hilbert space when supplied with the inner product
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(<up,up >, <vg,v2 >) = (uy,v1) + (U2, v2) (A7)

This Hilbert space is denoted H; & Ho.
If S is any subspace of a Hilbert space , not necessarily closed, then
St={ueH:wv)y=0foralvesS) (A.8)
is the orthogonal subspace. Then S is closed and (S+)* = S, the closure of S.

Theorem A.2 (Projection theorem)  Given a closed subspace M of H, any u € H can
be uniquely written as a sum u = uy + up where u; € M and uy € ML,

Then the map u — < uy,us > gives a natural isomorphism between H and M &
M- and we write

H=Ma&M"* (A.9)

A linear functional L on H is a linear function from H to C. We say L is bounded
if [L(#)] < Cllu|l for some constant C. A bounded linear functional is a continu-
ous linear functional, and the converse is also true. The space of all bounded linear
functionals denoted H’ is a normed space with

[L(u)]
L]l = sup ———= = sup [L(u)| (A.10)
uz0 el lul=1

Then || L(u)|| < ||L|/||u]l. The space H' is also a Hilbert space called the dual space
of H. The dual space can be identified with H because:

Theorem A.3 (Riesz representation theorem) Let L be a bounded linear functional on a
Hilbert space 'H. Then there is a unique v € H such that L(u) = (v, u). Furthermore
1Ll = vl

An orthonormal set in 'H is a sequence of vectors {¢;} withi = 1,2, - - - such that
1 ifi=j

L) =8 = A.ll

Gt =8i=1 o i) (A1)

Theorem A.4  The following conditions on an orthonormal set {¢;} are equivalent

1. (¢i.f) = 0 forall i implies f = 0.

2. The subspace of finite linear combinations of the {¢;} is dense.
3 =% (i forf e H.

417 = X2, (@i )P for f € H.

5 (F9) = X2 (. ¢)(i8) for f.g € H.

If one and hence all of these conditions hold, the {¢;} are said to be complete and
constitute an orthonormal basis.
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We give a definition of the tensor product of two Hilbert spaces Hj, H>. Given
u € Hj and v € H; we define an anti-linear functional # ® v on H; x H; by

(u ®@v) < wy,wy >= (wy, u)(wz, v) (B.1)

‘We have

U RQUV+ur @v =W +uy) @
(au @v) =a(u ®v) = (1 ® av)

(B.2)

for « € C. The algebraic tensor product H1®H, is defined to be the space of
functionals which are finite combinations of the u ® v, that is all functionals of the
form Zj uj @ v;. A particular functional may have more than one representation of
this form.

We want to define an inner product on the algebraic tensor product so that

Z uj ® vj, Z u, v | = Z(uj, ) )(vj, vy) (B.3)
j 3

J-k
Note that this entails
lu @ vl = llullllv]l (B.4)
LemmaB.1 Equation (B.3) defines an inner product on Hi&H,.

Proof First we must check that it is well-defined, that is independent of the repre-
sentation. It suffices to show that if Zj u; ® vj; = 0, then the inner product with any
other element is zero. But this follows since

Y up@v > ui@v | =Y (Y u®v) <upvp>=0 (B.5)
k J j

k J

It is straightforward to check that the inner product is bilinear. We must check that
it is positive definite. Given ¥ € H | QH, we can pick orthonormal bases {¢,} for
‘H1 and {yp} for H> such that

V=2 cada® (B.0)

ab
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with only a finite number of the ¢, not equal to zero. Then
(W, W) = Y Capcar (b @ Vb ba @ Y1) = Y lcapl* =0 (B.7)
aba'b’ ab
If the inner product is zero, then all ¢, = 0 and hence ¥ = 0. O]

Now we define the fensor product H; @ Hy to be the Hilbert space which is the
completion of H{®™Hj in the inner product (B.3).

LemmaB.2

1. If Dy is a dense subspace of H1 and Dy is a dense subspace of Ha, then the
algebraic tensor product D1®D5 is a dense subspace of Hi @ Ho.

2. If {¢4} is an orthonormal basis for Hy and {yp} is an orthonormal basis for Hs,
then ¢, ® Yy, is an orthonormal basis for H1 & Ho.

