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Preface

Quantum field theory, the quantum mechanics of continuous systems, arose at the
beginning of the quantum era, in the problem of blackbody radiation. It became ful-
ly developed in quantum electrodynamics, the most successful theory in physics.
Since that time, it has been united with statistical mechanics through Feynman'’s
path integral, and its domain has been expanded to cover particle physics, con-
densed-matter physics, astrophysics, and wherever path integrals are spoken.

This book is a textbook on the subject, aimed at readers conversant with what is
usually called “advanced quantum mechanics,” the equivalent of a first-year gradu-
ate course. Previous exposure to the Dirac equation and “second quantization”
would be very helpful, but not absolutely necessary. The mathematical leve! is not
higher than what is required in advanced quantum mechanics; but a degree of matu-
rity is assumed.

In physics, a continuous system is one that appears to be so at long wavelengths
or low frequencies. To model it as mathematically continuous, one runs into diffi-
culties, in that the high-frequency modes often give rise to infinities. The usual pro-
cedure is to start with a discrete version, by discarding the high-frequency modes
beyond some cutoff, and then try to approach the continuum limit, through a
process called renormalization.

Renormalization is a relatively new concept, but its workings were already evi-
dent in classical physics. At the beginning of the atomic era, Boltzmann noted that
classical equipartition of energy presents conceptual difficulties, when one serious-
ly considers the atomic structure of matter. Since atoms are expected to contain
smaller subunits, which in turn should composed of even smaller subunits, and so
ad infinitum, and each degree of freedom contributes equally to the thermal energy
of a substance, the specific heat of matter would be infinite.. The origin of this di-
vergence lies in the extrapolation of known physical laws into the high-frequency
domain, a characteristic shared by the infinities in quantum field theory.

Boltzmann’s “paradox,” however, matters not a whit when it comes to practical
calculations, as evidenced by the great success of classical physics. The reason is
that most equations of macroscopic physics, such as those in thermodynamics and

XV



Xvi Preface

hydrodynamics, make no explicit reference to atoms, but depend on coefficients
like the specific heat, which can be obtained from experiments. From a modern per-
spective, we say that such theories are “renormalizable,” in that the microstructure
can be absorbed into measurable quantities.

One goal of this book is to explain what renormalization is, how it works, and
what makes some systems appear “renormalizable” and others not. We follow the
historical route, discovering it in quantum electrodynamics through necessity, and
then realizing its physical meaning through Wilson’s path-integral formulation.

This book, then, starts with a thorough introduction to the usual operator for-
malism, including Feynman graphs, from Chapters 1-10. This is followed by Chap-
ters 11-14 on quantum electrodynamics, which illustrates how to do practical calcu-
lations, and includes a complete discussion of perturbative renormalization. The last
part, Chapters 15-19, introduces the Feynman path integral, and discusses “mod-
ern” subjects, including the physical approach to renormalization, spontancous
symmetry breaking, and topological excitations. 1 have entirely omitted non-
Abelian gauge fields and the standard model of particle physics, because these sub-
jects are discussed in another book: K. Huang, Quarks, Leptons, and Gauge Field,
2nd ed. (World Scientific, Singapore, 1992).

I have chosen to introduce path integrals only after the canonical approach is
fully developed and applied. Others might want them discussed earlier. To accom-
modate different tastes, I have tried to make each chapter self-contained in as much
as possible, so that a knowledgeable reader can pick and skip.

There is definitely a change in flavor when quantum field theory is conveyed
through the path integral. Apart from the union with statistical mechanics, which
immeasurably enriches the subject, it liberates our imagination by making it possi-
ble to contemplate virtual but fantastic deformations, such as altering the structure
of space-time. I am reminded of the classification of things as “gray” or “green” by
Freeman Dyson, in his book Disturbing the Universe (Harper & Row, New York,
1979). He classified physics gray (and I suppose that included quantum field theo-
ry,) as opposed to things green, such as poems and horse manure. In a private letter
dated August 3, 1983, Dyson wrote, “Everyone has to make his own choice of what
to call gray and green. I took my choice from Goethe:

Grau, tenerer freund, ist alle Theorie,
Und griin des Lebens Goldner Baum.

Dear friend, all theory is grey,
And green is the golden tree of life.

I must admit that Hilbert space does seem a bit dreary at times; but, with Feynman’s
path integral, quantum field theory has surely turned green.

KersoN HUANG
December, 1997
Marblehead, Massachusetts
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CHAPTER ONE

Introducing
Quantum Fields

1.1 THE CLASSICAL STRING

We obtain a quantum field by quantizing a classical field, of which the simplest ex-
ample is the classical string. To be on firm mathematical grounds, we define the
latter as the long-wavelength limit of a discrete chain. Consider N + 2 masses de-
scribed by the classical Lagrangian

N+1
Ua )= 2| 565 ta- 0] (11)

where m is the mass and « a force constant. The coordinate g,f) represents the later-
al displacement of the jth mass along a one-dimensional chain. We impose fixed-
endpoint boundary conditions, by setting
9o(D) = gni () =0 (1.2)
The equations of motion for the N remaining movable masses are then
m‘;j—'((%+l_29'j+qj—l)=0 (=1...,N) (1.3)
The normal modes have the form
gty = cos(wt) sin( jp) (1.4)
To satisfy the boundary conditions, choose p to have one of the N possible values

T
N+1

D= (n=1,...,N) (1.5)
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Substituting this into the equations of motion, we obtain N independent normal fre-
quencies w,:

wi=w§sin2(gN’il) (n=1--N) (1.6)

where

w0=2\/§ (1.7)

This is a cutoff frequency, for the modes with » > N merely repeat the lower ones.
For N = 4, for example, the independent modes correspond to » = 1,2,3.4. The case
n =15 is trivial, since p = 7, and hence g(r) = 0 by (1.4). The case n = 6 is the same
as that for n = 4, since w, = w,, and sin(jp,) = —sin(jp,).

When N is large, and we are not interested in the behavior near the endpoints, it
is convenient to use periodic boundary conditions:

;5 (0) = g, (1.8)
In this case the normal modes are
qt) = 't (1.9)

For N even, the boundary conditions can be satisfied by putting

27 N
=— =0,x1,...,& — 1.10
e [ > ) (1.10
The corresponding normal frequencies are
2 = )2 qin2 _7.7.71._ 1.11
Wi = w§sin ( N (1.1D)

Compared to the fixed-end case, the spacing between normal frequencies is now
doubled; but each frequency is twofold degenerate, and the number of normal
modes remains the same. A comparison of the two cases for N = 8 is shown in
Fig. 1.1.

The equilibrium distance a between masses does not explicitly appear in the
Lagrangian; it merely supplies a length scale for physical distances. For example, it
appears in the definition of the distance of a mass from an end of the chain:

x=ja  (j=1,....N) (1.12)

The total length of the chain is then defined as
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Fixed-end Periodic

0)0 - 0)0_

IR T SO T T W | I O N . N TS N |
01 N =N/2 0 N/2

Mode number Mode number

Figure 1.1 Normal modes of the classical chain for fixed-end and periodic boundary conditions.

R=Na (1.13)
In the continuum limit
a—0 N— o (R = Na fixed) (1.14)

the discrete chain approaches a continuous string, and the coordinate approaches a
classical field defined by

gq(x, 1) = g,(2) (1.15)

The Lagrangian in the continuum limit can be obtained by making the replacements

ag(x, £) ]2
ox ]

1 — 4 — a’[

1 R
> - ;J;dx (1.16)
J

Assuming that the mass density p and string tension o approach finite limits

=2 (1.17)
= .
O=Ka (1.18)

we obtain the limit Lagrangian
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LR [ a0\ (gl )2
L°°"‘—2fodx[p( at )”( ax )] (1.19)

This leads to the equation of motion

Pqlx. ) 1 Px 1) _
ot

0 (1.20)

which is a wave equation, with propagation velocity

c=\/—-§ (1.21)

The general solutions are the real and imaginary parts of
glx, 1) = eitke=en (1.22)
with a linear dispersion law
w=ck (1.23)
For fixed-end boundary conditions
q(0,0=qR, 1)=0 (1.24)
the normal modes of the continuous string are
q,(x, 1) = cos(w,?) sin(k,x) (1.25)

with w, = ¢k, and
k,,=l;— n=0,12,..) (1.26)

The normal frequencies w, are the same as those for the discrete chain for n/N < 1,
as given in (1.6). However, the number of modes of the continuum string is infinite,
and only the first N modes have correspondence with those of the discrete string.
This is illustrated in Fig. 1.2 for N = 4. Thus, there is a cutoff frequency

w, = wN=—E£ (1.27)

This is of the same order, but not same as the maximum frequency defined earlier,
wg = 2c/a, for w, is based on a linear dispersion law. The continuum model is an ac-
curate representation of the discrete chain only for @ < w..
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Figure 1.2 Normal modes of a discrete chain of four masses, compared with those of a continuous
string. The former repeat themselves after the first four modes. (After J. C. Slater and N. H. Frank, Me-
chanics, McGraw-Hill, New York, 1947.)

For periodic boundary conditions
9(0, )= g(R, 1) (1.28)
the allowed wave numbers are

2
k, = —1-7’;— (n=0,£122,...) (1.29)

We obtain the cutoff frequency w, by setting n = N/2.

The high-frequency cutoff is a theoretical necessity. Without it, the specific
heat of the string will diverge, since each normal mode contributes an amount k7.
The value of the cutoff cannot be determined from the long-wavelength effective
theory, because only the combination ¢ = aw,/7 occurs. Absorbing the cutoff into
measurable parameters, as done in (1.17), is called renormalization. A theory for
which this can be done is said to be renormalizable.

Nonrenormalizable systems exhibit behavior that is sensitive to details on an
atomic scale. Such behavior would appear to be random on a macroscopic scale, as
in the propagation of cracks in materials, and the nucleation of raindrops.

1.2 THE QUANTUM STRING

We now quantize the classical chain, to obtain a quantum field in the continuum
limit. The Hamiltonian of the classical discrete chain is given by
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[ PL, K 2
Hp. )= 2| 2+ S a7 (1.30)

where p; = mg;. The system can be quantized by replacing p; and ¢, by Hermitian
operators satisfying the commutation relations

[2y 9 =8, (1.31)
We impose periodic boundary conditions, and expand these operators in Fourier se-
ries:
1 N2
q,=—— 0 i2miIN
! \/ﬁ ng\tlﬂ N
N2

1 .
p;= = P e2™iN (1.32)
/ \/N n=—ZN/2

where P, and Q,, are operators satisfying

[P}, O] =8,
PI=P,
0l=0., (133)
The system is reduced to a sum of independent harmonic oscillators:
N2 oo
H= > [

1
3 PAE 3mi0l0|
n<Riz| 2m 2

4k ™™
2 = — indf —— 1
w; m sin ( N ) (1.34)

The eigenvalues are labeled by a set of occupation numbers {e, }:

Ni2

E,= D ofe,+1) (1.35)
n=—N/2
where @, =0,1,2, . . . . The frequency w, is taken to be the positive root of w2, since

H is positive-definite.
In the continuum limit (1.14) the Hamiltonian becomes

R
Heopn = fo dx[f;pz(x, 1)+ %(ﬂ%&)z] (1.36)

where, with x = ja,



1.3 Second Quantization 7

plx, )= 24D =pM (1.37)

ot

The quantum field g(x, ¢) and its canonical conjugate p(x, t) satisfy the equal-time
commutation relation

[p(x, 1), g(x', )] = —id(x — x") (1.38)

Just as in the classical case, we have to introduce a cutoff frequency w.. General
properties of the quantum field will be discussed more fully in Chapter 2.

1.3 SECOND QUANTIZATION

Another way to obtain a quantum field is to consider a collection of identical parti-
cles in quantum mechanics. In this case, the quantum field is an equivalent descrip-
tion of the system. Identical particles are defined by a Hamiltonian that is (1) invari-
ant under a permutation of the particle coordinates and (2) has the same form for
any number of particles. The quantized-field description is called “second quantiza-
tion™ for historical reasons, but quantization was actually done only once.

Let #,, be the Hilbert space of a system of N identical nonrelativistic particles.
The union of all #, is called the Fock space:

7=U s, (1.39)

The subspace with N = 0 contains the vacuum state as its only member. We assume
that N is the eigenvalues of a “number operator” N,,, which commutes with the
Hamiltonian. It is natural to introduce operators on Fock space that connect sub-
spaces of different N. An elementary operator of this kind creates or annihilates one
particle at a point in space. Such an operator is a quantum field operator, since it is
a spatial function. This is why a quantum-mechanical many-particle system auto-
matically gives rise to a quantum field.

For definiteness, consider N nonrelativistic particles in three spatial dimen-
sions, with coordinates {ry, . . ., ry}. The Hamiltonian is

M=

1
H=—— > V2+WVr,,...,ry) (1.40)
2m ¢

H

Il

where V7 is the Laplacian with respect to r,, and where ¥ is a symmetric function
of its arguments. The eigenfunctions V¥, are defined by

HY(r), ...t )=EY,(r, ... 1y (1.41)
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For Bose or Fermi statistics, ¥, is respectively symmetric or antisymmetric under
an interchange of any two coordinates r; and r;. The particles are called bosons or
Jermions, respectively.

We now describe the equivalent quantum field theory, and justify it later. Let
yAr) be the Schrodinger-picture operator that annihilates one particle at r. Its Her-
mitian conjugate §'(r) will create one particle at r. They are defined through the
commutation refations

(), (X)L =8 (r— 1)
(), Y(r')]. =0 (1.42)

where [A4,B], = AB % BA, with the plus sign corresponding to bosons and the minus
sign to fermions. The Fock-space Hamiltonian is defined in such a manner that it re-
duces to (1.40) in the N-particle subspace.

A general N-particle Hamiltonian has the structure

H=) f(r)+) gr,r) +Z/’“"’ r) (1.43)

i<j i<j<

where the functions g, 4, and so on are symmetric functions of their arguments. The
first term is a “one-particle operator,” a sum of operators of the form f{(r), which act
on one particle only. The second term is a “two-particle operator,” a sum of opera-
tors of the form g(r;, r,), over all distinct pairs. Generally, an “n-particle operator”
is a sum of operators that depend only on a set of » coordinates. To construct the
Hamiltonian on Fock space, we associate an #-particle operator with an operator on
Fock space, with the following correspondences:

S 1) = [dr w e

1
> g )= 5 [@r dr, gt

i<j

1
Z h(r, 1), 1) — g"_”d3’”1 d’ry d’ry ‘»[’Ir‘/’;rkl’ghlzﬂ/’}l/le/ﬁ

i<j<k

(1.44)

where for brevity we have written ¢, = yqr,), g,, = g(r,, r»), and so on.
As an example, suppose the potential in (1.40) is a sum of two-body potentials:

Vry . ..,r) = o(r, 1) (1.45)

i<j

Then the corresponding Fock-space Hamiltonian, also denoted H, takes the form
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1
H= = [ O V()
2m

1
+ Efd% d>ryt (e )Yt (ro)o(ry, ©)P(r)(r)) (1.46)

The particle number is the eigenvalue of the number operator, defined as
Nop = [d3r g )r) (1.47)

By using (2.18), we can verify the relations

[Nop’H] =0
(), Nop] = ¢(r)
(47 (r),Nop] = —41(r) (1.48)

These imply that the action of yar) on a eigenstate of N, is to decrease its eigenval-
ue by 1, while that of /f(r) is to increase it by 1. Thus y«r) is an annihilation opera-
tor, while y/(r) is a creation operator. The vacuum state [0 is defined as the eigen-
state of N, with eigenvalue zero. It is annihilated by all annihilation operators:

W(r)|0)=0 (1.49)

By applying ¢/(r) to the vacuum state repeatedly, it is easy to show that the eigen-
values of N, are nonnegative integers.

To demonstrate that the quantum field is equivalent to the many-particle sys-
tem, consider a complete set of states [E,N) of the quantum field, which are simulta-
neous eigenstate of / and N,

HIE,N) = E|E,N)
NoplE.N) = NIE\N)
We define the N-particle wave function Wg(r,,. . . ,ry) corresponding to |E,N) by
1
Welry,...,10) = W(OW’(H) C Y(ry)EN) (1.50)

which has the correct symmetry with respect to particle permutation. It tells us that
the probability amplitude for finding N particles at the positions ry, . . ., ry can be
found by annihilating the particles at the respective locations from the state |E,N),
and evaluating the overlap between the resulting state and the vacuum state. We
leave it as an exercise to show that this wave function satisfies the N-particle
Schrédinger equation (1.41). (See Problem 1.3.)
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1.4 CREATION AND ANNIHILATION OPERATORS

The field operator yAr) annihilates a particle at r. That is, it annihilates a particle
whose wave function is a 6 function. Since the latter can be written as a linear su-
perposition of a complete set of wave functions, we can express yAr) as a linear su-
perposition of operators that annihilate particles with specific types of wave func-
tions. Suppose that u,(r) is a member of a complete orthonormal set of
single-particle wave functions:

[a3r utOu o) = 80

; u DUty =8(r-r')

An example of such a set is plane waves:

u(r) = <75 e (1.51)

We can expand the field operators with respect to such a basis:

W)= ulrday
k
Wi(r) =D uk(ral
k
The coefficient a; and af are operators that satisfy the commutation relations

[as a/j’]i = O

(ap ] =0 (1.52)
where the + sign is for bosons and the ~ sign is for fermions. These relations follow
from (1.42) and the orthonormality of the functions u,(r).

It follows from the commutation relations that, for each £, the eigenvalues of
a,fa, are integers n,, called the “occupation number of the single-particle state £

atajn) = n|n)

(nim) =8, (1.53)

where we have omitted the label & for brevity. The allowed values of the occupation
number are given by

= 0,1,2,..., (Bose statistics)
0,1 (Fermi statistics)
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The actions of @ and a’ have the following results:

aln)=Vnln - 1)
aflmy=V1itnn+1) (1.54)

where the £sign corresponds respectively to Bose (+) and Fermi (-) statistics, which
show that g annihilates a particle in the state with wave function u(r), and a' creates
such a particle. We leave it as an exercise to derive these basic results. (See Problem
1.2)

The state |0) corresponding to # = 0 is the vacuum state, which satisfies
al0y=0 (1.55)
We assume that it is normalizable:
(0j0y=1 (1.56)
Obviously all other states can be obtained by creating particles from the vacuum:

I
)= ] (a'y'in)

(1.57)

We can simultaneously diagonalize aja, for all k. The cigenstates are then la-
beled by a set of occupation numbers {n, n,, . . . }, and they constitute a basis for
the Fock space. The total number of particles present is N = 3,,n,. We have

azaklno, FRSPINY ¢ TR .>=nk|n0, Y (TN >
ak|n0, PEPEPEAY (NN .>=(—1)3\/;1—;|n0, ey = 1, .. >

aflng, ... onp . =DV Emng, o+ 1,00
where

. { 0 (Bose statistics) (1.58)

2,«n, (Fermi statistics)

That is, s = +1 for fermions, depending on whether the number of fermions with
quantum numbers less than k is even or odd, and the meaning of “less than” is set by
an arbitrary but fixed ordering. This phase factor arises from the fact that fermion
creation operators anticommute: afa;, = —a}aj.

A complete set of states can be constructed by creating particles from the vacu-
um:

[k} = af|0)



12 Introducing Quantum Fields

k.p) = ala}l0)

(1.59)
These states are not normalized to unity. When there are many particles present, it is

more convenient to label the state with occupation numbers {n;}, where #, is the
number of particles with single-particle quantum number £:

A RN E c[kl[a,t]"km) (1.60)
These states can be normalized to unity by choosing

C= [1:[@!]_”2 (1.61)

1.5 BOSE AND FERMI STATISTICS

The term “statistics™ refers to the rule for counting the degeneracy of an energy lev-
el of a many-particle system. In three-dimensional (3D) space, it depends on the
symmetry of the wave function under a permutation of the particle coordinates.
Technically speaking, the different possible symmetries correspond to the different
irreducible representations of the permutation group.

The completely symmetric and the completely antisymmetric representations
correspond respectively to Bose and Fermi statistics. They are the only possible
ones in a two-particle system; but for more than two particles other possibilities ex-
ist, in which the wave function is symmetric with respect to permutations among
one subset S of coordinates, and antisymmetric for the complementary set. Called
“parastatistics, “ such representations correspond to the Young’s tableaux with more
than one row, or more than one column. Since the particle are identical, there is
more than one way to choose the subset S. Consequently, such “para” representa-
tions must be multidimensional. That is, the carrier space for such a representation
must be spanned by states having the same energy eigenvalue, and they mix under a
permutation of the coordinates. Therefore, the energy levels of particles obeying
parastatistics must have intrinsic degeneracies, which cannot be removed by any in-
teraction that treat the particles as identical.

The Bose and Fermi statistics can be set apart from the parastatistics by virtue
of the following properties:

e Under particle permutation, the symmetry character of wave functions is in-
dependent of the number of particles present.

® Energy eigenfunctions do not mix under particle permutation.

Parastatistics does occur in atomic physics, but only in the context of “incomplete”
permutations, which interchange the positions of atomic electrons but not their
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spins. With respect to permutations of both position and spin, electrons obey Fermi
statistics, as we know. No known examples of parastatistics have been found in na-
ture. Perhaps the simple properties itemized above are essential for consistency on
some level.

Although we live in a 3D world, some interesting physical systems are effec-
tively two-dimensional (2D). These include the electron sheets that exhibit the
quantum Hall effect, the copper oxide planes in a high-temperature superconductor,
and thin films of superfluid helium on various substrates. In a 2D system, the vari-
ety of statistics is far richer, because the exchange of two particles in a plane isnot a
unique process; we may rotate the particles about a center through angle n, where
n ts any odd integer, and the paths corresponding to different » are not necessarily
equivalent. Consequently, the symmetry group relevant to particle exchange is not
the permutation group, but the much larger braid group. This circumstance allows
for fractional spin and statistics; but we shall not discuss this, except for a brief dis-
cussion on fractional spin in Chapter 19.

PROBLEMS

1.1 Consider an actual string made of atoms spaced @ = 10~® cm apart. Suppose the length
of the string is I m, and it is kept at such a tension that the fundamental frequency is 100
cycles per second (Hz). Find the cutoff frequency, and show that it lies in the infrared re-
gion of the spectrum. (This gives the Debye temperature.)

1.2 (a) The basic commutation relation for boson annihilation and creation operator is
[a a'l=1 [a.a]l=0

where [4, B] = AB — BA. From this definition, show that eigenstates |} of a’a have
the properties

a‘aln) = nln) n=0,1.2,..)
aln) = Vajn)
aflny=Vn+1ln+1)

(b) Fermion annihilation and creation operators are defined by an anticommutation
relation

{a,a"} =1 {a,a} =0
where {4, B} = AB + BA. Show

dlany=Vap)y  (n=0,1)
alny = njn)

a’lny=V1-nn+1)
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1.5

Introducing Quantum Fields

Consider the N-particle wave function defined in (1.50)
l
Welry,....ry)= 7N—’!<0|‘f/(r1) C WrIEN)

where |E,N) is an N-particle energy eigenstate with respect to the Hamiltonian H given
in (1.46).
(a) Show that it is normalized to unity:

fd371 e dPr Ty, . =

(b) Show
1
EVg(r,,..., 1= W@W(r.)' “ Y(ry)HIEN)

(c) Show that the wave function satisfies the N-particle Schrédinger equation

N
1
[_Z _m_ Vit Z o(rs, l‘j) Welry, ... ry) = EVLry, ... ry)

=2 V<)

by going to the result in (b), and commute H all the way to the left, where it gives
zero operating on the vacuum.

All the results stated hold for both Bose and Fermi statistics (see Huang [1]).
A nonrelativistic boson or fermion field y{x) is governed by the Hamiltonian

1 1
H= = [ W T2+ 3 [dx dy W08 3etx - DI

The system is enclosed in a large cubical box of volume £ (2 — =), with periodic
boundary conditions. Expand the field in terms of annihilation operators ay for free-par-
ticle states of momentum Kk, and show that

1 ~
H= Z akak P Z v(k)a;'ﬁkaé,kapaq
p.a.k
where 3(K) = [ d?r e*"u(r),
Consider a system of ¥ nonrelativistic electrons and N positive ions with Coulomb in-
teractions, enclosed in a periodic box of volume (2. The Hamiltonian is given by

N N
72 lr,—R-l ZIR R| Z

i<j i

m i<y |r i,

The ions are heavy. Hence consider R, to be fixed numbers, neglect P,, and drop the last

two terms.

(a) Label single-electron states by momentum k and spin s, designated collectively as
= {K,s}. The corresponding wave function is
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U(r) =

) 0

(b) To go to the quantized-field representation, replace one- and two-particle operators
by the rules

1
Q e'kTé’g

N
;K(r,-) — D (alK|B) alag

ap

> or, ) Z (a.8p) aBleiyANaa,)

i<y

(¢) Define Fourier transforms:

e Oy , e2 8, 4me?
Ks K ,> = ¢j’d3 it k)T = O KR
< r R al TR T r-r¢
6?1"3 T2Y4 o
(aBlojyA) = ——jd3x d’y ’ y] 2lk3K yx+(kgKp)y]

Tre?

5? s 6? .S,
= 22 (k) + ko — ks — k4)———
Ik, - K|

Q

where 8 is the Kronecker delta.
(d) Obtain the Hamiltonian in quantized-field form:

+
H= Z aksalu Z Z 2 (apﬂc s9q-k,s o psq,s°
P.q.kK s5° k
47re
IDIE AN S
p:k s =1

(e} Show that the second term gives, for small k,

———27762 2me’N(N — 1)
r %;(“P-Y"q--f'y%saq.s': o

which is divergent at k = 0. Show that the divergent term proportional to N? is can-
celed by the k = 0 limit of the third term. The O(N) term above remains divergent.
The source of this divergence is the periodic boundary conditions, by which the set
of coordinates {ry, ..., ry} is being repeated an infinite number of times in space.
Consequently, the Coulomb energy of an electron diverges, due to long-range inter-
actions with an infinite number of distant copies.

(f) Itis clear that this is a mathematical artifact, and to avoid it we should treat the ions
dynamically; but we do not wish to add that complication. The expedient way out is
to simply leave out the k = 0 contribution in both the second and third terms. Hav-
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ing done this, we can ignore the third term altogether, because it sums to zero under
the assumption that the ions are uniformly distributed in space. Thus we take as ef-
fective Hamiltonian

2
= Z ak_\ak.s 7;; Z Z (ap+k xaq—k § ) ap vaq 3

pq s.s'
k#0

This describes electrons immersed in a uniform positively charged background that
makes the whole system electrically neutral.

1.6 Imposing periodic boundary conditions means filling infinite space with identical cells
that contain copies of our system. This problem illustrates the effect of long-range inter-
actions among the cells. Consider a unit point charge at the center r = 0 of a cubic cell of
volume L3, which contains a uniform negative charge density, so that the total charge in
the cell is zero. Impose periodic boundary conditions, and calculate the potential in the
neighborhood of the unit point charge.

(a) Show that the potential is given by

4 e'kr 2,
V(r) = _ﬂ'z k.= —7m—' (n,; 01,22, .. )

by showing

Vr) =41{2 &(r-nL)- %}
(b) For r/L < 1, show?

M= - <+ o)

c=2.837297- -
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CHAPTER TWO

Scalar Fields

2.1 KLEIN-GORDON EQUATION

A fast way to go from classical mechanics to quantum mechanics is to replace the
energy and momentum of a particle by operators, according to the prescription

E—)ii
ot
p—-iV 2.1

Making the replacements in the nonrelativistic relation E = p*/2m, and applying the
result to the wave function, we obtain the Schrédinger equation:

--21; V2(r, ) = i% Y(r, 1) (2.2)

Of course, this is not covariant under Lorentz transformations. For a covariant equa-
tion, we use the same trick on the relativistic relation £2 = p? + m?. The result is the
Klein—Gordon equation

(P + m*)gp(x) = 0 (2.3)
where x stands for x* = (¢, x), and

2
[P = od, = - - 72 2.4)

(1 atZ

in units with ¢ = 1. Assuming that ¢ is invariant under Lorentz transformations, we
have a covariant equation—one that has the same form in all Lorentz frames. What
1s not clear 1s how to interpret ax).

By analogy with the Schrddinger equation, we might interpret y(x) to be the

17
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wave function of a relativistic particle. That would require the existence of a 4-vec-
tor probability current density j*, which should be conserved: 3, j* = 0. However,
the obvious choice j, = ¢*¢ is untenable, for ¢*if is Lorentz-invariant by assump-
tion, and cannot be part of a 4-vector.

As in the case of the Schrodinger equation, we can construct a conserved cut-

rent as follows. Multiply (2.3) from the left by ¢* to obtain
YT ) = (FY*N ) + mPy* =10 25)

Subtracting this from its complex conjugate leads to

9, j*=0 (2.6)
where
JH = ot~ o 2.7
However, the time component
. o oy
0= gt —- — ——— 2.8
FE Y (2.8)

is not positive-definite, and therefore cannot be a probability density.

The root of the difficulty lies in the second time derivative in the Klein~Gordon
equation. As we shall see, this leads to negative frequencies corresponding to an-
tiparticles. The relativistic kinematics makes it impossible to have a one-particle
theory. We shall regard ¢«(x) not as a wave function but as a classical wave field, and
as such should be quantized.

2.2 REAL SCALARFIELD

Consider a real scalar field ¢(r, #), which 1s invariant under Lorentz transforma-
tions. The current j* vanishes identically in this case. We enclose the system in a
large periodic box of volume (2, and expand the field in a Fourier series:

1 ;
K0 = 7 > awle™ 29

where
7% = g0 Q.10)

because the field is real. Assuming that ¢(r, ?) satisfies the Klein-Gordon equation,
we have
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gx + ©lq, =0 2.11)

where
wf =K+ m? (2.12)

The system is equivalent to a collection of harmonic oscillators, and may be quan-
tized by imposing the commutation relations

i14%(0), i (0)] = de

[9x(0), i(0)] = 0 (2.13)
where ¢{(0) is the hermitian conjugate of ¢ (0). This fixes the normalization of the
field, left arbitrary by the Klein—-Gordon equation.

Since the Klein—Gordon equation is invariant under time translation, the origin
of time is arbitrary. The commutations relations in fact hold at any time #:

i[q;(l‘), (D] = e
(4®), ()] =0 (2.14)

which are equivalent to

i[(r, 1), ¢, )] = (r—1")
[b(r, ), $(r', )] =0 (2.15)

These are called equal-time commutators, which serve as initial conditions for the
equation of motion. The unequal-time commutators must be calculated from the so-
lutions, and contain dynamical information.

In the present free-particle case, the equation of motion (2.11) is trivial to
solve. For given wave number k there are two frequencies wy,, with

w, =+VK*+m? (2.16)
Taking into account the reality property (2.10), we write the solution in the form

[axe ¥ + a’yeiox] (2.17)

([) = _1__
W Viw,
where ay and a; are operators, with commutation relations determined by (2.14):

[k, a’I] = O

[ 2] =0 (2.18)
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The normalization factor (2w)™"? in (2.17) is chosen to make the commutators sim-
ple. We recognize that gy is an annihilation operator, and aj a creation operator for a
boson, as introduced in Section 1.4. The time-dependent quantized-field operator
can be represented in the form

1 1
WD TR Vom

[akei(k'r—wk!) + a;ge*i(k"—wk’)] (2. 19)

The positive-frequency part (the first term) annihilates a particle, and the negative-
frequency part creates a particle. The negative-frequency part is absent in a nonrela-
tivistic field, because the kinematic relation £ = p*/2m allows only one sign of the
frequency.

2.3 ENERGY AND MOMENTUM

Analogy with the harmonic oscillator suggests that the Hamiltonian of the free
scalar field should be

I
H= 52 U + oflgd] (2.20)

In terms of the field ¢(x) = ¢(r, 1), it has the form

H- f &r H(x)
5(x) = %[(%‘f’) Vg +m2¢2} 2.21)

where H(x) is called the Hamiltonian density. The Lagrangian of the system can be
obtained through the general relation L{g, -q) = p-q — L(p, ¢):

L=[arc (2.22)

where L(x) is the Lagrangian density given by

L= %[( ) -1ver A %[a“¢a#¢~m2¢2] (223)

The last form shows that the Lagrangian density is Lorentz-invariant. In contrast,
the Hamiltonian density, which is an energy density, cannot be invariant. For this
reason, relativistic theories are usually specified via the Lagrangian density.

In terms of creation and annihilation operators, the Hamiltonian takes the diag-
onalized form
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H=> wlaja,+ %) (2.24)
k

The zero-point energy diverges unless there is a cutoff; but the cutoff has no physi-
cal relevance, since the energy of any state relative to that of the vacuum is indepen-
dent of it. The energy of a particle is given by

w, = VK + m? .25

where k is its momentum and m is the rest mass. Accordingly, the total momentum
operator is

P=> kaja, (2.26)
k

According to the general principles of quantum mechanics, the Hamiltonian is
the generator of time evolution, through the Heisenberg equation of motion:

i[H, &(r, )] = ﬁ)%l (2.27)

The formal solution yields
o(r, 1) = eT'P(r, 0)e (2.28)

For consistency, we must show that this is consistent with the Klein—Gordon equa-
tion, which we used to arrive at the solution (2.19). Substituting ¢(r, 0) from (2.19)
into (2.28), we obtain

1 1
Dy D,

eMae™r + aJe—ik'r]e-th (2.29)

For the free-field Hamiltonian, we have (see Problem 2.1)

eflig et = q e (2.30)

This demonstrates that (2.28) is the same as (2.19).
Again, according to general principles, the momentum operator P should gen-

erate spatial translations:

=[P, &(r, )] =V Hr, 1) (2.31)
with formal solution

d(r, 1) = e PTH0, e T (2.32)

As a straightforward calculation shows, this is the same as (2.19).
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2.4 PARTICLE SPECTRUM

The vacuum state [0) is the state of lowest energy, defined by
al0)=0 (all k)
and normalized to
0j0)y=1
A one-particle state is defined by
Ip) = a}}l0)
Using the commutation relations, we find

alp) = aka;m) = (a;ak + 8ip) 10) = 81,/0)

(2.33)

(2.34)

(2.35)

(2.36)

The field operator has nonvanishing matrix elements only between a one-particle

state and the vacuum:

ei( p'r—wpt)

Olp(x)|p) = Ve
'n

(2.37)

This is the wave function of a particle of momentum p, normalized to a density
(2w,Q2)". By successively creating particles from the vacuum, we can build a com-

plete set of states:

Vacuum: |0}
1-particle states: Ip) = a,'0}
2-particle states: [pi1p2) = ap,1a,,"10)

2.5 CONTINUUM NORMALIZATION

In the limit () — oo, the allowed values of k approach a continuum, and we can

make the replacements

| Pk
a2 Q)

k
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N8y = 2mP&k-XK') (2.38)
We define continuum versions of the annihilation and creation operators by putting

a(k) = Qay,
at(k) = Qa,! (2.39)

The commutators then have limiting forms:

[a(k), a'(k')] = Qm)P3&(k - k')
[a(k), a(k)] =0 (2.40)

The field operator can be represented as a Fourier integral:
d3k 1 : A
= = Kk i(kr—wit) + T —i{KT—wj!) 41
;r, 1) J’ Qm)} \/E—L:); [a(k)e a'(k)e 1 (241)

As before, the vacuum state |0) is defined by a(k)|0) = 0 with (0j0) = 1, and a
one-particle state is defined by

Ip) = a'(p)|0) (2.42)
Using the commutation relations, we find
a(k)|p) = (27’8 (p - k)|0) (2.43)

The single-particle wave function is

ez‘(p~r—wpz)
<Ol¢(x)|P> = NG (2.44)

P

with a particle density (2w,)"'. The normalization is such that the number of parti-
cles in volume element d*r is the Lorentz-invariant combination &*s/(2w,). The
Hamiltonian and total momentum now take the forms

d*k
H= [ s o Rak)

d*k
P= f Gy ka'(K)a(k) (2.45)

The choice between discrete or continuum normalization is a matter of nota-
tion, since we always regard () as large but finite in intermediate steps of calcula-
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tions. The limit £} — o is taken only in final answers. This is done to avoid irrele-
vant concerns about mathematical rigor, such as how to define the Hilbert space
when the dimensionality is noncountably infinite. The continuum normalization
merely anticipates this limit.

2.6 COMPLEX SCALAR FIELD

A complex scalar field is just two real scalar fields constituting the real and imagi-
nary parts. What is new is a symmetry between the two fields, and this leads to a
conserved current. In physical terms, a complex field can have electric charge,
whereas a real field must be neutral.

We denote the complex scalar field by y«(r, ¢), and decompose it into real and
imaginary parts in the form

1
U= (bt idy) (2.46)

The Lagrangian density is taken to be
L(x) = Y x) 3, (x) = m* P ()(x)
= %Z [# ¢ (x)d,(x) —~ m*(x) ()] 2.47)
The normalization factor 1/\/2 in (2.46) is chosen in order that ¢; has the same nor-

malization as the real scalar field discussed previously.
To quantize the system, we impose the commutation relations

iTé(r, 1), d(r', D] = 8,8 — ')
[64r, 1), ', 5} =0 (2.48)

The complex field YA, ) becomes a non-Hermitian operator satisfying

iLgie, 1), (', n] = S~ ')
[r, ), (', 0] = [, ), ', ] = [(r, ), (r', 1 =0 (2.49)

Thus, the canonical conjugate to i is §/.
In accordance with (2.19), we can expand ¢, in terms of annihilation and cre-
ation operators:

t I
Y00 TS Vi

(ape T + gheikr-omy  (j=1,2) (2.50)
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with the commutation relations

[aix, a;k'] = 3q5kk'

(2 ajk,] =0 (2.51)

In the complex representation, we have

( bk elKr-wi) 4 ;r e~i(k-r—wkt))

1 1
W= 5 5

1 (bl e-kr-wt) 4 ¢, gilke-win) (252)
Wy

1
LRV, PIEv s

where
1 .
by = \/———E(alk + i)

1
cx = %(le = iay) (2.53)
with commutation relations
[bk’ b:)] = 8kp

[exs CJ] = 5kp

[bis bp] = [, cp] = [by, €] = 0 (2.54)
The total energy and momentum can be expressed as follows:

- t T _ t +
H= Z o{ana t anan) = Z n(byby + cycy)
K X

P=> ok(@hau+ahan) = D ok(biby + ciey) (2.55)
k k

There are two type of quanta, which can be designated either as a, and a, quanta, or
as b and ¢ quanta. The energy and the momentum do not distinguish between these
descriptions. We shall see, however, that only the b and ¢ quanta have definite
charge.

2.7 CHARGE AND ANTIPARTICLE

The current density for the complex scalar field is given by

JH= ok — o= 5’(4’20'”“151 ~ ¢ dy) (2.56)
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which satisfies the conservation law 4, j# = 0, or
i0+v-'~0 (2.57)
ot ! '
Integrating both sides over the spatial volume, we obtain
f x—j Ox) = ———fd3xj0(x) 0 (2.58)
or

aQ _
=0 (2.59)

where Q is the total charge operator
0= [a¥)

= ot +
= Z (a1ka2x — 222 1k)
K

= (blby - i) (2.60)
k

As we can see, a b quantum carries one unit of positive charge, and a ¢ quantum car-
ries one unit of negative charge. The a,, a, quanta, which are linear combinations of
those of b and ¢, do not have definite charge. By convention, we refer to a ¢ quan-
tum as an “antiparticle.” Thus, the positive-frequency part of ¢ annihilates a parti-
cle, and its negative-frequency part creates an antiparticle. Similarly, ' either cre-
ates a particle or annihilates an antiparticle. In light of this, we can say that for the
real field, the particle is its own antiparticle.

The term “charge” is used in a generic sense, and does not necessarily mean the
electric charge, since we have not turned on the electromagnetic coupling. The unit
of charge is arbitrary, because j* is defined only up to a multiplicative constant.

It is straightforward to verify that charge is conserved:

(O H]=0 (2.61)

This implies that the number of particles N, minus the number of antiparticles N_ is
a constant of the motion. In the free-field case, this conservation law is trivial, since
N, are separately conserved. It becomes significant when, in the presence of inter-
actions, N, are no longer conserved. In that case, N, — N_ is still conserved as long
as (2.61) holds.
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2.8 MICROCAUSALITY

A classical signal propagating according to the Klein—Gordon equation has a group
velocity

Juwy k|
vgroup alk! m (262)
which never exceeds 1. This means that events at two space-time points lying out-
side of each other’s light cone (or separated by a spacelike interval) cannot influence
each other. In the quantum theory, this means that two field operators at points sep-
arated by a spacelike interval must commute with each other:

[d(x), H(x")]=0 if (x—x')<0 (2.63)

This condition is called microcausality. We must verify that our quantized field the-
ory satisfies this condition.

To compute the commutator in (2.63), note that it is a c-number,! and at fixed
x' it satisfies the Klein—~Gordon equation, because ¢(x) does. The initial condition at
Xo = x¢ 1s the equal-time commutator (2.15), which is a c-number. Therefore the
commutator remains a c-number at all times, and we can equate it with its vacuum
expectation value:

[d(x), 6] = Ol[$(x), ][0} = iA(x - y) (2.64)

This defines a Lorentz-invariant correlation function A(x —~ y), which depends on x —
y, and not on x and y separately, because of the translational invariance of the vacu-
um state. (See Problem 2.1.) We use the expansion (2.41) to obtain

(0ltr, n(0i0) = [ L5 5 )32 e

(01(0)(r, 1){0) = f Q )32 erilher-eit (2.65)

Subtracting one from the other, we have

d*k  sin(wyt)
(2m)? Wy

A(x) = ~i0|[p(r, 1), (0)]I0) =~ G (2.66)

!A c-number is a “classical” number, a multiple of the identity operator.
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Since A(x) is Lorentz-invariant, 1t can depend only on the invariant
x*=p£-x? (2.67)

If x is spacelike, for which x? < 0, we can put ¢ = 0. By (2.66) this gives Ax)=0. =

The proof of microcausality depends on the initial condition from the commu-
tator in (2.15), which quantizes the system according to Bose statistics. Had we
used Fermi statistics by replacing commutator with anticommutator, microcausality
would have been violated. The particles here have spin 0, since there does not exist
discrete degrees of freedom corresponding to spin. Our result is partial demonstra-
tion of the spin-statistics connection, which states that particles with integer spin
are bosons, while those with half-integer spin are fermions. The second half of the
statement will be shown in Chapter 6 on the Dirac field.

2.9 THE FEYNMAN PROPAGATOR

The propagation of a free particle in the vacuum can be described by the correlation
function

A, —x,) = —K0lglo)yf" (x1)I0) (2.68)

in which y'(x,) creates a particle from the vacuum at x,, which is annihilated by
Y(x,) at x,. This makes sense physically when ¢, > ¢,. Similarly, the correlation func-
tion

AD(xy — x1) = —i{0[¢f Cx )p(x)(0) (2.69)

describes the propagation of a test antiparticle from x, to x|, and is physically mean-
ingful when t, > #,. To obtain a correlation function that has physical meaning, we
use either A™ or A©) depending on the sign of the relative time. The result is the
Feynman propagator, or causal propagator:

Ap(xy = x,) = ~i{0| T, ) (x,)|0) (2.70)

where the time-ordering operator 7T rearranges the operators, if necessary, such that
the operators stand in such order that time increases from right to left:

_ | A@)B(t) if >y
st = peae i o @70
If t, > ¢,, the Feynman propagator describes the propagation of a particle from x, to
xy; if t, <1y, it describes the propagation of an antiparticle from x, to x,. This is the



2.9 The Feynman Propagator 29

basis of Feynman’s famous remark: “An antiparticle is a particle traveling back-

wards in time.”
To calculate the propagator, we start with the expression

-] Q)" ©O)0) it x°>0
A= { O O@I0)  if x0<0 (@72)
and insert a complete set of states between the operators. Since the field operator
connects the vacuum to one-particle states only, we have

Olgealk) k[yH0)0)  if x*>0 (2.73)

Aple) =~ (27r)3 [<0|w*(0)rk> Pl if >0

Using ¥(x) = e"*(0)e~"*, and changing the integration variable from k to —k in
the lower formula, we obtain

—- 2 ,iker ,—iwgli]
e = 1] KOO0k @.74)
Using the following integral representation
; 0 ikt
—iwglf] = _12 e +
e - Lodko ST (=) 2.75)
we obtain
d4k eik'x
= [ ——— 2 . +
840 = [ G 20O G (10 @76
From (2.44) we have
1
KOl(0)|0) = S 2.77)
Wy
Therefore

d4k eik-x
Arx) :f Q' K —m+in

(n— 0 (2.78)

Operating on both sides of this equation by [ + m? gives
([ + m»)Ap(x) = ~8%(x) (2.79)

This shows that the Feynman propagator is a Green’s function of the Klein—Gordon
equation.
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The Fourier transform of the Feynman propagator is

1

Apk) = 2.
A= (2.80)
which has poles at
ko =t VK> +m? (2.81)

corresponding to a particle or antiparticle of mass m. The residue 2w,/(0]¥(0)[0)12 =
1 reflects the normalization of the wave function. We may view the propagator as
the propagation amplitude of a virtual particle of 4-momentum k*. The virtual parti-
cle, whose squared mass A? ranges between — and , becomes a real particle when
it “goes on mass shell,” at &% = m?.

To obtain Ag(x) explicitly, we integrate over the angles of k in (2.74) to obtain

i (* Kk sinkr
Ap(x) = — | dk— ———¢'d 2.82
#(x) 4472 J;) w, kr ¢ (2.82)
By Lorentz invariance Ap(x} can depend only on
s=x2=£-r? (2.83)

For s > 0, we can put r = 0 to obtain the representation

Ae) = | B i G (s20) (.84
F 47 b T wy, 87V's '

For s <0, we put ¢ = 0 to obtain

2 o - .
K sinkV-s im V)

-
Ap(x)=mfo Ve ey (s <0) (2.85)

where H {! and K are Bessel functions. In the timelike region s > 0 the function de-
scribes an outgoing wave for large s. This corresponds to the {7 prescription in
(2.80). The —in prescription would have yielded an incoming wave. In the spacelike
region s < 0 it damps exponentially for large |s|. On the light cone s = 0 there is a
delta-function singularity not covered by the preceding formulas:

m Ao — o 8) (2.86)
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2.10 THE WAVE FUNCTIONAL

In quantum mechanics, the coordinate representation is defined by basis states |r)
satisfying

Foplt) =rir) (2.87)

with the basic commutator realized through the replacements

Fo,—>T (c-number)

Pop— iV (2.88)
A state |4) is represented by the wave function
Py(r) = (r|4) (2.89)
and inner products are defined by
(A1B) = [dry3(r) vitr) (2.90)
In the analogous field representation in quantum field theory, we diagonalize

the field operator, thus representing it by its eigenvalue, which is a c-number func-
tion. For a real scalar field ¢,,(r) at a fixed time ¢ = 0, we denote its eigenstates by

[):
Dop(D) D) = B(r)| ) (2.91)

where the eigenvalue ¢(r) is a real-valued function of r. The commutation relations
(2.15) are realized through the replacements

Dop(r) —> H(r) (c-number function)

Pop(r) = ~i (2.92)

)
o(r)
where 8/8¢(r) is denotes the functional derivative with respect to the value of the

function ¢ at r.
A state |4) is represented in the field representation by the wave functional

W [d] = (dl4) (2.93)

which is a complex-valued function whose argument is a function; that is, its value
depends on the form of the function. Inner products between wave functional are
functional integrals:
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(¥, ) = [Dg V1 #1V,(9] (2.94)

where D¢ denotes the measure on the space of functions. Writing the Hamiltonian
in the field representation, we have the Schrédinger equation for the wave function-

al:
1 2 Vg, 1]

&
5/ d3r[~ 507 +|V¢(r)|2+m2¢2(r>} Vg, =i 20 (295)

2.11 FUNCTIONAL OPERATIONS

We digress on functional operations on a functional F{¢]. First, the functional de-
rivative 6F]@}/8¢(x) is defined as follows. We make a small change ¢ — ¢ + 8¢,
where the function §¢(x) is different from zero only in the neighborhood of x. Then
the functional derivative is given by

I CI F[¢+5¢]—F[¢]] (2.96)

56(x) 8530[ 56(x)

To calculate any functional derivative, we need the elementary functional derivative
d¢p(x)/8¢(y), which is obviously proportional to &(x — y). To determine the propor-
tionality constant, we replace the continuous space of x by a lattice of spacing a, and
denote by ¢, the value of the function on site j. Clearly,

‘5% =8y (2.97)
In the continuum limit
> —a! f dx (2.98)
J
by — ad(x - y)
we have
%%% =68(x—y) (2.99)

With this formula, we can calculate a general functional derivative. As illustration,
take Fl] = [ d*|V ¢(y)>. Then
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oF
57% = 2fd% B(x-y) V()

=-2V2¢(x) (2.100)

where we have assumed that boundary conditions are chosen such that surface inte-
grals from partial integrations vanish.

A functional integral is defined as the limit of an ordinary integral. Again, let
us replace continuous space by a lattice of discrete points labeled by j. A function
¢(x) becomes a discrete set of values {¢,}, and a functional #{¢] becomes a func-
tion of this set F(,,d, . . .). The functional integral of F is defined as

[pg Fie1= CEII:quj Fldudy .. 2.101)

where C is a normalization constant. The continuum limit is to be taken eventually.

Alternatively, we put the system in a large cube of volume (), with periodic
boundary conditions. The Fourier components (k) of ¢(x) are then discrete. The
functional integral over ¢ can be defined as the multiple integral over all Fourjer
components independently:

[pe Fig1-cT1 | adwrig) (2.102)

Eventually we take the limit () — .
In either of the preceding methods, the integral by itself may not have a contin-
uum limit; but matrix elements of the form

= (\I,A’ O\IIB)
VW4, V) V5 V)

Oy (2.103)

usually has a definite continuum limit.

2.12 VACUUM WAVE FUNCTIONAL

We now calculate the wave functional for the free vacuum state. First let us express
the annihilation operator a(k) in the field representation. From (2.41) we have, at
t=0,

) 1
Jair emergr) = VLLCAAC)

f d3r e v (r) = —i \/% [a(k) — a'(k)] (2.104)
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Solving for a(k), we obtain

] .
e 3 ~ik-r .
k) = = Ja2r e gin) + o)) (2.105)
Now we write
e = VK +m? e*T=\V-V2+mekr (2.106)

so that

alk) = = [PV T wigin)]e

jd3r{[\/—v2 + m(r)] + id(r) fekr (2.107)

2(l)k

The last step is obtained by expanding V-V Z+mina power series in V2, per-
forming a partial integration in every term, and summing the series again. The sur-
face integrals generated in the partial integrations vanish as a result of periodic
boundary conditions. Replacing ig(r) by §/8¢(r), we obtain

r ek r[\/w(b(r) + } (2.108)

S¢(r)
The virtue of this representation is that the Fourier coefficient in the integrand is in-

dependent of k.
The wave functional of the free vacuum satisfies the equation

a(k)Wo[o] =0 (2.109)

Thus, it must be annihilated by the Fourier coefficient in (2.108):

[\/—V7+m P(r) + S )]\Po[tb] 0 (2.110)
The solution to this equation is
Yoly] = CeXp[—%fd3r (r) V-VT+m’d(r)] (2.111)

where C 1s a normalization constant. This gives the probability amplitude that the
field has the functional form ¢(r) in the vacuum state. The relative probability for
the field to have a functional form lying in the neighborhood of ¢ in the volume el-
ement D¢ of function space is
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V(1D

The most probable form is ¢ = 0, and deviations from it occur with a Gaussianlike

distribution.
The exponent in (2.111) can be rewritten in different forms. Introducing the

Fourier transform
$k) = [d3r er i) (2.112)

we can write

[ sV VTR = | XA Bl

@y
= [@rar gk - ) oir') @113)
where
ko= (::;3 /K F 2 (2.114)

For a complex scalar field, there are now two coordinates, which can be taken
as either {,, ¢,} or {¢, ¢'}. Inner products of wave functionals now take the form

(¥, ¥5) = [ Dy Do A, 8,1V 5[, 6] 2.115)
or equivalently
(¥, V) = [ DUDIFA [, W¥1 500, 4] 2.116)
The complex measure is defined in terms of the real and imaginary parts:
Dy Dy* = D¢, D¢, 2.117)

The vacuum wave functional for the free complex field is just the product of those
for the two independent real fields. Reexpressing the result in terms of the complex
field, we have

Wolgh] = C exp[—f d*r y*(r) V-2 + m2y(r)] 2.118)

2.13 THE ¢* THEORY

As the simplest example of an interacting field theory, consider the Lagrangian den-
sity of the so-called ¢* theory:
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Lx)= 0o, p— sm*d? —gd* (2.119)
where g > 0. The quartic term makes the equation of motion nonlinear:
P+mp+gd*=0 (2.120)

The Hamiltonian density takes the form

|
= 5[5 190 |« o)
N((x)) = %mzdﬁ()c) +g¢%(x) (2.121)

which suggests that ¥(¢(x)) is a potential.
To quantize the theory, we impose the equal-time commutators (2.15), which
can be satisfied by taking as initial condition

1 1
- § —_— ikr o ¥ -iker
¢(r’ 0) \/—Q - R f'—zwk [ake + age ]

1

1 .
SRV ; Vo &g, +a')) (2.122)

where the creation and annihilation operators a,t, ay are defined by the commutation
relations

[ax, al’] = Sk

[aw, a] =0 (2.123)

The equation of motion is not soluble unless g = 0. We can always write, as a formal
solution,

o(r, H) = e e(r, 0)eH (2.124)
but this is not simple unless g = 0.
To see the effects of the interactions, separate the Hamiltonian into a “free”
term and an “interaction” term, at some arbitrary time ¢ = 0:
H=H,+ Hy, (2.125)

where

Ho= + [dr[(@(r, 0) + 1V e, 0)F]
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Hn=g f d’re(r, 0) (2.126)

In terms of the creation and annihilation operators we have

H,

- t
Hy=Cy+ Z Wy ay
K

it = o T

Q Ki.ky.ki,ky 2V wwywyey

ok, +k,+ ki + Kk
£ a2 ke TRt Ke) s aah + an)al + asal + ay)

(2.127)

where C, is an irrelevant zero-point energy and 8¢ denotes the Kronecker 8. We use
the shorthand w, = @y, a; = a,, and so on. The interaction Hamiltonian H,, de-
scribes four-particle processes that conserve momentum. Substitution of this expan-
sion into (2.124) generates a complicated series for the time-dependent field opera-
tor. We shall learn how to organize such terms in a systematic manner in Chapter 9.

PROBLEMS

2.1 Space-Time Translation Consider a free scalar field ¢(x), which can be expanded in
terms of the annihilation operators a. This problem illustrates the fact that the 4-mo-
mentum P* = 3, k#ay a, is the generator of space-time translations.

2.2

(a)

(b)

(@)

As a useful tool show that, for two operators 4 and B,
e‘Be = B+[4, B]+ 3[4, [4, BI] + 5[4, (4, [4, B]]] +- -
Use this formula to show

iPx —~ikX

efra et =ae
and the infinitesimal form

(PH, ay] = —k*a,
Establish that P* is the generator of space-time translations by showing

[P, ¢(x)] = id*P(x)

Let |K) be an eigenstate of P#, satisfying P#K) = K#|K) . Show that this state is
translationally invariant:

(Kid(x) S NIK) = (Kld(x - y) HO)K)

Charge Conjugation The designation of particle and antiparticle is a matter of con-
vention, and we can freely reverse the labels. More specifically, for a complex scalar
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2.3

24

2.5

2.6

2.7

Scalar Fields

field y(x), construct an operator C that takes by to ¢, and vice versa, and commutes with
Hamiltonian H:

CP()C' = ¥ (x)

[HCl1=0
c'c=1
=1

The operation C is called charge conjugation, or particle-antiparticle conjugation.
Lorentz Invariance We have calculated the function A(x) = (0|[¢(x), ¢(0)]|0) in
(2.66), but not in a manifestly Lorentz-invariant form. Show that it can be put into the
desired form

4

dk
Ax) = 27'rij 2y

e x5k - m?)e(ky)

Spin and Statistics Quantize the real scalar field according to Fermi statistics; in oth-
er words replace the commutators in (2.15) by anticommutators. Show that this will vio-
late microcausality.

External Source Consider a real scalar field ¢(x)\coupled to an external source func-
tion J(x), with Lagrangian density

L(x)= 3P, b+ smi? +Jo

(a) Obtain the Hamiltonian in terms of the creation and annihilation operators ay, a,
for plane-wave states.

(b) Suppose that the source is static, that is, that J(x.r) is independent of ¢. Using per-
turbation theory, show that there is no scattering from the fixed source to second
order.

(¢) Show that there is no scattering at all, to any order. (Hint: Show that a linear canon-
ical transformation of g, reduces the Hamiltonian to the source-free case.)

Level Shift Suppose that the external source in the previous problem consists of a sin-

gle static point source: J(x) = g%(r).

(a) Calculate the change in the energy of the vacuum state to order g2. The result will
be a divergent integral. Cut it off at a large momentum A. This illustrates a proto-
type of divergence in quantum field theory.

(b) Show that all levels of the system shift by the same amount and therefore that the
divergence in this case has no physical relevance.

Yukawa Potential Continuing with the last two problems, suppose the source function
J(x) consists of two static point sources located at ry,r;:

J(r, 1y =g{&(r —r) + &(r -ry)]

Treating g as a perturbation, calculate the change in the vacuum energy to second order
in g, and show that there is an attractive potential between the two point sources:
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-mR

R

2
€
=

where R = |r, — r,|. This is the Yukawa potential, originally proposed as the potential be-
tween two nucleons due to interactions with scalar mesons.

Vacuum Fluctuations Consider a free scalar field in a large periodic box of volume
Q). Let the Fourier transform be denoted

(a)
(b)

©

d)

(k) = ~\/l—ﬁ f dre ®T(r)

Show that the vacuum expectation value of &(k) is zero.
By expanding the field in terms of creation and annihilation operators, show that

the mean-square fluctuation of the Fourier transform is given by
OFH0) = 5=
VKT + m?

The mean-square average can be expressed in the field representation as

[psaowiie

(01¢*(K)|0) =
[pavis
where W[ ¢] is the wave functional ofproduce the last result from this formula.

Calculate the mean-square fluctuation {0{¢?*(x)|0) in coordinate space. The result is
divergent because of the high-momentum modes. Exhibit its dependence on the
cutoff momentum A.



CHAPTER THREE

Relativistic Fields

3.1 LORENTZ TRANSFORMATIONS

Relativistic quantum fields can be classified according to the way they transform
under Lorentz transformations. More specifically, they transform according to irre-
ducible representations of the Lorentz group. The different representations give rise
to particles with different values of the spin angular momentum.

According to the principle of special relativity, the laws of physics should be
covariant with respect to Lorentz transformations; that is, they should have the same
forms in all reference frames connected by Lorentz transformations. The simplest
Lorentz transformation is a “boost” of the reference frame with velocity v along
some axis, say, the x axis:

- ux
1

t' =
V'1-—2p?
x—ut

’

x' =

3.1)

3
bl

[4

This may be supplemented by a rotation of the coordinate system, say, about the z
axis through an angle 6:

x' =xcosf+ysind
y' =-xsinf+y cosf (3.2)

Defining a boost “angle” ¢ by

coshep = 1/V'1 -2
sinhgp = o/V'1 ~ 2 (3.3)

40
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we can write the matrices of these transformations as follows:

cosh¢ -sinh 0 O
—sinh ¢ 0 O
t .

Lorentz boost 6 coshé 1 0
0 0 0 1

1 0 0 0

- 0 cos6¢ sing O

Rotation: 0 —sin® cosd 0 (3.4)
0 0 0 1

The inverses of these matrices can be obtained by reversing the signs of ¢ and 6.
The rotation matrices are orthogonal matrices, while the Lorentz boosts are not, be-
cause the invariant form 72 — x? for the Lorentz boost is not positive-definite.

The angles of rotation are not additive, unless the rotations are all made about
the same axis. Similarly, the velocities of successive Lorentz boosts are not additive,
unless the boosts are all made along the same direction.

We use a relativistic notation in which the coordinate 4-vector is denoted by
x* = (¢, r) and the metric tensor is diagonal:

ghv= (3.5)

A general Lorentz transformation is a linear transformation A on x that leaves
x? =~ r? invariant:

x = A" x¥ (3.6)
with the requirement
g,uvA#aAVBZgaB (37)

which ensures the invariance of x2. In shorthand, we write the transformation in the
form

x' = Ax (3.8)

The transformations above form the continuous Lorentz group, which is character-
ized by six parameters: three velocity components and three angles of rotation. As
we can see from (3.4), they are represented by matrices with determinant +1. In
contrast, the discrete transformations
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Spatial reflection: =1 X' =X

Time reversal: =-t x'=x 3.9

have determinant —1. These discrete elements together with the continuous Lorentz
transformations form the general Lorentz group. We shall reserve the name
“Lorentz transformation” for the continuous Lorentz transformations.

Any element of the Lorentz group can be built up from infinitesimal ones, with
the general form

Ar, =gt + o, (3.10)
We write in shorthand
A=l+ow 3.1

Lorentz transformations generally do not commute with one other; but the infinites-
imal transformations do, because their commutators are of second-order smallness:

I+ o)Xl +a)=1+ e +w+O0(w?) (3.12)

Thus, group multiplication is equivalent to addition of the w’.

An infinitesimal transformation of the coordinate system, characterized by
boosts with velocities »/ along the x/ axes, and rotations of angles 6 about the x*
axes, is described by the tensor

0 - 22 2
~p! 0 & -
o= g 0 g (3.13)
- -9 0
By raising the lower index, we obtain an antisymmetric tensor
0 93
v —! 0 -
wh’ = ghwH, = 2 0 -p (3.19)
- -6 o 0

whose elements can be summarized as follows:
ka = _ka — Z)k

Wl =i = —glkgh (3.15)
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3.2 MINIMAL REPRESENTATION: SL(20)

It is well known that the smallest faithful representation of the rotation group is
SU(2), the group of 2 x 2 unitary matrices of unit determinant. For the Lorentz
group, the minimal representation is SL(2C), the linear group of 2 x 2 complex ma-
trices of unit determinant. To see this, let us organize the coordinates into a 2 x 2
complex matrix:

. »
X‘=‘t+(a"x)=<;+zl.y f_z’y) (3.16)

where o* are the Pauli matrices, with the following properties:

{0/, 0%} =8,

glo?=icg? (and cyclic permutations)
[o!, 2] =2i0®  (and cyclic permutations) (3.17)
We see that
det X =x2 (3.18)

A Lorentz transformation that takes X into X’ can be represented by the operation
X' = L(MXLY(A) (3.19)

where L(A) is a 2 x 2 complex matrix and LT(A) its Hermitian conjugate. Taking the
determinant of both sides, we have

det X' = det X|det L(A)P? (3.20)

To preserve x2, we must have det X" = det X, and hence
det L(A) = 1 (3.21)

Consequently det A = =1. This is a more formal proof of a result stated earlier. The
matrices L{A) with det L = 1 constitute the group SL(2C).
Any 2 x 2 can be represented in the form

(3.22)

A+(B_a):( A+B, Bl—iBz)

B,+iB, A-B,

where 4 and B, are complex numbers. The determinant of the preceding equation is
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A? -3, B}. Hence L(A) is a matrix of this form, with 42 - %, B7 = 1. We leave it as
exercises to show that a pure boost and pure rotation are represented by the follow-
ing:

Boost along n: L(A)=¢eod2= cosh%)- —(n-0) sinh—;é
) R 8 . . 0
Rotation about n: L(A)=¢/"o02 = cos-z— +i(n- o) smE (3.23)

where N is a unit vector, ¢ is the boost angle defined in (3.3), and 0 is the rotation
angle.

3.3 THE POINCARE GROUP

The laws of physics should be covariant with respect to space—time translations as
well as Lorentz transformations. These transformations combined constitute the in-
homogeneous Lorentz group, or the Poincaré group. The transformation law is as
follows:

X'H=a*+ A* x¥ (3.24)
where a* is a 4-vector. The infinitesimal version has the form
x'H=xt+ gt + wt xY (3.25)
which contains 10 independent parameters: a* and w** = —w**.

We can realize the Poincaré group on the space of functions fx), through the
transformation

S =flx+a+ wx)
=f(x) +a,d, f(x) + ot x"9, f(x)
=1+ a0 — L@, (" — x99 f(x) (3.26)

where we have use the fact that w,,, is antisymmetric. We can rewrite
fie') = (1 — iqkPH + %w#,,M‘“’> 1) (3.27)

which defines the generators

P = jgm
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MEY = xBPY _ xvpr (3.28)

Of these, 10 are independent operators, constituting the Lie algebra of the Poincaré
group. An arbitrary element of the Poincaré group can be written in the form

exp (ia, P* — iw,, M~”) (3.29)

where a* and w*” represent 10 real independent parameters.
From (3.28) we obtain the commutator

[x#, P¥] = —ighv (3.30)

Although derived from an explicit representation, we consider the preceding equa-
tions as abstract algebraic relations. Such a procedure is analogous to obtaining the
Lie algebra [/, J¥] = ie/¥J! for angular momentum from the special representation
=—ir x V. As abstract relations, the Lie algebra admits half-integer representations.
The Lie algebra of the Poincaré group consists of the following commutators:
[ M+, Maﬁ] = _i(g,uvfMVB _ gvaM;-LB + gVBM#a _ guBMva)
[M, Pr] = i(gHP* — g""PH)
[P~ P"]=0 (3.3D)

which can be obtained through a straightforward calculation. In physical terms, the
four generators

P+=(H, P!, P2, P?) (3.32)

make up the total 4-momentum operator, and P° = H is the Hamiltonian. The six in-
dependent components of M** are generalized angular momentum operators made
up of the angular momentum J and the Lorentz boost K:
Mk = ekl
MY =KJ (3.33)
We can recast the Poincaré algebra as follows. The last two lines in (3.31) are equiv-
alent to
[P/, P =[P/, H= [/, H]=0
[, P*] = ~ie/*P!
K/, H} = ~iP’
(K, P = —id, H (3.34)



46 Relativistic Fields

These relations all involve the inhomogeneous part of the group. The first equation
above expresses the independence of the spatial translations among themselves, of
spatial and time translations, and of rotations and time translations. The second
equation is what one can deduce from J = —ir x V and P = —/V. The other equa-
tions above describe how energy and momentum change under a Lorentz boost. In
addition to these, we obtain from (3.31) a closed set of commutation relations
among angular momentum and boost operators:

[V, JH = i/t
[K/, K¥] = —ie/¥L)!
[, K¥ = ie/*IK! (3.35)

These form the Lie algebra of the Lorentz group.

3.4 SCALAR,VECTOR,AND SPINOR FIELDS

In quantum mechanics, the wave functions in a central potential can be classified
according to orbital angular momenta, which correspond to irreducible representa-
tions of the rotation group, with possible dimensions 2/ + 1, (/ =0,1,2,...). Ina
similar way, relativistic fields transform according to irreducible representations of
the Lorentz group, which have definite dimensions. Accordingly, a relativistic field
has a definite number of components, related to the spin angular momentum of the
field.

The simplest relativistic field is a scalar field, which may have more than one
component, but each component ¢(x) must be invariant under Lorentz transforma-
tions:

¢'(x') = ¢(x) (3.36)

This says that the transformed field called ¢’, at the transformed coordinate x’, is
the same as the original field called ¢, at the old coordinate x. It expresses the fact
that x" and x are different labels that we use for the same physical point, and the
scalar field is unaffected by this; but for us the functional form of the field must
change:

¢'(x) = ¢(A'x) (3.37)

As we shall see, the spin of a scalar field is zero.

A vector field, such as the electromagnetic field A*(x), is affected by a change
in the coordinate system, since by definition its four components transform among
themselves like x*. The transformation law is
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AR = AR A (x)  (n=0,1,2,3) (3.38)

The spin of a vector field is 1. This will be demonstrated in Section 5.5.

In general, a tensor field of rank » transforms like a product of » x* terms, and
corresponds to spin n. For example, the gravitational field is a symmetric tensor of
rank 2.

There are “half-integer” representations, analogous to those for the rotation
group. The latter are representations of SU(2), which generalizes to SL(2C) in the
present case. To accommodate space-time reflections, we have to include two
copies of SL(2C), so that they transform into each other under a reflection. Accord-
ingly, the minimal representation space is spanned by a four-component complex
field, called the Dirac spinor field yi(x), which transforms according to

Pro(x) =S (M(x)  (r=1234) (3.39)
where S(A) is a 4 x 4 complex matrix, discussed in more detail in Chapter 6. The
spin of a spinor field is 3.

In general, a field forming a K-dimensional irreducible representation of the
Lorentz group has K components:
dx)  (@=12,...,K) (3.40)
which transform under a Lorentz transformation A according to

Ga(x") = S M) by(x) (3.41)

For an infinitesimal transformation A = 1 + w, we can put S(A) in the form
Sap = Oap + 5w, 2L (3.42)

this defines the coefficients 2%, which, as we will show, constitute the spin matrix.
Under an infinitesimal Lorentz transformation, then, a general field transforms
according to

Ga(x) = Pu(x) + 3w, 200 dy(x) (3.43)
The change in the functional form of the field can be found by writing

Ga(x') = ¢ (x + wx) = ¢, (x) + 0, X9,y (x)
= &y () — 3w, (xH0” ~ x79, ), (x) (3.44)

Thus



48 Relativistic Fields

Ga(x) = Do (x') + 3 @, (55" — X"9*)P,(x) (3.45)
Substituting ¢, (x") from (3.42), we obtain
Ba(x) = Pa(x) + 3 @, [(xH” — x"H)8,p + Zf ] (x) (3.46)
This identifies the K x K matrices 3#* = ~2,** as spin matrices, since they are added
to the generalized orbital angular momentum.
The spin matrix for a scalar field is obviously zero. For the vector field, we can
find it from its transformation law under an infinitesimal Lorentz transformation
Ag(x') = Ay(x) + w,5 AP(x) (3.47)
Putting w,z = { w,, %45, we obtain for the vector field
o8 = 8685 ~ 85 8a (3.48)

As we shall show in Section 5.5, this gives spin 1. The case of the spinor field will
be discussed in Chapter 6, and is included in the following summary for reference:

Scalar field: 2=

Vector field: =8R85 858
Spinor field: SEY = %(y’*y“ = VY, (3.49)

where y* are the 4 x 4 Dirac matrices defined in Chapter 6.

3.5 RELATIVISTIC QUANTUM FIELDS

Since quantum fields are operators that act on a Hilbert space, we can represent
Lorentz transformations by transformations on the Hilbert space. Recall that a
Lorentz transformation changes the functional form of a classical field:

() ¢, (x) (3.50)

In the quantized version, this means that the operator ¢, attached to point x is re-
placed by ¢,. Since ¢, and ¢, act on the same Hilbert space, the transformation is a
mapping of the Hilbert space into itself. Since ¢, and ¢, are physically equivalent,
the transformation must be unitary. Thus, there should exist a unitary operator U(A)
on the Hilbert space, corresponding to the Lorentz transformation A, such that

G, (x) = UA)@0)U'(A) (351
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The fact that the transformation is unitary means
UT(A)=U"Y(A) (3.52)
From the definition of the primed fields ¢,(x) = S,,$,(x), we obtain the condition
Udy(x)U™" = Spdp(A'x) (3.53)
The set of operators U(A) forms an infinite-dimensional unitary representation of
the Lorentz group. In contrast to this, the finite-dimensional representations of the

Lorentz group are nonunitary. As examples, we have

Scalar field: Up(x)U™' = (A 'x)
Vector field: UAH(x)U™1 = A2 A" (A %)
Spinor field: U x)U = S, . (A'%) (3.54)

We can immediately extend this consideration to Poincaré transformations:
U (x)U™"' = Sypdp(A~'x~ a) (3.55)

For infinitesimal Poincaré transformations, U must be in the neighborhood of the
identity operator, and linear in the parameters of the Poincaré group:

U=1—iatPr+ éwwa (3.56)

This defines the Hermitian operators P* and M*¥, which represent the generators of
the Poincaré group on the Hilbert space. In contrast, the generators denoted by the
same symbols in (3.28) are finite matrices, generally non-Hermitian.

Substituting (3.56) into (3.55), we obtain

(1 P+ éwM)d)a(x)(] +iaP- %w-M)

= <5ab + %w'iab) dy(x — wx — a) (3.57)

which is written in an obvious abbreviated notation. Expanding both sides to first
order in a* and w*”, and equating their coefficients, we obtain

i[P*, ¢ (x)] = 0+, (x)
I[MFY, bo(x)] = (x0” = x"H) y(x) + 24y y(x) (3.58)

This shows that P# is the 4-momentum operator, since it generates space-time
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translations, and M#” is a generalized angular momentum operator, since it gener-
ates space-time rotations. The spin matrix 2, induces a mixing of the field compo-
nents undergoing space—time rotation.

