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Foreword

Mathematicians really understand what mathematics is. Theoretical physi-
cists really understand what physics is. No matter how fruitful the interplay
between the two subjects, the deep intersection of these two understandings
seems to me to be quite modest. Of course many theoretical physicists
know a lot of mathematics. And many mathematicians know a fair amount
of theoretical physics. This is very different from a deep understanding of
the other subject. There is great advantage in the prospect of each camp
increasing its appreciation of the other’s goals, desires, methodology and
profound insights. I don’t know how to really go about this in either case.
However the book in hand is a good first step for the mathematicians. The
method of the text is to explain the meaning of a large number of ideas
in theoretical physics via the splendid medium of mathematics communica-
tion. This means there are descriptions of objects in terms of the precise
definitions of mathematics. There are clearly defined statements about these
objects expressed as mathematical theorems. Finally there are logical step
by step proofs of these statements based on earlier results or precise ref-
erences. The mathematically sympathetic reader at the graduate level can
study this work with pleasure and come away with comprehensible informa-
tion about many concepts from theoretical physics... quantization, particle,
path integral... After closing the book one has not arrived at the kind of
understanding of physics referred to above; but then maybe armed with the
information provided so elegantly by the authors, the process of infusion,
assimilation and deeper insight based on further rumination and study can
begin.
Dennis Sullivan
East Setauket, New York, May 2007






Preface

In this book we attempt to present some of the main ideas of Quantum
Field Theory (QFT) for a mathematical audience. As mathematicians, we
feel deeply impressed — and at times quite overwhelmed — by the enormous
breadth and scope of this beautiful and most successful of physical theories.

Throughout centuries, Mathematics has always provided Physics with a
variety of tools, oftentimes on demand, for the solution of fundamental physi-
cal problems. But the past century has witnessed a new trend in the opposite
direction: the strong impact of physical ideas not only in the formulation,
but in the very solution to mathematical problems. Some of the most well-
known examples of such impact are (1) the use of renormalization ideas by
Feigenbaum, Coullet and Tresser in the study of universality phenomena
in one-dimensional dynamics; (2) the use of classical Yang-Mills theory by
Donaldson to devise invariants for 4-dimensional manifolds; (3) the use of
quantum Yang-Mills by Seiberg and Witten in the construction of new in-
variants for 4-manifolds; (4) the use of quantum theory in three dimensions
leading to the Jones-Witten and Vassiliev invariants. There are several other
examples.

Despite the great importance of these physical ideas, mostly coming from
quantum theory, they remain utterly unfamiliar to most mathematicians.
This we find quite sad. As mathematicians, we found it very difficult while
researching for this book to absorb physical ideas not only because of even-
tual lack of rigor — this is rarely a priority for physicists — but primarily due
to the absence of clear definitions and statements of the concepts involved.
This book aims at patching some of these gaps of communication.

The subject of QFT is obviously incredibly vast, and choices had to be
made. We follow a more-or-less chronological path ranging from Classical
Mechanics in the opening chapter to the Standard Model in chapter 9. The
basic mathematical principles of Quantum Mechanics (QM) are presented

10



Preface 11

in chapter 2, which also contains an exposition of Feynman’s path integral
approach to QM. We use several non-trivial facts about the spectral theory of
self-adjoint operators and C* algebras, but everything we use is presented
with complete proofs in appendix I. Rudiments of Special Relativity are
given in chapter 3, where Dirac’s fundamental insight leading to relativistic
field theory makes its entrance.

Classical Field Theory in touched upon in chapter 5, after a mathematical
interlude in chapter 4 where the necessary geometric language of bundles and
connections is introduced. The quantization of classical free fields, which is
something that can be done in a mathematically rigorous and constructive
way, is the subject of chapter 6. As soon as non-trivial interactions between
fields are present, however, rigorous quantization becomes a very difficult
and elusive task. It can be done in spacetimes of dimensions 2 and 3, but we
do not touch this subject (which may come as a disappointment to some).
Instead, we present the basics of Perturbative Quantum Field Theory in
chapter 7, and then briefly discuss the subject of Renormalization in chapter
8. This approach to quantization of fields shows the Feynman path integral
in all its glory at center stage.

Chapter 9 serves as an introduction to the Standard Model, which can be
regarded as the crowning achievement of Physics in the twentieth century,
given the incredible accuracy of its predictions. We only present the semi-
classical model (i.e. before quantization), as no one really knows how to
quantize it in a mathematically rigorous way.

The book closes with two appendices, one on Hilbert spaces and operators,
the other on C'* algebras. Taken together, they present a complete proof of
the spectral theorem for self-adjoint operators, and other non-trivial theo-
rems (e.g. Stone, Kato-Rellich) that are essential for the proper foundations
of QM and QFT. The last section of appendix II presents an extremely brief
introduction to algebraic QF'T, a very active field of study which is deeply
intertwined with the theory of von Neumann algebras.

We admit to being perhaps a bit uneven about the pre-requisites. For in-
stance, while we do not assume that the reader knows any functional analysis
on Hilbert spaces (hence the appendices), we do assume familiarity with the
basic concepts of differentiable manifolds, differential forms and tensors on
manifolds, etc. A previous knowledge of the differential-geometric concepts
of principal bundles, connections, and curvature would be desirable, but in
any case these notions are presented briefly in chapter 4. Other mathe-
matical subjects such as representation theory, or Grassmann algebras, are
introduced on the fly.

The first version of this book was written as a set of lecture notes for a



12 Preface

short course presented by the authors at the 26th Brazilian Math Colloquium
in 2007. For this Cambridge edition, the book was completely revised, and
a lot of new material was added.

We wish to thank Frank Michael Forger for several useful discussions
on the Standard Model, and also Charles Tresser for his reading of our
manuscript and his several remarks and suggestions. We have greatly ben-
efited from discussions with several other friends and colleagues, among
them Dennis Sullivan, Marco Martens, Jorge Zanelli, Nathan Berkovits, and
Marcelo Disconzi. To all, and especially to Dennis Sullivan for his beautiful
foreword, our most sincere thanks.

