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Foreword

Mathematicians really understand what mathematics is. Theoretical physi-

cists really understand what physics is. No matter how fruitful the interplay

between the two subjects, the deep intersection of these two understandings

seems to me to be quite modest. Of course many theoretical physicists

know a lot of mathematics. And many mathematicians know a fair amount

of theoretical physics. This is very different from a deep understanding of

the other subject. There is great advantage in the prospect of each camp

increasing its appreciation of the other’s goals, desires, methodology and

profound insights. I don’t know how to really go about this in either case.

However the book in hand is a good first step for the mathematicians. The

method of the text is to explain the meaning of a large number of ideas

in theoretical physics via the splendid medium of mathematics communica-

tion. This means there are descriptions of objects in terms of the precise

definitions of mathematics. There are clearly defined statements about these

objects expressed as mathematical theorems. Finally there are logical step

by step proofs of these statements based on earlier results or precise ref-

erences. The mathematically sympathetic reader at the graduate level can

study this work with pleasure and come away with comprehensible informa-

tion about many concepts from theoretical physics... quantization, particle,

path integral... After closing the book one has not arrived at the kind of

understanding of physics referred to above; but then maybe armed with the

information provided so elegantly by the authors, the process of infusion,

assimilation and deeper insight based on further rumination and study can

begin.

Dennis Sullivan

East Setauket, New York, May 2007
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Preface

In this book we attempt to present some of the main ideas of Quantum

Field Theory (QFT) for a mathematical audience. As mathematicians, we

feel deeply impressed – and at times quite overwhelmed – by the enormous

breadth and scope of this beautiful and most successful of physical theories.

Throughout centuries, Mathematics has always provided Physics with a

variety of tools, oftentimes on demand, for the solution of fundamental physi-

cal problems. But the past century has witnessed a new trend in the opposite

direction: the strong impact of physical ideas not only in the formulation,

but in the very solution to mathematical problems. Some of the most well-

known examples of such impact are (1) the use of renormalization ideas by

Feigenbaum, Coullet and Tresser in the study of universality phenomena

in one-dimensional dynamics; (2) the use of classical Yang-Mills theory by

Donaldson to devise invariants for 4-dimensional manifolds; (3) the use of

quantum Yang-Mills by Seiberg and Witten in the construction of new in-

variants for 4-manifolds; (4) the use of quantum theory in three dimensions

leading to the Jones-Witten and Vassiliev invariants. There are several other

examples.

Despite the great importance of these physical ideas, mostly coming from

quantum theory, they remain utterly unfamiliar to most mathematicians.

This we find quite sad. As mathematicians, we found it very difficult while

researching for this book to absorb physical ideas not only because of even-

tual lack of rigor – this is rarely a priority for physicists – but primarily due

to the absence of clear definitions and statements of the concepts involved.

This book aims at patching some of these gaps of communication.

The subject of QFT is obviously incredibly vast, and choices had to be

made. We follow a more-or-less chronological path ranging from Classical

Mechanics in the opening chapter to the Standard Model in chapter 9. The

basic mathematical principles of Quantum Mechanics (QM) are presented

10



Preface 11

in chapter 2, which also contains an exposition of Feynman’s path integral

approach to QM. We use several non-trivial facts about the spectral theory of

self-adjoint operators and C∗ algebras, but everything we use is presented

with complete proofs in appendix I. Rudiments of Special Relativity are

given in chapter 3, where Dirac’s fundamental insight leading to relativistic

field theory makes its entrance.

Classical Field Theory in touched upon in chapter 5, after a mathematical

interlude in chapter 4 where the necessary geometric language of bundles and

connections is introduced. The quantization of classical free fields, which is

something that can be done in a mathematically rigorous and constructive

way, is the subject of chapter 6. As soon as non-trivial interactions between

fields are present, however, rigorous quantization becomes a very difficult

and elusive task. It can be done in spacetimes of dimensions 2 and 3, but we

do not touch this subject (which may come as a disappointment to some).

Instead, we present the basics of Perturbative Quantum Field Theory in

chapter 7, and then briefly discuss the subject of Renormalization in chapter

8. This approach to quantization of fields shows the Feynman path integral

in all its glory at center stage.

Chapter 9 serves as an introduction to the Standard Model, which can be

regarded as the crowning achievement of Physics in the twentieth century,

given the incredible accuracy of its predictions. We only present the semi-

classical model (i.e. before quantization), as no one really knows how to

quantize it in a mathematically rigorous way.

The book closes with two appendices, one on Hilbert spaces and operators,

the other on C∗ algebras. Taken together, they present a complete proof of

the spectral theorem for self-adjoint operators, and other non-trivial theo-

rems (e.g. Stone, Kato-Rellich) that are essential for the proper foundations

of QM and QFT. The last section of appendix II presents an extremely brief

introduction to algebraic QFT, a very active field of study which is deeply

intertwined with the theory of von Neumann algebras.

We admit to being perhaps a bit uneven about the pre-requisites. For in-

stance, while we do not assume that the reader knows any functional analysis

on Hilbert spaces (hence the appendices), we do assume familiarity with the

basic concepts of differentiable manifolds, differential forms and tensors on

manifolds, etc. A previous knowledge of the differential-geometric concepts

of principal bundles, connections, and curvature would be desirable, but in

any case these notions are presented briefly in chapter 4. Other mathe-

matical subjects such as representation theory, or Grassmann algebras, are

introduced on the fly.

The first version of this book was written as a set of lecture notes for a
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short course presented by the authors at the 26th Brazilian Math Colloquium

in 2007. For this Cambridge edition, the book was completely revised, and

a lot of new material was added.

We wish to thank Frank Michael Forger for several useful discussions

on the Standard Model, and also Charles Tresser for his reading of our

manuscript and his several remarks and suggestions. We have greatly ben-

efited from discussions with several other friends and colleagues, among

them Dennis Sullivan, Marco Martens, Jorge Zanelli, Nathan Berkovits, and

Marcelo Disconzi. To all, and especially to Dennis Sullivan for his beautiful

foreword, our most sincere thanks.

Edson de Faria and Welington de Melo

December 2009



1

Classical Mechanics

This chapter presents a short summary of classical mechanics of particle

systems. There are three distinct formulations of classical mechanics: New-

tonian, Lagrangian and Hamiltonian. As we shall see in later chapters, the

paradigms offered by the Lagrangian and Hamiltonian formulations are both

extremely important in modern quantum physics and beyond.

1.1 Newtonian Mechanics

1.1.1 Newtonian spacetime

From a mathematical standpoint, Newtonian spacetime S is a four-dimen-

sional Euclidean (affine) space where the translation group R4 acts tran-

sitively, and in which a surjective linear functional τ : S → R is defined

(intuitively corresponding to time). The points of S are called events. Two

events p, q ∈ S are said to be simultaneous if τ(p) = τ(q). The difference

∆τ(p, q) = τ(q) − τ(p) is called the time interval between the events p, q.

If two events p, q are simultaneous, their spatial displacement ∆s(p, q) is by

definition the Euclidean distance between p and q in S. The structure on

Newtonian spacetime provided by the time interval and spatial displacement

functions is called a Galilean structure. A Galilean transformation of S is

an affine transformation that preserves the Galilean structure.

Alternatively, a Galilean transformation can be viewed as an affine change

of coordinates between two inertial reference frames. An inertial frame on

Newtonian spacetime S is an affine map α : S → R4 providing an identi-

fication of S with R4 = R3 × R that preserves time intervals and spatial

displacements. More precisely, if p, q ∈ S and α(p) = (x1, x2, x3, t) and

13



14 Classical Mechanics

α(q) = (y1, y2, y3, s) then we have

∆τ(p, q) = s− t
∆s2(p, q) = (x1 − y1)2 + (x2 − y2)2 + (x3 − y3)2 .

Given two inertial frames α, β, the map β ◦α : R4 → R4 is a Galilean trans-

formation. With this definition, it is clear that the Galilean transformations

form a group. We leave it as an exercise for the reader to verify that the

most general Galilean transformation (x, t)→ (x′, t′) is of the form

t′ = t+ t0

x′ = Ax+ a+ tv

where t0 ∈ R, a, v ∈ R3 and A is a rotation in R3 (i.e., an orthogonal matrix).

From this fact, it follows that the Galilean group is a 10-dimensional Lie

group.

In a given inertial frame, a uniform linear motion is a path of the form

t→ (x(t), t+ t0) ∈ R3×R where x(t) = x0 + tv (with t0 ∈ R and x0, v ∈ R3

constants). It is an easy exercise to verify the following fact.

Proposition 1.1 (Galileo’s Principle of Inertia) Galilean transforma-

tions map uniform motions to uniform motions.

From a physical point of view, uniform motions are precisely the motions

of free particles. So another way of stating the above principle is: The time

evolution of free particles is invariant under the Galilean group.

1.1.2 Newtonian configuration space

In Newtonian mechanics, the configuration space for a system of N uncon-

strained particles is

M = {(x1, x2, . . . , xN ) : xi ∈ R3 ∀ i} ≡ R3N

Newtonian determinism asserts that the time evolution of such a system

is completely known once the initial positions and velocities of all particles

are given. Mathematically, the time evolution is governed by a system of

second-order ordinary differential equations coming from Newton’s second

law of motion

miẍi = Fi(x1, x2, . . . , xN ; ẋ1, ẋ2, . . . , ẋN ) (i = 1, 2, . . . , N) . (1.1)

Here mi is the mass of the i-th particle, and Fi is the (resultant) force acting

on the i-th particle. We regard Fi : M → R3 as a smooth vector function.
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A Newtonian system is said to be conservative if there exists a (smooth)

function V : M → R, called the potential , such that

Fi = −∇iV ; where ∇i =

(
∂

∂x1
i

,
∂

∂x2
i

,
∂

∂x3
i

)

The name conservative stems from the fact that, if we define the kinectic

energy of such a system by

T =
1

2

N∑

i=1

mi

[(
ẋ1
i

)2
+
(
ẋ2
i

)2
+
(
ẋ3
i

)2]
,

and its total energy by E = T + V , then we have conservation of energy,

namely

dE

dt
=

N∑

i=1

mi〈ẋi, ẍi〉+
N∑

i=1

〈∇iV (x1, x2, . . . , xN ), ẋi〉 = 0 .

Remark 1. We would like to emphasize that the forces appearing in (1.1) may

indeed depend quite explicitly on the velocities vi = ẋi. The best example

of a physically meaningful situation where this happens is the classical (non-

relativistic) electrodynamics of a single electrically charged particle. If such

a charged particle moves about in space in the presence of a magnetic field

B and an electric field E in R3, it is acted upon by the so-called Lorentz

force, given by

F = q (E + v ∧B) ,

where q is the particle’s charge and v = ẋ is the particle’s velocity. Here ∧
denotes the standard cross-product of vectors, which in cartesian coordinates

is given by

v ∧B =

∣∣∣∣∣∣

e1 e2 e3

v1 v2 v3
B1 B2 B3

∣∣∣∣∣∣
,

where {e1,e2,e3} is the canonical basis of R3. Assuming that the parti-

cle has mass m, Newton’s second law gives us the second-order ordinary

differential equation

mẍ = q (E + ẋ ∧B) ,
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or, in coordinates, the system

mẍ1 = q (E1 + ẋ2B3 − ẋ3B2)

mẍ2 = q (E2 + ẋ3B1 − ẋ1B3)

mẍ3 = q (E3 + ẋ1B2 − ẋ2B1) .

This system can be recast in Lagrangian form (in the sense of section 1.2

below). The reader can work it out as an exercise.

1.2 Lagrangian Mechanics

Lagrangian mechanics was born out of the necessity to deal with constrained

systems of particles. Such systems are called Lagrangian.

1.2.1 Lagrangian systems

In a Lagrangian system, the configuration space is an embedded submani-

fold M of dimension n ≤ 3N of R3N (where N is the number of particles).

The number n is the number of degrees of freedom of the system. Local

coordinates for M are usually denoted by q = (q1, q2, . . . , qn) and are re-

ferred to as generalized coordinates. The Lagrangian function (or simply

the Lagrangian) of such a system is a smooth function L : TM → R. Here,

TM is the tangent bundle of M , and it is called the (Lagrangian) phase

space. Associated to the Lagrangian function, we have an action functional

S defined on the space of paths on M as follows. Given a differentiable path

γ : I →M , where I = [a, b] is a time interval, consider its lift to TM given

by (γ, γ̇), and let

S(γ) =

∫ b

a
L(γ(t), γ̇(t)) dt .

1.2.2 The least action principle

The underlying principle behind Lagrangian mechanics was first discovered

by P. Maupertuis (who was inspired by earlier work of P. Fermat in optics),

and later mathematically established by L. Euler, in 1755. In the nineteenth

century, it was formulated in more general terms by W. Hamilton, and it is

known even today as the least action principle. In a nutshell, this principle

states that the physical trajectories of a Lagrangian system are extrema of

the action functional. Thus, the Newtonian problem of solving a system

of second-order, typically non-linear ODE’s is tantamount in Lagrangian
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mechanics with the variational problem of finding the critical points of an

action functional. This variational problem gives rise to the so-called Euler-

Lagrange equations.

1.2.3 The Euler Lagrange equations

Let us describe the standard procedure in the calculus of variations leading

to the Euler-Lagrange equations. We define a variation of a smooth curve

γ : I →M to be a smooth map γ̃ : (−ǫ, ǫ)× I →M such that γ̃(0, t) = γ(t)

for all t and γ̃(s, a) = γ(a) and γ̃(s, b) = γ(b) for all s ∈ (−ǫ, ǫ). In other

words, a variation of γ is a family of curves γs = γ̃(s, ·) : I → M having

the same endpoints as γ and such that γ0 = γ. The corresponding (first)

variation of the action functional S at γ is by definition

δS(γ) =
∂

∂s

∣∣∣
s=0

S(γs) .

A curve γ is said to be a critical point for the action functional S if δS(γ) = 0

for all possible variations of γ. We leave it as an exercise for the reader to

check that

δS(γ) =

∫ b

a
δL(γ, γ̇) dt , (1.2)

where

δL(γ, γ̇) = DL(γ, γ̇) · (δγ, δγ̇) ,

and where, in turn,

δγ =
∂

∂s

∣∣∣
s=0

γs ,

as well as

δγ̇ =
∂

∂s

∣∣∣
s=0

γ̇s .

Using generalized coordinates q, q̇, and writing δγ = (δq1, δq2, . . . , δqn) as

well as δγ̇ = (δq̇1, δq̇2, . . . , δq̇n), we see that

DL(γ, γ̇)(δγ, δγ̇) =

n∑

i=1

(
∂L

∂qi
(q, q̇)δqi +

∂L

∂q̇i
(q, q̇)δq̇i

)
.

Putting this expression back into (1.2), we have

δS(γ) =

∫ b

a

n∑

i=1

(
∂L

∂qi
(q, q̇)δqi +

∂L

∂q̇i
(q, q̇)δq̇i

)
dt .
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But since δq̇i = d(δqi)/dt for all i, a simple integration by parts in the

right-hand side yields

δS(γ) =

n∑

i=1

∫ b

a

[
∂L

∂qi
(q, q̇)− d

dt

(
∂L

∂q̇i
(q, q̇)

)]
δqi dt .

Since δS(γ) must be equal to zero at a critical point γ for all possible varia-

tions, it follows that each expression in brackets in the right-hand side of the

above equality must vanish. In other words, we arrive at the Euler-Lagrange

equations

∂L

∂qi
(q, q̇)− d

dt

(
∂L

∂q̇i
(q, q̇)

)
= 0 .

1.2.4 Conservative Lagrangian systems

In classical mechanics, the Lagrangian of a conservative system is not an

arbitrary function, but rather takes the form

L(q, v) = Tq(v)− V (q) (1.3)

where V : M → R is the potential and Tq : TMq → R is a quadratic form on

on the vector space TMq. More precisely, a conservative Lagrangian system

with n degrees of freedom consists of the following data

1. A Riemannian manifold M of dimension n.

2. A smooth function V : M → R called the potential.

3. For each q ∈ M , a quadratic form Tq : TMq → R called the kinetic

energy, given by

Tq(v) =
1

2
〈v, v〉q =

1

2
‖v‖2q .

Here 〈·, ·〉 : TMq ×TMq → R is the Riemannian inner product at q ∈M .

4. A Lagrangian function L : TM → R given by (1.3).

A basic example is provided by the unconstrained conservative Newtonian

system of N particles given in section 1.1. In that case we have M = R3N ,

TM = R3N × R3N . The Riemannian structure on M is given by the inner

product

〈v,w〉q =

N∑

i=1

mi(v
1
iw

1
i + v2

iw
2
i + v3

iw
3
i ) .
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Note that this inner product does not depend on the point q = (x1
1, x

2
1, x

3
1, . . . ,

x1
N , x

2
N , x

3
N ) ∈ R3N . The Lagrangian is therefore

L(q, v) =
1

2

N∑

i=1

mi

[
(v1
i )

2 + (v2
i )

2 + (v3
i )

2
]
− V (q) .

If we write down the Euler-Lagrange equations for this Lagrangian, we re-

cover, not surprisingly, Newton’s second law of motion.

1.3 Hamiltonian Mechanics

As we saw, in Lagrangian mechanics the Euler-Lagrange equations of motion

are deduced from a variational principle, but they are still second-order

(and usually non-linear) ordinary differential equations. In Hamiltonian

mechanics, the equations of motion become first-order ordinary differential

equations, and the resulting Hamiltonian flow is in principle more amenable

to dynamical analysis. This reduction of order is accomplished by passing

from the tangent bundle of the configuration space (Lagrangian phase space)

to the cotangent bundle (Hamiltonian phase space).

1.3.1 The Legendre transformation

Suppose we have a Lagrangian system with n degrees of freedom with

configuration space given by a Riemannian manifold M and Lagrangian

L : TM → R. The Lagrangian L gives rise to a map P : TM → T ∗M
between tangent and cotangent bundles, the so-called Legendre transforma-

tion. The map P is defined by

P (q, v) =

(
q,
∂L

∂q̇
(q, v)

)
,

for all q ∈M and all v ∈ TMq. Its derivative at each point has the form

DP (q, v) =

[
I ∗
0
(

∂2L
∂q̇i∂q̇j (q, v)

)
]
.

Hence P will be a local diffeomorphism provided

det
(

∂2L
∂q̇i∂q̇j (q, v)

)
n×n
6= 0 .

We leave it as an exercise for the reader to check that if this condition holds

at all points (q, v) ∈ TM then P is in fact a global diffeomorphism (a bundle

isomorphism, in fact).
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In local coordinates, P transforms each generalized velocity q̇i into a gen-

eralized momentum

pi =
∂L

∂q̇i
.

What do we gain by passing to the cotangent bundle? The answer lies in

the fact that the cotangent bundle of every differentiable manifold carries a

natural symplectic structure, as we shall see.

1.3.2 Symplectic manifolds

A symplectic structure on a differentiable manifold N is a 2-form ω ∈ ∧2(N)

which is non-degenerate in the sense that if X ∈ X (N) is a vector field on

N such that ω(X,Y ) = 0 for every vector field Y ∈ X (N), then X = 0.

A manifold N together with a symplectic 2-form ω is called a symplectic

manifold . Symplectic manifolds are necessarily even-dimensional (exercise).

In a symplectic manifold (N,ω) there is a natural isomorphism between

1-forms and vector fields,

Iω : ∧1(N) −→X (N)

α 7→ Xα

where Xα is defined by

ω(Xα, Y ) = α(Y ) for all Y ∈X (N) .

The non-degeneracy of ω guarantees that Iω is indeed well-defined and an

isomorphism.

Given any function f : N → R, we can use Iω to associate to f a vector

field on N . We simply define Xf = Iω(df), where df is the differential 1-form

of f . The vector field Xf is called the Hamiltonian vector field associated

to f . The flow φt on N generated by this vector field (which we assume

to be globally defined) is called the Hamiltonian flow of f (or Xf ). This

flow preserves the symplectic form ω, in the sense that φ∗tω = ω for all t

(exercise).

Taking the exterior product of ω with itself n times, we get a 2n form on

N , i.e. a volume form λ = ω ∧ ω ∧ · · · ∧ ω. This volume form is called the

Liouville form, and it is also preserved by Hamiltonian flows. This makes

the subject very rich from the point of view of ergodic theory.
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1.3.3 Hamiltonian systems

Going back to mechanics, we claim that the cotangent bundle T ∗M of the

configuration space M has a canonical symplectic structure. Indeed, on

T ∗M there is a canonical 1-form θ ∈ ∧1(T ∗M), the so-called Poincaré 1-

form, defined as follows. Let π : T ∗M →M be the projection onto the base.

Let (q, p) ∈ T ∗M , and let (ξ, η) ∈ T (T ∗M) be a tangent vector at (q, p).

Note that p ∈ T ∗Mq is a linear functional on TMq. Hence we can take

θq,p(ξ, η) = p (Dπ(q, p)(ξ, η))

In local coordinates (q1, . . . , qn; p1, . . . , pn) on T ∗M , this 1-form is given by

θ = pi dq
i .

Taking the exterior derivative of θ yields our desired symplectic form

ω = dθ = − dpi ∧ dqi .

Now, given a function f : T ∗M → R, let Xf be the Hamiltonian vector

field associated to f (via the symplectic structure in T ∗M just introduced).

It is easy to write down explicitly the components Xi
f , i = 1, 2, . . . , 2n of Xf

in local coordinates, in terms of f . Indeed, if Y is any vector field on T ∗M
with components Y i, then from

ω(Xf , Y ) = df(Y )

we deduce that

dpi(Xf )dq
i(Y )− dpi(Y )dqi(Xf ) = −df(Y )

In terms of the components of both vector fields, this means that

n∑

i=1

(
Xi+n
f Y i − Y i+nXi

f

)
= −

n∑

i=1

(
∂f

∂qi
Y i +

∂f

∂pi
Y i+n

)
.

Since this holds true for every Y , comparing terms on both sides yields, for

all i = 1, 2, . . . , n,

Xi+n
f = − ∂f

∂qi
; Xi

f =
∂f

∂pi

In other words, the Hamiltonian vector field associated to f is given by

Xf =

(
∂f

∂p
, −∂f

∂q

)
.
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The corresponding flow on T ∗M is therefore given by the solutions to the

following system of first order ordinary differential equations

q̇i =
∂f

∂pi
(1.4)

ṗi = − ∂f
∂qi

.

Next, we ask the following question: is there a choice of f , let us call it

H, for which the above flow in the cotangent bundle is the image under the

Legendre map P of the Lagrangian time evolution in the tangent bundle?

The answer is yes, and the function H is called the Hamiltonian of our

particle system. To see what H looks like, let us write its total differential

using (1.4) for f = H,

dH =
∂H

∂qi
dqi +

∂H

∂pi
dpi

= −ṗidqi + q̇idpi .

Using the fact, coming from the Euler-Lagrange equations, that

ṗi =
∂L

∂qi

and also that

q̇idpi = d(piq̇
i)− ∂L

∂q̇i
dq̇i ,

we see that

dH = − ∂L
∂qi

dqi + d(piq
i)− ∂L

∂q̇i
dq̇i = d(piq̇

i − L)

Therefore we can take H(q, p) = piq̇
i−L(q, q̇). In this expression, of course,

we implicitly assume that the generalized velocities q̇i are expressed as func-

tions of the generalized momenta pj, which is certainly possible because we

have assumed from the beginning that the Legendre map P is invertible.

Summarizing, we have shown how to pass from a Lagrangian formulation

of a mechanical system, which lives in the tangent bundle to the config-

uration space, to a Hamiltonian formulation, which lives in the cotangent

bundle. The Hamiltonian dynamical system is given by a system of first-

order ordinary differential equations, namely

q̇i =
∂H

∂pi

ṗi = −∂H
∂qi
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1.3.4 Hamiltonian of a conservative system

When our original (Lagrangian) system is conservative, with Lagrangian

given by L(q, v) = Tq(v) − V (q) as before, the above passage to the corre-

sponding Hamiltonian system yields the Hamiltonian H : T ∗M → R given

by H = T + V , or more precisely, H(q, p) = Tq(p) + V (q). Such a system is

called a conservative Hamiltonian system.

1.4 Poisson brackets and Lie algebra structure of observables

A classical observable is simply a differentiable function f : T ∗M → R in

the phase space of our Hamiltonian system. Given a pair of observables

f, g : T ∗M → R in phase space, we define their Poisson bracket by

{f , g} =

n∑

i=1

(
∂f

∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi

)
.

This notion of Poisson bracket endows the space of all observables in phase

space with the structure of a Lie algebra. Since the Hamiltonian H is itself

an observable, it is easy to recast Hamilton’s equations with the help of the

Poisson bracket as

q̇ = {q , H} , ṗ = {p , H} .

Now, every observable has a time evolution dictated by the Hamiltonian

flow. Using the above form of Hamilton’s equations and the definition of

Poisson bracket, the reader can check as an exercise that the time evolution

of an observable f satisfies the first order equation

ḟ = {f , H} .

The reader won’t fail to notice that there are two distinct algebraic struc-

tures in the space of all observables of a Hamiltonian system: the Lie algebra

structure given by the Poisson bracket, and the commutative algebra (actu-

ally a commutative C∗-algebra, see chapter 2) structure given by ordinary

pointwise multiplication of functions. These structures are quite indepen-

dent. From an algebraic point of view, one can think of the process of

quantization of a classical system, to be described in chapter 2, as a way

to transform the space of observables into a non-commutative algebra in

such a way that the Lie algebra structure and this non-commutative algebra

structure become compatible.
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1.5 Symmetry and conservation laws: Noether’s Theorem

Suppose we have a Lagrangian system in Rn whose Lagrangian function

L : Rn × Rn → R does not depend on a particular generalized coordinate

qj (for some 1 ≤ j ≤ n). In other words, L is invariant under translations

along the qj coordinate axis, i.e.

L(q1, . . . , qj + τ, . . . , qn; q̇1, . . . , q̇n) = L(q1, . . . , qj, . . . , qn; q̇1, . . . , q̇n)

for all τ ∈ R. Then, from the Euler-Lagrange equations we deduce that

ṗj =
d

dt

(
∂L

∂q̇j

)
= 0 .

This means that the j-th generalized momentum is constant along the phys-

ical trajectories in phase space. In other words, pj is an example of what

physicists call an integral of motion.

The underlying principle here was strongly generalized by

E. Noether. Her theorem states that to each one-parameter group of sym-

metries in configuration space there corresponds an integral of motion in

phase space.

Theorem 1.1 (Noether) Let L : TM → R be the Lagrangian of a La-

grangian system, and let

G = {φs : M →M : s ∈ R}

be a one-parameter group of diffeomorphisms such that

L(φs(q),Dφs(q)v) = L(q, v) (1.5)

for all q ∈M and all v ∈ TMq. Then there exists a function IG : TM → R

which is constant on trajectories, i.e.

d

dt
IG(q(t), q̇(t)) = 0 . (1.6)

Proof Define IG as follows

IG(q, v) =
∂L

∂q̇
(q, v)

∂

∂s

∣∣∣
s=0

φs(q) .

Then

d

dt
IG(q, q̇) =

d

dt

(
∂L

∂q̇
(q, q̇)

)
∂

∂s

∣∣∣
s=0

φs(q) +
∂L

∂q̇
(q, q̇)

∂

∂s

∣∣∣
s=0

d

dt
φs(q) .
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We may use the Euler-Lagrange equations in the first term of the right-hand

side. Note also that
d

dt
φs(q) = Dφs(q) q̇ .

Therefore we have, using (1.5),

d

dt
IG(q, q̇) =

∂L

∂q
(q, q̇)

∂

∂s

∣∣∣
s=0

φs(q) +
∂L

∂q̇
(q, q̇)

∂

∂s

∣∣∣
s=0

Dφs(q)q̇

=
∂

∂s

∣∣∣
s=0

L(φs(q),Dφs(q)q̇)

=
∂

∂s

∣∣∣
s=0

L(q, q̇) = 0 .

This establishes (1.6) and finishes the proof.

Besides conservation of linear momentum, another simple application of

Noether’s theorem occurs when the Lagrangian is rotationally invariant (i.e.

invariant under the orthogonal group). In this case we deduce the law of

conservation of angular momentum; see exercise 2 below and the discus-

sion in the context of quantum mechanics in section 2.7. Noether’s theorem

survives as an important principle in modern physics, namely, that the in-

finitesimal symmetries of a system yield conservation laws. Its importance

is felt especially in field theory, through the concept of gauge invariance (see

chapter 5).

Exercises

1.1 The electromagnetic field in a region Ω of 3-space can be represented

by a four-vector potential (φ,A), where φ : Ω → R is the scalar

potential and A : Ω→ R3 is the vector potential, and

B = ∇ ∧A , E = −∇φ− ∂A

∂t

are the magnetic and electric fields, respectively (see chapter 5).

Consider a particle with charge q and mass m subject to this field.

(a) Show that the Euler-Lagrange equations applied to

L(x, ẋ) =
1

2
m 〈ẋ, ẋ〉+ q 〈ẋ,A〉 − qφ

yield the non-relativistic equation of motion

mẍ = q (E + ẋ ∧B) .
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(b) Letting p = mẋ + qA, show that the Hamiltonian of this system

is

H(p,x) =
1

2m
‖p− qA‖2 + qφ .

1.2 Suppose we have a lagrangian system of particles whose Lagrangian

is rotationally invariant. Using Noether’s theorem, show that such

system satisfies the law of conservation of angular momentum.
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Quantum mechanics

In this chapter we present the basic principles of quantum mechanics of par-

ticle systems from a modern mathematical perspective. The proper study of

quantum mechanics brings together several interesting mathematical ideas,

ranging from group representations to the spectral theory of unbounded self-

adjoint operators in Hilbert spaces and the theory of C∗ algebras. The facts

from analysis of operators in Hilbert spaces and C∗ algebras needed in this

chapter are presented in detail in the appendices at the end of the book.

More on the mathematical foundations of quantum mechanics can be found

in the books by G. Mackey [M], L. Fadeev and O. Yakubovskii [FY], and

F. Strocchi [Str] listed in the bibliography.

2.1 The birth of quantum theory

The origins of quantum theory can be traced back to M. Planck’s study,

published in 1900, of the so-called black-body radiation. It is well-known

that matter glows when heated, going from red-hot to white-hot as the

temperature rises. The color (or frequency of radiation) of the radiating

body is independent of its surface, and for a black body it is found to be

a function of temperature alone. The behavior of the radiation energy as

a function of temperature seemed quite different at high temperatures and

low temperatures. In a desperate attempt to fit these different behaviors

into a single law, Planck introduced the hypothesis that energy was not

continuous, but came in discrete packets or quanta.

In the beginning of the twentieth century, a number of experiments pointed

to a breakdown of the laws of classical mechanics at very small (sub-atomic)

scales. Among them were:

(1) Rutherford’s scattering of α-particles. This experiment at first seemed

27
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to support the classical picture of an atom as a microscopic planetary

system, held through an analogy between Newton’s and Coulomb’s

laws. However, it lead to some unexpected conclusions:

(a) Unlike planetary systems, all atoms have about the same size (∼
10−8 cm).

(b) According to the Maxwellian theory of electromagnetic radiation,

an electron orbiting around a nucleus should emit radiation, thereby

loosing energy and ultimately colliding with the nucleus. This is

in flagrant contradiction with the obvious stability of matter that

is observed in nature.

(c) The energy absorbed or emitted by an atom was seen to vary in

discrete quantities, and not continuously as expected by the clas-

sical theory. From a classical standpoint, the energy of radiation

of an electron in orbit varies continuously with the size (radius)

of the orbit. This leads to the surprising conclusion that only a

discrete set of orbit sizes is allowed.

(2) The photoelectric effect . When light waves of sufficiently high frequency

ν hit the surface of a metal, electrons are emitted. For this to hap-

pen the light frequency has to be above a frequency threshold ν0

that depends on the metal. The experiments show that the kinetic

energy of each emitted electron is directly proportional to the differ-

ence ν−ν0, but is independent of the intensity of the radiation. This

is in sharp contrast with the classical theory of radiation. In 1905,

A. Einstein proposed an explanation of this phenomenon. He in-

troduced the idea that, microscopically, a light wave with frequency

ν has energy that is not continuous, but comes in discrete quanta,

or photons, each with energy E = hν, where h is the same con-

stant found by Planck in his work on black-body radiation. † Thus,

although behaving like a wave, light seemed to have a corpuscular

nature at very small scales.

(3) Matter waves. The radical hypothesis that material particles could be-

have like waves was first put forth in 1923 by L. de Broglie, who

even suggested that a particle with momentum p should be assigned

a wavelength equal to h/p, where h is Planck’s constant. The first ex-

perimental confirmation of this wave-particle duality of matter came

soon afterwards. In 1927, C. Davisson and L. Germer conducted

an experiment in which a well-focused beam of electrons, all with

† In CGS units, Planck’s constant is h ≃ 6.6 × 10−27cm · g/s
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approximately the same energy E, is scattered off the plane sur-

face of a crystal whose planar layers are separated by a distance d.

They observed that an interference pattern – indicating wave be-

havior – emerges when the beam’s incidence angle θ is such that

2d sin θ = nh/p, where n is a positive integer and p =
√

2mE is the

electron’s momentum, consistent with de Broglie’s hypothesis.

These experimental facts and a number of others (such as those on polar-

ization properties of light, or the Stern-Gerlach experiment on spin) called

for a revision of the laws of mechanics. The first proposed theory, the so-

called old quantum theory of N. Bohr, A. Sommerfeld, and others, was a

mixture of ad hoc quantum rules with Newtonian laws – with which the

quantum rules were frequently in conflict – and therefore conceptually not

satisfactory. Then, in 1926, W. Heisenberg proposed his uncertainty princi-

ple, according to which the position and momentum of a microscopic particle

cannot be simultaneously measured. The classical idea of particles, describ-

ing well-defined paths in phase space, should be abandoned altogether. At

the same time, E. Schrödinger proposed that electrons and other particles

should be described by wave functions satisfying a partial differential equa-

tion that now bears his name (presumably guided by the idea that, where

there is a wave, there must be a wave equation). The new quantum theory

that emerged – quantum mechanics – was developed by M. Born, P. Jordan,

W. Pauli, P. Dirac, and others.

In this chapter, we present a short account of the mathematical ideas

and structures underlying quantum mechanics, from a modern mathemati-

cal viewpoint. The foundations of quantum mechanics were brought to firm

mathematical ground in the hands, above all, of J. von Neumann – who real-

ized that the appropriate setting for quantum mechanics should be a theory

of self-adjoint operators in a Hilbert space (and who single-handedly devel-

oped most of that theory) – and also E. Wigner, whose study of quantum

symmetries plays a decisive role today.

2.2 The basic principles of quantum mechanics

2.2.1 States and observables

In quantum mechanics, one postulates the existence of a separable complex

Hilbert space H that helps represent the possible states of a given quantum

system. This Hilbert space can be finite-dimensional (as in the case of a

system consisting of a single photon, or some fermion), but more often it is

an infinite dimensional space. The pure states of the system are the complex
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one-dimensional subspaces, or rays, of the Hilbert space H . Since each such

ray is completely determined once we give a unit vector belonging to it, pure

states are also represented by unit vectors in H . This representation is not

unique, however: any two unit vectors that differ by a phase (i.e. by a

complex scalar of modulus one) represent the same state. Thus, the pure

state space of quantum mechanics is the projective space S = P 1(H ).

The observables of a quantum system are represented by self-adjoint op-

erators on H . It turns out that in many situations we must allow these

operators to be unbounded (defined over a dense subspace of H ). As we

shall see, this is unavoidable, for instance, when we perform the so-called

canonical quantization of a classical system of particles. The class of all

observables of a quantum system will be denoted by O.

Let us recall the spectral theorem for self-adjoint operators.

Theorem 2.1 Let A be a self-adjoint operator on a Hilbert space H , with

domain DA ⊆H . Then there exist a measure space (Ω, µ), a unitary oper-

ator T : H → L2(Ω, µ) and a measurable function α : Ω→ R such that the

diagram

H ⊇ DA
A−−−−→ H

T

y
yT

L2(Ω, µ) ⊃ DMα −−−−→
Mα

L2(Ω, µ)

commutes. Here Mα denotes the multiplication operator given by Mα(f) =

α · f , and DMα = {f ∈ L2(Ω, µ) : α · f ∈ L2(Ω, µ)} is its natural domain of

definition.

For a complete proof of this theorem, see appendix I (theorem 10.4 in

§10.5). The spectral theorem allows us to associate to each observable A

and each state ψ ∈ H a Borel probability measure on the real line, in the

following way. Let E ⊆ R be a Borel set, and let χE be its characteristic

function. Then the operator MχE◦α : L2(Ω, µ) → L2(Ω, µ) is an orthogo-

nal projection (check!). Hence the operator PE = T−1 ◦MχE◦α ◦ T is an

orthogonal projection on H . Using this orthogonal projection, we define

PA,ψ(E) = 〈ψ,PEψ〉 ∈ R+ .

This gives us a probability measure on the real line. The physical interpreta-

tion of the non-negative number PA,ψ(E) is that it represents the probability

that a measurement of the observable A when the system is in the state ψ will
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be a number belonging to E. We therefore have a map O×S →P(R) (the

space of Borel probability measures on the real line) given by (A,ψ) 7→ PA,ψ.

Besides pure states, there are also composite or mixed states of a quantum

system. Roughly speaking, these correspond to convex combinations of pure

states. The mathematical definition is as follows. First, we define a density

operator (also called a density matrix ) to be a self-adjoint operator M on

our Hilbert space H which is positive and trace class, with trace equal

to one. Positivity means that for all ξ ∈ H we have 〈Mξ, ξ〉 ≥ 0. We

say that M is trace-class if, given any orthonormal basis {ψi} for H , we

have
∑

i 〈Mψi, ψi〉 <∞. One can easily show that this sum, when finite, is

independent of the choice of orthonormal basis, and therefore it is a property

of M alone; it is called the trace of M , and denoted Tr(M). A density

operator is normalized so that Tr(M) = 1. It turns out that if M is trace

class and A is any self-adjoint operator, then MA is trace-class. A mixed

state is a linear functional ω on the space of observables such that ω(A) =

Tr(MA) for all observables A, where M is a fixed density operator. It

should be apparent that mixed states are more general than pure states.

Indeed, if a unit vector ψ ∈ H represents a pure state, we can take M

to be the orthogonal projection of H onto the subspace generated by ψ.

This M is a density operator, and its corresponding mixed state ω satisfies

ω(A) = 〈ψ,Aψ〉 for all observables A (see exercise 1).

2.2.2 Time evolution

Another important postulate of quantum mechanics is that the time evolu-

tion of a quantum mechanical system with Hilbert space H is given by a

one-parameter group of unitary operators Ut ∈ U (H ). Thus, if the system

is initially at state ψ0, then its state at time t will be ψt = Ut(ψ0).

Theorem 2.2 (Stone) Every one-parameter group of unitary operators Ut :

H →H of a separable complex Hilbert space H possesses an infinitesimal

generator. More precisely, there exists a self-adjoint operator H on H such

that Ut = e−itH for all t ∈ R.

Again, the proof of this theorem can be found in appendix I (see theorem

10.10 in §10.9). In the case of our quantum system, this special observable

H, normalized by a constant ~ called Planck’s constant, is called the Hamil-

tonian of the system. From Stone’s theorem, it follows at once that the time

evolution of states ψt satisfies the following first order differential equation

dψ

dt
= − i

~
H(ψ) .
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This is known as Schrödinger’s equation.

2.2.3 Symmetries

According to Wigner, a symmetry of a quantum system is a map in pure

state space that preserves the transition probabilities between states. More

precisely, given two rays r, r′ ∈ S = P 1(H ), we let

P (r, r′) =
| 〈z, z′〉 |
‖z‖‖z′‖ ,

where z, z′ ∈H are any two unit vectors belonging to r and r′ respectively.

Then we have the following definition.

Definition 2.1 A symmetry of the quantum system with Hilbert space H
is a continuous bijection S : S → S such that P (S(r), S(r′)) = P (r, r′) for

all pairs of rays r, r′ ∈ S .

Symmetries of quantum systems correspond to unitary or anti-unitary

operators in the Hilbert space of the system. This is the content of the

following theorem due to Wigner.

Theorem 2.3 If S is a symmetry, then there exists a unitary or anti-unitary

operator Ŝ : H →H such that the following diagram commutes

H
Ŝ−−−−→ H

π

y
yπ

S −−−−→
S

S

where π : H → S is the obvious projection map.

Proof A proof can be found in [We, I, pp. 91–96].

2.2.4 Heisenberg’s uncertainty principle

The uncertainty principle discovered by Heisenberg uncovers a major dif-

ference between classical and quantum mechanics. Whereas in classical me-

chanics the observables are functions on phase space and therefore constitute

a commutative algebra, in quantum mechanics the observables are opera-

tors, and their algebra is non-commutative. Heisenberg’s principle, stated as

a mathematical theorem below, asserts that two observables of a quantum

system cannot be simultaneously measured with absolute accuracy unless
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they commute as operators. There is an intrinsic uncertainty in their simul-

taneous measurement, one which is not simply due to experimental errors.

Let us suppose that A is an observable of a given quantum system. Thus,

A is a (densely defined) self-adjoint operator on a Hilbert space H . Let

ψ ∈H with ‖ψ‖ = 1 represent a state of the system. Then

〈A〉ψ = 〈ψ,Aψ〉

is the expected value of the observable A in the state ψ. The dispersion of

A in the state ψ is given by the square root of its variance, that is to say

∆ψA = 〈(A− 〈A〉ψI)2〉1/2ψ = ‖Aψ − 〈A〉ψψ‖ .

Note that if ψ is an eigenvector of A with eigenvalue λ, then 〈A〉ψ = λ and

∆ψA = 0.

Theorem 2.4 (Heisenberg’s uncertainty principle) If A and B are

observables of a quantum system, then for every state ψ common to both

operators we have

∆ψA∆ψB ≥
1

2

∣∣〈[A,B]〉ψ
∣∣ . (2.1)

Proof Subtracting a multiple of the identity from A and another such mul-

tiple from B doesn’t change their commutator, and it doesn’t affect their

variances. Hence we may suppose that 〈A〉ψ = 〈B〉ψ = 0. Now, we have,

using the self-adjointness of both operators,
∣∣〈[A,B]〉ψ

∣∣ =
∣∣ 〈ψ, (AB −BA)ψ〉

∣∣
=
∣∣ 〈Aψ,Bψ〉 − 〈Bψ,Aψ〉

∣∣
= 2
∣∣ Im 〈Aψ,Bψ〉

∣∣ (2.2)

But the Cauchy-Schwarz inequality tells us that
∣∣ Im 〈Aψ,Bψ〉

∣∣ ≤ ‖Aψ‖ ‖Bψ‖ . (2.3)

Combining (2.2) with (2.3) yields (2.1), as desired.

A simple consequence of this result is the fact that in a quantum particle

system, the position and momentum of a particle cannot be simultaneously

measured with absolute certainty.

2.2.5 The von Neumann axioms

Let us summarize the above discussion by stating, in an informal manner, the

basic axioms of J. von Neumann describing a quantum mechanical system.
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1. The pure states of a quantum mechanical system are given by rays (equiv-

alently, by unit vectors up to a phase) in a complex, separable Hilbert

space H .

2. The observables of the system are (densely defined) self-adjoint operators

on H .

3. Given a Borel set E ⊆ R, the probability that an observable A has a

value in E when the system is in the state ψ ∈ H is 〈ψ,PEψ〉,
where PE is the spectral projection of A associated to E (via the

spectral theorem).

4. If the system is in a state ψ at time 0, then its state at time t is given

by ψ(t) = exp (−iHt/~)ψ, where H is the Hamiltonian (or energy)

observable of the system.

2.3 Canonical quantization

There is an informal, heuristic principle in quantum mechanics called the

correspondence principle. According to this principle, to each classical

Hamiltonian system there should correspond a quantum system whose ”clas-

sical limit” is the given classical system. The process of constructing such a

quantum version of a classical system is called quantization. The construc-

tion involves finding a suitable Hilbert space from which the quantum states

of the system are made, and suitable self-adjoint operators on this Hilbert

space corresponding to the classical observables of the system.

We shall describe here the so-called canonical quantization of a Hamilto-

nian system consisting of N particles in Euclidean space.

The classical system here has states given by points in Rn, where n = 3N ,

and position observables q1, q2, . . . , qn. These are functions on phase space,

and as such they satisfy the canonical commutation relations {qi, qj} = 0

(Poisson brackets here). After quantization, we should have a Hilbert space

H and position observables Q1, Q2, . . . , Qn which are now self-adjoint oper-

ators on H . These should still satisfy the commutation relations [Qi, Qj ] =

0.

These commutation relations combined with the spectral theorem im-

ply that there exist a common measure space (Ω, µ), a unitary equivalence

T : H → L2(Ω, µ) and functions q1, q2, . . . , qn on Ω such that each of the
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diagrams

H ⊇ DQi

Qi−−−−→ H

T

y
yT

L2(Ω, µ) ⊇ DMqi
−−−−→
Mqi

L2(Ω, µ)

commutes. What space should (Ω, µ) be? No uniqueness is expected here,

unless we make an extra hypothesis: we assume that the observables Qj form

a complete system in the sense that if A is an observable that commutes with

all Qj then A = g(Q1, Q2, . . . , Qn) for some Borel map g. (This is not always

physically reasonable: systems of particles which after quantization exhibit

spin, for instance – a purely quantum property – can never be complete in

this sense).

If the hypothesis is satisfied, however, then it is possible to take the mea-

sure space to be the classical configuration space itself, namely Ω = Rn,

with µ equal to Lebesgue measure. Hence the Hilbert space of the system

is identified with L2(Ω, µ). The position operators become multiplication

operators Qj : ψ 7→ qjψ.

Now, we have for each j a representation Tj : R → U (L2(Ω, µ)) of the

translation group of the real line in our Hilbert space, given by

T tjψ(q1, q2, . . . , qj , . . . , qn) = ψ(q1, . . . , qj − t, . . . , qn) .

Such representation is unitary (exercise). Hence by Stone’s theorem 2.2,

there exists an infinitesimal generator Pj such that

T tjψ = eitPjψ .

In fact, we have

Pj = −i ∂
∂qj

.

The operators Pj defined in this way are the momentum operators.

Proposition 2.1 The position and momentum operators defined above sat-

isfy the Heisenberg commutation relations

[Qj, Qk] = 0 ; [Pj , Pk] = 0 ; [Pj , Qk] = −δjkiI .

Proof Exercise.

We note en-passant that the last equality in the above proposition can
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be combined with theorem 2.4 to yield a more familiar statement of Heisen-

berg’s uncertainty principle.

Proposition 2.2 The dispersions of the position operator Pj and the mo-

mentum operator Qj satisfy the inequality

∆ψPj∆ψQj ≥
1

2
,

for every state ψ belonging to the domains of both operators.

Proof Immediate from Theorem 2.4 and the fact that [Pj , Qj ] = −iI.

Next we ask ourselves the following question: what should be the Hamil-

tonian operator of this system? To answer this question, we have to go

back to the general setting of the previous section and understand the time

evolution of an observable. If Ut = e−itH denotes the one-parameter group

generated by the Hamiltonian H and A is an observable, then heuristically

we have

Ȧ =
d

dt

∣∣
t=0

(
eitHAe−itH

)
= i(HA−AH) ,

in other words

Ȧ = i[H,A] .

We emphasize that this is purely formal; in particular, the right-hand side

doesn’t have a meaning yet. But we proceed heuristically: if A = Qj, then

we expect to have

Q̇j = i[H,Qj ] =
1

mj
Pj ,

where mj > 0 is a constant corresponding to the mass of the particle with

classical position coordinate qj. This yields the formal equality

HQj −QjH = − 1

mj

∂

∂qj
. (2.4)

The Hamiltonian operator H that we are looking for should satisfy these

relations. Now we have a simple lemma.

Lemma 2.1 For each j = 1, 2, . . . , n we have

∂2

∂q2j
Qj −Qj

∂2

∂q2j
= 2

∂

∂qj
. (2.5)

as operators (densely defined on L2(Rn)).
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Proof If ψ ∈ L2(Rn) is twice differentiable, then we have on one hand
(
∂2

∂q2j
Qj

)
ψ =

∂

∂qj

(
ψ + qj

∂ψ

∂qj

)
= 2

∂ψ

∂qj
+ qj

∂2ψ

∂q2j
,

and on the other hand
(
Qj

∂2

∂q2j

)
ψ = qj

∂2ψ

∂q2j
.

Subtracting these equalities yields (2.5).

This motivates us to define an operator HT as follows:

HT = −
n∑

j=1

1

2mj

∂2

∂q2j
.

By Lemma 2.1 and (2.4), we have HTQj − QjHT = HQj − QjH for all j.

This shows that the operator V̂ = H − HT commutes with each Qj , i.e.

[V̂ , Qj ] = 0 for all j. Due to our assumption that the position operators

are complete, this means that V̂ = V̂ (Q1, Q2, . . . , Qn). Since each Qj is a

multiplication operator in L2(Rn) (by the function qj) and they commute,

the spectral theorem implies that there exists a (measurable) function V on

Rn such that V̂ ψ = V · ψ.

We arrive at the following expression for the Hamiltonian operator

Hψ = −1

2

n∑

j=1

1

mj

∂2ψ

∂q2j
+ V ψ .

2.4 From Classical to Quantum Mechanics: the C∗ algebra

approach

We would like to say a few words about the more modern mathematical

approach to quantum mechanics via C∗ algebras, even though this viewpoint

will not be really used in the remainder of this book, except in a brief

discussion of algebraic quantum field theory at the end of appendix II. The

reader is hereby advised to consult that appendix for all the basic definitions

and results about C∗ algebras that are relevant in the discussion to follow.

In classical (Hamiltonian) mechanics, the states of a system are described

by points in a phase space Γ. The observables – physical quantities that are

measurable in experiments – are described by real (or complex) valued func-

tions on phase space. As it turns out, the observables form a commutative

C∗ algebra. As it became clear at the end of the nineteenth century, this
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description of a mechanical system is quite inadequate if the system has too

many particles. In the new approach proposed by Gibbs and Boltzmann,

one only talks about the probability that a system is in a given state. More

precisely, in statistical mechanics the states are taken to be probability distri-

butions on phase space Γ, whereas the observables become random variables

on Γ (note however that they still form an abelian C∗ algebra). The states in

statistical mechanics are, therefore, more general than classical states: the

latter, also called pure states, correspond to (Dirac) point-mass distributions

concentrated at one given point in phase space. In the statistical-mechanical

description, when a system is in a given state, all one really measures about

an observable is its expected value with respect to the probability distribu-

tion of that state. Thus, a state can be viewed as a positive linear functional

on the C∗ algebra of observables. This establishes a certain duality between

states and observables. In the early part of the twentieth century, it became

apparent that even this more general model of the world given by statistical

mechanics was insufficient to describe phenomena at the microscopic (sub-

atomic) scale. At such scale, Heisenberg’s uncertainty principle rules: in

many situations, two given observables cannot be simultaneously measured

accurately in a given state – not just experimentally, but in principle. In

addition, the measured values of observables (say, energy) are oftentimes

discrete quantities, not continuous as one might expect.

The new description of the world that emerges from this picture – quan-

tum mechanics – is a radical departure from either classical or statistical

mechanics. Whereas in classical or statistical mechanics the observables

form a commutative C∗ algebra, in quantum mechanics this C∗ algebra is

non-commutative. The states of a quantum system are defined by duality

– in analogy with what happens in classical or statistical mechanics – as

positive linear functionals on the C∗ algebra of observables.

The abstract algebraic structures described above, however nice, are not

entirely satisfactory for the description of concrete physical systems. In

order to actually measure and predict, we need a concrete realization of

such abstract structures. In the classical case, the algebra of observables is

commutative: it is C(Γ) for some (compact) space Γ. Conversely, if one is

given only a commutative C∗ algebra, one can reconstruct the phase space

Γ: this is the abelian version of the Gelfand-Naimark theorem, according to

which every commutative C∗ algebra (with unity) is isometrically isomorphic

to C(X) for some compact Hausdorff space X. In the quantum case, the C∗

algebra of observables is non-commutative. Here a concrete representation

of such C∗ algebra is offered by the full Gelfand-Naimark theorem.
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Theorem 2.5 (Gelfand-Naimark) Every C∗ algebra is isometrically iso-

morphic to an algebra of (bounded) linear operators in some Hilbert space.

This theorem is presented with a complete proof in appendix II, theorem

11.8. Thus, the observables of a quantum system are represented by linear

operators on a certain Hilbert space. By the above duality between states

and observables, it can be shown (the so-called Gelfand-Naimark-Segal con-

struction – see appendix II, theorem 11.7) that in this representation the

pure states correspond to rays in the Hilbert space. Once this Hilbert space

picture is in place, one can study the dynamical evolution of the system.

This can be done through the analysis of either the time evolution of states

– the Schrödinger evolution equation – or the time evolution of observables

– the Heisenberg evolution equation. These are dual to each other.

Remark 1. We warn the reader that this rather simplistic outline omits

several important points. For example, when trying to quantize a classical

system, say a system with a single particle, we run into the difficulty that

the position (q) and momentum (p) observables are not (and can never be

made into) bounded operators, and we seemingly fall outside the scope of

the above discussion. This difficulty was resolved by Weyl a long time ago.

The idea is to replace q and p by their complex exponentials eiq and eip

(these will be bounded as long as q and p are essentially self-adjoint) and

look at the C∗ algebra generated by the algebra of polynomials on these.

The resulting C∗ algebra is called the Weyl algebra. Von Neumann has

shown that all regular, irreducible representations of the Weyl algebra are

unitarily equivalent. See section 2.5 below for more on these facts. A good

reference for the C∗ algebra approach to quantum mechanics is [Str]. But

see also our appendix II.

2.5 The Weyl C∗ algebra

As we have seen in section 2.3, the quantization of a classical mechanical

system consisting, say, of a single particle, yields position and momentum

observables Q and P respectively, satisfying Heisenberg’s commutator rela-

tions

[P,P ] = 0 = [Q,Q] ; [P,Q] = −i~I .

We know that such observables are represented by a pair of self-adjoint

operators defined on some Hilbert space H . Such Hilbert space cannot

be finite-dimensional, otherwise P and Q would be represented by matrices

satisfying PQ−QP = −i~I, which is impossible – to see why, simply take
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the traces of both sides of this equality. Thus, H is infinite-dimensional.

Could P and Q be both bounded operators on H ? The following result

shows that the answer is no.

Lemma 2.2 Let P,Q be self-adjoint elements of a C∗ algebra such that

[P,Q] = αI for some α ∈ C. Then α = 0.

Proof Note that for all n ≥ 1 we have

[P,Qn] = [P,Q]Qn−1 +Q[P,Qn−1]

= αQn−1 +Q[P,Qn−1] .

From this it follows by induction that

[P,Qn] = nαQn−1 .

Taking norms on both sides yields

n|α| ‖Qn−1‖ = ‖PQn −QnP‖ ≤ 2‖P‖ ‖Q‖ ‖Qn−1‖ . (2.6)

But now, since Q is self-adjoint, we have ‖Qn−1‖ = ‖Q‖n−1. Moreover, the

commutator relation [P,Q] = αI tells us that either α = 0, in which case

we are done, or else ‖Q‖ 6= 0. In the latter case we can divide both the left

and right sides of (2.6) by ‖Qn−1‖, getting the inequality 2‖P‖·‖Q‖ ≥ n|α|.
Since this holds for all n ≥ 1 and ‖P‖, ‖Q‖ are bounded, we deduce that

α = 0.

This lemma shows that, when one quantizes a classical system, the ap-

pearance of unbounded operators as observables is unavoidable. This fact

introduces certain technical difficulties in the study of quantum mechanical

systems.

One way out of such difficulties was devised by H. Weyl. Instead of the

self-adjoint operators P , Q, Weyl proposed to consider the one-parameter

groups

U(α) = eiαP and V (α) = eiαQ , where α ∈ R .

These are unitary operators, and therefore bounded. They are called Weyl

operators. The physical motivation behind Weyl’s idea is the fact that what

one really wants to understand is the time evolution of an observable, not

so much the observable per se.

The Heisenberg commutator relations for the operators P and Q translate

into new commutation relations for the corresponding Weyl operators. This

will be stated precisely below. First we need an identity, the so-called Baker-

Hausdorff formula. The statement below depends on the following concept.
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If A is a self-adjoint operator on the Hilbert space H , we say that a vector

ψ ∈H is analytic if Anψ is well-defined for all n, and also the exponential

eAψ.

Lemma 2.3 (Baker-Hausdorff) Let A,B be self-adjoint operators on a

Hilbert space. If the domains of A,B, and A + B have a common dense

subspace D of analytic vectors, then in D we have

eAeB = eA+B+ 1
2
[A,B] , (2.7)

provided [A,B] commutes with both A and B.

Proof Note that the right-hand side of (2.7) is equal to

eA+Be
1
2
[A,B] ,

because [A,B] commutes with A+B. Let us consider the function of a real

variable α given by

F (α) = eαAeαBe−α(A+B)e−
α2

2
[A,B] . (2.8)

To prove (2.7), it suffices to show that F (1) = I (identity operator). We will

show in fact that F (α) = I for all α. Since we clearly have F (0) = I, all we

have to do is to show that the derivative F ′(α) = 0 for all α. Calculating

the derivative explicitly, we get

F ′(α) = eαAeαB
(
e−αBAeαB −A− α[A,B]

)
e−α(A+B)e−

α2

2
[A,B] . (2.9)

We claim that the expression between parentheses in (2.9) vanishes. To see

why, let Φ(α) = e−αBAeαB . Then

Φ′(α) = e−αB [A,B]eαB = [A,B] ,

because [A,B] commutes with B, and hence with eαB . This shows that

Φ(α) = α[A,B] + C for some C. But Φ(0) = A, so C = A, and therefore

Φ(α) = α[A,B] +A. In other words, we have

e−αBAeαB − α[A,B]−A = 0 .

This proves our claim; the right-hand side of (2.9) vanishes identically, and

we are done.

With this lemma at hand, we are now in a position to establish the Weyl

commutation relations.
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Theorem 2.6 The Weyl one-parameter groups of unitary operators satisfy

the following relations, for all α, β ∈ R:

(i) U(α)U(β) = U(β)U(α) = U(α+ β);

(ii) V (α)V (β) = V (β)V (α) = V (α+ β);

(iii) U(α)V (β) = e−i~αβV (β)U(α).

Proof To prove (i), apply Lemma 2.3 with A = iαP and B = iβP (note

that in this case [A,B] = 0). Similarly, to prove (ii) apply the same lemma

with A = iαQ and B = iβQ (again, [A,B] = 0). Finally, to prove (iii),

take A = iαP and B = iβQ and once again apply Lemma 2.3. This time

[A,B] = −αβ[P,Q] = −i~αβ. Therefore, on the one hand we have

U(α)V (β) = e−
i~
2
αβei(αP+βQ) ,

and on the other hand

V (β)U(α) = e
i~
2
αβei(αP+βQ) ,

Comparing this last two equalities immediately yields (iii).

The algebra over the complex numbers generated by abstract elements

U(α) and V (β) (α, β ∈ R) satisfying the Weyl commutation relations given

in Theorem 2.6 is called the Weyl algebra, and is denoted by AW . One can

define an involution ∗ : AW → AW by letting

U(α)∗ = U(−α) , V (β)∗ = V (−β)

and extending it to the whole algebra in the obvious way. The elements

U(α), V (β) are unitary, in the sense that

U(α)∗U(α) = U(α)U(α)∗ = I

by the Weyl relations, and similarly for V (β), V (β)∗. Finally, one can define

a (unique) norm over AW in such a way that U(α), V (β) and U(α)V (β)

all have norm equal to one (by the Weyl relations, every monomial in the

generators can be reduced, up to multiplication by a complex number of

unit modulus, to the form U(α)V (β), and therefore also has norm one). It

is possible to prove that the completion of AW with respect to this norm is

a C∗ algebra, still denoted AW . It is called, not surprisingly, the Weyl C∗

algebra.

Thus, a quantum system consisting of a single particle is described by the

Weyl C∗ algebra. The possible quantum states of such a one particle system

are given by the representations of the C∗ algebra AW in a suitable Hilbert
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space. The task of finding such representations is greatly facilitated by a

theorem of Von Neumann, stated below.

Definition 2.2 A unitary representation ρ of the Weyl C∗ algebra into a

separable Hilbert space H is said to be regular if α 7→ ρ(U(α)) and β 7→
ρ(V (β)) are strongly continuous maps.

Theorem 2.7 (Von Neumann) All regular irreducible representations of

the Weyl C∗ algebra AW are unitarily equivalent.

We will not prove this theorem here. The interested reader can consult,

for instance, [Str], pp. 61–62.

2.6 The quantum harmonic oscillator

Let us now see how the quantization scheme described in the previous section

can be applied to the harmonic oscillator, the simplest and most important

example of a Hamiltonian system. The classical Hamiltonian in generalized

coordinates is

H(q, p) =
p2

2m
+

1

2
mω2q2 , (2.10)

where m is the mass and ω is positive constant measuring the frequency of

oscillation. Let us assume henceforth that m = 1, and let us take Planck’s

constant ~ to be equal to 1 also. Our quantization scheme dictates that p

and q be promoted to self-adjoint operators P and Q acting on some Hilbert

space H . Accordingly, the quantum Hamiltonian

H =
1

2

(
P 2 + ω2Q2

)
(2.11)

becomes a self-adjoint operator as well.

2.6.1 Computing the spectrum

We want to find the spectrum of H in (2.11). We will in fact find all eigenval-

ues and corresponding eigenvectors. In order to do so, we make the following

assumptions.

(i) The operators P and Q act irreducibly on the Hilbert space H . In

other words, H cannot be decomposed into a non-trivial direct sum

of subspaces which are invariant under both P and Q.

(ii) The operator H given in (2.11) has an eigenvalue λ.
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We shall deal with these assumptions in due time. For now, the interesting

thing is that, as soon as we have these facts at hand, we can determine

the full spectrum of H in an essentially algebraic fashion, with the help of

Heisenberg’s commutator relation

[Q,P ] = i . (2.12)

In order to do this, we introduce the following operators

a =
1√
2ω

(ωQ+ iP ) ,

a∗ =
1√
2ω

(ωQ− iP ) .

These are called the annihilation and creation operators, respectively. Note

that, since P and Q are self-adjoint, a∗ is equal precisely to the adjoint of a

(i.e. a† = a∗). An easy computation using (2.12) yields

aa∗ =
1

2ω
(ωQ+ iP ) (ωQ− iP )

=
1

2ω

{
(P 2 + ω2Q2) + iω[P,Q]

}

=
1

ω

(
H − ω

2

)
. (2.13)

Similarly, we have

a∗a =
1

ω

(
H +

ω

2

)
. (2.14)

Combining (2.13) with (2.14) we deduce that

[a, a∗] = 1 . (2.15)

Here are some purely algebraic consequences of this last identity. We have
[
a, (a∗)2

]
= aa∗a∗ − a∗a∗a
= aa∗a∗ − a∗aa∗ + a∗aa∗ − a∗a∗a
= [a, a∗]a∗ + a∗[a, a∗] = 2a∗ .

Thus, [a, (a∗)2] = 2a∗. By induction we get, for all n ≥ 1,

[a, (a∗)n] = n(a∗)n−1 . (2.16)

Two other identities are immediate from (2.15), namely

[H,a] = −ωa and [H,a∗] = ωa∗ (2.17)
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Now, using the second of our assumptions above, let ψ ∈H be an eigenvec-

tor of H belonging to the eigenvalue λ, i.e. Hψ = λψ. Then, using (2.14),

we have

ω

(
a∗a+

1

2

)
ψ = λψ .

Taking the inner product on the left by ψ, we get

ω 〈ψ, a∗aψ〉+ ω

2
‖ψ‖2 = λ‖ψ‖2 .

Since a∗ is the adjoint of a, this last equality becomes

ω‖aψ‖2 +
ω

2
‖ψ‖2 = λ‖ψ‖2 ,

from which it follows that
(
λ− ω

2

)
‖ψ‖2 = ω‖aψ‖2 ≥ 0 .

This shows that λ ≥ ω/2, with equality if and only if aψ = 0. This proves

that the spectrum of H, which we know is real because H is self-adjoint, is

bounded from below by ω/2 > 0. Now, from the fact that Hψ = λψ and

using (2.17), we see that

aHψ = λ(aψ)

implies

(Ha+ ωa)ψ = λ(aψ) ,

and therefore

H(aψ) = (λ− ω)aψ .

We deduce that either aψ = 0, or else aψ is an eigenvector of H with

eigenvalue λ − ω, and then λ − ω ≥ ω/2. Proceeding inductively, we get a

sequence of eigenvectors

ψ, aψ, a2ψ, . . . , aNψ, . . .

with corresponding eigenvalues

λ, λ− ω, λ− 2ω, . . . , λ−Nω, . . .

This cannot keep going down forever, because the eigenvalues of H are

all positive. Therefore there exists N ≥ 0 such that ψ0 = aNψ satisfies

Hψ0 = λ0ψ0 for some λ0 > 0 but aψ0 = 0. It is an easy exercise to see that

λ0 = ω/2.

The above ladder reasoning shows that the assumption that H has an

eigenvalue is equivalent to the existence of a non-zero vector ψ0 ∈ H such
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that aψ0 = 0. This vector, which we normalize to be a unit vector, is called

the ground state of H.

In the above argument we have reached the ground state by stepping down

the ladder. Now we can climb it back up to get all the eigenstates of H

and their corresponding eigenvalues. Starting with the ground state ψ0, we

define φn = (a∗)nψ0 for each n ≥ 0. We claim that each φn is an eigenvector

of H. Indeed, using the second equality in (2.17), we see that

Hφn = Ha∗(a∗)n−1ψ0 = (a∗H + ωa∗)φn−1 ,

whence

Hφn = a∗Hφn−1 + ωφn . (2.18)

It follows easily by induction from (2.18) that φn is an eigenvector of H

for each n ≥ 0 (note that φ0 = ψ0). In fact, denoting the corresponding

eigenvalue by λn, we see that (2.18) also implies that λn = λn−1 +ω for each

n ≥ 1. Since λ0 = ω/2, we deduce that λn = (n+ 1
2)ω for all n ≥ 0.

It is an easy exercise to check that the subspace of H spanned by {φn :

n ≥ 0} is invariant under the operators P and Q (see exercise 4). But now

the irreducibility assumption (i) above implies that H must be equal to this

subspace. In particular, we have proved that the spectrum of H is

σ(H) =

{(
n+

1

2

)
ω : n = 0, 1, 2, . . .

}
. (2.19)

The vectors φn are pairwise orthogonal, since they are eigenvectors of a

self-adjoint operator belonging to distinct eigenvalues. Note however, from

(2.16), that

‖φn‖2 = 〈(a∗)nψ0, (a
∗)nψ0〉

= 〈an(a∗)nψ0, ψ0〉
=
〈
an−1(n(a∗)n−1 + (a∗)n−1a)ψ0, ψ0

〉

= n
〈
an−1(a∗)n−1ψ0, ψ0

〉
.

This shows that

‖φn‖2 = n
〈
(a∗)n−1ψ0, (a

∗)n−1ψ0

〉
= n‖φn−1‖2 ,

and therefore, by induction,

‖ψn‖2 = n!‖ψ0‖2 = n! .

Thus, an orthonormal basis of eigenvectors for H is given by

ψn =
1√
n!

(a∗)nψ0 , n = 0, 1, 2, . . . (2.20)
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2.6.2 Concrete coordinate representation

We have determined the spectrum of H under the assumptions (i) and (ii)

above. Let us now exhibit a concrete representation of H, on a concrete

Hilbert space H , that satisfies both assumptions. Everything boils down

to finding ψ0 ∈ H such that aψ0 = 0. Let H = L2(R), and consider

the Schwartz space S (R) ⊂ L2(R), which is dense in L2(R). Let Q,P :

S (R)→ L2(R) be given by

(Qψ)(x) = xψ(x) ,

(Pψ)(x) = −i∂ψ
∂x

(x) .

These operators are essentially self-adjoint (see appendix I). Accordingly,

the operator a acts on S (R) by the formula

(aψ)(x) =
1√
2ω

(
ωxψ(x) +

dψ

dx
(x)

)
.

A similar formula holds true for a∗ψ. In order to find the desired eigenvector

for H, we need to solve aψ0 = 0. This is an ordinary differential equation,

namely

ψ′
0(x) = −ωxψ(x) .

Its general solution is ψ0(x) = Ce−
1
2
ωx2

, for some (real) constant C. Such

constant is chosen so that ψ0 has unit L2-norm. Thus,

1 = ‖ψ0‖2 = C2

∫

R

(
e−

1
2
ωx2
)2

dx ,

and therefore

C2 =

(∫ ∞

−∞
e−ωx

2
dx

)−1

=

√
ω

π
.

We deduce that

ψ0(x) =
(ω
π

) 1
4
e−

1
2
ωx2

.

Note that ψ0 is indeed an element of S (R). With ψ0 at hand, we can now

write down explicitly each ψn of the orthonormal basis of eigenvectors which

completely diagonalizes H. We get

ψn(x) =
(ω
π

) 1
4 (2ω)−n/2√

n!

(
ωx+

d

dx

)n
e−

1
2
ωx2

.

When the action of the differential operator appearing in this expression is

explicitly worked out, the final result will involve, for each n, a polynomial
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Hn(x) of degree n times the Gaussian function e−
1
2
ωx2

. The polynomials

Hn(x) are the classical Hermite polynomials.

2.6.3 Holomorphic representation

Here is an alternative, concrete representation of the Hamiltonian operator

H (which must obviously be isomorphic to the one given in the previous

subsection). It turns out that the assumptions (i) and (ii) we made in §2.6.1
are equivalent to assuming the existence of a separable Hilbert space H and

a complete pair of operators P and Q on this space satisfying the Heisenberg

commutator relation (2.12). Let us now prove once again that they exist.

As Hilbert space H , consider the complex vector space of all holomorphic

functions f : C→ C such that

1

2i

∫

C

|f(z)|2e−zz dzdz < ∞ ,

endowed with the inner product

〈f, g〉 =
1

2i

∫

C

f(z)g(z)e−zz dzdz .

As the reader can check, the polynomials ϕn ∈ H given by ϕn(z) = zn

(n = 0, 1, . . .) are mutually orthogonal in H with respect to this inner prod-

uct. Moreover, if f =
∑
fnz

n and g =
∑
gnz

n are holomorphic functions in

H , then

〈f, g〉 =
∞∑

n=0

αn fngn ,

where

αn = 2π

∫ ∞

0
r2n+1e−r

2
dr .

Lemma 2.4 With the inner product defined above, H is a complex Hilbert

space.

Proof An exercise for the reader.

Next, define the (unbounded) linear operators P and Q on this Hilbert

space H as follows

Qf(z) = zf(z) ,

Pf(z) = −i∂f
∂z

.
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Lemma 2.5 The pair of operators P,Q is complete, and it satisfies the

Heisenberg commutator relation.

Proof Let T be a linear operator on H that commutes with both P and Q.

Since the kernel of P is the subspace of constant functions, from PT = TP

we see that T maps constants to constants. Now let ψn = T (ϕn). From

TQϕn = QTϕn we deduce that ψn+1(z) = zψn(z). Therefore

Tϕn = ψn = znψ0(z) = cϕn(z) ,

where c = T (1) ∈ C. This shows that T = cI, so the pair P,Q is complete.

We leave it as a very easy exercise for the reader to check that [P,Q] = −iI.

2.7 Angular momentum quantization and spin

As a second important example of quantization, let us consider the angular

momentum of a particle system. To simplify the discussion, we shall only

treat here the case of a single particle in 3-space. Recall that the classical

angular momentum is given by Ω = x ∧ p, where x = (x1, x2, x3) is the

particle’s position and p = (p1, p2, p3) is its momentum. The components

Ω1,Ω2,Ω3 of the angular momentum are given by

Ωj = εjklxkpl , (2.21)

where εjkl is the totally symmetric symbol satisfying εjkl = 1 if jkl is an

even permutation of 123, εjkl = −1 if that permutation is odd, and εjkl = 0

otherwise. Calculating the Poisson bracket {Ω1,Ω2}, we get

{Ω1,Ω2} =

3∑

j=1

(
∂Ω1

∂xj

∂Ω2

∂pj
− ∂Ω1

∂pj

∂Ω2

∂xj

)

= x1p2 − x2p1 = Ω3 .

Thus {Ω1,Ω2} = Ω3, and similarly {Ω2,Ω3} = Ω1 and {Ω3,Ω1} = Ω2. One

recognizes here the relations defining the Lie algebra of SO(3).