The generators P* and M*” can be constructed explicitly from the field opera-
tors ¢,. Rather than doing this on a case-by-case basis, we shall do it via a unified
approach in the next chapter.

3.6 ONE-PARTICLE STATES

A one-particle state is an eigenstate of P*, with energy eigenvalue £ > 0, and mo-
mentum eigenvalue p, such that the invariant mass squared

PP=F - p=pm? (3.59)

is a fixed number. Such a state corresponds to a particle of mass m. The P? of any
state generally lies in a continuum, but those of one-particle states form a discrete
set. If there are no massless particles, the invariant-mass spectrum of a field theory
consists of the vacuum value 0 as a lower bound, a discrete set of particle masses,
and a continuum separated from the vacuum value by a finite gap. The continuum
corresponds to states containing two or more particles, whose masses occur within
the gap. There can be particles whose mass occurs in the continuum, but only if
these particles are stable against decay, due to selection rules. The gap vanishes
when there are massless particles, such as the photon. In this case, there is a discrete
mass in the continuum corresponding to the electron, which cannot decay into pho-
tons because of conservation laws.

The one-particle states of a free field can be generated by applying creation op-
erators a,I to the vacuum state. If we do this for a nonfree field, we will not get one-
particle states, because we will not get eigenstates of P*. Instead, we will have a
mixture of states involving interacting particles. Nevertheless, we can discuss prop-
erties of a one-particle state through general considerations, without constructing it
explicitly.

We confine our attention to massive particles, with m > 0. There exists a
Lorentz frame in which p = 0, called the rest frame. The spin operator S of the one-
particle state is defined as the total angular momentum in the rest frame. The eigen-
value of S? has the form S(S + 1), where S is called the spin of the particle. The pro-
jection s of S along the momentum of the particle is called the helicity, which for
m > 0 has 2S5 + | possible values S, S — 1, ..., -S. We can label a one-particle state
by momentum p and helicity s:

|1-particle state) = |p, s) (3.60)
The parameters m and S are suppressed, because they are constants.

For m > 0 a one-particle state in the rest frame is denoted by |s), and we can ob-
tain [p, s) from |s) through a Lorentz boost L(p):
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Ip, s) = U(L(p))ls) (3.61)
Applying a Lorentz transformation A to both sides, we obtain
UA)lp, s) = UMU(L(p))ls) (3.62)
Now insert in front of the right side the identity operator in the form
L= UL(p)U(L(p)) (3.63)
and regroup the factors in the following manner:
UA)lp, ) = ULPIU (LpY UM UL(p)]is) (3.64)
By the group property, the operator within the square brackets can be rewritten as
UNL(p)UMUL(p)) = UL (A p)AL(P)) (3.65)
which represents a pure rotation called the Wigner rotation:
R(A, p) = L'(Ap)AL(p) (3.66)
1t boosts a particle from rest to momentum p, makes a Lorentz transformation A,
and then brings the particle back to rest. The operation has no effect on the state
vector except possibly multiplying it by a phase factor, which represents a rotation.

Thus, the general effect of a Lorentz transformation on a one-particle state is to
boost the momentum, and rotate the spin by a Wigner rotation: »

UA)lp, s) = UL(AP)UR)Ls) (3.67)

For a more explicit representation of R, we insert a complete set of helicity states to
obtain

UM)Ip. ) = 2 ULAPYIS") (s'[UR)s)
= 2 DLAR)Ap, ') (3.68)

where D/.(R) are the rotation coefficients. An example of the Wigner rotation is the
Thomas precession discussed in Section 6.8.

Massless particles are special, in that there is no rest frame. A massless particle
of spin S can have the values +S only. We shall explicitly demonstrate this for pho-
tons in Section 5.5. A general proof may be found in books on representations of the
Lorentz group (see, e.g., Tung [11).
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PROBLEMS

3.1 Verify the Poincaré algebra (3.31).
3.2 Verify the spin matrix (3.48) for the vector field.

3.3 Verify that the SL(2C) matrices L(A) given in (3.23) correctly represent Lorentz trans-
formations. It is necessary to verify them only for infinitesimal transformations.

3.4 Show the following identity, which is useful when working with SL(2C) matrices:

(6-Afo-B)=A-B+ioc-4AxB

where the components of o are Pauli matrices and the components of A and B are num-
bers.

3.5 Consider two infinitesimal successive infinitesimal Lorentz boosts with angles ¢, and
@,. Show that the result is equivalent to a boost ¢, + ¢, plus a rotation 3 ¢, x ¢,. Here,
¢ =V tanh~', where v is the velocity of the boost. Lorentz boosts.

3.6 (a)

W]

(c)

3.7 (a)

(b)

Under the action of a Lorentz boost with velocity v, a 4-momentum p* is trans-
formed to p’*. show

‘ Y
-0 G ve )

Po = YPo—VP)

where y= (1 - )12,
Writing p'# = A# p’, obtain the transformation matrix

Y Yk

(=D

vZ

—wk 8

Let L(p) be the transformation matrix corresponding to a Lorentz boost that trans-
forms the rest frame of a particle of mass m into a frame in which the particle has
momentum p and energy E. Show

£ m
or={ " "
p_ 5&’ _ p/pk
m m(E + m)

Consider a particle of mass m and helicity s, moving with momentum p along the z
axis. Make a Lorentz boost of velocity » along the x axis, so that p — p’. Find the
rotation matrix R', for the Wigner rotation.

Show that for an ultrarelativistic particle
N X



Reference 53

That is, the Wigner rotation is the same as that taking the initial velocity p/E to the
final velocity p’/E’. This shows that the helicity of a massless particle such as the
photon is Lorentz-invariant.

REFERENCE

1. W. K. Tung, Group Theory in Physics, World Scientific, Singapore, 1985, Section 10.4.4.



CHAPTER FOUR

Canonical Formalism

4.1 PRINCIPLE OF STATIONARY ACTION

The equations of motion for a classical field can be derived from a Lagrangian
through the principle of stationary action. This approach gives a unified treatment
of topics discussed previously through special examples. It also makes clear that
symmetries of the system give rise to conservation laws. Consider a set of classical
fields collectively denoted by ¢(x):

¢ ={di(x), . . ., Pxlx)} 4.D
We denote their space—time derivatives by
$u(x) = J,¢(x) (4.2)

The Lagrangian density is assumed to depend on the fields and their first deriva-
tives:

L(x) = L($(x), b(x)) 4.3)

This will ensure that the equations of motion are second-order differential equations
in the time, as in classical mechanics. We assume that, unless external fields are ex-
plicitly introduced, space—time is homogeneous. Thus, £(x) depends on x not explic-
itly, but only implicitly through ¢(x) and ¢,(x). We consider only local field theo-
ries, for which the Lagrangian density at x depends only on properties of the field at
x. Nonlocal terms of the form

[au09K st~ D)) @4
are ruled out, unless K, (x — y) x d(x — y).

54
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The classical action of the system is
S¢] = [ d*ceo) (4.5)
0

where () is the space-time volume, which eventually goes to infinity. We impose
definite boundary conditions on the surface of £}, say, ¢» = 0. The principle of sta-
tionary action, which is a generalization of that in classical mechanics, states the
following:

Suppose that ¢(x) is a solution to the equations of motion. If we vary its functional
form by adding an arbitrary infinitesimal function 8¢(x) that preserves the bound-
ary condition:

H(x) — P(x) + S(x) 8¢(x) = 0 on boundary of 2
then the variation of the action will be of second-order smallness:
&S =38[dp+ 6¢]-S[]=0

This means that S{¢] is at an extremum when ¢(x) is a solution to the equation of
motion.

To find the equation of motion according to this principle, let us calculate the
variation of the Lagrangian density:

_ L s O
oL = 9% 8¢+ 79, 8¢, (4.6)
Using the fact that
8¢, = 8(3,8) = 3,(8¢) 4.7
we get
aL aL aL
oL = [% - 0M<;¢—p):'6¢ + 5“(T%L‘5¢> (4.8)

The last term is a total 4-divergence. It vanishes when integrated over the
space—time volume, since it then becomes a surface integral by Gauss’ theorem, and
8¢ = 0 on the surface. Thus

ar oL _
a5 = (1d4x|:3—¢) - oﬂ(g}:)]&ﬁ =0 (4.9)
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Since 8¢(x) is arbitrary, its coefficient must vanish. We thus obtain the equation of
motion

d, 1+ — ’5& =0 (4.10)
where
aL
Tt = 4.1
o,

The canonical conjugate to ¢(x) is defined by analogy with classical mechan-
ics:

0x) = () = i;g— @.12)

where a dot denotes partial time derivative. The Hamiltonian density is defined by
H(x) = H(m(x), $(x),V $(x)) = 7~ L(x) (4.13)

where ¢(x) should be re-expressed in terms of #7(x) according to (4.12). The Hamil-
tonian is given by

H= [d2xs() (4.14)

To quantize the system, we replace the field and its canonical conjugate by op-
erators, which are defined by the equal-time commutators

i{m(x, ), $y, L. = &(x —y)
ifm(x, 1), my, O], = [¢(x, ), Ky, H]. =0 (4.15)

where for bosons we use the commutator

[4, Bl.=[4, B] = AB - BA (4.16)
and for fermions we use the anticommutator

[4, B, = {4, B} = AB + BA (4.17)
If 7(x, ¢} = 0, as is the case for the electromagnetic field, then the field conjugate to

7(x, t) is not an independent dynamical variable, and should not be independently
quantized.
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4.2 NOETHER’S THEOREM

A transformation ¢(x) — ¢(x) + dd(x) is called a symmetry transformation of the
system if it changes the Lagrangian density only by the addition of a 4-divergence.
As we have seen, this does not change the equations of motion. More specifically,
the change must be of the form aL(x) = d,W*(x) for arbitrary ¢(x), regardiess of
whether it obeys the equation of motion. If the symmetry transformation is continu-
ous, then there is an associated conserved current density. The formal statement is
as follows.

Il NOETHER’'S THEOREM [1] [f under a continuous infinitesimal transfor-
mation

H(x) > P(x) + d(x)
the change in the Lagrangian density is found to be of the form
AL(x) = *W (x)
without using the equations of motion, then there exists a current density
JHx) = TH(x)B(x) — W¥(x) (4.18)
which, for fields obeying the equations of motion, satisfies
3, JHx)=0 (4.19)
Proof. We calculate the 8£(x) when the field changes by 8¢, using the equa-

tion of motion, but without assuming that 8¢ comes from a symmetry transforma-
tion:

oL AL
8L =—205d+
b ¢ od,

P
ob, = —a% 8cb+ 9,(5¢6)

= J (ThdP) + (Z_fb - ap"r#>8¢
= d,(78¢)

where the equation of motion was used in the last step. Specializing the preceding
to symmetry transformations, we equate it with 4, #* to obtain

d, (6 - W*)=0 »



58 Canonical Formalism

The conserved current j* is called a Noether current, and is determined only up to
an arbitrary normalization factor.

Noether’s theorem was proved for classical fields, and one usually extends it to
quantum theory by replacing the fields in j* by the corresponding quantized fields.
This does not always give a conserved current in the quantum theory. When the
quantum current so obtained fails to be conserved, the nonzero divergence d, j* is
called a “current anomaly.” Some examples of this are discussed in Section 19.8.

4.3 TRANSLATIONAL INVARIANCE

An important symmetry for any system is Poincaré invariance, which is called a
“space—time symmetry,” because it is associated with the transformation of the field
under a change in the coordinate system. We discuss this symmetry by breaking up
the Poincaré group into the translation and Lorentz subgroups.

Invariance under the translation group should give rise to four independent
Noether currents corresponding to the four possible space-time translations. Con-
sider an infinitesimal translation

x#— x* +a* {4.20)

under which each component of ¢(x) independently transforms according to
@' (x + a) = ¢(x). The functional form of the field changes according to

¢'(x) = d(x - a) = P(x) — a,. " P(x) (4.21)

We shall choose a,, to have only one nonvanishing component, say, a,, and take a =
0,1,2,3 in turn. Thus, the change in functional form of the field is

SP(x) = “P(x) (4.22)

where we have dropped the proportionality constant —a,, because it enters all subse-
quent formulas only through the overall normalization of the Noether current. Dif-
ferentiating the above with respect to x* gives

8¢, (x) = P, (x) (4.23)

The statement of translational invariance is that £(x) does not depend on x ex-
plicitly. Hence

dL aL
=557 Gy
w

= d,(g""L(x)) (4.24)

# ¢, = d°L(x)
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from which we read off
Wee(x) = g+*L(x) (4.25)

The four corresponding Noether currents are denoted by 7.+, where « labels the
direction of translation:

T g%(x) = 70" (x) — g*°L(x) (4.26)
They satisfy the conservation law
3, T (x)=0 4.27)

This is called the canonical energy—momentum tensor. It is generally not a symmet-
ric tensor. The subscript “c,” which stands for “canonical,” distinguishes it from a
symmetrized version to be discussed later.

The conservation law can be rewritten in the form

a d
?ZT2Q+ —(?;I{‘T’C‘”:O (4.28)

Integrating both sides over all space, and assuming that surface contributions van-

ish, we obtain
d

= P=0 (4.29)

where
pa= [d3xr e (4.30)

is the total 4-momentum. Thus, 7% is the energy density and 7 2* the kth compo-
nent of the momentum density. Their conservation laws are given respectively by
the time and spatial components of (4.28):

_a_T((:)O + __& Tlé():()

at ok

g _ 3

—TY+—Tk=0 4.31
at Jxk @30

It is clear that T/ is the kth component of the energy current and 7% is the kth com-
ponent of the current of the “jth component of momentum.” The latter is called the
stress-energy tensor. These components are displayed in the following matrix:
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e Ty TR TP
T
Iz T4
T

(4.32)

O —
Tpe =

The identification of 7% as the energy density is consistent with the definition of
the Hamiltonian density in (4.13).
The explicit expressions for the total energy and momentum are

PO = [ sttt ~ L] = [datco)
Pk = fa'}xw(x)&"tb(x) (4.33)

where a dot denotes time derivative and #(x} is the Hamiltonian density. We go over
to the quantum theory by replacing 7(x) and ¢(x) by the appropriate operators.

To show that P* generates spatial translations, we calculate the commutator of
¢(x) with the total momentum operator

P= f dPym(y)d(y) (4.34)

This does not depend on y,. We are therefore free to choose y, = x; = ¢, to take ad-
vantage of the simplicity of the equal-time commutators. Thus, we have

Iy,
(P o 01 =[]ty 02522 0|
= -ifa3y x -y) ad;(i’ D ‘94’;;; ) (4.35)

To show that P° generates time translations, we calculate
[P, o(x, 0] = [dp{Lmly, Dby, ), d(x, ] - (£, 1, $(x, D]}
= —i(x, ) + f d3y{my, D[Py, 1), d(x, ] - [L(y, 1), $(x, D]} (4.36)

The integral in the second term identically vanishes.

Proof. Use the representation ¢ = i8/8r to write

_ 80 . d0()
[0, ] = -i5 20 =B -y

Using 7 = dL/d¢, we can calculate the integral as follows:

; f [ EL0) 8B AL f L) s oL _
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Combining the preceding results, we have
I[P, $(x)] = " (x) (4.37)

This shows that the total 4-momentum generates space~time translations. If F is a
function of ¢ and its derivatives, then

i[P?, F] = &°F (4.38)

Choosing, in particular, F' = P¥, we have i[P®, P#] = ¢*P*. The right side vanishes
because P* is independent of space by construction, and independent of time by
4-momentum conservation. Thus

[P2, P4 =0 (4.39)

which is part of the Poincaré algebra discussed in Chapter 3. It is realized here in
terms of the field operators.

4.4 LORENTZ INVARIANCE

Consider an infinitesimal Lorentz transformation in the direction labeled by {«,3}.
For example, a rotation about the x* axis corresponds to {1,2}, or a boost along the
x! axis corresponds to {0,1}. Under the transformation, the functional form of the
field changes by 8¢(x), as given by (3.46). We have, up to a multiplicative constant,

S(x) = (x*d° — ¥B3* + 2F)d(x) (4.40)

where 2# is the spin matrix, antisymmetric in {a, B}. Differentiating 8¢ with re-
spect to x#, we find

8 (x) = [x*dF — xB3* + 3], (x) + (gid’ ~ gld™) (4.41)
Using the fact that £(x) has no explicit x dependence, we have

oL oL
= — + —
8L «9¢&a¢ 79, b,

= (x*dP — xPo) L + %zﬂ% + mHSBG, + TP — TP (4.42)

The statement of Lorentz invariance is that the preceding is a 4-divergence. The first
term is of the desired form, for it can be rewritten J°(x*L) - #*(xPL) = 9,(g*Px*L —
g#xPL). Therefore the rest must vanish:

%2% + WEBP, + n7gh — migt =0 (443)
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With this, we have
8L = 3,(g"Px L — ghoxPL) (4.44)
which gives
Wi (x) = (g#Px™ ~ ghaxP)L(x) (4.45)
This leads to six independent Noether currents labeled by {«, 8}:
MpaB = (3298 — xB5* + 3By p(x) — (g#Fx® — g*xP)L(x) (4.46)
which can be written in the form
M EeB(x) = x*T#B(x) — xBTEY(x) + 3B d(x) (4.47)

where TV is the canonical energy-momentum tensor. It satisfies the conservation
law

9, M#B(x) =0 (4.48)
and is called the canonical angular momentum tensor.

The conservation law gives rise to six constants of the motion, the Lorentz
boost

K= f dx MO(x) = f [T Y(x) — /T 0(x)] (4.49)
and the angular momentum
JE= ek dx M) = L vl T - 0T ) + mBIB]  (450)

where the first two terms represent orbital angular momentum and the last term is
the intrinsic spin.

It is straightforward to verify that K and J* generate Lorentz transformations by
showing

i[ [a2y Mrarcy, ), ix, z)] = 84(x, 1) (4.51)

where 8¢ is as given by (4.40). It can also be verified that the commutation rela-
tions among the operators P* and M °F realize the Poincaré algebra (3.31).
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4.5 SYMMETRIZED ENERGY-MOMENTUM TENSOR

The canonical energy—momentum tensor 7 #* is not unique, because the Lagrangian
density is defined only up to a 4-divergence. We can replace it by any tensor of the
form

T =TE+ 3 3, X\ e (4.52)
where X, . is antisymmetric in Au:
X = —XHA (4.53)
The antisymmetry is a sufficient condition that the conservation law be unchanged:
3,1 =0,Tt+ 19,0, X3ua =0 (4.54)
A possible change in the total 4-momentum 1s
f d3xT0% — f PaT e = 3 [dxg, x00e (4.55)

which vanishes for the following reasons: (1) the term with A = 0 vanishes because
X% = ( by antisymmetry and (2) the terms from A = k vanish because they give a
surface integral. From a physical point of view, therefore, 7% is equivalent to 74¢,
because they give the same total 4-momentum.

The fact that 74 is not guaranteed to be a symmetric tensor poses a problem, if
it is to be used as a source of the gravitational field. We can, however, replace it with
a equivalent symmetric tensor 7% The condition for symmetry is

Tuer — Tem = [Tpa - Tar] + £ g,(Xua — Yra) = 0 (4.56)

The term in brackets can be rewritten using the condition (4.43) for Lorentz invari-
ance:

ar
Tae - Tok = i — qopt = —;gi"“d) Yl )

= (i SHag) - <§;‘: = amA)zﬂ% (4.57)

where the last term vanishes by the equation of motion. Substituting this result into
(4.56), we obtain the condition

Yhwer _ xho = 2 grAS ey (4.58)
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a solution to which is
XAa = (A3 pe _ a3 Ak _ i3y (4.59)
This term is needed only when the spin is nonzero.
Corresponding to the symmetrized energy—momentum tensor, we can define a
new angular momentum tensor:
MPeB = xoTuB _ xBTha (4.60)
This is related to the canonical angular momentum tensor through

MpeB = Muab + & g, (x@XAB — xBYAnc) (4.61)

It is easy to show that M**B is conserved, and that it preserves the definition of the
boost and the angular momentum:

3, M =
[axpgoon = [axrg gos (4.62)

From a physical point of view, therefore, M**8 and M #*P are equivalent,

4.6 GAUGE INVARIANCE

In contrast to space-time symmetries, there are internal symmetries, which are x-in-
dependent transformations of the field that leaves the Lagrangian density invariant.
A simple example is a change of phase in a complex scalar field:

h(x) — e i(x)

Px) — eyi(x) (4.63)
This is called a global gauge transformation, where the label “global” refers to the
fact that o is independent of x. Invariance with respect to it means that the La-
grangian density is independent of the phase. This is true for the free field, in which

the fields appear in the combination ¢(x)y(x) or d*¢*(x)d,(x). The infinitesimal
form of the transformation is

Sp(x) = P(x)
S’(x) = ~(x) (4.64)

where we left out a proportionality constant ia.
In terms of the real and imaginary parts defined by
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|
W) = 51100 + ()
!
U0 = 5 (31 - i) (4.65)

the transformation is a rotation in internal space:

&/ (x) = ¢)(x) cosa + y(x) sina
b7 (x) =~ (x) sinar + ¢h(x) cosa (4.66)

The Noether current is just the conserved current mentioned in Chapter 2:

. oL
" Howm !
= Yoyt — gy
= 3 (0P, — P 3y) (4.67)

More generally, internal symmetries are linear transformations for a multicompo-
nent field ¢ (x), (a=1, ..., K), of the form

&, (x) = Copi(x) (4.68)

where C,, are elements of a K X K constant matrix. If the matrix belongs to a K-di-
mensional representation of some group G, we call G an internal symmetry group.
The group can be continuous or discrete. In the previous example G = U(1), the uni-

tary group of dimension .
Physical examples of conserved charges are

® Electric charge = positive minus negative charge
® Baryon number = number of protons minus number of antiprotons
® Electron number = number of electrons minus number of positrons

A important case is isospin, which is discussed in Section 7.5.

PROBLEMS

4.1 Consider a field ¢(x) with Lagrangian density Lq(x) + £,(x), where the first term has a
certain symmetry, while the second term does not. That is, under a transformation ¢(x)

— ¢x) + d(x),

Lo(x) = oW (x),
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4.2

4.3

4.4

4.5

Canonical Formalism

whereas £,(x} cannot be put into this form. If £,(x) were absent, the system would have
a conserved Noether current. Show that, in the presence of £,(x), the divergence of the
would-be Noether current is 8£,(x).

A condition for Lorentz invariance is (4.43). For scalar fields, for which 32# = 0, what
restriction does this place on the Lagrangian density?

Nonrelativistic System A nonrelativistic many-particle system has a second-quan-
tized Hamiltonian

1
H=[ax w*(x)(j; VI o)

where u is the chemical potential. Usually one assumes the commutation relation [¢(x),

U (y)] = 8(x — y). We want to see whether this is consistent with the canonical formal-

ism

(a) Find the equation of motion using iy = [, H].

(b) Regard A as a classical Hamiltonian. Show that the corresponding Lagrangian den-
sity is

L= i od\or + w*(i;)vz —w

Work out the equation of motion using the canonical formalism.
(c) Show that the usual commutation relation [y«(x), (y)] = 8(x ~ y) is canonical.
(d) Work out the Noether current associated with space-time translational invariance,
and global gauge invariance.
Field Representation Since (r) and i(r) are canonical conjugates in the nonrela-
tivistic system, it would be awkward to introduce the field representation by diagonaliz-
ing yAr). Show that in this case we can put

i 5
(r)= W[w(l‘)*“ 5—90(?)}
1 5
i = — o
V0= 750505 |

where ¢(r) is a c-number function.

First-Order Lagrangian The nonrelativistic Lagrangian in the last problem differs
from a relativistic one, in that it is first-order instead of second-order in the time deriva-
tive. The Dirac field discussed in Chapter 7 also has a first-order Lagrangian. To fully
explore the consistency of the canonical formalism, let us strip the problem down to
bare essentials, and consider a classical system with two coordinates a and b, which are
like iy* and ¢. Take the Lagrangian to be

Lia, b b)=ab-Va, b)

The canonical rule says that a has no canonical conjugate. It is the conjugate to 4. Is this
completely consistent with the Lagrangian and Hamiitonian equations of motion?

(a) Find the Lagrangian equations for motion fora and b.
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(b) Find canonical momenta and the Hamilton equations of motion. Check that they
are the same as the Lagrangian ones.

(c) Itis thus completely consistent to regard a and b as canonically conjugate. To quan-
tize the system, impose [a, b], = —i.

REFERENCE

1. E. Noether, Nachr. kgl. Wiss. Géttingen 235 (1918); E. L. Hill, Rev. Mod. Phys. 23, 253
(1951).



CHAPTER FIVE

Electromagnetic Field

5.1 MAXWELLS EQUATIONS

The classical electromagnetic field is described by two 3-vector fields, the electric
field E(r, t) and the magnetic field B(r, t), which obey Maxwell’s equations. In ra-
tionalized units with ¢ = 1, they read

VE=p
V-B=90
JB
E--—
VX ot
JE
B=j+— .
VxB=jt— (5.1

where p(r, 1) and j(r, f) are respectively the external charge density and external cur-
rent density, which must satisfy the continuity equation

ap
Vij+—=0 5.2
it (5.2)

The second and third equations are solved by introducing the vector potential A(r, 1)
and scalar potential ¢(r, #):
B=V xA

2N

=Vé-,

(5.3)
whereupon the remaining two equations become

68
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P o\, aqsl
<812~V)A~1—V<VA+&I¢>
Vip+ iV'A=~p (5.4)
ot

The potentials are determined only up to a local gauge transformation, which in-
volves an arbitrary function x(r, 1)

A—>A+VX

ox
- 5.5
¢ p (5.5)
The Lorentz gauge corresponds to the condition
i
VA + = 0 (Lorentz gauge) (5.6)

In this gauge, both potentials satisfy the wave equation:

P
FRE
P
(;%—2 . V2)¢= p 5.7)

The symmetric appearance of these equations is sometimes convenient, but it actu-
ally obscures the physics. These equations seem to indicate that there are four inde-
pendent propagating modes, but actuaily there only two—the transverse compo-
nents of A. This can be shown by going to the Coulomb gauge.

In Coulomb gauge (or radiation gauge), A is purely transverse:

V-A=0 (Coulomb gauge) (5.8)

The equations for the potentials become

&#
(¥~ v2>A=jT

Vig=-p (5.9)

where jr is the transverse current density
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.. 9
fr=i-— V¢ (5.10)

which satisfies V-jr = 0. In this gauge, A describes transverse electromagnetic radi-
ation, whose source is the transverse current density, while ¢ describes the instanta-
neous Coulomb interaction between charges. The potential between two unit
charges located at r; and r, is given by

l
d(r)=——— (5.11)

47ir, — 1y

To show that we can always impose the Coulomb gauge, suppose VA =f. To go to
Coulomb gauge, we make the gauge transformation A — A + V x, with y satisfying
V?x = -f. The solution corresponds to the statement that y is the electrostatic po-
tential due to the charge distribution V-A. ‘

We are using rationalized instead of unrationalized units. The difference be-
tween these systems arises from the normalization convention for the free fields,
and is tabulated as follows:

Rationalized Unrationalized
4-Current J* 4yH
Coulomb’s law q*/r q*dar
Energy density (E* + B?)/2 (E? + BY)/87
Field operator A 47A

5.2 COVARIANCE OF THE CLASSICAL THEORY

We postulate that the potentials form a 4-vector
A# = ($,A) (5.12)

and this determines how Maxwell’s equations transform under a Lorentz transfor-
mation. Since we always impose a gauge condition, a Lorentz transformation must
be accompanied by a gauge transformation

AP —s 4B — Jhy (5.13)

in order to maintain the gauge condition. Under an infinitesimal Lorentz transfor-
mation, therefore, the vector potential transforms according to

A'H=AF - 0lAY — Gty (5.14)
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where y is such that 4’# satisfies the gauge condition.
The Lorentz gauge 4, 4* = 0 is covariant, and the equations of motion take the
form (5.7), which are manifestly covariant

[(Paw = jr (5.15)
where j* is the conserved 4-vector current density
=) 9 *=0 (5.16)

In this gauge, however, the physical degrees of freedom are not manifest.

In Coulomb gauge, where physical degree freedom are made explicit, the equa-
tions of motion (5.9) are not manifestly covariant; but they actually are, because
there always exists a gauge transformation to maintain the appearance of the equa-
tions in all Lorentz frames. One has to choose between manifest covariance with
Lorentz gauge, or manifest transversality with Coulomb gauge, and we choose the
latter.

The electric and magnetic fields are components of the antisymmetric field
tensor
Fry = ghqy — g4+ (5.17)

which is gauge-invariant. The dual field tensor is defined as
Fuv=temab F g (5.18)

In terms of the electric and magnetic fields, we have

FO=Fk P =_cikpk
Bt =—1elFi (5.19)

The components of the field tensor and its dual can be displayed as matrices:

0 -E' -E* -

E 0 -B B

e s (5.20)
E> B B 0
0 -8B -B B

~ ! 3

2 R (5.21)

B -E* 0 E
B E* -E' 0
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We see that F+ is obtainable from F»” through the duality transformation
{E,B} - {B,-E} (5.22)
From the field tensors we can form two independent Lorentz invariants:
i FPPE,, =45 (B'-E?)  (scalar)

L EwF w=—BE (pseudoscalar) (5.23)

In terms of the field tensors, Maxwell’s equations read

3, Fn =
g, Fr =0 (5.24)

which are gauge-invariant and Lorentz-covariant, and are invariant under the duality
transformation when j¥ = 0. Since F*¥ = —F**, the first equation is consistent only if
d,.j* = 0. The second equation is identically satisfied by putting F** = 44" — FAH,

5.3 CANONICAL FORMALISM

The Lagrangian density of the free electromagnetic field is
L=-% F&F,, =3 (E?-B?) (5.25)

Apart from an overall factor, this is uniquely determined by the requirement that it
be Lorentz- and gauge-invariant, and does not contain higher derivatives of 4* than
first derivatives. The minus sign in front is chosen to give a positive energy density
for the free field, and the factor % sets the normalization of the fields. To obtain the
equations of motion from the action principle, we must use the potential A" as the
field variable. The Lagrangian density then reads

L=—3% (4" - 0"4")d,4, (5.26)
from which we obtain
T = oL = _fwv (5.27)
Hd,.A,) )

The equation of motion is
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x
Jumkr— =0 (5.28)

Since the last term on the left side is zero, we have
3, =0 (5.29)

The use of the potential makes J,, Fur = 0, Thus, we correctly recover Maxwell’s
equations for free fields.
The canonical conjugate to 4* is

7 = _FOv (5.30)

which vanishes identically for v = 0, indicating that A° is not a dynamical variable.
The dynamical fields are 4%, with canonical conjugate ~F% = E*. However, the lon-
gitudinal part of A has no physical significance, because it can be changed at will
through a gauge transformation (see Table 5.1.) The only dynamical degrees of free-
dom are the two transverse components of A, and we can go to the Coulomb gauge
to make this explicit. In Coulomb gauge A° satisfies the Poisson equation, and is de-
termined by the external charges.
The canonical energy-momentum tensor is, according to (4.26),

Tho = mqivgr g, — gtoL = —F*'3"4 - gL (5.31)
which can be rewritten using the equation of motion:
T'::LQ:'—F#VFavdggL?av(FMVAa) (532)

The last term is not symmetric in u and «, and not gauge-invariant. However, it is a
total 4-divergence antisymmetric in u and v, and is conserved because d,d,(F*"4%)
= (). As discussed in Section 4.5, such a term has no effect on the conservation law
and the definitions of total energy and total momentum, and may therefore be omit-
ted. Thus we take as energy—momentum tensor the symmetric and gauge-invariant
tensor

T# = _FuF, — gkl (5.33)

TABLE 5.1 Fields and Canonical Conjugates

Field Canonical Conjugate Remark

A° 0 Not dynamical variable
A -E Only transverse part physical
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which satisfies
3,Th =0
The trace of the tensor vanishes:
Te=0
It is now straightforward to obtain the Hamiltonian density:
H=T0=_FO*g, (= . (E+B?)
The momentum density (the Poynting vector) is
Sk=T%=FUFW = IE'R/
The total Hamiltonian / and total momentum P are given by
H=1 [ + B)
P= J d*rExB
The conservation of energy and momentum correspond to the statements

j—ﬂ{+ V-8=0
ot

J :
—S+ 9% =0
or

where
Tr=(E/EX+ BB + éjk(E2 + B?)

is the stress tensor.
According to (4.47), the generalized angular momentum tensor is

M/La.e = xaTIJfB — xBTF-ﬂ'
which satisfies the conservation law

3, MHB =0

(5.34)

(5.35)

(5.36)

(5.37)

(5.38)

(5.39)

(5.40)

(5.41)

(5.42)

It follows that the total angular momentum J and the Lorentz boost K are given by
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J=fd3rr><(E><B)

K=mP-rH (5.43)

54 QUANTIZATION IN COULOMB GAUGE

To quantize the electromagnetic field, we must first eliminate all unphysical de-
grees of freedom by fixing the gauge, and in the following we shall use Coulomb
gauge.! In the absence of external charges, we can set 4° = 0, and write the Hamil-
tonian in the form

H=: [ar @41V x AR (VA=0) (5.44)
The canonical conjugate to A 1s -E = 4 A/dr, and we would normally impose the
equal-time commutation relation [E/(r, 1),4%r’, )] = 18,8 (r - r'). But this is incor-
rect here, because the right side is not consistent with V-A = 0, nor with one of

Maxwell’s equations V-E = 0. We therefore replace 8,8(r — r') by its transverse
projection, and take

[E(r, 1), A", )] = 8 T(r - ") (5.45)

where the transverse delta function 3 7(r — r’) is defined by

&k i\
T@)= | ~——=8,— — le** 46
6_1k(r) (217_)3 ( Tk \k\2 )e (5 )
and satisfies
#8h(ry=0*8T(r)=0 (5.47)

A complete set of solutions to Maxwell’s equations in a periedic box of volume
Q) are the transverse plane waves

G.(k)ei‘ Kr-wjt) W = lkl

where €(k) is a unit polarization vector normal to k. For each k, tpere are two inde-
pendent polarization vectors €,(k) and €,(k); and €,(k), €,(k), k together form a
right-handed coordinate system:

k€ (k)=kek)=0

'For quantization in other gauges, see Huang [1].
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(k)€ (k) =4,

k
k) x €,(k) = —
€,(k) x (k) K (5.48)

Having chosen €,(k), €,(k), there is still arbitrariness in the choice of €,(—k), €,(—Kk).
By convention, we choose

€,(-k) = €;(k)
€,(—k) = —€,(k) (5.49)

as illustrated in Fig. 5.1. The following sum over polarizations results in the trans-
verse projection operator (see Problem 5.2):

. 2 , kk/
19(k) = > €l(k)ei(k) = 8; - e (5.50)
s=1
We now expand the field in terms of the transverse plane waves:
1 2
A =N N K4 F(1) kT
(r0)=2 s > elllla(le™ + a, (ke ™]
. Wy 2 . - .
M, 0= =), =0 > ellalie™” - al(k)e ] (5.51)
k s=1

The commutation relations (5.45) are satisfied by imposing the commutation rela-
tions

€i(-k)  Ei(k)
€(-k)

€x(k)

Figure 5.1 Polarization vectors of an electromagnetic wave.
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lay(k), a (p)] = 8,8y
[ai(k),a,(p)] =0 (5.52)

where a (k) is the annihilation operator of a photon—a field quantum of momentum
k and linear polarization s. In the free-field case, the time-dependent operator
A/(r, 1) is simply obtained by replacing (k'r by (k' r — wy) in the exponents in
(5.51), because

ea(p)e ™ = a(p)e " (5.53)

The Hamiltonian and the total momentum operator of the electromagnetic field are
given respectively by

H=13 klalak) + 3]

k,s

=> kal(kayk) (5.54)

K,s

These equations show that photons are boson with energy-momentum relation w, =
|k|. The vacuum state |0) is the state with no photons. All other states of the system
can be generated by applying creation operators repeatedly to the vacuum state.

In the limit () — o, the expansion (5.51) becomes a Fourier integral:

A, 0)= [ 52 \/-2— Ze(k Slalk, s)e* + al(k, e *T]  (5.55)

Qmy’

where we write €(k, s) = €/(k) for consistency in notation. The continuum form of
the annthilation operator is

a(k, s) = VQa, k) (5.56)
which obeys the commutation relations
[a(k, 5), a'(k’, s)] = Q7)*8,, 8k ~ k) (5.57)

The Hamiltonian and total momentum now take the forms

12 Pk
H==> Z [ 2 kla'(k, s)a(k, 5)

2 4%
P= f G ka'(k, s)a(k, s) (5.58)
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5.5 SPINANGULAR MOMENTUM

According to (5.43), the angular momentum density is
u=rx[Ex(V x A)] (5.59)

We define the spin density to be the part that is independent of the origin of r. To
find it, let us first rewrite the preceding in component form:

ul = elkehtmemrax gty A9 (5.60)
Now combine the last two € symbols according to the rule
ekinenam = 8,8, — 81,8, {5.61)
We then obtain
u = €M(xIE19, A7 - X'E"8, A%)
= e [X/E19, A% ~ 3 (W E"A¥) + x/(3,E") A* + E"4R (5.62)
The factor ¥ in the first term cannot be removed by manipulations involving J,, be-
cause j # k. The second term is a total 3-divergence, and can be ignored. The third

term vanishes because V-E = 0. The last term is independent of r, and is identified
as the spin density:

s=ExA (5.63)
This is the spatial part of the tensor
sHY = AR bgmP (5.64)

where 24 is the spin matrix given in (3.49). The spin angular momentum is given
by

s=[arExA (5.65)
Using the expansion (5.51), we obtain

s= ig k[ax(k)ta,(K) - ! (K)ay (k)] (5.66)

where k = K|kj. To diagonalize this, we make a linear transform to circularly polar-
ized photons.
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The polarization vectors for circularly polarized photons are

|
€. = \—/—-—2‘(€, + i€,) (5.67)

where the label k has been suppressed. As one can easily verify, the plane wave
Refe, efkr-ax] (5.68)
represents a traveling wave whose polarization vector rotates in a right-handed
sense about k. This is called a left-circularly polarized wave, because an observer
facing the incoming wave would see the polarization rotating to the left. Similarly,

€_ corresponds to a right-circularly polarized wave. The annihilation operators for a
circularly polarized photons are given by

1
Left-circularly polarized: a (k)= 5 [a,(K) ~ iax(Kk)]

1
Right-circularly polarized: a(k)= ——\7_5[a‘(k) + iay(k)] (5.69)

The commutation relations are

[a.(K), a L(p)] = 8yp
(a.(k),a.(p)] = [a.(k), al(p)] = 0 (5.70)

In terms of these, the spin operator becomes diagonal:
S= Z f([a+(k)fa+(k) ~af(Ka_(k)] (5.71)
K
This shows that the photon has spin 1, but there are only two helicity states. The he-

licity +1 corresponds to left-circular polarization, and ~1 corresponds to right-circu-
lar polarization:

a.(K) annihilates helicity state + | (5.72)

In terms of circular polarization, the field operator has the expansion
1 .
A(r,0)= ; Vied {[ex(K)a.(k) + e (k)a_(k)le'*"

+ [eX(K)al(k) + eX(k)a'(k)] e} (3.73)

In the convention (5.49) the sense of the circular polarizations remains unchanged
when k — -k:
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€.(-k) = ie.(k)
e (k) = —ie (k) (5.74)

5.6 INTRINSIC PARITY

Let us make a coordinate transformation r — r’, with the transformation law
3
X =" pik'k (5.75)

J=1

Since A* is a vector field, this induces the unitary transformation U according to
(3.54):
3
UAU™ = pihak(r') (5.76)
=1
where 4/(r) = A/(r, 0). For spatial reflection r' = —r, we denote the unitary transfor-
mation by ?:
PAHr)P ! = —4*(-1) (5.77)

This establishes the fact that the electromagnetic field has odd intrinsic parity.
To investigate how photon states transform, we substitute into the preceding the
expansion (5.51). Using the abbreviation

2
a(k) = > e(K)a (k) (5.78)
s=1
we have

TA([')?‘) = Z T\/_}_ﬂ)}{(i[Ta(k)?]eik-r + Taf(k)?_le,ik.r]

k

l ) .
=2 Vaop ke +altke]

1
B _Z V2w, )

[a(-K)e*T + at(—k)e k] (5.79)

where the last relation is obtained by changing the summation variable from k to
-k. Thus

Pa(k)?! = -a(-k) (5.80)
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which gives
Pa (k)P =—-a,(-k)
Pa, (k)P = a,(—k) (5.81)
In terms of circular polarization, we obtain
Pa(K)P = —az(-Kk) (5.82)
A one-photon state of momentum Kk, linear polarization s, is defined by
k, s) = a {(k)|0) (5.83)

States with circular polarization are given by
Ik, £) = a(K)0) (5.84)
which are linearly superpositions of states with linear polarizations:
1
k, +) = —=[k,1) £ ik,2 5.85
lk, +) V3 [k, 1) * ik,2)] (5.85)

Assuming that the vacuum state is invariant under reflection, we have
Pk, £) = Paf(k)?'|0) = |k, F) (5.86)

Thus, under spatial reflection, left and right are interchanged, and the state vector
changes sign.

5.7 TRANSVERSE PROPAGATOR

We now calculate the photon propagator in Coulomb gauge:
DH(x) = —i{0|TA(x)A4/(0)/0) (5.87)

where the subscript “T” reminds us that the field is transverse: #4* = 0. Expanding
the field in creation and annihilation operators, we have

g0 (kK (0K, 5)dtK, )0 *T (x> 0)
DTJ(")"(zm6 mss,{(md(k’,s’)a”(k, 9)|0Ye** (x> 0) (5.88)
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where
w=ky (5.89)
and we use the abbreviation
a'(k, s) = é(k, s)a(k, s) (5.90)
The vacuum expectation values are easily calculated:

Olai(k, s)a/t(k’, s")I0) = (Ola/(K’, s")a'l(k, 5){0)

=(2m)38,, 8k -k ek, s)ék’, s) (5.91)
Therefore

i) - f__ efx-olt (k) (5.92)

CQmy

where /¥ is defined in (5.50).This can be rewritten as a four-dimensional Fourier in-
tegral, with the help of the identity

e"""l’[ 1 x efim

= dy——7—— o* 5.93
2w 2mi _xuwz—uz—in (=07 (593
The final form is
. d4k eik~x )
Dy Tk 5.94
T(x) f(z )4 k2+l"l] ( ) ( )

where &2 = ky2 — |k|*. The Fourier transform is

- ] k'k/
Di(k) = e +1‘n(5”_ lk7) (5.95)

This is not Lorentz-covariant, for it is in Coulomb gauge. To prove that the quan-
tized field theory is covariant, we should exhibit the gauge transformation that will
maintain the form of the transverse propagator under Lorentz transformations.
However, this is unnecessary, as we shall show in Chapter 11. The point is that non-
covariant part of the propagator is physically irrelevant, because, owing to current
conservation, it does not contribute to the scattering ampiitude.

5.8 VACUUM FLUCTUATIONS

The vacuum state is neither an eigenstate of E nor B, since these operators annihi-
late or create photons singly. Although the fields average to zero, their mean-square
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fluctuations are large. This can be shown via direct calculation, as in Problem 2.8.

We can also demonstrate it through the following argument. The energy density in
the vacuum state is

L(O[E2 + B0) = (O]E2)0) (5.96)

for the free-field theory is invariant under the duality transformation. Equating this
with the zero-point energy per unit volume in (5.54), we have

1 1
(0IE2|0) = 55; %= f d3kK| (5.97)

which diverges because of the short-wavelength modes. This divergence is harm-
less, since only energy differences have physical significance; but the long-wave-
length part of the fluctuations gives rise to observable effects, including the Casimir

effect.

We illustrate the essence of the Casimir effect in a simple one-dimensional ex-
ample, leaving for the next section a more detailed treatment. Consider the modes
of a harmonic oscillator in a box of length L. The zero-point energy is

|
Ey(L)= 5>, @flw)
w=% (n=12,...%) (5.98)

where we have introduced a cutoff function flw), with the properties

f0)=1
flw) = 0 (5.99)

There is a cutoff frequency w,, above which f{w) decreases rapidly to zero, and we
take the limit w, — % eventually. Suppose that a partition 1s inserted, such that nor-
mal modes are required to have a node at the wall. The modes near the cutoff fre-
quency are hardly affected, because their wavelengths are vanishingly small, There-
fore, there are now fewer normal modes below the cutoff, as illustrated in Fig. 5.2,
and the zero-point energy decreases.

For definiteness, choose the cutoff function to be

Hw)=e e (5.100)

The zero-point energy for a box without partitions can be easily calculated, with the
result
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Cutoff
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Figure 5.2 When a wall is inserted into a box, those normal modes that do not have a node at the wall
are suppressed. Consequently, the number of modes below a fixed frequency decreases, and the zero-
point energy is lowered.

™ 1 ng m
8L o2 55 " oar O 5.101
8L sinh*(w/wl) “—= 277  24L (wc*) ( )

Eo(L) =

Now insert two partitions centered about the midpoint, separated by distance a. The
box is divided into three compartments—one with length a and the others with
length (L — a)/2—and the zero-point energy becomes

L-a La? T T
B@) = Eoa) + 2By~ oz s g e (5102)

In the limit L — oo, the attractive force between the walls is given by

B dE(a) _ 7

P YY) (5.103)

which is independent of the cutoff.
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5.9 THE CASIMIR EFFECT

We now calculate the force between two metallic plates in the electrodynamic vacu-
um. The first task is to obtain the normal modes of the electromagnetic field in a
perfectly conducting box of size a x b x ¢. We choose one corner of the box as ori-
gin, and use Coulomb gauge. On each face of the box, the boundary condition is

where the subscripts || and ~ denote respectively the tangential and normal compo-
nents. We put B=V x A, E =-A to obtain

Aj=0 (V=xA), =0 (5.105)
On the y—z plane, for example, the boundary conditions are
A,=4,=0 3,4, - 3,4,=0

The first says that A is normal to the surface, and therefore the second condition is
automatically satisfied. We must, however, satisfy the gauge condition

9 A, + 3,4, + 3,4,=0 (5.106)
which leads to
d,4,=0 (5.107)

Thus, the boundary conditions in Coulomb gauge are
Jd
A=0 —A. =0 (5.108)
on

For A,, for example, the conditions are

[6:44x, ¥, )]y =0 = [3:Ax, 3, 2)]x=p =0
ALx, 3, 0)=A4x, y,a)=0
A,y 0)=A,(x, y,c)=0 (5.109)

A complete set of solutions to the wave equation is given by

A, = = cos(kx) sin(k,y) sin(kz)
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A, = sin(k.x) cos(k,y) sin(k,z)

A, = sin(k.x) sin(k,y) cos(k,z) (5.110)
where
ko= =l p= T (5.111)
a b c

withn,=1,2,. .., «. The frequency is given by
w, = Vk}+k}+ k2 (5.112)

If all three components of k are nonzero, there are two independent solutions corre-
sponding to the + signs in 4. If any component of k vanishes, there is only one so-
lution. For example, if k, = 0, then A, = 4, = 0, and the + sign does not make any dif-
ference. We can now obtain the zero-point energy:

Efabc)=% > ViEZ+RF(VIZ+k2) (5.113)
kg
+ > VR HIZF(VE+ K+ ) (5.114)
kel

where F(k) is a cutoff function.

Consider now a large cubicle box of edge L, which is divided into three com-
partments as shown in Fig. 5.3, with two parallel metallic plates inserted normal to
the x axis, separated by a distance a, symmetric about the midpoint. The zero-point
energy is the sum of those of the compartments. That of the middle compartment, of
dimensions L x L x g, with L — o, is given by

[\ L

L

Figure 5.3 Two metallic plates separated by distance a in the electrodynamic vacuum, which is repre-
sented by a cube of edge L — x,
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Ua) = Eya, L, L)

12 kad m2n? w2n?
= dk| k F(k) +2 2+ 24+
2Q2m)? f li k) ,; k a’F (\/k a’ ):,

L? mLr &
- = dekkF(k)+ " Z. G(n) (5.115)
where
G(n)=f:dy\fyF( '”:/;) (5.116)

We can rewrite the n-sum using the Euler-MacLaurin formula [2]
s = 1 BZ ’ B4 rre
ZG(n) :f dn G(n)+ —GO)~ ==G'(0)- —G""(0)+--- (5.117)
oy o 2 2! 41

where B, = ¢, B, =—35. Using G'(0) = 0, G'"’(0) = —4, and the fact that all higher
derivatives vanish at n = 0, we obtain

= e 1= mVy 4
= + = VyF -
2,60 fo dn Gln) + 5 jo DY ( a ) 4130
This leads to
77.2
Ula) = LZ[Cla +C,- W] (5.118)
where
- L [ aeve 2 i
G 412 Yy deO k )
1 oC
C=— | dk iR (5.119)
87 Jo

The zero-point energy in the box in Fig. 5.3 is given by
E(a) = Ua) + 2U((L — a)/2)

:LZ[C, +2C, - #—5} +O(L™)

20a

This gives an attractive force per unit area between the plates:



88 Electromagnetic Field

| 0E(@)
S T 2400 (5.120)
or, in practical units,
mhe 0013
f: —W =- a4 dyn/Cm2 (5121)

where a is in micrometers. Figure 5.4 compares this result and early measurements
[3], with reasonable agreement. More recent measurements of a similar force be-
tween a plate and a sphere have achieved much greater experimental accuracy [4].

5.10 THE GAUGE PRINCIPLE

We now discuss how the electromagnetic field should be coupled to charged fields.
A nonrelativistic charged particle obeys the Schrédinger equation

1 d
[~——(V +ieA) + eqﬁ} Wr, 1) = i~— g, 1) (5.122)
2m at
Dyne/cm 2
%
0.20 — X
015 |

010 |

0.05 —

0.01 [— |
0 0.5 1.0 1.5 20

d (micron)

Figure 5.4 The Casimir attractive force between two metallic plates in the vacuum: x—chromium
steel, o—chromium; solid line—theory. [Data from M. J. Sparnay, Physica 24,751 (1958).]
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where A, ¢ are respectively the vector and scalar potentials of an external electro-
magnetic field and e is the charge of the particle. We can derive the form of the in-
teraction as follows. In the absence of external fields, the Schrodinger equation is
invariant under a global gauge transformation

Y(r, 1) — e “i(r, 1) (5.123)

where w is an arbitrary real constant. The invariance depends on the fact that g%y
transforms in the same manner as . If we make a local gauge transformation, with
w dependent on r, ¢, this condition will not hold, for we have

M — e[ G — i( P w)] (5.124)

To make the equation invariant, we must cance! the terms involving #“w. This can
done by introducing the fields A* = (A,¢) through the replacement

—(Zﬂ,[/(x) — [—ﬁ— + ieA“(x)} (x) (5.125)
ax,, ox

i

The Schrédinger equation is now invariant under the local gauge transformation

AM(x) —> AK(X) + Fx(x)
W(x) — exp[—iex(x)]uAx) (5.126)
The quantity
DH(x) = [0 + ieA™(x)]d(x) (5.127)

is called the covariant derivative, A* is called the gauge field, and the recipe for re-
placing o# by D* is called the gauge principle.

Actually, the gauge principle works only for a fully relativistic theory. For the
nonrelativistic Schrédinger equation, it fails to produce magnetic moment terms of
the form —u-V x A, which has to be put in by hand, with p arbitrary. In the rela-
tivistic Dirac equation discussed in the next chapter, the gauge principle gives the
full electromagnetic interaction of the electron, with a completely determined mag-
netic moment.

As a relativistic example, consider the complex scalar field with Lagrangian
density

Lg(x) = o o —m2 it b (5.128)
which is invariant under the global gauge transformation

Y(x) — e yY{x) {5.129)
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where w is a constant; but it is not invariant when o depends on x. To extend the
symmetry to local gauge invariance, we make the replacement

D+ = g + jedH(x) (5.130)
where e is the electric charge. The Lagrangian density is generalized to
L(x) =3 FWF,  + (D*Y)*DFf —m*y* s (5.131)
which is invariant under the local gauge transformation

Bx) — e XD (x)
AR(x) — AP(x) + IFy(x) (5.132)

where x(x) is an arbitrary space—time function. The Lagrangian density of the free
electromagnetic field is included to make the system self-contained dynamically.

PROBLEMS

5.1 The Lagrangian density for the electromagnetic field in the presence of an external cur-
rent density j* is

L=—-1% MVFM_.J'MA“

What is the condition on j* for this to be gauge-invariant?
5.2 Consider the symmetric tensor

2 .
1= €6l
a=1

(a) Show that ¥T% = k/T%=0,and T#=2,
(b) Using the preceding conditions show the statement in (5.50):

y kk/
MK =8,

5.3 Verify that the field operators (5.51) satisfy the commutation relations (5.45). Show, in
particular, that the transverse delta function arises from the transversality of the polar-
ization vectors expressed by (5.50) .

5.4 Rotations Apply the transformation law (5.76) to rotations. In particular, let R be a ro-
tations of the coordinate system about z axis through ¢, and ¢ be that about the x axis
through
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x=x"cos ¢ty sine x=x'
R:{ y=-x'sinp+y'cos ¢ Gy y=-
z=27 z=-Z

Show that the creation operators transform as indicated in the following:

Ral(K)R™ = e~#al(K) &l =al(k)
Ral(-K)R" = e°al(-k) ¢al(-K)&" = al(k)
Ral(K)R! = e'eql (k) &al(ky¢! = al(-k)

Ra'(-K)R"! = e7*al(-k) &al(-K) & = al(k)

5.5 Two-Photon States [S] We can obtain interesting information about a state of two
photons by examining its behavior under rotations and reflection. Consider two photons
with momenta k and —k. There are four independent states of polarization, which can be
classified according to circular polarizations;

++) = al(k)al(-k){0)
() = al(k)a(-k)|0)
+) = al(k)al(-k)|0)
) = al (k)a!(—k)|0)

(a) Verify that, in terms of states with linear polarization,

) + |--) = [al(K)ay(-k) - a3(k)ai(-k)] [0)
[+ = [a/(K)a(-k) + a(k)a (k)] [0}
[+-) = [a|(K)a}(-K) + ay(K)ay(-K) + ia| (K)a)(~k) — iay(K)a] (k)] (0)
) = [a1(K)al(-K) + ay(k)as(-k) — ia}(K)a)(-k) + ia}(K)a](-K)] 0)

From this, note that the polarization of the two photons are correlated:

¢ In the state |+ +)+——) the planes are parallel.

¢ In the state [++)—-—) the planes are orthogonal.

¢ In the states +—) and |-+), the planes have equal probability of being parallel or
orthogonal.

(b) Work out the transformation laws for the four polarization states under R, &P, using
results of the last problem, and the fact that the vacuum state is invariant. Verify the
results summarized in the table of eigenvalues (listed whenever the state in ques-
tion is an eigenstate of the operation indicated):

FH-= ) B D
R 1 1 eZie  plie
£ 1 1

P I -1 1 1



92

5.6

Electromagnetic Field

(¢) From the preceding table, verify the following quantum numbers for a two-photon
state:

® The only state with odd parity is |++)——-). There are three states with even par-
ity: [H)+}-=), [+-), and [-+).

® For odd total angular momentum J = 1,3,5, . . ., the only possible states are |+—-)
and |-+). The reason is as follows. The other two states are both eigenstates of R
and £ with eigenvalue 1. However, an initial state that is an eigenstate of R with
eigenvalue 1 must have the rotation properties of the spherical harmonic ¥°,
and therefore changes sign under & for/=1,3,5, . ..

® For total angular momentum J = 0,1, the only possible states are [++) +|——) and
[++)~]-—), because the other two states have spin projections + 2 along the z
axis, values that are too large for J=0,1.

(d) Verify that a two-photon state cannot have J = 1.

This gives Yang’s selection rule [6): A spin 1 particle cannot decay into two photons. For
example, just by observing that the #° meson decays into two photons, we can conclude
that its spin cannot be 1. (It is, in fact, a spin 0 particle.)

Dirac Monopole A magnetic monopole has a magnetic field B, = gt/r?, with total
magnetic flux 47 g. Accommodate such a magnetic field into Maxwell’s equations in
the following manner. To keep VB = 0, postulate that there is a return flux 4 g con-
centrated in an infinitely thin string attached to the monopole. The vector potential then
consists of a part due to the monopole, and a part due fo the string:

A= Apolc + Astring

where A, is any vector potential that satisfies V' x Apole = Byring, and is, of course, de-
termined only up to a gauge transformation.

(a) Give one solution for A,

(b) The shape of the string can be changed through a gauge transformation. For a
straight-line string leading from the monopole to infinity, show that the vector po-
tential of the string is of the pure-gauge form

Astring = —Zg Ve

where 6 is the azimuthal angle around the string.

(¢) Consider a quantum-mechanical particle of electric charge e in the field of the
monopole, with wave function . Show that the string can be transformed away
through a gauge transformation

l/l — e—Zigeﬁw

(d) Since ¢ has to be single-value, the coefficient of 6 in the exponent must be an inte-
ger n, and thus

ge=n/2
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This is the Dirac quantization condition. The mere possibility that a monopole can
exist quantizes the electric charge.

Show that the total angular momentum of the system consisting of a charge e and a
monopole g points from the charge to the monopole, and has the magnitude ge. Ob-
tain the Dirac quantization condition by quantizing the angular momentum.

5.7 Cutoff Functions

(a)

(b)

Calculate the vacuum energy (5.98) for a one-dimensional system using a sharp
cutoff, which corresponds to f(w) = Hw, — w), and show

Lw? 3w,
E(a) = ir 2 (sharp cutoff)

Since this is independent of 4, there will be no force between inserted walls.

Show, on the other hand, that any continuous cutoff function will have a nonzero
cutoff-independent force. To do this, write

= b
par- 2 Sar( 22)
n=1 C

Since the argument of f approaches a continuous variable in the limit w; — o, we
can approximate the sum by an integral, using the Buler-MacLaurin formula

(5.117):

T ™ B,
= — —_— + -
S Y) f dnnf T ar

Lw? J’ T
C d ot -2
Tor y y ) 24l Ow?)

The cutoff-independent term is the same as that in (5.101).
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CHAPTER SIX

Dirac Equation

6.1 DIRAC ALGEBRA

A relativistic wave equation must treat space and time on the same footing. The
Klein—Gordon equation does that, but it involves second time derivatives, a feature
responsible for its failure as a one-particle equation. Dirac tries to remedy this by
proposing a first-order differential equation. To obtain a equation for the wave func-
tion s that is linear in the space—time derivatives d,4, Dirac writes

(iy#d, — m)p(x) =0 6.1)

where the y* are numerical coefficients, so far undetermined. To satisfy the rela-
tivistic kinematics, y(x) must also satisfy the Klein—-Gordon equation. Multiplying
from the left by (iy*d,, + m), we have

0= (iy#d, + m)(iy*d, — m)yrix)
=—(y*y" 3,9, + m*)(x)
=z (y*y" + ¥"¥)9,9, + m*] Y(x) (6.2)

This reduces to the Klein—-Gordon equation

(CF + m*)lx) = 0 (6.3)
if and only if

Yy Y= 28 (6.4)

This algebraic relation defines four objects y*, which anticommute with one anoth-
er, with

94
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(Y)Y =1
(792 =-1 (6.5)

Clearly y* cannot be numbers. They can be represented by matrices, called Dirac
matrices.

According to (6.4) y*vy* should be a Hermitian matrix. Thus y* is either Her-
mitian or anti-Hermitian. Putting u # v and taking the trace of both sides in (6.4),
we obtain

Try =0  (u=0,12,3) (6.6)

This condition immediately rules out matrices of odd dimension. It also rules out
dimension 2, for there are only three independent traceless 2x2 matrices—the Pauli
matrices. Therefore, the dimension must be at least 4. That a 4x4 representation ex-
ists can be shown by explicit construction.

Define the following 4x4 Hermitian matrices:

0 o 1 0
k — =
o (U;( 0) B (0 4 ) (6.7)
where | stands for the 2x2 unit matrix, and o* are the 2x2 Pauli matrices:
0 1 0 — 1 0
! — = =
o (1 0) o? (i O) o (0 4) 68)

We shall not use different notations for 2x2 and 4x4 matrices, since the context usu-
ally makes the meaning clear. It follows from the definitions that

(ak)2 = Bz =1
{a*, B} =0 6.9)

A standard representation for the Dirac matrices is

7°:B=((1) _?) (6.10)
k
,yk:,yﬂak:(vag ((’)) 6.11)

The matrix " is Hermitian with (y")? = 1, and * is anti-Hermitian, with (y*)? =-1:

V=00 )P=1
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Yi=-(yHT (¥ =1 (6.12)

From these we can show
Yoy = (6.13)

The representation given here is not unique. A unitary transformation Sy*S-! gives
an equally acceptable set of matrices, since such a transformation obviously pre-

serves (6.4).

The y* and their products, together with the unit matrix, generate a set of 16 in-
dependent 4x4 matrices, in terms of which any 4x4 matrix can be expanded. We in-
troduce special symbols for some of their products:

¥s=iyy'Yy
i
o= (Y = PP (6.14)

The “fifth” Dirac matrix s is Hermitian, with square 1, and anticommutes with all
four y*:

(?’5)T =Ys
(Ys)z =1
{vs, ¥} =0 (6.15)

In our standard representation it has the form

0 1
(1 o) (6.16)

The generalized Pauli matrices o** = —g#* have six independent members:
0% = ik
oV = ebkgk 6.17)

where o denotes the matrix of 2x2 blocks made up of Pauli matrices along the di-
agonal. It is straightforward to show that

ot = ysat

R s (6.18)

A complete set of 16 independent 4x4 matrices I, is given in Table 6.1. By de-
finition, we take I'y = 1. All the T, are traceless except for I'y:
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TABLE 6.1 Matrices of Dirac Algebra

r, Number
1 1
y* 4
s 4
I Zand 6
Vs 1
Total 16
T, =0 (n#0) (6.19)

The set is closed under multiplication and commutation, and is called Dirac alge-
bra. The commutators are given in Table 6.2.
An arbitrary 4x4 matrix M can be expanded in the form

15

M=——2:¢T, (6.20)
n=0

where

! Tr M

cy= —Tr

04
Tr(MT,)
= —0 6.21
Cn (T2 (6.21)

TABLE 6.2 Commutators of Dirac Algebra

(v v =2y - 2g™
(s ¥1=2ysy*
[ysy" v]=0
fysyh vsl =24
[0, y#] = 2i(y g+ — yg)
(%, ys]=0
[0, y5y4] = 0
[o*,a#*] = zi(a—wgpv_ O—Avgpu + gPighe - gnﬂg/\v)
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6.2 WAVE FUNCTIONS AND CURRENT DENSITY

Rewriting the Dirac equation in a 3-vector notation, we have

(—ia-V + Bm) y(x) = ia—lg(txl (6.22)

This looks like a single-particle wave equation with Hamiltonian
H=a p+Bm (6.23)

where p is the momentum operator. The wave function ¢(x) is a four-component
column vector called a Dirac spinor:

i

_| ¢
v\ (6.24)

Uy

where ; are complex numbers. The complex conjugate is the column vector
yr=1 "% (6.25)

and there are other types of conjugates:

Hermitian adjoint: "= (f o F of)
Pauliadjoint: §=y¢*y" =i & -y —¢b) (6.26)

The Hermitian conjugate of (6.1) reads
=i[8, 4" ()]t — mypf(x) = 0 (6.27)

Now write /' = §/°, and use yy*Ty* = y# to obtain the equation for the Pauli ad-
joint:

(0, D)y +mf=0 (6.28)
Another way of writing this is

Wiy 3, +m)=0 (6.29)
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where the overhead arrow on d,, indicates that it acts to the left.
The conserved density current is given by

=gy (6.30)
It is easy to see, with the help of (6.1) and (6.29), that

Duf* = ()Y + Iy a0

= —miap+ mih=0 (6.31)
Note that j° is positive-definite:
P == g0+ iy i * s+t (6.32)
As opposed to
Y=+ g — g — Yt (6.33)

The current j* can therefore serve as a particle current density. As we shall see,
however, the Dirac equation fails to qualify as a single-particle equation for a differ-
ent reason; namely, the energy spectrum is not bounded from below. As we shall
discuss in Section 6.9, the remedy is a redefinition of the vacuum state known as
“hole theory,” which makes the system a many-particle system. With this modifica-
tion, j° will become an operator, whose expectation values are no longer positive-
definite, but can be interpreted as charge density.

6.3 PLANE WAVES

Plane-wave solutions to the Dirac equation can be constructed by putting
P(x) = e P *u(p) 6.34)
where p# = (p°, p), and «(p) is a column vector called a Dirac spinor:

uy(p)

up)={ 24P (6.35)

ua(p)
Since yYAx) satisfies the Klein—-Gordon equation, we have

Pt —p? - m =0
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For given momentum, there are two roots for the energy p®, with opposite signs:
po=*E (6.36)

where E is defined as the positive quantity

E=+\Vp tm? (6.37)

The Dirac equation now takes the form
(p—mu(p)=0 (6.38)

where p 15 a 4x4 matrix defined by
P=vp.=¥p° - vt (6.39)
It has the property
Ph+pg=1pq (6.40)

which follows from (6.4).
To find explicit solutions, we note that

F-mp+m=p*-m?>=0 (6.41)

Thus, each column of the matrix (¥ + m) satisfies the Dirac equation. The explicit
form of the matrix is

m+ p° 0 -p? -p_
prm= p03 e CE o n (6.42)
P+ -7 0 m-p°
where
p.=p'xp’ (6.43)

The number of independent columns can be found by letting p* — 0, since the ma-
trix is a continuous function of p*. In that limit p° = +m, and the matrix becomes
proportional to

forp®>0 for p® <0

oo -
SO OO
oo oo
SO OO
SO OO
[ i e
o= O O
—_o O o
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This shows that columns ! and 2 are independent for p° > 0, while columns 3 and 4
are independent for p® < 0. The independent solutions are then columns 1 and 2 of
(6.42) for p® = E, and columns 3 and 4 for p® = —-E. We designate them as u(p, s).
The explicit solutions for p° = E are

1 0
0 1
r P-
,=C ,2)= .
u(p. 1) m+E ulp, 2)=C m+E (6.44)
P 7’
m+E m+E
The solutions for p® = ~F are
-7’ -
m+E m+FE
P )2
,3)= — ,4)= A
upd=cl —2- 1 upay=cf £ (6:45)
1 0
0 1
where
E=+\ /pZ + m2
+E
c= |Z (6.46)
2m
For a given p, these solutions form an orthogonal set:
E
uT(P, S)u(P’ Sl) = 6ss’ (647)

m

For a given energy, the wave functions above resemble those of a nonrelativistic par-
ticle of spin , and it is natural to regard s as a spin label. We shall see that this is a
correct interpretation.

Taking the Hermitian conjugate of (6.38), we have

ul(p, )T~ m)=0 (6.48)
Multiplying the equation from the right by 9°, and using the identity

Y#'Y° =p (6.49)
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we find the Pauli-adjoint equation
u(p, sSKg-m)y=0 (6.50)

Multiplying (6.48) from the right by u, and (6.38) from the left by u', and writing
out p more explicitly, we have

ul(y'p° - ¥'pr —mu =0
uH(YpO+ yipi— myu =0 (6.51)

Adding the two equations leads to the relation
R (6.52)

We can restate the orthonormality of the solutions in the form
u(p, syu(p, s') =+ b, (6.53)

where the plus sign applies for the positive-energy solutions, corresponding to s =
1,2, and the minus sign is used for the negative-energy solution with s = 3,4.

6.4 LORENTZ TRANSFORMATIONS

Under a Lorentz transformation x’ = Ax, the Dirac equation in the new frame reads
(iytd, - m' (x')=0 (6.54)

Note that ¥ remains unchanged, because it is just a numerical matrix. We relate the
new wave function to the old through a linear unitary transformation:

P (x"y = Sy(x) STS=1 (6.55)
where S is a nonsingular 4x4 unitary matrix. To demonstrate Lorentz covariance, we
shall show that there exists a nonsingular transformation on y* that will restore the
Dirac equation to the old form. Putting d, = A4, and multiplying the equation by
S-! from the left, we obtain

Sy ALS, — m)Sx) =0

which reduces to the original equation if (S™'y*S)A}, = y* or

SIS = Asyv (6.56)
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The existence of S will be demonstrated by explicit construction.

It suffices to consider an infinitesimal Lorentz transformation

XK= P+ b (6.57)
where w# contains six infinitesimal parameters, the three rotations & and the three
boosts * of the coordinate frame:

ka _ wlr() _ I)k

o = —glk gk (6.58)
We put

S=1+iR

(6.59)
where R is an infinitesimal Hermitian matrix linear in wf*. To first order in w#, the
condition for covariance is

wiy* = i[y%, R] (6.60)
We can write R as a linear combination of the I', of Table 6.1, whose commutators
are listed in Table 6.2. As we can see, only o* can contribute to R. Thus R must
have the form R = Cw,,,0**, and a short calculation determines C = ~3. Therefore

S=1- iwwa“”

(6.61)

This demonstrates the Lorentz covariance of the Dirac equation. Comparison with
(3.42) shows that the spin operator is

(6.62)

Writing S in terms of the parameters of the infinitesimal Lorentz transforma-
tion, we have

S

i
l-=v-a+—0 0
2 2

(6.63)

A finite rotation about a given axis can be built up from successive infinitesimal ro-
tations about the same axis:

. (7] A 0
S=e‘°“”2=c055 +i6- osin— (6.64)
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where 6 is a vector whose direction is the axis of rotation, and whose magnitude is
the angle of rotation. Similarly, for a Lorentz boost of the reference frame with fi-
nite velocity » corresponds to

S=eta2= cosh% —¢a sinh% (6.65)

where
¢=vtanh'y (6.66)

The advantage of using ¢ is that, unlike o, it is additive for successive boosts. We
note that S is unitary for rotations, but not for Lorentz boosts.

The Dirac equation realizes a finite-dimensional representation of the Lorentz
group. As we have seen in Chapter 3, the smallest faithful representation of the
Lorentz group is of dimension 2. Here the dimension is doubled in order to repre-
sent spatial reflections.

Consider the total reflection of the spatial coordinate system

r=-r =t (6.67)

In the transformed frame, the Dirac equation reads

0.9 4O ‘ot
(l'yo*a—t;‘%l’ykm—m)l/)‘(x):O

Putting ' (x") = Sy(x), and multiplying the equation from the left by $!, we have
(S1PS) <~ i(SIAS) 2 —m] W) =0
o ok

which exhibits covariance if there exist S that commutes with 72, and anticommutes
with ¥, with $? = 1. An obvious choice is

S=0 (spatial reflection) (6.68)

which shows the necessity for 4x4 matrices.
For total space-time reflection x” = —x, we have

(-=iv¥0, —m)Y' (=x) =0
with complex conjugate

(Y43, — mp*(—x) =0
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Accordingly, we put
' (=x) = SY*(x)

To restore the original equation, we seek S that anticommutes with y#, and with
S$2=1, and an obvious solution is

S=s (space-time reflection) (6.69)

For time reversal, which is the product of space—time reflection with spatial reflec-
tion, we have

S = Y0y, (time reversal) (6.70)

This is an algebraic transformation that preserves the form of the Dirac equation
when ¢ is replaced by —; but it is not the operation that governs physical states,
which must be taken as states in quantum field theory. In the next chapter, we shall
see that physical time reversal must involve complex conjugation of the state.

For a plane-wave state we have

P(x) = e P*u(p, 5)
Y )y=e?u'(p', ) (6.71)

where p’ is the 4-momentum with respect to the new frame and s’ labels the new so-
lutions. Since p-x is invariant, we have

u'(p',s") = Su(p, s)
@(p',s") = u(p, 5)S™ (6.72)

In general, we can reshuffle the four solutions in the new frame; but since a Lorentz
transformation preserves the sign of the energy, the mixing of solutions can occur
only among s = 1,2, and separately among s = 3,4. With this freedom understood,
we set s’ = s by convention. It is straightforward to show (Problem 6.2) that

_[ups) (=12
EC R S R ©7

which indicates that positive-energy and negative-energy states have opposite
parity.

