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To my daughter Natalija



Preface

This Problem Book is based on the exercises and lectures which I have given
to undergraduate and graduate students of the Faculty of Physics, University
of Belgrade over many years. Nowadays, there are a lot of excellent Quantum
Field Theory textbooks. Unfortunately, there is a shortage of Problem Books
in this field, one of the exceptions being the Problem Book of Cheng and Li [7].
The overlap between this Problem Book and [7] is very small, since the latter
mostly deals with gauge field theory and particle physics. Textbooks usually
contain problems without solutions. As in other areas of physics doing more
problems in full details improves both understanding and efficiency. So, I feel
that the absence of such a book in Quantum Field Theory is a gap in the
literature. This was my main motivation for writing this Problem Book.

To students: You cannot start to do problems without previous study-
ing your lecture notes and textbooks. Try to solve problems without using
solutions; they should help you to check your results. The level of this Prob-
lem Book corresponds to the textbooks of Mandl and Show [15]; Greiner and
Reinhardt [11] and Peskin and Schroeder [16]. Each Chapter begins with a
short introduction aimed to define notation. The first Chapter is devoted to
the Lorentz and Poincaré symmetries. Chapters 2, 3 and 4 deal with the rela-
tivistic quantum mechanics with a special emphasis on the Dirac equation. In
Chapter 5 we present problems related to the Euler-Lagrange equations and
the Noether theorem. The following Chapters concern the canonical quanti-
zation of scalar, Dirac and electromagnetic fields. In Chapter 10 we consider
tree level processes, while the last Chapter deals with renormalization and
regularization.

There are many colleagues whom I would like to thank for their support
and help. Professors Milutin Blagojevi¢ and Maja Buri¢ gave many useful
ideas concerning problems and solutions. I am grateful to the Assistants at the
Faculty of Physics, University of Belgrade: Marija Dimitrijevi¢, Dusko Latas
and Antun Balaz who checked many of the solutions. Dusko Latas also drew
all the figures in the Problem Book. I would like to mention the contribution
of the students: Branislav Cvetkovi¢, Bojan Nikoli¢, Mihailo Vanevi¢, Marko



VIII Preface

Vojinovié, Aleksandra Stojakovié, Boris Grbié, Igor Salom, Irena Knezevié,
Zoran Ristivojevi¢ and Vladimir Juri¢i¢. Branislav Cvetkovié¢, Maja Buric,
Milutin Blagojevi¢ and Dejan Stojkovi¢ have corrected my English translation
of the Problem Book. I thank them all, but it goes without saying that all
the errors that have crept in are my own. I would be grateful for any readers’
comments.

Belgrade Voja Radovanovié
August 2005
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Part 1

Problems



1

Lorentz and Poincaré symmetries

Minkowski space, My is a real 4-dimensional vector space with metric tensor
defined by

1 0 0 0
0 -1 0 0
9w =10 0 -1 0 (1.A)

0o 0 0 -1

Vectors can be written in the form & = x*e,,, where x* are the contravariant
components of the vector  in the basis

0

€y = e = €y =

O = OO
= o O O

1

0 1
0]’ 0]’
0 0
The square of the length of a vector in My is 2% = g, x*z". The square of
the line element between two neighboring points = and z* + dx* takes the
form

ds? = g, dztda” = *dt? — d=?. (1.B)

The space M, is also a manifold; z# are global (inertial) coordinates. The
covariant components of a vector are defined by =, = g..x”.

Lorentz transformations,
't = A" 2", (1.0)

leave the square of the length of a vector invariant, i.e. 2’ = 2. The matrix A
is a constant matrix!; 2* and z'# are the coordinates of the same event in two
different inertial frames. In Problem 1.1 we shall show that from the previous
definition it follows that the matrix A must satisfy the condition A7gA = g.
The transformation law of the covariant components is given by

z = (A_l)”uxl, =Az, . (1.D)

! The first index in A*, is the row index, the second index the column index.
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e Let u = ute, be an arbitrary vector in tangent space®, where u# are its
contravariant components. A dual space can be associated to the vector space
in the following way. The dual basis, * is determined by 6*(e,) = 6. The
vectors in the dual space, w = w,0* are called dual vectors or one—forms.
The components of the dual vector transform like (1.D). The scalar (inner)
product of vectors w and v is given by

u-v = guutv’ =ut, .
A tensor of rank (m,n) in Minkowski spacetime is
T=THbm, L. (e, ®..Qe,, 01T ®...060" .
The components of this tensor transform in the following way

Tt o, (@) = A A, (AT (AT T o (2)

m vt

under Lorentz transformations. A contravariant vector is tensor of rank (1, 0),
while the rank of a covariant vector (one-form) is (0, 1). The metric tensor is
a symmetric tensor of rank (0, 2).
e Poincaré transformations,® (A,a) consist of Lorentz transformations and
translations, i.e.
(Aa)x=Az+a . (1.E)

These are the most general transformations of Minkowski space which do not
change the interval between any two vectors, i.e.
(v —2')?=(y—2)*.
e In a certain representation the elements of the Poincaré group near the identity
are

U(w,e) — e—;M‘ww’“’+iPMe" 7 (lF)

where w*” and M,,, are parameters and generators of the Lorentz subgroup
respectively, while e¢# and P, are the parameters and generators of the trans-
lation subgroup. The Poincaré algebra is given in Problem 1.11.

e The Levi-Civita tensor, e#”?? is a totaly antisymmetric tensor. We will use
the convention that €%12% = +1.

2 The tangent space is a vector space of tangent vectors associated to each point
of spacetime.

3 Poincaré transformations are very often called inhomogeneous Lorentz transfor-
mations.
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1.1. Show that Lorentz transformations satisfy the condition A7 gA = g. Also,
prove that they form a group.

1.2. Given an infinitesimal Lorentz transformation
At =01 + Wty
show that the infinitesimal parameters w,, are antisymmetric.
1.3. Prove the following relation
€aprs A% AP ATV A 5 = €unadetA
where A%, are matrix elements of the matrix A.

1.4. Show that the Kronecker § symbol and Levi-Civita e symbol are form
invariant under Lorentz transformations.

1.5. Prove that

Shy Mg GH Mg
o 05 OV, OV
o 605 0P, &P5|
57 675 67, 0%

vpo
P s = —

and calculate the following contractions €*?7€,zys, €"?7 €5, €7 €11 ps,
nvpo
€ €pvpo-

1.6. Let us introduce the notations o# = (I,0); * = (I, —0o), where [ is a
unit matrix, while o are Pauli matrices* and define the matrix X = zu,ot.

(a) Show that the transformation
X — X' =8X8",

where S € SL(2,C)?, describes the Lorentz transformation z# — AX x".
This is a homomorphism between proper orthochronous Lorentz transfor-
mations® and the SL(2, C) group.

(b) Show that a# = Jtr(6+X).

1.7. Prove that A", = }tr(6/S0,S7), and A(S) = A(—S). The last relation
shows that the map is not unique.

4 The Pauli matrices are

(01 e D W & S
g1 = 1 0 ; o2 = i 0 an o3 = 0 —1 .

5 SL(2, C) matrices are 2 x 2 complex matrices of unit determinant.
5 The proper orthochronous Lorentz transformations satisfy the conditions: A% >
1, detA =1.
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1.8. Find the matrix elements of generators of the Lorentz group M, in its
natural (defining) representation (1.C).

1.9. Prove that the commutation relations of the Lorentz algebra
[M,uua Mpd] = i(g,uUMl/p + gupM,uo - g,upMI/U - gwyM,up)
lead to
[M;, Mj] = ieguM;, [N, Nj] = —ieiu Ny, [M;, Nj] = iejuNy

where M; = éeijk M;j, and Ny, = M. Further, one can introduce the following

linear combinations A; = ;(Ml +1iN;) and B; = ;(MZ —1iN;). Prove that
[Ai,Aj] = ieilel, [Bi, Bj] = ieilel, [Au Bj] = 0 .

This is a well known result which gives a connection between the Lorentz

algebra and ”two” SU(2) algebras. Irreducible representations of the Lorentz

group are classified by two quantum numbers (j1, j2) which come from above
two SU(2) groups.

1.10. The Poincaré transformation (4, a) is defined by:
P = AP Y + at .

Determine the multiplication rule i.e. the product (A1, a1)(As2, az2), as well as
the unit and inverse element in the group.

1.11. (a) Verify the multiplication rule
U Y A,0)U(1,e)U(A,0)=U(1, A e) ,

in the Poincaré group. In addition, show that from the previous relation
follows:
U (A,0)P,U(A,0) = (A1)

Calculate the commutator [M,,,, P,].
(b) Show that

o P

U YA, 0)U(AN,0)U(A,0)=U(AA'A,0) ,

and find the commutator [M,,, M,.]|.
(¢) Finally show that the generators of translations commute between them-
selves, i.e. [Py, P,] = 0.

1.12. Consider the representation in which the vectors = of Minkowski space
are (z, 1)T, while the element of the Poincaré group, (A, a) are 5 x 5 matrices

given by
A a
0 1) -

Check that the generators in this representation satisfy the commutation re-
lations from the previous problem.
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1.13. Find the generators of the Poincaré group in the representation of a clas-
sical scalar field”. Prove that they satisfy the commutation relations obtained
in Problem 1.11.

1.14. The Pauli-Lubanski vector is defined by W, = éeWAUM”)‘P".

(a) Show that W, P* =0 and [W,, P,] = 0.
(b) Show that W?2 = — %MWMWP2 + Mo MY P*P,.
c) Prove that the operators W?2 and P? commute with the generators of the
Poincaré group. These operators are Casimir operators. They are used to
classify the irreducible representations of the Poincaré group.

1.15. Show that

where |p = 0,m, s,0) is a state vector for a particle of mass m, momentum
P, spin s while ¢ is the z—component of the spin. The mass and spin classify
the irreducible representations of the Poincaré group.

1.16. Verify the following relations

(a) [M;un WU] = i(gVaWM - g;wWy) y
(b) Wy, W, ] = —i€mo, WO PP .

(a) Wy, M7]

(b) [My,, WEW™]

(c) [MQ, PM] )

(d) [e"P7 My Mg, Mag] -

1.18. The standard momentum for a massive particle is (m, 0,0, 0), while for
a massless particle it is (k, 0,0, k). Show that the little group in the first case
is SU(2), while in the second case it is E(2) group®.

1.19. Show that conformal transformations consisting of dilations:
ot — M =e Pt
special conformal transformations (SCT):

" ” x4 cha?
ot — 't = 0.9
14+2c-x+c’x

and usual Poincaré transformations form a group. Find the commutation re-
lations in this group.

7 Scalar field transforms as ¢'(Az + a) = ¢(z)
8 E(2) is the group of rotations and translations in a plane.
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The Klein—Gordon equation

The Klein—Gordon equation,
(O 4+ m?)p(x) =0, (2.A)

is an equation for a free relativistic particle with zero spin. The transformation
law of a scalar field ¢(z) under Lorentz transformations is given by ¢'(Az) =
6(x).

The equation for the spinless particle in an electromagnetic field, A" is ob-
tained by changing 0,, — 0, + igA,, in equation (2.A), where ¢ is the charge
of the particle.

2.1. Solve the Klein—Gordon equation.

2.2. If ¢ is a solution of the Klein—Gordon equation calculate the quantity

ms a2

2.3. The Hamiltonian for a free real scalar field is

H=;/¥ﬂ@mf+wwkwﬁwy

Calculate the Hamiltonian H for a general solution of the Klein—-Gordon equa-
tion.

2.4. The momentum for a real scalar field is given by

P= —/d3m80¢v¢ .

Calculate the momentum P for a general solution of the Klein—Gordon equa-
tion.
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2.5. Show that the current!

= = (00,6" — 6°0,0)
satisfies the continuity equation, 0#j, = 0.

2.6. Show that the continuity equation 9,,j* = 0 is satisfied for the current

Ju = _2(¢au¢ - ¢ au¢) - un¢ o,
where ¢ is a solution of Klein—Gordon equation in external electromagnetic

potential A,,.

2.7. A scalar particle in the s—state is moving in the potential

-V, r<a
0 __ )
qA_{O, r>a’

where V' is a positive constant. Find the dispersion relation, i.e. the relation
between energy and momentum, for discrete particle states. Which condition
has to be satisfied so that there is only one bound state in the case V' < 2m?

2.8. Find the energy spectrum and the eigenfunctions for a scalar particle in
a constant magnetic field, B = Be,.

2.9. Calculate the reflection and the transmission coefficients of a Klein—
Gordon particle with energy E, at the potential

0 __ 0, z<0
A _{Uo, z>0"

where Uy is a positive constant.

2.10. A particle of charge ¢ and mass m is incident on a potential barrier

40 0, z2<0,z>a
o Uy, 0<z<a ’

where Uy is a positive constant. Find the transmission coefficient. Also, find
the energy of particle for which the transmission coefficient is equal to one.

2.11. A scalar particle of mass m and charge —e moves in the Coulomb field
of a nucleus. Find the energy spectrum of the bounded states for this system
if the charge of the nucleus is Ze.

2.12. Using the two-component wave function <i>, where 0 = ;(gb + 7; ‘g‘f)

and xy = %(¢ — 1;1 ‘Z‘f), instead of ¢ rewrite the Klein—-Gordon equation in the

Schrodinger form.

1 Actually this is current density.
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2.13. Find the eigenvalues of the Hamiltonian from the previous problem.
Find the nonrelativistic limit of this Hamiltonian.

2.14. Determine the velocity operator v = i[H, x], where H is the Hamil-
tonian obtained in Problem 2.12. Solve the eigenvalue problem for v.

2.15. In the space of two—component wave functions the scalar product is
defined by

(V1)) = ;/d%ﬂ%% .

(a) Show that the Hamiltonian H obtained in Problem 2.12 is Hermitian.
(b) Find expectation values of the Hamiltonian (H), and the velocity (v) in

the state <(1)) e~ ipT,
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The v—matrices

In Minkowski space My, the y—matrices satisfy the anticommutation relations®
{7 =29" . (3.4)

In the Dirac representation y—matrices take the form

wz(é _OI> 7:(_00 ‘5) (3.B)

Other representations of the y—matrices can be obtained by similarity trans-
formation %Q = 57,S7!. The transformation matrix S need to be uni-
tary if the transformed matrices are to satisfy the Hermicity condition:
(v'M)t = 404140 The Weyl representation of the y—matrices is given by

70:(? é) 7:(_00 g) (3.0)

while in the Majorana representation we have

o 0 g9 1 _ iO’g 0
Yo = o 0 ) V= 0 iO’g )
2 0 —09 3 _ —10'1 0 (3D)
T e 0 )0 T T 0 <o)

12,3

The matrix 75 is defined by 7° = i7°y14243, while v5 = —iv9y17273. In the

Dirac representation, 5 has the form
(0 1
=1 0)

! The same type of relations hold in My, where d is the dimension of spacetime.
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0, matrices are defined by

i
Opy = 2[’7#771/] . (3E)
Slash is defined as
= a"y, . (3.F)

Sometimes we use the notation: 3 = 7Y, a = 4%y. The anticommutation
relations (3.A) become

{a',a’} =26, {a", 5} = 0.

3.1. Prove:

(@), =7"7°,

(b) U,ul/ = ’YOUU«V’YO :

3.2. Show that:

AN =r1=1"=%",
V5 = _41! fuupof}’u'yy'yp'yg

(v5)?=1,
(

w W

i) aaﬁf'y“aag =0,
(j) 0% oas = 129" .
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3.6. Prove the following identities with traces of y—matrices:

tl"(%%) = 49;“/ 5
tr(’Vu'VV'Vp'VU) = 4(g;wgpa — GupGvo + g;wgup) ,

3.7. Calculate tr(gqdz - - - de)-
3.8. Calculate tr[(p — m)y.(1 —v5)(¢ +m)v.].
3.9. Calculate 7, (1 — v5)(p — m)y*.

3.10. Verify the identity

1
exp(ys¢) = cos\/a,at + ” Vst sin \/a,at
m

Va
where a? > 0 .
3.11. Show that the set

I ={I1, 4, 7% 4% 0"},

is made of linearly independent 4 x 4 matrices. Also, show that the product
of any two of them is again one of the matrices I'*, up to £1, =+i.

3.12. Show that any matrix A € C* can be written in terms of I'* =
{I, v, 7%, 9%, 0"}, ie. A=, cal® where cq = Jtr(ALL).

3.13. Expand the following products of y—matrices in terms of I"%:

(@) Y1 Yp
(b) Y5 Y Ve
(€) Tu o5 -

3.14. Expand the anticommutator {y*,c"”} in terms of I'—matrices.
3.15. Calculate tr(v,vvYpYoYaY375)-
3.16. Verify the relation yso"” = ;e”l’p"apg.

3.17. Show that the commutator [0,,,,0,,] can be rewritten in terms of o, .
Find the coefficients in this expansion.
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3.18. Show that if a matrix commutes with all gamma matrices v#, then it is
proportional to the unit matrix.

3.19. Let U = exp(Ba - n), where 8 and « are Dirac matrices; n is a unit
vector. Verify the following relation:

o =UalUl =a—(1-U%(a-n)n.

3.20. Show that the set of matrices (3.C) is a representation of y—matrices.
Find the unitary matrix which transforms this representation into the Dirac
one. Calculate o,,, and 75 in this representation.

3.21. Find Dirac matrices in two dimensional spacetime. Define 5 and cal-
culate

tr(y7"9") .
Simplify the product y>y*.
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The Dirac equation

The Dirac equation,
(i7" 0y —m)p(x) =0, (4.A)

is an equation of the free relativistic particle with spin 1/2. The general solu-
tion of this equation is given by

) = 1 2 3 m u c —ip-x v T ip-z
v (27)2 ;/d p\/E,,( r(P)er(P)e™" + v, (p)d; (P)e™”) . (4.B)

where u,.(p) and v, (p) are the basic bispinors which satisfy equations

We use the normalization

ur(p)us(p) = —vr-(P)vs(p) = drs ,

i, (p)vs(p) = 0 (P)us(p) = 0. (4.D)

The coefficients ¢, (p) and d,(p) in (4.B) being given determined by boundary
conditions. Equation (4.A) can be rewritten in the form

o
ot
where Hp = o - p 4+ Om is the so—called Dirac Hamiltonian.

Under the Lorentz transformation, z'# = A*,z", Dirac spinor, ¥ (z) trans-
forms as

i

:HD¢7

Y (@) = S(Ay(z) = e 47 ey (a) . (4.E)

S(A) is the Lorentz transformation matrix in spinor representation, and it
satisfies the equations:
S7HA) =705 (M) ,
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STHAYES(A) = Al A7

The equation for an electron with charge —e in an electromagnetic field A* is
given by

[(iv" (0, —ieA,) —m]|(z) =0 . (4.F)
Under parity, Dirac spinors transform as
P(t,x) — P (t, —x) = v (t, ) . 4.G)
Time reversal is an antiunitary operation:
W(t, ) — ' (—t, &) = Ty*(t,x) . (4.H)

The matrix T, satisfies
Ty T =" =] . (4.1)

The solution of the above condition is 7' = iy'+3, in the Dirac representation
of y—matrices. It is easy to see that 7T =71 =T = —T*.
Under charge conjugation, spinors ¢ (z) transform as follows

P(x) = Yelx) = CPT . (4.J)
The matrix C satisfies the relations:
CypCl=—, Cc'=Cc"=Cl=-C. (4.K)

In the Dirac representation, the matrix C is given by C' = iy?40.

4.1. Find which of the operators given below commute with the Dirac Hamil-
tonian:

(a)p=—-iV,

b)L=rxp,

(c) L*,
(d)Sle‘,WhereZ‘:;'yx'y,
(e)J=L+ S,

(f) J*,

(g)2'|g|a

(h) X' - n, where n is a unit vector.
4.2. Solve the Dirac equation for a free particle, i.e. derived (4.B).

4.3. Find the energy of the states us(p)e™'?"* and v,(p)e?® for the Dirac
particle.
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4.4. Using the solution of Problem 4.2 show that

S w@ae) =" T = 4,0

2m

—S u@nm) = - =4 ).

2m
The quantities A4 (p) and A_(p) are energy projection operators.

4.5. Show that A2 = Ay, and A, A_ = 0. How do these projectors act on the
basic spinors u,(p) and v,(p)? Derive these results with and without using
explicit expressions for spinors.

4.6. The spin operator in the rest frame for a Dirac particle is defined by
S = ;Z‘. Prove that:

(a) X' =577,
(b) [$7, §7] = i€k S*
(c) S2=-3.

4.7. Prove that:

2 ° pu — (— T+1u

o] ()= (=1)""u.(p),
X-p (1)

i vr(p) = (=1)"vr(p) -

Are spinors u,.(p) and v, (p) eigenstates of the operator X' - n, where n is a
unit vector? Check the same property for the spinors in the rest frame.

4.8. Find the boost operator for the transition from the rest frame to the
frame moving with velocity v along the z—axis, in the spinor representation.
Is this operator unitary?

4.9. Solve the previous problem upon transformation to the system rotated
around the z—axis for an angle 6. Is this operator a unitary one?

4.10. The Pauli-Lubanski vector is defined by W, = }€,up0 MV?P?, where
M"P = 1o¥P +i(z”9” — xP0”) is angular momentum, while P/ is linear mo-

mentum. Show that

W) = — ) (14 JmPi(a)

where 9 (z) is a solution of the Dirac equation.
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4.11. The covariant operator which projects the spin operator onto an arbi-

trary normalized four-vector s# (s? = —1) is given by W, s", where s-p =0,

i.e. the vector polarization s* is orthogonal to the momentum vector. Show

that — )
= V58P -
m 2m

Find this operator in the rest frame.

4.12. In addition to the spinor basis, one often uses the helicity basis. The
helicity basis is obtained by taking n = p/|p| in the rest frame. Find the
equations for the spin in this case.

4.13. Find the form of the equations for the spin, defined in Problem 4.12 in
the ultrarelativistic limit.

4.14. Show that the operator v5# commutes with the operator p, and that the
eigenvalues of this operator are +1. Find the eigen—projectors of the operator
~v5#. Prove that these projectors commute with projectors onto positive and
negative energy states, AL (p).

4.15. Consider a Dirac’s particle moving along the z—axis with momentum p.
The nonrelativistic spin wave function is given by

= e (5)
77 a4+ o \ b

Calculate the expectation value of the spin projection onto a unit vector n,
i.e. (¥ -n). Find the nonrelativistic limit.

4.16. Find the Dirac spinor for an electron moving along the z—axis with
momentum p. The electron is polarized along the direction n = (6,6 = 7).
Calculate the expectation value of the projection spin on the polarization

vector in that state.

4.17. Is the operator 75 a constant of motion for the free Dirac particle? Find
the eigenvalues and projectors for this operator.

4.18. Let us introduce

1

Y = 2(1—75)1/}7
1

de: 2(1+’Y5)w7

where v is a Dirac spinor. Derive the equations of motion for these fields.
Show that they are decoupled in the case of a massless spinor. The fields vy,
g are known as Weyl fields.
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4.19. Let us consider the system of the following two—component equations:

i VD) ()
oYL (x
i ) )

where o = (I,0); o* = (I, —0).

(a) Is it possible to rewrite this system of equations as a Dirac equation? If this
is possible, find a unitary matrix which relates the new set of y—matrices
with the Dirac ones.

(b) Prove that the system of equations given above is relativistically covariant.
Find 2 x 2 matrices Sg and S, which satisfy % ; (2') = Sgr ¥R L(7),
where 1), ; is a wave function obtained from ¢ g 1 (x) by a boost along the
r-axis.

4.20. Prove that the operator K = 3(X - L+ 1), where ¥ = — ) x a is the

spin operator and L is orbital momentum, commutes with the Dirac Hamil-

tonian.
4.21. Prove the Gordon identities:

2ma(p1)ypu(p2) = w(p1)[(p1 + p2)y + 104 (p1 — p2)”|u(p2) ,
2mo(p1)yuv(p2) = —0(p1)[(p1 + p2)pu + 10 (P1 — p2)”]v(p2) .

Do not use any particular representation of Dirac spinors.
4.22. Prove the following identity:
w(P)ou (p + 1) u(p) = iu@)(" - p)uulp) -

4.23. The current J, is given by J, = @(p2)p1vup2u(p1), where u(p) and
@(p) are Dirac spinors. Show that .J, can be written in the following form:

Ju = u(p2)[FL(m, ¢*)yu + Fa(m, ¢*)ouq"Ju(py) |
where g = ps — p1. Determine the functions F; and Fb.

4.24. Rewrite the expression

1

ﬂ(p)z(l —75)u(p)

as a function of the normalization factor N = u'(p)u(p).
4.25. Consider the current
Ty = wP2)p’ ¢ oupnau(pr) |

where u(p;) and u(p2) are Dirac spinors; p = p1 + p2 and ¢ = ps — p1. Show
that J,, has the following form:

Ju = ﬂ(pQ)(Fl'Y,u + Fbq, + FSU,upqp)u(pl) s
and determine the functions F; = F;(¢%,m), (i = 1,2,3).
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4.26. Prove that if ¢(x) is a solution of the Dirac equation, that it is also a
solution of the Klein-Gordon equation.

4.27. Determine the probability density p = 1y and the current density
J = ¥y, for an electron with momentum p and in an arbitrary spin state.

4.28. Find the time dependence of the position operator rg(t) = e'ftre=1Ht

for a free Dirac particle.

4.29. The state of the free electron at time ¢ = 0 is given by

Yt =0,z) =60 (x)

o O O

Find ¥(t > 0, x).

4.30. Determine the time evolution of the wave packet

o O o

for the Dirac equation.

4.31. An electron with momentum p = pe, and positive helicity meets a

potential barrier
0, 2<0
_ 0 _ )
eA { V. 250

Calculate the coefficients of reflection and transmission.

4.32. Find the coefficients of reflection and transmission for an electron mov-
ing in a potential barrier:

0, 2<0,z>a
_ 0: ) )
ed {V, 0<z<a

The energy of the electron is F, while its helicity is 1/2.

4.33. Let an electron move in a potential hole 2a wide and V' deep. Consider
only bound states of the electron.

(a) Find the dispersion relations.

(b) Determine the relation between V' and a if there are N bound states. Take
V' < 2m. If there is only one bound state present in the spectrum, is it
odd or even?

(¢) Give a rough description of the dispersion relations for V' > 2m.
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4.34. Determine the energy spectrum of an electron in a constant magnetic
field B = Be,.

4.35. Show that if 9)(x) is a solution of the Dirac equation in an electromag-
netic field, then it satisfies the ”generalize” Klein-Gordon equation:

(0, —ieA,) (9" — ieAr) — ;cr#,,F*“’ +m2p(z) =0,
where F'*Y = gt AY — 0¥ A is the field strength tensor.

4.36. Find the nonrelativistic approximation of the Dirac Hamiltonian H =
a-(p+eA) —eA® +mp, including terms of order Z;

4.37. If V,(2) = ¥(x)v,¥(x) is a vector field, show that V), is a real quantity.
Find the transformation properties of this quantity under proper orthochro-
nous Lorentz transformations, charge conjugation C', parity P and time re-
versal T'.

4.38. Investigate the transformation properties of the quantity A*(x) =

Y(x) Y51 (x), under proper orthochronous Lorentz transformations and the
discrete transformations C, P and T'.

4.39. Prove that the quantity 1 (z)v,0"¢(z) is a Lorentz scalar. Find its
transformation rules under the discrete transformations.

4.40. Using the Dirac equation, show that Cu”(p,s) = v(p,s), where C is
charge conjugation. Also, prove the above relation in a concrete representa-
tion.

4.41. The matrix C' is defined by
C’yqul = —’y:‘f .

Prove that if matrices C' and C” satisfy the above relation, then C’ = kC",
where k is a constant.

o 1)

20
Ey,+m 0

is the wave function in frame S of the relativistic particle whose spin is 1/2,
find:

(a) the wave function 1.(x) = CT (x) of the antiparticle,

(b) the wave function of this particle for an observer moving with momentum
p = pez;

(c) the wave functions which are obtained after space and time inversion,

4.42. If

eflEtJrlpz

)
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(d) the wave function in a frame which is obtained from S by a rotation about
the z—axis through 6.

4.43. Find the matrices C' and P in the Weyl representation of the y—matrices.

4.44. Prove that the helicity of the Dirac particle changes sign under space
inversion, but not under time reversal.

4.45. The Dirac Hamiltonian is H = « - p + fm. Determine the parameter
6 from the condition that the new Hamiltonian H' = UHU?, where U =
e#aP(P) has even form, i.e. H' ~ 3. (Foldy-Wouthuysen transformation).

4.46. Show that the spin operator X' = é'y x « and the angular momentum
L = r x p, in Foldy—Wouthuysen representation, have the following form:

Sowe Mxy PP if(a x p)

E,” " 2E,(m+ E,) 2E,
> 2y i
Low — L pp-X) P _iBlaxp)
2E,(m+ E,)  2E,(m+ E,) 2B,

4.47. Find the Foldy—Wouthuysen transform of the position operator & and
the momentum operator p. Calculate the commutator [zrw, Prw]-
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Classical field theory and symmetries

If f(z) is a function and F[f(z)] a functional, the functional derivative, °% (%)

3f(y)
is defined by the relation
OF[f(x)]
oF = / d 1) , 5.A
Y st f) (5.4)
where 0 F is a variation of the functional.
The action is given by
S = /d4x£(¢r,8u¢r), (5.B)
where £ is the Lagrangian density, which is a function of the fields ¢, (z), r =
1,...,n and their first derivatives. The FEuler—Lagrange equations of motion
e oL oL
% ( ) Sk 5.0
#\0@,60)) ~ 06, (5:€)

The canonical momentum conjugate to the field variable ¢, is
oL
m(x)= " . (5.D)
ek

The canonical Hamiltonian is
H= /d3x'H = /d%(q&rm —-L). (5.E)

Noether theorem: If the action is invariant with respect to the continous in-
finitesimal transformations:
Ty, — ), =, + 0y,

¢r(x) = ¢(2') = ¢r(2) + 600 ()
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then the divergence of the current

oL
= 0y (x) — TH oz, 5.F
7= 90u60) or(x) (5.F)
is equal to zero, i.e. 9,7 = 0. The quantity
oL
T v — v¥Wr — v o °

is the energy—momentum tensor . The Noether charges Q* = [ d3xj8(z) are
constants of motion under suitable asymptotic conditions. The index a is
related to a symmetry group.

5.1. Let

m Fu=0u0,
b) S = [d'z [,(0.0)* =V (9)] ,

be functionals. Calculate the functional derivatives 6[5; in the first case, and

525 :
So(2)b(y) 1 the second case.

5.2. Find the Euler—Lagrange equations for the following Lagrangian densi-
ties:

(0) £ = ~(0,A4%)(0,A%) + Jm® A, A¥ -+ (0,40

(b)L— — 1 E P+ ] m2A AF | where F,, = 0,A, — 0, A, ,
(c) L= ( 0u¢) (9" ) — m2g? - 1/\¢4

(d) £ = (3u¢ - ieAu¢)(5”¢* TicArg) —m2gto s B B

() £ =1(i7,0" —m)p + 5(8up)* — Im?¢? + J Ap* — igys09 .

)
5.3. The action of a free scalar field in two—dimensional spacetime is

S = / dt/ dx< 8,001 — qS).

The spatial coordinate x varies in the region 0 < x < L. Find the equation of
motion and discuss the importance of the boundary term.

5.4. Prove that the equations of motion remain unchanged if the divergence
of an arbitrary field function is added to the Lagrangian density.

5.5. Show that the Lagrangian density of a real scalar field can be taken as
L= —36(0+m?)¢.
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5.6. Show that the Lagrangian density of a free spinor field can be taken in
the form £ =, (¥P¢ — (Ou¥)y"¢) — mapip.
5.7. The Lagrangian density for a massive vector field A* is given by

1
2

Prove that the equation 9, A* = 0 is a consequence of the equations of motion.

1
L== FuwF" + m>A, A" .

5.8. Prove that the Lagrangian density of a massless vector field is invariant
under the gauge transformation: A, — A, + 9,A(x), where A = A(z) is an
arbitrary function. Is the relation 9, A* = 0 a consequence of the equations
of motion?

5.9. The Einstein—Hilbert gravitation action is
S = /s/d4:r\/—gR ,

where g, is the metric of four-dimensional curved spacetime; R is scalar

curvature and k is a constant. In the weak—field approximation the metric is

small perturbation around the flat metric g&o)y ie.

Gy () = 940 + Py () -

The perturbation h,, (z) is a symmetric second rank tensor field. The Einstein—
Hilbert action in this approximation becomes an action in flat spacetime (any-
one familiar with general relativity can easily prove this):

1 1
5= / &z ( Ol O = oy O I+ Oy 79, h 28#h6“h> :

where h = h*,. Derive the equations of motion for i, . These are the linearized
Einstein equations. Show that the linearized theory is invariant under the
gauge symimetry:

hyw = hp + 0,4, + 0, A,

where A,(x) is any four-vector field.
5.10. Find the canonical Hamiltonian for free scalar and spinor fields.

5.11. Show that the Lagrangian density

£= 210607 + 00~ (63 +3) — ) (6} + 3
is invariant under the transformation
¢ — @) = ¢p1cosh — pasinf |
¢2 — ¢h = ¢1sinf + Py cos b .

Find the corresponding Noether current and charge.
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5.12. Consider the Lagrangian density
L= (9,0")(9"¢) —m?¢'¢ .

where <$1> is an SU(2) doublet. Show that the Lagrangian density has
2

SU(2) symmetry. Find the related Noether currents and charges.

5.13. The Lagrangian density is given by

L= 1/7}(1,7“8/1 - m)l/J )

(8

metry. Find Noether currents and charges. Derive the equations of motion for
spinor fields v;, where i = 1, 2.

where ¢ = <¢1 ) is a doublet of SU(2) group. Show that £ has SU(2) sym-
2

5.14. Prove that the following Lagrangian densities are invariant under phase
transformations

(a) £ = (i7,0" —m)y
(b) £ = (90")(0"¢) — m*¢1¢ .

Find the Noether currents.

5.15. The Lagrangian density of a real three-component scalar field is given

by
1 2
L= 00700 -" o7,
2 2
¢1
where ¢ = | ¢2 |. Find the equations of motions for the scalar fields ¢;.
b3

Prove that the Lagrangian density is SO(3) invariant and find the Noether
currents.

5.16. Investigate the invariance property of the Dirac Lagrangian density un-
der chiral transformations

U(x) — ¢ (x) = ()
where « is a constant. Find the Noether current and its four-divergence.

5.17. The Lagrangian density of a o-model is given by

L=, [0,0)(@"0) + @) - (0m)] + 090

2
+gl(o+ir w0 = (07 477+ (02 +7)?
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where o is a scalar field, 7 is a three-component scalar field, ¥ a doublet of
spinor fields, while 7 are Pauli matrices. Prove that the Lagrangian density
L has the symmetry:

o(z) — o(x),
w(z) — 7(z) — a x 7(x),
U(z) - w(a)+i", T ()

where « is an infinitesimal constant vector. Find the corresponding conserved
current.

5.18. In general, the canonical energy-momentum tensor is not symmetric
under the permutation of indices. The energy—momentum tensor is not unique:
a new equivalent energy—momentum tensor can be defined by adding a four-
divergence ~

T =Ty + 0" Xppw
where X0 = —Xpupv- The two energy—momentum tensors are equivalent since
they lead to the same conserved charges, i.e. both satisfy the continuity equa-
tion. If we take that the tensor x,., is given by!

1 oL oL oL
X,uup = 2 (_ 8(3“¢T) (Ipu)rs + 8(6P¢T) (I;w)rs + 6(8V¢r) (IMP)TS)

then T;w is symmetric?. The quantities (Ipv)rs in the previous formula are
defined by the transformation law of fields under Lorentz transformations:

560 = L) = 60(2) = Lo ) (0)

(a) Find the energy—momentum and angular momentum tensors for scalar,
Dirac and electromagnetic fields employing the Noether theorem.

(b) Applying the previously described procedure, find the symmetrized (or Be-
linfante) energy—momentum tensors for the Dirac and the electromagnetic
field.

5.19. Under dilatations the coordinates are transformed as
r—1 =ePx.
The corresponding transformation rule for a scalar field is given by
p(x) = ¢ () = () ,
! Belinfante, Physica 6, 887 (1939)

2 Symmetric energy-momentum tensors are not only simpler to work with but give
the correct coupling to gravity.
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where p is a constant parameter. Determine the infinitesimal form variation®
of the scalar field ¢. Does the action for the scalar field possess dilatation
invariance? Find the Noether current.

5.20. Prove that the action for the massless Dirac field is invariant under the
dilatations:

zoa’ =e Tz, Y(z) - Y(@) =M P()

Calculate the Noether current and charge.

3 A form variation is defined by do¢. () = @5 (x) — ¢ (); total variation is §¢.(z) =
¢ (') — ¢r(x).
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Green functions

The Green function (or propagator) of the Klein-Gordon equation, A(z — y)
satisfies the equation

Qs +m) A —y) = 6@ (@ —y) . (6.A)

To define the Green function entirely, one also needs to fix the boundary
condition.
The Green function (or propagator) S(x —y) of the Dirac equation is defined
by

(iy"0r —m)S(z —y) =W (z —y) , (6.B)

naturally, again with the appropriate boundary conditions fixed.

The retarded (advanced) Green function is defined to be nonvanishing for
positive (negative) values of time zg — yg. The boundary conditions for the
Feynman propagator are causal, i.e. positive (negative) energy solutions prop-
agate forward (backward) in time. The Dyson propagator is anticausal.

6.1. Using Fourier transform determine the Green functions for the Klein—
Gordon equation. Discus how one goes around singularities.

6.2. If Ap is the Feynman propagator, and Ag is the retarded propagator of
the Klein—Gordon equation, prove that the difference between them, Ap — Ag
is a solution of the homogeneous Klein—-Gordon equation.

6.3. Show that
d3k
2wk

/ A kS(K2 — m2)6 (ko) f (k) = / f) |

where wr = Vk2 + m2.
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6.4. Prove the following properties:

Ar(—x) = Ap(2) ,

AF(—Q?) = AF(Q?) .

Ap and Ag are the advanced and retarded Green functions; Ag is the Feyn-

man propagator.

6.5. If the Green function A(z) of the Klein-Gordon equation is defined as’

A(:z:):P/

prove the relations:

Alr) = 5 (An@) + Aa(@))

—ik-x

€
2m) k2 —m2

A(—x) = A(z) .

Aw)=-, | fd‘*k e
ARRNCETE A R

P denotes the principal value.
6.6. Write
and
Aslr) =~ )
T et

efik-w
d*k
7{& k% —m?

in terms of integrals over three momentum, k. The integration contours are

given in Fig. 6.1.

/C./

Im k‘o |ﬁ)

£

Im k‘o |ﬁ)
on

£

—Wg y Re kg

—WE

WRG ki()

Fig. 6.1. The integration contours C' and C4x.

In addition, prove that A(z) = Ay (z) + A_(z).

1 A(z) is also called the principal-part propagator.
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6.7. Show that
0A(x)

ort
0A(z)
0x0

:07

20=0

= 6O (x) .

z0=0

6.8. Prove that A(z) is a solution of the homogeneous Klein—-Gordon equation.

6.9. Prove the following relation:
A =— " 5+ P
F(x)|m70 4 (x ) ’

where Ay is the Feynman propagator of the Klein—Gordon equation.

6.10. Prove that ]

) OEDE?)

AR Al 2o = —
6.11. If the source p is given by p(y) = g6® (y), show that

_ g exp(—mlz|)
¢R - Ar |.’13|
where ¢r(z) = — [ d*yAr(z — y)p(y).

6.12. Show that the Green function of the Dirac equation, S(x) has the fol-
lowing form

)

S(x) = (ip +m)A(z) ,

where A(z) is the Green function of the Klein—Gordon equation with corre-
sponding boundary conditions.

6.13. Starting from definition (6.B), determine the retarded, advanced, Feyn-
man and Dyson propagators of the Dirac equation. Also, prove that the differ-
ence between any two of them is a solution of the homogenous Dirac equation.

6.14. If the source is given by j(y) = g6(y0)el?¥(1,0,0,0)™, where g is a
constant while g is a constant vector, calculate

vle) = [ Ayl - i)
St is the Feynman propagator of the Dirac field.

6.15. Calculate the Green function in momentum space for a massive vector
field, described by the Lagrangian density

1 1
L=—, FuF"+ 2m2AﬂA# :

F,, =0,A, —0,A, is the field strength.



34 Problems

6.16. Calculate the Green function of a massless vector field for which the
Lagrangian density is given by

L= —iFNVF“” + ;/\(aAF .