Proof Given ¥ € H; ® H; and € > 0 choose Zivzl ur @ vy so that

N
€

- — B.8

[ kE_luk‘X)Uk” <3 (B.8)

Now let M = sup; {||ugll, |vx |} and choose u; € Dy and v; € Ds so that [jug —up || <
€/3MN and vy — v,/€|| < €/3MN. Then we have

N N
1) u@vi— Y u, @ vl
k=1

k=1
N N
(B.9)
< N — up) @ vl + D g ® (v — vy
k=1 k=1
- € n €
=33
Combining the above gives
N
W= up@uvill <e (B.10)
k=1

and proves the first point.

For the second point let D be the finite span of the first basis which is dense in H;
and let D, be the finite span of the second basis which is dense in H>. Then D1 ® D>
is the finite span of {¢, ® ¥} which is therefore dense. L]

If the Hilbert spaces are L? spaces, then we can also identify the tensor product as
an L2 space:

Theorem B.1  There is a unitary operator U from L*(R) ® L*(R™) to L*(R"*™) such
that

(U(u ® v))(x,y) — u(v(y) (B.11)
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Proof Let {¢,(x)} be an orthonormal basis for L2(R") and let {1/ (y)} be an orthonor-
mal basis for L2(R™). Then {¢,(x)¥,(y)} is an orthonormal set in L*(R™*"). We
define U on the finite span of the ¢, ® ¥ by

(U(Dcar b0 ® W) )w) = D can du@(») (B.12)
ab ab

This is densely defined and norm preserving and so extends to an isometry. To show
U is unitary we have to show that the range is dense, that is that {¢,(x)»(y)} are
complete in L>(R"+"™).

Suppose that f(x,y) € L*>(R"™™) is orthogonal to all {¢,(x)¥(y)}. By Fubini’s
theorem

/ < / fx, y)¢a(x)dx> Vp(y)dy =0 (B.13)

Since the ¥, are dense, this implies f J(x, y)pa(x)dx = 0 for almost every y. Since
the ¢, are dense, this implies f(x,y) = 0 for almost every (x,y), hence f = 0 in
L2(R™"™) as required.

It is now straightforward to check (B.11) to complete the proof. O

If S is a bounded operator on H and T is a bounded operator on H;, then we
define an operator S ® T on H;®H> by

S®T) (Z U ® vk) = ZSuk ® Tk (B.14)

k k

This is well-defined since if Zk ur ® vy = 0, then

(ZSuk ® Tvk> < wp,wy >= (Z up @ vk) < S*w, T*wy, >=0 (B.15)

k k
Lemma B.3 S ® T is bounded and extends to a bounded operator on H; ® H;
satisfying
IS T = (ST (B.16)

Proof First consider the operator S®I. Let {¢,} be an orthonormal basis for H; and
let {1} be an orthonormal basis for H;. Consider vectors which are finite sums of
basis vectors of the form

W= cabba® (B.17)

ab
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Then we have

IS DI =11 car Spa @ Yll* = 1I'Y (anh S%) ® ¥l

a

ab b
=D U1 can Spall* < USIZ D1 can dall? (B.18)
b a b a
= 1817 > leas* = ISIP1%1
ab

Thus S ® I is bounded. Similarly 7 ® T is bounded. It follows that S ® T is bounded
since S® T = (S® (I ® T). Hence it extends to a bounded operator on H| ® H>
and it is straightforward to check that the extension satisfies (B.14). We have also

IS® Tl < ISIHITI (B.19)
We omit the proof that this is actually an equality. O

Reference: Reed and Simon (1980).
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Appendix C Distributions

Distributions are a generalization of functions. In this appendix we consider a special
class of distributions called tempered distributions.

Recall from chapter 1 that the Schwartz space S(R?) is the space of all complex-
valued infinitely differentiable functions on R? such that for any choice of multi-
indices «, B we have |[x#DYf|loo < 00. A tempered distribution T is an element of
the dual space S’ (RY), that is it is a continuous linear functional from S(R9) to C.
To each f € S(R?) it assigns a complex number denoted 7(f) or < T,f >.

To complete the definition we have to specify what “continuous” means in this sit-
uation and this means specifying a topology for S(R?). Since S(R¥) is not a Banach
space, we do not have a norm to help us. Instead the topology is specified by the
family of semi-norms [ DY || so. (A semi-norm p(f) has the properties of a norm
except that p(f) = 0 need not imply f = 0.) Skipping the exact definition of the
topology we say that a linear functional T on S(R?) is continuous if there exists a
semi-norm

Wllam = sup [’ D*fllog €.

lee| <n,|B|<m
and a constant C such that
ITE] < Cllf Nl (C2)

for all f € S(RY).