We see from (6.72) that uu is invariant under a Lorentz transformation, and
uy*u transforms like a 4-vector. More generally, the transformation properties of
ul™u are listed in Table 6.3.
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TABLE 6.3 Transformation Properties

uu
uytu
uysytu
uoctu
uysu

Scalar
Vector
Pseudovector
Tensor
Pseudoscalar

6.5 INTERPRETATION OF DIRAC MATRICES

The Dirac matrices a* are velocity components in the sense

dxk

- :i[}{, xk]:a’k

dt

(6.74)

Individually, each component has eigenvalues +1, but the components do not com-
mute with one another. This conjures up the picture that the electron performs a cu-
rious dance at the speed of light about its average motion called the zitterbewegung.
But this motion is not directly observable. (See Problem 6.5.) Expectation values of

the Dirac matrices, on the other hand, have physical significance.

Let |E) be a normalized energy eigenstate:

H|E)=E|E)
(E|E) =1

We have the trivial identity

(E(HO - OH)|E) =0

which can be rewritten in the form

(E|(HO + OH - 20H)|E) = 0

This gives

(0) = 551, 0))

where (O) = (E|O|E)Y/(E|E). Choosing for O the Dirac matrix 8, we find

m

By="Z=VI-2

E

(6.75)

(6.76)

(6.77)

(6.78)

(6.79)
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As we have seen, a is the velocity. Hence the magnetic moment is
€
p=orxa (6.80)

where e is the electric charge. Now put O = w in (6.78). A straightforward calcula-
tion gives

e
()= (L +28) (6.81)

where L = r x p is the orbital angular momentum and S = @72 is the spin operator.
This shows that the gyromagnetic ratio associated with the intrinsic spin is 2, but
that associated with orbital motion, as in spin—orbit coupling, is 1. We shall verify
these properties, and give physical interpretations.

6.6 EXTERNAL ELECTROMAGNETIC FIELD

The Dirac equation in the presence of an external electromagnetic field A#(x) is

[iv“D, —m] ¥(x) =0 (6.82)
with
D, =4, +ied,(x) (6.83)
The Hamiltonian has the form
H=a m+PBm+ed (6.84)

where ¢(x) = A%(x) and r is the kinetic momentum
T=p-—ecAx) (6.85)

where p is the one-particle momentum operator defined by [p/, x*] = —id,,.
It is straightforward to verify the equations

9T _ (E+axB)
dr ¢
%;: =2Tx a (6.86)

where E and B are respectively the external electric and magnetic fields. The first
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equation is the analog of the Lorentz-force equation, and the second describes spin
precession. Taking the dot product of the second equation with 1, we have

d
1r~7;'—=21r-1r><a=21rxqr-a (6.87)
Noting that
mxmw=—e(AXp+pxA)=—ieB (6.88)
we can write
- 7‘; = iea B (6.89)

Combining this with the equation for d#/dr, we obtain

d(o- m)
——— =¢gE 6.90
o eo (6.90)
In arriving at this equation, we used the identity o x @ = 2ia, which can be obtained
from o x o = 2io by observing that a = y;0.
The equations (6.89) and (6.90) have interesting physical consequences [1]. For
E =0, (6.90) states

_d_("‘;,_l"i)_ =0 (in pure magnetic field) (6.91)
That is, the spin projection along the velocity, is a constant of the motion in a pure
magnetic field. This means that the precessional frequency of the spin is exactly
equal to the orbital frequency. Deviations from this law measure corrections due to
quantum field effects.

For B = 0, (6.89) states

m-—=0 (in pure electric field) (6.92)

Suppose that a longitudinally polarized particle moves along the z axis, loses ener-
gy, and stops. This equation says do./dt = 0, or that the particle is not depolarized.
This result is crucial to the interpretation of the classic experiment [2] that estab-
lished parity violation in the decay process 7~ — u~ + 7. The u mesons were ob-
served after being stopped in matter, and found to be longitudinally polarized. The
preceding resuit shows that they had the same longitudinal polarization at the mo-
ment of decay.
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6.7 NONRELATIVISTIC LIMIT

We shall study the nonrelativistic limit of (6.82), by first putting it in second-order
form. Multiplying it from the left by iy*D, + m, we obtain

(YPD,D,, + m2)y=0 (6.93)

Writing the first term as half the symmetric part plus the antisymmetric part with
respect to the labels i and v, we can show

Y¥D,D, =g"D,D,, + 3 y*y'D,, D,] (6.94)
A straightforward calculation gives
[D,, D,)=ieF,, (6.95)

We thus arrive at the second-order equation
e
(D**D,u + ) oHE,,+ m2> y=0 (6.96)

Consider a stationary solution of energy £, with dy/dt = —iEy . We can rewrite the
equation in the form
[(p—eA)Y —eo: B+iea-E—m?lf=(E—ed)ys (6.97)
where we have used the relation
soMF,,=-0-B+ia E (6.98)

The equation displays a magnetic-moment term o - B, with electric-moment term

a - E generated by the moving magnetic moment.
In the nonrelativistic limit the components i and s, are small, and it is conve-
nient to rewrite the above in two-component form by putting

Y= (’; ) (6.99)

where y and ¢ are two-component column vectors. Substituting this into the Dirac
equation (6.82), we obtain the coupled equations

(E-ep—m)x— o (p-eA)E=0
(E—ehp+m)é-a-p—eA)y=0 (6.100)
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Solving for the “small” component £, we have

_ o (p-eA)yx
£= vbrm (6.101)

which shows that it is of order |p//£ compared to the “large” component y.
The second-order equation can be rewritten in the block form

<,n.2_ea.B+m2 iea"E>(X>=(E_e¢)2(§) (6.102)

ieoc- E ied-E )\ £

where 7 = p - eA. We write the equation for y, and eliminate s with the help of
(6.101):

(o-E)o-m

2 24
mT°—eo-B+m*+ie
[ E-edp+m

J x=(E-ed)’y (6.103)

which is an exact equation. We go to the nonrelativistic limit by putting
E=m+e (6.104)

and assume € < m and e¢p < m. Keeping only terms to first-order in € and ed, we
obtain

1 e e ie
2 -
—mtep-—0 B-—oc Exm+ —E -wly=¢€ 6.105

[2m ¢ 2m 4m? 4m? ]X X )
This has the form of a Schrodinger equation except for the non-Hermitian /E -
term, which reflects the fact that x"y is not conserved, due to the existence of nega-
tive-energy states. A one-particle interpretation is consistent only when this term

can be neglected.
The magnetic-moment term has the form

o B=-<5B (6.106)
2m m

where S = 072 is the spin operator. The coefficient of the magnetic field gives the
magnetic moment:

e
= —g§ 6.107
=28 ( )

where

g=2 (6.108)
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is the gyromagnetic ratio. There is a small correction to this value, known as the
anomalous magnetic moment, due to vacuum fluctuations of the quantum fields. We
shall calculate the latter in Section 12.3.

The spin—orbit interaction is contained in the term

H=-—"—g Exm (6.109)
4m

In a central electrostatic field, with A = 0 and
=—rd'(r) (6.110)

we can write

e ¢ e ¢
H=-=Lgrxp=-—=Ls.L 111
boam? ra'r><p 2m? rS (© )

where L = r x p . Viewed from a frame moving with the electron, this can be inter-
preted as the energy —u'-B’ of a magnetic moment &’ in the magnetic field

B’=E><v=—r><v£ (6.112)
r
where v = p/m. This gives
e
u=g'—S (6.113)
2m
with
g =1 (6.114)

which is in agreement with experiments on the fine structure of atomic spectral
lines.

6.8 THOMAS PRECESSION

The electron exhibits two different gyromagnetic ratios: g = 2 with respect to an ex-
ternal magnetic field, and g’ = | with respect to a magnetic field generated by its or-
bital motion in a central electrostatic potential. To understand these results, consider
first an electron in an external magnetic field B. It moves in a circular orbit with the
cyclotron frequency
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e
Weyclotron = -njB (61 15)

The spin precesses about the magnetic field according to the equation dw/dr =
i< B. With g = g8, this gives a precession frequency

(6.116)

wprecessnon = EgB
Thus

e
Wprecession ~ Weyclotron Zn—(g -2)B (61 17)

If g =2, as implied by the Dirac equation, the orbital motion and the spin precession
are synchronized, as stated previously in (6.91). In reality, g deviates slightly from
2, due to vacuum fluctuations, and g — 2 can be measured to very high accuracy by
observing the slippage between orbital motion and spin precession.

Consider now an electron moving in an electrostatic potential in a circular or-
bit. In the frame moving with the electron, there is a magnetic field B’, about which
the spin precesses with frequency

2—e—gB’ (6.118)
m

Wrest =

with g = 2. However, this is not the precession frequency observed in the laboratory
frame, due to the Thomas precession. This arises because the electron frame has a
precession relative to the lab frame, due to the nonadditivity of velocities in succes-
sive Lorentz transformations. To see this, make a Lorentz transformation from the
laboratory frame (which is presumed to be an inertial frame) to the instantaneous
rest frame of the electron at time ¢. Since the orbital velocity v is small in the non-
relativistic limit, the electron spinor undergoes an infinitesimal Lorentz transforma-
tion:

Si=1-ta-v (6.119)

At time ¢ + dt, the velocity becomes v + adf, where a is the instantaneous accelera-
tion, and we make a successive Lorentz transformation

S,=1-sa- adt (6.120)
Over the time interval dt, we have made the overall transformation

S=85S=(1-ta-ad)(1 -ta V)
=l-sa - (v+tadn)+ i(a a)a-v)d (6.121)
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with last term causing the nonadditivity of velocities. Now use the identity
(- A)a-B)y=(c-A)oc-B)=A-B+ic-AxB (6.122)
and write
(a-a)(a v)dt=ia-axvdt (6.123)

where we have used the fact that a-v = 0 for circular motion. Thus
] .
S=1——2—a-(v+adt)+icr~a><vdt (6.124)

The last term is a pure rotation—an example of the Wigner rotation discussed in
Section 3.6. It leads to the Thomas precession, with angular frequency

Wr=axy (6.125)

As illustrated in Fig. 6.1, its sense is opposite that of w,., and the magnitude is giv-
en by

w;= —B' (6.126)
2m
The spin precession frequency in the lab frame is therefore

(4
Wiap = Wregy — W7 = 'z—‘r;(g_ 1)B’ (6127)

which leads to the result g’ =g — 1 = 1.

Figure 6.1 Thomas precession.
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6.9 HOLE THEORY

The energy spectrum of the Dirac equation consists of a positive continuum extend-
ing from m to %, and a negative continuum from —m to —, The negative-energy lev-
els cannot be ignored, because they are required by relativistic kinematics. Their ex-
istence destabilizes the theory, for, if there are any interactions at all, a particle can
lose energy and fail down the bottomless pit of negative-energy states. Thus, no sta-
ble particles of positive energy can exist.

Imagine that the negative spectrum is cut off at some large but finite depth. If
the particles obey Fermi statistics, the avalanche will stop when all negative-energy
levels are filled with two particles (of opposite spin). The filled “negative-energy
sea” will be the state of lowest energy: the vacuum state. Removing a particle in this
sea will create a hole that appears as an “antiparticle,” in the sense that it can be an-
nihilated with a particle falling into the hole. Redefining the vacuum state in this
manner results in “hole theory,” as illustrated in Fig. 6.2. This redefinition of the
vacuum state stabilizes the theory, and the important points are that

¢ Tt is possible only if spin-3 particles obey Fermi statistics.
¢ It makes the system into a many-particle system-—a quantized field.

In hole theory, the absence of a negative-energy particle corresponds to the presence
of an antiparticle with positive energy. This is expressed through the fact that the

Empty levels

Figure 6.2 Energy spectrum in hole theory.
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wave function of an antiparticle of energy £ and momentum p is the complex con-
Jugate of that of a particle of energy —£ and momentum —p. Accordingly, we shall
redefine the solutions to the Dirac equation by reversing the momentum for nega-
tive-energy states. Let the positive-energy solutions be redesignated u,(p, 1), u.(p,
2), and the negative-energy solutions u_(p, 1), u_(p, 2). We choose as a complete set
the following:

”(P, S) = Co“+(P, S)

up, s) = Cou (—p, 5) (6.128)
where
C = m+E
0 2m

E=+Vp?+m? (6.129)
They satisfy the equations

(ﬁ - m)u(pv S) =0

(# +mo(p,s)=0 (6.130)
with adjoint equations

u(ps S)(ﬂ— m) =0

o(p,s)(p+m)=0 (6.131)

In these equations, p* is defined such that p° > 0:
pr=(Ep) (6.132)

In 3-vector form, the equations read

(a-p+ Bmulp, s) = Eu(p, s)
(—a-p+ Bmy(p,s)=-Eup,s) (6.133)
Note that the energy of u(p, s) is still negative, for all we did was reverse the mo-

mentum, and write its energy as —F (with £ > Q).
The orthonormality of the solutions is expressed by the relations
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E(p’ S)M(Ps S’) = 6::’
E(P, S)D(I% S’) = _853’
op, s)u(p, s’) =0 (6.134)

which are equivalent to

E
uT(p’ S)u(p’ S,) = ;n—ass’

E
(p, s)u(p, 8') = — 8
m

u'(p, )u(-p,s') =0 (6.135)

The completeness of the solution is stated as
: E
D 1P, )y (B 5) * 0Py P, )] = - Bup (6.136)

s=1

where a and b are spinor indices. This is equivalent to the matrix equation

2
S [u(p, syu(p, s) - u(p, $)i(p, )] = 1 (6.137)
s=1

The terms above are respectively projection operators onto positive-energy and neg-
ative-energy states:

2
= S ulp, syii(p, 5) = TP
Adp) S_/_dlu(p, Syu(p, $) = ——
2 —
A(p)==-) up, Hup, 5) = ——~m2 £ (6.138)
s=1 m
which have the properties
AP =Adp)  Adp)+A(P)=1 (6.139)

Note that the 4-vector p* in /p is defined to have positive time component p° = E.

The Dirac equation cannot be a one-particle equation, but it furnishes a finite-
dimensional representation of the full Lorentz group. As such, it provides a com-
plete set of one-particle wave functions, in terms of which we can analyze the oper-
ator of a spin-3 field, as we shall do in the next chapter.
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6.10 CHARGE CONJUGATION

An antiparticle should have opposite charge to a particle, since it represents the ab-
sence of a particle in the negative-energy sea. This is intuitively obvious; but let us
make certain that the formalism gives this result. In the presence of an external elec-
tromagnetic field 4#(x), the Dirac equation is as given by (6.82). We denote the
wave function as y(x) for positive-energy plane wave states, and y<(x) for negative-
energy plane-wave states:

l,ll(x) = e—iEt+ip~xu(p, S)
w((x) = exElfip'xv(p’ S) (6140)

where £ =+ Vp? + m?. Then (6.82) can be rewritten
[iv¥4(d, + ieA#) -ml(x}=0
[iY#(3,, — ied,)) — m] YF(x) = 0 (6.141)

which show that the charge indeed has opposite signs for particle and antiparticle.
The two equations above can transformed into each other through “charge conjuga-
tion,” or “particle-antiparticle conjugation.” To change the sign of the coupling
term in the first equation, we take the complex conjugate:

[iy*H(d,, — ied ) — m] g(x) = 0 (6.142)

We then make a unitary transformation to bring it to the form of the second equa-
tion. Thus

P (x) = i*(x) (6.143)
where 77 Is a 4x4 matrix with the properties
=1 (6.144)
7 (¥ =y
The solution is, in our standard representation of the Dirac matrices,
M= iy? (6.145)

(where 77 is the second Dirac mairix). In terms of the spinors, charge conjugation
corresponds to the transformation

v(p; 8) = nu*(p, 5) (6.146)
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Since {¥?, ¥*} = 0. This shows that particles and antiparticles have opposite parity.

Like the time reversal discussed earlier, the charge conjugation here is an oper-
ation on Dirac wave functions, and not on physical states, which are defined in
quantum field theory. The operation is relevant because we expand the quantum
field operators in terms of Dirac wave functions.

6.11 MASSLESS PARTICLES

For a massless Dirac particle, with m = 0, the equation for the Dirac spinor reduces
to pu(p) =0, or

apu(p) = pou(p) (6.147)

where
po=+E E=|p| (6.148)
Since [oF, ys] = 0, we can diagonalize s, whose eigenvalue *1 is called “chirality.”

The solution with chirality + 1 is called “right-handed,” denoted uy; one with chiral-
ity —1 is called “left-handed,” denoted u; :

vsur(p) = ur(p)

Ysu(p) = —u(p) (6.149)
Using the relation
Y=o (6.150)
we have
o pu(p) = 22 voum) (6.151)

which states that the helicity o - p is the chirality time the sign of the energy. Thus,
for a right-handed particle, the helicity is correlated with the sign of the energy, and
for a left-handed particle it is anti-correlated. For a given momentum p, the four in-
dependent solutions are u(p, s), where C = R, L denotes chirality and s = £ 1 de-
notes helicity. Explicit solutions can be obtained from (6.45) by putting m = 0; but
obviously we cannot normalize them according to (13.105). Instead, we put

(P, SYucAp, ') = 8ec 8, 2E (6.152)

It is easy to show uq(p, )uc(p, s) = 0, it follows that for, since {ys, ¥} = 0, it fol-
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lows that u and  have opposite chirality. The one-particle states |p) have the proper-
ties

P'lp) =2EQ@)8(p-p")
[ Gz (ol =1 (6.153)

We must, of course, define the vacuum using hole theory. In analogy with the mas-
sive case, we define antiparticle spinors:

ve(p, 8) = uA{-p, —s) (6.154)

For a given p, the independent solutions can be taken to be ug(p, 1), vr(p, —1),
ur (p, ~1), v .(p, 1). Thus, a right-handed particle is a right-handed screw, and a left-
handed particle is a left-handed screw. The correlation between handedness and he-
licity is reversed for antiparticles.

PROBLEMS

6.1 Lorentz Boost
(a) The transformation matrix for an infinitesimal Lorentz transformation is of the

form § =1+ iR, where R satisfies (6.60). Review the argument leading to the form
R=Cw,,0*" and show that C = %.

(b) Using the identity y°{g#""y* = g*¥, show that
PSP =5
With this, verify the transformation law for u given in (6.72).

(¢) Obtain the free-particle solutions u(p, s) to the Dirac equation by applying a
Lorentz boost to the solutions in the rest frame:

wp,s) = [cosh % + p - asinh %]bs

where ¢ = tanh~!s, and

b2= b3=

OO O —
SO - O
S - o o
-0 0 o
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6.2 Intrinsic Parity Show (6.73) that

u(p, s) (s=12)
YuCp. s) { “u(p,s)  (s=3,4)

and therefore

')’Ou(‘P’ S) = “(P» S) (S = 12)
Yol-p,s)=-up,s)  (s=12)

These relations indicate that particles and antiparticles have opposite intrinsic parity.
6.3 PauliTerm The Dirac equation describes a particle with g = 2. Physical particles have
g factors different from 2 because of interactions, which give rise to an “anomalous”
magnetic moment. The electron acquire the anomalous moment through interactions
with the quantized electromagnetic field. That for the proton and neutron are dominated
by the strong interactions. Suppose that the g factor is 2 + «. Show that this can be ac-
commodated by taking the Dirac equation in external electromagnetic field to be

[iy"(&F Fied,) - e ORE- m] Wx)=0

The extra term is called the “Pauli term.” For the proton and the neutron, the experimen-
tal values are kp = 1.79, ky = —1.91, respectively.
6.4 Chiral Current The chiral current density is defined by

JEG) = Py ysilx)
Using the Dirac equation, show that
Z ;Lj 5= 2’”@'}’5'#

The chiral current becomes conserved in the massless limit m — 0. In quantum field
theory with electromagnetic interactions turned on, this property is destroyed by the ax-
ial anomaly [3].

6.5 Zitterbewegung The zitterbewegung (4] is a kinematic property of the spin-> repre-
sentation of the Lorentz group, the “clockwork™ of the Dirac equation. To exhibit this
motion, construct a wave packet for a Dirac particle:

&p
27y

e[, (p)e™ "+ w (p)e]

wr.n= [

where E = +Vp? + m?, and w.(p) are linear combinations of Dirac spinors with positive
(negative) energies +£. Calculate the expectation value of the velocity (v) = [ @rif ),
Show that

&p
(2m?

{(v)=v,+2Re j (wl aw_)eE
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where v, = 27)2[ Bp(wl aw, + w' aw ) . Integrate this to obtain the average position

&p
Qm3E

2t ey

(r)=r0+v0t+ImJ‘

The last term is the zitrerbewegung, which arises from an interference between positive-
and negative-energy states. On dimensions grounds, we can conclude that the amplitude
of this oscillatory motion is of the order of the Compton wavelength 1/m, and therefore
unobservable. In the hole theory, when all negative energy state are filled, the zitterbe-
wegung becomes part of the vacuum fluctuations of the Dirac field, for it can happen
only when holes are momentarily created as a result of fluctuations.

6.6 Gordon Decomposition
(a) From the definition of the Dirac matrices, show that

Yy = gt

(b) Multiply the equation (iv*d, — m)yr= 0 from the left by ¥y*, and use the identity to
rewrite the result in the form

1
m

gy = o {iI[J(3#) — ()] + 3 Po" )}
with spatial components
— 1 — — — o _
= T[’W D= UT )+ V * ([oy) - i;(waw}
m it

This is the Gordon decomposition, which splits the current density into a “convec-
tion” part, plus contributions from the spin. It suggests that the spin is the orbital
angular momentum of the zitterbewegung.

(¢) Letu,=u(p; s,), (i = 1,2), be two Dirac spinors. Let
P =plt+ph
ke = py - ph
Show that

- 1 _
uyytu, = ﬂuz(P“Jrio-“"k,,)ul

6.7 Massless Particles Consider massless Dirac particles.

(a) Show udp, s)uAp,s)=0.
(b) Show that the projection operators A.(p) for positive and negative enecrgies have
the properties
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Adp)=Etap
A2(p) = EA(p)
Ap) FA(P)=E
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CHAPTER SEVEN

The Dirac Field

7.1 QUANTIZATION OF THE DIRAC FIELD

In hole theory, the Dirac equation describes 2 many-fermion system, and thus the
Dirac “wave function” Ax) should be regarded as a classical field to be quantized
according to Fermi statistics. To carry out the quantization in the canonical formal-
ism, we take as classical Lagrangian density

L) = PEy*6, ~ m)yx) (7.1)

where i(x) is a four-component spinor and the independent field variables are the
components ,(x). We note that £(x) is Lorentz-invariant, and globally gauge-in-
variant. This is a first-order Lagrangian density, involving first instead of second
derivatives with respect to time. We have illustrated the self-consistency of the
canonical formalism in this case in Problem 4.5. Therefore, following strict canoni-
cal procedures, we calculate

my = =Yy o =-m (7.2)

The equation of motion is
i0,0y* + m=0 (7.3)

which correctly gives the Dirac equation in Hermitian-conjugate form. The La-
grangian density vanishes for fields satisfying the equation of motion:

L(x)=0 (for fields satisfying equation of motion) (74)

The canonical conjugate to ¢, is iy ¥, since

123
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m,=ml=iyk (7.5)

The Lagrangian does not depend on y,*, and therefore * has no conjugate. One
must resist the temptation to make the Lagrangian more “symmetric” by replacing
iry* o, with (i/2)[fry*(3,4) + (3,)y*¢]. This would be akin to “adding feet when
drawing a snake,” as a Chinese saying goes.

The canonical quantization rules lead to the following anticomutation relations:

{(r, ), Y1, )} = 8,8(r 1)
{Walr, 0, 4, (', 1)} =0 (7.6)

where @ and b denote spinor indices. The anticommutators serve as initial condi-
tions for the Dirac equation. They also fix the normalization left arbitrary in the

Dirac equation.
The Lagrangian density is invariant under the global gauge transformation ¢ —
e 'y, where w is a constant. The associated Noether current is

J4) = Yy y () (7.7)
which is conserved:
9, j*x)=0 (7.8)

The canonical energy—momentum tensor, which is associated with translational
invariance, is given by

TE%(x) = i(x)y**¢ax) (7.9)
with conservation law
9, T#x)=0 (7.10)
The energy and momentum densities are respectively

T®=ylidy= ' (-ia-V + Bm)y
Tk = ytighys (7.11)

When integrate over space, they give the Hamiltonian A and total momentum P:
H= [@r yiie, o-ia -V + Byt )
P=—i[dr yi(r, 0V Y, ) (7.12)

The generalized angular momentum tensor is
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M EaP(xy = PO i(x ydP — xPyo™) + 5 yHoPlynx) (7.13)
and the angular momentum and the boost operators are respectively
Ji = e 3y MO = jeM | 3 [(x*d! — x'F) - :;_;0'"’] ¥
Ki = [ar o= iar g0 - xiP + —;—af) " (7.14)
From the angular momentum, we can read off the spin operator:

E#V:éow (1.15)

in agreement with what we found in the last chapter.

The one-particle solutions obtained in Chapter 6 constitute a basis in terms of
which the field operators may be expanded. We normalize the wave functions in a
large periodic box of volume (), and write

m

¥(r, 1) = Z OF [apsei(p-r--lfpl)u(p’ )+ bpste4i<p-r—5pt)v(p’ ]
ps (4

Yir,n=> | QmE [ap, e ® T Epyt(p, 5) + b ®TEpyt(p, 5)] (7.16)
ps »

where

E =+Vptm (7.17)

P

The factor Vm/E, appears because the Dirac spinors are normalized according to
(6.133) and (6.134):

— , m '
up, s)u(p, s') = —E—uT(p, su(p, s')= 8

P

- ’ m '
Z)(p, s)v(p’ B ) = "E’UT(ps S)U(p, s ) = _ass'

D
o(p, s)u(p, s') =0 (7.18)
With this factor taken out, we have simple anticommutation rules
{apsa a:’s’} = {bps5bL'S'} = Sss’app’
{apmap’s’} = {bpw bp’s’} = {aps,p’s'} =0 (719)
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which lead to the interpretation that a,, annihilates a particle whose wave function
is u(p, s) and by, annihilates an antiparticle whose wave function is of(p, ).
Hole theory is implemented through the statement

p,]0) = by |0) = 0 for all p,s (7.20)

This implies that there are neither particles nor antiparticles in the vacuum state |0).
In terms of the annihilation and creation operators we have

H=" E @}y, - bpsbl) = > Ejalap, + blbys— 1)
ps ps

P=> p(afap, —bpbl) =D plajap + blbp,) (7.21)
ps

ps

If we had not used hole theory, b,, would be creation instead of annihilation opera-
tor, and bpsbps’f would have eigenvalues 0,1. Consequently, the Hamiltonian would
not be bounded from below. The sign reversal that makes the Hamiltonian positive-
definite, of course, depends on the fact that we quantized the system according to
Fermi statistics.

The charge operator is given by

0= [@rwyy=[ar vty
= Z (a;SaPS - bpsb;s + 1) (722)
ps

which shows that particles and antiparticles have opposite charge. The minus sign
above arises through rewriting bpsbgs as —blbys + 1. This is dictated by the fact that
bgby, has positive eigenvalues in hole theory. The normalization of @ is arbitrary,
for the magnitude of the charge is determined only when there is interaction with
the electromagnetic field.

7.2 FEYNMAN PROPAGATOR

The Feynman propagator for the Dirac field is a 4x4 matrix
iSp(x) = (0| T(x)¥(0){0) (7.23)

where the time-ordering operator 7 is defined to include a sign change when two
fermion operators 4 and B are interchanged:

T[AG)B(L)) = { A (7.24)
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The propagator can be calculated straightforwardly, using the expansions (7.16). Let
x = (&, r). For t > 0, the only contribution comes from terms in the expansion of the

form aa’;

- ! , : _
IS = (O, DTN = 17 > T-e &P u(p, s)iig(pys)  (7:25)

p Ep

For ¢ < 0 we need only keep terms of the form bb':
. - 1 m 2 _
i[Se(x)]ap = — (0)h(0)ih(r, 1)]0) = ) > E—e“EP”"'”Zvﬂ(p, $)up, s)  (7.26)
P P s=1

The sum over spin states results in the projection operators given in (6.137). Sup-
pressing the spinor indices and going to the limit {) — o, we have

1 [ (m+ p)eiEpt-pr) t>0)
ISF(X) J‘ (2 )3 2E { (m _ ﬁ)e,’([z‘p[__p.r) ([ < 0) (727)
We can make the replacement
m+p=m+YE, -yt —>m+1y —)/‘p (7.28)

because this operator acts on the exponential factor. For ¢ < 0, make the change of
variables p — —p. Then we have

1 g
m+ i O__ _ ~hpk —iEp|f ,ipT X
iSp(x) = f(2 = 2E, ( iy o ‘yp)e plle (7.29)

Now use the representation

e—lpot e Pt

7.30

_'E”II""EJ o7 7 = “?TEJ._ dpo 5"~ 7

2+l7]

where 17 — 0*. Then, the operator id/4¢ in the previous formula can be replaced by
Po- The final result is

i p+tm
ipx
Se(x) = f@ﬂ i (7.31)
We leave it as an exercise to show that
Sp(x) = (iy*d, + m)Ap(x) (7.32)

where Ar(x) is the Feynman propagator for a free scalar field of mass m.
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The Fourier transform of the propagator is

ptm B 1
Z-mi+in p-m+in

Se(p) = 5 (7.33)

where the right side is the inverse of a 4x4 matrix. The 4-vector p is atbitrary, with
either p® > 0 or p° > 0. For p > 0, we have, according to (6.137),

2
LS.y, ) (20> 0) (7.34)
s=1

For p® > 0, let us define g* = —p#, Then according to (6.137), we obtain
p q ' g

2
(pzjnm) N (%;m) =—> (g, 99(q,5)  (p°>0) (7.35)
s=1

This shows that the residue at the mass-shell pole at p?> = m? contains the wave func-
tions of an electron of momentum p, or those of a positron of momentum q = —p.

7.3 NORMAL ORDERING

Both H and Q contain divergent contributions from the zero-point energy and
charge of the vacuum state. These terms have no physical relevance since energy
and charge are measured relative to those of the vacuum state. They can be eliminat-
ed by redefining the reference points, and this can be achieved by arranging the or-
der of operators appropriately.

We first introduce the notion of normal ordering. Suppose that O is a product
of creation and annihilation operators. The corresponding normal product : O : is
defined as that obtained from O by rearranging the order of the factors, if necessary,
such that all creation operators stand to the left of all annihilation operators. In the
rearrangement process, an interchange of two fermion operators gives rise to a fac-
tor —1. As an example:

Calay g =alayy

Ly gale=—alayy (7.36)
Normal ordering can be naturally extended to a sum of products:
O+ 0,:=:0,:+:0;5: (7.37)

We now redefine the Hamiltonian and the current as

H=: j APrii(r, D(ia - + Bm)ir, 1)
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JH0) = 1 () yd(x) (7.38)

It is clear that these operators give zero when operating on the vacuum state, be-
cause annihilation operators stand to the far right. This is just a formal way of stat-
ing that the zero-point energy and currents are to be omitted. As the notation is
somewhat cumbersome, we shall not explicit indicate normal ordering uniess neces-
sary.

7.4 ELECTROMAGNETIC INTERACTIONS

We consider systems of interacting fields with a Lagrangian density consisting of
the sum of the free Lagrangian densities of the participating fields, plus an interac-
tion Lagrangian density that couple the fields together. This is not the most general
case conceivable, but it is what we can handle mathematically. We illustrate the
types of interactions commonly encountered. Consider a Dirac field, a complex
scalar field, and the electromagnetic field, which have free Lagrangian densities

given by

LDirac = E(ry#a,u. - m)d/
Lscalar = &H(;b* aﬂ‘b - K2¢*¢

Loy =—5FHF,, (7.39)
m u

According to the gauge principle, the matter fields can be coupled to the electro-
magnetic (em) field by replacing d,, by the covariant derivative

Dt =g, + ied#(x) (7.40)

where e is the electric charge. Assuming that both the Dirac field and the scalar
field have the same charge e, the electrodynamic Lagrangian density is

L=~ F¥F,, + (iy*D, — m)y + [D*¢]*D ¢ -k’ p*
= Lem + LDirac + Lscalar + Lim (74 l)
where
Lim = (]}L + J’L)AH
JH = iedry*i
S = —ie|@* (M) - (¥ )] + e2p* P A (7.42)

The matter fields are coupled through conserved currents, which are the Noether
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currents associated with global gauge invariance. For the scalar field, the current
has an e? term proportional to 4*. This becomes a mass term for the photon when
¢*¢ develops a vacuum expectation value, in spontaneous symmetry breaking.
(See Problem 15.5.)

The electromagnetic field couples to all charged fields through the gauge prin-
ciple, and is universal in this sense. The vacuum fluctuations of the electromagnetic
field include the momentary creation of virtual particle—antiparticle pairs and their
subsequent annihilation. The temporary charge separation makes the vacuum into a
dielectriclike medium, and all charged fields of the world participate in this “vacu-
um polarization,” as their contributions being determined solely by charge and
mass.

7.5 ISOSPIN

The Dirac field can be used in a phenomenological description of protons and neu-
trons, which are really made of quarks. The effective theory is useful in describing
the “charge-independent” pion—nucleon interactions at low energies. It is based on
the fact that proton and neutron are almost identical, and so are the three 7 mesons,
and the strong nuclear forces respect the identities. By ignoring the electromagnetic
and weak interactions, we can regard the proton and neutron as different states of a
particle called the nucleon, and the 7 mesons as different states of the pion.
The nucleon field is represented by a two-component Dirac field
h(x)

PY(x) < v (x)) (7.43)
where i = | corresponds to proton, and i = 2 to neutron. Each ¢, is a four-component
Dirac spinor field. Writing out alt the indices, we have eight complex fields ;,(x),
witha=1,...,4andi=1, 2. By analogy with spin angular momentum, we define
the isospin 7/2 as generators of rotations in the two-dimensional internal space
spanned by i, and 5,:

0 1 0 - 1 0
T|=<1 0) 7'2:(i O) T3=(0 —l) (7.44)

The proton and neutron states are eigenstates of 73/2 with respective eigenvalues + %

and —+:
- ((1)) )= (?) (7.45)

which can be created from the vacuum by applying f(x). We use a shorthand nota-
tion in which the spinor and internal indices are suppressed. For example,
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EY"?J/ = (Y Tf)ijd’bj (7.46)

where g, b are summed from 1 to 4 and i, j are summed from 1 to 2.
More generally we define isospir as an internal symmetry group whose gener-
ators ~/ obey angular momentum commutation relations (Lie algebra):

[Ik’ Il] = iek[mlm

Thus one can simultancously diagonalize T2 = /(I + 1) and 5, and denote isospin
eigenstates by |/, I5). The nucleon belongs to the fundamental representation with
I= %, in which T=7/2. The overhead arrow denotes a vector in isospin space, which
has three components because that is the number of generators of the group.

The pion field has /= 1, and is described by a three-component real field

&i(x)
Bx) = | bax) (7.47)
P(x)
This the “adjoint representation” of the group, which has the same dimension as the

number of generators, and in which the generators are represented by matrices T
taken directly from Lie algebra:

(T = —i€m (7.48)

Experimental evidence dictates that ¢,(x) be pseudoscalar, that is, that it change
sign under spatial reflection. We note that /5 is not diagonal. The physical pion
fields, which are eigenstates of /°, are related to ¢, through

) = —\}—E[qb.(x) + i)

1
70 = 75 (1) ~ ()]
0) = 1) (7.49)

These operators create states with /; = +1, —1, 0 respectively, when they operate on

the vacuum state,

“Charge independence” in the pion~nucleon system means that the interaction
conserves isospin. A Lorentz-invariant effective Lagrangian density, known as
“pseudoscalar coupling,” is given by

L(x) = WiyHd, - Myp + 3 [+ - ¢ - m*G - Bl +g(Pys7w) - b (7.50)

The vector notation makes manifest the rotational invariance in isospin space. A
competing model is the “pseudovector coupling” model, with
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L(x) = Wiy*d, — My + $[0,6 - 9,6 m*G - Bl + & @ysy* TW) - 9, (7.51)

Some consequences of isospin invariance are explored in Problem 7.4.

7.6 PARITY

We discuss the discrete symmetries, using as an example the electromagnetic cou-
pling as contained in

LX) =~ FWF,, + Pliy"(0, + ied,) — m] ¢ (7.52)

Under a Lorentz transformation x — Ax, the field operators ¢,(x) undergoe a uni-
tary transformation U given by (3.54):

U (x)U™ = S,,d,(A7'x) (7.53)

where S,,,. This can be extended to spatial reflection x — x, t — ¢, for which the uni-
tary operator U is denoted by ®. For the Dirac field, we have § = 4° according to
(6.69) and (6.70), and thus

Td‘(l’, t)?l = ,),Oll/(_r’ t)
PHr, P = (-1, )Y (7.54)
Since A* transforms like a vector,
PAXr, )P = —AK(-r, 1)
PAUx, NP = A1, 1) (7.55)
Thus we have
PL(r, )P = L{-1, 1) (7.56)

which show that the Lagrangian L = [ d°x £(x) is invariant.
From the expansion (7.16) at 1 = 0:

W)= [ lape®ulp, 5) + ble Pu(p, 5} (7.5
ps i

we have

m

QE [Taps?leip'ru(p’ S) + be;S?_Ie“ip.rv(p’ S)]
P

PYr)P =
ps
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m

Y1) => OE [apse P Y u(p, 5) + bl e® Yup, 5)] (7.58)
ps P

Using the relations (Problem 6.2)

Yu(-p, 5) = u(p, s)
Y'u-p, 5) = —up, 5) (7.59)

we obtain the statement that particles and antiparticles in Dirac theory have oppo-
site intrinsic parity:

1 —
Pay P =a_p,

Py P = b, (7.60)

The transformation 2 may be accompanied by a rotation in spin space with respect
to the index s, as is clear from (7.58); but we leave it out for simplicity.

7.7 CHARGE CONJUGATION

Charge conjugation, or particle-antiparticle conjugation, is defined as a unitary op-
eration C on the Hilbert space that interchanges particle and antiparticle, and revers-
es the sign of the electromagnetic field:

CapC' = by,
CbypC™' = ay,
CANEC! = —AH(x) (7.61)

The transformation of 4%x) is not specified independently, because in Coulomb
gauge it is not an independent field. It is clear that £(x) is invariant under this trans-
formation, because the free-field Lagrangian densities are invariant, and the Dirac
field is coupled to the electromagnetic field through the current density, which
changes sign.

To find how the Dirac field operator transforms, let us compare the following
expansions:

m :
i(r) = 5 [ape®Tu(p, 5) + bl e P u(p, 5)]
%\/ElEpape u(p, s b€ Pru(p, s

W)=Y [ [abe®rut(p, s) + bye®Ti*(p, 5)] (7.62)
ps V (QE,
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The expansion coefficients satisfy (6.146):
o(p, 5) = qu*(p, s) (7.63)

where 7 = ivy? is a real 4x4 matrix. Therefore

AGEDS ——Q'Z, b u(p, 5) + alse PTo(p, 5)] (7.64)
ps »
which shows
CY(r)C™" = () (7.65)

Note that the Dirac wave functions undergo complex conjugation, which is a
nonlinear operation, because (Au)* = A*u*. The field operator, however, undergoes
a linear transformation, because C(AY)C™' = A C C™'. The difference can be traced
to the fact that in the Dirac equation we have to change the sign of the coupling to
an external electromagnetic field, whereas in the field theory, the electromagnetic
field is part of the system, and changes sign under charge conjugation.

7.8 TIME REVERSAL

Time reversal is the operation of interchanging past and future, represented by a op-
erator 7 on Hilbert space. Suppose that ¥, is a member of a complete set of state in
Hilbert space, where « stands for quantum numbers, such as momentum p and spin
projection s on a fixed axis. The time-reversed state 7¥, must be a member of the
same set:

TV, =¥ (7.66)

where a are the time-reversed quantum numbers, defined by correspondence with
classical mechanics:

p=-p s=-s (7.67)
and the helicity is invariant. The basic property of 7 is
(T, TV,) = (T, V) (7.68)
that is, it interchanges initial and final states. This can be rewritten
TV, TY,) = (¥, V* (7.69)

Replacing ¥, by AW, where A is a complex number, we have
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(TY,, T(AW,)) = A*(\W,, P, )* (7.70)
Therefore
TAY,) = A* T, (7.71)
Thus, when acting on a number, 7 takes its complex conjugate. This makes 7 non-

linear. More specifically, it is called an. “antilinear” operator. A general representa-
tion of T is complex conjugation followed by a unitary transformation:

T=Ux
b= (7.72)

where it is assumed that U commutes with complex conjugation. For the
Schrodinger equation

HY = i?—q}— (7.73)
ot
time reversal means
T
HTY) = -l,_(_a:y_) (7.74)

The system is invariant under time reversal if the time-reversed equation is equiva-
lent to the original. Taking the complex conjugate, we have

HYUW) =i ‘9([;:1') (1.75)

Thus, the system is invariant under time reversal if the Hamiltonian is real:
H=H* (7.76)

which implies that the Lagrangian must be real.
Without going through all the details, we can conclude that

TAY)T ! = -AXr)
TYT ' = ¥ ysyar) (7.77)
The first equation follows from the requirement that 4* transform like the current

density, which must change sign, because classically it is a velocity. The second fol-
lows from the fact that y%vy; is the transformation that preserves the Dirac equation
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under time reversal, as shown in (6.70). It is straightforward to verify that the La-
grangian is invariant, if the charge e is real.

There is a theorem known as the PCT theorem, which states that a local field
theory that is Lorentz invariant is automatically invariant under the product PCT,
even though it may be separately invariant under PC, T separately. We refer the read-
er elsewhere [1] for proof.

PROBLEMS

7.1 Energy—-Momentum Tensor The canonical energy—-momentum tensor T,#* for the
Dirac field is not symmetric in pa. According to Section 4.5, we can construct an
equivalent symmetric tensor 76 = T2 + { g, X*#e Find X#e,

7.2 Propagater Show that the propagator for the Dirac field is related to that of the scalar
field through

Sp(x) = (iy#d,, + m)Ag(x)

7.3 Neutrinos Neutrinos are massless Dirac particles. Using the convention for wave
function given in Section 6.11, expand the field operator in terms of annihilation and
creation operators.

7.4 Isospin Transformations
(a) Show that under an infinitesimal isospin transformation, the nucleon field, and the

pion field transform according to

SCdL

¢ —>f+axé

¢ —(1-

where the components of o are arbitrary infinitesimal real parameters.
(b) Let V= YT T, where v is a 4x4 Dirac matrix. Show that ¥ transforms like a vector
in isospin space:

V—-) V+ o ><I7

7.5 Pion-Nucleon Scattering As far as isospin properties are concerned, the pion and nu-
cleon states can be labeled by / and /5:

l7) =11, 1) [7) =11,-1) [#%) =11,0) }

=%, %) In) =3, -1V

(a) A state containing a pion and a nucleon is a direct product in isospin space, as, for
example, [7'n) = |1, 1) x |3, +) . However, this is not an eigenstate of total isospin
and thus not an eigenstate of the Hamiltonian of the system. Show that eigenstates
of the isospin are the following:
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I=3
5 3= )
15,8 = [ilnm) + 2o
2,-0= [ipm)+ [T
3,23 = n)

I=3

14, )= fBnm) - 3o

Ié,*i)zv/;lnﬂ"’)*\/’%{pw‘)

(b) For interactions that conserve isospin, the pion-nucleon scattering amplitude de-
pends only on total isospin and not on /; (for the same reason that atomic energy
levels are independent of the magnetic quantum number, i.e., the Wigner—Eckart
theorem.) Denote the transition amplitudes by a3, and a,,, and show that they have
the form

{pm|Tp7") = a3,
{pmiTlpm) = 343 + 3aip
V2 V2

(nmT|pm) = _3'“‘13/2 - _3"11/2

where T is the transition operator. The corresponding scattering cross sections are
proportional to the squares of these amplitudes.
(¢) Neglect a,,, compared to as,,, and show that pion-nucleon scattering cross sections
g 12 p 32 p g
bear the ratio

a(pmt)  opm):io(nm® —>pr)y=9:1:2

This is verified experimentally at low energies. The reason that as;, dominates is
the resonance scattering m + N — A — o + N, where A is a particle of spin 3,
isopin %, with mass 1232 MeV, known at one time as the “33 resonance.”
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CHAPTER EIGHT

Dynamics of
Interacting Fields

8.1 TIME EVOLUTION

The dynamics of a quantum mechanical system is governed by the Hamiltonian H,
which generates time translations. One may view the time development from differ-
ent perspectives. In the Schrddinger picture, one regards the operators O, as time-
independent objects, and the state vector W, changes with time according to the
Schrédinger equation

; a¥(1)

S5 = HY () (8.1)

Assuming that H is time-independent, we have the formal solution
Y (1) = e (0) (8.2)
The matrix element of an operator O, evolves in time according to
(DUDIOJT (1)) = (P0)|e™ O e W (0)) (8.3)
The subscript “s” identifies states and operators in the Schrddinger picture.
In the Heisenberg picture, the state is assumed to be constant in time, but the
operators evolve. The matrix elements of an operator must be independent of the

picture, and this requirement relates the Heisenberg picture to the Schrodinger pic-
ture:

W, =W (0)
0,(1) = €10 e (8.4)

138
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The “h” subscript denotes states and operators in the Heisenberg picture. The two
pictures coincide at time /,, taken to be zero. The equation of motion in the Heisen-
berg picture is

90,
,-—;;7@ = [04(1), H] (8.5)

If the Hamiltonian has explicit time dependence, then e will be replaced by a
more complicated evolution operator, but W, is still defined to be constant in time.

8.2 INTERACTION PICTURE

Suppose that the Hamiltonian can be split into a “free” part and an interaction term:
H=Hy+H (8.6)

where H, represents an “unperturbed” system that we understand. The two terms
above are time-dependent, even if H is independent of time. By convention, the split
is made at some fixed time, say, t = 0. Thus, H, and H' are constant operators by de-
finition, as they are shorthand notations for Hy(0) and H'(0).

We now introduce the interaction picture, in which H,, governs the time evolu-
tion of operators, while A’ governs that of the state vector. In this picture, the state
W, and operators O, are related to those in the Schrédinger picture by

Y (1) = e (1)
O(1) = eHo O e-iHot (8.7)

Thus, interaction-picture operators are the Heisenberg operators of the unperturbed

system.
The equations of motion in the interaction picture can be found by substituting

(8.7) into the Schrddinger equation, resulting in

,-37%@ = H' ()W (1)
i%ﬁ =[0(¥), Hp] (8.8)
where
H' (1) = eflor /' ot (8.9)

We define an evolution operator U(t,, ¢,) through
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W (6 = UL, 1)) (o) (8.10)

It is a unitary operator, since H' is Hermitian, and the norm of W (#) is conserved:
UT(e, ) ULE, t) = 1 8.11)

The following properties are easily deduced:

Ut 1) = |
U(t,, to) = U (1o, 1))
Ulty, to) = Ulty, 1)UL, tg) (8.12)

The equation of motion can now be cast in the form

CoUL(t, ty)
5 0]

o = H UL 1) (8.13)

with the initial condition U(t, £) = 1.
1t is not trivial to solve for U(, #,), because H'(z,) and H'(t,) generally do not
commute. Let us divide the time interval (¢, £;) into N small steps of duration Ar:

t—1,

Ar= Y (8.14)

To first order in A, the equation of motion gives
Ulty + At tg) = [1 — iH' (8)At] U(2,, 1) (R.15)

The last factor is, of course, unity. We built up the finite time interval ¢ — £, from
successive infinitesimal ones. Putting

t, =ty + nAt (8.16)
we have

UL, o) = [1 — iH' (t\)AR[ ] — iH' (8 DAL - - - [1 — iH' (t)A]

N
= Vi) H'(t) + (P> H'(t)H (8,)
n=0

n<m

+ (=Y D H(G)H (t)H 1)+ - (8.17)

n<m</

Taking the limit N — o gives
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/ y £
U(t, to) = 1 had l J; dtlH, (tl) + (_l)ZJ: dtl J: dtz H, (f])HI (tz) +-
0 0 0

v iy [Lae e [ angH @y B+ ®18)
0 n

This is a formal solution to the equation of motion.
To make the integration regions more symmetric, consider, for example, the in-
tegral in the third term:

! tl
1= [ [y @) (1)
[} o

where the integrations extend over region I in Fig. 8.1, in which #; = #,. If we inte-
grate over region II, we would have

t (%]
= o [an H()H @)
‘0 ‘o

where ¢, > ¢,. The ordering of the operators in the integrand is such that they stand in
chronological qrder from right to left. Evidently I, = I,, for they differ only by an
exchange of integration variables. We can therefore replace I, by (/, + 1,)/2, which
can be rewritten in the form

t I3
I=x% f dt, f dt TIH'(t)H' (1)]
o T

where the time-ordering operator T is the same as that defined in (7.23):

¥

Figure 8.1 Regions of integration.
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T[AB-- - C]=%4B---C (in chronological order from right to left)  (8.19)

A factor —1 is attached to the result each time two fermion operators are exchanged
in the rearrangement process.

For an integral with n factors in the integrand, there are n! ways to permute the
integration variables. Taking 1/n! of the sum over all possible permutations, we ob-
tain

1 -t , l 1 t )
[an- [ g @y mran=— ] dne [ anTore) e
[0 . l() (n

n
We can now write the evolution in the final form

(*l.')” J'I dl] PP f’ dtn T[H,(tl) e H,(ln)] (820)
n! 0 [

Ut, t) =
n=0

which can also be written in a shorthand notation as
ULt 1) = Te-ligan #an (8.21)

In this form, we should expand the exponential in a power series, and then apply the
operator T to each term.

8.3 ADIABATIC SWITCHING

The operator U(s, ty) contains an exponential factor that oscillates rapidly when ¢ —
+ o0, To make the expression well defined, we assume that the interaction Hamilton-
ian H' was “switched on” very slowly from the distant past, and will be “switched
off” very slowly in the distant future. Specifically, we replace H' with
H]=H'e*l (e— 0" (8.22)

The limit £ — 0" is to be taken last, after all calculations. The corresponding evolu-
tion operator is denoted

U1, ty) = Te-iligdn Hén) (8.23)
which approaches the S matrix, (or S operator) when f) — —%, ¢ — oo:
S = lim U,(®, =) = lim Ter il Zodt H 0 (8.24)

This is a unitary operator:
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StS=1 (8.25)

and is central to the theory of scattering, which we shall discuss later.
Let us put adiabatic switching to use. We assume that the vacuum state in the
Heisenberg picture |0) is unique and normalizable:

{0]0) =1 (8.26)
The interaction-picture vacuum state [Wy(f)) evolves according to the interaction
Hamiltonian, with initial condition |W(0)) = |0), up to a phase factor. By switching
off the interactions, we make
Tim [Wy(0) = 10) (8.27)
which defined the phase. In the infinite future we have

lim[¥(1)) = $/0) = ¢10) (8.28)

where L is a real number. Taking the scalar product of the preceding with (0|, we ob-
tain

el = (0[S]0) (8.29)

The relation between the interaction and Heisenberg pictures can be obtained
from (8.7) and (8.4):

W (1) = eflole ey
0 (1) = etoe QO (e ety (8.30)
where
H.=Hy+ H e (8.31)
Substituting this into (8.10), we obtain an explicit form for the evolution operator:
U(t, ty) = efloteiHe(t-t0)g-itoto (8.32)
We can rewrite (8.30) as

V()= U, Oy,
0= UL, )OO, (1, 0) (8.33)

The initial time ¢ = 0 can be changed to ¢ = #, by using the identity Uz, 0) =
U1, to) U2, 0) to write
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W () = Udt, 1)U ft, O, (8.34)
Owing to adiabatic switching, we obtain
U (1o, 0) = ef0i0g=Hsta Py (8.35)
Therefore

V()= ULt, ~2)¥,
00 = Ut, =)0 () (1, —) (8.36)

This formula is more convenient to use than (8.33), because the two pictures coin-
cide at f — — oo, when the system was being prepared. As we shall see, perturbation
theory relies on this relation.

Why is it legitimate to use adiabatic switching? In the theory of scattering, the
answer is that it reflects what happens in the laboratory. An incident particle, in the
form of a wave packet, approached the target particle, but did not interact with it,
until the collision took place. After the collision, the scattered particles eventually
leave the scattering region as nonoverlapping wave packets, and there is no interac-
tion after that time. The adiabatic switching is a mathematical simulation of the sit-
uation, justified by the fact that the scattering cross section is insensitive to the de-
tailed shapes of the wave packets.

Actually, adiabatic switching need not correspond to any physical process; in
general, it serves a more abstract function. When we describe a physical process by
saying “A interacts with B,” we have to define what is meant by 4 and B, and to do
that, we must conceptually turn off the interaction. In the theory of metals, for ex-
ample, it is customary to apply adiabatic switching to the electron—phonon interac-
tion, which is, of course, always present. What we are doing is to imagine that the
system was “assembled” by putting free electrons into an idealized lattice. As long
as the conceptual assemblage took place a long time ago, it should not make any
difference whether it actually happened; but we need it to identify the “free parts.”

As long as we accept the crucial formula (8.36), adiabatic switching has done
its job, and need not be invoked again.

8.4 CORRELATION FUNCTIONS IN THE
INTERACTION PICTURE

A vacuum correlation function is the vacuum expectation value of a time-ordered
product of Heisenberg field operators:

Goxy, - - .y x,) = O0[TAy(x))By(xp) - - Ci(x,)|0) (8.37)

where |0) is the exact vacuum state, normalized such that (0|0) = 1. They are also
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called vacuum Green'’s functions, because they satisfy differential equations with a
delta-function source. But “correlation function” more closely describes their role

in our applications.
In the interaction picture, we can use adiabatic switching to “assemble” the cor-

relation functions of the interacting system from those of the unperturbed system,
and this leads to perturbation theory. Consider a correlation function involving two
operators:

G(t,, 1) = 0IT A,(1,)B:(1,)10) (8.38)

where we display only the time dependences; the spatial coordinates remain fixed.
Our objective is to reexpress the above in terms of interaction-picture operators.
Consider first the time-ordering ¢, > ¢,. From (8.36), we have

A1) = U'(t, =)A (HU(t, —0) = U(—0, DA (U (—=, 1) (8.39)
Thus,

Gty 1) = (OU(=02, )4 (1)U (=2, 1)U~ (t, —=°)B (1) U(t;, —)|0)
= (0|U(—=», 1A (1)) U(1), 1)B (1) U(t,, —°)|0) (8.40)

where we have used the relation U-'(—0, 1)U !(t;, —°) = U(t,, ~=)U(-=, 1,) =
Ul(¢,, t5). The time development is represented in Fig. 8.2a by a contour beginning
from the far right at f = —o0, going to #,, then to ¢, and then back to —. This contour
can be deformed to two straight paths from ~o to o, and from o to -, by rewriting

U2, 1)) = U(-0, ®)}U(o, 1) = S1U(, 1)) (8.41)
Therefore
G(ty, 1) = OIS U(o, 1A (1) ULy, 1)B () U(t,, —%)|0) (8.42)
t2
-00
@ t
<l o
ty t,
oo e -00
(b)
o0 e -0

Figure 8.2 (a) Contour of time evolution; (b) contour deformed into two branches. Because of the
uniqueness of the vacuum state, the lower branch gives only a phase factor.
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The new time contour is illustrated in Fig. 8.2b. The returning branch of the con-
tour, represented by the operator S-!, contributes a phase factor when acting on the
vacuum, for, using (8.28) and (8.29), we can write

_ I
(0S! = e (0| = m(ol (8.43)

Therefore

OIU(=, )4, U, H)B 1)UL, ~2)|0)
(0s10)

G(t, t,) = (8.44)

The time contour now consists of the path from —o to o only. The trick to straighten
the contour works because the vacuum state is unique. If the vacuum expectation
value were replaced by an ensemble average, then we would be stuck with a contour
that comes from — and returns to —©. A technique to deal with such a case has
been developed by Keldysh [1], but we do not need it here.

We can simplify (8.44) further, by examining more closely the operator

X = U, 1))A4,(t))Ut, 1)B (1) U(ty, —)
= [TeJiar 0] 4 (1)[Te/Bar 0] B (1) Te T2 H ™ (8.45)

If all the exponential factors are expanded out, we shall have a sum of terms, each
containing products of the A’ bunched into three groups, of the form

T{TH (r)H' (12) - JAU)TIH (TDH' (73) - - 1B TIH (11)H'(137) - -1} (8.46)

where we have supplied a redundant T in front, not needed because ¢, > £,. With it in
place, however, we are free to rearrange all the H' factors in arbitrary order. The
condition #; > t,, which determines the relative position of 4,(¢,) and B(t,), ensures
that the factors cannot wind up in the wrong group when the overall time ordering is
enforced. As a shorthand notation, therefore, we can write

X =Te %4 (1)B1,) (8.47)
The correlation function can then be written in a more compact notation:

(O[TSA(1)B(£,)\0)

G(t, )= (01s10)

(8.48)

Although derived under the assumption ¢, > 1,, this result is also valid for ¢, < t,, as
one can easily verify by repeating the derivation. The preceding results can be im-
mediately generalized:
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<01TSA L(XI)BL(X2) B CL(‘er)l0>
(01$10)

G x), X0y o0 X)) = (8.49)

This is convenient for calculations, because the interaction-picture operators evolve
like free fields.

8.5 S MATRIX AND SCATTERING

In a scattering experiment, an incident beam of particles 4 falls on a target particle
B, producing a number of outgoing particles C, ..., D, which are detected by de-
vices that measure their momenta, and possibly other quantum numbers. We indi-
cate the reaction by

A+B—>C+---+D

The states of the particles are labeled by momentum, mass, spin, and other single-
particle quantum numbers.

The wave functions of 4 and B are wave packets that do not overlap initially.
When they eventually overlap, the reaction takes place, and after a short time the fi-
nal particles emerge from the interaction region as wave packets that recede from
one another, eventually becoming well separated.

The size of the interaction regime is microscopic, and by comparison the wave
packet is practically a plane wave. In our theoretical treatment, we idealize the wave
packets as plane waves; but only before the interaction began, and after the interac-
tion is over. The 1s done mathematically via adiabatic switching.

Let us denote the initial and final free-particle states by ®; and @y, respectively.
In our idealized scattering experiment, @; is the state prepared in the infinite past,
and @ is the state for which the detectors are set up to detect in the infinite future.
The actual state of the system evolves from ®; into some interaction-picture state at
time ¢, which is denoted by

\If(i+)({0) = U(tg, ~0)P; (8.50)

The superscript (+) indicates that eventually final particles will emerge as outgoing
spherical waves. In the infinite future, the particle detectors look for plane waves &
instead of spherical waves. The state that will become @ is, at the time #,, given by

W (t) = Ulty, )Py (8.51)

where the superscript (—) indicates that it consists of incoming spherical waves in
the past. The overlap between W’ and W' is the probability amplitude that the
scattering process takes place:



148 Dynamics of Interacting Fields
(WO, ¥y = (@, U(ty, ©)U(t, ~)P;) = (P, Ulee, 0)d))  (8.52)
This defines the S matrix:
(f18l) =¥, ¥ (8.53)
where li) and |f) are free-particle states. Thus, as anticipated earlier,
§ = U(os, —0) = Te 2t H (0 (8.54)

The process is illustrated in Fig. 8.3.

8.6 SCATTERING CROSS SECTION

If S = 1, then the final state is the same as the initial state, and no actual scattering
occurs. The probability amplitude that a reaction occurs is therefore the matrix ele-

MWW AW
t=—o0 t=0 t = +oo
%
5
t=—o t=0 [ =400

Figure 8.3 Upper panel shows time evolution of W) and lower panel, that of . The § matrix is the
overlap of the two states at r = 0.
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ment of § — 1. By analogy with potential scattering, we define the T matrix through
the relation

(SUS = D) = —i(2m)* 8%(Pr— PYAT) (8.55)

where P;and P, are respectively the total 4-momentum in the final and initial state.
The factor 8*(P,— P;) expresses conservation of total momentum and energy. The
energy conserving factor 2w8(P$ — P?) is familiar from potential scattering; it
comes from the assumption that the total Hamiltonian is time-independent, and that
the process was observed over a long time. The momentum-conserving factor
2m}&(Pr — P;) was extracted from the transition matrix element, under the as-
sumption that the system is invariant under spatial translations.

The transition probability for the reaction i — f'is given by

KAUS = DIDP = 2a)* 84 (0)2m)*&* (P~ PO 1T (8.56)

The factor (27)*8%(0) should be interpreted as the total volume of space-time,
specifically, the limit

@me'P) = | dixe?s = f d'x (8.57)

We omit this factor to obtain the transition rate per unit volume.

The final state f, which must lie in a continuum of states, is contained in an in-
finitesimal neighborhood d{} of some state. For example, we may specify that final
particles are scattered into specific solid-angle elements. The transition rate per unit
volume into d{) is given by

dR=> Qmy&*(P;- P){SfIT)P = ldo (8.58)
SEAQ

This defines the differential cross section do, with the incident flux / given by
1=nnw, (8.59)

where v,, is the relative velocity of the colliding partners and n, and 7, are their spa-
tial densities. For the decay of an unstable particle from the initial state i, the life-
time 7 is given by

L S Qe P TP (3.:60)

T

where the sum extends over all possible final states f.
The S matrix is unitary: STS = 1. In terms of the 7 matrix, this means
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(SUT=THi) = 2i > @Qm*8"(P;~ PXS1T"In) (nl T"]i) (8.61)

Putting /= i, we obtain the optical theorem:

Im{l(7 ~ T = > Qm)*84(P; ~ PIKIT Im)P = 1o, (8.62)

where o, is the total cross section,

The normalization of particle wave functions affects the matrix element {f[7}i),
phase space volume elements, and the incident flux /; but the cross section is inde-
pendent of the convention, as long as it is used consistently. A wave function nor-
malized to » particles per unit volume has the form

Vne®r (boson) (8.63)

= {\/_e“”u(p, s}  (fermion)

where zu is 1 for particle, and —1 for antiparticle. This corresponds to a single-parti-
cle state |p) with the properties

(pip") = n(2m’&(p-p’)

[ o= (8.:64)

Whatever we choose for n, the convention must be adhered to in the expansion of
field operators into creation and annihilation operators.

The convention used in this book is # = 1. With this, the creation or annihilation
of a boson or fermion is accompanied respectively by a factor (2Ey /2 or (m/E)'2.
This is indicated in the field expansions (2.29) and (7.16), respectively, and origi-
nates from the fact that the boson Lagrangian is quadratic in the time derivative,
whereas the fermion Lagrangian is linear. If we take

£ (fermion) (8.65)
m

2F (boson)
n i {

then these factors disappear in the field expansions, but reappear in the properties
of |p). This convention is call invariant normalization, because it has the same form
in all Lorentz frames. In practice, it makes little difference which convention we
choose, for these factors appear either with the matrix element, or squared in the
phase-space volume element.. It is merely a matter of when to include them.

As an illustration, consider a reaction in which two particles go into N particles,
with initial and final states given by

) =pi, p2)
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=P P2 py?) (8.66)
With the convention # = 1, the incident flux is

1
= 57 Vo p)? - mim3 (8.67)
12

,I_lh&

E E

where p denotes 4-momentum and £ and m denote energy and mass, respectively.
The momenta p, and p, are assumed to be coliinear. The differentiai cross section
do is given by

N d3pf
ldo =11 —
7 -1 Q)

@mP4 P~ PO fITINP (8.68)
where P; and Py are respectively the total 4-momentum of the initial and final state.
The wave function factors are contained in { f|7|{). With invariant normalization, we
take them out of the matrix element, and put their squares under d°p;’. The transi-
tion rate Ido is not changed.

8.7 POTENTIAL SCATTERING

To help understand scattering in quantum field theory, we give a parallel description
of potential scattering in nonrelativistic quantum mechanics. The experimental situ-
ation is that a steady beam of particles is scattered by a potential well, and detectors
are set up very far away to register scattered particles of definite momenta. The inci-
dent beam is represented by a stream of nonoverlapping wave packets, which can be
considered one at a time. A wave packet must be small enough that it does not over-
lap the scattering center initially, but large enough that its momentum can be well
defined. In this sense, we can replace the wave packet by a plane wave.

In the plane-wave limit, the overall scattering process is described by the sta-
tionary wave function ¢(r) of the particle, which satisfies the Schrédinger equation
with outgoing-wave boundary condition:

[#2—;— v+ V(r)} W(r) = Ey(r)

ikgr

W) — €07 + f(Q)—e—r— (8.69)

where V(r) is the scattering potential and ) denotes the scattering angles. We have
written r = |r|, k, = |Kg|, and £ = k3/2m. The incident wave corresponds to exp(ik,r),
and the outgoing spherical wave corresponds to exp(ikyr)/r. We can calculate the
number of particles scattered per unit time into solid angle dQ} from the current den-
sity of the scattered wave. The differential cross section do/df) is the preceding rate
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per unit solid angle, divided by the incident flux. This procedure yields the familiar
result

d
g =@ (8.70)

where f({)) is called the scattering amplitude. The wave packet nature was taken
into account through the neglect of interference between incident and scattered

wave.

In the laboratory, scattering is a time-dependent process, which can be de-
scribed by the stationary wave function /™ through the following construction. Let
the initial wave packet be

Flr)= f B K)e*

where f(k) is a function peaked about k = k;. Then the time-dependent wave func-
tion describing the actual scattering process is

W, 0= [ koD

where E = k*2m. A “motion picture” of this wave function will show the wave
packet being scattered by the potential, receding as an outgoing spherical wave
front. The stationary wave function obtains in the plane-wave limit f(k) —

8k — ko).
We now restate the problem in a more formal language, for comparison with
the treatment in quantum field theory. Let us write the Hamiltonian as

H=Hy+V (8.71)
with Hy = —V2/2m. Consider the eigenvalue problem with a continuous spectrum £:

(Ho+ VW) = EYEr)

e;tikor

Y r €07 +f(0)

(8.72)

r

where the superscript () labels a solution with outgoing (incoming) spherical
wave. The unperturbed problem at the same energy E is defined by

Hyy, = Edy, (8.73)

where
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by = exr (8.74)

The Schrédinger equation and the boundary condition are incorporated in the fol-
lowing integral equation:

1

(*) = —_— YD

V=0t s e (8.75)
where 7 — 0. The term =in prescribes the way to skirt the pole (E — H,;)™!, so as to
give an outgoing or incoming wave.

We define the 7 matrix by
Ty = Vi) (8.76)
It satisfies the Lippmann—Schwinger equation

1
r=V+V—>-——T 8.77
E-Hy+in ( )

and is related to the scattering amplitude through
JO) === (o V) = o (hro Thig) (8.78)
270 Tke 20 Tk

where k is the scattered wave vector, with magnitude &, and polar angles ).

The set of wave functions with the (+) and (-) boundary conditions separately
form complete sets of eigenstates of H (barring bound states). The unitary transfor-
mation matrix relating the two sets is called the S matrix:

(k|STko) =(¥), ¥iy) (8.79)

To find the relation between the S matrix and the 7 matrix, rewrite (8.75) in the
more explicit form

1

lr,jg(t()) = [l + m V:l¢k0 (8.80)

which can be obtained by iterating (8.75), and resumming. In the limit n — 0% we
have

1
E-Htin E-H

F imd(E - H) (8.81)

where P denotes principal part. We therefore have
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iy~ Ui = 2m(E - H)V ey, (8.82)
Now take the scalar product of both sides with respect to §{"), noting that
(W, ) = (ko) = 2 & (k — ko) (8.83)
This leads to
(kISTko) = (ki[1 - 2mid(E}, — E4)T] [Ko) (8.84)
Energy conservation is enforced in the S matrix, but not in the 7 matrix. The latter
can be defined for arbitrary E, including complex wvalues, through the
Lippmann—Schwinger equation (8.77).
We can write as an operator relation
S=1-2m&E-HNT (8.85)
The unitarity condition SS = | implies that

T* - T=2mT E - H)T (8.86)

The diagonal matrix element of this relation gives the optical theorem:
4
o = —]Zflm £(0) (8.87)

where o, is the total cross section for incident wave number & and f{(0) is the scat-
tering amplitude in the forward direction.

8.8 ADIABATIC THEOREM

The meaning of the S matrix rests on the statements (8.27) and (8.28), specifically
that the vacuum state in the interaction picture approaches that of the Heisenberg
picture in the infinite past and in the infinite future. The two limiting states can dif-
fer only by a phase factor, which defines the S matrix. The assumption was that the
system did not get excited from the ground state. A formal statement is provided by
the adiabatic theorem, which can be loosely stated as follows:

A system being perturbed in its ground state will remain in the ground state, as long
as the perturbation varies sufficiently slowly with time.

A precise mathematical statement of the theorem will be given later. We write the
Hamiltonian in the form
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H=H,+ AH' (8.88)

where A’ is the interaction to be turned on and off and A is a parameter introduced
for convenience, to be set to unity at the end of the calculations. The split of H into
the two terms is made at time ¢ = 0. We enclose the system in a large but finite box,
and assume that the eigenvalues of H are discrete and nondegenerate.

Suppose that ¥ is an eigenstate of H, and ® the corresponding unperturbed
state:

HY =EV¥
H,® = ed
(@, P)=1 (8.89)

In stationary perturbation theory, the relation between ¥ and ® can be found as fol-
lows. We write

V=0 +y (8.90)

where (x, ®) = 0. Note that ¥ is not normalized to 1. It simplifies the analysis to
take the coefficient of @ to be unity. Substituting this equation into H¥ = EV, we
obtain, after some rearrangement,

(E- &) =(Hy~ E)y— AH'¥ (8.91)

Taking the scalar product of this equation with @, we obtain an expression for the
perturbed energy:

E=€+ A (D, H'V) (8.92)

The perturbed state W is found by solving for y from (8.91). To ensure that the re-
sult is orthogonal to ®, we first multiply both sides of (8.91) by the projection oper-
ator  onto the space orthogonal to ®:

0P =0
Ox=x (8.93)
We then obtain the result
1
T=0p-) H' v 8.94
-5 ¢ (8.94)

The following is an equivalent form of the equation with the unperturbed energy €
in the denominator:
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1
V=P-A\——QH +e-E)¥ (8.95)
HO — €

The formulas for £ and ¥ are valid for any state, as long as the energy levels do not
cross when A varies from 0 to 1. In particular, we use them for the vacuum state,
which is assumed to be unique for all A.
With adiabatic switching, the Hamiltonian is taken to be
H,=Hy+ xeH' (e—0Y (8.96)

and the time-development operator in the interaction picture is given by
© _')\ n 0 0

Vo= U0, =5 o [ty [ atyesr ot [~ B 6] 697
=0 Mo e -

Let us calculate [H,, U,]. For the commutator [H,, H'(¢)], we use the formula

7

Ho, H(] = S 8.98
[Ho, H' (0] =i (898)

which can be deduced from (8.9). Thus

_ (—1)\)" N ]
O I R R

n

X TH' (1) - H'(1)]

T[H'(t) -~ - H'(1)]

* —iAY! 0 G 0
:_iZ(l')nj df|"'f dtnedlﬁ”‘ﬂn)&

A)” !
=-H'0)U+ /\Z(’ )1)'f dr, - f dt, ectit " )

TIH'(t,) - - H'(1,)] (8.99)

where, in the last step, we made a partial integration with respect to f,. The above
can be rewritten as

(Ho, U =-H (8.100)

or

U,

UHU;' = H, (8.101)



8.8 Adiabatic Theorem 157

This shows that U, transforms the unperturbed Hamiltonian into the perturbed one.
We can now give a more precise statement of the adiabatic theorem [2].

BB Adiabatic Theorem Let

X, = _UP (8.102)
@ UD) '
where Hy® = e®. Then
lirrbX£= c¥ (8.103)

where W is the eigenstate of the Hamiltonian corresponding to the unperturbed
state @, and ¢ is a normalization constant.

Proof Let
v, =U®d (8.104)
Consider
(Hy- eV, =(Hy,— e)U D = [H,, U, P (8.105)
Using (8.100), we obtain
o¥
(H.— eV, =ieA d)\e (8.106)

Dividing both sides by (®,U,®), we can rearrange the preceding to read

d dIn(P,W,)
- igA— | X, = ig X A 8.10

(He €—igA Py )XS ie X A Py (8.107)

In the limit £ — 0 this becomes
HX, = (e + A E)X, (8.108)

where
ol

A E = lim isn 2 Yo (8.109)

&0 dA

Thus, X, is an eigenstate of H. To show that it has the correct eigenvalue, we take
the scalar product of (8.106) with @ to obtain
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DV,
(@, (H, - W) = is)\%}\—l (8.110)
Dividing both sides by (®, U®), we can rewrite this in the form
o In(d, ¥
ig)\—-lﬂ(—a)\’——eZ = (D, (H, - e)X,) = A (P, H' X e (8.111)
Comparison with (8.109) shows that
AE = )\®, H'Xy) (8.112)
This completes the proof that X, is the eigenstate of H with the correct eigenvalue
(8.92). [
PROBLEMS

8.1 Show that the term = in in the operator (E — Ho% im)~! in (8.75) corresponds respective-
ly to an outgoing (+) and incoming (~) spherical wave, as defined in (8.72).