Edson de Faria and Welington de Melo
December 2009



1

Classical Mechanics

This chapter presents a short summary of classical mechanics of particle
systems. There are three distinct formulations of classical mechanics: New-
tonian, Lagrangian and Hamiltonian. As we shall see in later chapters, the
paradigms offered by the Lagrangian and Hamiltonian formulations are both
extremely important in modern quantum physics and beyond.

1.1 Newtonian Mechanics
1.1.1 Newtonian spacetime

From a mathematical standpoint, Newtonian spacetime S is a four-dimen-
sional Euclidean (affine) space where the translation group R?* acts tran-
sitively, and in which a surjective linear functional 7 : § — R is defined
(intuitively corresponding to time). The points of S are called events. Two
events p,q € S are said to be simultaneous if 7(p) = 7(¢q). The difference
AT(p,q) = 7(q) — 7(p) is called the time interval between the events p,q.
If two events p, ¢ are simultaneous, their spatial displacement As(p,q) is by
definition the Euclidean distance between p and ¢ in S. The structure on
Newtonian spacetime provided by the time interval and spatial displacement
functions is called a Galilean structure. A Galilean transformation of S is
an affine transformation that preserves the Galilean structure.
Alternatively, a Galilean transformation can be viewed as an affine change
of coordinates between two inertial reference frames. An inertial frame on
Newtonian spacetime S is an affine map « : S — R? providing an identi-
fication of S with R* = R3 x R that preserves time intervals and spatial
displacements. More precisely, if p,q € S and a(p) = (2!, 22,23,t) and

13



14 Classical Mechanics
a(q) = (y*,y%,y3, s) then we have

AT(p7Q) =s—t
As*(p,q) = (z' —y')? + (2® — y*)* + (2 — ¢*)% .

Given two inertial frames «, 3, the map Boa : R* — R* is a Galilean trans-
formation. With this definition, it is clear that the Galilean transformations
form a group. We leave it as an exercise for the reader to verify that the
most general Galilean transformation (z,t) — (2/,t') is of the form

t =t+ty
¥ =Ax+a+tu

where tg € R, a,v € R? and A is a rotation in R? (i.e., an orthogonal matrix).
From this fact, it follows that the Galilean group is a 10-dimensional Lie
group.

In a given inertial frame, a uniform linear motion is a path of the form
t — (x(t),t +1tg) € R® x R where x(t) = 7o +tv (with ty € R and z,v € R?
constants). It is an easy exercise to verify the following fact.

Proposition 1.1 (Galileo’s Principle of Inertia) Galilean transforma-
tions map uniform motions to uniform motions.

From a physical point of view, uniform motions are precisely the motions
of free particles. So another way of stating the above principle is: The time
evolution of free particles is invariant under the Galilean group.

1.1.2 Newtonian configuration space

In Newtonian mechanics, the configuration space for a system of N uncon-
strained particles is

M = {(z1,22,...,2x): 2; €R3V i} =RV

Newtonian determinism asserts that the time evolution of such a system
is completely known once the initial positions and velocities of all particles
are given. Mathematically, the time evolution is governed by a system of
second-order ordinary differential equations coming from Newton’s second
law of motion

mzxz :Fi(xl,xg,...,a:N;a'cl,.fg,...,ch) (i: 1,2,...,]\7) . (1.1)

Here m; is the mass of the i-th particle, and F; is the (resultant) force acting
on the i-th particle. We regard F; : M — R? as a smooth vector function.
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A Newtonian system is said to be conservative if there exists a (smooth)
function V' : M — R, called the potential, such that

F, = —V,V; where V; = ( 0 9 9 >

1° 5.2° 9.3
Ox; " Ox; O

The name conservative stems from the fact that, if we define the kinectic
energy of such a system by

T - %;m [+ @)+ ()]

and its total energy by F = T + V, then we have conservation of energy,

namely
dE ZN ZN

Remark 1. We would like to emphasize that the forces appearing in (1.1) may
indeed depend quite explicitly on the velocities v; = &;. The best example
of a physically meaningful situation where this happens is the classical (non-
relativistic) electrodynamics of a single electrically charged particle. If such
a charged particle moves about in space in the presence of a magnetic field
B and an electric field E in R3, it is acted upon by the so-called Lorentz
force, given by

F=q(E+vAB),

where ¢ is the particle’s charge and v = « is the particle’s velocity. Here A
denotes the standard cross-product of vectors, which in cartesian coordinates
is given by

€ €2 e3
vAB=|vy vy w3,
B By Bs

where {e1, es, e3} is the canonical basis of R3. Assuming that the parti-
cle has mass m, Newton’s second law gives us the second-order ordinary
differential equation

m& = q (E+¢ AB) ,
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or, in coordinates, the system

mi1 = q(E1 + 22B3 — @3B5)
mio = q(F2+ 3By — £1B3)
mis = q (Eg + 1By — igBl) .

This system can be recast in Lagrangian form (in the sense of section 1.2
below). The reader can work it out as an exercise.

1.2 Lagrangian Mechanics

Lagrangian mechanics was born out of the necessity to deal with constrained
systems of particles. Such systems are called Lagrangian.

1.2.1 Lagrangian systems

In a Lagrangian system, the configuration space is an embedded submani-
fold M of dimension n < 3N of R3V (where N is the number of particles).
The number n is the number of degrees of freedom of the system. Local
coordinates for M are usually denoted by ¢ = (¢',¢?,...,¢") and are re-
ferred to as generalized coordinates. The Lagrangian function (or simply
the Lagrangian) of such a system is a smooth function L : TM — R. Here,
TM is the tangent bundle of M, and it is called the (Lagrangian) phase
space. Associated to the Lagrangian function, we have an action functional
S defined on the space of paths on M as follows. Given a differentiable path
v:1 — M, where I = [a,b] is a time interval, consider its lift to TM given
by (v,%), and let

b
S0) = [ Lo

1.2.2 The least action principle

The underlying principle behind Lagrangian mechanics was first discovered
by P. Maupertuis (who was inspired by earlier work of P. Fermat in optics),
and later mathematically established by L. Euler, in 1755. In the nineteenth
century, it was formulated in more general terms by W. Hamilton, and it is
known even today as the least action principle. In a nutshell, this principle
states that the physical trajectories of a Lagrangian system are extrema of
the action functional. Thus, the Newtonian problem of solving a system
of second-order, typically non-linear ODE’s is tantamount in Lagrangian
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mechanics with the variational problem of finding the critical points of an
action functional. This variational problem gives rise to the so-called Euler-
Lagrange equations.