Now the idea is that, when we quantize this system, we should obtain op-

erators L1, L2, L3 corresponding to Ω1,Ω2,Ω3 respectively (and an operator

L corresponding to Ω). The Poisson bracket relations should translate into

similar relations for the commutators of these operators. Due to (2.21), we

realize that

Lj = εjklx̂kp̂l , (2.22)
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where x̂k are the position operators and p̂l are the momentum operators.

Using the Heisenberg commutation relations [x̂k, p̂l] = i~δklI, we deduce

(exercise) that

[L1, L2] = i~L3 ; [L2, L3] = i~L1 ; [L3, L1] = i~L2 . (2.23)

Thus, we can think of the quantization procedure as giving rise to a repre-

sentation of the Lie algebra of SO(3) into the self-adjoint operators of some

Hilbert space, with the generators being mapped to operators Lj satisfy-

ing (2.23). We shall assume that such representation is irreducible (this is

consistent with Wigner’s definition of particle, see chapter 4).

We are interested in the spectral properties of the operators Lj. At this

point, we could consider the one-parameter groups of unitary operators gen-

erated by the Lj’s and invoke the Peter-Weyl theorem, according to which

the irreducible representations of a compact Lie group (such as SO(3)) are

all finite-dimensional . We prefer instead to proceed in elementary fashion.

For this purpose, it is convenient to consider the operator

L2 = L2
1 + L2

2 + L2
3 .

Note that, since each Lj is self-adjoint, L2
j is a positive operator. Therefore

L2, being a sum of positive operators, is positive also.

Lemma 2.6 The operator L2 commutes with each Lj.

Proof To prove this lemma, it is convenient to use the identity

[AB,C] = A[B,C] + [A,C]B . (2.24)

Applying (2.24) with A = B = Lj and C = Lk, we get

[L2
j , Lk] = Lj[Lj , Lk] + [Lj , Lk]Lj .

Hence we have, using (2.23),

[L2
1, L1] = 0 ; [L2

1, L2] = i~(L3L1 + L1L3) (2.25)

[L2
1, L3] = −i~(L1L2 + L2L1) .

Similarly, we have

[L2
2, L1] = −i~(L2L3 + L3L2) ; [L2

2, L2] = 0 (2.26)

[L2
2, L3] = i~(L1L2 + L2L1) ,
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as well as

[L2
3, L1] = i~(L2L3 + L3L2) ; [L2

3, L2] = −i~(L3L1 + L1L3) (2.27)

[L2
2, L3] = 0 .

Adding up the first relations in (2.25), (2.26) and (2.27), we get

[L2, L1] = [L2
1, L1] + [L2

2, L1] + [L2
3, L1]

= 0− i~(L2L3 + L3L2) + i~(L2L3 + L3L2) = 0 .

Similarly, we get [L2, L2] = 0, and also [L2, L3] = 0.

This shows that L2 commutes with every element of the Lie algebra gen-

erated by the Lj’s. Since we are assuming that this representation is irre-

ducible, it follows that L2 belongs to such Lie algebra. Therefore L2 must

be a multiple of the identity: L2 = λI for some λ ≥ 0 (recall that L2 is

a positive operator). It is easy to exclude the possibility that λ = 0: the

representation would be trivial in this case. Hence we can assume that

λ > 0.

Lemma 2.7 The operators Lj are bounded.

Proof We claim that L2
j is a bounded operator. This follows easily from the

fact that L2
j is a positive operator and from the fact that L2 ≥ L2

j . This is

turn shows that the spectrum of Lj is contained in the interval [−
√
λ,
√
λ],

and therefore Lj is a bounded operator also.

We can actually describe the spectrum of each Lj quite explicitly. Let

us do it for j = 3. For this purpose, we introduce the following (bounded,

but not self-adjoint) operators L+ = L1 + iL2 and L− = L1 − iL2. In what

follows, these operators will play a role akin to that of the creation and

annihilation operators introduced in the analysis of the harmonic oscillator.

It is an easy exercise to check that [L3, L±] = ±~L±.

Lemma 2.8 Let A,B be elements of a Lie algebra such that [A,B] = B.

Then for all α ∈ C we have

eαAB = eαBeαA .

Proof Since AB = BA+B = B(I +A), we have by induction

AnB = B(I +A)n .

Multiplying both sides of this equality by αn/n! and adding up the resulting

series we get eαAB = Beα(I+A) = eαBeαA.
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Applying this lemma to A = ±~−1L3, B = L± and α = is~, it follows

that

eisL3L±e
−isL3 = eis~L± .

Taking s = 2π/~ we see from this relation that the unitary operator e2πiL3/~

commutes with L+, L− and L3. As before, we deduce that it is a (phase)

multiple of the identity, in other words,

e2πiL3/~ = eiθI .

This equality allows us to prove that the spectrum of the operator L3 is

discrete. We need the following more general result.

Lemma 2.9 Let A be a self-adjoint operator such that e2πiA = eiθI, for

some θ. Then A has discrete spectrum.

Proof Let us consider the one-parameter group of unitary operators given

by

U(s) = eisAe−isθ/2π = eisΦ ,

where

Φ = A− θ

2π
I .

Applying the spectral theorem, we have the integral representation

U(s) =

∫

σ(Φ)
eisλ dE(λ) .

From this and the functional calculus, we can write

|U(2π) − I| =

∫

σ(Φ)
|e2πiλ − 1| dE(λ) .

But the left-hand side of this last equality is zero. Therefore σ(Φ) ⊆ Z. This

shows that

σ(A) ⊆
{
n+

θ

2π
: n ∈ Z

}
.

This shows that the spectrum of A is discrete as claimed.

Lemma 2.10 The operator L3 has discrete spectrum.
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Proof Applying Lemma 2.9 to A = L3/~, the result follows. We deduce in

fact that

σ(L3) ⊆
{(

n+
θ

2π

)
~ : n ∈ Z

}
.

The inclusion is actually strict, since we know already that L3 is bounded.

Obviously, the same result holds for the other two angular momentum

operators L1, L2. Summarizing, we know so far that these operators are

bounded with finite spectrum. Each element of the spectrum must therefore

be an eigenvalue. Now, if λ ∈ σ(L3) and ψ is an eigenvector with eigenvalue

λ, then we have

L3L±ψ = (λ± ~)L±ψ .

Thus the operators L+ and L− have the effect of raising and lowering the

eigenvalues. Using the fact that the spectrum of L3 is finite, we deduce that

there exist integers k and l with k < l such that the eigenvalues of L3 are

λ + k~, λ + (k + 1)~, . . . , λ + (l − 1)~, λ + l~. We leave it as an exercise to

deduce from these facts that there exists a positive integer ℓ such that either

σ(L3) = {n~ : n = −ℓ, · · · ,−1, 0, 1, · · · , ℓ} .

or

σ(L3) =

{(
n+

1

2

)
~ : n = −ℓ, · · · ,−1, 0, 1, · · · , ℓ

}
.

Note that the entire analysis so far has not used (2.22) at all! . One can use

(2.22) to rule out the second possibility for the spectral properties of the

orbital angular momentum operators.

This still leaves open the possibility that there are irreducible represen-

tations for which the generators of the associated Lie algebra have spectra

given by the second of the two options above. And indeed there are. The

quantum observables, however, do not correspond to any classical observ-

able. They are the so-called spin operators S1, S2, S3. They arise from ir-

reducible unitary representations of the Lie group SU(2), which is a double

covering of SO(3) and whose Lie algebra is the same as that of SO(3).

2.8 Path integral quantization

In this section we present the method of quantization of particle systems via

path integrals, first devised by R. Feynman. The basic idea, however, had
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already appeared in the work of P. Dirac. We shall present the mathemati-

cally rigorous results first, postponing the physical motivation.

2.8.1 The Trotter product formula

For simplicity, we deal with the case of one particle in Euclidian space Rn,

subject to a potential V . We use coordinates x for position and p for mo-

mentum. The classical Hamiltonian is given by

Hcl =
p2

2m
+ V (x) .

The canonical quantization procedure described in section 2.3 yields the

Hilbert space L2(Rn) as the space of quantum states, and the quantum

Hamiltonian becomes the operator given by

H = − ~2

2m
∆ + V .

If V is reasonable (at least square integrable) the domain of this operator

is a (dense) subspace DH ⊆ L2(Rn) containing the Schwartz space S (Rn),

and for ψ ∈ DH we have of course

Hψ = − ~2

2m
∆ψ + V ψ .

For more reasonable potentials, the operator H will be self-adjoint. We will

have a precise sufficient condition later.

Let us write H = H0 + V , where H0 is the free particle Hamiltonian

H0 = − ~2

2m
∆ .

From this point on, we shall use units for which ~ = 1. When V = 0, the

time evolution of the free particle is given by

(e−itH0ψ)(x) = (4πit)−n/2
∫

Rn

ei|x−y|
2/4tψ(y) dy .

Here we see the free propagator K0(x, y; t) = (4πit)−n/2ei|x−y|
2/4t.

We also know the time evolution of the (multiplication) operator V . It is

a one-parameter group of multiplication operators, given simply by

(e−itV ψ)(x) = e−itV (x)ψ(x) .

The real problem is how to obtain the time evolution of the combined

operator H = H0 + V . This is where the Trotter product formula comes to
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the rescue. Let us first state a version for bounded operators. We need the

following lemma.

Lemma 2.11 Let C and D be bounded operators on a Banach space. Then

we have

eC+D − eCeD = −1

2
[C,D] +R ,

where R is an absolutely convergent series of monomials in C and D of

degrees greater than or equal to three.

Proof Compute the left-hand side by writing out the power series expansions

of the exponentials. The details are left as an exercise.

In fact, a much more explicit statement is given by the Baker-Campbell-

Hausdorff formula, see [Ros].

Theorem 2.8 (Trotter’s formula I) If A and B are bounded operators

in a Banach space, then

eA+B = lim
N→∞

(
eA/NeB/N

)N
,

where the limit is taken in the operator norm topology.

Proof Let us consider, for each n, the operators Sn = e(A+B)/n and Tn =

eA/neB/n. To prove Trotter’s formula, we need to show that ‖Snn −T nn ‖ → 0

as n→∞ (where ‖ · ‖ denotes the operator norm).

First note that if S and T are operators, we have the identity

Sn − T n =

n−1∑

j=0

Sj(S − T )T n−j−1 .

This is easily proved by induction on n. This implies that

‖Sn − T n‖ ≤
n−1∑

j=0

‖S‖j ‖S − T‖ ‖T‖n−j−1 .

Applying this inequality to S = Sn and T = Tn and taking into account

that ‖eC‖ ≤ e‖C‖ for every bounded operator C, we get

‖Snn − T nn ‖ ≤ ‖Sn − Tn‖
n−1∑

j=0

e
j
n
‖A+B‖e

n−j−1
n

(‖A‖+‖B‖)

≤ ne‖A‖+‖B‖‖Sn − Tn‖ .
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This reduces our task to proving that ‖Sn − Tn‖ converges to zero faster

than n−1. But this is now a consequence of lemma 2.11. Applying that

lemma to C = A/n and D = B/n, we see that

Sn − Tn = − 1

2n2
[A,B] +

1

n3
Rn ,

where Rn is a bounded operator whose norm is uniformly bounded in n.

This shows that ‖Sn − Tn‖ = O(n−2) and finishes the proof.

For unbounded operators (such as the ones we have here), the situation

is not quite as nice, but still sufficiently nice.

Theorem 2.9 (Trotter’s formula II) Let A and B are self-adjoint oper-

ators on a separable Hilbert space.

(a) If A+B is essentially self-adjoint in DA ∩DB then

s-limN→∞
(
eiA/NeiB/N

)N
= ei(A+B) .

(b) If A and B are bounded from below, then

s-limN→∞
(
e−A/Ne−B/N

)N
= e−(A+B) .

Proof See [RS1], page 297.

Using the above version of the Trotter product formula, one can write

down the time evolution of the Hamiltonian H = H0 + V as a limit, as

follows.

Theorem 2.10 If the potential can be written as a sum V = V1 +V2, where

V1 ∈ L2(R3) and V2 ∈ L∞(R3), then H = H0 +V is essentially self-adjoint.

Moreover, for all ψ ∈ DH and every x0 ∈ R3 we have

e−it(H0+V )ψ(x0) = lim
N→∞

(
4πit

N

)∫

R3

∫

R3

· · ·
∫

R3

eiSN (x0,x1,··· ,xN ;t)×

× ψ(xN ) dx1dx2 . . . dxN ,

where

SN (x0, x1, · · · , xN ; t) =
N∑

k=1

t

N

[
1

4

(
xk − xk−1

t/N

)2

− V (xk)

]
.
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Proof The first assertion follows immediately from a theorem of Kato and

Rellich, providing a criterion for self-adjointness. The Kato-Rellich theorem

is presented with proof in appendix I (see theorem 10.11 in §10.10). The

second assertion is a consequence of theorem 2.9 (a) above.

2.8.2 The heuristic path integral

The Trotter product formula and the resulting formula for the time evolu-

tion of the Hamiltonian operator were presented in a mathematically rig-

orous way in the previous subsection. But what can one say about their

physical meaning? What follows is a discussion of the motivation behind

these formulas, namely the notion of path integral . We emphasize that the

discussion below is predominantly heuristic.

We assume that Ĥ is the quantum Hamiltonian operator of a one-dimen-

sional system, corresponding to a classical Hamiltonian H (via a canonical

quantization procedure, say). We let q̂ and p̂ be the position and momentum

operators. We shall use Dirac’s bra and ket notations throughout. Thus, |q〉
and |p〉 denote the eigenstates of q̂ and p̂ with eigenvalues q and p, respec-

tively, whereas 〈q| and 〈p| denote their “dual eigenstates” (linear function-

als). The reader has the right to be puzzled that we speak of eigenvectors

for the position operator. By way of clarification, in the holomorphic repre-

sentation given in section 2.6.3, the plane wave function |p〉 = ψp(z) = eipz

is an eigenfunction of p̂ with eigenvalue p, and the Fourier transform of such

eigenfunctions give us delta distributions δ(z − q) = |q〉 as eigenfunctions of

the position operator q̂. These of course live outside the underlying Hilbert

space. The way to ascribe precise mathematical meaning to these general-

ized eingenfunctions is to introduce the concept of rigged Hilbert space. To

avoid a lengthy digression, we refrain from doing so, but see [Ti]. Instead,

we ask the reader to believe that a rigorous treatment can be done, and to

accept the following facts regarding these generalized eigenfunctions.

(i) 〈q|q′〉 = δ(q − q′), and 〈p|p′〉 = δ(q − q′).
(ii) 〈q|p〉 = eipq.

(iii) 1 =

∫

R

dq |q〉〈q|.

(iv) 1 =
1

2π

∫

R

dp |p〉〈p|.

We remark that the identities in (iii) and (iv) are operator identities, and

they come from the fact that {|q〉 : q ∈ R} and {|p〉 : p ∈ R} are orthogonal
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bases of the (rigged) Hilbert space. Their meaning is that, if |ψ〉 is a state

in Hilbert space, then we have the orthogonal decomposition

|ψ〉 =

∫

R

〈q|ψ〉 |q〉 dq .

This can be made precise with the help of the spectral theorem (applied to

q̂).

Now, in the Schrödinger representation, we know that the time evolution

of a state |ψ〉 is given by

|ψ〉(t) = e−iĤt|ψ〉 .

Here we are assuming that ~ = 1. In the Heisenberg representation, the

states are time-independent, and we look instead at the time evolution of

observables. Hence, if A is a self-adjoint operator, then A(t) = eiĤtAe−iĤt.
We are interested in the case when A = q̂ (or p̂). Let |q, t〉 be the eigenstate

of q̂(t) with eigenvalue q, so that

q̂(t)|q, t〉 = q |q, t〉 .

These eigenstates remain mutually orthogonal for all t, and we have a gen-

eralized version of (iii), namely

1 =

∫

R

|q, t〉〈q, t| dq . (2.28)

Let us look at the time evolution of the position operator of our system

between an initial time ti and a final time tf . The transition probability

amplitude between an initial state |qi, ti〉 and a final state |qf , tf 〉 is given

by the inner product 〈qf , tf |qi, ti〉. Our goal is to compute this amplitude.

Note that

〈qf , tf |qi, ti〉 = 〈qf |e−iĤ(tf−ti)|qi〉 .

The idea behind the computation is to partition the interval [ti, tf ] into N

subintervals of equal length ǫN = (tf−ti)/N through the points tj = ti+jǫN ,

j = 0, . . . , N . Using the identity (2.28) with t = t1 and q = q1, we can write

〈qf , tf |qi, ti〉 =

∫

R

〈qf , tf |q1, t1〉 〈q1, t1|qi, ti〉 dq1 .

This process can be repeated inductively for t2, . . . , tN . We get the repre-

sentation

〈qf , tf |qi, ti〉 =

∫

RN

N−1∏

j=0

〈qj+1, tj+1|qj , tj〉 dq1 · · · dqN .
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Taking into account that

〈qj+1, tj+1|qj , tj〉 = 〈qj+1|e−iĤ(tj+1−tj)|qj〉 ,

we have

A = 〈qf , tf |qi, ti〉 =

∫

RN

N−1∏

j=0

〈qj+1|e−iĤǫN |qj〉 dq1 · · · dqN . (2.29)

Now, the point is that, when ǫ is small, we have an operator expansion of

the form

e−iĤǫ = 1− iǫĤ +O(ǫ2) .

When this expansion is used in each term in the product integrand in (2.29),

we are faced with the problem of evaluating 〈qj+1|Ĥ|qj〉 for each j. Here we

invoke the identity (iv), using the momentum variable p = pj, so that

〈qj+1|Ĥ|qj〉 =
1

2π

∫
〈qj+1|pj〉 〈pj |Ĥ |qj〉 dpj . (2.30)

In order to compute 〈pj |Ĥ|qj〉, we have to remember that Ĥ = Ĥ(q̂, p̂) is an

operator involving the position and momentum operators q̂, p̂, which do not

commute. They can be made to act on either side of the inner product, but

it is necessary to specify an order in which this is to be done. To circumvent

potential ambiguities, we suppose that, whenever we have products of the

non-commuting operators q̂, p̂ in the expression defining Ĥ, the p̂ factors

always appear to the left of the q̂ factors. Under this assumption, and taking

into account that 〈pj | and |qj〉 are eigenstates (for p̂ and q̂ respectively), we

see that

〈pj |Ĥ|qj〉 = H(qj , pj)〈pj |qj〉 ,

where H(q, p) is the classical Hamiltonian evaluated at (q, p). Using the

identities in (i), we have

〈pj|qj〉 = 〈qj |pj〉 = e−pjqj , as well as 〈qj+1|pj〉 = eipjqj+1 .

Putting these data back in (2.30) for each j, we get

〈qj+1|Ĥ|qj〉 =
1

2π

∫
H(qj, pj)e

ipj(qj+1−qj)dpj .

Taking these expressions to (2.29), we see that the amplitude A = 〈qf , tf |qi, ti〉
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can be written as

A =
1

(2π)N

∫

RN

∫

RN

exp



i

N−1∑

j=0

pj(qj+1 − qj)



×

×
N−1∏

j=0

(
1− iǫNH(qj, pj) +O(ǫ2N )

)
dq1 · · · dqN dp1 · · · dpN .

We leave to the reader, as an exercise, the task of verifying that

N−1∏

j=0

(1− iǫNH(qj , pj)+ O(ǫ2N )
)

= (1 +O(ǫN )) exp



−iǫN

N−1∑

j=0

H(qj , pj)



 .

Therefore the amplitude A can be rewritten as

A =
1

(2π)N

∫

RN

∫

RN

exp



iǫN

N−1∑

j=0

[
pj
qj+1 − qj

ǫN
−H(qj, pj)

]
×

× (1 +O(ǫN )) dq1 · · · dqN dp1 · · · dpN .

Since this must hold for all N , we can take the limit in the right-hand side

as N →∞ to get

A = lim
N→∞

1

(2π)N

∫

RN

∫

RN

exp



iǫN

N−1∑

j=0

[
pj
qj+1 − qj

ǫN
−H(qj, pj)

]
×

(2.31)

× dq1 · · · dqN dp1 · · · dpN .

An heuristic interpretation of this limit can be given as follows. We can

think of the points (tj, qj) as determining a continuous, piecewise linear

path joining (ti, qi) to (tf , qf ), the slope in the j-th linear piece being (qj+1−
qj)/ǫN (because tj+1 − tj = ǫN ). We also have a piecewise linear path in

momentum space, interpolating the points (tj , pj). The integrand in (2.31)

is a function of these two paths, and the integration process happens over

all such pairs of paths. Let us imagine, rather naively, that as N →∞ the

piecewise linear paths in coordinate space converge to differentiable paths

q(t) (ti ≤ t ≤ tf ) and that their linear slopes converge to the time derivative

q̇(t). Let us also imagine that the product Lebesgue measures dq1 · · · dqN
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and dp1 · · · dpN/(2π)N both converge, in some sense, to certain heuristic

measures:
N−1∏

j=0

dqj → Dq ;

N−1∏

j=0

dpj/(2π)N → Dp .

Then, since

iǫN

N−1∑

j=0

(
pj
qj+1 − qj

ǫN
−H(qj, pj)

)
→ i

∫ tf

ti

(pq̇ −H(q, p)) dt ,

as N →∞, it follows from (2.31) that

A =

∫ ∫
exp

{
i

∫ tf

ti

(pq̇ −H(q, p)) dt

}
DqDp .

This heuristic expression is called the path integral in Hamiltonian form. Of

course, it lacks a rigorous mathematical meaning because

(a) The above heuristic infinite-dimensional measures do not exist;

(b) Even if we could define such measures in the space of all paths, we would

have to ascribe meaning to the integrand; this seems quite problematic,

since the typical (continuous) path q(t) is nowhere differentiable.

Physicists do not stop at such mathematical difficulties. Let us then press

on, and recast the above formula in another form. For this purpose, let us

consider a Hamiltonian of the form

H(q, p) =
p2

2m
+ V (q) ,

where V is a suitable potential. In this case, the dependence on the mo-

mentum variable p is quadratic. This allows us, even before taking the limit

in (2.31), to perform the integrations in pj, since they are simply Gaussian

integrals. Let us write, for simplicity, q̇j = (qj+1 − qj)/ǫN for each j. The

Gaussian integrals that appear in (2.31) are

Ij =
1

2π

∫

R

e
−iǫN

(
p2
j

2m
−pj q̇j

)

dpj .

The relevant lemma on Gaussian integration that is needed here, which

involves analytic continuation, is presented with proof in chapter 7. Using

that lemma and the standard technique of completing the square, we find

that

Ij =

(
2πiǫN
m

)− 1
2

eiǫNmq̇
2
j /2 .
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Putting this information back into (2.31), we deduce that

A = lim
N→∞

(
2πiǫN
m

)−N
2
∫

RN

exp



iǫN

N−1∑

j=0

(
mq̇2j
2
− V (qj)

)
dq1 · · · dqN .

But now, as before, we note that for a differentiable limiting path q(t), we

have

lim
N→∞

ǫN

N−1∑

j=0

(
mq̇2j
2
− V (qj)

)
=

∫ tf

ti

(
mq̇2

2
− V (q)

)
dt .

This last expression is precisely the classical action

S(q, q̇) =

∫ tf

ti

L(q, q̇) dt ,

where L(q, q̇) is the Lagrangian. We deduce at last that, at a purely heuristic

level, that

A = 〈qf , tf |qi, ti〉 = N

∫
eiS(q,q̇) Dq .

This is the path integral in Lagrangian form. Here N is a normalizing

(infinite!) constant. It is not as dangerous as it might seem, because when

computing the actual correlation between the initial and final states, we have

to divide the inner product 〈qf , tf |qi, ti〉 by the product of the norms of the

vectors |qi, ti〉 and |qf , tf 〉, and in the process the constant goes away. The

real difficulty, of course, lies in the path integral itself. Morally, this “sum

over histories”, as physicists since Feynman like to call it, is an oscillatory

integral (due to the purely imaginary exponent in the integrand), and a great

deal of cancelation is expected, if a finite result is to be obtained. There

are only a few simple situations where the path integral can be explicitly

evaluated. One is the case of a free particle (V = 0); another is the case of

the harmonic oscillator. The reader is invited to try these cases as (perhaps

challenging) exercises.

Despite its mathematical difficulties (some of which were dealt with in

the previous subsection) the path integral, in its Lagrangian formulation,

provides us in principle with a way to perform the quantization of a particle

system without any reference to operators or Hilbert space. Only the clas-

sical action intervenes, and in principle all quantum correlations could be

computed. The Lagrangian path integral is especially useful when we have

to study systems with constraints. This point of view is extremely fruitful,

and can be used in the quantization of fields, as we shall see in chapter 7.
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2.9 Deformation quantization

We close this chapter with a brief discussion on deformation quantization.

We recall that the classical observables, which are real-valued functions on

the phase space, have the structure of a commutative associative algebra

under ordinary multiplication, and also the structure of a Lie algebra given

by the Poisson bracket. On the other hand, the quantum observables are

operators on a Hilbert space and therefore do not commute in general. The

idea developed in [BFLS] is that we can look at the non-commutative alge-

bra of quantum observables as a deformation of the commutative algebra of

classical observables. In this deformation of algebras we loose commutativ-

ity, but we gain a closer connection between the associative product and the

Lie product which is just the commutator. Under this viewpoint, a quantum

observable is obtained from a classical observable by a sequence of quantum

corrections,i.e, it is a formal power series in Planck’s constant whose coeffi-

cients are real functions on the classical phase space and the product, called

∗-product, is such that the commutator reduces to the Poisson bracket as

Planck’s constant goes to zero (the classical limit). The reader can find

in [BFLS] a detailed discussion of these ideas and in [WL] and [Kon] deep

results on the existence and uniqueness of this deformation theory. A possi-

ble interpretation of these results is that Classical Mechanics is an unstable

theory that can be deformed into Quantum Mechanics, which is stable.

Exercises

2.1 Let the unit vector ψ ∈H represent a pure state of a quantum sys-

tem with Hilbert space H . Let Pψ : H →H denote the orthogonal

projection onto the one-dimensional subspace of H generated by ψ.

(a) Show that Pψ is a self-adjoint, positive, and trace-class operator

whose trace is equal to one.

(b) Show that the mixed state associated to the density operator

M = Pψ equals the linear functional on observables A 7→ 〈ψ,Aψ〉
determined by the pure state ψ, i.e. it can be identified with ψ

itself.

2.2 Show that the application of the Gram-Schmidt orthogonalization

method to the sequence of complex polynomials {1, z, z2, . . .}, with

respect to the inner product given in 2.6.3, yields the (complex)

Hermite polynomials Hn.

2.3 Prove that the coordinate representation and the holomorphic repre-
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sentation of the quantum harmonic oscillator are isomorphic. [Hint:

Use the previous exercise.]

2.4 Recall the operators a and a∗ associated to the Hamiltonian H of the

quantum harmonic oscillator, and the eigenvectors ψn of H. Using

the fact that

Q =
1√
2
(a+ a∗) and P = −i

√
ω

2
(a− a∗) ,

show that both P andQ leave invariant the linear subspace of Hilbert

space spanned by {ψ0, ψ1, . . . , ψn, . . .}.
2.5 Prove the commutator relations (2.23) involving the angular momen-

tum operators.
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Relativity, the Lorentz group and Dirac’s equation

In this chapter, our goal is to show how quantum mechanics had to be mod-

ified to make it into a relativistic theory. The theory developed in chapter 2

is not compatible with Einstein’s special relativity: Schrödinger’s equation is

not relativistically invariant. The attempt by P. Dirac to make both theories

compatible – Dirac’s equation – showed that one had to abandon the idea of

a physical system having a fixed number of particles. Dirac’s theory allows

for creation and destruction of particles, forcing one to take up instead, as

fundamental, the idea of quantum fields, of which particles become physical

manifestations (eigenstates). This was the birth of quantum field theory.

3.1 Relativity and the Lorentz group

At the end of the nineteenth century, the Michelson-Morley experiments

showing that light travels at a speed which is independent of the motion of

the observer relative to its source, plus the discovery by Lorentz that the

Maxwell equations are invariant under a large group of transformations, ex-

posed a contradiction between Newtonian mechanics and Maxwellian elec-

tromagnetism. This lead Einstein to reformulate the laws of mechanics

(keeping the notion of inertial reference frame and Newton’s first law, cf.

chapter 1).

3.1.1 Postulates

In essence, the basic postulates of Einstein’s special relativity theory are the

following.

(1) Principle of relativity : The laws of physics are the same in all inertial

frames.

65
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(2) Invariance of uniform motion: If a particle has constant velocity in a

given inertial frame, then its velocity is constant in every inertial

frame.

(3) Invariance of the speed of light : The speed of light is invariant across

all inertial frames.

Just as in Newtonian mechanics, the space of events E here is four-

dimensional. An inertial frame provides an identification of this event space

with the standard Minkowski spacetime M = R1,3 ≡ R4. This vector space

is endowed with an inner product given by

〈x, y〉M = x0y0 − x1y1 − x2y2 − x3y3 .

Here, we write x = (x0, x1, x2, x3), with (x1, x2, x3) denoting the spatial

coordinates of x and x0 = ct denoting its temporal coordinate (c denotes

the speed of light). Writing vectors in M as column vectors and denoting

by xt the transpose of x, we see that the Minkowski inner product can be

written as

〈x, y〉M = xtGy ,

where G = (gij) is the matrix

G =




1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1


 .

This matrix is called Minkowski’s metric tensor .

The physical reason for Minkowski’s inner product structure lies in the

third postulate. Suppose we are given an inertial frame O. If a light source

is placed at (0, 0, 0) at t = 0 then it sends out a spherical wavefront that –

because the speed of light is c – will reach a given point (x1, x2, x3) in space

at time t = x0/c such that

(x0)2 − (x1)2 − (x2)2 − (x3)2 = 0 . (3.1)

This is the equation of a cone in R4, called the light cone. Thus, the wave

with source at the origin traces out the light cone. Let us now consider

another inertial frameO with a common spacetime origin with O, and denote

the coordinates in O by x = (x0, x1, x2, x3). Then, because the speed of light

in O is also c, the equation of the light cone in this new inertial frame is

still the same,

(x0)2 − (x1)2 − (x2)2 − (x3)2 = 0 .
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In other words, the light cone in event space has the same equation across

all inertial frames (with a common origin).

3.1.2 Lorentz transformations

The observation we have just made can be recast in the following way. Let

T : E → M and T : E → M denote the two frame mappings defining

the two given inertial frames O,O. Then the bijection Λ : M → M given

by Λ = T ◦ T −1 represents the change of reference frame. Since we have

a common event in E that was assumed to be the origin in both frames,

this map satisfies Λ(0) = 0. Moreover, we have established above that Λ

must preserve the light cone C given by (3.1), i.e. Λ(C) ⊆ C. Now, the

second postulate implies that straight lines representing uniform motions in

one reference frame must correspond to straight lines in the other frame.

Hence Λ maps lines to lines†. Under some mild continuity assumptions, it

follows (exercise) that Λ must be a linear map. We can say more.

Lemma 3.1 Let D be a 4 × 4 real matrix whose associated quadratic form

x 7→ xtDx vanishes on the light cone C. Then D = λG.

Proof This is left as an exercise for the reader.

Lemma 3.2 Let Λ : R1,3 → R1,3 be a linear map such that Λ(C) ⊆ C. Then

there exists a constant λ ∈ R such that ΛtGΛ = λG.

Proof Let D = ΛtGΛ. Given x ∈ C, we have Λx ∈ C, and so

xtDx = xt(ΛtGΛ)x = (Λx)tG(Λx) = 0 .

This shows that the quadratic form of D vanishes on the light cone, and

therefore D = λG for some λ, by lemma 3.1.

Thus, our change of frames Λ = T ◦ T −1 is a special matrix, in that it

satisfies ΛtGΛ = λG for some λ. Now, it is possible to dilate one of the

reference frames mappings, say T , by a suitable multiple of the identity

so that the resulting Λ will satisfy the equality with λ = 1. Performing

such a dilation has no physical effect: it simply means changing the unit of

measurement in that reference frame.

† Actually, a-priori we know this fact only for lines that respect the causality structure induced
by the light cone on Minkowski space, but this needs not bother us here.
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Summarizing, we can think of a change of inertial frames in special rela-

tivity as given by a Lorentz transformation, a linear map that preserves the

Minkowski inner product.

Definition 3.1 A Lorentz transformation is a linear map Λ : R1,3 → R1,3

that preserves the Minkowski metric, i.e such that ΛtGΛ = G, or equivalently

〈Λx,Λy〉M = 〈x, y〉M ,

for all x, y ∈M = R1,3.

It is an easy exercise to verify that the set of all Lorentz transformations

is a group under composition. This group is called the Lorentz group. Note

that if {e0, e1, e2, e3} is the canonical basis of M , then a linear map Λ as

above is Lorentz if and only if 〈Λei,Λej〉M = gij , where gij = 〈ei, ej〉M are

the components of the Minkowski metric tensor. This is simply another way

of saying that ΛtGΛ = G. In particular, taking determinants on both sides

of this last equation we deduce that detΛ = ±1.

Example 1. Here are two special types of Lorentz transformations that are

worth writing down.

(1) Time-preserving transformations. These are Lorentz transformations

such that (Λx)0 = x0 for all x. Since Λ preserves the Minkowski inner

product, it follows that Λ leaves the orthogonal decomposition R1,3 =

R⊕R3 invariant. Hence its restriction to the spatial coordinate 3-space

is an orthogonal transformation. Thus, the matrix Λ has the form

Λ =




1 0 0 0

0

0 [aij]

0




where A = [aij ] ∈ O(3).

(2) Lorentz boosts. A boost or simple Lorentz transformation along the axis

of a given spatial coordinate is a Lorentz transformation that leaves the

other two coordinates unchanged. For instance, a Lorentz boost along

the x1 axis has the form

Λ =




a00 a01 0 0

a10 a11 0 0

0 0 1 0

0 0 0 1



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From ΛtGΛ = G, we deduce that

(a00)
2 − (a10)

2 = 1

(a11)
2 − (a01)

2 = 1

a00a01 = a10a11

From these relations, it is not difficult to see (exercise) that there exists

a real number θ such that a00 = a11 = cosh θ and a01 = a10 = sinh θ, in

other words

Λ = Bθ =




cosh θ sinh θ 0 0

sinh θ cosh θ 0 0

0 0 1 0

0 0 0 1




Now, there exists a unique number v such that tanh θ = −v/c (note

that |v| < c, necessarily). Using this number, we can write cosh θ = γ

and sinh θ = −γv/c, where

γ =
1√

1− v2/c2
.

With this notation, the Lorentz boost transformation x = Λx can be

written in coordinates as follows:

x0 = γ
(
x0 − v

c
x1
)

; x1 = γ
(
x1 − v

c
x0
)

; x2 = x2 ; x3 = x3 .

The number v is the relative velocity between the two frames: the spatial

origin (x1, x2, x3) = (0, 0, 0) in the frame O satisfies the equation x1 −
vt = 0 in the frame O.

Finally, we briefly discuss the relation of causality in Minkowski space.

Let us consider the quadratic form associated with the Minkowski inner

product, namely

Q(x) = x2
0 − x2

1 − x2
2 − x2

3 .

Definition 3.2 A vector x in Minkowski space M = R1,3 is called timelike,

spacelike or lightlike depending on whether Q(x) > 0, Q(x) < 0 or Q(x) = 0,

respectively.

The set of all timelike vectors in M minus the origin has two connected

components, each of which is a cone in M . We let

C+ = {x ∈M : Q(x) > 0 and x0 > 0}
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be the positive light cone in Minkowski spacetime. Using this positive cone,

we can define a partial order relation ≪ on spacetime.

Definition 3.3 Given two vectors x, y ∈M , we say that x causally precedes

y, and write x≪ y, if y − x ∈ C+.

This order relation is called causality . Now, it is an easy matter to see that

a Lorentz transformation either preserves or reverses causality. The set of all

Lorentz transformations that preserve causality is a group, called the proper

Lorentz group, usually denoted L↑
+. All other Lorentz transformations are

called improper . Special relativity calls for a preservation of causality by all

laws of physics.

Remark 1. It was proved by E. C. Zeeman in 1964 that any causality-

preserving transformation of Minkowski’s spacetime (without any assump-

tion of continuity) must be of the form T ◦ D ◦ Λ, where Λ is a Lorentz

transformation, D is a dilation and T is a translation. In particular, every

such causality-preserving transformation is linear . See [Na1] for a complete

proof of Zeeman’s theorem. As will be seen in appendix II, §11.6, a math-

ematically rigorous way of incorporating causality into a quantum theory

of fields is a central quality of a branch of knowledge known as algebraic

quantum field theory .

3.2 Relativistic kinematics

Note from example 3.1.2 that above the composition of two Lorentz boots Bθ
and Bϕ along the x1-axis (or any other fixed axis) is also a boost along the

same axis, namely Bθ+ϕ = BθBϕ. This immediately yields the relativistic

law of addition of velocities. Suppose O,O1, O2 are three inertial frames,

and assume that O1 has velocity v1 with respect to O, moving along O’s

x1-axis, say, and that O2 moves along O1’s x
1-axis with velocity v2. Then

the velocity v with which O2 moves with respect to O is given by

v =
v1 + v2

1 + v1v2/c2
. (3.2)

Let us now discuss the relativistic kinematics of a particle with a bit

more detail. Such a particle’s motion is described by a parameterized curve

x(λ) = (xµ(λ)) in Minkowski space. This curve is called the particle’s

world-line. The motion should respect the causality relation defined above.

In other words, for each λ the tangent 4-vector to the world-line at x(λ),
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namely

dx

dλ
=

(
dxµ

dλ

)
,

must lie inside the solid light cone C+, i.e. must be time-like. Thus,

0 <

〈
dx

dλ
,
dx

dλ

〉

M

= gµν
dxµ

dλ

dxν

dλ
=

(
dt

dλ

)2

c2 −

3∑

j=1

(
dxj

dt

)2

 .

Hence the expression between brackets in the right-hand side must be always

positive, and this tells us that the particle’s velocity in the given Lorentzian

frame satisfies

v2 = v · v =
3∑

j=1

(
dxj

dt

)2

< c2 .

This shows that causality entails that a particle’s velocity can never exceed

the speed of light.

The above parametrization of the particle’s world-line uses as parameter

any monotone function of t = x0/c. There is however a special choice for λ

that is very natural: we can use (normalized) Minkowski length. More pre-

cisely, let s denote the Minkowski arc-length along the particle’s world-line

and set τ = s/c. Infinitesimally, with respect to any other parametrization,

this is tantamount to writing

dτ =
1

c

√
gµν

dxµ

dλ

dxν

dλ
dλ =

dt

γ
.

The parameter τ defined is this way is called Lorentz proper time. From a

physical standpoint, τ measures the time as told by a clock placed at the

particle’s instantaneous location in space. Using proper time, we define the

particle’s velocity 4-vector V = (V µ) by

V µ =
dxµ

dτ
= γ

dxµ

dt
.

In other words, we have V = γ(c,v). Note also that (V µ) has constant

Minkowski length, namely

〈V, V 〉M = V µVµ = c2 .

3.3 Relativistic dynamics

The momentum 4-vector , or 4-momentum of a relativistic particle, denoted

P = (Pµ), is defined as P = mV , where m is the particle’s rest-mass. The
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rest-mass is defined as the the usual inertial mass, i.e. a measure of the

particle’s resistance to motion relative to an inertial frame with respect to

which the particle is at rest. The relativistic 4-force F = (Fµ) acting on the

particle is given by analogy with Newton’s second law,

Fµ =
dPµ

dτ
= m

dV µ

dτ
.

Note that we are guiding ourselves by the first postulate: the laws of me-

chanics must remain the same across all inertial frames. Since

〈P,P 〉M = PµPµ = m2V µVµ = m2c2 ,

we deduce that 〈
P,
dP

dτ

〉

M

= Pµ
dPµ

dτ
= 0 .

Using the fact that P = mV = (mγc,mγv), this last equality yields

mγc
dP 0

dτ
−mγF · v = 0 ,

where we have written F = (F 0,F ), and the dot denotes the standard inner

product in R3. Since v = dx/dτ , we get

c
dP 0

dτ
= F · dx

dτ
,

or yet cdP 0 = F · dx. But dW = F · dx is the infinitesimal work effected

on our particle by the 3-force F . The law of conservation of energy tells

us that dW = dE, i.e. this infinitesimal work is equal to the infinitesimal

change of kinetic energy. Thus, dE = cdP 0, and we are justified in writing

E = cP 0 for the particle’s relativistic kinetic energy. Therefore

E = mγc2 =
mc2√

1− v2/c2
.

When v = 0 we get E = mc2, which is Einstein’s famous formula for the

rest-energy of a particle whose rest-mass is m.

3.4 The relativistic Lagrangian

The reader will not have failed to notice that, in relativistic mechanics,

invariance under Galilean transformations is replaced with invariance under
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Lorentz transformations, which as we have seen is the group of isometries

of the Minkowski metric

ds2 = c2dt − dx2 − dy2 − dz2 = dx2
0 − dx2

1 − dx2
2 − dx2

3 .

Just as in the case of classical mechanics, one can derive the basic dynamical

laws from a variational principle. For simplicity, we shall do this for the

relativistic free particle (upon which no forces act).

The relevant action happens to be the following. Given a path γ in M ,

we write

S(γ) = −mc
∫

γ
ds .

Here m is the rest mass of our particle. This is an intrinsic definition of the

action, in the sense that it does not depend on a particular choice of inertial

frame. Once we fix such a Lorentzian frame, however, we can write

S(γ) = −mc2
∫
dt

√
1− v2

c2
.

This makes it clear that the relativistic Lagrangian for a free particle is

L = −mc2
√

1− v2

c2
.

Following the Lagrangian formalism to the script, the momentum compo-

nents are thus

pi =
∂L

∂vi
=

mvi√
1− v2

c2

.

In particular, we have

p =
mv√
1− v2

c2

.

The Hamiltonian in this relativistic context, being the Legendre transform

of L, becomes

H =
∑

pivi − L =
mv2

√
1− v2

c2

+mc2

√
1− v2

c2
.
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This expression simplifies to

H =
mc2√
1− v2

c2

.

The motion of our free particle is such that H is constant along it. This can

be recast in the following way: the kinetic energy of a free particle, namely

E =
mc2√
1− v2

c2

is conserved along the motion. We therefore recover Einstein’s formula from

a variational principle. We can rewrite this last formula in yet another way,

in which only the rest mass m, the energy E and the scalar momentum p

intervene:

E = c
√
p2 +m2c2 . (3.3)

In other words, E2 = p2c2 + m2c4. From this last equality, we see that

the particle’s so-called rest energy E0 (corresponding to v = 0) satisfies

E0 = mc2, which is Einstein’s famous equation. From now on in this book,

we shall work with units for which c = 1, so that (3.3) becomes

E2 = p2 +m2 .

3.5 Dirac’s equation

In the light of special relativity, and despite its important role in the stan-

dard formulation of quantum mechanics, the Schrödinger equation for the

wave function ψ, namely

i
∂ψ

∂t
= Hψ , with H = −∆ + V ,

has a major shortcoming: it is not Lorentz invariant. Dirac’s attempt to

bring together quantum mechanics and relativity resulted in a new, more

fundamental equation, known as Dirac’s equation, and the notion of spinor.

The equation that Dirac found is Lorentz invariant, but there seemed to

be a price to be paid: one had to allow for eigenstates having negative

energy. Dirac used this seemingly paradoxical fact to predict the existence

of anti-particles (more precisely, the positron). This incredible prediction
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was confirmed experimentally just a few years later, and brought Dirac

universal fame.

The first attempt at a relativistic (Lorentz) invariant equation that could

fill in for the Schrödinger’s equation was the Klein-Gordon equation. The

introduction of this equation is motivated by the so-called correspondence

principle alluded to in chapter 2. If we consider a system having a single

free particle, then its classical non-relativistic energy is simply the kinetic

energy given – up to an additive constant – by

E =
p2

2m
.

As we saw in chapter 2, the correspondence principle says that, upon canon-

ical quantization, p should be replaced by i∇, so that p2 = p · p becomes

−∇
2 = −∆, and E should be replaced by i∂/∂t. This yields Schrödinger’s

equation for a free particle (V = 0).

In the case of a free relativistic particle, however, the equation relating

energy and momentum is, as we’ve seen, E2 = p2 +m2. Here, as before, m

is the particle’s rest mass. Hence, if we proceed by analogy guided by the

correspondence principle, we arrive at the Klein-Gordon equation
(
∂2

∂t2
−∆ +m2

)
ψ = 0 .

This equation has some important features, both good and bad from a phys-

ical standpoint:

(a) It is relativistic, i.e. invariant under Lorentz transformations (good).

(b) It is of second order in time – unlike the Scrödinger (or Heisenberg)

equation, which is of first order in time and therefore an evolution equa-

tion – and therefore less amenable to dynamical interpretation (bad).

(c) It allows for negative-energy eigenstates; in particular the spectrum of

the Klein-Gordon operator is not bounded from below (bad).

(d) Unlike the solutions to Schrödinger’s equation, which as wave functions

give rise to probability densities, the solutions to the Klein-Gordon equa-

tion admit no such probabilistic interpretation (bad).

We leave to the reader the task of examining (a) and (b) above. Let us say

a few words about (c) and (d).

The Klein-Gordon equation admits plane-wave solutions of the form

ψ(t,x) = exp{−i(Et− p · x)} ,

as long as p ∈ R3 is a fixed (momentum) vector and E is a real constant
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such that E2 = p2 + m2. Here it doesn’t matter whether E is positive or

negative; as far as the Klein-Gordon equation goes, positive and negative

values of E are on equal footing. Moreover, the possible values are clearly

not bounded from below. This is the elaboration of (c).

As for (d), it is worth noting that, associated to every solution of the

Klein-Gordon equation, there is something that plays the role of a density,

albeit not a positive one. Indeed, we can define a four-vector (jµ) = (ρ, j),

where

ρ =
i

2m

(
ψ∗ ∂ψ

∂t
− ∂ψ∗

∂t
ψ

)

and

j =
−i
2m

(ψ∗
∇ψ −∇ψ∗ψ) .

In these expressions, we follow the physicist’s notation ψ∗ for the complex-

conjugate of ψ. Now, the four-vector (jµ) is divergence-free. To see this,

note that

∂ρ

∂t
=

i

2m

(
ψ∗ ∂

2ψ

∂t2
− ∂2ψ∗

∂t2
ψ

)
=

i

2m
(ψ∗∆ψ − (∆ψ)∗ψ) .

Likewise, we have

∇ · j =
−i
2m

(ψ∗∆ψ − (∆ψ)∗ψ) .

Putting these facts together we deduce that ∇ · (jµ) = 0, or more explicitly,

∂ρ

∂t
+ ∇ · j = 0 .

This is a continuity equation akin to Bernoulli’s equation in fluid dynam-

ics. However, ρ is not necessarily positive, so it cannot be interpreted as a

probability density.

Dirac sought after a first order equation that would not suffer from these

difficulties. The equation he found eliminates the bad points (b) and (d)

above (keeping Lorentz invariance), but it still allows for (c). Let us repro-

duce Dirac’s reasoning (in modern mathematical notation). The idea is to

“extract the square-root of the wave operator”; in other words, one seeks a

first order differential operator D such that

D2 = � =
∂2

∂t2
−∆ .

Writing D = iγµ∂µ, where ∂0 = ∂/∂t and ∂j = ∂/∂xj for j = 1, 2, 3 and the
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coefficients γµ are to be determined, we see by pure algebraic computation

that

D2 =
1

2
{γµ, γν} ∂µ∂ν ,

where the brackets represent Dirac’s anti-commutator

{γµ, γν} = γµγν + γνγµ .

Since we want D2 = �, it follows that

{γµ, γν} = 2gµν ,

where gµν are the components of the Minkowski metric tensor, namely

(gµν) =




1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1


 .

It is worth writing the above relations more explicitly, as follows

(γ0)2 = 1 , (γ1)2 = (γ2)2 = (γ3)2 = −1 , (3.4)

γµγν = −γνγν (µ 6= ν) .

These relations define what is known as a Clifford algebra. This can be

realized as a matrix algebra. We can take each γµ to be a 4× 4 matrix, as

follows

γµ =

(
0 −σµ
σµ 0

)
,

where the σµ’s are the so-called Pauli 2× 2 matrices

σ0 =

(
1 0

0 1

)
; σ1 =

(
0 1

1 0

)

σ2 =

(
0 i

−i 0

)
; σ3 =

(
−1 0

0 1

)

The reader can not only check that the Dirac matrices γµ constructed in

this fashion indeed satisfy the relations (3.4), but also prove as an exercise

that 4 is the smallest possible order for which such matrix representation of

the Clifford algebra is possible.

Thus, the Dirac operator D must act not on ordinary wave functions, but
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on 4-vector valued functions called spinors. If we look at a spinor solution

to Dirac’s equation

(iγµ∂µ −m)ψ = 0 , (3.5)

we realize, applying the conjugate operator iγµ∂µ +m to both sides of this

equation, that each component of ψ satisfies the Klein-Gordon equation.

Now, Dirac’s equation (3.5) is free from two of the three bad features of

the Klein-Gordon equation, while still preserving its good feature – Lorentz

invariance. The Pauli matrices σ1, σ2, σ3 used above yield the generators

of su(2), the Lie algebra of SU(2), and it is a fact (exercise) that the Lie

algebra of the Lorentz group is su(2) ⊕ su(2). This points towards the

fact that Lorentz transformations will leave Dirac’s equation invariant. The

computation verifying that this indeed happens is left as yet another exercise

to the reader. What about the bad point (d) raised against the Klein-Gordon

equation? We claim that it goes away in the case of Dirac’s equation. This

can be seen as follows. First we take the Hermitian conjugate of (3.5), taking

into account that (γ0)† = γ0 and (γj)† = −γj (j = 1, 2, 3). We obtain the

equation

ψ† (−iγ0∂†0 + γj∂†j −m) = 0 ,

where ∂†µ simply means the differential operator ∂µ acting on the left . If we

multiply both sides of this last equation on the right by γ0 and take into

account that γ0γj = −γjγ0, we get

ψ̄ (iγµ∂†µ +m) = 0 ,

where now ψ̄ = ψ†γ0 is the so-called adjoint spinor to ψ. Using this adjoint

spinor, we define a current 4-vector (jµ) whose components are given by

jµ = ψ̄γµψ .

An easy computation now shows that

∇ · (jµ) = ∂µj
µ = (∂µψ̄)γµψ + ψ̄γµ(∂µψ) = 0 .

Therefore the current is conserved, just as in the case of the Klein-Gordon

equation, but this time we see that

j0 = ψ̄γ0ψ = ψ†(γ0)2ψ = ψ†ψ = |ψ0|2 + |ψ1|2 + |ψ2|2 + |ψ3|2 ,

which is obviously non-negative and therefore can play the role of a (prob-

abilistic) density.

But Dirac’s equation still suffers from the bad point raised in (c): neg-

ative energy states. These could spell trouble because an electron could
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in principle fall into a state with arbitrarily large negative energy, thereby

emitting an arbitrarily large amount of energy in the process. Dirac’s in-

genious idea, however, was to regard these infinitely many negative energy

states as already occupied by a “sea” of electrons; he used the exclusion

principle discovered by W. Pauli to justify this picture. Holes in this in-

finite sea would appear as positive energy, positively charged particles. If

an electron fell into such a vacant spot, the hole and the electron could be

thought of as annihilating each other, with energy being produced in place

of their combined mass according to Einstein’s E = mc2 formula. Dirac’s

prediction of such holes, or anti-particles as they are now called (positrons in

this case), was confirmed experimentally shortly afterwards by C. Anderson.

In face of the fact that particles could be created and destroyed, physicists

after Dirac were forced to give up the idea of systems having a fixed number

of particles. They soon started to study physical processes in terms of fields,

describing particles as properties of fields. For a conceptual description of

these ideas and much more, see the beautiful exposition by R. Penrose in

[Pen].

Exercises

3.1 Let Bθ denote the Lorentz boost along the x1-axis in Minkowski

space, with parameter θ.

(a) Using the law of addition for hyperbolic sine and co-sine, show

that Bθ+ϕ = BθBϕ for all θ, ϕ ∈ R.

(b) Deduce from this fact the law of addition of velocities presented

in (3.2).

3.2 Let γµ, µ = 0, 1, 2, 3 denote the Dirac matrices, and let us write

γ5 = iγ0γ1γ2γ3.

(a) Show that γ5 is Hermitian and that (γ5)2 = 1.

(b) Show that {γ5, γµ} = 0, for µ = 0, 1, 2, 3.
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Fiber Bundles, Connections and Representations

This chapter represents a predominantly mathematical intermezzo. Here we

present in a condensed and systematic way the language of fiber bundles,

cocycles and connections. This language is absolutely crucial in the formu-

lation of modern field theories (classical or quantum), as we discuss at the

end if the chapter, and as will be exemplified in chapter 5.

4.1 Fiber bundles and cocycles

Let us start with the following basic definition. Suppose E,F,M are smooth

manifolds.

Definition 4.1 A fiber bundle with fiber F , base M and total space E is

a submersion π : E → M with the following property. There exist an open

covering {Ui} of the base M and diffeomorphisms φi : π−1(Ui) → Ui × F
such that π1 ◦ φi = π, where π1 denotes the projection onto the first factor.

It follows that for each x ∈M , the fiber above x, Ex = π−1(x), is diffeo-

morphic to F . Moreover, there exist maps ρij : Ui ∩Uj → Diff(F ) such that

the map

φj ◦ φ−1 : (Ui ∩ Uj)× F → (Ui ∩ Uj)× F

is given by

φj ◦ φ−1(x, y) = (x, ρij(x)(y)) .

The reader can check that ρij(x) ◦ ρjk(x) = ρik(x) for all x ∈ Ui ∩ Uj ∩ Uk.

Definition 4.2 A section of the fiber bundle ξ = (E, π,M) is a differentiable

map s : M → E such that π ◦ s = idM . We shall denote by Γ(E) the space

of sections of ξ.

80
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We remark here that if the fiber F comes equipped with a structure, e.g.

as a vector space, group, algebra, etc., and this structure is preserved under

each of the maps ρij , then each fiber Ex inherits such structure. It follows

that the space of sections Γ(E) also possesses this structure. For example, if

F is a vector space and ρij : Ui∩Uj → GL(F ) then we say that ξ = (E, π,M)

is a vector bundle, and in this case Γ(E) is an infinite dimensional vector

space (in fact, it is a module over the ring of C∞ functions on M).

A section s ∈ Γ(E) defines a family of functions si : Ui → F such that

s(x) = φi(x, si(x)) for all x ∈ Ui. This family of functions satisfies sj =

ρij ◦ si. Conversely, each family {si} satisfying this condition defines a

section of our fiber bundle.

Definition 4.3 A morphism between two fiber bundles ξ1 = (E1, π1, F1) and

ξ2 = (E2, π2, F2) is a pair of differentiable maps f, f̃ such that the following

diagram commutes

E1
f̃−−−−→ E2

π1

y
yπ2

M1 −−−−→
f

M2

It follows from this definition that f̃ maps the fiber (E1)x into the fiber

(E2)f(x). If the fiber bundles come with some additional structure, mor-

phisms are assumed to preserve such structure.

Definition 4.4 Let M be a manifold and let G be a Lie group. A cocycle of

G in M is an open covering {Ui} of M together with a family of differentiable

maps γij : Ui ∩ Uj → G such that γij · γjk = γik for all i, j, k (in particular,

γii = e, the identity element of G).

Definition 4.5 A representation of G in Diff(F ) is a group homomorphism

ρ : G → Diff(F ) such that the map G × F → F given by (g, y) → ρ(g)y is

differentiable. This map is called a left action of G in F .

The following proposition shows that a fiber bundle with fiber F can be

constructed from a given family of transition functions and a representation

of a given Lie group G into the group of diffeomorphisms of F .

Proposition 4.1 Let ρ : G→ Diff(F ) be a representation of G, let {Ui} be

an open covering of M and let γij : Ui ∩ Uj → G be a cocycle. Then there
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exists a fiber bundle ξ = (E, π,M) with fiber F whose transition functions

ρij : Ui ∩ Uj → Diff(F ) are given by ρij = ρ ◦ γij.

Let us now discuss two important classes of examples of fiber bundles.

Example 1. The first example is our old friend the tangent bundle. Let M

be a smooth real n-dimensional manifold, let F = Rn and let {ϕi : Ui → Rn}
be an atlas in M . We define γij : Ui ∩ Uj → GL(Rn) by

γij(x) = d(ϕj ◦ ϕ−1
i )(ϕi(x)) .

The chain rule tells us that this family of maps is a cocycle of G = GL(Rn)

in M . We take as our representation ρ : GL(Rn) → Diff(Rn) the inclusion

homomorphism. Then the tangent bundle of M is the fiber bundle TM

obtained from Proposition 4.1 for these choices of F , {γij} and ρ. The

sections of TM are called vector fields and the space of sections Γ(TM) is

denoted by X (M).

Example 2. Our second example is the tensor bundle T r,s(M) of tensors

over a differentiable manifold M that are r-covariant and s-contravariant.

The starting point of the construction is the tensor product space

T r,s = (Rn)⊗r ⊗ (Rn∗)⊗s ,

which is (isomorphic to) the vector space of multilinear transformations

(Rn∗)r × (Rn)s → R. For each tensor τ ∈ T r,s and each invertible linear

map ϕ ∈ GL(Rn) the pull-back of τ by ϕ is defined as

ϕ∗τ (λ1, · · · , λr; v1, · · · , vs) = τ(λ1 ◦ ϕ, · · · , λr ◦ λr;ϕ(v1), · · · , ϕ(vs)) .

Thus, for each ϕ ∈ GL(Rn) we have a well-defined linear map ϕ∗ : T r,s →
T r,s, satisfying

(ϕ ◦ ψ)∗ = ψ∗ ◦ ϕ∗

(ϕ∗)−1 = (ϕ−1)∗ .

This shows that if we are given a representation ρ of a Lie group G into

GL(Rn) then the map ρ∗ : G → GL(T r,s) given by ρ∗g = ρ(g−1)∗ is also

a representation. In particular, taking G = GL(Rn) and ρ = id, we get

the tensor bundle T r,s(M) using the representation ρ∗, the cocycle {γij} of

example 4.1, and applying Proposition 4.1. It is clear from these definitions

that T 1,0(M) coincides with the tangent bundle TM , and that T 0,1(M)

coincides with the cotangent bundle T ∗M . The space of sections of T ∗M
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consists of differential 1-forms, and it will be denoted by Ω1(M). Note that

σ ∈ Γ(T r,s(M)) if and only if

σ : X (M)× · · · ×X (M)× Ω1(M)× · · · × Ω1(M)→ R

is a multilinear map and for each f ∈ C∞(M,R) we have

σ (X1, · · · , fXi, · · · , Xr;α1, · · · , αs)
= fσ(X1, · · · ,Xi, · · · ,Xr;α1, · · · , αs) ,

as well as

σ (X1, · · · ,Xr; α1, · · · , fαj, · · · , αs)
= fσ(X1, · · · ,Xr;α1, · · · , αj · · · , αs) .

Finally, since the subspace ∧k(Rn) ⊂ T 0,k(Rn) of alternating multilinear

forms is invariant under the representation ρ∗ (exercise), we have a sub-

bundle ∧k(T ∗M) of T r,s(M). A section of ∧k(T ∗M) is called a differential

k-form on M . The vector space of such sections is denoted by Ωk(M).

There are several ways of constructing fiber bundles using other fiber

bundles as building blocks. For instance, given two vector bundles ξ, η over

the same base manifold M , one can define their direct sum ξ ⊕ η as the

vector bundle over M whose fibers above each point x ∈ M are the direct

sums F ξx ⊕ F ηx of the corresponding fibers of ξ, η above x.

Another universal construction is the pull-back . This once again uses

Proposition 4.1. Let ξ = (E, π,M) be a fiber bundle with structural group

G, fiber F and representation ρ. Let {Ui} be an open covering of M and

associated cocycle {γij}. Given another smooth manifold N and a smooth

map f : N → M , consider the covering of N by the open sets Vi = f−1Ui
and let γ̃ij : Vi∩Vj → G be given by γ̃ij = γij ◦f . Then {γ̃ij} is a cocycle in

N . Finally, let ρ̃ = ρ, i.e., keep the same representation of G. Let f∗ξ be the

fiber bundle over N obtained from these data (cocycle and representation)

applying Proposition 4.1. This new fiber bundle is called the pull-back of ξ

by f . Its total space is denoted by f∗E. Note that f induces a morphism

from f∗ξ to ξ. The top map f̃ : f∗E → E of this morphism has a local

expression (via transition charts) given by the maps

Vi × F → Ui × F
(x, y) 7→ (f(x), y)
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4.2 Principal bundles

Now we move to a class of fiber bundles that is so important (in mathematics

as well as in physics) that it deserves separate treatment. These bundles are

called principal bundles.

Here and throughout, we let G be a Lie group, with Lie algebra G = TGe.

Definition 4.6 A principal bundle with structure group G (or principal G-

bundle) is a fiber bundle (P, π,M) whose fiber is G and whose representation

ρ : G → Diff(G) is such that ρ(g) : G → G is given by left multiplication,

i.e. ρ(g)h = g · h.

Note that here we appeal once again to Proposition 4.1. Let us recall

that construction in the context of principal bundles. Let {Ui} be an open

covering of the base manifold M , and let {γij : Ui ∩Uj → G} be a G-valued

cocycle in M . Take the disjoint union P̂ of the products Ui×G, on which G

acts on the right in an obvious way, and factor it by the equivalence relation

∼ identifying (x, g) ∈ Ui ×G with (x′, g′) ∈ Uj ×G if x = x′ ∈ Ui ∩ Uj and

g′ = g · γij(x). The quotient space P = P̂ / ∼ is a manifold on which G also

acts on the right. The projection map π is the quotient map on P of the

projections πi : Ui×G→M into the base. The quotient action P ×G→ P

preserves the fibers π−1(·) and is transitive in each such fiber. The action

of a given group element g on x ∈ P will be written x · g. This right action

defines an anti-homomorphism R : G → Diff(P ), with R(g) = Rg : P → P

given by Rg(x) = x · g, satisfying Rg1g2 = Rg2 ◦Rg1 for all g1, g2 ∈ G.

Conversely, if P is a manifold andG is a compact Lie group and P×G→ P

is a right smooth action of G in P which is free (no fixed points), then the

orbit space M is a smooth manifold and the quotient projection map defines

a principal G-bundle over M .

A local trivialization of a principal bundle (P, π,M) over a neighborhood

U ⊆M is a smooth map ψ : U ×G→ π−1(U) such that π ◦ ψ(x, g) = x for

all x ∈ U , g ∈ G. Given a cocycle as above, we can build a family of local

trivializations (or charts) ψi : Ui × G → π−1(Ui) for the bundle in such a

way that the chart transitions are

ψ−1
j ◦ ψi : (x, g) 7→ (x, g · γij(x)) .

A local section σ : U → π−1(U) is a smooth map such that π ◦ σ = idU .

There is a natural one-to-one correspondence between local trivializations

and local sections: given σ, let ψσ be given by ψσ(x, g) = g ·σ(x). Note also

that if we are given an open cover {Ui} as before and local sections σi : Ui →
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π−1(Ui), then we get an associated cocycle given by γij(x) = σi(x)σj(x)
−1

for all x ∈ Ui ∩ Uj .

Example 3. Our first example of a principal bundle is the frame bundle of

an n-dimensional manifold M . The group is G = GL(Rn). The relevant

cocycle is the same as given in example 4.1. A point in the total space

P corresponds to a point x ∈ M together with a basis (reference frame)

{v1(x), . . . , vn(x)} of TMx. The right action GL(Rn) ∋ τ 7→ Rτ : P → P is

given by

Rτ (x, {v1(x), . . . , vn(x)}) = (x, {τ−1(v1(x)), . . . , τ
−1(vn(x))}) .

Example 4. Our second example is the orthonormal frame bundle of an

oriented, n-dimensional Riemannian manifold M . Here, the group is SO(n),

the group of orthogonal n × n matrices having determinant equal to one.

To construct the relevant cocycle, let {ϕi : Ui → Rn} be an oriented atlas

on M , and let {v(i)
1 (x), . . . , v

(i)
n (x)} be the basis of TMx whose vectors are

given by

dϕi(x) v
(i)
j (x) =

∂

∂xj
.

Applying the Gram-Schmidt orthonormalization procedure to this basis (us-

ing the Riemannian inner product on TMx), we get an orthonormal basis

{e(i)1 (x), . . . , e
(i)
n (x)} of TMx. Hence, in order to define γij : Ui∩Uj → SO(n),

simply let γij(x) be the orthogonal matrix that makes the change of basis

{e(i)1 (x), . . . , e
(i)
n (x)} → {e(j)1 (x), . . . , e

(j)
n (x)}.

Example 5. An interesting and non-trivial example of a principal bundle

that is relevant for our purposes is the Hopf bundle. Here, the group is

G = U(1) = {z ∈ C : |z| = 1} (which is topologically the unit circle S1),

the total space P is the unit 3-sphere, which we view as a subset S3 ⊂ C2,

namely

S3 =
{
(z1, z2) ∈ C2 : |z1|2 + |z2|2 = 1

}
,

and the base is the 2-sphere, which we view as the complex projective space

CP 1. The projection map π : S3 → CP 1 is given by π(z1, z2) = [z1 : z2].

The abelian group U(1) acts on S3, in fact in the whole of C2, in the obvious

way: (z1, z2) · eiθ = (z1e
iθ, z2e

iθ). The Lie algebra of U(1) is u(1) = {z ∈ C :

Re z = 0}, the imaginary axis.
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Example 6. Another example of principal bundle, of special interest in Yang-

Mills theory, is the quaternionic Hopf bundle. Here the relevant Lie group

is SU(2), which is topologically the 3-sphere S3. We view it as a subgroup

of the group H of quaternions, consisting of all quaternions of norm one.

Recall that

H = {q = x0 + x1i + x2j + x3k : x0, x1, x2, x3 ∈ R }

where i, j,k satisfy the relations

i2 = j2 = k2 = −1 ; i ·j = −j · i = k ; j ·k = −k ·j = i ; k · i = −i ·k = j .

The norm of a quaternion q is given by ‖q‖ = x2
0 + x2

1 + x2
2 + x2

3. Our group

then is S3 = {q ∈ H : ‖q‖ = 1}, a subgroup of H. The base space of our

principal bundle is the 4-sphere S4, which is naturally identified with the

quaternionic projective space HP 1, just as the 2-sphere was identified with

complex projective space in the previous example. The total space P in this

case is the 7-sphere

S7 =
{
(q1, q2) ∈ H×H : ‖q1‖2 + ‖q2‖2 = 1

}
.

and the projection π : S7 → HP 1 ≃ S4 is given by

π(q1, q2) = [q1 : q2] = {(λq1, λq2) : λ ∈ H }

Finally, the right action R : S7 × S3 → S7 is given by

R((q1, q2);λ) = (q1 · λ, q2 · λ) .

The first example we gave (example 4.2) can be generalized: given any

vector bundle (E, π,M), one can consider the principal bundle of frames for

E as the space P whose fiber over a point x ∈ M is the collection of all

frames for Ex. The structure group is Aut(V ), where V is the vector space

on which the vector bundle is modeled. Conversely, given a principal bundle

(P, π,M) with structure group G and a representation ρ : G → Aut(V )

where V is some vector space, we see that there is a right action of G on

P × V defined by (p, v) · g = (p · g, ρ(g−1)v). The quotient space P ×ρ V of

P × V by this action is a vector bundle over M whose fibers are isomorphic

to V . This bundle is called the associated vector bundle, or vector bundle

associated to (P, π,M) via the representation ρ.
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4.3 Connections

A connection on the principal bundle (P, π,M) is a 1-form ω on the total

space P with values in the Lie algebra G which is equivariant with respect

the the right action on P , in the sense that R∗
gω = Adg−1 ◦ω for all g ∈ G.

Here Ad : G → L(G ,G ) is the adjoint representation of G, given at each

g by the derivative at the identity of the inner automorphism h 7→ g−1hg.

Geometrically, a connection defines a family of horizontal subspaces Hx =

kerωx which are invariant under the action, in the sense that (Rg)∗Hx =

Hx·g for all x ∈ P and all g ∈ G. We have a decomposition TPx = Hx ⊕ Vx
of the tangent space at each point as a direct sum of horizontal spaces Hx

with corresponding vertical spaces Vx = T (π−1(π(x)))x. Accordingly, the

tangent bundle of P splits as a direct sum of two sub-bundles, horizontal

and vertical: TP = HP ⊕ V P .

Given a connection on P and a smooth curve γ : [0, 1]→M connecting the

points x and y, then for each point v in the fiber over x there exists a unique

lift of γ to a curve γ̃ : [0, 1] → P that projects onto γ and has a horizontal

tangent vector at each point. We say that γ̃(1) is the parallel transport of

v along γ. The parallel transport along a curve γ defines a diffeomorphism

from the fiber over x onto the fiber over y that is equivariant with respect

to the right action of G on P .

A connection ω in P gives rise to a covariant exterior derivative, which

carries k-forms with values in the Lie algebra into (k+ 1)-forms with values

in the Lie algebra. This differential operator dω : ∧k(P )⊗G → ∧k+1(P )⊗G
is given by

dωα(X1,X2, . . . ,Xk+1) = dα(Xh
1 ,X

h
2 , . . . ,X

h
k+1)

for all α ∈ ∧k(P ) and all vector fields X1, . . . ,Xk+1 on P , where Xh
i is the

horizontal component of Xi.

In particular, we define the curvature of a connection ω to be the 2-form

Ω ∈ ∧2(P )⊗ G given by

Ω(X,Y ) = dωω(X,Y ) = dω(Xh, Y h) .

Theorem 4.1 (Cartan’s Formula) We have Ω = dω + ω ∧ ω.

When expressed in terms of local sections, the connection ω gives rise

to a family of local G -valued 1-forms on the base manifold. These local

forms are defined as follows. Suppose {Ui} is an open cover of M and let

σi : Ui → π−1(U) be local sections. Take Ai = σ∗i ω; this is a 1-form on Ui
with values in G .

Likewise, the curvature Ω gives rise to a family of local G -valued 2-forms
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on M , namely Fi = σ∗iΩ. Now, using the cocycle associated to the family

of sections σi, we have the following fundamental fact.

Proposition 4.2 The families of local connection forms {Ai} and local

curvature forms {Fi} transform in the following way

Aj = θ−1
ij Aiθij + θ−1

ij dθij

Fj = θ−1
ij Fiθij .

where θij(x) = ad(γij(x)) and ad is the adjoint representation of the group

G.

Note that neither one of these families defines a form on the

base M .

However these formulas show that the curvature is a two-form on M with

values in an associated vector bundle: the adjoint bundle. This is the vector

bundle that corresponds to the adjoint representation ad: G → Aut(G).

A section of this bundle is locally given by a function σi : Ui → G and

σj(x) = (θij(x))
−1 ◦ σi(x) ◦ θij(x) where θij(x) = ad(γij(x)). Hence, if X

and Y are vector fields on the base manifold M , then the curvature of the

connection associates to these vector fields a section of the adjoint bundle.

Hence the curvature may be interpreted as a two-form on M with values in

the adjoint bundle. Notice that the connection is not a one-form with values

in the adjoint bundle, because of the second term in its transformation law,

but the difference of two connections is indeed such a form. So the space of

connections on a principal bundle is an affine space modeled in the space of

sections of the bundle Ad(P )⊗Ω1(M) and a curvature of a connection is a

section of Ad(P )⊗ Ω2(M).

A connection on a principal bundle induces a covariant derivative in each

associated bundle π : E → M . A covariant derivative is a map that as-

sociates to each vector field X on M a linear map ∇X : Γ(E) → Γ(E)

of the space of sections of E that satisfy the Leibnitz rule: ∇X(fσ) =

X(f)σ + f∇X(σ) for any section σ and any smooth function f . Here

X(f)(x) = df(x) ·X(x). In a local trivialization the section σ is represented

by a function σi : Ui → V and (∇X(σ))i = dσ(x)·X(x)+Ai(x)(σi(x)) where

Ai : Ui → End(V ). To define a covariant derivative the Ai’s must transform

as Aj(x) = ρij(x)
−1 ◦ Ai(x) ◦ ρij(x), where ρij : Ui ∩ Uj → Aut(V ) are the

transition functions of the bundle. Since ρij(x) = ρ(γij(x)) where γij are

the transition functions of the principal bundle and ρ : G → Aut(V ) is the

representation of the associated bundle, it is clear from this formula that a
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connection on the principal bundle induces a unique covariant derivative in

each associated vector bundle.