8.2 (a) Consider the scattering of a charged particle by the Coulomb potential of an atom-
ic nucleus, as in Rutherford scattering. The scattering amplitude involves the Fouri-
er transform of 1/r, which is ambiguous because of the lack of convergence at large
r. Show that by introducing a screening factor e, one obtains a definite scattering
cross section in the limit o — 0.

(b) The screening is a mathematical device like adiabatic switching. Why does it make
sense physically in this case?

(¢) Can you think of circumstances in which the screening device should not be used,
because it would correspond to the wrong physics? (Hint: Would you get plasma
oscillations if the Coulomb potential were screened?)

8.3 The time-reversal operation 7 defined in Section 7.8 interchanges initial and final state.
Show that we must have

TST=8"=58"
and this implies
W, W) = (v, )

where a denotes the time-reversed quantum numbers corresponding to a.
8.4 From (8.32), we have the relation U(z, 0) = eH0'e=#", or

e~ = g-HY T gmil §anH )

where H = Hy + H', and H'{{) = ¢#o'H' e H0", Obtain from this the expansion formula
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1 1 1
eA+B = +J d)‘l e(l—/\])AB e)\l/l + EI_'.J’ dA]j dAz e(l—/\])AB e(/\lv/\z)AB erd ...
0 - 70 0
8.5 (a) From (8.101) show that the ground-state energy is given by
aU
E=e+iM P, U'—d
dA
where the symbols are as defined in Section 8.8 and we have set the adiabatic
switching parameter £ = 0.

(b) Expand E in a perturbation series in powers of A. (Eventually A — 1.)

(¢) Under what conditions can this formula be used for an excited state?
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CHAPTER NINE

Feynman Graphs

9.1 PERTURBATION THEORY

We have obtained the S matrix as an expansion in powers of the interaction Hamil-
tonian. Perturbation theory is based on this expansion, considered as an asymptotic
expansion, whose first few terms can give very good approximations. Whether the
expansion actually converges is usually unknown. The value of perturbation theory,
however, goes beyond obtaining good numerical answers, for the following reasons:

® The formal sum of the perturbation series, or even a partial sum, can reveal
interesting properties of the theory, as, for example, the renormalizability of
quantum electrodynamics.

® Divergence of the perturbation series usually signals “nonperturbative” ef-
fects, such as the formation of bound states or solitons, and the onset of a
phase transition.

In this chapter, we illustrate the use of perturbation theory in the calculation of S
matrix elements in the ¢* theory. The Lagrangian density of the theory is given by

1 m Ao
Lx)= 5(9"¢>(x)6"¢(x) - 7¢2(x) - Z!‘df‘(x) 6.1

where the mass m, and coupling constant A, are called “bare” or “unrenormalized”
constants. They differ from the physical mass and coupling constant, which are
“renormalized” by the effects of interactions.

The unperturbed system is taken to be the free field of mass m,, and the corre-
sponding interaction Lagrangian density is

A
Lin(x) =~4—‘; P(x) (9.2)

160
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The 1interaction Hamiltonian differs only by a sign:
Ay .
i) == 60 93)

We use the interaction picture, in which the S matrix can be written as the following
power series in the bare coupling constant:

s=3 ! (“i)f di, o [ db, T8 ¢ (94)

=0 n! 41

where ¢(x) evolves in time like a free field. Our goal is to calculate the matrix ele-
ment of § between given initial and final free-particle states.

The field operator ¢(x) contains two terms: a positive-frequency part that anni-
hilates a particle, and a negative-frequency part that creates a particle. The nth order
term in the S matrix is a sum of terms, each of which is a product of creation and an-
nihilation operators. To obtain the matrix element of such a product, we first try to
rearrange the order of the factors in normal order—with all annihilation operators
standing to the right of all creation operators. In general, the factors involved do not
commute with one another, and we will generate other terms in the rearrangement
process. This is, however, a finite process, and in the end we will obtain the nth-or-
der § matrix as a finite sum of normal products. Once this is done, the matrix ele-
ments can be read off, because a normal product has nonvanishing matrix element
only between an initial state containing the particles to be annihilated, and a final
state containing those to be created. In the following section we develop some math-
ematical tools to implement this task.

9.2 TIME-ORDERED AND NORMAL PRODUCTS

In this section, let capital letters, such as 4, denote either a creation or annihilation
operator for fermions or bosons. The commutator between any two boson operators,
or the anticommutator between any two fermion operators, is a c-number. The same
is true of the commutator between a boson and a fermion operator. Such a commu-
tator or anticommutator may be replaced by its vacuum expectation value. We re-
state the definitions of time-ordered and normal-ordered products in a more formal
way.
A time-ordered product (T-product) is defined as

T(4,4; - A,) = BB, B, (9.5)

where {B;} is the same set of operators as {4,}, except possibly in different order,
such that an operator with a later time label appears to the left of one with an earlier
label. The quantity 7, is a signature factor:
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_[—1 if{4} and {B} differ by an odd permutation of fermion operators 9.6)
4871 41 otherwise ‘

Time ordering is distributive:
T[(ABC -+ )+ (DEF - )] =T(4BC- - )+ T(DEF - - *) (9.7)
A normal product (N-product) is defined as
:A] ce An: = nACCI s Cn (9.8)
where {C;} is the same set as {4}, except possibly in different order, such that in the
set {C;} all creation operators appear to the left of all annihilation operators. The
signature factor 7, has been defined in (9.6). Normal ordering is distributive:

[(ABC )+ (DEF - - )]: = :(ABC - - ): + (DEF - - *): 9.9)

We define the contraction between two operators as the vacuum expectation
value of their product:

A*B® = {0|4B|0) (9.10)
If there are intervening operators between A and B, then
A°CB® = £ (0|4BJ0)C (9.11)

where the sign is £+ depending on whether an even or odd number of fermion opera-
tors exchange position when B is pulled across C to the left. If there is more than
one contraction in a product, we distinguish the different contractions using multi-
ple dots:

A®B**Co**DE*F***G** = + (0|AE|0) (0|BG|0) (0|CF|0)D (9.12)

9.3 WICK’S THEOREM

The operator form of Wick’s theorem tells us how to expand a T-product into N-
products. A T-product orders operators according to time labels, regardless of
whether they are creation or annihilation operators. An N-product, on the other
hand, orders operators according to whether they are creation or annihilation opera-
tors, regardless of time label. Thus, it is sufficient to learn how to expand an ordi-
nary product into N-products, because at fixed times a T-product is just an ordinary
product, and the N-product does not care about time labels. Since a single operator
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is its own N-product, the nontrivial cases start with a product of two operators. The
general result will be obtained by induction on the number of factors in the product.

B LEMMA 1
A4y = A4y + A3A% (9.13)
Proof
(a) For two boson operators, we have

) ._[ 442  if A, is annihilation operator
iy { A,A,  if A, is creation operator ©-14)

In the latter case we write

A4, = A4, + [4,, A)] = 414, +(0][4,, 4,1/0)
= A,4, —(0]4,4,/0) (9.15)

where the last step follows because (04, = 0. Therefore, if 4, is a creation
operator, we have

A4y =4, Ay: + (014,4,)0) (9.16)

This is also true if 4, is an annihilation operator, for then the second term
vanishes.

(b) For two fermion operators, we have

) __ [ 44,  if 4, is annihilation operator
A { —A,A, if A, is creation operator ©17)

In the latter case we write

A4, = 414y — {4y, A1} = 414, — (O1{4,, A,}10)
= 4,4, - 014,4,/0) (59.18)

which leads to the same result as in the boson case.
(c) If one operator is boson, and the other fermion, then the boson calculations
apply, for the operators commute. |

Bl LEMMA 2

Ay ApC= Ay A AL A, C% 44, 4SO (9.19)
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Proof. If Cis an annihilation operator, then the lemma is trivially true, for Cis
already in normal order, and all contractions vanish. Hence assume that C is a cre-
ation operator. To normal-order the given product, we commute (or anticommute) C
all the way to the far left. First write
A4y AC=mB - B,C (9.20)
where {B, - - B,} isthe set {4, - - - 4,} in normal order. Now interchange B, and C:
B,C=,CB,+ B3C* 9.21)
where 1,¢ is -1 if both B, and C are fermion operators, and + 1 otherwise. Thus
Ay A C=npeeB) o CB, + By - BRC® (9.22)

Continuing the process, we obtain

Ay A C= e (B BRC) + my(By - By (B,C*)

A AC A AY A CS A, ARC: 9.23) m
ll LEMMA3

Ady A, = A\ Ay Ay A A AT A A At

(all possible contractions) (9.24)

Proof. The statement is valid for n = 2, as demonstrated in Lemma 1. Assume
that it is also valid for n. We prove it for n + 1 by multiplying the preceding equation
by A, from the left, and applying Lemma 2 term by term. n

The extension of Lemma 3 to a T-product is straightforward, because for any
fixed time ordering the T-product is an ordinary product. However, we have to rede-
fine the contraction symbol to take into account time ordering:

AB = (0|T AB|0 9.25
AB = (0T 4B(0) 9:25)
Then we have Wick’s theorem.
B Wick’s Theorem
T(AlAz . .Af‘l) = :AIAZ . 'An: +A1A2A3 et A": + :A1A2A3 " 'An: +-.
L L=
(all possible contractions) (9.26)
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B Corollary Wick’s theorem also holds when any A, is replaced by a linear
combination of creation and annihilation operators.

A weaker form of Wick’s theorem, which is simpler to state and prove, deals
with vacuum expectation values, and is given in Section 10.2.

9.4 FEYNMAN RULES FOR SCALAR THEORY

Suppose we want to calculate the § matrix element for the scattering process p, +p,
— p; + pg to second order in A,. A systematic way is to make a normal-product ex-
pansion of the .S matrix

S._.]+SI+S(2)+...

2\
5t =20 [ g
1/ —iA
522 31 T [ Tt @ ©:27)

It is convenient to represent the procedure graphically as follows. The basic interac-
tion consists of a product of four field operators at the same space-time point,
which we call a “vertex.” [t may be depicted as follows:

ddpdd (9.28)
RN

We draw a line sticking out from each field operator, to represent a possible incom-
ing or outgoing particle. These lines are distinguishable, since each corresponds to a
factor ¢(x) at a definite position in the product.

A contraction according to Wick’s theorem will be indicated by joining the
lines of the operators being paired. This produces an “internal line” representing a
propagating virtual particle:

d(x)(y) = (O[T d(x)(»)|0)
| I

d4k eik-x
QQm* B-m?+in

~ ey - x) =i | (n—07)  (9.29)

An uncontracted line is an “external line” associated with a particle in the initial
state or final state, whose wave function depends on the normalization convention.
We use the continuum normalization (2.44), with
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—ipx

(9.30)

=

We can represent the contractions in the form of a Feynman graph. The sim-
plest, without any contraction, is the “vertex graph” in Fig. 9.1a. We have four ex-
ternal lines, and external momenta can be assigned to them in 4! different ways.
This combinatorial factor 4! cancels the one in the coupling constant Ay/4!. Thus,
the vertex graph corresponds to the matrix element

eip3 X eip4 X eiP1x eipz‘x

=_jdy | d* = —jA 9.31
Guertex i Of xm; \/2—‘02 \/EI— \/Z_w_z IAK 1234 ( )
where
w; =+Vp; +mg (9.32)
and
2m)*8%p, + py—ps -
Ky = ATl el ), (9.33)

VQ2w)2w,)2w3)2w,)

This factor expresses the conservation of total 4-momentum, and the normalization
convention (2.44).
Terms with contractions fall into the following patterns:

¢Pdd PP (9.34)
S —

|
which correspond to the Feynman graphs in Figs. 9.15 and 9.1c. However, they do
not contribute to the scattering process under consideration, since they do not have

four external lines. Their significance will be discussed in the next section. The
first-order S matrix consists of the vertex graph only:

(P3-PalSVIP1P2) = Guertex (9.35)

HON

(a) (b) (e)

Figure 9.1 (a) Vertex graph; (&) vacuum graph,; (¢) self-energy graph.
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Let us now consider the second-order S matrix. There are two interaction vertices,
as depicted below:

T16161b 613202602 (9.36)
RERERNE

where ¢, = ¢(x;). We must designate four lines as external particles, and contract the
remaining lines. A possible pattern of contraction is the following:

—
G101 b1 br2h2 ¢ (9.37)

N

According to Wick’s theorem, we must make all possible distinct choices of con-
traction schemes, normal-order the results, and add their contributions. In graphical
terms, to normal-order is to assign external momenta to uncontracted lines. This
procedure gives rise to the Feynman graphs shown in Figs. 9.2 and 9.3. The pattern
(9.37) gives rise to the three graphs in Fig. 9.2, which differ only in the assignment
of external momenta to the external lines. The number of terms in the Wick expan-
sion corresponding to each of these Feynman graphs is

2%2— = (412 (9.38)

The first factor 2 comes from interchanging the positions x, and x,, which are to be
integrated over the same domain. The numerator in the next factor comes from per-
muting the four lines of each vertex among themselves, but this overcounts by a fac-
tor 2, because of the following symmetry: interchanging the two internal lines in
graph | of Fig. 9.2 does not lead to a distinct situation. Thus we divide by 2. The 4!
in both coupling constants are again canceled. If it were not for the symmetry in the
graph, the factor 1/2! in front of the second-order S matrix would also be canceled.
The correction factor for overcounting is called the symmetry number of the graph,
which we shall discuss later in more general terms.
Graph 1 of Fig. 9.2 represents the following matrix element:

P, P
1 2 3

Figure 9.2 Second-order graphs for a scattering process.
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X8
88 :

ki

14 15

11 12

Figure 9.3 The rest of the second-order graphs, in addition to those in Fig. 9.2.

er3xl elpax) e PIx2 gmip2

Xz\/— \/-*[IAF(xz )P \/-“‘— \/—‘

G = ")‘O) f &, d (9.39)

Substituting the Fourier integral for the propagator into the matrix element, we find

(—iAg)? f d'k i i 9.40)

@m* B -mg+in (p-py—k?—m}+

where p; = (w;, p;) are 4-vectors. This shows that total 4-momentum is conserved at
each vertex.

In nonrelativistic perturbation theory, virtual transitions conserve momentum
but not energy. That is, virtual particles go “off energy shell.” In contrast, virtual
transitions here conserve both momentum and energy, but the squared mass be-
comes unphysical, as it is &% instead of the fixed value m?. We say that a virtual par-
ticle propagates “oft mass shell.”

It is evident from (9.39) that an incoming particle of 4-momentum p* is associ-
ated with factor exp (—ip'x) and an outgoing one, with exp (ip-x). We can therefore
convert an initial particle to a final one, or vice versa, by simply reversing the sign
of its 4-momentum. This property is called crossing symmetry.

From g, we can obtain the contributions G, and G, of graphs 2 and 3 in Fig. 9.2
by interchanging momentum labels. To get G,, we interchange p; and p,; and to get
Gs, we interchange p, and —p;. The last operation is an illustration of crossing sym-
metry. The sum of the three graphs gives
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(=irg)
GitG TG = 20 ((p1s P2s P3> P2) T K P1P2s Pas P3) T 1P P30 P2 PA)IK 1234
(9.41)
where
ad*k i i
I(p1, P2, P3. p4a) = (9.42)

Q) K —mi+in (p,-ps—kP-mi+in

Other second-order Feynman graphs are shown in Fig. 9.3, where only graphs
4-8 contribute to our process, because they are the only ones with four external
lines. Thus, the complete second-order S matrix is

8
(P3:P4S?Ip1p2) = ZG, (9.43)
=

The other graphs in Fig. 9.3, which do not contribute to the matrix element here,
will be considered in the next section. Even among the graphs included, we only
need to keep G, + G, + G, for practical purposes, as we shall explain in the next sec-
tion.

The nth order S matrix is given by

V[ —ikg \n
so=r( gt T JanTosoe0 @il 049

n!

In the following, we state the rules to generate all Feynman graphs of this order.
First, draw n vertices, with four lines emanating from each vertex. We then contract
the 4n lines attached to the vertices in all possible manners, including no contrac-
tion. Each distinct contraction scheme gives a graph. We assign external momenta
to the uncontracted lines (the external lines.) for either incoming or outgoing parti-
cles. Each distinct assignment gives a Feynman graph. The matrix element corre-
sponding to a Feynman graph can be obtained by inspection, through the use of the
Feynman rules. For real ¢* theory, they are as follows:

® An nth-order Feynman graph consists of n vertices where four lines meet.
Some of these are internal lines carrying a internal 4-momentum. Others are
external lines identified with incoming or outgoing particles of definite mo-
menta.

® Each vertex contributes a factor —iAg. The net 4-momentum flowing into
each vertex is zero.

® An external line of 4-momentum p contributes a factor (2w,)""2. It is an in-
coming particle if py >0, outgoing if py <0.

® An internal line of 4-momentum &* contributes a factor
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iAp(k) = }TL— (n—0%)

mi+in

Not all internal momenta are independent because of 4-momentum conser-
vation at vertices. The independent ones are integrated with measure
Q) dk.

® Overall conservation of total 4-momentum is enforced through a factor

Qm)e"(P,-P)

where P,and P; are respectively the total 4-momentum of the final and ini-
tial states.
® The graph is divided by a symmetry number S.

In general, the symmetry number has to be worked out for each graph. Howev-
er, in ¢* theory, a rule can be stated for connected nonvacuum graphs (graphs with
external lines, with no disjoint subgraphs). In such a graph, & internal lines are said
to form an equivalent set, if they all share the same vertices at both end. If there are
more than one such set, containing respectively k|, &,, . . . internal lines, then the
symmetry number of the graph is (see Huang [1])

$=1IIx! (9.45)

Vacuum graphs do not follow this rule. An example is given in Section 9.5.

There are topological relations among graph elements. Consider the more gen-
eral ¢~ theory, in which K lines meet at a vertex. We may say that an external line
“uses up” 1/K vertex, while an internal line uses up 2/K vertex. Therefore, for a
graph with » vertices, L. external lines, and L; internal lines, we have the relation

Lo +2L;=Kn (9.46)

In the case under discussion, K = 4.

The 4-momenta of internal lines are not independent of one another, because of
4-momentum conservation at each of the » vertices. There are thus # conservation
conditions, one of which is taken into account through total 4-momentum conserva-
tion. This leaves n — 1 constraints on the L, internal 4-momenta. The number of in-
dependent internal 4-momentum is accordingly

Ni=L~-(n-1) (9.47)

This is the number of [ d*k integrations in a graph.
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9.5 TYPES OF FEYNMAN GRAPHS

9.5.1 Vacuum Graph

Figure 9.1b represents a vacuum graph, which describes a vacuum fluctuation in-
volving the creation and annihilation of two virtual particle—antiparticle pairs. The
matrix element is

Gune = {01S'10) = ~iAg [ ¥, (OIT 15,109 (O[T, 5,109

=ik, f d*x [i1AR(0))?

(9.48)

=—iAp(2 77)484(0)[ f Tk i }2

Q@) B -mi+in

The final form can be written down directly using the Feynman rules. The factor
(27r)*8%(0) represents the integral / d*x, which should be interpreted as the total vol-
ume of space—time. Vacuum processes such as this one occur with uniform proba-
bility over all space-time, and they can accompany any reaction we consider. Thus,
the sum of all vacuum processes (0}S|0) occurs as a factor in any S-matrix element.
As we shall show below, this factor is a phase exp(i®,), and so does not affect tran-
sition probabilities. From a practical point of view, therefore, vacuum graphs may
be ignored.

9.5.2 Self-Energy Graph

An example of a self-energy graph is Fig. 9.1c¢, which describes a particle interact-
ing with itself while propagating in the vacuum. It does this by emitting and reab-
sorbing a virtual particle at the same point. Alternatively, we can say that the parti-
cle creates a virtual pair, which eventually annihilates. The matrix element is

Getr = (P2IS'P1) = “iAofd4X1<P2|¢1|0> (OIT ¢, ¢1(0) <O\ Ipy)

=i f e, S22 A 0y
=i J o TE A0 e
o Qmietp -p) [ % J

S G @ay) | @ Bmitim (©.49)

Again, we could have obtained this directly from the Feynman rules.

Such a self-energy “bubble” can be inserted into any line, external or internal,
any number of times. Some examples are shown in Fig. 9.3. We shall discuss such
insertions systematically in Section 13.2. At this point, we merely mention that the
effect of all possible self-energy insertions is to replace the free propagator Ag(k) by
a “full propagator” Af(k), in which the mass pole at &> = m} is shifted in position,
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and the residue is also changed. The shifted position corresponds to a “renormalized
mass,” and the changed residue corresponds to a change in normalization of the
wave function, by a factor conventionally designated as Z-2, the “wave function
renormalization.”

9.5.3 Connected Graph

A connected graph does not contain disjoint subgraphs. The converse is a discon-
nected graph, illustrated by graph 4 of Fig. 9.3, which corresponds to the matrix el-
ement

g4 = GVCrrevaac (9 . 50)

This describes a vacuum fluctuation during scattering. As mentioned before, vacu-
um components of graphs can be ignored.

Graphs 1315 of Fig. 9.3 are disconnected graphs describing separate uncorre-
lated events. (One takes place on Earth; the other, on Mars 1000 years later, per-
haps.) For example, graph 13 corresponds to two independent self-energy interac-
tions; graph 14 represents a scattering event, with a spectator particle interacting
with itself; and graph 15 describes two independent uncorrelated reactions. Discon-
nected graphs do not require separate calculations, because they are products of
lower-order connected graphs. Therefore, we only need to consider connected
graphs.

9.6 WICK ROTATION

In calculating a Feynman graph, we generally have to integrate over internal 4-mo-
menta. Consider the self-energy graph G, where we encounter the integral

/= f d4k——l~—~ ©.51)

k2 —mg+in

Putting aside the question of convergence, let us first describe how the “mass-shell”
singularity at &2 = m,? should be handled. Written more explicitly, the integral reads

1=[a kf by i (k2+m2)—m (9.52)

The term i7 in the denominator displaces the mass-shell poles away from the path
of integration, as shown in Fig. 9.4 (left). Since the integrand has no other singular-
ities in the &, plane, we can rotate the k, contour counterclockwise, until it lies along
the imaginary k, axis, as indicated in Fig. 9.4 (right). This corresponds to making &,
pure-imaginary:
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ko plane

LN .

>
o L

Figure 9.4 Wick rotation of contour to imaginary axis. The contour never crosses the poles of the
Feynman propagator shown by the dots.

ko = iky (9.53)
where £, is real. We now have an integral over a four-dimensional Euclidean space:

= I
-5 3 -
; f d kLcdk4 P (9.54)

where we have taken the limit n — 0. Called a Wick rotation, the rotation to the
imaginary k, axis can be done in all Feynman integrals, because the integrand does
not contain singularities other than those in the Feynman propagators. A virtual par-
ticle has Euclidean 4-momentum, instead of Minskowskian, because of the i7 in the
Feynman propagators.

9.7 REGULARIZATION SCHEMES

Having defined the contour of integration, we are faced with the problem that / has
an “ultraviolet divergence” at the upper limit of integrations. We must render it fi-
nite by introducing a high-momentum (or small-distance) cutoff. Eventually, when
all graphs are added up, we hope to “renormalize” the theory, by reexpressing the
cutoff in terms of experimentally measurable parameters.

Cutting off the high-momentum contributions means modifying the asymptotic
behavior of the Feynman propagator, and the way to do this is not unique. The sim-
plest scheme introduces a sharp cutoft A, by replacing / with

~ 1
=_q 3 v
[A IJ['kKAd k[mdk4 k§+k2+m(2) (955)

The k, integration can be performed through contour integration:

[ o ik m N Tm (9:36)
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Thus we have

A k2
Iy = —4i1T2f0 dk-\/'—](—2+——j——m; o —2im?A? (9.57)

The quadratic divergence when A —  is typical of a boson self-energy.

The sharp cutoff is simple, but not Lorentz-invariant. When it is important to
keep the theory invariant, we can use the Pauli-Villars regularization, which re-
places the propagator in the following manner:

I 1 1
R-m3  K-mi R-A? ©-38)

The cutoff A appears as the mass of a fictitious particle, whose propagator has the
sign opposite that of a physical particle. Since, according to (2.76), the residue at
the mass pole is the squared modulus of the wave function, the fictitious particle
here has negative probability, and therefore has no physical meaning. In the exam-
ple considered, the Pauli—Villars regulator gives the same A —dependent term as in
the sharp-cutoff case.

Another Lorentz-invariant cutoff scheme is dimensional regularization, which
is based on analytic continuation of the space—time dimensionality. To illustrate the
technique, rewrite / as a d—dimensional integral:

d

K2+ m}

=i

. fo du| g -2+ (9.59)

We are interested in its value near d = 4. Using the formula

an
[ ak w2 = ( %) (9.60)
we write

o d
I=—in? 2J du w2 mGu = ‘iwd’zmgfzr(l - E) (9.61)
o

which can be continued to complex d. We then put d =4 + ¢, and obtain
[ —p 2im’mie’! (9.62)

This gives the same result as the sharp cutoff if we identify A% = m3e .

Still another cutoff scheme is lattice regularization, in which continuous space
is replaced by a discrete lattice. The advantage of this scheme is that local gauge in-
variance can be preserved, and that it is well suited for Monte Carlo simulations. An
example of this is given in Section 16.3.
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9.8 LINKED-CLUSTER THEOREM

We distinguished between connected and disconnected graphs, because the latter
are composed of connected subgraphs. If we know all the connected graphs, that is
sufficient to generate all graphs. The linked-cluster theorem tell us exactly how to
do this:

B Linked-Cluster Theorem
exp(sum of all connected graphs) = (sum of all graphs) (9.63)

Proof. Let I'; denote a connected graph, so that the set of all connected graphs
is {I';, I';, . . .}. The general graph G contains m, copies of T';, and may be represent-
ed in the form

ny my

(9.64)
m ! m2!

G=

The factors m,! account for the fact that the copies are indistinguishable, and, as we
shall show later, arise as symmetry numbers. Summing over all possible choices of
subgraphs gives the sum of all possible graphs:

Sg=1II i % AT (9.65)
i m:O H

This the desired result; but it remains to derive the symmetry numbers. Consider the
graph composed of m I'’s. If I is of order n, the graph is of order nm, and has the
form

Graph~ —— [ d%, -+ A, (fIT #0x) - Hex i) (9.66)

(nm)!

A permutation the nm vertices has no effect on the integral, but a permutation that
bodily interchanges two subgraphs does not give a distinct term in the Wick expan-
sion. Thus, the number of distinct permutations is (nm)!/m!, and the symmetry num-
ber is m!. This completes the proof. L]

9.9 VACUUM GRAPHS

First we show that a connected vacuum graph is a pure imaginary number. Consider
¢~ theory, in which an nth-order connected graph is of the form
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I~ (‘i)‘o)"j (d4k)Ni( E _’m% )Li (9.67)

where L; is the number of internal lines. For a vacuum graph there are no external
lines, and so, according to (9.46), we have

Li=— (9.68)
By (9.47), the number of 4-momentum integrations is given by
K
N,-=L,-~n+l=—2n——n+l (9.69)

After making Wick rotations in all the %, integrations, the integral gives a real num-
ber; but the rotations produce a factor ;.. Thus a vacuum graph is of the form

i**Ni*Li x (real number) = i'*K" x (real number) (9.70)

For K odd, the theory is unphysical, because the Hamiltonian is not bounded from
below. For K even, the graph is pure-imaginary. [

It follows from the linked-cluster theorem that the sum of all vacuum graphs is
a phase factor:

Sum of all vacuum graphs = (0|5]0) = ¢'® (9.71)

Since vacuum graphs have no external lines, we can freely add them to any graph
with a fixed number of external lines. Any graph is therefore multiplied by ¢, but
this has no effect on the scattering cross section. Therefore we can ignore all vacu-
um subgraphs.

PROBLEMS

9.1 Complex Field
(a) Fora complex scalar field 1x), show that the basic contractions are

P () = QTP ()I0) = iAp(x ~ y)
Px)Yy) =0

Explain why the second of these is zero. A line in a Feynman graph now has a di-
rection, represented by an arrow pointing along the flow of charge.

(b) Assume an interaction Lagrangian density —(Ay/4!) (4" )2, State the modified Feyn-
man rules. What restrictions follow from charge conservation?
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(c) Consider graph 1 in Fig. 9.2 for a complex field. Choose a particular way to place
arrows on the lines, and calculate the graph.
Self-Energy Consider the scalar ¢* theory discussed in the text. To any internal line in
a Feynman graph, we can always add any self-energy graph. The sum of all such addi-
tions replaces the Feynman propagator ;A (k) with a full propagator /A[(k), as illustrated
in the accompanying figure. Any graph for the full propagator can be dissected into
“one-particle irreducible” components, which are graphs that cannot be made discon-
nected by cutting one line. The sum of all irreducible graphs, with external lines omit-
ted, is denoted iII(k?), where TI(k?) is called the “proper self-energy part” It is also
known as “vacuum polarization,” because it describes virtual pair creation and annihila-
tion in the vacuum, and for a complex field this creates a fluctuation of dipole-moment

| 4--{:)—~+-{E}—QE}_4HH
©-0.0.8.

(a) Show that the full propagator has the form
I
-mi+ Tk + in
(b) Calculate IT (£?) to the lowest order, namely the simple bubble graph. Introduce a
cutoff A to make it finite.

(¢) Show that the mass of the particle is shifted from my to a renormalized value m.
Calculate m to lowest order in the coupling constant Ag.

Scalar ¢ Theory A real scalar field ¢(x) has Lagrangian density

iAR(K) =

A¢) =

1 1 1
L=50$du$— S mid — Sreed’

This theory is unphysical, because the Hamiltonian has no lower bound, but we can use

it to illustrate Feynman graphs.

(a) State the Feynman rules.

(b) Calculate the vacuum polarization IT(k?) to lowest nonvanishing order, using a
sharp momentum cutoff. Obtain the renormalized mass.

(¢) Consider a two-particle scattering process. Draw all Feynman graphs for the S ma-
trix up to order gf. Give the matrix elements in the center-of-mass system, with in-
cident momenta p, —p, and scattering angle 6.

(d) Calculate the differential cross section.

Pauli-Villars Regularization In Problem 9.3 the vacuum polarization yielded an in-

tegral proportional to

4

dp 1
@y (p? + mp){(p ~ kY + mg)

I(k?) =j
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where a Wick rotation has been made to Euclidean space. Calculate this integral using

Pauli-Villars regularization, as follows.

(a) Since the integral is logarithmic divergent, we need to regulate only one of the
propagators. Replace (p? + m3)™' by (2 + m3y' — (p* + M)\,

(b) Rewrite the propagators using the representation

-é— = J:da eP

From the two denominators, you get two integrals of the form [3da [5dB e™PFP’.
Make the substitution of variables o = Ax, 8= A(l —x). Then [jda [5dB = [}dx
[2dAA.

(¢) Perform the integration over A, and obtain /(4%) as an integral over x. Find the as-
ymptotic behavior when M — .

Nonvrelativistic Electron Gas Consider a gas of nonrelativistic free spin- 5 fermions
with fixed density n,. The Hamiltonian is

1 ,
Ho= 5[ 5 007 0
where ,(x) is the annihilation operator for spin ¢, which satisfies
[ax), Yo Ax")) = 27) &(x - x)3,,-

We expand it in terms of momentum eigenstates:

Sk
w)= | oo,

The ground state is denoted [0). It is like a vacuum state in hole theory, with all momen-
tum states & < ky occupied, and the rest empty. The free propagator is defined by

Goa(x, t; X', 1) = ~KO[Tu(x, DY(x", )10)

where i,(x, 1) are Heisenberg operators. Because of translational invariance, we can de-
fine

Gk, w)= J dx dt e %*Ggx, 1,0, 0)
(a) Show that the propagator is given by a diagonal matrix in spin space:

1

Gk, w) = —————
(k. ) w6 Yin

_[+0 (&>e€p)
17120 (e<l>ep)

where €, = k%/2m and er = k#/2m is the Fermi energy. More explicitly,
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e, — &) + Her ~ €) )

GOk =§
as(k, @) aﬁ(w—ek+in ©—€,-in

where 6 is the step function: 8(x) = 1 for x > 0,6(x) = 0 for x <0.

Next, include Coulomb repulsion between the fermions. The interaction Hamilton-
ian takes the form

! 62 ’ + ’ 1 '
H=— 3 f d*x @' YOG AX") - Y AX W(x)

2 x - x'}|

oo’

To ensure charge neutrality, we add an interaction with a uniform background with
opposite charge density. As shown in Problem 1.5, this is done by omitting the & =
0 part of the Fourier transform of the Coulomb potential. Show that H, can be writ-
ten

S dk d’q

2
, €
H = 7 Z (2,”)9 CZH],GCA' ’,a’u(q)ck'fq,a’ck.a

oo’

where u(q) = 4me’/q?. Represent the interaction by the Feynman graph

k+q o k'—q,0

--.<_-_
q
k.o k.o

Write down a set of Feynman rules in momentum space.

The interaction between two particles is screened by “‘vacuum™ polarization, de-
scribed by the summation of the following diagrams.

Do e

Define the polarization function by

dv d%
HO(qa 0)) =—i Z J ET_ (277)3 Ggo(k + q,w + V)Ggo'(k’ w)

The effective interaction u.4{(g, w) is defined by the sum
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We can define a dielectric function &(g, w) by

2 4m
(g, ) ¢

Ue(g, W) =

Show that

u(q)

henld @) = T (g, @)

Show that the polarization function is given by

d3k
M@, @)= 2 [ 5 e, - en)okes - &)

1 1
X _
O §— €, TIN  WT Eq,— -7
Now we concentrate on the real part of I1,. Show that

&k f(k)-f(k+q)

QM w+e-e,

Relly(q, @) = 2P j

where f{k) = (e — €,) is the Fermi function at zero temperature. The sum of simple
bubbles is known as the “random-phase approximation” for the dielectric function.

Consider the limit g — 0 at finite w. Show that

RenO(q’ w) 40 ma)z

To do this, it might be helpful to rewrite the result of (¢) as

Pk fK) (e, - &
Q7 @ (& — €,

ReTl(q, w) = 2P

Note that

47e? 1
ueﬁ(qa (1)) - q2 1- ((1)0/0))2

now contains a pole at the plasma frequency w, = 4me’ny/m.

Consider the opposite limit w = 0, ¢ — 0. This is the appropriate limit for the
screening of a static external test charge. Show that

lim Relly(q, 0) = —po
—

where py is the density of states at the Fermi energy:
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_ o Pk _ ke
po=12 (277)35(51\-‘@‘)‘ )

For this limit the result of () is useful.
(h) Show that

4me?
qZ + K2

Ueelq, 0) =

where «* = 4me?p, is the Thomas-Fermi screening constant. This gives the static
screened Coulomb potential

3

d*k
) = [ s e )

Show that it takes the form of a Yukawa potential:

eZ
Herl) = e
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CHAPTER TEN

Vacuum Correlation Functions

10.1 FEYNMAN RULES

The n-point vacuum correlation function is defined by
Golx1, - -5 %) = (0T () - -+ y(x,)[0) (10.1)

where ¢ (x) is the field operator in the Heisenberg picture and |0} is the exact vacu-
um state, with (0]0) = 1. The Fourier transform is denoted by

Gtk k) = [ d, - di et Gy, L x)  (10.2)

These functions give a complete description of the system. As we shall see, they de-
termine the S matrix. From (8.49), we have the representation in the interaction pic-
ture:

OIT Sb(x,)) - - - b(x,)|0)
(01510}

Gn(xl’ e 9xn) = (103)

where ¢(x) is the field operator in the interaction picture and S is the S matrix. More
explicitly,

: (_i)!m ,{d‘% o dY 0T H(y1) - - Hym)Pxy) - - Px,)I0)

GulX1s -+ Xn) = (0IS10) &5 m (10.4)

where #(x) is the interaction Hamiltonian density. The numerator may be expanded
into sums of normal products according to Wick’s theorem. Since we are taking the
vacuum expectation value here, a/l factors in a normal product must be contracted.
This leads to an expansion of the numerator in terms of Feynman graphs. Just as in
the case of the S matrix, each graph is multiplied by vacuum subgraphs, and the

182
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sum of all vacuum graphs occurs as a common factor to all graphs. This factor is
(0|S]0), which cancel the denominator. We may therefore replace the denominator
by 1, and at the same time ignore all vacuum graphs.

The Feynman rules can be derived directly by using the following theorem.

Il Wick’s Theorem for Vacuum Expectations Let a, - - - ay, be a product of an
even number of creation or annihilation operators, and let

(a; - ay) =0T a, - - - ay,)0) (10.5)
Then

(a, - 'azp> = (a1ay) (@saq) - <a2p—la2p>
+ 8p(aias) (@ray) - - (ayp-1as,)

+ - - (all possible pairings with signature factor) (10.6)

where the signature factor 8y is defined as follows. For bosons 8y = 1. For fermions,
8p is the signature of the permutation that will bring the list of operators in the term
that it multiplies to the standard order a, * - - ay,.

The theorem, of course, follows from the operator form given in Section 9.3, but a
direct proof is simple: The case p = 1 of this theorem is trivial. The general case can
be proven by induction on p, with the help of the following

Il LEMMA
(ay - ay) = 6laiar) {as - - ayy) + Bavas) (aray - -~ ayp)
Fo 8y, @iag) (@ agy) (10.7)
Proof. Let by - - - by, be the set a; - - - ay, in chronological order. We may as-

sume that b, is an annihilation operator; otherwise, both sides trivially vanish. We
commute b, all the way to the right, where it annihilates the vacuum state. Each
time it commutes across some b,, we write

_ | buby +1by, b,] (bosons)
bibn { ~b,b, +{b\,b,}  (fermions) (10.8)

The commutator or anticommutator above is a c-number, and may be replaced by its
vacuum expectation value. Further, in the vacuum expectation value, it may be re-
placed by b,b,, since b,0) = 0. Then, b5, may be replaced by Th,b,, since the oper-
ators are in chronological order. This proves that a typical term in the expansion is
generated, whenever b, is commuted across some b,. The signature factor supplies
the appropriate sign. n
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As an example, consider the two-point correlation function G, in ¢* theory:
iA
Go(6,) = 0T GIGI0) — 5 [ d*, O $)gII0) + -+ (10.9)

with the understanding that vacuum graphs are to be ignored. The first term is the
basic pairing, which gives iA{x — y). This is represent graphically by drawing a line
between the points x and y, as shown in Fig. 10.1a. To expand the second term using
Wick’s theorem, write out the time-ordered product as follows:

T $1d1¢1 1.0, (10.10)

NN

where ¢{(x) and ¢(y) are distinguished by heavier and longer lines, because the
points x and y are “external” points not integrated over, and do not correspond to
vertices. There are two distinct patterns of contraction:

hdibididd,  hidididido, (10.11)
I SN oy N I B

L—

which correspond to graphs b and ¢ of Fig. 10.1. We are to ignore b because it is the
same as @ when the vacuum subgraph is omitted. To order A, we have

Golx, y) = idr(x-y) + (‘i)\o)f dx,ibp(x — x)[IAR(0)]iA(x, - ) (10.12)

with Fourier transform
Gylky, ky) = Qa8 Uk, + ko) {iRp(k)) + (—iAo)i Ap(k[IAR(0))i Ap(ky)}  (10.13)

Compared with Feynman graphs for the S matrix with external lines, there are only
two differences:

® The external 4-momenta are arbitrary, not necessarily on the mass shell.
e Each external line contributes a propagator i Ap(k), instead of wave function

(20)/()4/2.
X5
S @]
X y X y X X4 Yy
(@) (b) (c)

Figure 10.1 Graphs for a two-point correlation function.
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Other than these exceptions, the Feynman rules are the same as those for the S ma-
trix.

10.2 REDUCTION FORMULA

The converse of the rules stated above is as follows. A Feynman graph for the § ma-
trix can be obtained from a corresponding one for the correlation function, by per-
forming the following operations for each external line, of 4-momentum &:

® Replace the propagator i Ap(k) with a wave function (2w,)""2.
® Put k£ on mass shell.

While this procedure is correct graph by graph, a neater rule applies to the sum
of all graphs. The sum of all Feynman graphs can be regrouped, such that all free
propagators i Ap(k) are replaced by full propagators i A (k), in which the pole in &2 is
displaced from the bare mass to the renormalized mass and the residue of the pole
acquires a factor Z'/? from wave function renormalization. Thus, to obtain the S
matrix from the correlation function, we replace i A;(k) by (2w, Z)""2, and then go
on the renormalized mass shell. This rule is the content of the reduction formula [1},
as illustrated schematically in Fig. 10.2.

To formally derive the reduction formula, we consider external particles whose
wave functions are finite wave packets. We shall let the wave packets approach
plane waves, but only in the final formula. A wave packet f(x) is defined as a nor-
malizable solution of the Klein—Gordon equation:

P +m)f(x)=0

[ sy < o0 (10.14)

Figure 10.2 Reduction formula in pictures. The S matrix can be obtained from the correlation function
by replacing external full propagators with normalization constants of wave functions.
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where

’9f2 _ LA (10.15)

0
k= o

I Reduction Theorem For fix) a normalizable solution of the Klein—Gordon
equation,

[t o+ mig = im ~tim | [xsw%em  (o.16)

Proof. On the left side, make partial integrations to transfer the operator ((]> +
m?) to fix), which it annihilates. One is left with surface integrals, which give the re-
sult. ]

Now consider a two-particle scattering process symbolically denoted as
3+4—-1+2 (10.17)

Let the Heisenberg field operator of the ith particle be ¢, = ¢,(x,), and its normaliz-
able wave packet be f; = flx;). The annihilation operator for the ith wave packet can
be defined as

axo) = if dx [F0)50i) (10.18)

which is a Heisenberg operator. As x, —» £, the wave packets of different particles
diverge from each other, and eventually the particles will behave like free particles.
Thus, we may assume

a(xo) x;_:;\/z-a "

m\/—a"“‘ (10.19)
where ai" and a9 are free-field annihilation operators of the plane-wave state i, in
the limit @« — 0. The factor \/Z accounts for wave function renormalization. This is
called the adiabatic condition, which embodies adiabatic switching in the present
context.

The free-field operators are defined by the commutation relations

[al ’am]_ ij

[a?ut, ajc;ut] = ’j

(10.20)

where, to avoid too many superscripts, we use a bar to denote Hermitian conjugate.
These define two equivalent set of operators that may differ by a phase factor, which
forms the S matrix. The initial and final states are defined by

3,4 in) = afair|o)
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[1,2 out) = af™as0) (10.21)
where {0) is the physical vacuum state. The S matrix element is
(1,2IS]3, 4y = (1, 2 out|3, 4 in) (10.22)
Consider now the vacuum correlation function
G(1,2;3,4) = (OIT ¢1¢,634/0) (10.23)
The projection onto wave packet states is defined by
Gltr, 1 15,00 = [ @5, - dxu S BrodlaBhodh G1L234)  (10.24)
= (0|T a,a,a;a4/0) (10.25)
By the asymptotic assumption we have, as f;, ¢, — %, and f3, #; — — %,
Gt 133 13, 1) > VZZZ,Z, (0l a3 @y a |0y (10.26)

where time-ordering is unnecessary because the operators involved are independent
of time. Therefore

G(t), 1 by, 1) = VZ,Z,2,74(1, 2 |S13, 4) (10.27)
We now calculate the left side using the reduction theorem. Go to (10.24), and per-

form the indicated operation with respect to particle 1, in the limit ¢, — <. This is
called “reducing particle 17

lim if %, G OIT @1628,640)
= lim if 451 /1 T 0T iy b0
+ [t fo 7+ mDGUL 2:3,4) (1028)

where the first term on the right side vanishes, as it is equal to (0T (d>,¢>2$3)a4|0).
We then reduce the other particles in a similar manner. The final result is

(1,283, 4) = [d%, - d“xﬁgx/—g’;——%«mf +md) - (TF +mG(1, 2 3,4)

(10.29)

This is the reduction formula.
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When we go to the plane-wave limits of the wave packets, the operator
(0% + m?) can be replaced by (—k? + m¢), where k; is the 4-momentum of particle 1.
Thus it vanishes, unless canceled by its inverse from the correlation function. The
effect is to cut off the external leg in the correlation function, forcing it to go on
mass shell, and multiplying it with (2k,,2,)"'"2.

10.3 THE GENERATING FUNCTIONAL

The vacuum correlation functions may be considered to be the response of the sys-
tem to an external source J(x) coupled to the field, which is turned on and off adia-

batically:

Jx) — 0 (10.30)

Jxgl—c
The Lagrangian density in the presence of the source is
LAx) = L(x) - J(x)P(x) (10.31)
where L(x) is the Lagrangian density without source. We assume that the vacuum
state |0 in the absence of source is unique, with (0/0) = 1. When the source is turned
on and off, it remains unique according to the adiabatic theorem of Section 8.8. We
denote the vacuum in the infinite past by |07),, and in the infinite future by [0%),.
These state vectors describe the same state as |0), but may differ by a phase W[J]:
(0*107), = &7 1 (10.32)
Let us go to the interaction picture with respect to the source interaction:

H = f d3xJ(x) b(x) (10.33)

The field operator in this picture is just the Heisenberg operator in the absence of
source. According to the adiabatic theorem, we have

|07), = Te U2dt H0]0)
0%), = Te /%4 H'0)0) (10.34)
where |0) is the vacuum state vector at ¢ = 0. Thus
(0%107), = (O[T 7i/%dt H 0|0 = (O[T ¢~i/d*x Jx)0|0) (10.35)

Taking &/8/(x} of the right side brings down a factor —i¢(x) from the exponent.
Hence
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07107,
8J0xy) - 8J(x,)

= (YOT Plxy) - - - N0 = (=1V'G(xy, - - -, x,) (10.36)

J=0

and we have the expansion

(’?n fd“x, coedfGoxy, L x M) s J(x)  (10.37)

eI =(0"07),= >
n=0 n:

This shows that (0*[07); is the generating functional of vacuum correlation func-
tions.

10.4 CONNECTED CORRELATION FUNCTIONS

In terms of Feynman graphs, we can state
G, ...,x,) =sum of all Feynman graphs with »n external lines  (10.38)

where the sum includes both connected and disconnected graphs. (It is understood
that vacuum components of graphs are to be omitted.) Since disconnected graphs
are made up of lower-order connected graphs, it is useful to separate out the con-
nected ones:

L(xy,...,x,)=sum of all connected Feynman graphs with » external lines (10.39)
A general G, consists of a number of disconnected components, which we can enu-

merate by giving the “occupation numbers” {o, 03, - - '}, such that there are o
copies of [;. This is indicated by the formula

Gxys -5 %) =20 > PILC¥) - (UL - ()] -+ (10.40)

{or} P

ol factors a2 factors
where {0, . .., 0,} is a partition of the integer n, such that
n=0+20y,+ " +no, (10.41)

In each term of the sum over {0, }, there appear n asterisks representing the coordi-
nates x|, .. ., x,, in some fixed order, and P denotes a distinct permutation of these
coordinates. The number of such permutations is

n!

(o). .. (r,,!)[(l!.)"l - (n)on]

(10.42)



190 Vacuum Correlation Functions

When (10.40) is substituted into (10.37), terms in the P sum give the same contribu-
tion on integration over x,, . . . , x,. Thus we have

. [ Jasenae) | | fasatyro ovon |
©10)y=> > iy g i o (10.43)

n=0{oy}

The double sum above is equivalent to a sum over {o}} with no restriction. Thus,
each o, is independently summed from 0 to o:

N e .
0= [ fastno]* 3 [SE[avavne naso]" -

o1=0 Y1 ! o2=0

= exp Z (—:;)—fd“x, coedix, Lixy, .o x)J)  Hx,) (10.44)
n=1 .
Thus In{0*]0") is the generating functional of connected correlation functions:
. __m('i)n 4, ... 34
ima=> —= e di X)) ) (1045)
n=) .

This is a form of the linked-cluster theorem.

10.5 LEHMANN REPRESENTATION

The correlation functions “know” about the mass spectrum of the field theory. For
two-point correlation functions, the dependence on the mass spectrum is made ex-
plicit in the Lehmann representation [2]. We consider a variety of two-point correla-
tion functions, which for a real scalar field are conventionally designated as fol-
lows:

iAg(x) = (O[T $(x)(0)[0)
iA’(x) = (O][(x), $(0)]I0)
A (x) = (0](x)$(0)10)
A7 (x) = (0l(0) (x)|0) (10.46)
where ¢(x) is the Heisenberg operator and |0) is the vacuum state of the interacting
theory. The corresponding correlation functions for the free field, denoted without a
prime, have the following Fourier representations:
d4k eilrx
Qm* B -m>+in

Belx, m?) = | (n—>0°)
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3k sin{wy)
N = | T VTR ikx
Alx, m?) f o e
1 d*k
*) N 2 _ g2\ pikx
AN x, m?) 2mi) @ A)S(k> — m?) e
A(‘)(X mZ) — __L_ _ﬂ_ G(_ko)a(kz — mz) eik'x (10 47)
’ 2@ Qu) .

where m is the free-particle mass.
Consider the function A, By writing ¢(x) = e ¥ *pe'’*, where P* is the
4-momentum operator, and ¢ = ¢(0), we obtain

IO @) =D O G &) (nigl0) = D P KOlgmE  (1048)

The state {n), with 4-momentum PF, is a “single-particle state” in the sense that
{0|¢ |n) # 0. We assume

Pl>0 (positive energy) (10.49)
P2>0 (positive invariant mass)
Thus
[ i ouyo0ys - Py = 1 (10.50)

when inserted into (10.48), it yields the integral representation
Ay = [ 6R) 0(R2) e *plk2) (10.51)
where the mass spectral function p(k%) is defined by
pR) = 2 8k = PO} (10.52)

which is real, positive-definite, and depends on k* only (by Lorentz invariance). We
now integrate over k*, keeping &* = m?, by writing

[ k=] am?[ @k 842 — ) (10.53)

The result is the Lehmann representation for A®’:
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AW (x) = J dm?p(k*) A% (x, m?) (10.54)
4]
A similar result holds for other correlation function: A correlation function is the

spectrally weighted integral of the corresponding free function, over all possible
values of the mass. In particular, the full Feynman propagator has the representation

8 = [ dm2p(m)Ar(x, m?) (10.55)
0
whose Fourier transform gives

~, ¢ m2)
AL(k)= jo dmzp:p“(,gz_—i; (10.56)

This immediately implies that for a free field of mass m, we have
p(m?) = 8(m? ~ my?) (free field) (10.57)

Consider the function A’(x) defined in (10.46). Writing x = (X, ), and taking
the time derivative at t = 0, we have

A'(x,0) = (0] d(x, 0), $(0, 0)]0) =& (x) (10.58)

This is also equal to A(x, 0), since it depends only on the equal-time commutation
relation. Thus, performing this operation on both sides of the representation A’ (x) =
J&dm?p(m?) A(x, m?), we obtain

fo “dnp(m?) =1 (10.59)

An “elementary particle,” defined as a one-particle state |1) with definite mass m,,
corresponds to a delta-function term in the spectral function:

p(m?) = Z8(m?> —~ m}) + o(m?) (10.60)

where Z = [(1|@l0)? is the wave function renormalization constant. The condition
(15.43) implies

0sZ<s1 (10.61)

We can see from (10.56) that the particle corresponds to a pole in the full propaga-
tor.

In an interacting theory there may exist bound states, which are states of defi-
nite mass connected to the vacuum through a product of field operators, but not
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through a single-field operator. They correspond to poles not in the full propagator,
but in a correlation function involving four or more fields. We shall discuss this in a
later section..

10.6 DYSON-SCHWINGER EQUATIONS

The Dyson-Schwinger equations are integral equations for vacuum correlation
functions. We shall illustrate them in a field theory of interacting fermions and
bosons. The fermion field is denoted y(x) with adjoint ¥1(x), and the real boson field
is denoted by ¢(x). The Hamiltonian density is

}[(x) zj‘[}? +’7{B +H'
H'(x) = gPx) Plx)lx) (10.62)

where Hp and Hy are respectively the free fermion and boson Hamiltonian density
and g is a coupling constant. Our discussion will concentrate on two- and four-
fermion correlation functions, with the boson field relagated to the background role
of mediating the interaction between fermions.

We assume that i is a column vector and ¥, either the Hermitian or Paulh ad-
joint; but the number of components are not specified. Similarly, ¢ may be multi-
component, and each component may be a matrix on the fermion internal vector
space. The free Hamiltonians, which determine the propagators in Feynman graphs,
need not be specified in detail. The general form of the Hamiltonian covers a non-'
relativistic electron gas interacting through phonons, or quantum electrodynamics,
with ¢ = y*4,,. Our treatment will be based on general properties of Feynman
graphs, and detailed specifications are purposely avoided, in order to focus on the
relevant algebraic structure. A property we explicitly assume is that the fermion
number is conserved.

We consider the two- and four-point fermion correlation functions:

Ga(x, ) = (O[T Y(x)¥»)|0)
Ga(xy, x23 y1, ¥2) = (0]T l/’(ﬂ)d’@z)%ﬂ%z)m) (10.63)

where all operators are in the Heisenberg picture and the spin indices are sup-
pressed. Consider first the two-point function, with Fourier transform

d? ,
Gatr.) = | G Gap) €7 (10.64)

The full fermion propagator S(p) is given by

iS(p) = Gy(p) (10.65)
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This a matrix on the fermion internal space. The Feynman graph expansion is
shown in Fig. 10.3a. Owing to fermion number conservation, fermion lines cannot
terminate, and therefore a single fermion line runs through a graph for S(p). Since
vacuum subgraphs can be omitted, all graphs for S(p) are connected. Denoting the
free propagator by S, and leaving the momentum argument p understood, we can
write Fig. 10.3q in algebraic form:

iS= ISO + ISOIEIS() + lS[)lElSOlElSO +-

where i2(p) is the sum of all “irreducible” graphs, with external leg amputated, as
shown in Fig. 10.3b. Here, an irreducible graph is a connected graph that cannot be
made disconnected by cutting one fermion line. Sometimes the name “one-particle

irreducible” graph is used.
The Dyson—Schwinger equation for G, is obtained by rewriting (10.66) in the

form
S= So - S()ES (1067)

When transformed to coordinate space, this becomes an integral equation. The ker-
nel 3 is variously called the “proper self-energy, “ or “mass operator.” The explicit
solution is

S=(S,+3)! (10.68)

This has a simple appearance, but all the complications are buried in 2.
We now turn to the four-point function. In terms of interaction picture opera-
tors, we have (without bothering to change notation)

Ga(x1, X251, y2) = O[T lﬁ(xl)‘ll(xz)%l)%z) et ﬂ,(x)l(» (10.69)

with the instruction that all vacuum graphs are to be omitted in the Feynman graph
expansion. The zeroth-order graphs are shown in Fig. 10.4a and the second-order

+&+M+¢Q§7+...

c 2 O

() @:ﬁfb+£§7+... T

Figure 10.3  (a) Full propagator S(p); (b) irreducible component (p).

(a) S(p) =
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(@)

Y1 X4
O—-<st—-0
- ><<— s-channel
O————at—C0
Yo X2 A
t-channel
()

- -2 - >

Figure 10.4 Graphs for four-point correlation function for fermions: (a) two basic patterns of free
graphs, differing by fermion exchange; (b) interacting graphs consists of putting “adornments” on the
two free patterns.

graphs, in Fig. 10.4b. Any graph has two fermion lines running through it, and they

can be drawn either parallel or crossed. The interactions merely “adorn” the basic

pattern. Each graph with the parallel pattern is in one—one correspondence with one

having the crossed pattern, in which x,, x, are interchanged, with a change of sign.
The Fourier transform is denoted by

(41, 91Glpy, p2) = f Galxy, Xp3 ¥y, yo)e @1 Pax2-iary1*azy2) (10.70)

where the measure d*x, d*x, d%, d*y is left understood . The same set of Feynman
graphs describes three possible channels of scattering (with off-mass-shell mo-
menta) :

® s channel: fermion—fermion scattering with center-of mass energy squared
s=(pi+p)

® ; channel: fermion-antifermion scattering with center-of mass energy
squared ¢ = (p, — q,)%

® y channel: fermion-antifermion scattering with center-of mass energy
squared u = (p, — g, ).

We are interested in deriving an integral equation for the correlation function, and
the kernel of the integral equation will depend on the channel. We shall consider the
s channel from now on.
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Let D(x,, x5; y1, y,) be the sum of all “direct” graphs with parallel fermion
lines, with Fourier transform {g,, ¢,|D|p,, p,). Then we can write

Galxy, X35 ¥1, y2) = (1 =A12)D(xy, X253 ¥y, ¥2)
g1, 421Gy, p) = (1~ A412) (g1, 921D\p1, p2) (10.71)

where the operation A4, interchanges the labels 1 and 2 in either the initial or final
state. Graphs for {g,, ¢,|D|p,, p,) are shown in Fig. 10.5. There is only one discon-
nect graph, the product of two full fermion propagators. We denote it by

(i qalllpy, P2} = Q@8 pi — 9)) Q)8 (p, - 4:2)iSP)iS(p2) - (10.72)

The connected graphs can be decomposed into two-particle irreducible compo-
nents, that is, connected graphs that cannot be made disconnected by cutting two
fermion lines. As indicated in Fig. 10.5, the sum of all such irreducible components,
with external line omitted, is denoted by {q,, .|| p1, p2)-

We introduce a matrix notation by regarding |p,, p,) as a vector. with the prop-
erties

pup) =P @ \py)
(plp) = Qm)d%(p, —)

d4
[ Gt pl=1 (10.73)

It should be noted that |p,) & |p,) # |ps) ® |p;)- The vectors in the basis are math-
ematical constructs without physical significance. In this notation we can write D =
[+ IT [+ ITITI+-- -, which gives the integral equation

Qe P1 ] - e
D=_...4.— ++—<—-r—dr—<—+.

—— - +__4!£::$_ + m +.-.

=§+E+§+---

Figure 10.5 The connected graphs of the four-point function can be expressed in terms of an irre-
ducible kernel I'.
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D=71+ITD (10.74)

We can obtain {g,, 4.|G|p, p») by antisymmetrizing {g,, ¢-|D|p;, p2) with respect to
either py, p,, or ¢), ¢,. Defining the antisymmetrizing operator 4 by 4|p,, py) =
|P2, P1), We can write the integral equation for G in matrix notation:

G =K +KTG
K=(1-a)7=K1-3) (10.75)

Further analysis of the integral equation (10.74) is left to the exercises.

A t-channel process can be described through the continuation {g,, —¢.|G|p;,
— p,). Although such a continuation of (10.74) yields an expression for the correla-
tion function, it is not in the form of an integral equation. To get an integral equation
for the ¢ channel, we have to go back to the Feynman graphs to define a different
kernel. We refer the reader elsewhere [3] for a more general discussion, as well as
derivation of integral equations for higher correlation functions.

10.7 BOUND STATES

The distinction between elementary and composite particles is purely theoretical. It
depends on the model we use to describe the particles. For example, nucleons were
once regarded as “elementary,” but are now considered bound states of quarks. Sim-
ilarly, the electron is considered elementary because so far it is adequate to describe
it by a basic field. Within a given quantum field theory, there is a clear distinction
between elementary and composite particles.

Like any single-particle state, a bound state should have definite mass and spin.
In addition, it must be orthogonal to any elementary particle state. For illustration,
let us consider a bound state in the s channel, with fermion number 2. Suppose that
x|, X; have times earlier than those of y,, y,. We insert a complete set of states into
the four-point function

O YT DP(¥I0) = 3 (OIT(x (x| (nfP(y)F(p2)I0)  (10.76)

Only states of fermion number 2 can occur, and the bound state will be among
them, if it exists. Thus we expect the bound state to show up as a pole of the Fourier
transform, in an appropriate momentum variable. The residue of that pole can be re-
garded as the wave function of the bound state.

We introduce total and relative coordinates:

X+ Xx,
X:_——_ X=X~ X

2
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_ntym

Y
2

Y=Eyi—-»n (10.77)

and consider times such that x,, x, are well ahead of y;, y,. This means that X° — Y°
= a, where a is some sufficiently large number dependent on x° and 3°, as illustrat-
ed in Fig. 10.6. We separate out the term fulfilling this condition by writing

Gy = O(X° — Y0 — @) ([ TW(X + x/2)X — x/2)I[TP(Y + yI2YKY — y12)]I0) + R
(10.78)

where R denotes the rest. Now insert a complete set of states between the two T
products, using the completeness relation

d3P
1 —f PRy IB) (B| + - - - (10.79)

where |B) denotes a bound state and the dots denote contribution from other states.
The bound state has fermion number 2, and energy—momentum (£, P). In the rela-
tivistic case E = VP2 + M2 We have opted to normalize the bound state covariantly,
and left understood that |B) depends on P.
Splitting off the contribution from the bound state, we have
Gylx1, x23¥1, ¥2) = GpX, Yy x, ) + R (10.80)

where

d3
GulX, ¥ix,p) = 000~ 10-a)| S5 <°‘[T‘”(X ’ 32&)"’()(' %)]’B>

s o

We can take out the dependence on X and Y by using the translation operation

WX+ 2| = e[ = e (10.82)
2 2
x0 yo
—N —
T e I
Time X0 a Yo

Figure 10.6 Choice of time ordering to exhibit a bound-state pole in the appropriate correlation func-
tion.
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where P* is the total 4-momentum operator. Then

d3p

GoPIE Up(x)Up(y) e K51 (10.83)

GalX, Y:x,9) = 0X° - ¥°—a)

where Up(x) is the relative wave function of the bound state:

s (o) o

where we have displayed the spin indices.
Now substitute Gy into the Fourier transform of G, in (10.70):

41, 9IGlp1, p2) = 41, 421Blp1, p2) + R (10.85)

where R does not contain the bound state, and
(91> 92lBlp1, p2) = f G(X, Y; x, y)elPX+p0-iQ Y+ (10.86)

where the integration extends over X, Y, x, y, and

b1 P
P=pitp,  p=—5
9=9:1—-4
O=¢+q, —qi'-—z (10.87)
Using the representation
1 0 it
= ——f dw - (n— 0% (10.88)
2mie  w-—in
we obtain the result
ei(E—PO)a

(91> 2lBlp1> p2) = Rm)*8%(P - Q) up(p)ip(g)  (10.89)

2iE(E-P°+in)
where

[up(P)lag = [ @5 P Up()]ag

Feue o 5

B> (10.90)

We can rewrite
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1 _E+ P 1

=— 10.91
2E(E - P°) 2E  (P2-M?) (1091)
Thus {g,, ¢-B|p:, p,) has a pole at P> = M? .
A up(p)up(q)
@ @Bl o) 5 QTSP - Q)5 BT (109)
Since a pole is absent in the term & we have
up(p)up(q)
@1 2AGl01 02) 5z @S P~ Q) B (10.93)

This shows that, like an elementary particle, the bound state occurs as a mass pole
in the appropriate correlation function. The residue of the pole gives the bound state
wave function. In matrix notation, we can abbreviate the preceding as

iB) (Bl

= P

(10.94)

10.8 BETHE-SALPETER EQUATION

Using (10.94) in the Dyson-Schwinger equation G = K + KT'G, we obtain the
Bethe-Salpeter equation [4]

\B) = KT'|B) (10.95)
More explicitly,
u(py, p2) = iS(p)iS(p,) *
d*pld*p}
[ B b allIpi P o piTIpE P W1, D) (10.96)

where for convenience of notation we have written

u(py, p2) = up(p) (10.97)

This is not a wave function in the nonrelativistic sense, since the two particles in-
volved have different time coordinates. But it occurs in the S matrix for bound state
scattering {3], and is in this sense a natural generalization of the wave function of an
elementary particle.
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The normalization of the wave function is not fixed by the Bethe--Salpeter
equation, but may be determined as follows. Consider the Dyson—Schwinger equa-
tion G = K + K2.G, which can be rewritten

K'-2)G=1 (10.98)
At given P, the bound state occurs as a pole in G at P? = M2

iB) (8|

G=__—._______.
P2-M?>+in

+5 Colxa) (10.99)

where (y,|B) = 0. Substituting this into the Dyson—Schwinger equation and muli-
plying through by P? — M2, we have

(K~ 2){1-(3) (B|+ (P~ MY Clx,) <an} =pP2-M?  (10.100)

Now differentiate with respect to P*, and then put P? = M2, Noting (K™! — 3)|B) =0
at P? = M2, we have

J
o (6= 208 812 2P €07 Ko (1 =2
Sandwiching this between (B] and |B) leads to the normalization condition

i<Bbﬁ:(K"‘ —2)1B> ~2pu (10.101)

PROBLEMS

10.1 Consider a free real scalar field.
(a) Show that the only connected vacuum correlation function is

L(xy, X3) = (0T d(x)p(x)|0) = iAp(x) - x3)
(b) Hence show that
W= & [ v i, Jx)Belx, - 1))

10.2 From the Lehmann representation (10.56) and discussion of vacuum polarization in
Problem 9.2, we have alternative representations for the full propagator:

N - plr?) ‘
(Y = 2 =
Ag(k) fo dm B-m?—in BR-mi+ ()

The i7 term can be omitted from the second form, because TI(4?) is generally complex.
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10.3

10.4

Vacuum Correlation Functions

Assume that the theory has only one stable particle of mass M.
(a) Show that p(m?) has the general form

plm?) = Z8(m? — M?) + O(m* — AM*)o(m?)
(b) Show that
I(M?) =m3
1
Y= — _
m'm?) = 7

(¢) Express o(m?) in terms of II(k?). (Hint: Equate the imaginary parts of the two
representations.)

To further analyze the Dyson-Schwinger equation (10.74), factor out from D and I’
factors common to all Feynman graphs:

(91, q2D\p,, p2) = Qm&p, +pr—q - 42)S(‘11)S(‘12)1_)(P1s172§ ©)S(p)S(py)
(g1, ¢lT1p1, p2) = (m)* 8P, + pr— —42)f(P1»P2; k)

where k=q, — p, and D and T are matrices in internal space.
(a) Show that the Dyson-Schwinger equation becomes

4

— as’
Dipy. py: B = QS RISE)SE + [ o=

Qo L1+ k2= k= K)D(p1, i K)

(b) Take the kernel from the lowest-order Feynman graph:

T(py, p2; k) = g2AK)

where A(%) is the free boson propagator. This is known as the “ladder approxima-
tion,” because D is the sum of graphs that resemble ladders with increasing num-
ber of rungs. Put

D(py, p3; k) = [S@)SEIF(k)
and show that

d*k’

G MR

Flly = @mypa' + &
(¢) Solve the preceding equation. Obtain B(pl, Py k) in the ladder approximation,
whence (g1, ¢2|D|p,, p2) and (g1, ¢2|Glp), po)-
(a) Show that in the ladder approximation the Bethe—-Salpeter equation (10.96) is

[ue(P)]ap = - [SP)]aa 1SW2)]gp° f (A —9) - Alp + Pllup(@as:

@my?
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where p, = (P/2) + p, p, = (P/2) - p.

Consider a bound state of zero total momentum P = 0. For the fermion, use Dirac
propagator S(p) = (§ — m)'; for the boson, use massless propagator A(k) = ik=2.
Put

d,
[”o(ﬂ)]aﬁ = ﬁ%x'(;:%

and show

_of 4 ! ! X(9)
=g (277)“[(17-61)2 B (pﬂz)z}q‘rzﬂn2

By ignoring the second term in the kernel (the antisymmetrizing term), one can
solve this eigenvalue problem in terms of hypergeometric functions [5].
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CHAPTER ELEVEN

Quantum Electrodynamics

11.1 INTERACTION HAMILTONIAN

Quantum electrodynamics (QED) describes the interaction between electrons and
photons. The Lagrangian density is

L(x) = =5 FFF,, + liyH(d, + iegd,) — molyp (LD

where F*¥ = g*4” — g"A* is the electromagnetic field tensor, 4* the 4-vector poten-
tial, and ¢ the Dirac spinor field. We use Coulomb gauge, in which

V-A=0 (11.2)
The fields are quantized according to canonical commutation or anticommutation
rules. When there is ambiguity, operators are taken in normal order. The charge e,

and mass m, of the electron are “bare” or “unrenormalized” parameters. The corre-
sponding renormalized or physical parameters have the values

e=-1.6x101C
m=9.1 x 1073 kg (kilogram) (11.3)

We are using rationalized electromagnetic units, in which the dimensionless fine-
structure constant is

o~ 114
47he 137 (114)

The smaliness of this quantity makes us think that we can use perturbation theory.
The total Lagrangian can be put in the form

204
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L= J A (B2 — BY) + iy d, — mo)— eqj*d,,] (11.5)

where
=Py (11.6)

is the electron current density. The total Hamiltonian reads
H= [ dx{ (B2 + B?) + E-V o+ gl (ap + B+ eg#d,]  (1L7)
We note that
fd3x E-VAO=—fd3xA0v-E=-e0fd3xj0A0 (11.8)
which cancels part of the interaction term. Thus
H= [ @ £(E2 + B?) + yl(ap + Bmo)i— eoj-A] (11.9)

In Coulomb gauge, 4° is entirely determined by ;° through Poisson’s equation:

vaO:__erO
10
_ 5 JY)
Ay(x) eofdy4’n1x-y‘ (11.10)

Putting E = -9A/dr — V A%, we obtain, after some straightforward calculations,
H:Hem+Helectron+I.[im (1111)

where
1 JA \2
Hop = Efd3x[(—(;> +(V A)2]
Hy= [ dx 4(-ia" + Bmo)ys

H= [ d3x[—e0j A+ % jOA"]

2,0 (1L12)

)
=—eofd3Xj'A+ %O-fd3x py—
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In the presence of an external electromagnetic field 44,, there will be an addi-
tional term in H;, given by

He = e dPx(j°4% ~ §Au) (11.13)

and thus
Hin = [ dXle0i (A + Au) + 0340+ 48] (11.14)
= oo 3340 A+ 4], (DAL ()] (1L15)

Note that there is a factor + in front of 4, but not 4%,,.
Let us define the “Coulomb propagator” as

8"~ 5%
Deoulx —y) = (11.16)
4arx - y|
Then the interaction Hamiltonian density can be written in the form
ke Ak € [ 4 074 0
Hin) = e ) + 2 [ dyD( - )/ 1°0)
+ €0 j ()4 &%) (11.17)

In practice we can replace this with a simpler expression. As shown in the following
section, the first two terms can be effectively replaced by e/, (x)4#(x), because the
difference does not contribute to S-matrix elements.

In free propagators and external wave functions, the bare mass m, will be re-
placed by the renormalized mass m when all Feynman graphs are added up. Thus, it
is convenient to redefine the unperturbed problem such that renormalized mass oc-
curs in the free propagator. Accordingly, we take the unperturbed electron Hamil-
tonian density to be

Hy = Yl (—iaV + Bm)yy (11.18)
The difference (m, — m)y’ By with the original form, called the “mass counterterm,”

is considered part of the interaction. With this, the interaction Hamiltonian density
of QED will later taken to be

Hin%) = e YA +Aex )t : — Smiti : (11.19)
where we have used the effective form of the electromagnetic interaction, and

dm=m-m (11.20)
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This quantity is considered O(e3) in perturbation theory. In scattering processes cal-
culated to second order in ¢, therefore, the mass counterterm need not be taken into
account.