Examples:

1. Let g be a polynomially bounded measurable function on R?. Then there is an
associated distribution T, defined by

<Te.f>= / g()f (x)dx (C.3)

Polynomially bounded means that A(x) = (1 + |x|*)"Ng(x) is in L'(RY) for N
sufficiently large and so we have

| To(N] < IRl sup [(1+ x>/ ()l C4

This can be dominated by a constant times a norm ||f||,;, and hence T, is a
tempered distribution. Usually we would write < g,f > instead of < Tg,f >.
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2. Let u be a measure on R? such that for some N

/ (1 + ) V(o) < oo ©5)

Then we can define a tempered distribution by

T.(f) = / F)d(x) (C.6)

The proof is similar to the previous example.
3. The delta function &y, at xp € R? is the tempered distribution defined by

8xo(f) =< 8xyof >=f(x0) (C7

This is a special case of the previous example. The measure is the point
measure at x.

4. Given complex numbers ci,...,c,, multi-indices «y,...,a,, and points
X1, ..., %, in RY there is a tempered distribution defined by
T(f) =Y ciD*f)x) (C.8)
i

These are generally not given as functions or measures.

In the first example we have seen that polynomially bounded functions determine
distributions. In fact it turns out that the map ¢ — T, is injective in the sense
that if Ty = T}, then g = h almost everywhere.! Thus we can identify such func-
tions as a subspace of S’(R). Accordingly it is appropriate to refer to the tempered
distributions as generalized functions.

Even for distributions which are not functions it is sometimes convenient to write
< T.f > asif it were a function by < T,f >= [ T(x)f(x)dx with some suggestive
symbol T'(x). In particular we write:

< Oy, f >= /6(x — x0)f (x)dx (C9)

Let O C R? be open and let C5°(O) be the infinitely differentiable functions with
compact support in O. A distribution 7 is said to vanish on O if < T,f >= 0 for all
f € C3°(O). The support of T is the smallest closed set such that 7" vanishes on the
complement. For example the support of dy, is the single point xo.

Next we define some operations on tempered distributions.

1. (Multiplication by a smooth function) Suppose that & is a smooth polynomially
bounded function and T € S'(R?). Then we can define hT € S’(R?) by

<hT,f >=<T,hf > (C.10)

Lr g, h are in L2(R?) this is immediate since Ty = Ty, implies that (g — h,f) = 0 for all f in the dense
set S(Rd), hence for all f € L2, hence g—h=0in 12,
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This makes sense since if f € S(R?), then if € S(RY). The definition satisfies
hTg = Th,.

2. (Derivatives) Any tempered distribution 7" has a partial derivative 9,7 = 97T /dx",

which is the tempered distribution defined by
< T,.f>=—<T,0,f > (C.11

If the distribution is a differentiable function, say 7, with g € S(Rd), then
integrating by parts this is computed as

— < Tg,0uf >= —/g(x)a;,f(x)dx = / 0, 8)f()dx =< Ty,e,f > (C.12)

Hence 9, T, = Ty,e and the definition extends the definition on smooth functions.
It follows that any linear differential operator can be applied to a distribution,
even operators with smooth variable coefficients.

Examples:  Ind = 1 consider the distribution defined by the Heaviside function
6 which is the characteristic function of [0, c0). Then

i b 0 i /OO i S©0) (C.13)
< —, f>=—<0,— >=— - = .
dx dx o dx
and thus
do
— =34 C.14
I 0 ( )

3. (Fourier transform) Since the Fourier transform maps S(RY) to itself (see
chapter 1), we can define the Fourier transform on a distribution 7 by

< FT.f >=<T,Ff > (C.15)

This agrees with the definition on functions, that is if g € Lz(Rd), then 77T, =
Trg. To see this use the fact the J is unitary on L*(R%) to compute for f € S(R?)
< FTy.f >=<Tg, Ff >= (3. Ff)
= (F ') = Fa.f) =< Tre.f >
Also F is a bijection on S'(R%); this follows from the fact that F is a bijection on

S(RY).
Examples: ~ We have (F8,)(p) = (27)~4/%e~P* since

(C.16)

< Foyf >=< 80, Ff >= Ff(x) = Qn)~¢? / e~ P f(p)dp (C.17)

Other examples are

F(1) = 2m)Y?s F(8,80) = ip(2m) =4/ (C.18)