Example 7. Let us go back to our first example, the Hopf bundle. One

simple way to define a non-trivial connection on this bundle is to consider a

1-form in C2 which is U(1)-invariant (and u(1)-valued) and take its pull-back

to S3 by the inclusion map j : S3 → C2. For example, consider

ω = i Im (z1 dz1 + z2 dz2)

and then take ω = j∗ω ∈ Ω1(S3)⊗u(1). We leave it as an easy but instructive

exercise for the reader to compute the curvature of this connection.

4.4 The gauge group

Let P be a principal bundle over a manifold M with group G. We will con-

struct an infinite-dimensional group that will act in the space of connections

on P and on the space of sections of associated vector bundles. This group

will play a crucial role in Yang-Mills theory. An element γ of the gauge

group G is represented locally by a function γi : Ui → G that transforms as

γj(x) = γ−1
ij (x)γi(x)γij(x) where γij : Ui ∩ Uj → G are the transition func-

tions of P . Such an element is a section of the adjoint bundle corresponding

to the adjoint representation Ad: G→ Aut(G) that associates to each g ∈ G
the inner automorphism h ∈ G 7→ ghg−1. This is an infinite dimensional

group whose Lie algebra is the space of sections of the adjoint bundle given

by the adjoint representation of G in the Lie algebra G . Given a connection

A and an element γ of the gauge group, we have another connection γ · A
which is locally defined as

(γ · A)i = γi(x) ·Ai(x) · (γi(x))−1 + (γi)
−1dγi .

Here we are using the notation v ∈ G 7→ g · v · g−1 ∈ G to indicate the

endomorphism of the Lie algebra associated to g ∈ G under the adjoint

representation. The reader can verify that this indeed defines a connection

and an action of the gauge group in the space of connections. The curva-

ture of the connection γ · A is locally given by γi(x) · Fi(x) · γi(x)−1. The

reader can also verify that given an associate vector bundle E, given by a

representation ρ : G → Aut(V ), there is a natural homomorphism of the

group of gauge transformations of P into the group of sections of the bundle

Aut(E), the bundle of automorphisms of E. This bundle is a subbundle of

the bundle End(E) of endomorphisms of E (associated to the representation

G → End(V ); End(V ) ∋ M 7→ ρ(g)Mρ(g)−1). Hence the group of gauge
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transformations acts in the space of sections of associated bundles. Many

important action functionals in physics are invariant under the action of the

group of gauge transformations, as we will see.

Let us write down the local expression of a connection A, curvature F and

the covariant derivative in local trivializations over an open set U ⊂M . We

start by choosing a basis {T a} for the Lie algebra G with [T a, T b] = fabc T
c

where fabc are the structure constants of the Lie algebra. We also choose a

frame { ∂
∂xµ
}, i.e, vector fields on U that at each point give a basis for the

tangent space. Then we may write

A(
∂

∂xµ
) = AaµT

a and F (
∂

∂xµ
,
∂

∂xν
) = F aµνT

a ,

where T aµ and F aµν are functions on U . Then the curvature, which the physi-

cists call field strength, is given by

F aµν =
∂

∂xν
Aµ −

∂

∂xµ
Aν + fabcA

b
µA

c
ν . (4.1)

Finally, if we choose a basis {va} for the vector space V , which is the

fiber of the associate fiber bundle E then a section ψ = ψav
a and the

corresponding covariant derivative is

(∇ ∂
∂xµ

ψ)a = (∇µψ)a =
∂

∂xµ
ψa +Aaµ bψ

b . (4.2)

In the above equation, Aaµ b(x) is the matrix in the basis va of the linear map

that corresponds to Aµ(x) ∈ G under the representation G → End(V ).

4.5 The Hodge ⋆ operator

Let V be a real finite-dimensional vector space, and let g : V ×V → R be an

inner product on V , i.e. a symmetric and non-degenerate bilinear form on

V . Then b induces a linear isomorphism between V and its dual V ∗, given

by v 7→ g(v, ·).
More generally, consider the space ∧k(V ∗) of exterior k-forms on V , where

0 ≤ k ≤ n = dimV . An element of ∧k(V ∗) can be written as

α =
∑

(i1,i2,...,ik)

ai1i2···ikλi1 ∧ λi2 · · · ∧ λik ,

where {λ1, λ2, . . . , λn} is a basis of V ∗. The orthogonal group Og(V ) of

linear transformations that preserve g acts on ∧k(V ∗) by pull-back. We
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claim that there exists a unique symmetric non-degenerate bilinear form ĝ

on ∧k(V ∗) that is invariant under the action of Og(V ). Indeed, we define

g(α1 ∧ · · · ∧ αk;β1 ∧ · · · ∧ βk)=
∑

σ

(−1)sign(σ)g(α1, βσ(1)) · · · g(αk, βσ(k)) ,

the sum being over all permutations σ on k elements, and then extend ĝ to

all of ∧k(V ∗) by k-linearity (uniqueness is left as an exercise). The resulting

bilinear form

ĝ : ∧k(V ∗)× ∧k(V ∗)→ R

is easily seen to be symmetric and non-degenerate (i.e. an inner product).

Hence, as before we have a linear isomorphism ∧k(V ∗) ≃ (∧k(V ∗))∗, for all

0 ≤ k ≤ n.

Now the Hodge operator ⋆ : ∧k(V ∗)→ ∧n−k(V ∗) can be defined as follows.

Let µ ∈ ∧n(V ∗) be a normalized volume form, and note that if we take the

wedge product of a k-form with an n−k-form we get a multiple of µ (because

dim∧n(V ∗) = 1). Hence, given β ∈ ∧k(V ∗), let ⋆β be the unique n−k-form
such that, for all α ∈ ∧k(V ∗),

α ∧ ⋆β = ĝ(α, β)µ .

Suppose we are given an (oriented) orthonormal basis {e1, e2, . . . , en} of V

under the inner product, so that gij = g(ei, ej) = ±δij . The determinant

of the resulting matrix is equal to 1 or −1, and it is called the signature of

the inner product. The signature is independent of which basis we choose.

Denoting by {e1, e2, . . . , en} the dual basis of V ∗, we see that the normalized

volume form in ∧n(V ∗) is µ = e1 ∧ e2 ∧ · · · en Given a set of distinct indices

0 ≤ i1, . . . , ik ≤ n, and letting j1, j2, . . . , jn−k be the complementary indices,

one can easily check (exercise) that

⋆(ei1 ∧ ei2 ∧ · · · eik) = ǫi1···ik;j1···jn−k
ǫi1 · · · ǫikej1 ∧ ej2 ∧ ejn−k

.

Here, we used the so-called Levi-Civita symbol ǫi1···ik;j1···jn−k
, which is equal

to +1 if {i1 · · · ik, j1 · · · jn−k} is an even permutation of {1, 2, . . . , n}, −1 if

it is odd, and zero otherwise. Moreover, ǫi = gii = ±1.

The Hodge operator is an involution up to a sign. Indeed, it is easy to

see, for example working with the help of an orthonormal basis as above,

that

⋆⋆ = (−1)k(n−k)s id

where s is the signature of the given inner product, and id : ∧k(V ∗) →
∧k(V ∗) is the identity.
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This definition of Hodge operator carries over to differential forms on any

(pseudo) Riemannian manifold M in a straightforward manner. Indeed,

all we have to do is to apply the Hodge ⋆ operator just defined in each

tangent space. More precisely, given a differential k-form α on M , define

⋆α ∈ Ωk(M) by (⋆α)x = ⋆αx ∈ ∧n−k(T ∗Mx) for each x ∈M . The resulting

operator allows us to define an inner product in the space of differential

k-forms on M : if we are given two differential k-forms α, β, then α ∧ ⋆β ∈
Ωn(M) is a volume form, and we can integrate it over M to get a number

(α, β). In other words,

(α, β) =

∫

M
α ∧ ⋆β .

The Hodge operator can be generalized still further, to differentiable forms

in M with values in vector bundles over M . It is a basic ingredient in the

formulation of the Yang-Mills action. The space of fields is the space of

connections on a principal bundle P over a manifold M endowed with a

pseudo-Riemannian (Minkowski’s) metric g. The Hodge operator gives an

isomorphism between sections of ad(P ) ⊗ Ω2(M) and sections of ad(P ) ⊗
Ωd−2(M), where d is the dimension o M . Another ingredient is the bundle

map Tr induced by the trace map Tr: End((G))→ R that gives a linear map

from the space of sections of the adjoint bundle to the space of functions on

M . So if F is the curvature of a connection A then Tr(F ∧ ∗F ) is a d-form

on M . Thus we may write the pure Yang-Mills action as

S(A) =

∫
Tr(F ∧ ∗F ) .

If the group is non-commutative, the curvature is quadratic in the gauge

field (the connection) and so the Yang-Mills Lagrangian is not quadratic

but has also terms of degrees three and four in the gauge field. In particular

the Euler-Lagrange equations are non-linear!

4.6 Clifford algebras and spinor bundles

4.6.1 Clifford algebras

Let V be a finite-dimensional vector space over k = R or C, and let B : V ×
V → k be a bilinear form. For simplicity of exposition we will assume that

B is positive-definite (in the real case) or hermitian (in the complex case).

Everything we will do in this section can be adapted, mutatis mutandis,

to the general case of a symmetric non-degenerate bilinear form, including

the Minkowski case that will be considered later. Consider the full-tensor
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algebra of V , namely

T (V ) = k ⊕
∞⊕

n=1

V ⊗n .

Let I (V,B) be the ideal in T (V ) generated by the elements of the form

v ⊗ w + w ⊗ v − 2B(v,w) ,

with v,w ∈ V .

Definition 4.7 The Clifford algebra of V (with respect to B) is the quotient

algebra Cl (V,B) = T (V )/I (V,B).

We shall write simply ab for the product of two elements a, b ∈ Cl (V,B).

If we are given an orthonormal basis {e1, e2, . . . , en} of V (with respect to

B), then we have the relations eiej = −ejei and e2i = 1. Therefore each

element θ of Cl (V,B) can be written uniquely as

θ = α1+
∑

i

αiei +
∑

i<j

αijeiej + · · ·

+
∑

i1<i2<···<is
αi1i2···isei1ei2 · · · eis + · · ·+ α12···ne1e2 · · · en .

From now on, we shall write simply Cl (V ) instead of Cl (V,B). The above

expression clearly shows that, as a vector space, Cl (V ) has dimension 2n.

Note that if v ∈ V has unit norm (B(v, v) = 1), then v2 = 1. Hence every

unit vector v is invertible, and equal to its inverse: v−1 = v. We define

Pin (V ) to be the group generated by all the unit vectors of V .

Lemma 4.1 If v ∈ V is a unit vector and w ∈ V is arbitrary, then −vwv−1

belongs to V and is the reflection of w across the orthogonal complement of

v in V .

Proof The proof is left as an exercise.

This lemma shows that we have a well-defined action Pin (V ) × V → V

given by w 7→ θwθ−1. Moreover, for each θ ∈ Pin (V ), the map w 7→ θwθ−1

is a composition of orthogonal reflections and therefore it is an orthogonal

map. This yields a group homomorphism

Pin (V )
π−−−−→ O(V ) ⊃ SO(V )

Since every orthogonal transformation of V is a composition of a finite num-

ber of reflections (a classical result) this group homomorphism is surjective.
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Definition 4.8 The subgroup Spin (V ) ⊂ Pin (V ), called the spin group of

V , is the pre-image of SO(V ) under the above group homomorphism.

It follows that every element of Spin (V ) can be written as a product of

an even number of unit vectors in V .

Lemma 4.2 The restricted homomorphism

π
∣∣
Spin(V )

: Spin (V )→ SO(V )

has kernel equal to {±1}. Moreover, Spin (V ) is a simply-connected group.

In particular, Spin (V ) is the universal cover of SO(V ).

Proof Again, an exercise to the reader.

When V is the Euclidean three-dimensional space R3, we deduce from

this lemma that Spin
(
R3
)

= SU(2).

4.6.2 Representations of Spin (V ) and the Dirac operator

Now, let S be a vector space which is also a left module over the Clif-

ford algebra Cl (V ). This is the same as saying that we have an algebra

homomorphism ρ̃ : Cl (V ) → End(S). This homomorphism restricts to a

representation

ρ : Spin (V )→ Aut(S) .

This representation allows us to define the so called Dirac operator on the

smooth S-valued vector functions on V , as follows.

Definition 4.9 The Dirac operator is the first-order operator D : C∞(V, S)→
C∞(V, S) given by

Dϕ =
n∑

i−1

ei∂ei
ϕ ,

where {ei}1≤i≤n is an orthonormal basis for V and ∂ei
is the directional

derivative in the direction of ei.

We leave it as an exercise for the reader to show that the definition of Dϕ

is independent of which orthnormal basis one chooses, and that

D2ϕ =

n∑

i=1

∂2
ei
ϕ ,
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in other words D2 = ∆, the Euclidean Laplacian operator. This generalizes

the discussion at the end of chapter 3 on Dirac’s equation.

4.6.3 Spin bundles over a spacetime manifold

Next, we will show how to construct Dirac operators acting on spaces of

sections of vector bundles over a manifold M that admits a special structure

known as a spin structure. This structure is given by a spin bundle over M ,

i.e. a principal bundle over M with structure group Spin (V ) for a given V .

This somewhat vague description will now be made precise. In the dis-

cussion to follow, the underlying vector space will be V = R1,n−1, the

n-dimensional Minkowski space, with inner product given by the bilinear

functional

B(v,w) = v1w1 −
n∑

i=2

viwi .

Let M be an n-dimensional pseudo-riemannian manifold modeled on V ,

i.e., endowed with a Minkowski metric. Let us consider the orthonormal

frame bundle over M

P
y
M

This is a principal bundle with structure group L , the Lorentz group, which

is the group of all linear transformation of R1,n−1 that leave the Minkowski

inner product invariant. As in the previous discussion for the Euclidean

case, there is a universal covering homomorphism (two-to-one) L̃ → L ,

where L̃ is the spin group contained in the Clifford algebra Cl
(
R1,n−1

)
.

Roughly speaking, we say that the manifold M has a spin structure if the

above principal bundle has a double cover. More precisely, a spin structure

on M consists of a double covering P̃ → P with the property that

L̃ −−−−→ P̃
y
M
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is a principal bundle over M , so that

L̃ −−−−→ P̃

(2−1)

y
y(2−1)

L −−−−→ P
y
M

Now let S be a vector space, and let ρ̃ : Cl
(
R1,n−1

)
→ End(S) be a repre-

sentation of algebras. As before, this restricts to a representation

ρ : Spin
(
R1,n−1

)
→ Aut(S) .

This representation yields an associated vector bundle

S −−−−→ E
y
M

Given a connection A on the principal bundle (P,M,Spin
(
R1,n−1

)
), let ∇

be the associated covariant derivative on the vector bundle (E,M,S). Recall

what this means: if X ∈ X (M) is a vector field on M , then ∇X is a first

order differential operator on sections of E satisfying the Leibnitz rule. The

Dirac operator DA acting on sections of E associated with the connection

A will be defined using ∇.

Take a local trivialization over an open set U ⊆ M , and a (smoothly

varying) orthonormal frame {e1(x), e2(x), . . . , en(x)} on TMx for all x ∈ U .

These ingredients allow us to identify TMx with R1,n−1 and Ex with S.

Through these identifications and the representation ρ̃, we get a representa-

tion ρ̃x : Cl (TMx) → End(Ex). Therefore, for each section ψ : M → E we

define

DAψ(x) =
n∑

i=1

ei(x) (∇ei
ψ) (x) .

It can be shown (exercise) that this definition is independent of the choices

of local trivialization and orthonormal frames used in the construction.

4.6.4 Abstract actions

Let us show how the above machinery can be used to write down natu-

ral actions on spaces of fields. There are fields of two types: force fields,
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which are connections on principal bundles over spacetime M , and matter

fields, which are sections of suitable associated vector bundles over M . For

physically relevant examples, see chapter 5.

In order to construct action functionals, we need the following ingredients.

(1) A manifold M endowed with a Minkowski metric and a principal bundle

over M ;

(2) An associated vector bundle (E, π,M), together with its dual bundle

(E∗, π∗,M), and a bundle isomorphism

E
†

//

π

��
33

33
33

33
33

33
3 E∗

π∗

����
��

��
��

��
��

�

M

(the image of a section ψ of E being denoted by ψ†), as well as a pairing

map

E∗ ⊗ E †
//

��
88

88
88

88
88

88
88

M × R

����
��

��
��

��
��

��

M

(3) As fields, we take a connection A, a section ψ : M → E and a scalar

function φ : M → R;

(4) The Hodge ⋆-operator, defined using the Minkowski structure on M .

With these ingredients at hand, we can write down an action functional

as follows:

S(A,φ, ψ) =

∫

M
Tr (FA ∧ ⋆FA)

+

∫

M

(
ψ†DAψ +

1

2
(∇φ)2 + µψ†ψ +

1

2
m2φ2 + λφ4 + ψ†ψφ

)
dV ,

where dV is the Minkowski volume form, ∇ denotes the Minkowski gradient,

FA = dA+A∧A is the curvature of the connection A, and DA is the Dirac

operator associated to A.
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4.7 Representations

The theory of Lie group representations is a very broad subject, a significant

portion of which was developed because of quantum physics. Here we con-

tent ourselves with presenting just a few basic results leading to E. Wigner’s

definition of (quantum) particle.

4.7.1 The Lorentz and Poincaré groups

We consider four-dimensional spacetime R1,3 = R × R3 endowed with the

Lorentz (or Minkowski) metric coming from the inner product

〈x, y〉 = x0y0 −
3∑

j=1

xjyj . (4.3)

The (full) Lorentz group is the group of linear isometries of this metric.

We are interested in the connected component of the identity in this group.

This subgroup is the restricted Lorentz group L↑
+ = SO(1, 3) of linear maps

of R1,3 that preserve the bilinear form (4.3) and also leave invariant the

positive cone {x ∈ R1,3 : x0 > 0 and 〈x, y〉 > 0}.
It turns out that the Lorentz group L↑

+ is doubly covered by SL(2,C).

This can be seen as follows. There is a natural identification between space-

time R1,3 and the space of 2× 2 complex Hermitian matrices, given by

R1,3 ∈ x 7→
(
x0 − x3 x1 + ix2

x1 − ix2 x0 + x3

)
∈ isu(2) .

This identification can also be written as x 7→
∑3

j=0 xjσj , where σj, j =

0, · · · , 3 are the it Pauli matrices

σ0 =

(
1 0

0 1

)
; σ1 =

(
0 1

1 0

)

σ2 =

(
0 i

−i 0

)
; σ3 =

(
−1 0

0 1

)

Using this identification, we define an action of SL(2,C) on Lorentzian

spacetime through the map SL(2,C) × isu(2) → isu(2) given by (Λ,X) 7→
ΛXΛ∗. Note that, when X =

∑3
j=0 xjσj, we have

det(X) = x2
0 − x2

1 − x2
2 − x2

3 = ‖x‖2 .

Since we also have

det(ΛXΛ∗) = det(X) ,
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p0

Hm

0

Fig. 4.1. Hyperboloids in momentum space

we see that the action just defined preserves the Lorentz metric. In other

words, SL(2,C) acts isometrically on spacetime, and we have a well-defined

map SL(2,C)
Φ−→ SO(1, 3), a group homomorphism in fact. Now, it is

an easy exercise to see that if Λ ∈ SL(2,C) is such that ΛXΛ∗ = X for all

Hermitian matrices X, then M = ±I. From this it follows that Φ is a double

covering map, and we have L↑
+ = SO(1, 3) ∼= SL(2,C)/{±I} = PSL(2,C).

The orbit structure of the action of L↑
+ on momentum space is fairly

simple. Each hyperboloid (see figure 1) of the form

Hm =
{
p ∈ R1,3 : (p0)2 − (p1)2 − (p2)2 − (p3)2 = m2

}

is invariant under the group action, including the degenerate case m = 0

(the light cone). When m2 < 0, we have a one-sheeted hyperboloid. When

m2 > 0 we have a two-sheeted hyperboloid, and each sheet is invariant. In

either case, the group action is transitive in each sheet.
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4.7.2 Induced representations of unitary type

Let G be a Lie group, and let H be a closed subgroup of G. Suppose we are

given a representation of H into a Hilbert space. Does it somehow yield a

representation of the larger group? We shall see how to construct such an

induced representation provided we are given the following ingredients.

(1) A principal H-bundle (P, π,M), where P and M are smooth manifolds.

(2) A representation ρ : H → Aut(V ), where V is a complex Hilbert space,

through unitary automorphisms.

(3) A left action G×P α−→ P which is smooth and sends fibers π−1(x) ⊆ P
onto fibers. In particular, there is a quotient action G×M β−→M on

the base. We have a commutative diagram

G× P α−−−−→ P

i×π
y

yπ

G×M −−−−→
β

M

We assume also that the left G-action commutes with the right H-

action on P .

(4) A Borel measure µ on M which is G-invariant (g∗µ = µ for all g ∈ G).

Using these ingredients, we will show how to build an induced represen-

tation ρ̂ : G → U(H), where H is a Hilbert space arising as a subspace of

the space of sections of the vector bundle associated to the representation ρ.

The most important special case of this construction happens when P = G

and M is the homogeneous space G/H. In this case the third ingredient

above comes for free (take α to be the standard left action by translations,

and let β be the obvious quotient action).

Example 8. The main physical example is the case when P = G = SL(2,C)

(the double cover of the Lorentz group), the little group is H = SU(2)

(the double cover of SO(3), the isotropy group of the point (m, 0, 0, 0) in

Lorentz spacetime), andM = SL(2,C)/SU(2) is the hyperboloid {x ∈ R1,3 :

x2
0 − x2

1 − x2
2 − x2

3 = m2} (the orbit of (m, 0, 0, 0) under the Lorentz group).

The manifold M with the metric induced from the Minkowski metric on

R1,3 is isometric to hyperbolic 3-space with the hyperbolic metric. Hence

the measure µ is the hyperbolic volume form transported by this isometry (so

µ is obviously invariant under SL(2,C)). The representations ρ : SU(2) →
U(V ) are all finite-dimensional (V = CN for some N) and will be described

later.
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Let us go back to the general situation. In order to construct the induced

representation ρ̂ of the larger group G, let (E, πE ,M) be the associated

vector bundle corresponding to the representation ρ : H → Aut(V ) of the

smaller group H. Each fiber Vx = π−1
E (x) ⊆ E is isomorphic to V . The first

step is the following.

Lemma 4.3 The space of sections Γ(E) is isomorphic to the space W of

H-equivariant maps f : P → V , i.e. maps satisfying f(p · h) = ρ(h−1)f(p)

(for all p ∈ P and h ∈ H).

Proof Recall that E = P × V/H, where the H-action on P × V is given by

(p, v) · h = (ph−1, ρ(h)v). Let ψ ∈ Γ(E) be a section of E. For each p ∈ P
there exists v ∈ V such that ψ(π(p)) = [(p, v)] (here [·] denotes an orbit of the

H-action). We claim that v is uniquely determined by p. Indeed, if w ∈ V
is such that [(p,w)] = [(p, v)], then there exists h ∈ H such that p · h−1 = p

and ρ(h)v = w. Since H acts freely on each fiber of P , we must have h = e,

and therefore w = v. Hence we have v = fψ(p) for a well-defined function

fψ : P → V . This function clearly satisfies fψ(ph−1) = ρ(h)v = ρ(h)fψ(p),

so it is H-equivariant. This defines a linear map L : Γ(E) → W , given by

L(ψ) = fψ. The construction of fψ from ψ can be reversed to show that L

is surjective. Moreover, if fψ = 0 then ψ must be the zero section, so L is

injective as well.

The second step is to define a left action G×W →W in the obvious way:

if g ∈ G and f ∈W , let g · f be given by g · f(p) = f(g−1 · p). This is well-

defined, because the left G-action and the right H-action on P commute,

and therefore

g · f(p · h) = f(g−1 · (p · h))
= f((g−1 · p) · h)
= ρ(h−1)f(g−1 · p)
= ρ(h−1)(g · f)(p) ,

showing that, indeed, g · f ∈ W . Now, this action of G on W can be

transported, via the isomorphism L of Lemma 4.3, to an action γ : G ×
Γ(E)→ Γ(E) according to the following diagram

G×W −−−−→ W

iG×L−1

y
yL−1

G× Γ(E) −−−−→
γ

γ(E)
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Thus, g · ψ = γ(g, ψ) = L−1(g · fψ), for all g ∈ G and all ψ ∈ Γ(E).

The third step is to define the Hilbert space of L2-sections of the vector

bundle (E, πE ,M), on which G will act. To define an inner product on sec-

tions, first we take their scalar product on each fiber, and then we integrate

over the base manifold M using our fourth ingredient, the Borel measure µ.

More precisely, if φ,ψ ∈ Γ(E) and x ∈M , let

〈φ(x), ψ(x)〉Vx
= 〈fφ(p), fψ(p)〉 ,

where p ∈ P is any point such that π(p) = x. This is well-defined, for if

q ∈ P is any other point with π(q) = x, then q = p · h for some h ∈ H, and

therefore, by H-equivariance,

〈fφ(q), fψ(q)〉 =
〈
ρ(h−1)fφ(p), ρ(h

−1)fψ(p)
〉

= 〈fφ(p), fψ(p)〉 ,

where we have used that ρ(h−1) : V → V is unitary. The inner product on

sections is given by

〈φ,ψ〉 =

∫

M
〈φ(x), ψ(x)〉Vx

dµ(x) .

Now let L2(Γ(E), µ) ⊆ Γ(E) be the subspace consisting of those ψ ∈ Γ(E)

such that 〈ψ,ψ〉 < ∞. This is easily seen to be a Hilbert space. We shall

denote this Hilbert space by H.

Lemma 4.4 The restricted action γ : G×H→ H is well-defined and unitary.

Proof The definitions given so far assure us that (g ·ψ)(x) = [(p, g · fψ(p))],

for all ψ ∈ Γ(E) and all g ∈ G, where p ∈ P is any point with π(p) = x.

Hence, given φ,ψ ∈ Γ(E), we have

〈g · φ(x), g · ψ(x)〉Vx
= 〈g · fφ(p), g · fψ(p)〉
=
〈
fφ(g

−1 · p), fψ(g−1 · p)
〉

=
〈
φ(g−1 · x), ψ(g−1 · x)

〉
Vg−1·x

.

Here we have used that π(g−1 · p) = g−1 · π(p) = g−1 · x. This shows that

〈g · φ, g · ψ〉 =

∫

M

〈
φ(g−1 · x), ψ(g−1 · x)

〉
Vg−1·x

dµ(x) (4.4)

Since g−1
∗ µ = µ (for the measure µ is G-invariant), the change of variables

y = g−1 · x in (4.4) yields at last 〈g · φ, g · ψ〉 = 〈φ,ψ〉. In other words, each

g ∈ G acts on H as a unitary isometry.
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Finally, using the action γ : G × H → H just constructed, we define a

unitary representation

ρ̂ : G→ U(H)

quite naturally by ρ̂(g) = γ(g, ·) : H → H. This is the induced unitary

representation of G (induced by ρ : H → Aut(V )) that we were looking for.

4.7.3 Wigner’s classification of particles

In a seminal work, E. Wigner proposed the following mathematical notion

of elementary particle. For a discussion of the physical motivation behind

this definition and of Wigner’s work, see [St], pp. 148-150.

Definition 4.10 A quantum mechanical particle is a projective, irreducible

unitary representation of the Poincaré group.

One can be a bit more restrictive here: the above representations may

be required to satisfy additional conditions, whose nature and relevance are

dictated by physical context. Moreover, instead of projective representations

of the Poincaré group P, one can consider representations of its universal

(double) covering group

P̃ = SL(2,C) ⋊ R1,3 , (4.5)

that is to say, the semi-direct product of the group SL(2,C) with the trans-

lation group in Minkowski space. This will be the point of view adopted

here.

Our goal in this section is to present Wigner’s classification of particles in

a nutshell. Wigner’s classification theorem provides the (correct) mathemat-

ical framework for the study of elementary particles, and has stimulated a

great deal of research in the theory of group representations. The classifica-

tion amounts to finding all unitary irreducible representations of the group

P̃. The general problem of finding irreducible, unitary representations of

semi-direct products such as (4.5) was thoroughly investigated by G. Mackey

(but also by Wigner in the specific case at hand). Such representations are

typically infinite-dimensional. In order to simplify our discussion here, we

shall ignore the translation group factor R1,3 in the semi-direct product

(4.5). This amounts to studying the unitary irreducible representations of

the Lorentz group, or of its double cover SL(2,C). Using the results we

proved in section 4.7.2, it suffices to classify the irreducible unitary repre-

sentations of the isotropy groups of points in Minkowski space with respect

to the underlying action of the Lorentz group in that space.
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The isotropy groups are either isomorphic to the special orthogonal group

SO(3) or the group of Euclidean motions of the plane, E(2). We shall deal

explicitly here with the case of SO(3), which is compact. The Euclidean

group E(2) is not compact, but a further reduction can be used to study its

irreducible representations (we note that E(2) contains SO(2) as a maximal

compact subgroup).

The fact that SO(3) is compact makes our job easier, because of the

following classical theorem.

Theorem 4.2 (Peter-Weyl) Every irreducible representation of a compact

Lie group is finite-dimensional.

Proof The proof can be found in many references, among them [St], ap-

pendix E.

Now, we’ve seen already that SO(3) is doubly covered by SU(2). Hence

it suffices to determine the irreducible unitary representations of this last

group.

It is not difficult to exhibit countably many (unitary) representations

of SU(2), the double covering of SO(3). The idea is very simple. First

note that SU(2) acts in C2, through skew-hermitian linear transformations.

Therefore we have a regular representation r : SU(2) → Aut(A ), where

A = C(C2,C) is the algebra of all complex-valued continuous functions on

C2, given by r(A)f = f ◦ A−1. Let Vn ⊂ A be the subspace of all homo-

geneous, degree n polynomials (in the complex variables z and w, say). An

element p ∈ Vn can be written in the form

p(z,w) =
n∑

j=0

αjz
jwn−j .

In other words, the monomials zn, zn−1w, . . . , zwn−1, wn are a basis of Vn.

If A ∈ SU(2) has matrix

A =

(
a b

−b a

)
,

then

p ◦ A−1(z,w) =

n∑

j=0

αj (az − bw)j
(
bz + aw

)n−j
,

which is still, as the reader can easily check, a homogenous polynomial of

degree n. This shows that r restricts to a representation in Vn, for each n.
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It is also not difficult to see what inner product on Vn one should pick so

that this representation is unitary (this is left as yet another exercise).

We claim that these restricted representations (one for each value of n),

are irreducible, and they are all irreducible unitary representations of SU(2).

There are several equivalent ways of proving these facts, for example using

one of the several alternative formulations of the Peter-Weyl theorem. We

prefer to prove them using the Lie algebra su(2). Recall that if ρ : G →
Aut(V ) is a (say, finite-dimensional) representation of a Lie group G, one

has a corresponding Lie algebra representation ρ̇ : Lie(G) → EndV , given

by

ρ̇(X) =
d

dt

∣∣∣
t=0

ρ(exp (tX)) .

If ρ is reducible, the same will happen to ρ̇. Hence, after we prove Theorem

4.3 below, we will have established that the representations of SU(2) that

we constructed above are indeed all the irreducible representations.

Furthermore, any representation of a Lie algebra g into a (complex) vector

space extends to a representation of the complexified Lie algebra gC = C⊗g,

with the same invariant subspaces. In particular, if the representation of g

is irreducible, so will be the extended representation of gC. These facts are

left as straightforward exercises to the reader.

We will need to use the fact that the complexified Lie algebra suC(2)

agrees with sl(2,C), and as such it has a basis τ1, τ2, τ3 (over C) satisfying

the commutation relations

[τ1, τ2] = τ3 ; [τ2, τ3] = τ1 ; [τ3, τ1] = τ2 .

These are easily constructed from the Pauli matrices (another exercise). Let

us consider

L = τ2 + iτ1 ; θ3 = iτ3 ; R = τ2 − iτ1 .

These elements also form a basis of su(2), and one easily sees that

[θ3, L] = iτ3(τ2 + iτ1)− (τ2 + iτ1)(iτ3)

= −i[τ3, τ2]− [τ3, τ1]

= −τ2 + iτ1 = −L .

Likewise, one sees that [θ3, R] = R.

Theorem 4.3 For each non-negative half-integer s, there exists an irre-

ducible, skew hermitian finite-dimensional representation ρs of the Lie alge-

bra sl(2,C) into a complex vector space Vs of dimension 2s + 1. Each such
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representation is unique up to unitary equivalence. Moreover, there exists a

basis {v0, v1, . . . , v2s} of Vs such that

(a) The linear map ρs(θ3) is diagonalizable in this basis, and

ρs(θ3)vj = (−s+ j)vj , for all 0 ≤ j ≤ 2s;

(b) The operators ρs(L) and ρs(R) act as shift operators, in other words

ρs(L)vj = vj−1 and ρs(R)vj = vj+1 (for the appropriate values of j).

Furthermore, these are all the irreducible skew-hermitian representations of

sl(2,C) (and hence also of su(2)).

Proof We perform a ladder reasoning similar to the one used in the analysis

of the harmonic oscillator, or of spectra of the angular momentum operators

(chapter 2). Given a finite-dimensional irreducible representation of sl(2,C),

let V be the complex vector space. Let us keep representing by L,R, θ3 the

images of the Lie algebra generators under the given representation. Note

that all eigenvalues of θ3 must be real (can you see why?). Suppose λ is

the smallest eigenvalue of θ3, and let v0 ∈ V be an eigenvector of θ3 with

eigenvalue λ. Then the commutation relations imply that

θ3(Rv0) = Lθ3(v0) +Rv0 = (λ+ 1)Rv0 .

Hence v1 = Rv0 is an eigenvector of θ3 with eigenvalue λ+1, unless of course

Lv = 0. We can continue inductively as long as we don’t hit the zero vec-

tor, obtaining a sequence of eigenvectors v0, v1 = Rv0, v2 = R2v0, . . . , vk =

Rk−1v0 with eigenvalues λ, λ + 1, . . . , λ + k − 1 which must terminate be-

cause V is finite-dimensional. In the end we have Rkv0 = 0. The subspace

generated by these k eigenvectors is invariant under θ3, R and (by a similar

ladder reasoning going downwards) under L also. But since the representa-

tion is assumed to be irreducible, this can only happen if k = n. We have

deduced in particular that θ3 is diagonalizable, and that L and R act as

shift operators. More importantly, since θ3 must have zero trace, we get

n−1∑

j=0

(λ+ j) = nλ+
n(n− 1)

2
= 0 .

This shows that

λ = −n− 1

2
.

Hence the eigenvalues of θ3 are

−n− 1

2
,−n− 3

2
, . . . ,

n− 3

2
,
n− 1

2
,
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a sequence that may or may not go through 0, depending on whether n is

odd or even respectively. We have proved both (a) and (b), provided we

take, of course, s = (n− 1)/2.

Therefore, the irreducible unitary representations of SU(2) corresponding

to massive particles are labeled by a non-negative half-integer s, called the

spin of the particle,

s = 0,
1

2
, 1,

3

2
, . . .

Particles with integrals spin are called bosons. Those with half-integer spin

are called fermions (an example of which is the electron).

On the other hand, the irreducible unitary representations of SO(2) are all

one-dimensional (because the group is abelian) and correspond to massless

particles such as photons. They are labeled by the eigenvalues h ∈ Z of

the angular momentum Jz, which is the generator of the group SO(2) of

rotations in the (x, y, 0) plane around the vertical z-axis. The number h is

called the helicity of the particle.

4.7.4 Spinor representations of SL(2,C)

As we have seen, the Lorentz group is doubly covered by SL(2,C). In the

light of the previous discussion, it is a matter of considerable interest in

quantum physics to find all finite-dimensional irreducible representations of

SL(2,C). It is easy to give an enumeration of all such irreducible represen-

tations, although not so easy to prove that the given list indeed exhausts all

possible irreducible representations.

Let us do the easy part. For each pair (s,t) of half-integers, let V s,t denote

the complex vector space of all polynomials p(z, z̄) of degree at most 2s in

z and at most 2t in z̄, i.e. polynomials of the form

p(z, z̄) =
∑

0≤j≤2s

∑

0≤k≤2t

ajkz
j z̄k ,

where the coefficients ajk are complex. The monomials zj z̄k clearly form a

basis of V s,t, so dimV s,t = (2s+ 1)(2t + 1). Now, given A ∈ SL(2,C), say

A =

(
a b

c d

)
,

we define Ds,t(A) : V s,t → V s,t by

Ds,t(A)(p(z, z̄)) = (cz + d)2s(c̄z̄ + d̄)2t p(w, w̄) ,
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where

w =
az + b

cz + d
.

is the fractional linear transformation associated to A. This is clearly well-

defined and linear in p. It is an easy exercise to verify that Ds,t(I) is the

identity and that Ds,t(AB) = Ds,t(A) ◦ Ds,t(B). Hence A 7→ Ds,t(A) is a

finite-dimensional representation of SL(2,C). Such representation is called

a spinor representation of SL(2,C). Now we have the following fundamental

result.

Theorem 4.4 For all non-negative half-integers s, t, the spinor representa-

tion

Ds,t : SL(2,C)→ V s,t

is irreducible. Moreover, every finite-dimensional irreducible representation

of SL(2,C) is equivalent to one of these.

We will not prove this theorem here. A complete proof can be found

in [GMS]. Nevertheless, we invite the reader to compare this result with

Theorem 4.3. The derived representation Ḋs,t at the level of the Lie algebra

sl(2,C) is made up by taking the tensor product of two of the representations

appearing in that theorem.

Exercises

4.1 Let ω be the connection of example 4.3 (the Hopf bundle), and let

A the corresponding (local) connection 1-form on the base (S2).

(a) Show that in local coordinates (given by stereographic projection)

we can write

A =
i

2
Im

(
z dz

1 + |z|2
)
.

(b) Deduce that the local curvature 2-form is, in local coordinates,

given by

F = dA =
1

2

dz ∧ dz
(1 + |z|2)2 .

4.2 Work out the analogue of example 4.3 for the quaternionic Hofp

bundle presented in example 4.2. More precisely, let ω be the 1-form

in H2 given by

ω = Im (q1 dq1 + q2 dq2) .
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Consider the inclusion j : S7 → H2, and let ω = j∗ω be the connec-

tion defined on the quaternionic Hopf bundle. Again, denote by A

the corresponding local 1-form on the base (S4) defined via stereo-

graphic projection.

(a) Show that, in these local quaternionic coordinates, we have

A = Im

(
q dq

1 + |q|2
)
.

(b) Show that the corresponding curvature 2-form F is given by

F =
dq ∧ dq

(1 + |q|2)2 .
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Classical Field Theory

The concept of field is central in modern physics. In this chapter we study

the basic classical fields, such as the electromagnetic field, presenting them

from a unified mathematical perspective. The expression ‘classical field’ is

used here in contradistinction to ‘quantum field’ (a concept to be defined

in chapter 6), and is taken to mean ‘field before quantization’. Thus, we

treat fermionic fields as classical, even though strictly speaking fermions are

bona-fide quantum objects, with no actual classical counterpart.

5.1 Introduction

As we shall see, all such fields arise as sections of certain bundles over the

spacetime manifold. The basic paradigm was introduced by C. N. Yang

and R. Mills in their fundamental paper (see [tH2]). The central idea of

Yang-Mills theory is that there is a background field (such as the electromag-

netic field) which is given by a connection A defined on a principal bundle

over spacetime. The structural group of this bundle represents the internal

symmetries of the background field. The possible interactions – also called

couplings – of the background field with, say, particles such as photons or

electrons, are dictated by the representations of the group. Each particle

field turns out to be a section of the associated vector bundle constructed

from the principle bundle with the help of a given representation of the

group. These fields, say ϕ,ψ, . . ., together with the background connection,

should satisfy a variational principle. In each case we have a Lagrangian

L = L (A,ϕ,ψ, . . .) defined on the product of the spaces of sections of the

bundles corresponding to each field, and taking values in the space of volume

forms in the spacetime M . Integrating this Lagrangian we get an action

S =

∫

M
L (A,ϕ,ψ, · · · ) .

110
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The physically relevant fields are the critical points of this action. These

are solutions to the Euler-Lagrange equations, coming from setting the first

variation of the action functional equal to zero, i.e.

δS

δ∂µA
= 0 ;

δS

δ∂µϕ
= 0 ; . . .

The resulting equations are linear PDE’s in the case of electromagnetic

fields and non-linear in the case of gravitational fields. We will construct

a generalization of electromagnetism, the Yang-Mills fields, which will also

lead to non-linear PDE’s.

5.2 Electromagnetic Field

Let us start with the most well-understood of all physical fields, the elec-

tromagnetic field. What follows is elementary, and appears in one way or

another in many physics books.

5.2.1 Maxwell’s equations

The study of electric and magnetic phenomena goes back to the eighteenth

century with the pioneering work of Coulomb on electric charges, but it

only became systematic after Faraday, Gauss, Ampere and Maxwell in the

nineteenth century. Their work culminated in a great synthesis with the

famous Maxwell equations. In the vacuum, these equations read as follows:

∇ ·E = 0 , ∇ ∧B − ∂E

∂t
= 0

∇ ·B = 0 , ∇ ∧E +
∂B

∂t
= 0

Here, E = (E1, E2, E3) is the electric field and B = (B1, B2, B3) is the mag-

netic field. These equations make clear that electric and magnetic phenom-

ena are not independent, but deeply intertwined. For instance, the first line

says that, in the absence of electric sources, the electric field is divergence-

free (first equation), while a non-zero magnetic field must be present as soon

as we have a time-varying electric field (second equation). The equations in

the second line have analogous physical interpretations.

5.2.2 The scalar and vector potentials

J. C. Maxwell realized that the above equations could be deduced from the

assumption that both the electric and the magnetic fields where in some
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sense conservative, i.e. derived from potentials. He introduced a scalar

potential φ and a vector potential A and arrived at the following expressions

E = −∇φ− ∂tA (5.1)

B = ∇ ∧A . (5.2)

It is easy to derive the four Maxwell equations from these two. For example,

since the divergence of the rotational of any vector field is identically zero,

taking the divergence on both sides of B = ∇∧A yields ∇·B = 0, the third

of Maxwell’s equations. Since the rotational of the gradient of any function

is identically zero, we also have, combining the two expressions above,

∂B

∂t
= ∇ ∧

(
∂A

∂t

)
= ∇ ∧ (−∇φ−E) = −∇ ∧E ,

which gives us the fourth of Maxwell’s equations.

It was observed by Lorentz at the end of the nineteenth century that

Maxwell’s equations are invariant under a large group of linear transforma-

tions of spacetime R4. This group is the Lorentz group we met in chapter 3,

namely, the group of isometries ofM = R4 under the Lorentz (or Minkowski)

metric given by

ds2 = −dx2 − dy2 − dz2 + c2 dt2 ,

where c stands for the speed of light. Lorentz invariance lies at the heart of

Einstein’s relativity theory.

Using coordinates x0 = ct, x1 = x, x2 = y, x3 = z in spacetime, we see

that the Lorentz metric tensor gµν , µ, ν = 0, 1, 2, 3 is given by the diagonal

4× 4 matrix with diagonal entries g00 = 1, g11 = g22 = g33 = −1.

5.2.3 The field strength tensor

A synthetic way to express Maxwell’s equations is obtained using the modern

language of differential forms. Let us consider the 2-form F in spacetime

M = R4 given by

F = E1 dx
1 ∧ dx0+E2 dx

2 ∧ dx0 + E3 dx
3 ∧ dx0

+B1 dx
2 ∧ dx3 +B2 dx

3 ∧ dx1 +B3 dx
1 ∧ dx2 .

There is another 2-form associated to F , called the Hodge dual to F (see

§4.5), which is denoted by ⋆F and is given by

⋆F = B1 dx
1 ∧ dx0 +B2 dx

2 ∧ dx0 +B3 dx
3 ∧ dx0

+E1 dx
2 ∧ dx3 + E2 dx

3 ∧ dx1 + E3 dx
1 ∧ dx2 .
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In terms of these forms, Maxwell’s equations in the vacuum become simply

dF = 0 , d ⋆ F = 0 . (5.3)

Note that we can write

F =
1

2
Fµν dx

µ ∧ dxν ,

where (Fµν) is the skew-symmetric tensor given by the matrix




0 −E1 −E2 −E3

E1 0 B3 −B2

E2 −B3 0 B1

E3 B2 −B1 0


 .

This tensor is called the field strength tensor.

What is the relationship between the field strength and the scalar and

vector potentials introduced by Maxwell? Let us consider first the 1-form

A = Aµdx
µ, where A0 = −φ is negative the scalar potential and A1, A2, A3

are the spatial components of the vector potential. Then

dA = d(Aµdx
µ) = (∂νAµ dx

ν) ∧ dxµ =
1

2
(∂µAν − ∂νAµ) dxµdxν .

Using the equations (5.1), we see after some simple computations that

Fµν = ∂µAν − ∂νAµ .

In other words, we have precisely F = dA. Thus, the field strength 2-form

is exact, and therefore it is closed as well: dF = 0.

5.2.4 The electromagnetic Lagrangian

Can Maxwell’s equations be derived from a variational principle? The an-

swer is yes. Note that the exterior product of F with ⋆F yields a volume

form in spacetime, which can be integrated. Thus, we may consider the

functional given by

Sem(A) =

∫

M
F ∧ ⋆F . (5.4)

This is the electromagnetic action (in the vacuum). The Euler-Lagrange

equations for this functional, obtained imposing the condition that its first

variation vanishes, i.e.

δSem
δA

= 0
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are precisely the Maxwell’s equations (5.3)! (The proof of this fact uses

Stokes theorem and is left as an exercise). We may therefore regard L(A) =

F ∧ ⋆F as the Lagrangian of electromagnetism (in the absence of charges).

Let us express the Lagrangian (or the corresponding action) using a no-

tation that is more familiar to physicists. Using the Lorentz metric, we can

“raise the indices” of the field strength tensor Fµν to get another tensor Fµν

whose components are given by

Fµν = Fαβ g
αµgβν .

In this new notation, it is an easy exercise to check that

Sem(A) = −1

4

∫

M
FµνF

µν d4x ,

where d4x = dx0 ∧ dx1 ∧ dx2 ∧ dx3 is the standard volume form in M = R4.

5.2.5 Gauge invariance

An extremely important property of the Maxwell Lagrangian is its invariance

under gauge transformations. A gauge transformation has the form

Aµ 7→ Aµ + ∂µΘ ,

where Θ : R4 → R is an arbitrary (smooth)function. It is clear that the

Lagrangian (5.4) doesn’t change when the vector potential (connection) A is

changed in this fashion. Hence we have considerable freedom when choosing

A. For instance, given A we can always make A0 = 0 after a suitable gauge

transformation. Indeed, let

Θ(t,x) =

∫ t

A0(s,x) ds .

Then ∂0Θ = A0, and therefore the gauge transformed field

A′
µ = ∂µ

∫ t

A0(s,x) ds

has A′
0 = 0. We can further gauge transform A′ in many ways to get yet

another connection A′′ that still has first component equal to zero, provided

we use as gauge a function that is independent of t. One way to do this is

the following. Let

Ψ(x) = − 1

4π

∫
∇y ·A′(t,y)

d3y

|x− y| .
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Maxwell’s equations show that, because A′
0 = 0, we have ∂0(∇ · A′) = 0.

This shows that Ψ is indeed independent of time (i.e. Ψ(x) = Ψ(0,x)). Now

let

A′′
µ = A′

µ + ∂µΨ .

Note that we still have A′′
0 = 0. Using the identity on distributions

∇
2
x

(
1

4π|x− y|

)
= −δ3(x− y) ,

we see that ∇ · A′′ = 0 (exercise). In other words, we have ∂µA′′
µ = 0;

this choice of gauge is called Lorentz gauge. Using the equations of mo-

tion ∂µFµν = 0, we deduce that the connection components A′′
µ satisfy the

massless Klein-Gordon equation

�A′′
µ = 0 . (5.5)

These Klein-Gordon equations admit plane-wave solutions of the form

A′′
µ(x) = ǫµ(k)e

−ik·x + ǫ∗µ(k)e
ik·x

for each k ∈ R4, where the coefficients ǫµ(k) ∈ C4 (and their complex

conjugates ǫ∗µ(k)) are called polarization vectors. Since the Klein-Gordon

is linear, the superposition principle tells us that these plane waves can be

combined to yield the general solution. Later (chapter 6), when we quantize

the electromagnetic field, we will see that these equations (5.5) describe

massless particles, namely photons.

5.2.6 Maxwell Lagrangian with an external current

We have presented Maxwell’s equations in vacuo, which are homogeneous,

but of course it is also necessary to consider the electromagnetic field in the

presence of a charge distribution. This is represented by a four-vector (Jµ) =

(ρ,J), where ρ denotes the charge density, and J the associated current. The

inhomogeneous Maxwell equations corresponding to this situation are

∇ ·E = ρ , ∇×B − ∂E

∂t
= J

∇ ·B = 0 , ∇×E +
∂B

∂t
= 0

These equations turn out to be the Euler-Lagrange equations for the action

functional with Lagrangian density given by

L = −1

4
FµνF

µν − JµAµ .
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5.3 Conservation laws in field theory

Just as in the case of classical mechanics, in field theory there is a close

relationship between symmetry and conservation laws. This relationship is

expressed through Noether’s theorem. Rather than present the most general

formulation of this theorem, we will deal here with the case of internal

symmetries only. A symmetry is called a spacetime symmetry if it acts on

the spacetime variables, and an internal symmetry otherwise. For more

details we recommend [Fr, ch. 20], as well as [BL, ch. 3] and [Ma, ch. 3].

5.3.1 The Euler-Lagrange equations

Let us try to free the discussion from the dependence on coordinates. We

shall examine the case of a field Lagrangian depending on a single field φ.

We make the following assumptions.

(i) The spacetime M is a pseudo-Riemannian n-manifold (typically a

Lorentzian 4-manifold) with a fixed pseudo-Riemannian metric g (typi-

cally the Minkowski metric). The volume element of M can be written,

in local coordinates, as

dVM =
√
|det g| dx1 ∧ dx2 ∧ · · · ∧ dxn .

(we ignore a sign here, which is determined by a choice of orientation

of M).

(ii) The relevant fields are sections of a vector (or spinor) bundle E →
M with N -dimensional fibers. These sections will be denoted φ =

(φα)α=1,...,N . The vector bundle E is provided with a fixed connection,

i.e. a fixed covariant derivative ∇. In local coordinates x : U → Rn

(U ⊂ M being a coordinate patch) this covariant derivative has an

expression of the form

∇jφ
α = ∂jφ

α + ωαj,βφ
β ,

where the ωαj,β are smooth functions on U .

(iii) The relevant action functional S : Γ(E)→ R is given by integration of

a suitable Lagrangian density, namely

S(φ) =

∫

M
L (φ,∇φ) dVM . (5.6)

Here L (φ,∇φ) ∈ C∞(M) for each φ ∈ Γ(E). Thus, the Lagrangian

density is assumed to depend explicitly only on the field φ and on its

covariant derivative.
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We shall presently derive the Euler-Lagrange equations for the critical

points (fields) of the action-functional. Following the recipe dictated by the

calculus of variations, let us work out the variation δS corresponding to a

given variation δφ ∈ Γ(E) of the field φ. Since the connection is fixed and

δ∂j = ∂jδ for all j, we have

δ(∇jφ
α) = ∇j(δφ

α) .

Using this fact and taking into account that the metric on M is also fixed,

we see that

δS(φ) =

∫

M
δL (φ,∇φ) dVM

=

∫

M

{
∂L

∂φα
(δφα) +

∂L

∂(∇jφα)
∇j(δφ

α)

}
dVM . (5.7)

Let us pause here to understand the invariant tensorial meaning of the terms

in the integrand on the last line of (5.7). Since the expression in brackets

is supposed to be a function on M , the products appearing as summands

must be pairings of the tensor fields involved. In each pairing, a section of

a given bundle must be paired against a section of the corresponding dual

bundle. Thus, since δφ ∈ Γ(E), we see that

(
∂L

∂φα

)
∈ Γ(E∗) ,

i.e. a section of the dual bundle E∗. Likewise, since the covariant derivative

maps sections of E to sections of E ⊗ T ∗M , we see that

(
∂L

∂(∇jφα)

)
∈ Γ(E∗ ⊗ TM) .

Now, going back to the calculation of δS, we note that

∇j

(
∂L

∂(∇jφα)
δφα

)
=

∂L

∂(∇jφα)
δ(∇jφ

α) + ∇j

(
∂L

∂(∇jφα)

)
δφα . (5.8)

Here there is an abuse of notation. All covariant derivatives here are be-

ing denoted by the same symbol, but they live in different vector bundles.

Thus, the covariant derivative on the left-hand side of (5.8) is the pseudo-

Riemannian covariant derivative on TM , whereas on the right hand-side we

have the given covariant derivative ∇ acting on φ in the first summand,

and the induced covariant derivative acting on the section of Γ(E∗ ⊗ TM)
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appearing in the second summand. Using (5.8) in (5.7), we get

δS(φ) =

∫

M

{
∂L

∂φα
−∇j

(
∂L

∂(∇jφα)

)}
δφα dVM

+

∫

M
∇j

(
∂L

∂(∇jφα)
δφα

)
dVM . (5.9)

Now, suppose the spacetime manifold is compact and has a smooth boundary

∂M (with the induced orientation from M). Then, applying the divergence

(i.e. Stokes) theorem to this last integral we get

δS(φ) =

∫

M

{
∂L

∂φα
−∇j

(
∂L

∂(∇jφα)

)}
δφα dVM

+

∫

∂M

(
∂L

∂(∇jφα)
δφα

)
Nj dAM . (5.10)

where dAM is the area-form on ∂M and n = (Nj)
n
j=1 is the unit normal to

the boundary of M . Hence, if φ is a critical point for the action functional

S, in other words if the first variation δS(φ) vanishes for all field variations

δφ vanishing at ∂M , then we must have

δL

δφα
=

∂L

∂φα
−∇j

(
∂L

∂(∇jφα)

)
= 0 .

The symbol on the left-hand side of the above equality stands for the so-

called functional derivative of the Lagrangian. Note that this object is a

section of the dual bundle E∗. It is also customary to write

div

(
∂L

∂∇φ

)
= ∇j

(
∂L

∂(∇jφα)

)
, (5.11)

so that the functional derivative of L with respect to φ can be written

without reference to components as

δL

δφ
=

∂L

∂φ
− div

(
∂L

∂∇φ

)
.

5.3.2 Noether’s theorem for internal symmetries

Let us now assume that the Lagrangian L is invariant under a one-parameter

group of symmetries. In other words, let G be the structure group of the

vector (or spinor) bundle on which the field φ lives, and suppose we have a

one-parameter subgroup t 7→ gt ∈ G. This induces a one-parameter group of

fiber-preserving self-maps of the vector bundle E, and also a one-parameter

group of self-maps of Γ(E), all of which we denote by the same symbol gt.
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In particular, we have a motion of sections φt = gtφ. The meaning of the

symmetry in question is that L is invariant under such motion, i.e.

∂

∂t

∣∣∣
t=0

L (φt,∇φt) .

Now, we can write gt = etY , where Y is an element of the Lie algebra of G.

Fixing a coordinate neighborhood U ⊂ M , each field φ is represented by a

column vector (φα)Nα=1, each gt is represented by a matrix, and

φαt = gαt,βφ
β = (etY )αβφ

β .

The first variation δφ of φ along this symmetry is given by

δφα =
∂φαt
∂t

∣∣∣
t=0

= Y α
β φ

β .

We call δφ a variation by symmetries of the Lagrangian. The theorem of

Noether tying symmetries of the Lagrangian to conservation laws is the

following.

Theorem 5.1 Let the field φ be an extremal of the Lagrangian L . If δφ is

a variation by symmetries of the Lagrangian, then

div

(
∂L

∂∇φα
δφα

)
= 0 .

In particular, the vector field J given by

Jµ =
∂L

∂∇µφα
Y α
β φ

β

has divergence zero.

Proof Since φ is extremal for the action functional with Lagrangian L , we

know from (5.9) and the fact that δφ is a variation by symmetries that

0 = δS =

∫

V
∇j

(
∂L

∂(∇jφα)
δφα

)
dVM .

for every compact n-dimensional submanifold of M with boundary. Since

V is arbitrary, the integrand above must vanish identically. Remembering

(5.11), this proves the theorem.

Remark 1. Suppose we are dealing with a scalar field φ, defined over flat

Minkowski spacetime M = R4, and let us denote the corresponding Noether

current by jµ. We know from theorem 5.1 that ∂µj
µ = 0. Separating the

time component j0 of j from its spatial components, i.e. writing j = (j0, j),
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we see that the equation ∂µj
µ = 0 becomes ∂0j

0 = −∇ ·j. This is similar to

the situation we already encountered in chapter 3 when we discussed Dirac’s

equation: current conservation. Indeed, let V ⊂ R3 be a region in 3-space

with smooth boundary ∂V . Defining

QV (t) =

∫

V
j0(t,x) d3x ,

it follows from the divergence theorem that ∂tQV (t) is equal to the flux

of j across the boundary ∂V . This justifies calling QV the charge and j

the current associated to the symmetry δφ. The reader can check, as an

instructive exercise, that when L is the Maxwell Lagrangian with a source

term, and the present discussion is adapted to the vector potential A, the

charge and current introduced above are precisely the electric charge and

electric current that are so familiar in electromagnetism. The remainder

of this chapter will be devoted to further important examples of free or

interacting fields and their symmetries and associated conservation laws.

5.4 The Dirac field

5.4.1 The free Dirac field

The free (or pure) Dirac Lagrangian describes a fermion, which mathemat-

ically is represented by a spinor field, in the absence of interactions. The

spinor field ψ is a section of a spinor bundle over spacetime M (whose fibers

are identified with a vector space V isomorphic to either R4 or C2, as de-

scribed in chapter 4. For simplicity, let us work on Minkowski’s flat space.

Using the standard Dirac matrices γµ, the Lagrangian density can be written

as

LD = ψ(iγµ∂µ −m)ψ , (5.12)

where ψ = ψ†γ0 is the adjoint spinor to ψ (here ψ† is the Hermitian conju-

gate to ψ). See our discussion of the Dirac equation in chapter 3. The Dirac

Lagrangian is clearly invariant under the U(1) symmetry ψ 7→ eiθψ (a one

parameter group), and therefore we can apply Noether’s theorem to recover

the result that the associated Dirac current

jµ = ψγµψ

is conserved, as we saw in in chapter 3. The Euler-Lagrange equations for

the Dirac Lagrangian yield, not surprisingly, the Dirac equation

(iγµ∂µ −m)ψ = 0 .
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In the exercises at the end of this chapter we analyze the plane-wave solutions

to this equation, and their superpositions to yield a general solution formula

in Minkowski space.

5.4.2 Coupling with the electromagnetic field

Let us now describe how the Dirac field can be (minimally) coupled with

the electromagnetic field. The idea is to replace the ordinary derivative ∂µ
in (5.12) by a covariant derivative

∇µ = ∂µ + iqAµ ,

where Aµ is the vector potential, and q is called the charge. This pre-

supposes a connection on a suitable principal U(1) bundle over spacetime,

and a suitable representation U(1) → V , where V is a vector space (real

4-dimensional or complex 2 dimensional) representing the fiber of the vector

bundle on which ψ lives. Here we shall ignore the interaction of the electro-

magnetic field with itself. The Lagrangian is thus the same as (5.12) with

∇µ replacing ∂µ, and we get

L A
D = ψ(iγµ∂µ −m)ψ − qψγµAµψ . (5.13)

The Euler-Lagrange equations in this case yield the modified Dirac equation

(iγµ∂µ −m)ψ = qγµAµψ . (5.14)

Remark 2. We want to record here an important symmetry enjoyed by the

above Dirac equation. If we have a solution ψ to (5.14) then we can take

the complex conjugate of both sides, getting

[(γµ)∗(−i∂µ − qAµ)−m]ψ∗ = 0 .

Recall that the components Aµ of the electromagnetic field are real. Now,

the Dirac matrices as we defined them (in the so-called chiral representation)

are such that (γ2)∗ = −γ2, whereas γ0, γ1, γ3 are real. Multiplying both

sides of this last equation by γ2 and using the anti-commutation relations

satisfied by these matrices, we get

(iγµ∂µ −m)(γ2ψ∗) = qγµ(−Aµ)(γ2ψ∗) .

But this equation is again the Dirac equation, with the new electromagnetic

field −Aµ. In physical terms, if ψ is a positive energy solution, say, of the

Dirac equation for a particle with charge q in the electromagnetic field Aµ,

then ψC = −iγ2ψ∗ is a negative energy solution to the Dirac equation in
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the charge conjugate field ACµ = −Aµ. The operation ψ 7→ ψC , Aµ 7→ ACµ
is called charge conjugation. The choice of factor −i in the definition of

ψC is made so that the resulting operation is an involution, i.e. equal

to its own inverse. If we take into account the interpretation of negative-

energy solutions of Dirac’s equation as representing anti-particles, we can

say, informally, that charge conjugation is an operator that replaces matter

by anti-matter and vice-versa.

To end this subsection, we would like to say a few words about the solu-

tion to (5.14). It is based on the Green’s function method widely used by

physicists. This will in fact lead us to the Feynman propagator for Dirac’s

equation. The method has two steps.

(i) First we solve

(iγµ∂µ −m)G(x, x′) = δ(4)(x− x′) . (5.15)

Here, δ(4) denotes the four-dimensional Dirac delta-distribution. From

a physical standpoint, by analogy with the standard wave equation, the

Green function G(x, x′) should be thought of as representing the effect

at x ∈ R4 of a wave originated by placing a unit source at x′ ∈ R4.

Note that this Green function is a (4×4) matrix-valued function (so in

fact the Dirac delta-distribution on the right hand-side of the equation

should be thought of as multiplied by the identity matrix).

(ii) Having obtained G(x, x′), we form its convolution with the right-hand

side of (5.14) and get the following integral equation

ψ(x) = q

∫

R4

G(x, x′)γµAµ(x
′)ψ(x′) d4x′ .

This integral equation can be solved, in principle, by an iterative pro-

cedure. Taking ψ0 to be, say, any solution of the homogeneous Dirac

equation, we define inductively a sequence of spinor fields ψn by

ψn+1(x) = q

∫

R4

G(x, x′)γµAµ(x
′)ψn(x

′) d4x′ .

If the limit of this sequence exists, it will be a solution to (5.14).

These steps and the Green function G itself lie at the basis of perturbative

field theory , see chapter 7. The translation invariance of equation (5.15)

tells us that G(x, x′) depends only on the difference x − x′, so we write

G(x, x′) = GF (x− x′). In order write down GF explicitly, let us denote by
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SF its Fourier transform to momentum space, so that

GF (x− x′) =
1

(2π)4

∫

R4

SF (p) e−ip·(x−x
′) d4p . (5.16)

We call SF the Feynman propagator associated to Dirac’s equation. Note

that the scalar product in the exponential is Minkowski’s. Recall the usual

notational conventions about four-vectors in Minkowski’s space, according

to which p = (p0,p), x = (t,x), etc. Recall also that the Dirac delta-

distribution has the following Fourier representation:

δ(4)(x− x′) =
1

(2π)4

∫

R4

e−ip·(x−x
′) d4p . (5.17)

Putting (5.16) and (5.17) back into (5.15) we get

1

(2π)4

∫

R4

(γµpµ −m)SF (p) e−ip·(x−x
′) d4p =

1

(2π)4

∫

R4

e−ip·(x−x
′) d4p .

From this equality we deduce that

(γµpµ −m)SF (p) = 1 .

The reader should keep in mind that this is an identity involving matrices,

not complex numbers. It is now an easy exercise to invert the matrix (γµpµ−
m), and from this we get the expression

SF (p) =
γµpµ +m

p2 −m2
.

Going back to (5.16), we obtain the following formula for the Green’s

function:

GF (x− x′) =
1

(2π)4

∫

R4

γµpµ +m

p2 −m2
e−ip·(x−x

′) d4p .

We will perform a partial evaluation of this integral, reducing it to an integral

over three-dimensional momentum space. Let us write the 4-tuple of gamma

matrices (γµ) as (γ0,γ), so that

γµpµ = γ0p0 − γ · p .

Recall the relativistic energy-momentum relationship E2 = p2 +m2 (we let

c = 1, as usual). Then we have

p2 −m2 = p2
0 − p2 −m2 = p2

0 − E2 .
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t < t′

t > t′

Fig. 5.1. Contours for Dirac’s Green function

Therefore we can write

GF (x−x′) =
1

(2π)4

∫

R3

eip·(x−x′)

[∫ ∞

−∞
e−ip0·(t−t

′) γ
0p0 − γ · p +m

(p0 − E)(p0 + E)
dp0

]
d3p .

The integral appearing inside brackets can be evaluated by means of the

residue theorem. The appropriate contour depends on the sign of t− t′. If

t > t′, then we choose the lower contour in figure 5.1, enclosing the pole at

p0 = E. This yields

∫ ∞

−∞
e−ip0·(t−t

′) γ
0p0 − γ · p +m

(p0 − E)(p0 + E)
dp0 = −2πiRes (p0 = E)

= −2πi e−iE(t−t′) γ
0p0 − γ · p +m

2E
,

and therefore

G(x− x′) =
−i

(2π)3

∫

R3

eip·(x−x′) e−iE(t−t′) (γ0E − γ · p +m)
d3p

2E
.

Similarly, if t < t′ then we choose the upper contour in figure 5.1, enclosing

the pole at p0 = −E. Applying the residue theorem as before, we arrive at

G(x− x′) =
−i

(2π)3

∫

R3

eip·(x−x′) eiE(t−t′) (−γ0E − γ · p +m)
d3p

2E
.
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Remark 3. We have performed these calculations using the contours of

figure 5.1, which cleverly avoid the poles of the propagator on the real line.

Alternatively, we could have kept the (limiting) contour in the real line,

shifting the poles of SF instead. In other words, we could have used as

propagator

SF (p) =
γµpµ +m

p2 −m2 + iǫ
.

This viewpoint turns out to be very useful when one performs quantization

via path integrals and Feynman diagrams, see chapter 7.

5.4.3 The full QED Lagrangian

Now is the time to take into account the interaction of the electromagnetic

field with itself. This introduces an extra, self-interacting term in the La-

grangian, which is obtained from the electromagnetic field strength tensor.

Mathematically, the field strength tensor is the curvature of the connection

determined by (Aµ), and is given by

Fµν = ∂µAν − ∂νAµ ,

as we have seen in 3. Therefore, the full Lagrangian of the Dirac field coupled

with this field is

LQED = −1

4
FµνF

µν + ψ(iγµ∇µ −m)ψ . (5.18)

This Lagrangian is called the QED Lagrangian (the acronym QED stands

for quantum electrodynamics). It describes the theory before quantization,

of course. Fully expanded out, LQED can be written as

LQED = −1

4
FµνF

µν + ψ(iγµ∂µ −m)ψ − qψγµAµψ . (5.19)

We see very clearly from this expression that LQED is obtained as the sum

of the Maxwell with the Dirac Lagrangian, plus an interaction Lagrangian.

Remark 4. We want to point out that the actual Lagrangian of quantum

electrodynamics (before quantization) corresponds to the case when q = −e
(the electron charge). The above Lagrangian corresponds to the slightly

more general case of a fermion with charge q.

Remark 5. One can go a bit further and add also an external charge-current
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distribution Jµ to (5.19) (as in the case of the inhomogeneous Maxwell

Lagrangian), and the result is

L J
QED = −1

4
FµνF

µν + ψ(iγµ∂µ −m)ψ − JµAµ − qψγµAµψ . (5.20)

If one takes Jµ to be the charge-current distribution of an atomic nucleus,

this Lagrangian turns out to be precisely the one that explains most of the

chemistry of the periodic table.

5.5 Scalar fields

Scalar fields are useful mathematical representations of certain types of

bosons, as well as of certain types of mesons.

5.5.1 The Klein-Gordon field

Let us consider first the (hypothetical) case of a scalar field φ : M → R

defined over Minkowski’s spacetime M = R1,3. The relevant connection

here is the flat connection ∇µ = ∂µ. The Lagrangian is

L (φ, ∂µφ) =
1

2
(∂µφ)(∂µφ)− 1

2
m2φ2 ,

where m is a constant (mass). Here and throughout, ∂µ is simply ∂µ raised

by the metric: ∂µ = gµν∂ν , where gµν is the Minkowski metric tensor. An

immediate computation yields

∂L

∂φ
= −m2φ ,

∂L

∂(∂µφ)
= ∂µφ .

Thus, the Euler-Lagrange equations applied to this situation give rise to the

dynamical field equation

−m2φ− ∂µ(∂µφ) = 0 .

This can be written as

(∂µ∂
µ +m2)φ = 0 ,

or yet

(� +m2)φ = 0 ,

where � = ∂µ∂
µ = ∂2

0 − ∂2
1 − ∂2

2 − ∂2
3 is the D’Alembertian operator . Thus,

the extremal fields for the above Lagrangian satisfy a linear, second order

hyperbolic PDE, known as the Klein-Gordon equation.
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5.5.2 Complex scalar fields

One can generalize the Klein-Gordon action to cover the case of a complex

scalar field Φ : M → C obtained by assembling two real scalar fields φ1

and φ2 with the same mass m, namely Φ = (φ1 + iφ2)/
√

2. We write

Φ∗ = (φ1 − iφ2)/
√

2 for the corresponding complex conjugate field. The

relevant Lagrangian is given by

L (Φ, ∂µΦ) = ∂µΦ
∗∂µΦ−m2Φ∗Φ .

Note that this is merely the sum of the Lagrangian contributions of both real

scalar fields φ1, φ2. Just as in the real case, the Euler-Lagrange equations

applied to this situation yield the Klein-Gordon equation. In fact, varying

Φ∗ yields the KG-equation for Φ, namely

−∂µ∂µΦ−m2Φ = 0 ,

whereas if one varies Φ instead one gets the KG-equation for Φ∗.

Remark 6. We could proceed as in the previous section on the Dirac field,

and calculate the Klein-Gordon propagator, but we shall not do it here. See

however our discussion of collision processes in chapter 6.

The above Klein-Gordon Lagrangian describes an uncharged scalar field.

One can also consider charged scalar fields. The Lagrangian for this sit-

uation is obtained from the Klein-Gordon Lagrangian through the formal

substitution i∂µ 7→ i∂µ − qAµ. The resulting Lagrangian,

L = − [(i∂µ + qAµ)Φ
∗] [(i∂µ − qAµ)Φ]−m2Φ∗Φ ,

is Lorentz invariant, and the corresponding Euler-Lagrange equation is the

genrealized Klein-Gordon equation, namely
[
(i∂µ − qAµ)(i∂µ − qAµ)−m2

]
Φ = 0 .

Remark 7. The generalized Klein-Gordon equation is used to model the

behavior of charged π+ or π− mesons, which are note elementary, but rather

composite spin-zero particles. See chapter 9.

5.6 Yang-Mills Fields

The theory of Yang-Mills fields is a strong generalization of electromag-

netism. In this theory, the internal group of symmetries is a non-abelian

Lie group, typically SU(2). The proper description of the Lagrangian and

associated action for Yang-Mills fields requires the mathematical language
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of principal bundles introduced in chapter 4 where we also described the

action of pure Yang-Mills fields and also more general actions where the

Yang-Mills field is coupled to some matter field (a section of a spinor bundle

(in the case of fermions) or a vector bundle (in the case of bosons)).

In pure Yang-Mills, we have a connection A on a principal bundle with

structure group SU(2), say, over spacetime M . Letting FA = dA+A∧A de-

note the curvature of this connection, the pure Yang-Mills action functional

is defined to be

SYM =

∫

M
Tr (FA ∧ ⋆FA) .

where Tr denotes the trace in the Lie algebra, and ⋆ is the Hodge-⋆ operator

on (Lie algebra-valued) forms. The Euler-Lagrange equations for this action

functional become

DFA = 0 and D ⋆FA = 0 .

They are called Yang-Mills equations. For non-abelian structure groups such

as SU(2), these equations are non-linear PDEs.

5.7 Gravitational Fields

According to Einstein, a gravitational field is a metric deformation of space-

time given by a certain Minkowski metric. This special metric is obtained

via a variational principle, as a critical point of an action functional (the

Einstein-Hilbert action) on the space of all possible Minkowski metrics on

spacetime.