1.2.3 The Euler Lagrange equations

Let us describe the standard procedure in the calculus of variations leading
to the Euler-Lagrange equations. We define a wvariation of a smooth curve
~v: I — M to be a smooth map 7 : (—e,€) x I — M such that 5(0,t) = ~(¢)
for all ¢t and 4(s,a) = v(a) and (s,b) = (b) for all s € (—e,¢€). In other
words, a variation of v is a family of curves 75 = J(s,-) : I — M having
the same endpoints as v and such that 79 = 7. The corresponding (first)
variation of the action functional S at « is by definition

9
0s
A curve 7 is said to be a critical point for the action functional S if 65(y) = 0

for all possible variations of v. We leave it as an exercise for the reader to
check that

65(y) = S(ys) -

s=0

b
50) = [ oLt (1.2)

where

and where, in turn,

0
oy = —
’Y 88 8:078 9
as well as
0
0y = — Vo .
v Js s=078

Using generalized coordinates ¢, ¢, and writing 0y = (6¢*,d¢%,...,9q") as
well as 65 = (6¢%,0¢%,...,0¢"), we see that

DLGAE ) = Y- (ot 0od' + 5o )

=1

Putting this expression back into (1.2), we have

/Z<aqu q*ge(q, )54’) dt .
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But since d¢° = d(d¢")/dt for all i, a simple integration by parts in the
right-hand side yields

6S(y) = E;:/b {g—;(q,cj)— % <§—;(q,q')>] 5qt dt .

Since §S(y) must be equal to zero at a critical point «y for all possible varia-
tions, it follows that each expression in brackets in the right-hand side of the
above equality must vanish. In other words, we arrive at the Euler-Lagrange
equations

oL . d [ OL .
a—qi(%Q) o <a—qi(q,q)> =0.

1.2.4 Conservative Lagrangian systems

In classical mechanics, the Lagrangian of a conservative system is not an
arbitrary function, but rather takes the form

L(g,v) = T4(v) = V(q) (1.3)

where V' : M — R is the potential and T}, : TM, — R is a quadratic form on
on the vector space T'M,. More precisely, a conservative Lagrangian system
with n degrees of freedom consists of the following data

1. A Riemannian manifold M of dimension n.

2. A smooth function V' : M — R called the potential.

3. For each ¢ € M, a quadratic form T, : TM, — R called the kinetic
energy, given by

Here (:,-) : T My x TM, — R is the Riemannian inner product at ¢ € M.
4. A Lagrangian function L : TM — R given by (1.3).

A basic example is provided by the unconstrained conservative Newtonian
system of N particles given in section 1.1. In that case we have M = R3V,
TM = R3N x R3*N. The Riemannian structure on M is given by the inner
product

N
(,w)g = Y mi(viw) +viw +viw}) .
i=1
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Note that this inner product does not depend on the point ¢ = (z1, 22,23, ...,

zk, 2%, 23;) € R3Y. The Lagrangian is therefore

N
Ligw) = 3 > ma [0 + 02+ 03] - Vi(a)
=1

If we write down the Euler-Lagrange equations for this Lagrangian, we re-
cover, not surprisingly, Newton’s second law of motion.

1.3 Hamiltonian Mechanics

As we saw, in Lagrangian mechanics the Euler-Lagrange equations of motion
are deduced from a variational principle, but they are still second-order
(and usually non-linear) ordinary differential equations. In Hamiltonian
mechanics, the equations of motion become first-order ordinary differential
equations, and the resulting Hamiltonian flow is in principle more amenable
to dynamical analysis. This reduction of order is accomplished by passing
from the tangent bundle of the configuration space (Lagrangian phase space)
to the cotangent bundle (Hamiltonian phase space).

1.3.1 The Legendre transformation

Suppose we have a Lagrangian system with n degrees of freedom with
configuration space given by a Riemannian manifold M and Lagrangian
L : TM — R. The Lagrangian L gives rise to a map P : TM — T*M
between tangent and cotangent bundles, the so-called Legendre transforma-
tion. The map P is defined by

Pg,v) = (q, g—s(q,v)> ,
for all g € M and all v € T'M,. Its derivative at each point has the form
1 *
e = o (i)

Hence P will be a local diffeomorphism provided

det <621-2(9qu (q,v)) #0.

nxXn

We leave it as an exercise for the reader to check that if this condition holds
at all points (¢,v) € TM then P is in fact a global diffeomorphism (a bundle
isomorphism, in fact).
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In local coordinates, P transforms each generalized velocity ¢’ into a gen-
eralized momentum

oL

pi = a_qZ .

What do we gain by passing to the cotangent bundle? The answer lies in

the fact that the cotangent bundle of every differentiable manifold carries a
natural symplectic structure, as we shall see.

1.3.2 Symplectic manifolds

A symplectic structure on a differentiable manifold N is a 2-form w € A?(N)
which is non-degenerate in the sense that if X € 27(N) is a vector field on
N such that w(X,Y) = 0 for every vector field Y € 2 (N), then X = 0.
A manifold N together with a symplectic 2-form w is called a symplectic
manifold. Symplectic manifolds are necessarily even-dimensional (exercise).

In a symplectic manifold (/V,w) there is a natural isomorphism between
1-forms and vector fields,

I, : N'(N) — Z°(N)

a— X,
where X, is defined by
w(Xe,Y) = oY) foralY € Z/(N) .

The non-degeneracy of w guarantees that I, is indeed well-defined and an
isomorphism.

Given any function f : N — R, we can use [, to associate to f a vector
field on N. We simply define X; = I,,(df), where df is the differential 1-form
of f. The vector field X; is called the Hamiltonian vector field associated
to f. The flow ¢, on N generated by this vector field (which we assume
to be globally defined) is called the Hamiltonian flow of f (or Xy). This
flow preserves the symplectic form w, in the sense that ¢;w = w for all ¢
(exercise).