Next we quote the kernel theorem which says that a multilinear functional on S
has a kernel in §’.
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Theorem C1  Let T(f1,....fn) be a multilinear functional continuous in each f; €
S(RY). Then there is a unique T € S'(R"?) such that

T(h,.... ) =T(h Q- ®fn) (C.19)
where fi @ - - @ f, € S(R") is defined by
(1 ® - ®fu)xts. .5 xn) = f1(x1) - - - fuxn) (C.20)

Examples:  Let T be a bounded operator on L>(R?). Then (f, Tf») is a continuous
bilinear function on S(R?) x S(R?) and so by the theorem there is a T € S'(R??)
such that (fi, Tf) = T(fi ® f»). Replacing fi by f; and denoting the distribution 7' by
T(x,y) this can also be written

(1. Tf2) = / FIOT e, n)fH(y)dxdy (C2D)

Then T(x,y) is called the kernel of the operator. (Not to be confused with the null
space, which is also called the kernel.) For example the kernel of the identity is

8(x —y).

For completeness we quote the general definition of distributions. These are
defined in open sets @ C R?. Let D(0) = C5°(0), the infinitely differentiable
functions on O with compact support. A distribution T is an element of the dual
space D'(0), that is it is a linear functional f — T(f) on D(O) which is continuous
in the sense that for every compact subset K C O there are constants k, C such that

ITHOI < C  sup (D)) (C22)

|a|<k,xeK

for all f € D(O) with supp f C K.
Tempered distributions are distributions in this sense: S’ (RYy c D'(RY).

References: Yosida (1966), Reed and Simon (1980), or Taylor (1996).



219

References

Abraham, R. and Marsden, J. 1978. Foundations of Mechanics. Benjamin.

Albeverio, S., Gesztesy, G., Hoegh-Krohn, R., and Holden, H. 1988. Solvable Models in
Quantum Mechanics. Springer.

Albeverio, S., Hoegh-Krohn, R., and Mazzucchi, S. 2008. Mathematical Theory of Feynman
Path Integrals: An Introduction. Springer.

Bachelot, A. 1999. The Hawking effect. Ann. Inst. Henri Poincaré, 70, 41-99.

Baez, J., Segal, 1., and Zhou, Z. 1992. Introduction to Algebraic and Constructive Quantum
Field Theory. Princeton University Press.

Bir, C., Ginoux, N., and Pfiffle, E. 2007. Wave Equations on Lorentzian Manifolds and
Quantization. European Mathematical Society Publishing House.

Billingsley, P. 1979. Probability and Measure. Wiley.

Bogolubov, N.N., Logunov, A.A., and Todorov, I.T. 1975. Introduction to Axiomatic Quantum
Field Theory. Benjamin.

Bratteli, O. and Robinson, D. 1981. Operator Algebras and Quantum Statistical Mechanics I1.
Springer.

Brunetti, R., Fredenhagen, K., and Verch, R. 2003. The generally covariant locality
principle - a new paradigm for local quantum field theory. Commun. Math. Phys., 237,
31-68.

Choquet-Bruhat, Y., DeWitt-Morette, C., and Dillard-Bleick, M. 1977. Analysis, Manifolds,
and Physics 1. North Holland.

Choquet-Bruhat, Y. and DeWitt-Morette, C. 1989. Analysis, Manifolds, and Physics II. North
Holland.

Cycon, H., Froese, R., Kirsch, W., and Simon, B. 1987. Schrodinger Operators. Springer.

Dimock, J. 1980. Algebras of local observables on a manifold. Commun. Math. Phys., 77,
219-228.

Drechsler, W. and Mayer, M. 1977. Fiber Bundle Techniques in Gauge Theory. Springer.

Durrett, R. 1996. Stochastic Calculus. CRC press.

Folland, G. 2008. Quantum Field Theory: A Tourist Guide for Mathematicians. American
Mathematical Society.

Frankel, T. 2004. The Geometry of Physics. Cambridge University Press.

Gallavotti, G. 1983. The Elements of Mechanics. Springer.

Gelfand, .M. and Vilenkin, N. 1964. Generalized Functions IV. Academic Press.

Glimm, J. and Jaffe, A. 1970. Quantum field theory models, pages 1-108 of: DeWitt, C. and
Stora, R. (eds), Statistical Mechanics and Quantum Field Theory. Gordon & Breach.