In order to write down the Einstein-Hilbert action in precise mathemat-

ical terms, let us recall some basic differential geometric concepts. Let us

consider a four-dimensional manifold M as the underlying spacetime mani-

fold, and let C be the space of all Minkowski metrics g on M . Given g ∈ C ,

we have at each point x ∈M a Lorentzian inner product 〈·, ·〉x, so that the

metric tensor

gij(x) = 〈 ∂
∂xi

,
∂

∂xj
〉x

satisfies det gij(x) < 0. Its associated volume element is

d4x =
√
− det gij(x) dx

1 ∧ dx2 ∧ dx3 ∧ dx4

As we shall see, the action functional is defined using the curvature of such

a metric.
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5.7.1 Covariant derivative

Let us consider spacetime M with a metric g as above. Let X (M) be the

space of vector fields on M , and pick X ∈X (M). Recall that the covariant

derivative with respect to X is a map

∇X : X (M)→X (M)

having the following properties.

1. It satisfies the Leibnitz rule

∇X(fY ) = Df(X)Y + f∇X Y ,

for all C∞ functions f and all vector fields Y ∈X (M).

2. It is compatible with the metric, in the sense that

D(〈Y,Z〉) = 〈∇XY,Z〉+ 〈Y,∇XZ〉 ,
for all Y,Z ∈X (M).

3. It is symmetric, in the sense that

∇XY −∇YX = [X,Y ] .

In local coordinates, we can write

∇ ∂

∂xi

∂

∂xj
=

4∑

k=1

Γkij
∂

∂xk
,

where

Γkij =
1

2

4∑

ν=1

gkν
(
∂gνj
∂xi

+
∂gνi
∂xj

− ∂gij
∂xν

)

are the so-called Schwarz-Christoffel symbols.

5.7.2 Curvature tensor

The curvature tensor R of our spacetime manifold (M,g) is defined by

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z .

In local coordinates, we have

R(
∂

∂xi
,
∂

∂xj
)
∂

∂xk
=

4∑

ν=1

Rνijk
∂

∂xν
,

where the components Rνijk can be computed either as functions of the

Schwarz-Christoffel symbols or directly in terms of the components of the

metric tensor.
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5.7.3 Ricci and scalar curvatures

Contracting the curvature tensor R with respect to its contravariant com-

ponent yields a second-order tensor known as the Ricci curvature tensor,

namely

Ricij =
4∑

ν=1

Rνijν

The Ricci curvature tensor can be combined with the metric to produce a

scalar in the following way

R =
4∑

i,j=1

gij Ricij .

This number is the scalar curvature of the metric g at the point x ∈M .

5.7.4 The Einstein-Hilbert action

We now have all the necessary elements to define the Einstein-Hilbert action.

This action is a function SEH : C → R whose value at a given Minkowski

metric is obtained integrating the scalar curvature of the metric with respect

to its volume element. In other words, we have

SEH =
1

16πG

∫

M
R
√
− det gij(x) d

4x

The number G appearing in the normalizing factor before the integral is

Newton’s gravitational constant.

A lengthy calculation departing from the Euler-Lagrange equations for

this functional arrives at the famous Einstein field equations

Gij = Ricij −1

2
gij R .

We can make the gravitational field to interact with a Yang-Mills via the

Hodge operator that now is defined using the Minkovski metric g which

became a dynamical variable. As before we can also incorporate some matter

fields like a fermion ψ, which is a section of an associated spinor bundle, and

a boson φ which is a scalar field. Thus we get the action

S(g,A, φ, ψ) = SEH(g) +

∫

M
Tr (FA ∧ ⋆FA)

+

∫

M

(
ψ†DAψ +

1

2
(∇φ)2 + µψ†ψ +

1

2
m2φ2 + λφ4 + ψ†ψφ

)
dV ,
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where dV is the Minkowski volume form, ∇ denotes the Minkowski gradient,

FA = dA+A∧A is the curvature of the connection A, and DA is the Dirac

operator associated to A.

Remark 8. Thus, we see that at the classical level gravity can be incorporated

into a fairly complete field theory without much trouble. As soon as one

tries to quantize this theory, however, the ensuing difficulties appear to be

unsurmountable.

Exercises

5.1 The purpose of this exercise is to show that Schrödinger’s equation

(chapter 2) can also be derived from a variational principle. Consider

the wave-function ψ = ψ(t,x) of a particle moving about in 3-space,

subject to a potential V , and write down the Lagrangian density

L = − 1

2i

(
ψ∗ ∂ψ

∂t
− ∂ψ∗

∂t
ψ

)
− 1

2m
〈∇ψ∗,∇ψ〉 − ψ∗ V ψ .

Here the star ∗ denotes complex conjugation, as usual, and ∇ is the

standard gradient with respect to the spatial coordinates (we are

working with units in which Planck’s constant is equal to 1).

(a) If δψ∗ is a first variation of ψ∗, compute the corresponding first

variation δL .

(b) From this computation and the least-action principle, show that

the resulting Euler-Lagrange equation is precisely Schrödinger’s

equation

i
∂ψ

∂t
= − 1

2m
∆ψ + V ψ .

Remark. Note that the above Lagrangian density is not Lorentz

invariant.

5.2 Show that the Lagrangian for a charged scalar field is Lorentz in-

variant, as claimed in section 5.5.

5.3 Let ψ denote a solution to Dirac’s equation (iγµ∂µ −m)ψ = 0 rep-

resenting a fermion in free space. Show that, if we use the decom-

position ψ = (ψL, ψR)T into Weyl spinors, where

(
ψL
0

)
=

1

2
(I − γ5)ψ ;

(
0

ψR

)
=

1

2
(I + γ5)ψ ,
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then ψL, ψR satisfy the coupled equations

iσµ∂µψL −mψR = 0 (E5.1)

iσµ∂µψR −mψL = 0 ,

where the σµ are the Pauli matrices (σ0 being the 2 × 2 identity

matrix), and where σ0 = σ0, σj = −σj for j = 1, 2, 3.

5.4 In the situation of the previous exercise, let O′ be an inertial frame

with respect to which the fermion is at rest, so that in this frame its

3-momentum p′ = 0 and its energy E′ satisfies (E′)2 = m2. Verify

that in this frame the coupled equations (E5.1) become the coupled

equations i∂′0ψ
′
L = mψ′

R, i∂′0ψ
′
R = mψ′

L, and show that the solutions

to these with positive energy E′ = m are

ψ′
L = we−imt

′

, ψ′
R = we−imt

′

,

where w is an arbitrary Weyl (i.e. two-component) spinor.

5.5 Consider now an inertial frame O with respect to which O′ and the

particle of the previous exercise are moving with velocity v = (0, 0, v)

along the x3-axis of O. Let

Λ =




cosh θ 0 0 − sinh θ

0 1 0 0

0 0 1 0

− sinh θ 0 0 cosh θ




be the Lorentz boost taking O to O′.

(a) Show that m cosh θ = mγ = E, where γ = (1 − v2/c2)−1/2, and

that m sinh θ = mvγ = p (the relativistic momentum).

(b) Using these facts and the result of the previous exercise, show that

ψL = ei(−Et+px
3)

(
e−θ/2

0

)
, ψR = ei(−Et+px

3)

(
eθ/2

0

)
. (E5.2)

is the solution of the coupled equations in the frame O that corre-

sponds to the choice of initial condition w = (1, 0)T in the frame

O′.

(c) Write down the analogous expressions in O for the solution that

corresponds to the initial condition w = (0, 1)T in the frame O′.

5.6 The intrinsic spin S of a massive particle is defined to be its angular

momentum operator (acting on spinor fields) in a frame with respect
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to which it is at rest. In such rest frame, S is represented by the

4× 4 matrix

Σ =
1

2

(
σ 0

0 σ

)
,

where σ = (σ1, σ2, σ3). The helicity operator h is defined as

h = Σ · p̂ ,

where p̂ = p/|p| is the unit vector pointing in the direction of the

particle’s motion. Thus, classically, the helicity measures the projec-

tion of the particle’s intrinsic spin in the direction of motion. Note

that when p = (0, 0, p), we have h = Σ3 = 1
2diag(σ3, σ3).

(a) Show that the positive-energy solution in (E5.2), written in nor-

malized form as a Dirac spinor as

ψ+ =
1√
2
ei(−Et+px

3)




e−θ/2

0

eθ/2

0


 ,

is an eigenvector of the helicity operator h = Σ3 with eigenvalue

1/2. The normalizing constant 1/
√

2 is chosen so that ψ+ψ+ =

ψ†
+γ

0ψ+ = ψ†
LψR + ψ†

RψL = 1.

(b) Similarly, show that the positive-energy solution obtained in the

last item of the previous exercise, which can be written in normal-

ized form as a Dirac spinor as

ψ− =
1√
2
ei(−Et+px

3)




0

eθ/2

0

e−θ/2

0




,

is an eigenvector of the helicity operator with eigenvalue −1/2.

5.7 Generalize the previous exercise to plane wave solutions to Dirac’s

equation with positive energy E and arbitrary 3-momentum p, as

follows. Consider the Pauli operator σ · p̂ = pjσ
j , and let |±〉 denote

the eigenvectors of this operator, with eigenvalues ±1, respectively.

(a) Show that the spinor field ψ+ = ei(−Et+p·x)u+(p), where

u+(p) =
1√
2

(
e−θ/2|+〉
eθ/2|+〉

)
,
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is an eigenvector of the helicity operator h with eigenvalue 1/2.

(b) Similarly, show that the spinor field ψ− = ei(−Et+p·x)u−(p), where

u−(p) =
1√
2

(
eθ/2|−〉
e−θ/2|−〉

)
,

is an eigenvector of the helicity operator h with eigenvalue −1/2.

5.8 Perform analogous computations to the ones above for negative en-

ergy plane-wave solutions of Dirac’s equation (i.e., those with E < 0)

and deduce that the negative-energy eigenvectors of the helicity op-

erator h with eigenvalues 1/2 and −1/2 are respectively

ψ+ = ei(Et−p·x)v+(p) , ψ− = ei(Et−p·x)v−(p) ,

where

v+(p) =
1√
2

(
eθ/2|−〉
−e−θ/2|−〉

)
, v−(p) =

1√
2

(
−eθ/2|+〉
e−θ/2|+〉

)
.

5.9 Combining the exercises above with the superposition principle for

plane waves, show that the general free-space solution to Dirac’s

equation has the following Fourier integral representation:

ψ(x) =
1

(2π)3

∫

R3

1√
2ωp

∑

s=−,+

(
ap,sus(p)e

−ip·x + b†p,svs(p)e
ip·x
)
d3p .

Here we are writing x = (ct,x) for the 4-position vector and p =

(ωp/c,p) for the 4-momentum (so E = ωp is the energy), and d3p =

dp1dp2dp3 for the volume element in 3-momentum space.

5.10 Show that, in the Weyl spinor (or chiral) representation, the left and

right components of the charge-conjugate field ψC to a Dirac field ψ

are given by

ψCL = −iσ2ψ∗
R and ψCR = iσ2ψ∗

L .
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Quantization of Classical Fields

In this chapter we describe the basic ideas of the quantum theory of fields.

The greater portion of this chapter is devoted to understanding the quan-

tization of free fields. The theory of free quantum fields can be treated in

a mathematically precise, axiomatic way, as shown by A. Wightman. The

(constructive) theory of interacting quantum fields is at present not so well-

developed. But we do discuss scattering processes in some detail at the end

of the chapter. From a physicist’s standpoint, such processes are extremely

important, since they provide a link between quantum field theory and the

reality of laboratory experiments.

6.1 Quantization of free fields: general scheme

As we saw in chapter 2, in order to perform the quantization of a harmonic

oscillator we need to factor the Hamiltonian as a product of two mutually

adjoint operators: the particle annihilator operator, which lowers the energy

level of the Hamiltonian, and the particle creator operator, which raises the

energy level. These two operators completely describe the spectrum of the

Hamiltonian.

The basic physical idea behind the quantization of the classical free fields

(Klein-Gordon, Dirac, Maxwell) is the following. Since the Lagrangians of

these fields are quadratic, the corresponding Euler-Lagrange equations are

linear PDE’s. Therefore we can use the Fourier transform to diagonalize the

quadratic form in the Lagrangian, thereby decoupling the Euler-Lagrange

equations.

In the case of the Klein-Gordon equation, corresponding to scalar bosons,

each Fourier mode is a harmonic oscillator which is quantized as described

above. Hence we obtain a family of pairs of operators, one that creates

a particle with a given momentum and the other that destroys a particle

135
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with that same momentum. The scalar field (corresponding to the classical

solution to the Klein-Gordon equation) is then written as a Fourier integral

having these operators as coefficients. These operators satisfy the commu-

tativity relations of the harmonic oscillator. The next step is to construct

the Hilbert space on which these operators act. We start with the so-called

vacuum state, the state that is annihilated by all the operators that destroy

particles. From the vacuum we construct states with a finite number of par-

ticles, using the operators that create particles. Taking all possible linear

combinations of these states we get a vector space with an inner product

whose completion yields the desired Hilbert space.

In the case of the Dirac equation, corresponding to fermions, one proceeds

along similar lines. There are some important conceptual distinctions, how-

ever. The classical analogue of the harmonic oscillator for the Dirac equa-

tion is not immediately available. The algebra of spinors imposes different

commutation relations from the ones in the case of bosons. In remarkable

contrast with the case of the harmonic oscillator, these Dirac commuta-

tion relations (constituting what is known as a Grassmann algebra) can be

realized in a finite-dimensional Hilbert space!

In the case of Maxwell’s equations, first we have to eliminate the gauge

symmetry that is present (this is called gauge fixing). We then proceed in

the same manner as above.

6.2 Axiomatic field theory

In this section we present the axioms formulated by A. Wightman for quan-

tum field theory of scalar bosonic fields (bosons).

6.2.1 The Wightman axioms

Let us consider spacetime M = R1,3 with the Lorentz scalar product. The

group of linear transformations that leave the corresponding metric invariant

is, as we know, the Lorentz group. The Poincaré group P is the semi-direct

product of the group of translations (R4) by the Lorentz group. An element

of of P is denoted (a,Λ), where a ∈ R4 and Λ is an element of the Lorentz

group. The group operation reads

(a,Λ) · (a′,Λ′) = (a+ Λb,ΛΛ′) .

Definition 6.1 A scalar Hermitian quantum field theory consists of a sep-

arable Hilbert space H whose elements are called states, a unitary repre-

sentation U of the Poincaré group P in H , an operator-valued distribution
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ϕ on S (R4) (with values in the unbounded operators of H ) and a dense

subspace D ⊂H such that the following properties hold.

WA1. (Relativistic invariance of states) The representation U : P → U (H )

is strongly continuous. Let P0, . . . , P3 be the infinitesimal generators

of the one-parameter groups t 7→ U(teµ, I), for µ = 0, . . . , 3.

WA2. (Spectral condition) The operators P0 and P 2
0 − P 2

1 − P 2
2 − P 2

3 are

positive operators (the spectral measure in R4 corresponding to the

restricted representation R4 ∋ a 7→ U(a, I) has support in the positive

light cone).

WA3. (Existence and uniqueness of the vacuum) There exists a unique state

ψ0 ∈ D ⊂H such that

U(a, I)ψ0 = ψ0 for all a ∈ R4 .

This property actually implies, in combination with the first axiom,

that U(a,Λ)ψ0 = ψ0 for all a ∈ R4 and all Λ ∈ L . It also implies

that the projection P{(0,0,0,0)} is non-trivial and its image is unidi-

mensional.

WA4. ( Invariant domains for fields) The map ϕ : S (R4)→ O(H ) satisfies:

(a) For each f ∈ S (R4) the domains D(ϕ(f)) of ϕ(f) and D(ϕ(f)∗)
of ϕ(f)∗ both contain D and the restriction of these two operators to

D agree; (b) ϕ(f)D ⊆ D ; (c) For every fixed state ψ ∈ D the map

f 7→ ϕ(f)ψ is linear

WA5. (Regularity of the field) For every ψ1, ψ2 ∈ D , the map S (R4) ∋
f 7→ 〈ψ1 , ϕ(f)ψ2〉 is a tempered distribution.

WA6. (Poincaré invariance) For all (a,Λ) ∈P we have U(a,Λ)D ⊆ D and

for all test functions f ∈ S (R4) and all states ψ ∈ D we have

U(a,Λ)ϕ(f)U(a,Λ)−1 ψ = ϕ((a,Λ)f)ψ .

WA7. (Microscopic causality or local commutativity) If the supports of two

test functions f, g ∈ S (R4) are spacelike separated (i.e., if f(x)g(y) =

0 whenever x−y does not lie in the positive light cone), then the com-

mutator of the corresponding operators vanishes,

[ϕ(f)ϕ(g) − ϕ(g)ϕ(f)] = 0 .

WA8. (Ciclycity of the vacuum) The set D0 ⊂H of finite linear combina-

tions of all vectors of the form ϕ(f1) · · ·ϕ(fn)ψ0 is dense in H .

These are the Wightman axioms for a scalar field theory. These axioms

require some modifications for spinorial field theories.
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6.2.2 Wightman correlation functions

Here we introduce the so-called Wightman correlation functions. We also

state Wightman’s reconstruction theorem, which says that, given the corre-

lation functions, we can reconstruct the Hilbert space, the quantum fields

and the entire QFT satisfying the Wightman axioms from these correlations

alone.

For simplicity, let us consider only the case of a quantum scalar field

theory.

Definition 6.2 The n-th Wightman correlation function of a quantum field

theory satisfying the Wightman axioms is a function Wn : S (R4)×S (R4)×
· · ·S (R4)→ C given by

Wn(f1, f2, . . . , fn) = 〈ψ0, φ(f1)φ(f2) · · · φ(fn)ψ0〉 ,
for all fj ∈ S (R4), where ψ0 is the vacuum vector of the theory and φ is its

field operator.

We can associate to each Wightman function Wn a tempered distribution

in a way that we proceed to describe. The association will depend on a

version for tempered distributions of the so-called nuclear theorem, or kernel

theorem, of L. Schwartz. Recall that if f : Rm → C and g : Rn → C, then

their tensor product f ⊗ g : Rm+n → C is defined by

f ⊗ g(x1, . . . , xm+n) = f(x1, . . . , xm) g(xm+1, . . . , xm+n) .

The kernel theorem for tempered distributions can be stated as follows. The

proof of this theorem is not elementary (L. Schwartz originally deduced it

from A. Grothendieck’s theory of nuclear spaces).

Theorem 6.1 Let B : S (Rm) × S (Rn) → C be a separately continuous

bilinear function. Then there exists a tempered distribution β ∈ S ′(Rm+n)

such that B(f, g) = β(f ⊗ g) for all f ∈ S (Rm) and all g ∈ S (Rn).

Proof See [FJ], pp. 70-73 for an elementary proof of a version of this

theorem in which S ,S ′ are replaced by D ,D ′ (ordinary distributions). For

the original proof, see [S]. For a short proof, see [Ehr].

Using the kernel theorem, we define the Wightman distributions as fol-

lows. The n-th Wightman correlation function Wn(f1, . . . , fn) is a multi-

linear function of the test functions f1, . . . , fn. Hence by Theorem 6.1 and

induction, there exists a tempered distribution Wn ∈ S ′(R4n) such that

Wn(f1, . . . , fn) = Wn(f1 ⊗ · · · ⊗ fn) ,
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for all f1, . . . , fn ∈ S (R4).

Before we can state our next theorem, concerning the basic properties of

the Wightman distributions, we need the following notions and notations.

(a) An involution on test functions: If f ∈ S (R4n), we write

f∗(x1, . . . , xn) = f(xn, . . . , x1), for all xj ∈ R4. In particular, for

n = 0, 1 the ∗ involution is simply complex conjugation. Note also

that if f ∈ S (R4n) is of the form f = f1 ⊗ · · · ⊗ fn with fj ∈ S (R4),

then f∗ = f∗n ⊗ · · · ⊗ f∗1 .

(b) An action of the Poincaré group on test functions: If (a,Λ) ∈ P and

f ∈ S (R4n), we let (a,Λ) · f be given by

(a,Λ) · f(x1, . . . , xn) = f(Λ−1(x1 − a), . . . ,Λ−1(xn − a)) .
(c) For each test function f ∈ S (R4n), let f̂ ∈ S (R4n−4) be the test

function given by

f̂(x1, x2, . . . , xn−1) = f(0, x1 + x2, . . . , x1 + x2 + · · ·+ xn−1)

(d) A translation operator: If a ∈ R4 is a spacelike vector and 0 ≤ j ≤ n,

let Ta,j : S (R4n)→ S (R4n) be given by

Ta,jf(x1, . . . , xn) = f(x1, . . . , xj , xj+1 − a, . . . , xn − a) .

Theorem 6.2 The Wightman distributions of a (scalar hermitian) quantum

field theory enjoy the following properties.

WD1. Positive-definiteness: Given f0 ∈ C and fj ∈ S (R4j) for j =

1, . . . , n, we have

n∑

i,j=0

Wj+k(f
∗
k ⊗ gj) ≥ 0 .

WD2. Reality: We have Wn(f
∗) = Wn(f) for each test function f ∈ S (R4n).

WD3. Lorentz-Poincaré covariance: For all (a,Λ) ∈P and each test func-

tion f ∈ S (R4n), we have Wn((a,Λ) · f) = Wn(f).

WD4. Spectrum condition: For each n > 0, there exists a tempered distribu-

tion Dn ∈ S ′(R4n−4) such that Wn(f) = Dn(f̂) for all test functions

f ∈ S (R4n), with the property that the support of its Fourier trans-

form FDn is contained in V n−1
+ , where V+ ⊂ R4 is the positive light

cone in Minkowski (momentum) space.

WD5. Locality: If fj and fj+1 are spacelike separated test functions in

S (R4), then

Wn(f1⊗· · ·⊗fj⊗fj+1⊗· · ·⊗fn) = Wn(f1⊗· · ·⊗fj+1⊗fj⊗· · ·⊗fn) .
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WD6. Cluster property: If a ∈ R4 is a spacelike vector then for all 0 ≤ j ≤ n
we have

lim
λ→∞

Wn ◦ Tλa,j = Wj ⊗Wn−j .

The reconstruction theorem of Wightman is a converse to the above the-

orem.

Theorem 6.3 (Reconstruction Theorem) Let (Wn)n≥0 be a sequence

of tempered distributions satisfying (WD1–WD6) above. Then there exists

a (hermitian scalar) quantum field theory (φ,H , U,D , ψ0) satisfying the

Wightman axioms, whose Wightman distributions are precisely the Wn’s.

In other words, for all test functions f1, . . . , fn ∈ S (R4) we have

Wn(f1 ⊗ · · · ⊗ fn) = 〈ψ0, φ(f1) · · · φ(fn)ψ0〉 .

Such quantum field theory is unique up to unitary equivalence.

Proof For a proof, see [Gu], p. 189, or the original reference [SW].

6.3 Quantization of bosonic free fields

Let us now give the first important example of a free QFT’s. We shall

construct the field theory for free bosons quite explicitly.

6.3.1 Fock spaces

Let us start with a mathematical definition. Let H be a complex Hilbert

space.

Definition 6.3 The Fock space of H is the direct sum of Hilbert spaces

F (H ) =

∞⊕

n=0

H (n) ,

where H (0) = C and

H (n) = H ⊗ · · · ⊗H =

n⊗

j=1

H .

The vector Ω0 = (1, 0, 0, . . .) ∈F (H ) is called the vacuum vector.

Given ψ ∈ F (H ), we write ψ(n) for the orthogonal projection of ψ onto

H (n). The set F0 ⊂ F (H ) consisting of those ψ such that ψ(n) = 0 for all

sufficiently large n is a dense subspace of Fock space.
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Now we define, for each n, the symmetrization operator Sn : H (n) →
H (n) by

Sn(ψ1 ⊗ · · · ⊗ ψn) =
1

n!

∑

σ

ψσ(1) ⊗ · · · ⊗ ψσ(n) ,

extending it by linearity to all of H (n). Likewise, the anti-symmetrization

operator An : H (n) →H (n) is defined by

An(ψ1 ⊗ · · · ⊗ ψn) =
1

n!

∑

σ

(−1)sign(σ)ψσ(1) ⊗ · · · ⊗ ψσ(n) ,

extended by linearity as before. It is a very simple fact that both Sn and

An are projections, in the sense that S2
n = Sn and A2

n = An.

Using the symmetrization operators, we define the space of states for n

bosons as

H (n)
s =

{
ψ ∈H (n) : Snψ = ψ

}
.

Using the anti-symmetrization operators, we define the space of states for n

fermions to be

H (n)
a =

{
ψ ∈H (n) : Anψ = ψ

}
.

With these at hand, we define the bosonic Fock space as

Fs(H ) =

∞⊕

n=0

H (n)
s ,

and the fermionic Fock space as

Fa(H ) =
∞⊕

n=0

H (n)
a .

Example 1. Let us consider a measure space M with finite measure µ. We

take as our Hilbert space H = L2(M, dµ). Then

H (n) = L2(M × · · · ×M, dµ⊗ · · · ⊗ dµ)

= {ψ : M × · · · ×M → C :
∫

M×···×M
|ψ(x1, · · · , xn)|2 dµ(x1) · · · dµ(xn) <∞

}

We have also

H (n)
s =

{
ψ ∈H (n) : ψ(xσ(1), · · · , xσ(n)) = ψ(x1, · · · , xn)

}
.
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In addition, ψ is an element of Fock space F (H ) if and only if

ψ = (ψ(0), ψ(1), . . . , ψ(n), . . .)

with ψ(n) ∈H (n) for all n, and

∞∑

n=0

∫

M
|ψ|2 dµ < ∞ .

6.3.2 Operators in Fock spaces

Every unitary operator U : H → H in the Hilbert space H induces a

unitary operator Γ(U) : F (H )→ F (H ) in the Fock space of H , given by

Γ(U)
∣∣
H (n) = U ⊗ · · · ⊗ U .

Now, let D ⊂H be a dense subspace and let A : D →H be an essentially

self-adjoint operator. Note that

DA =



ψ ∈ F0 : ψ(n) ∈

n⊗

j=1

D





is dense in F (H ). We define an operator dΓ(A) : DA → F (H ) by

dΓ(A)
∣∣
DA∩H (n) = A⊗ I ⊗ · · · ⊗ I + I ⊗A⊗ · · · ⊗ I + · · · + I ⊗ I ⊗ · · ·A .

This operator is essentially self-adjoint in DA, and it is called the second

quantization of A. An important special case is the operator N = dΓ(I). For

this operator, every vector ψ ∈H (n) is an eigenvector of N with eigenvalue

n, in other words Nψ = nψ. For this reason N is called the number operator

(number of particles).

6.3.3 Segal quantization operator

We shall construct the QFT for a free scalar field following the so-called Segal

quantization scheme. This scheme uses creation and annihilation operators,

just as in the case of the quantum harmonic oscillator (see chapter 2).

First we define, for each f ∈H , a map b−(f) : H (n) →H (n) by

b−(f) (ψ1 ⊗ ψ2 ⊗ · · · ⊗ ψn) = 〈f, ψ1〉ψ2 ⊗ · · · ⊗ ψn .

This operator extends to a bounded linear operator on Fock space, b−(f) :

F (H ) → F (H ), with norm equal to ‖f‖. It is adjoint is the operator
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b+(f) : F (H ) → F (H ) is quite simple to describe: b+(f) maps H (n−1)

to H (n) and is such that

b+(f) (ψ1 ⊗ ψ2 ⊗ · · · ⊗ ψn) = f ⊗ ψ1 ⊗ ψ2 ⊗ · · · ⊗ ψn ,

again extended to Fock space linearly. The operators b−(f), b+(f) have

the symmetric and anti-symmetric Fock spaces as invariant subspaces. We

remark also that the maps f 7→ b−(f) and f 7→ b+(f) are complex linear

and complex anti-linear, respectively.

We are now ready to define the creation and annihilation operators.

Definition 6.4 The particle annihilation operator is an operator on sym-

metric Fock space,

a−(f) : F0 ⊂ Fs(H )→ Fs(H )

given by

a−(f) =
√
N + 1 b−(f)

The particle creation operator is defined taking a+(f) = (a−(f))∗.

Note that N is a positive operator, so
√
N + 1 is well-defined. It is not

difficult to check that if ψ, η ∈ F0 then
〈√

N + 1b−(f)ψ, η
〉

=
〈
ψ, Sb+(f)

√
N + 1η

〉
.

Therefore we have

a+(f)
∣∣
F0

= Sb+(f)
√
N + 1 .

Example 2. Let us go back to example 6.3.1, where the Hilbert space is

H = L2(M,dµ). Recall that H (n) = L2(M × · · · ×M, dµ⊗ · · · ⊗ dµ). The

annihilation operator here is given by

(a−(f)ψ)(n)(x1, · · · , xn)=
√
n+ 1

∫

M
f(x)ψ(n+1)(x, x1, · · · , xn)dµ(x) .

The creation operator can be written in the following way

(a+(f)ψ)(n)(x1, · · · , xn) =
1√
n

n∑

j=1

f(xj)ψ
(n−1)(x1, · · · , x̂j , · · · , xn) .

Definition 6.5 The Segal quantization map

H ∋ f 7→ Φs(f) : F0 → Fs(H )
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is given by

Φs(f) =
1√
2

(
a−(f) + a+(f)

)
.

Theorem 6.4 Let H be a complex Hilbert space, and let Φs be its Segal

quantization map. Then

(i) For each f ∈H , the operator Φs(f) is essentially self-adjoint on F0.

(ii) The vacuum vector Ω0 is cyclic, i.e., it is in the domain of every

product of the form Φs(f1)Φs(f2) · · ·Φs(fn), and the set

{Φs(f1)Φs(f2) · · ·Φs(fn)Ω0 : n ≥ 0, fj ∈ F0 }

is total in the symmetric Fock space.

(iii) For all ψ ∈ F0 and all f, g ∈H , we have the commutation relation

Φs(f)Φs(g)ψ − Φs(g)Φs(f)ψ = i Im 〈f, g〉ψ .

Moreover, the unitary operators W (f) = eiΦs(f) satisfy

W (f + g) = e−i Im 〈f,g〉/2W (f)W (g) .

(iv) If fn → f in H , then

W (fn)ψ →W (f)ψ for all ψ ∈ Fs(H )

Φs(fn)ψ → Φs(f)ψ for all ψ ∈ F0 .

(v) For every unitary operator U : H → H , the corresponding unitary

operator Γ(U) in Fock space maps the closure of D(Φs(f)) into the

closure of D(Φs(Uf)), and for all ψ ∈ D(Φs(Uf)), we have

Γ(U)Φs(f)Γ−1ψ = Φs(Uf)ψ .

6.3.4 Free scalar bosonic QFT

Using this theorem, one can establish the quantization of the free scalar

bosonic field of mass m. The end result is a free QFT theory in the sense

of Wightman. The starting point of the construction is to consider the

Hilbert space H = L2(Mm, dµm), where Mm ⊂ R1,3 is the hyperboloid of

example 4.7.2 and µm is the hyperbolic volume form on Mm (recall that Mm

is isometric to hyperbolic 3-space). Next we let E : S (R4) → H be the

map given by

Ef =
√

2π f̂
∣∣
Mn

,
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where f̂ denotes the Fourier transform in Minkowski space, namely

f̂(p) =
1

(2π)2

∫

R4

eip·x̃ f(x) dx .

Here x̃ = (x0,−x1,−x2,−x3) whenever x = (x0, x1, x2, x3). Using the Se-

gal quantization map Φs for H , we take the bosonic fields to be given by

φm(f) = Φs(Ef), for all test functions f ∈ S (R4). Finally, we consider the

unitary representation U = Um of the Poincaré group in H given by

(Um(a; Λ)ψ)(p) = eip·ã ψ(Λ−1p) .

The corresponding operators Γ(Um(a; Λ)) yield a unitary representation of

the Poincaré group in Fock space. We have, at last, the following theorem.

Theorem 6.5 The symmetric Fock space Fs(L
2(Mm, dµm)), with its vac-

uum vector Ω0 and its dense subspace F0, the unitary representation Γ(Um(·, ·))
and the operator-valued distributions φm(·) satisfy the Wightman axioms for

a bosonic scalar QFT. Moreover, for every f in Schwartz space S (R4) we

have

φm
((

� +m2
)
f
)

= 0 .

Proof The proof uses Theorem 6.4. See [RS2], p. 213.

Note that the last part of the statement of Theorem 6.5 expresses the

fact that the field operator φm satisfies the Klein-Gordon equation in the

distributional sense.

6.3.5 The physicist’s viewpoint

Let us now discuss the quantization of free scalar fields from a different

point of view, which is more familiar to physicists. In the above mathemat-

ically precise construction of scalar fields, we started with the appropriate

definition of Fock space and ended with a field satisfying the Klein-Gordon

equation in the distributional sense. The method explained here in some

sense reverses this process. We start with a classical solution to the free

Klein-Gordon equation and in the end, after having the quantum field at

hand, we reconstruct the Fock space. We do not mean to imply that the

physicist’s approach is less valid in any way: in fact, it is equivalent to what

has already been done through Segal quantization.

Recall that the Klein-Gordon action for a classical free scalar field of mass
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m is given by

S =
1

2

∫ (
∂µφ∂

µφ−m2φ
)
d4x .

As we know, the Euler-Lagrange equation for this functional yields the free

Klein-Gordon equation

�φ+m2φ = 0 (6.1)

A plane wave of the form e±ip·x is a solution to this equation if and only

if p ∈ R4 satisfies the mass-shell condition (p0)2 − p2 = m2. These are the

Fourier modes into which a general solution of (6.1) should decompose. Us-

ing the superposition of such plane waves (in other words, using the Fourier

transform) and taking into account that we are looking for real scalar solu-

tions to (6.1), we have the following formula for the general solution of the

Klein-Gordon equation:

φ(x) =
1

(2π)3

∫

R3

1√
2ωp

(
ape

−ip·x + a∗pe
ip·x) ∣∣∣

p0=ωp

d3p , (6.2)

where ωp =
√

p2 +m2 and d3p = dp1dp2dp3. Note that each coefficient ap

appears alongside its complex conjugate a∗p. Remember also that the conju-

gate field π(x) to φ(x) is obtained from the latter by simply differentiating

with respect to the time component x0, so that

π(x) =
1

(2π)3

∫

R3

(−iωp)√
2ωp

(
ape

−ip·x − a∗peip·x
) ∣∣∣
p0=ωp

d3p . (6.3)

The idea now is that, upon quantization, the coefficients ap, a
∗
p become

operators that we represent respectively by a(p), a†(p), on some complex,

separable Hilbert space, with a†(p) being the Hermitian adjoint of a(p), and

the resulting quantized Klein-Gordon field operators φ(x), π(x) (which we

still denote by the same symbols) should satisfy the commutator relation

[φ(x), π(x)] = iδ3(x− y) . (6.4)

Proceeding formally, if we impose the commutator relation (6.4) on the field

operators obtained from (6.2) and (6.3) replacing the Fourier coefficients

by the corresponding operators, we see after a straightforward computation

that it is necessary that

[a(p), a†(q)] = (2π)3δ3(p− q) , [a(p), a(q)] = [a†(p), a†(q)] = 0 .

The bosonic Fock space is formally constructed from a given vector, declared

the vacuum state and usually denoted |Ω〉, simply by applying to this vector
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all possible finite words on the creation operators, taking into account the

above commutator relations. See [PS] for the details we are omitting here.

6.4 Quantization of fermionic fields

In this section we describe the quantization of free fermionic fields. The idea

behind the quantization of the free Dirac field is to transform the coefficients

of the Fourier expansion of the solution to Dirac’s equation (see chapter 5)

into (spinor) operators. Then plug the solution with these operator coeffi-

cients into the quantum Hamiltonian. The correct (anti-)commutation rules

for these operators is imposed by the physical condition that the Hamilto-

nian be bounded from below. The construction of the appropriate Hilbert

space uses Grassmann algebras, as we shall see in the following subsection.

6.4.1 Grassmann calculus in n variables

When we come to study the path integral approach to QFT, the appropriate

way to deal with fermionic fields will be through Grassmann algebras. When

studying fermionic fields, it is necessary to consider Dirac and Weyl spinors,

and these lead us into the realms of real and complex Grassmann algebras,

respectively.

6.4.1.1 Real Grassmann algebras

We shall discuss the subject of Grassmann algebras from an abstract point

of view. The exposition to follow is perhaps a lengthy digression, but we

deem it necessary from a mathematical standpoint. Let us first consider

the case of real finite-dimensional Grassmann algebras, i.e. real algebras

generated by n anti-commuting variables. These can be formally defined as

follows.

Let V be a finite dimensional vector space defined over the reals, with

dimR(V ) = n. Let ∧(V ) denote the exterior algebra of V , namely, the

subspace of the full tensor algebra of V ,

T (V ) = R⊕ V ⊕ (V ⊗ V )⊕ (V ⊗ V ⊗ V )⊕ · · · ,

consisting of all completely anti-symmetric tensors. Given a basis for V , say

θ1, θ2, . . . , θn, and any k-tuple I = (i1, i2, . . . , ik) ∈ {1, 2, . . . , n}k, we write

θI =
1

k!

∑

σ

(−1)σθiσ(1) ⊗ · · · ⊗ θiσ(k) , (6.5)

where the sum is over all permutations of {1, 2, . . . , k} and (−1)σ denotes
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the sign of the permutation σ. These anti-symmetric elements generate

∧(V ). Now define the Grassmann product (or exterior product) as follows:

if I ∈ {1, 2, . . . , n}k and J ∈ {1, 2, . . . , n}l, let

θIθJ = θIJ ,

where IJ is the k+ l-tuple (i1, . . . , ik; j1, . . . , jl). The convention here is that

θ∅ = 1. This product is extended by bi-linearity and associativity to all of

∧(V ). One easily verifies (exercise) that

θIθJ = (−1)|I| |J |θJθI ,

where |I| denotes the number of indices in I. The resulting algebra is the

(real) Grassmann algebra in dimension n, denoted Gn. For each k ≥ 0 we

let

∧k(V ) = 〈θI |I| = k 〉 ,

the linear span of all θI with |I| = k. This is a vector subspace of Gn with

dimension over K equal to
(
n

k

)
=

n!

k!(n− k)! .

Since we clearly have

Gn =

n⊕

k=0

∧k(V ) ,

it follows that dim Gn = 2n.

It should be clear from (6.5) that θI = 0 whenever I has a repeated index.

The notation has been set up in such a way that, if I = (i1, i2, . . . , ik), then

θI = θi1θi2 · · · θik .

Remark 1. Since what we really need are anti-commuting variables, not just

numbers, it may be more natural to replace the vector space V by its dual

V ∗, regarding each θi as a one form over V .

Let us now consider polynomial maps P : Gn → Gn, given by an expres-

sion of the form

P (θ1, . . . , θn) = a0 +
∑

i

aiθ
i +
∑

i,j

aijθ
iθj + · · ·

+
∑

i1,i2,··· ,in
ai1i2···inθ

i1θi2 · · · θin .

Such a polynomial map has degree ≤ n: monomials with ≥ n + 1 terms

will necessarily repeat an index, and therefore will be equal to zero. Note
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that this fact also means that the polynomial algebra P(Gn), defined as

the algebra of all polynomial maps of this form, is in fact identical with the

algebra of all formal power series in the non-commuting variables θ1, . . . , θn.

In particular, we may consider the following case, of special interest in

the path integral approach to fermionic fields. Let A = (aij) be a complex

n× n matrix, and let

Θ =




θ1

θ2

...

θn


 .

Then we define

exp (−1

2
ΘtAΘ) =

∞∑

k=0

(−1)k

2kk!
(ΘtAΘ)k

This is the exponential of a quadratic form. Note that, since

ΘtAΘ =
∑

i,j

aijθ
iθj

we have (ΘtAΘ)k = 0 for all k > n/2. Therefore

exp (−1

2
ΘtAΘ) =

⌊n/2⌋∑

k=0

(−1)k

2kk!
(ΘtAΘ)k

which is, of course, a polynomial in the Grassmann variables.

Now, the the polynomial algebra P(Gn) is, of course, a differential algebra.

In fact, it is a differential graded algebra), graded over Z/2. This motivates

us to define integration with respect to the Grassmann variables to be the

same as differentiation with respect to such variables! More precisely, the

integral can be taken to be a collection of linear functionals

I I = P(Gn)→ R , I ∈ {1, 2, . . . , n}k ,

defined as follows: if f ∈ P(Gn) and I = (i1, i2, . . . , ik), then

I I(f) =
∂

∂θi1
∂

∂θi2
· · · ∂

∂θik
f(θ1, θ2, . . . , θn) .

The notation we shall use is

I I(f) =

∫
f dθi1dθi2 · · · dθik .

This Grassmannian or fermionic integral has the following easy properties.
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(i)

∫
dθi = 0 for all i.

(ii)

∫
θi dθj = δij for all i, j.

(iii)

∫
dθidθj = 0 for all i, j.

(iv)

∫
f(θi)g(θj) dθidθj =

∫
f(θi) dθi

∫
g(θj) dθj for all i, j.

Let us go back to the example of the exponential of a quadratic form

Θ 7→ 1
2ΘtAΘ examined above. We are interested in calculating the fermionic

integral of such a generalized Gaussian, namely

∫
exp (−1

2
ΘtAΘ) dθ1dθ2 · · · dθn =

⌊n/2⌋∑

k=0

(−1)k

2kk!

∫
(ΘtAΘ)k dθ1dθ2 · · · dθn .

(6.6)

It is easy to verify that each integral in the right-hand side of (6.7) with

k < n/2 vanishes. In particular, the Gaussian integral on the left-hand side

will vanish whenever n is odd. Let us then assume that n is even, sayn = 2m,

so that in this case
∫

exp (−1

2
ΘtAΘ) dθ1dθ2 · · · dθn =

(−1)m

2mm!

∫
(ΘtAΘ)m dθ1dθ2 · · · dθ2m .

(6.7)

Now, if A = (aij) happens to be a symmetric matrix, then this last integral

also vanishes (this is an exercise). Thus, we will suppose from now on that

A is a skew-symmetric matrix. Here it pays off to interpret our quadratic

form as a 2-form

ωA =
2m∑

i,j=1

aij θ
i ∧ θj .

The iterated exterior product of this 2-form with itself m times yields a

volume form in V , and we can write

ωA ∧ ωA ∧ · · · ∧ ωA = 2mm!Pf(A) θ1 ∧ θ2 ∧ · · · ∧ θ2m ,

where Pf(A) is called the Pfaffian of A. Expanding out the m-fold exterior

product on the left-hand side, the reader will have no trouble in verifying

that

Pf(A) =
1

m!

∑

σ∈S2m

(−1)|σ|aσ(1)σ(2)aσ(3)σ(4) · · · aσ(2m−1)σ(2m) ,

where S2m denotes the symmetric group of order 2m.
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Lemma 6.1 We have Pf(A)2 = det(A).

Proof First note that the Pfaffian is invariant under orthogonal changes

of variables. In other words, if Λ is an orthogonal 2m × 2m matrix, then

Pf(ΛtAΛ) = Pf(A). This follows easily from the definition (work out the

effect of Λ on the 2-form ωA). Then recall from linear algebra that, since A

is skew-symmetric, there exists an orthogonal matrix Λ such that B = ΛtAΛ

has the form

B =




0 b1
−b1 0

0 b2
−b2 0

. . .

0 bm
−bm 0




.

Now, the Pfaffian of B can be explicitly evaluated from

ωB =

2m∑

i,j=1

bij θ
i ∧ θj = 2

m∑

k=1

bk θ
2k−1 ∧ θ2k ,

and the result is Pf(B) = b1b2 · · · bk. But then det(B) = b21b
2
2 · · · b2k =

Pf(B)2. Since det(A) = det(B) and Pf(A) = Pf(B), the lemma is proved.

Theorem 6.6 Let A be a skew-symmetric 2m × 2m real matrix. Then we

have ∫
exp (−1

2
ΘtAΘ) dθ1dθ2 · · · dθn = det(A)

1
2 . (6.8)

Proof It follows from (6.7) that the integral on the left-hand side of (6.8) is

equal to Pf(A), so the desired result is an immediate consequence of lemma

6.1.

Remark 2. Using the fact that every 2m × 2m matrix is the sum of a

symmetric matrix with a skew-symmetric matrix, one easily sees that the

above theorem is in fact valid for any A.

6.4.1.2 Complex Grassmann algebras and Hilbert spaces

Everything that we did above for real algebras could be repeated here, re-

placing the real numbers by the complex numbers. But since we already
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know what a real Grassmann algebra is, it is easier to define complex Grass-

mann algebras as complexifications of real Grassmann algebras. For in-

stance, in the case of one degree of freedom, we have the following.

Definition 6.6 A complex Grassmann algebra A with one degree of freedom

is an associative algebra over the complex numbers having two generators, θ

and θ∗, subject to the following relations:

θθ∗ + θ∗θ = 0 , θ2 = 0 , (θ∗)2 = 0 .

The existence (and uniqueness up to isomorphism) of such an algebra is

established using the real Grassmann algebra G2 with generators θ1 and θ2.

We define A = GC
n , taking as its generators

θ =
θ1 + iθ2√

2
, θ∗ =

θ1 − iθ2√
2

.

A general element of A can be written as

f(θ∗, θ) = f00 + f10θ
∗ + f01θ + f11θ

∗θ .

As in the real case, we can make A into a differential algebra introducing

the differential operators

d

dθ
f(θ∗, θ) = f01 − f11θ

∗

d

dθ∗
f(θ∗, θ) = f10 + f11θ

∗

These operators satisfy the relation

d

dθ

d

dθ∗
= − d

dθ∗
d

dθ
.

Again, there is a suitable integral calculus to go along with these differential

operators. The algebraic rules for this integral calculus are the following
∫
f dθ =

d

dθ
f ,

∫
f dθ∗ =

d

dθ∗
f

∫
dθ dθ∗ =

∫
dθ

∫
dθ∗ = −

∫
dθ∗ dθ .

In every such Grassmann algebra A there is an involution ⋆ : A → A given

by ⋆θ = θ∗, ⋆θ∗ = θ, ⋆(θ∗θ) = θ∗θ, and extended by linearity to all of A .

For each f ∈ A , we let f∗ = ⋆f .
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Let us take the time to define a Hilbert space associated to a complex

Grassmann algebra A with one degree of freedom. There is a sub-algebra

of A consisting of all holomorphic functions of θ∗, namely

H = {f(θ∗) = f0 + f1θ
∗ | f0, f1 ∈ C} .

Now, this sub-algebra can be made into a Hilbert space, in perfect analogy

with the way we made the holomorphic functions in one complex variable

into a Hilbert space in chapter 2. We define an inner product in H as

follows: if f, g ∈H then

〈f, g〉 =

∫
f(θ∗)∗g(θ∗)e−θ

∗θ dθ∗dθ .

Here e−θ
∗θ = 1 − θ∗θ (all subsequent terms of the power series expansion

vanish!). With this inner product, H is a 2-dimensional Hilbert space over

the complex numbers, and {1, θ∗} is an orthonormal basis.

Next, we define two operators on H that will play the role of the creation

and annihilation operators. Let a : H →H be given by

(af)(θ∗) =
d

dθ∗
f(θ∗) ,

and let a∗ : H →H be given by

(a∗f)(θ∗) = θ∗f(θ∗) .

In the natural identification of H with C2 as vector spaces, these operators

become

a =

(
0 1

0 0

)
, a∗ =

(
0 0

1 0

)
.

Note that every linear operator A : H → H can be written uniquely in

the form

A = k00 + k10a
∗ + k01a+ k11a

∗a ,

where kij ∈ C. In fact, we can also write

(Af)(θ∗) =

∫
A(θ∗, α)f(α∗)e−α

∗α dα∗dα ,

where A(θ∗, θ) is the kernel of A. This kernel is clearly given by

A(θ∗, θ) = eθ
∗θK(θ∗, θ) ,

where K(θ∗, θ) = k00 + k10θ
∗ + k01θ+ k11θ

∗θ is the so-called normal symbol

of A.
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Later (next chapter), when we perform the Lagrangian quantization of

fermionic systems (in perturbative QFT), we shall need to know how to

calculate fermionic Gaussian integrals over complex fermionic fields. For

one degree of freedom, all we need is given by the following result.

Lemma 6.2 Let A : H →H be a linear operator, and let b ∈H . Then
∫

exp {θ∗Aθ + θ∗b+ b∗θ} dθ∗dθ = −A exp {−b∗Ab} .

Let us now generalize this discussion to arbitrarily many (but a finite

number of) degrees of freedom.

Definition 6.7 A complex Grassmann algebra An with n degrees of free-

dom is an associative algebra over the complex numbers with 2n gener-

ators θ1, . . . , θn, θ
∗
1, . . . , θ

∗
n subject to the following relations (valid for all

i, j = 1, . . . , n)

θ∗i θj = −θjθ∗i , θiθj = −θjθi , θ∗i θ∗j = −θ∗jθ∗i .

As in the case of one degree of freedom, the square of every generator is

equal to zero. And, as in that case, the existence (and uniqueness up to

isomorphsm) of such a complex algebra is resolved by letting An = GC
2n, the

complexification of the real Grassmann algebra with 2n degrees of freedom,

taking as generators

θj =
ϕj + iϕj+n√

2
, θ∗j =

ϕj − iϕj+n√
2

, j = 1, 2, . . . , n ,

where ϕj , j = 1, 2, . . . , 2n, are the generators of G2n. Also, as in that case,

we can consider the differential operators

∂

∂θi
,

∂

∂θ∗i
.

Integration with respect to these Grassmann variables enjoy the same prop-

erties as before, namely
∫
f(θ∗, θ) dθj =

∂

∂θj
f(θ∗, θ) ,

(and similarly for θ∗j ), as well as
∫
dθ∗i dθj =

∫
dθ∗i

∫
dθj = −

∫
dθj

∫
dθ∗i .

Let us define H (n) to be the sub-algebra of holomorphic functions of

θ∗ = (θ∗1, . . . , θ
∗
n). As a vector space over the complex numbers, H (n)
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has dimension 2n, and a basis is given by the monomials θ∗i1 · · · θ∗ir , where

{i1, . . . , ir} is an arbitrary subset of {1, 2, . . . , n}. We make H (n) into a

Hilbert space introducing the inner product

〈f, g〉 =

∫
f(θ∗)∗g(θ∗)e−

∑n
j=1 θ

∗
j θj

n∏

j=1

dθ∗j θj .

We have also two families of special creation and annihilation operators

a∗i , ai : H (n) →H (n), given by

a∗i f(θ∗) = θ∗i f(θ∗) and aif(θ∗) =
∂

∂θ∗i
f(θ∗) .

These operators satisfy the anti-commuting relations

aiaj + akai = 0, a∗i aj + aka
∗
i = δik, a

∗
i a

∗
j + a∗ka

∗
i = 0, .

Now, if A : H (n) → H (n) is any linear operator, we can ask whether A

can be expressed in terms of these creation and annihilation operators. This

is indeed the case, as the following theorem shows.

Theorem 6.7 If A : H (n) → H (n) is a linear operator, then there exist

unique complex constants ki1,··· ,ir;j1,··· ,js such that

A =
n∑

r,s=1

∑

i1<···<ir ;j1<···<js
ki1,··· ,ir ;j1,··· ,jsa

∗
i1 · · · a

∗
iraj1 · · · ajs .

Moreover, there exist unique constants Ai1,··· ,ir;j1,··· ,js such that, if

Â(θ∗, θ) =
∑

Ai1,··· ,ir ;j1,··· ,jsθ
∗
i1 · · · θ

∗
irθj1 · · · θjs ,

then

Af(θ∗) =

∫
Â(θ∗, θ)f(θ∗)e−

∑
θ∗j θj

n∏

j=1

dθ∗jdθj .

Again, when we deal with the perturbative theory, we will need to know

how to evaluate Gaussian integrals in several Grassmann variables. All we

need is contained in theorem 6.8 below. First we need an auxiliary result.

Lemma 6.3 Let U be a unitary n× n complex matrix, and let us consider

the n independent Grassmann variables θ1, θ2, . . . , θn of a Grassmann algebra

with n degrees of freedom. If ϑi =
∑

j Uijθj for each i = 1, 2, . . . , n, then

n∏

i=1

ϑi = (detU)

n∏

i=1

θi .



156 Quantization of Classical Fields

Moreover,

n∏

i=1

ϑ∗iϑi = (detU∗)(detU)

n∏

i=1

θ∗i θi =

n∏

i=1

θ∗i θi .

Proof An exercise for the reader.

Note however that, under a general linear change of variables T , we have

n∏

i=1

dϑ∗i dϑi = (detT )−1
n∏

i=1

dθ∗i dθi ,

which is the opposite of the usual Jacobian formula in ordinary n-variables

integration. As a consequence of lemma 6.3, we have the following fact.

Lemma 6.4 The integral

∫
f(θ, θ∗)

n∏

j=1

dθ∗jdθj

is invariant under unitary changes of coordinates.

Proof Again, the proof is left as an exercise.

Theorem 6.8 Let B be an n×n Hermitian matrix with eigenvalues b1, b2, . . . , bn.

Then the Gaussian integral with covariance matrix B in the Grassmann al-

gebra of n variables θ1, . . . , θn is given by

∫
e−

∑
θ∗jBijθj

n∏

j=1

dθ∗jdθj =
n∏

i=1

bi = detB .

Proof Since B is Hermitian, there exists a unitary matrix U such that

UBU∗ = D is a diagonal matrix, in fact D = diag (b1, b2, . . . , bn). Consider

the change of variables ϑ = Uθ. Then, by lemma 6.4, we have

∫
e−

∑
θ∗i Bijθj

n∏

j=1

dθ∗jdθj =

∫
e−

∑
ϑ∗iDijϑj

n∏

j=1

dϑ∗jdϑj .

But since Dij = δijbi, this last integral is equal to

∫
e−

∑
ϑ∗i biϑi

n∏

j=1

dϑ∗i dϑi =
∏

i=1

∫
e−biϑ

∗
i ϑi dϑ∗i dϑi =

n∏

i=1

bi = detB ,

as was to be proved.
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6.4.2 The physicist’s viewpoint

Just as we did for bosonic fields, let us briefly describe the physicist’s ad

hoc approach to the quantization of free fermionic fields. We start with

the observation that a general solution to Dirac’s equation in Minkowski

spacetime (see the exercises at the end of chapter 5) can be Fourier-expanded

in terms of basic plane-wave solutions, according to the formula

ψ(x) =
1

(2π)3

∫

R3

1√
2ωp

∑

s=−,+

(
ap,sus(p)e

−ip·x + b†p,svs(p)e
ip·x
)
d3p .

(6.9)

Here, s denotes the field helicity state, and us(p) and vs(p) are four-component

spinors whose general expressions in terms of p need not concern us. Upon

quantization, the coefficients ap,s and bp,s are promoted to operators as(p)

and bs(p), respectively. These operators, written in terms of their spinor

components ajs(p), bjs(p), 1 ≤ j ≤ 4, must obey the anti-commutation rela-

tions

{ajs(p), ak †s (q)} = {bjs(p), bk †s (q)} = (2π)3δ(3) (p− q)δjk ,

all other possible anti-commutators being equal to zero. These relations

imply that the spinor components of the quantized field Ψ must satisfy the

relations

{Ψj(t,x),Ψk †(t,y)} = δ(3)(x− y) δjk .

The operators as(p) and bs(p) are called destruction operators (of particles

and anti-particles, respectively), and their formal adjoints a†s(p) and b†s(p)

are called creation operators.

Now, the fermionic Fock space is constructed following the same procedure

as in §6.3.5. One starts defining a vacuum state |Ω〉 annihilated by all

destruction operators:

as(p)|Ω〉 = bs(p)|Ω〉 = 0 .

Then, the vectors representing multi-particle states are obtained by letting

any finite word on the creation operators act on this vacuum state. The

fermionic Fock Hilbert space will be the space generated by these vectors

(which are declared to be unit vectors after normalization by a suitable

scalar factor). Since the creation operators anti-commute, exchanging any

two of them in a given word (applied to |Ω〉) will change the sign of the

resulting vector. This expresses the fact that a quantized Dirac field obeys

the so-called Fermi-Dirac statistics. See [PS] and [SW] for more details.
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6.4.3 Wightman axioms for vector and spinor fields

The axioms for a Fermionic field are similar to the ones for scalar bosonic

fields, with a few changes that we indicate below. Let ρ be an irreducible

representation of SL(2,C) on a finite dimensional space of dimension d (re-

call that all the unitary representations of SL(2,C) are infinite-dimensional,

so ρ is certainly not unitary). The first three axioms are the same. In Ax-

iom WA4, we have now a d-uple of fields (φ1(f), . . . , φd(f)). The new axiom

WA5 is similar to the old one, whereas axiom WA6 becomes the statement

that

U(a,Λ)φi(f)U(a,Λ)−1 =

d∑

j=1

ρ(A−1)ijφj({a,Λ}f) ,

where Λ is the Lorentz transformation that corresponds to A ∈ SL(2,C)

under the two-to-one covering homomorphism of the Lorentz group. To

state Axiom WA7 we have two cases to consider. If ρ has integer spin, i.e

ρ(−id) = id (bosons) then, for f and g are space like separated,

φi(f)φj(g)− φj(g)φi(f) = 0 and φ∗i (f)φj(g) − φj(g)φ∗i (f) = 0 .

If ρ has half-integer spin then

φi(f)φj(g) + φj(g)φi(f) = 0 and φ∗i (f)φj(g) + φj(g)φ
∗
i (f) = 0 .

Finally, the vacuum is only required to be cyclic for

{φ1(f), . . . , φd(f), φ∗1(f), . . . , φ∗d(f)} .

The standard reference for this part is [SW, pp. 146-150].

6.5 Quantization of the free electromagnetic field

The Hamiltonian quantization of the free electromagnetic field follows a

similar route as the ones used for the other free field theories described

above, with one important difference: here we have to take into account the

gauge invariance of the action.

Recall from chapter 5 that the free electromagnetic Lagrangian density is

given by

L = −1

4
FµνF

µν =
1

2

(
‖E‖2 − ‖B‖2

)
.

Here, as before, F = Fµνdx
µdxν is the field strength, which we know is

an exact 2-form, in other words F = dA, where A = Aidx
i, A0 = φ is

the scalar potential and A = (A1, A2, A3) is the vector potential. Thus,
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F is a closed 2-form, which yields the first pair of Maxwell’s equations,

whereas the Euler-Lagrange equations for the action functional built from

the above Lagrangian are precisely the other pair of Maxwell’s equations,

namely ∇ ·E = 0 and ∇ ∧B = ∂tE. One can easily verify (exercise) that

the Hamiltonian in the present case is given by

H =
1

2

∫

R3

(
‖E‖2 + ‖B‖2

)
d3x .

Now, if we add an exact 1-form ω = dΩ to A, the field strength F doesn’t

change, and neither does the Lagrangian density. In other words we have

invariance under gauge transformations of the form

Aµ 7→ Aµ + ∂µΩ .

Here Ω is an arbitrary function on spacetime M . Hence we can choose the

gauge in such a way that two things happen: (a) A0 = 0; (b) ∇ · A = 0.

That we can, indeed, make such a choice without conflict between (a) and

(b) is left as an exercise to the reader.

After fixing the gauge in this fashion, we can proceed with the quantization

as in the case of the Klein-Gordon field. We apply the Fourier transform

method and get an expansion for the vector potential of the form

A(x) =
1√

2k0(2π)3

∫

R3

2∑

j=1

ǫj(k)
(
aj(k)e−ik·x + a∗j (k)eik·x

)
d3k .

The ǫj(k) are called polarization vectors. The second gauge fixing condition

(b) above implies that each polarization vector is Fourier orthogonal to the

corresponding momentum k.

The quantization procedure now is to simply regard aj(k) and a∗j (k) as

operators (on a suitable Fock space). These are the operators that, respec-

tively, create and annihilate a quantum of the electromagnetic field with

momentum k and polarization ǫj(k). The construction of Fock space, and

of these creation and annihilation operators, is completely analogous to the

one performed for the Klein-Gordon field, so we omit the details.

6.6 Wick rotations and axioms for Euclidean QFT

We have seen earlier in this chapter that the Wightman functions

W (x1, . . . , xn) = 〈Ω, φ(x1) · · · φ(xn)Ω〉

can be used to completely reconstruct a scalar bosonic field theory. These

functions, as it turns out, can be analytically continued to the so-called
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Schwinger points zj = (ix0
j , x

1
j , x

2
j , x

3
j ), provided the points xj ∈ R4 are

such that xj 6= xj if j 6= k. The map (R4)n → (iR × R3)n given by

(x1, x2 . . . , xn) 7→ (z1, z2, . . . , zn) is called a Wick rotation. The functions

Sn(x1, x2, . . . , xn) = W (z1, z2, . . . , zn)

are called Schwinger functions.

A set of axioms for the Schwinger functions has been devised by K. Os-

terwalder and R. Schrader in [OS]. These axioms can be used to construct

(via the inverse of Wick rotations) the Wightman correlation functions, and

therefore the whole scalar bosonic theory, by Wightman’s reconstruction

theorem. The Osterwalder-Schrader axioms can be informally stated as fol-

lows (cf. [Ri], pp. 21-22).

OSA-1. Regularity : The Schwinger functions Sn do not grow too quickly

with n.

OSA-2. Euclidean covariance: The Schwinger functions are invariant under

a global Euclidean transformation (for scalar bosonic fields – in the

case of a fermionic theory, appropriate changes have to made here).

OSA-3. O-S Positivity : The expectation value of a function F (defined via

the Schwinger functions) of the fields multiplied by the function

F ∗ obtained from F by reflection across a hyperplane and complex

conjugation is a positive number. This axiom yields the positive-

definite metric of the Hilbert space for the Wightman fields.

OSA-4. Symmetry : The Schwinger functions – in a theory for bosons –

are symmetric under permutations of its (external) arguments. For

fermions, symmetry should of course be changed to anti-symmetry.

OSA-5. Cluster property : A Schwinger functions can be written asymptot-

ically as a product when two sets of its arguments are taken far

apart.

Now, the point is that one has a reconstruction theorem akin to Wight-

man’s.

Theorem 6.9 (O-S Reconstruction Theorem) Suppose we are given a

set of functions satisfying the axioms OSA-1-5 above. Then these function

are the Schwinger functions a unique field theory in the sense of Wightman.

For a more precise (and much more formal) treatment of the Ostwalder-

Schrader axioms, see Kazhdan’s lectures [Kh], chapter 2. See also [Sch, pp.

97-101] for a precise formulation of a version of these axioms, and a proof

of the reconstruction theorem, in the context of conformal field theory.
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6.7 The CPT theorem

We would like to add a few informal remarks on the so-called CPT theorem.

There are three very important finite-order symmetries on fields that stand

out. These translate, in QFT, to certain unitary or anti-unitary operators

acting on quantum fields. To keep the discussion short, we only talk about

the effect of these symmetries on fermionic fields. We refer to §6.4.2 for

notation. The symmetries under scrutiny are the following.

(1) Charge conjugation operator As we have seen in remark 5.4.2 (sub-

section §5.4.2), at the classical level we can consider the operator

C : ψ 7→ ψC = −iγ2ψ∗ on Dirac fields. This charge conjugation

operator maps solutions of Dirac’s equation with charge q to solu-

tions of Dirac’s equation with charge −q. In other words, it changes

matter to anti-matter and vice-versa. At the quantum level such op-

erator becomes a unitary operator acting on fermionic Fock space.

In terms of the generators as(p) and bs(p) of fermionic Fock space,

C acts as follows

C−1as(p)C = ηabs(p) ,

C−1bs(p)C = ηbas(p) .

Here ηa, ηb are phase factors (recall that a unit vector representing a

quantum-mechanical state is determined only up to a phase factor).

It can be shown in the present context that η2
a = η2

b = 1, and that

ηa = −ηb. We obviously expect C2 = C ◦ C to be the identity, so in

fact C−1 = C. With these relations one can extend C to the space

of all fermionic fields by linearity, using the Fourier decomposition

given in 6.9. The resulting operator on fermionic fields is unitary.

(2) Parity operator At the classical level, the parity operator corresponds

to the reflection (t,x) 7→ (t,−x) on spacetime. Thus, under this

parity transformation, the momentum p of a particle is changed

to −p, whereas its spin remains unchanged (classically, the spatial

coordinate involution x 7→ −x does not change angular momentum).

Upon quantization, we should therefore expect the parity operator

P to be a unitary operator such that

P−1as(p)P = as(−p) ,

P−1bs(p)P = bs(−p) .

Again, with these relations one can extend P to the space of all

fermionic fields by linearity. And again, the resulting P is an invo-

lution as well: P = P−1.
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(3) Time-reversal operator At the classical level, the operation of switching

t to −t corresponds to the transformation on fermionic fields given

by ψ(t,x) 7→ −γ1γ3ψ(−t,x). Here, γ1 and γ3 are the usual Dirac

matrices. Time-reversal changes a particle’s momentum p to −p,

and it also reverses spin, s 7→ −s. Hence, upon quantization, the

time-reversal operator T changes the sign of both momentum and

spin of every destruction operator, namely

T−1as(p)T = a−s(−p) ,

T−1bs(p)T = b−s(−p) .

It can be verified that T , after being extended by linearity to the

entire space of fermionic fields, cannot be unitary. Rather, it must

be an anti-unitary operator (recall Wigner’s theorem in chapter 2).

One should not expect that a quantum theory of fields might be invariant

under any of these symmetries taken in isolation. As it turns out, it is an ex-

perimentally observed fact in particle physics that parity is violated in weak

interactions (see chapter 9). However, the interesting thing is that any such

reasonable theory will remain invariant under the combined action of C, P ,

and T . More precisely, the CPT theorem states that a Lorentz-invariant field

theory (whose corresponding Hamiltonian is a Hermitian operator) is neces-

sarily invariant under the composite symmetry C ◦ P ◦ T . One of the great

merits of the axiomatic approach to QFT is to provide a mathematically

rigorous proof of this theorem. The reader may consult [SW] for a com-

plete exposition of this result and its close relationship with the so-called

spin-statistics theorem of W. Pauli. See also [B, ch. 5] for an interesting

conceptual discussion of these topics.

6.8 Scattering processes and LSZ reduction

The main point of contact between quantum field theory and experiment

is provided by scattering phenomena. What physicists actually measure in

the laboratory are scattering cross-sections of particle collisions. Typically,

one has an incoming beam of particles (henceforth called in-particles) that

get together and interact in some manner, producing an outgoing beam of

particles (the out-particles) that scatter away (see figure 1). For each given

state of the in-particles and each desirable state of the out-particles, one

would like to compute the corresponding probability amplitude.

In order to simplify the discussion to follow, we only consider spinless par-

ticles, such as scalar bosons. We think of the in-particles as having momenta
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q1,q2, . . . ,qr, and of the out-particles as having momenta p1,p2, . . . ,ps.

We shall write P = {pi} and Q = {qj}. In general, we have r 6= s: we

can have creation and annihilation of particles when the interaction occurs.

We should bear in mind, however, that the in-particles represent a com-

mon eigenstate for a commuting set of field operators (corresponding to the

incoming momenta), and similarly for the out-particles. Using Dirac’s no-

tation, we represent the incoming state by |Q, in〉 and the outgoing state by

|P, out〉. These states should be thought of as asymptotic states – intuitively,

if we recede to the past, the in-particles don’t interact with each other, and

similarly for the out-particles in the future. Hence they are elements of a

Hilbert (Fock) space H , and correspond to free fields. The scattering pro-

cess can therefore be thought of as an operator S : H → H , the so-called

scattering operator. What one measures about this process are the so-called

scattering amplitudes, namely the inner products

SP,Q = 〈P, out|Q, in〉 .

As we know from quantum mechanics, these complex numbers – known

collectively as the scattering matrix, or S-matrix – represent the probability

amplitudes that the in-particles, initially measured to be in the state |Q, in〉,
will scatter away after the interaction into a set of out-particles in the state

|P, out〉.
How can we calculate these scattering amplitudes? The answer was given

in 1955 by H. Lehmann, K. Symanzik and W. Zimmermann, through what

is now known as the LSZ reduction formula. The intuitive idea behind LSZ

reduction is that, since the in-particles before collision can be thought of as

created from the vacuum and the out-particles after collision can be thought

of as annihilating into the vacuum, the values of the S-matrix entries should

be expressible in terms of vacuum-to-vacuum correlations. In this section,

we shall present a fairly detailed mathematical treatment of this formula

Collision Process

(interaction)
(in) (out)

Fig. 6.1. Scattering
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for scalar bosons. In the exposition to follow, when dealing with quantum

fields – operator-valued distributions – we shall omit entirely their evaluation

against test functions (in Schwartz space), thereby glossing over some very

technical details. Although this may not be considered satisfactory from a

strictly mathematical point of view, we warn the reader that a completely

rigorous treatment is available. See [Kh], pp.405-412, for what is missing

here.

6.8.1 The in and out free fields

Let us consider the case of a bosonic field φ of mass m. This field will be, in

a suitable sense to be made precise below, asymptotic in the past to a given

incoming free field φin, and in the future to a given outgoing free field φout.

We assume that the field φ is described by a Lagrangian density which is a

perturbation of a Klein-Gordon Lagrangian, possibly with a different mass

m0, say

L =
1

2
∂µφ∂

µφ− 1

2
m2

0φ
2 + Lint .

The interaction part of the Lagrangian, Lint, may contain self-interaction

terms such as φ3/3!, or even interaction terms with other fields (e.g. fermionic

fields). We do not want, however, interaction terms involving the partial

derivatives of φ. Therefore, if we consider the Euler-Lagrange equations for

the above Lagrangian, we get the following equation
(
� +m2

0

)
φ(x) = j0(x) ,

where j0 = ∂Lint/∂φ. In terms of the Klein-Gordon operator for the boson

of mass m, this can be recast as
(
� +m2

)
φ(x) = j(x) , (6.10)

where j(x) = j0(x) +
(
m2 −m2

0

)
φ(x). We may solve equation (6.10) using

the method of Green’s function – in this case, a retarded Green’s function

given by

G−(x) =
i

(2π)3
θ
(
x0
) ∫ 1

2ωk

(
e−ik·x − eik·x

)
k0=ωk

d3k ,

where ωk =
√

k2 +m2. The function θ is the Heaviside step function (θ(s) =

0 when s < 0 and θ(s) = 1 when s ≥ 0). Using the incoming field φin as an

asymptotic boundary condition and the above Green’s function, we arrive

at the following result.
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Lemma 6.5 The field given by

φ(x) =
√
Zφin(x) +

∫
G−(x− y)j(y) d4y , (6.11)

where Z is a constant, is a solution to (6.10).

Proof An exercise to the reader.

The number Z is a normalizing constant about which we will have more

to say later. The important thing to remember here is that φin is a free

scalar field of mass m, i.e. a solution to the Klein-Gordon equation

(
� +m2

)
φin(x) = 0 .

Therefore, we can express φin in terms of its Fourier modes (flat waves) as

follows. First let

ek(x) =
e−ik·x

(2π)3/2(2ωk)1/2

∣∣∣∣
k0=ωk

Then write, as in section 6.3.4,

φin(x) =

∫ {
ek(x)ain(k) + e∗k(x)a

†
in(k)

}
d3k .

Using the inverse Fourier transform, we can express each coefficient in terms

of the in-field φin itself. For the annihilation coefficients, we get

ain(k) = i

∫
e∗k(x)

←→
∂0 φin(x) d

3x ,

where we use the notation f
←→
∂0 g = f · (∂0g) − (∂0f) · g. A similar formula

holds for the creation coefficients a†in(k).

Upon quantization, as we saw in section 6.3.4, these coefficients are pro-

moted to operators in Fock space. Recall that these creation and annihila-

tion operators satisfy the commutation relations

[ain(p), ain(q)] = 0; [ain(p), a†in(q)] = δ3(p − q) .

Starting from the vacuum vector Ω, one builds any given in-particle state

|q1,q2, · · · ,qr in〉 using these operators in the usual way, namely

|q1,q2, · · · ,qr in〉 = 2r/2

(
r∏

i=1

ωki

)1/2

a†in(q1) . . . a
†
in(qr)|Ω〉 .
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We remark also that everything we did above using the in-field φin can be

done also for the out-field φout. In particular, we have an integral represen-

tation

φ(x) =
√
Zφout(x) +

∫
G+(x− y)j(y) d4y , (6.12)

where G+ is the advanced Green’s function for the Klein-Gordon operator,

whose explicit computation we leave as an exercise for the reader.