Taking the exterior product of w with itself n times, we get a 2n form on
N, i.e. a volume form A = w Aw A -+ Aw. This volume form is called the
Liouville form, and it is also preserved by Hamiltonian flows. This makes
the subject very rich from the point of view of ergodic theory.
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1.3.3 Hamiltonian systems

Going back to mechanics, we claim that the cotangent bundle T*M of the
configuration space M has a canonical symplectic structure. Indeed, on
T*M there is a canonical 1-form § € AY(T*M), the so-called Poincaré 1-
form, defined as follows. Let w : T*M — M be the projection onto the base.
Let (¢,p) € T*M, and let ({,n) € T(T*M) be a tangent vector at (g,p).
Note that p € T*M, is a linear functional on T'M,. Hence we can take

O0gp(&m) = p(Dnlq,p)(&n))

In local coordinates (¢',...,q";p1,...,pn) on T*M, this 1-form is given by
0 = p;dq’ .
Taking the exterior derivative of 0 yields our desired symplectic form
w=dl = —dp; Ndq" .

Now, given a function f : T*M — R, let Xy be the Hamiltonian vector
field associated to f (via the symplectic structure in 7% M just introduced).
It is easy to write down explicitly the components Xjf, i=1,2,...,2n of X;
in local coordinates, in terms of f. Indeed, if Y is any vector field on T*M
with components Y?, then from

w(Xy,Y) = df(Y)
we deduce that
dpi(Xp)dg'(Y) — dp;(Y)dq'(Xy) = —df (Y)
In terms of the components of both vector fields, this means that
n n
o . . of . Of .
i+ny i i+n vyt _ ~J vyt ~J yitn
Z(Xf Yioy Xf>_ Z(@qiy+3piy >
i=1 i=1
Since this holds true for every Y, comparing terms on both sides yields, for
alli=1,2,...,n,
_Of i Of
o " opi

i+n __
Xf =

In other words, the Hamiltonian vector field associated to f is given by

_ (of _9of
Xf_<3p’ 561)'
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The corresponding flow on T*M is therefore given by the solutions to the
following system of first order ordinary differential equations

i _ Of

- 1.4
4 Op; (1.4)
. af

pl 8(]1 .

Next, we ask the following question: is there a choice of f, let us call it
H, for which the above flow in the cotangent bundle is the image under the
Legendre map P of the Lagrangian time evolution in the tangent bundle?
The answer is yes, and the function H is called the Hamiltonian of our
particle system. To see what H looks like, let us write its total differential
using (1.4) for f = H,

OH , OH

dH = - dq’
g * opi
= —pidq’ + Gidp; .

dp;

Using the fact, coming from the Euler-Lagrange equations, that

)
pl - 8qZ

and also that
A 9L .
.ldi =d i'z —Td'la
q'dp (pig") g
we see that
oL

- » oL
dq' + d(piq') — —
aqlqu(pq) o0

Therefore we can take H(q, p) = p;¢* — L(q, ¢). In this expression, of course,

dH = — di" = d(pig" — L)

we implicitly assume that the generalized velocities ¢ are expressed as func-
tions of the generalized momenta p;, which is certainly possible because we
have assumed from the beginning that the Legendre map P is invertible.

Summarizing, we have shown how to pass from a Lagrangian formulation
of a mechanical system, which lives in the tangent bundle to the config-
uration space, to a Hamiltonian formulation, which lives in the cotangent
bundle. The Hamiltonian dynamical system is given by a system of first-
order ordinary differential equations, namely

s OH
1 ~ Op;
. O0H
pbi = —

oq’
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1.3.4 Hamialtonian of a conservative system

When our original (Lagrangian) system is conservative, with Lagrangian
given by L(q,v) = T,(v) — V(q) as before, the above passage to the corre-
sponding Hamiltonian system yields the Hamiltonian H : T*M — R given
by H =T + V, or more precisely, H(q,p) = T,(p) + V(q). Such a system is
called a conservative Hamiltonian system.

1.4 Poisson brackets and Lie algebra structure of observables

A classical observable is simply a differentiable function f : T*M — R in
the phase space of our Hamiltonian system. Given a pair of observables
f,9:T*M — R in phase space, we define their Poisson bracket by

{fvg} - Z(a_qlapZ _8]71’8_%) .

i=1

This notion of Poisson bracket endows the space of all observables in phase
space with the structure of a Lie algebra. Since the Hamiltonian H is itself
an observable, it is easy to recast Hamilton’s equations with the help of the
Poisson bracket as

¢ =1{q,H},p={p, H}.

Now, every observable has a time evolution dictated by the Hamiltonian
flow. Using the above form of Hamilton’s equations and the definition of
Poisson bracket, the reader can check as an exercise that the time evolution
of an observable f satisfies the first order equation

The reader won’t fail to notice that there are two distinct algebraic struc-
tures in the space of all observables of a Hamiltonian system: the Lie algebra
structure given by the Poisson bracket, and the commutative algebra (actu-
ally a commutative C*-algebra, see chapter 2) structure given by ordinary
pointwise multiplication of functions. These structures are quite indepen-
dent. From an algebraic point of view, one can think of the process of
quantization of a classical system, to be described in chapter 2, as a way
to transform the space of observables into a non-commutative algebra in
such a way that the Lie algebra structure and this non-commutative algebra
structure become compatible.
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1.5 Symmetry and conservation laws: Noether’s Theorem

Suppose we have a Lagrangian system in R"™ whose Lagrangian function
L : R®" x R® — R does not depend on a particular generalized coordinate
¢’ (for some 1 < j < n). In other words, L is invariant under translations
along the ¢/ coordinate axis, i.e.

L(q17"'7qj+T7"'7qn;q17"'7qn):L(q17"'7qj7"'7qn;ql7"'7qn)

for all 7 € R. Then, from the Euler-Lagrange equations we deduce that

A (LY _
Pr=w\og) ~

This means that the j-th generalized momentum is constant along the phys-
ical trajectories in phase space. In other words, p; is an example of what
physicists call an integral of motion.

The wunderlying principle here was strongly generalized by
E. Noether. Her theorem states that to each one-parameter group of sym-
metries in configuration space there corresponds an integral of motion in
phase space.