11.2  PHOTON PROPAGATOR

Since the Coulomb gauge is not Lorentz-covariant, neither is the photon propagator
(0]T A*(x)4*(»)|0) in that gauge. However, the part of the propagator that contributes
to the S matrix is covariant, because of current conservation. We shall show this in
the context of electron—electron (ee) scattering, which is indicated schematically as
follows:

e + e — e + [4
P P2 Ps3 Pa (11.21)
St 5o S3 S4

where p; and s, refer respectively to 4-momentum and spin. The initial state |y and
final state | /) are denoted by

Il> = ’pl’ S Pz’ S2>
1f) = IP3s 535 Pas S4) (11.22)

To second order in ¢, the S matrix is given by

COE o e .
[ U MTH 0O (11.23)

(1S = 11 = i d 2l +

We use (11.17) for this calculation, since the whole point is to show that it can be re-
placed by the simpler interaction (11.19).
The first-order matrix element is

P2
i @4 19 ) = = [ a3 d A AT O3 (1124)

Note that this is actually proportional to e3, and the factor $ in front makes this sim-
ilar to a second-order matrix element in Feynman graphs. The second-order matrix
element can be put in the form

&% N T S
= [ dy (T o519 Y=~ 22 [ a5 a9 AT COF O D - )
(11.25)

where the transverse photon propagator Dy is defined as
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DH(x - y) = ~i{0[T 4'(x)4(»)|0) (11.26)

There is no need to include the square of the Coulomb term, which is proportional
to ef.
We can write the transition matrix element to order & as

f o2
SUS-Dliy = J%Jd“x dy (SITjH) DD o (x = ) (11.27)

where D,,,(x — y) is defined by

DOO(X) = DCoul(x)
D, (x) = D¥(x)
Dyx)=0 (11.28)

As it is an object in Coulomb gauge, D#* does not transform in a simple manner un-
der a Lorentz transformation. We shall show, however, that because of current con-
servation, the part of D#* that contributes to the transition matrix element is covari-
ant, and that can be taken as the effective photon propagator. The transverse
propagator has been calculated in (5.94):

d4k eikvc
Qemt B+in

Di(x) = f (k) (11.29)

where k% = ky> — [k[? and

i
TRy = 5, — &

e (11.30)

The Fourier transform is

< 1 kiki
Ditky = k2+in(5,.j— W) (11.31)

The 3-tensor /%(k) can be extended to a 4-tensor /#¥(k) defined such that it re-
duces to 79(k) in the special frame in which the Coulomb gauge is defined, namely,
in which k* = (0, k) and 7 = [0 = 0. Let & and k* be 4-vectors that reduce in the
special frame to

& =(1,0,0,0)
fe = (0, k) (11.32)

where k = K/|k|. Then, in a general Lorentz frame, we have
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1 k) = ~g+ g — ke

We can now write down the 4-tensor that reduces to DY in the special frame:

(11.33)

d4k —ikx
k) (11.34)

D#V(x)=f Q) K Fim

The term —g#¥ in J#¥ gives the covariant part of the tensor, which we call the Feyn-

man propagator Dg:
Df*(x) = DE*(x) + DI*(x) (11.35)

In terms of Fourier transforms, we have

. 1
D#(k):”kzﬁn

- 1 A s
D{*(ky = e +l.n(é‘g”—lc#k”) (11.36)

The inverse transform of 5, can be written as
4 k e~ik-x
e [ — kMR + (e ERRE + kPEY] (11.37)

D]“"(X)ZJ- (27T)4 (k'g)z_kz

The last two terms vanish when contracted with j#j*, because 4, j* = 0. In the spe-

cial frame the first term reduces to

d4k e~ik~x
~gh0 "Of = —grlgr0n) 11.38
878 (277)4 |k'2 g8 Coul(x) ( )
Therefore
DE¥(x) = DEY(x) — g*°g"0D o (x) + (irrelevant terms) (11.39)
The S matrix can now be represented as
(11.40)

2
(S = iy == [ dx d*y (T, O)NDE )

To obtain the same result, we can effectively take the interaction Hamiltonian densi-

ty to be
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Hin(X) = €0 ()[AH(x) + A (x)] (11.41)
with the contraction rule

OIT AMx)A"(1)I0) = iDF"(x ~ y)

v d4k ik-x TRV,
DE'(x-y)= J- o e *xDE (k)
~ g
YO =
DE(k) 2 rim (11.42)

This replacement applies not only to second-order matrix elements but to higher or-
der ones as well. This justifies the effective interaction Hamiltonian density (11.19),
which we shall use from now on, together with (11.42).

The freedom of gauge choice is reflected in the fact that terms in the photon
propagator proportional to k#k* have no effect on S-matrix elements. Special choic-
es of such gauge terms can be useful for technical reasons. A popular form of the
photon propagator is

(11.43)

~ a4 -1
Bt - (g#”— 2 )

KB ) i2+in

where A is the gauge parameter. The choice A = 0 corresponds to the so-called Feyn-
man gauge and A = 1, to Landau gauge.

11.3 FEYNMAN GRAPHS

The § matrix in QED can be effectively taken to be
= (—ieg)” - -
5= 5 O [t o o T A Bdal] (1149)
n=0 .

whered = y*4,,, ¥ = Y(x,), and so forth. When there are external fields 4%, we re-
place A by 4 +A4.,,. In (11.44) we have ignored the term —8m:yn, which will be tak-
en care of later.

We can represent the basic vertex —ie,f(x)4(x)y{x) graphically as shown in Fig.
11.1. The wavy line represents an incoming or outgoing photon, and a directed line
whose arrow points along the direction of flow of electron charge (which is nega-
tive), represents either an electron propagating along the arrow, or a positron against
the arrow. To generate the Wick expansion of the nth-order S matrix, we draw # ver-
tices, and make all possible contractions of the lines. The only nonvanishing con-
tractions are the following:

AYX)A(y) = iDF"(x ~ )
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Figure 11.1 At the basic vertex of QED, a photon is emitted or absorbed from an electron line.

YY) = iSex — ) (11.45)
L1
where the electron propagator is given in (7.30). The contraction ¢/(x)y(x) does not
occur, because the interaction is defined as a normal product. In contrast with scalar
¢* theory, the lines meeting at a vertex are all different. As a consequence, the sym-

metry number is unity for all connected nonvacuum graphs.
For illustration, we display the Wick expansion of the second-order § matrix:

§@ = %(—ieo)zf d4xld4x2(]] +ot ) (11.46)

The operators /; - - - I, contribute to different processes, as indicated below:
Disconnected: 1, = 1 4,4 (Y A,0h:

e—e scattering: [, = : ¢, A, Aoty

(I
Compton scattering: I, = ¢ A, Yt Aythy: + U A U Ay
L R
- _ - _
Electron self-energy: L, = 1y A, Aoty + i A i Ayl
[—— L
N
Photon self-energy: [s =y 4,y Ay
L
- —
Vacuum process: I = A\ Ay (11.47)
L
We denote the matrix element for e—e scattering by
GeelP1> P25 P3s Pa) = (SIS (11.48)

where p; stands for the 4-momentum and the spin of the ith particle and the initial
and final states are

i) =1|py, 515 P2 $2)
L) =1p3, 835 Pas ) (11.49)
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Explicitly, the matrix element is

(—ieg)’m? o s
GeelP1s P23 P35 Pa) = mfd Xy dxy

[e" P3P XV HPa P X2y yty YD, (X — YUY U2) ~ (D3 2 Pa)]
(11.50)

where u; = u(p,, §), and so on. The two terms above correspond to distinct associa-
tions of external lines with external particles. The relative minus sign between them
arises from the fact that the two possibilities differ by an interchange of fermion op-
erators, which anticommute. In each case, the matrix elements acquire a factor 2
from the fact that the two vertices can be associated with x, and x,, respectively, or
vice versa. This cancels the 3 in front of the second-order S matrix. Performing the
space-time integrations leads to

Gee(pl’pZ;pfb p4) = _i(2’7.r)484(Pf~ Pi)Tﬁ

(37" u, )(uq Y, 4)

L= p2| A28 T TATv T —

T Nﬂeo[ (ps - pa)? + in = P4)]

Ny= (11.51)
N VEEEE, ‘

where P;and P; are respectively the total 4-momentum of the final and initial states.
The S-matrix element is represented by the two Feynman graphs in Fig. 11.2a.
The operator I, also contributes to electron—positron (ee) scattering:

e + e — e + e
P g1 P2 q> (11.52)
s o S5 oy
@ p, P,
© e, %
P, g,

Figure 11.2  (a) Electron—electron scattering; (b) electron-positron scattering.
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where positron spins are denoted by . The Feynman graphs are shown in Fig.
11.2b. Denoting [i) = |py, 515 q;, o) and | f) = |, 52; @2, 73), and

Geap1s 915 P2 42) = (S1SP)) (11.53)
we note the relation
Ges(P1> 915 P2 92) = GeeP1s — P25 415 —92) (11.54)

which is a statement of crossing symmetry.
It in similar way, crossing symmetry relates Compton scattering

e + Y — e + Y
P ki P2 ky (11.55)
Sy € 52 €
and electron—positron annihilation
e + e — vy + ¥
7 4 ky ky (11.56)
5 g € &
where photon polarization is denoted by a 4-vector e, which takes the form

e = (0, €, €,0) (11.57)

with the 3-direction taken along the photon momentum. The corresponding Feyn-
man graphs are shown in Fig. 11.3, and the matrix elements are given by

(a)

K k2

Py Ky K
K1 k2

(b) ? <
P, q,

Figure 11.3 (a) Compton scattering; (b) pair annthilation.
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Geompon@> 15 P2, ) = —iQ2m)*6%(Pr— P) Ty,

— 1 1
T = Nyed (u — u>+(u —_"Q—-guﬂ
fi fi 0[ 26 l’|+k1‘m+”7¢l ! 26) b — ky—m+in 2U)

1 m

No = e 11.58
fi V 2CU|2(()2 \/EIEZ ( )

The statement of crossing symmetry in this case is
Gannihilation(pl, qi; kl’ k2) = GCompton(ph _kl; -4\ kZ) (1 159)
The electron self-energy corresponds to

2m)4 64 p, — —
(P2 521SPIpy, 51) = (—m—(g\/%l)—muzz Uy

S = (cieg) j ViSi(py - 0ViDe k) (11.60)

)4
and the photon self-energy corresponds to

Qmy* &k, ~ k)

(ky, &SPk, €)= NI
140

& J1*ve,

1= (e | 20 TS YiSy -p)] (116D

Q@my?

The Feynman graphs are shown in Fig. 11.4. The expression for the photon self-en-
ergy needs a little explanation. The contractions indicated in /5 of (11.47) give, with
all spinor indices written out,

—_ r_1 — _
Dy Y P = (01T P 4t1,10) COIT ¢y gt rlOX Y™ ap(Y)ap
L

= iS¢ = %2) gAY (—D)SE(2 ~ X)) pa V)

= ~Tr[iSp(x) — x) Y"iSp(x2 — X)) ¥*] (11.62)

Figure 11.4 (a) Electron self-energy; () photon self-energy.



11.4 Feynman Rules 215

Figure 11.5 A vacuum graph.

Note the minus sign in (~)Sg on the second line. It arises when we had to rewrite
as —yn. As arule, a closed fermion loop always contributes a factor —1.
The second-order vacuum graph in Fig. 11.5 corresponds to the matrix element

d*kdp
@m?

(DT yiSe(p)y"iSe(p + k)iDg,, (k)]
(11.63)

015210 = @mer(0) - |

In this case, interchanging the two vertices does not lead to a new configuration,
and the symmetry number is 2. But this is a graph we can ignore.

Consider now the mass counterterm —&m:ynp : in (11.19). Because of normal
ordering, the two fields occuirring in this term do not contract with each other, and
must be contracted with other fields. This term therefore gives rise to a vertex
where an electron line enters and leaves, with no photon line, and give a factor
{-i)(—6m) = idm. Every internal or external electron line should, in principle, be re-
placed according to

iSp — iSp + iS{i6m)iSe (11.64)

as indicated in Fig. 11.6; but since ém is considered to be second order in €3, the re-
placement has no effect on second-order matrix elements. Its effect in higher orders
will be discussed in Chapter 12. We now state the Feynman rules for QED.

114 FEYNMAN RULES

A Feynman graph is made up of vertices, electron lines, and photon lines. An elec-
tron line is directed. It describes the propagation of an electron along the line direc-

idm
—>— 4+ S>>

Figure 11.6 The effect of the mass counterterm is to replace all electron lines by the sum of the two
graphs above, where a cross denotes a factor i8.
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tion, or a positron against the line direction. A photon line has no direction, and rep-
resents either an incoming or outgoing photon.

Each vertex emits an electron line, absorbs another electron line, and emits (or
absorbs) a photon line. Thus, an electron line cannot originate or end inside a graph.
This means that the “electron number, *“ the number of electrons minus the number
of positrons, is conserved. The number of photons, on the other hand, is not con-
served.

A graph consists of a number of electron lines going through the graph, and a
number of electron lines in closed loops. On these lines are vertices from which
photons are emitted or absorbed.. A closed loop must have at least two vertices.

A disconnected graph is a product of its subgraphs. Thus it suffices to consider
connected graphs, whose contribution to the S matrix may be obtained as follows:

® Fach vertex with 4-vector index w contributes a factor —ie,y*. The total
4-momentum flowing into a vertex is zero.

® Fach internal photon line of 4-momentum k contributes a factor zﬁpw(k),

where p and v are contracted with the indices of the vertices at its ends.

Each internal electron line of 4-momentum p contributes a factor i§p(p).

Each external photon line of momentum & and polarization € contributes a

wave function factor /2wy, where p is contracted with the index of the

vertex to which the line is attached.

Each outgoing external electron line of momentum p and spin s contribute a

wave function factor

/ —g—&(p, s)  (if outgoing electron)
P

szd—p, 5) (if incoming positron)
D

® Each incoming external electron line of momentum p and spin s contribute a
wave-function factor

/ Eﬂu(p, s)  (if incoming electron)
i

/ -;—n—v(—p, s) (if outgoing positron)
P

® Fach closed electron loop contributes a factor —1.

® There is an overall factor 2m)*8*(P;- P)).

® Each independent internal 4-momentum k is integrated over, with measure
a2y,

® Connected nonvacuum graphs have symmetry number 1. The symmetry
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number of a vacuum graph is generally different from 1, but vacuum graphs
should be ignored. (See below.)

® The contribution of a Feynman graph to a correlation function follows the
same rules as above, except that the wave function factors of external lines
are replaced with propagators.

11.5 PROPERTIES OF FEYNMAN GRAPHS

In a general Feynman graph, let

n = number of vertices
E. = number of external electron lines
E; = number of internal electron lines
P_ = number of external photon lines
P, = number of internal photon lines (11.65)
Note first that n — P, is the number of vertices that do not emit external photon

lines. Since these vertices must be connected in pairs by internal photon lines, we
have n - P,=2P;, or

Pi:%(n"Pe) (1166)

Since an external electron line must enter and exit the graph, E, is an even integer.
An external electron line touches only one vertex, while an internal electron lines
touches two. Therefore

E=n-iE, (11.67)

The number of internal 4-momenta is P; + E;, but not all are independent because of
4-momentum conservation at the vertices. The overall 4-momentum conservation is
not a restriction on internal lines. Therefore there are n — 1 constraints, and the num-
ber of independent integrations over internal 4-momenta is

N=P +E -n+1 (11.68)

We can now show that, just as in scalar theory, a vacuum graph in QED is a
pure imaginary number. In a vacuum graph, n must be even. There are E| electron
propagators of the form

i(p +m)
pt-m’+in

where (g + m) yield a real number when operating on a Dirac spinor and the de-
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nominator is real after a Wick rotation. Hence each electron propagator contributes
a pure-imaginary factor. There are P; photon propagators of the form

i
K +in

which is pure-imaginary after a Wick rotation.
Therefore a vacuum graph is of the form

I~ (iAo i1 o [ ¥k -+ dh Sl ) (11.69)

where [ is real and a factor i¥ comes from the Wick rotations. Noting that ()" is
real because n is even, we have I ~ i£1*Pi"N x (real number). Since E, = P, = 0, we
have E, = n, P,=n/2, N=(n/2) + 1. Thus E; + P; + N=2n + [. Therefore

I' ~ i x (real number) (11.70) m

As shown in Section 9.9, this means that the sum of all vacuum graphs gives a phase
factor, and consequently we can ignore all vacuum subgraphs.

A useful property, known as Furrys theorem [1], is that a graph or subgraph
with an odd number of external photons may be ignored, because it is cancelled by
similar graphs. This is because such a graph must contain one closed electron loop
that emits an odd number of photons. As illustrated in Fig. 11.7, there exist a graph
identical in every way except that the sense of the electron is reversed. These two
graphs go into each other under charge conjugation, which sends e, to —e,. Hence
the sum of the two graphs is zero.

Suppose the interaction Hamiltonian density is of the form

H(x) = P(x) + O(x) (1L.71)

as, for example, H(x) = e, d i + eghd.,p. The following double series expansion
makes it possible to take P into account to order #, and Q into account to order 1,
independently:

Figure 11.7 According to Furry’s theorem, these graphs cancel each other. They have an odd number
of external photon lines and no external electrons lines, and differ only in the sense of the closed electron
loop.
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S= Z (‘l)n (*l)m fd4x| T d4xn+mT[P(xl) ot P(xn)Q(xn+l) T Q(xn+m)]
(11.72)

For example, in an atomic problem, we might want to treat the Coulomb interaction
Ax , exactly, but take radiative corrections into account only to second order.
To derive this expansion, we start with the perturbation series

( 1)k

fd“)ﬁ Cd TP + Q)] - [Pl + Q01 (11.73)

and group terms by the number of factors of P. Terms in which P occurs n times, re-
gardless of the number of Q factors, have the form

x +
St e TP PO 0

m=0

To get S, we multiply this by (—/)**"/(n + m)! and sum over ». Using

1 ntmy 1
(n+m)!< m )— n'm!

we obtain the desired result. n

PROBLEMS

11.1 Write down the matrix elements corresponding to the contractions in (11.47).

11.2 Draw ali fourth-order Feynman graphs for electron—electron scattering, that is, graphs
with four vertices. Write down the corresponding matrix elements using the Feynman
rules. Include all graphs, connected or disconnected.

11.3 (a) Draw all fourth-order Feynman graphs for photon-photon scattering (scattering

of light by light), and write down the corresponding matrix elements.
(b) Adopt the matrix elements obtained above to the scattering of light by an external
Coulomb field (Delbrlick scattering).

11.4 Adopt the matrix element for Compton scattering to the scattering of an electron by an
external Coulomb field, with emission of light (bremsstrahlung).

11.8 Consider the scattering of light by a Dirac particle of charge e and mass M, to lowest
order in e. Obtain the matrix element in the limit M — o, and calculate the differential
cross section. The particle can be a proton, except for the neglect of the anomalous
magnetic moment.
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CHAPTER TWELVE

Processes in
Quantum Electrodynamics

12.1 COMPTON SCATTERING

We shall derive the differential cross section for Compton scattering. The S matrix
element has been given in (11.58):

GeomptonP1s ki3 P2, k) = —i(2m)* 8Py~ P)Ty;

1 1
R [ COPSIS NN Y VIS BN
fi = Ve 0[( 2¢2pl+kl_m+mﬁ1 1 2¢1p1_ kz_m+m¢2 I

1 m

M= e2en VEE, (12.1)
where
w=kK
E,=+Vp*+m? (12.2)
and the photon polarization vectors have the form
e =(0, €, €, 0) (12.3)

with the x? axis taken along the photon momentum.

Since the S matrix element is of second order in ¢, we can put ¢; = e. We can
also drop the in in the propagators, because the internal momenta are fixed, and not
integrated over. The transition matrix is thus

220
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I = N [?’2(% k2+m)ﬂx+%(ﬂ|—k2+’")f2]ul (12.4)

P+ k) —m? (1 — k)~ m?

We now use the relations

P& =pr&=0
kI.EI = k2'62 =0
k2=k3=0 (12.5)

The first holds because it is true in the laboratory frame. The second is a statement
of transversality, and the third is a statement that the photons are real (i.e., on mass
shell). Therefore we have

(P + k)2 —m?=2p 'k

(p1—ky’ —m* = -2p, 'k (12.6)
Using the identity
AB+BA =24'B (12.7)
we can write
Prguy = —¢puy = —méa, (12.8)
Hence
Tii = 3 e*Ng(ual'uy) (12.9)
where
r- Bk, ks (12.10)
prk Pk

The differential cross section is given by

d’p,d>k
ldo = f éz )6 — R Qm (P P ;JTMZ (12.11)

where / = 1 in the normalization we are using. The final spin states are summed
over, because they all contribute to the cross section. The initial spin states are aver-
aged over, because we assume that the incident electron is unpolarized.

We now work out the kinematics of the reaction. In the laboratory coordinate
system, shown in Fig. 12.1, we have
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k2
k1 p1=0 NHZ

AWWMM. _____

Photon Electron \
p

2

Figure 12,1 Kinematics of Compton scattering.

p,=0 E1:m

p>= ki -k,
k| =w k;| =’ (12.12)
Let
f=E+0 —w-m (12.13)

Energy conservation requires /=0, or
0=V -k) +m’+o' ~w-m

=V +a'?-2wo'cosd+m*+ o' —w-m (12.14)

where @ is the scattering angle. A little algebra yields the relation between the final
photon frequency and the scattering angle:

; w
7 T+ (@im)(1= cosh) (12.15)

In the cross section, the integration over the final momenta p, is entirely fixed by
momentum conservation, while the k, integration is limited to a solid-angle element
dQ). The magnitude of k, is fixed by energy conservation. The “phase-space” inte-
gral is

d’p, d*k.
oS (et ko - k) =

daQ ' E,w"
= 12.1
Q2m)? [ da)’/df} /=0 me (12.16)

Putting all this together yields

do oo \2 _
E:E(Z) >, falwy? (12.17)
spins
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where o = e*/4 7 is the fine-structure constant.

To perform the sum over the initial and final spin states, we insert projection

operators for positive-energy states, and then sum over all states with the given mo-
menta:

> wlu 2= (@l u)*@u) = (@, BT Buy)@,Tuy)

spins spins spins

+ +
=Tr(BFTB%T%) (12.18)
Using the relation
prig= fkiss  pfor, (12.19)
rrk prk
we find, after some rearrangement
do & w2
20 " e (—;—) Tr[F(p, + m)G(p, + m)] (12.20)
where
F= ]‘1?122 ; }‘222?1
Prk prk
G- £ah , pimk (12.21)
prk ik,

The spin traces can be evaluated using the basic identities listed in Table 12.1.
The result for the differential cross section for polarized photons is

TABLE 12.1 Traces of Dirac Matrices
Tri=4
Try*=0
Try:=0
Tr(y*y") = 4g**
Te( g B2y =pip2

Te(Z) P2 B3 B4) = (Pr02)Pyps) + @1'2a)(D2D3) — (PyP3) P2 Ps)
Tr(odd number of y) =0
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dU'_i i’ 2—0)_ _ui u
a0 4m2< w ) [cu’ + ® +4(¢,¢) ’2] (12.22)

Summing over the final photon polarization, and averaging over the initial polariza-
tion, we obtain the Klein—Nishina formula [1):

do & o\ o o
A L P Y 12.23
dQl 2m2(a))[w' w s ] ( )

In the low-frequency limit w/m — 0, this approaches the Thomson cross section

do o ,
(E)Thomson B 2m2 cos"9 (1224)

which is symmetric about 6 = 90°. As the energy of the incident photon increases,
the distribution tends to peak about the forward direction. Graphs for the angular
distribution, normalized to unity in the forward direction, are shown in Fig. 12.2,
with comparison to experiments [2].

12.2 ELECTROMAGNETIC FORM FACTORS

Consider the scattering of an electron by an external electromagnetic field A5, If
the external field is very weak, we can treat it in lowest-order perturbation theory,
but in principle consider radiative corrections to all orders. The S matrix element
between the initial state | and final state 2 is then, according to (11.72),

1.00

0.75

0.50

Relative Intensity

0.25

Lab Angle (degree)

Figure 12.2  Angular distribution in Compton scattering, with » = w/m. (After W. Heitler, Quantum
Theory of Radiation, 3rd ed. Oxford Univ. Press, London, 1954).
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~ (=)
S= -zZO o [atx iy, Q@G D (12.25)

where

HE(x) = eglx) A ™ (x)gx) (12.26)
For a static external field, we have the following in lowest order (r = 0):
§ = —ieq| AR P YD) A(0)
= 2mB(E; ~ B iy v, A (ps - ) (1227)
EE,
This is represented by the lowest-order Feynman graph in Fig. 12.34. The transition

probability per unit time is formally given by |S,,[>/2780), and the scattering cross
section is given by

2

d? e2m? X
Ido = (27[:)23 277'5(E2 — E])_EOE l(al)'y“ulA ext(p2 _ P1)|2 (1228)
&1

The electron wave functions are normalized to unit density, and hence in the labora-
tory frame we have

Il
= — 2.29
=3 (12.29)

(@ X ) 4

®) X

N

Figure 12.3 (a) Proper vertex graphs. (b) Vertex graphs with insertions.
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which is the velocity of the incident electron.

To include higher-order radiative corrections, we only need to replace u,y*u,
by a more general quantity corresponding to the Feynman graphs in Fig. 12.3,
which are call “vertex graphs.” These graphs can be separated into two categories:
the “proper” ones and “improper” ones. The former, also called “one-particle irre-
ducible,” are connected graphs that cannot be made disconnected by cutting one in-
ternal line. The improper graphs have insertions on the external lines, and con-
tribute to mass renormalization of the external particles.

The sum of the proper vertex graphs, with external wave functions omitted, de-
fines the “proper vertex part” A#:

Ty, p1) = v + A p,, p) (12.30)

where the term v is the bare vertex, and A (p, p,) is defined by the series of graphs
in Fig. 12.3a4. The scattering cross section to first order in the external field, with all
radiative corrections taken into account, is given by (12.28) with u,y*u, replaced by
PRRST

By Lorentz covariance, I'*(p,, p,) must be of the form

I¥p, py) = Cipkt + Copl + Cyy# + Cuatpy, + Cs0t'py,, (12.31)
where C; are Lorentz-invariant functions of p, and p,. Let

Pr=pt+pt
ke =pk —p4 (12.32)

When the external lines are on mass shell, with p? = p3 = m?, there is only one inde-
pendent invariant, which we shall choose to be k2. Current conservation requires

ko U*(py, pyuy =0 (12.33)
This leads to the conditions C, = C, = 0 and C,; + Cs = 0. Consequently, there are

only two independent functions C; and C,, and we can rewrite the vertex operator in
terms of two invariant form factors:

1
THpi, py) = Fik*)y* + EFz(kz)iU“”ku (12.34)

It should be emphasized that there will be extra form factors when p, and p, are not
on mass shell.
We now use the Gordon decomposition (Problem 6.6)

_ 1 _
Ty = 5P+ it uy (12.35)
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to write

_ 1 _
u,PH(py, puy = '2;“2[171(1‘)“+ io*k,) + Fyio*k,Ju,

W[F\PE A+ (Fy + F)iok,Ju, (12.36)

1
2m
Two alternative form factors are

Fe(k?) = F\(k*)
Fy(k) = F,(k%) + Fy(k) (12.37)
which are respectively the electric and magnetic form factors.

The S matrix element for scattering from a weak external field, with radiative
corrections fully taken into account, is given by

S= ~ie0Nf d*x &% u,TH( py, p ) ASH(x) (12.38)

where

m
N= 12,
VEE; (1239

For a static field this reduces to
, k= F .
S=—-iNey2mé(E, - El)f d3x e k% uz[Fl v+ —2—n—1-z<r“" kv}u,Aj"'(x) (12.40)

To discover the physical meaning of the form factors, consider forward scatter-
ing in the nonrelativistic limit, for which

k—>0 P'—>2m N—l (12.41)

First look at the F,y* term in the vertex part. Using the Gordon decomposition to
rewrite %, y*u,, we can write the nonrelativistic limit in the form

iegf(0)

|—>
2m

2m8(E, - E,) f d%x e NP + ik Y AS(x)  (12.42)

For an electrostatic potential 4, = ¥(r), 4, = 0, the second term vanishes when k —
0, and we have

S| —> —iegF (0)278(E, — E,) f d3r e T V(r)iu, (12.43)
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This shows that the coupling constant to an electrostatic potential is ey, (0), which
is by definition the electric charge of the particle:

e = ¢,F,(0) (12.44)

Next choose the external field be a static magnetic field B, with 4°=0, A=r x
B/2. We have

AZPE+ i0#7k,) = ~A(p) + o) + id 0%k, (1243

The first term gives no contribution in the limit k — 0, because {d*rA = 0. The sec-
ond term can be worked out as follows:

A0k = Aok, = oA < K

- 0A%xiV-0iVxA=ioB
Thus
S = %:—2778(E1 ~E)[ dr ¥ s By, (12.46)
where S = 072. This describes the scattering of a particle of magnetic moment

o= —S (12.47)
m

which is the Dirac moment, with g factor 2.
Consider now the F,o** term in the vertex part. The S-matrix element for for-
ward scattering from an external magnetic field is, in the nonrelativistic limit

S, — %FZ(O)Zm'zS(E1 ~E) f d3r e 7,8-Bu, (12.48)

which describes the effect of an extra magnetic moment over and above the Dirac
moment:

= ~fsz(O)s (12.49)

This is called the “anomalous magnetic moment.” The total magnetic moment is
thus given by

_ el 0
= m[l T O }s (12.50)
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The g factor is given by

- F(0)
g 2[1 + FI(O)] (12.51)

The factor 2 comes from expressing it in units of the Bohr magneton eh/2mc.

12.3 ANOMALOUS MAGNETIC MOMENT

From the second-order Feynman graph in Fig. 12.3a we obtain

d*
AXMpy, p)) = (~ie0)2f (2734

. d'q Yp, - g+ my(p—g+ m)y,
=_—je2 12.52
iet] Gy G imlp—ar—m+ il —a)-mivim] 027

iDe(g)YiSe(py - Q)Y“i§F(P2 ~ gV

The integral is divergent both in the ultraviolet (g — o ) and in the infrared (g — 0).
The ultraviolet divergence is logarithmic. We introduce both high-g and low-g cut-
offs, and explain later how to dispose of them.

The factors in the denominator of the integrand can be combined, with the help

of Feynman’s formula [3]:

8((x, o) - 1)

1 i
a - a =(n- l)fodxl - dx, (v, + -t xa) (12.53)
In particular,
: 1
b “dem
1 ' Sx+y+z-1)
— =2 dxdydz——F% 12.54
abc J:) vy Z(ax+by+cz)3 ( )
We can now rewrite our integral in the form
2 [ d*q Ne
A/‘L(p],pz):~2l€(2)dedde 8(x+y+z—l)](27r—)4—ﬁ (1255)

where
NE= YNpy— g +m)y*(p,— ¢ + m)v,

D =xq* + yl(p) - )* - m}) + z[(p> — 9)* — m’]
=q? = 2q-(yp1 + 2p2) (12.56)
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Now change the integration variable from g to g + yp, + zp,. Generally, doing this in
a divergent integral can introduce ambiguous terms that depend on the cutoff
scheme. Here it is safe, because the divergence is only logarithmic. We now have

M#
A“@K,pz)——2zeoj dxdydz S(x+y+z— 1)j o e (12.57)

where

ME = (A +m)yy(B +m)y,
A=p(1-y)-piz—9q
B=p,(1-2)-py -4
C=(yp, +zp,)? = (1 —x)°m® — yzk? (12.58)

where &2 = (p, - p,)*. Note that k* <0, so that C is positive-definite. With the help of
the identities listed in Table 12.2, we can rewrite

= 2By A +4m(4* + B*) - 2mP (12.59)

Further simplification can be made by noting that terms linear in ¢# may be
dropped because they integrate to zero, and that y and z may be interchanged be-
cause the rest of the integrand is symmetric in y and z. Since we are on mass shell,
we may also use the Gordon decomposition. After some algebraic manipulations,
we obtain

Sg g+ (x -y + m?(1 - 4x +x?)
v )4 (g C+iny

F&*)=1 +4ze0fdxdyd26(x+y+z 1)]

1
Fy(kF?) = 16iedm f dxdydz 8(x +y+z- I)xyf amf (@ Cr iy (12.60)
The form factor F, is ultraviolet and infrared-divergent, but F, is finite.
To calculate F,, we need the integral
1=jd4q ! (12.61)
(¢*-C+iny

TABLE 12.2 Useful Identities

Yy =290
NYeyPy = 4gP
,y)‘,yal,yaz.ya:;,y __2,ya1,ya2,ya3
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We perform a Wick rotation g, — iq,, and use the fact that the surface area of a 4-
sphere of radius R is 27 to obtain

- R im
[=27i| dR—r—— =1L 12,
,fo R oF " 3c (12.62)
Substituting this into (12.60), we obtain
Fathty = 2 f]dx dydz 8(x+y+z-1) 24 (12.63
= Z - .
: 2 Y rre (1 ~xy? —yz(k*m?) )

which gives
et

= (12.64)

Fy(0)=

In the formula (12.51) for the g factor, we may replace F,(0)/F,(0) by F»(0), and ¢,
by e, since F;(0) = 1 + O(e}). Therefore

g=2(1 +—5’—) (12.65)
2

where a = ¢?/4 is the fine-structure constant. The second term comes from the
anomalous magnetic moment, and is known as the Schwinger correction.

The anomalous magnetic moment of the electron has been calculated to sixth
order in quantum electrodynamics, beyond which the weak interactions should be
taken into account. The result is as follows:

1 2 3
=1+ _0.32848(3) +(1.195 & o.oz@(—oi) (12.66)
2 27 T T

The first term is the prediction of the Dirac equation, dated from 1928, and the sec-
ond the Schwinger correction [4] arising from one Feynman graph. The third term is
the result of summing 18 Feynman graphs [5], while the fourth involves 72 Feyn-
man graphs [6]. The comparison with experiments [7] is as follows:

%gtheory =1+ (1 159651.7 = 22) x 109

1 Qo = 1 +(1159656.7 + 3.5) x 10~ (12.67)

The theoretical value was computed using the fine-structure constant [8]
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1
— = 137.03608(26) (12.68)
«

which was obtained experimentally via the Josephson effect.

The anomalous magnetic moment of the electron arises from the electromag-
netic interactions. Nucleons, on the other hand, have strong interactions, which give
dominant contributions to their anomalous magnetic moments. The values are rela-
tively large, as can be seen from the following experimental values of the total mag-
netic moments:

_lel[ 279 (proton)
- M{ -1.91 (neutron) (12.69)
where M is the nucleon mass.
12.4 CHARGE DISTRIBUTION
The charge form factor can be written in the form
Fi(k) = 1+e—%fld dydz Sx+y+z-1)
! =y xdydz8(x+y+z
Am_R2 4 (1 —4dx + x2) + (x — yz)(k*/m?)
.70
§ fo “ [R? + {1 —x? 3z{*/m)P (12.70)

where we have performed a Wick rotation and changed the integration variable to
R = V—g%m? As we shall see, the high-momentum cutoff A can be absorbed
through charge renormalization.

The lower cutoff € is introduced to avoid the “infrared catastrophe” occurring at
k2 =0 and x = 1. The divergence occurs because the photon is massless, and an infi-
nite number of channels for multiphoton emission simultaneously open up at the
same threshold. Our lower cutoff essentially supplies the photon with a finite mass
and, of course, violates gauge invariance. This divergence is real, and must be can-
celed by the addition of Feynman graphs with soft-photon emission from the exter-
nal lines. Emission of photons of arbitrarily long wavelength cannot be detected by
any conceivable measuring device, and must therefore be included as part of the
physical process. The Feynman graphs for the soft-photon processes are themselves
infrared-divergent. It can shown, however, that when all relevant graphs are
summed up, the infrared divergences cancel (See Bjorken and Drell [9]).

We shall deal only with the ultraviolet divergence here. The form factor at zero
momentum transfer is given by

gy Am_R2 4 (] - 4x + x2)
Fl(O)—1+2ﬂlf0dxdydz6(x+y+2‘1)s R+ (1P

(12.71)
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which contains the ultraviolet divergence. To isolate it, we define the finite quantity

_ ., Fi®) - F(0)
S =1+ S (12.72)
and write
F\(k?) = F1(0) /() (12.73)

The divergent factor F(0) can now be absorbed through charge renormalization:
eof\(K*) = ef (k%) (12.74)

The charge distribution in the physical electron is given by the Fourier transform of
f(k2). To second order in e, we can take f(k%) = 1 + F,(k?) — F,(0), and replace ¢, by
e, since the errors incurred in so doing are of a higher order.

The charge structure of the electron has not yet been seen in experiments be-
cause it has such a small radius. The proton, on the other hand, has stronger interac-
tions, and a bigger charge radius, which has been detected experimentally via elec-
tron-proton scattering (see Hofstadter (10]). In this process, the electron produces
the virtual photon that probes the charge structure of the proton. Figure 12.4 shows

f2
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Figure 12.4 Charge form factor of the proton obtained from experiments on electron—proton scatter-
ing. [After E. E. Chambers and R. Hofstadter, Phys. Rev. 103, 1454 (1956).]
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the results for f2(k?) at various incident laboratory energies of the electron [11]. The
straight-line fit in the semilogarithmic plot corresponds to a Gaussian distribution

S = e189 (12.75)
where ¢? = -k*. This gives the charge radius of the proton as

ro=0.70 x 107 cm (12.76)

PROBLEMS

12.1 (a) Set up the differential cross section for electron—electron scattering, using the
matrix element (11.51). Regard all particles involved as unpolarized. Work out
the kinematics, and specify the independent variables. Express the result as spin
traces.

(b) Do the same for electron—positron annihilation. Obtain the matrix element from
(11.59) for Compton scattering through crossing symmetry.
12.2 Consider Mott scattering, the scattering of an electron by an external Coulomb field.
This is the relativistic version of Rutherford scattering. Take 4,5 = 0, and

Ze - Ze
A=y AT =1

The problem is to calculate the differential cross section

da d*p, P
a0 ) Gy 2O E B0 2yl

Choose kinematics such that £, = E; = E, |p,| = |p;] = p. The incident velocity is » =
pIE.

(a) Evaluate the spin sum:

_ 1
> Y = —— T (@, + myyP (@, + m))

1
2 spin 8m

1
= E——Z—(EQ—p’-cosBerz)
m
E? ., 8
T (1 *vzsmzz)

where 6 is the scattering angle in the laboratory frame.
(b) Obtain the Mott cross section [12]:

do Z2a? (

9
—_— - — nl—
a0 " apsmin | TS )

2
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12.3 The proton and neutron have strong interactions, whose contribution to the anomalous
magnetic moments dominates over that produced by electromagnetic interactions. A
phenomenological way to take this into account is to introduce a “Pauli term” in the
Hamiltonian density (see also Problem 6.3)

K,
Hpaui() = ~5% 0HF ()

where kp = 1.79, ky = -1.91, and p, = [¢|/2M is the nuclear magneton. The neutron, al-
though electrically neutral, interacts with the electromagnetic field through this term.

(a) State the Feynman rules for the Pauli term.
(b) Obtain the matrix element for electron—neutron scattering.

(c) Obtain the matrix element for the creation of a neutron-antineutron pair by two
photons.
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CHAPTER THIRTEEN

Perturbative Renormalization

13.1 PRIMITIVE DIVERGENCES IN QED

Feynman graphs are generally ultraviolet-divergent, and a high-energy cutoff A is
needed. The cutoff sets the scale at which the coupling parameters in the La-
grangian are defined. The process of renormalization relates the parameters at one
scale to those at another. When this is achieved, we can express the “bare” parame-
ters defined at the cutoff scale to the “renormalized” ones at a lower energy scale. In
this chapter we show how this is done in perturbation theory in QED.

A Feynman graph in QED may be represented schematically in the form

d*Nk
graph ~ RPkE (13.1)

where P; is the number of internal photon lines, E; the number of internal electron
lines, and N the number of independent internal 4-momenta. This integral, which is
generally divergent, is being cut off at a momentum A much larger than any physi-
cal momenta in the problem. We define a primitively divergent graph as a divergent
graph that becomes convergent when any one of its internal lines is cut, that is,
when any integration variable is held fixed. Any divergent graph can be reduced to a
primitively divergent one by cutting a sufficient number of internal lines. This is ob-
vious because the graph becomes convergent when all internal lines are cut.

The superficial degree of divergence P of a primitively divergent graph may be
obtained by counting powers:

D=4N-2P,~E,;=4-P,- 3E, (13.2)

where the final result follows by eliminating N, P,, E; using (11.66)—(11.68). This
number is independent of the number of vertices, and decreases with increasing
number of external lines. This property is what makes the theory renormalizable.

It should be noted that the actual degree of divergence may be smaller than .

236
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Note also that the counting procedure cannot be used for a non—primitively diver-
gent graph. For example, the integral [ dk dp k~'p~? is logarithmically divergent; but
power counting would give 9 = 1, which suggests incorrectly that it is convergent.

Since D = 0 for a divergent graph, and D decreases with the number of exter-
nal lines, there exist only a finite number of types of primitively divergent graphs,
and they can be classified according to P, and £.. There are six possible cases, as
shown in Table 13.1. Among these, the vacuum graphs can be ignored. The graphs
with three external photon lines can be ignored according to Furry’s theorem. The
graphs with four external photon lines are logarithmically divergent individually,
but it turns out that the sum over the 4! possible assignments of external momenta
gives a convergent result. Therefore, there are only three types of primitively diver-
gent graphs: electron self-energy (SE), photon SE, and vertex.

Assume that we know how to renormalize the primitive divergences. Then con-
sider a connected nonvacuum graph. We define its skeleton graph as the graph ob-
tained after the removal of all SE and vertex insertions. The skeleton may be con-
vergent or divergent. If convergent, we reinsert the renormalized SE and vertex
parts. If divergent, it must be primitively divergent. To prove the last statement, as-
sume the contrary. Then, by cutting a sufficient number of internal lines, the graph
can be reduced to a number of components (possibly disconnected), one of which is
primitively divergent. The latter must be either an SE or vertex graph; but these
have been removed by assumption. Therefore the divergent skeleton graph must be
primitively divergent. The procedure to renormalize a connected nonvacuum graph
therefore reduces to that for the primitive divergences.

13.2 ELECTRON SELF-ENERGY

The full electron propagator is defined as

18" (0] ap = OITY LT 5(0)|0)
= (OIT o (x)Pp(0)e 747 |0} (13.3)
where ¢/ is a Heisenberg operator and i is an interaction-picture operator. Its ex-
pansion in terms of Feynman graphs is shown in Fig. 13.1, where 2(p) denotes the
proper self-energy part, which is the sum of all one-particle irreducible graphs.
Without taking into account the mass counterterm, we have
iS'(p) = iSg + iSpi2iSE + ISpiZiSpZiSy + - -
= iSe[l + ((ZiSp) + (ZiSp)* + - - -]
= lSF(l - iZiSF)’l (134)

where we denote the electron propagator in momentum space as Sg (without the
tilde). Taking the inverse of both sides, we obtain



238 Perturbative Renormalization

TABLE 13.1 Primitive Divergences in QED

P, E. D Graph Example Remark

0 0 4 Vacuum Can be ignored

0 2 1 ElectronSE Actually logarithmically

divergent

1 2 0 Vertex Logarithmically

divergent

2 0 2 PhotonSE Logarithmically
divergent by gauge
invariance

Canceled
(Furry’s theorem)

3 0 1 3-photon

4 0 0 Light-light
scattering

Sum of 4! graphs
convergent
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— e e

@:M+/03+m+...

Figure 13.1 Graphs for full electron propagator and the proper self-energy part 3.

(S’ = (1 - i2iSp)ISe) ™" = [(iSp) ™ - i2]
=il m+3(p) (13.5)

where we have left the i7 term in the denominator understood.

To include the mass counterterm, we make the replacement iSp — iSp +
iSpidmiSy in all the Feynman graphs. This means that 3(p) is replaced by 2(p) + ém.
Consequently we have (S')"' = p—m ++ 6m + Z(p), or

o 1
S(p)_p4m+5m+2(p) (13.6)

By Lorentz invariance, we can write 2(p) in the form
(p) = AP*) + (p - m)B(p?) (13.7)
Thus

1
[1+B(p))(p—m) + A(p*) + ém

S'(p) = (13.8)

Mass renormalization consists of the assertion that the pole of the full propagator is
located at m. Therefore

A(m?) +6m =0 (13.9)

Since A(m?) is divergent, this shows that 8m must also be divergent
Another divergent quantity is B(m?), and it is customary to put

1+ B(m?) = —ZI— (13.10)
2

so that Z, — 0. However, we regard it as an infinite series in e§, with divergent co-
efficients. At the mass pole we have
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, Z, 4 —
S P iy T = o 2 MR (R ) (13.11)
This shows that \/Z, is the renormalization constant for electron wave functions. To
verify this explicitly, we examine the self-energy insertions on an external electron
line. The Feynman graphs in this case are the same as those in Fig. 13.1, except that
the leftmost line is taken to be an external line. The sum of the graphs give

w'(p) = {1 +iSpi(S(p) + &m) + [iSei(S(p) + dm)2 +- - Ju(p)  (13.12)
The operator in brackets gives
[S7'(p) + 2(p) + dm]'Se(p) =S ()P - m) 5772, % (13.13)
Therefore
u'(p) = Z,u(p) (13.14)

We have shown that the wave function renormalization constant is \/Z—z Therefore,
a factor V'Z, goes toward the renormalization of the vertex that absorbs this parti-
cle.

We have yet to show that the electron propagator is finite after mass and wave
function renormalization. To do this, we first analyze the skeleton self-energy
graph. Later, we shall discuss how to make insertions. The skeleton is just the sec-
ond-order proper self-energy graph:

d*k
() = Cieo? | 5= VS~ K, iDe(h)
d'k  y(4dm=2(p- k+m))y,
@n)* @+ iml(p— b7 = + in]

g Lk Ap=prdm
@m* (2 + iml(p— kY —m? + 0]

=—je}

(13.15)

This integral is logarithmically divergent for large %, and must be cut off. Using the
Feynman formula (12.53) to combine the factors in the denominator, we can rewrite

%k 2Ap-f)-4
iS(p) = 3 jodx{(1 (p—f)—4m (13.16)

@ — K xl(p— k)~ m?) + in}?
The denominator has the form

(k= xp)* + x[(1 - x)p* + m?]
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Changing the variable of integration to ¢ = k — xp, and omitting in the numerator a
term ¢4, which integrates to 0, we have

. 2 x)p 2m
12(17) - (277)4J- J _C+ ”7)2
C=x[m®— (1 - x)p?] (13.17)

We now have to evaluate an integral of the type

1 % 1
= 4, o — 3
I fd‘I[qz_CHn]z quf_xdqo[qo—(q2+0+in]2 (13.18)

For simplicity, we cut off the spatial integral at |q) = A. The g, integration can be
performed through contour integration, which yields

” dqo i 1
Ty 13.1
J:x [qo _ (q2 + C) + “7]2 2 ('q,Z _ C)3/2 ( 3 9)

Thus we have

2

A
1= 2z7rzf dq——c—,)ﬁ =2 27 In — +(fm1te terms) (13.20)

Using this result, we obtain

i602 1 A ..
(p)= 2% fo dxl(1 ~x)p = 2mlin =+ (finite terms)  (13.21)

which gives
360 A
2y = — + 4 2
AP = -5 In— +A(p)
ed A
B(p?) = —é7_7-2— In — +B](p2) (13.22)

where 4,and B, are finite, and vanish on mass shell. Thus

om 3e0 A
— — 13.23
T e In +0(e0) (13.23)
A
Z,=1-—= ln — + O(e}) (13.24)

871-2
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The result of mass and wave function renormalization to second order can be
summarized by the statement

S'(p)= 325
P m i (1329

where

2.(p) =2(p) - Z(po) (13.26)

where p, is a 4-momentum on mass shell. It remains to be shown that this form is
correct to all orders.

Mass renormalization first made its appearance in Lorentz’ calculation of the
self-force of the classical electron. Lorentz modeled the electron as a spherically
symmetric uniform charge distribution of radius a. The self-force F is the sum of
all the forces between charge elements, with retardation taken into account. In the
limit a — 0, the result is [1]

4 dede’  2e°
Fo=—fV |+ 5 ¥+ 13.27
g 3ch’ darr 3c3v 0@ (13.27)

The first term, which arises from the Coulomb self-energy, is divergent. The second
term is independent of a, and gives the famous radiation damping. The other terms
vanish when a — 0. The equation of motion for an electron of “mechanical mass”

mg is
mov =F,y +F, (13.28)

where F.,, is the external force. When @ — 0, this has the form

. 2e? .
mv=F,, + ;};V (13.29)
where
4 [ dede'
=my+ — .30
= Mo 3¢’/ 4dmr (13.30)

is the renormalized mass, to be taken from experiments. The self-energy diverges
like a! classically, but only logarithmically in QED. The difference can be attrib-
uted to the presence of the Dirac sea of negative-energy electrons [2].
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13.3 VACUUM POLARIZATION

We can take the free photon propagator to be

e
DW(k):—gk2 (13.31)

where, for simplicity, we have dropped the subscript “F” and the i7 term in the de-
nominator. The full photon propagator is given by the series of graphs shown in Fig.
13.2, which can be reduced to one-particle irreducible components. The sum of all
one-particle irreducible graphs, with external photon lines omitted, is called the
vacuum polarization tensor IT#¥(k). It describes virtual electron—positron pairs pro-
duced by a photon propagating in the vacuum. In terms of this tensor, we can write
the full photon propagator in the form

iD'#(k) = iD*¥(k) + iDF(k)iLl g (K)iDP¥(k) + - - - (13.32)
Because of current conservation, or gauge invariance, we should have
KHIL, (k) = T,k =0 (13.33)
We can therefore put
k) = (g#¥k2 - k*k)e (k) (13.34)

This form guarantees that the photon has zero mass, unless II(k?) develops a pole at
k* = 0, which does not happen in perturbation theory. Note that TI(4?) is defined
with e3 factored out.

To avoid a profusion of indices, we shall regard D'#” as a 4 x 4 matrix D', with
matrix multiplication defined such that an upper index can be contracted only with
a lower index. To be able to invert these matrices, we define the transverse and lon-
gitudinal projection operators Pr(k) and P, (k) as follows:

NWM + +...
:Q@@@

Figure 13.2  Full photon propagator and the vacuum polarization tensor.
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k*kY
kz

PE(k) = g"" —

In matrix notation, they have the properties

Pt =Pr
PE="P,
TT+?L:1

(13.35)

(13.36)

The free propagator 9 is proportional to the unit matrix, while the vacuum polariza-
tion tensor takes the form

T(K) = K2e3T1(k) Py

In this notation, we have

Now note that

Thus

or

D' (k) = D(k) + DY T(KD(k) + - - -
= D[1 - iTE)iD(k)]!

1
=5 [~ e3P

(1-AP) ' =1+ AP+ P2+ -

1
=1+(A+,\2+~)?T=T—X£PT+?L

r P

P'=- Rl - 2l(d)] R

V' SO o 24
DIF,V(k) — ) _

__—1—————— gﬂ-V‘
2[1 — e2ll(#)] 2 2

(13.37)

(13.38)

(13.39)

(13.40)

(13.41)

The terms proportional to 4* can be dropped, because they do not contribute in
Feynman graphs owing to current conservation. Hence we take
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D'# (k) = gD’ (k) (13.42)

where

D'k)= 7 (13.43)

-1
[1 - edlI(k)]

The divergences are now isolated in the function II(k%), whose skeleton can be
obtained from that of the vacuum polarization tensor, given by its second-order
Feynman graph in Fig. 13.2:

4

d 1 I
(k) = e} (2:)4 Tr('y"p_my”p_k*m) (13.44)

which is quadratically divergent. By (13.34), the degree of divergence of II(%%)
should be reduced by 2, and we expect the latter to be logarithmically divergent. But
(13.44) violates gauge invariance, since k, I**(k) # 0.

The violation of gauge invariance originates in the singular nature of the cur-
rent, in which the electron field and its canonical conjugate are coupled at the same
point, in a product of the form 1,(x),(x). By reversing the order of ¥ and ¢, one
would generate a meaningless term involving §°(0). To avoid the singularity, we
could replace the factor by g, (x + €)ip(x — €), and take the limit € — 0 eventually;
but to make the product gauge-invariant, we have to amend it further and take the
current to be

JHX) = eoP(x + €)yrfx — €)ere0ST EDy AMY) (13.45)

with € — 0. This procedure is called the “point-splitting method, “ and will yield a
gauge-invariant vacuum polarization tensor [3].

We use the following shortcut, which yields the correct answer. By (13.34), we
can calculate [1(k) through the relation

1
() = 2 T14(A) (13.46)

To ensure T1(0) = 0, we replace this by

1

2 2y == —
eon(k ) 3k2

(Math) - Iu(0)] (13.47)
The subtraction reduces the quadratic divergence to a logarithmic one. Explicitly,
we have

! In A + R(k*) + O(e}) (13.48)

Ny =1z,
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where

I
27

1 kZ
R(®) = fodxx(l —x)ln[l —x(1 —x);] (13.49)

We now define the renormalized charge. The convergent part of TI(k?) is de-
fined by making one subtraction:

() = (&) - H(p?) (13.50)

where u? is an arbitrary scale parameter. To second order, we have

D’(k)=—ﬂ2k/7'u"—z—) (13.51)
where
2 1 2
d(%) T -G - Qe - eazzfﬁz))w) (13:52)
where
Z(ph) = N — (13.53)
1 - eflI(p?)
with normalization
=1 (13.54)
Defining a scale-dependent charge e(u?) by
eH(u?) = e§Z(1?) (13.55)
we can write
2 2( 12
e%d(;k;)= I—_e—ze(i—";)%m (13.56)

The conventional electronic charge is defined at the value u? = 0, which corre-
sponds to a static interaction with zero 4-momentum transfer. The fine-structure
constant is therefore related to €X(0) = e,2Z(0). In the conventional notation

Zy = Z(0) (13.57)

we have
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= (13.58)
Defining
kZ
eX(0)d (k%) = lim eX(u2)d—;
u2—0 u?
we can write the photon propagator in the form
€

2

0 7

2Dy =~
D' (k)

ad (k)

pE (13.59)

where the right side involves only finite observable quantities.

13.4 RUNNING COUPLING CONSTANT

Using the momentum transfer as the renormalization scale, we have

eXk?)
k2

eD' (k) = - (13.60)

That is, to the order considered, the full propagator describes a free photon coupled
through the scale-dependent charge e(k?), also called the “running coupling con-
stant” for this reason. We can define a running fine-structure constant

()
ok = 4

To relate it to the value at k% = 0, use the relations

1 1 1
—— T —— +
e(uy) & 1277
1 1 1 A

= + ——— In — 13.61
0y e 127 In m ( )

A
In — ~ R(K)
m

where we have used the fact R(0) = 0. These are, of course, correct only to order e,°.
Subtracting one equation from the other, we obtain the following after some re-
arrangement:

2
a_(cl:_) =1 +4ma R(K) + O(ed) (13.62)



248 Perturbative Renormalization

The function R(k?) is real for k2 < 4m?, below the pair-production threshold. For
k*/m? negative and large

2 2
Wt R
o 3m - m?

+0(e}) (13.63)

13.5 FULL VERTEX

We represent the proper full vertex in the form

L (02 p) = Y. T A2, P1) (13.64)

with graphical expansion as shown in Fig. 13.3. There are an infinite number of
skeleton graphs, whose sum is denoted by A%. Current conservation implies

(2= p)*u(p)l (2, p)u(p1) = 0 (13.65)
The second-order skeleton graph gives

_ . Y(pi—k+my(p,—fk+my,
A¥pa, py) = ze(z)f Cm Rl — K= Il pa— 7 — ] (13.66)

where the i7 devices have been left understood. (To this order there is no difference
between A and A*.) This integral is both ultraviolet- and infrared-divergent, and we

ru — «.« + A +
D A
AH = f : + A + e

Figure 13.3 The proper full vertex I'* and the skeleton A**. Note that external lines are omitted, by
definition.
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cut it off and high and low momenta. The ultraviolet divergence is logarithmic, and
can be isolated by subtracting the integral at p, = p, = p,, where p, is a 4-momentum
on mass shell:

A¥(po, po) = Ly*

& A
L=—"2In— ,
5.z (13.67)
Thus
A¥(py, p) = Ly* + A(py py) (13.68)

where A# is ultraviolet convergent. We will not deal with the “infrared catastrophe.”
(See the remarks in Section 12.4.) The proper full vertex now takes the form

1
Pe(po, Py = =¥+ A&(p2, p1) + OeD) (13.69)
1

where

1

13.70
1+L ( )

Z,=

is the vertex renormalization constant. Like Z,, it must be considered a power series
in e,2 with divergent coefficients, even though formally it approaches 0 when A —
o, To second order, we can rewrite our results in a suggestive manner:

1
T#(pas p)) = — L8(p2 p1) (13.71)

where the convergent part is given by

F(pa, py) = v + NP2, P1) (13.72)

13.6 WARD IDENTITY

Equivalent forms of the Ward identity are

J
I'“(p, p)= ‘L‘il;’[S'(P)]‘1
n
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d
A(p. p)= EP—E(P) (13.73)
®

To prove it, we can use the identity

1 1 1 1 1.1 1
=+ —bh—+ —b—b— +--- (13.74)
a+b a a a a a a

to show

dJ i ) 1 1 1
-— = lim -
Op, p—m Bp—0 Ap#[erAp#—m p—m]
1 1
= P (13.75)
p-m’ p-m

This states that differentiating a free electron propagator is equivalent to the inser-
tion of a vertex that emits a photon of 4-momentum & = 0. This interpretation comes
from the form of the current j* = Pry*yf, which embodies current conservation. The
proof can then be stated graphically, as shown in Fig. 13.4. The more general
Ward-Takahashi identity states, in equivalent forms (see Problem 13-1),

(P2 ~p )T (02 p1) =[S (P - [S'(pI™
(P2 = PPN (P2, 1) = Z(p2) - 2(py) (13.76)

From (13.25) and (13.71), we have

[=) [
oX(p) o)
o pH o pH t ﬁ t :I

?
b
b

- A A A T
Figure 13.4 Graphical proof of the Ward identity. A cross indicates the insertion of a photon of zero 4-
momentum.
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J s
— ISP =5
ap, Zs

»y.“'
I(p. p)=— (13.77)
Thus, the Ward identity states
Z, =2 (13.78)

This is verified in our second-order calculations.

13.7 RENORMALIZATION TO SECOND ORDER

We can summarize our results so far as follows:

Z
S'(p)= —:_——-:2717; = Z,5p)
D'(k) Z3 c( ) "Z;Dc(k)
1 1
I'(p2p)= Z[)’“+ A(py,p)] = Z_lrg(PZspl) (13.79)

where the quantities with a subscript “c” are finite. We have proved (13.79) to sec-
ond order, but, as we shall show, they are true to all orders.

Consider the full vertex Y*, including improper (one-particle reducible)
graphs, as shown by the second-order graphical expansion in Fig. 13.5. Omitting
momentum arguments for simplicity, we can write it in the form

Y# = —ieSTHS' D’ (13.80)

Rewriting this in terms of finite functions, we have

Yo = “ieo

412225
VA

— [ Z;
SCF‘CLSCDC = “‘IZ?_ Z} ‘: Z
I

Z3 egj‘S F SCDC (1381)

1

The factor Zz\/z goes toward the renormalization of other vertices and/or external
lines. The factor in brackets is the renormalized charge:

e= ——\/Z3e0 VZse, (13.82)

It is important to note that the renormalized charge e depends only on the pho-
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= +

+ + >ww +>ww + -
s

= r>w D'
g

Figure 13.5 The full vertex can be expressed as a product of full proper vertex and full propagators.

ton renormalization constant Z3, not on the renormalization of the electron propaga-
tor or the vertex. This is because Z, = Z,, as guaranteed by the Ward identity. Be-
cause of this fact, Z, is universal. If we bring in other charged fields into the system,
such as nucleons or 7 mesons, then Z; will acquire contribution from all fields
through vacuum polarization, but it will be the common charge renormalization
constant for all fields.

13.8 RENORMALIZATION TO ALL ORDERS

We now describe the renormalization program of Dyson and Ward [4], following a
version due to Gell-Mann and Low [5]. The first item of business is to specify how
SE and vertex parts are to be reinserted into a skeleton graph. Consider first the ver-
tex part. We regard the skeleton A} as a functional of the free electron propagator S,
the free photon propagator D, and the free vertex y:

Sum of skeleton vertex graphs = A{[S, D, y; ey, p, p'] (13.83)

It also depends on the bare charge e, and external momenta p, p' as parameters.
With this notation, we can write

Ap p)=ALIS,D',T;enp p' (13.84)
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That is, A, is obtainable from A * by inserting the full propagators ', D’ in place
of the free propagators S,D and full vertex I in place of the free vertex y: The skele-
ton A%[S, D, v; eq, p, p'] is only logarithmically divergent, but A, is much more di-
vergent, due to the insertions.

For the electron self-energy, there is an ambiguity known as an “overlapping di-
vergence, “ as illustrated in Fig. 13.6. It is not clear whether A should be regarded as
an insertion into B, or vice versa. We avoid this problem by using the Ward-Taka-
hashi identity to expresses S’ in terms of the vertex:

[S" (P =[S (Po)l™ + (P~ Po)*T u(p. Po) (13.85)

The right-hand side is actually independent of pg, but for definiteness we take p, to
be a 4-momentum on mass shell. Mass renormalization consists of the statement

S (P} = Zizmo —m) (13.86)

The photon self-energy also contains overlapping divergences. To circumvent
them, we mimic the Ward identity by defining an auxiliary function Wu(k) by dif-
ferentiating the inverse photon propagator:

W (k)= —;{;[:D’(k)]*‘ (13.87)
Using (13.34), we can write
W.(k) = 2ik,, — ik, T(k) (13.88)
where
T(k) = % —5]‘?—#[k2egﬂ(k)] (13.89)

We then define the skeleton of T, denoted by T*, by removing all SE, vertex, as well
as W, insertions. The skeleton is logarithmically divergent, and we can again isolate
the divergence through one subtraction. To recover D’ from W, use the formula

Figure 13.6 An overlapping divergence.
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1
[iD'()]! = J; dx k*W ,(xk) (13.90)

An ambiguity occurs in the definition of the skeleton of 7, because the external
momentum & can be routed through a graph in more than one way. The difficulty
occurs in graphs of W, containing at least three closed electron loops, and are there-
fore at least of order e}, but can be overcome by the proper convention for momen-
tum routing {6].

Divergences in perturbation theory can be absorbed into renormalized coupling
constants because the effective coupling constant at one energy scale can be related
to that at any other energy scale. This property depends on the scaling properties the
insertions, which lie at the heart of renormalizability.

The graphs in A* are all of even order, and a graph of order 2» contains factors
of eg, S, D, and *y to various powers, as indicated schematically below:

A%, ~ e3" S Dy’ (13.91)
Under the scale transformation

y—>ay
D — bD
S—als (13.92)

where g and b are arbitrary number, we have
A%, — ab"A%, (13.93)
Therefore, we have the scaling law
al}[S, D, v, eo,p. p'] = ALla™'S, bD, ay, b'ey, p, p'] (13.94)
For the functional 7%, a graph of order 2n has the structure
T%, ~ ed"S*" Ty o2k, )~ (13.95)
where ¢ is an integer that receives an additive contribution 1 from each differentia-
tion of an electron line, and 0 from that of a photon line. Under the scale transfor-
mation (13.92) supplemented by 2ik, — 2ik,/b, we obtain
T3, — b Ty, (13.96)
Therefore a second scaling law is

bT¥[S, D, v, 2ik,; ey, Kl = T*[a71S, bD, ay, b-12ik,; b'eo, k] (13.97)
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The functions $’, D’, and I satisfy the following coupled functional equations:

Tdp. pY= v+ AXS, D, T e,p p']
W, =2k, + ik, T*[S', D', T, W: e, k]

(SO =[S(p)I™ + (P~ po)T A p. po)
(D' = fo e Ko k) (13.98)

The solutions to these equations are divergent, because the functionals A* and T*
have skeletal divergences. However, they are only logarithmically divergent, and can
be made finite through one subtraction. Using the abbreviations A*(p, p’) and T*(k)
for the functionals, we define two finite functionals by

K. p') = A3, p) ~ (2500, Po Mg
Tty = T*(k) - T*(w) (13.99)
where u is an arbitrary reference momentum and p, is the momentum of an electron

on mass shell, with p3 = m?. The subscript g, = m instructs us to commute g, all the
way to the right, and then replace it by m. Thus

[A*(Pos PO)pgers = L ¥y (13.100)

where L is a power series in e with logarithmically divergent coefficients. The same
is true of T*(w).

By replacing A*, T* respectively by A%, T*, we have, from (13.98), a set of fi-
nite functional equations. The renormalized functionssS, D, T, W are defined as solu-
tions to these finite equations, with e, replaced by an appropriately defined renor-
malized charge e(u):

Tup p)= v, +A%,15, D", T e p. p']
W, = 2ik,+ ik, T*[S", D', T, W, e, k]
@1 =18 @) + (- p)Tup. po)
1
D) = [ ds koW cky (13.101)
0

We fix the normalization of S" by the condition
S(po =Py - (13.102)
'For simplicity, we have chosen to subtract I At a mass-shell momentum p,. Actually the subtrac-

tion can be made at any momentum, whose invariant mass would then serve as an extra renormalization
parameter in addition to p.
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Then we have
ISP = p-m+(p~po)*Asp. po) (13.103)
with the property
[(#—m)S (P)pepo= 1 (13.104)

The normalization of D is such that
[k D))=, = | (13.105)

To complete the renormalization scheme, we show that the renormalized quan-
tities are proportional to the unrenormalized ones. Note that I, can be rewritten as
follows:

By=yt A-Ly,=(1 —L)(yv+ — At)
~z{ns — NS B T r.o (13.106)
where
Z=1-L (13.107)
This shows that the subtraction is equivalent to rescaling. Similarly, we can write

W, = 2ik, + ik [T*(k) — T*(w)]

1 ~ o~ ~
= Z([.Lz){Zikv + —;—ik,,T“‘[S, D, I~‘, W, e, k]} (13.108)
Z(p?)
where
Z(uH=1- 1) (13.109)

Using the scaling properties (13.94) and (13.95), we obtain

! &~ I

Z =%t Av*[ZS; ZD, 72 e pp J
r
z”

~

W, = ik,,T*[Z’S", zD,

w
Zi V%, k] (13.110)
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Thus, the system of equations (13.101) can be reduced to (13.98) by putting

r=—f
z
W, = ——1~—W
[ Z(/.Lz) [
§'=75
D' =Z(u)D
e(p?)
3= 13.111
" (41D

This explicitly shows the connection between the unrenormalized and renormalized
quantities.

The system of functional equations is a formal property of perturbation expan-
sions. There is no guarantee that the expansions converge, or that the functionals ac-
tually exist mathematically. Our best indication that the process makes some sense
is still the good agreement between perturbation theory and experiments.

13.9 CALLAN-SYMANZIK EQUATION

Under a change of scale, the running coupling constant changes according to
eX(u?) = esZ(p?) (13.112)
where the renormalization constant Z(u?) depends on the cutoff A, the electron
mass m, and the bare coupling €§ = €*(A?). It can depend only on the ratios
u*A%and m?/A?, because it is dimensionless. In a more general discussion, we

would treat the mass as another running coupling constant, but here we shall assume
u? = m? and set m = 0. Thus we rewrite (13.112) in the form

a(p?) = a(AZ)Z(X—z, a(A2)) (13.113)

or, putting x = u? and y = A?,

a(x) = ay) 7(% a(y)) (13.114)

Differentiating both sides with respect to x at fixed y, and then setting y = x, we ob-
tain
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xm = B(a(x)) (13.115)
dx
where
Bla) = a_____aZ(;; @) ) (13.116)

The function B(a) is the “B function, “ also called the Gell-Mann-Low function [7].
It generates scale transformations called renormalization-group transformations.
The B function of QED to lowest order in perturbation theory can be obtained from
(13.63):

Bla)= —3?% (13.117)

Since this is positive, the coupling grows at high energies, and consequently we can-
not investigate the high-energy behavior of QED using perturbation theory. In quan-
tum chromodynamics, on the other hand, the 8 function is negative at small cou-
pling, and thus the coupling vanishes at high energies—a behavior known as
asymptotic freedom.

An important property of the 8 function is that it depends only on «. We can
obtain the running coupling constant a(x) by integrating (13.115) to obtain

N LI (13.118)

W Bl@

where @, = a(x,), &; = a(x,). This equation expresses the essence of renormaliza-
tion: A dimensionless coupling constant at one energy scale can be related to that at
another energy scale, without reference to any intrinsic scale. This means that there
is nothing special about the cutoff; it is just a scale like any other. Where B(a) = 0,
the value of « is at a fixed point, where it remains invariant under scale changes.
These fixed points define possible quantum field theories, and are therefore physi-
cally interesting. We shall take up this subject in Chapter 16.

We can abstract from QED a general property of renormalizable field theories.
Let G'(p; A, g) be a renormalized correlation function, which is generally diver-
gent, and depends on a high-momentum cutoff A. The external momenta are collec-
tively denoted by p, and g, is a dimensionless coupling constant at the energy scale
A. “Renormalizability” means that

A
Gmmm=4;@ﬁmmm

A
g=g(——,g0) (13.119)
i
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where g is the renormalized coupling at the energy scale w. The renormalized corre-
lation function G is assumed to be a finite function of its arguments. The cutoff de-
pendence is isolated in the dimensionless renormalization constant Z. We assume
that w and p are much greater than the particle masses, which have been neglected.
Since the left side of the equation is independent of u, so must be the right side.
Thus, we can write

d

A
;};[Z(;, go)G(p; W g)} -0 (13.120)

Carrying out the differentiation, we obtain

G  JdInZz dg IG

(13.121)
o du o dg

where partial derivatives are carried out with all other arguments held fixed. We
rewrite this in the following form, which is called the Callan-Symanzik equation

[8]:

[uai () + ﬂ(g)i]ap; hg)=0 (13.122)
1 g

where

A
Bg) = M_j g(—, go)
o\
n(k) = pe I Z(—A—,go) (13.123)
n "

The first equation gives the B function, while the second is called “anomalous di-
mension.”

13.10 TRIVIALITY

Landau [9] noted that, by calculating the renormalized charge using a plausible par-
tial summation of Feynman graphs, one arrives at the conclusion that it vanishes in
the limit of infinite cutoff. He concluded that this absurd result invalidates quantum
field theory, which should be “buried with due honors.”

We can derive Landau’s result as follows. Substituting (13.117) into (13.118),
with a, = a(A?) and o, = a(k?), we obtain

1 = 1 + ! In A—2
aop?) (AP 247 WP

(13.124)
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This is essentially (13.61), though it pretends to be more accurate. Taken seriously,
this implies that, if a(A?) = 0, then

oAp?) =20 (13.125)
This is referred to as “triviality.”

Similar perturbative calculations also point to triviality for scalar ¢* theory.
(See Problem 13.4.) The conclusion for ¢* theory is supported by numerical calcu-
lations, and can be established more rigorously, as we shall show in Chapter 17. The
result for QED is plausible although not proven; but even if proven, it hardly invali-
dates quantum field theory.

To view this alarming result in proper light, we have to understand what renor-
malization is really about, and we shall explain that in Chapter 17. In the meantime,
we offer the following observations:

¢ Triviality has no impact on practical applications, because the renormalized
charge is insensitive to A, as it goes like (In A)}. One can therefore choose a
finite value of A to fit experiments.

® By accepting a finite A, however, one seems to negate renormalization,
which says that we can hold the renormalized charge fixed at an arbitrary
value, and send the cutoff to infinity. We shall see in Chapter 16 that this is
possible only if the theory is based on an “ultraviolet fixed point,” as in one
with asymptotic freedom. It is not correct for a theory governed by an “in-
frared fixed-point,” as is the case for ¢* theory. In the latter case, the renor-
malized charge assumes the fixed-point value.

o Although the mathematical QED appears to be an “infrared”-type theory;
the physical QED may not be, for it is embedded in the standard model,
which is, in turn, embedded in some grand, yet unknown, unified theory. We
offer a scenario for this in Section 16.9.

PROBLEMS

13.1 Ward-Takahashi Identity
(a) Show that the Heisenberg operators ¢ and i satisfy the equations of motion
(iv8, — mohp = egy'd, ¥
Wiy 3, ~mo) = eBy*d,,

and from these show that the current j* = Yry*yfs, as a Heisenberg operator, is for-
mally conserved: 4, j* = 0.

(b) Consider the quantity

VE(xy, X0 1) = (OIT gh(x)(x2)#(0)I0)
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where the operators are in the Heisenberg picture. Because of translational invari-
ance, the Fourier transform of V* can be written in the form

f d*x, dix, dy e OrPr I PR x,, ) = QY 8p, - po + PP 1L )
Obtain 7# as an expansion in Feynman graphs, and show that

P4(py, p2) = SEHEITHp1, p)SE (91)

where I'* is the full vertex.

(¢} Using current conservation, show that

0
&:V"(xl,xz,y) = [8%(x; - y) — 8*(x; — ))iS¥(x) — X2)

This is the spatial form of the Ward-Takahashi identity. Take the Fourier trans-
form to obtain the form in momentum space:

(2 = P)*T (P, po) = [S' ()T - [S' ()T

13.2 Corrections to Coulomb’s Law Consider the scattering of an electron from an infi-

13.3

nitely heavy point charged, with 4-momentum transfer &* = (0, k). The electrostatic po-
tential ¥(r) is the Fourier transform of the scattering amplitude with respect to k.