Finally, we need to clarify in which sense the in-field φin and the out-field

φout represent the asymptotic behavior of our interacting field φ. We make

the hypothesis that the following weak asymptotic relations hold. Given

any pair of states |P, out〉 and |Q, in〉, and given any solution f to the

Klein-Gordon equation, we have

lim
x0→−∞

∫
〈P, out|f(x)

←→
∂0φ(x)|Q, in〉 d3x (6.13)

=
√
Z

∫
〈P, out|f(x)

←→
∂0 φin(x)|Q, in〉 d3x .

Likewise, for the out-field we have

lim
x0→+∞

∫
〈P, out|f(x)

←→
∂0φ(x)|Q, in〉 d3x (6.14)

=
√
Z

∫
〈P, out|f(x)

←→
∂0φout(x)|Q, in〉 d3x .

Using the Klein-Gordon equation for both φin and f , it is easy to show

(exercise) that the right-hand side of (6.13) is indeed time-independent, as

one should expect by glancing at the left-hand side. Similarly for (6.14).

Given these considerations, we are now ready to formulate a definition of

scattering (or interacting) fields.

Definition 6.8 Given two free scalar fields φin and φout, an interacting

scalar field of mass m, with in-field φin and out-field φout, is a quantum

field φ (i.e. an operator-valued distribution) having the following properties

(i) It satisfies the equation (6.10) in the distributional sense;

(ii) It admits the integral representations (6.11) and (6.12), also in the

distributional sense;

(iii) It satisfies the weak asymptotic relations (6.13) and (6.14), again in

the sense of distributions.

It is for quantum interacting fields defined in this manner (and whose

existence will be taken for granted) that we shall prove the LSZ formula.
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6.8.2 The LSZ formula for bosons

We are now almost ready to state and prove the LSZ reduction formula

for bosons. It will be convenient at this point to introduce the notion of

time-ordered product of a finite number of field operators. Given x, y in

Lorentzian spacetime, and the corresponding field operators φ(x), φ(y), we

define their time-ordered product to be

T{φ(x)φ(y)} = θ(x0 − y0)φ(x)φ(y) + θ(y0 − x0)φ(y)φ(x) ,

where θ is the step function introduced earlier. More generally, if we have

n field operators φ(x1), . . . , φ(xn), we define

T{φ(x1) · · · φ(xn)} = φ(xσ(1)) · · · φ(xσ(n)) ,

where {σ(1), . . . , σ(n)} is a permutation of {1, . . . , n} with the property that

the corresponding time coordinates decrease from left to right: x0
σ(1) ≥ · · · ≥

x0
σ(n). Time ordering is a way of incorporating causality into quantum field

theory.

The main result of this section can now be stated as follows.

Theorem 6.10 (LSZ reduction formula) The scattering matrix ele-

ments of an interacting scalar field φ having mass m are functions of the

Wightman vacuum-to-vacuum correlations of the field. More precisely, if

Q = {qj}1≤j≤r and P = {pk}1≤k≤s represent the in-particles and out-

particles respectively, and if no in-particle momentum qj is equal to an

out-particle momentum pk, then

〈P out|Q in〉 =
ir+s

((2π)3/2Z1/2)r+s

∫ r∏

j=1

{
e−iqj ·xj

(
�xj

+m2
)}
× (6.15)

×
s∏

k=1

{
e+ipk·yk

(
�yk

+m2
)}
×

× 〈Ω|T φ(x1) · · · φ(xr)φ(y1) · · · φ(ys)|Ω〉 dx1 · · · dxr dy1 · · · dys .

Proof In the proof, we will write |Q〉 and |P 〉 instead of |Q in〉 and |P out〉,
respectively. Let us calculate something more general than the S-matrix

element appearing on the left-hand side of the above formula, namely

M = 〈P |T{φ(z1) · · · φ(zn)}|Q〉 .

This is the expected value of the time-ordered product of the field operators

φ(z1), . . . , φ(zn) with respect to the in and out states. If there are no field

operators in the time-ordered product, then what we have is precisely the
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S-matrix element that interests us. We can extract from the in-state Q the

particle with momentum q = q1 using a creation operator:

|Q〉 =
√

2ωqa
†
in(q)|Q′〉 ,

where |Q′〉 indicates the state of in-particles qj with j ≥ 2 (i.e., with q1

removed). Hence we can write

M =
√

2ωq 〈P |T{φ(z1) · · ·φ(zn)}a†in(q)|Q′〉 .

Since we are assuming that there are no out-particles having momentum q,

this last equality can be re-written as

M =
√

2ωq× (6.16)

× 〈P |T{φ(z1) · · · φ(zn)}a†in(q) − a†out(q)T{φ(z1) · · ·φ(zn)}|Q′〉 .

The reason is the following. In the extra term that has just been introduced

in the right-hand side of (6.16), the creation operator a†out(q) can be replaced

by its adjoint, the annihilation operator aout(q), acting on the left side of

the Dirac bracket, i.e. on the out-state vector |P 〉. This vector, however,

is built from the vacuum state |Ω〉 by successive application of the creation

operators a†out(pk). Our hypothesis says that no pk is equal to q. There-

fore the annihilation operator aout(q) commutes with each creation operator

a†out(pk), so it can be made to act directly on the vacuum state, producing

0 as a result. This shows that the extra term introduced in the right-hand

side of (6.16) is indeed equal to zero. Replacing the creation operators in

(6.16) by their expressions in terms of the inverse Fourier transforms of the

in-field and out-field, we see that the right-hand side is equal to

− i
√

2ωq

∫
eq(x)×

×←→∂0 〈P |T{φ(z1) · · ·φ(zn)}φin(x)− φout(x)T{φ(z1) · · · φ(zn)}|Q′〉d3x .

Using the weak asymptotic relations (6.13) and (6.14) with f = eq (clearly

a solution of the KG-equation), we deduce that

M =− i
√

2ωq
Z

{
lim

x0→−∞

∫
eq(x)

←→
∂0 〈P |T{φ(z1) · · ·φ(zn)}φ(x)|Q′〉 d3x

(6.17)

− lim
x0→+∞

∫
eq(x)

←→
∂0 〈P |φ(x)T{φ(z1) · · ·φ(zn)}|Q′〉d3x

}
.

At this point, we note that as x0 → −∞, the time coordinate x0 becomes

smaller than the time coordinates of each zi, and therefore the field φ(x) in
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the first of the two integrals above can be absorbed into the time-ordered

product; in other words, we have

T{φ(z1) · · · φ(zn)}φ(x) = T{φ(z1) · · · φ(zn)φ(x)} as x0 → −∞ .

Likewise, we have

φ(x)T{φ(z1) · · · φ(zn)} = T{φ(x)φ(z1) · · · φ(zn)} as x0 → +∞ .

Therefore we can re-write (6.17) as

M = −i
√

2ωq
Z

(
lim

x0→−∞
− lim
x0→+∞

)∫
eq(x)

←→
∂0 β(x) d3x ,

where we have introduced the function

β(x) = 〈P |T{φ(x)φ(z1) · · · φ(zn)φ(x)}|Q′〉 .

Yet another way to write the last expression for M is integrate and differ-

entiate with respect to the time coordinate x0, as follows

M = i

√
2ωq
Z

∫
∂0

(∫
d3xeq(x)

←→
∂0 β(x) d3x

)
dx0 .

Calculating explicitly the time derivative, we see that

M = i

√
2ωq
Z

∫
x
{
eq(x)∂

2
0β(x)− β(x)∂2

0eq(x)
}
d4x

Finally, using the fact that eq(x) is a solution of the Klein-Gordon equation

– so that ∂2
0eq = (∆−m2)eq – and integrating by parts, we get

M = i

√
2ωq
Z

∫
eq(x)

(
∂2

0 −∆ +m2
)
β(x) d4x .

At last, if we take into account the explicit expression for eq(x) and β(x),

we arrive at

M =
i

(2π)3/2Z1/2

∫
e−iq·x

(
�x +m2

)
×

× 〈P |T{φ(x)φ(z1) · · · φ(zn)φ(x)}|Q′〉 d4x .

Let us step back and look at what we have accomplished. Using a suitable

creation operator for the in-field, we have been able to extract an in-particle

from the initial state |Q〉, inserting a field factor φ(x) in the time-ordered

product, whose correlation with the new initial and the final states is now

acted upon by the Klein-Gordon operator with respect to x. One can now

proceed inductively, extracting out one particle at a time from the initial
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state, until we are left with the vacuum vector on the right side of the inner

product (accumulating field factors in the time-ordered product, and Klein-

Gordon operators in the integrand). One can then follow an entirely similar

inductive procedure to remove particles one at a time from the final state

|P 〉 (using the creation operators for the out-field), until we are left with

the vacuum state on the left side of the inner product. The integrand in the

final expression will be a vacuum-to-vacuum correlation of a time-ordered

product of the original factors φ(zi) with field factors corresponding to the

extracted particles, acted upon by a product of r+s Klein-Gordon operators.

In particular, if initially there are no factors of the form φ(zi), in the end

we will have the expression in the right-hand side of (6.15), so the theorem

is proved.

There is an alternative way to write down the LSZ formula, which is in

fact much more elegant. The idea is to use the Fourier transform of the

time-ordered correlation functions, namely

Γ(ξ1, . . . , ξn)=

∫
〈Ω|T{φ(w1) . . . ϕ(wn)}|Ω〉

n∏

i=1

eiξk·wkd4w1 · · · d4wn .

Using this together with the inverse Fourier transform, the LSZ reduction

formula becomes

〈P out|Q in〉 = (−i)r+s
((2π)3/2Z1/2)r+s

×

×
s∏

k=1

(
p2
k −m2

) r∏

j=1

(
q2j −m2

)
Γ(p1, . . . , ps ; −q1, . . . ,−qr)

Here, we are writing p2
k = (p0

k)
2 − (p1

k)
2 − (p2

k)
2 − (p3

k)
2 for the Minkowski

norm of pk, and similarly for qj. This formula shows us that the values

of the S-matrix entries are the residues of poles of the Fourier transforms

of the corresponding correlations functions, up to a normalization factor

(these poles appear when we put the 4-momenta pk, qj on-shell, i.e. when

their Minkowski norms are equal to m2).

We close with two remarks. First, as promised, we have shown that the el-

ements of the scattering matrix of a scalar interacting field can be computed

from the corresponding vacuum-to-vacuum Wightman correlations. These

are however very difficult to compute. Perturbative methods for computing

these Wightman correlations will be developed in the next chapter, and even

then we shall see that there are serious divergences that can only be resolved

with the help of renormalization methods (see chapter 8). Second, a similar

LSZ formula holds for self-interacting fermionic fields (in the absence of an
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external field); see for instance [PS] or [IZ]. However, LSZ reduction does

not make sense for gauge fields, the primary reason being the fact that in

such cases the free part of the Lagrangian is a degenerate quadratic form,

hence non-invertible.
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Perturbative Quantum Field Theory

In this chapter we present the basics on the perturbative approach to the

quantization of interacting fields. This approach was pioneered by J. Schwinger,

S. Tomonaga, R. Feynman and F. Dyson, halfway through the last century.

At center stage here lies the so-called Feynman path integral (a simpler ver-

sion of which we already encountered in chapter 2).

7.1 Discretization of functional integrals

Heuristically, Feynman’s path integral approach to the quantization of fields

starts from a functional integral of the form

Z =

∫
eiS(φ) Dφ ,

called the partition function, taken over the infinite-dimensional space of all

fields. Here,

S(φ) =

∫

M
L (φ(x)) d4x

is the action, where L is the Lagrangian density of the system, and Dφ is a

heuristic measure in the space of all fields. Starting out from such a partition

function, one attempts to construct the quantization of the system by writing

down other related path integrals giving the Wightman correlation functions

(see chapter 6). If O is a functional on the space of fields, its expectation

is, again heuristically,

〈O〉 =
1

Z

∫
O(φ)eiS(φ) Dφ .

In particular, the Wightman k-point correlation functions are

〈φ(x1)φ(x2) · · · φ(xk)〉 =
1

Z

∫
φ(x1)φ(x2) · · · φ(xk)e

iS(φ) Dφ .

172



7.2 Gaussian measures and Wick’s theorem 173

It is hard, if not downright impossible, to put the subject of Feynman

path integrals to a sound mathematical basis, except in the case of free

fields, when the Lagrangian of the system is a (non-degenerate, positive

definite) quadratic form.

The strategy we will follow instead is to split the action as a sum S =

S0 + λSint where S0 is the quadratic part and Sint, the interactive action,

is the integral over spacetime of a sum of higher order monomials in the

field φ. The case λ = 0 corresponds to a free field and in the Euclidean

case to a Gaussian probability measure supported in the Schwartz space of

distributions. This measure can be obtained by a process of discretization

as a limit of finite-dimensional Gaussian measures. The natural way to ap-

proach the general case perturbatively would be to expand the exponential

of the action as a power series in the coupling constant λ. Unfortunately,

the coefficients of this expansion involve powers of the field, and since the

measure is supported in a space of distributions and not functions, we face

the usual problem that such powers do not make sense (we cannot multiply

distributions). To circumvent this problem, we will study the perturbative

series of the discretized theory. Here all the coefficients are given by sums of

products of point-to-point correlations of Gaussian measures. These sums

can be organized using the technique of it Feynman diagrams. The idea

would then to take a (thermodynamical and continuum) limit, but a new

problem arises: in many cases the limiting sums are finite-dimensional di-

vergent integrals. This last problem will be treated by renormalization in

chapter refch:R.

7.2 Gaussian measures and Wick’s theorem

7.2.1 Gaussian integrals

We now move to the study of Gaussian integrals in a finite-dimensional

setting. Let A : Rn → Rn be a positive-definite, symmetric linear map, and

let J ∈ Rn. We are interested in the value of the Gaussian integral

Z(A, J) =

∫

Rn

exp{−i(〈Ax, x〉+ 〈J, x〉)} dx .

This value can be obtained by analytic continuation, as we shall see.

Let us first note that for each z ∈ C with positive real part the function

Rn ∋ x 7→ exp{−z(〈Ax, x〉+ 〈J, x〉)} ∈ C
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is integrable. Therefore the function

I(z) =

∫

Rn

exp{−z(〈Ax, x〉+ 〈J, x〉)} dx .

is holomorphic in the half-plane {z|Re z > 0}.
Next, let us compute I(ρ) where ρ > 0. To do this, we change variables

using an orthogonal transformation T that diagonalizes the quadratic form.

In other words, we let T be an orthogonal transformation such that T tAT =

D, where D = diag{α1, α2, . . . , αn}, and each αk > 0. Writing x = Ty and

J̃ = T tJ = (β1, β2, . . . , βn), we have

I(ρ) =

∫

Rn

exp

{
−ρ
(

n∑

k=1

αky
2
k + βkyk

)}
dy1dy2 · · · dyn (7.1)

=

n∏

k=1

∫

R

exp{−ραky2
k − ρβkyk} dyk .

The integrals in this last product can be explicitly evaluated using the fol-

lowing well-known fact.

Lemma 7.1 If a > 0, then

∫

R

exp{−ax2} dx =

√
π

a
.

More generally, if b is real, we have

∫

R

exp{−ax2 + bx} dx =

√
π

a
exp{− b

2

2a
}.

Proof Exercise.

Going back to (7.1), we deduce from the above lemma that

I(ρ) =

n∏

k=1

exp

{
−ρβ

2
k

2αk

} √
π

ραk

=

(
π

ρ

)n/2 1√
detA

exp{−ρ
2

n∑

k=1

β2
k

αk
} .

But clearly

n∑

k=1

β2
k

αk
=
〈
D−1J̃ , J̃

〉
=
〈
T tA−1J, T tJ

〉
=
〈
A−1J, J

〉
.
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Therefore

I(ρ) =

(
π

ρ

)n/2 1√
detA

exp{−ρ
2

〈
A−1J, J

〉
} .

Now, the point is that this formula makes sense for complex ρ. More pre-

cisely, let z 7→ √z be the branch of the square-root that maps C \R− holo-

morphically onto the positive half-plane. Then consider the holomorphic

function

Î(z) =
πn/2

(
√
z)n

1√
detA

exp{−z
2

〈
A−1J, J

〉
} .

Since Î(z) = I(z) for all z ∈ R+, it follows that Î(z) is a holomorphic

extension of I(z). Hence we can define the value of the desired Gaussian

integral Z(A, J) to be Î(i), that is

∫

Rn

e−i(〈Ax,x〉+〈J,x〉) dx =
πn/2

(
e−πi/4

)n
√

detA
e−

i
2〈A−1J,J〉 . (7.2)

It is worth emphasizing that the main contribution to (7.2) in the right-hand

side is provided by the critical point of the function in the exponent of the

exponential in the left-hand side. Indeed, if S(x) = 〈Ax, x〉+ 〈J, x〉, then

DS(x)v = 〈2Ax+ J, v〉

This shows that S has a unique critical point x̄ such that 2Ax̄ + J = 0,

i.e. x̄ = (−1/2)A−1J . This critical point is a global minimum of S, and

S(x̄) =
〈
A−1J, J

〉
/4.

These results can be generalized to the case when A is not necessarily

positive-definite, but is still non-degenerate. The formula we obtain in the

end is similar to (7.2) but involves, not surprisingly, the signature of A.

7.2.2 Gaussian measures

Using the above formulas, we can now define a Gaussian measure in Rn with

given covariance matrix C as follows

dµC(x) =
1

πn/2
√

detC
exp{−

〈
x,C−1x

〉
} dx .

This is a probability measure:
∫

Rn

dµC(x) = 1 .
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The Fourier transform of this measure is
∫

Rn

ei〈J,x〉 dµC(x) = exp{−1

2
〈J,CJ〉} .

The moment generating function, on the other hand, is simply

∫

Rn

e〈J,x〉 dµC(x) = exp{1
2
〈J,CJ〉} .

7.2.3 Wick’s theorem

Let us now state and prove Wick’s theorem. This result yields an explicit

formula for the moments (or correlations) of a Gaussian measure.

Theorem 7.1 Let f1, f2, . . . , fn be linear polynomials. Then

〈f1f2 · · · fk〉 = 0 if n is odd, whereas if n is even

〈f1f2 · · · fk〉 =
∑

C(fi1, fi2)C(fi3 , fi4) · · ·C(fim−1 , fim) , (7.3)

where the sum extends over all parings (i1, i2), . . . , (im−1, im) of the indices

1, 2, . . . ,m, and where C(fi, fj) = 〈fi, Cfj〉Γ.

In order to prove this theorem, we need the following auxiliary lemma in

multilinear algebra.

Lemma 7.2 Let V be a vector space over K = R or C, and let B : V ×
· · · × V → K be a symmetric n-linear map. If for all x ∈ V we have

xn = B(x, · · · , x) = 0, then B = 0.

Proof It suffices to show, by induction, that if xn = 0 for all x then xn−1y = 0

for all x, y. This because for each y the map By : V × · · · × V → K given by

By(x1, x2, · · · , xn−1) = B(x1, x2, · · · , xn−1, y)

is (n−1)-linear and vanishes at the diagonal. By hypothesis, for all x, y ∈ V
and each z ∈ K, we have

0 = (x+ zy)n = xn + z

(
n

1

)
xn−1y + · · ·+ zn−1

(
n

n− 1

)
xyn−1 + yn (7.4)

= z

(
n

1

)
xn−1y + · · ·+ zn−1

(
n

n− 1

)
xyn−1 (7.5)
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Now, taking z1, z2, . . . , znK pairwise distinct non-zero scalars, we know that

the Vandermonde determinant

det




z1 z2
1 · · · zn−1

1

z2 z2
2 · · · zn−1

2

· · · · · ·
zn−1 z2

n−1 · · · zn−1
n−1


 = z1z2 · · · zn−1

∏

i<j

(zi − zj) 6= 0

Therefore, putting z = z1, . . . , zn−1 in (7.4) we get a homogeneous (n− 1)×
(n−1) linear system in the unknowns xn−1y, . . . , xyn−1 whose only solution

is the trivial solution xn−1y = · · · xyn−1 = 0.

Given this lemma, Wick’s theorem will be a consequence of the following

result. Suppose A : V → V ∗ is a linear operator such that

A(x, y) = 〈x,Ay〉 =
d∑

i,j=1

Aijxiyj .

is a positive-definite bilinear form. Let us denote by C : V ∗ → V the inverse

of A, its associated positive-definite bilinear form being

C(λ, µ) =

d∑

i,j=1

Cijλiµj .

Lemma 7.3 If f ∈ V ∗ is a linear functional, then for every k ≥ 1 we have

∫

V
f(x)2k e−

1
2
〈x,Ax〉 dx = (2k − 1)C(f, f)

∫

V
f(x)2(k−1) e−

1
2
〈x,Ax〉 dx . (7.6)

Proof Let us write f(x) =
∑d

i=1 aixi, and let us denote the integral on the

left-hand side of (7.6) by I. Then

I =

n∑

i=1

ai

∫

V
xi(f(x))2k−1 e−

1
2
〈x,Ax〉 dx . (7.7)

Note however that

xie
− 1

2
〈x,Ax〉 =

n∑

i=1

Cij
∂

∂xj
e−

1
2
〈x,Ax〉
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Hence we can integrate by parts in (7.7) to get

I =
d∑

i=1

ai

d∑

j=1

Cij

∫

V
(f(x))2k−1 ∂

∂xj

(
e−

1
2
〈x,Ax〉

)
dx

=
d∑

i=1

ai

d∑

j=1

Cij

∫

V
(2k − 1)(f(x))2k−2aje

− 1
2
〈x,Ax〉 dx

= (2k − 1)
d∑

i,j=1

aiCijaj

∫

V
(f(x))2(k−1) e−

1
2
〈x,Ax〉 dx .

Proof of Wick’s Theorem 7.1. Let us denote the left-hand side of (7.3) by

B1(f1, . . . , fn) and the right-hand side by B2(f1, . . . , fn). Both B1 and B2

are symmetric n-linear forms, hence so is their difference B = B1 −B2. To

show that this difference is zero, it suffices by Lemma 7.2 to show that

B1(f, . . . , f) = B2(f, . . . , f) (7.8)

for all f ∈ V ∗. Applying Lemma 7.3 and induction to the left-hand side of

(7.8), we see that

B1(f, . . . , f) =

∫

V
f(x)2n e−

1
2
〈x,Ax〉 dx = (2n− 1) · · · 3 · 1C(f, f)2n .

But all terms in the summation defining the right hand side of (7.8) are

equal to C(f, f)2n, and the number of such terms is the number of pairings

of {1, 2, . . . , 2n}, which is precisely (2n − 1)!! = (2n − 1) · (2n − 3) · · · 3 · 1.
This finishes the proof.

7.3 Discretization of Euclidean scalar fields

We consider fields on a lattice (in ε·Zd). Looking in finite volume (e.g., some

cube in ε·Zd), we get that the partition function and the field correlations are

finite-dimensional Euclidean integrals. After we understand these integrals,

we attempt to take limits, by letting ε go to zero (continuum limit) and also

the volume go to infinity (thermodynamic limit). For free fields (quadratic

Lagrangian), the thermodynamic and continuum limits exist, and we recover

the Schwinger correlation functions.

To be specific, let us consider the case of the (Euclidean) Klein-Gordon

field in d-dimensional space. Let Γ = Γε,L = εZd/LZd, where L is chosen
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so that L/2ε is a positive integer. Then Γ is a cube in the lattice εZd; note

that in fact

Γ =

{
x ∈ εZd ⊂ Rd : −L

2
≤ xj <

L

2
, j = 1, 2, . . . , d

}
.

The volume of this cube is |Γ| = (ε−1L)d. If F : Γ→ C, we write
∫

Γ
F (x) dx = εd

∑

x∈Γ

F (x) .

A scalar field over the lattice Γ is simply a function ϕ : Γ→ C. The space

of all such fields is therefore CΓ. We define a Hermitian inner product on

CΓ by

〈ϕ,ψ〉Γ =

∫

Γ
ϕ(x)ψ(x) dx .

Definition 7.1 The discrete Laplacian on the finite lattice Γ is the differ-

ence operator −∆ : CΓ → CΓ given by

−∆φ(x) =
1

ε2

d∑

k=1

(2φ(x) − φ(x+ εek)− φ(x− εek)) .

Here, {e1, e2, . . . , ed} is the canonical basis of Rd. It is a convention in

the above expression for −∆ that φ is taken to be equal to zero at points

outside Γ. Thus, up to a multiplicative constant, the value of the discrete

Laplacian of φ at x is the difference between φ(x) and the average value of

φ at the neighboring sites of x in Γ. The discrete Laplacian is a positive

linear operator, in the sense that

〈φ,−∆φ〉Γ > 0 provided 〈φ, φ〉Γ > 0 .

It is also symmetric, in other words 〈φ,−∆ψ〉Γ = 〈−∆φ,ψ〉Γ, for all φ,ψ ∈
CΓ.

Definition 7.2 The discrete Euclidian Klein-Gordon operator A : CΓ → CΓ

is the linear operator given by

Aφ = −∆φ+m2φ .

It is worth to summarize the basic properties of this operator in a simple

lemma.

Lemma 7.4 The discrete Klein-Gordon operator A is positive and self-

adjoint. In particular, it has an inverse.



180 Perturbative Quantum Field Theory

Proof Exercise.

Since we are dealing with finite-dimensional spaces here, every linear op-

erator T : CΓ → CΓ has a kernel , namely a map

Γ× Γ ∋ (x, y) 7→ T (x, y) ∈ C ,

such that

Tφ(x) =

∫

Γ
T (x, y)φ(y) dy .

In particular, the discrete Laplacian has a kernel. To identify it, let us

write δΓ(x, y) = ε−dδxy, where δxy is 1 if x = y and zero otherwise. This is

precisely the kernel of the identity operator, since

φ(x) =

∫

Γ
δΓ(x, y)φ(y) dy .

Now we have the following fact.

Lemma 7.5 The discrete Laplacian operator has kernel

−∆(x, y) =
1

ε

d∑

k=1

(2δΓ(x, y)− δΓ(x+ εek, y)− δΓ(x− εek, y)) .

Proof Exercise.

Functional derivatives can also be discretized. If S : CΓ → C is a differ-

entiable (typically non-linear) functional, then δS/δφ(x) is defined so that

DS(φ)δφ = lim
t→0

1

t
(S(φ+ tδφ)− S(φ)) =

∫

Γ

δS

δφ(x)
δφ(x) dx .

We are now ready for discrete path integrals. Let us introduce a measure

in the space of all discretized fields; we simply take it to be Lebesgue measure

in CΓ, written as

DΓφ =
∏

x∈Γ

dφ(x) .

Let SΓ : CΓ → C be an action functional in the space of fields, having the

following form

SΓ(φ) =
1

2
〈φ,Aφ〉+ λSint

Γ (φ) ,

where Sint
Γ (φ) represents the interaction part of the action and involves



7.3 Discretization of Euclidean scalar fields 181

higher than quadratic terms in the field. The most important example is

the so-called φ4-action given by

Sint
Γ (φ) =

∫

Γ
φ(x)4 dx .

Let us also consider a linear functional J : Γ→ R. The (generalized) discrete

partition function ZΓ(J) is given by

ZΓ(J) =

∫

CΓ

e−SΓ(φ)+〈J,x〉Γ DΓφ .

Now, if we are given an observable O in the space of fields, its expectation

is defined to be

〈O〉 =
1

ZΓ(0)

∫

CΓ

Oe−SΓ(φ) DΓφ .

Likewise, if we are given k such observables, their correlation is given by

〈O1O2 · · ·Ok〉 =
1

ZΓ(0)

∫

CΓ

O1(φ)O2(φ) · · ·Ok(φ)e−SΓ(φ) DΓφ .

In particular, the k-point Schwinger correlation functions are given by

〈φ(x1)φ(x2) · · · φ(xk)〉 =
1

ZΓ(0)

∫

CΓ

k∏

j=1

φ(xj)e
−SΓ(φ) DΓφ .

Everything here, of course, provided these integrals exist. The existence

depends on imposing reasonable conditions on the action functional. When

the action is a positive definite quadratic form (as is the case for the discrete

Klein-Gordon action), the partition function is a Gaussian integral that can

be explicitly evaluated (see section).

Lemma 7.6 The Schwinger k point correlation functions satisfy the identity

〈φ(x1)φ(x2) · · ·φ(xk)〉 =

[
1

ZΓ(J)

δ

δJ(x1)
· · · δ

δJ(xk)
ZΓ(J)

]

J=0

.

Proof Differentiate under the integral sign.

Let us now evaluate these integrals in the case of interest to us, namely

the Klein-Gordon field. Let us denote by C = CΓ : CΓ → CΓ the positive,

self-adjoint operator which is the inverse of the Klein-Gordon operator A.

The fields are now real, and so the partition function is

ZΓ(J) =

∫

RΓ

e−
1
2
〈φ,Aφ〉Γ+〈J,φ〉Γ DΓφ .
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Using the results on Gaussian integrals of section , we see that

Z0 = ZΓ(0) = (2π)|Γ|/2
√

detC ,

and also that

ZΓ(J) = Z0e
1
2
〈J,CJ〉Γ .

Therefore, by lemma 7.6, the k point correlation functions are given by

〈φ(x1)φ(x2) · · · φ(xk)〉 =
1

Z0

(
δ

δJ(x1)
· · · δ

δJ(xk)

)
e

1
2
〈J,CJ〉Γ

∣∣∣
J=0

.

More generally, we have

Lemma 7.7 If f1, f2, . . . , fk are arbitrary polynomials, then

〈f1f2 · · · fk〉 = f1

(
δ

δJ

)
· · · fk

(
δ

δJ

)
e

1
2
〈J,CJ〉Γ

∣∣∣
J=0

.

Proof Exercise.

7.3.1 The Fourier transform

Oftentimes, when studying field theory, we need to pass from coordinate

space to momentum space and vice-versa. What allows us to do this is the

Fourier transform, for fields on our finite lattice Γ = Γε,L = εZd/LZd (where

as before L/2ε ∈ N). In order to define the Fourier transform in this finite

setting, let us first consider the dual lattice to Γ, namely

Γ∗ =
2π

L
Zd/

2π

ε
Zd

Given p ∈ Γ∗ and x ∈ Γ, we write

p · x = p1x1 + p2x2 + · · · + pdxd .

Definition 7.3 The Fourier transform of F : Γ→ C is given by

F̂ (p) =

∫

Γ
F (x)e−ip·x dx .

Just as with the standard theory of the Fourier transform, here too we

have an inversion formula,

F (x) =

∫

Γ∗

F̂ (p)eip·x dp .

The integral over the dual lattice Γ∗ is defined exactly as before. So is the

hermitian product of dual) fields in CΓ∗

.
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Now suppose we have a linear operator A : CΓ → CΓ on the space of

fields, say given by

(Aφ)(x) =

∫

Γ
A(x, y)φ(y) dy .

Then we define its Fourier transform to be the linear operator Â : CΓ∗ → CΓ∗

given by Â(φ̂) = Â(φ). If we express Â through its kernel,

(Âφ̂)(p) =

∫

Γ∗

Â(p, q)φ̂(q) dq ,

then it is clear that such kernel is given by

Â(p, q) =

∫

Γ
e−ip·x

[∫

Γ
A(x, y)eip·y dy

]
dx .

The main example is provided by the discrete Laplacian, whose kernel, as

we saw earlier, is

−∆(x, y) = ε−2
d∑

k=1

(2δΓ(x, y)− δΓ(x+ εek, y)− δΓ(x− εek, y))

One can prove (exercise) that in this case the kernel of the Fourier transform

of the Laplacian is given by

−∆̂(p, q) = δΓ∗(p, q)Dε(p) ,

where

Dε(p) =
2

ε2

d∑

k=1

(1− cos (εpk)) .

We can use this fact to study the discrete Klein-Gordon operator as well.

In this situation we find that the free covariance or propagator that we met

earlier (which is in fact a discrete version of a fundamental solution to the

Klein-Gordon equation) is given by

CΓ(x, y) =

∫

Γ∗

eip·(x−y)

m2 +Dε(p)
dp . (7.9)

From this and the expression obtained earlier for the partition function

ZΓ(0), we see that

ZΓ(0) = det (2πCΓ) =
∏

p∈Γ∗

(
2πLd

εd
1

m2 +Dε(p)

)1/2

.
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Going back to (7.9), we analyze the behavior of the propagator when we

take the thermodynamic and continuum limits. This will be very important

when investigating the perturbative expansion of the scalar field, see the

next section. First of all, when we let L → ∞ (thermodynamic limit), we

get

Cε(x, y) = lim
L→∞

CΓ(x, y) =
1

(2π)d

∫

Q(ε)

eip·(x−y)

m2 +Dε(p)
ddp ,

where Q(ε) = Rd/
(

2π
ε

)
Zd. Second, when we now let ε → 0 (continuum

limit), then as long as x 6= y, we do get a finite limit, given by the integral

C(x, y) = lim
ε→0

Cε(x, y) =
1

(2π)d

∫

Rd

eip·(x−y)

m2 + p2
ddp ,

This integral (for x 6= y!) converges, as one can easily check using the

residue theorem. When x = y the integral obviously diverges, but we have

the following asymptotic behavior. As |x− y| → 0, we have

C(x, y) ∼
{
|x− y|−(d−2) for d ≥ 3

log |x− y| for d = 2

7.4 Perturbative quantum field theory

Here we consider perturbative theory, in which the Lagrangian is a pertur-

bation of a quadratic Lagrangian, which once again involves

(i) Discretization (to a lattice in Zd).

(ii) Finite volume approximation.

(iii) Perturbative expansion in terms of the coupling constants

(iv) Feynman diagrams.

(v) Continuum and thermodynamical limits of Feynman diagrams.

(vi) Euclidean field theory and statistical mechanics.

There are problems of two kinds here. There is a divergence problem, and

there is also the problem that the Lagrangian is in general non-invertible.

7.4.1 Perturbative Euclidean φ4-theory

We shall study here the so-called φ4-theory, in its Euclidean form. In this

scalar (bosonic) theory, the interaction part of the Lagrangian consists of

a single quartic monomial of the form λφ4/4!, where λ > 0 is the coupling

constant.
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7.4.1.1 Asymptotic expansion: heuristics

Ideally, we know from Wightman’s reconstruction theorem (chapter 6) that

we can recover a quantum field theory from its Wightman correlation func-

tions. In Euclidean QFT (i.e., after a suitable Wick rotation), the relevant

correlation functions are the Schwinger n-point functions. In the present

situation (φ4-theory), these Schwinger functions are given by

Sn(x1, x2, . . . , xn) =
1

Z

∫
φ(x1)φ(x2) · · · φ(xn)e

− λ
4!

∫
φ(x)4 dx dµC(φ) ,

where dµC is the Gaussian measure with correlation operator C given by

the inverse of the Klein-Gordon operator, and Z is the quantum partition

function

Z =

∫
e−

λ
4!

∫
φ(x)4 dx dµC(φ) .

The naive standard approach to the study of these integrals is to write down

an asymptotic expansion of the form

Sn(x1, x2, . . . , xn) ∼
∞∑

k=0

Sn,k(x1, x2, . . . , xn)λ
k

for the n-point Schwinger function, where

Sn,k(x1, x2, . . . , xn) =
(−1)

Z

1

k!(4!)k
×

×
∫
φ(x1) · · ·φ(xn)

(∫

Rd

φ(y) dy

)k
dµC(φ) .

and a similar asymptotic expansion for Z.

This is all purely formal. Indeed, as we noted at the end of section 7.2,

although the measure dµC(φ) exists in the infinite dimensional setting, the

typical field φ in its support is not a function but merely a distribution, and

therefore the above integrals expressions do not even make sense. Hence

the strategy to follow is to work with the discretization process described

earlier, where everything makes sense.

7.4.1.2 Discrete Schwinger functions

We shall work with the discretized field in a finite lattice Λ ⊂ Rd, as in

the previous section. We would like to calculate the Schwinger correlation

functions given by

SΛ
n (x1, x2, . . . , xn) =

∫

RΛ

φ(x1)φ(x2) · · · φ(xn) e
− λ

4!

∫
Λ
φ(x)4 dx dµC(φ) ,
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where, as before, dµC is the Gaussian measure with correlation operator

C = A−1 (the inverse of the discretized Klein-Gordon operator) and
∫

Λ
φ(x)4 dx = εd

∑

x∈Λ

φ(x)4 .

Here, everything is in principle computable, since we are in a finite lattice.

We can expand the exponential as a (formal) power series in λ, obtaining

SΛ
n (x1, x2, . . . , xn)

=

∫

RΛ

φ(x1)φ(x2) · · ·φ(xn)

∞∑

k=0

(−1)k

k!

λk

(4!)k

(∫

Λ
φ(x)4 dx

)k
dµC(φ)

=
∞∑

k=0

(−1)k

k!(4!)k
λk
∫

RΛ

φ(x1)φ(x2) · · · φ(xn)
k∏

j=1

(∫

Λ
φ(yj)

4 dyj

)k
dµC(φ) .

This shows that we can write each Schwinger function as a perturbative

series

SΛ
n (x1, x2, . . . , xn) =

∞∑

k=0

λkSΛ
n,k(x1, x2, . . . , xn) ,

where

SΛ
n,k(x1, x2, . . . , xn) =

(−1)k

k!(4!)k
λk

∫

Λ
dy1 · · ·

∫

Λ
dyk

[∫

RΛ

φ(x1) · · · φ(xn)φ(y1)
4 · · ·φ(yk)

4 dµC(φ)

]
.

(7.10)

Note that we have interchanged the order of integration (Gaussian measure

first, then the product measure dy1 · · · dyk). This interchange is legitimate

because the integrals over Λ are just finite sums.

Now, the point is that the integral appearing in the right-hand side of

(7.10) can be evaluated explicitly with the help of Wick’s theorem. For n

odd, the integral is equal to zero. When n is even, the final result will involve

a sum of terms corresponding to all possible pairings of the n + 4k terms

appearing in the integrand, namely

φ(x1) · · · φ(xn) φ(y1)φ(y1)φ(y1)φ(y1) · · · φ(yk)φ(yk)φ(yk)φ(yk) .

The number of all such pairings is (n + 4k − 1)!!, a large number even

for modest values of n and k. The task of computing the Wick sum can

be considerable simplified by collecting together large groups of identical
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terms, each group being characterized by a combinatorial device known as

a Feynman diagram, as we shall explain.

Before jumping to a formal definition of Feynman diagrams, let us examine

a simple example in detail.

Example 1. Let us consider the case when n = 2 (that is to say, we are

interested in the 2-point correlation function S2(x1, x2)). The first term in

the sum defining S2(x1, x2) has k = 0. In this case there is only one pairing

φ(x1)φ(x2), and we easily get

S2,0(x1, x2) = C(x1, x2) .

The second term in the sum has k = 1. In order to apply Wick’s theorem,

we need to write down all possible pairings of the six terms in the product

φ(x1)φ(x2)φ(y1)φ(y1)φ(y1)φ(y1)

Here there are two cases to consider.

(i) The term φ(x1) pairs up with φ(x2), and the four copies of φ(y1) make

up two more pairs. This can be done in 3 ways, each contributing

C(x1, x2)C(y1, y1)
2

to Wick’s sum. This case can be represented graphically as in figure 1

(a). The diagram displays an edge connecting the two white vertices

labeled x1 and x2, and two loops forming a figure eight connecting a

single black vertex to itself (not labeled in the figure, but corresponding

to y1).

(ii) The term φ(x1) pairs up with one of the four copies of φ(y1), the term

φ(x2) pairs up with a second such copy, and the two remaining terms

pair with each other. Here there are altogether 12 possibilities, each

contributing

C(x1, y1)C(x2, y1)C(y1, y1)

to Wick’s sum. Again, this information can be encoded graphically, see

the diagram in figure 1 (b). Note that now the diagram is connected;

there are two edges connecting the white vertices labeled x1 and x2

to the (unlabeled) black vertex, which is also connected to itself by a

loop.

Note that adding up the total number of possibilities in both cases we get

3+12 = 15, which is precisely the number of possible pairings of six objects
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x1 x2 x1 x2

(a) (b)

Fig. 7.1. The two Feynman diagrams in F e
2,1

((6− 1)!! = 5 · 3 · 1 = 15). Summarizing, we have shown that

S2,1(x1, x2) =

− 1

24

∫

Λ

[
3C(x1, x2)C(y1, y1)

2 + 12C(x1, y1)C(x2, y1)C(y1, y1)
]
dy1 .

This can be re-written as

S2,1(x1, x2) = (7.11)

− 1

8

∫

Λ
C(x1, x2)C(y1, y1)

2 dy1 −
1

2

∫

Λ
C(x1, y1)C(x2, y1)C(y1, y1)dy1 .

How are we to interpret the numbers appearing in front of these integrals?

The answer pops up if we go back to figure 1 and examine the symmetries

of both Feynman diagrams. We are not allowed to change the positions of

the labeled vertices x1 and x2. In figure 1 (a), this forces us to leave the

edge connecting these two labeled vertices untouched; the remaining figure

eight has a symmetry group generated by three elements of order two: for

each loop in the figure, there is a reflection about the symmetry axis of

that loop (switching its ends) – call these reflections a and b – and also an

involution c that switches both loops. These generators satisfy the relations

a2 = b2 = c2 = 1 and cac = b. The reader can easily check that the resulting

group of symmetries has order 8. This is precisely the number that appears

in the denominator of the fraction multiplying the first integral in (7.11).

The situation in figure 1 (b) is even simpler. Here the only possible symmetry

besides the identity consists of a flip of the single loop in the picture about

its (vertical) axis, keeping the labeled vertices in their places. Hence the

symmetry group has order 2, which is once again the denominator of the
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fraction that multiplies the second integral in (7.11). These remarkable facts

are valid in general, as we shall see in the sequel.

7.4.2 Feynman diagrams

Now that we have seen some examples of Feynman diagrams and how they

appear in the perturbative expansion of a scalar field theory, let us proceed

to a formal definition of these combinatorial objects.

Definition 7.4 A Feynman diagram with n external vertices and k inter-

nal vertices consists of three finite sets V , E and F , having the following

properties.

(i) The set V is the disjoint union Ve⊔Vi where Ve has n elements called

external vertices and Vi has k elements called internal vertices;

(ii) The set F has an even number of elements, called ends of edges, and

the set E – whose elements are called edges – is a pairing of the set

F , i.e. there exists a two-to-one map of F onto E;

(iii) There exist a map ∂ : E → V × V/ ∼, where ∼ is the equivalence

relation (a, b) ∼ (b, a), called the incidence map, and a surjective map

γ : F → V such that if e ∈ E, if ∂(e) = {a, b} and e = {α, β} ⊆ F ,

then {γ(α), γ(β)} = {a, b};
(iv) If v ∈ Ve then γ−1(v) has only one element, called an external end;

if v ∈ Vi, then γ−1(v) has at least two elements.

An edge having an external end is called, not surprisingly, an external

edge. We also remark that in the φ4 theory under study in this chapter,

all graphs appearing in the perturbative expansion have the property that

γ−1(v) has exactly 4 elements for every v ∈ Vi.
The reader can check that the formal definition given above indeed cor-

responds to the intuitive notion of Feynman diagram given before through

examples.

Definition 7.5 In a Feynman diagram, the valency of a vertex v is the

number of elements in γ−1(v) ⊆ F .

In other words, the valency of a vertex v is the number of ends-of-edges

that meet at v. Thus, every external vertex has valency equal to 1. For the

Feynman diagrams appearing in the φ4-theory considered in this chapter,

every internal vertex has valency 4. This is the case, of course, of the

diagrams in figures 1 and 2.
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x1

x1

x1
x1

x1x1x1

x2

x2

x2

x2

x2x2x2

Fig. 7.2. The 7 Feynman diagrams that make up F e
2,2

Now we need a notion of equivalence between two diagrams. This is akin

to the notion of isomorphism of graphs, the main difference here being that

we have to take into account the ends of edges, in addition to vertices and

edges.

Definition 7.6 An equivalence between two diagrams

Gj = (Vj , Ej , Fj ; ∂j , γj) (j = 1, 2) is a triple of bijections V1 → V2, E1 → E2

and F1 → F2 that are compatible with the incidence and pairing relations

given by ∂j , γj .

We also need the notion of automorphism of a Feynman diagram. Roughly

speaking, an automorphism of a diagram is a bit more special than an equiv-

alence of that diagram to itself: we don’t want an automorphism to move

the external vertices around. Here is the formal definition.

Definition 7.7 An automorphism θ : (V,E, F ; ∂, γ) ←֓ of a Feynman dia-

gram consists of the following three maps:

(i) a bijection θV : V → V such that θV
∣∣
Ve

= idVe ;
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(ii) a bijection θE : E → E that is compatible with θV with respect to the

incidence relation;

(iii) a bijection θF : F → F that is compatible with both θV and θE.

It is worth remarking that even when θV = idV and θE = idE, it may

still happen that θF 6= idF . It is clear how to compose two automorphisms

of a Feynman graph G, and it is clear also that, under this composition

operation, the set of all automorphisms of G is a group, denoted Aut(G).

Let us denote by Fn,k the set of all Feynman diagrams with n external

vertices and k internal vertices up to equivalence. We have the following

basic combinatorial result.

Lemma 7.8 Let G ∈ Fn,k be a Feynman diagram whose internal vertices

have valencies n1, n2, . . . , nk. Then the automorphism group of G has order

given by

|Aut(G)| =
k!

PG
(n1!)(n2!) · · · (nk!)

where PG is the number of possible pairings of adjacent internal vertices of

G.

Proof An exercise in combinatorics to the reader.

For the purposes we have in mind (namely, perturbative expansions) it

will be convenient to label our Feynman diagrams. We will consider two

possible types of labeling. Given G ∈ Fn,k, we can label its external ver-

tices by x1, x2, . . . , xn, keeping the internal vertices unlabeled. The class of

all such externally labeled diagrams (up to equivalence) will be denoted by

F e
n,k. The second type of labeling is that in which, in addition to label-

ing the external vertices of G as before, we label and its internal vertices

by y1, y2, . . . , yk. The set of all such (externally and internally) labeled dia-

grams will be denoted by Gn,k. Clearly, every automorphism of an externally

labeled diagram preserves the external labels.

We need also the notion of a vacuum diagram.

Definition 7.8 A vacuum diagram is a Feynman diagram without external

vertices.

Some examples of connected vacuum diagrams are shown in figure 3. We

shall assume that the countable collection of all connected vacuum diagrams

(up to equivalence) is enumerated V1, V2, . . . , Vj , . . .
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7.4.3 Algebraic structure of Feynman diagrams

Let F = ∪F e
n,k be the collection of all (equivalence classes) of externally

labeled Feynman diagrams. Then F has the structure of an abelian semi-

group under the operation of disjoint union:

G1 ∈ F e
n1,k1, G2 ∈ F e

n2,k2 =⇒ G1 ⊛G2 = G1 ⊔G2 ∈ F e
n1+n2,k1+k2 .

The neutral element is, of course, the empty diagram: G⊛ ∅ = ∅ ⊛G = G.

Now let A (F ) be the algebra of all complex-valued functions defined on

F . An element of A (F ) is a formal, and possibly infinite, linear combina-

tion of diagrams, such as
∑

j

αjGj , where Gj ∈ F and αj ∈ C for all j .

Note that A (F ) contains all formal power series in any number of variables,

e.g. ∑

(j1,j2,··· ,jk)

αj1,j2,··· ,jk G
j1
1 ⊛Gj22 ⊛ · · · ⊛Gjkk .

Here, naturally, Gn means the product G ⊛ G ⊛ · · · ⊛ G (n times). In

particular, we can exponentiate any Feynman diagram, namely

eG = ∅ +G+
1

2!
G2 + · · ·+ 1

n!
Gn + · · ·

This has the familiar properties of the exponential, such as eG1+G2 = eG1 ·
eG2 .

We can assign a scalar value, or weight , to each element of our algebra, in

a way that will be most convenient in our study of perturbative expansions.

This value will depend also on the correlation operator C and on the finite

lattice Λ introduced earlier. Let C(λ) be the algebra of formal power series

in λ. We define the value map ν : A (F ) → C(λ) as follows. Given G ∈ F
we let

ν(G) = (−λ)|Vi(G)|
∫

Λk

∏

e∈E(G)

C(e) dy1dy2 · · · dyk . (7.12)

where Vi(G) is the set of internal vertices of G, E(G) is the set of edges,

C(e) = C(v,w) is the value of the propagator when the vertices of e are v,w,

and where the k = |Vi(G)| internal vertices of G are labeled y1, y2, . . . , yk.

We extend the definition of ν to the whole algebra A (F ) in the obvious

fashion. However, to make sure the definition is consistent, we need the

following simple lemma.
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Lemma 7.9 The right-hand side of (7.12) is independent of the internal

labeling of G.

Proof If σ : {y1, y2, . . . , yk} ←֓ is a permutation, then its induced change of

variables in (7.12) has Jacobian determinant equal to 1.

We have also the following natural result.

Lemma 7.10 The value map ν : A (F ) → C(λ) is a homomorphism of

algebras.

Proof The map ν is C-linear by construction. Hence it suffices to show

that it is multiplicative (in F ). If G = G′ ⊛ G′′ then obviously Vi(G) =

Vi(G
′) ⊔ Vi(G′′) and E(G) = E(G′) ⊔ E(G′′). Let us write k′ = |Vi(G′)|,

k′′ = |Vi(G′′)|, and let us label the vertices of G so that y1, . . . , yk′ are the

vertices of G′ and yk′+1, . . . , yk′+k′′ are the vertices of G′′. Since there are no

edges joining vertices of G′ to the vertices of G′′, the product in the integrand

of the expression defining ν(G) splits. Therefore, applying Fubini’s theorem

we get

ν(G) = (−λ)k
′+k′′

∫

Λk′+k′′

∏

e∈E(G)

C(e) dy1 · · · dyk′dyk′+1 · · · dyk′+k′′

= (−λ)k
′+k′′

∫

Λk′

∏

e′∈E(G′)

C(e′) dy1 · · · dyk′×

×
∫

Λk′′

∏

e′′∈E(G′′)

C(e′′) dyk′+1 · · · dyk′+k′′

= ν(G′) · ν(G′′)

Before we go back to the perturbative expansion of φ4-theory, we need

one more result concerning the relationship between the algebraic structure

of a Feynman diagram and its group of automorphisms. Recall that we have

enumerated all connected vacuum diagrams as V1, V2, . . . , Vj , . . .

Lemma 7.11 Every externally labeled Feynman diagram G admits a unique

representation of the form

G = V k1
1 ⊛ V k2

2 ⊛ · · · ⊛ V km
m ⊛G♯ , (7.13)

where each kj ≥ 0 and m is the smallest possible, and G♯ is the maximal sub-

diagram of G all of whose connected components contain external vertices
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of G. In particular, we have

|Aut(G)| = k1! · · · km! |Aut(V1)|k1 · · · |Aut(Vm)|km |Aut(G♯)| . (7.14)

Fig. 7.3. Some examples of (connected) vacuum diagrams

Proof We present a brief sketch of the proof, leaving the details as a combi-

natorial exercise to the reader. A connected component of G either contains

external vertices, or it doesn’t. In the latter case, it is necessarily a (con-

nected) vacuum diagram, i.e. it is equal to some Vj. We can factor out from

G all vacuum diagrams, putting equivalent diagrams together (writing their

disjoint union as powers of a same vacuum diagram). The subdiagram G♯

of G that is left after this finite process contains all the external vertices of

G. In this way, we obtain the representation in (7.13). Now, every automor-

phism of G maps connected components onto connected components, and it

also fixes the set of external vertices pointwise. Hence it must map G♯ onto

itself, and it must also permute the vacuum components of the same type.

There are kj ! possible permutations of the kj components equivalent to Vj .

This accounts for the product of factorial terms in the right-hand side of

(7.14). The rest of the formula is clear.

7.4.4 Back to φ4-theory

Now we have all the tools at hand to calculate the perturbative expansion

of the discrete Schwinger functions in the case of scalar φ4-theory.
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Theorem 7.2 For all n ≥ 0 and each k ≥ 0 we have

ZλkSΛ
n,k(x1, x2, . . . , xn) =

∑

G∈Fn,k

ν(G)

|Aut(G)| .

Proof The proof combines Wick’s theorem with the combinatorial lemmas

of the previous subsection, and is left as a (challenging) exercise for the

reader.

Corollary 7.1 For all n ≥ 0, the discrete n-point Schwinger correlation

function is given by

SΛ
n (x1, x2, . . . , xn) =

∑

G♯

ν(G♯)

|Aut(G♯)| .

Proof Apply Theorem 7.2 and Lemma 7.11.

7.4.5 The Feynman rules for φ4 theory

We summarize the above discussion by stating the Feynman rules for com-

puting the amplitudes of graphs in the scalar φ4 theory. First we state

these rules in coordinate space. It is necessary to undo the Wick rotation

we performed in the beginning, going back to Minkowski space. Then the

Euclidean propagator (for d = 4), given by

C(x, y) =
1

(2π)4

∫

R4

eip·(x−y)

p2 +m2
d4p ,

becomes, after the change p0 7→ ip0, the Feynman propagator

DF (x, y) =
1

(2π)4

∫

R4

−ieip·(x−y)
p2 −m2 + iε

d4p ,

where now it is implicit that the dot product represents the Minkowski inner

product (in particular, p2 = (p0)2− (p1)2− (p2)2− (p3)2). We are now ready

to state the Feynman rules in coordinate space.

Feynman rules in coordinate space:

(1) To each edge with endpoints labeled x and y, we associate a propagator

DF (x− y).
(2) To each internal vertex labeled by y we associate the weighted integral

(−iλ)
∫
d4y.

(3) To each external vertex labeled by x, we simply associate the factor 1.
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(4) Divide the product of all these factors by the diagram’s symmetry factor.

These rules can be Fourier transformed into corresponding rules in momen-

tum space. In this situation, each edge of our Feynman diagram is labeled

by a momentum variable and is given an arbitrary orientation. The rules

become the following.

Feynman rules in momentum space:

(1) To each edge labeled by p, we associate a propagator given by

i

p2 −m2 + iε
.

(2) To each internal vertex we associate the weight (−iλ) times a delta

function that imposes momentum conservation at that vertex.

(3) To each external vertex labeled x we associate the factor e−ip·x, where

p is the momentum (pointing away from x) labeling its external edge.

(4) Integrate over each momentum variable, normalizing each integral by

the factor 1
(2π)4

.

(5) Divide everything by the diagram’s symmetry factor.

The computation of the Feynman amplitudes can therefore be performed

in two ways (coordinate or momentum space), and what takes us from one

to the other is the Fourier transform. Let us illustrate this equivalence by

means of two examples. In the first example the Feynman amplitude will

be a convergent integral, whereas in the second the amplitude will diverge

(and renormalization will be necessary, see chapter 8).

Example 2. Let us consider the Feynman diagram G of figure 4. This dia-

gram has six external vertices labeled x1, . . . , x6 and three internal vertices

labeled y1, y2, y3, with each yj (j = 1, 2, 3) adjacent to x2j and x2j−1. Note

that the symmetry group for this diagram is trivial. Indeed, the external

vertices xi remain fixed, hence each yj is fixed as well, which fixes the three

edges connecting these three vertices. Therefore the symmetry factor is

equal to 1. Applying the Feynman rules in coordinate space, we see that

the amplitude for this graph is

AG(x1, . . . , x6) = (−iλ)3
∫ ∫ ∫ 3∏

j=1

DF (yj − x2j−1)DF (x2j − yj) ×

× DF (y2 − y1)DF (y3 − y2)DF (y1 − y3) d
4y1d

4y2d
4y3 .

On the other hand, in the dual diagram in momentum space there are six
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external momenta p1, p2, . . . , p6, and three internal momenta k1, k2, k3 (in-

tegration variables). Hence, if we apply the Feynman rules in momentum

space, we get

AG(x1, . . . , x6) =
(−iλ)3

(2π)36

∫
· · ·
∫
e−i(p1x1−p2x2+p3x3−p4x4+p5x5−p6x6)×

δ(p1 − p2 + k2 − k3)δ(p3 − p4 + k3 − k1)δ(p5 − p6 + k1 − k2)×

×
6∏

j=1

i

p2
j −m2 + iε

3∏

ℓ=1

i

k2
ℓ −m2 + iε

d4k1d
4k2d

4k3 d
4p1 · · · d4p6 .

This second value for the amplitude is supposed to be equal to the first.

Showing that they are equal seems a rather daunting task. But it could be

done, if only we could make sense of the product of delta functions appearing

in the integrand in the right-hand side of this last formula. This will be

done below, after this example and the next. There is something more we

can say here, without having to do the integrations explicitly. Using the

conservation of momenta at each vertex we deduce easily that the external

momenta satisfy the relation p6 = p1 − p2 + p3 − p4 + p5. This means that

the Fourier transform of the Feynman amplitude in momentum space is a

function of only five of the six external momenta. When this information

is used in the last formula above, we get that AG is a function of the five

differences x1 − x6, . . . , x5 − x6, a fact that may not be apparent if we look

at the first expression for the amplitude. But it is consistent with the fact

that the Feynman amplitudes (or the correlation functions) are translation

invariant (this comes from the Lorentz invariance of the field). We emphasize

that the amplitude in this example is given by a convergent integral.

x1

x2 x3

x4

x5x6

y1 y2

y3

p1

p2 p3

p4

p5p6

k1k2

k3

(a) (b)

Fig. 7.4. Feynman diagram for example 2: here, momentum conservation tells us
that p1 + p3 + p5 = p2 + p4 + p6
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Example 3. Now let us consider the Feynman diagramG of figure 5, with two

external vertices labeled x1 and x2 and two internal vertices labeled y1 and

y2. The symmetry group for this diagram has order 3! = 6, corresponding

to the permutations of the three internal edges, which are the only possible

symmetries. Following the Feynman rules in coordinate space, the amplitude

of this diagram is given by

AG(x1, x2) =
(−iλ)2

6

∫∫
DF (y1 − x1)DF (y2 − y1)

3DF (x2 − y2) dy1dy2 .

On the other hand, if we apply the Feynman rules in momentum space, we

arrive at

AG(x1, x2) =
i5(−iλ)2

6(2π)20

∫
· · ·
∫

e−i(p1x1−p2x2)

∏2
j=1(p

2
j −m2 + iε)

∏3
ℓ=1(k

2
ℓ −m2 + iε)

× δ(p1 − k1 − k2 − k3)δ(k1 + k2 + k3 − p2) d
4k1d

4k2d
4k3 d

4p1d
4p2 .

If the rules are consistent, these two values for the amplitude must be equal.

They are, and once again this involves understanding the meaning of the

product of delta distributions in the integrand of this last formula. See

the discussion below. As in the previous example, we note that momentum

conservation tells us that p1 = p2, and this in turn implies that the amplitude

AG(x1, x2) is in fact a function of the difference x1−x2. Unlike the previous

example, however, this amplitude is divergent (and in order to extract from

it a physically meaningful number, renormalization must be applied; see

chapter 8).

x1 x2

y1 y2

p1 p2

k1

k2

k3

(a) (b)

Fig. 7.5. Feynman diagram for example 3: here, momentum conservation implies
p1 = p2

How are we to make sense of the products of delta functions that appear in

these examples? What do physicists mean by that? Although in general we

cannot multiply distributions, here the situation is much simpler because the

expressions of momentum conservation at the vertices, taken in as arguments
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1. Propagators:

2. Vertices:

= 1 = 1

= −ig

= us(p) = ūs(p)

= vs(k)
kk

= v̄s(p)

=
i

q2 −m2 + iε

=
i(p/+m)

p2 −m2 + iε

qq

q

pp

p

3. External legs:

Fig. 7.6. Feynman rules for a Yukawa theory

of the delta functions, are linear expressions in the momenta. Thus, suppose

G is a Feynman graph with m external momenta p1, . . . , pm and n internal

momenta k1, . . . , kn, collectively denoted by p and k respectively. If s is

the number of internal vertices of G, the momentum conservation at each

vertex is a linear form on p and k, say ℓj(p, k), 1 ≤ j ≤ s. Hence for each

given p, we have a surjective linear map Lp : (R4)n → (R4)s, whose s image

components are precisely these linear forms. For instance, in example 3 we

have

Lp(k1, k2, k3) = (p1 − k1 − k2 − k3 , k1 + k2 + k3 − p2) .

We define the product of delta distributions as follows:

s∏

j=1

δ(ℓj(p, k)) = δ(Lp(k)) .
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Thus, when computing the Feynman amplitude AG in momentum space,

if we first integrate over the internal momentum variables k (ignoring the

exponential factors of the form eip·x), we get the Fourier transform ÂG,

which is given by an expression of the form

ÂG(p) =

∫
f(p, k) δ(Lp(k)) dk ,

where f(p, k) is a (rational) function of the momenta. Now, for each p we

can certainly find an invertible linear map Tp : (R4)n → (R4)n such that

π ◦ T = Lp, where π : (R4)n → (R4)s is the linear projection onto the first

s components. Using Tp as a change of variables, i.e. letting q = Tp(k), we

can re-write the Fourier transform of the amplitude as

ÂG(p) =

∫
f(p, T−1

p (q)) δ(π(q)) det T−1
p dk

=

∫
f(p, T−1

p (q1, . . . , qn−s, 0, 0, . . . , 0)) det T−1
p dq1 · · · dqn−s .

The role of the product of delta functions is now clear: it amounts to a

reduction on the number of integrations over internal momenta. The reader

can verify that there is a relationship between the number of integrations

performed and the number of loops in the Feynman diagram.

7.4.6 Perturbative theory for fermions

The perturbative theory for bosons developed so far can be adapted for the

Dirac field, with some significant changes that we briefly indicate. Recall

from chapter 6 that the Dirac field can be thought of as a Grassmann field,

whose values in spacetime are given by anti-commuting variables. Just as in

the bosonic case, we can write an action functional. This functional, with a

source term, can be written as follows:

Z[η, η̄] =

∫
exp

{
i

∫ (
ψ̄(i∂/−m)ψ + η̄ψ + ψ̄η

)
d4x

}
Dψ̄Dψ ,

where the source field η(x) takes values in a Grassmann algebra. Using the

standard trick of completing the square, we can re-write this formula as

Z[η, η̄] = Z0 exp

{
−
∫
η̄(x)SF (x− y)η(y) d4xd4y

}
,
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where Z0 is the value of the generating functional when the source field is

equal to zero, and where SF is the propagator

SF (x− y) =
1

(2π)4

∫
ie−ip·(x−y)

p/−m+ iε
d4p .

With this propagator at hand, we can try to imitate the procedure used for

scalar fields in order to calculate the correlations of this fermionic theory.

The idea is the same: we differentiate the generating functional with re-

spect to the source components, which are Grassmann variables. We learned

about Grassmann differentiation in chapter 6. In any case, we find that ev-

erything works provided we have a version of Wick’s theorem in the present

context. This amounts to knowing how to evaluate Gaussian integrals in-

volving Grassmann variables. We know how to do that already: this is

precisely the content of Theorem 6.8 of chapter 6.

Hence, everything we did so far in this chapter can be adapted to fermions.

We have perturbative expansions of correlation functions in terms of Feyn-

man diagrams and, just as before, only the connected diagrams will matter.

We also have Feynman rules for computing the amplitudes associated with

such diagrams. We shall not elaborate on these rules beyond merely stating

them. For details, the reader is invited to look in chapter 4 of [PS]. We

will in fact be a bit more general here and consider the rules for a theory

involving a Dirac fermionic field ψ coupled with a bosonic field φ through

the so-called Yukawa potential V = gψ̄ψφ (g being the coupling constant).

In this theory, we will have two types of edges: the scalar particles (bosons)

are represented by dashed lines, and the fermions are represented by solid

lines. The Feynman rules in momentum space are stated in figure 6.

7.4.7 Feynman rules for QED

We can turn to the case of Quantum Electrodynamics (QED), where we

have a fermionic field (whose particles and anti-particles are electrons and

positrons, respectively) interacting with a background electromagnetic field.

The full Lagrangian density for QED is

LQED = ψ̄(i∂/ −m)ψ − 1

4
FµνF

µν − eψ̄γµψAµ ,

Here, as we saw before, Aµ represents the connection (vector potential), and

Fµν is the its curvature (the field strength tensor). We interpret the con-

stant e as a coupling constant; one can therefore write down a perturbative

expansion as a power series in powers of e. As before, we have sums of

amplitudes over connected Feynman diagrams, and corresponding Feynman
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Photon propagator:

New vertex:

External photon lines:

=
−igµν

q2 + iε
µ

µ µ

pp
= ǫµ(p) = ǫ∗µ(p)Aµ|p〉 = 〈p|Aµ =

= −ieγµ

q
ν

Fig. 7.7. Additional Feynman rules for QED

rules for computing such amplitudes. The Feynman rules for QED are given

in figure 7.

7.4.8 Power counting

Let us consider a perturbative field theory whose Lagrangian involves both

bosons and fermions. We assume that we have already performed a pertur-

bative expansion, and we examine a given Feynman amplitude of a (con-

nected) Feynman diagram G in this expansion. Let us evaluate the contri-

bution to the degree of superficial divergence of G, denoted ωG, of a term in

the Lagrangian that involves r derivatives acting on the product of b bosons

and f fermions. The propagators for bosons contribute 1
2(−2b), and the

propagators for fermions contribute 1
2 (−f); here, it is necessary to divide

by 2 because each propagator corresponds to an edge of G having two ver-

tices. The integrations over internal momenta contribute 1
2(b+ f) ·d (where

d is the dimension). The delta function imposing momentum conservation

at the vertex reduces the number of integrations by 1, and therefore con-

tributes −d to ωG. Therefore, since each derivative contributes with 1, the

net contribution of this vertex to ωG is

1

2
(−2b− f + bd+ fd)− d+ r .
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This can be written as ωG = δ − d, where

δ =
b(d− 2)

2
+
f(d− 1)

2
+ r .

7.5 Perturbative Yang-Mills theory

In Yang-Mills theory, the gauge invariance implies that the quadratic form

appearing in the Lagrangian is non-invertible.

7.5.1 Ghosts and gauge-fixing

This problem was solved by Faddeev and Popov in 1967 with their theory

of ghosts and gauge fixing (Landau gauge). Also by Fradkyn and Tyutin in

1969 (Feynman gauge). In 1971 t’Hoof gave a formal proof of the validity

of these theories.

The idea behind the Faddeev-Popov construction is to proceed through

the following steps

(1) Gauge fixing. Once the gauge invariance is understood one performs

a gauge fixing . This means that one finds a submanifold of the space

of connections, {A;F (A) = 0}, that is intersected by each orbit of the

gauge group at exactly one point. This yields the notion of a determi-

nant (the Faddeev-Popov determinant) of an operator M such that the

partition function of the theory can be written as

Z =

∫
eiS(A) det (M) δ(F (A))DA .

(2) Ghosts One writes the determinant of M as the exponential of a trace

by introducing Grassmann fields η, η so that

det (M) = exp

{∫
(· · · ) dηdη

}
.

(3) One incorporates the determinant as well as the δ-function into the

exponential, writing

Z =

∫
eiS(A,η,η) dAdηdη .

(4) Perturbative expansion. Now one writes

S(A, η, η) = SQ + g · SNQ ,
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where SQ is the quadratic part of the action, SNQ is the non-quadratic

part, and g is a coupling constant, and then one performs a perturbative

series expansion as in the case of invertible Lagrangians.

The main difficulty to extend perturbation theory to the case of gauge

theories is that the quadratic part of the Lagrangian is no longer invertible

due to the gauge invariance. One possible strategy to overcome this problem

is to perform the path integral in the quotient space by the gauge group

action. In order to construct a formal measure on the quotient space we start

by gauge fixing: we represent the quotient space by a submanifold Σ of the

space of connections C which is transversal to the orbits of the gauge group

G intersecting each orbit in a unique point. Such a submanifold is usually

given by the zero level set of the function F on the space of connections.

The idea is to construct an induced “measure” on Σ, restrict the gauge

invariant functional we want to integrate to Σ, and integrate it with respect

to the induced “measure”. Of course the result must be independent of the

choice of Σ, which requires that the induced “density of the measure” should

contain a Jacobian determinant related to the derivative of F , the so called

Faddeev-Popov determinant. To make this picture clearer let us examine

an analogous finite-dimensional problem.

7.5.2 A finite dimensional analog

Let G be a compact Lie group of dimension l acting on the right on Rn by

isometries and so that the projection of Rn onto the orbit space Rn/G is

a trivial principal bundle. Let S : Rn → R be a G-invariant function. We

want to express the integral

Z =

∫

Rn

exp[iS(x)]dx

in terms of an integral in the orbit space. In order to do that, we will

represent the orbit space by a submanifold Σ ⊂ Rn that intersects each orbit

in a unique point. We may assume that Σ = {x ∈ Rn;F (x) = 0} where F is

a smooth fibration onto Rl. Let dλΣ = δ(F (x))dx be the restriction of the

Lebesgue measure on Σ and take a volume form dγ on G, invariant by right

translation. On Σ×G we will consider the product volume form dλΣ × dγ.
By invariance, the Jacobian of the diffeomorphism Φ: Σ×G→ Rn given by

Φ(y, g) = Rg(y), is a function det(∆) that depends only on the first variable.
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Since S(Φ(y, g)) = S(y), we have

Z =

∫

Σ×G
exp[iS(y)]det(∆(y))dλΣ × dγ

=

∫

G
dγ

∫

Σ
exp[iS(y)]det(∆(y)) dλΣ .

We may also write this equation as

Z =

∫

Rn

exp[iS(x)]det(∆Σ(x))δ(F (x)) dx ,

where det(∆Σ(x)) = det(∆(y)) if x is in the orbit of y ∈ Σ. The next

step in the Faddeev-Popov procedure is to write the delta function and the

determinant as an exponential. For the determinant, the trick is to use

anti-commuting variables and write

det(∆Σ(x)) =

∫
exp[i(c∆Σ c)] dc dc

If the gauge fixing map F can be translated to give another gauge fixing

Σz = {x ∈ Rn;F (x)−z = 0} in such a way that det(∆Σz(x)) = det(∆Σ(x)),

we again have

Z =

∫

Rn

exp[iS(x)] det(∆Σ(x))δ(F (x) − z) dx

for all z, and we can integrate over z with a Gaussian density to get

Z = N(ξ)

∫

Rl

dz exp

[−‖z‖2
2ξ

] ∫

Rn

exp [iS(x)] det(∆Σ(x))δ(F (x) − z) dx .

Interchanging the integrals and using that
∫

Rl

exp

[−i‖z‖2
2ξ

]
δ(F (x) − z) dz = exp

[−i‖F (x)‖2
2ξ

]
,

we get the following expression for the integral:

Z = N(ξ)

∫
dx

∫
dη

∫
dη exp [i(S(x)− SFP (x, η, η) − SGF (x))]

where SFP (x, η, η) = η∆Ση is the Faddeev-Popov action and

SGF (x) =
−i||F (x)||2

2ξ

is the gauge fixing action. The new action is a function of more variables.

The gauge invariance of the initial action implies that its quadratic part

cannot be inverted, and this problem is eliminated by the introduction of

the new variables.
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7.5.3 The Faddeev-Popov and gauge fixing actions

We now consider the pure Yang-Mills integral

Z =

∫
DA exp[i

∫
(−1

4
(F aµν)

2)] d4x .

As gauge fixing we can take a Lorentz gauge: F (A) = ∂µAaµ(x) or some

translation of it F (A)−ωa(x). As in the finite-dimensional example, we can

write this integral as

Z =

∫
Dα

∫
DAeiS(A)δF (A)) det

(
δF (Aα)

δα

)

where (Aα)aµ = Aaµ + 1
g∂µα

a + fabcAbµ. For an arbitrary function ωa, the

Faddeev-Popov operator associated to the gauge fixing F (A) = ∂muAaµ(x)−
ω(x) is

δF (Aα)

δα
=

1

g
∂µDµ

where Dµ(α
a) = ∂µα

a + gfabcAbµαc is the covariant derivative. To lift the

determinant of this operator to an exponential, we use anti-commuting fields,

called Faddeev-Popov ghosts,

det (
1

g
∂µDµ) =

∫
D cD c exp[i

∫
d4x c (−∂µDµ) c] .

As in the finite-dimensional example we can integrate over ωa with a Gaus-

sian weight to lift the delta function also to a exponential, thereby getting

the gauge fixing action

SGF (A) =

∫
d4x

1

2ξ
(∂µAaµ)

2 ,

and the ghost action

SGh = i

∫
d4x c (−∂µDµ) c .