Theorem 1.1 (Noether) Let L : TM — R be the Lagrangian of a La-
grangian system, and let

G ={¢ps:M—M: seR}
be a one-parameter group of diffeomorphisms such that

L(¢s(q); Dos(q)v) = L(q,v) (1.5)

for allg € M and all v e TM,. Then there exists a function Ig : TM — R
which is constant on trajectories, i.e.

d

Slela(®).d(t) = 0. (16)

Proof Define I as follows

OL 0
lala,v) = Fo(ev) 52| _ @s(a) -
Then
d ) d (0L, . 0 oL, . 0 d
Glotad) = 5 (i) 5| o0+ i o] | goo.
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We may use the Euler-Lagrange equations in the first term of the right-hand
side. Note also that

d
L 64(q) = Dés(q)d .
2 0s(a) ¢s(9) 4
Therefore we have, using (1.5),
d _ oL, .. 0 oL, .. 0 .
o) = 31D 5| 0@+ Goad) o] Doua)d
0 .
= | _ L(6:(0). Dox(@)d)
0
- 2 Lgg =o0.
Bl L@@ =0
This establishes (1.6) and finishes the proof. O

Besides conservation of linear momentum, another simple application of
Noether’s theorem occurs when the Lagrangian is rotationally invariant (i.e.
invariant under the orthogonal group). In this case we deduce the law of
conservation of angular momentum; see exercise 2 below and the discus-
sion in the context of quantum mechanics in section 2.7. Noether’s theorem
survives as an important principle in modern physics, namely, that the in-
finitesimal symmetries of a system yield conservation laws. Its importance
is felt especially in field theory, through the concept of gauge invariance (see
chapter 5).

Exercises

1.1 The electromagnetic field in a region 2 of 3-space can be represented
by a four-vector potential (¢, A), where ¢ : © — R is the scalar
potential and A :  — R3 is the vector potential, and

A
B=VAA |, E:—ng—aa—t

are the magnetic and electric fields, respectively (see chapter 5).
Consider a particle with charge ¢ and mass m subject to this field.

(a) Show that the Euler-Lagrange equations applied to

Lz, 3) = %m(:t,:t) +ql@, A) — g0

yield the non-relativistic equation of motion

m& = q(E+a AB) .
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(b) Letting p = m& + qA, show that the Hamiltonian of this system
is

1 2
H = —|p—qA|"+q9 .
(px) = 5—llp—qAl” +q¢
1.2 Suppose we have a lagrangian system of particles whose Lagrangian

is rotationally invariant. Using Noether’s theorem, show that such
system satisfies the law of conservation of angular momentum.
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Quantum mechanics

In this chapter we present the basic principles of quantum mechanics of par-
ticle systems from a modern mathematical perspective. The proper study of
quantum mechanics brings together several interesting mathematical ideas,
ranging from group representations to the spectral theory of unbounded self-
adjoint operators in Hilbert spaces and the theory of C'* algebras. The facts
from analysis of operators in Hilbert spaces and C* algebras needed in this
chapter are presented in detail in the appendices at the end of the book.
More on the mathematical foundations of quantum mechanics can be found
in the books by G. Mackey [M], L. Fadeev and O. Yakubovskii [FY], and
F. Strocchi [Str] listed in the bibliography.

2.1 The birth of quantum theory

The origins of quantum theory can be traced back to M. Planck’s study,
published in 1900, of the so-called black-body radiation. It is well-known
that matter glows when heated, going from red-hot to white-hot as the
temperature rises. The color (or frequency of radiation) of the radiating
body is independent of its surface, and for a black body it is found to be
a function of temperature alone. The behavior of the radiation energy as
a function of temperature seemed quite different at high temperatures and
low temperatures. In a desperate attempt to fit these different behaviors
into a single law, Planck introduced the hypothesis that energy was not
continuous, but came in discrete packets or quanta.

In the beginning of the twentieth century, a number of experiments pointed
to a breakdown of the laws of classical mechanics at very small (sub-atomic)
scales. Among them were:

(1) Rutherford’s scattering of a-particles. This experiment at first seemed

27
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to support the classical picture of an atom as a microscopic planetary
system, held through an analogy between Newton’s and Coulomb’s
laws. However, it lead to some unexpected conclusions:

(a) Unlike planetary systems, all atoms have about the same size (~
1078 cm).

(b) According to the Maxwellian theory of electromagnetic radiation,
an electron orbiting around a nucleus should emit radiation, thereby
loosing energy and ultimately colliding with the nucleus. This is
in flagrant contradiction with the obvious stability of matter that
is observed in nature.

(c) The energy absorbed or emitted by an atom was seen to vary in
discrete quantities, and not continuously as expected by the clas-
sical theory. From a classical standpoint, the energy of radiation
of an electron in orbit varies continuously with the size (radius)
of the orbit. This leads to the surprising conclusion that only a
discrete set of orbit sizes is allowed.

(2) The photoelectric effect. When light waves of sufficiently high frequency
v hit the surface of a metal, electrons are emitted. For this to hap-
pen the light frequency has to be above a frequency threshold 1y
that depends on the metal. The experiments show that the kinetic
energy of each emitted electron is directly proportional to the differ-
ence v — v, but is independent of the intensity of the radiation. This
is in sharp contrast with the classical theory of radiation. In 1905,
A. Einstein proposed an explanation of this phenomenon. He in-
troduced the idea that, microscopically, a light wave with frequency
v has energy that is not continuous, but comes in discrete quanta,
or photons, each with energy F = hv, where h is the same con-
stant found by Planck in his work on black-body radiation.  Thus,
although behaving like a wave, light seemed to have a corpuscular
nature at very small scales.

(3) Matter waves. The radical hypothesis that material particles could be-
have like waves was first put forth in 1923 by L. de Broglie, who
even suggested that a particle with momentum p should be assigned
a wavelength equal to h/p, where h is Planck’s constant. The first ex-
perimental confirmation of this wave-particle duality of matter came
soon afterwards. In 1927, C. Davisson and L. Germer conducted
an experiment in which a well-focused beam of electrons, all with

+ In CGS units, Planck’s constant is h ~ 6.6 x 10~27¢cm - g/s
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approximately the same energy FE, is scattered off the plane sur-
face of a crystal whose planar layers are separated by a distance d.
They observed that an interference pattern — indicating wave be-
havior — emerges when the beam’s incidence angle 6 is such that
2dsin @ = nh/p, where n is a positive integer and p = v/2mEFE is the
electron’s momentum, consistent with de Broglie’s hypothesis.