(a) Show that the potential is related to the running coupling constant a(k?):
&k, Ama(-K)

eak

(2} k2

ko

Vir) = egf
(b) The deviation from Coulomb’s law may be attributed to the fact that the electron
is a charge distribution. Show that the charge density is given by

3

d3k
oo = [ S

e ma(-k?)

(c¢) Evaluate p(r) for small r, and compare the result with the Coulomb potential.

Landau Ghost According to (13.60), the full photon propagator is related to the run-
ning coupling constant through egD'(k) = 4 ma(k*)/k*. Show that the Landau formula
(13.124) leads to

a k-t
"=k 1~ ——In—
D) ( ur A )
There is a pole other than the photon pole at > = 0. Show that it cannot correspond to a
physical particle because the residue has the wrong sign. Estimate its location in phys-
ical terms. This is called the “Landau ghost,” a curiosity that belongs to the same cate-

gory as tachyons and Maxwell demons.
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13.4 Coupling-Constant Renormalization Consider scalar ¢* theory. Ignore mass
renormalization and set the bare mass to zero. The proper vertex G is given to second
order by the following Feynman graphs:

X NCX
P2
{a) Show that

G(psA, M) = Ag= $MH(p + p2) + L(p2 +p3) + 1(p3 + p1)]

where A is the cutoff and

f d* 1 o A2

O =) Gy @ik il 16w g

(b) Define the renormalized coupling constant at scale s by A(A/u, Ag) = G(p;; A, Ag)
with all p? = —u?. Show that

/\A)\“A 3)‘21/—\‘
(I.L’O)~0 16”_2“

Use the notation A{w) = A(A/u, Ag), Ag = A(A), rewrite this as

1 1 3 A
= + In —
AMp)  AA) 167

which is valid to second order. This exhibits triviality; for the theory to be physi-
cal, A(A) = 0. Hence A(p) — 0 when A — o,

13.5 Neutron-Proton Mass Difference [10] Since the proton has charge whereas the
neutron is neutral, one might expect the proton to be heavier because of the electro-
magnetic self-energy; but in fact, the opposite is true. To understand this, one must in-
clude the magnetic self-energy due to the anomalous magnetic moment. This can be
done phenomenologically using the Pauli term described in Problem 12.3:

-‘}{Pauh(x) - _—WUF v(x)
kp=1.79 ky=-191

where w, = |e}/2M is the nuclear magneton, with M the nucleon mass. The self-energy
now is the sum of the graphs shown in the accompanying figure.

Iy I I T
e e

e W L e woop
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(a) Show that, for large momentum cutoff A, the self-mass 6M is given by

M _3a A af SON(AV_ A
M 27 "M 27r<K 4")[(M)’nM}

where @ < 35 is the fine-structure constant.

(b) The experimental value of the neutron—proton mass difference is approximately
1.26 MeV, or

AM e
M T2

Show that this can be fit with a value A/M =~ 1, which is physically reasonable.
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CHAPTER FOURTEEN

Path Integrals

14.1 PATH INTEGRALS IN QUANTUM MECHANICS

Quantum mechanics is based on the commutation relation between the momentum
operator p,,, and the coordinate operator g, at equal times, say, = 0:

[Pops Gop) = =i (14.1)
In the Heisenberg picture, the coordinate operator at time ¢ is given by
Gop(t) = €Mgope" (14.2)

where H is the Hamiltonian operator. If |¢") denotes the eigenstate of g, with eigen-
value ¢’, then the eigenstate of g,,(¢") with eigenvalue ¢’ is given by

lg’, t'y = e*"lq") (14.3)
The transition amplitude defined by
g, t"lg", ") = (q'le"""lg) (14.4)

contains a complete description of the quantum-mechanical system. Through the
Feynman path integral [1], we can express this amplitude in terms of the classical
Lagrangian, and thus obtain an alternative formulation of quantum mechanics that
makes no reference to a Hilbert space.

To derive the path-integral representation, we break up the time interval '’ — ¢’
into N equal pieces, and use the identity

Sy H(t'' -ty
—IH( ') = — —r
e ,&‘I&[l ~ ] (14.5)

264
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To simplify the notation, let

T=1-/HA

t”‘t’

(14.6)

Then we can write
e tHU = = TN 14.7)

with the understanding that N — c. Now insert complete sets of coordinate eigen-
states between factors of T'to write

(g 1"g 1= f (auiTlg) - (@179 (.1 Tigo) (14.8)
where
do =¢’
av=gq" (14.9)
and
Lfqur”quAl (14.10)

Next replace the matrix element (q'|7]g) by the mixed matrix element (p|T|g), by in-
serting complete sets of momentum eigenstates in appropriate places:

(q", g )= L]p<qupN-—l><pN-lIT’qN—1> < ApiTig )4, po){pol Tlgo) (14.11)

where

f = (9o . Ao (14.12)
P 2 2

A classical Hamiltonian H(p, g) can be defined through the relation
(plHlg) = @PlpH(p, 9) (14.13)

To obtain H(p, q), we pull all the p,, occurring in H to the far left, commuting
across the g, if necessary, and then replace them by the number p. Writing
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T(p. )= 1 —iH(p, A (14.14)

we have

" t"g' )= LJquNIpN—l) T (‘]1|P0>][T(PN4, gn-1)  T(po, q0)] (14.15)

The time evolution over the interval Az = A is now effected by T{(p, ¢), a c-number.
The crucial step toward obtaining the final result is to make the replacement

T(p, g) — eHran (14.16)

which is exact in the limit A — 0. The purpose is to make 7{(p, ¢) a unitary transfor-
mation over the finite time interval A. Putting {plg) = exp(ipg), we obtain
N
g =] exp{i [P+ - 4) ~ Hips qj)A]] (14.17)
q°p

=1
We can think of {p,, g;} as successive samplings of a path in phase space at
equal time intervals A, and the whole path {p(¢), ¢(1)} is covered when A — 0. In

that limit (g;_, ~ g;)/A becomes the velocity 4(¢), and the integrals over g, and p; be-
come functional integrals:

("0 1) = fq " Dy Dp exp{i J, dtp0io - Hepto), q(r))]} (14.18)

where the limits of integration denote the endpoint

g(t')y=¢q'
q(r'")=q" (14.19)

The measures of the functional integration are given by

N-1
Dg= [Ildq,-
N dp.
pp=11 | & (14.20)
=14 21

which, however, do not have well-defined limits when A — 0. For this reason, we
retain the discrete time steps for all intermediate computations, and take the desired
limit only in the final answer.

Assume that the classical Hamiltonian has the form
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2
Hp. @)= £+ Hg) (1421)
m
We can then perform the momentum integrations in (14.18) to obtain the final result
q” : i
"0l )= [ DgeSars) (14.22)
»

where A is a normalization constant, S is the classical action between the times /'
and¢'’:

Stgs .01 = [ dr g, o) (14.23)

and L{q, ¢) is the classical Lagrangian:
L(g. )= smg*~ V(q) (14.24)

The representation (14.22) is the Feynman path integral. It gives the transition am-
plitude as a “sum over histories”—a sum over all possible paths leading from the
initial state to the final state, weighted by / times the classical action of the path. An
illustration of such a path is shown in Fig. 14.1. In the limit A — 0, the limiting
paths are generally discontinuous.

Time

tn

/

ti /
/
e

to
l | |
q 0 q N q i
Coordinate
Figure 14.1 The coordinates ¢,(i = 1, ..., N- 1) that make up the path are to be integrated indepen-

dently over all possible values.
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Consider the following matrix element of coordinate operators:

(4", 1"Gepl 101l 1) = (gl 1D gm0 Vg e H1-0lg'y - (14.25)
If t, > ¢, we can proceed with the same treatment as before. The only difference is
that, when complete sets of coordinate eigenstates are inserted, we will pick up a

factor of the eigenvalue g(#,)q(1;). If , < 1,, on the other hand, the procedure fails to
go through. We can state the following general result:

q” ; ot
(q", t"IT qopt)) -~ qopltillg’s 1) =Nf, Dq q(t)) - - - q(t,)eS 1 (14.26)
q

where T is the time-ordering operator. If we try to express a matrix element of field
operators that are not chronologically ordered, we would be faced with multivalued
paths, and new methods would be needed to render the paths well-defined.

14.2 IMAGINARY TIME

The time in the transition amplitudes can be analytically continued to pure imagi-
nary values. In this domain the integrand of the path integral is real instead of pure
imaginary, and this makes it convenient for some computations. The pure-imagi-
nary time is called “Euclidean time,” because it converts Minkowskian space-time

to a 4-dimensional Euclidean space.
Let us go back to (14.4) at the beginning, and insert a complete set of energy

eigenstates:

Sy =" 1"lg". 1) =(q""le"™g")

=>"{q""|n) (nlq’ e En' (14.27)

where t =¢"' —¢', and the nth eigenstate defined by

Hin) = E, |n)
Ey=0 (14.28)

The energy spectrum is bounded from below by assumption. We can therefore ana-
lytically continue f(¢) to negative imaginary time

t=—it (r>0) (14.29)

The result may be written
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ST =3 petn (14.30)

where

P ={q" InXnlg") = d(g" YK (g") (14.31)
where 1,(g) is the wave function of the nth eigenstate. The oscillatory terms are
now replaced by damped exponentials. For example, we can extract the energy
eigenvalues one by one from the asymptotic behavior

JEIT) 2 py tprefT A (14.32)

The Feynman path integral for imaginary times can be obtained by repeating
the derivation of (14.22) using imaginary time intervals, with the result

@i’ iy =2 Dg et (14.33)
’

This is an integral over paths ¢(7) in imaginary time, with given endpoints q"’,q’.
The “Euclidean action” S is defined as

d
Selgi 7,71 = dr{ —’21( g‘j—)z + V(q>] (14.34)

Note that the Hamiltonian, rather than the Lagrangian, appears in the integrand. The
ground-state wave function can be related to the path integral as follows:

olq' W (g') = lim f(=iT) = f " Dg e-sele (14.35)
T—% q'
where
[, m/dg\2
Selq] = [ xd{;(;) + V(q)] (14.36)

14.3 PATH INTEGRALS IN QUANTUM FIELD THEORY

Consider a scalar field ¢(x) in D spatial dimensions in the Schrédinger picture, with
Hamiltonian density

H(m(x), §(x)) = z (%) + 2|V Hx) + V((x)) (14.37)
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We enclose the system in a large periodic box, and introduce a high-momentum cut-
off A, so that the number of degrees of freedom is finite. The path-integral formula-
tion can be taken over from that in quantum mechanics. We can view ¢(x) as a co-
ordinate labeled by x, and denote the eigenstate of ¢(x) by |¢’). The eigenstate of
the Heisenberg operator ¢(x, ¢) is then

o', 1) = e*id") (14.38)
The transition amplitude between two such states is
(@, 1|¢", 1) = ("] "i¢") (14.39)
From our earlier discussion, we can write down the path-integral representation
¢ r _
(@018, 00250 [ D[ Dexplif anf aratmonit o, seon] 1440
where the limits on the D¢ integration refer to the endpoint condition

B(x, 1"y = ¢"'(x)
¢'(x, 1) = ¢'(x)

The Feynman path integral is obtained by carrying out the D integration:
¢” . e 4t
(@, 214,y =0 [ D) (14.41)
>
where S is the classical action:
o
Stes ¢, 01= [ def aexcix, o (14.42)
X
and £ is the classical Lagrangian density:
L(x, 1) = 3 (X, )3, P(x, 1)~ V(P(x, 1)) (14.43)

It is straightforward to generalize (14.41) to

<¢”a Z’I|T¢op(xla ll) e (bop(xm tn)|¢la t’>

= Nf‘: D¢ d)(xl’ tl) T ¢(xn’ tn) eiS[d)””',,] (1444)
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144 EUCLIDEAN SPACE-TIME

As in quantum mechanics, we can use imaginary time 7 = it. Together with the spa-
tial coordinates x, we have Euclidean space-time coordinates xg = (x, 7) of dimen-
siond = D + 1. The generalized transition amplitude becomes

<¢; g -1‘7”[71‘1’013("17 —iT) ¢0p(xm —it ), —ir')
&
- NL' Do @(x;, 7)) - -+ (x,, 7,)e SElS7T] (14.45)

where S¢ denotes the Euclidean action:
Seleps 77, 7] = f o dr f dPx [3 FP(x, T)FP(x, T) + V(d(x, 7))]  (14.46)

The path integral extends over all such fields with the specified endpoints. Note that
there is no longer a distinction between upper and lower indices on &. For infinite
time interval, 7’ — 7 — o, we write

Seld] = [ il 2 Fblee)Fblxe) + V(dxe)] (14.47)

It is assumed that the initial and final constraints become irrelevant in this limit.
For future reference, we summarize the relation between Minkowskian
space—time x = (X, x,) and Euclidean space—time xg = (X, x,):

Xg = —ixd
d“'x = ”l'dde
d
3= 2 =-x (14.48)
i=1

The relation between Minkowskian momentum & and Euclidean momentum g is
defined such that such that & x, = kyxo:

ddk = iddkE
d
=D k=K (14.49)

i=1

We will omit the subscript “E” on Euclidean quantities when the context makes it
unnecessary.
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14.5 VACUUM AMPLITUDES

We have obtained path integrals for transition amplitudes between field eigenstates.
For practical calculations, however, it is more convenient to work with amplitudes
taken between vacuum states. To derive path integrals for the latter, we first couple
the field to an external source J(X, £), which is switched on and off adiabatically:

J(x,1)— 0 (14.50)

|fl—x

The classical Lagrangian density becomes
L,(x, 1) =L(x, 1)~ Jx, HP(x, 1) (14.51)

The transition amplitude in the presence of external field is denoted by
¢ %
w”JW¢Z/b=NL{D¢@mpj,mfﬂkuﬁrnkwdﬂq (14.52)

For simplicity we have written x = (x, 7). By taking the functional derivative of this
amplitude with respect to J(x), we insert a factor —i@(x) in the integrand. Thus

&', "¢ 1),

14.53
&) ) o Y

<¢”9 ’”le)op(xl) T d)op(xn)fd),’ t’> ="

J=0

We now show that the vacuum correlation function can be obtained by letting
' — —candt”’ — .

Assume for simplicity that the external source is present only during a finite
but large time interval 7

Jx)=0 for [>T (14.54)

Eventually, we shall take the limit 7 — oo. Consider the transition amplitude {¢,,
Ly, 1), for ¢, before the source was turned on, and ¢, after the source was turned
off. Assuming that the eigenstates of the field form a complete set at any time #, we
have

[ Ddld, 1) (1 =1
Thus, for ¢, < -T, t, > T, we can write

<¢2’ led)], fI>J = fD¢ D(b’ (4)29 {2,(}5’ T><¢’ T,(b’) _T>J' <¢” -T”d)l’ t[> (14~55)

The amplitudes (¢,, 1,|¢, T) and {¢', -T|¢,, t,) pertain to source-free time inter-
vals, and may be calculated as in the following example:
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(@, i, T) = (ole ™Dy = > (yln) (n|p) e ED  (14.56)

where we have inserted a complete set of energy eigenstates, with vacuum state sat-
isfying H|0) = 0. To pick it out, we go to the limit of large imaginary ¢, — 7, so that
contributions from all other states are damped out:

(@, 1], T) === (¢,10) (0]} (14.57)

1) -T——ix

In the original amplitude, then, let us make ¢, — i, t, — —ico, T — joo;
(@, tlby, 1), — ($,10) (0]py) fDrﬁ D@’ (01d) (¢, TI¢", -T),(¢'|0) (14.58)
The integral on the right side can be written as

[ DoDY 016) (6. T|8'. ~T),(#'10) = [ DD’ (018) (e 7|/ X|0)
= (0]e2HT|0) = (007), (14.59)

where H, is the total Hamiltonian in the presence of source and (0707}, is the vacu-
um to vacuum amplitude in the presence of source discussed in Section 10.4. We
can now write the following for this amplitude:

HAS = 1 (o, Ly, 1),
010 = lim, = 4 0x01,) (14.60)

In taking the limit of large imaginary time, the real part of the time is kept arbitrary.
All this does is make sure that oscillating phases damp out. Using (14.52) to rewrite
the right side above in terms of path integrals, we have

[DgeiSe1-ii)

TDéeH (14.61)

(07107, =

where (J, @) = fd“xJ(x)d(x). Taking functional derivatives of both sides, we obtain

&0°[07),
aJ(x)) - - AJ(x,)

D e (x,) €19
=Gy ! M(xf';) ¢e,5?¢(f e (14.62)

On the other hand, we have seen in Section 10.4 that

80%07),

W) A Lo~ O Bepx1) - Bog(,)0) (14.63)

J=0
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Therefore

D . iS[]
O gl - inlelO) = L M()}lz)) ¢e,.sﬁ(]x")e (14.64)

According to the linked-cluster theorem (10.45), iW[J] = In (0*/07), is the generat-
ing functional of connected correlation functions. We now have the representation

W] = In f Debe'SI#-Ud _ 1 J’ DepeiSi9) (14.65)

The last term is irrelevant, since it is independent of J(x).

14.6 STATISTICAL MECHANICS

As (14.64) shows, there is a similarity between a vacuum correlation function in
path-integral form and an ensemble average in statistical mechanics. In fact, in Eu-
clidean space—time the generating functional (14.65) is just the logarithm of the par-
tition function in the presence of an external field:

21} = | Do ey (14.66)
where S[¢] is the Euclidean action (14.47), with subscript “E” suppressed, and

()= [ dix J)dx)

is an integral over Buclidean space. In statistical mechanics, we would make the
identification

S[¢] = BE[¢] (14.67)

where E[¢)] is the energy functional of a classical field ¢(x) and B is the inverse
temperature. The thermodynamic free-energy density is proportional to the generat-
ing functional:

1 InzZJ]

1U1= - fim

(14.68)

where () is the volume of the d-dimensional space. Like the generating functional,
it is determined only up to an additive constant.

We see that (14.66) gives on one hand the generating functional for a quantum
field theory in d space—time dimensions, and on the other hand the partition func-
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tion for a classical field in d spatial dimensions. This is a special case of an equiva-
lence between quantum field theory and quantum statistical mechanics, based on a
correspondence between imaginary time and inverse temperature:

e itH — Pt
translation operator density matrix (14.69)

On the left, the Hamiltonian H appears as the generator of the Lie group of time
translations. On the right, the same operator appears in the Boltzmann weight in a
statistical ensemble. The deeper reason for this correspondence remains one of the
great mysteries in physics.

For practical use of the correspondence, consider a quantum field at absolute
temperature B!, in d — | spatial dimensions. Denote the field by ¢(x, 7), where
(x, 7) denotes Euclidean space—time coordinates. We use field eigenstates |¢) as a
basis to calculate the partition function (with no external field):

Z=Tre® = [ Dylyje sy (14.70)

where 1J(x) denotes a time-independent field. The matrix element in the integrand
above is a transition amplitude with the same initial and final states. We can write it
as a path integral in Euclidean time:

B
W9) = [y ae D exp{ fo dr f( A, r))] (14.71)

#(x,0)=y«(x)

where #H($(x, 7)) is the Hamiltonian density and ) is the volume of the (d - 1)-di-
mensional spatial box. To obtain the partition function, we integrate over the initial
field y«(x). This removes the restrictions to particular initial and final fields, but the
initial field is still constraint to be equal to the final field. Thus

B
z-| D¢ exp{ f dr [ d e, T))} (14.72)
d(x,B)=d(x,0) Q (9}

In the limit 3 — o, we recognize this as the generating functional of a Euclidean
quantum field theory (at absolute zero) in a flat box of thickness 8, with periodic
boundary conditions required along the short edge. Along the long edges, which
eventually tend to infinite length, we normally impose periodic boundary condi-
tions anyway. The box is depicted in Fig. 14.2. In the limit of infinite temperatures
(B — 0) the volume flattens to a box in d — 1 dimensions, and we recover the classi-
cal system mentioned earlier. In the limit of absolute zero (8 — ®) we have a quan-
tum field theory in 4 Euclidean dimensions.

In statistical mechanics, there is the Ginsburg-Landau theory, in which the par-
tition function has the form
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-7 dimernsional /ace

Figure 14.2 A flat box in d dimensions, of thickness 3, contains a quantum field with periodic bound-
ary conditions. The partition function in path-integral form describes either a system of space-time di-
mension (d — 1) x B at absolute zero, or a system of spatial dimension (4 ~ 1) at temperature 8 ..

7= J’D,ﬁe—ﬂEldﬂ (14.73)

where ¢(x) is a classical field enclosed in a d-dimensional volume. One imagines
that this was obtained by summing over all variables in a microscopic partition sum,
while keeping a certain “order parameter” ¢(x) fixed. This order parameter charac-
terizes phase transitions. It vanishes at the critical point of a second-order phase
transition, and in the neighborhood of such a point one can expand the energy func-
tional in powers of the order parameter:

E[¢]= fd"x[—?(&d))z + §¢+ upt+ - - ] (14.74)

where the parameter o, r, u, - - - are phenomenological quantities that may depend
on the temperature. The functional E[¢] is called the “Ginsburg-Landau free ener-
gy.” In this fashion, the theory gives a macroscopic description of phase transitions,
yielding phase diagrams and critical exponents. We see that the Ginsburg-Landau
theory also gives a quantum field theory. The significance of the critical point will
be discuss in more detail in Chapter 16.

14.7 GAUSSIAN INTEGRALS

When it comes to actually performing path integrations, there is only one path inte-
gral we can do, and that is the Gaussian integral. It is based on the elementary for-

mula
| du e = /—15 (14.75)

which can be generalized to
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(14.76)

= 2K
f du 12 VK2t — €
<

L\ 27 VK

Now consider a product of » such integrals, and regard the integration variables

u,, - - u, as components of a vector. Then we can write
f H2) (1, K J e(l/z)(J‘Ki v
Dy et ky-Uu) = —— o 14.77
e VdetK (14.77)
where K is a real symmetric matrix, and J a vector with real components:
(u, Ku) = ZB UK ogitp
Guy=> Joiy (14.78)
The measure Du is defined by
* du, “ du
Du=| o 14.79
f "l V2w o V217 ( )
Consider now an average with respect to a Gaussian weight:
D —(1/2)(u, Ku)
(fy = SPue T ) (14.80)
IDU e (1/2)(u, Ku)

If f can be expanded in powers of its arguments, all we need is the average of a prod-
uct of the u values. To calculate the latter, introduce an “external field” J, and con-

sider

f Du 34(1/2)(11.1(14)"(-/.14)”&1 U
<ua| T Ug >JE
m J‘Du e—(l/Z)(u,KuF(J,u)

= fDLl e(l/Z)(u,Ku)*(J,u)[ J - 9 :|J’ Du e—(l/2)(u,l(u}—(./.u)
FTAT
J J

1 1
= (_l)me—(l/2)(.l,l( J)l/._.— “e ile(llz)(J.K‘ ")) (1481)
A, Al

The average is obtained by setting J, = 0. Then, we get a nonzero answer only if m
is even:

a

<ual”'uam>:?”' Py,

o] m

—1
(V2K

(14.82)

J=0
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On carrying out the differentiations, we get a sum of terms, but only those free of J
terms can survive. Thus, the final result will be the sum of all possible matrix ele-
ments 5(K™')g,, in which {8, v} is a distinct pairing of indices among the set
{a, ", a,,}. For a symmetric matrix K, we can omit the factor z in %(K“)By, and
count the pairs {8, v} and {7y, B} as the same. Defining a contraction between
Ugys Uy 8S

Ug\Ugy = (K_l)alaz (1483)
I—

we have, once again, Wick’s theorem for averages:

<uﬂl e uam> = (ualuazua3ua4 T .) + Tt

(sum of all possible pairings) (14.84)

To generalize the preceding calculations to functional integrals, we need to go
to the limit where the vector components u, become a field variable ¢(x), with the
discrete label « replaced by the continuous coordinate x. Correspondingly, the ma-
trix element K, 5 becomes a continuous function K{(x, y). We can use Dirac notation
by regarding ¢(x) as the coordinate representative of a vector in a Hilbert space, and
K{x, y) as the coordinate representative of an operator on that space. The basis vec-
tors |x) satisfy

[ diaiey (=1 (14.85)
We write
H(x) = (x|)
K(x, y) = (x|Kly) (14.86)
and

U &) = (18) = [ dx 0)gx)
(6, Kn) = ($lKIn) = [ dx dy (0K (x, y)m(y) (14.87)

The Gaussian functional integral is
-1
e2UK" D)

f D e (2USKSI+(U) = VT (14.88)

where the measure D¢ is defined only up to a multiplicative constant. The determi-
nant det K can be calculated through the relation
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Indet K=Trln K (14.89)

which is easily proved for a finite matrix by going the representation in which X is
diagonal.
As an example, consider the kinetic operator of a free field in Euclidean space

K=—&+m (14.90)

where & = 29,_ 6% dx?. The matrix element is given by

d
(yKIx)y = 84y - x)[—Z] g— + sz (14.91)

~b

We introduce momentum basis |£) through

(xlky = e*> (14.92)
with
dtk
| S k=1 (14.93)

The matrix is diagonal in the momentum representation:

A 4 ,
<p‘K‘k> = fddy ddxﬁd(y -X) e—zP'y[_; gc? + mZ:lexk«x

= QmEUp — KK + m?) (14.94)
Thus
(pIK~'ky = )8 (p - k)m
= [ o S =ty (1495)
The determinant is given through
IndetK=TrInK= j (jjrk)d In(&? + m?) (14.96)

This is divergent, and requires an upper cutoft.
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14.8 PERTURBATION THEORY

Consider a scalar field ¢(x) in d-dimensional Euclidean space-time, with Euclid-
ean action

Sl = Sol#] + S\[ 4] (14.97)

which consists of a free and an interaction term:

Sol#] = = J’ A% I Plx) - Blx) + m> $*(x)] (14.98)

$1[e) = [ aest, (o) (14.99)
We can rewrite, in a matrix notation,

Sold] = (¢, Ko) (14.100)

where K = - + m?. In the Fourier representation

&k

é) = [ Gy ) (14.101)
we have
[P v
(4K = | T+ m) ) B(p) (14.102)
The partition function is!
2] = fgqs - (UMSIE-(mP) (14.103)

The generating functional for connected correlation functions is
WIJ] = ~# In Z[J] (14.104)
The unperturbed system is described by the free partition function

'We temporarily restore A for scaling purposes, and as a convenient device to show the classical
limit.
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Z‘O’[J] = fDd, e~ (1K)~ (RS, &) (14.105)

Using (14.77), we obtain
ZOJ] = A [det(FAE)] 2 AEV2H (14.106)

where A is a normalization constant and Ag, is the Euclidean propagator:

ddp eip-x
(2 7.’.)4 P2 + m?

Ap()=K'(x) = (14.107)

The correlation functions in the unperturbed system can be calculated using Wick’s
theorem:

(P(x,) - - - Px,))e = sum of all possible pairings (14.108)

where the average ( ), is taken with respect to Sy[¢], and “pairing” means a group-
ing of all members of the set {d(x)), - - -, ¢d(x,)} into distinct pairs, with each pair
contributing a factor

P()P() = Aplx - y) (14.109)
[ I—

We now outline different methods to get a perturbation expansion for the parti-
tion function. The most straightforward is an expansion in powers of S,[¢]:

- _ e NIl
Z[J] ‘_‘J.D‘i)e (I/MSple] (lmu,@nzé ln!] }

== _1 n
:fDq(, e—(l/h)So[dﬂ‘(l/h)(J.(b)Z (__;;),J‘ddxl .. 'ddx,, Hxy) - - H(x,)

n=0 nln"

= Z(O)[O]Z Eq—'lh_);fddxl S dh (e YR () - - H (X))o (14.110)
n=0 7t

The quantity inside the average ( ), can be expanded as an infinite series in ¢(x),
and the average calculated using Wick’s theorem. This gives an expansion in terms
of Feynman graphs for Z[{J], and we get a sum of connected graphs when we calcu-
late In Z[.J]. The constant Z[0] then becomes an irrelevant additive constant.

An alternative method is to use the “cumulant expansion.” In its generic form,
this gives an expansion of In (¢*) in terms of the moments (x"), and works for any
definition of the average (). It is straightforward to write down the expansion:
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")

In{e)=In Z

n=0
= (4 ) P+ ) -3 0+ G+ (4L

To apply this to the partition function, we write
ZIJ] = Z(O)[Q]<e~(1/msl[d’Hl/ﬁ)(J.dz))O (14.112)
Thus
In Z[J] = In ZO[0] + (4) + +[(4%e— (4D +- - - (14.113)
where 4 = ~(1/B){S,[¢d] + (J ¢)}. This will generate connected Feynman graphs for

correlation functions.
Another method is to regard the interaction Hamiltonian as a function of ¢(x),

and write
Hi(x) = V(d(x)) (14.114)

even though it may depend on d¢(x). The partition function may be expanded in
powers of S\[¢], and further developed as follows:

o _1 n
[ = f D¢ e—(l/ﬁ)Soifb]%l/h)(J,qb)’;)(n_!’;)’T f dx, -+ ddn,H(xy) - Ho(x,)

f D¢e—(l/h)80[¢JZ 'h
n n

8 S g
x fd"xl - 'ddx,,[V(—h 7D ) e V(—h o) ﬂe“"w” (14.115)

or

2l = [exp — f d% V(.hmﬂzw)m (14.116)

This is an alternative starting point for the Feynman graph expansion.?

2For an explicit example, see Huang [2].
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149 THE LOOP EXPANSION

Connected Feynman graphs can be classified according to the number of closed
loops in the graph. For any connected Feynman graph, let

n = number of vertices
I = number of internal lines

E = number of external lines (14.117)

Each internal line carries an internal momentum that is integrated over. Not all the
internal momenta are independent, on account of momentum conservation, but each
closed loop can be associated with a loop momentum, and thus the number of loops
is equal to the number of independent internal momenta. To find this number, we
note that each vertex imposes one condition of momentum conservation, and there
is one condition of overall momentum conservation. Thus, the number of indepen-
dent internal momentum is

=1-n+1 (14.118)

which is equal to the number of loops.

Now consider the power of # multiplying a Feynman graph. We can find this
number by examination of (14.116). Each vertex comes with a factor #~!, since it
comes from a factor #~'V. Each internal line results from an application of #5/&/
twice to Zy[J] = C exp[(J; AgJ)/2#] to bring down a factor #~'Ag. Thus it comes with
a factor #. Thus, when external lines are ignored, a connected graph is proportional
to

Bt =5 (14.119)

where a term +1 is added to the exponent because the generating functional is # In
Z. In the classical limit # — 0, we have only tree graphs—graphs with no closed
loops. The first quantum correction is given by one-loop graphs, and so forth.

As i — 0, we can calculate the partition function

211 :JD¢ e IMSIEU ) (14.120)

through a saddle-point expansion. Suppose that the exponent in the integrand has an
extremum at ¢ = ¢y

5[]

500 |ssy )

d=do




284 Path Integrals

&S1¢]

——- = 14.121
5695 s 00 (4120

o=do

This is a saddle point, on the assumption that S[¢] is analytic, and therefore cannot
have an absolute maximum or minimum. To carry this out, it is convenient to rede-
fine the variable of integration as ¢ + ¢, and write

8
Sl ] = St + [ o] 5o |
=0

8ep(x)

= ddxddy¢(x)¢<y)[—5@ﬂ—] +
2 $=0

Sp(x)d¢p(x)
= S[p] -4 P) + %(d’, Q@)+ (14.122)
Then
2L - f Dép VSIS + dol+id b))
= - (UM{Sidp) + “»‘?’0”fD¢ S IDBOB - (14.123)
with
[ Do ermrscn = det‘m% (14.124)

Thus we have an expansion in powers of %, and therefore in the number of loops:
1 l
InZ[J] = ~;{S[d>0] + (L do)} - Eln det Q@ + O(#%) (14.125)

where we have dropped a J-independent constant. It should be noted that ¢, and O
are functionals of J. In this expansion, the first term comes from tree graphs, the
second term originates from a one-loop graph, and the O(#) term represents two or
more loop contributions. Applications of this formula can be found in Section 15.7.

14.10 BOSON AND FERMION LOOPS

We have seen in Chapter 11, in particular (11.62), that a closed fermion loop carries
an extra minus sign, because fermion operators anticommute. The point is that a
closed fermion loop is the result of a contraction of the form
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1
Wiy, (14.26)
| S|

To write this as a product of two fermion propagators, we reverse the order of ¢4,
thus getting a minus sign. Fermions are set apart from bosons just by a minus sign.
In the wave function of a many-particle system, the minus sign occurs in the signa-
ture of a permutation of twa particles. In Feynman graphs, the minus sign occurs in

closed loops.
To illustrate this difference, let us compare free boson and fermion theories,

coupled to external field in such a manner that all Feynman graphs are one-loop
graphs. Consider the classical Lagrangian density

LX) = >l — mEg s+ W (14.127)

where W(x) is an external field coupled to a pair of fields. Decomposing the field
into real and imaginary parts

1
Y= ‘\/“—2(1111 +ifn)

1
= ;\73(% — i) (14.128)
we can write
L) = F[H I, + (W —mP3] + 3 [#nd, iy + (W —-mP)P3]  (14.129)

The Euclidean action is given by
STy, g, WY= (1, (K= W) + (g, (K= Whi) (14.130)

where K = ~& + m?. To quantize s as a boson field, we write the path-integral rep-
resentation for the generating functional:

Zoosonl W1 :J'Dll,l Difs, e 1 K=-Wu)-(a.(K-W))

= fDd,* Dll,e*(tlf“,(/(—W)dl)

i

N (14.131)

The connected Feynman graphs are generated by
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In Zboson[W] =-In det(K - W) =-Tr ln(K — W)

= 1
= > —Tr(K"'W)y" + constant (14.132)
n=1 h

The traces can be calculated in the coordinate representation:
Tr(K W) = [ dte (K W) = [ e A(0) )

T W = [ dty (IR Y) OIK W) = [’y et~ )OIy )W)

TI'(K_1 wy = f ddxl T ddxn Ay = x) W(x)Ag(x; — x3)W(x3) -+ Ap(x, —x1)W(x))

(14.133)

These give the Feynman graphs shown in Fig. 14.3. The factor 1/n in (14.132) cor-

responds to the symmetry number n. If the field y is a fermion field, each loop will
give a factor -1, and thus the generating functional becomes

=1
In Ziermionl 1=~ ;Tr(K“ WY + constant (14.134)
n=1

This result would follow if we can redefine the functional integral to give

Zfermion[VV.] = det(K_ VV) (14135)

How to do this is discussed in the next section.

Figure 14.3 One-loop graphs generated by In det K in a boson theory. For the corresponding fermion
theory, each graph is replaced by its negative, and thus det K is replaced by (det K)~'.
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14.11 GRASSMANN VARIABLES

We may regard a general Gaussian integral as a way to represent the reciprocal of a
determinant. The question is how to represent a determinant instead of its recipro-
cal. Let us go back to an elementary Gaussian integral. We want to define variables
n* and 7, and a sense of integration, such that we can write

fdn*dn e = 4 (14.136)

Clearly this is impossible if * and # are ordinary numbers; but it is possible if they
are Grassmann variables, which are anticommuting objects defined in the following
fashion.

Consider first two Grassmann variables 77, and 7,, defined by the relations

ni=n3=0
{0, m}p=0 (14.137)

This is different from fermion creation and annihilation operators because the anti-
commutator is always zero. The most general function of two Grassmann variables
must be linear in each:

S, m)=Co+ Cymy + Comy + Gy (14.138)

where C, is a complex number. We now define integration to mean
[an=0  [an,=0
fdmm=1 fdnznfl (14.139)

We also define dn, and dn, such that they anticommute with each other, and with
1, and 1,. Thus

[ dnym =, an, =0 (14.140)
It follows that

[ sn =) = [ @n+ anpypcm = [ anfi (14.141)

Integrating f(,, 1,) by these rules, we have
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[anfin. my=ci+com,
fdnzf dn, fim, m)=Cs (14.142)
The exponential function reduces to a bilinear form:

etmm =1+ A7,

Therefore
fdnzfdn,e"m”Z:A (14.143)

To get (14.136), we must therefore take 1 and #* to be two independent Grassmann

variables.
We can now write a representation for a determinant. Consider a set of Grass-

mann variables {7}, such that

m2=0

{771" le} =0

Jdni=0
fd'n,-'r],:I (14.144)

Suppose there are an even number 2N of variables. We divide them into two sets, la-
beling one set {7, }and the other {n*}. The asterisk here serves merely as a distin-
guishing label, and does not denote conjugation of any sort. We form the quadratic
form

X= ntA gmp =(n*An) (14.145)
op

where 4,4 is a real symmetric matrix. Through a linear transformation, we can diag-
onalize A4, and obtain

N
X=> A.n¥n, (14.146)
a=]

where 4, are the eigenvalues. Any power of X higher than X" must vanish, because
at least one of the Grassmann variables must appear twice. Therefore
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1 1

Ko L+ X+ =X h XV (14.147)
2 N!

When we integrate over all the Grassmann variables, only the [ast term survives, be-
cause all other terms must have at least one integral of the form [dm, which vanish-
es. Thus

]
f Dy*Dyet = — f DD XV (14.148)

where D7 = [1,d7,. The sign of this quantity depends on the order of the factors.
Now consider

XV=Amfn + -+ Amdny) - Anin + o Aumdny) (14.149)

where there are N factors. In the expansion of this quantity, no n may appear twice
in a one term. Therefore a typical term in the expansion is obtained by choosing one
term from each factor, which gives || 4,m%7,. The total number of terms in the ex-
pansion is the number of ways to choose one term from each factor, or N! Thus

N
XN=N![I,Aan:na (14.150)
Integrating over the Grassmann variables, we obtain
fDn*Dne"?*"")=idetA (14.151)

where the sign + depends on the ordering of variables in Dn*D%. We have thus rep-
resented a determinant as a integral of Gaussian form. A more general form is

f Dn*Dnel T AN @ men*) = 4 ob*47'b der 4 (14.152)

where {b,} and {4} }are sets of Grassmann variables.
The fermion analog of (14.131) is therefore

Ztermion W1 = ’[‘Dl,b* D([/e*('/‘*(K‘WNI)
=det(K - W) (14.153)

where {{(x)} and {y*(x)} are Grassmann fields.



290

Path Integrals

PROBLEMS

14.1

14.2

14.3

14.4

14.5

Show that a correlation function in terms of path integration is automatically time-or-
dered;

" Tlgt)aelg’ . 0= [ (Dq)q(tl)qm)exp[ [ L(qm,q(t»}
q(t')=q" !
qu)=q""

Calculate the transition amplitude (x,, ,|x,, ¢,) for a nonrelativistic free particle, using
the path-integral method.

Let the partition function be Z[J] = [ D¢ e SIe1-id),

(a) Illustrate the fact that Z[J] generates correlation functions, by showing

18
2] &) &/(y)

(b) Ilustrate the fact that In Z[J] generates connected correlation functions, by show-
ing

T2V = () y))

5
0 5 A = (A () ()

Consider a free scalar field whose Euclidean action is represented in the form Sy[¢] =
(¢, Kd), where K is the operator K = —% + m?.

(a) Calculate the partition function, and from it obtain the correlation function
{(x)d(y)). Show that it is given by

etk x=y)

@b = [ 2K T

(b) Continue the resuit to Minkowski space-time and verify that it is the Feynman
propagator iAg(x).

Consider the correlation function in Problem 14.4 for m = 0.

(a) Show through a scaling argument that

(XY y)) o x>

(b) Show ford =3

1
(Hx)p(0)) = o

(¢) Show ford =2

al

(GH0) = 5= In 2

where g is an arbitrary constant.
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14.6 For a set of variables u (a = I, - - -, n), Wick’s theorem says that (u,)[1 e “a,,,> is the

14.7

sum of ail possible pairings. The theorem is correct, even when some of the factors are
equal. To illustrate this, consider the case when they are all equal:

J'O_Gmdu e—)\uZuZn

2y = 277 T
<u > J‘j»du e—-/\u2

{a) By direct computation, show
W)=
2

) = 3wy
() = 15?)

(w7 = C

where C, = (2n — DV/[2"'(n - D].

(b) Calculate the same using Wick’s theorem. First, (¢%) defines the contraction. To
calculate (4), note that there are three ways to form pairs among wuuu, and each
gives (#?)2. Similarly, there are 15 ways to form pairs among wuuuuu, with each
giving (u%)>. Show that C,, is the number of way to form pairs among »?".

To illustrate how a simple field theory emerges as an approximation to a more compli-
cated system, consider a two-dimensional flexible membrane in thermal equilibrium
with its environment. We describe the thermal fluctuations in terms of the local height
&(x, y) of the membrane over some reference x—y plane. Ignoring the possibility that
the membrane might fold over itself, we take @(x, y) to be single-valued, and take the
energy to be proportional to the area of the membrane:

El$)= o [ ax Vg

where ¢ is the surface tension, and, with r = {x, y, ¢(x, )},

For small ¢ we find
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Therefore,
B ~ o [ dx VT [V @e P = C+ 2 [ dx iV i,

where C is a constant, and the terms left out are higher-order terms in ¢ and its deriva-
tives.
Grassmann Variables The Anderson localization problem is the study of the fol-
lowing single-particle Hamiltonian:

2

4
H=-——+Wr)
2m
where V{r) is a random potential. It is useful to define the Green function

Pa(Pu(r)

G2 = 2 Tp g i

where
He(x) = E d,(x)

that is, ¢, and E, are respectively the exact eigenstate and energy of the random
Hamiltonian. To make analytic progress, it is necessary to perform averaging over the
random potential, denoted by ( );,, of G. and G.G_. To illustrate the difficulty of the
problem and the technique developed to solve it, let us consider (G )i,

(a) Derive the following functional integral representation of G,:

[ DYDY g Ye B VONE-Heimity)

G.(r, r’) f Dd’D'ﬁ* e~ifdy YN E-Hxin)ily)

where i is a complex scalar field.

(b) It is difficult to compute (G,);, because of the denominator. Show that the de-
nominator is det{—i(E — H + in)"'} and use the fermion representation to show
that

G.(r. ') = | DUDY* Dy Dy* W (Pt e
where y is a Grassmann field and
L= if dy(WrONE ~ Hx impity) + P O)E - H * imx»)}
(¢) Assume that F{(r) is a Gaussian random variable obeying

<V>im =0
W i = u(r —1')

Using the fact that
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()i = exp[— 3 {dDim]
if 4 is a Gaussian random variable whose mean is 0, show that
(Gult; r'Vim = | DUDY* Dy D et

where
L= i dy[xlf*(y)(E - %)um e |E- %)x(y)}

+ %f dx Ayl COW*(y)ulx = I + x*)x*(»ulx = »)x(y)xtx)

+ XY PIU(x = IR Y)x0) + X ux = )X X))

This Langrangian now describes an interacting fermion--boson system. The random

variables have been removed and standard field theory methods can be applied. A
similar procedure can be used to compute the more useful quantity (G*G )y,
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CHAPTER FIFTEEN

Broken Symmetry

15.1 WHY BROKEN SYMMETRY

When the Hamiltonian of a system is invariant under a symmetry operation, but the
ground state is not, we say that the symmetry is “spontaneously broken.” By apply-
ing the symmetry operation to the ground state, we transformed it to a different but
equivalent ground state. Thus the ground state is degenerate, and in the case of a
continuous symmetry, infinitely degenerate. The actual ground state of the system,
of course, can only be one of these degenerate states.

Let the degenerate ground states be denoted |@). In the case of broken continu-
ous symmetry, « is a continuous label, and we can construct a state |a(x)) that coin-
cides with different ground states at different points in space in a continuous man-
ner. This state is orthogonal to the true ground state, and, in the limit of infinitely
slow variation of a(x), a state of vanishing excitation energy. This is an intuitive pic-
ture of the Goldstone mode, an excitation whose energy vanishes in the limit of zero
momentum. In a relativistic system with no long-range interactions, one can prove
that such a mode corresponds to a zero-mass particle called the Goldstone boson
(see Problem 15.4). In a ferromagnet, the Goldstone mode corresponds to spin
waves, as we shall show later.

Broken symmetry is ubiquitous in nature. For example, a solid has rigidity be-
cause the atoms occupy fixed positions, breaking translational invariance. When
you kick a stone, no doubt remains in your mind about this quality'—as forcefully
demonstrated by Dr. Johnson in his famous retort to Bishop Berkeley.? In the break-
ing of translational invariance, the Goldstone mode corresponds to acoustic

'We paraphrase Anderson [1].
2From James Boswell s Life of Johnson [2]:

After we came out of the Church we stood talking for some time together of Bishop Berke-
ley’s ingenious sophistry to prove the nonexistence of matter, and that every thing in the Uni-
verse is merely tdeal. I observed that though we are satisfied his doctrine is not true it is im-
possible to refute it. I never shall forget the alacrity with which Johnson answered, striking
his foot with mighty force against a large stone till he rebounded from it “I refute it thus.”

294
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phonons. Less obvious is the breaking of gauge symmetry, manifested in Bose—Ein-
stein condensation. This appears to be the most prevalent form of symmetry break-
ing in nature, exhibited in such diverse phenomena as superfluidity, superconductiv-
ity, mass for elementary particles, and the inflation of the early universe. Modern
pioneers in this subject include Anderson, Nambu and Jona-Lasinio, and Goldstone
(31.

It may seem puzzling that broken symmetry can occur at all. Consider a ferro-
magnet, where rotational symmetry is allegedly broken, through the fact that all the
atomic spins point along the same direction. However, rotational invariance implies
that all directions of the total spin are equally probable, and its average over a statis-
tical ensemble should therefore be zero. This puzzle is usually resolved by consider-
ing the spin density S(B, () in a system of volume (), in the presence of a small ex-
ternal magnetic field B. The point is that the limits {3 — o and B — 0 do not
commute. That the ensemble average yields zero is the statement

lim_lim S(8,0)=0 (15.1)

whereas spontaneous magnetization means

lim lim S(8, Q) # 0 (15.2)

Although mathematically useful, this formulation masks the physics.

The physical reason for symmetry breaking is that, during its dynamical evolu-
tion, the system gets stuck for a long time in a certain pocket of states. In a ferro-
magnet, neighboring atoms prefer to have parallel spins, and if thermal agitation is
reduced, all the spins would line up. The total spin can still freely rotate in space, but
the rotation is very slow, because it requires the cooperative effort of a large number
of atoms. When the number of atoms becomes macroscopically large, the total spin
is forever stuck in a definite direction. What causes spontaneous symmetry break-
ing, then, is a breakdown of ergodicity.

A generic example of spontaneous symmetry breaking is the real ¢* theory,
with energy functional

1
18] = [ ] 5 00F + o)

A
() = —;—¢2(x) A (15.3)

The potential V{¢) is shown in Fig. 15.1. There is only one minimum at ¢ = 0 if
7> 0, but there are two minima at ¢ = £V —/) if » < 0. From the point of view of
statistical mechanics, the two minima ¢ = £V/-#/\ are equally probable, and there-
fore the ensemble average of ¢ must be zero. The time average of ¢, however, is not
necessarily the same as the ensemble average. In the case » < 0, the system can go
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V(9) V(9)

r>0 r<0

Figure 15,1 The potential has two minima. When the field ¢(x) assumes the value at one of the mini-
ma at all x, it takes a long time before one sees a global transition to the other minimum, because fields at
different x have to flip simultaneously. This is the underlying cause of spontaneous symmetry breaking.

back and forth between the two minima, but the transition takes a long time, be-
cause it requires a simultaneous transition at all x. On the basis of simple models in
statistical mechanics, one can estimate this time to be of order €, where {1 is the to-
tal volume. Thus, ergodicity fails when () — o,

The failure of ergodicity can be demonstrated through a Monte Carlo simula-
tion of the ¢* model on a four-dimensional (4D) Euclidean lattice {4]. As the field
configuration evolves in time by successive Monte Carlo updates, we record the in-
stantaneous field (), averaged over all lattice sites. This is shown in Fig. 15.2 for
different values of r, with A = 1000, for a lattice with 10* sites. We can see that there
is a phase transition at a critical value », = -165. For r > r,, the average field makes
small fluctuations about zero. As we approach r., the fluctuations become more pro-
nounced, with (¢) making flip-flops between periods of positive and negative val-
ues. The time between flip-flops increases as r — ., and when r < r, it becomes un-
observably long, presumably of order ¢'"*. The average field now makes small
fluctuations about a nonzero value.

15.2 FERROMAGNETISM

Consider a nonrelativistic gas of magnetic atoms with spin 3, described by the
Hamiltonian

2
2 S U, -r)ora, (15.4)

2m

=

H=

7

where o; is the 2x2 Pauli spin matrix of the ith atom. For simplicity we choose
V(r;—r1;) = =J&(r;—r)), with J > 0. We thus specialize to short-ranged forces. Going
over to a field representation, we take

He [ 5 S oy | (155)
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Figure 15.2 Time evolution of the spatial average of the instantaneous field in ¢* theory, in a Monte
Carlo simulation, for different values of the squared mass r = m?. A symmetry-breaking phase transition
occurs at » =—165. [After K. Huang, E. Manousakis, and J. Polonyi, Phys. Rev. 35, 3187 (1987).]

dropping an irrelevant constant term. The use of a § —function potential makes the
ground-state energy divergent. Although this is easy to fix (see Huang [5]), we shall
not be concerned with it here. The field operator satisfies fermion anticommutation
relations

(%), YY)} = 8,p8*(x ~y) (15.6)

where «,8 are spin indices. We enclose the system in a box of volume (), which
eventually tends to infinity. The total number of particles N = [d®x ¢ s also tends to
infinity such that » = N/€) is finite.

We use the mean-field approximation, through the replacement oy —
(o), where ( ) denotes ground-state expectation. The mean-field Hamiltonian is

s = [ @ 5 Ty oy o | (157)
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where the factor of 3 in front of J has gone away, because there are two possible
ways of making the replacement. Taking the direction of (/' o) to be the z axis as,
we write (¢ ap) = 7.5, where

S= (o4 (15.8)

Thus
2
Hyp = fa”x (//T[——v— —JSa'ng[/ (15.9)
2m

The rotational symmetry of the system is spontaneously broken if S # 0.

The mean-field Hamiltonian describes two free Fermi gases, with up spin and
down spin, respectively, for which the single-particle energies are £+ = (p?/2m) =+
JS. In the ground state, the two gases must have the same Fermi energy Eg, for oth-
erwise we can lower the total energy by transferring particles from one gas to the
other. This is illustrated in Fig. 15.3. Denoting the number of particles in the two
gases by N., and the total volume of the system by (), we have the conditions

NN
Q n

NN _
Q
2 2

5—;—JS=§—’;’+JSEEF (15.10)

Figure 15.3 Energy-momentum relation for spin-up and spin-down fermions,
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where n = N/} is the total density. The Fermi momenta of the two gases are defined
by

47 pl N,
—_— = — 15.11
3 2n°  Q (1s.10

in terms of which the conditions become

pi+pd=61n
pi-pi=6mS
pt-p?=4mJS (15.12)

These equations determine the three unknowns p,, p_, S. Adding and subtracting the
first two equations yield

p:=3m(n+ 83 (15.13)

Substituting this into the third equation gives the condition for S:

(n+ 8P —(n-85)= %”;5_ (15.14)
Let
S _ Yo
T <¢*¢l>p (12
Then the condition for 7 is
(14723 (1 =93 = Jbr (15.16)

where b = (97%)'4mn'"3. This may be solved graphically, as shown in Fig. 15.4. The
symmetric case r = 0 is always a solution. Two symmetry-breaking solutions r = £r
arise when J > J,, where

bl.=% (15.17)

As discussed in Section 15.1, choosing one of these roots leads to spontaneous
magnetization. From the form of the mean-field Hamiltonian, it is obvicus that a
symmetry-breaking solution has lower energy than the symmetric one.

The symmetry-breaking solution exists only if b > 0, which means #n > 0. Thus
it is possible in unbounded free space only in the limit N — oo,
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Figure 15.4 Graphical solution for the magnetization density. The horizontal axis is » = (o.). Sponta-
neous magnetization occurs when the slope of the straight line exceeds %, which happens when the
spin—spin interaction is sufficiently strong.

15.3 SPIN WAVES

Spin waves are the Goldstone modes arising from the breaking of rotational symme-
try. To demonstrate its existence, we perturb the system with a small external mag-
netic field 8B(x, 7) transverse to the spontaneous magnetization, and calculate the
linear response. The Hamiltonian becomes H + 8H(z), with

S8H(t) = —f d*x[yt (x)o(x)]-6B(x) (15.18)
where z-:8B = 0. The spin density can be represented in the form
S(x) = (P (X0 a(x)) = i lim Tr{oGx, y)) (15.19)

where x = (x, 1) and G is the propagator:
Goplx, ¥) = =T, ()" (1)) (15.20)

With the perturbing field, the propagator becomes G + 8G, and the linear response
in the spin density is given by

8S(x) = i lim Tr[@8G(x, y)] (15.21)
y—x

The mean-field Hamiltonian now becomes Hyr + 8Hy(2), with
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SHye(1) = — f dx Y (x)o [SB(x) + J 8S(x)]Ydx) (15.22)

where the first term contains the external perturbation and the second terms comes
from the induced magnetization. The propagator can be represented by the Feynman
graphs

SHwr
. s (15.23)

G+ 6G =
which gives
8G(x, y) = if d%' Gx - xNa [8B(x') +J 8S(:"NGUx' —y)  (15.24)

where G2(x) is the unperturbed propagator. (See Problem 9.5.) Substituting this
into (15.21), we obtain the equation

854x) = fd“x’ L (x —x")8B(x") + J 8S,(x")] (15.25)
where i =1, 2, and
I1;(x) = iTr[0,G%x)7;,G%(x)] (15.26)
By symmetry in the xy plane, we can put
I,(x) = §,11(x) (15.27)

where
I(x) = iTr[o, G(x)or, G°(x)] (15.28)
Introducing the Fourier transforms
8310 = | d'x ex85,x)
8B, = | d'x e*x8B,(x)
Tk = f d*x e T1(x) (15.29)

where k = (k, w), we can write
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83, (k) =TI(k)[8B (k) + J85 ()] (15.30)

where the subscript -L denotes a component in the x—yp plane. The spin waves are so-
lutions to the homogeneous equation

83, (k) = JTI(k)85 (%) (15.31)

There is always a trivial solution. A nontrivial solution will indicate the existence of
“excited states” in the field-free system. As we shall see below, it is easy to prove

I(0) = % (15.32)

which shows that there exist solutions at k = 0. However, these are states of constant
density, in both space and time, and thus correspond to other ground states. For this
reason, we might call this statement the “ground-state theorem.” To show the exis-
tence of spin waves, we must prove the “spin-wave theorem”

k) =5 17 (15.33)

This states that there exists a Goldstone mode, a non-uniform state that joins
smoothly onto some ground state in the long-wavelength limit. To establish this, all
we have to do is show that II(k) is regular at k = 0 (see Problem 15.1). An explicit
calculation of [1(k) yields more information:

~ 1
k) = - +/) (15.34)

The condition f(k) = O then determines a relation between |k| and w, the dispersion

law for spin waves.
To establish (15.32), turn on a spatially uniform external field B. By rotational

symmetry, the magnetization must have the form
B
S=—f(B) (15.35)
B
where B = |B|. Since we are dealing with a ferromagnet, f(0) # 0. The only nonvan-
ishing Fourier component of S is that with k=0, w=0:

B(0)

S0) = —5 S8 (15.36)

Now rotate B slightly by letting B — B + 6B, with B-6B = 0. To first order we have
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[(B) 5B,(0) (15.37)

85,(0)= 5

where the subscript — denotes components transverse to the original direction. We
can continue to use (15.30):

53,(0) =11(0)[8B (0) + J65 (0)] (15.38)
where ﬁ(O) now depends on B. This gives a second expression:

Ti(0)

o 5B,(0) (15.39)

85,(0)=

Comparing the two equations for 5~5,(0), we obtain

1-JI0) B
TE T = 15.40
11(0) 18 ( )
Thus, when B — 0, we have ﬁ(O) =1/ |

15.4 BREAKING GAUGE INVARIANCE

When Kamerlingh Onnes liquefied helium in 1908, and not long after observed
strange behavior in liquid helium [6], and discovered superconductivity [7] (after
trying unsuccessfully to fix what was thought to be a short circuit [8]), he observed
for the first time broken gauge symmetry.

Both the strange behavior called “superfinidity” in liquid helium, and the su-
perconductivity in certain metals, are manifestations of a Bose—Einstein conden-
sate, formed by a macroscopic number of bosons in a single quantum state. The
condensate wave function y(x) is a complex number with a definite phase, and the
existence of such a phase in the ground state breaks global gauge invariance—a
symmetry associated with particle conservation. The ground state of the system is
labeled by the phase, and hence infinitely degenerate. .

Consider a nonrelativistic boson system described by a field operator W(x),
which is denoted with a caret to distinguish it from the c-number ¢Ax). Let |V) be
the ground state with AN particles, where N eventually approaches infinity. The
macroscopic occupation of a single state is indicated by the fact that the amplitude
to annihilate a particle at any point x is of order N2

d(x) = (N - 1P x)IN) = O(N2) (15.41)

This amplitude defines the condensate wave function. Yang [9] calls this condition
“off-diagonal long-range order” (ODLRQ), and proved that it is possible only if
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\i'(x) is a boson field, or a product of an even number of fermion fields, but not for a
product of an odd number of fermion fields. The distinction between O(N) and O(1)
exists only in the limit N — o, and this underscores the fact that spontaneous sym-
metry breaking is a macroscopic phenomenon.

Let us describe the system using states in the grand canonical ensemble, which
are not eigenstates of particle number, but an average number N is determined by
the chemical potential. Then the condition for ODLRO, or Bose-Einstein condensa-
tion, can be stated in the form

w(x) = (F(x)) = O(N'"?) (15.42)

where ( ) denotes average with respect to the grand canonical ensemble. This condi-
tion was suggested much earlier by Penrose and Onsager [10], but we deviate from
historical order in the interest of pedagogy. The condensate density is defined by

ny = % [ axxueor (15.43)

where () is the volume of the system. This should remain finite in the thermody-
namic limit £} — o, N— oo, at fixed density N/{) = n.
To study the condensate in more detail, take the Hamiltonian to be

H= fd%c Lty 4 & iy (15.44)
2m 2

with
[W(x), THy)) = 8 (x - y) (15.45)

The particles interact through a é-function potential, which reproduces low-energy
scattering if

g=—= (15.46)

where a is the S-wave scattering Alength.3 Clearly H is invariant under the global
gauge transformation ¥(x) — e’*¥(x). The Heisenberg equation of motion reads

l A AL A A (9\1/\,
—— VW + gV = j— .
2m £ : ot (15.47)
Now put

3For derivation, see Huang [11].
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U(x, 1) = x, ) +d(x, 1) (15.48)

where J(x, 1) = (‘i’(x, £)) is a c-number function and
@, ) =0 (15.49)

The operator ®(x, f) annihilates a particle not in the condensate. Substituting
(15.48) into the equation of motion, and taking the grand canonical average, we
obtain

VR U b g2 (i) + )+ (b 2 (1550)

Assuming that almost all particles are in the condensate, we neglect the terms in
square brackets and obtain an equation for the condensate wave function:

! syp = 1
5 VR gy = (15.51)

This is called the Gross—Pitaeveskii equation [12]. The same equation occurs in op-
tics and plasma physics, where the custom is to call it the “nonlinear Schrodinger

equation [13].”
For a static solution, put

(X, 1) = p(x)e "<V (15.52)

so that

1
o Vip—€¢+ge*¢? =0 (15.53)
m

The spatially uniform solution is

p=e |2 (15.54)
g

where « is arbitrary. The normalization condition (15.43) requires |¢|? = n,, the con-
densate density. In this approximation n, = n, the total density. Thus, €, = gn. In
physical units

47#%na
€0 =

(15.55)

m

This gives the energy per particle in the condensate.
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There is an uncertainty relation between the phase # of a many-body wave
function and the number of particles (see Problem 15.2):

AGAN= L (15.56)

Thus an isolated system with a definite number of particles does not have a definite
phase. If two such systems come into contact, and can exchange particles, then the
relative phase becomes definite. Such a relative phase has been observed between
two Bose condensates of sodium atoms, by Ketterle and his team at MIT [14], 89
years after Kamerlingh Onnes created a condensate in the laboratory. The interfer-
ence fringes can be seen in the photograph in Fig. 15.5.

15.5 SUPERFLUIDITY

In quantum mechanics, the gradient of the phase of a wave function is a particle
current density. Here, since the wave function is macroscopically occupied, the cor-
responding current density is a hydrodynamic quantity that describes superfluidity,
the frictionless transport of particles. From the Gross—Pitaevskii equation, we have
the conservation law

g
V-j+—£=0 (15.57)

where

J= SV g V]
m

p=u*d (15.58)

Figure 15.5 Interference fringes between two Bose~Einstein condensates of Sodium atoms observed
by Ketterle and his MIT team. This shows the phase coherence of each condensate.. The fringe period is
15 wm, which is the de Broglie wavelength A/mu of the atoms, where » is the relative velocity of the two
condensates as they approach each other. [Photograph courtesy W. Ketterle.]
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In the ground state the entire system can be regarded as a superfluid at rest. When
boundaries conditions are changed slowly, the adiabatic theorem tell us that the
ground state changes slowly in response, and this leads to a frictionless superfluid
flow described by j and p. Friction will occur as soon as the system can be excited
from the ground state into a mode that lacks phase coherence. In the neighborhood
of the ground state, there is the Goldstone mode, which corresponds to long-wave-
length phonons [15], but they maintain the phase coherence. Vortex excitations, on
the other hand, do disrupt phase coherence, and destroy superfluidity.
To nvestigate vortices, let us put

H(x) = %OV p(x) (15.59)

Then the current can be expressed as
i =pvs (15.60)

where

ve=—V4 (15.61)
m

is the “superfluid velocity.” [In physical units, v, = (/m)V 6.] In order that ¢ be sin-
gle-valued, the phase angle 6 can change only by a multiple of 27 over a closed path
C in space. Therefore, the circulation of the superfluid velocity is quantized:

2
bedsv,= 22 (15.62)
m
where n =0, £1,. ... If n # 0, then C must encircle a line on which p = 0, for oth-

erwise we could shrink C to a point, at which the phase angle 6 becomes undefined.
This line of zeros is the core of a vortex with quantized vorticity, and can terminate
only on the boundary of the system, or terminate on itself by forming a closed

curve.
To describe a vortex with core along the z axis, let us use cylindrical coordi-

nates (r, ¢, z), and put

Wr, @)= | Efirene (15.63)
g
with the boundary conditions
JO) =1 f) =0 (15.64)

It is easily verified that this corresponds to a linear vortex with quantum number n.
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We can rewrite the Gross—Pitaevskii equation is dimensionless form by introducing

r
§= —
3
1
= 15.65
Vo (1363
where £ is the correlation length. Then fsatisfies
d? d
2 f+s—f+(s2—n2)f—s2f3=0 (15.66)

S;;E ds

which can be solved numerically [16], with the result for n = 1 shown in Fig. 15.6.
The asymptotic behaviors are given by

2

| X

f=~1- (s> 1)

2

N

where C is a constant. It is found that the energy is proportional to n2. Thus vortices
with [n| > 1 need not be considered, for they will break up into vortices with |n| = 1
to lower the energy. The linear vortex described has macroscopic energy, since it has
a linear core whose dimension is that of the box containing the system. Finite-ener-

fyl

0.5

rg

Figure 15.6 Vortex solution to Gross—Pitaevskii equation with one quantum of circulation. The corre-
lation tength is £=#/V2mu, where p is the chemical potential.
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gy solutions are vortex rings—those in which the vortex core forms a closed curve.
The solution above gives an approximate picture of the flow near the core.

The vortex core is devoid of superfluid, and filled with particles not in the con-
densate (the ones whose field operator is @), whose effects were neglected in the
Gross—~Pitaevskii equation. The core renders the space nonsimply connected, and
makes it possible to have §-dxv, # 0, even though v, is the gradient of a function.

As a simplified model, we assume that the density of the superfluid is constant,
except that it vanishes inside vortex cores, taken to be tubes of radius a, with energy
per unit length v. The system is then described by the energy functional

E[v,]= %‘i [axvav (15.68)

where L is the total length of vortex cores in the system. The integral [ &®x extends
over the space outside vortex cores only. The superfluid velocity v, is not irrotation-
al, and may be decomposed it into longitudinal and transverse parts:

ve=v, +vp
vp,=Vao
vi=V xA (15.69)

where V w describes irrotational flow, while V x A arises from vortices. Substitut-
ing this into (15.62) yields

§C.ds~\7 x A=21n (15.70)

(the mass is m = 1). Thus, A can be likened to the vector potential set up by steady
currents flowing along the vortex cores. The energy functional can now be written
as

Elv) = 2 [ @V P +19 x AP)+ si[A] (15.71)

At very low temperatures, vortices are suppressed because the cores cost energy.
The low-energy excitations are longitudinal phonons, corresponding to the Gold-
stone mode.

The superfluid density p; is a transport coefficient that describes the response
of the system to an imposed motion. It measures that part of the system that does
not respond to a shear force. This analysis is described in Appendix B, and we shall
just make use of the result here:

Bpd
D1

o= po— 228 [ P (vifxyvidO) (15.72)



310 Broken Symmetry

where D is the dimension of space, and 8 the inverse temperature. The thermal aver-

age indicated by () is weighted by the energy functional (15.71). This indicates that

the superfluid density differs from p, as a result of vortex activity represented by vr.
Putting D = 3, and using as integration variable w = v{./8p,, we have

Ps 1 TDww(x)-w(0)e-S]
e [ ax T Doy e (15.73)
where
Siw] = % f d3y wi(y) - Bul[w] (15.74)

where L{w] is the total length of vortex cores. The integration [ Dw extends over
the space of all possible vortex cores, which form arbitrary loops in space. This pos-
s an insurmountable problem.

In contrast, the vortex cores are pointlike in 2D, and the superfluid density can
be calculated exactly, for a dilute gas of vortices. As we will show in Chapter 18,
this gives a complete understanding of the phase transition associated with 2D su-
perfluidity.

15.6 GINSBURG-LANDAU THEORY

A generic model of gauge symmetry breaking is represented by the Ginsburg—Lan-
dau free energy

ST 071 = [ AL 9+ s+ a0 )] (15.75)

where y1(x) is a complex order parameter. This is also the Euclidean action of a com-
plex field. Writing

¢=¢—1+\/§_¥¢3 ¢*=¢—‘\/1%@ (15.76)
we have
Sy, ;] = f d%[3(9¢,)* + 3(3¢h,)* + V(P(x))] (15.77)
where

() = 3uR2 + u,R? (15.78)
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with R? = 3 & 2. There is global gauge invariance associated with a constant phase
change of s, or a rotation in ¢,—¢, space. This symmetry is spontaneously broken if
() # 0 in the infinite-volume limit.

I[n Fig. 15.7, the potential is plotted over the ¢,—¢, plane for 1, < 0. It has a
wine-bottle shape, which makes |i] > 0 in the ground state. In contrast to Fig. 15.1,
where the potential breaks a discrete symmetry, the potential minimum here gives a
continuous set of degenerate ground states.

The condition || > 0 is necessary but not sufficient for spontaneous breaking,
which requires (i) # 0. For the latter to be true, the fluctuations of the phase 6(x) of
the field have to be small. Let us put

x) ="V p(x)e'® (15.79)

and rewrite the action in the form
1 1
St, 6= [ ddx[gp(ve)z * g (TeP s V(p)] (15.80)

As a indication of the fluctuations of 8, consider {6(x)6(0)) for fixed p. This gives
the probable value of 6(x), when 6(0) is specified. The result can be obtained from
Problem 14.5:

kP (d=3)

ooy ={ 105 (15.81)

For d = 3, the fluctuations are bounded, and we expect {¢) # 0. For d = 2, they di-

verge at large x, indicating that the phase angle becomes random when taken modu-

lo 27r. Hence we expect (i) = 0. This case will be studied separately in Chapter 18.
The Ginsburg-Landau model can be used in different physical problems:

Figure 15.7 The “wine-bottle” potential makes |¢] > 0 in the ground state. But gauge symmetry is bro-
ken only if (¢ # 0, which means that, in addition, the fluctuations of the phase & must be small. This
condition is fulfilled for 4 = 3, but not ford = 2.
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® For d = 3, the model reduces to the Gross—Pitaevskii equation. We can ob-
tain the vortex model of superfluidity by choosing u, and u, in such a man-
ner as to trap the order parameter at a steep minimum. That is, we fix the
value at || = —u»/uy, with V' =0, V'’ > 1. Then we introduce the vortex core
as a cutoff, such that ¢ = 0 inside.

® For d =4 - €, we can model the A transition in liquid helium at temperature
T, by choosing u, = a(T — T,), where « is a constant and 7" is the absolute
temperature. The critical exponents can be calculated as a expansion in pow-
ers of €, and we extrapolate the results to € = 1. The reason we cannot do the
calculations directly in d = 3 is that there are infrared divergences.

® For d = 4, we have a quantum field theory with broken symmetry. This is
used in the standard model of particles, grand unified models, and the theo-
ry of the inflationary universe.

15.7 EFFECTIVE ACTION

We assume d = 3, with () # 0. The value of () is not exactly at the minimum of
the potential V(y), because of fluctuations. We use real components ¢, and define

e "Wl =Z[J]= fDd) e Sl (15.82)
Then, in the presence of external source J(x), the exact average field is given by

NulX) = (Du(x)) = % (15.83)

Now we ask, “Given 7(x), what is the corresponding source function J(x)?” To ad-
dress this question, we make the Legendre transformation

) =wlJI1-(U (15.84)

to use 71 as independent variable. The quantity I'[n] is called the effective action.
Taking the functional derivative of (15.84), we have

8l'n] _ WL &Um)
Ma(x)  omulx) X

- [, P W)
() 8ma(x)

V)
o o [a s | = 158

g0
[ @ B ]

- [ty nn 25



15.7 Effective Action 313

Thus

lfm) _
S e (15.86)

The average field (¢, can be obtained by setting J = 0:

ol'[n]

=0 15.87
M, (x) ( )

Na~{ba)

We can expand the effective action in terms of the average field n:
SRR d
Tinl=> [ db - dl o, omn) - n)  (1589)
n=0 "t

The function T'(x, . .., x,) is the sum of all one-particle irreducible Feynman
graphs.

Proof. Consider the generating functional of a fictitious field theory whose
action is I'[n):

e Ulidl= f D¢ e {Ieru)ya (15.89)

We put in the parameter a for mathematical purposes. As a — 0, the integral is
dominated by the saddle point of the exponent. The saddle-point condition is pre-
cisely (15.86), and thus

limaUlJ a]l =Tn} +(J m) (15.90)
By (15.84), this states
lingaU[J, al=Wwl[J] (15.91)

The right side is the sum of all connected Feynman graphs of the original field the-
ory. The left side is the classical limit of the generating functional of the fictitious
field theory, which is given by the sum of all connected tree graphs of that theory.
From (15.88), we see that the fictitious field theory is nonlocal, and the vertices in
the tree graphs are the “blobs” I',(x,, ..., x,). We can represent the connected
graphs in W[J] as tree graphs with “blobs” for vertices, where each blob is a sum of
all one-particle irreducible graphs with the appropriate number of external lines.
Therefore, I',(x, ..., x,) is the sum of all one-particle irreducible graphs of the
original field theory. [
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15.8 EFFECTIVE POTENTIAL

We choose a constant source function, so that the average field will be a constant
1(x) = ». The effective action per unit volume will be a function of », which we de-
fine as the effective potential:

Vo) = Q'] (15.92)

where {1 is the volume of the d—dimensional Euclidean space. The minimum of Vg
gives the exact average field.