Glimm, J. and Jaffe, A. 1972. The (A¢4)2 quantum field theory without cutoffs IV. Perturba-
tions of the Hamiltonian. J. Math. Phys., 13, 1568—1584.

Glimm, J. and Jaffe, A. 1987. Quantum Physics: A Functional Integral Point of View.
Springer.



220

References

Glimm, J., Jaffe, A., and Spencer, T. 1974. The Wightman axioms and particle structure in the
P(¢)> quantum field model. Ann. Math., 100, 585-632.

Gustafson, S. and Sigal, .M. 2003. Mathematical Concepts of Quantum Mechanics. Springer.

Haag, R. 1992. Local Quantum Physics. Springer.

Hall, B. 2003. Lie Groups, Lie Algebras, and Representations. Springer.

Huang, K. 2009. Introduction to Statistical Physics. CRC Press.

Isham, C.J. 1995. Lectures on Quantum Theory: Mathematical and Structural Foundations.
Imperial College Press.

Itzykson, C. and Zuber, J. 1980. Quantum Field Theory. McGraw-Hill.

Jauch, J. 1968. Foundations of Quantum Mechanics. Addison-Wesley.

Kato, T. 1966. Perturbation Theory for Linear Operators. Springer.

Kay, B. 1979. A uniqueness result in the Segal-Weinless approach to linear Bose fields.
J. Math. Phys., 20, 1712-1713.

Landau, L. and Lifschitz, E. 1969. Statistical Physics. Addison-Wesley.

Lieb, E. and Seiringer, R. 2010. The Stability of Matter in Quantum Mechanics. Cambridge
University Press.

Marsden, J. and Ratiu, T. 1994. Introduction to Mechanics and Symmetry. Springer.

Miller, W. 1972. Symmetry Groups and Their Applications. Academic Press.

Misner, C., Thorne, K., and Wheeler, J. 1973. Gravitation. W.H. Freeman.

Nelson, E. 1973. Probability theory and Euclidean field theory, pages 94-124 of: Velo, G. and
Wightman, A. (eds), Constructive Quantum Field Theory. Springer.

von Neumann, J. 1955. Mathematical Foundations of Quantum Mechanics. Princeton
University Press.

Newton, T. and Wigner, E. 1949. Localized states for elementary systems. Rev. Mod. Phys.,
21, 400-406.

Ohnuki, Y. 1988. Unitary Representations of the Poincaré Group and Relativistic Wave
Equations. World Scientific.

Peskin, M. and Schroeder, D. 1995. An Introduction to Quantum Field Theory. Perseus.

Reed, M. and Simon, B. 1980. Methods of Modern Mathematical Physics, Vol. I: Functional
Analysis. Academic Press.

Reed, M. and Simon, B. 1975. Methods of Modern Mathematical Physics, Vol. II: Fourier
Analysis, Self-adjointness. Academic Press.

Reed, M. and Simon, B. 1979. Methods of Modern Mathematical Physics, Vol. Il1: Scattering
Theory. Academic Press.

Reed, M. and Simon, B. 1978. Methods of Modern Mathematical Physics, Vol. 1V: Analysis of
Operators. Academic Press.

Roman, P. 1969. Introduction to Quantum Field Theory. Wiley.

Ruelle, D. 1969. Statistical Mechanics. Benjamin.

Sachs, R. and Wu, H.-H. 1977. General Relativity for Mathematicians. Springer.

Salmhofer, M. 1999. Renormalization: An Introduction. Springer.

Schweber, S. 1962. An Introduction to Relativistic Quantum Field Theory. Harper & Row.

Segal, L.LE. 1956. Tensor algebras over Hilbert spaces. Trans. Am. Math. Soc., 81, 106—134.

Simon, B. 1975. The P(¢); Euclidean Field Theory. Princeton University Press.

Simon, B. 1979. Functional Integration and Quantum Physics. Academic Press.

Streater, R. and Wightman, A. 1964. PCT, Spin-Statistics, and All That. Benjamin.

Strocchi, F. and Wightman, A. 1974. Proof of the charge superselection rule in local relativistic
quantum field theory. J. Math. Phys., 15, 2198-2224.



2

References

Takhtajan, L. 2008. Quantum Mechanics for Mathematicians. American Mathematical
Society.

Taylor, M. 1996. Partial Differential Equations I: Basic Theory. Springer.

Titchmarsh, E. 1939. The Theory of Functions. Oxford University Press.