These experimental facts and a number of others (such as those on polar-
ization properties of light, or the Stern-Gerlach experiment on spin) called
for a revision of the laws of mechanics. The first proposed theory, the so-
called old quantum theory of N. Bohr, A. Sommerfeld, and others, was a
mixture of ad hoc quantum rules with Newtonian laws — with which the
quantum rules were frequently in conflict — and therefore conceptually not
satisfactory. Then, in 1926, W. Heisenberg proposed his uncertainty princi-
ple, according to which the position and momentum of a microscopic particle
cannot be simultaneously measured. The classical idea of particles, describ-
ing well-defined paths in phase space, should be abandoned altogether. At
the same time, E. Schrédinger proposed that electrons and other particles
should be described by wave functions satisfying a partial differential equa-
tion that now bears his name (presumably guided by the idea that, where
there is a wave, there must be a wave equation). The new quantum theory
that emerged — quantum mechanics — was developed by M. Born, P. Jordan,
W. Pauli, P. Dirac, and others.

In this chapter, we present a short account of the mathematical ideas
and structures underlying quantum mechanics, from a modern mathemati-
cal viewpoint. The foundations of quantum mechanics were brought to firm
mathematical ground in the hands, above all, of J. von Neumann — who real-
ized that the appropriate setting for quantum mechanics should be a theory
of self-adjoint operators in a Hilbert space (and who single-handedly devel-
oped most of that theory) — and also E. Wigner, whose study of quantum
symmetries plays a decisive role today.

2.2 The basic principles of quantum mechanics
2.2.1 States and observables

In quantum mechanics, one postulates the existence of a separable complex
Hilbert space 5 that helps represent the possible states of a given quantum
system. This Hilbert space can be finite-dimensional (as in the case of a
system consisting of a single photon, or some fermion), but more often it is
an infinite dimensional space. The pure states of the system are the complex
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one-dimensional subspaces, or rays, of the Hilbert space . Since each such
ray is completely determined once we give a unit vector belonging to it, pure
states are also represented by unit vectors in .5#. This representation is not
unique, however: any two unit vectors that differ by a phase (i.e. by a
complex scalar of modulus one) represent the same state. Thus, the pure
state space of quantum mechanics is the projective space .7 = P (7).

The observables of a quantum system are represented by self-adjoint op-
erators on 7. It turns out that in many situations we must allow these
operators to be unbounded (defined over a dense subspace of 7). As we
shall see, this is unavoidable, for instance, when we perform the so-called
canonical quantization of a classical system of particles. The class of all
observables of a quantum system will be denoted by &.

Let us recall the spectral theorem for self-adjoint operators.

Theorem 2.1 Let A be a self-adjoint operator on a Hilbert space €, with
domain Dy C . Then there exist a measure space (S, 1), a unitary oper-
ator T : A — L*(Q, ) and a measurable function o : @ — R such that the
diagram

AL o

1 |»
s 1)

> Dy —— L2(Q, )

commutes. Here M, denotes the multiplication operator given by My(f) =
a-f, and Dy, = {f € L2(Q,p) : - f € L2(Q, )} is its natural domain of
definition.

For a complete proof of this theorem, see appendix I (theorem 10.4 in
§10.5). The spectral theorem allows us to associate to each observable A
and each state ¢ € S a Borel probability measure on the real line, in the
following way. Let F C R be a Borel set, and let xg be its characteristic
function. Then the operator My oq @ L*(Q, 1) — L%*(, u) is an orthogo-
nal projection (check!). Hence the operator Pp = T7! o M, 00 o T is an
orthogonal projection on s#. Using this orthogonal projection, we define

Pay(E) = (4, Ppy) € R .

This gives us a probability measure on the real line. The physical interpreta-
tion of the non-negative number P4 ,,(E) is that it represents the probability
that a measurement of the observable A when the system is in the state ¢ will
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be a number belonging to E. We therefore have a map 0 x . — Z(R) (the
space of Borel probability measures on the real line) given by (A4,1) — P4 4.

Besides pure states, there are also composite or mized states of a quantum
system. Roughly speaking, these correspond to convex combinations of pure
states. The mathematical definition is as follows. First, we define a density
operator (also called a density matriz) to be a self-adjoint operator M on
our Hilbert space .7 which is positive and trace class, with trace equal
to one. Positivity means that for all £ € % we have (M, &) > 0. We
say that M is trace-class if, given any orthonormal basis {i;} for J, we
have ), (M1);,1;) < 0o. One can easily show that this sum, when finite, is
independent of the choice of orthonormal basis, and therefore it is a property
of M alone; it is called the trace of M, and denoted Tr(M). A density
operator is normalized so that Tr(M) = 1. It turns out that if M is trace
class and A is any self-adjoint operator, then M A is trace-class. A mized
state is a linear functional w on the space of observables such that w(A) =
Tr(MA) for all observables A, where M is a fixed density operator. It
should be apparent that mixed states are more general than pure states.
Indeed, if a unit vector v € JZ represents a pure state, we can take M
to be the orthogonal projection of # onto the subspace generated by 1.
This M is a density operator, and its corresponding mixed state w satisfies
w(A) = (¢, A) for all observables A (see exercise 1).

2.2.2 Time evolution

Another important postulate of quantum mechanics is that the time evolu-
tion of a quantum mechanical system with Hilbert space 7 is given by a
one-parameter group of unitary operators Uy € % (). Thus, if the system
is initially at state 1, then its state at time ¢ will be ¥y = Uy(1)g).

Theorem 2.2 (Stone) Every one-parameter group of unitary operators Uy :
I — I of a separable complex Hilbert space € possesses an infinitesimal
generator. More precisely, there exists a self-adjoint operator H on € such
that Uy = e *H for all t € R.

Again, the proof of this theorem can be found in appendix I (see theorem
10.10 in §10.9). In the case of our quantum system, this special observable
H | normalized by a constant A called Planck’s constant, is called the Hamil-
tonian of the system. From Stone’s theorem, it follows at once that the time
evolution of states vy satisfies the following first order differential equation

dp
o = " RHW).
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This is known as Schrédinger’s equation.