We now calculate the effective action to one-loop order. According to the
method described in Section 14.9, we first make a saddle-point expansion of the
partition function (15.82). At the saddle point ¢(x) = ¢y(x), we have

8S[4]
SP(x) | p=00
8°S[¢]
8P x¥)0Ds(») |#=00

Expanding the action about the saddle point to second order, we have, in an abbrevi-
ated notation,

- a(x)

= QaB(xa ¥) (15.93)

S[p + ¢l = Sldyl - (S @) + 2 (b, Q) (15.94)

where Q is a functional of ¢,. Substituting this into (15.82) and performing the
Gaussian integration, we obtain the partition function to one-loop order:

W = S[dbo] + (. 6o) + & In detQ (15.95)

The one-loop effective action is given by

Il =W~ n)
= S[o] + (J; (o — M) + 3 In detQ (15.96)

We still have to express the saddle point ¢ in terms of the average field 5. Treating
¢y — 7 as a small quantity, we write

oS[]
8ho(X) |6=00

=S[n] - . (- M) (15.97)

Slbo] = ST + | A, () ~ M) —

where we have used (15.93). Therefore, to one-loop order,
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I'[n]=S[n] + >1n det O[n]

(15.98)

Now we use the explicit form of the action (18.14). With ¢,(x) = v, + {, (%),

where v is constant, and {(x) small, the action to second order in { is

ST) = [ dx[ 1307 + V) + V') + £ 2V 0]

— V) + [ V(@) + P+ VI (15.99)
The saddle-point properties (15.93) are
V'(v) =—
Qop(x, ¥) = 86— + V' (1)) &(x ~ y) (15.100)
Therefore
1 _1 - dU oy
JIndet 0= 2Tr1nQ—Qj S V] (15.101)
which gives?
_ dk 2 71
Vel = Vo) + [ G 0 V)] (15.102)
PROBLEMS

15.1 Spin-Wave Theorem Consider the problem of ferromagnetism in the mean-field ap-

proximation.

(a) By examining the equation for ﬁ(k), show that it is regular at & = 0, and therefore

itk =5 1(0).
(b) Verify I[i(0) = 1/J by direct calculation.

(c) Show that the dispersion law for spin waves is of the form w « |k|?.

15.2 Number-Phase Uncertainty Relation This problem addresses the question whether

a Hermitian operator for the phase exists. For a boson ficld, write

P(x) =V p(x)e!®

4This was first derived by Coleman and Weinberg [17] and Jackiw [18}. For an application of this

formula in the Weinberg-Salam model, see Huang [19].
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15.3

154

Broken Symmetry

(a)

(b)

(c)

()

(e

Suppose that Y«(x) is a classical field. Show that the following transformation pre-
serves the measure for functional integration:

Dp D6 =Dy Dyy* = D(Re $)D(Im )

This result suggest that p and 4 are canonically conjugate in quantum mechanics.

Quantize y(x) through the equal-time commutator [¥(x), ¥/'(y)] = 8(x ~ y). As-
suming that p(x) and 6(x) are Hermitian operators, show that they are canonically
conjugate, by showing

[6(x), p(y)] = -i&*(x - y)
Let 8= 6(x,) be the phase operator at some point x,, and let N = [d°x p(x) be the

number operator. Assuming the validity of the commutator derived in part (b),
show the uncertainty relation

AGAN = 4

Let Njn) = n|n), where n =0, 1, 2 ... (see Louisell [20]). Using the commutator
derived in part (b), show that

g’y =222

n-—n

which is meaningless. Hence there does not exist a Hermitian phase operator 6.

Show, however, that the matrix element above is meaningful when » and n’ are
large enough to be considered continuous. It then becomes the derivative of a
delta function. The matrix element is analogous to (plx|p’), where [p, x] = —i. This
shows that the phase can be represented by a Hermitian operator if the system
contains a large number of particles.

Effective Action The effective action can be expanded according to (15.88):

(@)
()

{©)

Pl =To+ [ d Tyomio) + £ [ die, oo, mpymbxpymtoeg) +

Find rl(x).

Show [ dz I'y(y — 2)Gy(z - x) = —8(y — x), where G,(x) is the two-point correlation
function.

Take the Fourier transform to get fz(k) 52(—/() =-1. Find T 5(k) from the known
general form of G,(k).

Goldstone’s Theorem [21] Consider a relativistic complex scalar field y(x), whose
Lagrangian density is invariant under a global gauge transformation. Corresponding to
this invariance is a conserved Noether current j,(x), with

* (x)=0

The corresponding conserved charge is denoted by (), with the property
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W, 0= W), 0= [dxj)

Assume that the global gauge symmetry is spontaneously broken:

() = (O](x)I0) # 0

where |0) is the vacuum state. Goldstone’s theorem states that a massless particle ex-
ists. This only relies on current conservation, and does not depend on the detailed form
of the Lagrangian. Prove it following the steps outlined below. We write ¢ = (0), j* =
J40).

(a) Consider the quantity

[H(x) = O0l{y, j*(x)]10)

Write out the commutator, insert a complete set of states between the operators,
and note

> 8 (p —py) {Olgin) (nlj#(x)|0) = & po)p“F(p?)

where p,, is the 4-momentum of the state {n) and F(p?) is a Lorentz-invariant func-
tion. With this, show that

Pe(x) = [ dp dm? 8(p? - m2)pre- P (Fm)0p) + F*m2)o(-py)]

(b) So far we have used Lorentz invariance and assumptions about the mass spec-
trum. Now use current conservation in the form *I',, = 0 to show that F{ (m?) is of
the form

F(m?) = C8(m?)

Thus, a massless particle exists if and only if C # 0.
(c) Consider I'°, and use the fact (i) # 0 to show that C # 0.

Higgs Mechanism [22] In the presence of long-range interactions, the Goldstone
mode is transformed. For a system interacting with the electromagnetic field, the
gauge symmetry is enlarged from a global to a local one. When this symmetry is bro-
ken, the Goldstone mode becomes the longitudinal component of the electromagnetic
field, and the photon acquires mass. This is called the Higgs mechanism. In a super-
conductor, the symmetry breaking results from the presence of a condensate of bound
electron pairs—the Cooper pairs.

Consider the relativistic classical Lagrangian density for a complex field ¢ cou-
pled to the electromagnetic field, in (3 + 1)-dimensional Minkowskian space—time:

L(x)=—3 FFF,, + (D) (Do) - V(e )
where D = (9 + igA*), and V(y* ) = A(*F i —p,)? is the potential causing spon-

taneous symmetry breaking. For a superconductor ¢ = 2e. The notation is that of
Chapter S.
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(a) Show that the Hamiltonian is
H= [ (4B + E?) + |f + DY + V]

and from this show that the lowest-energy solution is A* =0, ¢ = Vpo €. Thus
local gauge symmetry is broken.

(b) Choose the “unitary gauge, “ in which y(x) is real. Show that the classical equa-
tions of motion are

O FHY = 2q%yPA”
DED = 2M(py — ¢P)Y
Since 4,,0,F*¥ = 0, we must have J, 4* = 0 whereever ¢ # 0.
(¢) Put 1(x) = py + 7(x), and show that
(TP +29%po) A# =0
(CF +4rp)n=0

When quantized, the theory has a vector particle 4* of mass g’V'2p,, and a scalar
particle n of mass 2V Ap,. There is no massless scalar particle.
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CHAPTER SIXTEEN

Renormalization

16.1 THE CUTOFF AS SCALE PARAMETER

In perturbation theory, we encounter divergent Feynman graphs that must be cut off
at high momentum. The cutoff marks the energy scale at which known physics ends
and the unknown begins, and would be necessary even if there were no divergences.
It is presumed that we observe the world at an energy scale far below that of the cut-
off, but the Lagrangian of the system is specified at the cutoff scale, with parame-
ters appropriate to that scale. It would be desirable to express them in terms of low-
energy parameters, without explicit reference to the cutoff, and renormalization is
the means for doing that.

To ensure that we remain in the low-energy domain, we would like to take the
cutoff to be infinite, but this cannot be done by declaration. In the absence of exter-
nal fields, the action of the system does not contain an intrinsic energy scale apart
from the cutoff. Thus, the cutoff disappears from the action when we reduce all
quantities to dimensionless form. The only way to tell whether it is finite or infinite
is to calculate some physical quantity with dimension, such as the correlation
length, from the theory. The cutoff is infinite when the correlation length diverges,
in which case the system is said to be at a critical point. To approach the limit of in-
finite cutoff, therefore, we must adjust the parameters so as to make the system “go
critical” We shall explain this in a concrete example.

Consider a scalar field ¢(x) in d—dimensional Euclidean space—time, with clas-
sical action

ST8) = [ LAY + g2 + g + g6t + -+ ] (16.1)

We place our system in a large hypercube of volume (), with periodic boundary
conditions, and eventually let {) — <. Fourier transforms are defined by

320
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d(x) = Q~1/2Z e—ik~x¢k

k
d’k = QA-I/ZJ' ddx e“""d;(x) (16'2)

with ¢* = ¢_;. In the limit () —> %, we write

_ (9 _..x
w0 = [ 5 Lewdg) (163)
where
d(ky= 012, (16.4)
The action can be rewritten in the form
1
Slg1= 5 2. 0 +28)8,6., + S[9] (16.5)

pi<A
The first term is called the “kinetic term,” and S,[¢] contains the interactions:

SE81="0y 2. HE)by, by,

i<A

i %62_ z 8PPy By boy By Pps s+ (16.6)

lpjl<A

where & denotes the Kronecker delta (8). The partition function is given by

z= f Dep e5191 (16.7)
where
[ po=x I | st (16.8)

where A is a normalization constant.

With units such that # = ¢ = 1, the dimensionality of any quantity can be ex-
pressed as a power of length, or equivalently momentum. The dimensionality of a
quantity X, denoted by [X], can be deduced from the assertion that the action is di-
mensionless. Using the cutoff momentum A as unit, we have

[X]= A" (16.9)
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which means that X transforms like A7 under a change of scale, or that XA? is di-
mensioniess. It is straightforward to verify the following:

[$(x)] = A2
[(p)] = A2
[6,]= A"
[ga] = Ardr—ad (16.10)

The exponents above are the so-called canonical dimensions. It is convenient to use
the following dimensionless quantities:

p
Momentum: ==
u 9=
Fourier component: v, =Ad,
Coupling constants: u, = Aodtadlg, (16.11)

The partition function can then be written in the form

Z= fD(p es1¥] (6.12)
The action is written
Slel = £ mz(l@z 1)@, 4+ Sle] (6.13)
where
r=2u, 6.14)

and the interaction term can be represented in the form

U
- Z 8(2 qi)¢q1¢q2¢q3¢q4

stel= ¢
lg;i<t

Us
" e |z|"16(2 9)9q) gy Pa3PasPasPas T (6.15)
q;l<

We see that A has disappeared. It merely provides a scale to measure physical quan-
tity with dimension, such as the correlation length £, defined through the asymptot-
ic behavior of a correlation function:
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(X)) oz Cev¥® (16.16)

Here, £ is measured in the same unit as x, such as meters. Using A~' as unit for dis-
tance, we have

=yl _ b=l (1617

13 3

where £ is dimensionless:
£=AE (16.18)

Ignoring the pathological case =0, we see that an infinite cutoff corresponds to the
limit & — oo,

The theory at the cutoff scale, called the “bare theory,” is specified by the cou-
pling constants u,. The value of the cutoff is reflected solely in these coupling con-
stants. A renormalization-group (RG) transformation is a coarse-graining operation
through which we lower the cutoff without changing the system. When the cutoff A
is lowered to p = A/b, the “bare” couplings u,(A) will change to the “renormalized”
ones u,(u). The system should remain unchanged, even though it appears to be
changed, because the effective couplings are different. We shall define the RG
transformation explicitly later. For the present, assume that such an operation has
been defined.

Let us consider the parameter space spanned by all the u,. This is a space of all
possible Hamiltonians, if you like. Each point in this space specifies a system with a
specific value of & and therefore of A. Successive RG transformation generate an
RG trajectory that flows in the coarse-graining direction. Since the cutoff is lowered
in an RG transformation, the correlation length decreases along an RG trajectory.

There may exist “fixed points” that are invariant under RG transformations.
Since £ decreases under an RG transformation, we must have § =0 or { =x at a
fixed point. We ignore the case £ = 0, and concentrate on ¢ = . Since this corre-
sponds to an infinite cutoff, we cannot place a bare system exactly on it, but only
approach it as a limit. If the RG transformation is unique, which we assume, then
two different trajectories cannot intersect except at a fixed point. This is why a tra-
jectory can be continued backward, even though it is only defined for forward mo-
tion. This makes the RG a true group.

A fixed point is a source or sink of trajectories. To trajectories flowing away
from it, the fixed point appears as an ultraviolet (UV) fixed point, since it represents
the infinite-momentum limit, We call them UV trajectories. To trajectories flowing
into it, the fixed point appears as an infrared (IR) fixed point, and we call them /R
trajectories. Thus, whether a fixed point is UV or IR depends on the trajectory one
chooses. On the other hand, the correlation length at the fixed point is an intrinsic
property.

The correlation length along an IR trajectory must be infinite, since it must de-
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UV fixed point

=

Bare system
(scale A)

/ Renormalized

system

Bare /

(scale u=A/b)
system ‘

a

Renormalized
system

IR fixed point

Figure 16.1 How to approach the infinite-cutoff limit depends on whether the theory is base on a UV
or IR fixed point.

crease along the trajectory, and it is infinite at the endpoint. Thus, we cannot place a
bare system on an IR trajectory, but must approach it as a limiting trajectory, and in
that limit the system goes to the IR fixed point. A UV trajectory is different. Since
the correlation length is finite, we can place our bare system on it. The difference
between UV and IR trajectories is illustrated in Fig. 16.1.

The limit of infinite cutoff is also known as the continuum limit, because the
unit of length approaches zero. As illustrated in Fig. 16.1, the continuum limit may
be based on an UV fixed point, or an IR fixed point. They define different limiting
theories. A theory of the UV kind conforms to our thinking in perturbative renor-
malization; namely, we can keep the renormalized parameters fixed at arbitrary val-
ues while letting the cutoff go to infinity.. A theory of the IR kind has no freedom.
The renormalized parameters assume the fixed-point values.

An interesting possibility is that both UV and IR trajectories exist, and are near
each other, as shown in Fig, 16.1. The system may appear to be following one tra-
jectory at first, but make a switch later. As we speculate later, this may be the case
for QED.

16.2 MOMENTUM SPACE RG

Wilson [1] proposes a RG transformation whereby the cutoff is reduced from 1 to
1/b by integrating out the modes in between. This gives a new action containing
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fewer degrees of freedom. There are three steps, as illustrated in Fig. 16.2, and de-
scribed in the following:

16.2.1 Designating Fast and Slow Modes

Decomposing the field into a “slow” part o, and “fast” part .

@ =0t f,

o,=0 unless [kl < 1/b

1
Jx=0 unless 5 =k =1 (16.19)

where b > 0. The partition function can be rewritten in the form
z=[ Do [ Dre-sien (16.20)

and we imagine that the [ Df integration is carried out.

Cutoft
A
Fast’ v
modes
SN VWV
"Slow"
modes

A
VI
ANNNNN
UVAVAVAV
ANAN AMAN T NN
/\./
A~

/—\/-\

Choosing Coarse- Rescaling
modes graining

Figure 16.2 RG transformation in momentum space.
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16.2.2 Coarse Graining
Define a new action S[o7] dependent only on the slow fields through the relation
e Sl = o f Df e Slo*h (l6.21)

where A is a constant. The new action is expanded in the form

Stol=+ > [2¢* +rlo,o,+S]0] (16.22)

lg|<1/b

which defines z, r,, and new parameters in S,[{o]. The constant A’ is put in to absorb
any constant terms generated, to make this expansion possible. We put

z=b (16.23)

which defines the exponent 7, the anomalous dimension. (See Problem 16.1.) The
partition function is now rewritten

Z=9\[fDae 8o (16.24)

but its value is unchanged.

16.2.3 Rescaling

For comparison with the original action, rescale the cutoff to 1, and normalize the
field such that the coefficient of the ¢° term is £. This is done by defining

q' =bq
ey =b1"a,, (16.25)
The spatial volume changes to
QO =p10 (16.26)
The action can be rewritten as
S'l¢'] =580l = ;Iqlzl(qz +r)e el + Sile'] (16.27)

where »' = b?*"r. We use g in place of ¢', since it is just an summation variable.
We can expand the interaction term in the form
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u‘ll ’ ! 1 f
—(2_1 Z E(Eqi)gpql¢q2¢q3¢q4

lg <1

Sile']=

4o

Ay WZIS(Zqi)¢;1¢;2¢;3¢;4¢;5¢;6 o (16.28)

and read off the renormalized parameters u,’. The RG transformation is the opera-
tion
{u27 Uy, u(w“.}—'){uZ’a u4', u(;','A‘} (1629)

Note that #, depends not only on the scale parameter b but also on the initial values

{u,} as well.
It is convenient to parametrize the trajectory by an additive parameter ¢ defined

by
h=e"0 (16.30)

with an arbitrary origin &, The coupling constants along the trajectory are then
functions of £:

u, = u,(1) (16.31)

From (16.28), which gives u(f) in terms of some initial value u, = u(ty), we can cal-
culate the tangent vector along the trajectory:

ou,
ot

= Ba(u’ uO)

We can erase the memory of the initial state by taking the limit 4, — us, where u. is
a fixed point. If this can be done, we have the conventional 8 function of perturba-
tive renormalization:

Bau) = Bu(u, us) (16.32)

16.3 REAL-SPACE RG

The coarse-graining process of the RG transformation can be performed in real
space. This is Kadanoff’s “block-spin” transformatjon [2], which historically pre-
cedes Wilson’s momentum—space formulation. The system is defined on the dis-
crete sites x of a d—dimensional hypercubic lattice, with lattice spacing a = A™'. We
consider again a scalar field whose value at site x is denoted by ¢,. We make the fol-
lowing correspondence with the continuum formulation:
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J’d"x — a"z

aqb - a71(¢x - d)y)

(16.33)
where x and y denote nearest-neighbor sites. The lattice action is accordingly

S[¢] = é“}:(é ¢>2+a42[gz¢3+g4¢4+g6¢6+ 1 (16.34)

where the sum extends over all distinct nearest-neighbor pairs <xy>. We introduce a
dimensioniess field ¢, and coupling constants ¥

= o 1td/2

P =a ¢x

u :a~a—d+cm'/2g
[24

2

(16.35)
The action can then be written as

Slel =1 > (ee— @)+ Z [u,02 + Uy + ugp?
<xy>

1 (16.36)

where a does not appear explicitly. To approach the continuum limit, we must tune
n

the parameters u, such that the correlation length becomes infinite
The partition function is

z=[ pesto (16.37)
where

[ De=11[ d, (16.38)
The steps in an RG transformation are illustrated in Fig. 16.3, and described in the
following pragraphs.

16.3.1 Making Blocks

We begin by grouping the sites into blocks, € sites on a side, and denoting by X the
position at the center of a block. (In Fig. 16.3 the blocks have € = 2.) The average
field at average position X is defined as

(=67 > o, (16.39)
xEblock
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Figure 16.3 RG transformation in real space.

By introduce a block field ¢y, we can trivially rewrite the partition function in the

form

2= [ D3 Do T8~ (@ (16.40)

where
| Dp=10] ay (16.41)

16.3.2 Coarse Graining

We intggrate over the original field, holding the block field fixed, to define a new
action S[@] dependent only on the block field:

&5 = [ Do T8y~ (1) 19 (16.42)

The partition function now takes the form

z= f D S (16.43)

We can expand the new action in the form

S~ z ~ ~ A P ~ o~ A~ o~
S@I=5 2, @+ 2 [P+ At +upi+ -] (1644)
<XY> X

where z = €7,
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16.3.3 Rescaling

The spacing between block sites X is € times larger than that for the original sites x.
We restore the original spacing by introducing site variables

X' =X/¢ (16.43)

At the same time, the normalization of the kinetic term is restored to 5 by trans-
forming the block field to

o= 0" 8 (16.46)

The action then takes the form

STe1=881= 3 D (o) ~ @+ > (el +uiel +ui@lS+-) (16.47)

<xy> x

where we use x instead of x’ as summation index. The partition function can now be
written as

Z= Nf D¢’ eS¢ (16.48)

and the problem reduces to that in momentum space.

164 RENORMALIZATION OF
CORRELATION FUNCTIONS

The n-point correlation function in momentum space is

I Déle,, - ¢, 1e5#
[ D541

G.(p; 80s M) = (16.49)

where |p,| < A, and go(A) denotes the set of bare coupling constants. In terms of the
dimensionless field ¢,,, = A, and dimensionless bare coupling constants by u,
we can write

G.(p;: g0, M) = A‘”G,,(%; uo) (16.50)

where

I Delg,, - - - @y le1¥!
J‘ D(,oe"s[“’]

Gaq; up) = (16.51)
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We are interested only in the correlations among slow modes, with |g| < 1/b. Thus
@, = 0, and we have

I Do [ Df[gql Ces (,.q"]e—S[m/] _ fD(r[(rql S an]eﬁ[o]

gu([/; Ll()) = f D(Tf D‘feis(aﬂ-] f Do'e‘E[”]
T DE' [@hy, = Phg, le¥1¢]
— 5 —H/2Ln q] ’qn
zy"%h [ Dyesie] (16.52)
This gives the transformation law
Glqs uo) = 2o "*b"G,(bg; u") (16.53)
To make contact with perturbative renormalization, choose
A
b=— (16.54)
M

where p is the renormalization scale, to be held fixed while we make A - o by
making uo — u«. Multiplying both sides of (16.53) by A7 = (bu)™, we obtain

G.(p; g0 A) = 25 "”.u‘"gn( £, u’) (16.55)
u

In perturbative renormalization, this is usually written in the form

A -n/2
Go(p: gon A) = [zo(;, go)] G(pig. ) (16.56)

where g denotes the renormalized coupling constants and G, is the renormalized
correlation function. We see that the cutoff dependence can be isolated in a factor,
while the rest of the function depends on the renormalized couplings.

16.5 RELEVANT AND IRRELEVANT PARAMETERS

Consider a fixed point u.. If there is a UV trajectory flowing out of it, then a point u
on the trajectory goes away from the fixed point under the RG transformation. In
this case u is said to be a relevant parameter, because ¥ — u. grows. On the other
hand, along an IR trajectory that flows into the fixed point, we have (v — 1) — 0,
and u is said to be irrelevant. Relevancy and irrelevancy are properties associated
with directions in parameter space with respect to a given fixed point.

In the neighborhood of a fixed point, we can neglect those couplings that van-
ish rapidly. Let us assume that we can limit the number of couplings to a finite num-
ber K, and represent them as components of a vector
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u=| " (16.57)
Uy

We parametrize the trajectory by f, so that the tangent vector to the trajectory is
du/dt. In the neighborhood of us, to linear order in ¥ — ., the RG is represented by
a matrix equation

d - — =
— (=1 = R~k (16.58)

where R is called the RG matrix. Let us diagonalize R:
Ro= A7 (16.59)
The eigenvectors v define the principal axes, along which we have
u(t) — . = ceM (16.60)

where ¢ is some constant vector. If A > 0, the principal axes correspond to a relevant
direction, for the trajectory flows away from the fixed point. If A <0, we have an ir-
relevant direction, and % — % —> 0. The eigenvalues of the RG matrix furnish infor-
mation about the nature of the RG flow and consequently the geometric properties
of parameter space in the neighborhood of the fixed point.

The linear analysis becomes inadequate if there are null eigenvalues A = 0. The
corresponding directions are said to be “marginal,” and the flow patterns have to be
investigated in a higher order.

16.6 THE FREE FIELD

We work out the RG for the free field, or Gaussian model, defined through the ac-
tion

Sol ] = [ dix(a) + 2,47]

IO AP e, (16.61)

lgi<1

where ¢ is a real scalar field, with dimensionless form ¢, and

r=2u, (16.62)
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Since ¢, = ¢,*, we can write

Solel= > (g*+ Ple,P (16.63)

O<lg|<1

where the sum over ¢ extends only over a hemisphere. We write the same action ei-
ther as So[¢] or Sy[¢]. The partition function is

z= [ D esotel (16.64)
where

[ De= AL [deyag,= 11 | “dre o) Zd(Im ¢) (1665

O<lgl<1 /o0
The partition function can be calculated directly; but, for illustration, we shall carry
out RG transformations “by the book.”
Decomposing the field into fast and slow components, ¢ = f+ o, we have

J40_, = 0, because their ranges are disjoint. Thus, the free action decomposes into
separate sums with no cross-term:

Solf+ al = Sy f] + Sole] (16.66)

The partition function factorizes:
Z= fDo-foe*SOW"] = fD(J' e~Solc] foe‘SOU] (16.67)

and integrating over the fast modes yields an overall factor:

T
~Sol1= ]] = ~Colb.r)
foe et 1 e ‘o (16.68)

Thus, the slow modes undergo renormalization solely because of rescaling. With

q' = gqb, we have

Solol= > (@ nla= > (b2 +ro,,P

O<lgi<t/b 0<lg’|<1

= D> (g2 2b7)|g P (16.69)

0<lg’l<1

where
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oy =blo,y, (16.70)
Thus the RG transformation gives
r' = b (16.71)
We put b = e"0, and regard r as a function of :
r= () = r et (16.72)
Since r and ¢, are arbitrary, we have
i) = cpe¥ (16.73)

where ¢, 1s a constant.

The RG trajectories are illustrated in Fig. 16.4. There is only one fixed point at
r = 0, the Gaussian fixed point. It is an UV fixed point, corresponding to the high-
momentum limit £ — —oo. The parameter #(f) exhibits asymptotic freedom, since it
vanishes in the limit of infinite momentum scale. The negative » axis is unphysical,
since it corresponds to systems whose energy spectrum is not bounded from below.

To verify that the correlation length diverges at the Gaussian fixed point, recall
that the correlation function for d > 2 is given by

(dX)d(y)) = C ™V 22 (16.74)
The dimensionless correlation length is thus
E=r'2 (16.75)

which diverges as r — 0.

16.7 IR FIXED POINT AND PHASE TRANSITION

An IR fixed point is the endpoint of an IR trajectory that forms the dividing line be-
tween two different phases. We illustrate this with ¢* theory in d = 4 dimensions.

= 0O
et —— Pt Uo
0
Gaussian fixed point

Figure 16.4 RG trajectories for u,, the dimensionless squared mass. Arrows point along directions of
coarse graining. There is an UV fixed point at «, = 0. Tick marks indicate equal increment of the dimen-
sionless correlation length £ which diverges at the fixed point.
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The RG trajectories are shown in Fig. 16.5 This parameter space is spanned by u,
and u,. Only the upper half-plane has physical relevance, since we must have 1, = 0
for the energy spectrum to be bounded from below. The Gaussian fixed point occurs
at the origin, and there is an IR trajectory flowing into it. The points P and Q repre-
sent cutoff theories, which approach continuum limits at any point on the IR trajec-
tory. From any point in the neighborhood of the IR trajectory, coarse graining will
tend to decrease u,, bringing the system close to the origin. Thus, in the continuum
limit, the renormalized system approaches the Gaussian fixed point, the free-field
theory. This is the phenomenon of “triviality”.

As illustrated in Fig. 16.5, the contours of constant £ are parallel to the IR tra-
jectory, along which &= o«. The contours of equal separation in £ become infinitely
dense in the neighborhood of the IR trajectory, and the latter resembles a bottomless
ravine. This ravine is in fact a phase transition line that divides the w,—u, plane into
the symmetry-broken phase to the left, and the symmetric phase to the right. The
points P and Q approach continuum limits in the respective phases. In this limit we
have u, — 0 and A — o, and thus the mass parameter is indeterminate:

m? — 2u, A2 (16.76)

Thus we can set it at an arbitrary value, and this is called “mass renormalization.” In
the symmetric phase, where m? is positive, it gives the squared mass of the field
quanta. In the broken phase it is negative, and contributes to the vacuum field

($) ="V nlag,.

&=Const. X d=4
\ »
RG u
trajectory Q 2

Gaussian fixed point

Figure 16.5 RG trajectories of ¢* theory in four Euclidean dimensions. An IR trajectory flows into the
Gaussian fixed point. It represents a phase-transition line, along which the correlation length is infinite.
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We can interpret the ¢* theory as a Ginsburg-Landau theory for an order para-
meter ¢. In this case, u, is regarded as a temperature. The points P and Q in Fig.
16.5 correspond to thermodynamic states near a second-order phase transition, and
the eigenvalues of the RG matrix determine the critical exponents (see, e.g., Huang

K3)2

16.8 CROSSOVER

When a trajectory flows from the neighborhood of one fixed point to that of anoth-
er, the qualitative nature of the system changes. This is called crossover behavior,
and is illustrated in Fig. 16.6, for ¢* theory in d = 4 - € dimensions (¢ — 0%).

The Gaussian fixed point describes a massless free field, but the nontrivial
fixed point describes something else. To illustrate the difference in an extreme limit,
imagine that the nontrivial fixed point recedes to the far corner of the second quad-
rant. The potential will become a steep double well, with the field trapped in two
possible values, and the fixed-point system will resemble an Ising model.

Consider the trajectory marked with point P in Fig. 16.6. At very short-distance
scales, the system is near the Gaussian fixed point, and will remain there through
orders of magnitude of coarse graining. Thus the system appears to be a massless
free field through orders of magnitudes of scale change. When we continue to
“zoom out,” eventually the system leaves this neighborhood, and begins to move to-
ward the nontrivial fixed point. Once it gets under way, the system moves quickly

Non-trivial /

fixed point

O(e)

Gaussian fixed point

Figure 16.6 As P flows along the trajectory, the system crosses over from free-field behavior near the
Gaussian fixed point to a different behavior near the nontrivial fixed point.
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until it comes close to the nontrivial fixed point, like the point P referred to previ-
ously, where the system remains Isinglike through orders of magnitude of scale
change.

If we imagine performing experiments on this system, we would first see the
system at low energies, corresponding to a point far downstream on the trajectory.
When the energy scale is increased, the system will quickly settle down to Ising be-
havior, and remain there until we enter the realm of “high-energy physics,” when al-
most suddenly we see it as a free field whose mass exhibits “asymptotic freedom.”
The term “crossover” emphasizes the suddenness of the transition.

16.9 RELATION WITH PERTURBATIVE
RENORMALIZATION

The Wilson RG supplies a physical basis for renormalization, but does not furnish
tools for carrying it out. To implement it, the only analytic method we have is still
perturbation theory. Perturbative renormalization, of course, predated and inspired
the Wilson RG. It has been very successful in dealing with divergences in a practi-
cal way. It has even achieved some physical understanding when the theory happens
to be asymptotically free, that is, based on an UV fixed point, but it fails to uncover
the basic structure when the governing fixed point is IR. When guided by the Wil-
son RG, perturbation renormalization acquires a roadmap. It does not make calcula-
tions any easier, but at least one is more aware of the possible terrains.

What one does in perturbative renormalization may be summarized as follows.
The immediate task is to calculate a correlation function by expanding it in terms of
Feynman graphs. A graph is represented by a integral, which may be divergent. In
that case, it is rendered finite by introducing a cutoff momentum A:

A
Kp.A) = fo dk fik, p) (16.77)

where p is an external momentum. Let us suppose, as in typical situations, that it di-
verges like In A. Then, one subtraction will render the integral finite. That is, we

write
1(p,A) = I(po, A) + [I(p,A) — I(py, A)] (16.78)

where p, is a momentum that sets the renormalization scale |py> = u?. The diver-
gence is now isolated in the first term. One then shows that, when all the Feynman
graphs are added, all such divergent terms can be absorbed into renormalized cou-
pling constants. The result is summarized by formula (16.56). The miracle is that a
subtraction made in a graph somehow turns into a multiplication of the coupling
constant. The rederivation of (16.56) through the Wilson RG shows the equivalence
of the result in the two approaches. The methodologies are also the same. The renor-
malization scale u, established by the choice of subtraction point in perturbative
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renormalization, corresponds in the Wilson RG to the effective cutoff u = A/b. The
important difference is that, whereas in perturbative renormalization w is seen as a
subtraction point to get rid of divergences, in the Wilson RG it is the result of coarse
graining, and thus has physical meaning. The Wilson RG has a better vantage point,
for it works with the action as a whole, instead of individual Feynman graphs. One
limitation of the present formulation of the Wilson method is the explicit use of a
sharp momentum cutoff.?

Certain folk beliefs growing out of perturbative renormalization need to be re-
vised. It is usually assumed that renormalized coupling parameters can be held
fixed at arbitrary values, while we send the cutoff to infinity. This is not always cor-
rect. As we have discussed, renormalized parameters can be considered arbitrary
only if the continuum limit is realized by placing the theory on a UV trajectory. If
the continuum limit is realized by approaching an IR trajectory, then the renormal-
ized coupling constants are fixed; they assume the values at the IR fixed point.

It is also a common belief that interactions are either “renormalizable” or “non-
renormalizable.” In the former, Feynman graphs can be made finite through a finite
number of subtractions, whereas in the latter category they would require an infinite
number of subtractions. This is an artificial distinction based on the idea that the de-
gree of divergence of a Feynman graph is determined solely by its topological struc-
ture, without reference to the scaling properties of the coupling constants. As illus-
trated in Problem 16.2, a proper counting of the degree of divergence must take into
account the cutoff dependence of the coupling constants.

A better criterion for a “renormalizable” theory is that the Lagrangian contain
the same interaction terms at all length scales. One can then make the subtractions
in the Lagrangian itself, by introducing counterterms. As a general requirement,
however, this is impossible. Although we can choose the Lagrangian at a particular
energy scale, its form at lower energy scale is not under our control. The system
evolves along an RG trajectory, and relevant interactions emerge, while irrelevant
ones die out. The limitation to the same set of interaction terms merely means that
we are sufficiently close to a fixed point that all irrelevant interactions can be ig-
nored.

In discussing the relation between the Wilson RG and perturbative renormal-
ization, the case of QED remains a puzzle. This is ironic, for perturbative renormal-
ization scores its greatest triumph in QED, and yet the fixed-point structure is not
clear. On one hand, the success of perturbative renormalization is based on the
recipe of the UV type, that we can keep the renormalized parameters fixed at arbi-
trary values while letting the cutoff go to infinity. Yet, perturbation theory also
shows that there is no UV fixed point—the theory is not asymptotically free. In-
stead, a partial summation of Feynman graphs suggests that there is an IR fixed
point, which leads to triviality. What is going on? The importance of this theory im-
pels us to offer a scenario.

We have to distinguish between the mathematical QED, the theory described in

Polchinski [4] attempts a reformulation of the Wilson RG with a more general choice of cutoff
function.
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Chapter 11, and the physical QED, which is embedded in the larger standard model,
the still larger grand unified model, and beyond. In the energy scale of current ex-
periments, the mathematical QED is an excellent model. However, we must keep
our distance from the IR trajectory, by keeping the cutoff large but finite. As the cut-
off approaches infinity, the renormalized charge will tend to zero, but with logarith-
mic slowness, since all divergences in QED are logarithmic. From a phenomenolog-
ical point of view, the cutoff dependence is so weak as to be undetectable; however,
the effective charge can be set at an arbitrary value by adjusting the cutoft.

A possible scenario for the physical QED, which is embedded in a larger model
of unified interactions, is the following. The true trajectory of the theory may well
lie on an UV trajectory, similar to the upper curve in Fig. 16.1. On energy scales of
our experiments, however, the true trajectory may be close to an IR trajectory, simi-
lar to the lower curve in Fig. 16.1. The mathematical QED is modeled after the IR
case, because that yields a simplier description.

16.10 WHY CORRECT THEORIES ARE BEAUTIFUL

Physicists are always sure that they possess the correct picture of the world, because
their theories are not only “true” but also “beautiful.”

In the Newtonian view, the world was made up of particles ruled by the elegant
canonical laws, and that encompassed everything. As Laplace said, given the posi-
tions and velocities of all the particles of the universe at any one time, one could de-
termine the course of the universe for all times.

With the discovery of electromagnetism, the “luminiferous ether” joined “pon-
derable matter” as ingredients of the universe, and the picture was complete. Lord
Kelvin was of the opinion that physics in the next century would be concerned only
with “the next decimal place.”

But then came relativity and quantum mechanics, more impressive and beauti-
ful than ever. “Quantum mechanics,” said Dirac, “has explained all of chemistry and
most of physics.”

We have since progressed from atoms to nuclei to quarks in one direction, and
from galaxies to black holes in the other, both heading toward the Planck scale. As
always, some believe that the end is in sight.

How is it that our effective theories at different scales are so compelling as to
make physicists think they are gods? The answer is that, like Aesop’s mouse, they
walk in front of a lion, and the lion is renormalization.

Because of renormalization, we can understand the observed world on its own
terms, without reference to detailed structures of a lower level. Thus the proper way
to calculate satellite orbits is to use Newtonian mechanics, even in the postquantum
era. And it is better not to mention quarks when we describe superconductivity. The
fact is, a system in coarse grain can appear completely different from that in fine
grain. Looking at a certain canvas through a microscope, one perceives only paint
pigments. But when viewed with the naked eye, a Rembrandt might emerge. At dif-
ferent ranges of length scales, the world will appear to be governed by different
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fixed points, because of the phenomenon of crossover. A fanciful interpretation is
shown in Fig. 16.7.

The task of the physicist has been to find out where our RG trajectory came
from. This is done by guessing the Hamiltonian, and working out its low-energy
consequences to compare with experiments. This process is perhaps what Einstein
had in mind when he said [5]

The axiomatic basis of theoretical physics cannot be abstracted from experience,
but must be freely invented. . . . Experience may suggest the appropriate mathemat-
ical concepts, but they most certainty cannot be deduced from it.

Through “free inventions,” physicists have had remarkable success in the seem-
ingly impossible task of reverse coarse graining. In this they have been guided by
the faith that a “true” theory must be “beautiful.” This mysterious unity prompted
Wigner [6] to wonder about the “unreasonable effectiveness” of mathematics, and
Dirac? to extol formalism. We can perhaps understand it by noting that what one

?
°

® Quarks

@ Nucleons

Everyday
world

o Galaxies

Figure 16.7 Under a change of length scale, the world’s RG trajectory crosses over from the domain of
one fixed point to another. This might explain why “true” thearies are “beautiful.”

3In a two-lecture series on creativity in physics at Harvard University in 1960, Dirac said in the
first lecture that he was always guided by “correct formalism.” But Heisenberg, in the second lecture,
emphasized physical intuition.
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really tries to do is to construct fixed points, which are purely mathematical objects
endowed with a high degree of symmetry and universality.

PROBLEMS

16.1

16.2

16.3

(a) Y\/e have defined our field ¢(x) with Fourier transform ¢, for finite volume, and
&(k) for infinite volume, such that the free action is dimensionless:

1 1 1 &k~
5| s moome = 33 10 = 5 [ id00r

Verify the canonical dimensions for ¢(x), ¢, and H(k).

(b) Show that, according to the canonical dimensions, the correlation function in the
massless case should have the behavior

1
(Plx)(0)) ~ =l

(¢) A change of scale changes the cutoff from A to A/b without changing the physi-
cal content of the theory. In an interacting theory, this changes the free part of the
action to (b™2)fd o*p(x)d* P(x), as indicated in (16.22). Show that

i
{P(x)p(0)) ~ [Pz

which gives rise to the term “anomalous dimension” for the exponent 7 .

The p = 0 component of ¢, does not appear in the action Eppzlga(p){z. Does this mean
that ¢b, can be scaled differently from ¢, with p # 0? This would mean, in case of
spontaneous symmetry breaking, that the vacuum field {(¢) scales differently from

Hx).

Solution. The answer is “no,” for physical reasons. At finite x, ¢(x) should be in-
dependent of the boundary conditions when the size of the box containing the system
goes to infinity. Let boundary condition 4 be periodic, and B be that the field vanishes
at the boundary. The vacuum field is constant in finite portions of space, but must drop
to zero at the boundary. If a constant field scales differently from a nonconstant one,
then we can tell the difference between 4 and B, even in finite portions of space. =

Consider a scalar theory with interaction g,¢* + gs¢® in d = 4 space~time dimensions.
Assuming that the only intrinsic scale is the cutoff momentum A, we have g, = uy, g6 =
ugA 2, where u,, is dimensionless. In d = 4, g, is distinguished by the fact that it is di-
mensionless. As far as the S matrix is concerned, this theory is equivalent to a ¢* theo-
ry with an effective coupling constant, To illustrate this fact, consider the various irre-
ducible correlation functions through illustrative examples.
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(a) Consider the graphs for the irreducible self-energy G,, G, in the accompanying
sketch. Show that they have the same degree of divergence A2, as in pure ¢* the-
ory.

(b) Show that the irreducible vertex graphs G,, G, diverge like In A, as in pure ¢*
theory.

(c) Show that the irreducible graph for the six-point function G, is convergent. The
ones involving g, such as G¢, vanish when A — . This shows that the correla-
tion function depends on g4 only through the four-point function, as vertex inser-
tions.

(d) Can we renormalize this theory like it is a ¢* theory?

16.4 In a J—dimensional scalar theory with all powers ¢ in the interaction term, as repre-
sented in (16.1), there is a particular power M such that the coupling constant g,, is di-
mensionless. Show that, as far as the § matrix is concerned, this theory is equivalent to
a ¢M theory with effective coupling constants dependent on all the gi. To do this in a
systematic way, repeat the analysis of Section 13.1 on the enumeration of primitive di-
vergences. Show that the only primitively divergent graphs are those with M or fewer
external lines.
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CHAPTER SEVENTEEN

The Gaussian Fixed Point

17.1 STABILITY OF THE FREE FIELD

To study renormalization in greater depth, we investigate the space of Hamiltonians
in the neighborhood of the one fixed point we know about—the Gaussian fixed
point, corresponding to a massless free field with Hamiltonian density (J¢)%.

We want to know, in particular, whether the fixed point is stable against pertur-
bations. Were we to displace the system from the origin of parameter space along
some direction, by adding extra terms to the action, would the system return to the
origin under coarse graining, or would it go off on a tangent? Stabilizy would mean
that we have picked an “irrelevant” direction in parameter space, and instability
would mean that the direction is “relevant.” In the former case we would have “triv-
iality,” and in the latter, “asymptotic freedom.” But since the parameter space was
not there to begin with, we must invent it. The possibilities are vast, for the only
condition is that the space contain the null element. In our investigation, the choice
is dictated by what we can mathematically handle.

The simplest extension is to add a mass term u,¢?%. This is a relevant term, as
we can see in Fig. 16.4. Under coarse graining, u, runs to infinity without reaching
a fixed point. At smaller length scales, on the other hand, it approaches zero. This
means that the mass is asymptotically free, which is hardly surprising, since it is in-
tuitively clear that mass can be neglected at high energies.

The situation becomes more complicated when we introduce the simplest inter-
action wu,¢*. The parameter space is now spanned by u, and u,, and the physical re-
gions corresponds to the upper half plane 1, = 0. The Gaussian fixed point is stable
if d = 4, as indicated in Fig. 16.5; but it becomes unstable ford=4 - €(e— 07). as
indicated in Fig. 16.6. When d decreases from 4, what happens is that a nontrivial
fixed point splits off from the Gaussian fixed point and moves to the upper half-
plane. The Gaussian fixed point is now unstable, but the trajectories flowing from it
are confined to an infinitesimal strip above the u, axis. When d changes in the op-
posite direction, the nontrivial fixed point moves toward the Gaussian fixed point,
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merges with it at d = 4, and then moves off to the unphysical lower half-plane when
d>4.

In condensed-matter physics the interesting case is d = 3. In this case, the non-
trivial fixed point is presumably located at a finite distance from the origin. The mo-
tivation for studying the case d =4 — € is the hope that the critical exponents at the
nontrivial fixed point can be extrapolated to € = 1. For particle theory, however, the
physical case is d = 4, and we are stuck with the fact that the ¢* interaction is irrele-
vant. To avoid triviality, we must keep a finite cutoff A. Physical quantities depend
only on In A, and are therefore not sensitive to changes in A. While this is accept-
able from a phenomenological point of view, it does not seem very satisfactory. This
provides an incentive to inquire whether there are relevant directions emanating
from the Gaussian fixed point ford = 4.

17.2 GENERAL SCALAR FIELD

We shall study the real scalar field ¢(x) in d Euclidean dimensions, whose action is
given in (16.1). In terms of the dimensionless variables in (16.11), it has the form

STl = [ el £ + P + gt + sS4+ ] (17.1)
In momentum space it has the form given in (16.13):

1

u
Sle] = 5 Z (@ + eyt -é Z 5(2%)%1%2%3%4

a1 et

U

* o JZlS(Zqi)(pq‘w"ﬂqs%‘t%s‘pqs e (17.2)
i<

where r = 2u,. However, we shall start with a more general theory, to see whether
the above form is closed under RG. In particular, we want to know whether RG gen-
erates derivative couplings and nonlocal interactions not included above. By deriva-
tive coupling, we mean terms containing derivatives of the field not of the form
(d¢)?, such as

f dx(Pp)?
A nonlocal term involves fields at different space-time points, such as
[ ity etkix - y)ety)

Of course, in a cutoff field theory ostensibly “local” interactions are nonlocal with-
in a spatial distance of order A-'. By “nonlocal” terms, we specifically refer to
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those for which the range of nonlocality is large compared to A~'. We shall first
consider a very general model containing arbitrary derivative and nonlocal cou-
plings, in order to show that, in an infinitesimal RG, such interactions are not gener-
ated if they were not present originally. We shall then revert to the action of (16.1).

To generalize the action given in (16.13), we replace u, by an arbitrary function
of momenta

ua(q) = ua(ql! st qa) (173)

Since this quantity multiplies the symmetric combination ¢, - - * ¢, , we may take
it to be a symmetric function. The kinetic term 1 3(¢* + r)¢,¢., is generalized by
replacing » by the momentum-dependent quantity

w(q) =r+cyg’ tegg®+oo (17.4)

Our starting point, then, is the action
Slel = > Sale]
a=2

Solel =5 > (42 + s @le,e.,

lgt<1

Slel = QY S unlg)e,, @, (@z4)  (17.5)

lgjl<t

where 8(g) is an abbreviation for 8(g, + - - - + g,). It will be understood that the sum
over «a extends over even integers only. This form is quite general. For example, in
coordinate space the kinetic term has the form

Silel =+ [ dl(agr + rg? + e + cag+ ] (176)

where (d@)*" = (#¢pd )". The other terms in the action contain similar derivative
couplings; but in addition, nonlocal terms can arise. For example, u,(g) can contain
a term of the form 8y, 4,843 445(q,)@(q3). This will give a nonlocal term with an infi-
nite range of the nonlocality. But we are not actually going to use these interactions,
and will not bother to impose physical constraints.

17.3 FEYNMAN GRAPHS

The RG has been described in Section 16.2. We introduce Feynman graphs in order
to make certain arguments important for our later calculation. When the field is
split into slow and fast parts with ¢ = o + f, the kinetic part of the action is additive:
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Slo+f1=S[a] +8[f] (17.7)

because o/, = 0, as their domains do not overlap. The partition function can be
written

7= f D e Sl = f Do o520 f Df e$2/1-5; 147
= [ Do eSSy, (17.8)

where A°! = [ Dfexp{-S,[f]} isa constant, and (O); denotes averaging over f with
weight exp{— S,[f1}. The new action S[o] for the slow fields is given through

(e Sitly = ~Slol (17.9)

and after scaling transformations we extract the renormalized coupling constants.
To calculate S[o7] in terms of Feynman graphs, we make the expansion

e 5101 = (g1l = i %(S;"[o' +fy (17.10)
n=0 :

The interaction S; is a sum of vertices illustrated in Fig. 17.1, where each line ema-
nating from a vertex is a sum of one slow and one fast line. All the slow lines be-
come external lines, and all the fast lines are internal lines to be integrated over. We
substitute the sum of vertices into (17.10), and expand in powers of o. The averag-
ing with respect to f can be done using Wick’s theorem:

(fg, " Ja,)r=sum of all contractions (17.11)

where a contraction is a pairing of the f'values, with each pair contributing a factor

St _ (17.12)
plglf q2+w(q)

Sl = X + XK+ K o+

—_— - — 4 -
o f

Figure 17.1 The interaction vertices. Each line is a sum of a slow line o and a fast line /. The fast lines
are internal lines to be integrated over, and the slow lines are external lines.
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OO =X+ K

( g ) graphs

bl Y
4 Y - - -
’ IR *
hd ’
-

, £
— ‘ LY MY P
<>é>—'>'é+7'<+/\+.~.
f 6 6\(4
(2) (2)(2)
Figure 17.2 Graphs with n external lines contribute to the renormalized parameter u,. The vacuum
graphs can be ignored.

The average of an odd number of f values is zero. This generates Feynman graphs in
the usual way. For example, the first two interaction vertices give rise to the Feyn-
man graphs shown in Fig. 17.2. Averaging the first vertex yields a four-line graph
that contributes to u;, and a two-line graph that contributes to ;. Similarly, averag-
ing the second vertex yields contributions to ug,u4,u5. Vacuum graphs are irrelevant
because they contribute only to the constant 4/, With this expansion, we have the
rules

¢S1o1 = sum of all Feynman graphs

— S[o] = sum of all connected Feynman graphs (17.13)

The second statement is the linked cluster theorem. We will not state the Feynman
rules in detail, for we shall not need them for later calculations.

17.4 WEGNER-HOUGHTON FORMULA

Consider an infinitesimal RG transformation at the cutoff momentum. We put
b=¢ (t—0) (17.14)

Wegner and Houghton [1] show that the renormalized action can be obtained exact-

ly to order ¢, with the momentum-dependent interactions introduced earlier. What

makes this possible is that all the internal momenta in Feynman graphs are confined
to a thin shell £ of thickness O(z) in momentum space:

{il-t1<[gl<] (17.15)

Specifically, we have the following simplifications:
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® To first order in ¢, only tree and one-loop graphs contribute. Some of the lat-
ter are shown in Fig. 17.3.

® A one-loop graph with two or more vertices is generally O(s?), except that it
is O(f) when all the internal lines carry exactly the same loop momentum.
This requires that the total momentum of external lines at any one vertex be
Zero.

To show the second statement, consider graph ¢ in Fig. 17.3, which is proportional

to
f d"qlf dg, &(p1 +p~ 4y - 4)8(pi + Pr— 41 — 42)
NEL 2€L
« HaP1s P2, 415 424445 92, P1 P2)

v(g1)u(q,)

where external momenta are denoted p, and internal momenta are denoted g. This
integral is O(#%) in general, because there are two g integrations, and each ranges
over a momentum shell of thickness O(f). An exception occurs when p, + p, = 0.
The integrations are then constrained by 8{g; + ¢,), and the graph becomes O(z).
This argument applies to any vertex of a graph, even if it is a subgraph. =

We have shown in Section 14.9 that the sum of tree and one-loop graphs is giv-
en by the first two terms in a saddle-point expansion of the partition function. In

:’-\ y
/\
(b) {c)
(d) (e) (f

Figure 17.3 One-loop graphs.
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this particular instance, the simplifications mentioned above make the calculation
even easier. We expand the action in powers of f

Sl +/1=Slal + Z{Pq[a]fq + %Z{Qq[tr] fofog® o (17.16)
q€ q9€
with
S|
Plo]= 2 [;j-,+f] o
|
_ #S[a+/]

Q,lo] ————-% T | o (17.17)

where P,[0] is associated with tree graphs, while Q,[0] is associated with one-loop
graphs. The terms not displayed can be neglected.

Proof. Each f, in the expansion corresponds to an internal line in a Feynman
graph of momentum ¢. In the one-loop graphs we need, there emerge from every
vertex two—and only two—internal lines with equal and opposite momenta (since
the external lines must have total zero momentum). Thus we need not go beyond
quadratic order in f,, and of the quadratic term we only need to keep terms of the

form f f . ]

Since /-, = f ¥, the modes g and —q are not independent. We rewrite

Slo+f1=Slal+ > (P f,+ PA¥) + Z{ 0./ ¥,
g€l =t

Px2 PP
:S[U]+Z[Qq f+ =L ——L] (17.18)
q9&€ Qq Qq
where ¢’ denotes a hemisphere of the thin shell {. We can now integrate over f:
PX\l2 PP
Z=|Do Dfexp{—S[a'] - [Q [+ (—q—) - —‘-’—H
f f q;{’ e Qq Qq
= S0l [] o 1Py = -31o]
| Doe e "5 = ([ Doe (17.19)

The renormalized action to first order in ¢ is given by the Wegner—-Houghton formu-
la

STl = S[o] + tB[0]

1 Pl
o) =5, S ool -5 | (17.20)
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The quantity B[a] is O(1) because the summation over the thin shell {'is O(?), and it
is divided by 7. This result is valid only to order ¢, but exact to all orders in the cou-
pling constants u,(g). With momentum-dependent couplings u,(q), the theory is
very general, but not all choices of u,{(g) are physical. What constraints are needed
to make the theory physical is a problem that has not been investigated systemati-
cally.

17.5 RENORMALIZED COUPLINGS

We still have to transform to rescaled variables according to (16.26). To first order
in ¢, we need only to transform S[a]. From (17.5), we obtain

Sllo1 =072 > 8@un(q)T,  Tpe

lg;<1/b

= QI > 8(q" Walq D) Tagn (17.21)

lq;[<1

Putting = 1 + ¢ and keeping only first-order terms in z, we obtain

Sale']=S[o]= Q2 > &gy @l (1722)
lg;'1<1
o d
x{l +t[d+ E(2—ar+ n)_z q,-'Wj”ua(q') (17.23)

where @ is as defined in (16.25). The partition function can now be written as
Z= Nngo’ eS'le] (17.24)

where

S'Te']= Sle'T+ 1Bl¢'] + tCl¢']

I Pl
[l = o ;{[anm o }

20

C[‘P] = ZQIAQ/Z Z 6(q)¢ql e ‘an

a=2 lg;1<1

d
><[d+—§—(2+n—a’)—z q,-;q—i]ua(q) (17.25)
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It is clear that if all u,(g) = 0, then the action is invariant under RG. This establishes
the Gaussian fixed point

If the action does not contain odd powers of the field initiaily, then none will be
generated to first order in ¢, because Q,[¢] is even in w, as we can see from (17.17).
If no derivative couplings were present initially, then to first order in ¢ none will be
induced. This can seen as follows. Derivatives are generated by momentum-depen-
dent terms, and can occur only in C[¢] in the term

Zq, u(q)

If only nonderivative local couplings were present at the start, then the preceding
vanishes except for a = 2, for which it gives a term proportional to g% Therefore no
derivative couplings are generated to first order in 7. We have thus shown that the
action (17.1) is closed under RG to first order in .

To obtain the RG equations, we expand B[ ¢] and C[] in powers of ¢ to rewrite
S'[¢] in the form (17.1), and read off the new coupling functions u,(g). This is
straightforward but messy, and we shall do it only to linear order in the couplings.
But first, some general comments about the 8 function.

In terms of RG, the momentum ¢ in u,(q) is on the same footing as ¢, as itis a
label for the type of interaction. To emphasize this, we write

Uny = Uolq) (17.26)

The B function in our case is defined by
Bog(u', u) = —(uaq Upg) (17.27)

where u’ — u = O(t) by construction. By considering a function u,, ,(f), we can write

g, (1)

S = B (1), u(0)) (17.28)
where u(f) stand for the set of all couplings at ¢ and ¢ = 0 corresponds to the cutoff
scale. We have calculated 8 exactly to first order in . The B function one uses in
particle theory corresponds to

Bay(#) = Ba o, us) (17.29)

where u. is a fixed point. To calculate this will require integrating the fast modes
over a finite instead of an infinitesimal shell in momentum space. This seems diffi-
cult, but its equivalent has been achieved via perturbation expansions in special
cases. Such calculations are the forte of perturbative renormalization, although in
that context one is not aware of the role of u..
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Our modest calculation has nontrivial consequences. By placing u(0) at the
Gaussian fixed point

u®)=u.=0 (17.30)

we obtain the exact B function at the Gaussian fixed point. This gives us the tangent
vectors of all the trajectories at that point, and we can tell which directions are irrel-
evant or relevant.

17.6 THE RG MATRIX

We study the tangent vectors to RG trajectories at the Gaussian fixed point. For this,
we need only the linearized RG equations. All tree graphs can be ignored, since they
are at least of second order in the couplings. The only relevant graphs are the one-
loop graphs with one vertex, the first graph in each row of Fig. 17.3 (the “octopus-
es”). It is easily verified that to this order = 0.

We revert to the action (17.1), with momentum-space representation (17.1).
From (17.2) we have

Ofel= g +r+ > Q2> &g+ +qu)u,

a4 1ga<1
>
x o, [(@g, + g+ (@y, + g Mo
=@+t (17.31)

where

0= (a+ 1)@+ upy > 8g + - +4)0, @, (1732)

a=2 igi<1

For Bf¢] given in (17.25), we neglect the P, term, and obtain
1 ~
Blgl=— > In(g*+r+0) (17.33)

Since the shell ¢ is thin, we set ¢> = 1, and replace the sum by the volume of £

Q

q;: W’Ad (17.34)

where 4, is the surface area of a unit d sphere, given by
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V—d pds2
s, = A 27
2m)y I'(dr2)
S, = (872)! (17.35)

Thus, to first order in u,,
Qs ~ ~
Blol= —2—1 In(l+r+Q)= —2S—d[ln (1+r+0]

S x
= constant + 7" Dla+ @+ D0, S e, e, (17.36)
a=2

lgil<1

The constant term can be ignored. From (17.25) we have, with 7 =0,

Clel =200 5 8a)e,, - wqa[d+ S0 —d)]ua (17.37)

lgi<1

which gives

Ble]+Clel= > > Q""8g)e, - ¢,

a=2 |g;l<1

S,
X [—2‘1(01 + D@+ gy + [d + g—(z - d)]ua} (17.38)
Putting a = 2n, we obtain the linearized RG equations [2]

d
—Zfl = 2n+d - ndyuy, + Sn + Y@n + iy
(n=1,2,...,®) (17.39)

Let i be the column matrix whose elements are s, = u,,:
2
=1 ¢ (17.40)

4y _
— =My (17.41)

We can rewrite (17.39) in the form

where M is the RG matrix:
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nd 1
M,, = 6,,,,,<n +d-1-~ —2—> + 8, (0t 1)(n + E)Sd (17.42)

Now consider the eigenvalue problem
M=y (17.43)

The eigenvectors ¢ correspond to “principal axes” in the parameter space, along
which we have the behavior dy/dt = Ay, or

(1) = ty)er o) (17.44)

The origin ¢, is arbitrary, except that it should be such that ¢ is small; but it should
not correspond to the Gaussian fixed point, where s = 0.

The eigenvalue A characterizes the trajectory tangent to the corresponding prin-
cipal axis at the Gaussian fixed point:

1. If A <0, then y — 0 as t — . The couplings constants are irrelevant. Under
coarse graining, they tend to approach the Gaussian fixed point. On such a
trajectory, the Gaussian fixed point is IR, and the theory is trivial.

2. If A > 0, then ¢ grows with ¢. The coupling constants are relevant. Under
coarse graining, they tend to go away from the Gaussian fixed point. On
such a trajectory the Gaussian fixed point is UV, and the theory is nontrivial.
The trajectory is specified by some initial condition at an arbitrary point
t = ty, and it flows away from the Gaussian fixed point. The latter can be
reached by letting r — —o, in which limit the couplings vanish. This is as-
ymptotic freedom.

3. The case A = 0 corresponds to “marginal” coupling constants. In this case,
we have to go beyond the linear approximation in order to determine the
true behavior.

Using (17.39), we can put the eigenvalue equation (17.43) in the form

n(d~2)-d+ A

o= . =1,2,---, 17.45
Uzper SAn+ D2n+ 1) Uy (n ©) ( )

which is a recursion relation starting with u, = r/2. The case d = 2 will be treated
separately. For d > 2, it is convenient to introduce a parameter a by writing the
eigenvalue in the form

A=2+(d-2)a (17.46)

The recursion relation can then be put in the form
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_(d-2a+n-1)

o= ., 17.4
Urp+2 284+ (n + 2) U ( 7
whose solution is
d—2\n1 +1)---(a+n-2
B alatl) @tn-2) (17.48)
2028, ) -3

The potential with these coupling constants is referred to as the eigenpotential. Us-
ing the abbreviation

P G 4 00] (17.49)
28,

we have

= S,
UAP@) = D i) = 5 oM@~ 1,12,2) 1] (17.50)

where M(a, b, z) is the Kummer function [3]:

487  aatD 2
Ma b=t ) 2
:—r(b) ! tHa— — Ab-a-1
F(b_a)r(a)fodtezw(l ) (17.51)

If a is a negative integer, the power series breaks off to become a polynomial of de-
gree la|. Otherwise, its asymptotic behavior for large z is given by

T(b)z7 ¢

M(a, b, 2) = I

[1+0@E] (17.52)

The eigenpotential U (¢?) describes a field theory lying on a trajectory tangent to a
particular principal axis with respect to the Gaussian fixed point. The principal axis
is identified only through the eigenvalue parameter a.

For a polynomial potential of degree K in ¢?, then, we have a = —-K + 1. The
corresponding eigenvalues are

A=2[l-d-2K-1)] (K=1,2,..) (17.53)

The case K =1 corresponds to a free field with squared mass r, which is relevant for
all d. For K = 2, we have A <0 for d = 4. For d = 3 it is negative except for the mar-
ginal case of K = 2. This case corresponds to the ¢* theory in d = 4 — ¢, with RG



356 The Gaussian Fixed Point

flow as shown in Fig. 16.6. The Gaussian fixed point is, in fact, relevant in this case.
The case d =2 will be analyzed separately later.

In summary, all potentials that are polynomials in ¢ lead to triviality for d = 3,
except for the free field, and the ¢* theory in d = 3.

17.7 NONTRIVIALITY AND ASYMPTOTIC FREEDOM

We investigate relevant directions for d > 2. They correspond to positive eigenvalues
A>0,or

> 17.54
az-—— (17.54)
The eigenpotentials have the following asymptotic behavior for large ¢:
d-2
U(¢?) ~ exp @-2¢ (17.55)
28,

Nothing in canonical field theory rules out such a potential.
Sufficiently close to the Gaussian fixed point, the potential is proportional to r,
which evolves in ¢ according to

I‘([) = I"(to)e)‘<’40) = CeM (1756)

with C = r(ty)exp(~ty). This is a running coupling constant, with an arbitrary renor-
malized value (%) at the reference point #,. The theory is nontrivial, because the po-
tential does not tend to zero in the low-momentum limit. Instead, we have asymptot-
ic freedom, corresponding to the fact that the potential vanishes in the limit  — —,
which corresponds to infinite momentum.

In order to have spontaneous symmetry breaking on the semiclassical level, the
eigenpotential must have at least one minimum in ¢. The power-series expansion
for the eigenpotential reads

U () = —124 [z (17.57)

az’ a(a + 1)2° .. ]
(d-2)

TG T GG

A sufficient condition is that U'(0) < 0, and U > 0 for large z. The first is satisfied
by choosing » < 0. Asymptotically, U is proportional to r{(a — 1)I'(a)]™!; the rest of
the factors are positive. Thus we must have (a — 1)I'(a) < 0, which is equivalent to
I'(a - 1) <0. Using the formula I'(@)I'(—a) = #/sin(7a), and the fact that I'(a) is pos-
itive for a > 0, we find that « must be in one of the open intervals (-1, ~0), (-3, -2),
and so on. For a nontrivial theory, we have A > 0, or 2 + (d — 2)a > 0. Combining
these requirements, we obtain the sufficient condition



17.8 The Cased=2 357

gl

Figure 17.4 Eigenpotentials for d = 4. Theories with these potentials are covariant with respect to RG.
The curves correspond, from top to bottom, to values of the eigenvalue parameter a uniformly spaced
from —0.999 to ~0.001. All potentials behave like exp ¢? for large . The theories are all nontrivial and
asymptotically free. The limiting case a = -1 is the ¢* theory, which is trivial. (After Halpern and Huang

[271)

5 <a<0 (17.58)

A family of eigenpotentials for this range of a, and d = 4, is plotted in Fig. 17.4.
The eigenpotential U, corresponds to a theory that lies on a trajectory tangent
to a principal axis. Generally, we can consider a theory on an arbitrary trajectory,
which is represented near the Gaussian fixed point by a linear superposition of the
eigenpotentials. This gives us considerable freedom in choosing potentials.

178 THE CASE d =2

We now calculate the eigenpotential for d = 2. Going back to (17.45), we have

U(@?) = D upng™ (17.59)
n=1
with the recursion relation
29(A -2
_2mA-2) (17.60)

Uppr) = (n + 1)(2" + 1) Uz

where A is the eigenvalue of the RG matrix. Write the recursion relation in the form
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@n?+ 31+ 1) typiy + 3 Yty = 0 (17.61)
where
Y =4m2 - A) (17.62)

Multiplying both sides of the recursion equation by z", and summing over » from 1
to %, we obtain a differential equation for the eigenpotential:

d*U dU 1 r
2242 82 ey L 17.63
Tt TarV 3 (17.63)

where z = ¢?. We seek the solution that satisfies

U= srg? (17.64)

Changing variables back to ¢ = V'z, we have
Tt YU=r (17.65)
The solution is
U =" costre) - 1

#(t) = #(0)e2-Y28mYr (17.66)

For 2 > 0, the eigenpotential is periodic, and thus w is an angular variable. The
Euclidean action

STel = [ a2 (90 + U] (17.67)

leads to the equation of motion
& * "y .
(5; " W)cp_ = sin(ye) =0 (17.68)

which is called the “sine Gordon equation.” For 0 < 72 < 87, the potential is rele-
vant, and the theory is asymptotically free. For y* > 87, it is irrelevant, and the the-
ory is trivial. These conclusions agree with those arrived at through perturbation
renormalization [4].

As we shall see in the next chapter, the angular nature of the field dictates the
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existence of vortices, which cannot be described within the linear approximation
considered here.

PROBLEMS

17.1 Show that the anomalous dimension has the value 5 = 0 to one-loop order. (Hint: Ob-
tain 7 from the Wegner-Houghton formula, which represents a sum of one-loop
graphs.)

17.2  Consider a Ginsburg-Landau theory with free energy +fd“{(d¢)* + r¢?]. Show that
d? In Z/dr? = Cr*4. (If we regard r as a temperature, this gives the heat capacity.) This
shows that d = 4 is a “critical dimension” of the Gaussian fixed point, in that perturba-
tion theory in powers of » breaks down for & =< 3. This is why, in the theory of critical
phenomena, one considers d = 4 — ¢, and uses a double perturbation expansion in r and
€. The d = 2 case in the last section is in a different category, for the r¢? term is re-
placed by cos ¢, making ¢ an angle. This is discussed in Chapter 18.

17.3 For d = 2, give the eigenpotential and the corresponding equations of motion for the
field, when vy = ik. Argue that this result is valid by analytic continuation from real y.
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CHAPTER EIGHTEEN

In Two Dimensions

18.1 ABSENCE OF LONG-RANGE ORDER

We consider systems 1 two Euclidean dimensions, which may be statistical systems
in two spatial dimensions, or quantum field theories in one spatial dimension. These
interpretations are merely different aspects of the same partition function in the lan-
guage of path integrals. For definiteness, we phrase our discussion in terms of sta-
tistical mechanics.

From a physical point of view, the essence of two-dimensionality is that long-
range order cannot be maintained over arbitrarily large distances, due to large fluc-
tuations of the Goldstone mode [1]. An equivalent statement is that spontaneous
breaking of a continuous symmetry is impossible [2]. We shall illustrate this in a
simple model.

Consider a collection of atoms in a plane, in which a crystal of size L x L be-
gins to form. Let x denote an equilibrium lattice site and u(x), the deviation of an
atom’s instantaneous position from x. We can make the decomposition

1 )
u(x) = ;;e'“q«k) (18.1)

where g,(k) is the amplitude of a normal mode of type A, of wave vector &. In ther-
mal equilibrium, the amount of energy residing in this mode is given by

E\(k) = 4 wi(R)qk)P (18.2)

where w,(k) is the normal frequency. At absolute temperature 7, this should be
equal to T'by equipartition, in units with Boltzmann’s constant set to unity. Thus

(k) P = (18.3)

Pl
w; (k)
!Spontaneous breaking of a discrete symmetry is possible, as in the 2D Ising model.

360
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For large L, the mean-square displacement is given by

~ [ d*% 1
(u)=2T >r f(—z‘;;;m (18.4)

Since formation of a crystal means that translational invariance is broken, there ex-
ists a Goldstone mode whose frequency wy(k) approaches zero in the limit £ — 0.
This corresponds to lattice phonons, with wy(k) = ck, where ¢ is the velocity of
sound. Thus we have a lower bound:

P 1T
Q2m? w3ty mt e k

<u2>>2Tf (18.5)

where A is the inverse lattice spacing. As L — oo, the integral diverges like In L. This
shows that crystalline order cannot be maintained over long distances, for it will be
disrupted by long-wavelength density fluctuations.

18.2 TOPOLOGICAL ORDER

Although long-range correlations are eventually disrupted, they can extend over a
considerable distance, because (u?) diverges only logarithmically. In fact, there can
exist patches of crystalline structure of macroscopic size. The boundaries of these
patches are domain walls, which can be modeled by removing lines of atoms from
the lattice, leaving chasms across which the atomic interactions are altered. Domain
walls so created are illustrated in Fig. 18.1. The endpoint of a domain wall is a “dis-
location center,” or “center” for short. To find a dislocation center through a site-by-
site inspection would be very tedious; however, there is an easier way. Let us go
around a circuit made up of successive lattice steps, such that we make » steps in
each of the four directions. For example, Fig. 18.1a shows a circuit with n = 3, start-
ing at A. On a perfect lattice a circuit will return to the starting point, but it does not
close if we go around a dislocation center. The difference between the starting point
A and the endpoint B is called the Burgers vector. When we go around a single dis-
location center, the Burgers vector is either +1 or -1, as illustrated in Figs. 18.1a
and 18.1h. We call the +1 case a “center,” and other an “anticenter.” In general, the
Burgers vector of a circuit is the sum of contributions from the centers enclosed. It
is a topological property independent of the size and shape of the circuit, as long as
it goes around the same set of centers. We now imagine that the imperfect crystal is
very large, so we can draw a circuit C of macroscopic size, on whose scale the lat-
tice appear to be almost a continuum. We associate with C a topological order para-
meter defined as

O(C) =N, -N) (18.6)

where N, is respectively the number of centers and anticenters enclosed by C, and
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Figure 18.1 Dislocations in a 2D lattice. A circuit around a dislocation fails to close. The difference
A — B between the start and finish is called the Burgers vector.

() denotes thermal average. This is a loop function, and quite different from a local
order parameter.

A isolated center can cost a lot of energy, because a domain wall must extend
from the center to the surface of the system, and there is a fixed energy per unit
length. On the other hand, the domain wall that connects a center with an anticenter
has energy proportional to their separation. Thus, in an infinitely large system, there
must be an equal number of centers and anticenters, tied in pairs by domain walls.
These pairs may form an “ionized” gas, or a collection of tightly bound “dipoles,”
as illustrated in Fig. 18.2. These configurations are characterized by different be-
haviors of the topological order parameter.

In the ionized state, the centers are uniformly distributed. The probability of
finding a center or anticenter inside C is proportional to the area enclosed by C. The
average value of N, — N_ is therefore proportional to the statistical fluctuation V'N,,
the square root of the area, or the perimeter L(C) of the closed loop.,

In the bound state, on the other hand, a bound pair makes no contribution to the
order parameter, unless it is cut through by C. The number of pairs cut is propor-
tional to L(C), and a cut pair contributes =1 with equal probability. Therefore, the
average contribution is proportional to the fluctuation V L(C)

Thus, up to a proportionality constant, we obtain
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(@) (5)

Figure 18.2 (a) lonized gas of dislocation centers and anticenters; (b) bound pairs.

[ L©) (ionized state)
cI)(C)“{\/L(a (bound state) (18.7)

where L(C) is the perimeter of the loop C. The two cases become distinct for large
loops, such that L(C) — . In a thermodynamic treatment of this system, one finds
there is a phase transition between a low-temperature bound phase and a high-tem-
perature ionized phase. In the bound phase the system responds to an external stress
like an elastic solid, whereas the ionized phase cannot support any stress at all, but
flows like a liquid. This model forms the basis of a theory of 2D melting [2]. We
shall discuss the phase transition in the equivalent XY model.

18.3 XY MODEL

The XY model consists of a 2D square lattice of classical spins s; of unit length,
which are free to rotate in the x~y plane. The energy of the system is given by

Exy[6]=—J > sys;=~J > cos(6; - 6) (18.8)
[ [G2

where 6; is the angle of s; with respect to some fixed axis and (ij) denotes a nearest-
neighbor pair. This is invariant under a simultaneous rotation of all the spins. The
partition function is given by

27
Ziy=T1[ dg,esexvte (189)

i 70

where B is the inverse temperature. The absence of spontaneous magnetization in
2D can be proved rigorously, and is known as the Mermin—Wagner theorem [3]. Our
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physical discussion earlier shows that there can be large but finite patches of mag-
netization; however, long-range correlation is disrupted by defects, which in this
case are vortices, as illustrated in Fig. 18.3.They have the property that the spin ro-
tates through 27 around a vortex, and —27 around an antivortex. They bear a one-
to-one correspondence with dislocation centers and anticenters, and we can take
over the idea of topological order from the 2D crystal.