Wald, R. 1994. Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics.
University of Chicago Press.

Weinberg, S. 1995. The Quantum Theory of Fields. Cambridge University Press.

Yosida, K. 1966. Functional Analysis. Springer.



222

action, 111, 187
algebra

Cc*,8,91,207

Clifford, 105

Lie, 36, 110
algebraic quantum field theory, 207
algebraic statistical mechanics, 91
analytic Fredholm theorem, 51, 52
angular momentum, 35, 44
annihilation operator, 71, 75, 148
anti-commutator, 73, 139
anti-particles, 128, 140
asymptotic completeness, 57
atoms, 68
axioms, 38

Banach space, 208
boost, 102
Borel
function, 19
set, 19
Bose-Einstein condensation, 87
bosons, 66, 83
bound state, 55
boundary conditions, 16, 83
Brownian motion, 165
inRY, 167
regularity, 167

canonical commutation relations, 42, 114, 120,

157, 184, 192
canonical quantization, 41
canonical transformation, 32
Cauchy surface, 153
causal curve, 153

CCR, see canonical commutation relations

center of mass, 65
characteristic function, 162, 175
charge

from an internal symmetry group, 128
in classical field theories, 104, 106, 109, 110

in classical mechanics, 30

in quantum field theories, 128, 141
charge conjugation, 138
chemical potential, 81
conservation

angular momentum, 35, 44, 69

charge, 104, 126

energy, 29, 100

momentum, 35, 44, 69, 100
core, 12
correlation functions

Schwinger, 188, 204

thermal, 82, 189

vacuum, 187

Wightman, 197
covariance of random variables,

164, 174

creation operator, 71, 76, 148
current, 1, 104, 106
cylinder function, 180

d’Alembertian, 103
delta function, 197, 216
density, 82, 85
density operator, 78
Dirac equation, 105, 132
covariance, 132
Green’s identity, 106
positive energy solutions, 134
Dirac fields
classical, 105
covariance, 143
locality, 143
quantized, 139
Dirac sea, 140
distribution, 218
S'R%), 215
as generalized function, 216
kernel theorem, 217
of a random variable, 162
tempered, 179, 215
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domains
Do, 73
Ds, 76

Ehrenfest’s theorem, 43, 120
eigenvalue, 13
Einstein, 2, 96
electric field, 1, 30
electromagnetic field
classical, 100, 106, 109
covariance, 107, 149
locality, 149
quantized, 148
electromagnetic potential, see electromagnetic
field
electrons, 67, 132
energy, 29, 99
ensemble
canonical, 79
grand canonical, 81
microcanonical, 79
expectation
quantum, 39
random variable, 162

Fermi sea, 87
fermions, 67, 86
Feynman path integrals, 161, 173
Feynman—Kac formula, 168, 171, 185, 202
Fock space, 70
four-momentum, 98
Fourier series, 83
Fourier transform
on distributions, 217
on functions, 10
free energy, 82
free particle
quantum, 47
quantum and relativistic, 114
relativistic, 97
function spaces
LP(R™), 208
Cé’o R™), 9
HLRM), 186
S(R™), 9
fundamental constant
i, 40, 43
c, 1,99
k, 80

gamma matrices, 105

gauge

Coulomb, 145

covariant, 146

potential, 110

transformation, 30, 108, 126, 141
Gaussian

measure, 179

process, 164, 174

random variable, 163
general relativity, 2, 96
generalized functions, 216
generator

of a semi-group, 21

of a unitary group, 21

of Hamiltonian flow, 34
geodesics, 97, 153
globally hyberbolic manifold, 153
graph of operator, 12
graphs, 179
Green’s identity, 104, 106, 154
ground states, 171
group

0(1,3), 102

0(3), 36

Pin(1,3), 130

SO(3), 36, 60

SO(n), 107

SU(_2), 59

Spin(1,3), 131

U(l), 108

L.Ly, £l 102

P, Pl 102

SL(2,C), 151

Lie, 36, 37

one-parameter unitary, 20

symplectic, 32
Gupta—Bleuler quantization, 147

Hadamard singularity, 157
Hamiltonian

classical, 28

Dirac, 134

Pauli, 61

quantum, 41

vector field, 33
harmonic oscillator, 53, 170
Hausdorff—Young inequality, 195
Hawking, 158
Heisenberg picture, 40
Heisenberg uncertainty principle, 43
Hermite polynomials, 54, 177
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Hilbert space, 209
hydrogen atom, 50, 53, 66

indefinite inner product, 106, 131, 146
infinite volume limit, 83, 91, 197, 203
integration by parts, 180