The second term is known as the gauge fixing term; A is a constant.
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Canonical quantization of the scalar field

The operators of a complex free scalar field are given by
1 d3k
(2m): ) 2wy

1 d3k
27r)2 J V2w
where a(k) and b(k) are annihilation operators; a' (k) and bf(k) creation op-
erators and a(k) = b(k) is valid for a real scalar field. Real scalar fields are

associated to neutral particles, while complex fields describe charged particles.
The fields canonically conjugate to ¢ and ¢! are

oL

o(z) = (a(k)e FT 4 bl (k)eF?) | (7.A)

¢'(z) = (b(k)e ™ + af (k)e'™™) (7.B)

Equal-time commutation relations take the following form:
[d)(:]), t)v 7r(y, t)] = [¢T (‘1:7 t)’ al (y7 t)] = 15(3) (:13 - y) s
[(;5(:1:7 t), ¢y, t)] = [¢(w7 t), ¢T(ya t)] = [W(C& t), W(ya t)] =0, (70)
[71'(:13, t)v 7T'T(yv t)] = [d)(:]), t)v 7T'T(yv t)] =0.
From (7.C) we obtain:
[ak), a’(q)] = [b(k),b'(q)] = 6P (k — q) ,
[a(k)7a(q)] = [af(k:),aT(q)] = [a(k%bf(Q)] = [af(k%bt(q)] =0, (7.D)
[b(K), b(a)] = [b' (k),b"(q)] = [a(k), b(q)] = [a' (k). b(q)] =0 .
The vacuum |0) is defined by a(k)|0) = 0, b(k)|0) = 0, for all k. A state
a' (k) |0) describes scalar particle with momentum k, b'(k) |0) an antiparticle

with momentum k. Many—particle states are obtained by acting repeatedly
with creation operators on the vacuum state.
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In normal ordering, denoted by : :, the creation operators stand to the left of
all the annihilation operators. For example:

: alagagawg = aga;alagm .

The Hamiltonian, linear momentum and angular momentum of a scalar field
are

= [ al@u) + (Vo) +m6? .
P:—/&ﬂmW¢
szi/ﬁmﬂTW—fTWy

The Feynman propagator of a complex field is defined by

iAp(z —y) = (0] T(¢(2)¢' () |0) - (7.E)

Time ordering is defined by
T (6(2)¢'(y)) = 0(z0 — yo)d(x)9" (y) + O(yo — x0)d' (y) () -

The transformation rules for a scalar field under Poincaré transformations are
given in Problem 7.20. Problems 7.21, 7.22 and 7.23 present the transforma-
tions of a scalar field under discrete transformations.

7.1. Starting from the canonical commutators

[B(z.t), oy, )] = 6@ (2 —y) ,

[¢($,t),(b(y,t)] = [¢($,t),¢(y,t)] =0,

derive the following commutation relations for creation and annihilation op-
erators:

la(k),a’(q)] =@ (k —q) ,
[a(k),a(q)] = [a'(k),a’(q)] = 0.

7.2. At t = 0, a real scalar field and its time derivative are given by

pt=0,2)=0, ¢(t=0,z)=c,

where ¢ is a constant. Find the scalar field ¢(¢, ) at an arbitrary moment
t>0.
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7.3. Calculate the energy : H :, momentum : P : and charge : @ : of a complex
scalar field. Compare these results to the results obtained in Problems 2.2, 2.3
and 2.4.

7.4. Prove that the modes

1 s -
up = e iwgt+ik-x ,

V2(27m)3wy

are orthonormal with respect to the scalar product

(flg) = / &af (2)0g" (x) — g"(@)B0 f(z)]

7.5. Show that the vacuum expectation value of the scalar field Hamiltonian
is given by
1
(0] H |0) = —47Tm45(3)(0)F(—2) .

As one can see, this expression is the product of two divergent terms. Note
that normal ordering gets rid of this c-number divergent term.

7.6. Calculate the following commutators: (Assume that the scalar field is a
real one except for case (d))

(a) [P*, ¢(z)]

(b) [P, F(¢(x),w(x))], where F is an arbitrary polynomial function of fields
and momenta,

c) [H,a'(k)a(q)] .

d) (@, PH],

) [N, H], where N = [ d3kal(k)a(k) is the particle number operator,
f) [d3z[H, ¢(z)]e”P® .

7.7. Prove that e'Q¢(x)e™'? = e 19¢(x).

/\/\/—\/—\

7.8. The angular momentum of a scalar field M,,, is obtained in Problem
5.18. Instead of the classical field, use the corresponding operator. Prove the
following relations:

(a) [ uw(b( )] = _i(xual/ - xVau)¢($) s
(b) [Mzwv PA] = i(gAVPu - gAuPu) s
( ) [M,uuv M, ] = i(g,quup + 9vpMyus — gupMypos — gqu,up) .

7.9. Prove that ¢ (z) = (k|¢(z)|0) satisfies the Klein-Gordon equation.

7.10. Calculate the charges Q* = [ d3zj¢(z), where j¢ are zero components
of the Noether currents for the symmetries defined in Problems 5.12 and 5.15.

(a) Prove that in both cases the charges satisfy the commutation relations of
the SU(2) algebra.
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(b) Calculate
Q% ¢i], Q% ¢l), (i=12),
for the symmetry defined in Problem 5.12 and

[Qka(bi]a (7':17273) 5
for the symmetry defined in 5.15.
7.11. In Problem 5.19, it is shown that the action of a free massless scalar
field is invariant under dilatations.

(a) Calculate the conserved charge D = [ d3z;° .

(b) Prove that relations p[D, ¢(x)] =idod(z) and p[D, w(z)] = idom(x) hold.

(c) Calculate the commutator [D, F(¢, )], where F is an arbitrary analytic
function.

(d) Prove that [D, P*] = iP* .

7.12. If, instead of the field ¢(x), we define the smeared field

6s@0) = [ @yott)ia ).,
where f is given by
1 2 2
—x“/a
(agw):a/ze

calculate the vacuum expectation value (0] ¢5(¢, )¢ (t, ) |0) . Find the result
in the limit of vanishing mass.

flx) =

3

7.13. The creation and annihilation operators of the free bosonic string a,
(0<me Z), and a¥, (0 >m € Z), satisfy the commutation relations

[an,, o] = —mbmin 09"
Show that the operators L, = —3 > oy _, a,, satisfy
[Lim, Ly) = (m —n) Ly, -

The operators L., form the classical Virasora algebra. Upon normal ordering
of the L,'s one can obtain the full algebra (with central charge):

D -2
19 (m3 — M)0mtn,0 -

[Lyny L) = (m —n)Lipyn +
D is number of scalar fields.
7.14. Calculate the vacuum expectation value

(01{o(z), ¢(y)}10)

where { , } is the anticommutator. Assume that the scalar field is massless.
Prove that the obtained expression satisfies the Klein—Gordon equation.
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7.15. Calculate
(0] p(21)p(22)p(x3)P(24) 0)

for a free scalar field.

7.16. Find
(0] p(x)9(y) |0)

in two dimensions, for a massless scalar field.

7.17. Prove the relation

Oz +m®) (0] T(¢(2)8(y)) [0) = —i6™ (z —y) .
7.18. The Lagrangian density of a spinless Schriodinger field v, is given by

oy 1

WA
L=iy ot 2m

VTV = V(r)yly .

(a) Find the equations of motion.

(b) Express the free fields v and ! in terms of creation and annihilation
operators and find commutation relations between them.

(c) Calculate the Green function

G(z0, 2, y0,y) = —1 (0] ¥(z0, )¢ (y0,9) |0) 8(z0 — yo)

and prove that it satisfies the equation

0 1
. = (3)
(124 ) ) ctem00 — 059

(d) Calculate the Green function for one-dimensional particle in the potential

0, x>0
V_{oo, <0’

(e) Show that the free Schrodinger equation is invariant under Galilean trans-
formations, which contain:
- spatial translations ¢/ (¢t,r 4+ €) = (¢, r) ,
- time translations ¢/ (t + 6,r) =¥ (¢t,7) ,
- spatial rotations ' (t,7 + 0 x r) = (t, 1) ,

"boost” @ (t,7 — vt) = e~ ImUTHMO /204 )

Without the phase factor in the last transformation rule the Schrodinger
equation will not be invariant, unless m = 0. Consequently this represen-
tation of the Galilean group is projective.

(f) Find the conserved quantities associated with these transformations and
commutations relations between them, i.e. the Galilean algebra.
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7.19. Let &
D ; —ip-x
f@ = [ 5P Fwerir,

2wy,

be a classical function which satisfies the Klein—-Gordon equation. Introduce

the operators
a=C ,
/ \/pr Ja(p)

/ \/2% a'(p) ,

where a(p) and af(p) are annihilation and creation operators for scalar field,
and C' is a constant given by

ds
W QJ;
A coherent state is defined by
|z) = o~ 1217/252a’ 0) ,

where z is a complex number.

(a) Calculate the following commutators:

(b) Prove the relation

nf(p)
C\/pr

(c¢) Show that the coherent state is an eigenstate of the operator a(p) .
(d) Calculate the standard deviation of a scalar field in the coherent state

Vizl: 92(2) 1 [2) — (=] $(2) |))?

(e) Find the expectation value of the Hamiltonian in the coherent state,
(2| H|z) .

[a(p), (a)"] = (ah)" =t

7.20. Under the Poincaré transformation, z — z’ = Ax + a, the real scalar
field transforms as follows:

U(4a)p(@)U " (4,a) = ¢(Az +a)

where U(4,a) is a representation of the Poincaré group in space of the fields.
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(a) Prove the following transformation rules for creation and annihilation op-

erators:
U(A, a)a(k) U~ (A, a) = \/ R exp(—id" kY a,)a(Ak) |
Wk
_ Wiy . Y
U(A,a)a’ (kYUY (A, a) = \/wk exp(iA*, k" a,)a’ (Ak) .
(b) Prove that the transformation rule of the n—particle state |ki,...,ky) is
given by
W W v y
U(A,a) |k, k27~'7/€n>=\/ Ky R gian A (kY +..+kY) |Akq, ..., Aky) .
wkl .o .wkn

(¢c) Prove that the momentum operator, P* of a scalar field is a vector under
Lorentz transformations:

U(A,0)PFUY(A,0) = AMPY .
(d) Prove that the commutator [¢(z), ¢(y)] is invariant with respect to Lorentz
transformations.

7.21. The parity operator of a scalar field is given by

P =exp [—ig / &k (a' (k)a(k) — npa’ (k)a(—k))|

where 7, = £1 is the intrinsic parity of the field.

(a) Prove that P commutes with the Hamiltonian.
(b) Prove the relation PMijP_1 = M;;, where M;; is the angular momentum
for scalar field.

7.22. Under time reversal, the scalar field is transformed according to
To(x)T ™ = nd(—t, @),
where 7 is an antiunitary operator, while 7 is a phase.

(a) Prove the relations:
ra(k)T™" = na(—k) ,
rat (k)yr™r = n*al (k) .
(b) Derive the transformation rules for the Hamiltonian and momentum under
the time reversal.

7.23. Charge conjugation for the charged scalar field is defined by
Co(@)C™" = neo'(x)
where 7. is a phase factor. Prove that

cQC = -,

where @ is the charge operator.
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Canonical quantization of the Dirac field

The operators of a Dirac field are:

2

>/ d?’p\/ i, () () v (P)ALP)E)  (.4)

r=1

1
V)= s

2
0= s 2 [ Epy B @@ o) - (6B)

The operators cl(p) and d}.(p) are creation operators, while c,.(p),d,(p) are
annihilation operators.
From the Dirac Lagrangian density,

L =3(ir" 0, —m)y

one obtains the expressions for the conjugate momenta:

=gy T g

Particles of spin 1/2 obey Fermi-Dirac statistics. We impose the canonical
equal-time anticommutation relations:

{dja(tv :IC), ’lr/)l]; (ta y)} = 5ab5(3) (.’1} - y) ’ (SC)

{talt, @), v (t,y)} = {0l (¢, @), v)(ty)} = 0. (8.D)

From this we obtain the corresponding anticommutation relations between
creation and annihilation operators:

{cr(p).cl(@)} = {dv(p).di(q)} = 6,0 (p—q) . (8.E)

All other anticommutators are zero.

oL 0.
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The Fock space of states is obtained as usual, by acting with creation operators
on the vacuum [0). The states c(p,r)|0), and df(p,r)|0) are the electron
and positron one—particle states, respectively with defined momentum and
polarization.

Normal ordering is defined as in the case scalar field but now the anticommu-
tation relations (8.E) have to be taken into account, e.g.

:e(q)c (p) := —c'(p)e(q) ,

: c(q)e(k)c (p) == ¢! (p)c(q)c(k) .

The Hamiltonian, momentum and angular moment of the Dirac field are:
H= /d%&[—iw +mly
P= —i/d%wW,

10#1/)‘/’ .

M,, = /d?’a}wT(i(x#&, —z,0,) + 5

The Feynman propagator is given by

iSp(z —y) = 0T (¥(x)P(y)) |0) - (8.F)

Time ordering is defined by

T (d(x)(y)) = 0(zo — yo)v(2)v(y) — O(yo — z0)v ()¢ () -

Under the Lorentz transformation, ' = Az the operator t(x) transforms
according to:

U(A)ip(2)U~H(A) = S~ H(A)p(Ax) . (8.G)

Here U(A) is a unitary operator in spinor representation which generates the
Lorentz transformation.
Parity, t' =t, ' = —x changes the Dirac field as follows

Py(t,x)P~! = yoip(t, —x) , (8.H)
where P is the appropriate unitary operator.
Time reversal, t' = —t, ' = x is represented by an antiunitary operator. The
transformation law is given by

)t 2)Tt = Toyp(—t, x) . (8.1)

Properties of the matrix 7', are given in Chapter 4. One should not forget that
time reversal includes complex conjugation:

.. )r b=



Chapter 8. Canonical quantization of the Dirac field 45
e The operator C generates charge conjugation in the space of spinors:
Cipa(2)C = (O vt (2) - (8.9)

Properties of the matrix C' are given in Chapter 4. The charge conjugation
transforms a particle into an antiparticle and vice—versa.
e In this chapter we will very often use the identities:

[AB,C] = A[B,C] + [A,C)B |
[AB,C] = A{B,C} — {A,C}B . (8.K)

8.1. Starting from the anticommutation relations (8.E) show that:
i8(z —y) = {(x), (y)} = i(in,0" + M)Az — y)
{¢(2), ¥(y)} =0,

where the function A(z — y) is to be determined. Prove that for xp = yo the
function iS(x — y) becomes vo6(®) (x — ), i.e. the equal-time anticommutation
relations for the Dirac field is obtained.

8.2. Express the following quantities in terms of creation and annihilation
operators:

(a) charge @ = —e [ A3z :pFop

(b) energy H = [ d*z[: ¥(~iv"0; +m)y 1],
¢) momentum P = —i [d3z : ¢V .

)
8.3. (a) Show that i[H, ¢(z)] = 2 1(z). Comment on this result.
(b) If the Dirac field is quantized according to the Bose-Einstein rather than
Fermi-Dirac statistics, what would be the energy of the field?

8.4. Calculate [H, cf.(p)c.(p)].

8.5. Starting from the transformation law for the classical Dirac field under
Lorentz transformations show that the generators of these transformations
are given by

1
M,, =i(x,0, — 2,0,) + ZUW .

8.6. The angular momentum of the Dirac field is

1
o | () .

M,uz/ = /dBW/’T(@ |:1($#al’ - xl’aﬂ‘) + 2
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(a) Prove that

1

(M, $(2)] = ~1(2u0y = 200u)9(2) —

0#1,1/)(33) s

and comment on this result.
(b) Also, prove
My, Pyl = i(gup P — gupts)

where P, is the four-vector of momentum.

8.7. Show that the helicity of the Dirac field is given by
1
=y Z/ d*p(=1)" el (p)er (p) + df(p)d:(p))] -

8.8. Let |p1,r1;p2,72) = cl, (p1)c],(p2)|0) be a two-particle state. Find the
energy, charge and helicity of this state. Here 1 o are helicities of one-particle
states.

8.9. Prove that the charges found in Problem 5.13 satisfy the commutation
relation:

[Qa7 Qb] — iéachc i

8.10. Find conserved charges for the symmetry in Problem 5.17 and calculate
the commutators:

(a) Q% Q"] , _
(b) [Q°, 7(2)], [Q°,wi(2)], [Q°,¢i(2)] -

8.11. In Problem 5.20 we showed that the action for a massless Dirac field is
invariant under dilatations. Find the conserved charge D = [ d3x;° for this
symmetry and show that the relation

[D, P*] =iP* |
is satisfied.
8.12. Let the Lagrangian density be given by
L =iy "o — ga*ihip
where g is a constant.

(a) Derive the expression for the energy-momentum tensor T,,. Find its di-
vergence, 0,/ T"". Comment on this result.

(b) Calculate the commutator [PO(t), P(t)].

(c) Find the four divergence of the angular momentum operator M**5,

8.13. Consider the current commutator [J, (), J, (y)] where J,, = 1v,1.
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(a) Prove that the commutator given above is Lorentz covariant.
(b) Show that the commutator is equal to zero for space-like interval, i.e. for
(z—y)? <.

8.14. Calculate (0] 9 (21)¥(22)1)(23)1(74) |0) . The result should be expressed
in terms of vacuum expectation value of two fields.

8.15. Prove that : {y*) := é[i’ﬁ”d’]-

8.16. Prove that (0| T'(¢)(z)I"(y))|0) is equal to zero for I' = {vs, 75V},
while for I' = 7,7, one gets the result —4img,, Ar(y — ).

8.17. The Dirac spinor in terms of two Weyl spinors ¢ and x is of the form

_ P
w_<4®ﬁ>'

(a) Show that the Majorana spinor equals
_ X
wM - < _i0,2x* > .

Vrdm = dmon
VY om = —dmy b
VMYsdM = dmsUM
VY ysdm = oy vsthnr

VMO M = =M nr -

(b) Prove the identities:

(c) Express the Majorana field operator, ¥y = \}2 (¥4 1.) using creation and
annihilation operators of a Dirac field. Introduce creation and annihilation
operators for Majorana spinors and find corresponding anticomutation re-
lations.

(d) Rewrite the QED Lagrangian density using Majorana spinors.

8.18. Find the transformation laws of the quantities V},(z) = ¥ (z)y,¢(z) and

A, (z) = ¥(x)v50,9(x) under Lorentz and discrete transformations.

8.19. Show that the Lagrangian density
L =ip(x)y"Outp(x) + mib(2)Y(z)

is invariant under the Lorentz and discrete transformations.

8.20. Show that the quantity 7),,(z) = ¥(x)o,, ¥ (z) transforms as a tensor
under Lorentz transformations. Find its transformation rules under discrete
symmetries.
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Canonical quantization of the electromagnetic
field

The Lagrangian density of the electromagnetic field in the presence of an
exterior current j, is

L= —iFWF’“’ —j*A,
From this expression we derive the equations of motion to be:
O F" = j¥ = (6,0 — 0,0 ) A" = j¥ . (9.A)
It is easy to see that the field strength F},, satisfies the identity:
OuFyp+ OuFpu +0,F, =0. (9.B)

Equations (9.A-B) are the Mazwell equations; (9.B) is the so—called, Bianchi
identity and is a kinematical condition.
Electrodynamics is invariant under the gauge transformation

AP s AF 4 R A(z)

where A(z) is an arbitrary function. The gauge symmetry can be fixed by
imposing a ”gauge condition”. The following choices are often convenient:

Lorentz gauge 0,4* =0,
Coulomb gauge V-A =0,
Time gauge Ayp =0,
Axial gauge A3 =0 .

The general solution of the vacuum Maxwell equations (j#* = 0) takes the
form:

dgk —ik-x ik-x
Z oyt |y, (BEERE LS 0.0
where wy, = |k|,e\(k) are polarization vectors. The transverse polarization

vectors which satisfy €(k) - k = 0 we denote by €} (k) and €4 (k). The scalar
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polarization vector is €/ = n*, where n* is a unit time-like vector. We can
choose n* = (1,0,0,0). The longitudinal polarization vector, €4 (k) is given
by

k¥ — (n - k)n#

(n- k)

Due to gauge symmetry only two polarizations are independent. The polar-
ization vectors satisfy the orthonormality relations:

Guveh (k)X (k) = —dan .

eh(k) =

In (9.C) we assumed the polarization vectors to be real valued.
The polarization vectors satisfy the following completeness relations:

Y aneh(k)es (k) = g . (9.D)

From (9.D) follows that the sum over transverse photons is

} , N kind + kin'
s (k) (k) = —g7 — 9.E
ZG)\( € ) g (kn)2+ k-n ( )
A=1
In the Lorentz gauge the equal-time commutation relations are:
[A“(t, iIZ), W”(t’ y)] = igwjé(g) (:B - y) )
[A¥(t, x), AV (t,y)] =0, (9.F)
[7#(t, ), 7" (t,y)] =0 .
where 7 = —AY. Creation and annihilation operators of the photon field

satisfy the following commutation relations:
[ax(k), al, (@)] = g 0P (k - q)
lax(k),ax (q)] =0, (9.G)

lal (k), al,(@)] =0 .
The physical states, |®) satisfy the operator condition

o ASH |B) = 0.

This is the Gupta—Bleuler method of quantization.
In the Coulomb gauge we have

3
Z (27)3 / 512:1 6*(’“)67“”+a§(k)ex(k)e”“'””) , (9.H)
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while A% = 0. The equal-time commutation relations are:
. . (3
At @), (1, y)] = —107) (@~ y) |
[A'(t,x), A7 (t,y)] =0, (9.1)

[ﬂ—i (tv :B), 7/ (ta y)] =0,

where w# = F and 5f’i)j(sc — y) is the transversal delta function given by

-1 by [0 5,41
Creation and annihilation operators obey
(k). a}, (@)] = S 6@ (k —q)
lax(k),ax(q)] =0, (9.)
[} (k), a1, (g)] = 0.
The Feynman propagator for the electromagnetic field is given by

DY (& — y) = (0] T(A¥ () A* (4))]0) . (9.K)

9.1. Starting from the commutation relations (9.G) prove that
[A¥(t, @), A" (t,y)] = ~ig"" 6 (@ —y) .
9.2. Find the commutator
DM (x —y) = [AM(x), A"(y)] ,
in the Lorentz gauge.

9.3. Calculate the commutators between components of the electric and the
magnetic fields:

(B (), B (y)] ,
[B' (), B’ (y)] ,
[B'(x), B (y)] -

Also calculate the previous commutators for equal times, z° = /°.

9.4. Prove that [P*, A¥] = —i0* A”.
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9.5. Determine the helicity of photons described by polarization vectors
et (ke.) = 271/2(0,1,1,0)T and € (ke.) = 27/2(0,1,—i,0)T.

9.6. A photon linearly polarized along the xz—axis is moving along the z—
direction with momentum k. Determine the polarization of the photon for
observer S’ moving in the z—direction with velocity v.

9.7. The arbitrary state not containing transversal photons has the form

8) =30, 13,)
where C,, are constants and
|Q5n):/d3k1 Pk fk, ... k) ﬁ k:))[0) ,
i=1
where f(k1,...,ky,) are arbitrary functions. The state |@¢) is a vacuum.

(a) Prove that (@, |®)) = 0n0 -
(b) Show that (@| A*(x)|P) is a pure gauge.

9.8. Let _ _
prv — g kHk +7k kH
k-k ’
and _ _
kPEY + KV KM
prv = R
k-k

where k* = (k°, —k).
Calculate: P*P,,, P P},

vo)

P + P{Y, g" Py, " Py,

Pr, PV if K = 0.

9.9. The angular momentum of the photon field is defined by J' = 1€ M,
where M% was found in Problem 5.18.

(a) Express J in terms of the potentials in the Coulomb gauge.

(b) Express the spin part of the angular momentum in terms of ay(k), ai\(k)
and diagonalize it.

(c) Show that the states

1
V2

are the eigenstates of the helicity operator with the eigenvalues +1.
(d) Calculate the commutator [J!, A™(y, t)].

ak(q)|0) = , (al(q) £iak(q))|0) ,

9.10. Calculate:

(a) (O { E*(x), B’ (y)} 0) ,
(b) O {B"(2), B’ (y)} 10) ,
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(c) (O] {E"(x), E* (y)} |0) .

9.11. Consider the quantization of the electromagnetic field in space between
two parallel square plates located at z = 0 and z = a. The plates are squares
with size of length L. They are perfect conductors.

(a) Find the general solution for the electromagnetic potential inside this ca-
pacitor.

(b) Quantize the electromagnetic field using canonical quantization.

(¢) Find the Hamiltonian H and show that the vacuum energy is

d?k = 2
E:;ﬁ/}%PF;;¢%+@+CZ>+¢%+@

(d) Define the quantity

(9.1)

E—-E,
€= ,

L2
which is the difference between the vacuum energies per unit area in the

presence and in the absent of plates. This quantity is divergent and can
be regularized introducing the function

1, k<A

into the integral; A is a cutoff parameter. Calculate € and show that there
is an attractive force between the plates. This is the Casimir effect.
(e) The energy per unit area, E/L? can be regularized in a different way.

Calculate integral
1
I=[d%
/ (kQ + m2)a ?

for Re a > 0, and then analitically continue this integral to Re a < 0. Show

that
A St
/ __6(137;71 '

Regularize the sum in the previous expression using the Rieman (—function

((s)=> n"*.
n=1

Calculate the energy and the force per unit area.
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Processes in the lowest order
of perturbation theory

The Wick’s theorem states
T(ABC...YZ)=:{ABC...YZ + ”all contractions”} : . (10.A)

In the case of fermions we have to take care about anticommutation relations,
i.e. every time when we interchange neighboring fermionic operators a minus
sign appears.

The S—-matriz is given by

S = Ti (—nl')" /.,./014951 b, T (Hi(2) - Hilz)) (10.B)

where Hj is the Hamiltonian density of interaction in the interaction picture.
S—matrix elements have the general form

Se = (21)46@ (p — pr)iM ! e (10.C)
! e 1;[\/2VE1;[\/VE

where p; and ps are the initial and the final momenta, respectively; iM is the
Feynman amplitude for the process, which will be determined using Feynman
diagrams. The delta function in (10.C) is a consequence of the conservation of
energy and momentum in the process. Normalization factors also appear in the
expression (10.C) and they are different for bosonic and fermionic particles.
In this Chapter we will use so—called box normalization.

The differential cross section for the scattering of two particles into N final
particles is

2
1 i
d0_|5ﬁ| HVdP

7 g 1L s (10.D)

where Ji, is the flux of initial particles:

Urel

Jin =
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The relative velocity vy is given by

Vpel = |p1|
re. El )

in the laboratory frame of reference (particle 2 is at rest), while in the center—

of-mass frame we have
B, + B,

E\Ey
p1 is the momentum of particle 1, and E; 5 are energies of particles. In ex-

pression (10.D), Vd®p/(2m)? is the volume element of phase space.
o Feynman rules for QED:

Urel = |p1 |

o Vertex:
= iey"

o Photon and lepton propagators:

1Dpuy = [ AVAVAVAVAVA] S Gy

k k2 i€’
iSp(p) = _—
PP} = P C p—mtie
o External lines:
4 = u(p, s) final
a) leptons (e.g. electron): D — d(p, ) initial
. ) 4 = v(p, s) final
b) antileptons (e.g. positron): — B(p, s) initial
k
NN = g, (K, N) final
k
c)

PROTODS: i NN = e (k, A) initial

o Spinor factor are written from the left to the right along each of the
fermionic lines. The order of writing is important, because it is a ques-
tion of matrix multiplication of the corresponding factors.

o For all loops with momentum &, we must integrate over the momentum:
J d*k/(2m)*. This corresponds to the addition of quantum mechanical
amplitudes.

o For fermion loops we have to take the trace and multiply it by the
factor —1.
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o If two diagrams differ for an odd number of fermionic interchanges,
then they must differ by a relative minus sign.

10.1. For the process
A(Elﬂpl) + B(EQﬂPQ) - C(Ei,pll) + D(Eé,pé)

prove that the differential cross section in the center of mass frame is given
by
do 1 [P} 2
= mampmcmp | M|© |
<d9> Am2(By + Bo)2 py| 0 C oM
where iM is the Feynman amplitude. Assume that all particles in the process

are fermions.

10.2. Consider the following integral:

d’p d*q ®3) 0
= /2E 0 (P = P)a(E, + By~ ).

where E2 = p> + m? and E} = ¢* + m/?. Show that the integral I is Lorentz
invariant. Calculate it in the frame where P = 0.

10.3. If
IM = a(p,r)y. (1 —s5)ulg, s)e"(k, A) ,

calculate the sum ,
> IMP
A=1r,s=1

10.4. Using the Wick theorem evaluate:

(2) (0] T'(¢ a )® ( N10)
(b)T(: ¢* () : : ¢'(y) 2)
(¢) (0] ( U(x >w<w>w< ) (y))0) -

10.5. In ¢* theory the interaction Lagrangian density is Li; = — i‘!gb‘l. Us-
ing the Wick theorem determine the symmetry factor S, for the following
diagrams:

@, (O,

1
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(b)

7 Ty

(C) Z ﬁl

Also, check the results using the formula [6]:

S=g [ 2°m),

n=2,3,..

where ¢ is the number of possible permutations of vertices which leave un-
changed the diagram with fixed external lines, «, is the number of vertex
pairs connected by n identical lines, and ( is the number of lines connecting
a vertex with itself.

10.6. In ¢ theory calculate

. 2
o () [ atmdten 0176616 )6 10)

10.7. For the QED processes :
(@) u~pt —eet,

(b)e u® — e put,

write the expressions for amplitudes using Feynman rules. Calculate <|M|2>
averaging over all initial polarization states and summing over the final polar-
ization states of particles. Calculate the differential cross sections in center—
of-mass system in an ultrarelativistic limit.

10.8. Show that the Feynman amplitude for the Compton scattering is a
gauge invariant quantity.

10.9. Find the differential cross section for the scattering of an electron in the
external electromagnetic field (a, g, k are constants)

(a) A¥(z) = (ae ¥°=" 0, 0, 0) ,
(b) A*(z) = (0, 0, 0, Je~"/) .

The initial electron is moving along z—axis.

10.10. Calculate the cross section per unit volume for the creation of electron—
positron pairs by the electromagnetic potential

AP = (0, 0, ae™*t, 0),

where w and a are constants.
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10.11. Find the differential cross section for the scattering of an electron in
the external potential

2

A" = (0, 0, 0, ae™**") |

for a theory which is the same as QED except the fact that the vertex iev, is
replaced by ie, (1 — ~5). The initial electron is moving along z—axis.

10.12. Find the differential cross section for the scattering of a positron in
the external potential

g
AP =
(’]"’ 0) 0) 0))

where g is a constant. The S—matrix element is given by

Sq = ie/d4x@[?f(x)auwi(x)A“(x) .
10.13. Calculate the cross section for the scattering of an electron with posi-
tive helicity in the electromagnetic potential
A" = (a6® (@), 0, 0, 0) ,
where a is a constant.
10.14. Calculate the differential cross section for scattering of e~ and a muon
ut
et —ept,
in the center—of-mass system. Assume that initial particles have negative he-
licity, while the spin states of final particles are arbitrary.

10.15. Consider the theory of interaction of a spinor and scalar field:

]_ 2 M2 2 T /e 1L 7
L= 2(&;5) - " 4+ V(70" —m)p — gPysv .

Calculate the cross section for the scattering of two fermions in the lowest
order.

10.16. Write the expressions for the Feynman amplitudes for diagrams given
in the figure.
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Renormalization and regularization

e Table of D-dimensional integrals in Minkowski spacetime:

1 i(—1)"r? D
a7k = re-"), (ia
/ (k2 +2p-k—m2+ie )™ [(n)(m2+p2)"~*2 (n 9 ), (11.A)
i —i(=1)r D
47k = “I(n— "), (11.B
/de kHEY _ i(—l)nﬂ'g ; UF( - D)
1 D
_ 2glw(p2 +m?)I(n — 5 1)] ; (11.C)
RERTRE —i(=1)r e [ D
dPk _ B 0P Py —
/ (k242p-k —m2+ie)"  [(n)(m?+p2)"~ % PP p"I(n 9 )
1 D
=, (" + "+ g )P+ M) (0 -~ 1)] ., (11D

EF kY kP kC i(—1)"nP/? D
dPk = 1V 1P T —
/ (k2 +2p-k—m2+ie )" [(n)(m2+p2)"=* PP ppT I (n 2 )

1
~ 4 (9" p’p? + g""p"p? + g"7p"p" + g" P! + " p"p" + "7 p"'p")
D

x (p? +m*) I (n — 5

—1)

1 D
=+ 4(g;w9pﬂ + Gup9vo + guﬂgpl/)(p2 + m2)2F (n— - 2)] . (1LE)
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The gamma—function obeys

[(—n+e) = (_le)n <1+@/J(n+1)+0(6)) , (11.F)
where n € N and 1 1
e

The v = 0,5772 is the Euler-Mascheroni constant.
The general expression for Feynman parametrization is given in Problem 11.1.
The most frequently used parameterizations are:

1 ! 1
AB :/0 Ay (1—)B2 (11.G)
1 1 1—x 1
ABC 2/0 d“”/o Gy (B A+ (= )P (11.H)

Cutkosky rule for computing discontinuity of any Feynman diagram contains
the following steps:

1. Cut through the diagram in all possible ways such that the cut propagators
can be put on—shell.
2. For each cut, make the replacement

1

pQ — m2 - (_2171—)6(4)(172 - m2)9(p0) :

3. Sum the contributions of all possible cuts.

11.1. Prove the following formula (the Feynman parametrization)

1 ! ! S(x1+...+z,—1)
=mn-1![ ... [ dz1...dz, .
A4, P )/0 /0 T e Ay L g AT
11.2. Show that expression (11.A) holds.
11.3. Prove the formula (11.F).

11.4. Regularize the integral

1 1
I= [ d*
/ k2 (k+p)2 —m? "’

using Pauli—Villars regularization.
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11.5. Compute
kokgk kykyko
Lapuvpe = /de B(]:Q)n .

Also, find the divergent part of the previous integral for n = 5. Apply the
dimensional regularization.

11.6. Consider the interacting theory of two scalar fields ¢ and y:
1 1 1 1
L= (00 = ,m*¢* + (00 = ,M*X* = 96" .

(a) Find the self-energy of the y particle, —iIT(p?).
(b) Calculate the decay rate of the x particle into two ¢ particles.
(¢) Prove that

Im IT(M?) = —MT.

11.7. Consider the theory
1 o m? o g5 Ay
L= 007 =" = 06— Lot
Find the expression for the self-energy and the mass shift dm.
11.8. The Lagrangian density is given by

2
2_m

A
5 o? — o — \von? — 4 (0% +7%)?,

1 1
L= 2(8#0)2 + 5 (Opm)

where o and 7 are scalar fields, and v? = g‘j is constant. Classically, 7 field
is massless. Show that it also remains massless when the one-loop corrections
are included.

11.9. Find the divergent part of the diagram

Prove that this diagram cancels with the diagram of the reverse orientation
inside the fermion loop.

11.10. The polarization of vacuum in QED has form
—ilT,(q) = —i(guqv — 49 )1 (q%) -

Prove the following expression:

e? 2m? 4m?2 4m?
ImH(q?):—mT <1+ 2 >\/1— 2 0(1— 2 ) .
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11.11. In scalar electrodynamics two diagrams give contribution to the po-
larization of vacuum. Using dimensional regularization derive the following
expression for the divergent part of the vacuum polarization:

ie?

2
942 ¢ (Pubv — P Gur) -

11.12. The Lagrangian density for the pseudoscalar Yukawa theory is given
by

) ) _ A
L= ;(8925)2 - n; ¢* + Y7, 0" — M)y —ighyspo — | 0" .

(a) Find the superficial degree of divergence for this theory and the corre-
sponding divergent amplitudes. Write the bare Lagrangian density as a
sum of the initial Lagrangian density and counterterms. Write out the
Feynman rules in the renormalized theory.

(b) Find the self-energy of the spinor field at one—loop and determine the
corresponding counterterms.

(c) Find the self-energy of the scalar field at one-loop and determine the
corresponding counterterms.

(d) Calculate the one-loop vertex correction ¢i) and dg.

(e) Calculate the one-loop vertex correction ¢* and 6.

11.13. Consider massless two—dimensional QED, the so—called Schwinger mo-
del.

(a) Calculate the vacuum polarization at one-loop.
(b) Find the full photon propagator and read off the mass of the photon.

11.14. Consider ¢? theory in six-dimensional spacetime, with the Lagrangian
density given by

1 2 m22 9 3
L= 007 =") ¢~ 36" —ho.

(a) Determine the superficial divergent amplitudes. Write the renormalized
Lagrangian density and derive the Feynman rules.

(b) Calculate the tadpole one-loop diagram and explain why the contribution
of the tadpole diagrams can be ignored.

(c) Calculate the propagator correction at one—loop order and determine 67
and ém. Use the minimal subtraction (MS) scheme.

(d) Calculate the vertex correction and find dg.

(e) Derive the relations mo = mo(m, g, €) and go = go(m, g, €).
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Lorentz and Poincaré symmetries

1.1 The square of the length of a four-vector, x is 2% = g, x*2”. By substi-

tuting 2’ = A* x into the condition 2’2 = 22 one obtains:

Gu NV A 3P 27 = oo . (1.1)

Since (1.1) is valid for any vector & € My, we get A*,g,, A" = gpo. The
previous condition can be rewritten in the following form

(AT)pNg,uuAyo = Gpo = ATgA =9, (12)

and we have obtained the requested expression.

Now, we shall show that the Lorentz transformations form a group. If
A; and As are Lorentz transformations then their product, A; Ay is Lorentz
transformation because it satisfies the condition (1.2):

(A1) g(A1A3) = AT (AT gA1) Ay = AT gAy =g .

Thus, we have shown the closure axiom. Multiplication of matrices is generally
an associative operation, so this property is valid for Lorentz matrices A.
Identity matrix I satisfies the condition (1.2) and it is the unit element of the
group. Taking determinant of the expression (1.2) we obtain detA = +1. Since
detA # 0 the inverse element A~ exists for every Lorentz matrix. From (1.2)
we see that the inverse element is given by A=! = g='A7g. In the component
notation the previous relation takes the following form:

(Ail)uy = gMPAUngV =A".

1.2 By substituting infinitesimal form of the Lorentz transformation into the
formula (1.2), one gets:

(55 + W) g (0g +w"s) + 0(“’2) = Ypo
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Ipo + W pGunly + W’ o gudh + o(w?) = Gpo -
from which follows that
Wpo +Wop = 0= wpe = —wg, -

Since the parameters of the Lorentz group w,, are antisymmetric only six of
them are independent, so the Lorentz group is six—parameters group. Moreover
the Lorentz group is a Lie group.

1.3 Given relation is in agreement with definitions of the e symbol and
determinant.

1.4 From (1.2) follows that §7 = 4} A%,A,°, so we conclude that d,7 = §7.
In the same way we have

per = A NP A A  €apys = det (A epvpo = €upo

since detA~! = 1 for the proper orthochronous Lorentz transformations. Thus,
Levi-Civita symbol is defined independently of the inertial frame. Note that
the components €,,,, are obtained by applying the antisymmetric tensor € on
basis vectors eg, ..., es:

eleu, ev,ep,€5) = €uupo -
The € tensor can be written in the form
e=0°N0*NO%NO3,
where @# are basic one-forms.

1.5 The results are given below

€"P7€18v0 = —050508 + 5,';(52(5(‘;7 + (55(5(’;(5,‘; — 5;5(’;55 - 5('5’65(52 + 056565
€"P% € s = —2(0505 — (53’5,‘;) ,
€M%, = —607
P pe = —24 .
1.6

(a) The matrix X is

¥ — 20— 23—zl +iz?
—z! —ix? 20423 ’

so detX = (2°)2 — (x)? = 22. It is not difficult to see that from the
transformation law, X’ = SX S *, follows that
detX’ = detSdetXdetS' = detX

which means that /2 = z2.
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(b) Multiplying the expression X = x,0" by " and taking trace we obtain
the requested relation. The matrices o# satisfy the following orthogonality
relation tr[g#o”] = 2gH".