2.2.3 Symmetries

According to Wigner, a symmetry of a quantum system is a map in pure
state space that preserves the transition probabilities between states. More
precisely, given two rays r,1’ € . = PY(#), we let

z,2')]
P(/,17 /r/) — | < 9y ,
121112l
where z, 2 € # are any two unit vectors belonging to r and r’ respectively.
Then we have the following definition.

Definition 2.1 A symmetry of the quantum system with Hilbert space F
is a continuous bijection S : . — . such that P(S(r),S(r")) = P(r,r") for
all pairs of rays r,v’' € .

Symmetries of quantum systems correspond to unitary or anti-unitary
operators in the Hilbert space of the system. This is the content of the
following theorem due to Wigner.

Theorem 2.3 If S is a symmetry, then there exists a unitary or anti-unitary
operator S : S — I such that the following diagram commutes

o S

wl lw

S — S
where w . H — S is the obvious projection map.

Proof A proof can be found in [We, I, pp. 91-96]. O

2.2.4 Heisenberg’s uncertainty principle

The uncertainty principle discovered by Heisenberg uncovers a major dif-
ference between classical and quantum mechanics. Whereas in classical me-
chanics the observables are functions on phase space and therefore constitute
a commutative algebra, in quantum mechanics the observables are opera-
tors, and their algebra is non-commutative. Heisenberg’s principle, stated as
a mathematical theorem below, asserts that two observables of a quantum
system cannot be simultaneously measured with absolute accuracy unless
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they commute as operators. There is an intrinsic uncertainty in their simul-
taneous measurement, one which is not simply due to experimental errors.

Let us suppose that A is an observable of a given quantum system. Thus,
A is a (densely defined) self-adjoint operator on a Hilbert space .. Let
Y € A with ||¢|| = 1 represent a state of the system. Then

(A)y = (¢, AY)

is the expected value of the observable A in the state ¢). The dispersion of
A in the state 1 is given by the square root of its variance, that is to say

AyA = ((A— (A D)%% = | Ay — (Al .

Note that if ¢ is an eigenvector of A with eigenvalue A, then (A4), = A and
AyA=0.

Theorem 2.4 (Heisenberg’s uncertainty principle) If A and B are
observables of a quantum system, then for every state ¥ common to both
operators we have

AyAALB > %}<[A,B]>w} . (2.1)

Proof Subtracting a multiple of the identity from A and another such mul-
tiple from B doesn’t change their commutator, and it doesn’t affect their
variances. Hence we may suppose that (A), = (B)y = 0. Now, we have,
using the self-adjointness of both operators,

[{[A, Bl)y| = | (¥, (AB — BA)Y) |

= 2| Im (Av, BY) | (2.2)

But the Cauchy-Schwarz inequality tells us that
| Tm (Ag, By) | < 4] | BY] (2.3)
Combining (2.2) with (2.3) yields (2.1), as desired. O

A simple consequence of this result is the fact that in a quantum particle
system, the position and momentum of a particle cannot be simultaneously
measured with absolute certainty.

2.2.5 The von Neumann axrioms

Let us summarize the above discussion by stating, in an informal manner, the
basic axioms of J. von Neumann describing a quantum mechanical system.
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1. The pure states of a quantum mechanical system are given by rays (equiv-
alently, by unit vectors up to a phase) in a complex, separable Hilbert
space €.

2. The observables of the system are (densely defined) self-adjoint operators
on J€.

3. Given a Borel set E C R, the probability that an observable A has a
value in F when the system is in the state v € # is (¢, Pp),
where Pg is the spectral projection of A associated to E (via the
spectral theorem).

4. If the system is in a state ¢ at time 0, then its state at time t is given
by ¥(t) = exp (—iHt/h)1, where H is the Hamiltonian (or energy)
observable of the system.

2.3 Canonical quantization

There is an informal, heuristic principle in quantum mechanics called the
correspondence principle. According to this principle, to each classical
Hamiltonian system there should correspond a quantum system whose ” clas-
sical limit” is the given classical system. The process of constructing such a
quantum version of a classical system is called quantization. The construc-
tion involves finding a suitable Hilbert space from which the quantum states
of the system are made, and suitable self-adjoint operators on this Hilbert
space corresponding to the classical observables of the system.

We shall describe here the so-called canonical quantization of a Hamilto-
nian system consisting of N particles in Euclidean space.

The classical system here has states given by points in R”, where n = 3N,
and position observables ¢, qo,...,q,. These are functions on phase space,
and as such they satisfy the canonical commutation relations {¢;,q;} = 0
(Poisson brackets here). After quantization, we should have a Hilbert space
A and position observables @1, Qo, . .., Q, which are now self-adjoint oper-
ators on . These should still satisfy the commutation relations [Q;, Q;] =
0.

These commutation relations combined with the spectral theorem im-
ply that there exist a common measure space (€2, 1), a unitary equivalence
T : s — L*Q,p) and functions q1,qs,...,q, on Q such that each of the
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diagrams

2 Do, ——92——> Y 4

7| |r
) T L*(9, 1)

commutes. What space should (€2, z) be? No uniqueness is expected here,
unless we make an extra hypothesis: we assume that the observables Q); form
a complete system in the sense that if A is an observable that commutes with
all Q; then A = ¢g(Q1,Q2,...,Qy) for some Borel map g. (This is not always
physically reasonable: systems of particles which after quantization exhibit
spin, for instance — a purely quantum property — can never be complete in
this sense).

If the hypothesis is satisfied, however, then it is possible to take the mea-
sure space to be the classical configuration space itself, namely Q = R",
with p equal to Lebesgue measure. Hence the Hilbert space of the system
is identified with L?(Q, ). The position operators become multiplication
operators Q)j : ¢ +— q;1.

Now, we have for each j a representation 7; : R — % (L*(2, 1)) of the
translation group of the real line in our Hilbert space, given by

j—;¢(q17q27"'7qj7"'7QTL):d}(qlv"'?(Ij—t?"'v(_In) .

Such representation is unitary (exercise). Hence by Stone’s theorem 2.2,
there exists an infinitesimal generator P; such that

j}tz/) — @itij X
In fact, we have
0
Py= i
8%‘

The operators P; defined in this way are the momentum operators.