We remark that in calculating the correlation functions, the infinite factor∫
DA appears both in the numerator and in the denominator and so it

cancels out. In the case of QED, the Faddeev-Popov determinant does not

depend on the connection A and so it can be moved outside of the integral,

and therefore it also cancels when computing correlation functions. So in

this case the ghosts do not appear. We can also incorporate fermions in the

theory as before. We can see that the quadratic part of the total Lagrangian

can be used to define the propagators, which are the following:
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(i) Ghost propagator

− iδab
k2 + iǫ

(ii) Vector boson propagator

(−gmuν + (1− ξ)kµkν
k2

)
iδab

k2 + iǫ

To complete the Feynman rules we need also to describe the vertices.

(i) Boson-ghost vertex

gfabckaµ

(ii) Three-bosons vertex

−igfabc(k1 − k2)λgµν + (k2 − k3)µgνλ + (k3 − k1)νgλµ

(iii) Four-bosons vertex

−ig2
[
fabcfade(gµρgνσ − gµσgνρ) + permutations

]

(iv) Integrals over propagators and delta functions at the vertices, as before.

7.5.4 The BRST cohomological methods

As we have seen the Faddeev-Popov method consist in breaking the gauge

invariance by a gauge fixing and extending the phase space by introducing

new fields, the ghost fields and anti-ghost fields. This approach was sub-

stantially improved by C. Becchi, A. Rout, R. Stora and I.V. Tyutin that

introduced in the theory some cohomological methods inspired on the work

of Koszul in the 50’s. They discovered a global symmetry of the Faddeev-

Popov action, the BRST differential which is a nilpotent derivation acting on

the extended space containing the fields, anti-fields, ghosts and anti-ghosts.

The zero-dimensional cohomology of the associated complex is the space of

gauge invariant physical fields.

To introduce these new ideas we will analyze a very simple finite-dimen-

sional situation where the space of fields is a finite-dimensional vector space

V and the group acts as translations by vectors of a subspace W ⊂ V .

The orbit space is therefore the quotient space V/W . We consider the

algebra A = Pol+(V )⊗ Pol−(W ), where Pol+(V ) is the symmetric tensor

algebra of V and Pol−(W ) is anti-symmetric tensor algebra of W . The

elements of a basis {v1, . . . , vn} of V generate Pol+(V ) with the relations

vivj = vivj, whereas a basis {w1, . . . , wm}, wα = Cαj v
j , generates Pol−(W ),
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with wαwβ = −wβwα. This is a graded algebra: A = A0 ⊕ A1 · · · ⊕ Am,

where an element of Ak is of the form P (v1, · · · , vn)wα1 . . . wαk where P is

a polynomial. We can also write A as a super-algebra A = A0 ⊕ A1 where

the elements of A0 have even grade and the elements of A1 odd grade. The

parity of an element a ∈ A0 ∪ A1 is defined as |a| = 0 if a ∈ A0 and

|a| = 1 if a ∈ A1. Note that Ak · Al ⊂ Ak+l, A0 · A0 ⊂ A0, A0 · A1 ⊂ A1,

A1 ·A1 ⊂ A0, the elements of A0 commute with everybody, and two elements

of A1 anticommute. An odd derivation of a graded algebra A is a linear map

s : A→ A that maps A0 into A1, A1 into A0 and satisfies the graded Leibnitz

rule:

s(a · b) = s(a) · b+ (−1)|a|a · s(b) .

for homogeneous elements. A differential is a nilpotent of order two odd

derivation: s ◦ s = 0. In our example we can define a differential by

s(vi) = Ciαw
α

s(wα) = 0 ,

extending it to the whole algebra by the Leibnitz rule. The grade of s

is one since it maps Ak into Ak+1, so it defines a cohomology Hk(A) =

ker(s|Ak)/Im(s|Ak−1). It is easier to compute this cohomology if we make

a better choice of generators adapting the basis of V to W : vj = wj ; j =

1 . . .m. Then we can define a homotopy h as a graded derivation by

h(wα) = vα

h(vj) = 0 , j = 1, . . . ,m.

If N : A → N is the linear operator such that N(a) = ka for a ∈ Ak, then

we have

hs+ sh = N , [h,N ] = [s,N ] = 0

Thus, for a ∈ Ak, k > 0 with s(a) = 0 we have

a =
1

k
(hs+ sh)(a) =

1

k
s(hp)

which implies that Hk(A) = 0 for k > 0. Furthermore, H0(A) is clearly

isomorphic to the algebra (Pol+(V/W )) of invariant polynomials. Thus,

by introducing the ghost variables we have described the gauge invariant

polynomials cohomologically.

We can also describe cohomologically the gauge fixing procedure. Let us

consider, in the finite dimension space V , a submanifold Σ transversal to

the gauge orbits and given by a set of polynomial equations Ga = 0 which
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we assume are independent ( they define a submersion on another vector

space whose dimension is the codimension of Σ in V ). We introduce the

anti-ghost variables ωa, and define

s(ωa) = Ga ,

s(vj) = 0 .

Now the algebra is negatively graded. Again the cohomology H−k vanishes

for k > 0 and H0 is isomorphic to Pol(V )/(IΣ), where (IΣ) is the ideal of

polynomials that vanishes on Σ.

Let us use these ideas to construct the infinitesimal BRST symmetry of

the Faddeev-Popov action for pure Yang-Mills.

We may write the Yang-Mills Lagrangian as

−1

4
GaµνG

aµν

where Gaµν = ∂µA
a
µ − ∂νA

a
µ + gfabcA

b
µA

c
ν is the field strength, fabc are the

structure constants of the Lie algebra (Aµ = AaµTa where Ta, Tb are the

generators of the Lie Algebra with commutators [Ta, Tb] = f ca,bTc). We have

incorporated a coupling constant g in the self-interaction of the gauge field

for the perturbation expansion.

The Faddeev-Popov action is

LFP (A, η, η) = −1

4
GaµνG

aµν + ηa∂µDac
µ η

c − 1

2ξ
(∂µA

aµ)2 ,

where Dac
µ = δac∂µ+gfabcAbµ is the covariant derivative. Let us construct an

infinitesimal symmetry of the Faddeev-Popov action as an odd derivation s.

So it is enough to define s in the generators, Aµ, η, η. We start by defining

sAµ = −Dµ η

Since the Lagrangian of pure Yang-Mills is invariant by an infinitesimal

action of any element X of the Lie Algebra, and the infinitesimal action of

X has the same form as s, it follows that sLYM = 0. Now let us consider

the gauge fixing part of the Lagrangian:

s(− 1

2α
(∂µA

µ)2) =
1

α
(∂µA

µ)∂νD
νη

On the other hand, for the ghost part of the Lagrangian we would have

s(η∂µDµη) = s(η).(∂µDµη))− η.s(Dµη) .
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and

s(Dµη) = Dµ(sη) + (sDµ)η = Dµ(sη) + g[sAµ, η]

= Dµ(sη)− g[Dµη, η] = Dµ(sη)−Dµ(
1

2
g[η, η])

Now it is clear that the whole Lagrangian will be invariant if we define

s(η) =
1

2
g[η, η]

and

s(η) =
1

α
(∂µA

µ)

It is easy to see that the derivation s is nilpotent of order two. From the

definition of s it is clear how to define the grades which is called the ghost

number: Aµ has ghost number 0, η has ghost number 1 and η has ghost

number −1.

The Lagrangian BRST formalism uses the following steps:

(1) Start with a gauge invariant Lagrangian L0 = L0(φ)

(2) For each gauge degree of freedom introduce a ghost field ηa whose ghost

number is defined to be +1.

(3) Construct a BRST transformation s in the extended space of fields so

that the initial action is invariant and the s2 = 0.

(4) Enlarge again the space by introducing a anti-ghost field β of ghost

number −1 and an auxiliary field α of ghost number 0. Extend s by

s(β) = α and s(α) = 0.

(5) Define the effective action by adding a BRST invariant term to the

original action of the form s(ψ) for some fermion in the algebra of fields

with ghost number −1.

(6) The zero cohomology should give the space of physical observables (gauge

invariant fields).

In [BV], Batalin and Vilkovisky extended the above cohomological meth-

ods to cover constrained quantum systems much more general than Yang-

Mills. Their method is closer to a hamiltonian formulation.

They extended the phase space as follows. To each commuting (anti-

commuting) gauge parameter they introduced a ghost fermionic (bosonic)

field. For more complicate constrains they have also to introduce ghost of

ghost variables. Then they doubled the space by introducing an anti-field

corresponding to each field (including the anti-ghosts). The fields and anti-

fields form a graded algebra. Representing all fields by the same symbol



7.5 Perturbative Yang-Mills theory 211

ΦA and all anti-fields by Φ∗
A they defined the anti-bracket between two

functionals F (ΦA,Φ∗
A) by

(F,G) =
δRF

δΦA

δLG

δΦ∗
A

− δRF

δΦ∗
A

δLG

δΦA

Where δR and δL denotes left and right functional derivatives, that are equal

to each other modulo the sign of the fields involved. This anti-bracket has

ghost number +1 and is odd. The BRST transformation is represented in

terms of this antibracket by a functional S:

sF = (S,F ) .

The nilpotency of the BRST transformation is then equivalent to the so

called classical master equation

(S, S) = 0 .

This equation is solved inductively S = S0 + S1 + · · · starting with S0, the

original classical action. The solution of the classical master equation gives

the action that is used in the path integral quantization. By construction

this action is BRST- invariant but the formal measure of the path inte-

gral may not be. The invariance of the formal measure under the BRST

transformation is given by the equation

∆S = 0

where ∆ is the second order differential operator

∆ = ± δL

δΦA

δL

δΦ∗
A

where the sign depends on the parity of the field ΦA. The second-order

differential operator ∆ is nilpotent of order two, is odd and has ghost number

-1. It is not a derivation of the product and the failure to be a derivation is

given by the anti-bracket:

∆(AB)−∆(A) · B − (−1)|A|A ·∆(B) = (−1)|A|(A,B) .

If the formal measure is also BRST- invariant, then the path integral is re-

duced to the zero set of the BRST transformation (fixed point of symmetry),

which in several cases is finite dimensional. If this is not the case we have to

construct a quantum action by adding quantum corrections to the classical

action:

W = S + ℏW1 + ℏ2W2 + · · ·
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in order to solve the quantum master equation

1

2
(W,W ) = iℏ∆W .

Notice that the quantum master equation reduces to the classical master

equation when ℏ 7→ 0. Although the classical master equation has a solu-

tion for general gauge theories, there may exit obstruction for the existence

of the quantum master equation that we call an anomaly that prevents

quantization. In theories, like Yang-Mills, in which there exists a solution

of the quantum master equation, there exists a quantum BRST symmetry

σ such that

σA = (W,A) ,

which is again nilpotent of order two. For more details on classical and the

quantum BRST the reader should consult [HT], see also [FHM] and [Sth].
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Renormalization

We saw in chapter 3 that, when attempting to construct a relativistic quan-

tum theory of particles, Dirac and others realized that the number of parti-

cles in the system could not be taken to be constant, because new particles

are constantly created and also destroyed. The solution to this problem was

to develop instead a relativistic quantum theory of fields, because a field

corresponds already to infinitely many particles. However, for many years

there were serious doubts in the physical community concerning the foun-

dations of this theory because, as we have seen, many of the calculations

done in the perturbative theory give rise to infinities. The situation changed

completely in the late forties when R. Feynman, J. Schwinger, S. Tomonaga,

F. Dyson, and others developed a procedure to remove these infinities from

the calculations, and the finite results obtained had an impressive agreement

with experiment. The idea of renormalization was born. For this discov-

ery, the first three shared the Nobel prize in 1965. In the early 70’s a new

breakthrough was achieved when G. t’Hooft and M. Veltman (Nobel prize

1999) proved the renormalizability of gauge theories. Finally K. Wilson de-

veloped the concept of renormalization group, related to critical phenomena

connected with phase transitions. His ideas were later used in perturbative

quantum field theory, as we will describe below, and also in constructive field

theory. For these developments, Wilson received the Nobel prize in 1982.

8.1 Renormalization in Perturbative QFT

As we have seen, the coefficients of the perturbative expansion of the cor-

relation functions of field theory in terms of powers of the Planck constant

and of the coupling constants can be described by a finite sum of amplitudes

which are finite-dimensional integrals of rational functions, each integral be-

ing associated to a Feynman diagram. This formula, which is a consequence

213
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of the Wick theorem on Gaussian integration, is problematic because many

Feynman diagrams give rise to divergent integrals. This is to be expected,

since a typical Gaussian field is not a smooth function (or a smooth sec-

tion of a fiber bundle) but it is a Schwartz distribution and the perturba-

tive expansion of the correlation function involves integration of products

of distributions which in general are ill-defined mathematical objects. The

formula for each amplitude of a Feynman integral is given by the Feynman

rules of the theory. Theses rules are based on the Lagrangian of the theory,

and they start by describing all possible Feynman diagrams of each order,

and then associating propagators to each line of the diagram and coupling

constants multiplying an integration on the internal vertices. The formula

for the amplitude of a diagram D is therefore a product of distributions∏
l∈L(D) ∆F

l (xil − xfl
) over all lines l of the diagram with endpoints labeled

by four vectors xil , xfl
of Minkowski space. The Fourier transform of each

of these distributions is given by

∆̃l
F
(p) = limǫ↓0 iPl(p)(p

2 −m2
l + iǫ)−1 ,

where ml > 0 and Pl(p) is a polynomial (of degree zero in the case of a

scalar field). The divergences of the Feynman amplitudes are due to the

slow decay of the propagators in momentum space (ultraviolet divergences)

and also to singularities of propagators at zero momentum which generally

occur in the presence of massless fields (infrared divergence). In order to

get finite results for the correlations functions and S-matrix, we have to

renormalize the theory. This procedure involves two steps. The first one

is to regularize the theory by introducing a cut-off. One possible cut-off is

the lattice discretization where the cut-off is the lattice width and the box

volume. This is very natural, since it is a finite dimensional approximation

to an infinite dimensional problem. However, it has the disadvantage of a

severe loss of symmetry. A choice of cut-off that preserves Lorentz symmetry

is the following. First we write

∆̃F
l (p) = lim

ǫ↓0
Pl(p)

∫ ∞

0
dα exp

[
iα(p2 −m2

l + iǫ)
]
.

The corresponding regularized expression is

∆̃r,ǫ
l (p) = limǫ↓0Pl(p)

∫ ∞

r
dα exp[iα(p2 −m2

l + iǫ)] .

The corresponding distribution in coordinate space,

∆r,ǫ
l (x) = − i

4
Pl(i

∂

∂x
)

∫ ∞

r

dα

α2
exp

[
−iα(m2

l − iǫ)− i
x2

4α

]
,
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is now a smooth function with moderate growth. Hence the product

∏

l∈L(D)

∆r,ǫ
l (xil − xfl

)

is a well-defined smooth function as well as a distribution on R4n. Its limit

as r → 0 and ǫ → 0 has singularities at coincident points (the generalized

diagonal). However the limit defines a continuous functional in the sub-

space SN (R4n) of test functions φ ∈ S (R4n) that vanish on the diagonal

to sufficiently high order N = N(D). The renormalization procedure con-

sists in subtracting cut-off dependent counter-terms from the Lagrangian, by

splitting the bare parameters of the Lagrangian (masses and coupling con-

stants) into a sum of physical parameters and cut-off dependent divergent

parameters, so that the amplitude of each diagram computed with the mod-

ified Lagrangian will be equal to the original amplitude where counter-terms

that vanish on SN (R4n) are subtracted, so that the remainder extends to a

functional on S (R4n). As K. Hepp remarked in [He], this renormalization

procedure may be interpreted as a constructive form of the Hahn-Banach

theorem. That this construction can be made in a consistent way in all

orders was first established by Dyson in [Dy]. However the proof was in-

complete since it is necessary to develop a combinatorial way to organize

the construction of the counter-terms that is rather complicated, due to the

presence of sub-diagrams with overlapping divergences. This combinato-

rial construction was performed by N. Bogoliubov and O. Parasiuk in [BP].

This proof was rather complicated and had also some mathematical gaps

that were fixed by Hepp in [He]. Zimmermann in [Zi], gave a much cleaner

proof working directly in momentum space, using very clever and elegant

combinatorial formulas that we will describe below.

In the case of gauge fields, the above regularization does not preserve

gauge symmetry. A new regularization, called dimension regularization, was

developed by G. t’Hooft and M. Veltman in [tHV] to extend this procedure

to gauge field preserving gauge invariance in the limit where the cut-off is

removed. As we have seen before, to formulate the perturbative expansion of

the correlation function of gauge fields we have to fix the gauge and introduce

ghost fields. In this setting the gauge invariance is expressed by a set of

identities among the correlation functions, called the Ward identities in the

case of QED or Slavnov-Taylor identities in the case of non-abelian gauge

theories. The regularization and counter-term subtraction destroys these

identities and a major effort of the theory is to prove that these identities

are restored in the limit when the cut-off is removed given finite and gauge
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invariant renormalized correlation functions that can be used for physical

predictions.

Let us discuss in more details the approach of Zimmermann. The Feyn-

man rules in momentum space associate a Feynman propagator to each line

of a diagram. This propagator may be written in the form

1

l20 − l2 −m2
l + iǫ(l2 +m2

l )
.

This way to present the Feynman propagator breaks Lorentz invariance and

we have to prove that it will be restored in the limit as ǫ ↓ 0. The amplitude

of a diagram is a function of the external momenta q = (q1, . . . , qr), the

masses m = (m1, . . . ,ml) and ǫ, and is given by the integral

I(q,m, ǫ) =

∫
dk

P (k, q)∏n
j=1 fj(k, q,m, ǫ)

,

where k = (k1, . . . , km) are the loop momenta, fj(k, q,m, ǫ) = l20 − l2 −
m2
l + i(l2 +m2

l ) and the 4-vectors lj are linear combinations of the external

momenta and loop momenta. We consider also the associated Euclidean

integral

IE(q,m) =

∫
dk

P (k, q)∏n
j=1 ej(k, q,m)

,

with ej(k, q,m) = l2j,o + l2j +m2
j . To compare the two integrals when ǫ > 0

we just need the following simple estimates:

l2 +m2
l

|l20 − l2 −m2
l + iǫ(l2 +m2

l )|
≤ 1

ǫ

and

l20
|l20 − l2 −m2

l + iǫ(l2 +m2
l )|
≤
√

1 +
1

ǫ2
.

These estimates imply that

1√
1 + ǫ2

≤ l2 +m2
l

l20
+ |l20 − l2 −m2

l + iǫ(l2 +m2
l )| ≤

1

ǫ
+

√
1 +

1

ǫ2
.

Therefore, the Minkowski integral is absolutely convergent if and only if

the Euclidean integral is. With this observation, Zimmermann extends the

power counting theorem that Weinberg [We] proved for Euclidean integrals

to the following.
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Theorem 8.1 If all masses are positive, the Minkowski integral is absolutely

convergent if and only if it has negative dimension as well as all sub-integrals

of the form

I(q,m, ǫ,H) =

∫

H
dV

P (k, q)∏n
j=1 fj(k, q,m, ǫ)

,

where H is any affine subspace of R4m. Here, the dimension of a ratio-

nal integral is d = d1 + d2 where d1 is the number of integration variables

(dimension of H) and d2 is the degree of the integrand with respect to the

integration variables.

If the criteria of the above theorem are satisfied we deduce that the Feyn-

man integral defines, for ǫ > 0, a smooth function of the external momenta.

As we mentioned before this function is not Lorentz invariant. So the next

step is to prove that as ǫ ↓ 0 it converges to a Lorentz invariant distribution

in S ′(R4r). In this proof one uses the so-called Feynman trick ,

I(q,m, ǫ) = (n− 1)!

∫
dk

∫

∆
dα

P (k, q)

(
∑n

j=1 αjfj(k, q,m, ǫ))
n
,

with dα = dα1 · · · dαn−1 and αn = 1−∑n−1
j=1 αj , and where ∆ is the simplex

∆ =



α :

n∑

j=1

αj = 1, αj ≥ 0



 .

The reader is invited to prove (a generalized version of) Feynman’s trick in

the exercises at the end of this chapter.

It is clear that if the Feynman integral associated to a diagram D has

positive dimension it is divergent, and hence needs to be renormalized by

subtracting counter-terms. The strategy is to expand the integrand in Tay-

lor series and subtract the part with positive dimension. But even if the

dimension is negative, it can also be divergent due to the presence of a sub-

diagram with positive dimension, i.e. the divergence happens when some

of the momenta go to infinity and some others remain finite. If a diagram

is divergent but does not have any divergent subgraph we say that it is

primitively divergent. Such a diagram is renormalized by subtracting from

the integrand the divergent part of the Taylor expansion of the integrand

around zero momenta, and then we can use the above Weinberg theorem to

conclude that the renormalized integral is absolutely convergent. If we de-

note the integrand by I (D) and its Taylor polynomial up to the superficial

divergence of the diagram by TDI (D) then the renormalized amplitude of

the primitively divergent diagram is I(D) =
∫

(1−TD)I (D). If the diagram
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is not primitively divergent we need an inductive procedure that requires a

combinatorial analysis.

Definition 8.1 A subdiagram of a Feynman diagram Γ is a diagram γ such

that the set of lines of γ is a subset of the set of lines of Γ and the vertices

of γ are the end points of its lines. If γ is a subgraph of Γ then the reduced

graph Γ/γ is the graph obtained from Γ by collapsing the lines of γ to points.

Notice that if γ1, . . . , γc are the connected components of γ then V (Γ/γ) =

(V (Γ)\V (γ))∪(V 1∪. . . V c) where V j = {V (γj)} and the lines that connects

a given vertex of V (Γ)\V (γ) to V j are the lines in L (Γ)\L (γ) that connect

this vertex to some vertex in {V (γj)}. An important concept is that of a

one-particle irreducible graph, 1PI. These are connected graphs that remain

connected after the suppression of one internal line. Any graph is a tree

whose vertices are 1PI graphs. A forest is a family F of subgraphs of G

such that any two graphs in F are either disjoint or one is strictly contained

in the other. The relevant forests for renormalization are the forests Fdiv of

divergent 1PI subgraphs. The final formula for the renormalized amplitude

of any diagram D is

Renorm I(D) =

∫ 
∑

FDiv

∏

γ∈FDiv

(−TγI (D))




This is known as the forest formula of Zimmermann.

Remark 1. The combinatorics of the Feynman diagrams has reached a much

higher status in the recent development of renormalization by A. Connes

and D. Kreimer [CK1, CK2].

The proof of the BPHS theorem is quite involved. In [Pol] (see also [Sal]),

Polchinski gave a much simpler proof for the φ4 theory using the renor-

malization group approach developed earlier by L. Kadanoff and K. Wilson

[Wil] (see also [Sh]) to describe critical exponents in phase transitions of

statistical mechanics models. Polchinski’s method was extended to cover

QED and Yang-Mills in [KK], [KM1] . The renormalization group method

is based on the physical intuition that a physical theory is scaling (energy,

momenta, mass) dependent. In each scale we should have an effective the-

ory given by an effective Lagrangian and the renormalization group equation

tells us how to transform the effective action from one scale to the other.

We may parameterize the scales by a cut-off parameter Λ. The renormal-

ization transformation relates a Lagrangian L at scale Λ with an effective

Lagrangian Leff at scale Λ1 < Λ which has the same correlation functions.
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This gives a dynamics in the space of Lagrangians whose evolution, in renor-

malizable theories, converges to some fixed point. In the original approach

by K. Wilson, what is called a renormalization group was in fact a discrete

semi-group generated by a map in the space of theories. In Polchinski’s

approach, the evolution in the space of theories is given by a first-order

differential equation, the flow equation.

Let us explain the main ideas of the flow equations method in the case

of the Φ4 theory. The first step is to regularize the bare propagator with a

cutoff Λ0 and a also introduce a flow parameter 0 ≤ Λ ≤ Λ0, so that

CΛ,Λ0(p) = =
1

p2 +m2

(
e
− k2+m2

Λ2
0 − e−

k2+m2

Λ2

)
.

We denote by µΛ,Λ0 the Gaussian measure of covariance ~CΛ,Λ0. For Λ < Λ0,

this Gaussian measure converges, as Λ→ Λ0, to a Dirac measure at Φ = 0.

To the interaction part of the bare action we add the counter-terms:

SΛ0
int =

∫
dx
( g

4!
Φ4(x)

)

+

∫
dx

(
1

2
a(Λ0)Φ(x)2 +

1

2
z(λ0)(∂µΦ)2(x) +

1

4!
b(Λ0)Φ(x)4

)
.

The generating functionals of the Schwinger functions are given by the ex-

pression

ZΛ,Λ0(J) =

∫
dµΛ,Λ0(Φ)e−

1
~
S

Λ0
int(Φ)+ 1

~
〈Φ,J〉 ,

and the generating functional of the truncated Schwinger functions by

e
1
~
WΛ,Λ0 (J) =

ZΛ,Λ0(J)

ZΛ,Λ0(0)
.

Finally we consider the generating functionals of the amputated truncated

Schwinger functions

e
1
~
(LΛ,Λ0 (φ)+IΛ,Λ0) =

∫
dµΛ,Λ0(Φ)e−

1
~
S

Λ0
int(Φ+φ) .

Note that

LΛ,Λ0(0) = 0 ⇒ e
1
~
IΛ,Λ0

= ZΛ,Λ0(0) .

Hence

LΛ,Λ0(φ) =
1

2

〈
φ,
(
CΛ,Λ0)−1

)
(φ)
〉
−WΛ,Λ0((CΛ,Λ0)−1(φ)) .
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Its n-point function in the momentum space has an expansion as a formal

power series in ~, namely

LΛ,Λ0
n (p1, . . . pn) =

∞∑

l=0

~l.L Λ,Λ0

l,n (p1, . . . pn)

where L Λ,Λ0

l,n (p1, . . . pn) is given by the sum of values of connected Feynman

graphs with n external legs and l loops. Taking the derivative with respect

to Λ on both sides of the above equation defining the amputated truncated

Schwinger functional, and using the loop expansion, we get the system of

equations that we describe below.

Let ω = (ω1,1 . . . ωn−1,4), where the ωj,µ are non-negative integers, let

|ω| =
∑
ωi,µ, and let

∂ω =

n−1∏

i=1

4∏

µ=1

(
∂

∂pi,µ

)ωi,µ

.

The system of flow equations is the following

∂Λ∂
ωL Λ,Λ0

l,n (p1, . . . , pn) =

1

2

1

(2π)4

∫
dk ∂ΛC

Λ,Λ0(k) · ∂ωL Λ,Λ0

l−1,n+2(k, p1, . . . , pn,−k)

− 1

2

n∑

n1=0

∑

n1+n2=n

∑

l1+l2=l

∑

ω1+ω2+ω3=ω

∑

i1<···<in1

∂ω1L Λ,Λ0

l1,n1+1(pi1, . . . , pin1
, p)×

× ∂ω3∂ΛC
Λ,Λ0(p)× ∂ω2L Λ,Λ0

l2,n2+1(−p, pj1, . . . , pjn2
) . (8.1)

Here, we have p = −pii − · · · − pin1
, and j1 < · · · < jn2 satisfies

{i1, . . . in1 , j1, . . . jn2} = {1, . . . n} .

In the Φ4 theory, because of the symmetry Φ 7→ −Φ, all the n-point functions

for n odd vanishes. Then in the above formula the integers n, n1, n2 are all

even.

Notice that the equation defining the various generating functionals above

are just formal expressions since the support of the Gaussian measure is the

space of distributions and, since the product of distributions is not well de-

fined, the integrands do not make sense. Therefore we have first to discretize

the space and restrict to a bounded volume, perform all the manipulations

and later take the continuous limit and the thermodynamical limit. For

finite values of Λ0 we get that the continuous limit of each coefficient of

the loop expansion converges to a function that is smooth in the variables
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and also in the parameters, and the above system of differential equations

holds in the limit. As we remarked before, as Λ→ Λ0 the Gaussian measure

dµΛ,Λ0 converges to a delta function at Φ = 0. Therefore LΛ0,Λ0 = SΛ0
int and

also

∂ωLl,n = 0 for n+ |ω| ≥ 5 .

That the Φ4 theory is renormalizable is the content of the following result.

Theorem 8.2 The coefficients

v(Λ0) =

∞∑

l=1

~lvl(Λ0) . . . c(Λ0) =

∞∑

l=1

~lcl(Λ0)

can be adjusted so that the limit

lim
Λ0→∞

lim
Λ→0

Ll,n(p1, . . . , pn) = Ll,n(p1, . . . , pn)

exists for all n and for all l.

To prove this theorem we need to bound the solutions of the system of

flow equations by an induction procedure, and for that we need some renor-

malization condition that we impose as

L 0,Λ0
4 = g, L 0,Λ0

2 = 0, ∂p2L
0,Λ0
2 = 0 .

A direct calculation in the tree level (l=0) gives

L Λ,Λ0
0,1 = 0 , L Λ,Λ0

0,2 (p,−p) = 0 ,

L Λ,Λ0
0,3 (p1, p2, p3) = 0 , L Λ,Λ0

0,4 (p1, p2, p3, p4) = g .

Notice that with the above conditions, for each l the right hand side of

the system of flow equations involves only terms where the second index is

smaller than l. Hence, to estimate the left hand side at the level n, l by

induction we have to have an estimate of the right hand side at the level

n + 2, l − 1 and below that. To perform the induction step we have to

integrate the estimate in the derivative with respect to Λ. If n + |ω| > 4

the bounds decrease with increasing Λ. In this case we integrating from Λ0

down to Λ using the initial condition ∂ωL Λ0,Λ0

l,n (p1, . . . , pn) = 0. In the few

other cases we integrate from Λ = 0 up to Λ firstly at zero moments using

the renormalization condition and extend to all momenta using the Taylor

formula (see [Mul]). The theorem follows from the two lemmas below.
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Lemma 8.1 There exist polynomials P1, P2 with positive coefficients that

depend only on l, n, ω such that
∣∣∣∂ωLΛ,Λ0

l,n (p1, . . . , pn)
∣∣∣ ≤ (Λ +m)4−n−|ω| P1

(
log

Λ +m

m

)
P2

( |p|
Λ +m

)
.

This lemma is proved by an inductive procedure starting at l = 0 and

n = 4, where we can take

P1 = 1 and P2 =
g

(Λ +m)4−n−|ω| .

From the flow equation we get from this an estimate of ∂Λ∂
ωL1,2. From

that we get by integration that the estimate for ∂ωL λ,Λ0
1,2 holds. We proceed

by induction that increases n+ 2l and for n+ 2l constant decreases in n.

Lemma 8.2 There exist polynomials P3, P4 with positive coefficients that

depend only on l, n, ω such that

∣∣∣∂Λ0∂
ωLΛ,Λ0

l,n (p1, . . . , pn)
∣∣∣ ≤ (Λ +m)5−n−|ω|

(Λ0 +m)2
P3

(
log

Λ0 +m

m

)
P4

( |p|
Λ +m

)
.

This lemma is proved by the same inductive scheme on the flow equation

derived with respect to Λ0 and using the previous lemma. The theorem is

an easy consequence of this lemma.

To prove renormalizability of gauge invariant theories following the above

ideas, we have to face the problem that gauge invariance is destroyed by the

regularization. In fact the Schwinger functions are not individually gauge

invariant but the gauge invariance of the theory is expressed by some iden-

tities between the different Schwinger functions called the Taylor-Slavnov

identities (generalizing the Ward-Takahashi identities in QED). Since the

Taylor-Slavnov identities are not satisfied after the cut-off, a careful analy-

sis must be performed to prove that they are restored when the cut-off goes

to infinity. This is done in chapter 4 of [Mul]. See also the short survey [K].

8.2 Constructive Field Theory

The great success of the perturbative theory discussed in the previous section

and the impressive precision of its predictions naturally indicates that it

is really a perturbative expansion of a quantum non-linear theory. The

program of constructive field theory is to build non-linear examples and

analyze the spectrum of the particles. One should look for a Hilbert space,

a positive energy representation of the Poincaré group in this Hilbert space

and an operator-valued distribution satisfying natural axioms and having a
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non-trivial scattering matrix. To be physically relevant the theory should

also exhibit what is called a “mass gap”. This means that the spectrum

of the Hamiltonian, which has zero as an eigenvalue with the vacuum as

eigenvector, must have a gap between 0 and a positive number m. The

importance of this mass gap is that it implies the exponential decay of the

correlations and, in the case of QCD, it explains why the nuclear forces

are strong but short-ranged. The development of this program in the 70’s

involved very hard mathematical estimates in functional analysis, and the

final outcome was the construction of families of non-trivial theories for

spacetimes of dimensions 2 and 3.

From the intimate connection established by Osterwalder and Schrader

between the Minkowski and Euclidean formulations of quantum field theory

one can formulate the existence problem in the realm of Euclidean Quantum

Field Theory, where the goal is to construct interesting probability measures

on the σ-algebra generated by the cylindrical sets in the space of distribu-

tions. Here a cylinder is a set of the form {Φ ∈ S ′; (Φ(f1), . . . ,Φ(fn)) ∈
B ⊂ Rn}, where fj ∈ S are test functions and B is a Borel set. The idea is

to make sense of the formal definition dµ = 1
Z e

−Sint(Φ)dµC where dµC is the

measure in the distribution space defined by the quadratic part of the classi-

cal action, Sint is higher order part of the action, for example, Sint(Φ) = λΦ4,

and Z =
∫
S ′ e

−Sint(Φ)dµC is the normalizing factor. As we have mentioned

before, this expression is formal because the functional Sint does not make

sense in the space of distributions. A natural strategy would be to use a

cut-off Λ such that for the corresponding measure dµC(Λ) the definition does

make sense and we get a measure dµΛ in some space of functions. The next

step is to renormalize the action by adding a counter-term with the same

terms that are in the original Lagrangian but multiplied by coefficients that

depend on the cut-off (and will diverge as we remove the cut-off). Then we

have to prove some a-priori bounds on the renormalized measure that are

uniform in the cut-off and use these bounds to prove the convergence of the

approximate measures to a measure in the distribution space. In the 70’s

many papers by A. Jaffe, J. Glimm, B. Simon and others were dedicated to

this program and the final outcome was the existence of the measure, and

of the mass gap, when the space-time has dimension 3 with Sint(Φ) = λΦ4

for small λ and in dimension two with Sint(Φ) = λP(Φ) where P is any

polynomial bounded from below (the so-called P(Φ)2 theory).

The question of compatibility of special relativity and quantum theory in

four-dimensional spacetime remains one of the greatest challenges in mathe-

matics and in physics. This question, even for the λΦ4 theory is not resolved

in dimension 4 although most people believe that the theory does not exist
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in this dimension. The same problem is expected for Quantum Electro-

Dynamics. This is probably related to the fact that these theories are not

asymptotically free. A theory is said to be asymptotically free if the quan-

tum behavior at short distances (high energy) approximates the classical

behavior, i.e. interaction decays with energy and particles start to behave

like free particles. On the other hand, one the greatest discoveries of the

70’s is the asymptotic freedom of Yang-Mills theories with non-abelian gauge

groups. D. Politzer, D. Gross and F. Wilczek received the Nobel Prize for

this discovery that justifies the use of perturbative expansions in the strong

interactions. It also indicates that a quantum theory for Yang-Mills in space-

time of dimension four may exist. In fact, the Clay Mathematics Institute

established as one of the Millennium Problems: a quantum theory of the

four-dimensional Yang-Mills system and the existence of a mass gap, with

a one million dollar prize for its solution. Notice that the possible existence

of a mass gap for the Yang-Mills theory is a quantum effect . It is not mani-

fested classically, since all the gauge bosons, without the symmetry breaking

by the Higgs boson, are massless. See chapter 9.

Exercises

8.1 Prove the easiest version of Feynman’s trick: if a, b are non-zero

numbers, then

1

ab
=

∫ 1

0

dx

[xa+ (1− x)b]2 .

8.2 Generalize the previous exercise as follows. Let a 6= 0 6= b be complex

numbers, and let α, β > 0. Then

1

aαbβ
=

Γ(α+ β)

Γ(α)Γ(β)

∫ 1

0

xα−1(1− x)β−1

[xa+ (1− x)b]α+β
dx .

To prove this formula, perform the substitution z = xa/(xa+(1−x)b)
in the integral on the right-hand side to see that the said integral is

equal to a−αb−βB(α, β), where B(α, β) is the beta-function

B(α, β) =

∫ 1

0
zα−1(1− z)β−1 dz .

Then apply a well-known identity relating the beta and gamma func-

tions.

8.3 Using exercise 2 and induction, prove the following general formula.

If a1, a2, . . . , an are non-zero complex numbers and α1, α2, . . . , αn are
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positive numbers, then

1

aα1
1 aα2

2 · · · aαn
n

=
Γ(α1 + · · ·+ αn)

Γ(α1) · · ·Γ(αn)
×

×
∫ 1

0
· · ·
∫ 1

0

∏
xαi−1
i

[
∑
xiai]

∑
αi
δ(
∑

xi − 1) dx1 · · · dxn .

This formula generalizes the Feynman trick used in the present chap-

ter. Why?
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The Standard Model

In this chapter we will describe the most general Lagrangian that is both

Lorentz invariant and renormalizable. This is the Lagrangian of the Stan-

dard Model that describes the interaction of all known particles with all

known forces, except for gravity. The group of internal symmetries of the

Standard Model is U(1) × SU(2) × SU(3). All particles predicted by the

Standard Model have been detected experimentally except for one, the Higgs

boson, that plays an essential role as we will see below. The elementary mat-

ter particles are the leptons (electron, electron neutrino, muon, muon neu-

trino, tau, tau-neutrino and the corresponding anti-particles), the quarks

in six different flavors (up, down, charm, strange, top, bottom) and each

in three different colors (red, blue, green), their anti-particles. The inter-

action carriers are the photon for the electromagnetic field, three bosons

associated to the weak interaction, corresponding to the internal symmetry

U(1)× SU(2), and eight gluons associated with the strong interaction, cor-

responding to the group SU(3) (each also coming in three different colors),

plus the hypothetical Higgs boson which is the only one not yet detected

experimentally.

We emphasize that the Standard Model as presented here is a semi-

classical model. After the appropriate Lagrangian is written down, it is

still necessary to quantize it. No one knows so far how to do this in a math-

ematically rigorous, constructive way. The next best thing is to use the

methods of perturbative QFT (chapter 7), and renormalization (chapter 8).

This, of course, we will not do. However, we do want to remark that very

good results matching experiment can be obtained from just the simplest,

first order Feynman graphs! These have no loops, and therefore require no

renormalization. It is indeed a remarkable feature of the Standard Model

that it produces good predictions even at the semi-classical, pre-quantized

level.

226
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9.1 Particles and fields

As we already discussed, in particle physics we classify particles in two major

groups, according to whether they satisfy or fail to satisfy Pauli’s exclusion

principle. Thus, they can be fermions, with half-integral spin, or bosons,

with integral spin. On the other hand, we also know that in QFT everything

physical is defined in terms of fields. There are two basic types of fields:

(i) Interaction carriers. These are also called force fields, and are gauge

fields. Their particle manifestations are bosons. They subdivide fur-

ther into

• Photon γ0: carrier of the electromagnetic interaction.

• Weak bosons W+,W−, Z0: carriers of the weak interaction

• Gluons Gi (i = 1, . . . , 8): carriers of the strong interaction.

See table 9.1

(ii) Matter fields. These are fields whose associated particle manifestations

are fermions, and can be further subdivided into

• Leptons: these do not “feel” the strong force, their interactions being

mediated by the carriers of the electromagnetic and weak interac-

tions only. Examples of leptons are the electron, the muon, the tau

particle (and corresponding anti-particles: the positron, etc.) and

all neutrinos. See table 9.2.

• Hadrons: these are subject to the strong interaction (which is very

short-range). They subdivide even further into mesons (such as the

so-called pions) and baryons (and their corresponding anti-particles).

Examples of baryons include the proton and the neutron. See table

9.4.

From a mathematical standpoint, the two basic types of fields described

above are very distinct:

(i) Interactions carriers are connections on certain auxiliary vector bun-

dles.

(ii) Matter fields are sections of specific vector bundles over spacetime

(M,g).

The description above is certainly not complete. In particular, hadrons

are not elementary: they are made up of elementary particles called quarks.

More about that below.
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Interaction Boson Spin

Gravitational “gravitons” (conjectured) 2

Electromagnetic photons γ0 1

Weak force weak bosons Z0,W+,W− 1

Strong force gluons Gi (postulated) 1

Table 9.1. Interaction carriers.

Lepton Mass in MeV/c2 Lifetime in s

Electron e− 0.511 ∞
Electron neutrino νe < 3× 10−6

Muon µ− 105.658 2.197× 10−6

Muon neutrino νµ

Tau τ− 1777 291× 10−15

Tau neutrino ντ

Table 9.2. The three generations of leptons (spin 1/2).

9.2 Particles and their quantum numbers

Certain particle decays are never observed in nature or the laboratory. For

instance, the proton p+ and the positron e+ have the same charge, and the

proton mass (energy) equals approximately that of the positron plus the

energy of a single photon γ0; nevertheless,

p+ 9 e+ + γ0 .

This strongly suggests that some quantum number exists which is not pre-

served under such putative decay, preventing it from happening. Such quan-

tum number is called the baryon number , denoted B. It is postulated that

B = 1 for baryons and B = 0 for leptons, and that the total baryon num-

ber in a given particle-to-particle interaction should be conserved. These

is indeed satisfied in all events occurring in nature, and in all experiments

performed in the lab. Equivalently, one could assign a lepton number L = 1

to leptons, and L = 0 to all other particles.

In fact, one can actually be more specific and define one quantum number

for each type of lepton. For instance, another example of a particle decay

that is never observed is the muon µ− decay. Such muons are negatively

charged leptons just as electrons, but heavier. Despite charge and energy
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conservation, we have

µ− 9 e− + γ0 .

Again, this is explained by the introduction of yet another quantum number,

the so-called muon number Lµ, equal to 1 for muons, −1 for anti-muons, and

0 for other particles, and a corresponding conservation law. One can simi-

larly define several other quantum numbers, and corresponding conservation

principles.

These ad-hoc conservation principles are dictated by experimental obser-

vation, and the challenge is to incorporate them into a coherent mathe-

matical model. From a mathematical standpoint, it should be clear after

our discussion of Noether’s theorem in chapter 5 that such conservation of

various quantum numbers should correspond to symmetries of the model.

These quantum numbers are defined in terms of various representations of

a suitable symmetry group. This is consistent with the mathematical inter-

pretation of particles advanced by Wigner, as we saw in chapter 4.

9.3 The quark model

The quark model was proposed by M. Gell-Mann in 1964. It postulates that

all hadrons are composite states of more elementary particles called quarks,

along with their anti-particles (called anti-quarks). Quarks and anti-quarks

are fermions. According to this model, baryons are composed of 3 quarks,

whereas mesons are made up of one quark and one anti-quark (see table

9.5). In the original proposed model, quarks came in three different types,

or flavors, namely the up quark u, the down quark d, and the strange quark

s. Empirical facts and symmetry considerations lead to the introduction of

three other quarks, namely the charmed quark c, the top quark t, and the

bottom quark b. See table 9.3.

Despite its success in the explanation of hadron “genealogy”, including

the prediction of new hadrons, the initial quark model suffered from two

embarrassing problems. The first trouble was that quarks were not, and

have never been, observed in isolation. This was explained by the concept

of quark confinement , the mechanism of which is still not fully understood.

The second trouble was the violation of Pauli’s exclusion principle: there

are particles such as the ∆++ hadron which are made up of three identical

quarks (uuu, in this case, see table 9.4). The way out of this second trouble

was the introduction of a new quark property called color .

Recall that in QED, the interaction between two charged particles, such as

electrons, is mediated through the emission and absorbtion of photons (the
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Flavor Charge Mass range (in GeV/c2)

up u 2

3
1.5 to 4.0 × 10−3

down d − 1

3
4 to 8 × 10−3

charmed c 2

3
1.15 to 1.35

strange s − 1

3
80 to 130 × 10−3

top t 2

3
169 to 174

bottom b − 1

3
4.1 to 4.4

Table 9.3. The three generations of quarks (spin 1/2).

Baryon qqq Charge Strangeness

∆++ uuu 2 0
∆+ uud 1 0
∆0 udd 0 0
∆− ddd −1 0
Σ∗+ uus 1 −1
Σ∗0 uds 0 −1
Σ∗− dds −1 −1
Ξ∗0 uss 0 −2
Ξ∗− dss −1 −2
Ω− sss −1 −3

Table 9.4. The baryon decuplet.

electromagnetic interaction carriers). In quantum chromo-dynamics (QCD),

the basic particles are quarks, and they have “colors”. Color is a quantum

property of nuclear interactions akin to charge in electromagnetism. Quarks

come in three colors: R,B,G (for red, blue and green, respectively). Anti-

quarks come in three “anti-colors”, or complementary colors: R,B,G (also

called cyan, yellow and magenta, respectively). Quarks and anti-quarks

interact with each other by exchanging colors. The interactions carriers are

called gluons. The gluons themselves are said by physicists to be “bi-colored

objects”.

9.4 Non-abelian gauge theories

The Standard Model is a gauge theory with symmetry group U(1)×SU(2)×
SU(3). Let us therefore digress a bit and recall some of the basic structure
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Meson qq Charge Strangeness

π0 uu 0 0
π+ ud 1 0
π− du −1 0
η dd 0 0
K+ us 1 1
K0 ds 0 1
K− su −1 −1

K
0

sd 0 −1
η′ su 0 0

Table 9.5. The meson nonet.

of such theories. We do everything locally, and leave to the reader the task

of translating everything into the coordinate-free language of bundles and

connections, as presented in chapter 4. See also §9.6 below.

9.4.1 The Yang-Mills Lagrangian

At a semi-classical level, one can formulate a Yang-Mills theory with general

non-abelian symmetry group G. The formulation mimics that of electromag-

netism, which is an abelian gauge theory with group U(1). For concreteness,

the reader can think of the case when G = SU(N). We assume that we have

a gauge field Aµ, i.e. a connection, which will be coupled with a matter field

Ψ, represented by a section of a suitable vector bundle over spacetime. We

are given a representation R : G→ Aut(V ), where V is a finite-dimensional

complex Hilbert space (e.g., we could have G = SU(N) and R the regular

representation of G into V = CN ). Let {T aR} be the generators of the Lie

algebra of G in the representation R, and let us write Aµ = AaµT
a
R (when

G = SU(N), there are N2 − 1 generators). Recall that the structure con-

stants of the Lie algebra of G are implicitly defined by the relations

[T aR, T
b
R] = i fabcT cR . (9.1)

We define a covariant derivative on matter fields by

DµΨ =
(
∂µ − igAaµT aR

)
Ψ . (9.2)

Here g is a constant, called the coupling constant.

As in the case of electromagnetism, we let the field strength tensor be

given by

Fµν = ∂µAν − ∂νAµ − ig[Aµ, Aν ] . (9.3)
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From (9.1) and (9.2), a one-line computation left as an exercise shows that

F aµν = ∂µA
a
ν − ∂νAaµ + gfabcAbµA

c
ν . (9.4)

Let us now define an appropriate Yang-Mills Lagrangian density. The kinetic

part of this Lagrangian is given by the curvature of our connection, namely

L kin
YM = −1

4
Tr(FµνF

µν) . (9.5)

This is also sometimes called the pure Yang-Mills Lagrangian. In keeping

with the paradigm provided by electromagnetism, we now couple the gauge

field with the matter field in the most economic way, the so-called minimal

coupling, by means of a Dirac current , namely

L int
YM = Ψ(i /D−m)Ψ . (9.6)

where M is a constant and /D is the Dirac operator defined as follows. We

think of each component Ψα of Ψ as a spinor (Ψα(x) ∈ R4, or C2), for

each α = 1, 2, . . . ,dimR/4 (here dimR denotes the real dimension of the

representation of G). We take /D to be the direct sum of the usual Dirac

operators on each component,

/D Ψ =
∑⊕

α

γµ∂µΨ
α ,

where γµ are the usual Dirac matrices. The total Yang-Mills Lagrangian is

therefore the sum of (9.5) with (9.6), namely

LYM = −1

4
F aµνF

µν a + Ψ (i /D−m)Ψ , (9.7)

where we have taken the trouble of spelling out the trace defining the cur-

vature in terms of the field strength components.

Now, the main thing to observe is that the Yang-Mills Lagrangian as we

have just defined is gauge invariant. Indeed, let x 7→ U(x) ∈ G be a local

gauge transformation. We may write U(x) = exp (igθa(x)T aR), where the

θa(x) are local functions over spacetime. We have

Ψ 7→ U(x)Ψ

Aµ 7→ U(x)AµU
†(x)− i

g
(∂µU(x))U †(x) .

The reader can now verify as an exercise using these transformations that

the covariant derivative transforms as DµΨ 7→ U(x)DµΨ. From these facts

it follows at once that the Yang-Mills Lagrangian (9.7) is gauge invariant,

as stated.
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9.4.2 Spontaneous symmetry breaking

The formulation of non-abelian gauge theories given above seems fine but,

as far as its physical contents goes, it suffers from a major drawback: all of

its fields are massless! Recall, by analogy with the Klein-Gordon field, that

the mass terms in the Lagrangian are those that are quadratic in the fields

– but there are no such terms in (9.7). This would not be a problem if the

only field we cared about were the electromagnetic field, whose carrier is

the photon, which as we know is massless. But it is certainly not acceptable

even for other gauge fields such as the weak interaction fields – the weak

bosons are known to be massive particles.

It turns out that the reason for this masslessness feature of the Lagrangian

(9.7) is its excess of symmetry . In the mid sixties, P. Higgs created a mech-

anism for breaking the symmetry, allowing the gauge and matter fields to

acquire mass. The idea is to introduce a new (bosonic) field, called the

Higgs field, which is subject to a quartic potential that shifts the vacuum

to a new place, around which part of the original symmetry is lost. This

is known as Higgs mechanism or spontaneous symmetry breaking . The role

of the Higgs field is to break the symmetry by shifting the classical vacuum

(the minimum of the action) away from the origin. If we expand the La-

grangian in powers of the deviation from the shifted vacuum and diagonalize

the quadratic part by defining new fields as linear combination of the old

ones, we will see that the coefficients of the diagonal terms are the masses

of the fields (again, the reader should keep in mind the analogy with the

Klein-Gordon field).

Let us explain this idea in more detail, working in perhaps the simplest

non-abelian situation, namely the case when the symmetry group is SU(2)

and there are no matter fields. In other words, we start with the pure

Yang-Mills Lagrangian

L 0
YM = −1

4
Tr(FµνF

µν) .

We will describe the Higgs mechanism which, in the present context, allows

the gauge bosons to acquire mass. Let us add to our theory a scalar doublet

field

φ =

(
φ+

φ0

)
,

subject to a potential of the form

V (φ†φ) =
1

2
λ2
[
(φ†φ)2 − v2

]2
,
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where λ and v are real constants (v will determine the new vacuum state).

Our new Lagrangian reads

L H
YM = (Dµφ)†(Dµφ)− 1

2
λ2
[
(φ†φ)2 − v2

]2
− 1

4
Tr(FµνF

µν) . (9.8)

Now, the new vacuum states of the theory should correspond to the min-

ima of the potential V . These are degenerate minima, occurring at those

fields φ such that φ†φ = v2. These vacua are in the gauge-group orbit of the

constant field

φ0 =

(
0

v

)
.

The idea now is to fix the gauge so that this is our new vacuum state, and

to expand the potential around this new vacuum. The original SU(2) sym-

metry will therefore be lost in the process, but we will achieve our goal of

giving mass to the gauge bosons. Note that the field φ has four real compo-

nents (or two complex ones) and since the group SU(2) is a 3-dimensional

Lie group, we can use a gauge transformation to gauge away three of the

four components of φ, getting a representative of the form

φ(x) =

(
0

v + 1√
2
h(x)

)
,

where h is a real scalar field. Let us then write the expression of the La-

grangian for this φ, in terms of h. Using the fact that the generators of

the Lie algebra of SU(2) are given by the Pauli matrices, we see after some

computations that

Dµφ =

(
∂µ +

ig

2
Aaµσ

a

)(
0

v + 1√
2
h

)

=

(
− ig

2 (A1
µ − iA2

µ) (v + 1√
2
h)

1√
2
∂µh− ig

2 A
3
µ (v + 1√

2
h)

)

Let us now introduce the linear combinations

A±
µ =

1√
2
(A1

µ ∓A2
µ) .

Using this notation and the above computation, we can calculate explicitly

the first term in the right-hand side of (9.8), obtaining

(Dµφ)†(Dµφ) =
1

2
(∂µφ)(∂µφ)+

g2

2
A−
µA

+
µ

(
v +

h√
2

)2

+
g2

4
A3
µA

µ 3

(
v +

h√
2

)2

.

(9.9)



9.5 Lagrangian formulation of the standard model 235

Note that, since

A−
µA

+
µ =

1

2
(A1

µA
µ 1 +A2

µA
µ 2)

the second term in the right-hand side of (9.9) is telling us that the gauge

bosons associated with the fields A1
ν and A2

µ both have the same mass mA,

given by

1

2
m2
A =

g2

4

in other words, mA = gv/
√

2. Therefore, the linear combinations A−
µ and

A−
µ also have the same mass mA. The mass of the third gauge boson A3

µ

can be read off from the third term in the right-hand side of (9.9), and

we see that it must also be equal to mA. Thus, in this Yang-Mills theory

with symmetry breaking, the gauge bosons have all acquired mass (and

the masses are equal). The Lagrangian (9.8) also tells us, of course, that

the Higgs boson itself is a massive particle (its mass being mH = λ, the

parameter in the potential V ).

The Higgs field can also be coupled with the matter field Ψ in the full

Yang-Mills Lagrangian, giving it mass. We will describe this mechanism

directly in the context of the Standard Model below.

9.5 Lagrangian formulation of the standard model

The Standard Model Lagrangian is a gauge field Lagrangian, with gauge

group U(1)×SU(2)×SU(3). The basic paradigm leading to the construction

of such Lagrangian is provided by Yang-Mills theory, as described in the

previous section: the interaction fields are given by connections, and the

matter fields by sections of suitable vector or spinor bundles over spacetime.

In the sequel we will describe the Lagrangian as usually presented in the

physics literature. In the next section we will describe also the intrinsic

geometric meaning of this Lagrangian.

9.5.1 The electroweak model of Glashow-Weinberg-Salam

According to the electro-weak theory of Glashow-Weinberg-Salam, the inter-

actions between the leptons are mediated by the bosons of the gauge group

U(1) × SU(2). This theory presents a unification of the electromagnetic

and weak interactions. Let us progressively describe the ingredients in the

construction of the electroweak Lagrangian. This will be a U(1) × SU(2)

gauge invariant Lagrangian.
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9.5.1.1 The kinetic terms

Let us first describe the kinetic Lagrangian, and later the part corresponding

to the interactions with leptons.

(i) We have a U(1) gauge field, or abelian connection (Bµ). As we saw

in chapter 5, the corresponding field strength tensor Bµν is given by

Bµν = ∂µBν − ∂νBµ. The kinetic part of the Lagrangian associated

with this field is

L B
kin = −1

4
BµνB

µν . (9.10)

(ii) In order to incorporate the weak interaction into the model, one needs

the gauge fields (Wµ). These constitute a non-abelian connection with

group SU(2). The corresponding covariant derivative is given by

Dµ = ∂µ +
ig2
2
Wµ ,

where g2 is the so-called weak coupling constant . The field strength

tensor must be defined in a covariantly natural way, and the way to

do this is to write

Wµν = DµWν −DνWµ . (9.11)

This in turn can be re-written as

Wµν = (∂µWν − ∂νWµ) +
ig2
2

(WµWν −WνWµ) . (9.12)

Now, as dictated by the Yang-Mills paradigm, we define the kinetic

part of the Lagrangian density corresponding to the weak field as the

curvature of our SU(2) connection, namely

L w
kin = −1

8
Tr(WµνW

µν) . (9.13)

Let us record here the effect of a gauge transformation ψ 7→ Uψ on a

given lepton (fermion) field ψ, where U ∈ SU(2) is a unitary matrix. We

have the transformation rule

Wµ 7→ W ′
µ = UWµU

† +
2i

g2
∂µU · U † .

expressing the fact that (Wµ) is a SU(2)-connection, and therefore two

things happen:

(a) Dµψ 7→ UDµψ .

(b) Wµν 7→W ′
µν = UWµνU

† .
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Using these facts, it is an easy exercise to check that the Lagrangian (9.13)

has the appropriate SU(2) gauge covariance.

We may now put together the U(1) and SU(2) gauge fields, getting the

total kinetic Lagrangian density of the electroweak model. This is simply

the sum L ew
kin = L B

kin + L w
kin, in other words

L ew
kin = −1

4
BµνB

µν − 1

8
Tr(WµνW

µν) (9.14)

Both kinetic terms making up the right-hand side of (9.14) have a clear

geometric meaning: they are the curvatures of the corresponding gauge

fields (Bµ) and (Wµ).

Next, we wish to recast the above formula (9.14) in a slightly different

notation, making the expression in terms of coordinates more explicit. For

this purpose, we recall that any element of SU(2) can be written in the form

U = exp (−iαaσa) ,

where αa, a = 1, 2, 3, are real scalars and the σa are the Pauli spin matrices,

namely

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
,

which, as we know, generate the Lie algebra of SU(2). Thus, each gauge

field Wµ can be written as Wµ = W a
µσa, in other words

Wµ =

(
W 3
µ W 1

µ − iW 2
µ

W 1
µ + iW 2

µ −W 3
µ

)
.

It is convenient to introduce the following complex fields

W+
µ =

1√
2

(W 1
µ − iW 2

µ) (9.15)

W−
µ =

1√
2

(W 1
µ + iW 2

µ) (9.16)

so that W−
µ = (W+

µ )∗. Similarly, we define

W±
µν =

1√
2

(W 1
µν ∓ iW 2

µν) .

One can easily check (exercise) that

W 3
µν = ∂µW

3
ν − ∂νW 3

µ − ig2(W−
µ W

+
µ −W−

ν W
+
µ ) .
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Using this notation and the above relations, we can re-write the kinetic

Lagrangian of the electroweak model as follows:

L ew
kin = −1

4
BµνB

µν − 1

4
W 3
µνW

3µν − 1

2
W−
µνW

+µν . (9.17)

The details of this calculation are left as an exercise.

The gauge bosons of the theory are defined in terms of the given gauge

fields as follows. The W+ and W− vector bosons are the particles associated

to the fields W± given in (9.15). We define the field Zµ by the orthogonal

combination

Zµ = W 3
µ cos θw −Bµ sin θw ,

where θw is a constant, called the Weinberg angle. We also define the field

Aµ by the orthogonal combination

Aµ = W 3
µ sin θw +Bµ cos θw .

These fields correspond merely to a rotation of W 3
µ , Bµ by the Weinberg

angle. The vector boson Z0 is the particle associated to the Zµ field, whereas

the field Aµ is the electromagnetic field, whose associated particle is our old

friend the photon γ. One might be tempted to fancy that the Weinberg

angle is a quite arbitrary parameter, but this is not so. It has to be carefully

chosen so that, after the SU(2) gauge symmetry of the electroweak model

is spontaneously broken (as we explain below), the vector bosons acquire

mass, while the photon remains massless. In fact, it may be shown that the

Weinberg angle and the coupling constants are related as follows

cos θw =
g2√
g2
1 + g2

2

, sin θw =
g1√
g2
1 + g2

2

.

9.5.1.2 Leptonic interactions

Now we have to describe the interactions of the gauge fields with the lep-

tons. Recall that leptons are fermions, and as such they are represented

mathematically by spinor fields. Given a spinor ψ in the Dirac representa-

tion, we can consider the pair of Weyl spinors consisting of the right and

left components of ψ, namely

ψL =
1

2
(1− γ5)ψ , ψR =

1

2
(1 + γ5)ψ ,

where γ5 = iγ0γ1γ2γ3 (the γµ being the usual Dirac matrices). Note that

the matrices defining ψL and ψR are projection matrices, since
[
1

2
(1± γ5)

]2

=

[
1

2
(1± γ5)

]
.
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Thus, we may identify ψ with the pair ψL, ψR. The decomposition

ψ =

(
ψL
ψR

)

is called the chiral representation of the spinor ψ.

Remark 1. For use below, we recall the relationship between the three 2× 2

Pauli matrices σi and the 4× 4 Dirac matrices γµ, namely

γ0 =

(
0 σ0

1 0

)
and γi =

(
0 σi

−σi 0

)
(i = 1, 2, 3) ,

where we have defined σ0 = I (the identity matrix). In more compact

notation, this can be re-written as

γµ =

(
0 σµ

σµ 0

)

where σ0 = σ0 and σi = −σi (i = 1, 2, 3).

It is an experimentally observed fact that parity is not preserved under

weak interactions. This fact has lead physicists to treat the left and right

components of the lepton (and quark) fields as quite different objects. Let us

consider for instance the first generation of leptons, namely e, νe. The basic

assumption is that the left-handed components eL and νeL form a doublet

ℓeL =

(
νeL
eL

)

which is sensitive to SU(2) gauge transformations, whereas the right-handed

components eR and νeR are regarded as singlets, sensitive only to U(1) gauge

transformations. In particular, the electron and electron-neutrino interact

with the weak gauge fields only through their left components. Working by

analogy with the Dirac current for the electromagnetic Lagrangian, the min-

imal U(1)×SU(2) gauge covariant way to define the coupling of these lepton

fields with the gauge fields turns out to be (in the chiral representation)

L e
int = (ℓeL)†σµiDµℓ

e
L + (eR)†σµiD′

µeR + (νeR)†σµi∂µνeR . (9.18)

Here, there are two covariant derivatives in action, given by

Dµψ = (∂µ +
ig2
2
Wµ +

ig1
2
Bµ)ψ

D′
µψ = (∂µ +

ig1
2
Bµ)ψ
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Note that the first covariant derivative, containing the Wµ fields, only in-

tervenes in the first term on the right-hand side of (9.18). So there is no

interaction of the Wµ fields with the right components of the electron and

electron-neutrino fields, as expected. Note, however, the following fact: no

right-handed neutrino has ever been found! Thus, in the Standard Model

there is just one singlet in each lepton generation – i.e. three lepton singlets

altogether: eR, µR and τR. No right-handed neutrino fields. Accordingly,

we drop the last term in the interaction Lagrangian (9.18), writing instead

L e
int = (ℓeL)†σµiDµℓ

e
L + (eR)†σµiD′

µeR . (9.19)

One defines the doublets of the remaining two generations

ℓµL =

(
νµL
µL

)
, ℓτL =

(
ντL
τL

)

and the corresponding singlets µR, τR in a completely similar way, and the

partial interaction Lagrangians L µ
int and L τ

int by analogous expressions to

(9.19).

9.5.1.3 Symmetry breaking mechanism

The electroweak Lagrangian, as defined so far, has that serious defect en-

demic to non-abelian gauge theories: all of its particles are massless! The

reason is that there are too many symmetries. We already know the recipe

for remedying this situation: the Higgs symmetry-breaking mechanism. We

will break the SU(2) symmetry of the electroweak model, still keeping its

U(1) symmetry. Let us briefly indicate the results, leaving the computa-

tional details as an exercise. We introduce the Higgs field as the scalar

doublet

φ =

(
φ+

φ0

)

subject to the potential

V (φ†φ) =
1

2
λ2(φ†φ− v2)2 .

We use the SU(2) gauge invariance to fix the new ground state to

φ0 =

(
0

v

)

and expand the Lagrangian around this new vacuum. Due to this gauge

fixing, we only care about fields φ which are perturbations of the new vacuum
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of the form

φ =

(
0

v + 1√
2
h

)

where h is a real field. This time the covariant derivative applied to φ gives

us

Dµφ =

(
0

1√
2
∂µh

)
+

ig1
2

(
0

Bµµ(v + 1√
2
h)

)

+
ig2
2

(√
2W+

µ (v + 1√
2
h)

−W 3
µ(v + 1√

2
h)

)
.

Note that we are employing here the weak boson fields W±
µ . Using the above

expression for Dµφ to calculate (Dµφ)(†Dµφ), we deduce after some lengthy

computations that the kinetic electroweak Lagrangian with the Higgs field

added in is equal to

L H
kin−ew =

1

2
(∂µh)(∂

µh) +
g2
2

2
W−
µ W

+µ

(
v +

1√
2
h

)2

+
1

4
(g2

1 + g2
2)ZµZ

µ

(
v +

1√
2
h

)2

− λ2v2h2 +
1√
2
λ2vh3 +

1

8
λ2h4 .

From this expression of the Lagrangian, its is not difficult to check that

the masses of the gauge bosons W±
µ and Zµ are now positive. One can

also check that the field combination Aµ = W 3
µ sin θw +Bµ cos θw (where θw

is the Weinberg angle) remains massless. This field is identified with the

electromagnetic field, and its carrier is the photon.

Now, what about the leptons? In order to give them mass, we need to

couple them with Higgs field. This requires adding new terms to the elec-

troweak Lagrangian, and these terms should be Lorentz and gauge invariant.

The way to do this is to add a “mass Lagrangian” for each lepton generation.

For instance, for the first generation we have

L e
mass = = −ce

[
((ℓeL)†φ)eR + e†R(φ†ℓeL)

]
. (9.20)

where ce is a coupling constant (it has to be very small: the added mass

Lagrangian should not upset the perturbative calculations of QED!). The

expressions for the mass Lagrangians of the other two lepton generations are

entirely analogous, and we omit them. Note that (9.20) can be re-written
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in terms of the components of the left lepton field as follows:

L e
mass = −ce

[
(ν†eLφ

+ + e†Lφ
0)eR + e†R((φ+)†νeL + (φ0)†eL)

]
.

After fixing the gauge so the symmetry is broken, we get

L e
mass = −cev

(
e†LeR + e†ReL

)
− ceh√

2

(
e†LeR + e†ReL

)
.

Note that the neutrino field has disappeared from the scene. It continues

to be a massless particle, whereas the electron has acquired a mass, as it

should. Analogous results hold for the other two lepton generations.

Remark 2. There is strong empirical evidence that massive neutrinos exist

(albeit with a very small mass). The Standard Model has to be slightly

modified in order to accommodate such experimental evidence. This can be

done, but we will not discuss it here. See [CG, chs. 19,20].

9.5.2 Quantum Chromo-Dynamics

The theory describing strong interactions is known as Quantum Chromo-

Dynamics, or QCD for short. The interaction carriers are gluons, and the

matter fields are quarks. QCD is a non-abelian gauge theory, with gauge

group SU(3), the color group. Each quark q (a generic notation for any one

of the six flavors u, d, c, s, t, b) is a triplet

q =



qr
qb
qg




and the same is true for the corresponding anti-quarks q. We require gauge

invariance under the group SU(3).

9.5.2.1 The gluon gauge fields

The gluon gauge fields (Gµ) determine an SU(3) connection, and the cor-

responding covariant derivative (using the fundamental representation of

SU(3)) is given by

Dµq = (∂µ + ig3Gµ) q .

The constant g3 is the so-called strong coupling constant . Under a gauge

transformation q 7→ q′ = Uq (U ∈ SU(3)), we have the following transfor-

mation rule

Gµ 7→ G′
µ = UGµU

† +
i

g3
∂µU · U † .
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Note that Gµ belongs to the Lie algebra of SU(3), which consists of trace-

less, Hermitian matrices. This Lie algebra is 8-dimensional, and a basis is

provided by the Gell-Mann matrices

λ1 =




0 1 0

1 0 0

0 0 0


 , λ2 =




0 −i 0

i 0 0

0 0 0


 , λ3 =




1 0 0

0 −1 0

0 0 0


 ,

λ4 =




0 0 1

0 0 0

1 0 µ


 , λ5 =




0 0 −i
0 0 0

i 0 0


 , λ6 =




0 0 0

0 0 1

0 1 0


 ,

λ7 =




0 0 0

0 0 −i
0 i 0


 , λ8 =

1√
3




1 0 0

0 1 0

0 0 −2


 .

Using this basis, one may write

Gµ =
1

2
Gaµλa .

The field strength tensor associated with this SU(3) connection is given by

Gµν = DµGν −DνGµ

= ∂µGν − ∂νGµ + ig3[Gµ, Gν ] .

Following the Yang-Mills paradigm, we know that the kinetic Lagrangian

of the strong interaction must be defined as the curvature of our SU(3)

connection, namely

L s
kin = −1

2
Tr(GµνG

µν) .

9.5.2.2 Quark interactions

So much for the kinetic part of the QCD Lagrangian. Now we need to take

care of the part corresponding to the interactions with the quark fields. Let

us first describe the electroweak interaction of quarks. The quark model

must be able to explain certain nuclear decays such as the neutron decay

n → p + e− + νe. This decay, at quark level, is simply the decay of a

down quark into an up quark plus an electron and an electron neutrino, i.e.

d → u + e− + νe. This decay is due to the the weak interaction, whose

carrier is the W boson. Therefore, working by analogy with the muon decay

µ− → νµ + e− + νe, which is also mediated by the W boson, one sees that
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the left-handed components uL and dL of the up and down quarks should

be put together in a doublet

q1L =

(
uL
dL

)

while the right-handed components uR and dR, just like the right-handed lep-

tons eR and νe,R, are unchanged by SU(2) transformations. Similar doublet-

singlet arrangements should hold for the other two generations, namely the

doublets

q2L =

(
cL
sL

)
, q3L =

(
tL
bL

)
,

and the corresponding singlets cR, sR and tR, bR.

Given such symmetry structure of quark fields, it turns out that there

is only one way to make the quark dynamical Lagrangian density invariant

under U(1)×SU(2) gauge transformations. Again the guideline is provided

by analogy with the Dirac (QED) Lagrangian. We get, for the up-down

generation,

L u,d = qL i

[
∂µ +

ig2
2
Wµ +

ig1
6
Bµ

]
qL

+ uR i

[
∂µ +

2ig1
3
Bµ

]
uR (9.21)

+ dR i

[
∂µ −

ig1
3
Bµ

]
dR .

The fractions 2/3 and −1/3 multiplying ig1Bµ in the second and third lines

above reflect the fact that the up quark carries an electromagnetic charge

of 2/3, whereas the down quark carries an electromagnetic charge of −1/3.

Completely similar expressions L c,s and L t,b hold for the charmed-strange

and top-bottom quark generations. Hence the dynamical part of the the

total quark Lagrangian is

L quark
dyn = L u,d + L c,s + L t,b .

9.5.2.3 Coupling with the Higgs field

Let us now quickly describe how the quarks acquire mass. The procedure

is essentially the same as in the case of leptons. There is an important

difference, however. In our model, the left lepton doublets have the neutrino

fields as their first components, and these are massless. By contrast, both
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components of the quark doublets, which we write as

qiL =

(
uiL
diL

)
i = 1, 2, 3 ,

should have mass. The interaction Lagrangian corresponding to quarks cou-

pled with the Higgs field can be written as

L H
quark = L u

H + L d
H ,

where:

(i) The interaction of the down quarks d, s, b with the Higgs field is given by

L d
H = −

∑{
Gdij [(q

i
L)†φ]djR +Gd ∗ij (djR)†[φ†qiL]

}
.

The coefficients Gdij determine a 3 × 3 matrix which a priori is quite

arbitrary.

(ii) The interaction of the up quarks u, c, t with the Higgs field is given by

L u
H = −

∑{
Guij [(q

i
L)†iσ2φ∗]ujR +Gu ∗ij (ujR)†[φT iσ2qiL]

}
.

Here, the matrix

iσ2 =

(
0 1

−1 0

)

interchanges up and down components of the Higgs field. The choice of

sign is made so that the above partial Lagrangian is SU(2) invariant.

Upon SU(2) symmetry-breaking, following the Higgs strategy already de-

scribed, the partial Lagrangian (i) becomes

L d
mass = −v

∑{
Gdij(d

i
L)†djR +Gd ∗ij (djR)†diL

}
.

Likewise, (ii) becomes

L u
mass = −v

∑{
Guij(u

i
L)†ujR +Gu ∗ij (ujR)†uiL

}
.

From these last two expressions, it is possible to verify that all quarks have

acquired mass. We will not do this here. However, we will make the following

remarks. The 3× 3 matrices Gd = (Gdij) and Gd = (Gdij) are arbitrary, but

they can both be reduced to diagonal form by multiplication on the left and

on the right by distinct unitary matrices, say

Gd = D†
LM

dDR ,

Gu = U †
LM

uUR .
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Here the matrices Md,Mu are diagonal matrices (whose diagonal terms

correspond to the fermion masses). This requires a change of basis in the

quark fields, namely

d
′ i
L = Dij

L d
j
L , d

′ i
R = Dij

Rd
j
L

u
′ i
L = U ijL u

j
L , u

′ i
R = U ijR u

j
L

The fields in this new basis are called true quark fields. In this basis the

quadratic form corresponding to the quark fields becomes diagonal, and one

can read off the quark masses from the diagonal terms.