1.7 The result follows from
/ 1 / 1 Vo= f v
' = 2tr(o*“X )= o7 tr(a#So,S ) = A" z¥ .

1.8 An arbitrary Lorentz transformation, which is connected with the unit
element, can be written in the form U(w) = exp (— M, w""), where M,
are generators. There are three (independent) rotations and three (also in-
dependent) boosts. Rotation around z—axis for angle 05 is represented by
matrix

1 0 0 0 0 O 0 0
| 0 cosf3 sinf3 O N 0 0 63 O
Al6s) = 0 —sinf; cosfs 0] I+ 0 -6 0 O
0 0 0 1 0 0 0 1
From the previous expression we conclude that wly = —wi2 = 63. The gener-
ator of this transformation is
00 0 O
.dA(63) .dA(60s3) .0 0O -1 0
My =1 =—i =i (1.3)
dw'? w12=0 dos 030 01 0 O
00 0 O
In the same way we obtain the other two generators:
0 00 O 00 0 O
0 0O 1 .0 0 0 O
Mus=ilg g0 o | Ms=ilg o0 -1 (1.4)
01 0 0 00 1 0

In this case the relation between the parameters w;; and the angles of rotations
0; around x;—axis is 6; = —%eijkwjk.
The matrix of the boost along x—axis is

Ch(pl —Sh(pl 0 0 0 —¥1 0 0
_ | —sher shpr 0 O _ —p1 0 00
A= o 10| 0o o 0ol
0 0 0 1 0 0 00
where wol = —p1 = —arcthv;. The corresponding generator is
01 00
. dA(p1) . dA(p1) 1 0 00
O o | T der |, L0 0 0 0 (1.5)
0 0 0O
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The other two generators are

0 0 0 1 0 0 1 0
.{0 0 0 O .0 0 0 O
Moy =11y g g o Me==i|1 g ¢ ¢ (1.6)
1 0 0 O 00 0 O
The boost parameters (rapidity) are wo; = —; = —arc th (v;), where v; is the

velocity of the inertial frame moving along the z;—axis.

1.10 The multiplication rule is

(A1,a1)(A2,a2) = (A1 Az, Aras + aq) .

Unit element is (I,0), while the inverse is (4,a)"! = (A71, A7 ta) .
1.11

(a) Since this relation is valid in the defining representation then it is also

valid in any arbitrary representation. By using this relation one gets:
U HA,0)(1 +ie"P,)U(A,0) = 1 +i(A"H e P, . (1.7)
From the expression (1.7) we obtain

U (A,0)P,U(A,0) = (A1), P, . (1.8)

The formula (1.8) is transformation law of the momentum P, under
Lorentz transformations; the momentum is a four—vector. By substitut-
ing

U(w,0) = exp <—;Muyw‘“’) =1- ;lew‘“’ + o(w2)

into (1.8) we get
i a i a (63 (e
(1+ 2Mpgwp )P.(1— 2Mpgwp )= (6 —w)Pa , (1.9)
and then
1w (Mo Py = PuMyo) = =07 (9o By — gupFo) - (1.10)

We had to antisymmetrize the right hand side of Equation (1.10) in order
to eliminate antisymmetric parameters w?’. Finally, we obtain

Mo, Py = i(9uoPp — gupPs) - (1.11)

(b) If we take an infinitesimal transformation A’ = I 4+ w’ then

(ATTAA) ) = ol 4+ (A1) A7 0"7, (1.12)
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so that

U~1(4,0)(1 - ;w’p"Mpg)U(A,O) —1- ;MW(A*)WAWW;U . (1.13)

From the last expression follows

U~YA,0)M,,U(A,0) = (A1) (A~ M, . (1.14)

p

The last equation is the transformation law of the second rank tensor.
For an infinitesimal Lorentz transformation A*, = 6% 4+ w#, from Equation
(1.14) follows

i 14 1 14
2wu (M, Mpo| = 2‘*’” (GouMpv = gov My — Gor Mpp + gpuMyc)
or
(Myuv, Mpo] = (9o Mup + 9o Myo — GpuMuve — gor Myp) - (1.15)

(c) It is easy to prove that
[P,,P,]=0. (1.16)

The relations (1.11), (1.15) and (1.16) are the commutation relations of
the Poincaré algebra.

1.12 In the given representation the generator of the rotation around z—axis
is

00 0 0O
0 0 -1 0O
Mp=il0 1 0 0 O
00 0 0O
00 0 0O

The time translation generator has the form

0 0 0 01
0 00 0O
To=—-i]0 0 0 0 O
0 00 0O
0 0 0 0O

The other generators have similar structure and they can be computed easily.
The relations (1.11), (1.15) and (1.16) are fulfilled.

1.13 Under the Poincaré transformation
2 =Ar+a~z+dz,
a classical scalar field transforms as follows

¢/ (x + 62) = o(a) .
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From the last relation we have

¢'(@) = (z — 62) = §(x) — 20 (1.17)
Form variation of a scalar field is given by
506 = &' (2) — B(x) = —62"0ud (1.18)

For the Lorentz transformation da* = w#,z, and therefore
1
dop = —w"x,0up = — 2w‘“’(xl,6ﬂ —2,0,)0 . (1.19)

On the other hand .
So¢p = —;w’“’ . (1.20)
By comparing two previous results we get that Lorentz’s generators are
M, =i(z,0, — x,0,) . (1.21)

For translations dz# = € and

dop = —€'0,¢p = ie" Pyop . (1.22)
Hence
P, =10, . (1.23)
Since
(400, 2,05 = GupTp0s — GouTpOy , (1.24)
and
[xuamap] = _gpual/ (125)

we get the commutation relations of the Poincaré algebra:

[PWPV] =0
(Mo, Pul = (9uo Pp — 9upPs)
[Muuv Mpa] = i(gUuMyp + ngM;w' - gp[LMVO' - gcn/Mu,p) .

1.14

(a) Wy P! = leupeM"PP P* = 0, as P°P" is a symmetric tensor with
respect to indices o and p. Using the same argument, we obtain [W),, P,] =
0

(b) Using the result of Problem 1.11 we obtain

1
w2 = 4e,w,ewf”JWPP”JWQBP7

1
— 4EWUEMWM”P (MapP? — 165 Ps +i63P3) P,

1
= 4e,w,ewf”1\4"131\4(1[31190137 . (1.26)
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The contraction of two € symbols in the last line of (1.26) has been calcu-
lated in 1.5 so that:

W2 = —i(agaﬁég + 808705 + 676565 — 60656) — 656785 — 67655%)
x M"PM,3P° P,
- _i (2M¥*?M,,P* — M""M,, P’ P, + M"? My, P’ P,+
+ M""M,, P°P, — M""M,,P°P,)

1
=— 2MVPM,,,,P2 + M"PM,,P°P, . (1.27)
(c) Using the previous result we have
1
W2, M,,| = —2[M’“’MWP2, Myo] + (Mo MY*P*P,, M,,] . (1.28)

The first commutator in (1.28) we denote by A, while the second one by
B. Using (1.15) we obtain that A = 0; this result is obvious since the P2
and M, M"" are Lorentz scalars. The commutator B is

B = My M (P*[By, Mpg| + [P", Mpo|P,) +
F Mo [MY, Mpg| PP, + (M, Mo MY*P*P, . (1.29)

Using the commutation relations (1.11) and (1.15) we get B = 0. There-
fore, we have
(W2, Mp,] =0 .

1.15 By using the result of Problem 1.14 (b) and P* |p*, s, o) = p* |p#, s, 0)
we get

1 .
W2 |p = Oama S,O'> = _m2 <2MMVM,LLV - MOiMOl> |p = 07m7570>

1 y
= —m? ((Mi2)® + (Mi3)® + (M23)*) [p = 0,m, s, 0)

= -—m?J?%|p=0,m,s,0)
=-—m?s(s+1)|p=0,m,s,0) ,

because J; = ;eijkM i are the components of the angular momentum tensor.
1.16
(a) Under Lorentz transformations W), transforms according to:

U N AOW,U(A) = AW, . (1.30)

From Equation (1.30) we have
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1
(gouWu - gaVWu)wNV .

My Wl = oW, =

i
2 [
From the previous expression we easily obtain the requested result.
(b) Using the result of the previous part we have

1 «
[Ww W,] = 26ua67[M BPWa W,

1
=, €uasy (MP[PY, W, + [M*?, W, | P")

= i€pay WP .
1.17
(a) Applying the result of Problem 1.16 (a) we get

Wy, M?] = —2i(W*My,, + My, ,W®) .

(b) [My,, WHW?Y] = 0. Take care that ¢l = 4.

(c) Using the formula (1.11) we obtain [M?2, P,] = 2i(P®M,, + M., P%) .
This result and the result in the first part of this Problem are similar,
since W, and P,, are both four-vectors.

(d) [e#77 My Moy, Moys] = 0.

1.18 In the case of massive particles, m? > 0 since the Lorentz transfor-

mations, A*, = §¥ + w*, leave p* invariant (i.e. A*,p” = p*) the following
relation is satisfied:

0 wor wo2  wo3 m 0
wor 0 —wi2 —wi3 01 (0
wo2 w12 0 —wa3 o] (o
w3 w1z  was 0 0 0

From here follows
wo1 = wo2 = wo3 =0, wi; #0 .

The corresponding generators are M2, M'3 and M?3 and they are gener-
ators of the spatial rotations. Therefore, for massive particles little group
is SO(3). The little group for the quantum mechanical Lorentz group, i.e.
SL(2, C) group, is SO(3) = SU(2).

For massless particles we have

0 wo1 wo2 wo3 k 0
wo1 0 —Wi12 —Wi3 0 o 0
wo2 W12 0 —Wwa3 0 0]’
wop3 W13 w23 0 k 0
which gives wos = 0, wp1 = wi3, wo2 = was while the parameter wio is

arbitrary. It corresponds to the rotation around z—axis. The generator of this
transformation is M7o. From the conditions derived above follows that there
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are two independent generators M + M and —(M°? + M?3). Note that
Wi = (M2 + M%)k, Wy = —(M 4+ M*'3)k as well as Wy = —M*?k. Then,
using Problem 1.16 (b) we obtain

(W1, Wo] =0, [Wy/k,Wh]=—iWa, [Wy/k, Ws] =17 .
These commutation relations define E(2) algebra. Thus, for massless particles
little group is euclidian group E(2) in two dimensions.

1.19 It is easy to prove that Lorentz transformations, dilatations and SCT
form a group. It is the conformal group, C(1,3). An arbitrary element of this

group is

i p_1 pv ®
[J(W’€7p7 C) _ el(Pue > Muyw"’+pD+c K*) ’

where D is generator of dilatation, and K* are four generators for SCT .
Conformal group has 15 parameters. The commutation relations of the algebra
can be evaluated from multiplication rules of the group. Let (A, a, p, ¢) denote
group element. If we start from

(A71,0,0,0)(1,0,0,¢)(A,0,0,0) = (I,0,0, A ¢)

for infinitesimal SCT we obtain

U MK U (A) = (A" K, .
For infinitesimal Lorentz transformations we get:

(M, Kpl = i(9up K1 — 9up K). (1.31)
From U~1(4,0,0,0)U(I,0,p,0)U(A,0,0,0)=U(I,0,p,0) , follows

M, D] =0. (1.32)

Starting from

(1,0,p,0)71(1,0,0,¢)(I,0, p,0)z" = (I,0,p,0)"(I,0,0,c)e P aH
ePgH + cte2Pg?
142(c-x)e P + c2e 202
xH + ctePy?
14 2(c-x)e=P 4 c2e=2ra2
= (1,0,0,e~"c)z" |

= (1,0,p,0)""

we obtain _ .
e D1 4 iK“c#)e‘pD =1+iK*e Pe, ,

for infinitesimal SCT. From the last expression follows

e PP HeirD — o =P 1
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This is the transformation law of SCT generators under dilatation. For infin-

itesimal dilatations we get:

D, K" = —iK* .

Similar procedure gives us the following commutators:

[Py D] = —iPs
[D,D] =0,
[K#vKV] =0,

[Py, K] = 2i(gu D + M,,,).

(1.33)

(1.34
(1.35
(1.36

)
)
)
(1.37)

Equations (1.31)—(1.37) together with (1.11), (1.15) and (1.16) are commuta-

tion relations of the conformal algebra.
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The Klein—Gordon equation

2.1 A particular solution of the Klein—Gordon equation
(@+m?)o(x) =0, (2.1)

is plane wave,
e—1k-z _ e—lEt+1k:-m , (22)

where E and k are energy and momentum respectively. We see that from

.0 —ik-x —ik
i, e =FEe "7,
ot

and
_ive—ik~r _ ke—ik~r

By inserting the solution (2.2) into (2.1) we obtain k? = m? ie. E =
+vk2 + m? = +wy. Therefore, the plane wave (2.2) is a solution of the Klein—
Gordon equation if the previous relation is satisfied.

For momentum k there are two independent solutions e
etiwrt+ik@ The general solution of (2.1) is

—lwgt+ik-x and

1 d3k

#(z) = 2m)3/2 | 2wy

(a(k)e—i(wkt—km)+bT(_k)ei(wkt+k.m)) , (23)

where a(k) and b (k) are complex coefficients. In the second term in (2.3) we
make the following change k — —k. Then (2.3) becomes

_ 1 d3k k —ik-x bT k ik-x 2.4
¢($) - (271_)3/2 \/2wk (a( )e + ( )e ) 9 ( . )
where k* = (wi, k). If ¢(z) is a real field then a(k) = b(k).

2.2 Using (2.4) we get
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N
Q_lq/dw<¢ ot ¢ at)
. q d3xed3kd®k’ aT(k)eik"T—l—b(k)e*ikw)

Tl ) e
x (‘iwk'a(k’)e*”“"w + iwpe bt (k’)e”“"‘"”) ~ (a(k)e** 1 b (k)7
x (iwwal () — iwb(k)e ) . (2.5)

By integrating over « in (2.5), we obtain

= _ 4 /d3kd3k:’\/wk, (_a’r(k)a(k/)ei(wkfwk/)t(;@)(k —K)

2 Wi
+ aT(k)bT(k/)ei(wk+wk/)t5(3)(k + k/) _ b(k)a(k/)e—i(wk+wk/)t6(3) (k) + k/)
+ b (k)b(R e~ 1(@r =@ )t53) (ks — k) + c.c. ) . (2.6)

where c.c. denotes complex conjugation. If in expression (2.6) we integrate
over the momentum k' we obtain

Q= g /d3k [af(k)a(k) + a(k)a' (k) — b (k)b(k) — (k)T (k)] . (2.7)

In the result (2.7) we do not take care about ordering of a(k),af(k) and
b(k), bt (k) since they are complex numbers. This will be different in Chapter
7 where a(k) and b' (k) are going to be operators.

2.3 If we first integrate over * we get

1 [ dBPkd3k’ :
H — _ k k/ , k . k/ _ 2 _1(Wk+wk/)t (3) k k/
1] oo (a( Ya(k') (wiwr + m?)e 5B (ke + k')
+ at(k)a’ (k) (wrwe + k - k' — m?)el@rten)ts®) (g 4 k)
— a(k)a’ (k') (wrwp + k - k' +m?)e i @rwon)tsG) (g — k)

— af(k)a(k') (wrwi + k - k' + m?)el@r—wn)tsG) (g — k’)) : (2.8)

Performing integration over momentum k', and using the relation k2 +m? =
w,%, we obtain

H= ;/dBkwk (a'(k)a(k) —|—a(k)aT(k)) . (2.9)

2.4 Solution of this problem is very similar to the solutions of the previous
two. The result is

pP= /d%kaf(k)a(k) :

2.5 The four—divergence of the current j#* is
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5uju = _;(au¢8“¢* + ¢D¢* - 8M¢8M¢* - ¢*D¢) '

Using the equations of motion we obtain the requested result 9,,j* = 0.

2.6 It is easy to see that
Ouit = =, (000" ¢" + ¢0¢" — 0,00"¢™ — ¢ 0¢) —
= q(pA 0" + 00, A + ¢* AL D) (2.10)
The equations of motion are
[O0—ig(8, A" + 249, —igA, A*) + m?] ¢*(z) =0 , (2.11)

[0+1ig(9, A" + 2410, + igA,A*) + m?] ¢(z) =0 . (2.12)

If we multiply Equation (2.11) by ¢ and Equation (2.12) by ¢* and then
subtract obtained equations we get

¢0¢™ — ¢"0¢ — 2iq(Ppep™ 0, A" + A* ™0 + A*$0,0™) =0 .
Combining the previous expression and (2.10), one easily obtains
Oujt =0.
2.7 The equation of motion for a scalar particle in a electromagnetic field is
(0 +1igA,) (0" +igA") +m?] ¢(z) =0 . (2.13)

In the region r < a Equation (2.13) becomes

Kaat _iv> (gt _iv> - A*”"Z} ¢(z) =0. (2.14)

For stationary states ¢(z) = e 'F*F(r) one gets
[—(E+ V) = A+m’| F(r)=0. (2.15)

If we assume that a solution of the previous equation is given by

then from (2.15) we get the following two equations:
d2f
dr?

1 0 . 0Q 1 32Q B
sin 6 90 (sm9 06 > + sin?@ 0p? —l+ D@ (2.17)

+[(E+V)?2—m®] f= i t 1)f 7 (2.16)

r
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The particular solutions of (2.17) are spherical harmonics, Yj,,. In the case
I = 0, the corresponding spherical harmonic Yj( is a constant. The solution
of (2.16) is

f = Asin(gr) + B cos(qr) , (2.18)

where
F=[(E+V)?-m?>0. (2.19)

Constant B has to be zero since function f(r)/r should not be singular in the
r — 0 limit. In the region r > a (A = 0) the solution is given by

f=Ce " 1 DeM | (2.20)

where k? = m? — E?. But, the constant D has to be zero since the wave
function has to be finite in the large r limit. Therefore, the wave function is

b =A""T r<a (2.21)
T
e—kr
¢>=C _, r>a. (2.22)

At r = a we should apply the continuity conditions: ¢« (a) = ¢~(a) and
¢’ (a) = ¢4 (a) for the wave function and its first derivative. These boundary
conditions give:

Asin(ga) —Ce™™ =0, (2.23)

Agcos(qa) + Cke ™" =0 . (2.24)

The homogenous system (2.23-2.24) has non—trivial solutions if and only if
its determinant is equal to zero. Finally, we obtain the condition

tan(ga) 1
=y (2.25)

The dispersion relation (2.25) will be analyzed graphically in the case V' < 2m.
Solid line in Fig. 2.1 is function tan(ga)/q while dashed line is

1 1

f(q):_k:_\/zv\/q2+m2_v2_q2 :

There is only one bound state (in case V' < 2m) if the condition

™

gy < VYV +2m) < 3T

2a
is satisfied.

2.8 The wave equation is
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w/V(V.+2m)

3T
2a

29

V(2m—-V)

Fig. 2.1. Graphical solution of the dispersion relation (2.25) for V' < 2m

B(z) =0 (2.26)

9? B 9 2 )
— igB — — m
ot (3x +ig y) o2 022
It is easy to see that the operators p, = —i 6(1 and p, = —i (’?z commute with

the Hamiltonian, so we can assume that the solution of (2.26) has the following
form

¢ = e Bker=k2) () (2.27)
From (2.26) and (2.27) we get
d? 2 2 12 2
<dy2—(/€z—|—qu) +E°—ki—-m )tp(y):O. (2.28)

Introducing the new variable ¢ = k, + ¢By, Equation (2.28) takes the same
form as the Schrodinger equation for the oscillator

21 E?—k2—m?\ _
<d§2 “ @St @By )“"(5) =0

Then the energy levels are
E,=vm2+k2+2n+1)¢B, n=0,1,2....

Eigenfunctions are

- 1 —i ikpatiks,z — 2 ke 4+ qBy
On(a) = (grB) Y o e B O ()
(2.29)
where H,, are the Hermite polynomials.
2.9 In the region z > 0 the equation of motion is
0
O — ¢*U§ + 2iqUy ., +m?| ¢r1(z) =0 . (2.30)

ot
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Substituting ¢7; = Ce FHF in (2.30), we get
kE=+K=+/(E - qUy)? —m? , (2.31)

or
E=2VEk2+m2+qU, . (2.32)

For z < 0 the particle is free and the solution is
(b] _ AefiEtJripz + BefiEtfipz , (233)

where p = v/ E2 — m?2 . The first term in (2.33) is the incident wave, the second
one is the reflected wave. At z = 0 we have to apply the continuity conditions:

¢1(0) = ¢11(0), ¢7(0) = ¢7;(0) .

A:1<1+£)C,B:1(1—k>0. (2.34)

They give

2 2 P

We will separately discuss three different possibilities:

Case 1: E > m + qU,.

For this value of energy the sign in the expressions (2.31) and (2.32) is plus.
The formula for the current has been given in Problem 2.5. The reflection

coefficient is )

3

R = _(jr)z _ |‘B|2 — ‘p_K
(Jin)= AP |p+ K
while the transmission coefficient is T'=1 — R.
Case 2: £ < —m + qUy.
In this case the momentum is negative, k = —K. The reflection coefficient is
different comparing to the previous case:

2

s

R=|PT L

As we immediately see the reflection coefficient is larger than 1: the potential
is strong enough to create particle-antiparticle pairs. The antiparticles are
moving to the right producing a negative charge current and therefore we
obtain negative transmission coefficient. This is the Klein paradozx.

Case 3: |E — qUy| < m.

We leave to the reader to show that in this case R=1, T'=0.

2.10 For z < 0 and z > 0 a wave function satisfies the free Klein—Gordon
equation, while in the region 0 < z < a the equation is

0 +m? orr(x) =0.

D—q%@+mﬂ%m

The solution is given by:
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(b] _ Ae—iEt+ipz +Be—iEt—ipz

¢II _ CefiEtJrikz + DefiEtfikz
Grrr = Fe Pz (2.35)

)

where k = /(E — qUp)? — m? and p = v E? — m?2. From the continuity con-
ditions follows:

A+B=C+D,
A—B:kW—D%
p

Oeika + De—lka — Felpe ,

Celkt — De~ike — ZFei”“ . (2.36)
Thus, one gets:
‘ ‘ 16
A 247+ 54 (21 - F)e2ikal2 |

If (E — qUp)? — m? < 0 the momentum k becomes imaginary, i.e.

=ik = iy/m? — (E — qUp)?
It is easy to show that the transmission coefficient is equal to one if £ = g .

2.11 The Klein—Gordon equation for a particle in the Coulomb potential is

o . Ze\’ 9
l(@t_ler> —A+m

By substituting ¢ = e ETR(r)Y (0, ¢) in (2.37) and using (2.17) we obtain:

P(x) =0. (2.37)

1 1d2 I(1+1) — Z%* Ze*E E? —m?
_2mrdr2(rR>+ 2mr? k= mr R= 2m R

This equation has the same form as the Schrodinger equation for hydrogen
atom. By comparing these equations we get

En,l =m
\/1+Z264 +\/l+ e

In the nonrelativistic limit the result is

mZ2et m 1 3
E,—m=— — 7368 .
T o2 ‘ (21 +1 Sn)

2.12 The Klein—-Gordon equation in the Schrédinger form is
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0 (6 0
i =H 2.38
‘ot (x) (X) ’ (2.38)
where the Hamiltonian is given by
A 1 1 1 0
p=fan (B 5) (o 0]

2.13 The eigenequation, Hp = E¢ in the momentum representation takes
the following form

p’ p’
am T am <9° ) —F (90 > . (2.39)
p —QI'm —m X0 X0

T 2m
The eigenvalues of the Hamiltonian are evaluated easily and they are F =
tw, = £+/p% + m?2.
In order to find nonrelativistic limit we suppose that the solution has the

following form
<6‘> _ (90 > e im+T)t (2.40)
X X0

where T is the kinetic energy of the particle. From (2.38) we get
A A
—om Tm = 0 0
2m 2m 0 0
=(m+T , 2.41
( 27A—n 2%_m) (X0> ( )<X0> ( )

A A
(—2m —I—m) 90 - 2mX0 = (m+T)00 y

ie.

A A
— = (T . 2.42
o, 00+ <2m m) Xo = (T +m)xo (2.42)
From the second equation in (2.42) we obtain
A
~ 0 2.43
X0 4Am2 0 ( )
in nonrelativistic limit. Using this the first equation in (2.42) becomes
A N?
TOy= | — — 0o . 2.44
0 < 2m 8m3> 0 (244)

Also, from (2.43) we see that yo < 6p and x is so called small component.
From the expression (2.44) follows that first relativistic correction of nonrel-
ativistic Hamiltonian is —V*/8m?3.

2.14 Velocity operator is
o OH p (1 1
S 9p m\-1 -1)°
The eigenvalue of the velocity operator is zero.

2.15 Show that < ¢, Hx >=< Ht,x >. The average value is (v) =

P
m"
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The v—matrices

3.1

(a) In the Dirac representation of y—matrices we have

T
OT_ — _ ~0,0.0 _ .0

()t = 0 UiT__ 0 o\ _ _0.0.i_ .00

Y) = —0; 0 = —o; 0 =YY =T
where we used the facts that (7°)? = 1, 4 and " anticommute, and the
Pauli matrices are hermitian. This relation is true in any representation of
~y—matrices which is obtained by a unitary transformation from the Dirac
representation.

(b) Using the previous result we find

i

U;Tw = 9 (’YM’YV - ’YV'Y;L)T
i
=, (vl =l
i
= - 270(%% — YuYw)Y0
= Y00 -

3.2
(a) Taking the adjoint of v5 we obtain

= indvdvind
= 1707370072700 Y1Y0Y0Y0Y0
= ivpy372M1

= —ivY17273 = V5 -
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The property 75 1 = ~5 can be proven by using Yo ' = ~g and Vi 1=
—~; = . Both of these relations follow from anticommutation relations
{’Yﬂa’}/y} = 25Z

(b) Using the definition of the € symbol we find

1
o A e e BT O e e e el e B B SR PPE e R B )

=i’y = .

1
4

(c) This is a consequence of (a) result.
(d) In a similar manner, we have:

F =yl = 907u7%75 = Y2 157.7° -

(Y5Yu)
3.3
(a) For = 0 we have
{75,7°} = 17" + 7%
= —i7717273% — 17070717273
=imy2y —inyey =0, (3.1)

and similarly for other three cases.
(b) By a straightforward calculation one gets:

[Uulla 75] = [’YMPYV - T Vu» 75]

N =

Yudrs s} — v 153 — v dvw vs) + {0 151 0)

OO~

since {vyu,v5} = 0.
3.4 dg = ata’vy, v = %a“a”("m’yy + YY) = g aua, = a?
3.5
(a) From the relation {v,, "} = 2v,7" = 25} = 8 it follows that ,v* = 4.
(b) YV = (29;“/ - ’YV’YN)’YM =27, — 4y, = —2v,.
(©) VYY" = (2940 — VoY)V = 29570 + 2747° = 408, where we used

the second part of this problem and (3.A).
(d) By commuting +,, and v* and making use of the previous result, one gets:

PPN = (20 — A )Py
= 2907y — 4y*g™
= —2(29"7 = y")y"
= =277
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(e) By using the definition o, —matrices, one obtains:
Ot = —i(’y“’y”w% =Y = VAV e VY ) -
By using parts (a) and (b) of this problem, one gets o, 0" = 12.

(f) Use Problem 3.3 and parts (a) and (b) of this problem.
(g) By direct calculation, one finds

Tap o™ = —i( “V1u¥a18 = YV VY8V
VY Ya18 + VPV VY8 Ve)
= _i(4557ﬁ — 4y, — 4y + 49u57°) = 0 .
(b)
oo o = — ;(7“75 Y9 Yav8 — YV Y V8 Ve
YV VY8 + VYAV A V8Ya — VAV Va8

YA Y0+ VYV Y Yavs — VPV A Y8 Y a)

= - ; (=87"9" — 169" + 8yH4”
+16g"" — 16g"Y — 8y"~H + 16" + 8" ")
= =2i(yHy" —y"yH) = —4ot” .
(i) Use part (g) of this problem.
() Tw50™ = 5 (VW — W) V50" = V500" = 1275,
3.6
(a) By using the trace property tr(A;As...A,) = tr(A24s... A, A1), Prob-
lem 3.3(a), and (y5)% = 1, it follows that
tr(vu) = tr(vuv575)
= tr(V5Vus)
= —t2((v5) )
= —tr(vy,) -
From the previous expression we get tr(v,) = 0.
(b) Taking trace of the relation {v,,7v,} = 2¢,., we easy obtain the requested

result.
(¢) By applying the basic anticommutation relation (3.A), one gets:

tr (7Y Ye) = (2900 — V)70 o]
= 29 tr(¥pY0) = [ (2910 — VoVu) Vo]
= 2guvtr(7p70) - 2guptr(7u70) + QQMUtT(VV’Yp)
- tr(VUVpVUVu) .
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From the previous part of this problem and relation tr(y,v.7,7-) =
tr (Y, ¥pYoyu), One easily obtains the requested result.

(d) trys = tr(y57070) = —tr(y07570), where we used Problem 3.3 (a). Further,
from the trace property and (70)? = 1 it follows that:

trys = —tr(y0%75) = —trys ,

which implies trvys = 0.
(e) Since v,v* = 4, we have
tr(vsy7.) = tr(v57 Ve v )

tr(Ya v 157)

Ll

1 (6%
==, 1% )

= —guwtr(ys) =0.

In the previous calculation we used the trace property and Problem 3.5
(c).

(f) The quantity tr(ys5v,%7,7-) is an antisymmetric tensor with respect to
the indexes (i, v, p, o). Thus, it must be proportional to the Levi-Civita
tensor. The constant of proportionality can be determined by substituting
uw=0,v=1 p=2and c =3.

(g) From (75)? =1, {75,7,} = 0 and the trace property follows:

tr(di - . . dont1) = tr(y5y5d1 - - fh2nt1)

= (=1)*" " tr(vsghy - - - dont175)
= —tr(y5Ys¢1 - - - fhont1)

—tr(¢i1...¢i2n+1) .

Hence, tr(d1 ... dont1) =0 .
(h) tr(dy - - - dhon) = tr(Ct1 C~1C -+ - C1Cha, C~') , where the matrix C sat-
isfies the relation Cy,C~' = =4I Thus,

(s - fan) = (1" tr(d] - d3,) = tr(don ) -

(1) tr(vsvu) = —itr(yomiv2737,) = 0, since it is the trace of odd number of
y—matrices.

3.7
tr(dida - do) =

4{(01 -az)[(as - as)(as - ag) — (a3 - as
(

)

—(a1 - a3) [(a2 - as)(as - ag) — (a2 - as)(aa - ag) + (a2 flﬁ) 04'05)]
+(a1 - as) [(a2 - as)(as - ag) — (a2 - as)(as - ag) + (a2 - as)(as - as)]
—(a1 - as)[(az - az)(as - as) — (a2 - as)(as - ag) + (a2 - ag)(as - as)]
+(a1 - ae) [(az - az)(as - as) — (a2 - as)(as - a5) + (a2 - as)(as - as)]}
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3.8 4 [p,uQV - (p ’ Q)g,uu + P + ieoz,uﬁl/paqﬁ - ng;w} .
3.9 —2p— 2v5p — dm — dmrys .
3.10 Expanding the exponential function in series, we find

1

3 s (32)

& = 1t () + ) (o5 +

By substituting (y5¢)? = —a?, (y5¢)® = —a?(ys4),. .. into expression (3.2),
we get

2 4 2 4

o= (1= 0+ )+ e =G+ =)
= cos(Va?) + \/1a2 sin(Va2)ysd

2

where a° = a,at.

3.11 The fact that the product of any two I'-matrices is again a I" matrix
(modulo +1, +i) can be proved directly. For example, v5001 = —ioa3.

Now, we shall prove that I'-matrices are linearly independent. Multiplying
the relation >, ¢’ = 0 by I}, = (I'®)~!, we obtain

ol +Y el "I, =0,
a#b

where the b-term is separated. Using the ordering lemma, the last expression
becomes

al+ Y el =0, (3.3)
d, 44T

where n € {1, +i}. After taking trace of (3.3) and using the fact that

. 0, I*#T
ar = {3 TZ7

one obtains ¢, = 0 (Vb). This means that I'-matrices are linearly independent
one.

3.12 Multiplying the equation A =Y coI'* by I} from the right and sepa-
rating the b—term in the sum, we have
ALy =o' Ty+ ) cal Ty =cl + Y canl™.

a#b d, [T

Taking the trace of previous relation we obtain the requesting relation.

3.13 The coefficients can be calculated by using the formula obtained in the
previous problem.
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(a) From the traces (which were actually calculated in Problem 3.6):

tr(’Yu’YV'Yp) =0,
(V1 Yp Vo) = H9uv9oos = Gup9vo + Guogup)
(Y Yp Ve rs) = —di€upo
tr(VuVV7p75) = tr(’Yu'YV’YpUaﬁ) =0,

follows v, 7,7, = (quvgpv — GupZGov + g;wgpl/)'yg +i€oppy577 -
(b) V5V Vv = GuvYs + 26a.yuaaﬁ s .
(€) o Yp Y5 = €apvpY™ = 19up V5V + 19up 1570 -

3.14 From Problem 3.13 (a), it follows that {y,,0.,} = —2€aup7°7* .

3.15 By applying the result of Problem 3.13 (a) the trace can be transformed
as follows

tr(7u7u7p707a7575) = (gm/gpts — Gup9vs + guégpu)tr(’\/é’yol‘/a'\/BWS)
+ i€5u0ptT (VYo YaV8) -
Using 3.6 (c), (), we get
tr(7M7V7p707a7575) = 4i(_g,u1/€p0'a5 + Gup€voap
— Ypv€ucap + JaBCouvp — JopCapvp + Joa€Buvp) -

3.16 Use the solution of Problem 3.13 (b).

3.17 Applying the formulae

[A, BC] = [A, B]C + B[A, (],

and
[AB,C] = A{B,C} —{A,C}B,

as well as the anticommutation relations (3.A), we obtain
['Y;f)/ua P)/p"/o] = 7u{7ua "/p}’)/o - {A/;u '7p}7u70

+ 7p7u{'7u7 70} - A/p{%u 70}%/
= 20V Vo + 29v0Vp Vi — 29u0Vp Vv — 29up Vv Vo -

From the above result we obtain:

[0y Tpo| = 21(gupOuo + GuoOup = GupOve — GuoTpup) -

The matrices %qu are generators of the Lorentz group in the spinor repre-
sentation.

3.18 Let M be a matrix which commutes with all v—matrices. Using the
Problem 3.11, we can write (I # I)
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M=c, I+ el . (3.4)
a#b

On the other hand, we know that there is always a matrix I'? which anticom-
mute with "% # I. Multiplying the expression (3.4) by matrix I; from the
left, and by I'? from the right, we get:

LaM I = =T+ neaI* . (3.5)
a#b
The matrix M commutes with +,, and therefore with I, so we get
M = —¢, I + chaf‘l . (3.6)
a#b

If we now multiply equations (3.4) and (3.6) by [}, and take trace of the re-
sulting expressions, we get ¢, = 0. So, each of the coefficients in the expansion
(3.4) is equal to zero except the unit matrix coefficient.

3.19 By applying the Baker-Hausdorff formula

ePAe™P = A+ (B, Al + 21! (B, [B, A]] +
we get
UaU' = a +26n —2(n-a)n — ﬁn—|— 16((1 n)n+--
= a—i—z k22k (- m) "+Z 2112 f2lk)+lﬂn , (3.7)
since

[Ba - n,o/] = nj(ﬁ{aj,ai} — {ﬁ,ai}aj) =26nt,

[Ba-m, [Ba-n,al]] = —4(a-n)n',
[Ba-n, [Ba-n, [Ba-n,ol]]] = —88n"
[Ba-m, [Ba - n, [fa - n, [Ba-n,a']]]] = 16(a - n)n' | etc.

On the other hand, we have the following identities (Ba-n)? = —1, (Ba-n)® =
—(Ban), (Ba-n)* =1,... so that

a—|—(U2—I)(a-n)n:a+2ﬁn—2(a-n)n—;ﬂn—k-u
_ Z k22k a n n+z 1) 22k+16n ' (38)

(2k +1)!

It is clear that the results (3.7) and (3.8) are equal.
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3.20 It is straightforward to show that the y—matrices satisfy the relation

{Yu: 7} = 29,- The connection with Dirac representation v is given by
VS = S’yﬁ)irac . (3.9)

This statement is known as the fundamental (Pauli) theorem. If we substitute

S = (Z Z) , where a, b, ¢,d are 2 x 2 matrices, into (3.9) we find

¢ d a —b —o'c —o'd bot —aot
(a b) B (C —d)’ ( ola  a'b ) = (dgi _wi) . (3.10)
The solution of (3.10) is @ = —b = ¢ = d = L. A particular solution for S is

given by
1 /1 -1
R (I I ) '

The matrices o, are

while
3.21 Matrices
and

have the following properties:
(V) =1, (1) = -1, 7" =",

hence, they satisfy the Clifford algebra (3.A). The matrix 7° is defined by

4P = A0 = (é _01) .
tr(y5y#4¥) is an antisymmetric tensor and it should be proportional to e*:
tr(y°yy") = Cet” .
By fixing 4 = 0, v = 1 we obtain' C' = 2. One can easily show that

Pt = ey,

1 Our sign convention is €’! = +1.
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The Dirac equation

4.1 In terms of e and (3 matrices, the Dirac Hamiltonian has the form
Hp = a - p+ Bm, so that:

(a) [Hp,p] =0, B

(b) [Hp Ll] — ¥ [oept fm, w9pk] = ik allp, w9]ph = —ie*aiph = i(pxa),
(c) [HD, L’ = —le”kaj(Upk +pFLY) #0,

(d) [Hp, S = 4 Hp, kol ab] = 1e”kpkoﬂ = —i(p x a)’,

(e) By applying (b) and (d) we get that this commutator vanishes.

(f) [HDa J2] - 0

(g) From (d) we have [Hp, X - p] = Iipl ekpiakpt =0,

(h) Only if vectors n and p are collinear the commutator vanishes. In the

opposite case it is not zero.

4.2 The plane wave

¥ = (‘p> e (4.1)

X
is a particular solution of the Dirac equation,
(170, — m)u(z) = 0 . (4.2)

By substituting (4.1) in (4.2) (in the Dirac representation of y—matrices) we

obtain
E-m —-o-p P\
(0-1) —E—m> (X>_O’ 43

where E and p are the energy and momentum of the particle, respectively.
Nontrivial solutions of the homogeneous system (4.3) exist if and only if its
determinant vanishes. This gives the following relation between energy and
momentum: E = 4+/p% +m?2 = +F,, which tells us that there are solutions
of positive and negative energy as we expected.



94 Solutions

For the positive energy solution, E = E,,, the system (4.3) has the following
form:

(Ep —m)p —(o-p)x =0,

(0-p)p—(Ep+m)x=0. (4.4)
These relations imply:
o-p
= , 4.5
X E, + mw (45)
or
2 ¥»
u(E,,p) = = o , 4.6
- ()-().
where ¢ is arbitrary. For the negative energy solution, £ = —E,,, the system
(4.3) is solved by
w(~Ep.p) = (‘P> - (—E;’fmx) . (4.7)
X X

If we introduce the notation v(p) = u(—E,, —p) and u(p) = u(E,, p), linearly
independent solutions of Equation (4.2), for fixed p, are given as

—ip-x

u(p)e ", v(p)e®,

where p* = (E,,p). Note the change of sign in the negative energy solu-
tion. The energy and momentum of the solution u(p)e~"?* are E, and p,
respectively, while for v(p)e?"*, they are —F, and —p. In order to find the
additional degrees of freedom, let us recall that the helicity operator ;Z’ - D,
where p = p/|p|, commutes with the Dirac Hamiltonian [see Problem 4.1 (g)].
From the eigenequation

o-pp==tp,

(and a similar equation for x) we obtain

1 p3+1 ) 1 (—ﬁ1+iﬁ2)
- P3EI) = ) . (48
! V2(1+ p3) (pl + D2 72 V2(1+ps) \ Pst1 (48)

(and similarly for x,., r = 1,2). If we take p = pe., the basis vectors become

() ()

Then, the basis bispinors are
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ui(p) = Ny U_<(1)>1 , uz(p) =N, a'((1)>0 ,
2l )
op op (1 :

uww) =N, | ((f S e =N, | TN
(1) ()

where N, = \/ Eptm i the normalization factor. Do not forget that p = pe,

ie. p-o =pos. In this case, the bispinors (4.10) form the helicity basis. For
arbitrary momentum p we have to use (4.8) instead of (4.9), if we want to
construct the helicity basis. Although, in that case vectors in (4.10) are also
a base, but not the helicity one. Spinors v and v are normalized according to
(4.D).

General solution of (4.2) is given by

- (27T1)3/2 i/dgp\/zv??z, (“T(P)cr(p)e’ip'”” + vr(p)di(p)eip'm) . (411)

The Dirac spinor (bispinor) % contains two SL(2, C) spinors, as is easily seen in
the chiral (Weyl) representation. The Dirac spinor is transformed according
to the (1/2,0) @ (0,1/2) reducible representation of the quantum Lorentz
group (i.e. SL(2, C) group, which is universally covering group for the Lorentz
group).