The XY model has been studied in great detail [4]; but we are interested only in
the continuum limit, in which we can make the replacement

1 2
cos(e,.—a,)z1——2~(9,79j)2—>1—32—(V¢9)2 (18.10)
where a is the lattice spacing. This leads to an energy functional
1
E[6] = Epofdzx(VB)z (18.11)

where p, is a constant. This looks just like a free field theory, and we seem to have
lost the vortices. However, there is an important difference, namely, 8 has physical
meaning only modulo (27). The system has a kind of gauge invariance, and, as
pointed out by Berezinskii [5], this gives rise to vortices.

To explain the peculiarities of an angular field, consider the Ginsburg-Landau
(GL) functional

A NN
//+\\ N e
NN S S NN
R A
~N S SN
\\+// AN T
N N e
A NN N e

Vortices Antivortices

Figure 18.3 Vortices and antivortices in the XY model. Lower panel shows equivalent configurations
after a global spin rotation through 90°.
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Eg ¥ = fdzx[%lvdfi2+uz|w+u4w44] (18.12)
where ¢ is a complex field. By putting
w="Vpe (18.13)

we can rewrite

1 1
Faulp, 0= [ ] 0T 07 + (Vo2 + 10|
p
V) = a6 + g (18.14)

Now choose u, and u, in such a manner as to trap p at a steep minimum at p, =

V=uylu,, with

Viipo) =0 V"(po) > 1 (18.15)
With this, we can identify our continuum model with a limit of the GL model:

E[6] = EgL[po. 6] + Const. (18.16)
With this, it is convenient to take the spin variable as ¢ = \/;)—Oef‘), as it is a complex

representation of a planar spin. The spin—spin correlation function has been calcu-
lated by Berezinskii [5]:

<ei9(x)e“i0(0)> =

DO ¢ PELG] ol 8(x)-6(0)] ~1/(2mBpg)
[ Dbe e :(M) o s

[ D@ & BELE] a

This is equal to {cos(8(x) — 6(0))), because (sin(A(x) — 6(0))) = 0. This correlation
function is “gauge-invariant,” for it depends only on 8 modulo (27).
Consider the gauge-variant correlation function (see Problem 14.5):

[DOAM0w60) 1 b

(OO = == Dot~ 27 g (18.18)

Formally this is just a correlation function of a free field in 2D. It says that the
probable value of #(x) increases with distance, when it is fixed at x = 0. If 6(x)
were an ordinary scalar field, this would simply mean that the field amplitude gets
larger and larger. But since 8(x) is an angle, this says that it makes an increasing
number of revolutions as |x| increases. Sufficiently far the origin, therefore, 6(x)
mod(2) will be randomized, and ¢'** will average to zero. Therefore, in an infi-
nite 2D system
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=0 (18.19)

This statement is equivalent to the Mermin—Wagner theorem, and has been proven
more rigorously by Hohenberg {6] and Coleman [7].

Consider now two paths P and Q with the same endpoints, as illustrated in Fig.
18.4. The phase change along P and O may differ by a multiple of 2, since only 6
mod(27r) has physical meaning:

(f ~f)dS'V0=27m (n=0,£1,%2, . ) (18.20)
Q P

We can regard the two paths as a closed path C = O — P. When C 1s continuously de-
formed, the line integral cannot change continuously, but must jump by units of
+277. These quanta are vortices or antivortices, defined by

f’CdS‘VOi =327 (18.21)

For counterclock-wise C, the sign +1 (~1) corresponds to a vortex (antivortex). We
shall refer to the quanta generically as “vortices,” and regard an antivortex as a vor-
tex with vorticity —1.

The loop C cannot be shrunken to a point, because the angle becomes ill-de-
fined. Therefore the function 6,(x) has singularities at the location of the vortices,
and we need a short-distance cutoff. This is introduced by decreeing that there is a
“vortex core” of radius a, inside of which we set p, = 0. This renders the space ef-
fectively nonsimply connected.

An explicit solution for the vortex field is

O.(r, )= %o (18.22)

where (7, ¢) are cylindrical coordinates with respect to the vortex center. The refer-
ence axis ¢ = 0 is arbitrary, and changing this axis is a gauge transformation. That
the phase angle increases by +2 around the vortex is the hallmark of a “gauge soli-
ton”: A transformation in spatial coordinates induces a “gauge transformation” of
the internal coordinates. The velocity field of a vortex is gauge-invariant:

A Q

Figure 18.4 The phase change along P and Q may differ by an integer multiple of 2. signifying the
presence of vortices within the close path QO - P.
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A

Vo.(r, ¢) = i% (18.23)

where @ is the unit vector in the ¢ direction. The velocity field is tangent to circles
about the vortex center. The velocity in this case corresponds to the difference be-
tween neighboring spins in Fig. 18.3.

The energy of a vortex is, up to an additive constant,

R
o= 2 [ a4V 6,2 = mpyin = (18.24)
2 a

where R is the radius of the whole system. The energy of an isolated vortex diverges
as R -— oo; but that of a dipole pair remains finite, because the corresponding veloc-
ity field is short-ranged. Thus, in an infinite system there must be equal numbers of
vortices and antivortices. The vortices are just like dislocation centers in a 2D crys-
tal, and we can take over the definition of the topological order parameter (18.6),
with the property (18.7).

18.4 KOSTERLITZ-THOULESS TRANSITION

To see whether a system of vortices can undergo a phase transition, consider an ion-
ized gas of N/2 vortices and N/2 antivortices, with uniform density. The free energy
of the system at temperature T is given by

F=E-TS (18.25)

where E is the total energy:
R
E=NmpyIn — (18.26)
a

and S is the total entropy, the logarithm of the number of ways to distribute the vor-
tices and antivortices in space. The number of ways to place one vortex is (R/a)?, the
ratio of total area to the area of the core. Thus

S=N1n<R)2 (18.27)

a
The free energy is thus

R
F = N(mpy ~ 2D)ln ~ (18.28)
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This shows that there is a critical temperature

7= (18.29)

For T'> T, the free energy decreases with increasing f, favoring the creation of free
vortices. If T < T,, however, the free energy is minimum at N = 0. That means that
the free vortices will form tightly bound pairs. This phase transition, which marks a
change in topological order, is known as the Kosterlitz—Thouless transition [8].

18.5 VORTEX MODEL

We can now describe the continuum limit of the XY model taking vorticity into ac-
count, in a manner similar to that described in Section 15.5. Since the vortex core
renders the space non—simply connected, V8 has both longitudinal and transverse
parts:

VO=Vw+VxA (18.30)

where Vw is a regular function, representing spin-wave contributions, while V x A
is singular, coming from vortices. We can obtain A from the expression for V4., but
it is easier to find it from the defining condition

bodsV x A =2mm (18.31)
For pointlike vortices, this can be rewritten in differential form:
V2A = —2n(x) (18.32)

where Z is the unit vector normal to the plane of the system and n(x) is the “vortex
charge density”:

N
n(x)=> 27 p,B(x — 1)
=1

The vortices are centered at r, - - - ry, with “charges” p, = +1 for vortex, —1 for an-
tivortex. Using the 2D Green’s function

G(x) = -2—17; In % (18.33)

we obtain
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A A N !X B l‘-f
A0 =3 [ &% Gix-yn(y) =2 > piln o (18.34)

=1

This holds outside vortex cores. Inside any vortex core, A(x) =0.
In the presence of N vortices, the energy functional (18.11) should be general-

ized to

En[6] = % [ axveop + Np
- % [ Vo + |V x AR]+ Ny (18.35)

where u is the chemical potential—the energy required to create a vortex core. We
can calculate the vortex contribution more explicitly:

329 f A2V x A) = % f d%x d% n(x)G(x - Y)(y)

=-27p,> pip,In '—r—;—rfi (18.36)

i<j

Since the total vorticity should be zero for an infinite system,

N
> pi=0 (18.37)

=]

We see that the vortex system is equivalent to a neutral 2D Coulomb gas.
The energy functional can now be represented in the form given by Kosterlitz

[9F:

EN[B] = Ewave[w] + Evortex(rl T rN)
=Pl 2
Euncle] = 2 [ a2V

Evortex(rl e rN) = ~‘2'771)(]2‘ bip; In |rl—;ri|‘ + N}L (1838)

i<y
The partition function is given by

Z = ZWB\'eZVOﬂCX

Z ave = f Dow exp[~£2lzg f dzx(Vw)Z]
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d? | r.|
Zyortex = [(N/ 2)']22 j S exp[Zﬂ'BpOZp,pj In —J_] (18.39)

{pit i<j

where

z=ePr (18.40)

is the vortex fugacity. The sum over N extends over even integers only, the sum over
p; is subject to 2p, = 0, and the r integrations are subject to |r,— r}| > a. As is usual in
calculating grand partition functions, we keep the volume ) large but finite, and
take the limit { — o in physical quantities, such as 7' In Z,,yy.

In the limit z — 0 we have a dilute gas of vortices. To order 2, we need only the
trivial case N = 0, and the case N = 2, corresponding to one vortex—antivortex pair.
Since p\p, =-1, we have to this order

Zoonex = 1 + 22 f +0(zY  (18.41)

Iry-ral>a at

dzrl dzrzl: [l‘l - rzi ]”Z”BPO
a

The mean-square radius of a vortex-antivortex pair is

< > dzrl dzrz lrl “rzl “ZﬂBPOir —r |2
2770 ri~ral>a a4 a ! 2
* T Ty~
=£ du w3278y = a7 (1 - —T—) (18.42)

which diverges at the critical temperature T, = 7py/2. This value agrees with (18.29)
arrived at by an intuitive argument. The fugacity expansion is valid only when the
vortices are bound in pairs, and fails when they become ionized.

18.6 2D SUPERFLUIDITY

We take the formula for the superfluid density from Appendix B:

,BPO

pu= o= B [ dPx (vi(0)v1 () (18.43)

where
vi=VxA (18.44)

Taking the Fourier transform of vy in a large periodic box of volume ), we have
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1 ;
vit) = 5 2, e** (k)
k

Vo) = [ dPx %% vi(x) (18.45)
Then
2
Py = gy (—Dﬁfpf)—a lim (¥4(K) (k) (18.46)

Specializing to D = 2, we have

(k) = [ d2x e¥x 7 x A) = [dir e T ¢ [ J a2 G(x - y)n(y)}

ik x %
== n(k) (18.47)

where n(k) is the Fourier transform of the vortex density:
N
n(k) = > 2mp, e (18.48)
=1
Thus
- . (n(K)n(-k))
Ps = Po— Bps im0 (18.49)

For small k, we write

n(k)n(-k) = (271')22 pip,e i)
ij

= Qa2 ) ppAl - ik(r—r)— 3[k(r,—r)P+ -} (1850)
i

The first term vanishes because 2p; = 0. The second terms vanishes when integrated
over r;. When the third term is integrated over the coordinates, we have

[ a2ry ar e, - e = kKB @2y dPrae, - r)(r, - 1)
k2
- dezrl A2rfr, — 1y (18.51)

Anticipating the integrations, we can take
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Qmk?
4

n(k)n(-k) = — > ppjr ~ 1+ O (18.52)
Lj

To order z* we need to average the preceding over configurations with only one vor-
tex—antivortex pair:

- (on(-k))
m————-——-——— =

T

lim=—="5 227(2) + O(z%) (18.53)

where (r2) is given by (18.42). To this order, the denominator Z, .., = 1 + O(z?) can
be set to unity. Thus, the fugacity expansion of the superfluid density is given by

ps = po— 227 Bpi(r?) + O(z*) (18.54)
or
Loy 2nﬁzzrdu w20 + O(z%) (18.55)
KS KO 1
where
Ko = Bpg
K = Bp (18.56)

As noted before, the fugacity expansion is good at low temperatures, but breaks
down at the K7 transition point.

18.7 RG TRAJECTORIES

We make an RG transformation through the scale change @ — ae’, without altering
the system. For infinitesimal ¢, we rewrite (18.55) by splitting the integral:

1+

j du b2 Ko = | dy 3-27Ko + j du 1327Ko (18.57)
1 1+t

1

The first term gives ¢. The lower limit in the second term can be restored to unity
through rescaling. Thus we obtain

1o -
— ==+ 22 22 + (4= 2 K] | du w0+ O@)  (18.58)
KS Ko 1

Now defining the scale-dependent parameters
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1 ]
F(t; = K—(O')‘ + 2701 22(r) + O()
22(8) = z2(0){1 + [4 - 27K ()]t} + O() (18.59)

with z(0) = z and K(0) = K. Then we can write

1 1 *
e 2 320K + (2 .
X~ Ko z (t)f] duu o, 2*%) (18.60)

which has the same form as (18.55), except for a change of parameters. As we can

see, K, is scale-invariant.
The differential form of (18.59) gives the RG equations of the XY model [9]:

d 1
— — =232

dt K 2wzt + OF)

dz?

o 24 - 27Ky + O(z%) (18.61)

The line z = 0 is a continuous distribution of fixed points. An isolated fixed point
occurs at z = 0, K = 2/ This is the critical point of the K7 transition, and we call it
the K7 fixed point. In terms of the temperature T = py/K, the critical point occurs at
T.= mpy/2. Let

(18.62)

Then, near the KT fixed point, to first order in 7and second order in z, we have

dr

— = @mps
d
—5 =27 (18.63)

From the first equation, we see that dr /dt > 0. Thus trajectories always flow in the

positive T direction.
Dividing the first equation by the second, we obtain dv/dz = 2#°z/T, which
leads to the orbit equation

P22 =C (18.64)

where C is an integration constant. The trajectories are hyperbolas, as shown in Fig.
18.5. There are two asymptotes corresponding to C = 0. The left asymptotic is the
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Fixed line T 0
KT fixed point

Figure 18.5 RG trajectories of the XY model in the neighborhood of the Kosterlitz-Thouless fixed
point, in the parameter space spanned by a temperature T and the vortex fugacity z. All points in the
shaded region have infinite correlation length.

transition line of the K7 transition. In the region to the left, all trajectories flow into
the fixed line. This means that z is irrelevant, and thete are no free vortices. The cor-
relation length diverges in the entire region, and the correlation function has alge-
braic rather than exponential behavior.

The region to the right of the transition line represents the high-temperature
phase, where all trajectories eventually tend toward large 7 and z. Points 4 and B in
Fig. 18.5 lie on opposite sides of the KT transition line, with 4 in the low-tempera-
ture phase and B in the high-temperature phase.

In the region between the right asymptote and the positive 7 axis, all trajectories
are UV, and the fixed line is unstable against vortex creation.

We have derived the RG equations in a fugacity expansion to order 2%, and this
covers only an infinitesimal strip just above the negative 7 axis. We can analytically
continue the RG equations to positive 7, but the domain of validity remains an in-
finitesimal strip. Fortunately, this is sufficient to give a complete understanding of
the KT transition, because the strip contains the fixed point.

The correlation function of this model is the same as (18.17), except that the
phase angle should include contributions from vortices:

b(x) = w(x) + ()
where w(x) represents the spin-wave part and

)= pie (18.65)

is a sum of vortex contributions (18.22). The correlation function is thus
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G(x) = (e A0y gux)g=i(0)y (18.66)

The spin-wave factor is given by (18.17), and Kosterlitz [9] has calculated the vor-
tex contribution in the low-temperature phase at the KT fixed point:

(eX)gmin®) = (—2)_”4[1n (2)}”8 (18.67)

where r = [x|. Thus in the low-temperature phase

Gix) = [m (5)}'/8(1)*‘”"’3"0*”“ (18.68)

a

which verifies that the correlation length is infinite.

In the high-temperature phase, the correlation length £ is finite, but diverges at
the critical point. Recall that £ e ¢~ under a scale change. Let A7 be the distance to
the transition point at fixed z. To find how & depends on A7, we shall find how At
depends on 1.

In the high-temperature phase, since C > 0 in (18.64), we put C = o?. The tran-
sition line corresponds to « = 0. A point such as B in Fig. 18.5 moves along the tra-
jectory when ¢ changes, but moves to a different trajectory when a changes. We
want to find the correlation between these movements. The distance to the transition
point at constant z is given by

2

Ar=c-\VE-a z—g— (18.69)
C

where ¢ = V27z. By integrating the RG equation for 7, we obtain its £ dependence
(with arbitrary origin):

i
——cot' L =21 (18.70)

o [44

which becomes —7/2a = t when a — 0. In terms of A7, then, we have

’

c
t=- 18.71
VAT (1871
where ¢’ is a constant. Therefore the correlation length diverges like
¢’ )
£ A0 PR (18.72)

This exhibits an essential singularity, and the usual notion of critical exponent does
not apply.
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Fisher and Nelson [10] suggest the following generalization for the RG equa-
tionsfor D=2+ e

_d_.i =2 ZZ__ i
dt K K
d2
i = 22(4 — 27K) (18.73)

The extra term the first equation comes from the fact that X is no longer dimension-
less. The second equation is unchanged because z remains dimensionless. We see
that the KT fixed point is moved to a location above the z axis. But there is no longer
a line of fixed points. As shown in Fig. 18.6, there is a line crossed by trajectories at
normal incidence. It is this line that becomes the fixed line at z = 0 when € — 0. The
fact that the fixed point is off the z axis means that the fugacity expansion no longer
yields exact answers.

18.8 UNIVERSAL JUMP OF SUPERFLUID DENSITY

Ordinarily, when a superfluid is heated, the superfluid density decreases to zero ac-
cording to a power law. Nelson and Kosterlitz [11] pointed out that in 2D the super-
fluid density suddenly jumps to zero at the transition point, with a universal discon-
tinuity. This can be seen by inspection of Fig. 18.5. We recall that K is scale
invariant in 2D, and therefore has the same value along a RG trajectory. Thus, as
point A approaches the transition line, K; — 2/, the K7 fixed point. At point B, on
the other hand, K, = 0, because it is equal to its value at high temperatures. There is
thus a discontinuity across the phase transition line:

1/K

Figure 18.6 RG flow in 2 + e dimensions. The dotted line becomes the fixed line when € — 0.
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2
—  (low- temperature phase)

K=1T (18.74)
0

(high-temperature phase)

The superfluid density is p, = B 'K,, in some natural units, in which the energy
functional is z p,fdx(V )% In physical units the superfluid velocity is (#/m)V#, and
all densities acquire the units (71/m)?. Thus the superfluidity density has a disconti-
nuity given in physical units by

Aps=1<OTc
2m%k
Ko= 3" =3.491 < 10° g om2 K- (18.75)
w

where the numerical value refers to helium atoms. The jump is universal in that it
depends only on atomic constants. It has been tested in experiments on helium films
from different laboratories, using different methods to measure the superfluid densi-
ty, with different film substrates and thicknesses.Very good agreement was ob-
tained, as shown in Fig. 18.7. This indicates that only the temperature and vortex fu-
gacity are relevant parameters. Other parameters that vary from experiment to
experiment, such as film thickness and the nature of the substrate, are irrelevant.

Apg (g/em?)

6x109

4x10°9

2 x10°9

Figure 18.7 Compilation of data on the superfluid jump in thin helium film from different laboratories.
The straight line is the prediction from the vortex model Ap; = K, T, with Ky = 3.491 x 10 gecm 2K .
[After D. J. Bishop and J. Reppy, Phys. Rev. Lett. 40, 1729 (1978).]
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PROBLEMS

18.1

18.2

A general vortex is a configuration ¢(x, y) satisfying § dx* & ¢(x, y) = 2z, where v,
is the circulation. We have z, = 1 in (18.21). Clearly, the configuration has to be singu-
lar, like (18.22). A manifestation of the singularity is that the current defined by j%(x, y)
= ek 3/ (x, y) fails to satisfy the expected identity ¢ = 0.

(a) Verify that a solution to the vortex condition can be written
X
d(x, y) = gotan! —
Y

(b) For this configuration show that
F54(x, y) = 270,8(x)8(»)

Obtain equations for the RG trajectories of the XY model by integrating the RG equa-
tions (18.63), which are valid for all 7, but only for small z. Use the relation (18.64) to
express z in terms of 7. The constant C is negative for point B in Fig. 18.5, and positive
for points A and C.

(a) For points C and B, put C = b? and show that
(1) = b(1 + 2%)
2() = 7'V 2b2e2
which are valid for bt — o, where b < 0 for 4, and b > 0 for B. As a quantum

field theory, the coupling constant z is trivial in the former case, and asymptoti-
cally free in the latter.

(b) For point B, put C = —a?, and show that

7(f) = 2at

2
() = 7! /32—(1 +27)

which are valid for |a| <€ 1, || < 1. There is no fixed point in this region.

REFERENCES

1. R. E. Peierls, Helv. Phys. Acta 7 (Suppl. 11}, 81 (1934).

2. D.R. Nelson and B. I. Halperin, Phys. Rev. B19, 2475 (1979).

3. N. D. Mermin and H. Wagner, Phys. Rev. Lett. 17, 1133 (1966).

4. 1. V. Jose, L. P. Kadanoff, S. Kirkpatrick, and D. R. Nelson, Phys. Rev. B19, 2457 (1979);

D. R. Nelson, in Phase Transitions and Critical Phenomena, Vol. 7, C. Domb and J. L
Lebowitz, Eds., Academic Press, Orlando, FL 1983).

5. V. L. Berezinskii, Sov. Phys. JETP 32, 493 (1970); 34, 610 (1971).



References 379

6. P. C. Hohenberg, Phys. Rev. 158, 383 (1967).

7. S. Coleman, Commun. Math. Phys. 31,259 (1973).

8. I M. Kosterlitz and D. J. Thouless, J Phys. C6, 1181 (1973).

9. I M. Kosterlitz, J. Phys. C7, 1046 (1974).
10. D. S. Fisher and D. R. Nelson, Phys. Rev. B16, 4945 (1971).
11. D. R. Nelson and J. M. Kosterlitz, Phys. Rev. Lets. 39, 1201 (1977).



CHAPTER NINETEEN

Topological Excitations

19.1 TOPOLOGICAL SOLITON

A soliton is a solution to a classical field theory that describes a localized distur-
bance with finite energy. A topological soliton is one stabilized by topology; that is,
it cannot be continuously deformed to the vacuum. We introduce the subject
through an simple example.

Consider the so-called sine-Gordon theory in 1 + 1 dimensional Minkowskian
space-time, with Lagrangian density

ap b
H=— W - 19.1
coen=5 (5 - 3(5) - -eos o (19.1)
where the potential includes an appropriate constant to make it nonnegative. The ac-
tion is

S[é] = fodtJ’ dx[ (i‘f) ~2(‘;f) W(l—cos¢>)] (19.2)

which leads to the equation of motion

FPo P :
gy —?‘*‘WSIH ¢=0 (19.3)

We encountered this theory in Chapter 17 in Euclidean space—time, as a quantum
field theory with asymptotic freedom. It is also the XY model discussed in Chapter
18, in the presence of an external magnetic field . We view it here as a classical
field theory in one spatial dimension.

The topological essence of this model is as follows [1]. The field variable ¢(x)
is an angular variable defined on a circle S'. We impose the boundary condition
e’ =1 at x =+, and this compactifies the manifold of x to S'. Thus ¢(x) represents

380



19.1 Topological Soliton 381

a map S' — §', which falls into classes labeled by an integer winding number,
which denotes the number of time the ¢ manifold is covered when the x manifold is
covered once. The winding number is invariant under homotopic transformations—
continuous deformations of the field configuration.

We now discuss properties of the solutions. The Hamiltonian is given by

[T L9\ 1%\ _
H—j_xdx[z(ﬁt>~2(ax)+W(l coscb)] (19.4)

The classical vacuum-—the configuration of lowest energy—corresponds to ¢(x, 1)
= ( mod(27). A topological soliton is a solution in which the field approaches dif-
ferent but equivalent values as x — +o0, such as

dix, 1) — { o (19.5)

The solution can be obtained by minimizing the Hamiltonian. Consider first a static
soliton. Since the potential is zero only when ¢ = 27mn, to keep the potential energy
small, ¢ would like to switch from 0 to 27 suddenly, but that would cost too much
kinetic energy. A compromise is struck by having the transition occur in an interval
of some width L. The kinetic energy is then of order 1/L, and the potential energy is
of order #L. Thus

1
Energy ~ I + WL (19.6)

Minimization with respect to L gives

|
L ~—
Vw

Energy ~ VW (19.7)

The soliton is a “kink” in the field centered at some location x,, as illustrated in Fig.
19.1. The energy is independent of x.

We can construct a time-dependent soliton, which moves with a definite veloc-
ity without changing its shape. To do this, let

E=x—u (19.8)
The equation of motion can be written in the form

V() _cos ¢
o6 Wp)y=Ww 2 (19.9)

(bll:
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olx) olx)
x0
|
i T :
(a) (6)
2QR———— — — = ==~~~ - m = = —m — =~ T === - - == == o
ofx)
0 x

(c)

Figure 19.1 (a) Topological soliton stabilized by boundary condition; () antisoliton; (c) soliton—
antisoliton pair.

where ¢’ = d¢p/d¢. This is like Newton’s equation in mechanics, with conserved
“energy” given by

C= ('Y + V) (19.10)

This can be integrated to yield
dé
—— = 19.11
f V2[C- V()] (10

Choosing C = W/(1 - 1?), we have

1 /1= dp
PR Jsinz(¢/z) ~¢ (19.12)

&(x, 1) =4 tan~!(¢VW-vi-xg)) (19.13)

which gives the solution

]

where x, is an arbitrary constant. The name soliton was derived from the “solitary’
wave witnessed in 1834 by J. Scott Russell [2]:
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[ was observing the motion of a boat which was rapidly drawn along a narrow
channel by a pair of horses, when the boat suddenly stopped—not so the mass of
water in the channel which it had put in motion; it accumulated round the prow of
the vessel in a state of violent agitation, then suddenly leaving it behind, rolled for-
ward with great velocity, assuming the form of a large solitary elevation, a rounded,
smooth and well-defined heap of water, which continued its course along the chan-
nel apparently without change of form or diminution of speed. I followed it on
horseback, and overtook it still rolling on at a rate of some eight or nine miles an
hour, preserving its original figure some thirty feet long and a foot to a foot and a
half in height. Its height gradually diminished, and after a chase of one or two miles
Iost it in the windings of the channel. Such, in the month of August 1834, was my
first chance interview with that singular and beautiful phenomenon.

Such solitary waves have been observed in plasmas and optical media. But our in-
terest here is confined to the topological aspects of static solitons.

19.2 INSTANTON AND TUNNELING

The static soliton is obtained by putting v = 0:
P(x) = 4 tan”! (e VH0x0) (19.14)

Classically, this represents a time-independent field configuration in one dimen-
sion. However, in quantum theory, we can interpret x as Euclidean time. In this
view, ¢(x) is the coordinate of a particle, and the soliton (19.14) interpolates be-
tween the vacua ¢(—c) = 0 and ¢() = 27 in Euclidean time. "tHooft [3] named it
the “instanton,” for one could imagine that the vacuum “pops” at time x,. We can
show that the instanton give the transition amplitude for quantum tunneling between
the two vacua.

Consider a quantum-mechanical particle of unit mass and coordinate ¢, mov-
ing in a potential V{¢), which possesses two minima at ¢, and ¢,, as shown in Fig.
19.2. The amplitude for a particle to tunnel from ¢, to ¢, at zero energy is given in
the WKB (Wentzel-Kramers—Brillouin) approximation by

S ) (19.15)
1

In this semiclassical approximation, the particle is 2 wave packet of zero classical
energy, whose motion is described by classical mechanics (in real time) except for
the tunneling. It was located initially at ¢,, and makes a quantum jump with proba-
bility {Twksl?, to appear at ¢, with zero velocity. Thereafter, its motion is again gov-
erned by classical mechanics.

The quantum jump can be regarded as a process happening in imaginary time
T=it, with transition probability amplitude
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V(©0) -V(9)

VAV, o &
o 6. ; {; i

Figure 19.2 An instanton gives the dominant Feynman path for tunneling between the two minima of
the potential V. It describes imaginary time development with inverted potential --V.

(:IT1d)) = [ Deb(r) e (19.16)
The Euclidean action is
S[é] = [:df[—;—(%z)z + V(d)(f))] (19.17)
with the boundary conditions
N ¢ (1> ®)
&(7) { b (1— —0) (19.18)

In the semiclassical limit, the dominant path is a solution to the classical equation of
motion
d*¢ dv

;,‘7‘2‘—%=0 (19.19)

which describes the motion of a particle in the potential ~V{(¢) with the given
boundary conditions, as shown in Fig. 19.2. To solve the equation, note that the con-
stant of motion corresponding to energy is

(ﬁ@‘y -W(@)=0 (19.20)
dr

1
2

and the value of the action at the minimum is
S, = Zf dt V((1) (19.21)
We use (19.20) to rewrite ¥V = VI VV =V Vi2(d¢/dT), and obtain

So= f:2d¢\/2mV(¢>) (19.22)
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Thus, in the saddle-point approximation we have

(D|TNd)) =~ e%0 = Tyyp (19.23)

This show that the instanton is the Feynman path that dominates the tunneling am-
plitude in the semiclassical limit.

19.3 DEPINNING OF CHARGE DENSITY WAVES

We now apply the instanton description of tunneling to a physical problem. In lin-
ear-chain conductors, such as TTF-TCNQ (tetrathiafulvalene—tetracyanoquin-
odimethane), there exists a periodic charge distribution p(x, ) called a charge densi-
ty wave (CDW)*

px, 1) = P+ pocos(Qx + (x, 1)) (19.24)

where p is a uniform background density, p, is the amplitude of the CDW, Q is the
wave number, and ¢(x, ) is the phase relative to an underlying periodic lattice.
When the wave number Q is the same as that of the lattice, the latter presents a com-
mensurate potential that pins the CDW, preventing it from sliding. In equilibrium,
then, ¢(x.f) has a value ¢, everywhere. If we turn on an external electric field, the
potential will become “tilted,” as shown in Fig. 19.3, and the CDW can slide by tun-
neling from ¢ to ¢, = ¢, + 2. This process cannot take place throughout the chain
simultaneously; the probability of that is nil. As a result of random fluctuations,
thermal or quantum mechanical, a small one-dimensional “bubble” of phase ¢, oc-
curs somewhere, and then expands to engulf the whole chain [5].

V()

| | ¢
R 0

-
2n

Figure 19.3 The potential seen by a charge density wave in an external electric field. In a small “bub-
ble” in space, the phase angle ¢ can go from ¢, to ¢; by tunneling.
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What happens in real time may be described as follows. In the absence of an
electric field, the periodic lattice potential leads to a sine Gordon equation for
o(x, 1), and there are soliton solutions. Random fluctuations can create a soliton—
antisoliton pair somewhere along the chain, so that ¢(x, 1) looks momentarily like
the configuration in Fig. 19.1c¢. In the presence of an electric field, there is incentive
for the pair to grow in order to lower the energy, and the size of this excitation ex-
pands to eventually cover the entire chain.

We treat the creation of the bubble as a tunneling process—a quantum jump in
Euclidean time. Outside this transition, the motion proceeds according to classical
mechanics in real time. This description is a one-dimensional version of Coleman’s
theory [6] of a bubble of “true vacuum” in a background of “false vacuum.”

The Lagrangian density in real time is given by

1
Lx, )= %(%‘?)2 _ 5(%)2 )

V() = W(1 —cos ¢) — €d (19.25)

where —W cos ¢ is the commensurate potential due to the underlying lattice, and € is
the external electric field in suitable units. We have rescaled the variables to ab-
sorbed physical parameters such as charge and mass, so as to present a neat form for
mathematical analysis. The fact that the electric field is coupled directly to the
phase ¢ may be seen as follows. The current density in the system is j d¢/or. Its
interaction energy with an external electromagnetic field 4 contributes to the action
the term

i o4
—fdxdzA = —fdxd: = ¢——jdxdte¢ (19.26)

where we have assumed that the external field is adiabatically turned on in the infi-
nite past, and off in the infinite future.
We treat the electric field € as a small perturbation. The equation of motion of

the system is

Fo o AN _
v iy (19.27)

except for the quantum jump, which is described by a 2D instanton, a solution
de(x, 1) of the equation in Euclidean time 7= jf:

&2¢E+ Foe  d(de) _
or Ix? dog

0 (19.28)

and seek a solution such that the entire chain is at ¢g(x, 7) = ¢y as 7— —©, and a fi-
nite-sized bubble of phase ¢, = ¢, + 27 appears somewhere at 7= 0. At this time,
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the quantum jump is complete, and the bubble subsequently expands classically.
The semiclassical picture is based on the fact that tunneling occurs with very small
probability, and is treated as a rare interruption of the classical motion.

For the formal solution, we take advantage of the symmetry under Euclidean
time reversal, and impose the boundary conditions

lim_ e, 7) = o

) (19.29)
or =0

but we use the solution only for —o < r =< 0. The symmetry of the boundary condi-
tion makes it possible to have a solution that depends only on

s=Vx+12 (19.30)
The boundary conditions then become
lim x(s) =
PE(0)=0 (19.31)

where the location of the quantum jump is taken to be s = 0. Because of translation-
al invariance, the action should be independent of this location. The probability for
a quantum jump per unit length of the chain is exp(—S), with

5= f_ide:d"B(%)z * %(%)2 + W(1 - cos ¢) - e(Pg - d’o)] (19.32)

The solution we seek corresponds to a spherically symmetric configuration in
the x—7 plane, as illustrated in Fig. 19.4. At 7= 0 it looks like a soliton—antisoliton
pair, and this is the bubble created through tunneling. The instanton should have a
mean radius R, with ¢ = ¢, outside the radius, and ¢y = ¢, inside. The wall of the
excitation is of thickness 1/W, with energy W per unit circumference. Thus, the cor-
responding action is

S~ 2mRVW — 7w R?e(, ~ by) (19.33)

where ¢, — ¢y = 27. Minimizing this with respect to R. we obtain the radius and
corresponding action:

= S = — (19.34)
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Figure 19.4 Upper panel represents the instanton that gives the tunneling amplitude for formation of a
small bubble of new phase. Lower panel shows the field configuration at Euclidean time 7 = 0, which
consists of a soliton-antisoliton pair created locally through tunneling. This bubble expands in real time
to eventually engulf the whole x axis.

After the bubble is formed, it expands according to the equation of motion in real
time. The behavior is described by the analytic continuation of the Euclidean solu-
tion, which becomes a function of x?> — #2. Thus the size of the bubble expands ac-
cording to

RO=VR+7 (19.35)

and the unit of time is set by whatever physical parameters we have used as scale.

What we have described is the sliding of the CDW by one lattice length due to
tunneling. It is clear that this process repeats, and generates a current proportional
to the transition probability:

[ = Ce "¢ (19.36)

This current is extremely small, and has not been detected experimentally, because
it is masked by currents arising from thermal fluctuations. In an incommensurate
lattice, the CDW is pinned not by the lattice, but by impurities. The depinning due
to tunneling across impurities can be described in a similar manner [7].
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194 NONLINEAR SIGMA MODEL

We turn to a model with interesting topological properties. Consider a unit 3-vector
field n(x) in a d-dimensional Euclidean space. The Euclidean action is

s= 1 gun, oon, (19.37)

where a = 1,2,3 labels field components, and the Greek index u =1, ..., disa Eu-
clidean index for general d. For specific dimensions such as d = 2 or d = 3, we
switch to Roman indices 4. In physical applications, this model is variously known
as the “classical Heisenberg model” or “O(3) nonlinear sigma model” (for historical
reasons that need not concern us). The nonlinearity arises from the constraint

nn, =1 (19.38)

The designation O(3) refers to the fact that n(x) may be identified with a point on
the surface of a three-dimensional sphere, and therefore corresponds to an element

of the rotation group O(3).
Since rotations can also be represented by SU(2), we can map the model to one
involving a spinor field. Let z be a two-dimensional spinor:

2= (Z') (19.39)

Z
where z; are complex-number fields, with the condition
Ziz=z¥z, + 28z, =1 (19.40)
We can represent n in the form
n=zloz (19.41)
where o, (a = 1,2,3) are the 2x2 Pauli matrices. More explicitly, we put
n, = 2Re(z¥z,)
n, = 2Im(z}z,)
ny=z¥z, —z%§z, (19.42)
Thus

n?+nd+ni=(ztz2=1 (19.43)



390 Topological Excitations
A straightforward calculation shows
1 otn,oMn, = ozt oz + (zT M2 (z Mz) (19.44)

Thus the action can be written in the form
§= [ dtforst oz + (@2t ) (19.45)

We can define a vector potential by
A+ =—iz orz (19.46)

Then the action can be rewritten in the form (see Problem 19.2)
S= f d*[(o* + iA®)zt[(#—iA)z] (19.47)

which is invariant under the local gauge transformation

z(x) — €'“¥z(x)

AB(x) — AR(x) + () (19.48)

The field n(x) can be visualized as a point on the surface of a sphere, which
constitutes the 2-sphere S2. For a finite-action solution, it must approach a constant
vector at infinity:

n(x) —> n, (19.49)

e

For definiteness, we take n, = (0, 0, 1). Spatial infinity is thus identified as one
point, and the space is effectively compactified from Euclidean space R? to the
d-sphere $°. A finite-energy solution therefore corresponds to a map

n(x): 8¢ — §2 (19.50)

These maps fall into homotopy classes C,, characterized by a winding number m.
The maps in each class are “homotopic,” in the sense that they can be continuously
deformed into one another [8]. The classes {C,, C), ... } form a group, the homo-
topy group. For a map $¢ — X, the homotopy group is denoted by 7,(X), called the
“dth homotopy group” of X. In particular, 7 (X) is called the “fundamental group”
of X.

For the O(3) nonlinear sigma model, the relevant homotopy groups are 7(S?):

m,(52) =0
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m($?) = Z.
m(S?)=Z.,
(5% = Z, (19.51)

where 0 denotes the trivial group containing only the identity, Z,, denotes the set of
integers {0, £1, £2, ...}, and Z, is the group {0, 1} mod(2) under addition, or
{1, =1} under multiplication. We see that there are topological solitons for 4 > 1.
They can be regarded either as a static soliton in d spatial dimensions, or an instan-
ton in d — 1 spatial dimensions and one Euclidean time dimension. We discuss the
different dimensions separately.

19.5 THE SKYRMION

The Skyrmion [9] is a static soliton of the O(3) nonlinear sigma mode! in two spatial
dimensions. Let us represent n(x) by a unit vector whose tip lies on a sphere in an
internal space with axes labeled a = 1,2,3. There is thus an internal coordinate frame
attached to each point x, and we take all these frames to have the same relative ori-
entation. An element of the surface of the sphere is dS = (dS', dS?, d5%), with
= _1- be b C — _1_ bca_(n_b_}ﬂ 1 2
as > e*dn® dn 3 € XED) dédé (19.52)

where we have parametrized the surface of the sphere by two coordinates (£, &).
The magnitude of the surface element is
on on°

1
S = n?dSe = — eein?— —d&'d§? 19.53
dS = podS? = e S g g (19.53)

As x ranges over the compactified spatial $2, n(x) ranges over the internal 5. The
winding number of the map n(x) is the number of times the internal §? is covered,

and is thus given by
0= - [as (19.54)
4o 1, ’

where dS(x) is the surface element corresponding to n(x), and the preceding integral
extends over the range such that x covers S? once. A convenient way to express this
condition is to use (x', x?) as the parameters (£, £). Therefore the winding number
of the configuration n(x) is given by

1 N , .
Qo= gfdzxe‘fe“bcna(&’nb)(&/nc) (19.55)
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which has possible values 0, 1, £2, .. .. The configurations with Q > 0 are soli-

tons, and those for Q < 0 are antisolitons.
We can rewrite the winding number in the form

1 o .
Q= ‘gﬂjjdzx €/n-9'm x ¥n

Now note the identity

(19.56)

:';fdzxw"n + €9 x ¥nf? = %fdzx[(r?‘n)z —€efn-dmx ¢n]  (19.57)

Thus, the action can be written in the form

s=1[dx@mp=2m0+ & [ didom+ e x amp

which shows
S=27Q
and the equality holds if and only if
dm+elomx dgn=0

Solving this equations gives a soliton with finite action.

To find explicit solutions [10], use cylindrical coordinates for x:

x'=rcos g

2=psin ¢

x
and parametrize n(x) through
na(x) = (& sin f(r), cos /(r))

where f(r) satisfies the boundary conditions

T (r—0)

ﬂ”*{o (r — )
More explicitly,

ny(x) =sin f(r) cos ¢
ny(x) = sin fir) sin ¢

(19.58)

(19.59)

(19.60)

(19.61)

(19.62)

(19.63)
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n4{x) = cos f(r) (19.64)
The vector n(x) is (0, 0, —1) at x = 0, and approaches (0, 0, 1) as |x| — . We see that

fand ¢ are just the polar angles of n in spherical coordinates. Now introduce the
complex variable

w= e"‘f’tang (19.65)
Then'
bW
T T
I —w*w
== 19.66
3 1+ w*w ( )
and (19.60) becomes
ow  ow
'(}X“T*Fl‘(;x—zzo (19.67)

which are just the Cauchy—Riemann condition that w be an analytic function of z,
with

z=x +ix? (19.68)

We rule out branch cuts, and obtain the general solution as a meromorphic function

w(z) = I}(%Y( - f - )"j (19.69)

where A is an arbitrary scale parameter and m; and n; are positive integers. In order
that f(») — 0 at infinity, we must have

>om>> (19.70)
] J

1

To find the winding number, note that for a given value w, z satisfies the poly-
nomial equation

H(f—:\ﬂ)m’zww A )”j=o (19.71)

i i \z=b;

which is of degree 2m;, and therefore has Zm, roots, generally different. That is, the
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given value w occurs at 2.m;, generally different points in space. Therefore the wind-
ing number is

0= m, (19.72)

The antisoliton is defined as the solution with negative Q, with the same boundary
condition (19.49). It corresponds to the complex conjugate of w(z), for then n,
changes sign while n, and »n; are unchanged, and Q changes sign.

For Q = |, take w(z) = z/A. This leads to

flr=2 tan“% (19.73)

The size of the soliton A is arbitrary. Putting A = 1, we have

_ s
m= T o8 e

j— r SA
mTTR e

1—r2

= 19.74

BTIR (19.74)
with corresponding spinor representation
2y = cos>
z, =€ sing (19.75)

To obtain the corresponding antisoliton, replace ¢ by —g, or replace n,(x) by —n,(x).
We visualize this soliton in the two views presented in Fig. 19.5. In Fig. 9.5a we
sketch n(x) along a radius from the origin in the spatial plane. In Fig. 9.5b, we su-
perimpose the internal S° on the compactified spatial $?, showing a “hedgehog”
configuration.

The solution can be viewed as an instanton, if we regard x' = x as space, and
x? = 7 as imaginary time. As illustrated in Fig. 19.6, the instanton evolves along
world lines shown in Fig. 19.6a, and the tip of the vector n(x, 7) traces closed loops,
as shown in Fig. 19.6b. When (x, 1) covers space-time once, the locus of n(x, 7)
sweeps over the 2-sphere once.
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n(x)
/ j
Ny /
4 %
(@) (b)

Figure 19.5 (a) Skyrmion as static soliton-—the spin along a radius in the 2D plane turns 180° when
we go from the origin to infinity; (b) when internal space is superimposed on the compactified real
space, we get a “hedgehog.”

19.6 THE HOPF INVARIANT

Viewing the Skyrmion as a static soliton in 2D, it is natural to ask how it propagated
in time. To consider this question, we go to d = 3, where n(x) represents the Hopf
map S — 2.

Let us parametize S2 by two parameters (£, ¢2), and consider first a continuous
map R® — S2, represented by the functions

& =AG 3% x0)
=", %% x*) (19.76)

(a) b)

Figure 19.6 (a) Skyrmion viewed as instanton developing in imaginary time 7 at fixed position x; (b)
the spin traces out loops in internal space corresponding to the various world lines C), C,.
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For a given point on S? that is, for a given (&, £?), this equation gives two relations
among the coordinates {x', x2, x*}, and one combination of the coordinates remains
arbitrary. This means that the inverse map of a point on S? is a curve on R, and the
curve must be a closed loop, since a point has no boundary. Two different closed
loops cannot intersect, for otherwise the intersection would be mapped to different
points. To ensure that the closed loops do not run off to infinity, we require

Fi(x) —> C (19.77)

e

where C is a constant. This compactifies R* to §3, and the map f'is the Hopf map,
which is illustrated schematically in Fig. 19.7. As shown in the figure, two loops in
three-dimensional space are characterized by a topological invariant, the linkage
number, giving the number of times one loop winds around the other. The linkage
number is a property of the map, called the Hopf invariant. If we displace the image
points P’ and Q' continuously, the loops P and  will change, but the linkage num-
ber will remain the same. It is now evident that 77,(S?) = Z.

The Hopf map can be represented by the spinor representation introduced earli-
erin (19.41):

n(x) = z{(x)o z(x) (19.78)

We can write the spinor z in the form

z
zz( ‘)=Uz0 (19.79)
22

\ 7

s3 S2

Figure 19.7 The Hopf map $* — 5% maps closed loops into points, because the two spaces have differ-
ent dimensions. Any two closed-loop inverse images are characterized by the linkage number, which is
the Hopf invariant of the map.
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where U € SU(2) and z, is some fixed spinor. An element of SU(2) is of the form
U=b,+bo (19.80)

with by + [b|> = 1. Therefore the manifold of SU(2) is S, and (19.78) represents a
map $* — $2. Since n is invariant under the gauge transformation z — e'z, the in-
verse map is a circle on $%, as depicted in Fig. 19.7.

Since z(x) is a map $* — S, the representation (19.78) involves a two-step map
§* — §% - 52, and the winding number of the step $* — S* is the Hopf invariant:

1
H= ;T;fde(x) (19.81)

where dS(x) is a volume element of the $* manifold of z(x) and the integral is such
that x ranges over its $> manifold once. The factor 272 is the volume of S°. Parame-
trizing the manifold of z by 3 parameters (A, A,, A;), we can write

1 Ay, Ay, Ag)
H= — | @ 2onlfe ) 19.82
gyl K Axt, 22, ) (19.82)

The Jacobian in the integrand is €/*#A,3/A,0%A;, which is a 3-form constructed
from z. There is only one such 3-form €/%4/3/4%, with A* = —iz'3%z. Thus we have the

Hopf invariant up to a normalization constant, which can be calculated from an ex-
plicit construction of z(x). (See Problem 19.3.) The result is

i
H=Z~ﬂ3fd3xA-VXA (19.83)

As we have seen in (19.47), A is like a vector potential. The corresponding
magnetic field is a topological current density that is identically conserved:

B=VxA (19.84)

There is an interesting parallel with classical electromagnetism. Because of the
gauge invariance (19.48), we can impose Coulomb gauge V xA = 0. Putting

VxB=j (19.85)

we can write

| .
A(X) = ~E_2~fd3y';—(~y)y—l (19.86)

Thus the Hopf invariant can be rewritten as
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=X pa=s L[ g3y g3, BOVIOD)
H 2 2fa’xBA ) 2fd)cdy4 —
= e d? fd Bi(x)Bi(y)&* 1 19.87
- (277.)2 x (X) (Y) |X—y| ( . )

This can be understood in terms of Gauss’ formula for the linkage between two
closed loops P and Q, such as those illustrated in Fig. 19.7:

ek ) :
LFQ: Z;fpdxl§gdyjty“xwy' (1988)

To derive this formula, consider the solid angle subtended by loop Q at point x, and
count the number of 47 increments as x traverses loop P. The gradient of the solid
angle in question is the magnetic field created by a unit current flowing in loop Q,
which can be obtained via the Biot~Savart law. Thus (19.87) calculates the Hopf in-
variant of the configuration by calculating the Gaussian linkage between loops of
the topological current.

Finally, we express the topological current (or magnetic field) B in terms of

n(x):

R ;
B= Efukﬁabcnawnb d*n, (19.89)

This is the only invariant we can construct out of n,(x) involving two derivatives.
The constant in front can be determined by direct computation, but a faster way is as
follows. The conservation law is

dB'  oB* B
e e T (1950

The magnetic flux Q normal to the x'—x? plane is a topological charge, which is con-
stant of motion for Skyrmions, and should coincide with the winding number of
52— $2 calculated in (19.55):

i
= [ dvavp® = - [ axtds esten (n, &, = 97y 'n)  (19.91)

19.7 FRACTIONAL SPIN

We now show that the spin of the 2D Skyrmion is an arbitrary real number [11]. We
regard n(x) = n(x, ) as a 2D Skyrmion evolving in imaginary time 7, and imagine
that it makes one complete rotation in space as it propagates from 7= - to 7= ¢,
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{maginary
time 4 }
A /

Anti-Skyrmion

Skyrmion

Figure 19.8 A Skyrmion makes complete rotations during its imaginary-time evolution. The number
of rotations is the Hopf invariant of the space-time configuration.We introduce a spectator anti-
Skyrmion, in order to have a vacuum on the space—time boundary.

In Fig. 19.8, we show two world lines of points on the Skyrmion, identified by giv-
en values of the spin. For example, the world line at the center of the Skyrmion has
n = (0, 0, —1). The initial and final states of the Skyrmion are the same, but any two
world lines are linked once. The number of complete rotations made by the
Skyrmion is, in fact, given by the Hopf invariant of n(x, 7). To see this, imagine that
at 7 = —© a Skyrmion—anti-Skyrmion pair was created, and pulled apart. The
Skyrmion propagates in the manner indicated, with the anti-Skyrmion as a passive
spectator, and eventually the pair annihilates at 7= . World lines from the anti-
Skyrmion are indicated by dotted lines in Fig. 19.8, which completes the Skyrmion
world lines into closed loops. On the space-time boundary we now have the vacuum
configuration n = (0, 0, 1). Hence the function n(x, 7) is a Hopf map $* — §?, and
the linkage of any two closed world lines is the Hopf invariant.

Now describe the process in Minkowski space-time, by continuing 7= —it. The
Minkowski action is

S[n] = % f Zdt [ d%[( ‘Z“ )2 - IVna!Z} (19.92)

We can add to this a term 6 H, where 6 is an arbitrary real number, without chang-
ing the equation of motion. This is because H is an integer and cannot change in the
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continuous variations made in applying the action principle. Thus, the amplitude for
the process is

A(6) =N j Dn eiSIn}+i6H (19.93)

where N\ is a normalization constant, such that the vacuum—vacuum transition am-
plitude is 1. For all paths contributing to the preceding integral, H = 1. Thus, relative
to the vacuum—vacuum amplitude, we have

A(0) = &® (19.94)

Equating this to e>™/, where J is the spin of the Skyrmion, we obtain an arbitrary
real number:

]
J=— (Skyrmion) (19.95)
27

This result does not contradict basic principles of quantum mechanics, for the rota-
tion group in 2D is the Abelian group U(1), and thus the angular momentum may
have continuous eigenvalues.

Continuing in this vein, we can view the time development of the Skyrmion,
described by a configuration with nonzero Hopf invariant, as a 3D static soliton—
the “Hopfion.” To find the spin of the Hopfion, we go to d = 4, where n(x) becomes
amap $* — §2, with 7,(5?) = Z,. The additive topological invariant has possible val-
ues

1=0, 1 mod(2) (19.96)

As before, we may add to the Minkowski action a term € / without affecting the
equation of motion, but now we must require e%® = 1. Therefore the values for 6 are
quantized:

8= m (19.97)

where n is an integer. Repeating the argument in the last section, we find that the
spin of the Hopfion must be integer or half-integer:

J= = ;i (Hopfion) (19.98)

This is, of course, implied by the angular momentum commutation relations in
3D. What is unusual is that we can construct half-integer spin states from boson
fields.
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19.8 MONOPOLES, VORTICES, AND ANOMALIES

According to (19.91), the topological charge of a Skyrmion is the magnetic flux
normal to the x'-x? plane, in which the static Skyrmion resides. If we follow the
time development in imaginary time x°, the Skyrmion will sweep out a flux tube,
which cannot terminate because of the conservation of the topological current
(19.90). However, there exist monopole configuration in d = 3 that will destroy the
conservation law, for example, the “hedgehog” configuration

n0)= 55 (19.99)

I

which is singular at the position of the monopole. This means that the world line of
the Skyrmion can be of finite length, terminated at both ends by monopole and anti-
monopole, respectively. Such singular configurations may be ruled out in a classical
theory, but cannot be ignored in quantum field theory, for the path integral extends
over all fields, singular or not. In quantum theory, therefore, the monopoles render
the topological current “anomalous.”

To demonstrate the existence of the monopole, let us calculate the vector poten-
tial corresponding to a Skyrmion in the x'-x? plane, with topological charge Q = 1.
From the explicit solution (19.75), we find

Q1] Skyrmion .
Dirac
string
Dirac Jl
string Skyrmion
/
Monopole
X imaginary
M | time
- onopoile
oo Compactified P
2D space

Figure 19.9 (a) A Skyrmion appears where the Dirace string of a 3D monopole pierces a sphere sur-
rounding the monopole. (b) In another view, the world line of a Skyrmion in imaginary time is a Dirac
string. The world line is generally terminated at both ends by monopole and antimonopole. The possibil-
ity of termination makes the topological Skyrmion current anomalous.
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AXr, @) = 9% sinzjlzr2 (19.100)
where f{0) = 7, ) = 0. The magnetic flux through a loop C of radius r is given by
<p(r)=§cdxk,4k=2wsin2f(2—r) (19.101)

which is 27 for 7 = 0, but approaches zero as # — . The total flux over the x'-x?
plane is therefore zero, in contradiction with the fact that O = | by construction. The
discrepancy is due to the failure of the relation between the flux and the topological
winding number, because of the presence of a monopole in d = 3. As illustrated in
Fig. 19.9a, where the compactified x'-x? plane has a spherical surface, the flux
through the closed loop C, is 277, but that through C, is zero. This implies that there
is a monopole inside the sphere, which terminates the flux tube of the Skyrmion. In
this picture, the world line of the Skyrmion is the Dirac string of the monopole.
When we open up the compactified sphere, the world line of the Skyrmion is as il-
lustrated in Fig. 19.95, which is terminated by the monopole.

Apart from the short-distance singularity, a single monopole has infinite action,
and would not contribute to the path integral; however, a monopole—antimonopole
pair can contribute. Thus the topological current in the O(3) nonlinear sigma model
in d = 3 should have a nonvanishing divergence given by the monopole density in
the vacuum state. In analogy with the XY model in d = 2, the theory should have a
phase in which monopole-antimonopole pairs are tightly bound, and one in which
they are ionized. The topological current will be normal in the former phase and
anomalous in the latter. Such a scenario is supported by numerical studies [12].

The mechanism that causes a current anomaly can be demonstrated analytically
in the simpler XY model. In the presence of an external magnetic field W, the XY
model is described by the Euclidean version of the sine-Gordon model (19.2), with
action

S161= [ dx dy{£(3¢) + W(1 - cos §)] (19.102)

which describes the propagation of the 1D soliton in imaginary time. The topologi-
cal current density is

= e (19.103)

and we have #* = 0 for nonsingular field configurations. However, the conserva-
tion is violated by a vortex configuration ¢(x, y) that satisfies

‘fcds-V(bo(x, ¥) =2, (19.104)
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where C is a closed loop containing the origin of the x—y plane. As shown in Prob-
lem 18.1, a solution is

bo(x, 1) = 2 tan*‘f (19.105)

For fixed y > 0, this is a one-dimensional soliton with boundary conditions

&, y) — Po(-2, y) = { _my if p<0 (19.106)
As shown in Problem 18.1, we have for this configuration
Vij =27 15,8(x) (19.107)

Thus we expect the current to be anomalous in the high-temperature phase above
the Kosterlitz—Thouless transition. This is verified in a more detailed analysis [13].

A physically important anomaly occurs in the the chiral current of a Dirac field,
discussed in Problem 6.4. For a massless field, this current is conserved in a classi-
cal theory, but not when the theory is quantized. The divergence of the current turns
out to be given by a magnetic charge density. The current is somewhat different
from those considered above, in that it is not defined as a topological current. We
refer the interested readers elsewhere for a full discussion [14].

PROBLEMS

19.1 To illustrate topological solitons in a theory different the sine—~Gordon case, consider
the nonlinear Schrodinger equation (Gross-Pitaevskii equation) introduced in Section
15.4, in one spatial dimension:

&+
—gf +gl¢12'1/=i%

There exist topological soliton solutions, stabilized through the fact that the phase of
Y(x, 1) approach different values as x — oo,

(a) Seek a solution of the form
P(x, 1) = e-enf gy E=x-Ut
where U is some constant, and f{£) is real. Show that
S k- Of + @ - 0)f-gf* =0

(b) Choose k= U/2. The equation then reduces to
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D402
ey
=51 -5 r

where o = k% — w. Regard the motion as that for a particle of unit mass in the po-
tential ¥(f), which for & > 0 has a minimum about /= 0, and then falls off outside
that. Consider motions confined to this central region. Obtain the orbit equation
from conservation of “energy.” The soliton corresponds to a zero-energy solution
that traverses the central minimum when £ goes from — to +o,

19.2 The O(3) nonlinear sigma model has a remarkable local gauge invariance, revealed
through the spinor representation (19.41), in which a vector potential (19.46) emerges.
The form of the action (19.47), which exhibits the gauge invariance, can be established
by explicit calculation, or through the following considerations.

19.3

(@)

()

Consider the Lagrangian density
L(x) = [(6* + iAM)2") [(o* — i4%)z]

where A#(x) is regarded as an independent vector field. Show that the equations
of motion give (19.46).

Since there is no kinetic term for 4, it can be eliminated through the equations of
motion. Show that £(x) is equivalent to

L) = 2Ttz + 5 (215,219 ,2) = o2t a2 + (Havz)(ztavz)

where in the last step one uses the fact zfz = 1.

The spin variable n(x) in the O(3) nonlinear sigma model in d = 3 represents a Hopf
map $* — §2. Because of the boundary condition n(x) — (0, 0, 1) at infinity, the space
of x € R? is compactified to $. In this problem we construct a configuration with
Hopf invariant 1.

(a)

(b)

Use spherical coordinates x = (r, 6, ¢). Show that S°, which is the surface of a
four-dimensional sphere of unit radius, can be parametrized by the four coordi-
nates
(b, b) = (cos v, sin ycos 6, sin 7y sin 6 cos ¢, sin 7 sin 6 sin ¢)
0=vy<m) O=6<m 0= @<2m)

where ¥(r) has the properties H0) = &, W) = 0. The volume element is sin’y
sin@ dy d6 deg, and the total volume of the space is 272

The map n(x) is constructed by identifying (b,, b) with its spinor representation
(19.41):

z{x)=cos y+isin ycos &

Z5(x) = ¢'¥sin y sin 0
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Calculate n,(x), and show that |z;| = 1, z, = 0 gives n, = (0, 0, 1) and |z,] = 1,
z, = 0 gives n, = (0, 0, —1). Sketch the loci n(x) = n, and n(x) = n, in R>. Show
that the former is the z axis and the latter is a circle in the equatorial plane. They
are thus closed loops with linkage number 1. This shows that the Hopf invariant
of the map is 1.

(c) Calculate the vector potential, and verify
A= cos 83%y — § sin 27 sin 6% + sin?y sin?8%¢p
€% 4P A* = 2sin?y sin Qe 'y 36 4@
(d) The Hopf invariant H is the winding number of the map S* — S° represented by
z(x):

Hybp)

1 I
) = mfdlx ek gi Ak

1
H= ?ﬂ?fd% sin’y sin @

This verifies the normalization constant in (19.83).
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APPENDIX A

Background Material

A.1 NOTATION

We generally use units in which ¢ =% = 1. When we have to distinquish between
space and time, the dimensional of space is usually denoted by D, and that of

space-time, Euclidean or Minkowskian, by d.
In relativistic systems, the metric tensor g#” in the d = 4 Minkowski space is di-
agonal, with g% = —g'! = —g?2 = ¢33 = |, The position and gradient 4-vectors are

denoted as follows:

=00 x, x2, x)= 9 )= x, ¥ 2)
X, = X" = (x0, —x)

= xXtx, = (x°)2 + xbx, = (x°) - x2

9 (i,_v
&xﬂ’ &xo

X _flz(j_,v)
oxt 3x0
&

V=[] Al
P (A1)

I
i

oH

DB
It

#

i

Greek indices have the range 0, 1, 2, 3, while Roman indices have the range 1, 2, 3.
Repeated indices are summed over their range. The dot product between two 4-vec-
tors can be written in various forms:

xy =xty, =x00 — xkyk = x00 _ xy (A2)

The Kronecker & is defined by

406
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8

nm

={1 if n=m (A3)

0 if n#¥m
When » and m consist of complicated expressions, we write Sg(n — m) = §,,, and
the subscript “K” (Kronecker) is omitted if there is no chance of confusion.

Dirac 8 function is defined by
8(t—1)=0 (if t#g)

| drf@da-1)=10o (A4
It has the properties

“ dw .
w0=]_ Tre

ot
8(at) = L0]
Jal
1
P -a%)= m[@(z ~a)+ 6(t +a)] (A5)
a
A useful relation is
l L
———— =P~ +imd(f) (n— 0% (A.6)
t—1in t
where P denotes principal value:
* 1 (P dt
—=1li + = A7
[ ap= m{fm fv]t (A7)
We have occasion to use the representation
) 1 =3 —iat
el=—| dimt— (09 (A8)

Tl P~1-in

Other useful functions are

[V df >0 1< e .
70 { 0 (f 1<0) ~2im LT, (170

_f 1V Gf >0 _ 17 )
e(t)-[_1 Gf £<0) py _wdwe Pt (A9)
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A.2 CLASSICAL MECHANICS

A classical particle is an object characterized by a position vector ¢ whose compo-
nents {q', - - -, g} are functions of the time ¢. In the nonrelativistic regime, the time
dependence is governed by Newton’s equations:

)
aq’

I

@i=1,---,D) (A.10)
where m is the mass and ¥{(q) is the potential. The Lagrangian function is defined by
L(g, §)= imq* - Vq) (A.11)

where g% = g'g’. Newton’s equations can be represented in the form

d_ A _

— = A12
dt 94 og (A-12)

If there are N particles, this equation still applies, provided we interpret ¢ as the col-
lection of all the coordinates.

A.3 QUANTUM MECHANICS

Classical mechanics must be supplanted by quanturn mechanics, whenever any rele-
vant physical quantity of dimension energy % time becomes comparable to or small-
er than Planck’s constant

h=627x 107 ergs/s (A.13)

The state of a system in quantum mechanics is associated with the direction of a
vector in a Hilbert space—a ray in Hilbert space. Two vectors differing only in nor-
malization represent the same state. Physical observables are associated with Her-
mitian operators on the Hilbert space. The inner product between two state vectors
¥ and ® are denoted either by the notation (¥, ®) commonly used in mathematics
or by the Dirac notation (¥ |®). The inner product between ¥ and O®P, where O is a
Hermitian operator, is denoted by the equivalent notation

(¥, O®) = (V0|®) (A.14)

For a nonrelativistic particle in one dimension, the relevant operators are mo-
mentum p and position x, which are defined by the commutation relation
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[p, x]=—ih (A.15)

where 7 = A/27. We summarize properties for a one-dimensional system. It is
straightforward to generalize them to higher dimensions.

‘We assume that there exists a Hamiltonian operator H(p, x), which is Hermitian
and time-independent, and it generates time translations:

It +dp= [l—h%.Hdt] 16 + O(dr?) (A.16)

where |¢) is the state of the system at time 7. For time translation over a finite interval
At, we subdivide the interval into N successive infinitesimal intervals. In the limit N
—> o we have

iH AN i
[t+AH = = (1 - 'g- 7) = CXp(—gHAI)[!) (A.17)

For a nonrelativistic particle, we take

P
H=— +Vx) (A.18)
2m

by correspondence with classical mechanics.
A useful basis for the Hilbert space consists of eigenstates |x) of the position
operator, denoted here by x,,, with the properties

XoplX) = x|x)
(xx) = 8(x — x")
fcdx o) (x| = 1 (A.19)

An alternative basis is the set of eigenstates of the momentum operator [p), with the
properties

Popl?) = DIP)
(plp"y=2m8(p-p")

-
[ =1

(xp) = exp(é'px) (A.20)

In the coordinate basis, the state is represented by the wave function
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Y(x, 1) = (xit) (A.21)

The momentum operator is represented by —iAd/dx and the Hamiltonian, by a differ-
ential operator:

WoF
H(p, x)= 5=~ + V) (A.22)

The statement that H(p, x) generates infinitesimal time translations becomes
Wx, 1 +dt) = [1—}1%11(,;, x)dt]t,h(x, f) + O(dP) (A.23)

where we have used the property {(x'|Hlx) = 8(x — x")H(p. x). This leads to the
Schrodinger equation

/I 3
[_EE + V(x)] y= ih—a% (A24)

It follow from this equation that there is a conservation law

%9y (A.25)
ot ox
with
p =¥y
L G
I i (d}* ax ox lll) (A.26)

where p is the probability density for finding the particle at x at time ¢ and j is the
corresponding probability current density. For a real wave function, j = 0.

The operators p and x in infinite space have continuous spectra of eigenvalues.
It is more convenient to work with countable sets of eigenvalues and eigenvectors.
To do this, we enclose the system in a large but finite box of dimension L, and let
L — = at the end of all calculations. The boundary condition imposed on the sur-
face of the box is not crucial, because it usually affects the wave function only in a
finite layer near the boundary, and has no effect on volume properties, such as the
energy density. A convenient choice is the periodic boundary condition ¥{x + L) =
yn(x). For a plane wave yax) = &, this means that the wave number & is restricted to
the discrete values
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2
k=——2;n— (n=0,+1,42, ) (A27)

A sum over states labeled by & approaches an integral in the large L limit:

> = oy f dk (A.28)
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Linear Response

We illustrate the calculation of a response function to a disturbance in the path-inte-
gral formalism, where no references are made to Hilbert-space states and operators.
It is suited to macroscopic descriptions based on the Ginsburg—Landau free energy,
which may be looked upon as a very general quantum field theory. We consider the
example of superfluidity, and derive formulas used in Chapter 15.

Superfluidity is a transport property defined in terms of the respoase of a sys-
tem to an imposed velocity field. We assume that the imposed field wi(x, ¢) is infin-
itesimal, and adiabatically turned on and off:

wilx, t)lrl:) 0 (B.1)
In response, the momentum density of system changes by an amount 8g(x, ). The
Fourier transforms of these quantities are denoted by

Wik, ) = [ dPx ey, 1)
5'(k w) = [ dPx etk 5g(x, 1) (B2)

We consider spatial dimensions D = 2,3. The linear response is defined by a re-
sponse function y:

8(g'(k, w)) = x"(k. w)W'(k, w) (B.3)

where ( ) denotes thermal average. The inverse Fourier transform reads

P
e Ik oWk, .
7 Ox k) ko) (B4)

&g'x, ) = f oy

Consider the static response

412
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X (k) = limxV(k, w) (B.5)
For an infinite system with rotational invariance, this is a tensor dependent only on

k. Its most general form is thus given by

ik

k )B(kz) (B.6)

) k'l
X0 = S )+ (5,

where 4 and B are two scalar functions associated respectively with the longitudinal
and transverse responses. The longitudinal response for long wavelengths defines
the total mass density p of the system:

p = A(0) (B.7)
while the transverse response defines the “normal fluid density”:
p, = B(0) (B.8)
The “superfluid density” is the difference
ps = A(0) - B(0) (B.9)

These definitions can be justified as follows [1].
For concreteness, consider D = 3. The response in ordinary space is
d*k
@2my

Kg(x) = [ e R) () (B.10)
Consider the limit of a spatially uniform velocity

wi(x, 1) =w' (B.11)

The slow time dependence from adiabatic switching is left understood. In an suffi-
ciently large system, &(g'(x)) should be independent of position, so we can put
x=0:

Pk .
7 X (K)w'(K) (B.12)
)

o) =[

For a system enclosed in a rectangular box of size L, x L, x L,, we have

(k) = 80/ x % = wIF(RDFUR)F () (B.13)
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where
F(k) = Li /Z/defexp(—ikfxf) =227 8(K) (B.14)
i
Thus,
&g'(0)) =w f 2 F(k‘)F(kZ)F(k3)X"f(k) (B.15)

Choose 8¢ to point along the x axis. We make different choices according to the
geometry.

First put the system between flat disks with normal along the x axis, as shown
in Fig. B.1. This is realized by first letting L, — ®, L; — o, and then L, — . The
imposed velocity field can be created by moving the disks in the x direction with in-
finitesimal velocity w’. The entire system must move with the disks, and therefore
the induced momentum density is the total density p times the velocity:

pw! =w! llm lim lxm F(k‘)F(kz)F(k3)X“(k)

| Ly—00 Ly— (2 )3

=w! hm lim hm x(K) (B.16)
—0 ky—0 k&
Therefore
p=lim lim lim y'(k) (disk geometry) B.17)

k=0 k2—0 B30

Next put the system in a long pipe with axis along the x axis, moving in the x direc-
tion at velocity 87, as shown in Fig. B.1. This is realized by first letting L, — %, and

(b)

Figure B.1 Fluid placed in containers of different geometry, to illustrate the concept of normal fluid:
(a) Disk geometry—the system is placed between large moving plates, and the whole system moves with
the plates; (b) pipe geometry—the system is placed in a long moving pipe. The normal fluid component
moves with the pipe, while the superfluid component remains at rest.



Linear Response 415

then L, — o, L; — . The normal fluid is the part of the system that exhibits fric-
tion, and moves along with the pipe. Its density p, is therefore given by

p,=lim lim lim x''(k)  (pipe geometry) (B.18)
B0 K250 koo

To calculate y'!, we turn to (B.6), and note that

KE (k') 1 (disk geometry) B.10
R RE R { 0 (pipe geometry) (B.19)
Therefore
p=4(00)
P = B(0) (B.20)

Let us now calculate the superfluid density for a system described by a velocity
field v(x), with Ginsburg-Landau free energy

Elv]= % [ &P vy (B.21)
The partition function of the system is
z=[ Dvesev) (B.22)

where f3 is the inverse temperature. We impose a prescribed velocity field w(x), un-
derstood to be switched on and off adiabatically. The energy becomes

=2 [ @ex vy - weopp (B.23)
The first-order change in energy is
8F = [ dPx giiowi(x) (B.24)

where
g'(x) = pov'(x) (B.25)

which is defined as the momentum density. This averages to zero in the unperturbed
system. With the external velocity field, the average momentum density becomes
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; =P —BE, [V],i
€0, = ~ f Dve PEWYyi(x) (B.26)

Taking the functional derivative with respect to w/( y), we obtain

——BTP(% f Dv e PEyi(x) f Dv e BEMyi(x)
= B g ®)g (M — €M € (] (B:27)

To first order in w, we can neglect the second term, and integrate both sides to ob-
tain the linear response

8g() = B[ AP )W) (B.28)

= Bog| dPyvix — Yy 0w ») (B29)

where () denotes thermal average without external field and we have assumed
translational invariance. We Fourier-analyze w/(y), and on comparison of the result
with (B.10), obtain the response function

X0 = Bogd | dPxe*X()0(0) (B30)

Then we decompose the velocity field into longitudinal and transverse parts
V=VL+VT (B.31)

with V - v =0, and V x vy =0. Then
X8 = Bpg [ dPxe (o] (o (0)) + (o) HON)] (B.32)

We have used (v{(x)»4(0)) = 0, which follows from the fact that there is no cross-
term in the energy E[v].

To obtain the superfluid density, we have to decompose ¥ into longitudinal and
transverse parts. We write in matrix notation

x(k) = A(K) P_ + B(k*) P; (B.33)

where
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g o kR
o=
y kiki
P—'{ = 8,].— 7 (B.34)
Taking the matrix trace of y, we have
Tr x(k) = A(K*) + (D - 1)B(k?) (B.35)
Thus
T ~ A(K?
B() = — X200 XH) - 4&) (B.36)
D-1
The superfluid density is
Tr x(0) — A(O
.= A(0) - BO) = 4(0) - LA =A0)
D Tr x(0)
= e - B.37
D—IA(kO) o1 (B.37)
We now calculate Tr x(0):
Tr x(0) = Bpd f dPx{(a{ (x)v1(0)) + (5 (x)oi(0))] (B.38)
The longitudinal contribution satisfies the f-sum rule:
B3 dPxtui el O)) = (B39)
Thus
Tr x(0) = po + Bpd | dPx (w40 (0)) (B.40)

This leads to the formula

2
.= po- 22 [ P (i 4(0) (B.41)
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