Now, it turns out that, in terms of these true quark fields, the part of the

quark Lagrangian corresponding to the interaction with the weak fields can

be written as

Lq,w =
1√

2 sin θw
(u′†L, c

†
L, t

†
L)



Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb





σµd′L
σµs′L
σµb′L


 W+

µ .

Here we have reverted to using the flavor names as indices. The angle θw is

the Weinberg angle. The 3 × 3 matrix V appearing in the right-hand side

of the above expression is equal to the unitary matrix ULD
†
L. This matrix

is called the Kobayashi-Maskawa matrix. As we can see, it mixes the three

generations of quarks.

9.5.3 The final Standard Model Lagrangian

In order to write the final Lagrangian of the Standard Model we have to col-

lect together all the contributions in the previous subsections, including the

Higgs field. From Noether’s theorem (see chapter 5) each remaining sym-

metry of the model generates conserved currents and charges. The charges

of the SU(3) symmetries are the quark colors. The photons, which are the

quantum particles that intermediate the electromagnetic interaction, do not

have electrical charge because the corresponding symmetry group is abelian

and there is no interaction between photons. Since SU(3) is non-abelian,

the gluons do carry color charges, even though they have no mass. We must

of course include fields corresponding to the three families of leptons and

quarks that we mentioned before. This gives rise to a rather complicated

expression for the Lagrangian, which is the following.
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LSM = −1

4

(
GaµνG

µνa +Wα
µνW

µνα +BµνB
µν
)

(9.22)

+Dµφ
†Dµφ+ µ2φ†φ− λ(φ†φ)2

+ iqLγ
µ

(
∂µ −

i

2
g2W

α
µ σ

α − i

6
g1Bµ −

i

2
g3G

a
µλa

)
qL

+ idRγ
µ

(
∂µ +

i

3
g1Bµ −

i

2
g3G

a
µλa

)
dR

+ iuRγ
µ

(
∂µ −

2i

3
g1Bµ −

i

2
g3G

a
µλa

)
uR

+ iℓLγ
µ

(
∂µ −

i

2
g2W

α
µ σ

α +
i

2
g1Bµ

)
ℓL

+ ieRγ
µ (∂µ + ig1Bµ) eR

+ kdqLφdR + kuqLτ
2φuR + keℓLφeR

+ h.c .

The abbreviation “h.c.” stands for the sum of Hermitian conjugates of the

terms displayed, so the above formula is in fact twice as long when written

in full.

Remark 3. This is just the classical description. In order to quantize the

theory two other developments played a fundamental role. The first was the

discovery of asymptotic freedom by D. Gross, F. Wilczek and D. Politzer

(Nobel Prize in Physics 2004), that allows the use of perturbation theory in

QCD when the scale of energy is high or distances are small, see [GW], [P].

This means that the strong force that acts on the quarks decreases with the

distances between the quarks so that at very small distances they behave

as free particles, whereas if the distances increase, it increases strongly ac-

counting for confinement of quarks in QCD. The second important step was

the proof by t’Hooft-Veltman (Nobel Prize in Physics 1999) that non-abelian

gauge theories are renormalizable, see [tHV].

Remark 4. The Standard Model also contains 19 free parameters (masses,

coupling constants, etc.) that cannot be computed by the theory: they

have to be obtained experimentally. This stimulated the search for unifica-

tion models with a small number of parameter where the Standard Model

could be imbedded. The biggest challenge is to include gravitation, whose

Lagrangian is highly non-renormalizable, in the quantum theory. String the-

ory, see [Polc], which has just one parameter, is a serious candidate for this
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model since it contains both the standard model and gravitation. However

there are a huge number of string theory models, due to different compactifi-

cations of part of the higher dimensional spacetime, giving different physical

predictions, and there is no experimental data to select one out of them all.

More recently, Alain Connes [CCM] proposed a new unification model based

on non-commutative geometry.

Remark 5. A very lucid description of the Standard Model at the level

presented in this chapter can be found in the book by W. Cottingham and

D. Greenwood [CG]. A more sophisticated treatment is given by A. Chamsed-

dine in [Ch]. Note that, apart from a a slight change in notation, the SM

Lagrangian expression presented in (9.22) is exaclty the same as the one

given in [Ch]. For a very interesting phenomenological description of the

model see M. Veltman’s account in [V].

9.6 The intrinsic formulation of the Lagrangian

Having presented the semi-classical expression of the Lagrangian of the Stan-

dard Model as given in the physics literature, we would like to give a brief

explanation of the intrinsic (i.e. coordinate-free) mathematical meaning of

such Lagrangian. The Lagrangian itself will depend only on the 1-jet of the

fields involved.

There will be several ingredients. First we will need certain connections

corresponding to the interaction fields. We will also need several vector or

spinor (Hilbert) bundles over spacetime, whose sections will be the mat-

ter fields. These vector bundles are obtained as associated bundles of the

principal bundles where the interaction fields live, via suitable group repre-

sentations. The various kinetic terms of the Lagrangian arise directly from

the covariant derivatives induced by the interaction field connections on

these associated vector bundles.

Here are the building blocks.

(i) Spin bundle and Clifford connection. All bundles will be defined over a

spacetime M . As always, M is assumed to be a spin 4-manifold, with

a Lorentzian metric which in general will be non-flat. We start with a

Lorentz principal bundle over M and an associated vector bundle

R4 �

�

// E

��

M
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We also consider a Clifford connection on this vector bundle, i.e. a

connection ∇
c : Γ(TM) × Γ(E) → Γ(E) having the following proper-

ties.

(a) It is compatible with the metric: for all sections ψ, θ ∈ Γ(E) we

have

∂µ 〈ψ, θ〉 =
〈
∇
c
µψ, θ

〉
+
〈
ψ,∇c

µθ
〉
,

where 〈·, ·〉 denotes the inner product on fibers.

(b) It is compatible with Clifford multiplication: for all X ∈ Γ(TM),

all λ ∈ Γ(T ∗M) and all ψ ∈ Γ(E), we have

∇
c
X(λ · ψ) = (∇Xλ) · ψ + λ · (∇Xψ) ,

where · denotes Clifford multiplication.

It is a theorem that we shall not prove here that, given a spin bundle

(E,M) as above, there exists a unique Clifford connection defined over

E. See the book by B. Lawson and M. Michelson [LM].

Let us briefly describe how one can write down an expression for the

Clifford connection in local coordinates. Let ω denote the Levi-Civita

(Lorentz) connection on M . Recall (see chapter 4) that ω is a matrix

ω = (ωµν ) of 1-forms which can be written in local coordinates as

ωµν = ωµσν dx
σ .

The matrix ω is anti-symmetric: ωµν = −ωνµ. By a slight abuse of

notation, let γµ denote the Dirac matrices transported via the repre-

sentation of SL(2,C) defining the vector (spinor) bundle E to matrices

acting on the fibers of E. Then the Clifford connection on E can be

written a follows:

Ω =
1

4
ωµν γµγ

ν .

Here, as usual, we write γµ = gµνγ
ν , where gµν = gµν are the com-

ponents of the Lorentzian metric tensor on M . Thus, the Clifford co-

variant derivative of any section ψ ∈ Γ(E) is given in local coordinates

by

∇
c
µψ =

(
∂µ +

1

4
ωνσµγνγ

σ

)
ψ .

Note that we have used Clifford multiplication on the fibers of E, as

we should. Therefore, the local expression of the corresponding Dirac
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operator is simply

/Dψ =

(
γµ∂µ +

1

4
ωνσµγ

µγνγ
σ

)
ψ .

(ii) Basic Hermitian bundles. The matter fields are constructed from the

following auxiliary Hermitian vector bundles.

(a) Structure group U(1), with representation 1:

C
�

�

// E1

��

M

(b) Structure group SU(2), with representation 1:

C
�

�

// Ẽ2

��

M

(c) Structure group SU(2), with representation 2:

C2 �

�

// E2

��

M

(d) Structure group SU(3), with representation 3:

C3 �

�

// E3

��

M

(e) Structure group SU(3), with representation 3:

C3 �

�

//
E

3

��

M

(f) Structure group SU(3), with the trivial representation:

C
�

�

// Ẽ3

��

M
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The Hermitian structure on each of these bundles is pretty obvious.

(iii) The matter bundles. These are constructed from the above auxiliary

vector bundles by suitable tensor products.

(a) Left-quark doublet bundle QL = E1 ⊗ E2 ⊗ E3 ⊗ E. Here the

representation is 1⊗ 2⊗ 3, and the vector bundle is

C⊗ C2 ⊗ C3 ⊗ R4 �

�

// QL

��

M

(b) Up-quark singlet bundle UR = E1 ⊗ Ẽ2 ⊗ E3 ⊗ E. Here the rep-

resentation is 1⊗ 1⊗ 3, and the vector bundle is

C⊗C⊗ C3 ⊗R4 �

�

// UR

��

M

(c) Down-quark singlet bundle DR = E1 ⊗ Ẽ2 ⊗ E3 ⊗ E. Here the

representation is 1⊗ 1⊗ 3, and the vector bundle is

C⊗ C⊗C3 ⊗ R4 �

�

// DR

��

M

(d) Left-lepton doublet bundle LL = E1 ⊗ E2 ⊗ Ẽ3 ⊗ E. Here the

representation is 1⊗ 2⊗ 1, and the vector bundle is

C⊗ C2 ⊗ C⊗ R4 �

�

// LL

��

M

(e) Right-electron singlet bundle ER = E1 ⊗ Ẽ2 ⊗ Ẽ3 ⊗ E. Here the

representation is 1⊗ 1⊗ 1, and the vector bundle is

C⊗ C⊗ C⊗ R4 �

�

// ER

��

M
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(f) Higgs bundle H = E1 ⊗E2 ⊗ Ẽ3 ⊗E. Here the representation is

1⊗ 2⊗ 1, and the vector bundle is

C⊗ C2 ⊗ C⊗ R4 �

�

// H

��

M

(iv) Charge conjugation. On each building block vector bundle described

above, we can define an anti-linear bundle involution. Taken together,

these yield a charge conjugation operator on the space of fields.

(v) Kobayashi-Maskawa matrix. As we saw, there are three generations

of quarks and leptons. The coupling of the Higgs field with the mat-

ter fields mixes these three generations. The way the mixing is ac-

complished is through the so-called Kobayashi-Maskawa matrix (also

called Cabibbo-Kobayashi-Maskawa matrix).