4.3 The states us(p),vs(p) are eigenstates of the energy operator, igt with
eigenvalues E, and —E,,, respectively.

4.4 By using the expressions for the Dirac spinors found in Problem 4.2, we
obtain

> ur(p)ur(p) =
Bytm <P1<PJ{ + 20} —(wpi +2p0}) g7 P
o\ R el +eeph) — TP (ool + el E L)

where @, (r = {1,2}) are given by (4.8). They satisfy the completeness relation
90190{ + @290; =1. Using also (p - 0)* = p* = E, —m?, we get

Z“ 1 (E,+m —o-p \ _p+m
r(p)in( “om\ op —E,+m)  om

The second identity can be shown in a similar manner.

4.5 Using the expressions for the projectors given in Problem 4.4, we see that
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1
2 2 2
A= 4m2(15 +2mp+m?) = Ay,

where we have used p? = p? = m?2. Similarly, we obtain A2 = A_. Orthogo-
nality of the projectors follows from the identity

P+m)(p—m)=p*—m’=0.

At this stage we apply the Dirac equation in momentum space (4.C). Namely,

Avur(p) = o (B m)ur(p) = o (m -+ m)us(p) = ur(p)
Aup) = ) (= m)us(p) =, (0 —m)un(p) = 0.

Similarly, one can prove the identities A_v,(p) =0, Ajv.(p) = v.(p).
4.6

(a) We can directly prove this property. For example, the z—component of the
vector X is )
i

2
On the other hand, v5707' = 7172737 = iv?7®. The corresponding iden-
tities for the y and z—components can be proven in a similar way.

(b) By applying the definition of X, we have

St= (P - =iyhs.

[217 E]] — _461lm6]pq[,yl,\/m’,yp,\/q]

1 im g m m
=, (A A - (412)

Next step is to expand the commutators in terms of the anticommutators:
. . 1. .
[P, 2] = = e (Y A = {y
P Y = AP T (4.13)
Then, using anticommutation relations (3.A) we get
iy lilmqu mpl.a lpamagq mq.pal lgp~m
(27, 2] = = e (g7 !yt = gy + g™ = g1 )
(4.14)
The first term in (4.14) has the form
6ilrnequgrnp,}/l,yq _ (5ij5lq _ 5iq5lj)’}/l’}/q _ _351] _ ,y],yz )
Other terms in (4.14) can be transformed in the same way. Finally,

(2%, 2] =47y =4y
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On the other hand,
ik ok — ik eklmalom _ i ind
so that o N
(2 57 = 2i¢F ok

We conclude that operators J X are the generators of SU(2) subgroup of

the Lorentz group!
(€) 82 =— 1= —1(32y)’ =17 7v=—}
4.7 Use the expressions o - po, = (—1)"p, and o - px, = (—1)"x, from
Problem 4.2. For example:

P 3. r
Py (p) = ”N( o )
p| |

|
=
N
Q
o .
he}
Q
O
=3
N———
7 N

)
EpfmspT
o - PPy
=N ( (o-P)(oP) )
Ep+m Pr
:(_1)T+1N< o )
= (=1 ur(p) ,

where A is the normalization factor. It is easy to see that the spinors u,(p)
and v,.(p) are not eigenspinors of the operator X - n, unless vectors n and p
are parallel.

4.8 The transformation operator from the rest frame to tglge frame moving
along the z—axis with velocity v, is S(A(ve,)) = e~ 2“2 " By using the
relation w3 = —p = — arctan(v), we obtain

. N1 ® 0 o3
S(A)—cosh(Q)I smh(2> <J3 0)
_ \/ E,+m I ~ Bm
2m - Ezj—g’m I .
For arbitrary boost, osp should be replaced by o - p. The operator S(A) is not

unitary one. Since the Lorentz group is noncompact, it does not have finite
dimensional irreducible unitary representations.

4.9 In this case we have

. cos(g)+isin(g)a3 0
o 0 cos (§) +isin(§) a3 )"

' Recall that £* = 1e¥ig™.
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This operator is unitary because SO(3) is a compact subgroup of the Lorentz
group.

4.10 The Pauli-Lubanski vector is

i

4

1 1
W = &0 (0,0 = w00y + 0000 = €700 (4.15)

2
since the contraction of a symmetric and an antisymmetric tensors vanishes.

Then

1
— 16e“upaeuaﬁwa,,poaﬁagﬁ"yw(x)

1 v o v SO o SV
= (a0 — oxoges + snagay—

W2(x)

020407 + 553550 — 330487 ) 0p0 P 0,07 ()

1 (e} (0
16 (20 Baaﬁlj — 40 WUapap&Y) 0

3

= 4D¢

=S,
where we used identity
o™’ = 27,7 + 62
and the results of Problems 1.5 and 3.5.
4.11 It is easy to see (Problem 3.16 and the condition s - p = 0) that

W, st 1 Vo o o
:n - 4m€WWU Pt = Qm%UWSMa
1 1 1
= — in? st = :l: = .
2m75(w% Guo)(Fip7)s Zm%#ﬁ 5 V58

The previous equation holds on space of plane wave solutions; upper (lower)
sing is related to positive (negative) energy solutions. In the rest frame, the

vector s* becomes (0,n), so § = —n - -, and we can use i = p[;ZO =+% so
that W ) .
"8 =+ Bym-y==x£_X-n.
m 2 2
where Problem 4.6 has been used.
4.12 Positive energy solutions satisfy

If we choose that polarization vector s# in the rest frame equals (0,12 = ‘g ‘ ),
according to the formulation of this problem, then in the frame in which
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electron has momentum p, the polarization vector is obtained by applying a

Lorentz boost:
E J
su:< ? o )(0)
‘' p? J
6ij + m(%pp—&-m) "

pn
= (n-p)p ) :
('I'L + m(Ep+m)

For n = p/|p| we get s = (|2|7 Jzfn) Using that, we find

33

1
yspulp, £s) = vsppu(p, +3)
1 |p| E
= 7 ( Yo— "y-n) (Byyo—p-y)u(p,£s) .
m m m
If we insert (p - v)? = —p? in the previous formula we obtain:

X-p

p

From the expressions (4.16) and (4.17) we get

3.
| p|” u(p, £5) = £u(p, +s) .

The similar procedure can be done for negative energy solutions. Starting
from

Vspo(p, £5) = Fo(p, +s) ,

one gets
Y-p

|p|
4.13 In the ultrarelativistic limit, m < E,,, the vector s is given by

S#N EP p Np/“‘
m’m m

v(p,+s) = Fo(p, £s) .

Then we have

Tofu(p, =) ~ 35 ¥ up, +5) = ulp, +5) (1.18)

where we used the Dirac equation pu(p, £s) = mu(p,+s). From (4.18) we
conclude that the helicity operator X' - p/|p| is equal to the chirality operator
~5. The eigenequation becomes
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For v spinors the situation is similar. So, for the particles of high energy (i.e.
neglected mass) helicity and chirality are approximatively equal, while for
massless particles these two quantities exactly are equal.

4.14 The commutator between ~y5¢ and p is

[V58, 0] = V58P — P58

= 75 (#p + P#)
= 758" D" {7, W}
=2s-py5=0.
From (y5§)? = —s? = 1 it follows that eigenvalues of the operator v5# are £1.
Then the eigen projectors are
1+
S(+s) = 275# .

4.15 The average value of X' - n in state

_ EP +m 2 efip.m
Y(x) = \/ om <Ezfm > ) (4.19)
Ly = Pt (@) T (@)
F =T e ()
m (o - o-n)o-
= E’;gp (@Ta-ngo—i— el fféi+m))2 pw) . (4.20)
Since
(0-A)oc-B)=A-B+i(AxB) o (4.21)
it follows that
(0 -p)(o -n)(o - p) = |p|*(n303 — n2oa —n101) . (4.22)

By substituting (4.22) into (4.20) we get:

1
Y.n) =
E e o
E,+m . X . «
gE (nslal® + (n1 + in2)b*a + (n1 — ing)a*b — ng|b|?)
P
EP -m 2 : * : * 2
+ oF (nslal® + (—n1 +in2)a*d — (n1 + ing)b*a — ng|b|?)| .
P

In the nonrelativistic limit we obtain

nslal? + (n1 + in2)b*a + (n1 — inz)a*b — n3|b|?

Z'n = To'-n =
< > ¥ ¥ |a|2+|b|2
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4.16 In the rest frame a spinor takes the following form (g) e ™t where
1 e\_1 (¢
2(8)-2(5)
The last condition becomes
cosf —isinf a a
(isin& —cos@)(b>_(b> ’ (4.23)

) . From the last expression we obtain

p= ( oo g@ ) : (4.24)

181 2

 satisfies

where we put ¢ = (Z

In the rest frame the Dirac spinor takes the form

0
COS o

Py | omimt (4.25)
0
0

Yo =

Applying the boost along z—axis, we obtain

¥(z) = S(—pez)vo , (4.26)

where S is given in Problem 4.8. Note a minus sign appearing in S(—pe.)!
After a simple calculation, we obtain

0

Cos |
E,+m isin ¢ i
_ 2 ip-x
Y(x) \/ 9m o oo g e . (4.27)
Eptm \ isin §
The mean value of the operator }7s# is
1 1 [ d3zyiys gy

= 4.28

where the vector s# is obtained from (0,n) by the Lorentz boost along the
z—axis. The components of vector s* are (see Problem 4.12)

n- .
w0=""P s—nut (n-plp
m m(E, +m)

In our case we have
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E
s = (p cos6,0,sin6, pcosH) .
m m

Thus, in the Dirac representation of y—matrices, v5# is given by

Yof = (s'a ol ) : (4.29)

sol —s-o
and finally
%0059 —isin® - cosf 0
v E

isinf — " cosf 0 — P cos@
= m m 4.30
Vst P cosf 0 —Ifrf cos isin®@ ( )

0 P cosd —isinf frf cos @

By substituting (4.30) and (4.27) in the formula (4.28), we obtain:

<;75$> = ; )

as we expected, because ¥(x) is the eigenstate of the operator 575;47 with

. 1
eigenvalue ;.

4.17 The Dirac Hamiltonian can be rewritten in terms of y—matrices so that
[Hp,vs) = [y - +7°m, 75 = 2my s

Thus, the operator 75 is a constant of motion in the case of massless Dirac
particle. Its eigenvalues and eigen projectors are +1, XL = %(1 +5), respec-
tively. The operator 75 is known as the chirality operator.

4.18 By multiplying the Dirac equation from the left by 75, we obtain (i@ +
m)ys¢ = 0. By adding and subtracting the previous equations and the Dirac
equation, we get

1$¢L - me = 07
iPyr —myr, =0 .
4.19

(a) The system of equations can be rewritten as the Dirac equation. The Dirac
spinor takes form
_ (YL
11[} - (wR 7

while

are y—matrices (see Problem 3.20).
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(b) In order to be covariant, these equations have to have the following form
00, g (2") = may (') (4.31)

640,04, (a') = mih(@) (4.32)
in the primed frame (2’ = Ax). If we assume that the new spinors take

the form ¢p (2') = S, (x) and ¥ (2') = Sryr(z), where S, and Sk are
nonsingular 2 x 2 matrices, Equations (4.31) and (4.32) become

iO’MSRAMVaVZZ)R(x) = mSLl/)L(l') s (433)

ia'MSLA#Vaﬂ/)L(m) = mSrVYr(x) . (4.34)

By multiplying Equation (4.33) by Sfl from left, and (4.34) by Sgl also
from left we obtain

iSElo“SRAM”&ﬂ/)R(m) = ml/)L(ac) s (435)

1Sy a4 S A, 0y (x) = mapr(z) . (4.36)
The system of equations is covariant if the conditions
SglersSy = Ar,e”
S;totSg = A*,0”

hold. The solution for matrices St, and Sg is given as

1 . i 1 B i
St = exp (2%02 + ;9k0k> ~1+ 2(,0101 + ;Hkak , (4.37)

1 ] 1 o]
SR = exp (—2%02 + 29;47’“) ~1-— 2(,01-01 + 29kok . (4.38)

The parameters 6; and @; were defined in Problem 1.8. Boost along the
r—axis is defined by :

SL = cosh (<,021) 4+ o1 sinh (21) (4.39)
Sr = cosh (21) — o1 sinh (('021) . (4.40)

Note that i1, and ¥g transform in the same way under rotations, but dif-
ferently under boosts. The left ¢, and right g spinors transform under
(;0) and (0, ;) irreducible representation of the Lorentz group respec-
tively.
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4.20 First note that

[Hp, K| = [a-p, 3(3 - L)] + [ - p, f] + m[B, 3(¥ - L)] . (4.41)
The first term in the expression (4.41) is

la-p, (¥ L) =plo-p, XL+ [o-p,f]¥ L
_ _;emnpemjlﬁ (pi{ai’an}apxjpl _pian{ai7ap}xjpl+

+ a"aPalpt, 2l pt — Zaia"appia:jpl) )
Using the relations {a, a7} = 2§;; and [2%, p’] = id;;, we obtain

i

a-p, (X L) =—_p{dprz"p — 4o’ plaipl—
2
- iocjo/oszl + 3iaipt — ZQiajoclpia:jpl + ZQialajpia:jpl)
=ig (Qaiplxipl —2ia-p— ajaialpixjpl — aialajpixjpl) ,
where we used o’afa’ = —aJ. By substituting p’az/ = z7p’ —i6¥ into the last
line of previous formula, we have

[oc-p,B(X - L)] = 26(cx - p) - (4.42)

The second term in (4.41) is —283(« - p), while the third term vanishes. Thus,

(Hp, K] =0 .
4.21 From (3.E) we have
(1o (p1 — p2)uu(p2) = Ja(p1) (17" — ") (p1 — p)uu(p2)
= JEB)[A G — o) + (B — ) u(p2)
1

= _u(p1)[=7" (1 —m) + (m — p2)7"]u(p2) .

\]

By using v#p1 = 2p' — p1y* and poy* = 2ph — v* P2 we obtain
iu(p1)o™ (p1 — p2)vu(p2) = 2mu(p1)y*u(p2) — (p1 + p2)*u(p1)u(p2)

where we used that u(p) and @(p) satisfy the Dirac equation. The last expres-
sion is the requested identity. The second identity can be proven similarly.

4.23 Tt is easy to see that

VaYuV8 = 29an¥8 — 2908V + 29u8Ya — V8 VuVa - (4.43)

From (4.43) we have
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u(p2)p1yupou(pr) = u(p2)[2m(p1 + p2), — (2p1 - p2 + m*)vuJulpr) , (4.44)

where we used the Dirac equation (4.C). The first term in (4.44) can be
transformed by using the Gordon identity (Problem 4.21)

u(p2)pryupau(pr) = a(p2)[—2p1 - p2 + 3m?|y,u(p1) — 2mia(p2)o,wq”u(p:)
i(p2) {(¢° +m?)y, — 2imouq” } u(pr). (4.45)

From the last expression we can make the following identifications: F; =
¢*> +m? and F, = —2im.

4.24 By using u(p) = pu(p)/m and

{’Y;M’yf)} =0 3

we have 1 1
u(p)ysu(p) = mﬂ(p)wﬁu(p) = —mﬂ(p)ﬁ%u(p) .

By applying the Dirac equation (3.C) we obtain

u(p)ysu(p) = —u(p)ysu(p) -

Thus @(p)ysu(p) = 0. By using the Gordon identity (for p = 0) it finally

follows that
m

P~ 35)u(p) = ) N

4.25 Fl = —iq2, F2 = —2im7 F3 = —2m.

4.26 By applying the operator (ip + m) to the Dirac equation we obtain
(ip +m)(ip —m)y = —(O+m?*)p =0.

4.27 The probability density is p(z) = 1 (x)¢(z). By using the expression
for the wave function from Problem 4.2, we easily get p = }fyf The current
density is j = ¢y1) = P 1), where the Gordon identity (for = i) has been
applied. Finally j = P.

4.28 The position operator in the Heisenberg picture satisfies the following
equation
d'l"H
dt
In order to integrate the last equation we have to find the Dirac matrices in
the Heisenberg picture

= —i['l"H,H] = Oy.

Since
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H,o] =2(p —aH), (4.46)
[H,[H,a]] = —2°(p— aH)H , (4.47)
[H,[H,[H,«a]]] = 2%(p — «aH)H? ,etc. (4.48)

we get
2it)? 2it)3
aH:a+(aH—p)(—2it+(;) H—(;j) H2+...>

= g + (a _ Z) o2t (4.49)

Then, equation
+(a= P)e= (4.50)

implies

= p _'( _p) 1 ( _p) L oime
TH r+Ht 1| 1% 2H+1a % 2He .

The integration constant is determined using the condition ry(t = 0) = 7.
As we see ”the motion of particle” is a superposition of classical uniform and
rapid oscillatory motions.

4.29 We should calculate the coefficients ¢, (p) and df(p) in the expansion

M&m%:@$w22;/&P¢ZJGQWM@Pm”+£@MAMemmy

(4.51)
If we multiply this expression by u!(q)e™%® from left and integrate over x,

we get
1 m 3 + —ig-
cs(q) = (27T)3/2 \/Eq /d mus(q)w(ovm)e e ’
where we applied the relations

uf(p)us(p) = vl (p)vs(p) = Jif&s, vl (=p)us(p) = ul(—p)vs(p) = 0. (4.52)

These relations can be obtained from (4.D) by using the Gordon identity.
Similarly for d coefficients we get

@) = a1, [ Palao.en

Carrying out the integrations, we find
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1 E,+m
aP) = (52 °8,

2(p) =0,
GO)= 05 g (5, 4y PP
1 1

d(p) = (2m)9/2 \JoE (E +m)pz. (4.53)

The wave function at time ¢ > 0 is
1 3 m —ip-x * ip-x
8 = oy 3 [ B @) e (1) (45

where the coeflicients ¢, (p) and d(p) are given in (4.53).
4.30 In this case the coefficients ¢, (p) and d(p) in expansion (4.51) are:

d? 8/4 E,+m ;2 2
Cl(p):(ﬂ_> gE edp/27
p

Cg(p) =0,

3/4
&:(p) = (d) L g i
\/2EP(EP + m)

™

ds(p) = (d2>3/4 L pe
? T \/2EP(EP +m) :

4.31 The equation for spin 1/2 particle in the electromagnetic field has the
following form

[iv* (0, —ieA,) —m]yp =0. (4.55)
If we assume that a wave function for z > 0 has the form
b = (i) e 1BttigE (4.56)

then (4.55) becomes

E-m-V —03(q 0\
(P T ) (8) =0 (457

The system of equations (4.57) has a nontrivial solution if and only if
E=V+£V@+m?. (4.58)

The wave function? is

2 From the boundary conditions it follows that there is no spin flip.
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1
_ 0 —iEt+ipz
Yr=a s (1 e
(E+m) \ 0
1
+b O\ e ®w, 2 <o, (4.59)
—pos3
(E+m) <0)
1
brr = d 0 . efiEtJriqz’ 2>0,
qo3
(E4+m—V) (0>

where p = VE2 —m2. The terms proportional to the coefficient a, b and d
in (4.59) are the initial ;,, reflected v, and transmitted wave ;. Since the
Dirac equation is the first order equation, the continuity condition is satisfied
for the wave function only. The condition 1;(0) = ¥;1(0) gives

a+b=d, (4.60)
a—b=rd, (4.61)
where r = Ef;ﬂ—lvg' Now, we will consider three cases:

1. If |E — V| < m, the momentum ¢ is imaginary, ¢ = ik so that the wave
function exponentially decreases in the region z > 0, as is the case in nonrela-
tivistic quantum mechanics. The transmitted, reflected and incident currents
are:

Jr = thr'}/gwtrez =0, (462)
_ 2p
- 3 2
r — Yr r€z = — b P 4.
Jr =y e Bamltle (4.63)
. - 2p
in — Win 3 in€z — 2 z - 4.64
Jin =Yy Yme: = o 0 lale (4.64)

Since jt, = 0 the transmission coefficient is zero. The reflection coefficient is

—Jr _ |P(E4+m—V)—ik(E +m) 2

= =1. 4.65
Jin p(E+m—V)+ik(E 4+ m) (4.65)

R:

2. If V < E — m, the momentum ¢ is real. The currents are:

. 2q 2
r — d z 466
Jt E+m— V| "e ( )
. 2p 2
r— — b zZ s 467
Gom e (1.67)
2
Gin P aZe, (4.68)

:E—i—m
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The transmission coefficient is

d 2

a

- (4.69)

jtr
T = =
: (1+r)?"’

,jin

while the reflection coefficient is

R:_,jr:<1_r>2. (4.70)

Jin 1+r

3. If E4+m < V, the momentum ¢ is real, which implies that the wave function
in region z > 0 becomes oscillating. This is caused by the fact that there are
two parts of electron spectrum separated by a gap, whose width is equal to 2m.
The expressions for the coeflicients of reflection and transmission are the same
as in the second case. But in this case, the coefficient of reflection is greater
then 1, while T' < 0. The described effect is known as the Klein paradox. The
explanation of this paradox is given in Problem 2.9.

4.32 The solution of the Dirac equation is

1
+ B 0 1 e P* 2 <0,
—pos3
(E+m) (O)
1
b =C 0 el
qo3 1
(E+m-V) \ @
1
+ D 0 1 el 0<z<a,
—qos3
(E4+m—V) (())
1
Y =F 0 1 P z>a,
po3
(E+m) (0)

where p = VE2 —m? and ¢ = \/(E — V)2 — m2. From the boundary con-
ditions ¥;(0) = ¥;(0) and ¢¥rr(a) = Yrrr(a), we obtain the transmission
coefficient

Ir|?

T=|F]?=16 . .
| | |(1 + r)2€71qa _ (1 _ r)2€1qa|2 ’

_q E+4+m
where r = » Etmev
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Solutions

4.33

(a)

The wave function is

B

!
Rz

= e, z<—a,
djl —iko3 <B>

(E+m) \ B’
c

! .
— 19z
Y1 wos < C ) e (4.71)
(E+m+V) \
D

/ .
+ e 9 —a< :
s D a<z<a
(E+m+v) \ D/
F

!
Kz

= e z>a
Yrrr veos <F> ; ;

(E+m) \ F'

where k = vVm2 — E2 and ¢ = \/(F + V)2 — m2. Since there is no spin
flip, we can take B’ = C’ = D’ = F’ = 0. From the boundary conditions
Yi(—a) =vr(—a) and ¥rr(a) = ¥rrr(a), it follows that

efsz _ efiqac + eian

e R = 9% + e71%D

—ire "B = e719%C — (112D
ire " F = l99C — el |

where r = ’; B ET;V By combining previous equations we obtain
e "B — F) = 2isin(ga)(D — C)
ire™"(B — F') = 2cos(ga)(D — C)
e "(B+ F) = 2cos(qa)(D + C)
re”"*(B + F) = 2sin(ga)(D + C) .

Further, we will distinguish two classes of solutions: odd and even. If B = F
and C = D, the third and the fourth equations give the following dispersion

relation:
tan(ga) KkE+m+V
an(qa) = .
1 q E+m

These solutions satisfy the following property: ¥/'(z) = yovo(—z) = ¥(2);
thus they are even. On the other hand, if B = —F and C' = —D, the
dispersion relation is
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cot(qa) KE+m+V
a) = —
1 qg E+m

This class of solutions satisfy ¢'(z) = vt (—2z) = —1(z), and therefore
they are odd.

(b) The dispersion relations are transcendental equations and they cannot be
solved analytically. We can analyze them graphically.
For even solutions, the dispersion relation has the form

qtan(ga) = f(q) , (4.72)

where

m+\/q2+m2

=2V +m2—¢g® - V? :
f(q) \/ V@ +m? —q gtV

and its graphical solution is given in Fig. 4.1.

V(V +2m)

Fig. 4.1. Graphical solution of Equation (4.72) for even states (V < 2m)

In the case of odd solutions, the dispersion relation

qcot(qa) = —f(q) (4.73)

is shown in Fig. 4.2. From these figures we see that the spectrum of electron
bound states will contain N states if the condition

(N -

2a

Nm

DT o Vv +om) < o

is satisfied. It is easy to see that if N = 1 then this solution is even.
(¢) Graphical solutions for odd and even part of spectrum are given in Fig.
4.3 and Fig. 4.4.
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— 3

Fig. 4.2. Graphical solution of Equation (4.73) for odd states (V < 2m)

V(V +2m)

Fig. 4.3. Graphical solution for odd states (V' > 2m)

S
+
=
N

V(V —2m) (

Fig. 4.4. Graphical solution for even states (V' > 2m)
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4.34 The Dirac equation in this case has following form
0 0 0 0
.0 1 . . 2 3
—ieB — =0. 4.74
[w ot + iy (83@ ie y) + iy oy + iy 55 m} P (4.74)

A particular solution of (4.74) is

_ o—iBt+ipsz+ipsz 90(?!)>
=e . 4.75
v (x(y) (475)
By substituting (4.75) in (4.74) we obtain
E—m (eBy — ps)o1 — p:o3 + 102§, (p) B
(pm - eBy)Jl + P203 — i0—2 ddy —E—-m X N
(4.76)
From the second equation in (4.76), follows
() + psos — eByor —ioy ) o(y) (4.77)
= 0 203 — o1 — io , .
xX\y E+mp1p3 Yyo1 2dy Py
and plugging it into the first equation of (4.76), we get
d2
(dy2 — (pz — eBy)? + E* —m? —p? — eBog> =0, (4.78)

where we used the following identity
0,05 = 6ij + i€ijk0% -

By introducing new variable £ = p, — eBy, Equation (4.78) becomes the
Schrodinger equation for a linear oscillator (parameters M, w and € ), where

1 E?—m?—p’FeB
M?w? = 2Me = :
T e S (eB)?

We assumed that the spinor ¢ is an eigenstate of 03/2, i.e.

1 1
=+ _p.
973% 9¥
The energy eigenvalues are
Enyp. = V/m2+p2+eB+ (2n+1)eB (4.79)

where n =0,1,2,...
4.35 Acting by (i@ +eA + m) on (if + eA — m)p(z) = 0, we get

O — iey"yY 0, A, — 2ie AHQ,, — A2+ m* Y =0.
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On the other hand, one can show that

- ;aﬂ,,FW = ie(9, A" — Yy D, A,) .

The requested result can be obtained by combining these expressions.

w — (;:i) e—imt

(ip +eA —m)y(z) = 0,

we obtain the following equations:

4.36 By substituting

in the Dirac equation

0
(iat—l—er)gp:ca-(p—i—eA)x,

0
<i('9t +2mc? + eA0> xX=co-(p+eA)yp.
In the case A =0, the second equation yields:

1 i Op  eAo
= o- — o- — o- )
X 2mc by 2mc? P ot  2mc? by

Combining this relation with the first equation, we obtain

dp
. _ H/ ’
Lot v
where
2 4
p P e .
H = —eAy — AE -p— AA
2m o 8m3c2 + 4m202( i o)

— (BP0 (Bxp)] .

The operator H' is not the Hamiltonian, since it is not hermitian. This is
related to the fact that ¢ is not the probability density. Actually, the prob-
ability density should be taken in the following form:

p=vp=po—xx
2 2
— of p v
= (1—|—4m262)g0+0(62) .

We introduce the new wave function

2
P
s = <1+ szcz) ©.
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Then, the new Hamiltonian is given by
2 2
p / p
H=1|1 H(1- .
( + 8m202> ( 8m262>

After that, we obtain

2 4

p p e e
H= —eAg — - AA (E .
om 07 gmdez T gm2c2T0 + am2e2? (B> p)
In the case A # 0, the Hamiltonian is
(p+eA)? e pt
H = —eA .B-—
2m edo + ome” 8m3c2
e e
= gm2e? AAp + am2e2® (Ex(p+eA)).

4.37 First, we are going to show that V,,(z) is a real quantity:
Vi =Vl = W)
= iyl ()
= §p1y0y,7%7%%
= @[;’Yud)
=V, . (4.80)

Under proper orthochronous Lorentz transformations, V,, is transformed in
the following way:

V;i(xl) = l/jl(xl)'}/uwl(m/) = ¢T($)70571%5¢(33) )

where we used the fact that 7S~ = Styo. Using S8 = 4,~,, we obtain
V(@) = AV, (z). So, the quantity V,, is a Lorentz four-vector.
Under parity we have

Vu(t, ) — Vi (t,—x) = ¥(t, 2)v07.700(t, ) .
This implies
‘/E)/(t7m) = Vo(t, —:13), ‘/;/(t7m) = _‘/i(t? —:13) :

As we know, under charge conjugation the spinors transform according to:

='C. (4.81)
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Then, we can find the transformation law for V,:
Vu - —¢TC%C*1¢T = (&’Yﬂ'@[])T = Vu .

The following formulae Cy,C~! = —]', C = —=C~' have been used (Prove
the last one).

For time reversal we have ¢(x) — ¢/(—t,x) = TY*(t, ), where matrix T
satisfies Ty, T~ = 4** =yl and TT = T~' = T = —T*. It is easy to see
that

b(x) = (~t,x) = o7 (t, )T -

Then
Vit ) — T Ty Ty
— 1l)Tj*:,_yOzv—17*:,_)/#11—11!]*
=T ()T () Ty*
= (YT )"
= piyiy %y . (4.82)
Therefore,

V(J/(_tv :B) = VO(tv .’1}), Vi/(_tv :B) = _‘/i(ta .’1}) .
4.38 The quantity A* transforms under Lorentz transformations in the fol-
lowing way:
AM(a") = A ()" ST 559 (2)
= detA A" p(x)7y v59(z) = detA A" AY(x) |
where we used
i

-1 _
S5 =y

euvpo5_17#55_1'YVSS_1’YPSS_1’}/US
i v o
= _4!@“/90/1#04/1 g AP A% 5y ’75’77’76

i
= = Copyodetd 779777
= detA 5 .

The charge conjugation changes the sign of A*. The parity changes the sign

of the time component, but does not change the sign of spatial components.
The effect of time reversal is exactly opposite.

4.39 The quantity 1&7“3;11# transforms as a scalar under Lorentz transfor-
mations. The parity does not change it. The action of the charge conjugation
yields (9,,1¢)v*1, while the time reversal produces —(0,1)v".

4.40 By transposing the Dirac equation,
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and using C~1y*C = —(y*)T, one gets the requested result.

4.41 Let us assume that there are two different matrices C’ and C”,
which both satisfy the relation Cy#C~t = —(y*)T. Then from C”~, 0"~ =
C'v,C'7! follows that [C"~1C",~,] = 0, whereupon (see Problem 3.18) the
requested relation follows.

4.42 We directly obtain:

(a) O
e(z) = N, _E+nz) (1> o—iBt—ipz
)
(b)
1
P (2)) = (8) e imt’
0
(c)

e—l(Et—i—pz) )

Momentum is inverted under parity. Time reversal transforms the wave
function into

<O>
Ui(t, @) = —iN, : .
P
E,+m (1

and we see that spin and the direction of the momentum are inverted.
(d) The wave function for S’ observer is

1,[)’(.%‘/) — Np ( p(p ) ei(Et—p'z')

el(fEtfpz) ,

where

4.43 P:’yo:<? é),C:i’yQ’yO:i(% _(;2).

4.44 Multiplying the equation
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X-p -
|p| ur(p) = (_1) +1u7’(p) ) (483)

by o from left, we obtain

=P (Cp) = (1) () (4.84)

since Your(p) = uy(—p). From (4.84) we see that the helicity is inverted.
Under the time reversal, the wave function of the Dirac particle (4.6) becomes

be(t, ) = iy Y P (—t, @)
2, %
= —N < 0_2(Z*SOPT) *) ei(_EPt_p'm)

Ey+m Pr
2, %
lol®) i

=-N ( (o-p)o> ) el Eptop) (4.85)

- E,4+m T
where we used 020* = —o0? in the second step. From the last expression, we
conclude that the momentum changes its direction, i.e. p — —p. Prove that
0?0t = ips and 0?3 = —ip;. Now, we consider the case r = 1 (the other

case r = 2 is similar). From (4.85) it follows that
Vet ) = —iN (_ e )e“—Eﬁ—P'm) . (4.86)
Ey,+m Y2
By applying 2"(;'” ) on (4.86), we see that the helicity is unchanged. The same

result can be obtained by complex conjugation and multiplication of Equation
(4.83) from left by iy'y3. You can prove the same for v spinors.

4.45 The transformed Hamiltonian is
H=ap <cos(2p9) " sin(2p6‘)) +mp (cos(2p9) + 7 sin(2p6‘)) ,
p m

where p = |p|. In order to have even form of the Hamiltonian, the coefficient
multiplying a - p has to be zero. This is satisfied if tan(2pf) = p/m .

4.47 First prove that:

pac-p Ep,+m poc-p
U = cos(ph) + sin(pf) = + )
R \/ 2E,  \/2B,(E, +m)

hence

S Ep+m+ Ba-p . Ep—i—m_ ba-p
AV 2B T V2B(B +m) 2B,  \/2E,(E,+m))’

From the well known identity [@, f(p)] = iV f(p) we get two auxiliary results:
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E,+m i E, m n E,+m
T =— T
2, 2\ 2(E, +m) B3P °m,

. Pep ifa _ Bla-p)(2E, +m) p
\/QEP(EP +m) \/2EP(EP +m) 2\/2(Ep(Ep +m))3/2 Ep
pa-p

+ x
\/QEP (Ep +m)
Using these formulae we get

wew =z —i, ., ¥ 4 pBa-p) _ fa ala-p)
2E,(E, +m)  2E2(E,+m) 2B, 2E,(E,+m)

The last expression can be rewritten in the form

p(fa-p) . fa Ixp

rrw = & + 1 - .
W “2E2E,+m) 2B, 2E,(E,+m)

The Foldy—Wouthuysen transformation does not change the momentum, so
that

[xbk“wmle] =id""
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Classical fields and symmetries

5.1 We apply the definition of functional derivative (5.A).

(a) From
F, = 0,60 = [ 4'9(0,50),0 5 — ) = - [ 44900y - 2)50(w)
we have 5F, [6(2)
plPWE) (4)
= -0Y —x),
do(y) w0 =)
(b) The first functional derivative of the action with respect to ¢ is
s o - ov
5o (x) 9¢
Then
5S o?V
1) = —0d¢(x) — op(x
(s = ~359(0) = gy 30
= /d4y [—Dy5(4) (x—y)—
0%V
— oW (x — ] 5o(y) -
96(2)06(y) (z—y)|06(y)
Hence,
PS5 sy - TV sy
sodo) 0 T T d(@)asly) v
5.2 In this problem we use the Euler-Lagrange equations of motion (5.B).
(a) First note that aafp = m?2A” and a(&iﬁAP) = —207 A% 4+ \gP? (0, A*) so that

the equations of motion are given by

(A= 2)8,0° A% — m2AP =0 .



122 Solutions

(b) The derivative of the Lagrangian density with respect to 9,4, is

0L _ 1, OF.

1
_ _ My (SO Sp _ SOSP\ _ _ Jop
0(0,A,) 2 D(9,A,) 2F (65,00 —6700) Fer

In the last step we used the fact that F,, is an antisymmetric tensor, i.e.
F,, = —F,,. The Euler-Lagrange equations of motion are
0, FP + m2AP =0 .

By using the definition of field strength F'*?, the Euler-Lagrange equations
become
(620 — 0,0 + m?*6L) A” =0 .

(c) (O+m?)¢ = —A¢®.
(d) The equations of motion are:

—0AP 4 0,07 A = —ie[p(0Pd* +ieAPP™) — ¢* (0P P — ieAP9)]
O¢* + 2ieAPD,¢" +ie¢ 0,47 — 2 A%p* + m?¢* =0,
O¢ — 2ieAPD,¢ — iedd, AP — 2 A%p +m?p =0 .
(e) The equations are:
(190 — m)v = igr5t6 . V(7T +m) = —igds6 |
06 +m?p = Ap” — igsy .
5.3 The variation of the action is

o) L
58S = /7 N dt /O dz (8,00" (5¢) — m*¢d¢)

0o L
_ 1 dt /O d2[0,,(9" $68) — (O + m?) 6]

L t=00 oo 8¢ =L
_ /O dudosdo| - 1 ool
[e%) L
—/ dt/ dz(0¢ + m?¢)do ,
—00 0

where we integrated by parts. As the first term vanishes, from Hamiltonian
principe one obtains the equation of motion

@+m?)ep=0,
and the boundary conditions:

dp(t,x =0) = 0¢p(t,x = L) =0, (Dirichlet boundary conditions)
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or
¢ (t,x=0)= ¢ (t,z = L) =0, (Neumann boundary conditions),

where prime denote the partial derivative with respect to x. Here, we see that
beside the equation of motion we get the boundary conditions in order to elim-
inate the surface term. Let us mention that the mixed boundary conditions
can be imposed.

5.4 In order to show that the change £ — L+ 0,F"(¢,) does not change the
equations of motion, we have to prove that

5/ d*z0,F"(¢,) =0 .
Q
Applying the Gauss theorem we get

5 / Qa0 P (6) = ¢ dsrer, = 4 aorOise — o,
2

00 o0 0Py
since the variation of fields on the boundary is equal to zero.

5.5 Add to the Lagrangian density the term —}0,,(¢9"¢). Note that it does
not have the form as in Problem 5.4, because here the function F'* depends
on the field derivatives. However,

) / d*z0,(¢p0"¢) = f dXH5(¢0,0) = f dX" (50, + $30,¢) -
2 o2 o2

The first term is zero since d¢|s = 0 . If we take that the boundary is at
infinity (7 — o0), the second term is also zero because the fields tend to zero
at infinity.

5.6 Use the similar reasoning as in the previous problem.

5.7 The equation of motion for the vector field was derived in Problem 5.2
(b). Acting by 9, on this equation we obtain m?d,A” = 0 . Since m # 0, we
conclude that 9,47 =0 .

5.8 The field strength tensor, F),, is invariant under the gauge transforma-
tions. From this, it follows that the Lagrangian is also invariant. The condition
0, A" = 0 does not follow from the equations of motion, but by using gauge
symmetry we can transform the potential so that it satisfies this condition.
This condition is called the Lorentz gauge.

5.9 Firstly, show that

oL

1
—_ HQXALPO _ A0 LPA _ QPO pa no
D(Ouhys) 0%h 97h 0" h7 + 99 0°h

1
+ 97O h o+ gD — gP7 O
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The equations of motion are
Dhpe — 0%0shpa — 0%0phoa + 0,0-h
+ 9p0c 0,0, — g,o0h = 0.

In order to prove gauge invariance of the action show that the Lagrangian
density is changed up to four—divergence term.

5.11 This transformation is an internal one, so it is enough to prove the
invariance of the Lagrangian density. The transformation law for the kinetic
term is

10017 +(002)7] — | [(061)" + (905"
= ; [(0¢1 cos B — Do sin ) + (D1 sin O + Do cos 6)?]

= 10612 + (20

Similarly, we can prove that the other two terms are invariant. The infinites-
imal variations of the fields ¢; are d¢py = —0¢2 and d¢o = 0¢1, so that

oL
A(0" i)
The parameter 6 can be dropped out since it is a constant. The charge corre-
sponding to the SO(2) symmetry is Q = [ d3z(¢p1d2 — do¢b1) .

5.12 Under the SU(2) transformations, the fields are transformed accord-
ing to ¢ = e>""%"¢ , where 7® (a = 1,2,3) are the Pauli matrices. For an
infinitesimal transformation we obtain

Ju = dp; = 0(p10,02 — $20,1) -

i a na * 1 *__a na
dg; = 27'1'3‘9 Gj, 0¢; = — 750

9?3
The Noether current is determined by

. oL oL
" otor "% gy

- 2 ( N(bz z](b] (bz i N¢J) :

From the previous relation (8% are constant independent parameters) it follows
that the conserved currents are:

jz__ ( H(bz zg(b] (bz 1]8M¢J) :

The charges are

/d3 80¢z z] (bz 1380¢j) .
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5.13 The currents and charges are
-q 1~ a a 1 a
o=yl Q' =, [@avlr; .

The equations of motion are (iy*d,, —m)y; = 0 and lﬁi(ivﬂﬁu +m) = 0. The
current conversation law, 0,,j#* = 0 can be proved easily:

28#']'/‘“ = ((9#1/;i)’YMT;Lj1,/Jj + 1/32"}/”7'%6#1/}]‘ = im’(z)iTiajZ/Jj + 1/;2'7'% (—im@/@) =0,
where we used the equations of motion. The Noether theorem is valid on—shell.

5.14

(a) The phase invariance is the U(1) symmetry, where ¢ — ¢/ = el%) and
1) — ' = e~1%) . The Noether current is Ju = 1/;7M1/), while the charge is
givenby Q = —e [ d3x1pT). Note that the current does not have additional
indices since U(1) is a one-parameter group.