Jacobi identity, 29

Kato’s theorem, 49
kernel theorem, 217
Klein—Gordon equation, 103
positive energy solutions, 116
covariance, 104
existence and uniqueness, 103, 154
fundamental solutions, 111, 154
Green’s identity, 104, 154
on a manifold, 154
propagator, 113, 155
with gauge potential, 109
KMS condition, 91, 189
Kolmogorov theorem, 163

Lie derivative, 33

locality, 125, 142, 143, 149, 156, 201
Lorentz force, 1, 30, 100

Lorentz group, 101

Lorentzian metric, 96, 152

magnetic field, 1, 30, 50, 61
many particles

classical, 31, 35

quantum, 67, 69

relativistic, 100, 118
Markov process, 171
mass shell, 116
Maxwell’s equations, 1, 106
measure space, 161
measurement, 41, 78
Mehler’s formula, 55, 170
min-max theorem, 89
Minkowski space, 96
models

P(¢)2, 192
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3. 6. 206
momentum, 28, 35, 44, 83, 99
momentum space, 43

Newton’s equation, |
Newton—Wigner coordinates, 118, 134

nonabelian gauge theory, 111
non-relativistic limit, 115

number operator, 71

observable

classical, 29
quantum, 39

operator

adjoint, 14

bounded, 5

closed, 11

compact, 22
essentially self-adjoint, 15
finite rank, 22

graph, 12
Hilbert-Schmidt, 24
isometry, 6

kernel, 5,218

linear, 5

partial isometry, 26
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projection, 6
self-adjoint, 15
spectral projections, 19
spectrum, 13
symmetric, 14

trace class, 25

unitary, 7

Ornstein—Uhlenbeck process, see oscillator

process

orthonormal

basis, 210
set, 210

oscillator process, 169, 184

partition function, 80, 84, 86
Pauli

exclusion principle, 68
Hamiltonian, 61
matrices, 59

perturbation theory, 173
phase space, 28
phi-bound, 198

photon, 99, 144
Poincaré group, 101

extended, 136
representation, 117, 125, 137, 143, 200

Poisson bracket, 29
positive definite, 164
positive type, 88
positivity improving, 171
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potential
Coulomb, 50, 52
delta function, 62, 193
harmonic oscillator, 53
rank one, 53, 56
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pressure, 82, 85
principle of general covariance, 96, 157
principle of least action, 110
propagator, 113, 155
proper time, 97
protons, 67, 141

quantum electrodynamics, 151

random variable, 162
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Wightman, 199

reflection positivity, 205

renormalization, 151, 194, 206

resolvent set, 13

Riesz representation theorem, 210

Riesz—Schauder theorem, 23
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scalar field

locality, 125
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classical, 103

covariance, 125

external potential, 124

nonlinear, 111, 192

on a manifold, 154

quantized, 118

Schrodinger representation, 182
scattering

Haag—Ruelle, 206

operator, 57

single particle, 55
Schrodinger

equation, 40

picture, 40

representation, 181
Schwartz space, 9
Schwinger functions, 188, 204
self-adjoint operator, 15
semi-group, 21

Sobolev
inequality, 50
space, 186
spacetime, 95
spectral theorem, 18
spectrum, 13
continuous, 13
of compact operator, 23
of self-adjoint operator, 16
of unitary operator, 13
point, 13
residual, 13
spin, 58, 135, 145
spin-statistics, 67
spinor, 105, 131
stability condition, 88
standard model, 111
states
on C* algebra, 91
equilibrium, 79
Gibbs, 80
ground, 171
mixed, 78
pure, 78
stationary, 80
statistics, 67
stochastic process, 162
Stone’s theorem, 21
strictly positive, 171
summation convention, 97
support
distribution, 216
function, 9
symmetries
in classical mechanics, 34
in quantum mechanics, 43
of spacetime, 101
symplectic
form, 34, 119, 123
group, 32
matrix, 32

tangent vector, 96, 152

temperature, 80

tensor product, 211
algebraic, 211
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thermodynamic limit, 83
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vacuum, 70, 197, 201
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covariant derivative, 62, 109
line bundle, 62, 109

wave equation, 95, 107
wave operators, 55

wave function, 38
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