(vi) Higgs morphism. In order to incorporate the symmetry breaking mech-

anism that assigns masses to leptons and quarks, we define a bundle

morphism

H //

��
44

44
44

44
44

44
44

End(DR ⊕QL)

~~~~
~~

~~
~~

~~
~~

~~
~~

M

In coordinates, its expression is

(x, h) 7→ (x, Tx,h) ,

where

Tx,h :

(
dR
qL

)
7→
(

0

hdR

)

One easily checks (exercise) that this definition does not depend on

the choice of trivialization.

One should also take into account that there are three generations of

leptons and quarks. With these ingredients in place, one can define the

Lagrangian of the Standard Model intrinsically as a map

LSM : D → Γ(M × R) ,
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where the domain of LSM , namely D , is the product space

Γ(C )×
3∏

i=1

Γ(Qi
L)×

3∏

i=1

Γ(U i
R)×

3∏

i=1

Γ(D i
R)×

3∏

i=1

Γ(L i
L)×

3∏

i=1

Γ(E i
R)×Γ(H ) .

The definitions have been set up so that the formula (9.22) now makes

sense. Note that Γ(M ×R) ≡ C∞(M), so the Lagrangian evaluated at a 17-

tuple of fields produces a function over M which can therefore be integrated

over M to yield a number (the value of the action at that 17-tuple of fields).

This Lagrangian is by construction invariant under the gauge group G =

U(1)× SU(2)× SU(3) (it is also Lorentz invariant, so the gauge group can

be enlarged by taking the product of G with the Lorentz group), and it

respects charge conjugation.

Exercises

9.1 Give a detailed proof of the U(1) × SU(2) gauge invariance of the

electroweak Lagrangian.

9.2 Do the same for the U(1) × SU(2) × SU(3) gauge invariance of the

Standard Model Lagrangian.

9.3 Using the Euler-Lagrangian equations for the action-functional as-

sociated to the QCD Lagrangian, show that the components of the

gluon field strength tensor satisfy the equations

∂µG
a µν = ja ν ,

where the current components are given by

ja ν = g3


fabcGbµGc µνµ +

∑

f

qfγ
ν 1

2
λaqf


 .

Here, fabc are the structure constants of the group SU(3).

9.4 Prove that the definition of the Higgs morphism given in §9.6 is

indeed independent of the choices of trivializations of the bundles

involved.
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Appendix I: Hilbert spaces and Operators

In this appendix we present a crash course in functional analysis on Hilbert

spaces. We limit our presentation to those facts and results that are essen-

tial for the proper foundations of quantum theory. These results include the

spectral theorem for unbounded, self-adjoint operators, the functional cal-

culus for such operators, Stone’s theorem, and the Kato-Rellich theorem, all

of which are presented here with complete proofs. The literature on Hilbert

space theory is incredibly vast. Among the references we found most useful

are [RS1, RS2], [Th], [L] and [AJP].

10.1 Hilbert spaces

We start with the definition of inner product space, or pre-Hilbert space.

We are interested only in complex Hilbert spaces.

Definition 10.1 A (complex) inner product space (V, 〈·, ·〉) consists of a

(complex) vector space V together with a map 〈·, ·〉 : V × V → C, called an

inner product, satisfying

(i) 〈v, v〉 ≥ 0 for all v ∈ V , and 〈v, v〉 = 0 if an only if v = 0;

(ii) 〈·, ·〉 is bilinear and skew-symmetric:

• 〈αu+ βv,w〉 = α 〈u,w〉+β 〈v,w〉 for all u, v,w ∈ V and all α, β ∈
C;

• 〈v,w〉 = 〈w, v〉 for all v,w ∈ V .

An inner product on V induces a norm on V , namely ‖v‖ =
√
〈v, v〉, and

this norm gives rise, of course, to a metric: d(v,w) = ‖v − w‖.

Definition 10.2 A Hilbert space H is a complex inner-product space which

is complete with respect to the metric induced by its inner product.

254
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Example 1. Let (X,µ) be a measure space, and consider L2
µ(X), the complex

vector space of all measurable functions f : X → C which are square-

integrable, i.e. satisfy ∫

X
|f |2 dµ < ∞ .

We regard two functions in L2
µ(X) which agree µ-almost everywhere as equal.

Define an inner product in L2
µ(X) as follows:

〈f, g〉 =

∫

X
f ḡ dµ .

Then L2
µ(X), endowed with this inner product, is a Hilbert space (exercise).

Example 2. Let I be a (finite or infinite) index set, and let ℓ2(I) ⊂ CI

denote the complex vector space of all sequences x = (xi)i∈I such that
∑

i∈I
|xi|2 < ∞ .

It is implicit that convergence of the series entails in particular that all but

at most countably many terms are non-zero. Then ℓ2(I) is an inner-product

space under the inner product

〈x, y〉 =
∑

i∈I
xiyi .

This inner product is complete (exercise), so ℓ2(I) is a Hilbert space. When

I is finite, say with cardinality n, then ℓ2(I) ≡ Cn.

10.2 Linear operators

Let us introduce the basics on linear functionals and operators in Hilbert

spaces.

Let T : H →H ′ be a linear operator between Hilbert spaces. If H ′ = C,

we call T a linear functional . As usual in linear algebra, we denote by ker T

the kernel of T , i.e. the subspace of H consisting of all ξ ∈ H such that

T (ξ) = 0. The operator T is said to be bounded if ‖T (ξ)‖ ≤ C‖ξ‖ for all

ξ ∈ H , for some constant C > 0. The smallest such constant is called the

operator norm of T , denoted ‖T‖. A bounded operator T as such is bounded

if and only if it is continuous. The kernel ker T of a bounded operator T is a

closed subspace of H . We are interested primarily in the case of operators

mapping a Hilbert space H into itself. The space of all such bounded linear
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operators T : H →H will be denoted B(H ). Endowed with the operator

norm, B(H ) is a Banach space (a complete normed linear space).

Let us first deal with linear functionals. The fundamental fact about

bounded linear functionals is known as Riesz’s representation lemma. In the

proof, we will need the notion of orthogonal complement of a given subspace

V ⊂H . This is simply the subspace V ⊥ = {ξ ∈H : 〈ξ, v〉 = 0∀ v ∈ V }.

Lemma 10.1 (Riesz) If φ : H → C is a bounded linear functional, then

there exists a unique η ∈H such that φ(ξ) = 〈ξ, η〉 for all ξ ∈H .

Proof Let V = kerφ. Since φ is bounded, V is closed in H . If V = H , then

φ = 0 and there is nothing to prove. If V 6= H , then V ⊥ is one-dimensional.

Indeed, if u, v ∈ V ⊥ are both non-zero, then

w = u− φ(u)

φ(v)
v

is in V ⊥ and satisfies φ(w) = 0, so w ∈ V ∩ V ⊥ = {0}. Now let u ∈ V ⊥ be

such that φ(u) = 1 and take η = ‖u‖−2u ∈ V ⊥, so that

φ(η) =
φ(u)

‖u‖2 = ‖η‖2 .

Let L : H → C be the linear functional given by L(ξ) = φ(ξ) − 〈ξ, η〉. If

ξ ∈ V , then ξ ⊥ η, and therefore L(ξ) = 0. If instead ξ ∈ V ⊥, then ξ = λη

for some λ ∈ C and

L(ξ) = λφ(η)− λ 〈η, η〉 = λ(φ(η)− ‖η‖2) = 0 .

Since H = V ⊕ V ⊥, this shows that L ≡ 0, and we are done.

The Riesz lemma has many applications. Here is one of the most basic.

Let T : H → H be a bounded linear operator, and let η ∈ H . Then

the correspondence ξ 7→ 〈Tξ, η〉 defines a bounded linear functional on H .

By the Riesz lemma, there exists a unique element T ∗η ∈ H such that

〈Tξ, η〉 = 〈ξ, T ∗η〉 for all ξ ∈ H . The map T : η 7→ T ∗η defines a bounded

linear operator on H , called the adjoint of T .

Definition 10.3 Several types of operators occur naturally in applications.

(1) An operator T ∈ B(H ) is said to be self-adjoint if T = T ∗.
(2) An operator T ∈ B(H ) is an isometry if 〈Tξ, Tη〉 = 〈ξ, η〉 for all

ξ, η ∈H .

(3) An operator U ∈ B(H ) is said to be unitary if UU∗ = U∗U = I (I

being the identity operator).
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It is an easy exercise to prove that U ∈ B(H ) is unitary if and only if U is

a surjective isometry. In particular, a simple example of an isometry which

is not unitary is provided by the right shift operator T : ℓ2(N)→ ℓ2(N) given

by T (x1, x2, . . .) = (0, x1, x2, . . .), which is clearly not surjective.

10.3 Spectral theorem for compact operators

A linear operator T : H →H on a Hilbert space H is compact if it maps

bounded sets onto relatively compact sets. Equivalently, T is compact if the

image of the unit ball is relatively compact in H .

Example 3. Here is a prototypical example. Let H be a separable Hilbert

space, and let {en}n≥1 be an orthonormal basis for H . Given a sequence

{λn}n≥1 of real numbers, say with |λn| ≥ |λn+1| for all n and λn → 0 as

n→∞, let T : H →H be the linear operator with T (en) = λnen for all n

(and extended by linearity). Then T is compact and self-adjoint. The proof

is left as an exercise.

The spectral theorem for compact, self-adjoint operators states that the

above example is the only example up to unitary equivalence. Before we

carefully state and prove this result, a definition and an auxiliary lemma are

in order.

We define the spectrum of T : H →H to be the set

σ(T ) = {λ ∈ C : ker(T − λI) 6= 0} .

The spectrum of a compact operator is always non-empty, as the following

result shows.

Lemma 10.2 If T : H → H is compact and self-adjoint, then T has an

eigenvalue.

Proof We shall prove that either ‖T‖ or −‖T‖ is an eigenvalue of T . We

assume ‖T‖ 6= 0, otherwise there is nothing to prove.

First we claim that ker(T 2 − ‖T‖2I) 6= 0. To see why, let (un) be a

sequence of unit vectors such that ‖Tun‖ → ‖T‖. Since T is compact, we

may assume also that Tun → w, for some w ∈H . Now we have, as n→∞,

‖T 2un − ‖T‖2un‖2 = ‖T 2un‖2 − 2‖T‖2‖Tun‖2 + ‖T‖4

≤ 2‖T‖4 − 2‖T‖2‖Tun‖2 → 0 . (10.1)

Note that self-adjointness was used in (10.1). But T 2un → Tw, because T
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is continuous. Since (10.1) implies

‖un − ‖T‖−2T 2un‖ → 0

as n→∞, it follows that un → v = ‖T‖−2Tw. Therefore T 2v−‖T‖2v = 0,

and this proves our claim.

The rest is now very easy, since

0 = (T 2 − ‖T‖2I)v = (T − ‖T‖I)(T + ‖T‖I)v

implies that either (T + ‖T‖I)v = 0, in which case v is an eigenvector with

eigenvalue −‖T‖, or w = (T +‖T‖I)v 6= 0, in which case w is an eigenvector

with eigenvalue ‖T‖.

We are now ready for the first version of the spectral theorem.

Theorem 10.1 Let T : H →H be compact and self-adjoint. Then

(i) The spectrum σ(T ) is at most countable, and contained in R;

(ii) The subspaces ker(T − λI) ⊂H with λ ∈ σ(T ) are pairwise orthog-

onal;

(iii) We have H =
⊕

λ∈σ(T ) ker(T − λI) ;

(iv) For each ǫ > 0,
∑

λ∈σ(T ), |λ|≥ǫ dimker(T − λI) <∞.

Proof First note that, if λ ∈ σ(T ), then λ is real, because T is self-adjoint.

Next, if λ, µ ∈ σ(T ) are distinct then, given v ∈ ker(T − λI) and w ∈
ker(T − µI), we have

〈Tv,w〉 = 〈v, Tw〉 ⇒ 〈λv,w〉 = 〈v, µw〉
⇒ (λ− µ) 〈v,w〉 = 0

⇒ 〈v,w〉 = 0 .

This proves (ii).

Now, for each λ ∈ σ(T ), let Hλ = ker(T − λI). Note that, whenever

λ ∈ σ(T ) is 6= 0, Hλ must be finite-dimensional. Indeed, the restriction T |Hλ

maps Hλ into itself, and since Tv = λv for each v ∈ Hλ, this restriction

is in fact a multiple of the identity, which can never be compact unless

nλ = dimHλ is finite. But more is true. If ǫ > 0 is given, let

H ǫ =
⊕

λ∈σ(T ), |λ|≥ǫ
Hλ .

Then T (H ǫ) ⊂ H ǫ. Let eλ ∈ Hλ be a unit vector, for each λ ∈ σ(T ).

Then {Teλ : |λ| ≥ ǫ} is a relatively compact set, so we can find a sequence
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(λn) with |λn| ≥ ǫ such that (Teλn) converges. But is λ 6= µ are any two

elements of the spectrum, then

‖Teλ − Teµ‖2 = ‖λeλ − µeµ‖2 = λ2 + µ2 ≥ 2ǫ2 > 0 ,

which is a contradiction unless H ǫ is finite-dimensional. This proves (iv),

and it also proves (i) (why?).

Finally, let V =
⊕

λ∈σ(T ) Hλ. Then V is closed subspace, and it is T -

invariant. Hence so is its orthogonal complement. The operator T |V ⊥ :

V ⊥ → V ⊥ is compact and self-adjoint. But every such operator must have

an eigenvalue, by lemma 10.2. This contradicts the very definition of V ,

unless V = H . This proves (ii).

This theorem implies that every compact, self-adjoint operator can be

diagonalized . More precisely, we have the following result.

Corollary 10.1 A compact, self-adjoint operator T : H → H admits an

orthonormal basis of eigenvectors.

Proof For each λ ∈ C such that Hλ = ker(T − λI) 6= 0, let Bλ be an

orthonormal basis of Hλ. Each e ∈ Bλ is an eigenvector with eigenvalue λ,

and ∪Bλ is a basis for H because, as we have seen, H =
⊕

Hλ.

Remark 1. If {en}n≥1 is a basis of eigenvectors for T , with Ten = λnen for

all n (λn ∈ R), then for each v =
∑
anen ∈ H we have Tv =

∑
anλnen.

Since T is compact, we know that |λn| → 0 as n → ∞. This justifies the

remark we made immediately after example 1.

Remark 2. The function ϕT : λ 7→ dimker(T − λI) characterizes T com-

pletely up to unitary equivalence. In other words, if Ti : Hi →Hi (i = 1, 2)

are both compact and self-adjoint, then T1 is unitarily equivalent to T2 if

and only if ϕT1 = ϕT2 . The proof is left as an exercise.

10.4 Spectral theorem for normal operators

A bounded operator T : H →H is said to be normal if it commutes with

its adjoint: TT ∗ = T ∗T . This wide class of operators includes of course

all self-adjoint operators, as well as all unitary operators. It also includes

all multiplication operators, when H = L2
µ(X) (where (X,µ) is a finite

measure space): given any bounded measurable function g : X → C, the

operator Mg : L2
µ(X) → L2

µ(X) given by Mgψ = g · ψ is bounded, and

M∗
g = Mḡ; in particular, M∗

gMg = Mḡg = Mgḡ = MgM
∗
g , so Mg is normal.
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As it turns out, multiplication operators as above are the only normal

operators up to unitary equivalence. This is the contents of the following

spectral theorem.

Theorem 10.2 (Spectral Theorem) Let T : H → H be a bounded,

normal operator on a separable Hilbert space. Then T is unitarily equivalent

to a multiplication operator. In other words, there exist a σ-finite measure

space (X,µ), a bounded measurable function g : X → C and a unitary

isometry U : H → L2
µ(X) such that the diagram

H
T−−−−→ H

U

y
yU

L2
µ(X) −−−−→

Mg

L2
µ(X)

commutes (i.e. T = U∗MgU).

The proof of this theorem will be given in appendix II, after we talk

about C∗ algebras and their representations. As we shall see there, the

above theorem holds true for any finite set T1, . . . , Tn of commuting normal

operators; in this case, the same unitary isometry U conjugates each Ti to

a multiplication operator Mgi
∈ B(L2

µ(X)), where gi : X → C is bounded

and measurable.

10.5 Spectral theorem for unbounded operators

10.5.1 Unbounded operators

The vast majority of operators (in Hilbert space) that appear in applications

ranging from classical to quantum physics are unbounded operators. These

operators are usually only densely defined. Let us formulate the appropriate

definitions.

We consider operators of the form T : V → H , where V ⊂ H is a

(not necessarily closed) linear subspace, which are linear . We say that T is

densely defined if V is dense in H . We say that T is closed if the graph

Gr(T ) = {(v, Tv) : v ∈ V } is a closed subspace of H ⊕H .

Example 4. Let (X,µ) be a measure space, and let g : X → C be a mea-

surable function. Define Vg = {ϕ ∈ L2
µ(X) : gϕ ∈ L2

µ(X)}. This is a dense

subspace of L2
µ(X). The multiplication operator Mg : Vg → L2

µ(X) given by

Mg(ϕ) = gϕ is therefore densely defined, and it is also closed. The details

are left as an exercise.
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We shall frequently write T : dom (T )→H , sometimes also (T,dom (T )),

when we want to specify a linear operator T ; it is implicit here that dom (T )

is the domain of T . The image of T will be denoted by ran (T ), as is

customary among functional analysts. The graph norm on dom (T ) is the

norm defined by

‖v‖2T = ‖v‖2 + ‖Tv‖2

for all v ∈ dom(T ). That this is indeed a norm, deriving from an inner

product, is left as an exercise. One can show that the operator T is closed

if and only if the graph norm is complete for dom (T ) (i.e. iff dom (T ) is a

Hilbert space under this norm).

Let us now define the adjoint of a densely defined operator T : dom (T )→
H . First, we define its domain dom (T ∗) to be the set of all η ∈ H such

that the correspondence ξ 7→ 〈Tξ, η〉 extends to a bounded linear functional

ϕη : H → C. This extension is unique because dom (T ) is dense in H . Then

dom(T ∗) ⊂H is a linear subspace, and by Riesz’s representation theorem,

there exists vη ∈ H such that ϕη(ξ) = 〈ξ, vη〉. We define T ∗ : dom (T ∗) →
H by T ∗(η) = vη . It is clear that T ∗ is linear and satisfies 〈Tξ, η〉 = 〈ξ, T ∗η〉
for each ξ ∈ dom (T ) and each η ∈ dom (T ∗). The operator T ∗ is the adjoint

of T . The reader is invited to prove that T ∗ is always a closed operator.

A few more definitions are in order. Given two linear operators T, S on H ,

we say that T is an extension of S, written S ⊂ T , if dom (S) ⊂ dom (T ) and

Sξ = Tξ for all ξ ∈ dom(S). An operator T : dom (T ) → H is symmetric

if for all ξη ∈ dom (T ) we have 〈Tξ, η〉 = 〈ξ, Tη〉. It is easy to see (exercise)

that T is symmetric iff T ⊂ T ∗. We say that T is self-adjoint if T = T ∗; in

other words, T is self-adjoint if dom (T ) = dom (T ∗) and T is symmetric.

10.5.2 The Cayley transform

Let T : dom (T ) → H be a densely defined, symmetric operator. The

Cayley transform of T is the linear operator WT defined as follows:

(i) dom (WT ) = {(T + i)v : v ∈ dom (T )};
(ii) WT ((T + i)v) = (T − i)v, for all v ∈ dom (T ).

In order to see that WT is well-defined, note that if w ∈ dom (WT ) then

w = (T+i)v for a unique v ∈ dom (T ). Indeed, if we had (T+i)v1 = (T+i)v2
then ξ = v1−v2 would satisfy Tξ = −iξ, but this is impossible unless ξ = 0,

because T is symmetric:

−i‖ξ‖2 = 〈Tξ, ξ〉 = 〈ξ, T ξ〉 = i‖ξ‖2 .
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Hence WT is well-defined, and clearly linear. Moreover, an easy calculation

yields

‖(T ± i)v‖2 = ‖Tv‖2 + ‖v‖2

for all v ∈ dom (T ). Hence ‖(T+i)v‖2 = ‖(T−i)v‖2, and therefore ‖WT ((T+

i)v)‖ = ‖(T + i)v‖ for all v ∈ dom(T ). This shows that WT is a partial

isometry , i.e. it is a linear operator which is an isometry wherever it is

defined. Note also that WT is onto the subspace ran (WT ) = {(T − i)v :

v ∈ dom (T )}. Thus, we can view the Cayley transform as a correspondence

κ : T 7→ WT that sends densely defined symmetric operators to partial

isometries of H . We shall see that such correspondence is one-to-one and

onto. This requires the following three lemmas.

Lemma 10.3 Let U : dom (U)→H be a partial isometry such that I − U
has a dense image in H . Then

(a) I − U : dom (U)→ ran ((I − U)) is bijective;

(b) The linear operator AU , defined by taking dom (AU ) = {(I − U)ξ :

ξ ∈ dom (U)} and AU ((I − U)ξ) = i(I + U)ξ for all ξ ∈ dom (U), is

symmetric and densely defined.

Proof (a) Let ξ ∈ ker(I − U); then for each η ∈ dom (U) we have

〈ξ, (I − U)η〉 = 〈ξ, η〉 − 〈ξ, Uη〉
= 〈ξ, η〉 − 〈Uξ,Uη〉
= 〈ξ, η〉 − 〈ξ, η〉 = 0 .

Hence ξ ⊥ ran (I − U), and since ran (I − U) is dense in H , it follows that

ξ = 0. This shows that I −U is injective (hence a bijection onto its image).

(b) The operator AU is clearly densely defined, for its domain is the

ran (I − U). Now suppose v = (I − U)ξ ∈ dom (AU ) and w = (I − U)η ∈
dom(AU ). Then on the one hand we have

〈AUv,w〉 = 〈i(ξ + Uξ), η − Uη〉
= i [〈Uξ, η〉 − 〈ξ, Uη〉] , (10.2)

and on the other hand

〈v,AUw〉 = 〈ξ − Uξ, i(η + Uη)〉
= −i [−〈Uξ, η〉+ 〈ξ, Uη〉] , (10.3)

From (10.2) and (10.3) it follows that 〈AUv,w〉 = 〈v,AUw〉, so AU is sym-

metric.
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Lemma 10.4 Let T : dom (T )→H be densely defined and symmetric, and

let U : dom (U) → H be a partial isometry with ran (I − U) dense in H .

Then we have WAU
= U and AWT

= T .

Proof For each ξ ∈ dom (AU ) we have WAU
(AU ξ + iξ) = AUξ − iξ. But

dom(AU ) = ran (I − U), whence ξ = (I − U)η for some η ∈ dom (U). This

means that

AU ξ − iξ = i(I + U)η + i(I − U)η = 2iη ,

and also

AU ξ + iξ = i(I + U)η − i(I − U)η = 2iUη .

Therefore WAU
(2iη) = 2iUη, i.e. WAU

= U . This proves the first equality

in the statement. The second equality follows from a similar argument.

Lemma 10.5 Let T : dom (T ) → H be a symmetric operator. Then the

following statements are equivalent.

(i) T is closed;

(ii) ran (T + i) is closed;

(iii) ran (T − i) is closed.

Proof The equivalence of all three assertions is an easy consequence of the

fact that the operators (ξ, T ξ) 7→ (T ± i)ξ from Gr(T ) onto ran (T ± i) are

both unitary. The details are left as an exercise.

Lemma 10.6 Let T : dom (T )→H be symmetric and densely defined. Let

N± = ran (T ± i)⊥. Then we have

N+ = ker(T ∗ − i) and N− = ker(T ∗ + i) . (10.4)

Moreover, endowing dom (T ∗) with the graph norm, we have the following

orthogonal decomposition

dom (T ∗) = dom (T )⊕N+ ⊕N− . (10.5)

Proof Let ξ ∈ N+, and take any η ∈ dom (T ). Then 〈(T + i)η, xi〉 = 0, i.e.

〈Tη, ξ〉+ i 〈η, ξ〉 = 0. Hence ξ ∈ dom (T ∗) and 〈η, T ∗ξ − iξ〉 = 0, so (T ∗− i)ξ
is orthogonal to dom(T ). Since dom (T ) is dense in H , it follows that

(T ∗ − i)ξ = 0, i.e. ξ ∈ ker(T ∗ − i). This shows that N+ ⊂ ker(T ∗ − i). For

the reverse inclusion, note that the argument just given is itself reversible.

This proves the first equality in (10.4). The proof of the second equality is

similar.
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In order to prove (10.5), we first show that N+ and N− are orthogonal

subspaces, relative to the graph inner product 〈·, ·〉 on dom (T ∗). Given

ξ± ∈ N± we have, using (10.4),

〈ξ+, ξ−〉T ∗ = 〈T ∗ξ+, T
∗ξ−〉+ 〈ξ+, ξ−〉

= 〈iξ+,−iξ−〉+ 〈ξ+, ξ−〉
= 0 .

Next, we show that N+ ⊥ dom (T ). It suffices of course to show that

N+ ⊥ dom (T ). Let ξ ∈ N+ = ker(T ∗ − i) and η ∈ dom (T ). Then, using

the fact that T is symmetric, we have

〈ξ, η〉T ∗ = 〈T ∗ξ, T ∗η〉+ 〈ξ, η〉 = 〈iξ, Tη〉+ 〈ξ, η〉
= 〈iT ∗ξ, η〉+ 〈ξ, η〉
= i 〈−iξ + T ∗ξ, η〉 = 0 .

The proof that N− ⊥ dom (T ) is entirely similar.

Finally, in order to establish equality in (10.5), it suffices to show that the

orthogonal complement of dom (T ) in dom (T ∗) with respect to the graph

inner product falls within N+ ⊕N−. Let v belong to such orthogonal com-

plement. Then 〈v, η〉T ∗ = 0 for all η ∈ dom (T ), that is

〈v, η〉+ 〈T ∗v, T ∗η〉 = 0 ,

or yet (using symmetry)

〈
v + (T ∗)2v, η

〉
= 0

for all η ∈ dom (T ). Since dom (T ) is dense in H , it follows that (T ∗)2v =

−v. This can also be written as

(T ∗ + i)(T ∗ − i)v = (T ∗ − i)(T ∗ + i)v = 0 ,

and this implies that (T ∗ − i)v ∈ ker(T ∗ + i) = N− and that (T ∗ + i)v ∈
ker(T ∗ − i) = N+. But since

v =
1

2i
[(T ∗ + i)v − (T ∗ − i)v] ,

it follows that v ∈ N+ ⊕N−. This completes the proof.

The following theorem is a key result concerning the Cayley transform and

will be used in the proof of the spectral theorem for unbounded self-adjoint

operators.
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Theorem 10.3 The Cayley transform κ is a bijection between the set of

densely defined, symmetric operators T : dom (T )→ H and the set of par-

tial isometries U : dom (U)→H such that ran (I − U) is dense. Moreover,

T is self-adjoint iff WT = κ(T ) is unitary.

Proof Given T : dom (T ) → H densely defined and symmetric, let U =

WT = κ(T ). Then ran (I − U) = dom (T ). Indeed, dom (U) = ran (T + i),

so if ξ ∈ dom(U) then ξ = (T + i)η for some η ∈ dom (T ), and therefore

(I −U)ξ = (T + i)η −WT (T + i)η = (T + i)η − (T − i)η = 2iη ∈ dom (T ) .

This shows that ran (I − U) ⊂ dom (T ), and the argument is reversible,

so dom (T ) ⊂ ran (I − U) as well. Hence WT is a densely defined partial

isometry with ran (I −WT ) a dense subspace. Applying lemmas 10.3 and

10.4 we see at once that κ : T 7→WT is surjective and injective (for there we

constructed the inverse κ−1 quite explicitly). This proves the first assertion

of our theorem.

To prove the second assertion, let T be self-adjoint. Then by (10.5) in

lemma 10.6, we have N+ = N− = {0}. Thus, we have that dom (WT ) =

ran (T + i) is dense (because its orthogonal complement in H is N+) and

ran (WT ) = ran (T − i) is also dense (because its orthogonal complement in

H isN−). But since T is self-adjoint, T is closed, and therefore ran (T ± i) =

H (we are using lemma 10.5 here), which shows that WT is unitary. Con-

versely, if WT is unitary then ran (T ± i) = H . Hence T is closed (again by

lemma 10.5) and we have N+ = N− = {0}. Now lemma 10.6 tells us that

dom(T ∗) = dom (T ) = dom (T ). This proves that T is self-adjoint, and we

are done.

Let us now examine Cayley transforms of multiplication operators. We

consider a measure space (X,µ) and for each measurable function ϕ : X →
C we consider the multiplication operator Mϕ : Dϕ → L2

µ(X) given by

Mϕ(f) = ϕf , where Dϕ = {f ∈ L2
µ(X) : ϕf ∈ L2

µ(X)}.

Lemma 10.7 Let ϕ : X → R be a real-valued measurable function. Then

the Cayley transform of Mϕ is Mψ, where ψ = (ϕ− i)(ϕ+ i)−1. Moreover,

Mϕ is self-adjoint.

Proof For each ξ ∈ Dϕ we have

WMϕ : (Mϕ + i)ξ 7→ (Mϕ − i)ξ .
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Since |ϕ(x) + i)−1| ≤ 1 for all x ∈ X, it follows that dom
(
WMϕ

)
= L2

µ(X)

(check!) and in addition we have, for all η ∈ dom
(
WMϕ

)
,

WMϕη = WMϕ

[
(ϕ+ i)(ϕ + i)−1η

]

= (ϕ− i)(ϕ + i)−1η = ψη

= Mψη .

Hence WMϕ = Mψ as asserted. Now, since

|ψ(x)| = |ϕ− i| · |ϕ+ i|−1 = 1

for all x ∈ X, we see that ψ maps X into the unit circle. This shows that

σ(Mψ) ⊂ T1, and therefore Mψ is unitary. Since Mψ = κ(Mϕ), it follows

from theorem 10.3 that Mϕ is self-adjoint.

10.5.3 Unitary equivalence

Just as in the case of bounded operators, the suitable notion of equiva-

lence between densely defined, unbounded operators is unitary equivalence.

Given Hilbert spaces H ,G and two operators T : dom (T ) → H and

S : dom (S) → G , with dom (T ) ⊂ H dense in H and dom (S) ⊂ G

dense in G , we say that T and S are unitarily equivalent if there exists a

unitary isometry U : H → G such that UTξ = SUξ for all ξ ∈ dom (T ).

The isometry U is called by functional analysts an intertwining operator

between T and S†.

Lemma 10.8 Let T1 : dom (T1)→ H1 and T2 : dom (T2) → H2 be densely

defined, symmetric operators. Then T1 and T2 are unitarily equivalent if

and only if WT1 and WT2 are unitarily equivalent.

Proof Let U : H1 → H2 be a unitary operator intertwining WT1 and WT2 .

Let us write Wi = WTi
for simplicity of notation. Using lemma 10.3, we see

that

U(dom (T1)) = U(ran (I −W1)) = ran (I −W2) = dom (T2) .

Moreover, using the fact that ran (I −W1) is dense in H1 (again by lemma

10.3), we see that UT1 = T2U , because

UT1(I −W1)ξ = U(i(I +W1)ξ) = i(U +W2U)ξ

= i(I +W2)Uξ = T2(I −W2)Uξ

= T2U(I −W1)ξ .

† Dynamicists (such as the authors of this book) prefer the term conjugacy .
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This shows that U intertwines T1 and T2. The converse is easier, and is left

as an exercise.

10.5.4 The spectral theorem

We are finally in a position to state and prove the spectral theorem for

unbounded self-adjoint operators.

Theorem 10.4 Let T : dom (T )→H be a densely defined operator. Then

T is self-adjoint if and only if T is unitarily equivalent to a multiplication

operator Mϕ where ϕ is a measurable and real-valued function on some mea-

sure space.

Proof Let T : dom (T )→H be self-adjoint. Then its Cayley transform WT

is unitary, hence normal, and so by the spectral theorem for bounded normal

operators (theorem 10.2), we know that there exists a measure space (X,µ)

and a measurable function ψ : X → T1 such that WT is unitarily equivalent

to Mψ : L2
µ(X) → L2

µ(X). In other words, there exists a unitary operator

U : H → L2
µ(X) such that UWT = MψU . We claim that ψ cannot be equal

to 1 on a set of positive µ-measure. If E ⊂ X were such a set, then we would

have (I −Mψ)1E = 0 (check!). However, I −WT is injective, so I −Mψ is

injective as well. This contradiction shows that ψ 6= 1 µ-almost everywhere.

Hence we can defined ϕ : X → R by

ϕ(x) = i(1 + ψ(x))(1 − ψ(x))−1 .

This is a well-defined measurable function, and applying lemma 10.7 on

easily sees that WMϕ = Mψ. Thus, we now know that U intertwines WT

and WMϕ. Therefore, by lemma 10.8, it follows that T and Mϕ are unitarily

equivalent. The converse is much easier and is left as an exercise.

10.6 Functional Calculus

In this section we develop a version of the so-called functional calculus for

unbounded, self-adjoint operators as a consequence of the spectral theorem.

Given a metric space X, we denote by BM(X) the space of all bounded

measurable functions X → C. Endowed with the sup-norm ‖ · ‖∞, BM(X)

is a Banach space, in fact a Banach algebra (see appendix II). The goal

of functional calculus, for a self-adjoint operator T in a Hilbert space H ,

is to make sense of f(T ) for all f ∈ BM(R). This is tantamount to find-
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ing a special type of representation of BM(R) into B(H ) called a spectral

homomorphism.

Definition 10.4 A spectral homomorphism is a map π : BM(X)→ B(H )

with the following properties.

(i) π is a continuous representation of the Banach algebra BM(X).

(ii) For each ξ ∈H , the function νξ : BXC given by νξ(E) = 〈π(1E)ξ, ξ〉
defines a complex measure on X (here BX denotes the Borel σ-

algebra of X).

Given a representation π0 : C(X) → B(H ), let us agree to call a vector

ξ ∈ H cyclic if {π0(f)ξ : f ∈ C(X)} is dense in H . If a representation

has a cyclic vector, we call it cyclic. Cyclic representations are obviously

irreducible. As it turns out, every representation of C(X) into B(H ) can

be written as a direct sum of cyclic representations. This fact, which we

simply assume here, will be proved later (appendix II) in the much more

general context of C∗ algebras.

The important abstract fact about spectral homomorphisms is the follow-

ing.

Theorem 10.5 Let X be a compact metric space, and let π0 : C(X) →
B(H ) be a representation. Then there exists a unique spectral homomor-

phism π : BM(X)→ B(H ) extending π0 (i.e. such that π|C(X) ≡ π0).

Proof Due to the observation just preceding the statement, it suffices to

present the proof when π0 has a cyclic vector ξ ∈ H . The correspondence

f 7→ 〈π0(f)ξ, ξ〉 defines a complex linear functional on C(X). By the Riesz-

Markov theorem, there exists a finite, complex Borel measure µ on X such

that

〈π0(f)ξ, ξ〉 =

∫

X
f dµ

for all f ∈ C(X). Let us consider the Hilbert space L2
µ(X), of which C(X)

is a dense subspace. Given f, g ∈ C(X) ⊂ L2
µ(X), we have

〈f, g〉 =

∫

X
ḡf dµ = 〈π0(ḡf)ξ, ξ〉

= 〈π0(ḡ)π0(f)ξ, ξ〉
= 〈π0(f)ξ, π0(g)ξ〉 .

This shows that the map f 7→ π0(f) extends continuously to a linear isom-

etry U : L2
µ(X)→H . This isometry is onto H , because ξ is cyclic. Hence
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U is unitary. This unitary map gives rise to an isometry Û : B(H ) →
B(L2

µ(X)) given by Û(T ) = U−1TU . Now, Û conjugates the representation

π0 to a representation π̃0 : C(X) → B(L2
µ(X)). In fact, for each f ∈ C(X)

and each ϕ ∈ L2
µ(X) we have

π̃0(f)ϕ = U−1π0(f)U(ϕ) = U−1(π0(fϕ)ξ) = fϕ = Mfϕ .

Hence π̃0(f) = Mf , a multiplication operator, for all f ∈ C(X). But this

has an obvious extension to a representation π̃ : BM(X)→ B(L2
µ(X)): one

simply defines π̃(f) = Mf for all f ∈ BM(X). Finally, let π : BM(X) →
B(H ) be given by π(f) = Uπ̃(f)U−1. This clearly extends π, and one

verifies at once that it enjoys properties (i) and (ii) of definition 10.4. Thus,

existence of π is established. Uniqueness is in fact easier to prove; it is left

as an exercise.

Remark 3. This theorem remains true if we replace C(X) with C0(X), the

space of continuous functions vanishing at∞ on a locally compact space X.

Combining this remark, the above theorem, and the spectral theorem

for unbounded self-adjoint operators, we arrive at the following version of

functional calculus.

Theorem 10.6 Let T : dom (T ) → H be a self-adjoint operator. Then

there exists a unique spectral homomorphism π : BM(R) → B(H ) such

that π((t+ i)−1) = (T + i)−1.

Proof By the spectral theorem 10.4, T is unitarily equivalent to Mϕ : f 7→
ϕf , where ϕ : X → R is measurable ((X,µ) some measure space). Hence

we may assume, in fact, that T = Mϕ. Let π : BM(R) → B(L2
µ(X)) be

given by π(ψ) = Mψ◦ϕ. This is well-defined, because ψ ◦ ϕ is bounded and

measurable, for each ψ ∈ BM(R). We clearly have

π(ψ1ψ2) = M(ψ1ψ2)◦ϕ = M(ψ1◦ϕ)·(ψ2◦ϕ)

= Mψ1◦ϕ ·Mψ2◦ϕ = π(ψ1)π(ψ2) .

One also shows quite easily that π(ψ1 + ψ2) = π(ψ1) + π(ψ2). Thus, π

is a spectral homomorphism. Moreover, letting ψ(t) = (t + i)−1, we have

ψ ◦ ϕ = (ϕ+ i)−1, and therefore

π((t+ i)−1) = M(ϕ+i)−1 = (Mϕ + i)−1 = (T + i)−1 .

This establishes the existence of π with the desired properties.
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Now, for uniqueness. Suppose π1, π2 are spectral homomorphisms into

B(H1) and B(H2) respectively. and that

π1((t+ i)−1) = (T + i)−1 = π2((t+ i)−1) .

Let A ⊂ BM(R) be the algebra of all f ∈ BM(R) such that π1(f) =

π2(f). The sub-algebra of A generated by the constants and (t+ i)−1 ∈ A
separates points, because (t+ i)−1 already does, and it is also closed under

conjugation. By the Stone-Weierstrass theorem, such sub-algebra is dense in

C0(R), and therefore A ⊃ C0(R). By theorem 10.5 and the remark following

it, π0 = π1|C0(R) = π2|C0(R) has a unique extension to BM(R). But then it

follows that π1 = π2.

10.7 Essential self-adjointness

Let T : dom (T ) → H be a densely defined operator. We say that T

is essentially self-adjoint if T is symmetric and has a unique self-adjoint

extension. Equivalently, T is essentially self-adjoint if it is symmetric and T̄

is self-adjoint. The following result gives us a useful criterion for essential

self-adjointness.

Theorem 10.7 Let T : dom (T ) → H be a symmetric, densely defined

operator. Then the following are equivalent.

(a) T is essentially self-adjoint;

(b) ran (T ± i) ⊂H are dense subspaces;

(c) ker(T ∗ ± i) = {0}.

Proof Recall from lemma 10.6 that

dom (T ∗) = dom(T )⊕N+ ⊕N− . (10.6)

(the closure being with respect to the graph norm of dom (T ∗)), where

N± = ran (T ± i)⊥ = ker(T ∗ ± i) . (10.7)

The equivalence between (a) and (b) follows easily from (10.6), whereas the

equivalence between (b) and (c) is immediate from (10.7).

The following example is of fundamental importance in Quantum Me-

chanics.

Example 5. The Laplace operator. Perhaps the most important example of

a self-adjoint operator is the Laplacian L = −∆. The minus sign is chosen

because in this way L is a positive operator. We define this operator on
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Euclidean d-dimensional space Rd as follows. First we look at L = −∆ on

the Schwarz space S (Rd) ⊂ L2(Rd), a dense subspace of L2(Rd), defining

it directly by the formula

−∆ϕ = −
d∑

j=1

∂2ϕ

∂x2
j

, for all ϕ ∈ C∞
0 (Rd) . (10.8)

Let us verify directly that −∆ is essentially self-adjoint on S (Rd). In order

to do this, we use the Fourier transform F : L2(Rd)→ L2(Rd) given by

(Fϕ)(ξ) =
1

(2π)n/2

∫

Rd

ϕ(x)e−i〈ξ,x〉 dx .

We assume the reader knows the basic properties of the Fourier transform,

among them: (i) the fact that F is a unitary isometry ; (ii) the fact that

F (∂xj
ϕ) = −iξjF (ϕ); (iii) the fact that F maps S (Rd) into itself.

The fact that −∆ is it symmetric is a consequence of one of Green’s identi-

ties, and is left as an exercise. Hence, in order to show that −∆ is essentially

self-adjoint, it suffices to show, by theorem 10.7 above, that ran (−∆± i) ⊂
L2(Rd) are dense subspaces. Let us show that ran (−∆ + i) ⊃ S (Rd).

Given f ∈ S (Rd), we need to solve the PDE

(−∆ + i)ϕ = f . (10.9)

The Fourier transform is tailor-made for such problems! Applying it to both

sides of (10.9) we get

(−|ξ|2 + i)ϕ̂(ξ) = f̂(ξ) (ξ ∈ Rn) ,

where the hat denotes Fourier transform. Hence we have

ϕ̂(ξ) =
f̂(ξ)

−|ξ|2 + i
∈ S (Rd) ,

and by Fourier inversion we deduce that

ϕ(x) =
1

(2π)n/2

∫

Rd

f̂(ξ)ei〈x,ξ〉

−|ξ|2 + i
dξ ∈ S (Rd)

is the desired solution. This shows that ran (−∆ + i) is dense, and the proof

that ran (−∆− i) is dense is the same. Thus, the Laplacian is essentially

self-adjoint on S (Rd), as claimed.

In fact, the unique self-adjoint extension of −∆ can be defined directly

via the Fourier transform in the following way. Let P : Rd → R be the

polynomial P (ξ) = −
∑d

j=1 ξ
2
j (the symbol of −∆), and consider the multi-

plication operator MP : ϕ 7→ Pϕ, with domain dom (MP ) = {ϕ ∈ L2(Rd) :
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Pϕ ∈ L2(Rd)}. Note that dom (MP ) contains S (Rd) as a dense subspace.

We let dom (−∆) = F−1(dom (MP )) and define the extension

−∆ : dom (−∆)→ L2(Rd)

by −∆ = F−1 ◦MP ◦F . Since MP is self-adjoint in its domain dom (MP )

and F is unitary, it follows that −∆ is self-adjoint on dom (−∆) ⊃ S (Rd).

10.8 A note on the spectrum

The spectrum of an operator T : dom (T )→H is the set σ(T ) of all λ ∈ C

such that T − λ : dom (T ) → H does not have a bounded inverse. The

complement of σ(T ) in C is called the resolvent set of T , and for each λ

in the resolvent set, (T − λ)−1 is called the resolvent of T . Certainly every

eigenvalue of T is in the spectrum, but not every element of σ(T ) needs to

be an eigenvalue; in fact, T may have no eigenvalues at all!

We distinguish two subsets of the spectrum whose elements exhibit very

different behavior. If λ ∈ σ(T ), then we call dimker(T − λ) the multiplicity

of λ. We define the point spectrum σp(T ) to be

σp(T ) = {λ ∈ σ(T ) : λ is isolated and has finite multiplicity } .

We also define the continuous spectrum (also called essential spectrum) of T

to be the set σc(T ) whose elements are approximate eigenvalues of T in the

following sense. An element λ ∈ σ(T ) is an approximate eigenvalue if there

exists a sequence ξn ∈ dom (T ) with ‖ξn‖ = 1 such that (i) ‖(T −λ)ξn‖ → 0

as n → ∞; and (ii) (ξn) converges weakly to 0, i.e. 〈ξn, η〉 → 0 as n → ∞,

for each η ∈ H . It turns out that for self-adjoint operators the point and

continuous spectra are a dichotomy.

Theorem 10.8 (Weyl) If T : dom (T ) → H is a self-adjoint operator,

then σ(T ) = σp(T ) ∪ σc(T )

For a proof of this result, see [RS1]. We note that the spectrum, point

spectrum and continuous spectrum of an operator T : dom (T ) → H are

all invariant under conjugacies by unitary isometries, in other words, if U ∈
B(H ) is unitary and S = U−1TU , then σp(S) = σp(T ), σc(S) = σc(T ) and

σ(S) = σ(T ).
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10.9 Stone’s theorem

A major application of the functional calculus developed in section 10.6 is a

proof of Stone’s theorem. Stone’s theorem states that every evolution group

has an infinitesimal generator . As we saw in chapter 2, this theorem is

crucial in the Heisenberg formulation of Quantum Mechanics.

Definition 10.5 An evolution group on a Hilbert space H is a one-parameter

family (Ut)t∈R of unitary operators Ut : H →H such that

(i) Ut+s = UtUs for all t, s ∈ R;

(ii) t 7→ Ut is strongly continuous.

As the following result shows, every self-adjoint operator in Hilbert space

gives rise to an evolution group by exponentiation.

Theorem 10.9 Let A : dom (A) → H be a self-adjoint operator. Then

Ut = exp itA, given by functional calculus applied to ft(x) = eitx, is an

evolution group. Moreover,

(a) Ut(dom (A)) ⊂ dom (A) for all t ∈ R;

(b) For each ξ ∈ dom (A) we have

lim
t→0

1

t
(Utξ − ξ) = iAξ ; (10.10)

(c) Conversely, if ξ ∈ H is such that the limit in the left-hand side of

(10.10) exists, then ξ ∈ dom(A).

Proof The fact that (Ut) is well-defined and a one-parameter group is an

easy consequence of the properties of x 7→ eitx. Property (b) follows from

functional calculus applied to the functions x 7→ (eitx − 1)/t (for t 6= 0) and

x 7→ ix (for t = 0). In order to prove (c), we define an operator B in H as

follows. First we take

dom (B) = {ξ ∈H : lim
t→0

1

t
(Utξ − ξ) exists } .

Then we let, for each ξ ∈ dom (B),

Bξ = lim
t→0

1

t
(Utξ − ξ) . (10.11)

One easily checks that −iB is a symmetric operator., and that −iB ⊃ A

(exercise). But since A = A∗, we know that A is closed, and therefore we
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have iA = B. Now (a) follows as well, for if ξ ∈ dom (A) and s ∈ R, then

Usξ will belong to dom (A) provided we can show that

lim
t→0

1

t
(Ut(Usξ)− Usξ)

exists; but since Us is continuous, we have

lim
t→0

1

t
(UtUsξ − Usξ)

= Us

[
lim
t→0

1

t
(Utξ − ξ)

]

= Us(iAξ) .

This finishes the proof.

Remark 4. The operator B = iA is called the infinitesimal generator of

(Ut)t∈R. In general, given an evolution group (Ut)t∈R, we define its infinites-

imal generator B to be the operator defined as the limit (10.11).

Stone’s theorem is the converse of theorem 10.9.

Theorem 10.10 (Stone) Let (Ut)t∈R be an evolution group in Hilbert space

H . Then there exists a unique self-adjoint operator A : dom (A)→H such

that B = iA is the infinitesimal generator of (Ut)t∈R.

Proof We shall define A on a certain dense subspace of H , the prove that

A is essentially self-adjoint, and finally verify that Ut = eitĀ.

For each ϕ ∈ C∞
0 (R) and each ξ ∈H , let

ξϕ =

∫

R

ϕ(t)Utξ dt ∈ H .

We define D = {ξϕ : ϕ ∈ C∞
0 (R) , ξ ∈ H }. Then D ⊂ H is a linear

subspace. We claim that D is dense in H . To see why, let ξ ∈ H be

arbitrary, and for each n ≥ 1 let ϕn ∈ C∞
0 (R) be such that suppϕn ⊂

[−n−1, n−1], ϕn ≥ 0 and
∫

R
ϕn = 1. Then we have

‖ξϕn − ξ‖ = ‖
∫

R

ϕn(t)(Utξ − ξ) dt‖

≤ sup
|t|≤n−1

‖Utξ − ξ‖ → 0

as n→∞, so ξϕn → ξ and the claim is proved.



10.9 Stone’s theorem 275

Next, we define A : D →H as follows. If η = ξϕ ∈ D, let

Aη = −i lim
s→0

1

s
(Usη − η)

= −i lim
s→0

1

s

∫

R

ϕ(t)[Ut+sξ − Utξ] dt

= −i lim
s→0

∫

R

ϕ(τ − s)− ϕ(τ)

s
Uτξ dτ

= −i
∫

R

ϕ′(τ)Uτ ξ dτ ,

where in the last step we have used Lebesgue’s dominated convergence the-

orem. It is clear that A defined in this way is linear. We claim that A is

essentially self-adjoint. The fact that A is symmetric is an easy exercise.

Thus, by theorem 10.7, it suffices to show that ker(A∗ ± i) = {0}. Let

ξ ∈ ker(A∗ − i). Since for all η ∈ D we have Utη ∈ D for all t, we see that

d

dt
〈ξ, Utη〉 = 〈ξ, iAUtη〉 = −i 〈A∗ξ, Utη〉 = 〈ξ, Utη〉 . (10.12)

Solving the resulting elementary ODE, we get 〈ξ, Utη〉 = 〈ξ, η〉 et for all

t ∈ R. But since

| 〈ξ, Utη〉 | ≤ ‖ξ‖ ‖Utη‖ = ‖ξ‖ ‖Utη‖ < ∞ ,

we see that (10.12) is possible iff 〈ξ, η〉 = 0. Since D is dense in H , it follows

that ξ = 0. The proof that ker(A∗ + i) = {0} is entirely analogous. This

establishes the claim that A is essentially self-adjoint. Therefore the closure

Ā is self-adjoint.

The final step of the proof is to show that Ut = eitĀ for all t ∈ R. Let

ξ ∈ D ⊂ D̄ = dom
(
Ā
)
. Then on the one hand, by theorem 10.9 (a) and

(b), we have

eitĀξ ∈ D and
d

dt
(eitĀξ) = iAeitĀξ . (10.13)

On the other hand,

d

dt
(Utξ) = iAUtξ . (10.14)

Writing ψ(t) = Utξ − eitĀξ and using (10.13) and (10.14), we see that

ψ′(t) = iAUtξ − iAeitĀξ = iAψ(t) .
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Therefore, since Ā is self-adjoint, we have

d

dt
〈ψ(t), ψ(t)〉 =

〈
ψ′(t), ψ(t)

〉
+
〈
ψ(t), ψ′(t)

〉

= i
〈
Āψ(t), ψ(t)

〉
− i
〈
ψ(t), Āψ(t)

〉

= 0 .

This shows that ‖ψ(t)‖2 = constant. But ψ(0) = 0, so ψ(t) = 0 for all t.

Hence Utξ = eitĀξ for all t, and the proof is complete.

Remark 5. Stone’s theorem characterizes one-parameter groups, and as we

saw in chapter 2, it is essential in the study of the dynamical evolution of

closed quantum systems with a finite number of particles. It is however

insufficient for the study of the dynamics of open quantum systems (such as

a quantum gas in the grand-canonical ensemble). For the study of such open

systems one needs results about one-parameter semigroups of operators, the

most fundamental of which is the so-called Hille-Yoshida theorem. See [AJP]

for more on this subject.

10.10 The Kato-Rellich theorem

As we saw in chapter 2, the time evolution of a non-relativistic quantum

system having a fixed number of particles is determined by the Schrödinger

operator H = −∆ +V in L2(Rd), where V is the interacting potential. The

Schrödinger operator yields a unitary group in Hilbert space, via Stone’s

theorem, provided we know that H is self-adjoint . Thus, we need good

criteria for self-adjointness.

The simplest such criterion is provided by the Kato-Rellich theorem. In a

nutsehll, this theorem states that a small linear and symmetric perturbation

of a self-adjoint operator is still self-adjoint. As we saw in section 10.7, the

Laplacian −∆ is self-adjoint (in the Sobolev space H2(Rd), say). We can

regard the potential V as a kind of perturbation, and deduce the required

self-adjointness of H if the right conditions are met.

Before we can give the statement (and proof) of the Kato-Rellich theorem,

we need a definition. Let A : dom (A)→H be a self-adjoint operator, and

let B : dom (A) → H be a linear operator. We call B an A-bounded

operator if there exist constants α, β > 0 such that

‖Bξ‖2 ≤ α‖Aξ‖2 + β‖ξ‖2 , (10.15)

for all ξ ∈ dom (A). The infimum over all α > 0 with the property that
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(10.15) holds true for some β > 0 (and all ξ ∈ dom (A)) is called the A-

norm of B, and it is denoted NA(B).

Theorem 10.11 (Kato-Rellich) Let A : dom (A) → H be a self-adjoint

operator, and let B : dom (A) → H be an A-bounded symmetric operator

with NA(B) < 1. Then T = A+B : dom (A)→H is self-adjoint.

Proof Since B is symmetric, it is clear that A + B is symmetric. Hence

it suffices to show (see theorem 10.7) that there exists λ > 0 such that the

operators A+B±λi : dom (A)→H are both surjective. Since NA(B) < 1,

we know that there exist 0 < α < 1 and β > 0 such that, for all ξ ∈ dom (A),

we have

‖Bξ‖2 ≤ α‖Aξ‖2 + β‖ξ‖2 = α
(
‖Aξ‖2 + βα−1‖ξ‖2

)
(10.16)

= α
∥∥∥(A± (βα−1)

1
2 i)
∥∥∥

2
.

Let us then take λ = (βα−1)
1
2 . Since A is self-adjoint, the operators A± λi

are both invertible. Hence, writing ξ = (A±λi)−1η for η ∈H and plugging

it in (10.16), we see that

‖B(A± λi)−1η‖2 ≤ α‖η‖2 .

Since this holds for all η, we deduce that B(A ± λi)−1 are operators with

norm ≤ α < 1. The usual Neumann series trick (geometric series) now

tells us that I +B(A± λi)−1 are invertible operators in H , with bounded

inverses. Therefore, since

A+B ± λi =
(
I +B(A± λi)−1

)
(A± λi) ,

we see that the operators A + B ± λi : dom (A) → H are both bijective.

This proves that A+B is self-adjoint.

Exercises

10.1 Show that an inner-product space is a Hilbert space iff every bounded

linear functional on H is representable (in the sense of Riesz).

10.2 Let T ∈ B(H ). Prove that ‖T‖2 = ‖T ∗T‖.
10.3 Let S, T ∈ B(H ) be self-adjoint operators. Show that ST is self-

adjoint iff ST = TS.

10.4 Show that the linear operator of example 1 is indeed compact and

self-adjoint as claimed.

10.5 Let T : H →H be a compact operator. Prove that T ∗ is compact.
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10.6 Show that if T : H →H is Hermitian then T + i is self-adjoint

10.7 Let T : dom (T ) → H be a linear operator in Hilbert space. Show

that the graph norm of dom (T ) derives from an inner product. Show

also that this norm is complete if and only if T is closed.

10.8 Let T : dom (T ) → H be a linear operator, and let J : H ⊕H →
H ⊕H be the operator J(ξ, η) = (−η, ξ).

(a) Show that Gr(T ∗) = J(Gr(T ))⊥;

(b) Deduce that T ∗ is closed.

10.9 Supply the details of the proof of lemma 10.5.

10.10 Show, as claimed in the first paragraph of section 10.7, that a densely

defined operator T : dom (T ) → H is essentially self-adjoint if and

only if T is symmetric and T̄ is self-adjoint.

10.11 Using Green’s second identity
∫

BR

(u∆v − v∆u) dx =

∫

∂BR

(
u
∂v

∂n
− v ∂u

∂n

)
dσ(x) ,

applied to u, v ∈ S (Rd) and to the ball BR ⊂ Rd of radius R cen-

tered at 0, and letting R →∞, prove that 〈−∆u, v〉 = 〈u,−∆v〉, in

other words, that −∆ is a symmetric operator on the Schwarz space

S (Rd).

10.12 Show that the spectrum of −∆ is equal to [0,∞).

For the following two exercises, we need a definition. Let T : dom (T ) →
L2(Rd) be a linear operator and let λ ∈ C. A sequence {ψn} in L2(Rd) is

spreading for (T, λ) if (i) ‖ψn‖ = 1 for all n; (ii) supp(ψn) ⊂ Rd is compact,

and moves off to infinity as n→∞; and (iii) ‖(T −λ)ψn‖ → 0 as n→∞.

10.13 Show that if T : dom (T ) → L2(Rd) and λ ∈ σc(T ) (the continuous

spectrum of T ) then (T, λ) has a spreading sequence.

10.14 Let H = −∆ + V be a Schrödinger operator on L2(R3), where V :

R3 → R is a confining potential, i.e. V is continuous, non-negative

and satisfies V (x) → ∞ as |x| → ∞. One knows that H is self-

adjoint on its maximal domain (the Sobolev space H2(R3)). The

purpose of this exercise is to show that H has discrete spectrum.

(a) Let λ ∈ σc(H) and let {ψn} be a spreading sequence for (H,λ).

Show that 〈ψn, (H − λ)ψn〉 → 0 as n→∞;

(b) Show that

〈ψn, (H − λ)ψn〉 =

∫

R3

|∇ψn|2 dx+

∫

R3

V |ψn|2 dx− λ ;
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(c) Show that (b) contradicts (a), whence σc(H) = Ø;

(d) Deduce from Weyl’s theorem that the spectrum of the Schrödinger

operator H is discrete;

(e) If σ(H) = {λ1, λ2, . . .} with |λn| ≤ |λn+1|, show that |λn| → ∞ as

n→∞.

10.15 Recall the following fact which is at the root of Heisenberg’s uncer-

tainty principle (see chapter 2). If A,B are two self-adjoint operators

in Hilbert space and ψ ∈ dom (A) ∩ dom (B), then

〈ψ, i[A,B]ψ〉 = −2Im 〈Aψ,Bψ〉 .

This exercise outlines the proof of a refined version of the uncertainty

principle for the Laplace operator, namely that on L2(Rd) we have

−∆ ≥ (d− 2)2

4|x|2 . (E10.1)

Let us denote by Pj the j-th momentum operator ψ 7→ −iℏ∂jψ, and

as usual by Mϕ the multiplication operator ψ 7→ ϕψ. We leave to

the reader the task of identifying suitable domains of self-adjointness

for the operators appearing in this problem.

(a) Prove that, for each ψ ∈ S (Rd),

d∑

j=1

‖Pjψ‖2 = ℏ2 〈ψ,−∆ψ〉 .

(b) Prove that

d∑

j=1

i
[
M|x|−1PjM|x|−1 , Mxj

]
= dℏM|x|−2 .

(c) Deduce from (b) and the Heisenberg principle that

dℏ‖M|x|−1ψ‖2 = −2 Im
d∑

j=1

〈
M|x|−1PjM|x|−1ψ,Mxj

ψ
〉
.

(d) Applying the identity PjMϕ = MPjϕ +MϕPj (with ϕ = |x|−1) to

(c), deduce that

(d− 2)ℏ‖M|x|−1ψ‖2 = −2 Im

d∑

j=1

〈
Pjψ,Mxj |x|−2ψ

〉
.
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(e) Using (a) and applying the Cauchy-Schwarz inequality (twice),

show that

Im
d∑

j=1

∣∣∣
〈
Pjψ,Mxj |x|−2ψ

〉∣∣∣ ≤ ℏ 〈ψ,−∆ψ〉1/2 ‖M|x|−1ψ‖ .

(f) Deduce from (d) and (e) that

〈ψ,−∆ψ〉 ≥ (d− 2)2

4
‖M|x|−1ψ‖2 =

(d− 2)2

4

〈
ψ,M|x|−2ψ

〉
,

and verify that this is the exact meaning of (E10.1).

10.16 Stability of matter . Apply the result of the previous exercise to

prove that the hydrogen atom is stable, as follows. The Schrödinger

operator for the hydrogen atom is

H = − ~2

2m
∆− e2

|x| .

Here e denotes the charge of the electron, m its mass, ~ is Planck’s

constant, and the term V (x) = −e2/|x| is Coulomb’s potential.

(a) Using the previous exercise, show that

H ≥ ~2

8m|x|2 −
e2

|x| .

(b) Analyze the expression on the right-hand side and deduce that in

fact

H ≥ −2me4

~2
.

(c) Verify that this means that the energy of the hydrogen atom is

bounded from below

In particular, the electron cannot fall onto the nucleus, and the atom

is stable. This was one of the early triumphs of Quantum Mechanics.
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Appendix II: C∗ Algebras and Spectral Theory

As we saw in chapter 2, the language of C∗ algebras provides a natural frame-

work for laying down the mathematical foundations of Quantum Mechanics.

This appendix is dedicated to the elementary theory of such algebras. In

particular, we shall present a complete proof of the spectral theorem for

bounded self-adjoint (or normal) operators in Hilbert space. This is but one

of many important applications of this beautiful and powerful theory. We

shall also attempt to explain in a nutshell how nets of C∗ algebras can be

used to build the foundations of Quantum Field Theory.

11.1 Banach algebras

A normed algebra is an algebra A over K = R or C which has a norm | · |,
satisfying the usual properties:

(i) |x| ≥ 0 for all x ∈ A , with equality iff x = 0;

(ii) |αx| = |α| · |x| for all α ∈ K and all x ∈ A ;

(iii) |x+ y| ≤ |x|+ |y| for all x, y ∈ A ;

(iv) |xy| ≤ |x| · |y| for all x, y ∈ A .

The norm | · | generates a metric topology in A . If this metric is complete,

we say that A is a Banach algebra.

Example 1. Examples of Banach algebras abound.

(1) The algebra of all continuous functions over a compact space X with

values in K, C(X,K), under the sup-norm, is a Banach algebra.

(2) Let E be a Banach (or Hilbert) space over K. Then the algebra of

all bounded K-linear operators over E, denoted L(E) or B(E), is a

Banach algebra under the usual operator norm.

281
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(3) The algebra L∞(X,µ) of all complex L∞ functions over a measure space

(X,µ) is a Banach algebra, the norm being the L∞ norm. Note that

if X is a compact Hausdorff space and µ is a finite Borel measure,

then C(X) = C(X,C) is a (dense) sub-algebra of L∞(X,µ).

Note that if A is a Banach algebra, it may or may not have a unit e ∈ A .

If it does, we can always rescale the norm so that |e| = 1 (note that, in

any case, condition (iv) already implies that |e| ≥ 1). The spectrum of an

element x ∈ A is the set of all z ∈ K such that x − ze is not invertible as

an element of A . If A does not have a unit, we may adjoin one if necessary

by a simple construction called unitization. The idea is to take an element

e not in A , declare it to be a unit, and let A + = A ⊕ Ce (direct sum as

Banach spaces), extending the multiplication to A + so that the distributive

law still holds. It is not difficult to extend the norm of A to a norm in

A +. For a more intrinsic construction in the context of C∗ algebras, see

exercise 1. A Banach algebra with unit will be called unital .

Lemma 11.1 The unit e of a unital Banach algebra A has a neighborhood

all of whose elements are invertible.

Proof Given any v ∈ A with |v| < 1, let y = e− v. Then one sees that y is

invertible, with y−1 = e+ v+ v2 + . . .. The series converges because |v| < 1

and A is complete.

From this point onwards, we assume that all algebras are over K = C.

Proposition 11.1 The spectrum of x ∈ A is always closed, bounded and

non-empty. If z ∈ C is in the spectrum, then |z| ≤ |x|.

Proof Let z ∈ C be such that |z| > |x|. Then y = x− ze is invertible, with

y−1 = −z−1
(
e+ z−1x+ z−2x2 + · · ·

)
.

Hence, if z is in the spectrum of x, then |z| ≤ |x|. This shows that the

spectrum of x is bounded. Now, lemma 11.1 implies that the set of all

invertible elements in A is open. Therefore the spectrum of x must be

closed (if z0 ∈ C is such that x− z0e is invertible, then x− ze is invertible

for all z sufficiently close to z0). It remains to prove that the spectrum of x

is non-empty. We argue by contradiction. Suppose x−ze is invertible for all

z ∈ C, and let f : C → A be given by f(z) = (x− ze)−1. This is certainly

not constant. Hence we can find a continuous linear functional λ : A → C

such that F = λ ◦ f : C → C is also not constant. But it is an easy matter
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to check that F is an analytic function. Moreover, we have |F (z)| → 0 as

|z| → ∞ (use (iv) here). This shows that f is bounded, hence constant by

Liouville’s theorem. This contradiction shows that the spectrum of x cannot

be constant.

Notation. We shall write σ(x) for the spectrum of x. The complement

C \σ(x) is sometimes denoted ρ(x) and is usually called the resolvent set of

x.

Here is an important consequence of the above.

Theorem 11.1 (Gelfand-Mazur) Let K be a normed algebra over R which

is also a field. If K is complete, then either K = R or K = C.

Proof Let e ∈ K be the unit element. First suppose that there exists j ∈ K
such that j2 = −e. Then we see that K is also an algebra over C, for we

can define, for each z = x+ iy ∈ C and each v ∈ K,

z · v = xv + y(jv) .

Using the norm |z| = |x|+ |y| in C, we see that K becomes in fact a Banach

algebra over C. Now, if v ∈ K, then σ(v) 6= Ø by proposition 11.1, so let

z ∈ σ(v). Then v− ze is non-invertible in K, but since K is a field we must

have v − ze = 0, i.e. v = ze. This shows at once that σ(v) = {z}, and that

the map ϕ : C→ K given by ϕ(z) = ze is a field isomorphism, so K = C in

this case.

If however there is no element in K whose square is equal to −e, we adjoin

a new element j /∈ K, and look at K + jK, declaring j2 = −e and making

K + jK into an algebra (over C) in the obvious way. We also define a norm

in K + jK by |v+ jw| = |v|+ |w|. The reader can check as an exercise that

K + jK is a Banach algebra with this norm. By what we proved above, we

have K + jK = C, so K = R in this case.

Let us now consider ideals in a Banach algebra A . A linear subspace

I ⊂ A is said to be a left ideal if x ⊂ I for all x ∈ A . If Ix ⊂ I for all

x ∈ A , then I is called a right ideal. If I ⊂ A is both a left and a right

ideal, we say that I is a two-sided ideal. Of course, these distinctions are

immaterial when A is a commutative algebra. An ideal I 6= A is said to

be maximal if it is not properly contained in any other ideal. The reader

will have no trouble in checking the usual properties of ideals in the present

context. In particular, the topological closure I of an ideal I ⊂ A is also an

ideal.
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Proposition 11.2 Let A be a Banach algebra, and let I ⊂ A be a closed

ideal which is also proper and two-sided. Then A /I is a Banach algebra.

Proof That the quotient of an algebra by a two-sided ideal is an algebra is

standard (exercise). As a norm in A /I, define

‖x+ I‖ = inf
v∈I
|x+ v|

(here | · | is the norm in A ). We leave it as an exercise for the reader to show

that this is indeed a norm in A /I and that such norm is complete (this of

course requires the completeness of A and the closedness of I).

We note that a maximal ideal M ⊂ A is necessarily closed (exercise).

The following is an important fact concerning complex Banach algebras and

maximal ideals. All ideals to be considered will be two-sided.

Proposition 11.3 If A is a complex Banach algebra and M ⊂ A is a

maximal ideal, then A /M ∼= C.

Proof First we claim that A /M , which we know is a Banach algebra by

proposition 11.2, is in fact a field . Let x ∈ A be such that x /∈ M , so that

x+M 6= M . We claim that there exists y ∈ A such that (x+M)(y+M) =

e + M (which is the unit in A /M , as the reader can check). Since M

is maximal the ideal generated by M ∪ {x} must be equal to A . Hence

there exist y ∈ A and m ∈ M such that xy + m = e. This shows that

xy + M = e + M , and since (x + M)(y + M) = xy + M , this proves the

claim. We have thus shown that for each x in A but not in M , the element

x+M is invertible in A /M . Hence A /M is indeed a field. By the Gelfand-

Mazur theorem, either A /M ∼= C or A /M ∼= R. But A /M contains

{ze + M : z ∈ C} ∼= C, which rules out the latter. Therefore A /M ∼= C.

A character (or multiplicative linear functional) of a complex Banach

algebra A is an algebra homomorphism ϕ : A → C; thus ϕ is C-linear

and ϕ(xy) = ϕ(x)ϕ(y) for all x, y in A . We also require characters to be

continuous†. The set of all non-zero characters of A is usually denoted Â .

Note that for all ϕ ∈ Â we have ϕ(e) = 1, provided A has a unit e. The set

Â is called the Gelfand spectrum of A . We put a topology on the Gelfand

spectrum of A as follows. Note that Â is contained in A ∗, the dual of A
as a Banach space. Let A ∗ be given the weak* topology, and give Â the

induced topology.

† For C∗ algebras continuity is automatic!
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Lemma 11.2 If ϕ : A → C is a character of a complex Banach algebra A
with unit, then ‖ϕ‖ = 1.

Proof Let x ∈ A be such that |x| ≤ 1, and suppose |ϕ(x)| > 1. Then, while

|xn| ≤ |x|n ≤ 1 for all n ≥ 1, we have |ϕ(xn)| = |ϕ(x)n| = |ϕ(x)|n → ∞
as n → ∞. This contradicts the continuity of ϕ. Hence |ϕ(x)| ≤ 1 for all

x ∈ A with |x| ≤ 1, so ‖ϕ‖ ≤ 1. Since ϕ(e) = 1, we see that in fact ‖ϕ‖ = 1.

The above lemma shows that Â is in fact contained in the unit sphere of

A ∗. Now we have the following result.

Theorem 11.2 The Gelfand spectrum Â is a compact Hausdorff space

under the weak* topology.

Proof The weak* topology is Hausdorff, and by Alaoglu’s theorem (see

[RS1]) the unit ball A ∗
1 is compact in this topology. Hence it suffices to

show that Â is closed in A ∗
1 . Suppose we have a net {ϕλ}λ∈Λ of elements

of Â , and that ϕ ∈ A ∗
1 is a limit point of this net, i.e. for some totally

ordered set O ⊂ Λ we have limO∋λ ϕλ(x) = ϕ(x) for all x ∈ A . Then, from

ϕλ(xy) = ϕλ(x)ϕλ(y) we deduced that ϕ(xy) = ϕ(x)ϕ(y) for all x, y ∈ A ,

whence ϕ is a character, i.e. ϕ ∈ Â . This shows that Â is closed as claimed,

and therefore compact.

There is a very close relationship between maximal ideals and characters,

in any Banach algebra A . This relationship is even closer when A has a

unit, as the following result shows.

Proposition 11.4 Let A be a complex Banach algebra with unit. There

exists a one-to-one correspondence Φ : Â →M , where M is the set of all

maximal ideals of A .

Proof Given a character ϕ ∈ Â , define Φ(ϕ) = kerϕ. This kernel is easily

seen to be a maximal ideal in A (exercise), so we have a well defined map

Φ : Â → M . We claim that Φ is one-to-one. Suppose ϕ1, ϕ2 ∈ Â are

such that kerϕ1 = kerϕ2. Given x ∈ A , we have x − ϕ1(x)e ∈ kerϕ1,

because ϕ1(e) = 1. Hence x − ϕ1(x)e ∈ kerϕ2 as well. Thus we have

ϕ2(x − ϕ1(x)e) = 0, whence ϕ2(x) = ϕ1(x)ϕ2(e) = ϕ1(x) (because ϕ2(e) =

1). This shows that ϕ1 = ϕ2 and so Φ is injective as claimed. To see

that Φ is onto, let M ⊂ A be a maximal ideal, and consider the canonical

projection πM : A → A /M , an algebra homomorphism. By the Gelfand-



286 Appendix II: C∗ Algebras and Spectral Theory

Mazur theorem, there exists an isomorphism αM : A /M → C. But then

ϕM = αM ◦πM : A → C is a homomorphism, and clearly ϕM (e) = 1, so ϕM
is a character. Since αM is an isomorphism, we have kerϕM = ker πM = M .

Hence we have Φ(ϕM ) = M , which shows that Φ is onto.

This proposition allows us to carry the topology of Â over to M . Thus,

the space of maximal ideals in A is a compact Hausdorff space in a natural

way.

11.2 C∗ Algebras

In applications, especially to Quantum Mechanics, we are not so much in-

terested in arbitrary Banach algebras as we are in those that carry some

additional structure. Thus, we are usually interested in algebras of self-

adjoint operators in some Hilbert space, or more generally in algebras of

operators in Hilbert space which are closed under taking adjoints. This

motivates the following definitions.

Definition 11.1 A Banach ∗-algebra is a complex Banach algebra A to-

gether with an involution x 7→ x∗ on A satisfying

(i) (x+ y)∗ = x∗ + y∗;
(ii) (αx)∗ = αx∗;
(iii) (xy)∗ = y∗x∗;
(iv) ‖x∗‖ = ‖x‖, for all x, y ∈ A and all α ∈ C (here and throughout,

‖ · ‖ is the norm in A ).

Definition 11.2 A C∗ algebra A is a Banach ∗-algebra such that ‖x∗x‖ =

‖x‖2 for all x ∈ A .

Here is some additional terminology. The elements x ∈ A (a Banach

∗-algebra or C∗ algebra) with x∗ = x are called self-adjoint . If x ∈ A is

such that x∗x = xx∗, then x is called normal . When A has a unit e, we

define σ(x) = {α ∈ C : αe − x is not invertible} to be the spectrum of x,

as for general Banach algebras. From now on we shall deal exclusively with

C∗ algebras.

Example 2. Let us now present some important examples of C∗ algebras.

(1) Let X be a compact or locally compact Hausdorff space, and let A =

C0(X) be the space of continuous functions f : X → C which vanish

at infinity, in the sense that for each ε > 0 the set {x ∈ X : |f(x)| ≥
ε} is compact. Of course, C0(X) = C(X) = C(X,C) when X is
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compact. Let A be endowed with the sup norm ‖f‖ = supx∈X |f(x)|,
and let f∗ : X → C be given by f∗(x) = f(x), for all x ∈ X. With

addition and multiplication defined pointwise, we see at once that A

is a C∗-algebra, in fact a commutative unital C∗-algebra, with unit

given by the constant function f ≡ 1.

(2) Let A be any subalgebra of B(H ), the space of bounded operators in

a Hilbert space H , which is closed under the operations of taking

adjoints and also closed in the norm topology of B(H ). Then A is

a C∗ algebra, and it is usually non-commutative. This class of exam-

ples includes, of course, finite-dimensional algebras such as Mn(C),

the algebra of n× n complex matrices.

(3) Consider once again L∞(X,µ), the algebra of L∞ functions over a finite

measure space (X,µ). With the involution defined by conjugation,

and the operations of pointwise addition and multiplication as in

example (1), L∞(X,µ) is a commutative C∗ algebra with unit. Un-

like example (1), however, L∞(X,µ) displays the extra feature of

possessing a pre-dual as a Banach space, namely L1(X,µ). A C∗

algebra with this property is called a von Neumann algebra.

We shall see in due time that the above examples (1) and (2) constitute

all C∗ algebras up to the appropriate notion of isomorphism.

Lemma 11.3 Let a be a self-adjoint element of a C∗ algebra A . Then we

have ‖an‖ = ‖a‖n for all n ≥ 1.

Proof First we prove the statement for powers of 2. Since a∗ = a, we have

‖a2‖ = ‖a∗a‖ = ‖a‖2. By induction on k, it follows that ‖a2k‖ = ‖a‖2k
, since

the powers of self-adjoint elements are self-adjoint. Let us now prove the

statement for arbitrary n. Again we proceed by induction, on the (unique)

k such that 2k ≤ n < 2k+1. Suppose the statement holds true for all m

such that m ≤ 2k, i.e. ‖am‖ = ‖a‖m for all m ≤ 2k. Given n such that

2k ≤ n < 2k+1, let kn = 2k+1 − n ≤ 2k. Then we have

‖a‖n+kn‖ = ‖an+kn‖ ≤ ‖an‖ · ‖akn‖ = ‖an‖ · ‖a‖kn .

Here we have used ‖akn‖ = ‖a‖kn , which is true by the induction hypothesis.

Hence ‖a‖n ≤ ‖an‖. But ‖an‖ ≤ ‖a‖n always, so ‖an‖ = ‖a‖n. This

completes the induction and finishes the proof.

Definition 11.3 Given a C∗ algebra A (or more generally a Banach alge-

bra) with unit, the spectral radius of a ∈ A is r(a) = sup{|λ| : λ ∈ σ(a)}
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Lemma 11.4 The spectral radius of a ∈ A is given by r(a) = limn→∞ ‖an‖1/n.

Proof The reader is invited to supply a proof as an exercise. The existence

of the above limit is a simple consequence of the fact that the sequence ‖an‖
is sub-multiplicative (i.e ‖am+n‖ ≤ ‖am‖ · ‖an‖, for all m,n ≥ 1).

Note that we always have r(a) ≤ ‖a‖. The following lemma tells us that

for self-adjoint elements equality holds.

Lemma 11.5 If a ∈ A is a self-adjoint element of a C∗ algebra A , then

r(a) = ‖a‖.

Proof This is an obvious consequence of lemmas 11.3 and 11.4.

More generally, lemma 11.5 holds true for normal elements. This is left

as an exercise.

We have yet to introduce a suitable notion of morphism between C∗ al-

gebras.

Definition 11.4 A ∗-morphism between two C∗ algebras A ,B is an alge-

bra homomorphism φ : A → B that commutes with the ∗-involutions, i.e.

φ(a∗) = φ(a)∗, for all a ∈ A . If both algebras are unital and φ maps the

unit of A to the unit of B, then φ is said to be a unital ∗-morphism.

A ∗-morphism of C∗ algebras will sometimes also be called a C∗ homo-

morphism.

Lemma 11.6 Let φ : A → B be a unital ∗-morphism between two unital

C∗ algebras. Then r(φ(a)) ≤ r(a) for all a ∈ A .

Proof It suffices to show that σB(φ(a)) ⊂ σA (a). Let λ ∈ σ(φ(a)). Then

φ(a) − λeB is non-invertible in B, where eB is the unit of B. Note that φ

carries invertible elements in A to invertible elements in B. Since

φ(a)− λeB = φ(a− λeA ) ,

it follows that a−λeA is non-invertible in A , and therefore λ ∈ σA (a).

We leave it as an exercise for the reader to remove the hypothesis in lemma

11.6 that both algebras and the ∗-morphism are unital.

In the definition of ∗-morphism given above, we did not require that ∗-
morphisms be continuous. It is a consequence of the result below that such

an assumption is unnecessary.
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Proposition 11.5 Let φ : A → B be a ∗-morphism between C∗ algebras.

Then φ is norm-contracting, i.e. ‖φ(a)‖B ≤ ‖a‖A .

Proof Let x ∈ A be self-adjoint. Then φ(x) is self-adjoint in B, whence by

lemma 11.5 we have

‖φ(x)‖B = rB(φ(x)) ≤ rA (x) = ‖x‖A ,

where we have used lemma 11.6 as well. Hence ‖φ(x)‖B ≤ ‖x‖A whenever

x is self-adjoint. For arbitrary a ∈ A , the element a∗a is self-adjoint, so

‖φ(a)‖2B = ‖φ(a∗a)‖B ≤ ‖a∗a‖A = ‖a‖2A ,

i.e. ‖φ(a)‖B ≤ ‖a‖A , and we are done.

We are drawing closer to the commutative Gelfand-Naimark theorem. Our

next lemma justifies the name Gelfand spectrum that we gave to Â .

Lemma 11.7 Let A be a commutative C∗ algebra with unit. Given a ∈ A ,

we have λ ∈ σ(a) iff there exists ϕ ∈ Â such that ϕ(a) = λ.

Proof If λ ∈ σ(a), then a − λe is not invertible, so the ideal I = (a −
λe)A is proper. Let J ⊃ I be a maximal ideal. By proposition 11.4,

there exists ϕ ∈ Â such that kerϕ = J . In particular ϕ vanishes over I,

and so ϕ(a − λe) = 0, i.e. ϕ(a) = λ. Conversely, if ϕ ∈ Â is such that

ϕ(a) = λ, then a− λe cannot be invertible: if b ∈ A were an inverse, then

1 = ϕ((a − λe)b) = ϕ(a − λe) · ϕ(b) = 0, which is absurd. Hence λ ∈ σ(a).

From now on, we shall write σ(A ) instead of Â for the Gelfand spectrum

of a C∗ algebra A .

There is a natural way to associate to each element a ∈ A of a C∗

algebra with unit an element â ∈ C(σ(A )), namely the functional given by

â(ϕ) = ϕ(a), for each ϕ ∈ σ(A ). The map a 7→ â is called the Gelfand

transform.

Theorem 11.3 (Gelfand-Naimark) The Gelfand transform A → C(σ(A ))

is a ∗-isomorphism, and it is also an isometry, provided A is a commutative

C∗-algebra with unit.

Proof It is clear that a 7→ â is a homomorphism of algebras, and that it

sends the unit of A to the unit of C(σ(A )) (the constant function equal to



290 Appendix II: C∗ Algebras and Spectral Theory

1). We claim that it preserves the ∗-involutions of both algebras. To prove

this claim, we use the fact that ϕ(a) is real for each self-adjoint a ∈ A and

each ϕ ∈ σ(A ). Given an arbitrary element a ∈ A , let us write a = b + ic

with b, c self-adjoint, namely,

b =
1

2
(a+ a∗) and c =

1

2
(a− a∗) .

Then, for each ϕ ∈ σ(A ), we see that

ϕ(a∗) = ϕ(b− ic) = ϕ(b) − iϕ(c)

= ϕ(b) + iϕ(c) = ϕ(b+ ic) = ϕ(a) .

This shows that â∗ = â∗, as claimed. Now, the Gelfand transform is also

clearly injective. We claim that it is an isometry. Indeed, it follows from

11.7 that for each a ∈ A we have ‖â‖∞ = r(a) (check!). Therefore we have

‖â‖2∞ = ‖â∗a‖∞ = r(a∗a) = ‖a∗a‖ = ‖a‖2

where we have used lemma 11.5 together with the fact that a∗a is self-adjoint.

Thus the Gelfand transform is an isometry as claimed. In particular, it

is continuous. Our final claim is that it is onto C(σ(A )). Indeed, the

image in C(σ(A )) of A under the Gelfand transform is a closed algebra

that contains the constant functions, separates points and is closed under

complex conjugation. Therefore it is equal to the whole C(σ(A )), by the

Stone-Weierstrass theorem.

Let us extract some important consequences of the Gelfand-Naimark the-

orem.

Corollary 11.1 Let ψ : A → B be an injective homomorphism between

two C∗ algebras. Then ψ is an isometry.

Proof We already know that ψ is norm-contracting. We may assume that

both algebras are unital, passing to ψ+ : A + → B+ if necessary (details

are left as exercise). In order to prove that ‖ψ(a)‖B = ‖a‖A for a given

a ∈ A , we may restrict ψ to ψ : C∗(a, eA ) → C∗(φ(a), eB), where the

restricted domain C∗(a, eA ) is the C∗ subalgebra of A generated by a and

eA , and similarly for the restricted range. Both C∗(a, eA ) and C∗(φ(a), eB)

are abelian C∗ algebras. Applying the Gelfand-Naimark theorem 11.3, we

deduce that C∗(a, eA ) ∼= C(X) and C∗(φ(a), eB) ∼= C(Y ), where X and Y

are compact Hausdorff spaces (the Gelfand spectra of both abelian algebras).

We are therefore reduced to proving that if ψ : C(X)→ C(Y ) is an injective

C∗ homomorphism, then it is an isometry. But every such homomorphism
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is of the form ψ(ϕ) = ϕ ◦ f , where f : Y → X is a surjective continuous

map (this is an easy exercise). Therefore ‖ψ(ϕ)‖∞ = ‖ϕ ◦ f‖∞ = ‖ϕ‖∞, for

all ϕ ∈ C(X). This finishes the proof.

Another consequence of theorem 11.3 is the following result.

Theorem 11.4 Let X and Y be compact metric spaces. Then X and Y are

homeomorphic if and only if C(X) and C(Y ) are isomorphic C∗ algebras.

Proof One implication (⇒) is obvious. To prove the converse implication,

we first claim that X ∼= σ(C(X)). Indeed, let Φ : X → σ(C(X)) be the

map x ∈ x̂, where x̂ : C(X) → C is the multiplicative linear functional

x̂(ϕ) = ϕ(x). Then Φ is injective and continuous. We shall presently see

that it is also onto. Note that any λ ∈ σ(C(X)) is also a positive linear

functional†. By the Riesz-Markov theorem, there exists a Borel probability

measure µ on X such that λ(ϕ) =
∫
X ϕdµ for all ϕ ∈ C(X). Since λ is

multiplicative, we have
∫

X
ϕψ dµ = λ(ϕψ) = λ(ϕ)λ(ψ) (11.1)

=

(∫

X
ϕdµ

)
·
(∫

X
ψ dµ

)
(11.2)

for all ϕ,ψ ∈ C(X). Let U, V ⊂ X be any two disjoint open sets with

µ(U) > 0 and µ(V ) > 0. Choose ϕ ∈ C(X) so that ϕ > 0 on U and ϕ = 0

everywhere else; choose ψ ∈ C(X) likewise with respect to V . Then ϕ·ψ ≡ 0,

so λ(ϕψ) = 0. But
∫
X ϕdµ > 0 and

∫
X ψ dµ > 0 by construction, and from

11.2 we deduce that λ(ϕψ) > 0, which is a contradiction. From this it is

an easy matter (exercise) to see that µ is an atomic measure supported at a

single point x0 ∈ X; in other words, µ = δx0, the Dirac measure concentrated

at x0. Hence for each ϕ ∈ C(X) we have

λ(ϕ) =

∫

X
ϕdδx0 = ϕ(x0) = x̂0(ϕ) .

This shows that the map Φ is onto as claimed, hence a homeomorphism.

Thus, now we know that X ∼= σ(C(X)) and Y ∼= σ(C(Y )). Hence, if

C(X) and C(Y ) ar isomorphic as C∗ algebras (so that they are isometric,

by the above corollary) then by lemma 11.8 below, σ(C(X)) and σ(C(Y ))

are homeomorphic. Therefore X ∼= Y , and this finishes the proof of our

theorem.

† If ϕ ∈ C(X) is ≥ 0, write ϕ = |f |2 = ff for some f ∈ C(X); then λ(ϕ) = λ(ff) = |λ(f)|2 ≥ 0,
because λ is ∗-preserving
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The lemma referred to in the above proof is the following.

Lemma 11.8 If Ψ : A → B is a C∗ isomorphism then Ψ̂ : σ(B) → σ(A )

given by Ψ̂(ϕ) = ϕ ◦Ψ is a homeomorphism.

Proof An exercise for the reader.

11.3 The spectral theorem

The main application of the commutative Gelfand-Naimark theorem, for our

purposes, is to a fairly simple proof of the spectral theorem for bounded,

self-adjoint operators. We shall first formulate and prove a C∗ version of

the spectral theorem with an extra hypothesis. We need a definition.

Definition 11.5 Let A ⊂ B(H ) be a C∗ algebra of operators on a Hilbert

space H . A vector v ∈ H is said to be A -cyclic if A (v) = {Tv : T ∈
A } ⊂H is dense in H .

Theorem 11.5 (Spectral theorem I) Let A ⊂ B(H ) be a commutative

C∗ algebra of operators in Hilbert space, containing the identity operator,

and let v ∈ H be an A -cyclic vector. Then there exist a finite measure

space (X,µ) and a unitary isometry U : L2(X,µ) → H such that U∗TU :

L2(X,µ)→ L2(X,µ) is a multiplication operator, for each T ∈ A .

Proof There is no loss of generality in assuming that the cyclic vector v has

unit norm. From the Gelfand-Naimark theorem, we know that A ∼= C(X),

for some compact metric space X. For each f ∈ C(X), let us denote by

Tf ∈ A the corresponding operator in Hilbert space via such ∗-isomorphism.

Let λv : C(X)→ C be the linear functional given by λv(f) = 〈Tfv, v〉. Note

that λv(1) = ‖v‖2 = 1. Moreover, if f ∈ C(X) is ≥ 0, so that f = gg for

some g ∈ C(X), then

λv(f) = λv(gg) = 〈Tgg(v), v〉
= 〈Tg(v), Tg(v)〉 = ‖Tg(v)‖2 ≥ 0

Hence λv is a positive, normalized linear functional on C(X). By the Riesz-

Markov theorem, there exists a regular Borel probability measure µ on X

such that

λv(f) =

∫

X
f dµ , for all f ∈ C(X) .
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Now consider the Hilbert space L2(X,µ), of which C(X) is a dense subspace.

We define an isometry U : L2(X,µ) → H as follows. If f ∈ C(X), let

U(f) = Tf (v). Note that U is linear on C(X), and

‖U(f)‖2 = 〈Tf (v), Tf (v)〉 =
〈
Tffv, v

〉
= λv(ff)

=

∫

X
|f |2 dµ = ‖f‖2 .

Hence U is norm-preserving on C(X), and therefore it extends uniquely to

an isometry U : L2(X,µ) → H . But since v ∈ H is cyclic, U(C(X)) is

dense in H . This shows that U is onto H , hence in fact a unitary isometry.

Finally, given f ∈ C(X), let Mf : L2(X,µ) → L2(X,µ) be the multipli-

cation operator Mf (ϕ) = fϕ. Whenever ϕ ∈ C(X), we have

Tf (Uϕ) = TfTϕ(v) = Tfϕ(v) = U(fϕ) = UMf (ϕ) ,

and thus U∗TfU(ϕ) = Mf (ϕ). Since C(X) is dense in L2(X,µ), it follows

that U∗TfU = Mf , and this finishes the proof.

In the context of the definition just preceding the above theorem, let us

agree to call a closed subspace W ⊂ H cyclic (or A -cyclic) if there exists

a vector w ∈W such that A (w) is dense in W .

Lemma 11.9 Let A ⊂ B(H ) be a unital C∗ algebra of operators in Hilbert

space. Then there exists a decomposition H =
⊕

i∈I Hi into mutually or-

thogonal, A -invariant cyclic subspaces.

Proof We apply Zorn’s lemma to the family of all direct sums of mutually or-

thogonal, A -invariant cyclic subspaces of H , partially ordered by inclusion

in an obvious way. Let V =
⊕

i∈I Hi ⊂ H be a maximal such direct sum,

and suppose V 6= H . Take v 6= 0 in the orthogonal complement of V , and

let W = A (v) ⊂H . Then W is cyclic, and V ′ = W⊕V = W⊕
⊕

i∈I Hi is a

strictly larger direct sum in the family, a contradiction. Therefore V = H .

With this lemma at hand, we are now in a position to prove a more

familiar version of the spectral theorem.

Theorem 11.6 (Spectral theorem II) Let T ∈ B(H ) be a self-adjoint

operator. Then T is unitarily equivalent to a multiplication operator.

Proof Let AT ∈ B(H ) be the C∗ algebra generated by T and the iden-

tity, i.e., the C∗ algebra arising as the closure (in the operator norm) of the
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polynomial algebra generated by T . By lemma 11.9, there exists a decom-

position H =
⊕

i∈I Hi of the Hilbert space H into mutually orthogonal,

AT -invariant subspaces. For each i ∈ I, let Ti = T |Hi
: Hi → Hi. Then

each Ti has a cyclic vector vi ∈ Hi. By theorem 11.4, there exists a finite

measure space (Xi, µi) and a unitary isometry Ui : L2(Xi, µi) → Hi such

that U∗
i TiUi = Mfi

, where fi ∈ L∞(Xi, µi). Now define

Ũ =
⊕

i∈I
Ui :

⊕

i∈I
L2(Xi, µi)→H .

This linear operator is a unitary isometry, and it conjugates T to
⊕

i∈IMfi
.

To finish the proof, it suffices to show that this last direct sum of multi-

plication operators is itself (unitarily equivalent to) a multiplication oper-

ator. Let (X,µ) be the measure space obtained as the disjoint union of

(Xi, µi). To wit, a set E ⊂ X is µ-measurable iff E∩Xi is µi-measurable for

each i, and µ(E) =
∑

i∈I µi(E ∩Xi). There is a natural unitary isometry

U ′ : L2(X,µ)→⊕
i∈I L

2(Xi, µi). Moreover, if f : X → C is defined so that

f |Xi
= fi for each i, then f ∈ L∞(X,µ). Letting U = Ũ ◦U ′, we see at once

that U is unitary and U∗TU = Mf : L2(X,µ)→ L2(X,µ). This shows that

T is unitarily equivalent to a multiplication operator, as was to be proved.

We end this section with a couple of remarks. First, note that the measure

space (X,µ) constructed in the above proof will in general be an infinite

measure space. Even if H is separable, the naive construction in the proof

will in general yield only a σ-finite measure. This is somewhat unpleasant,

but can be circumvented: indeed, one can show that if (X,µ) is σ-finite,

then there is a finite measure space (Y, ν) such that L2(X,µ) is unitarily

isometric to L2(Y, ν). This is left as an exercise for the reader.

Second, the above version of the spectral theorem can be considerably

strengthened if one makes full use of lemma 11.9. The result is an improved

version of 11.5 in which the hypothesis that our commutative C∗ algebra

A ⊂ B(H ) has a cyclic vector can be dropped. Note that such an improved

version contains the case of the C∗ algebra generated by any finite collection

of commuting operators Ti : H → H , i = 1, 2, . . . , n, i.e. TiTj = TjTi,

which are assumed to be either self-adjoint or normal. This form of the

spectral theorem is especially suitable for the quantization scheme described

in chapter 2, for a system with a finite number of particles.
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11.4 States and GNS representation

The Gelfand-Naimark theorem for commutative C∗ algebras provides a con-

crete realization of such an algebra as a space of continuous functions on

some compact space. The proof made essential use of multiplicative func-

tionals, or characters. For non-commutative algebras, this approach will not

do, since characters need not exist. For example, the C∗ algebra Mn(C) of

complex n × n matrices (n > 1) carries no such multiplicative functionals

(see exercise 2). Thus one needs to consider the next best thing, namely

positive linear functionals.

Definition 11.6 Let A be a C∗ algebra. A self-adjoint element a ∈ A is

said to be positive if σ(a) ⊂ [0,∞). The set of all positive elements of A is

denoted by A+.

Note that A+ is a convex cone in A . In particular, positivity induces a

partial order in A : given two elements a, b ∈ A , we say that a ≤ b if b− a
is positive.

Definition 11.7 A linear functional ρ : A → C is said to be positive if

ρ(a) ≥ 0 for all a ∈ A+.

For instance, characters, when they exist, are certainly positive linear

functionals.

A positive linear functional is automatically bounded; the proof of this

fact is left as an exercise (see exercise 5). If ρ : A → C is positive, we can

therefore look at its norm ‖ρ‖.

Definition 11.8 If ρ : A → C is positive and ‖ρ‖ = 1, then we call ρ a

state. The set of all states of A is denoted S(A ).

Two of the most important examples of states are vector states and nor-

mal states. These are defined relative to a given representation of our C∗

algebra in Hilbert space; hence we first pause for this crucial concept of

representation.

Definition 11.9 A representation of a C∗ algebra A in a Hilbert space is a

∗-homomorphism π : A → B(H ). If π is injective, then the representation

is said to be faithful.

Example 3. Vector states. Given a representation π : A → B(H ), we say

that a state ϕ : A → C is a vector state for (π,H ) if there exists a unit

vector ξ ∈H such that ϕ(a) = 〈π(a)ξ, ξ〉 for all a ∈ A .
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Example 4. Normal states. Again we consider a representation π : A →
B(H ). We say that a state ϕ : A → C is a normal state for (π,H ) if

there exists a positive, trace-class operator ρ : H → H such that ϕ(a) =

Tr(ρπ(a)) for all a ∈ A . The operator ρ is usually called the density matrix

of the state. Note that every vector state is a normal state. Indeed, if

ϕ : A → C is a vector state for (π,H ) with unit vector ξ, take ρ : H →H
to be the orthogonal projection onto the one-dimensional subspace generated

by ξ. Then ρ is positive and trace-class, and for all a ∈ A we have

〈π(a)ξ, ξ〉 = 〈π(a)ξ, ρ∗ξ〉
= 〈ρπ(a)ξ, ξ〉 = Tr(ρπ(a)) .

Normal states play a key role in the mathematical formulation of quantum

statistical mechanics [AJP], as well as in algebraic quantum field theory (see

section 11.6 and [H]).

We shall soon see that the set of all states is closed in the weak* topology,

and that it is also convex . First we digress a bit to talk about approximate

units in a C∗ algebra.

Definition 11.10 An approximate unit in a C∗ algebra A is a net {uλ}λ∈Λ

of positive elements uλ ∈ A+ such that

(i) λ1 ≤ λ2 ⇒ uλ1 ≤ uλ2 ;

(ii) for each a ∈ A we have ‖a− uλa‖ → 0 and ‖a− auλ‖ → 0.

An approximate unit in A always exists: this is not entirely trivial, but

is nevertheless left as an exercise (see exercise 7).

Example 5. Let H be a separable Hilbert space, and let {e1,2 , . . . , en, . . .} ⊂
H be an orthonormal basis. For each n ≥ 1, let Pn : H → H be the

orthogonal projection onto the closed linear subspace spanned by the finite

set {e1, e2, . . . , en}. Then (Pn)n≥1 is an approximate unit for A = K(H ),

the C∗ algebra of compact operators on H , but not for B(H ).

For our purposes in this section, the important fact concerning positive

functionals and approximate units is the following.

Lemma 11.10 Let (uλ) be an approximate unit in A , and let ρ : A → C

be a positive linear functional. Then ρ(uλ) → ‖ρ‖. In particular, if A is

unital, then ‖ρ‖ = ρ(1).

Proof Since ρ is positive, it is order-preserving, and so (ρ(uλ)) is a net.

Since we also have ρ(uλ) ≤ ‖ρ‖ · ‖uλ‖ ≤ ‖ρ‖, and therefore α = lim ρ(uλ)
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exists, and α ≤ ‖ρ‖. On the other hand, if a ∈ A is such that ‖a‖ ≤ 1, then

using the multiplicativity of ρ and the self-adjointness of uλ we have

|ρ(auλ)|2 = |ρ(a∗a)ρ(u2
λ)| ≤ ρ(a∗a)ρ(uλ) , (11.3)

where we used also that u2
λ ≤ uλ for all λ. But ρ(auλ)→ ρ(a) and ρ(uλ)→

α, and moreover ρ(a∗a) ≤ ‖ρ‖. Hence, from 11.3 we deduce that |ρ(a)|2 ≤
α‖ρ‖, for all a ∈ A with ‖a‖ ≤ 1. Taking the supremum over all such a, we

see that ρ‖2 ≤ α‖ρ‖, i.e. α ≥ ‖ρ‖. This shows that ‖ρ‖ = α = lim ρ(uλ) as

claimed. The last assertion in the statement is clear.

Proposition 11.6 The set S(A ) of all states of a C∗ algebra A is a weak*-

closed, convex subset of A ∗.

Proof In fact, S(A ) is weak*-compact, as follows easily from Alaoglu’s

theorem. The convexity of S(A ) is an easy consequence of lemma 11.10.

Indeed, if ρ0, ρ1 : A → C are states, then for each 0 ≤ t ≤ 1 we have that

ρt = (1 − t)ρ0 + tρ1 is a positive linear functional (obvious); if (uλ) is an

approximate unit in A , then on one hand ρt(uλ)→ ‖ρt‖, and on the other

hand

ρt(uλ) = (1− t)ρ0(uλ) + tρ1(uλ)

→ (1− t)‖ρ0‖+ t‖ρ1‖ = (1− t) + t = 1

Therefore ‖ρt‖ = 1, i.e. ρt is a state for all 0 ≤ t ≤ 1.

Another important property of positive linear functionals needed below is

the following version of Cauchy-Schwarz’s inequality.

Lemma 11.11 If ρ : A → C is a positive linear functional, then for all

a, b ∈ A we have |ρ(a∗b)|2 ≤ ρ(a∗a)ρ(b∗b).
The proof is left as an exercise. Here is an immediate consequence of the

Cauchy-Schwarz inequality that is crucial in the GNS construction to follow.

Lemma 11.12 If ρ : A → C is a positive linear functional and a ∈ A ,

then ρ(a∗a) = 0 if and only if ρ(ba) = 0 for all b ∈ A .

Proof If ρ(a∗a) = 0, then by lemma 11.11 we have |ρ(ba)|2 ≤ ρ(bb∗)·ρ(a∗a) =

0, so ρ(ba) = 0 for all b ∈ A . The converse is obvious (take b = a∗).

We are now ready for the so-called GNS construction, which is the basis

for the proof of the non-commutative Gelfand-Naimark theorem; here, GNS

stands for Gelfand-Naimark-Segal.
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Theorem 11.7 (GNS) Let A be a C∗ algebra. Then for each positive linear

functional ρ : A → C there exist a Hilbert space Hρ, a vector ξρ ∈Hρ, and

a representation πρ : A → B(Hρ) with the following properties.

(i) For each a ∈ A we have ρ(a) = 〈πρ(a)ξρ, ξρ〉, where 〈,〉 is the inner

product in Hρ;

(ii) The orbit πρ(A )ξρ is dense in Hρ.

Proof Given ρ : A → C as in the statement, let Iρ = {a ∈ A : ρ(a∗a) = 0}.
Then, by lemma 11.12, Iρ is a left ideal in A : for ρ(a∗a) = 0 implies

ρ(a∗b) = 0 for all b ∈ A , so in particular, letting c ∈ A and taking b = c∗ca,
we have ρ((ca)∗ca) = 0, whence ca ∈ Iρ for all c ∈ A . It follows that the

quotient H̃ρ = A /Iρ is a complex vector space, and we can endow it with

the inner product

〈a+ Iρ, b+ Iρ〉 = ρ(a∗b) .

Let Hρ be the completion of H̃ρ with respect to this inner product. For

each a ∈ A , consider the linear map A → A given by left multiplication by

a. This map induces a linear map A /Iρ → A /Iρ which is clearly bounded

and thus induces a bounded linear operator πρ(a) : Hρ → Hρ. The map

a ∈ πρ(a) is the desired representation. Note also that by construction,

πρ(a)(x+ Iρ) = ax+ Iρ, for all x ∈ A .

To finish the proof, we need to find ξρ ∈ Hρ such that (i) and (ii) hold

true. If A has a unit 1 ∈ A , take ξρ = 1 + Iρ; in this case (i) and (ii) are

obvious. If A does not have a unit, let (uλ) be an approximate unit (one

always exists, by exercise ), and define ξρ = limλ(uλ + Iρ) ∈ Hρ. Then (ii)

is a consequence of the fact that auλ → a for all a ∈ A . Moreover, for all

such a we have

〈πρ(a)ξρ, ξρ〉 = lim
λ
ρ(auλ · u∗λ) = ρ(a) ,

so (i) holds true as well.

The state space S(A ) has the following separating property.

Lemma 11.13 If a is a positive element of a C∗ algebra A , then there

exists ρ ∈ S(A ) such that ρ(a) = ‖a‖.

Proof Let C∗(a) be the C∗ algebra generated by a and the unit of A (if A is

not unital, consider its unitization A + instead of A ). Since C∗(a) is abelian,

the commutative Gelfand-Naimark theorem tells us that C∗(a) ∼= C(σ(a)).
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Let ρ̃ : C∗(a) → C be the linear functional that corresponds, via this ∗-
isomorphism, to evaluation at ‖a‖ ∈ σ(a). Then ‖ρ̃‖ = ρ̃(1) = 1, and

ρ̃(a) = ‖a‖. By the Hahn-Banach theorem, ρ̃ extends to a linear functional

ρ : A → C with the same norm. To prove that ρ ∈ S(A ), it remains to

show that ρ is positive. Let x ∈ A+ (the positive cone of A ), so that x is

self-adjoint and σ(x) ⊂ [0,∞). It suffices to show that ρ(x) is in the convex

hull of σ(x). If the latter is not true, then we can find a disk D(z0, R) in

the complex plane such that σ(x) ⊂ D(z0, R) but ρ(x) /∈ D(z0, R). Thus,

on one hand we have that the spectral radius r(x− z0) is ≤ R, and on the

other hand R < |ρ(x)− z0| = |ρ(x− z0)| ≤ ‖x− z0‖ (because ‖ρ‖ = 1). But

x− z0 = x− z0 · 1 is a normal element of A . Hence, applying lemma 11.5,

we see that r(x− z0) = ‖x− z0‖. This is a contradiction, and the lemma is

proved.

We are now ready for the central result of this section. The non-commuta-

tive Gelfand-Naimark theorem asserts that every C∗ algebra can be faithfully

represented as an algebra of operators in some Hilbert space. Since by

corollary 11.1 every injective homomorphism of C∗ algebras is an isometry

onto its image, the Gelfand-Naimark theorem can be stated as follows.

Theorem 11.8 (Gelfand-Naimark) Every C∗ algebra A is ∗-isomorphic

to a ∗-subalgebra of B(H ) for some Hilbert space H . If A is separable,

then one can take H to be separable as well.

Proof Let F ⊂ S(A ) be any non-empty family of states with the property

that for each 0 6= a ∈ A there exists ρ ∈ F such that ρ(a) 6= 0. For example,

one can take F = S(A ). Define H =
⊕

ρ∈F Hρ, where Hρ is given by the

GNS construction, alongside the cyclic representation πρ : A → B(Hρ).

Let π : A → B(H ) be given by the direct sum of representations

π(a) =
∑⊕

ρ∈F
πρ(a) : H →H .

Since ‖πρ(a)‖ ≤ ‖a‖ for each ρ ∈ F , it follows that ‖π(a)‖ ≤ ‖a‖ as well,

so π(a) ∈ B(H , and so π is a well-defined representation of the C∗ algebra

A in H . If a 6= 0, then πρ(a) 6= 0 for at least one ρ ∈ F , so φ(a). This

shows that π : A → B(H ) is faithful. This proves the first assertion in the

statement. Now suppose that A is separable. Then each cyclic Hilbert space

Hρ is separable (by property (ii) of the GNS construction). Let {an : n ∈ N}
be a countable dense set in {a ∈ A+ : ‖a‖ = 1}, and for each n ≥ 1 let

ρn ∈ S(A ) be such that ρn(an) = 1, a state whose existence is guaranteed
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by lemma 11.13. Then F = {ρn : n ∈ N} ⊂ S(A ) is countable. Therefore

H =
⊕

ρ∈F Hρ is separable, and the representation π : A → B(H ) as

given above is faithful. This finishes the proof.

11.5 Representations and spectral resolutions

In this section we present more details on the representations of commutative

C∗ algebras, and apply the results to the spectral decomposition of a self-

adjoint operator on Hilbert space.

By the commutative Gelfand-Naimark theorem, it suffices to consider rep-

resentations of C(X), where X is compact Hausdorff. It turns out that, for

everything we do in the sequel, local compactness suffices. Hence we shall

deal with the C∗ algebra C0(X) of continuous functions vanishing at infinity

on a locally compact Hausdorff space X. Given such a space X, let B be

a σ-algebra of Borel subsets of X. The elements of B are sometimes called

events.

Definition 11.11 A projection-valued measure on (X,B) is a map P :

B → B(H ), where H is a Hilbert space, with the following properties.

(i) P (X) = IH , the identity operator;

(ii) P (E1 ∩ E2) = P (E1)P (E2) for all E1, E2 ∈ B;

(iii) P (∪∞1 Ei) =
∑∞

1 P (Ei), whenever the Ei ∈ B are pairwise disjoint;

(iv) P (E)∗ = P (E) for all E ∈ B.

Note that (ii) implies P (E)2 = P (E) for all E ∈ B. This idempotency

together with the self-adjointness condition (iv) tell us that P (E) is a pro-

jection operator on H , hence the name. Note also that any pair of non-zero

vectors v,w ∈ H determines a complex measure µv,w on (X,B) given by

µv,w(E) = 〈P (E)v,w〉. Thus, each projection-valued measure (P,H ) on

(X,B) gives rise to a family of complex measures on (X,B) called the

spectral measures of (P,H ).

Now, it turns out that continuous functions on X (vanishing at∞) can be

integrated against a projection-valued measure (P,H ) and the result is a

bounded linear operator on H : this is the content of the following theorem.

Theorem 11.9 Let P : B → B(H ) be a projection-valued measure over a

locally compact Hausdorff space X with Borel σ-algebra B. Then for each

f ∈ C0(X) there exists an operator IP (f) ∈ B(H ) such that

〈IP (f)v,w〉 =

∫

X
f(x) dµv,w(x)
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for all v,w,∈ H . Moreover, f 7→ IP (f) is a representation of C0(X) in

B(H ).

Remark 1. The operator IP (f) whose existence is asserted by the above

theorem is denoted

IP (f) =

∫
f(x) dP (x)

and is called the integral of f with respect to (P,H ). The name and notation

are justified by the fact that IP (f) is the limit in norm of Riemann-Stieltjes

sums of the form
∑

k f(xk)P (Ek) (see exercise 10).

Proof Let us consider the sesquilinear form Bf : H ×H → C given by

Bf (v,w) =

∫

X
f(x) dµv,w(x) .

This form is continuous. Indeed, we have |Bf (v,w)| ≤ |µv,w| · ‖f‖∞, where

|µv,w| = sup
∑

i

µv,w(Ei) , (11.4)

the supremum being taken over all countable partitions ofX into B-measurable

sets. Since for each i we have

|µv,w(Ei)| = | 〈P (Ei)v,w〉 | = | 〈P (Ei)v, P (Ei)w〉 |
≤ ‖P (Ei)v‖ · ‖P (Ei)w‖ ,

we get, using the Cauchy-Schwarz inequality in 11.4,

|µv,w| ≤ sup





(∑

i

‖P (Ei)v‖2
)1/2

·
(∑

i

‖P (Ei)w‖2
)1/2





= ‖v‖ · ‖w‖ .

This shows that |Bf (v,w)| ≤ ‖f‖∞‖v‖·‖w‖, so Bf is continuous as claimed.

Using Riesz representation, we deduce that there exists a unique bounded

linear operator IP (f) : H → H such that Bf (v,w) = 〈IP (f)v,w〉 for

all v,w ∈ H . It is straightforward to check that IP (f̄) = IP (f)∗ for all

f ∈ C0(X).

It remains to prove that IP : C0(X) → B(H ) is multiplicative. First

we claim that µv,Tfw is absolutely continuous with respect to µv,w, where

Tf = IP (f). Indeed, for all events E,F ∈ B we have

µP (E)v,w(F ) = 〈P (F )P (E)v,w〉 = 〈P (E ∩ F )v,w〉 = µv,w(E ∩ F ) . (11.5)
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Therefore we get

µv,Tfw(E) = 〈P (E)v, Tfw〉
=
〈
Tf̄P (E)v,w

〉

=

∫

X
f̄ dµP (E)v,w

=

∫

E
f̄ dµv,w ,

where in the last step we used (11.5). This shows that µv,Tfw ≪ µv,w, with

Radon-Nikodym derivative a.e. equal to f̄ . But then we see that, given

f, g ∈ C0(X),

〈Tfgv,w〉 =

∫

X
fg dµv,w

=

∫

X
g dµv,Tf̄w

=
〈
Tgv, Tf̄w

〉

= 〈TfTgv,w〉 .

Since this holds for all v,w ∈H , it follows that Tfg = TfTg, i.e. IP (fg) =

IP (f)IP (g). This shows that IP is a representation as claimed.

We have just proved that every projection-valued measure on (X,B) gives

rise to a representation of the commutative C∗ algebra C0(X) in Hilbert

space. Let us now prove a converse to this result. We shall say that a

projection-valued measure (P,H ) is regular if the variations of the measures

µv,w are regular Borel measures on (X,B) for all v,w ∈H .

Theorem 11.10 Let X be locally compact and Hausdorff, and let π :

C0(X) → B(H ) be a non-degenerate† representation. Then there exists

a unique regular projection-valued measure P on the Borel sets of X with

values in B(H ) such that

π(f) =

∫
f(x) dP (x)

for all f ∈ C0(X).

Proof We know from proposition 11.5 that π is norm-contracting, in other

words ‖π(f)‖ ≤ ‖f‖∞. Thus, for each v,w ∈ H , the correspondence f 7→
〈π(f)v,w〉 defines a bounded linear functional on C0(X), with norm ≤ ‖v‖ ·
† Here non-degenerate means: π(f)v = 0 for all f ∈ C0(X) ⇒ v = 0.



11.5 Representations and spectral resolutions 303

‖w‖. Applying the Riesz-Markov theorem, we get a unique, regular complex

Borel measure µv,w on X such that

〈π(f)v,w〉 =

∫

X
f dµv,w ,

and |µv,w| ≤ ‖v‖ · ‖w‖. Note that the correspondence is sesquilinear as a

map from H ×H into the space of complex Borel measures on X. If E ∈ B
is a Borel set, the map (v,w) 7→ µv,w(E) is also sesquilinear (into C), and

therefore the Riesz representation theorem yields µv,w(E) = 〈P (E)v,w〉 for

some operator P (E) ∈ B(H ) with ‖P (E)‖ ≤ 1.

In order to prove that P : B → B(H ) as defined above is indeed a

projection-valued measure, we need to verify conditions (i)-(iv) of definition

11.11. Let us first verify condition (ii). We note that if ϕ ∈ C0(X) then

dµv,π(ϕ̄)w(x) = ϕ(x) dµv,w(x) (11.6)

for all v,w ∈H . This happens because, for all ψ ∈ C0(X), we have
∫

X
ψ(x) dµv,π(ϕ̄)w(x) = 〈π(ψ)v, π(ϕ̄)w〉

= 〈π(ϕ)π(ψ)v,w〉
= 〈π(ϕψ)v,w〉

=

∫

X
ψ(x)ϕ(x) dµv,w(x) .

Let us now suppose that E ∈ B. We claim that

dµP (E)v,w(x) = 1E(x) dµv,w(x) . (11.7)

Indeed, for all ϕ ∈ C0(X) we have
∫

X
ϕ(x) dµP (E)v,w(x) = 〈π(ϕ)P (E)v,w〉 = 〈P (E)v, π(ϕ̄)w〉

= µv,π(ϕ̄)w(E) =

∫

X
1E(x) dµv,π(ϕ̄)w(x)

=

∫

X
ϕ(x)1E(x) dµv,w(x) ,

where we have used (11.6), and so (11.7) follows. Hence, if F ∈ B is any

other Borel set, we have

µP (E)v,w(F ) =

∫

F
1E(x) dµv,w(x) = µv,w(E ∩ F ) .

This shows that 〈P (F )P (E)v,w〉 = 〈P (E ∩ F )v,w〉 for all v,w ∈ H , and

therefore P (E ∩ F ) = P (E)P (F ).
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Next, we verify that condition (i) holds. Note that µv,P (X)w = µv,w for

all v,w ∈H , because for each E ∈ B we have

µv,P (X)w(E) = 〈P (E)v, P (X)w〉
= 〈P (X)P (E)v,w〉
= 〈P (E)v,w〉
= µv,w(E) ,

where we have used condition (ii), already established, and the self-adjointness

of P (X), which will be proved below. Hence, for all f ∈ C0(X) we have

〈π(f)v, P (X)w〉 =

∫

X
f(x) dµv,P (X)w(x)

=

∫

X
f(x) dµv,w(x) = 〈π(f)v,w〉 .

Thus, we see that 〈P (X)π(f)v,w〉 = 〈π(f)v,w〉, for all v,w ∈ H . This

shows that P (X)π(f)v = π(f)v for all f ∈ C0(X) and all v ∈H . But since

by hypothesis π is non-degenerate, {π(f)v : f ∈ C0(X), v ∈H } is dense in

H (check!). Therefore P (X) = IH , and condition (i) holds true, provided

condition (iv) is true.

But the self-adjointness condition (iv) is easy to check. Since π is a ∗-
morphism, we see that 〈π(f)w, v〉 = 〈π(f)v,w〉 for all f ∈ C0(X) and all

v,w ∈H , that is

∫

X
f̄ dµw,v =

∫

X
f dµv,w

=

∫

X
f̄ dµ̄v,w .

From this it follows that µ̄v,w = µw,v, and in particular

〈P (E)v,w〉 = µv,w(E) = µw,v(E)

= 〈P (E)w, v〉 = 〈v, P (E)w〉

for all v,w ∈H , and therefore P (E)∗ = P (E), as required.

Finally, the σ-additivity condition (iii) is also easy. If {Ei} is a countable

family of pairwise disjoint elements of B, then for each pair (v,w) ∈H ×H
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we have†

〈P (∪iEi)v,w〉 = µv,w(∪iEi) =
∑

i

µv,w(Ei)

=
∑

i

〈P (Ei)v,w〉 =

〈∑

i

P (Ei)v,w

〉
.

This shows that P (∪iEi) =
∑

i P (Ei). This finishes the proof of our theo-

rem.

The results presented above allow us to establish the following spectral

decomposition theorem for bounded self-adjoint operators in Hilbert space.

Theorem 11.11 (Spectral theorem III) Let T ∈ B(H ) be a self-adjoint

operator, and let BT be the Borel σ-algebra of σ(T ). Then there exists a

unique projection-valued measure P : BT → B(H ) such that

T =

∫

σ(T )
λdP (λ) .

Moreover, T is in the norm closure of the set of all orthogonal projections

that commute with all bounded operators commuting with T .

Proof The idea is to combine the commutative Gelfand-Naimark theorem

with theorem 11.10 above. Let AT = C∗(I, T ) ⊂ B(H ) be the C∗ algebra

generated by I = IH and T . Since this algebra is abelian, the commutative

GN theorem yields a ∗-isomorphism AT
∼= C(σ(AT )), where σ(AT ) is the

Gelfand spectrum of AT . We claim that σ(AT ) is homeomorphic to σ(T ) ⊂
R. To see why, let Φ : σ(AT )→ σ(T ) be given by Φ(ϕ) = ϕ(T ) ∈ R. This is

clearly continuous. It is injective, because Φ(ϕ1) = Φ(ϕ2) implies ϕ1(T ) =

ϕ2(T ), which in turn yields ϕ1(p(T )) = ϕ2(p(T )) for every polynomial p ∈
C[X]. Since {p(T ) : p ∈ C[X]} is dense in AT , it follows that ϕ1(A) = ϕ2(A)

for all A ∈ AT , and so ϕ1 = ϕ2. The map Φ is also sujective: if λ ∈ σ(T ),

then T − λI is non-invertible, so J = (T − λI)AT is a proper ideal in AT .

Hence J is contained in a maximal ideal; this is equivalent to saying that

there exists a multiplicative linear functional ϕ : AT → C with J ⊂ kerϕ,

i.e. ϕ(T − λI) = 0, whence ϕ(T ) = λ. Thus, being a continuous, bijective

map between σ(AT ) and σ(T ), which are both Hausdorff spaces, Φ is a

homeomorphism. This homeomorphism in turn yields a C∗ isomorphism

C(σ(AT )) ∼= C(σ(T )): given f ∈ C(σ(T )), let Φ̂(f) = f ◦ Φ ∈ C(σ(AT )).

Now, there is an obvious representation of AT in B(H ), namely the

† The reader should check that all series appearing here are convergent.
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identity representation π̃ : AT → B(H ) given by π̃(A) = A. We know

also that there is a ∗-isomorphism Ψ : AT
∼= C(σ(T )) given by Ψ(A) =

Â ◦ Φ−1, where Â(ϕ) = ϕ(A) is the Gelfand transform of A. Hence we

define π : C(σ(T )) → B(H ) by π = π̃ ◦ Ψ−1, which is easily seen to

be a non-degenerate representation. Everything has been set up so that

π(p(λ)) = π̃(p(T )) = p(T ) for each polynomial p = p(λ ∈ C(σ(T )). On the

other hand, by theorem 11.10, we have

π(f) =

∫

σ(T )
f(λ) dP (λ) ,

where P is the projection valued measure associated to π. In particular,

taking f = idσ(T ) (the identity polynomial), we see that

π(idσ(T )) = T =

∫

σ(T )
λdP (λ) . (11.8)

This establishes the first assertion of the theorem, except for the uniqueness

of P , which is left as an exercise (see exercise 11).

Let us now suppose that S ∈ B(H ) commutes with T . Hence it commutes

with every A ∈ AT . Using the isomorphism Ψ defined above, let us write

fA = Ψ(A) for each A ∈ AT . We know that

〈Av,w〉 = 〈π(A)v,w〉 =

∫

σ(T )
fA(λ) dµv,w(λ) .

Now, from SA = AS we have 〈Av, S∗w〉 = 〈SAv,w〉 = 〈ASv,w〉, and

therefore ∫

σ(T )
fA(λ) dµv,S∗w(λ) =

∫

σ(T )
fA(λ) dµSv,w(λ)

for all A ∈ AT . But σ(T ) is compact and second countable, i.e. a Polish

space, and in such a space any finite Borel measure is regular, hence deter-

mined by the values of its integral against continuous functions. Therefore

µv,S∗w = µSv,w, for all v,w ∈ H . In particular, µv,S∗w(E) = µSv,w(E) for

all Borel sets E ⊂ σ(T ), that is

〈P (E)v, S∗w〉 = 〈P (E)Sv,w〉 ,

or yet

〈SP (E)v,w〉 = 〈P (E)Sv,w〉 .

Since this holds for all v,w ∈H , we see that P (E)S = SP (E), for all Borel

sets E ⊂ σ(T ). In other words, each spectral projection P (E) commutes
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with each operator that commutes with T . This proves the second assertion

in the statement of the theorem, and we are done.

11.6 Algebraic quantum field theory

In this section we present a very brief description of the algebraic approach

to QFT. This approach has been developed by R. Haag, D. Kastler, H.

Araki, H. Borchers, D. Buchholz, K. Fredenhagen, S. Doplicher, J. Roberts,

among many others (see [H] and the references therein). Now that we have

the basic language of C∗ algebras at hand, the description is not too difficult

to present.

11.6.1 The algebraic approach

The algebraic approach makes free use of the theory of operator algebras,

both concrete C∗ algebras and von Neumann algebras. Let us start with

some basic observations, which will eventually lead to a (tentative) definition

of an algebraic QFT.

(1) In the Wightman formulation of QFT (see chapter 6), the fields are

operator-valued distributions. From a physical standpoint, such

fields are supposed to represent local operations.

(2) Locality suggests that we consider for each open neighborhood O ⊂ R4

in Minkowski space the (topological vector) space† D(O) of C∞ test

functions f : R4 → C with supp(f) ⊂ O. The corresponding smeared

fields

Φ(f) =

∫

R4

Φ(x)f(x) d4x

which, we recall, are unbounded operators in some Hilbert space H ,

generate a polynomial algebra over C with monomials of the form

Φ(f1)Φ(f2) · · ·Φn(f). Let us call this algebra P(O).

(3) The algebra P(O), and a fortiori the C∗ algebra it generates, can

be quite wild. One can look instead at the spectral projections of

the operators Φ(f), or bounded functions of them, via functional

calculus. These projections generate a C∗ algebra A (O) which is

(one hopes) more amenable to analysis.

(4) We are thus lead to consider a net of algebras A = {A (O) : O ⊂ R4}
of bounded linear operators in Hilbert space. Here O varies over all

open subsets of Minkowski spacetime.

† In fact, in the Wightman formulation, one considers the Schwartz space S (O) corresponding to
tempered distributions, but here we stick to D(O) as it seems more suitable to encode locality.
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An analysis of Wightman’s axioms for QFT suggests that the net of alge-

bras O 7→ A (O) should satisfy the following properties.

(i) Isotony: O1 ⊂ O2 ⇒ A (O1) ⊂ A (O2).

(ii) Additivity: A (O1 ∪ O2) = A (O1) ∨A (O2).

(iii) Hermiticity: each A (O) is involutive, i.e. a ∗-algebra.

(iv) Poincaré covariance: there is a representation (a,Λ) 7→ U(a,Λ) of the

Poincaré group P into the direct limit A = lim−→A (O) such that, for

each (a,Λ) ∈P and each open set O ⊂ R4,

U(a,Λ)A (O)U(a,Λ)−1 = A (ΛO + a) .

(v) If O1 and O1 are space-like separated in R4, then for each A1 ∈ A (O1)

and each A2 ∈ A (O2), we have [A1, A2] = 0.

(vi) Given O ⊂ R4, let Ô ⊂ R4 be its causal completion (see section 11.6.2

below). Then A (Ô) = A (O).

This formulation should in fact be slightly changed, so as to accommo-

date for general symmetries. We discuss this point further below, in §11.6.3.
One should also take into account that any reasonable theory is supposed to

accommodate both bosons and fermions, and these have different symme-

tries. Thus, a rotation of 2π around an axis in spacetime leaves a bosonic

field unchanged, but changes the sign of a fermionic field. Therefore it is

more appropriate to consider, instead of the Poincaré group P, its universal

covering group P̃.

11.6.2 Causality structure

As we have seen before in this book, for a quantum theory to be compati-

ble with relativity it must address the issue of causality in an appropriate

manner. It must face the fact that the propagation of any signal is limited

by the speed of light.

Let us briefly discuss the causality relation in Minkowski space M = R4

(see chapter 3). We denote by

〈x, y〉
M

= x0y0 − x1y1 − x2y2 − x3y3

the usual Minkowski inner product of M. Given an open set O ⊂ M, we

define its causal complement to be

O ′ = {x ∈M : 〈x− y, x− y〉
M
< 0 ∀ y ∈ O } .

In other words, O ′ is the set of all points in Minkowski space which are

spacelike with all points of O. A set O ⊂ M is said to be causally complete
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if O ′′ = O. Note that if O is causally complete, then so is O ′. Let us denote

by K the set of all causally complete subsets of M. Given O1,O2 ∈ K, we

define their wedge as

O1 ∧ O2 = O1 ∩ O2

and their join as

O1 ∨ O2 = (O1 ∪O2)
′′ = (O ′

1 ∧ O ′
2)

′ .

With these lattice operations, we have the following simple fact.

Lemma 11.14 The set K of all causally complete subsets of Minkowski

space has the structure of an orthocomplemented lattice.

Proof Exercise.

The simplest (and smallest) causally complete regions are double cones,

also called diamonds. Given x ∈ M, let C+(x) ⊂ M be the forward light-

cone of x, i.e. the set of all y ∈M which lie timelike with respect to x, in the

sense that y0−x0 > |y−x|. Let the backward light-cone C−(x) be similarly

defined. If x, y ∈ M are two distinct points with y ∈ C+(x), we define

the double-cone with vertices x, y to be Kx,y = C+(x) ∩ C−(y). These and

their causal complements determine a sub-lattice of K, and this sub-lattice

is oftentimes quite sufficient for the deployment of the causal structure in

algebraic QFT.

11.6.3 Von Neumann algebras in QFT

A ∗-subalgebra V ⊂ B(H ) is called a von Neumann algebra if it is closed

in the weak topology of B(H ). Since every weakly closed subset of B(H )

is also closed in any stronger topology, it follows that every von Neumann

algebra is a C∗ algebra, but not conversely. The theory of von Neumann

algebras seems especially suitable to help incorporate the causality relation

of Minkowski space into QFT in a natural way.

Given any subset S ⊂ B(H ), we define its commutant to be

S ′ = {T ∈ B(H ) : TS = ST for all S ∈ S } .

The following result due to von Neumann is fundamental. See [AS] for a

proof.

Theorem 11.12 (von Neumann) Let S ⊂ B(H ) be a non-empty subset.

Then
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(i) S ′ is a von Neumann algebra;

(ii) S ′′ ⊃ S , and in fact S ′′ is the smallest von Neumann algebra con-

taining S ;

(iii) S ′′′ = S ′.

This theorem allows us, in particular, to regard the set V ♯ of von Neumann

subalgebras of a given von Neumann algebra V as an orthocomplemented

lattice. The lattice operations are defined as follows. The prime operation

is the commutant. Given V1,V2 ⊂ V , let

V1 ∧ V2 = V1 ∩ V2

and

V1 ∨ V2 = (V1 ∪ V2)
′′

One easily checks (exercise) that (V ♯,∧,∨,′ ) is a lattice. The attentive

reader will not fail to notice that this lattice structure is akin to the lattice

structure of causally complete subsets of Minkowski space. This is one of the

main reasons why the theory of von Neumann algebras is especially suitable

for a proper formulation of algebraic QFT.

Summarizing, an algebraic quantum field theory should consist of net of

von Neumann algebras U = {U(O)} satisfying the postulates formulated

above. We are being rather sketchy here, but let us add a bit more infor-

mation in the following question/answer format.

(i) Why is the weak topology the relevant topology to be used? Here is a

(partial) justification. Given a state ω over V = U(O), we know that

ω(A∗A) ≥ 0 for every A ∈ V . Let us agree to call A an operation

if A is norm non-increasing as an element of B(H ). Here H is the

Hilbert space into which the algebra V is represented Thus, if A is an

operation, then ω(A∗A) ≤ 1. Hence we may interpret ω(A∗A) as a

probability, namely the probability that a transition from the state ω

to the state Aω (given by (Aω)(B) = ω(A∗BA)) occurs. Now, such

transition probability can never be measured with absolute precision.

Instead, it is only determined up to an error. Thus, if A1, . . . , An are

operations and p1, . . . , pn are the corresponding measured transition

probabilities, all we can say is that |ω(A∗
iAi)− pi| < ǫi, where ǫi is the

error in the i-th measurement. But this is tantamount to saying that

ω lies in some weak neighborhood, namely

{ϕ ∈ V ′ : |ϕ(A∗
iAi)− pi| < ǫi, i = 1, . . . , n } .
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In other words, the very physical limitations of measurement dictate

that the “right” topology in the space of states is the weak topology.

(ii) How is the causality structure formalized in algebraic QFT? First, we

are given a net of von Neumann algebras U = {U(O) : O ∈ K}. These

von Neumann algebras are supposed to represent observables. In QFT,

not all fields can be observed (e.g. the strength field of an electron), so

each von Neumann algebra is to be regarded as a subalgebra of a C∗

algebra F(O), of local fields in O. Causality is incorporated into the

theory by requiring that the natural map K→ U given by O 7→ U(O)

be a lattice homomorphism.

(iii) How does one take account of symmetries in this theory? Let us say a

few words about that. First, let us agree to call a map τ : U→ U a net

automorphism if it is on-to-one and onto and respects the net structure,

and if, for each O ∈ K, there is an isomorphism τO : U(O)→ τ(U(O)).

The automorphisms of U form a group, denoted Aut(U). Given a

group G, which we want to impose as a group of symmetries of our

theory, we simply require that there be a representation α : G →
Aut(U). This approach should also be natural from the point of view

of gauge theory . As we know, the gauge group of a QFT is supposed

to represent the internal symmetries of the theory (recall for instance

the example of electromagnetism). Here, given a symmetry group G,

and the corresponding representation α, we may consider the subgroup

Gint ⊂ G consisting of those g’s such that the automorphism αg maps

each local algebra U(O) to itself. This is the gauge group of the theory.

Exercises

11.1 Unitization. Let A be a C∗ algebra without unit. Then there exists

a C∗ algebra A + with unit containing A as a closed ideal such that

A +/A ∼= C. Prove this statement by working through the following

steps.

(a) Let π : A → B(A ) be the map given by π(x)y = xy for all

x, y ∈ A . Show that π is a homomorphism with ‖π(x)‖ = ‖x‖ for

all x;

(b) Let B ⊂ B(A ) be the algebra of operators of the form π(x) +λI,

where I : A → A is the identity operator, for all x ∈ A and all

λ ∈ C. Show that B is a C∗ algebra;

(c) Show that B/π(A ) ∼= C.
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11.2 Show that Mn(C) has no proper ideals. Deduce that there are no

non-trivial characters ϕ : Mn(C)→ C.

11.3 Let ρ : Mn(C)→ C be a positive linear functional. Show that there

exists B ∈ Mn(C)+ such that ρ(X) = tr(BX) for all X ∈ Mn(C).

[B is called the density matrix of ρ.]

11.4 Let ρ : A → C be a positive linear functional on a C∗ algebra A ,

and let a ∈ A . Show that the linear functional x 7→ ρ(a∗xa) is

positive.

11.5 Prove that every positive linear functional on aC∗ algebra is bounded

and self-adjoint.

11.6 Give an example of two bounded, self-adjoint operators T1, T2 :

H →H on a Hilbert space H such that σ(T1) = σ(T2) and yet T1

and T2 are not unitarily equivalent.

11.7 Approximate units. Let A be a C∗ algebra and let A+ be its positive

cone.

(a) Show that A+ is a directed set.

(b) Show that Λ = A+ ∩ {a ∈ A : ‖a‖ < 1} is order isomorphic to

A+.

(c) Deduce that Λ is an approximate unit in A .

11.8 If a ∈ A is normal, show that r(a) = ‖a‖.
11.9 Fill in the details of example 3, supplying the proofs.

11.10 Let (P,H ) be a projection-valued measure over a locally compact

measurable space (X,B). Let f ∈ C0(X). Given n ≥ 1, let sn :

X → C be a simple function of the form

sn(x) =
m∑

k=1

f(xk)1Ek
(x)

(where {E1, E2, . . . , Em} is a measurable partition of X and xk ∈ Ek
for all k) with the property that |f(x)− sn(x)| ≤ n−1 for all x ∈ X.

Prove that
∥∥∥∥∥

∫
f(x) dP (x) −

m∑

k=1

f(xk)P (Ek)

∥∥∥∥∥ ≤
1

n

This shows that the integral of f relative to (P,H ) is the norm limit

of Riemann-Stieltjes sums.

11.11 Show that the projection-valued measure whose existence we proved

in theorem 11.11 is unique, by working through the following steps.



Exercises 313

(a) Let (Q,H ) be another projection-valued measure such that T =∫
σ(T ) λdQ(λ). Show that p(T ) =

∫
σ(T ) p(λ) dQ(λ) for every poly-

nomial p(λ).

(b) Using the Stone-Weiertrass theorem, deduce from (a) that
∫

σ(T )
f(λ) dP (λ) =

∫

σ(T )
f(λ) dQ(λ)

for all f ∈ C0(X).

(c) Denoting by µPv,w and µQv,w the spectral measures for P and Q

respectively, show that µPv,w(G) = µPv,w(G) for each closed set G ⊂
σ(T ). [Hint: Let f ∈ C0(X) be such that 0 ≤ f ≤ 1 everywhere,

with f(λ) = 1 iff λ ∈ G. Look at fn(λ) = f(λ)n an integrate.]

(d) Deduce from (c) that the measures µPv,w and µQv,w agree on all

Borel sets, for each pair (v,w) ∈ H × H , and therefore that

P (E) = Q(E) for all E ∈ B.

11.12 Let K(H ) be the space of compact operators on a Hilbert space H .

Show that K(H ) is a ∗-ideal in B(H ).
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