() ju = 1(¢*0ud — 0u0%) . Q =1q [ dP®x(¢*0od — 09"

5.15 The equations of motion are (0 + m?)¢; = 0. The expression ¢ ¢ is

invariant under SO(3) transformations, hence the Lagrangian density has the

same symmetry. The generators of SO(3) group are

00 0 0 0 i 0 —i 0
Jb=10 0 —i|, JA2={o0 0 0], P=[i 0 0 (5.1)
0 i 0 —i 0 0 0 0 0

Note that we can write
(Jk)ij = —ieki]‘ .

Under SO(3) transformations, the infinitesimal variations of the fields are
0p; = i(Jk)ink(bj = €101 ¢; and the Noether current is

. oL

.]# = a(au(bl)(sd)l
= €400 0iOk
=—0-(px0,0).

The parameters of rotations 6y, are arbitrary and therefore the currents
1= —ep i Ot
Jk €kij Py i

are also conserved.

5.16 First, derive the following formula e®?> = cos a4 i7s sin . The transfor-
mation law for the Dirac Lagrangian density under the chiral transformation
is given by
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L — Ple ™y (iy,0" — m)e' 5y
= (cos? o + sin? )iy, 0" — map(cos o + ivs sin a)?e
= iy, 0" — mip(cos2a + ivs sin 2a) ) .

From the previous expression we can conclude that the Lagrangian density
is invariant only for massless fermions. The Noether current is j, = ¥y, 75v.
Prove that d,,j* is proportional to the mass m of the field.

5.17 The current is given by

or Yo e Y
- a T, + 00, g
= pome)° T anaa) ™ T amw) O T i ggug)

1_
= —eabcabﬁuwawc — 2Wi'yuaa7'{lj¢j .
The final result has the form
. 1_
Ju=7XxX0o,7+ ZJ/WTLT/ .

5.18

(a) For translations, we have dz* = e, while the total variations of the fields
equal zero. The Noether current is

pur_ OL 06,

= 0(0,6r) Oz, — Lg"" . (5.2)

The index v in (5.2) comes from the group of translations. For a real scalar
field, from (5.2) we obtain

Ty = 060,60 — ) [(06)” 6] g (53)
The conserved charges are the Hamiltonian (for v = 0),
H = /d%TOO = ;/d% [(009)* + (V§)? + m?¢?] | (5.4)
and the momentum (for v = i)
P = / d3xT% = / dPxdypdie . (5.5)
For the Dirac field the energy—momentum tensor is given by
TH = ipyH 0¥ p — Lgh .

The Hamiltonian and momentum are given by
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H= /d3m7,/;[—i'yv +ml , (5.6)
P= —i/d3m¢fvzp . (5.7)

For electromagnetic field the energy—-momentum tensor is

oL 0A,

T =
0(9,A,) Oz,

— LgM
from which we obtain
1
TH = —Fr” A, + 4F29‘“’ : (5.8)

For the Lorentz transformations éz” = w”?z, and

i
0p =0, = —40,,pw”pz/)7 A, =w,/ Ay,
The Noether currents for scalar, spinor and electromagnetic field are
Jp =2 Tpp — 2, T 0™,

. 1~ v
Ju = [2¢7M0Vp¢ + xUT,up - xpT;u/]w P 5 (59)
I = [FupAv — Fun Ap + (20 Tpp — 2p Ty |0

Dropping the parameters of the Lorentz transformations w””, the con-

served currents have the form M,,,, and they are given by the expression
in square brackets in (5.9). The angular-momentum is M,, = fd?’:nMo,,p.

(b) As we see, the energy—momentum tensors for Dirac and electromagnetic

fields are not symmetric. To find the symmetrized energy—momentum ten-
sors we employ the procedure given in the problem. For the Dirac field we
have

Xopv = i(—%ﬂapud) + VYO + V1 0up1)
= ;113(4g;w7p — 4GV F YV Yo — VoV V)Y -
Using (4.43) we find
O Xopar = — 4Ot — (Dt — D70
i

N0+ G o (B0 + 0P

The symmetrized energy—momentum tensor for Dirac field is
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Tm/ = i@%@ﬂﬁ + iw&ﬂﬁ - au’@z]')/l/'@[] - al/d})/ud])
- guu <_ ;81/&71/1# + ;¢@¢ - m¢¢) .

Similarly we determine the symmetrized energy—momentum tensor for the
electromagnetic field. From transformation rule of the electromagnetic po-
tential with respect to Lorentz transformations

1 v
0Aa = wapA® = L0 (I)asA” |
follows that

(I;w)aﬁ = 9padvp — GupYva -

Then xP*¥ = F#? AY and the new energy—momentum tensor is
el % v 1 v
TH = —F"F" + 4F2g“ : (5.10)

If we introduce the electric and magnetic fields: F% = —FE' F; =
—€;j5B*, then the components of energy-momentum tensor are:

1
4

1
= E% + 4(—2E2 +2B?)
1
2
TOi — _FOJFZJ
= (E x B)", (5.11)
~ .. . . . 1
T9 = —F'EJ 4 ¢kledknglpn 4 0 (E* — B?)j;,

T% = —FYFY +  (2Fy F" + Fi; F")

(E*+B?),

- (EEJ + BB — 5ijT~OO) .

From the expression (5.11) we conclude that Too T, —Tij are the energy
density of electromagnetic field, the Poynting vector, and the components
of the Maxwell stress tensor.

5.19 The variation of form is defined by do¢(x) = ¢'(z) — ¢(x). From
dop = 6¢ — 0oz,

where §¢ = ¢'(2') — ¢(x) is the total variation of a field, it follows that the
infinitesimal form variation of ¢ is

506 = pl(a) + 2"0,0) . (5.12)
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The induced change of the action is
1 1
Sl o S _ 0 /d4(El [(a/¢/)2 _ m2¢’2(m’)] _ 0 /d4(E [(8(;5)2 o m2¢2(m)] )

(5.13)
The transformed volume of integration is given by

d'z’ = |J|d*z = det(e PI)d 'z = e *d"x . (5.14)

The field derivative is changed according to the following rule:

00" _0r" Doy o0y (5.15)

— =
ox'®  OJx'v Oxv

8;@@)

Thus, the change of the action is
5= =, [ e [e(00)*  mPer ()]
-, [ delsr —mie )

;mQ(l _ %) / d'26%(z) .

For an infinitesimal dilatation (p < 1), the variation of the action is
08 = m2,0/d4x¢2(x) . (5.16)

From (5.16) it is clear that the theory of massless scalar field is invariant under
dilatations.
The conserved current is

g = —potd — 2V O*dd, ¢ + Lat . (5.17)

By calculating J,,j* one obtains that d,j* is proportional to the mass m.

5.20 From
diz’ = e tdiz ~ (1 — 4p)diz (5.18)
and - - -
(@O () = Pyt & (1 + 4p)y" O (5.19)
it follows that this transformation leaves the action unchanged. The Noether
current is j* = —giz/)'y“l/) — ¥y 0 + 2 L.
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Green functions

6.1 The Green function of the Klein—Gordon equation satisfies the equation
(Op + M)Az —y) = —0W(z —y) . (6.1)

Fourier transformations of the Green function and the J-function in (6.1) gives
1 ~ . 1 ,

O +m? d*kA(k)e HFemv) = — / d*ke Hemv) (6.2

(Oz +m )(277)4/ (k)e (2t e (6.2)

From (6.2) follows

" 1 1
AR = o o I

Then, the Green function is defined by

d*k 1 k(o
A(x_y):/(27r)4k(2)—k2—m2€ @=y) (6.3)

The integral (6.3) is divergent, since the integrand has the poles in kg = Fwy.
We shall modify the contour of integration to make the integral (6.3) conver-
gent. It is clear that we have to give the physical reasons for this modification
of integral. The poles can be evaded in four different ways. The first one is
from the upper side (Fig. 6.1). The exponential term in (6.3) for large energy
ko behaves as e(mo’yf’)lmk% therefore the contour for xy > yg has to be closed
from the lower side (Imky < 0), while in the case zg < yo we will close the
integration contour on the upper side. By applying the Cauchy theorem we
get

1 .
Alx —y) = — (2} /d?’kelk'(’”*y)27ri(Resw,c +Res_,, )0(x° — %) . (6.4)

From (6.4) follows
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: 3
AR:‘XQ&a/ifé”“*”@*%@“ﬂ”—e““”*fwmf*—w>.(&m
k

Agr(x —y) is the retarded Green function. The solution of the inhomogeneous
equation (O + m?)¢ = J is

mw=—/&wm~wﬂw+m, (6.6)

where ¢g is a solution of homogeneous equation. From the expressions (6.5)
and (6.6) (because of f—function), we conclude that we integrate over y° from
—o00 to 2°. The value of the field ¢ at time x( is determined by the source
J at earlier times. For this reason this function is called the retarded Green
function.

Im ko
Lo < Yo

Tl B
Wk Wk Re ko
To > Yo

Fig. 6.1. The integration contour for the retarded boundary conditions

Im ko
Lo < Yo

—WE Wk
U U Re ko
To > Yo

Fig. 6.2. The integration contour for the advanced boundary conditions

By evading poles as in Fig. 6.2 we get the so-called advanced Green function

i Bk . )
A“W%ﬁ/%ﬁM”WaMW¢th”Ww@L#y (6.7)

The advanced Green function contributes nontrivially to the field ¢(z) for
Yo > zo. If we evade poles as in Fig. 6.3, we get the Feynman propagator:
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Im k’o
Lo < Yo

N
Wk Re kg

To > Yo

Fig. 6.3. The integration contour which defined the Feynman propagator

Im k’o
Lo < Yo

Wi

_Z‘jk:

~ Re k?()

To > Yo

Fig. 6.4. The integration contour for the Dyson Green function

(2m)

__ /d3keik-<my)
@) | 2w,

Ap =

3 /dSkeik'(m_y) [Res_.,, 0(y” — 2°) — Res,,, 0(z” — y°)]

[efiwk(zofyo)e(mo _ yO)

+ei“”°(10_y0)9(y0 - xo)} .
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(6.8)

We can conclude that positive (negative) energy solutions propagate forward
(backward) in spacetime. This is what we need in the relativistic quantum
physics in contrast to the classical theory (for example in classical electrody-
namics), where all physically relevant information is contained in the retarded
Green function. Dyson Green function is obtained by evading poles as in Fig.
6.4. This Green function can be evaluated in a way similar to the previous
three cases. It is recommended to do this calculation as an exercise.

6.2 From (6.5) and (6.8) it follows that (we take y = 0)

AF($) — AR(I') = —

ka

(2m)?
since 0(t) + 6(—t) = 1. By applying (O + m?) on (6.9) we get
(|:| + m2)[AF(a:) - AR(I')] =0.

6.3

= / A*k6 (k2 — m2)0(ko) £ (k)

: 3
D g
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=/¥M%—%W%ﬁw
_ /d?’kdko 25};@ (6o — wi) + 8(ko + wi)] (ko) f (k)

d3k
=/%Jm

From this calculation it is clear that the expression d3k/(2wy) is a Lorentz
invariant measure.

kQ:UJk

6.5 Let us take zp < 0. The integral over the contour in Fig. 6.5 vanishes
since there are no poles within the contour of integration. So, we get

—wp—p Wi —p R
R R R e R )
_R = —wi+p cf w+p Cr

(6.10)

Im k()
Cr ko
c, cr
Tl B
—Wk Wk Re ko

Fig. 6.5. The integration contour that defined the principal-part propagator

The integral along the half—circle, Cr tends to zero for large R, which can
be seen if we take that limit in the integrand. If in the integral fc* we take
P

ko = wi + pel?, it becomes

0
. i 1
= [ je wolwrtpe?) dy . 6.11
/cj /ﬂ 1e el 2wy ¥ ( )
By taking p — 0 in (6.11) we get

/ = T emiwnao (6.12)

In the same way we can show that

ir .

= e'wrTo 6.13
Lp2% (6.13)

From (6.10), (6.12) and (6.13) we get (for zo < 0)
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- iT A3k . : :
Alx) = (2m)1 / - elf® [emiwnro _ glwimo] g(_g). (6.14)
The case x¢ > 0 is analogous to the previous one. The result is
- iT A3k . . :
A — ik-x [,—iwgzo _ ,lwrxo 0 ) 15
(x) (2m) / 2wke [e e ] (20) (6.15)

By comparing equations (6.14) and (6.15) with the expressions for Ar and
Aa we obtain

Aw) =, (An(e) + Aa(x) -

6.6 ) Ph
1 . . .
A — _ ikx/ —iwpt _ iwgt 1
(x) (2m)? / kae (e e'Wrh) | (6.16)
i Bk
A _ i(k-xFwyt) ) 17
0 =F gy [ e (6.17)
6.7 By using the expression for A obtained in Problem 6.6 we get
i Bk, . ‘
08(0) =~ by [ iR )~ (61s)

since the integrand is an odd function of k. The second identity can be proven
easily.

. a ing the operator (O 4+ m~) to the expression (6. we get

6.8 By applying the op ( ?) to the expression (6.16) we g

(O+m?*)A(x) = — i /dgk(—wQ—&-kQ—&-mQ) [ei(*“’k”k'm) — ei(“’“”k'm)]
2m)3 ) 2wy F ’

from which follows that (O +m?)A(z) =0, as k? = m>.

6.9 For m = 0 from (6.8) it follows that

_ i 4’k ik | ,—ikz® (.0 ikxo 0
Ap|,,_o = ~ (2n)? / ok © {e O(z") + e*0f(—x )]

i oo ™ .
_—2<27T)2/0 /Oks1n0dkd0

x [t g(p) 4 eterres ()] (6.19)

where in the second line we integrated over the polar angle ¢. Integration over
0 gives

1 > Cik(t—r) _ —ik(t+r)
- /O ak [(e o )0 (t)

+(eik(t+r) _ eik(t—r))g(_t)} ) (6.20)

Ap ()] = —
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Now, we shall consider separately two cases: t > 0 and ¢ < 0. In the first
one, t > 0 the second term in the integrand of (6.20) is zero. The first part
of the integrand has bad behavior for large k. We regularize it by making
substitution ¢ — ¢ — ie, where ¢ — 0% . In this way we ensure convergence of
this integral. Then from (6.20) it follows that

Ap|m=0 = i ( ! ! ) (6.21)

202m)2r \t —r —ie t4+r—ie
i 1 i 1
= . 6.22
(2m)2 12 —r2 —ie  (2m)2 2% —ie (6:22)

By applying the formula

1 1
=P i .
ot LT ind(z) , (6.23)
in expression (6.22) we get
1 i 1
A m—0=— . 0(2* . .
F(iv) | =0 Ar (iC ) + 47T2P2132 (6 24)

For the case ¢ < 0 one also obtains the expression (6.24); this is left as an
exercise.

6.10 We shall start from (6.5) and use spherical coordinates. Integration over
angles 6 and ¢ leads to

1

A1) = =50

. /oo " |:efik(t—r) _ eik(tr) _ gmik(t4r) eik(tfr)} o(t) .
rJo

(6.25)
The change of variable ¥’ = —k in the third and the fourth integral in expres-
sion (6.25) gives

Ap(z) =, (2710% / h dk(e™FE=T) _ oIk (1) (6.26)

— 00

Note the change of the lower integration limit in the expression (6.26). From
(6.26) follows

1
AR|,p () = = doer [6(t—1r)—0d(t+7)]0(¢) . (6.27)
The second term in (6.27) has a ”wrong” sign but it is irrelevant as this term
vanishes (¢t > 0 and r > 0). By changing this minus into a plus in (6.27) we
finally obtain:

1

S O =r)0() = = 3(a)0) - (6.28)

The case of advanced Green function is left for an exercise.
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6.11 In the Problem 6.1, we modified the the contour of integration according
to the boundary conditions, while the poles were not moved. Sometimes it is
useful to do the opposite, i.e. to move the poles and to integrate over the real
ko—axis. For the retarded Green function this can be done by changing

E* —m? — k? —m? + inko
in the propagator denominator, where 7 is a small positive number. Therefore,

d4k e—ik-(z—y)
Ar(z —y) = / (2m)4 k2 — m2 + inko (6.29)

Now the poles of the integrand in (6.29) are kg = +wy — in/2. From (6.6) and
(6.29) we have

—ik-x
_ 9 4 € ikoyo 3, 5(3) —ik-y
= — d*k d y d°yd .
on(@) == o1, [t o [t [ @ty
(6.30)

First in (6.30) we shall integrate over yg, then over y and finally over ko; this

gives
eik-m

br(z) = (2i)3 /d3kk2+m2 . (6.31)

In order to compute this three-dimensional momentum integral we introduce
spherical coordinates; also we take & = re,. The angular integrations give (in
one integral use the change k' = —k )

g < kdk
Or(T) == gry2uy /, k2 m2® (6.32)
Imko  |ko
Re k‘o
—im
Fig. 6.6.

The integral in (6.32) has the poles at kg = +im. The integration contour is
given in Fig. 6.6. By applying the Cauchy theorem in (6.32) we obtain:

¢r(z) = ;re‘mr : (6.33)

which is the requested result.
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6.12 Apply i — m on S(x).

6.13 The Fourier transformation of the equation (id—m)S(z—y) = 6 (z—y)
leads to

(ip —m) (zi)4 / d*pS(p)e 7 =v) = (Zi)4 / d*pe P ==v)  (6.34)

From (6.34) follows

~ }6 + m
S(p) = 02 m?
Therefore, the Green function is given by
d4p ]6 +m —ip-(z—
S(x—y) = / @) gt~ p? — 2 rlE=y) (6.35)

The poles of the integrand in (6.35) are pg = +E, = ++/p% + m2. The prop-
agator is

1 ip- (- oY’ F P M i (o
— ) = ABpelP (@ y)/ d ipo(zo—o)
S’F(ir y) (271')4 / pe e Po p(g) _ EZQ) € )
(6.36)

where the integration contour Cp is defined in Problem 6.1. Applying the
Cauchy theorem we get

i Bp ipiwe
SF(x_y):_(er)i’»/QEpep( v)

{(Eﬂo +piy’ +m)e” FrromvIf(2g — yo)+

+H(=Epy” + piy' +m)elPrromvolg (y, — $0)}

i 3 )
=~ omyr | o, [+ 0tz — o)~

—(p — m)e? VG, — $0)} : (6.37)

The advanced Green function can be found in the same way. The result is

i S - i —iE, (z0—
Salr —y) = (2W)3/2Epep< v) [(Eﬂupw + m)eEp(zo=v0) _

—(=B" +pin + m)eiEpm—yﬂ O(yo —z0) . (6.38)

For simplicity we take y = 0 in (6.37) and (6.38). We have

i dBp . ,
Sp —Sa = — / o/ PE=EN ) (E00 4 piy' + m)(0(wo) + (o))
(27)3 | 2E, b
i dBp . ,
- i(p-x—Fpxo) E.~° A ) 6.
(2)3 / 2, " B B4 m) (639
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Thus,

i d3p X .
Sy = E° + piv, —ipa 6.40
Se =53 == s [ o B+ 0+ me (6.40)

By applying i@ — m on (6.40) we get (i — m)(Sg — Sa) = 0, since
(54 m)(p—m) = p* —m? =0

6.14 The integration along the curve CF is equivalent to the integration along
the real pp—axis if we make the replacement p?> — m? — p? — m? + ie, where €
is a small positive number in the propagator denominator. The simple poles
are pp = +E, Fie. So we get

P(x) = (2%4 /d4y/dpo/d3pp2 iﬂ_m e P V) 5(yg)eldY

m?2 + ie

oo o=

After the integration over the variables yo and y we get

+ m i To—pPT
() = 29 /dpodgp ) ? (Pozo=p2)5(3)(p — q)
m p

- 6.41
_ m2 + i€e ( )

o o o

Integration over the momentum p is simple and it gives

9 ige [T, PoYO—q-YEM i,
Y(x) = 27Te‘””/ d 02 —q? —m? +ie Poo (6.42)

— 00

o o o

Employing the Cauchy theorem we find that

Yla) = 7 &% [(~Egyo — q -y + m)eFarog(~)

+(Egvo — g -y +m)e” Frof(xy)] (6.43)

1

0

O )
0
which finally gives:

lg ig-x
= — e
—E,+m E,+m
x | e'Fa%o 0 O(—x0) + e Eam0
q3 q3
q1 +1g2 q1 +1g2

O(xo)| . (6.44)
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6.15 The equation for the free massive vector field A, is given by
(g°°0— 00 +m?gP7)A, =0 . (6.45)
The Green function (it is in fact the inverse kinetic operator) is defined by
(970 — 9P9% + m?gP?)uGoy(x —y) = 6W (2 — y)d? . (6.46)

If we introduce

1 . -
ov — d4k —ik-(2—y) ov k
Gov = gyt [ Ak DG (k).
in (6.46), we get
(_ngpo + kPEK + ngpg)éou = 61’3 . (647)

We shall assume that the solution of (6.47) has the form G,, = Ak2g,, +
Bk,yks, where A and B are scalars, i.e. they depend on k? and m?2. Inserting
the solution into (6.47), after comparing of the appropriate coefficients, we

get
1 1

= B = .
—k* + k2m? m2(m?2 — k?)

The final result takes the following form

~ 1 kuk,
G = 2 m? <—gw,+ m? ) : (6.48)
6.16 Use the same procedure as in the previous problem. The result is

~ L, 14+
T +

G = =15+ 14 ko
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Canonical quantization of the scalar field

7.1 Starting from the expressions for scalar field ¢ and its canonical momen-
tum ™ = ¢,

_ dgk —ik-x T ik-x
o= [ Jo(on o [a(k)e* + al (k)e**] |

k e—ik-z —‘r(lt k eik-z ,
/ V(@2 32wk ~alk) ()e™]
we have
- 3/2 . .
/d?’wgb(x)e*lk T (27T) [a(k/)eflwk/t+aT(_k/)elwk/t] , (71)
V2wp

/ Pap(z)e ** = 1(277)3/2\/ “’2’“’ [af (k) t — a(k')e ™ w!] . (7.2)

From (7.1) and (7.2) it follows that

a(k) = (2;)3 \/M / P [ur(n) +id()] | (7.3)
af (k) = (2771)3 2 Y2 / dBgeike [wkqb( ) — iqi)(;c)] . (7.4)
By using the expressions (7.3) and (7.4), we find:
). )= i ss i, | 2B (—anlot) G+

+wd(), (y)])
1

— d3 i(wp—wys )t+i(k' —k)-x ,
22 )\/Wkwk/ xe (wg + wir)

=03 (k -k . (7.5)
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In the previous formula, we used the equal-time commutation relations for
real scalar field (7.C) i.e. we took! 2° = y°. We can do this because the
creation and annihilation operators are time independent. This can be proven
directly:

da(k) 1 1

_ 3. ka2, | o242
& = (2m \/Zwk/d ze™ " liwpg +1V2¢ — im?¢| .

After two partial integrations in the second term we get

da(k) i 1 / 3, ik 2 2 2
= d’xe'™* —k° — .
dt (27)3/2 /2wy, zel [k m] g

The dispersion relation, wi = m? + k? gives da(k)/dt = 0. It is clear that
af (k) is also time independent.
Similarly, we can prove that:

la(k), a(k')] = [af (k), ol (&')] = 0.

7.2 In this problem, ¢(x) is a classical field, so that a(k) and a'(k) are the
coefficients rather then operators. We can calculate them from expressions
(7.3) and (7.4) inserting ¢(t = 0,2) =0 and ¢(t =0,x) =

— 1 1 3, . ,—ik-x:
a(k) = (2732 /2y /d xe ic
ic
= 2m)3/253) (k) .
(273 k)

Then, the scalar field is
c
t = i t) .
o(t, x) . sin(mt)

Generally, if we know a field and its normal derivative on some space-like
surface o, then the field at an arbitrary point is given by

o(y) = / [6(@)07 Az — y) — Aly — 2)0,d(x)]dS" |

Solve this problem using the previous theorem.

7.3 The results are:

:H::/d3kwk [af(k)a(k) + bT(k)b(K)] | (7.6)
Q= q/dgk [a'(k)a(k) — b (k)b(K)] | (7.7)
- / Prk ol (R)a(k) + b (k)b(K)] - (7.8)

! This will be done in the forthcoming problems, too.



Chapter 7. Canonical quantization of the scalar field 143

7.4 (up7uk) = 5(3) (k - p)7 (UINUZ) =0.
7.5 From (2.9), we have

01#10) = [ &k 01 @/ ()alk) + a(k)al (1) o)
; /d?’kwk (0] a(k)a’ (k) |0)
, [ #6910 - (0l ali) o)

- ;5(3)(0)/d3k\/k2+m2

=216 (0) / dkk> k2 +m? .
0

By change of variable k = m+/t, the last integral becomes Euler’s beta function

3 _ mm? 5@

_ omAs(3)
(01 H [0) = mm™ 5 (0)B(,,, A

0)I(~2) .

7.6 Use the formulae from Problem 7.3 and the commutation relations (7.D).

(a) Direct calculation yields

1 Bkd3k’ y -
[P*, 9] = (27r)3/2/ V2 ke [af(k)a(k)7a(k/)e_lk T 4ot (K)elk m]
1 4’k ‘ |
- (27r)3/2 V2w K (—a(k)e_‘k'z 4 aT(k)e‘k'm)
S (7.9)

The same result can be obtained if we start from the transformation law
of the field ¢ under translations (see Problem 7.20):

d(x+¢€) =e“Po(x)e i = ¢(z) + ie"[P,, (x)] + o(€?) . (7.10)
On the other hand, we have
B(x +€) = ¢p(x) + "0 + o(€?) . (7.11)

From (7.11) and (7.10) the result (7.9) comes.
(b) First, we calculate the commutator [P*, ¢™(z)]:

n

[P g™ ()] =Y " [P, gl

k=1

= ¢ (o g)p"
k=1

—igHg™ .
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In the same way one can prove that
[P, 7" (x)] = —iO"w"™ .
As a consequence,
[Py, ¢" (x)n™ (x)] = —i0u(¢"™ (x)7™ (2)) .

An arbitrary analytical function F'(¢, ) can be expanded in series as

F(¢,m) = Cpme"7™ .

Then
[Py, F(¢,m)] = —i0,F .
(c) [H,a'(k)a(q)] = (wi — w,)a' (k)a(q)
(d)[@Q,P"]=0
(e) [H,N] =0
(f) [ delH, o)) 7= = (202, /% (~a(p)er! +al (~p)eir")

7.7 From the Baker—Hausdorff relation follows
2

e = 6 11[Q, 6]+ Q.10 + . (7.12)
The first commutator in the previous expansion is given by
Q.61 = ia [ 36! ) (w) - o)(w). ()
— 4 [ @y5 (@ - y)oly) = ~a0() .

Then
Finally, .
eQge i = <1 —ig+ (_;Q) +.. ) 6=ep . (7.14)

7.8 The angular momentum of a scalar field has the form
MM = / (2T — 2T .
(a) By inserting the previous formula in the commutator, we have
M 6] = [ Y1060, = 90,) = 1 (60,6 — g0, L), 6(z)] - (7.15)

The following equal-time commutators can be easily evaluated:
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[£(y), d(2)] = ~i6®) (@ — y)n(y) |
[m()0u0(y). d(2)] = ~10,96®) (& — y) —16,0m(y)0 (2 — ) -

By substituting these expressions in (7.15) and performing integration, we
get

My, d(x)] =i(2,0, — 2,0,)P(x) . (7.16)

The same result can be obtained if we start from the transformation law
for the field ¢(x) under Lorentz transformations,

eé“’waqﬁ(aj)e_é“’“”Mw = p(AHw)z) .
(b) We first calculate the commutator [M,,,, Pyl:
(M, Py] = / Palz,To, — 2, Top, Po
= /d?’:c (@pTow, Po] — zv[Tou, Po))
_; / &2 (2,00 Toy — 2,00To,,)
y / &P (—2, 0T + 2,0,
= i/d3zc (ngi,, - ngiu)
B i/ & (T — 90T — Ty + g0, T%,)
= —i(gu0P — gvoPy) - (7.17)

In (7.17), we used the results of Problem 7.6 (b), the continuity equation
0,T" = 0 and integrated by parts. In the case A\ = ¢ we can use of a
partial integration. The result is [M,,,, P;| = —i(gin Py — giv Py). Thus,

[M;U/a P)\] = i(g)\VP/,L - g)\MPI/) . (718)

(c) Let us calculate firstly the commutator [M;;, My).
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My, Myg] = / By [2:6(2)0;6(x) — 1;6(2)0(x),
Yed(y)010(y) — vid(y) Ok (y)
_ / Laddy (cinld () r(y)) -

—ziy[p(2)0; (), d(y) Ok (y)]
— k()00 (x), d(y) Do (y)]
+ald(@)0,6(@), dWow)]) . (T19)

Applying the equal-time commutation relations, we obtain?

My, My] = / @’y v ($(0)000()0;
— d)90)d} ) 5 (@ ~ y)
— ziyn ($@)0k0)05 — dw);0(2)0) 6@ ( — y)
= 20 (H@)06()0F — d()Dro (@)} ) 6@ (@ — )
+ w0 ($@)20 ()07 — dy)Dro()0} ) 6P (@ — )] -
If we use the relation

0,6 ( — y) = ~ 08,59 (@ — y)
we obtain
M;j, My] = / d3xdy
[yk (6@0w)05 (@ — y)  d)3s (@376 (@ — )
—aay (D()0oW)2L6P) (@ — ) — dy)00(x) 06D (@ — y))
~ajue ($(2)26)0!6D) (@ — y) — d)0i(@)97 5 (@ ~ y))
+ayu (H)00)010 @ ) - K062V @ - ) |

By performing partial integrations in the last expression, we obtain

2 We have used the following notation:
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Mg M) = =i [ @ [gjkmq‘s(z)am(x) — 2f(2)20(x))

+gi(xkd(2)0;0(x) — x;6(2)Op ()
+gin(2;0(x)06(x) — 119(2); ()

+gj1(2i(2)Opd(x) — 2k ()i (x))
= i(gjpMa + giMjx — giMji — guMix) . (7.20)

The next two commutators [M;;, Mox|, [Mo;, Mox] can be evaluated in the
same way. Do this explicitly, please.

7.10

(a) The commutator is given by
Q@ = [ @ty
x [81(2)6; () — 6l (2)5(2), 8L, )0 W) — ¢, (W)In(v)] -

Recall that as the charges are time-independent we can work with the
equal-time commutators and we have

@@=~ [ & (3176 - 1. 75)
By using [12, 7%] = 2ie?°7¢, we get
[Q%, Q" =ie™ Q" .

The second case is similar to the previous one:

[Qi, Q5] = Gimnea‘pq/dgfﬂ/d?’y[fbm(m)dﬁn(w),¢p(y)¢5q(y)]

i/d?)m(_eimnejnqqsmqaq + eimnejpmd)pd.)n)

i/d?’w((sijﬁbm(lgm - (bj(l.si - 5ij¢m¢5m + (bz(bj)
= i/d?’fﬂ(@@ — ¢;hi)

- ieijkekmn/d?)qumq.sn

= i€ Qk -

As in the first part of this problem, we used the equal-time commutation
relations and the formula for appropriate product of two three—dimensional
€ symbols.
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(b) The commutator between the charges Q* and the field ¢,, can be found
similarly:

@ om(@)] = = [ Eyrs (6l 0)0s(0) ~ 6105 () o ()]
=7 [ 4l 6m(@))60)
-- 1754 [ 5@~ )sins )
2 mj(b]( ) .
In the same way, we find:
(bT

Q%61 ()] = 78

The previous two results can be rewritten in the form
[HaQaa ¢M(x)] = 160¢m(m) )
6°Q°, 6 ()] = 160, (2) -

In the case of SO(3) symmetry, the calculation is the same as above. The
result is

(Qks o (2)] = i€km;d;(2) -
7.11 The dilatation current is

jt = —9d"¢ — 2" 0" 90, ¢ + Lat .
(a) The dilatation generator is
- [ a0+ atino s 2@ - 000'6))
(b) The commutator between the generator D and the field ¢(x) is given by
(Do) = - [ Ealpla)n(z) +o'n(z)0i0(z)
F a0 (@) — L a%0i0(2)'0(x), 6(v)]
— - [ #e (@@)n(e). 6(w)] + () r(), (v
+ a'lr(z), o(y)]dig(x)) -

By using the commutation relations (7.C), we have
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p[D, ¢(y)] = ip(d(y) + y°7(y) + y'0:9)
ip(d(y) +y"0u¢(y)) = ido¢ .

In the same way, we obtain:

p[D,m(x)] =ip(2m + 240, 7) = 1do7 .
(c) By applying the previous result, we easily get

p[D, ¢°] = p([D, ¢l¢ + ¢[D, ¢])
i((609)$ + pdo9) = i0(¢?) ,

and generally
p[D, ¢°] = 60(¢") -

Similarly, one can show that
plD, 7] = idp(7?) .

An arbitrary analytic function can be expanded in the following form
) = anbqﬁaﬂb ,
ab
so that

plD, F] —pZCab , oY)
—chab ,¢%)m’ + ¢°[D, 7))

:12%17 50 ¢a)7T +¢a50(77b))

a,b
= 1dp (Z cabqﬁaﬂb)
a,b
=i F .

(d) We first consider the case p = i:
0.7 = [ Eal. o)
~ [ @ (x(p.0%) + D.710") .

By using part (b) of this problem, we obtain
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[D, P = i/dgcc (27 + 20007 + 27 0;m)0"p
+ 7(20'¢ + 2°0'1 + 279'0;9)] . (7.21)

The second term in this expression is transformed in the following way
, , 1 ,
/ Pxa0,0"p0'p = — / BPxa0" o0 p = — 0 / dPxd" (2°0,00% ¢) |

where we used the Klein-Gordon equation, Oy = —0°0;¢ and then per-
formed a partial integration. Thus, we conclude that the second term can
be dropped as a surface term. The expression | dBxrzPdir is also a surface
term. Similarly, one can show that

/ dPxr? 910 ¢ = 3 / dPerd’e — / P! 10;0'¢ .
Inserting these results in the formula (7.21) we obtain
[D, P'] =iP" .

The commutator [D, P°] =iP? can be calculated in the same way.

7.12 In the expression for the vacuum expectation value, express the fields
¢y in terms of the creation and annihilations operators. From four terms,
only one, which is proportional to (0] a(k)a’(k’) |0) = ) (k — k'), is nonzero.
Then, we have

Bk 2,2, 2
(0] pf(t,x)ps(t, ) |0) = (azlﬂ.)g (2711_)3 / (/ Bye~(@v)*/a +1k.(:cy)) )

Zwk

Calculating the Poisson integral in this formula, we obtain

3 2 2
015005 O10) =y [ Fer?

_ LT R e
@2m)? Jo V2 +m? '

By the change of variable k2 = ¢, the last integral becomes

1 e tdt
\/ efta2/2

<0|¢f(t)¢f(t) |0> = 872 o \/t+m2
9 L, 2 9 2.2
- ﬁmem o [Kl(mf )= K"| (2

where K, (z) are modified Bessel functions of the third kind (MacDonald
functions). Using the asymptotic expansions:
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Ko(z) = —(log(z/2) + 0,5772)
for z < 1, we obtain in the limit m — 0

1
4m2a2

(0l o5 (t)s(t) |0) =

7.13 Express the operators L,, and L, in terms of a#, and use the commu-
tation relations.

7.14 After a very simple calculation, we find that

i 1 e ()0 0
0 0) = lim,_, dke—<k ( ik (y° —a®—[x—y|)
O 6} 0) = 0y iy b iy [ ke (e
ik’ =2+ z—y)) + ik (@’ =y ~|z—yl)
_ eik(zO—yOHm—yn) , (7.23)

The integrals in the previous expression are regularized by introducing € as
a regularization parameter. At the end we have to take the limit ¢ — 0. The

result is
1 1

O (6@ o 0 ==y

7.15 The vacuum expectation value (¢(x)é(y)) is given by

(p(x)p(y)) = (¢F(x)0~ (v))

3 3
= / &k d°q (v =Ra)56) (g — q)
(2m)3/2/ 2wy, (2m)3/2 | /2w,

1 /d?’"’e—ik-(z—y)
- (27)3 ) 2wy ’

where we split the field ¢ into positive and negative energy parts, ¢ = ¢ +¢~.
If we do the same in the vacuum expectation value of four scalar fields, we
see that only two terms remain:

(O(21)P(22)P(x3)P(x4)) = (¢T (21)dT (22)9 (w3)0
+ (¢F (21)p (22)p" (23)9™ (24)) . (7.24)

The first term in the last expression is

4 3q.
(@ @ 2o @0~ @) =TT [ iy, (masabal)

X el(*th'Z1*Q2'w2+LI3'Z3+Q4'Z4) )
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where a; = a(g;). Using the relation

<a1a2a3a4>

(Q2 - %)5(3) (g1 — q4) + <@1@§(5(3)(QQ —qu) — @102)>

(g2 —q3)0® (g1 — q4) + 0% (q1 — q3)6® (g2 — qu) ,

< (6 (g2 — q3) + aas)a 1>
56
56

we obtain

3 3
d°q1 d°gz e~ 192 (w2—w3)—iqr-(z1—4)

1
W)G/ 2w1 2(4}2

(¢T (21)0" (22)0™ (x3)™ (24)) = @
+

1 d3(I1 d3Q2 —1q2 (zo—x4)—iq1-(z1—73)
(27‘(‘) 2(4)1 2(4)2
= (¢(22)(x3)) (¢(x1)p(x4))
+ (p(z1)9(x3)) (P(22)P(74)) -

The following result can be derived in the same way:

(¢F(21)0™ (22)9" (23)9™ (24)) = (B(x1)P(22)) (D(w3)(z4a)) -

By adding two last expressions, we get

(P(w1)p(22)P(23)p(24)) = (d(21)B(23)) (P(2)P(24))
+ (p(x1)d(x4)) (P(22)P(23)) +
+ (p(x1)d(x2)) (P(73)P(24)) -

This result is a special case of Wick’ s theorem.

7.16 Scalar field in two—dimensional spacetime can be represented as

[a(ke =" +a yees”]

e dk
7 = /_oo V/(2m)2wy,
so that
@pot)) = [t (7.25)

dr J_ |k

If we introduce the notation yg — x9 = 7, y — x = r, the previous integral
becomes

<¢(a:)¢(y)> _ 417T /OOO dkk (eik(r—r) + eik(r+r)) . (7.26)

Denoting the integral in (7.26) by I and introducing the regularization para-
meter €, we get:

I i & . .
0 _ ! 1ime_>o/ dke™<* (e‘k(Pr) + e‘k(T”))
or Arw 0
1 T
= s (7.27)
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From (7.27), it follows that

where pu is an integration constant which has the dimension of length.

7.17 By taking partial derivative of the expression (0| T'(¢(z)¢(y))|0) with
respect to zg, we get:

O (0] T(P(2)9(y)) 0) = 6(z0 — o) (0] [¢(), &(y)] |0) +
+ 0(z0 = y0) (0] e ¢(2)9(y) [0) + (3o — o) (0 4(y) Iy #() [0) -

The first term is equal to zero as a consequence of the equal-time commutation
relation. By taking second order partial derivative with respect to xg, we get:

930 (01 T(p(2)(y)) |0) = 8(2° — y°)[m (), $(y)]
+0(2” —y") (0] (@) (y) [0) +
+0(y° = 2) (0] ()30 $() [0) -

In the first term, we use the equal-time commutation relation, and finally get
the result

920 (01 T(d(2)9(y)) [0) = =16 (& — y) +
+0(2° = 4°) (0] Do d(2)9(y) |0) +
+0(y” = 2°) (0] ¢(y) 920 () |0)

which implies

(Qx +m?) (0] T($(2)$(y)) [0) = —16W (z — y) +
+ 0(z0 — y0) (0] (O +m*)d(2)(y) [0) +
+0(yo — @0) (0] (y)(0z + m?)e(x) [0) .

The last two terms vanish since the field ¢ satisfies the Klein—Gordon equation.
Therefore,

(O +m?) (O] T(d(2)8(y)) [0) = 16 (z —y) . (7.28)
7.18
(a) Applying the variational principle to the given action leads to the equa-
tions:
o 1
. (-1
F o ( 9m —|—V(r)> P

oy (1
—i P (—zmA—i-V(r))z/)

The first of these equations is the Schrodinger equation, the second one is
its conjugation equation.

t
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(b) A particular solution of the free Schrodinger equation is a plane wave
e 1Btk T where By = k?/2m so that the general solution is

3
Y(t,r) = / (Qi)f/Qa(k)e—iEkt“k"‘. (7.29)

The negative energy solutions are not present in previous expression since
E}. > 0 in nonrelativistic quantum mechanics. The field T is
A3k . ;
T _ T iEpt—ik-r
Wit r) = / oyt (e . (7.30)
In the quantum theory these classical fields are replaced by operators in
the Hilbert space. The field conjugate to 1 is
oL
n= . =iyl.
N

The equal-time commutation relations are
it @), vl (ty)] =8P (@ ~y),

[t @), b(t,y)] = [ (¢, ), ol (t,y)] = 0 . (7.31)
From the relations (7.29) and (7.30) follows

1 i —ik-x
a(k) = (2ﬂ)3/2e1Ekt/d3m1/}(t,w)e k

L g, 3 ik-z
al (k) = (27r)3/26 t/d xl(t, z)e*®

From (7.31) and previous relations one easily gets the commutation rela-
tions:
[a(k),a'(p)] = 6 (p — k) , (7.32)
[a(k), a(p)] = [a' (k). a' (p)] =0 . (7.33)
(c) Substituting (7.29) and (7.30) into the expression for the Green function
one obtains

. T
G (20, ®,y0,y) = —i (0| ¢(z0, )Y (y0,¥)|0) 0(zo — yo)

_ i 37,13, —i(Brzo—k-x—Epyo+p-y)
(273 /d kd°pe

x (0 a(k)al(p) 0) (0 — o)

i 37,13, —i(Brzo—k-x—Epyo+p-y)

(273 /d kd°pe

x 63 (p — k)0(zo — yo)

. k2 .
- (271'(')3 /d3k6712km ($0,y0)+1k.(m—y)9($0 - yO)

3/2 im(e— )2

27Ti(1‘0 — Yo
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2
ug = \/ sin(kx) ,
T

hence the (nonrelativistic) field operators are

(d) The eigenfunctions are

o= \/ 2 / ~ dka(k)e— 1t sin(ka) | (7.34)
™ Jo

Y = \/ i /  dbal (ke sin(ka) (7.35)
™ Jo

We shall leave to the reader to prove that

e 2(@o—v0) — e2(zo—vo) 9(;[;0 — yo) .

(7.36)
Generally, if the eigenfunctions of the Hamiltonian are u,(x) the Green
function is

G(zo, %, yo,y) = —iZe_iE"(mo_yo)un(50)“2('!/)9(500 ~ o) - (7.37)

1/2 . 2 . 2
. m im(z—y) im(z+y)
G($07$7y0ay):_1( )) |:

2mi(xo — Yo

(e) The invariance of the Schrédinger equation can be proven directly. We
leave that to reader.

(f) In order to find the conserved charges we should calculate only time com-
ponents of the conserved currents. For the spatial translations the time
component of the current is

oL
107 9(00)

— —iptdbel = —ip' ' Vip - € . (7.38)

O;1he’

The conserved charge is the linear momentum

P=— / dBxyt (V) . (7.39)
The Hamiltonian )
H= / By’ (- Qm)mp (7.40)
is generator of time translations. The angular momentum
J = —i/d%w(w x V)i (7.41)
is generator of rotations. Under Galilean boosts we have dz; = —v;t, d¢ =

—imuw - &1 so that
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jo=v-jo=mv -zl +ivtyT Vi (7.42)
Consequently, the boost generator is
G= / BT (ma 4+ it V) . (7.43)

The commutation relations can be found using the commutation relations
(7.31). Let us start with [P;, G,]:

PGy =i / By~ (1)0M(y), o1 (@) (ma; + it0;)()]
~ im / Pady (1 ()0 y), ¥ (@)7,0()
(), 0 () (@) 0 ()

—im [ Px(-0i iz (z) — z;0010:0)
_ —IM(SW , (7.44)

where M = m [ A3zt is the mass operator. It appears since the rep-
resentation is projective. We have two possibilities either to enlarge the
Galilean algebra with this operator or to add a superselection rule which
forbids superposition of particles of different masses.

In the similar manner the other commutation relations can be obtained:

Gi,G;|=[H,P]=1[H,J]=0
[Ji, J;] = i€
[Ji, G;] = i€;j1 G
(i, Pj] = €5 P
[H,G;] = —iP; .
The Galilean algebra can also be derived from the Poincaré algebra [23].
7.19

(a) By using the first commutation relation in (7.D), we get

—c [ S @l
—C/\/qu 6% (p—q)
—C\/prf(p)

The second commutator can be evaluated in the same way. The result is

[aT (p)7 a] =

(7.45)

) - (7.46)

1
¢ \/pr
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(b) Using (7.45), we have

) =C TR @) @A)
By repeating this procedure n times, we get
alp)(a')” = C ﬁwp nf(p)ah)" ™ + (@)a(p) . (7.48)
Hence,
). 01 = € (7.49)

(c) This calculation is straightforward:

2 > 2 (qh)n
a() |) = e 2a(p) 3= 79" |g)

n=0 n!
2 ) n—1
H/Z\/pr n—l) ) |0)
- 95 7.50
IR (7:50)

(d) By using the previous relation and the property (z|z) = 1, we have

<|¢|>/

(2] a(p) [2) e~ 7" + (2] al (p) |2} ")

(2m 3/2 \/21,«)
- 0)3/2 (2£(@) + 2 (@) - (51)
In the same manner we have
(2l 16 ]2) = / (277);21\)/2wp (27T)j/z({/2wq (<Z| a(p)a(q) |z) e ipta)e

+ (z|a'(q)a(p) |z) l4—P)*

+ (z]al(p)a(q) |z) P~V + (2] al (p)al(q) |2) ei(qm'm)
2 d’p d3q N Fl )2 )

=¢ /(27T)3/22wp (27)3/22w, (f( )f(a)2 o

+ f(p)f*(q)|z|Pe P 0)®

b PO 1 () (q) ()2 0+ 0)

2

= (267;)3 (2f (z) + 2 f*(2))? . (7.52)
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Hence,
(A$)2 =0 . (7.53)
(e) Tt is easy to see that

Gl 1) = PP [ Eplfe) (7.54)
7.20
(a) By substituting the expression for ¢ in the relation
U(A,a)p(x)U ™ (A a) = ¢p(Ax + a)

we obtain

/ dgk —ik-x T ik-x —1
(277)3/2\/2%[](/17“) (a(k)e +a' (k)" ") U™ (A, a)

d*k’ No—ik -(Azta) | 1 (1ol -(Az+a)
:/(%)3/”2%/ (atk")e +at(K)e ) (155)

In the integral on the right hand side we make the changing of variables
k™A = kY. In Problem 6.3, we proved that d*k/(2wy) is a Lorentz
invariant measure, so that

dgk/ _\/wk/ dgk
\/Zwk/ o 2 Wik '

By performing the inverse Fourier transformation, we obtain the requested
result.
(b) It is easy to see that

U(A,a) ki, ... k) = U(A,a)a (k) U (A,a0)U(A,a) - -
- U(A,a)a' (ka)U~Y(A,a) |0)
_ \/ka W elan Al (K +..+k}) Ak, ..., Aky) .

wkl...wk

n

(¢) From the expressions (7.6) and (7.8) and the first part of this problem, we
have

U(A)PFUH(A) = /d%k“U(A)aT(k)a(k)U—l(A)
_ / Bl o (Ak)a(Ak)
Wk
Y / SR ot (K )a(k)
= AJPY

where we made the change of variables k* = A 'k’ in the integral.
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(d) First, you should prove the following formulae:
U(AN)[g(2), o(y)]U 1 (4) = [¢(Az), p(Az)] |

[0(2), ¢(y)] = iA(z —y) .

From the integral expression for the function A(xz — y) (Problem 6.6),
it follows that A(Az — Ay) = A(x — y), i.e. it is a relativistic covariant
quantity.

7.21

(a) In Problem 7.3, we obtained the Hamiltonian
H= / Bheal (k)ak) .

The Backer—Hausdorff relation reads

1
PHP ! =e¢“He = H+[A H| + 2[A, [A,H]]+ ... (7.56)

where A = —'7 [d®q (af(g)a(q) — npa’(q)a(—q)) . The first commutator
in this expression is

(A, H] = _i;n,, / dPkwy, (af (k)a(—k) — af (—k)a(k)) -

By changing k — —k in the second term, we get [A, H| = 0. It is clear
that the other commutators in (7.56) also vanish, hence

[P,H|=0.
(b) Starting from Problem 7.8, we obtain the requested result.
7.22 TPt~ '=-P, tHT ' =H

7.23 The first step is to show that C¢' C~! = 5’¢, CrC~! = n.r' and
Crn'Cc-1= NeT.
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Canonical quantization of the Dirac field

8.1 If we use the anticommutation relation (8.E) the anticommutator iS,,(z—
y) = {va(x), s (y)}, where a,b=1,...,4 are Dirac indices, becomes

(a8} =3 s [a'pa 00000

q
% (a(p,1)un(g, $)e v )
+ va(p, )i (g, 5)e TV

Applying the solution of Problem 4.4 we have

3 ) .
1S = s [ o, |6+ e 4 = mpae ] (81)

The last expression can be easily transformed into the following form

3
(Wl )} = (0% + s 1y [ 7 [ o] s

From (8.2) we see that A(xz — y) is given by

Alr — o) = — —ip-(z—y) _ Gip-(z—y)|
@=9) == g / 28, {e ¢ }

The function A(x —y) was defined in Problem 6.6. In the special case xg = yo
we shall make change p — —p in the second term of expression (8.1) and
obtain

3
W@ o = (s [ POV = (i —p) . (53)
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8.2
(a) Substituting (8.A,B) in the expression for charge @ we obtain

Q:—e/dBm:¢T¢:
_ —Z / dBpg [} (p)es (p)ul (p)us (p)

+ : dr(p)di(p) : v} (p)vs(p) + cl(p)dl(—p)ul(p)vs(—p)e”Fr!
+d,(p)cs(—p)v) (p)us(—p)e 20! (8.4)
From (4.52) and (8.4) we get

Q= —eZ/d3 —di(p)d.(p)) . (8.5)

(b) As v satisfies the Dirac equation, (—iv'd; +m)y = in0py the Hamiltonian
is

H=i[d&z: 4o :

dgwdgpdgq\/m \/m : ul(p)cl(p)eip'r
)3 / Ep Eq (

o p)d: <p>e*ip'w) Ey (us(@)es(@)e™* = v(q)dl (q)e'")
- Z/dBPE +(p) + dl(p)d:(p)) - (8.6)

P=y [ &op (cl)erp) + di p)p) - (8.7)

8.3
(a) It is easy to see that

[H, 4] = Z (2;)3/2 /d3pd3qu\/;:
% [cl(p)e ( ) + dl(p)d, (p), cs(@)us(@)e "™ + df(q)vs(g)e'”]
o Z 3/2 /d3pd3qu\/ m 6r35(3)(p - q)
X ( er )us(q) STy i (p)o (q)eiq'z)

- Z/ oy V1 Ep (=er(P)us ()™ 4 d}(p)or (p)e”)

8t’
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where we have used:

[l (p)er(p), es(@)] = —{cl(p), ¢s(q) }er(p)
= _5Ts(5(3) (P—q)c(p)

and the similar expression for d—operators.
(b) If we had used commutation relations instead of anticommutation rela-
tions in the quantization process we would have obtained:

=3 [ 9, (4@ p) - o)D)

From here we conclude that the energy spectrum would have been un-
bounded from below, which is physically unacceptable.

8.4

[H, cl(p Z / d*qEy[cl(a)es(q) + di(a)ds(a), ¢l (p)er ()]

:§:/&¢%wﬂm%mwﬂmmm>
+ (@)l (@)es(@).cr (p)]
—Z/qu Hes(@). <l (p)e, (p)

—{cl(q).cl(p)}es(q)er(p)
+ cl(p)(cl(@){cs(q), cr(p)} — {cl(q), cr(p)}es(q)))
= E, (cl(p)er(p) — cl(p)er(p)) =0

8.5 The form variation of a spinor field is
Sy = 69 — 0x* 0 =

i
= — 4w‘“’aww — w0,

1 .
2w:u'l/ (Qj#ay - $l,(9# - ;U#y> ¢ .

On the other hand we have dp9) = — ;w‘“’M w . Comparing these results we
conclude that the generators are given by

1
M,, =i(x,0, — 2,0,) + ZUW .

8.6
(a) Applying the formula [AB,C] = A{B,C} — {A,C} B we obtain
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Mo a(ol] = [ @9 |0)0) (1000~ 0.0,) + 5000 ) belo). vl

be

= —/dgy{%(y), ¢a(x)} (i(y#&, - yuau) + ;O';W) 7/)0(9)

be

1
O',uy]ac'(/)c(x) )

= —[i(z,0, — x,0,) + 5

where we have used anticommutation relations (8.C,D). This result is a
consequence of Lorentz symmetry.

(b) Substituting the expressions for angular momentum and momentum of the
Dirac field we get

(M, P)] =i / dBPady
< [v@) (i0.0, = 2.0, + 4o ) vulo) )]
First we suppose that all indices are the spatial: p =¢,v = j, p = k. Then,
(M, P] = i/d?’md?’y
X (1/12(55) { (i(fﬂiaj —z;0;) + ;Uij> y Vi (), wi(y)} Oete(y)

- W00} (i, = 2,00 + 4 ) i)

= i/d3md3y

< (w10 (16005 = 000+ oy ) 39 = 9an(0)

ab

~ WL @ = e (1600 20) + yos) o))
ab

where we used the equal-time anticommutation relations (8.C,D). The
integration over y leads to

[M;j, Pr) = i/d3w (igjkw*aiw - igikwfaj@ ,
or
[Mij, Pi] = i(gjuPi — gir Pj)-

Now we take p = 0, v = ¢, and p = k, i.e. we calculate the commutator
[Mo;, Pi]. In order to do it we first compute anticommutator

{0,000(x), ¥ (y) }Hao—yo -
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Taking partial derivative of (8.1) with respect to xo and substituting z° =
y° we get

(Ouoth @) oo = g [P [(<E 427 = m)ge @Y
+ (Epv —p-y—m)ape TEY
B (27ir)3 [ 0oy~ myer ey
= v Vaed (@ — y) — imbapd® (x — y) .
Then
[Mo;, Pi] =i / d*zd®y
() { (1000 =m0+ o) uto).wid ) 2ut)
— W), 0t} (G w00 + how) (o))
ab

=i / dPxd’y (ixoW(x)Bfé(?’)(m — Y)Y (y)

- iJL‘i@/JIL(l‘)(’Y’YoV - Zm'YO)acé( )(m —Y)Oke(y)
+ ¢l(x) (o0 z)ab5 (@ — y) Okt (y)
)

— ixoz/ﬁ(y 540 (33 —y)0i(x)
+ izt ()35 (x — y) ()

) (05O @ ym(x))

N =

[N R

=i / &P iz 9y 0, Vi) — mai YOkt — iz Doth)
= i/d3w (igikz/ﬂaol/) + 24 (1y°0 + iV — m)@kz/)) .

The second term in the last line vanishes since v satisfies the Dirac equa-
tion. Then we get
[Mo;, P] = iginPo -

The remaining commutators [Mo;, Py] and [M;;, Py] can be computed in
the same way.

8.7 The helicity operator is

1 3. 2P
_z/dm.¢ v (8.8)
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Inserting expressions for fields ¥ and wf in the previous formula and using
the fact that u.(p) and v,.(p) are eigenspinors of X' - p/|p| with eigenvalues
(—=1)"L and (—1)", respectively (see Problem 4.7) we get

B / Bpddq "
% = 2(2m)? / Z \/Equ

r,s=1

. [0*<q>cs<p><—1>5+1u*< Jus(p >1<q e

e (@)d] (p)(~1)°uf(q)va(p)e@P”
r(q)cs(p)( )"0l (q)us(p)e P
—di<p>dr<q><—1>5vr<q>vs<p>ei<p—q>-z : (8.9)

Performing the x integration and applying orthogonality relations (4.52) one
gets that the second and the third term in the expression (8.9) vanish. Finally,
integration over the momentum q gives

Z / d*p(=1)"" (cl(p)er (p) + di(p)d, (P)) - (8.10)

Let us emphasize that we have used the expansion of the fields with respect
to helicity basis.

8.8 The two—particle state given in the problem is eigenstate of the operators
H, @, and S,. Using the explicit form of the Hamiltonian from Problem 8.2
we have

Hel, (pr)el, (p2) 0) = 3 / EpE, (cl(p)cr(p)

+ di(p)d,(p)) cl, (p1)cl, (p2) [0) . (8.11)

Let us calculate the first term in the previous expression. Commuting ¢, (p)
to the right we get

ch(p)er(p)el, (pr)ch, (p2) [0) = 6,0 (p — p1)c, (p)cl, (p2) |0)
— cl(p)e], (pr)er(p)el, (p2)|0) . (8.12)
Repeating once more we get
ch(p)er(p)cl, (p1)cl, (p2) [0) = 0,0 (p — p1)c, (P)c, (p2) [0)
— cl(p)el, (P1)3rr,6® (p — p2) [0) - (8.13)

It is easy to see that

df(p)d.(p)cl, (pr)el, (p2) [0) = 0 . (8.14)
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Inserting (8.13) and (8.14) in (8.11) and integrating over momentum p we
obtain

Hel, (p1)cl, (p2) [0) = (Ep, + Ep,)cl, (p1)el, (p2) [0) - (8.15)
Similar as before we have:
Qcil (pl)c"rr'z (p2) |0> = _26011 (pl)c"rr'z (p2) |0> ? (8'16)

for charge and

Sp ¢l (p1)el, (p2) 0)

1

=, ()™ + (1)) (1)l (p2) 0) (8.17)

for helicity. To summarize: energy, charge and helicity of the two—particle state
|P1,71; P2, 72) are

1
Epl + Epza _267 ) ((_1)T1+1 + (_1)T2+1) ) (818)

respectively.

8.9 The commutator is

/a&¢w arb [ (@) (@), o (1) (y)]

24/ﬁ%¥y i (0l (@) () — v (W) (2)00)8P) (@ — y)
1
4

=, [ Eeulr e

I a

2

/&mwabm Srbiria;)

bc/dSwaTcw _ iEachc .

The generators Q® satisfy the commutation relations of SU(2) algebra as we
expected.

8.10 The charges are

Q' = /d3mj8 = /d3 (e*e7m® + 2@7};@) (8.19)

(a) The commutator is

m%Qﬂ=/H%&y¢mﬂ”w%mfwxﬂwwww1

7'-b- T€

+ 7 W (2)0; (), &), (y) ¥ (y)])
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_ / Py (et (15 (@ — )55 (r)r (y)
—i0®) (x — y)6* 7 (y)m° (z))
4 TN (o = g ] () — S (5 ()
= /d?’:c (i(irewb — wb7®) + ;ebedWTTdW)
= iebed/dgm (e“dcﬂ'“ﬂc + ;!PTleI/)
— jcbedyd

(b) The results are
[Q°, 7% (2)] = —ie®**n ()

Q" (@) = = n(a)
b

Q" 0i(@)] = Fue) 2

8.11 The conserved charge for dilatation is
3 . _
D= /dSij = —i/d3w (wa + 2t eh — xowyfajz/;) . (8.20)
Let us find the commutator between the operator D and momentum P?

0.7 = [ @ty ([l @0t + 01 (@000, 61 ()" v10)]
= 2% (@) 050 (2), 4T (1) (y)]) -

We decompose the previous expression on three commutators. The first one
is

[t (@)0 (), vT (1)) ()] = [} (@)a (), &) )]0 s (y)
+ o) () [ (2)a (), ' (y)]
= ¢} (2){¥a (@), ¥} ()}t
— 0 ()Wl (@), 0 (y) 1

where we have dropped the vanishing terms. The anticommutation relations
(8.C-D) give the following result

[0 (@) (2), v ()0 (y)] = ¥T (@)0"(y)6® (& — y)
— UM () (2)9,6C) (& —y) . (8.21)

The remaining commutators can be calculated in the same way. The result is:

Y)

),

8

) (
) (



Chapter 8. Canonical quantization of the Dirac field 169

W1 (2)050(), ¥T ()0 (y)] = T (2)0")(y) 07 6@ (x — y)
— T (y)0;1(2)05 0P (x —y) ,  (8.22)

[W(2)y 9 (x), T (1) 0" (y)] = P(x)y? 0'p(y) 07 6@ (x — y)
— YY)y 0,0 (2)0L0®) (x —y) . (8.23)

Inserting (8.21), (8.22) and (8.23) in the expression for commutator and ap-

plying
k5@ —y) = -0k (z —y) (8.24)

we get
[D, PY] = —/d%waw =iP". (8.25)
Similarly one can show that
[D, P°] =iP° . (8.26)
8.12
(a) Using the expression (5.G) the energy—momentum tensor is
Top = 11/3%351/) - gaﬁ(iijﬁw - ga?%[ﬂ/)) .
Taking derivative of the previous expression we get
8aTo¢B = 295561/;1# P
where we have used the equations of motion:
@dj - gx2¢ =0 ’
iauvfw“ +g2%p=0.
The result 0%T, 3 # 0 shows that there is no translation symmetry in the
theory. As a consequence, the energy and momentum are not conserved in

this theory.
(b) From the expression for the four-momentum we have

PO(t) = / Pa(—ifr 0 + ga*Py) |

Pi(t) = 1/d3x¢*aw ,

SO
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[PO(t), P'( //d3md3
% (W27 0,0t @), v (1 y)9 b (t.y)
+ iga®[h(t 2)(t,2). ¥ (£9)0 U (t.y)))

/ / dPPzdiy
% (00 Yabltha (b 20500 (8, ), L (8 )0 (1, w)
+ iga® )0 [0, (L @) (@), v (6 Y) el y)] ) -

The commutators in the previous expression can be found in the same way
as in the previous problem

[P0, 0] = [ & (~050770 — 000
+ igwwaiw +(0'9)0)
/ & (=0, (7 9') + iga®d (D))
= —2ig / Bz,

where we dropped the surface terms.
(c) It is easy to show that 9, M#**P = 0, which is a consequence of the Lorentz
symmetry of the Lagrangian density.

8.13

(a) Under the Lorentz transformation the commutator [J*(x), JJ”(y)] trans-
forms in the following way

U(M)[J"(x), ] (y)]U(4)

U(MN)[a ()0 (), e (y)vigtba(y)]U 1 (A) (8.27)
= [Utpa (@)U 8 Uy (2)U Y, Ut (y)U A 2qUtba(y)U ]

Taking the adjoint of (8.G) and multiplying by v° we obtain
U(AYb(@)U~(4) = d(Az)S(A) . (3.28)
By using (8.G), last expression and S™1y#S = A* 4 in (8.27) we get
UN)[J (@), J" (U ™HA) = A S A [TP(Ax), T (Ay)] . (8.29)

From the last result we see that the commutator [J#(x), J¥(y)] is a covari-
ant quantity.
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(b) Using the fact that the commutator is a Lorentz tensor we calculate it in
the frame where 20 = 3y =t, © # y. We get

[Ju(t, @), ] (t,y)]
= (YY) ab (Yo )eal 0l (8, @) (8, ), YL (¢, y)Ya(t, y)]
= (Y1) ab (Y00 e (8 (8 &) {0 (t, ), W] (8, y) Yalt, v)
— Pty (Wl (t2), valt, ) s (t,2)) (8-30)

Using the anticommutation relation (8.D) in (8.30) gives

[J# (tv :IC), Jz/ (tv y)]
= (Ot 2) 100Ut y) — Ot Y) vt ) 6P (z —y) .

Since « # y then ) (x — y) = 0 and the commutator is equal to zero in
the special frame we have chosen. Because of the covariance it follows that
it is equal to zero for (x — y)? < 0. Therefore, microcausality principle is
valid.

8.14 First show that

3
3

If in the expression (¥, (1)1 (z2)Ye(23)1ba(z4)), We substitute the expan-
sions (8.A-B), we obtain

(Va (1)t (x2) e (23)a(2a))

- 2772 (H/ j§z>

T1

~ — i(—pi1-x1—p2-c2+p3-x3+ps-x
X (<d102dgc4> Ulau2bv3cu4de( P1-T1—p2-T2+Pp3-T3+pa-Ta)
+ <d1d£C3Cj1> T)lav2bu3cﬁ4del(7mmﬁm'wrm'mﬁp““)) ;
where the vanishing terms are discarded. Also, we use the abbreviations:

di = dy, (p1),u1 = ur, (p1), etc.

Applying the expressions for projectors to positive and negative energy solu-
tions from Problem 4.4 and using

<d162d§(31> = —0r1ry Oy 0P (p1 — 3)0® (P2 — pa) |
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<d1dgc3c:rl> = 6T17‘257‘3T45(3) (pl - P2)5(3)(P3 - P4)

we have

(Va(@1)00(2) e (23)Pa(xa))

1 d3p1d3p2 —ip1-(z1—2z3)—ip2-(z2—4)
= | iy, Ul e

1 / d*p1d®ps

_ —ip1-(x1—2x2)—ips-(r3—T4)
(2ﬂ)6 4Ep1 Ep3 (161 m)ba (753 + m)cde .

+

By using (8.31) and (8.32) the last expression takes the form
(Cal@1)tp(w2)e(@3)a(24)) = — (Ya(@1)e(x3)) (P(22)a(24))
+ (Vo (@1)p(22)) (the(z3)Yalzs))
The previous formula is special case of the Wick theorem.

8.15 Substituting (8.A-B) in the commutator we obtain

)
i (p)"v4() (€} (P)dL () — (@), (p))e/TF O
+ () us(q) (dr(p)cs(q) — cs(q)d,(p))e iPH=
+ @T(p)’y“vs(q)(dr(p)d;(q) - d;(q)dr(p))ei(q_p)'x

(8.33)

Using the anticommutation relations (8.E) we obtain
L~ w Jy/
o [y =ty —
1 pH _ _
- dg T T T T ’
somye | Pl S B () + 5 () ()

r

where we have used the Gordon identities (Problem 4.21) in addition. The
requested result follows after applying the orthogonality relations (4.D).

8.16 Let us first prove that

(O] T(tha()ts(y)) |0) = —iSpvaly — x) -

Using the definition of time ordering and the expressions (8.31) and (8.32) we
obtain
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3
O TG 10) = phss [ 2 [ e =000 o)

— (4 m)pae® Ty — xo)} . (8.34)

With a help of Problem 6.13 we see that right hand side of the expression
(8.34) is —iSFpe(y — ) and we have

(O] T (4p(x) () 10) = Tap (O] T (va ()16 (y)) |0)
= —il'apSFea(y — )
= —itr [I'Sp(y — )]

) dip e y-o)
- / i o — 1oL+

Using the identities from the Problems 3.6(b),(d),(e) and (i) we obtain

tr [(p+m)vs] = tr[(p+ m)ysyu] = 0, tr[(p+m)yvuy] = 4mgu -

From here the requested result follows.
8.17

(a) In the Weyl representation for y—matrices the charge conjugate spinor is

"/Jc = C’JJT

_ifo 0 0 1 ©*
o 0 —oo 1 0 —iogx
_ X
—iO’ggD* ’
The condition ¥ = 9%, gives ¢ = x.

(b) If
_ X _ ¥
wM - <_10_2X*> and (bM - (_10'2410*) )

_ ot . .

Yaron = —ix o2 +1XT02<P
= —io2abXaws + 10206 XaPb
= —102a ¥y Xo + 1026096 Xa

then

S -
= —ip oox* +ipT oax = duu -

In the last expression we used that ¢ and y are Grassmann variables. The
other identities can be proved in the same way. For the second one the
following identity is useful: ooot oy = +7.
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(¢) The Majorana field operator is

Ym (W +1e)

O [ (0

’
( ) jzd )vr<p>ew$) .

The annihilation and creation operators can easily be read off:
t t
¢ (p) + dr(p) ¢, (p) + d,(p)
V2 ’ V2 '

The anticommutation relations are derived from (8.E):
{bar(p.7). by (a.9)} = 6,56@ (D~ q)

{bar(p,7),bar(a,)} = {bas(p,7), bl (@,9)} = 0.

(d) The Dirac spinor is ¢p = 11 + iha where 11 o are Majorana spinors. The

Lagrangian density is
L = ih1 Pipr + oo — m(r1th1 + o) + ie(thy Arba — o Arhy) .
8.18 Under Lorentz transformations the operator V,,(z) = &(m)%ﬂ/)(m) trans-
forms in the following way:
UYL ) = VS0 AT ()
P(Az)S(A)y,S~H A (Az) = A,V (Az) |
(8.35)

\/

bar(p, ) = by (p,7) =

since Sv,S™! = A”,7,. The other operator A, (z) = ¥(z)y50,(x) trans-
forms as
UA)Au(2)U 1 (4) = U(A)g(@)U ™ (A) 30,0 (A)g (@)U (4)
= P (Az) 0,0 (Az)
where we used well known relation Sv5S~! = ~5 (see Problem 4.38). Since
0, = A?,0, we have
U(MN)A,(2)UH(A) = A2, A (Ax) . (8.36)

Under parity vector V,, transforms as follows:

Viu(z) — PV, (2)P™" = 01(t, —@) 7,700 (t, )

— %(t7 _m)v for H= 0
| Vi, —=), forp=1

= Vﬂ(t7 —(13) )
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since
P(a)P~1 = (Py(x) P~y = (yot(t, —)) 0 = 9T (¢, —2) .
In the similar way we get

PA/‘(x)Pil = _&(tv —55)758“1/)(157 —:l:)
= { —(t, —x) 500 (t, —x), for p=0

w(t’ _w)’yf)a:l/)(ta _w)v for p=1
= —At(t,—x) .

From 79 (t, )71 = T (—t,x), where 7 is an antiunitary operator of time
reversal follows

Tt @) =Tl (t @) g = T (—t,®) T
From the previous expressions we get

TVt 2)r ™t = T (=, 2) T (yom,) T (~t, @) . (8.37)
With a help of T, T~ = v** we get

TV (2)r ! = (=t )y (—t, ) = VH(~t,z) . (8.38)

We would suggest to reader to prove the previous result by taking T = iy'43.
The identity

(') eviin'y® =+ (8.39)
has to be shown. Under time reversal the operator A, (z) transforms as

TA, ()77 = —(—t, )50 ) (—t, ) = —AF(~t, T) . (8.40)

From Ct,(z)C~1 = (ng)abwg(x) follows C,C™1 = —1,C;.! , where C is

a unitary charge conjugation operator while C' is a matrix. It is easy to see

CVHCT! = —p.C 4, Cratha
= w@(V“)Zdwd
= Ye(v")dca
= _¢d750¢c
=-Vr.
The minus sign in the forth line of the previous calculation appears since
the fields ¥ and v anticommute. An infinity constant is ignored. Compare

this result with result of Problem 4.37. In the similar way result CACT =
OuYysy is derived.

8.19 The Dirac Lagrangian density transforms as
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with respect to Lorentz transformations. Therefore, we have:

U(A)L(x)U~H(A)

= iU(A)(a)U~H ()" 0,U (A)tp()U " (A) — mU (A)b(a)ip(a) U~ (A)
= ih(Ax)Sy"0,S™ 1 h(Ax) — mip(Ax)SS™ p(Ax)

(A7), (Ax)y” A7, 0,1 (Ax) — W (Az)y(Az)

= iy (Az)y" 0, (Az) — mip(Ax)ip(Axz)

= L(Ax) .

——

—-

Under the parity £ transforms as follows

PLP™Y =i)i(t, —w)waﬂ%(f, —x) —
- mij(ta _m)w(tv —.’B) .
From _
VY00, = 7700 +~°7'0; = 1440,
we get
PL(t,x)P~! = L(t,—=x) .

The transformation rules under time reversal and charge conjugation in the
previous problem were found using the general properties of matrices T' and
C. Here, we use explicit expressions for them. Starting from

Tt ) =i (-t ) (8.41)
we obtain
Tt )T = Tl (t, )T g
= it (—t,2)(¥*) (v} (1°)*
= _i’@[;(_tv m),yB,\/l
Further,
L = —i(—t, )’y () Y O (—t, @)
— map(—t, )V’ Y (—t, T)
Applying

the anticommutation relation among y—matrices and introducing derivatives
with respect to new coordinates t' = —t, ' = x instead of the old ones gives
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T‘CT_l = HZ)(_ta m)fy“(?;@[;(—t, :13) - qu[;(_t7 5'3)7/)(—15’ m)
=L(—-t,x).

The transformation law for field ¥ under charge conjugation

CpaC™ " = 1(7)art]
induces -
CvaC™' =i (*7)ba
Then Lagrangian density transforms as

CLC™ = —pe(V2 ") a0l + mapy (V277 )at] -
Since
VY0200 = (=7°00 + 7101 = 4?02 + 7 0s)0
then the kinetic term becomes
—itpe [—7°80 + 7' 01 — 7?02 +v°05)] , ta -
In the Dirac representation of y—matrices the following relations are satisfied:
()T =1 O == A)T=2 0T =7,
and the kinetic term is
e (V') calptha = —i0u Pyl tbe -

As in the previous problem we anticommute the fields ¢ and v, and ignore
the infinity constant 6(* (0). At the end we obtain

CLC™! = —id,hyHh — mipy)

which is the starting Lagrangian density up to four divergence.

8.20 From
S(A)o,, STHA) = AP A L0,y (8.42)

follows
UMNT,, U (A) = AP A7 T, (Ax) (8.43)

and therefore 7),, is a second rank tensor. Under parity the transformation
rule is:
PTOi(t,(E)P_l = —Tol‘(t, —:13) s

PTy;(t, )P~ ' = T (t,—x) .

Charge conjugation act on a T}, tensor according to

CT(z)C ™t = T, (x) . (8.44)
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In order to confirm the previous result you should to prove that
C 10, C=—(ow)" . (8.45)

The identity
TouT ! =—(")*, (8.46)

can be derived easily. Consequently,
TTOi(t, w)T71 = Tol‘(—t, w) ,

Tt x)r ! = =Ty (—t, ) .
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Canonical quantization of the electromagnetic
field

9.1 The commutator is
y i d3kd3q y
[AR(t, x), A” (t,y)] Z (2m)? /2 " wqef\”(k)ex(q)
)\7)\/ \/ kWq

« ( a}\, l(k-m—q-y)
~ [ax(k), ax(a)le *l“““'y)) .

Using the commutation relations (9.G) as well as completeness relations (9.D)
we obtain

u i __ i W/ 3 (@—y) | oik-(y—a)
[A¥(t, x), AY (t,y)] 2(27r)3g d k( +e )
= —ig"d®(x —y) .

9.2 Using the commutation relations (9.G) and the completeness relation
(9.D) we get

3
D = (400 A )] = 0" oy [ (O =)

In order to calculate the integral (9.1) we shall use spherical coordinates (using
notation zg — yo = t,|x — y| =)

1 oo us
iDM (x — y) = —gM” kdk 0 si
iD" (x — y) g 2(277)2/0 d /0 dfsiné

™ (e—l(kt—kTCOSQ) _ el(kt—krcos&))

1 1 [ g . ) . .
_ _guu2(2ﬂ-)2 . /0 dk (eflkt(elk)’!‘ _ eflkr) + elk}t(eflk)’!‘ _ elk’l‘))
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—— 1 1 /OO dk (e~ HktHikr _ iki—ikr)

22m)%ir J_o
1
_ )
9 (=)~ 3(t 4 7))
—ig e — 2y 9.2)
2
where
1, t>0
e(t):{—l, t<0 .

0, t=20

The previous result in terms of z and y coordinates has the form

iD* (x —y) = —ig""D(z — y)

i
gW47r|:B gl (0(zo —yo — |z —y|) —d(z0 —yo + |z —y|))

= 9" elao —30)0 W (@ — y)?) .

9.3 Both the electric and magnetic fields are gauge invariants. The simplest
way to calculate the commutators is in the Lorentz gauge. The first commu-
tator is

[B' (), B (y)] = 9,05[A" (), A° (y)] + R0, [A" (), A (y)] ,  (9:3)

where we used relation between the electric field and the electromagnetic
potential:

0A

E=-VA° -
v ot

Using Problem 9.2 we get
[E'(2), B (y)] = 1(0,0] — 6:;0702)D(x —y) .
The commutator between the components of the magnetic field is:
[B(x), B (y)] = "' eI 004, [Al (), A" (y)]

= i I™PEYY D(x — v)

= i(§¥ k™ — 5 §RINITOY D(x — )

=i(—6YA+ 0;707)D(z —y) .
In the similar way one can get

(B (), B (y)] = ie’™ 0505 D(x — y) -

Now, consider the equal-time commutators i.e. take that z° = y°. First show
that
810D(a: - y)|10:y0 = _5(3) (.’1} - y) )
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6;‘;0D(:c - y)|w0:y0 =0,
6;D(JL‘ - y)|w0:y0 =0,
G;G;D(a: — y)lmo:yo =0 5
ITITD(x — y)|pomyo = 026 (x — y) .

The easiest way to prove the previous formulae is to start with the integral
expression for D—function:

P[Pk .
Dz — 1) = — —ik-(z—y) _ Gik-(z—y))
(@-y) (277)3/2|k| (e ¢ )

The results for the equal-time commutators are:

(B (2), B (y)]|so=y0 =0,

[B(2), B (y)]|o=yo =0 ,

[Ei(z), B’ (W)]|zo=yo = —ieijka,fé(?’)(m —y) .
9.4 We shall first calculate the commutator between the Hamiltonian and
the electromagnetic potential A”(x):
1
[H, A" (2)] = -, / Pylrtr, + VARV A, A (z)]

1

— -, [ EYE Wlmal). A" + 5 ), 4 @) )

1

==y /d3y5(3) (x —y) (ﬂ'”(y)(_i)gz _ igwﬂu(y))

= ir"(x)
= —i0°A” .

The commutator between three—momentum of electromagnetic field and elec-
tromagnetic potential can be calculated in the similar manner

(P @) =~ [ Yo, m). A7)
—-ig” [ @ys (@ - oA, ()
— _i0'AY(z) .

9.5 The helicity of the state e‘(‘ i)(k:) is determined under the rotation for
angle 6 about k/|k| = e,—axis. Namely,
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€, = A(0)ex
1 0 0 0 0
| 0 cosf sinf 0 1/\/2
T 10 —sinf cosf 0 +i/v/2
0 0 0 1 0
0
wio | 1/V2

+i/v/2
0

— ot

From the last line we can read off that helicity is A = £1. Polarization of these
photons is circular.

9.6 The four-momentum of the photon for observer S is

¥y By 00 k kv
o AR LV _67 Y 0 0 0 _kﬂ7
RE=ALE = 0 10 0| 0

0 0 0 1 k k

Under the Lorentz transformation the polarization vector e*(k) transforms as
eH(K) = AL e” (k) —ia(K)k™ .

The second term comes from the gauge transformation of the electromagnetic
potential; a(x’) is an arbitrary function of the momentum. This term can be
easily obtained by substituting

1. !
Alp, — elu(kl)eflk T ,

and o
A(x') = ae” %

in the gauge transformation rule
AR = AL O A2

If we choose the function a = i8/k we get

Note that the vector € is orthogonal to the photon direction of motion k'/k’.
This was a condition to determine the function a(k’). Thus, the polarization
of photon is transversal for both observers.
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9.7

(a) In the first step use the commutation relations (9.G) to derive the expres-
sion:
las(k) — ao(k), as(a) — ao()] = 0.
From the previous result it is not hard to show that (@, |®,) = dy0.
(b) There are only two terms in the expression (®| A* |®) which are not equal
to zero:

(D] A* | D) = C§C (Do| A* |P1) + CoCT (P1] AF |Dp) .
It is easy to see that

3
(@] A" '451):_(27:)3/2 ¢d2|12: | f(k)e—ike (670)<k)+673)<k)) .

By applying the relation
1 p R
oy (k) + e R) =0
we get
(P| A* |P) = oA

where A is given by
i A3k : .
A=— lo/46e; k —ik-x —C\CF F* (K ik-x )
(277)3/2/\/2|k3||k:|( 0C1f(k)e 0CT f* (k)e™)

9.8 The quantities defined in this problem are projectors on massless states
with the helicities £1 and 0. Let us first calculate PP, :

EFEY + kVEF kyky + Kok,
k-k k-k

kMg + Kokt

B k-k

= Pﬁl )

v
Pj_L Po1 =

since k - k = 0. The other expressions can be evaluated in the same way. The
results are:
P#UPDJ:Pgl'La P#y+Pj_Ly:g#y7

9" Py =2, ¢"™Ps =2, P,P{"=0.
9.9

(a) The components of the angular momentum M% were calculated in Prob-
lem 5.18 using the Nether technique. It follows that (in the Coulomb gauge)

Jl = ¢lid / P (Ain+xiAk8jA’“> .
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(b) The spin part of the angular momentum is
Sl = ¢l /d3sr:Ain :

By substituting the explicit expression for the electromagnetic potential
we get

AN
— (k) (k) : ar(k)ay (k) : +€ (k) (K)ay (k)ax (k) +
+ & (R)el (~k)a) (R)ay, (~k)e™ ) .

The first and the last term are symmetric under the change of indices 7 and
7, so that the multiplication by the antisymmetric e symbol give vanishing
contribution. Then:

S = Z / &k (ex (k) x ex(k)) (ai\(k:)a,\/(k:)—at\,(k:)a,\(k)).

)\)\’

By using €1 (k) x e2(k) = k/|k| we get

szi/d%':' (a;(k)al(k) —a;(k)ag(k)) .

By using the operators a4 (k) which were defined in the problem, the spin
S becomes diagonal

S = /d3k|:| (al(k)aJr(k:) -

+

a_(k)a,(k)) .
From the previous result we conclude that the operator

A= [ @k (o (0)as (o)~ o (R)a-(k) .

is the helicity.
(¢) By applying the commutation relations (9.J) we get

[a (k) as(q)] = —6@) (k — q) ,

from which we have
Ad,(q) |0) = [4,a’,(g)]0)
— = [ @5k~ @)al (k) 0

= +al(q)]0) .
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(d) The commutator between the angular momentum and the electromagnetic
potential is:

L, A™ (¢, 2)] = € / dy [A(ty), A" (t.2)] A'(t,y) +
+ Y (A"t y), AT (L, )]0 A (¢, y)
- / By, @~ y) (A () + 04 (1)

= /d3 /d?’kelk (@-v) <5nm— kklz )

(%A (t y) + ' At y)) (9.4)

X

The term which contains k"k™ /k? is equal to zero:

/ d’y / er" k’; k@) (A5, + 497 A™)

_ o gm
= 3 3 Ly 197 AT : ik (z—y)
/dy/dk(A6m+y8A)k2(1ayne ). (9.5)

Integrating by parts in (9.5) we get that it vanishes. Then from (9.4)
follows o
[Jl7Am(t7w)] =iemiAl 4 i(r x V)lAm .
9.10 The electric field is
2
Z iwk@\(k) (aA(k)e_lk'x — CL;

A=1

:/\/2:1237:3% (k)eik.z) ’

while the magnetic field is given by

+

(a) The vacuum expectation value of the anticommutator between the electric
and the magnetic field is

OI{E™(z), B"(y)} |0) = (O E™(x)B" (y) [0) + (0| B" (y) E™ (x) |0)

2 2

3 3
- / % d'kd’q DY wrel (k) (g x ex (@)

2m)%\fwkq $ 52

X (<0lax< Jal, () [0) e~ =9V 4 (0] a (q)al (k) |o>eik-mq-y)

d3k . )
_/ ZGA )(k x €x(k))" (e—1k-(z—y) _|_e1k-(fc—y)> . (9.6)

By using
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2

Z e”ijkieg\(k)e’f(k) = mimpi
A=1

the formula (9.6) becomes
A3k
(27)?

The result can be rewritten in the following form:

OB @), B W)} 10) = [ 6o B emhd (e e b

9 3
(O[{E™ (), B" ()} |0) = ™™ axiaxj / 2(d ;

27T)3(.d}~C

x (efik«wfy) i eik»(wy))

L m O0? 1
=—__ eim . : (9.7)

272 0x°0x (x — y)?

The integral in the first line was calculated in Problem 7.14.
(b) As before,

2
&’k Z(k x ex(k)) (k x ex(k))’

27)3wy, —

OB @. B = [,

x (efik-wy) +eik.<%y>) ,

Since
(k x ex(k))'(k x ex(k))) = emnePikmiPey (k) (k)
A=1
_ 6imnejpnkrnkp
= (k%6 — K'R7) .
we have

0] {B'(2), B (1)} |0) = / (25— L)

( (z— y)+elk (z— y))

1 0? . 1
YN
o2 ((%claxﬂ 49 > (x—y)?

(c) This expectation value can be obtained in the same way as the previous
ones. The result is

2 2
(0] {Ei(x),Ej(y)}|0>=—271T2 <_a(20) 5ij &v?ﬁﬂ) (x—ly)2 . (9.8)



Chapter 9. Canonical quantization of the electromagnetic field 187

9.11

(a) The vector potential A can be decomposed into parallel and normal com-

ponents:
A=A, + A”.

The normal component of the vector potential is along the z—axis, while
A is parallel to the plates. In the Coulomb gauge (A° = 0, divA = 0)
the electric field is 54

B=-"0

Since the plates are ideal conductors, the parallel component of the electric
field and the normal component of magnetic field vanish on the plates, i.e.

oAy _ oAy _, ©9)
at z=0 a at z=a a ’ .
B.limo = B.|:—q = 0. (9.10)

The vector potential A satisfies the equation

62
(% - 2)a-o.

If we assume that a particular solution of this equation has the following

form
A = F(t, Z, y)(Zl(z)el + ZQ(Z)ez + 23(2)63) s (911)
then we get:
d>Z;
52 +k3Z; =0 (9.12)
and

0?2 9* B
<8t2 C 0z 9y?

The solution of the first equation is

+%>F:o. (9.13)

Z; = a;sin(ksz) + b; cos(kzz) .
The boundary conditions (9.9-9.10) give by = by =0 and ks = nn/a (n =

0,1,2,...). A particular solution for the function F is F' = e~ iwttikiz+ikzy
Inserting it into (9.13) we obtain

2
w=twg, = :i:\/k%—i—k% + (mr) .
a

From the Coulomb gauge condition follows that as = 0 and

ia1 k1 4 iagks — nﬂbg =0
a
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for n # 0; obviously there are two independent states of polarization,
unless n = 0. For n = 0 polarization vector is ez, and there is only one
mode. Thus, a particular solution is

A = F (¢ sin(nwz/a) + bges cos(nmz/a)) |
where € belongs to the xy—plane. Then, the general solution reads:

2

4= / [a)\(k.17 k?a n)e_iwk‘7’t+ik1m+ik2y
Sy

X (sm(mrz/a)eu(k, n,\) + cos(nmz/a)es) +
+ a;(k]J k2’ n)eiwk,ntfiklwfikgy
x (sin(nrz/a)e|(k,n,\) + cos(nrz/a)e.)] +
k1 . . .
—lwgt+ikix+ikay
+/ o \/ka [a(kl,kg)e +
+ CLT (kl, kg)eiwkt_iklz_ikzy]eg s (914)

where wy, = \/k? + k3.
(b) The canonical commutation relations have the following form

[ax (K1, ko, n), al, (K, kb, m)] = Gpmdand(ky — k)3 (ko — kb)
[a(kla k2)7aT( /1a kl?)] = 5(k1 - kll)d(kQ - kl2) )
while the other commutators vanish. The Hamiltonian is given by
o) 1 2
H= /d2kz S g Dolah (k. mhax (k. . m)
n=1 A=1

+ ax(ky, ko, n)a;(kla ka,n)]
1
+, /kowk[aT(/ﬂth)a(/ﬂhkg) +a(ky, k2)al (k1, k2)] . (9.15)

(¢) The energy of the ground state |0) is

(0] H [0) = ZZ/ko Whon (0] ax (k1. b, m)al (ky, Kz, ) [0)

n=1\=1

+ /d?k o (0] alky, ka)a® (kr, k) [0)

= Z /kowk n25 /kozwch

Since
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dzdy . 24
5(2)(0) — / (27.[.)26191 +ikoy

L2
k=0 N (2m)?

we have

- /d2 <22\/k2+k2 m) \/k2+k2). (9.16)

(d) The vacuum energy of the same part of space in the absence of the plates

is given by
1 [ L?d%*k [ adks 9 19 . o
Fo = 2/ o / 2\ K+ 15 + K3
242
:/Ldk/ dn\/k2+k2 m)
Then € is

_1/°°kdk
“Tol, o

The last integral can be rewritten as follows

k+2§\/k2+ ("J)Q—z/ooodn\/ku ("aﬂﬂ .

(9.17)

2

6:52;3/0 du<\/u+2;\/u+n2—2/o dn\/u+n2>, (9.18)

where a new variable u = a?k? /72 was introduced. After the regularization
€ takes the form

2

¢ T /O <\/uf +QZ\/U+ 2f 7T\/u-‘rn2)

8a3
_2/0 dnv/u + n2 f( 7r\/u+n2)> , (9.19)
and becomes finite. If we define a new function
P = [~ auvur sV,
€ becomes

€= 83< +QZF —2/ dnF(n ) (9.20)

To calculate the previous expression we will use the Euler-Maclaurin for-
mula:
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1

G BE O+

;F(n) - /Ooo dnF(n) + ;F(O) = —21! ByF'(0) —

B, By, ... are Bernouli numbers and they are defined by
y — 5 ¥
= B, .
e —1 VZ::O v!

Consequently,

7.‘.2

6 p—
4a3

It is easy to get F’(0) = 0, F"’(0) = —4. Then the vacuum energy per unit

(_ QIIBQF'(O) - i!B4F”’(0) +) : (9.21)

surface is )
B 7r
T 72008
From the expression for the energy we can derive the force:
_ Oe 2
F =90 = " 2400t -

If a = 1lpm and L = lem the force is 1078 N. The vacuum energy of the
electromagnetic field between the two conducting plates produces a weak
attractive force between them. This effect was measured in 1958.

(e) The integral I can be found in [9]:

©  kdk
I—27r/0 (k2 + m2)e
_ ey 1 (9.22)

Then

oo

1

s ()

L2 2 (27T)2 1—0 (kQ +/J’2)_1/2
o <“m<u2>3/2+2”3i”3>
127 \ p—0 as =

7T2 > 3
=~ 3 Zln . (9.23)

(_1)1+an
1 — =
ca-my= "0
follows that ((—3) = 1/120 since By = —1/30. Finally, we get the same

result as before

From

FE 2

L2~ 72003
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Processes in the lowest order of the
perturbation theory

10.1 The transition probability is

2MmAMBMCMpD

2, 10.1
vig, e e ™M (10.1)

|S5]% = (2m)*[6 (P} + ph — p1 — p2)]
The square of the four-dimensional delta function is

5 (pr — p)I* = 6@ (pr — p)6'(0)

T
1 2
_ (4) . 3
(271')45 (pe p,)/vd w/gdt

= om0 =) (10.2)

where: p; = p1 + p2 and pr = p} + ph are initial and final four-momentum
respectively. The differential cross section (10.D) is

ISP 1 viaipiaeg

do = 10.3
7T T T (@2n) (10:3)
The current density flux, in the center—of-mass frame is
; lp1|(Ey + E)
Jin| = = 10.4
Fial = oyl = P10 (104)

By substituting (10.1), (10.2 ) and (10.4) into (10.3) the following formula is
obtained

1
Ao = gr 2O} + By = By = E2)i 0+ 2 = 1 = po) MP

mampmcmp

d3p’ d3p! . 10.5
By + BB By, PP (10.3)

By integrating over p}, we get
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do
= / \/p +mc+\/p1 +m? — By — Eo)|M[?

. mampmcmp pZdp)
(Br+ Eo)E{E)  p

where the fact that we are doing calculations in the center—of-mass frame
have been used. By applying formula

/dxg(x)d(f(z: |f<(x))’ ~ (10.6)

the requested result is obtained.

10.2 Four—dimensional delta function and integration measure are Lorentz
invariant quantities (Problem 6.3) so is the given integral. In the inertial frame
in which P = 0 the integral becomes

1 d3p d3q
\/pQ +m? \/qz +m’2

By integrating over g in (10.7) and introducing spherical coordinates we obtain

I= @ (p+q)d(E, + E, — P°) . (10.7)

o0 1
I:w/ 2d ) 2 4+ m2+/p2+m2—P% .
0 b p\/p2+m2\/p2+m’2 (Vp v )

By applying the formula (10.6) one gets

T (mQ —m'2 — P2)2
I= 0 —m2
P \/ AP2 i

10.3 The Feynman amplitude, iM is a complex number so that

(M) = <iM>* = (a(p, )yu(1 — 75)ulg, 5)) e (k, \)
u' (g, 8)(1 = 75)7°7u7 "y u(p, ) (k, \)
- U(q, )( + 75)7#”(1)’ T)GM*(k7>\) 3

where identities from Problems 3.1 and 3.3 are used. The average value of the

squared amplitude is (a, b, ... are Dirac’s indices)
2 2 2 2
DD IMPE=30 (e )l —v5)lavus(a, s)
A=1r,s=1 A=1r,s=1

X Ue(q, 8)[(1 +v5)]caua(p, r)e" (k, A)e™ (k, A)

(Z ua(p, )ita(p, r)) (1 = 75))ab

r=1

(Z Ub(qu)uc(q,s)> [(1+75) e D € (R, A)e” (K, )
s=1

A=1

X
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By applying expression for the projection operator into positive—energy solu-
tions (Problem 4.4) we have

S ME = (“m)damu—wab

2m
A=1r,5=1

X

2
<q N m) . [(1 + '75)'71/]011 Z ep’(k, )‘)GV*(k7 )‘)

2m
A=1

1 & .
= g2 22BN Y
x tr[(p+m)vu(1 —5)(d +m)(1 +75)%] -

Using the facts that 75 anticommutes with v# matrices and that (y5)? = 1,
the last expression becomes

2

2 2
A=1r,5=1

By applying the corresponding traces form Problem 3.6 one obtains

2
2 .
DD IMP = [t + putu — (0 D)9 + icovsua” D]

2
XY ek, N)e* (K, ) - (10.8)
A=1
To sum over the photon polarizations is reduced to replacement

2
> ek, N (k,A) — —g" (10.9)
A=1

Because the other two terms in (9.E) do not give any contribution, the result
is 4p - q/m?>.

10.4 In the first part of the Problem we shall apply Wick’s theorem for bosons
and in the second part we shall make use of the Wick’s theorem for fermions.

(a) It is clear that all normal-ordered terms fall off, because their vacuum
expectation value is equal to zero. Thus the only remaining terms are
those with four contractions. If we contract one ¢(x) with one ¢(y) four
times we shall get ((0| T'(é(z)$(y)) |0))*. This can be done in 4! = 24 ways.
The next possibility is to make two contractions between fields ¢(z) and
¢(y). One field ¢(x) can be contracted in 4 ways with one of the ¢(y)’s
The next ¢(z) can be contracted in three ways with one of the remaining
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o¢(y)'s . The obtained result has to be multiplied by 6, because this is
the number of ways in which two fields ¢(x) can be chosen from the four
possible. Thus, there are 4 - 3 - 6 = 72 possible contractions of this type.
There are three mutual contractions between two fields ¢(z), the similar
is obtained for fields ¢(y), so the corresponding coefficient is 9. Thus,

(01 T(¢* ()" () 10)) = 24({0] T(¢() (1)) |0)*
+ 720 T(4(x)p(x)) |0) (01 T(d(y)b(y)) [0) (0] T(¢(2)(y)) |0))*
+9((0] T(6(x)d(2)) [0))* ({0 T (6 (y)b(y)) 0))*
= 24(idr (v — y))* + T2(14r (z — 2))iAr (y — y) (Ar (2 — 1))
+9(i4r (z — 2))*(14p(y — y))* .

The last expression can be represented by the following diagram:

g

+9- =z Y

(b) Here, the equal-time contractions are forbidden. The result is

T(: ¢*(x) = ¢*(y) 1) = 16 : ¢*(2)¢”(y) : iAp(z — y)
+72: % ()8 (y) : (1Ar(z —y))?
+ 96 : p(x)¢(y) : (1Ar(z —y))?
+ 24(iAp(z — y))* . (10.10)

(¢) By applying Wick’s theorem for fermions one obtains

O T (sh(x)1h(x)1 (y)b(y)) 0)
= 1Sp(z — 2)iSr(y — y) — iSr(z — Y)iSk(y — 2) .
10.5

(a) The given diagram is obtained from the expression

[t 06 ote)s W) o)

where ¢(x1) is to be contracted with one ¢(y) (there are four ways to do
this) and ¢(x2) with one of the remaining three ¢(y)’s. The symmetry
factor is i!4 3= ; This result can be easily checked by using the formula
given in the problem, where g =1, =0 and 5= 1.
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(b) This diagram is one of the terms in

1

2! <_3> /d4y1d4y2 (0] T(¢(x1)p(x2)0" (y1)9" (y2)) 0)

where ¢(x1) is contracted with one of the four ¢(y1)’s (there are four ways
to do this); ¢(x2) with one of the remaining ¢(y1) fields (there are three
ways to do this). It is necessary to make two more contractions between
¢(y1) and ¢(y2) which can be done in 4 - 3 = 12 ways. Thus we have:

2
1 /1 1
-1 _ 9| .3.4.3 =
S 2.2!(4!>4343 4

so the symmetry factor is S = 4. The same result is obtained by plugging
g=1,as =1 and B =1 into the formula given in the problem.

(¢) In order to get this diagram it is necessary to make the following contrac-
tions in this third—order expression:

1

N
o () [t 01T ()66 (1) )0 ) [0)
(10.11)
@(z1) with one of the four ¢(y1)’s (four ways); ¢(z2) with one of the
remaining ¢(y;) fields (three ways); two ¢(y1) fields with four ¢(ys2) fields
(4-2 = 8 ways); the remaining ¢(y1) field with ¢(y3) fields (4 ways); three
contractions between three ¢(y2)’s and three ¢(ys) fields (3 -2 = 6 ways).
Finally, one has to divide the obtained expression by two, because of the

symmetry yo <> y3. By combining all the factors we have:

1/1\° 1 1
S‘1=3!3! <4!) 4:3:4.2:4:3.2. =, (10.12)

so S = 12. This result can be checked by applying the formula given in
the problem: g =2, n=3, ag =1, 3=0.

10.6 The result is

. 2
: <_31!A> [t 01T (@(1)6(2)6* (06 (02)) [0) =

= /d4yld4y2(—i/\)2 BiAF(xl — y1)iAp (22 — y2) 1A (41 — y2))?

—

+ QiAF(xl — 22)(1Ar (y1 — y2))*

+ JiAp(z1 — 22)iAr(y1 — y1)iAr (Y2 — y2)iAr(y1 — y2)

+ iAp(z1 — y1)idr(z2 — y1)iAr(y1 — y2)iAr(y2 — y2)

+ iAp(x1 — y1)iAr (22 — y2)iAr(y1 — y1)iAr(y2 — ¥2) (10.13)

S = N =00
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which can be represented by the following diagram:

I

yl@ v Y

% _|_1. —4 )
4 y1 yg
.’L'l 1'2
Y

The coefficient ) in the first term (10.13) can be obtained in the following
way: contraction ¢(x1) with ¢(y1) can be done in three ways, as well as the
contraction ¢(x2) with ¢(y2). Two contractions ¢(y;) with ¢(y2) can be done
in two ways. The obtained result has to be multiplied by 2! which comes
from the interchange y;—vertex with yo—vertex, because, for instance, we could
contract ¢(x1) with ¢(y2) instead of ¢(y1). Thus, the overall coefficient is

Lo

13-3-2 1
2= _ . 10.14
2 3!-3! 2 (10.14)

In the second and third term there is no additional multiplying by 2 which
comes from the y; < y interchange!

10.7

(a) Diagram for this process is represented in Fig. 10.1.

q1 q2
1+ D2
y41 P2

Fig. 10.1. The tree-level Feynman diagram for the scattering = (p1) + u* (p2) —
e (q1) + e (q2)
The Feynman amplitude is given by the following expression
M= e syl atar. (e, o)
1 = . v(p2, )y u(p1,T)ulg, T )Yuv(q2,S ) ,
(p1 + p2)2 + 1€ w

hence



Chapter 10. Processes in the lowest order of the perturbation theory 197

4
(IM?) = i Z Z V(P2 5)yhyun(p1, 7)
pl +p2 r,s=1r/s'=1
X Te(q1, ") (V) eava(qa, 8" )ae(p1, 7)VE v s (D2, 8)
X ag(qQ, S/)('Yu)ghuh(ql, T/)
4
&
— M
= 4oL+ o) 42 (05 (P2, 5)Ta (P2, 5)) VL,
< X (unlps el 7)) 0

X Z (un(qr,r Uc(‘]h )) ('Yu)cd
X Z (va(qz, s Ug qz,s )) (’Yu)gh

By performing matrix multiplying in the preceding expression we obtain
two traces (Problem 4.4)

et 1
t e - e) v
A(pr + p2)* 16m2m2 r{(dr + me)vu(de — me) v

x tr[(p2 — mu )V (P1 + mpu)"] -
By applying corresponding identities from Problem 3.6 we get
p1 + p2)* mZm?

(IMP) = :

x [pips + phpt — (p1 - p2)g™ —mig™] .

After multiplying and reducing the preceding expression one obtains

(IMP) =

e

(@1 420 + G210 — (1 - @2)Gpw — MEgyu)

4
e
M|?) = 2(ps - . (e - )
(IM[*) 4(p1+p2)4m§m3[ (p2-q1)(P1-q2) +2(p2 - 42)(P1 - 1)
+ 2mZ(p1 - p2) + 2mi, (a1 - g2) + 4mZm] (10.15)

In the center—of-mass frame the four-momenta are

p1 = (anvoap) )
p2 = (E70707 _p) 3
¢1 = (E,qsin6,0,qcosb) ,
q2 = (Ea _qSinea 07 —qcos 0) )

where p and q are intensities of the corresponding three-momenta vectors.

After simple scalar product computations in (10.15) one gets:

64 4 2,2 2
16 Em2m?, 5 [(BE*+m?m?)(1+ cos” 0)
+ EQ(me +m?)sin’ 6] . (10.16)

(IM]?) =
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In the high energy limit (p &~ E) expression (10.16) becomes

el

(IM?) = 16m2m? (1 + cos? ) . (10.17)
Using the previous expression and Problem 10.1 the differential cross sec-
tion is
do et
d2  256m2E?
(b) We shall discuss just the main results. From the diagram

(1+cos®0) .

P2 az,

P1—Dp2
p1 q1

Fig. 10.2. The Feynman diagram for the scattering e~ (p1) + u*(q1) — e~ (p2) +
ut(g2) in the lowest order

the amplitude is

—ig,u

p1—p2)? + Olau s1)(ier”)v(gz, s2) -

iM= ﬂ(pg,rg)(ie’y“)u(pl,rl)(
The squared Feynman amplitude module (averaged over spin states of the
initial particles and summed over spin states of the final particles) is:
(IM*) = i o (2 + me)y" (1 + me)y”]
4(p1 — p2)* 16m2m? ‘ ‘

tr (g1 — )7 (de = mu) ]

64

~ 2(p1 — po)tm2m? [(p2 - q1)(p1 - g2) + (P1 - 1) (P2 - ¢2)

— mg(p1 - p2) —mZ(q1 - g2) +2mZmg]

X

Finally in the center—of-mass frame (in the high energy limit) we have:

(IM[?) = et 4+ (14 cosf)? . (10.18)

~ 8mZm? (1 —cosf)?
The differential cross section in the center—of—mass frame is:

do et 4+ (1+cosh)?

A2~ 12872E2 (1 — cosf)? (10.19)

Note that for § =~ 0 differential cross section diverges. This is a consequence
of the fact that for these angles the prevailing contribution in the expres-
sion for iM comes from the virtual photon (this contribution is actually
divergent because k? = (p; — p2)? = 0).
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10.8 The Compton scattering is the process e”y — e~ ~. In the lowest order
contribution to this scattering is given by the following two diagrams:

p/ k' p/ k'
k P k
so that the Feynman amplitude is
M = (g ) e e (K X) K e e Ml o)+
ol N[V i(]é_k/""m)-u*//
+a(p', s")(iey")ev (k, A) (p— k)2 — m? (iev")e;, (K", X)u(p, s)
.2 % 1 oN\/ — 7#(]A+}é+m)7y
= —ie“e, (K', A Jeu (k, N)a(p’, s") [ (p+ k)2 — m? +
V(=K +m)y
+ (p— k)2 — m? u(p, s) . (10.20)

As we see the Feynman amplitude has the following form
iM= i/\/l‘“’e;(k', Ne, (kA -
In order to prove the gauge invariance of M it is enough to show that
MMk, = iM’“’k; =0. (10.21)

First we prove that iM*k, = 0. In the second term in (10.20) we will use
p—k' =p — k. Hence

YR + f+m)y” N V(P = k4 m)yt

: MY 5200 o
iM ie*a(p’, s") (p+ k)2 — m? (v — k)2 — m?

u(p, s) .

(10.22)
The numerators can be also simplified using:

(# +m)y"ulp) = (V'pu +m)y ulp) = (26" — v"v*)ppu(p) + my"u(p)
= 2p"u(p) — 7" (¥ — m)u(p) = 2p"u(p),

and similarly
a(p')y” (p +m) = 2p"a(p’) . (10.23)

After performing these two simplifications iM*"k, becomes
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N o YEEYY A 29MpY VR 4 290
iM*k, = —ie*k,u(p’,s') [ 2k —op K (p,s)
YE2 4+ 29Mp -k =Py 4 29Mp K

2p'k _2p'k/ :|u(p’8):07

= —ie?a(p’, s') [
where we used p* = m?* and k* = 0. The second condition iM*k/, = 0 can

be proved in the same way.

10.9 The initial state, |i) = ¢' (p;,7) |0) is the electron with momentum p; and
polarization r, while the final state in the process is the electron with momen-
tum pr and polarization s, i. e. |f) = ¢’ (py,s)[0). The transition amplitude
matrix element is:

Su =i [ d'a {1 Sa)b(o) ) A*(x) (10.24)

where ¢ and v are field operators and A" is a classical electromagnetic field.

(a) From (10.24) one obtains

Sp = iea\/ETV \/ETV /d‘*:vﬂ(Pf,S)Vou(lf%r)e’ip‘'7”+if’f*‘”e”‘”‘2fc2 :

(10.25)
Because of
/dgmefk;szJri(pi—pf).m _ ( 71-2)3/2 o pip)? R
k )
we have
m m T 3/2
S =1 ( ) 2w6(E; — E
i lea\/EiV\/EfV 2 mo( £)
_ (pi—pp)?
X e 4K2 a(pﬁ S)’You(pi, 7’) . (1026)

Delta function which appears in the transition amplitude (10.26) indicates
on the energy conservation law, which is satisfied because potential A*
does not depend on time. As three—space is inhomogeneous (the potential
depends on ), the three-momentum is not conserved. The average value
of the squared transition amplitude is obtained from (10.26)

1 e2m2a? T\3
2y = 9 TS(E; — E ( )
{Sa1%) = 5 v, 2700 D {2
_(Pi_Pf)2 2 2
xe m Y fupe, s)you(pi )] (10.27)
r,s=1

Because of
(@(ps, s)you(pi, )" = a(pi, m)you(ps, s) ,
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we have:

(Ua(pf7 S)ﬂb(pf7 S)) ’71(7)(:

B

2
Z Pf7 ’VOU pi, T )l =

%
Il
-

(ue(Pi, 7)Ua(Di, 7)) Vaa

M

i
I
-

2 L+ m)Y° (i +m)n"]

= BE +pptm?). (10.28)

HSH

By plugging (10.28) into (10.27) one obtains

e2a’m T3
(I581°) = V2E, E; (k2) To(E: - Ex)
(p;j—p. )2
X e a2 (E;E¢ + |pil|pt| cos 6 +m?) . (10.29)

By substituting (10.29) into the expression for the differential cross section,

do — |Sa|? VE, Vdps

T |pi| (2m)3 "~
one gets
e?a’n
do = 8k (EiEx + |pil|pe| cos 0 + m?)
— 0
X exp (—|pi|2 k‘;‘)s ) (B — )||pf|| dEd2 .

The FEf—integration gives

d 242 —cos
d;:682W(E2+|p1|2CO59+m) _|p21k26
(b) This problem is analogous to the previous one, so we shall discuss only the

main steps. The transition amplitude is:

2iegm 2r 3
Sg = — 2m)6(Er — Ej; u(pg, $)Y u(p;,r) ,
i V\/EiEf( )6(Ek )q2+;2 (pr, s)y u(pi,r)
where ¢ = pr — p;. The next step is to calculate the squared amplitude:
e 1
3 I uton ) = ot G+ )y

1
= 2 (20pi 4+ pipe —m?)

1
2 (F;Es + |pi||ps| cos§ — m?) .
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The average value of the squared transition amplitude is:

_ 16m3e2g%T 1

(S0 = Vapy (go.y 125~ EOUREL+Ipilp sind =)

The differential cross section is:
do 9624° (E? —m?)(1 + cos )
= 2e .
ds2 (L+2F2-m?)(1 —cos@))2

10.10 The initial state is vacuum |0), while the final state is

) = ¢ (p1,7r)d (p2,5)|0) .

The transition amplitude is

_ e 4 3 .3 m m
si-y 00X [Cadan |11 0l et

t i — iq1-z+iqa-x
x (¢ (qu,7")d (g2, 8 )alqr, )" Au(z)v(ga, s )™ T2 4 ) [0)
where we have dropped the vanishing terms. After reducing the last expression
one obtains
ma . .
ie d*z 4(p1, r)yev(pe, s)el P2t we—ivt
VVE, Es / (P1,7)720(P2; 5)
ma
= ie(2m)*
(2m) VVE\E,
x 1(p1,7)720(p2, )6 (p1 + p2)d(Ey + B2 — w) .

Sp =

The average value of the squared transition amplitude is

(19s]%) = 2m)*TVE®) (py + p2)d(Ey + Ea — w)

62(12
X 4V2E1E2 tr[(iﬁl + m)w (752 - m)’YQ]
2. 2
= 20" TP (py + po)d(Er + F —w) "
VE1Es

x (ELE3 + |p1||p2| — 2|p1|p2| sin® 0 cos® ¢ + m?)
since the four-momenta are:
pY = (E1,p1sinf cos ¢, p1 sinfsin ¢, py cosb) |
phy = (E2, —p2sinf cos ¢, —ps sin Osin ¢, —py cos ) .
The differential cross section is:

_ (ISa*) vdPpr Vdip,

©="7" 2n @
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By integrating over ps and p; one obtains the scattering cross section (per

unit volume)
2.2 2

e‘a”, o 9 \/ w )
= 2 — .
=g (w* 4 2m*) g om
10.11 The transition amplitude is

ieam 1

Si= VEE;

u(ps; s)ys(1 —VS)U(Piﬂ“)/d4me_ipi‘f+ipf-me—k2m2 .
By integrating over ¢t and x we get
S, . m m ( T )3/2 ,(Pi*gfﬁ
= ieqa o an
! EV\ Ev \k2

x 278(E; — Fe)u(ps, s)v3(1 — v5)ulpi, r)

The average value of the squared transition amplitude is:

e2a’m? 3 <p, pf)
(1S61%) = (o gy . 27T O(E: — E) (k2> e (IMP) |
where
(M) =) > falpr syt = o)l
- ;41 b [(f1 -+ m)a(1—7) G + m)(1+ 250

1
= 2 (20ipl +pipe)

The differential cross section is:

2,2
= e (B 4 pif cosg) e b P mees0)

10.12 We shall present the expression for the transition amplitude and final
result for the differential cross section only:

m
Sg = 1e

i (p d*2(iE 9 —ilpi—pe)w
V\/EiEfU(pas)U(pf7r)/ l'(l f)lmle )

do  e*¢?E*(E? + m? — p? cosb)
dn 2|p|4(1 — cos 9)2
10.13 The transition amplitude Sy is

S = 1ea\/VE a(pr, s¢)y u(p;, 1)/0143;5(3)(gc)efi(pifpf)-w

— ieaV\/EiEf( 7r)(5(Ei — Ef)ﬂ(pf7sf)70u(pi,si) ,
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where s; i s¢ are initial and final electron polarizations. In order to calculate
|S5|? it is necessary to compute squared spin-part of the amplitude. Since

L+ysgp+m

ulp. )a(p.s) = )T

we have

16;12 tr [(1 4 vs56e) (P + m)v0(1 4+ ¥s561) (i + m)vo]

1 2
= lem? (tr[bevorinol +m?tr[1]

tr[#spevodivino] + mtr[#evodinol) (10.30)

where we have kept only the nonvanishing traces. The components of momenta
and polarization vectors are:

a(ps, se)y u(ps, si)|?

Pt = (E;,0,0,|pi]) ,
Pt = (E¥, |ps| sin 6 cos ¢, |p| sin O sin ¢, |pg| cos b)) ,
s = (Ipil/m, 0,0, Ei/m),
st = (|pe|/m, (E¢/m)sin @ cos ¢, (E¢/m) sin @ sin ¢, (Er/m) cos 6) .
The traces in the sum (10.30) are:
tr[#eperodipine] = —4m® cosf

trl =4 |
k2 E?
tr[#ev0divo] = 4 <m2 + 2 608 9) ;

tr[pevopine] = 4(E? + k2 cosf)
where E; = Er = F while k = |p;| = |p¢|. By summing all the terms we get

_ E? 0
|a(pr, s1)y u(ps, 1)[° = m2 cos? <2> . (10.31)

The differential cross section for the scattering is computed in the usual way.
The result is:
do e?a?
dR  4x2
10.14 The amplitude for this process is (see Fig. 10.2)

E?cos?(0/2) .
: ie? -
M= k2 U(pg, T)Pyuu2(p1)v2(q1)’yuv(q27 8) )

where subscript 2 in v and v spinors indicates that these are negative helicity
particles. The squared Feynman amplitude module is
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e

(IM*) = 64mz2m 2k4tr[(ﬁ2 +me)y" (P1 + me)(L = v561) 0]

x tr[(dr —mu) (1 —vsf2)vu(d2 — mu)y"]

where we have summed over polarization states of the final particles in the
process. Here s; and s, are polarization vectors of the initial electron and
muon which are going to be evaluated later. By applying corresponding iden-
tities from Problem 3.6 and corresponding expression for contractions of two
€ symbols from Problem 1.5 we get

el

(IMJ?) = om2mk [(p2- 1) (p1 - a2) + (P2 - 42)(P1 - 1) —
- m, n(p2-p1) — mZ(q1 - q2) + 2mgmi +
+ memy, ((s1 - s2)(p2 - q2) (51-52)(p2-q1)—
(s1-82)(p1-g2) + (s1-s2)(p1-q1) —
— (s1-q2)(s2 - p2) + (s1-q1)(s2 - p2) +
+ (s1-¢2)(s2-p1) — (s1 'CI1)(82 p1))] - (10.32)
Since m,, ~ 200m,. we will neglect the electron mass. In the center—of-mass
frame four momenta are

pllt = (Ea070ap) 9
qf = (E/aovou _p) )
ph = (E,psinf cos ¢, psinfsin ¢, pcosb) ,

gy = (E', —psin6 cos ¢, —psin O sin ¢, —p cos §) .

Polarization vectors s; and sy are

E
st=("00 "),
Me Me
E/
SIQL:( P a070a_ )
my my

After finding scalar products between four-vectors in (10.32) and reducing the
obtained expression one gets

e

(ImP) = {(EE/ +p°)? = 2p*(mZ + m?.) sin’ (g)

32mZm2p* sin(9)

0
+ (BE' + p?*cos0)* + p* <4zp2 sin? <2> + EE'sin? 9)] , (10.33)
hence the differential cross section is

d 4 0
7 y {(EE' +p°)* = 2p°(mZ + m},) sin® <2>

A2~ 12872(E + E')2ptsin®(0/2)

+ (EE' + p?*cos6)* + p? (4p2 sin? (Z) + EE'sin® 9)} . (10.34)
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10.15 The interaction Hamiltonian is
Hip = g/d3w%5w¢ :

where the field operators are written in the interaction picture. In the lowest
(“tree—level”) order of the perturbation theory the transition amplitude is:

Sg = ;(—19)2 (p'k| /d4xd4yT{: (Pys0d) e = (bysbe)y o [pk) . (10.35)

Because of

Ve = | e

p.r10() = [/ e

from the expression (10.35) we conclude that there are four ways to make
contractions which correspond to the given process. In that way we obtain
(note that there are two couples containing two identical terms)

2

Sg = —g2 m
i V2,\/E\ BB E)

x [~k s risuth, $)a(p', 1" rsu(p, r)el@ P vHE ke

/d4xd4yiAF(x )

+ alp, 1 ysulk, )a(k', 8" )ysu(p, r)e! ' —PvHE =R (10 36)

The minus sign in the first term is a consequence of the Wick theorem for
fermions. After integrating the last expression and having in mind that

) i e—ia(z—y)
ez —y) = o1, [ dl

(2m)4 > — M? +ie’
one obtains
2 4.,2,,2
Sp=i 2( M Sk~ p— )
V2,/E\E>E} E)
1 — —
= )2 — ar2 4 1 " S vsulks s)ap’s )5 u(p )=
1

T — k)2 — a2 4 i P T vsulks s)u(k', ssu(p, 1)

Feynman diagrams for the scattering are represented in the figure.



Chapter 10. Processes in the lowest order of the perturbation theory 207
The squared amplitude is

(1S4} = g* @) TéW (' + K —p—k)
AV3E, By E! )
(k-k)p-p') = (k- K)m? = (p-p)m* + m4+
((p' —p)? — M?)?
L Rk ) = (p- K)m? = (k- p)m* + m?
((pf —k)* — M?)?
1

1 ’ ’
2(p/_p)2_M2 (p,_k)Q_MQRe[(k'k)(p'p)

— K)k-p)+(-E)k-p)
— (k-KYm* — (p-p")ym® — (k- p')m?
— (p- K Ym? + (k-p)ym® + (K" - p")ym*> + m*]] .

The squared amplitude per unit time as viewed from the center—of—mass frame
is:

(1S61*)  g*em)*6@ @' + K —p—k) plt

T 4V3 R4
y (1 — cos6)? N (1 + cos9)?
(2|p|?(cos @ — 1) — M2)2 ~ (2|p|*(cosh + 1) + M?)2

sin? 6

~ (2|p|2(cos B — 1) — M?2)(2|p|2(cos 6 + 1) + M2) | ° (10.37)

where By = F3 = FE{ = E} = E are the energies of the initial and final
particles. All four fermions carry the momenta of the identical intensity |p.
In the high energy limit from (10.37) one obtains

(IS6]%) _ 3¢ @m)*e@ 0/ + K —p—k)

T 16V3E4 (10.38)

The total cross section for the scattering is

// (I551*) VE va’p) vdip)
2|p1| (2m)3 (27)3
3g §(2FE —2FE") dEjd
 4n? 16F 2F
_ 39
- 64nE?
10.16 By direct application of the Feynman rules we obtain the expression for
the corresponding amplitudes. In the following expressions we drop external
lines.
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(a)
k
iM = YN\?
I e
' d4l~c g™
=(16) (27)4 (715 - m+1e%k2+ie>
(b)
k
" S—f\/\?
-
d*k diq 1 7
=1<1e>4/ / (2m)* (2m)! (W fomtie
. 1
P—k—d—mtic Tp—f—mtic
1 1
Xm‘k2+ieq2+i€)
(c)
1 AP
15 q— m+1€
1 poo 1 }
Cpkomic pom e
(d)

:“mﬁ/f§$<“J+%—;—m+“
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o P 1 1
7 ﬁ—gj—m—i—ie%qQ—i—ie

(e)
iM=
B /// d4k1 d4q d*k
N 4 (2m)4
x[ ~H
¢1+¢j m+ie ! g m+ie !
ghe g
“p- ) tie(p—q)? +ie
o« t 1 - 1 o
' }é—m—l—ieﬂy ﬁ—gj—&—}é—m—&—iev
af
g 1 s 1 Ie]
1etr<1151—|—}61—m—|—ie7 }él—m%—ie,y >}
()
p
—iH’“’(k):’\/\/\.Qf\/\ﬁ
k =k
d*p 1 1
— (1 2 v i
= (i) /(zw)4tr[;s—;é—m+iﬁ ;s—m+iﬁ]
(g)
s — — (_; ny _igup o po
(h)
b p+gq
p+q—k
d*p d%q 1
A N4 o
S o PR
y 1 » 1 o
75+¢j—}{7—m+167 ﬁ-i-ﬂj—m-i-iefy
1 Gpor
N P
% jﬁ—m—kiev}q?—t—ie
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(i)

P—q1 Jq1

iM=p—Fki—k p

kig p— kl kl

. d4p 1 M 1
:_mf/@mﬁﬁﬁ—h—m+k7ﬁ—h—h—m+k

% ~° 1 P 1 v
Tp—di-mri pomric!
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Renormalization and regularization

11.1 In order to prove the Feynman formula we shall use mathematical
induction. For n = 2 we have

1 1
1
I, = dz drod(zr; + 22 — 1
2 A 1/0 2 ( 1 2 )[$1A1—|—$2A2]2
! 1
:/ d$1
0 [$1A1 + (1 —331)142]2
1
= aa (11.1)

By taking n-th derivative of (11.1) we get the useful identity

1 1 1 nynfl
= -1 . 11.2
g = [, o [ awary-n " (11.2)

Now we shall assume that the Feynman formula is valid for n = k& and show
that it holds for n = k 4+ 1

1
Ay Ay A

(k —1)!

1
= dzy..dzpd(z1 + ... + 2, — 1
/O zZ1 Zk (21 Zk )[zlAl +o+ ZkAk]kAk—i-l

1
= / dzy..dzpdy k1d(z1 + ... + 2 — 1)
0

k—1
Yy
X . 11.3
[yZlAl + ...+ kaAk + (1 — y)Ak+1]k+l ( )
By using substitution =1 = yz1, ..., xx = Y2k, Tr+1 = 1 —y and a well known
property of the —function

1
lal

d(ax) o(x)

we obtain
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1

A AgApss /d$1---d$kd$k+1 0wy + oo + ) + Ty — 1)

k!

x (2141 + ..+ Tppr Apa [P (11.4)
which concludes the proof.
11.2 By introducing a new variable ¢ = k + p, the integral I becomes
I= /qu ! . . (11.5)
(¢* —m? —p* +ie)"

If we do a Wick rotation to the Euclidian space, ¢° = ig%, g = gg, the integral

I becomes ]

I=i[d” : 11.6

/ B (g —m? = p2 e (11.6)
The contour of the integration along the real axis can be rotated to the imagi-
nary axis without passing through the poles. Transition from Minkowski space
to Euclidian space is so—called Wick rotation.

The relation between the Cartesian and the spherical coordinates in the
D dimensional space is

x1 =rsinfp_osinfp_3...sinfysin¢ ,

To =rsinfp_osinfp_3...sinfy cos ¢ ,

r3 =7rsinfp_ssinfp_s3...sinfy cos by ,

rp =rcosfp_s ,
where 0 < ¢ < 27w, 0 < 6y,...,0p_o < m. The volume element, dVp is

D—2
dVp =rP~tdrde [] (sin6m)"don, .
1

Therefore
Sl T [ a6, sind T o
= 9 L (sin@,,)™ . 11.
e 1
If we use [9]
T ) 1—1 m—+1
/0 d0(31n9)m=\/7rp(mi2),

("57)

[T 2 =TG-
€z = 1+b
o (@+M)e 2M="%" I'(a)

and
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we obtain 5

I _
=iz D0 2) b
() (m?+p?)n>

11.3 As we know, the Gamma—function is defined by

F(z):/ dte =1
0

From the property I'(z) = I'(z + 1) /z follows that

n

'zy=I'(z+n+1) H
k=0

1
2+ k-

By using the definition of number e, the integral (11.8) becomes

I'(z) = lim dt #7111 —t/n)" .

n—oo 0

By introducing a new variable, ¢t/n = x the last integral is

1
I'(z) = lim nz/ de 2*71(1 — z)"
0

n—oo

= lim n*B(n+1,z)

D DI)
n—oo  I'(n+2z+1)

T+
= lim n
n—oo  z(z+1)...(z4+n)
1 . . 1
= im n ,
zn—oo  (1+2z)(1+3)...(1+7)
where we used (11.9).
Euler-Mascheroni constant, v is defined by

. 1 1 1
y=lm (1+ _+_+4+...+ —Ilnn) .
n— oo 2 3 n
Then

e 7% = lim nfe*(tatetn)

n—oo

From (11.10) and (11.11) follows

oo

1
I =e 77 .
(z) =e Z£1+Z

ez/n

By taking the logarithm of the previous formula we get

213

(11.8)

(11.9)

(11.10)

(11.11)
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Inl'(z) =—yz—Inz+ i (; —In(1+ ;)) .
n=1

Hence
dinl'(z) TI'(2) 1 /1 1
— — = — . 11.12
V(=) dz I'(z) 7 z+; ko k+z ( )
For z = n from the previous expression we get
P(n) = +1+1+1+ + ! (11.13)
n)=—vy gttt - .
Expanding I'(1 4 €) according the Taylor formula we obtain
I'l+e)=T1)+el"(1)+...
=1—ve+o(e) . (11.14)

By using (11.9) and the previous expression we have

I'(l+e)
ele—1)...(e—n)
G- e o)

nle(l—e)(1—€/2)...(1 —¢/n)

G (el

-1H" /1 1 1
_ D — Y414 _+... 4+ +o(e
n! € 2 n

_ (=" (1 +¢(n+1)+o(e)> _ (11.15)

n!

I'(-n+e¢€) =

11.4 By applying the Feynman parametrization (11.G), the integral becomes

I:/oldx/d4’“[<k+pxl>2—42 ’

where A = p?(2? — x) + m%x . By making change of variable [ = k + px and
going to Euclidian space (I° =il%, 1 = Ig) we get

1
1
I=i/ dz [ d% )
1/0 m/ P2+ AP

In order to compute the integral we introduce spherical coordinates. The an-
gular integration can be done immediately
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1 27 T T e’} 3

l

I:i/ dx/ d¢/ dé, sin91/ d9251n292/ dlg ., F
0 0 0 0 0 (% +4)?

2 ! * 22 1 2 ! 2
=i d digl =i dz |In(lg + A)[g° — 1] .
177/0 1‘/0 EE(Z%+A)2 m/o JU[H(E o ]
The previous integral diverges logarithmically. Performing the Pauli—Villars

regularization the propagator 1/k? in the integral I becomes

1 1 1
B2 k2 k2 A2

where A is a large parameter. A contribution of the second term in the previous
expression to the integral is

1
Iy = m?/ de [In(i + An)E —1] |
0
where we introduced
Ay = A2+ p* (2 — ) + 2(m? — A?).
By subtracting these two results we get

1 2,202 2 2
. A% +p*(2® — x) + x(m? — A%)
I—Ip=ir? | dxl
A 17r/0 mn( p?(x? — x) + m2x

! A%(1 —2)
=ir? [ dal )
w [ (s ) D)

11.5 The integrand is symmetric with respect to any two indices and therefore
Ioguvpo is of the form

Tapuvpe = C 9ap(9uv9po + GupGve + GuoGup)
+ 9ap(98v9p0 + 98p9ve + 9809vp)
+ 9o (98u9p0 + 98p9uo + 980 9up)
+ Gap(98u9ve + 9pv9po + 960 Gup)
+ Gao(98ugvp + 98v9up + 98p9)]

where C'is a constant. In order to determine C' we will compute the contraction
9P g g% Lo gupo - 1t is easy to get

gaggl“/gpg-[aﬁ;u/pa = C(D3 + 6D2 + 8D) .

On the other hand

dPk dPk
af pv , po _ — 15
g g“ gp Iaﬂuupd = / (kz)nfg _}LIL% (k2 _’u2)n—3
I'n—-3-7
= lim i(—1)""372 (n 2 )( 2)3_n+€

pn—0 F(?’L — 3)
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where p is a infrared parameter. Comparing these results we get

1 I'n—-3-7
lim i(—l)n73W2 (TL 2)( 2)3*71«%? .

C =
D3 4 6D2 + 8D 1i—0 I'(n—3)

Specially, for n = 5 the divergent part of the integral I,g,.p0 is

in?
Iaﬂuupa|div = 96¢ [gaﬂ (gw/gpa + Gup9vo + gp,(rgz/p)
+ gau(gﬁl/gpa + 96p9vo + gﬂagl/p)
+ 9av(9819po + 98pIuo + 98 Tup)
+ gap(gﬂugua + 98090 + gﬂaguu)
+ Gao (98u9vp + 98v9up + 98pGur) -
11.6 In D-dimensional space the interaction term takes the form —gu/?x¢?.

(a) The self-energy of the x particle is determined by the diagram

k+p
__;_ _;__
k
from which we read
dPk 1 1

_.HQZQQE/ o111
UI(p°) g (2m)P k2 —m2 +i0 (k+p)2 —m2 +1i0 ( 6)

By introducing the Feynman parametrization (11.G) and integrating over
the momentum k we get:

22 2 1 2 2 —1)—ji
i) = Y ( —7—/ o™ TP @ =) 10)
0

8m2 \ e 4 p?
ig? [2 e n m?2
A 4
1 2
- deln(1 —-1)—-1i0 . 11.17
/0 x n( + QO(m ) —1i )] ( )

As we know from the complex analysis the logarithm function, w = In z
has a branch cut along the positive x—axis which starts at the branch point
z = 0. This branch cut is necessary if we want that branches of logarithm
function to be single valued and holomorphic functions. Let us find the
branch point for function

2

me(ac— 1)] .

In[1 +
m

It is the smallest value of p? for which the argument of logarithm function
vanishes:
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2
p
1+m2(:c2—x):0,
ie.
op* 5 2—1

o (xQ—x)2:O’

from which we get « = }. The point p* = 4m?, which is step energy for the
decay x — 2¢, is the branch point. A branch cut starts at this point and
goes along x—axis in the positive direction to the infinity. Let us introduce
the following notation

2 gl 2
) p .
I:8W2/o da:ln<1—|—m2x(x—1)—15> .

We shall calculate first this integral in the case p? > 4m?2. For X > 0 we
have
log[—X —i0] = log | X| — ir .

The zeroes of 1+ 5;95(;10 —1) are
O
5 .

For 1 < 2 < x2 the expression 1 + p , (22 — x) is negative, otherwise it is
positive. Then

([ a1+ P )
[ dem (147 a1
L (1 paste=0)

+ " dxln( :1233(3:— 1)) —im (2 —331)] . (11.18)

x1

T1,2 =

By doing partial integration we have

2 2 2 p

g p op x(2z—1)

I= In(1 -1 — d
82 {x n< —|—m2x(x )> 0 mQ/O x1—|—p2(x2—a:)/m2
2 1 2 1 _
p p x(2z — 1)
In(1 -1 — d
*“(wz“‘” )) . m2/ 14 p2(a? — ) fm?

2 T 2 T2 20 — 1
+zln (—1— pza:(x—l)) P / 2(2
m

)
e m2 $1+p2(x2— )/m?
— iﬂ'(!Eg — $1)] . (1119)

Combining the terms in the previous formula we get
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2 2l
g ) P z(2z — 1)
I= — — — d . 11.20
82 { im(wz =) m? /0 ¥ + p?(2% — x)/m? ( )

The integral in the previous formula can be simplified by introducing the
new variable ¢ = 2z — 1. The result is (see [9])

4m2
2 4m2 2 1 2 1—\/1
=i \/1— A F \/1
P

8 p2 47T2 2 1 + \/1 _ 4'{”{7,2 '

For 0 < p? < 4m? we get [9]

4Am2 2
_1+\/;; —larcsin\/ﬁnQ]

The final result for the vacuum polarization, —ilII (p?) is

92

I =
472

) 2
. ig 2 m
—IH(pQ) = ]2 (6 —7—1In dmp2 + 2) + W(pQ) ) (11.21)

where

2 2 2
ig 4m . p
m(p?) = 4 \/ 2 1arcsin \/4m2

47n2
2 Am2 m2 1—\/1
7T(p2):1‘g i\/l— mn +\/1 »?

14+ \/1 _ 47n2
for p? > 4m?2.

(b) In the lowest order of the perturbation theory the transition amplitude is
given by

Sy = —ig / a4z (p1, pol X()6(x)b(x) | M, p = 0)

1 1 1
- A45(4) () _ —9%
@m0 = p pQ)\/QVM\/QVEl\/QVEQ( i9)

where p1,2 are the momenta of the decay products. Also we take that x
particle is in the rest. The decay rate is
|Sfil? V23 p1d®py

I = T (2m)8

By integrating over the momentum ps we get:
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B 4q° 1 g 4
r= (%)Q/dEpEgMEzé(M—zE)/O da/o d

and the space angle integration gives 27 (not 4, because the final particles
are identical). The final result is given by:

_ g9 \/M2 2
T2V o4 T

(c) The imaginary part of IT(p?) can be read off the part (a):

2 4 2
ImI7(p?) = _gﬂ \/1 - ;’2‘ 0(p? — 4m?) . (11.22)

This result also can be obtained using Cutkosky rule. The expression
(11.16) can be rewritten in the following form

—ill(p?) = 292/ d'h ! ) ! . (11.23)
(2m)% (k)2 = m2 +10 (k + p)2 —m? 410
The discontinuity of the amplitude
Disc I (p®) = I (p” + ie) — I (p* — ie) ,
is obtained by making the substitution

1

p2 —m2 - (_217T)5(4) (p2 - mQ)o(pO) ’

in the expression (11.23). Since I1(p?) is a Lorentz scalar we shall take
that p* = (po,p = 0) i.e. we shall calculate it in the rest frame of the
particle x. In this way we obtain

4
DiscIl (p?) = 2ig*(—2im)? / 'k W (k2 —m?)
(2m)*
x 8W((k +p)* = m*)0(—ko)0(ko + po)
= 897T12 /d4/€ 5 0(ko + wk)d(ko + po — wk)
2wk)
— 3
= 87T2,/d . (11.24)

By performing the integration over the momentum k we get

;2 Am2
Discﬂ(pz):—tlg \/1— ﬂ; .
™

Since
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1
ImII(p?) = 2iDisc I(p?) ,

we again obtain the result (11.22). From the expressions for I" and IT(M?)
we immediately see that the relation which was given in problem is valid.
This relation is a consequence of the optic theorem.

11.7 In D = 4 — e dimensional spacetime the dimension of a scalar field is
D/2 — 1, while the dimensions of the coupling constants are the same as in
four dimensions: [A\] = 0, [g] = 1. The dimension of the Lagrangian density
must be [£] = D, so it is given by

1 2_m2 2_9#6/23

_ A

4! ¢4 )

where we introduced the parameter p which has the dimension of mass. The
self—energy is determined by diagrams shown in Fig. 11.1.

k k—p

p p k

Fig. 11.1. The one-loop contribution to the self-energy of ¢ field

The contribution of the first one is

A / aPk i
IE T ] emp k2 —m2

By applying the formula (11.A) we get

ixm? [4mp? </2 €
RS r (—1 ) ,
LT T 392 ( m? ) Ty

which, using (11.F), gives
ixm? € dmp? 2
—iX) 1 1 1-—
X 32772( —|—2n<m2 >+0(e)) <e+ 7—|—o(e))
ixm? (2 4p?
= 3om2 (e +1—*y—|—ln( 2 ) +0(e)) .
The second integral is

—ig)? D i i
—122(19):( 9) /f/ ¢

2 2m)P k2 —m?2 (k —p)2 —m?

By using the Feynman parametrization formula (11.G) the last expression
becomes
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, (—ig)? /1 / dPk 1
—iX5(p) = — <[ q .
122() 9 M 0 * 2m)P [k? — 2k - px + p?x — m?]?

The integration over the momentum k gives

, i 1 ey [* .
—1Xs(p) = oM g2( F(Z)/ dz (m? — p*x + p?a?)~</?
0

Ar)2—c/2
B ig2(47TM2)6/2 2
= (emrro0)

x {1—2/01@ (lnm2+1n(1+§;x(x—1)))] .

Finally, the integration over the Feynman parameter  gives (for p? < 4m?)

192

= 3.2772 [i —v+2+In 4:;;2 — 2\/4;;2 — larcsin \/4];212]
The self-energy of the particle is
—iX(p) = —121(p) —1%5(p) -
The mass shift is m? = X(m?) = X1 (m?) + Xa(m?) .
11.8 The vertices in this theory are shown in Fig. 11.2.

—1X5(p)

= —i\v = —i\v

’
’
’
’
’
’
’
\
\
\
\
\
\
\

Fig. 11.2. Vertices in c—model

The self-energy of the m particle is determined by the diagrams given in
Fig. 11.3. The full line depict the 7 field, while the dashed line depict o.
The first diagram is one of the terms in the second order of the perturbation

theory

;(—i)\v)QZ/dxlda:Q 0| T (m(y1)m(y2)o> (x1)o(x2) 7% (22)) [0) ,  (11.25)
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P p \_/

Fig. 11.3. The one-loop correction to the 7 propagator

so that . POk .
. 2\ . 2 1 1
—1X4(p°) = 6(—ivA) 2 / (@m)P K2 —m?
The symmetry factor of this diagram is 6, since one 7 field can be contracted

to m field from wmwo-vertex in two ways, while oo contraction in the vertex
ooo can be done in 3 ways. Other diagrams are:

D
—122(p2)=A/(d —

2m)D k2 — m2

. 202 )\2 dPEk 1
_123(172) = / (

m? 2m)P k2’
. Pk 1
—i%4(p®) = 3)‘/ (2m)D k2
Pk 1 1
—iX5(p?) = 4\? 2/ .
=] oy k2 42

Note that only the last diagram depends on the momentum p. The renormal-
ized mass is determined by m% = X(0) . It is easy to see that

dPk 1 1
_ix —4 2 2/
125(0) = 40T [ o 0D k2 2 g2

B 42202 / dPk 1 1
- om? @2m)P \k2-—m2 k2)°
By summing all diagrams we obtain
X(0) = X1(0) + X2(0) + X5(0) + X4(0) + X5(0) =0,

so mpr = 0.

11.9 The amplitude for the diagram
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is
iM = 63/ APk trly (k — o+ m)y” (F + p2 + m)y” (k+m)]
@m)P ((k —p1)? —=m?)((k + p2)> — m?)(k* —m?)
By applying the Feynman parametrization (11.H) we get

1
((k = p1)? =m?)((k + p2)* —m?)(k* — m?)

(11.26)

11—z
1
d
/ z/ k2 —m?2 + (p3 + 2k - p2)x + (pF — 2k - p1)z]3

1 xT 1
=2 dz/ dz ,
/0 0 [(k + p2a — p12)? — A]3

where we introduce the notation
A= (pox —p12)” - piz — piz +m®
The numerator of the integrand in (11.26) is

tr[y*(f — p1 + m)y" (k + p2 + m)y? (k + m)]
= tr[y*(J + A+ m)y"(J + B+ m)y(J+ ¢+ m)] (11.27)
where
l=k+pex—p12z,
A=piz—px—p1,
B =p1z—px+p2,
C=piz—p2x .

Since the trace of the odd number of y—matrices is zero, (11.27) becomes

(I + A+ m)y (I + B+ m)y" (I + €+ m)]

= tr[Y N + e I+ e By +

+ [y BY O + e[y A NI+ e A O +

+ e[y A B + [y Ay By )+ mP ey ] +

+ mPtr[y" AP+ mPtry Y ] +

+ mAtr[y Y ByP] + mAtr[y Y Pl + mAtr gy A (11.28)

tr
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To calculate the integral (11.26) we make substitution of variable & — [. Terms
in (11.28) which contain odd number of momenta [ after integration vanish.
The terms which are proportional to m? as well as the term proportional to
tr[y* Ay By”(] are finite, and therefore we consider only the remaining terms.
The first of the divergent integrals is

1-a v
_ g3 / da:/ dz/ dP1 {21 (ircr (—lzg“pg) L+ircr)
12(g"vCP — ghPCV + ngcu)}
(12— 4) ’
since
trly 0] = A AP — Prr[yia L)
By integrating over [ (using (11.C)) we get

11—z
(471- D/2 /dx/ dz 1— 1nA—|—o( 2
D
< (L= D) OP — O 4 g o)

iM; =

The divergent part of this integral is

153 1 1—x
Milaw = =5 [ do [ dslger - grer 4 griem)
2m2e J, o

The other two integrals can be evaluated in the same way. The final result is

ie3

1M|div = —27T2€

1
[ ™= 22" + 01— )+ 071 — ) +

1 v 174 1%
+, (g™ (p1 +p2)” + ¢"" (P2 — p1)” — 9" (p1 + p2)")] -

The diagram where the orientation in the loop is opposite is shown in the
following figure.

The amplitude is the same as in (11.26) except that the trace in (11.26) should
be replaced by

tr[y?(—f = o + m)y" (hr — f +m)y* (= +m)] .
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By putting C~'C in the previous expression, where matrix C is the charge
conjugation matrix (4.K), we get

tr[C?C'C(—f — po + m)C~'CH*CIC
X (pr — f+m)CCA*CIO(—F +m)C Y.
By using (4.K) we have

tr[y?(=f = P2 +m)y" (b — f +m)y" (—f + m)]
= (=)t (k +m)y" (k= o+ m)y” (F + g2 + m)]

from which the we get the requested result. The statement is valid for all
diagrams of this type with the odd number of vertices and this is called the
Furry theorem.

11.10 The vacuum polarization in QED is

5 _ 2 [ A w4 m)ya(F o+ m)]
,(q) = / (2t (k2 — m2)((k +q)? —m?) (11.29)

From the Ward identity we know that this expression has the following form
—ill(q) = —(9u0 — ¢ gy U (¢%) -

By multiplying the previous expression by g*” and using (11.29) we get
1. .,

; 3q> 19" My
o 4e? / d*k -2k (k+q)+4m?

- 3¢2 ) 2m)t (B2 - m?)((k+q)? —m?)

i(q%) =
(11.30)

Discontinuity in the expression IT(g?) can be calculated by applying the
Cutkosky rule. Then

) o die? 1 B .2/4 2 op @2 2
Disc I1(g°) = 32 (277)4( 2mi)? [ d*k(4m® — 2k - (k4 ¢))0'M (k% — m*®)
x W ((k + q)* — m?)0(—ko)0(ko + qo)- (11.31)
By using .
2 2y _ _
§(z® —a®) = 2|a|(5(x a) +6(x +a))
and taking ¢* = (qo,0) we get
, o 16ir%? 1 / g2 or
DiscII(q°) = 32 (24 d*k(4m* — 2k - (k4 q))
1
X 25(k0 + wk)5(ko +qo — wk) . (11.32)

4wy,
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Integration over ko gives

4im2e? 1

Disc I1(¢%) = — 3¢2 (2m)4

1
/d3k(2m2 + 2q0wk)w2 d(qo — 2wi) . (11.33)
k

Since d3k = |k|wydwy, sin d¢dd we have

ie2 [ 2m? + 2
Disc I1(¢?) = —31;(12 /m dwy <" :k 1otk \/wg — m25(qo — 2wy,) . (11.34)
Integration over wy gives
2 2 2
. 9y € 2m 4m 9 9
Disc II1(q°) = 6ri (1—|— . ) \/1 T 0(¢° —4m*) . (11.35)
Finally
2, - L. 2
ImII(q® + i) = 2,Dlsc II(p?)
i
e? 2m? 4m?
=— 1 1 0(¢*> — 4m? 11.36
o (147 ) 1= " b —am) . 1130)
11.11 Scalar electrodynamics has two vertices:
I
E = —ie(p+p)u = 2ie’gpu
1 v
; o M

The Feynman rules are standard except that for every closed photon loop
we have an extra factor 1/2. The photon self-energy is determined by the
diagrams:

k k
// \\l //“\\
N ANA AN
ANNTANANN S
p p p+ k

The first one is b
d~k i
s (1) _9:2
_IHI(W) = 2ie QW/ (2m)D k2 —m2

By applying (11.A) and (11.F) we obtain:

;2
—iﬂﬁ) =— lezengw + fin. part . (11.37)

47

The second diagram is
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i@ 2 / APk (2k +p)u(2k + )y
(2m)P (k* = m?)((k +p)* —m?) -
By using the Feynman parametrization in the previous integral we get
_IH(Q . / dx/ dPk 4k,k, + 2k,p, + 2kupu + pupy '
)P k2+2xk p+ p2x — m?]?
Applying the formulae (11.A-C) it follows that :
D/2 € 1
@ _ T /d r(y) 1422 — Az + V)pp,
i 2mP  J, . 2/ (m? + p2z2 —pza:)f/z( o o+ pup
r(;-1)
m? + p2a? — p2x)/2-1

3

_ QgW(
which is equal to

g - €

W= 62 ,,) + fin. part . (11.38)

2 9 4m

g PuPy =D Guw) T G
Adding the divergent parts of the expressions (11.37) and (11.38) we get the
requested result. Note that the terms proportional to m? cancel. So, the final
result is gauge invariant, as expected.

11.12

(a) Let us introduce the following notation:
Ny— the number of external fermionic lines
Ny— the number of external scalar lines
P¢— the number of internal fermionic lines
P,— the number of internal scalar lines
V53— the number of 1y51¢ vertices
V,— the number of ¢* vertices
L— the number of loops.
Then the superficial degree of divergence for a diagram is

D=4L—-2P, — Py .
On the other hand, L can be expressed as
L=P,+Pr—(V-1),

since it is a number of independent internal momenta. By combining the

previous formulae with
2V3 = Ny +2P; ,

‘/E’)+4‘/ZL:N5+2-PS;

we get
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@ D=1

D-3 @
D=0

D=2 @

D-1——@— \,/ oo
Fig. 11.4. Superficially divergent diagrams in the Yukawa theory

D:4—Ns—§Nf.

Superficially divergent amplitudes are shown in Fig. 11.4.
The first diagram is the vacuum one and it can be ignored; the second and
fifth are equal to zero. The bare Lagrangian density is

Lo = ;(3%)2— n;% @G+ (i, 0" — Mo)ho —igotoysibodo — /4\:? ¢ . (11.39)
If we rescale the fields as
b0 =/Zo¢ = /140246,
Yo =/ Zyp = /1+0Zy0
and introduce a new set of variables:

Zymg = m* + dm?
ZyMy = M + 6M
Zy\/Zsgo = n'* (g + 89)

Zi)\o = pS(A+6N),

the bare Lagrangian density becomes

2 2
Lo = ;(1 +625)(09)% " -;5m O +i(1 4 6Zy )P
— (M + MY — i(g + Sg ! s — +45!)\)H€ ¢

The Feynman rules are given in the Fig. 11.5
(b) The one-loop fermionic propagator correction is represented in Fig. 11.6.
The first diagram is

dPk 1 p—k+M
iy — 2 € .
Xa(p) = —g"n /(%)D k2 —m2 +i0 7 (p — k)2 — M2 +i0
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\/ —®— i(p6Zgy — M)

951/

N .
// \\\ /// .
N ) & —1dAp®

x —i\u® oo

. N
A N

e

5 /2
----- Q- ip?Zy — i6m? 7°ogp

Fig. 11.5. Feynman rules in renormalized Yukawa theory

PiainiN
’

+.___48F___

Fig. 11.6. The one-loop correction to fermionic propagator

Since y5¢vs = —¢ and (75)? = 1 we have

2, €
. g K D —p+Ek+M
—iX =— d”k
i2:(p) (27T)D/ (k2 — m? +10)((p — k)? — M? + i0)
_ o /de/d AL
©(2m)P (k —px)? — A+1i0)2
2, € 1
(2m)>'" (2> o A2 (11.40)
where A = M?z +m?(1 — x) — p*z + p?2?. Since
pe 1 ez 1 € 2
oD D/2 = 1672 (Arp*)*/* = 1672 (1 + In(4mp®) + ) )
we have
i) = -9 (2o /1dx[M+(x—1)1$] 1= A
2= T en2 e ) ‘ 0 2 dmp?
__ g (M — 1) + fin. part (11.41)
= g2 9 n. part . .
The full one-loop correction to the fermionic propagator is
—iX(p) = — ig” (M — 115)—1(5]\/[—1—1(52 p + fin. part
PI= T en2e 2 b - patt
From the renormalization conditions:
Xp=M)=0,
dx
=0, (11.42)

dp lg=m
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follows that

2

g
02y = — .
" 167m2¢ + fin. part ,
2
g*M
OM = — . . .
G + fin. part (11.43)

(¢) The one-loop correction to the scalar propagator is represented in Fig.
11.7.

Fig. 11.7. The one-loop correction to the scalar propagator

The first diagram is
N T tr[ys(k + M)y (p + f + M)]
—iIL(p°) = — (27r)D /de(k — M2 +10)((p + k)2 — M2 +i0)

(— -+ M)(p+ -+ M)
/de/ dz k2+2k ~px — M2+ p2x)?

/ /dD —k-p—k?+ M?)
k2+2k pr — M? + p2z)?’

where we use the Feynman parametrization formula (11.G). Introducing a
new variable [ = k + pz we further have

le 2M2 A-1?
—iIl (p?) = 4¢® d
T (p gH / m/ — A+i0)2

ig A
= 1— 1
4772/0 dx( 2 n4w2)

(012 g2 = a)Z =2+ o)+

X
F D o) 47 )
= 2152 ( ) + fin. part ,

where A = M2 + p?(2? — x). The second diagram is

.)\ 2

—1H2 167 2

+ fin. part . (11.44)

Summing, we obtain
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;2 2 N2
o2y 9T (P 2\ , IAm~ . 2 e o
—ill(p*) = 9m2e (2 - M >+ 16772€+152¢p —idm*”+fin.part . (11.45)

Using the renormalization conditions:

o(p* =m?) =0

jg e =0 (11.46)
we get
g2
02y = ~ur2e + fin. part
P L L R— (11.47)

~ 1672 2n2e

(d) The amplitude of the diagram

is
iMa = (ig)3u3¢/2 dPk Y5 (K + g + M)ys(k + M)vs
Mz = (ig)°p /(27.‘.)1) ((k + q)2 — M2)(k2 — M2)((k — p)2 — m2)

:.3,,3¢/2 1 -z M2— Md — 2
:_QIQHD 75/ dx/ dz/de i 2% k3
(27) 0 ((k+qz —p2)* = A)

2ig3u3e/2 /1 /l—m / b N
= — d d d~l
enP )y T T (12— A)3

where
A =22 + 22 + (1 — 2)M? — 2¢* + 2m® — p*2 — 2w2q - p

and
N = M?— (I —zq+2p)° + Mg — 4(J — x4 + =p) -

In the previous formulae we introduced a variable [ = k + xq — zp. As we
are interested to find only the divergent part of iMg, it is useful to note
that only /2-term in the numerator of the integrand is divergent. So, by
using (11.C) we get:
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dPr ! 1= 12
: __ o: 3 3¢/2
1M3—2lgu/'y5/(27TD/dx/ dz (2 A)g-i-...
3,,€/2(4 _
g4 —€) /
= — — d
3272 s ( Tt ) v
1—x
X / dz [ 1-— ¢ In 4 .

3,€/2

Finally

iMy =Y

g2e )5 + fin. part . (11.48)

The vertex correction is

h e

so, from
3,€/2
V3 = (9’75#6/2 + 59’75#6/2 - 5 Y5t ﬁn.part) ‘ = g7s
8m?e q2=0
follows
g
0g = Sr2e + fin. part .

(e) Let us first calculate the following diagram

g, b3 A ks

P2 Pa

// p1 \\ k4
ke kQ N

Since we have to find the divergent part of this diagram we can put that
the external momenta are equal to zero. Then,

dPp trlys(p+ M)
2m)P (p? — M?)*
(11.49)

iMy(kir =ko =ks=ks =0) = —94N25/ (

Since
Vs(p+ M)ys(p+ M) = (—p+ M)(p+ M) = M> — p°

we have
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dPp 1
. o _ _ _ _ 4 2e
Malky = ky = ks = ks =0) = ~4g'p / (2m)" (p -y

B ig4/.t€ 2 . 1 M2
 4n? \ e 4 p?
s o4 €
=9 4 fin. part . (11.50)
2m2e
The previous result should be multiplied by a factor 6 as there are six
diagrams of this type.
The complete four vertex is

) ) ) Gighuc  3iN2pe
= [ —i\u€ — € fin. t
i ( ' 1o on2e T 16m2c P s=4m? t=u=0
= —i\, (11.51)
and finally
R A2
= — . . .52
P 1672 + fin. part (11.52)

11.13 In this problem dimension of spacetime is D = 2 — .

(a) The polarization of vacuum is given by:

Dy tr[(f — P)yodvn
—ill (p) = (16)2(—12)/ (;W)qD ' [(52((17?717)%7 | : (11.53)

In D-dimensional space trace identities necessary to calculate the previous
expression read:

tr(’Y,u’Yu) = f(D)g;wa
tr (VYo VoYo) = F(D)(Guw9po = GupGvo + uo o) »

where f(D) is any analytical function which satisfies the condition f(2) =
2. Instead of f(D) we will write 2 as we did in the previous problems (of
course, there f(D) =4). The Feynman parametrization gives

) 262 1
—iIl,,(p) = — D/ dx/qu

2ququ — @G — Pulv — Pvp + (P~ Q) 9pv (11.54)
(¢® —2p - qx + p2x)?

By using (11.A-C) in (11.54) we obtain
9527 D/2 2, b,
il =T / T bup ra+ )
(2m)D (—p2x + p2a2)L+e/2 9
1 Guv e
2 (_me —|—p2m2 e/2 2
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2%p? €
= Iuv ((—me + p2a?)l+e/2 I+ 2)

2—¢€ 1 €
— I
2 (—p2x + p222)</2 (2))
IPpuPv €
-2 I'(1
(—p2x + p2a?)i+e/? (1+ 2)
2
P ra+ 6)} .

+ guu(_p2$+p2$2)1+e/2 2

From the previous expression (for D — 2 i.e. € — 0) we obtain
—il1(p) = ~i(pupy — P9 ) 1 (p*)

ie? 9
(pupl/ —-p g;w) ) (1155)

— p?

from which we see that the polarization of vacuum is a finite quantity.
(b) The full photon propagator is obtained by summing the diagrams in the
Figure

ANNANN +'\/\/\©f\/\r+mf©\f©\p+m

—i —i —i
D () = 0+ L Py R LT

T 2400 p2 40 p2+i0

i PPy ipupy
==y ioWm = JOHIE) + P +.) = T

i e PuPv

(G =757 (11.56)

T pP(1- () +i0)

were we discarded the ip,p,/ p*-term in the last line since the propagator
is coupled to a conserved current. Then the photon propagator is

. (g — P
D) ==~ L (1157)

Photon mass is e/ /.
11.14 The dimension of spacetime is D = 6 — e.

(a) The renormalized Lagrangian density is

[-:rcn =L + Ect 5 (1158)
where ) /2
1 m € e
L= 002" &= &~ (11.59)
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1 sm? <25
L= ,02(96) - 72” g2 - N 963 — =25 . (11.60)
By introducing new quantities
Z=1462, (11.61)
miZ =m?*+om? | (11.62)
Q02 = (g +dg)pu’” (11.63)
hoZ'? = (h 4 6h)pu~</? | (11.64)

and rescaling the field, ¢9 = V' Z¢, the renormalized Lagrangian density
becomes

1 m2 g
Lron = 5 (060)? = 767 — 503 — hodo -

The quantities with index 0 are called bare. The Feynman rules are given
in Figure 11.8.

Y —ign*/? \T/ —i0gps/?

—e  —ihpc/? —Q —idhu/?

—®— ip%d; — idm>?

i
p2—m2+ie

Fig. 11.8. Feynman rules in ¢> theory

Superficially divergent amplitudes are:

Fig. 11.9. Divergent amplitudes in ¢* theory

(b) The tadpole diagram in one-loop order is shown in the following figure.
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—e+ —O)+ —2

The second term is

. dPk i
g/
(2m)P k2 —m? +1i0
€/2 D/2
N m ¢
= (-2
T 2m)D (m2)-2+e/2 (-2+3)

—€/2 2 A2 3
igm*u i
= — 1 —
12873 (e+n<m2)+2 7)
: 4,,—€/2
igm*pu
== ande + fin. part ,
and it does not depend on momentum. Summing all diagrams we get

)2 igm4’u/76/2

iH = —ihu —i6hpu~/? + fin. part . (11.65)
64m3e
Hence,
4
__gm
oh = G4rde + fin. part . (11.66)

Finite part in the previous expression can be chosen so that H = 0 and
we can ignore all diagrams which contain tadpoles.
(c) The full one-loop propagator is shown in Fig. 11.10.

k
M
p+Pk¥l/pP+p®p

Fig. 11.10. The one-loop propagator in ¢ theory

The second diagram is

o g / a2k i
T2 (2m)P (k2 — m2 +i0)((k — p)2 — m2 + i0)
2, € D
_ 9 dm/ d k 1 ‘
2 k2 — 2k - px + p?x — m? +10)2

_128773 (6 F 1yt ofe ))
€ m2+p2x(x—1))

1
2 .2
X /0 dz(m® + p“z(x — 1)) (1 Yy In sy
2

;2
19 p
=~ ande <m2 ~ 6 ) + fin. part . (11.67)
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Propagator correction is

: ig? AN :
—il(p*) = _64€r3e <m2 % ) +ip®6Z — idm?* + fin. part . (11.68)

From the condition —ilIl(p?) = finite we get

g2

Z = — fin. t 11.69

’ 38dr3e T PATL (11.69)
, m2g?

om* =  64mBe + fin. part . (11.70)

In MS scheme the finite parts in (11.69) and (11.70) are zero.
(d) The vertex correction is given in Fig 11.11.

p3
/i]\ i o -
P k D2
Fig. 11.11. Vertex correction in ¢° theory

The second diagram is

: 3,,3¢/2 de i
il = (—ig)°p 2 2 2 2) -
(2m)P (k* = m?)((k + p2)? = m?)((k — p1)? —m?)
(11.71)
By applying (11.H) and integrating over the momentum k we get

D/2 1—z
== / o

X
(m? — p3x — p2z +p2x2 + p?22)e/2 — 2xzpy - po

:3,,€/2 2 1 1—x
_ igiu
= T gbei—es2 <6 +...>/O da:/0 dz
y <1 e, ™ pr—pte +p§w22 +piz? — 2zzpy 'p2> (11.72)
2 1%
From the last formula we find that the divergent part of il" is given by
€/2
ig°n
_ . 11.73
64m3e ( )

The full one-loop vertex in the renormalized theory is
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iV = —igu/? —idgu/? +iI .
In minimal subtraction scheme dg is

g3

=— 11.74
% 64m3e (11.74)
(e) From (11.61), (11.69) and (11.70) follows
2
_4_ 9
Z=1- 5, - (11.75)
m2g>
( 384773 > 64m3e
5m2g>
—m2 0
=it e, (11.76)

in the one-loop order. Similarly, from (11.69) and (11.74) we have

g+ g)uc/?
2 2
e ( 64mse 2567r3e) (11.78)
c 3%
= gu/? (1 — 25%36) : (11.79)

The last expression is important for calculation of the § function.
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Decay rate, 218
Differential cross section, 192
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Dimensional regularization, 63
Dirac equation, 17
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Dirac field
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Dirac particle
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Dyson Green function
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Electromagnetic field
quantization, 49
Energy-momentum tensor, 26, 126
symmetric or Belinfante tensor, 29,
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Feynman propagator
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Dirac field, 44
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Klein paradox

Dirac particle, 109
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Klein—Gordon equation, 9

plane wave solutions, 77
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in a hole, 10, 79

in a magnetic field, 10, 81

in the Coulomb potential, 10, 83

Lagrangian density
Dirac field, 43
massive vector field, 27
massless vector field, 49
Schrodinger field , 39

sigma model, 28
Left/right spinors, 102-103
Levi-Civita tensor, 4, 5, 68
Little group, 74
Lorentz group, 5, 67

generators in defining repr., 69
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Dirac equation, 17

bilinears, 23-24, 115-118

Dirac field, 44, 170

bilinears, 47, 174-177
scalar field, 158-159

Majorana spinor, 47, 173
Maxwell equations, 49
Metric tensor, 3
Minkowski space, 3
Momentum
Dirac field, 44, 45
Klein—Gordon field, 36, 37, 142
MS scheme, 237

Noether theorem, 26
Normal ordering
Dirac field, 44, 47, 172
Klein—Gordon field, 36

Optic theorem, 220
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bilinears, 2324, 115-118
Dirac field, 44
bilinears, 47, 174-177
scalar field, 41, 159
Pauli matrices, 5
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Pauli—Villars regularization, 62, 215
Phase transformations, 28, 125
¢® theory in 4D, 58
¢ theory in 6D, 64, 234-238
Poincaré algebra, 6, 71, 72
Poincaré group, 4, 6
Poincaré transformations, 4
scalar field, 40
Projection operators
energy, 19, 95-96
spin, 100

QED processes
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netic field, 58, 200

Reflection and transmission coefficients
Dirac equation, 22
Klein—Gordon equation, 10

Reiman (—function, 53

Retarded Green function
Klein—Gordon equation, 132, 137

S—matrix, 55

Scalar electrodynamics, 64, 226

Scalar field

quantization, 35

Scalar product, 4

Scattering of polarized particles, 59,
203-205

Schrédinger equation, 153

Schwinger model, 64, 233

X —vector, 96

Index 243

ow—matrices, 14, 85, 87

SL(2,C) group, 5

Superficial degree of divergence, 64, 227

Symmetry factor in ¢* theory, 57,
194-195

Tensor of rank (m,n), 4
Time reversal
Dirac equation, 18
bilinears, 23-24, 115-118
Dirac field, 44
bilinears, 47, 175178
scalar field, 41, 159

Vacuum polarization, 63, 225
Vector, 3
contravariant components, 3
covariant components, 4
dual vector or one—form, 4
Vertex correction, 231-232, 237
Virasora algebra, 38

Weyl fields, 20
Wick rotation, 212
Wick theorem, 55, 57, 152, 172, 193-196

Yukawa theory, 64, 206, 227-233
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