Proposition 2.1 The position and momentum operators defined above sat-
isfy the Heisenberg commutation relations

Proof Exercise. O

We note en-passant that the last equality in the above proposition can
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be combined with theorem 2.4 to yield a more familiar statement of Heisen-
berg’s uncertainty principle.

Proposition 2.2 The dispersions of the position operator P; and the mo-
mentum operator @Q; satisfy the inequality

1
ApPjAyQj = o

for every state 1 belonging to the domains of both operators.

Proof Immediate from Theorem 2.4 and the fact that [P;,Q;] = —il. O

Next we ask ourselves the following question: what should be the Hamil-
tonian operator of this system? To answer this question, we have to go
back to the general setting of the previous section and understand the time
evolution of an observable. If U; = e~ denotes the one-parameter group
generated by the Hamiltonian H and A is an observable, then heuristically
we have

A= %’t:() (e Ae™™M) = i(HA - AH) ,

in other words

A=i[H A .
We emphasize that this is purely formal; in particular, the right-hand side
doesn’t have a meaning yet. But we proceed heuristically: if A = @;, then
we expect to have

. . 1
where m; > 0 is a constant corresponding to the mass of the particle with
classical position coordinate g;. This yields the formal equality
1 0

HQj— Q;H = “m; 9q; (2.4)

The Hamiltonian operator H that we are looking for should satisfy these
relations. Now we have a simple lemma.

Lemma 2.1 For each j =1,2,...,n we have
0? 0? 0
— Qi —Q;=—==2—". 2.5
aq; 7 g7 gy 25

as operators (densely defined on L?(R™)).
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Proof If 1 € L?(R") is twice differentiable, then we have on one hand

02 _ 0 o N 621[1
( Qg>¢ a4, (1/1‘1‘ ga ) 28—%4‘%8—%27

8qj
92 924
(o) o

Subtracting these equalities yields (2.5). O

and on the other hand

This motivates us to define an operator Hp as follows:

1 0
T S
= 2m; Og;

By Lemma 2.1 and (2.4), we have HrQ; — Q;Hr = HQ; — Q;H for all j.
This shows that the operator V = H — Hy commutes with each Qj, ie.
[V,Qj] = 0 for all j. Due to our assumption that the position operators
are complete, this means that V = V(Ql,Qg, ...,Qp). Since each Q; is a
multiplication operator in L?(R"™) (by the function ¢;) and they commute,
the spectral theorem implies that there exists a (measurable) function V' on
R™ such that Vi =V - 9.
We arrive at the following expression for the Hamiltonian operator

n 1 92
Hz/}:—%z af+vw
s

2.4 From Classical to Quantum Mechanics: the C* algebra
approach

We would like to say a few words about the more modern mathematical
approach to quantum mechanics via C* algebras, even though this viewpoint
will not be really used in the remainder of this book, except in a brief
discussion of algebraic quantum field theory at the end of appendix II. The
reader is hereby advised to consult that appendix for all the basic definitions
and results about C* algebras that are relevant in the discussion to follow.

In classical (Hamiltonian) mechanics, the states of a system are described
by points in a phase space I'. The observables — physical quantities that are
measurable in experiments — are described by real (or complex) valued func-
tions on phase space. As it turns out, the observables form a commutative
C* algebra. As it became clear at the end of the nineteenth century, this
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description of a mechanical system is quite inadequate if the system has too
many particles. In the new approach proposed by Gibbs and Boltzmann,
one only talks about the probability that a system is in a given state. More
precisely, in statistical mechanics the states are taken to be probability distri-
butions on phase space I', whereas the observables become random variables
onI' (note however that they still form an abelian C* algebra). The states in
statistical mechanics are, therefore, more general than classical states: the
latter, also called pure states, correspond to (Dirac) point-mass distributions
concentrated at one given point in phase space. In the statistical-mechanical
description, when a system is in a given state, all one really measures about
an observable is its expected value with respect to the probability distribu-
tion of that state. Thus, a state can be viewed as a positive linear functional
on the C* algebra of observables. This establishes a certain duality between
states and observables. In the early part of the twentieth century, it became
apparent that even this more general model of the world given by statistical
mechanics was insufficient to describe phenomena at the microscopic (sub-
atomic) scale. At such scale, Heisenberg’s uncertainty principle rules: in
many situations, two given observables cannot be simultaneously measured
accurately in a given state — not just experimentally, but in principle. In
addition, the measured values of observables (say, energy) are oftentimes
discrete quantities, not continuous as one might expect.

The new description of the world that emerges from this picture — quan-
tum mechanics — is a radical departure from either classical or statistical
mechanics. Whereas in classical or statistical mechanics the observables
form a commutative C* algebra, in quantum mechanics this C* algebra is
non-commutative. The states of a quantum system are defined by duality
— in analogy with what happens in classical or statistical mechanics — as
positive linear functionals on the C* algebra of observables.

The abstract algebraic structures described above, however nice, are not
entirely satisfactory for the description of concrete physical systems. In
order to actually measure and predict, we need a concrete realization of
such abstract structures. In the classical case, the algebra of observables is
commutative: it is C(I") for some (compact) space I'. Conversely, if one is
given only a commutative C* algebra, one can reconstruct the phase space
I': this is the abelian version of the Gelfand-Naimark theorem, according to
which every commutative C* algebra (with unity) is isometrically isomorphic
to C'(X) for some compact Hausdorff space X. In the quantum case, the C*
algebra of observables is non-commutative. Here a concrete representation
of such C* algebra is offered by the full Gelfand-Naimark theorem.
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Theorem 2.5 (Gelfand-Naimark) Every C* algebra is isometrically iso-
morphic to an algebra of (bounded) linear operators in some Hilbert space.

This theorem is presented with a complete proof in appendix II, theorem
11.8. Thus, the observables of a quantum system are represented by linear
operators on a certain Hilbert space. By the above duality between states
and observables, it can be shown (the so-called Gelfand-Naimark-Segal con-
struction — see appendix II, theorem 11.7) that in this representation the
pure states correspond to rays in the Hilbert space. Once this Hilbert space
picture is in place, one can study the dynamical evolution of the system.
This can be done through the analysis of either the time evolution of states
— the Schrodinger evolution equation — or the time evolution of observables
— the Heisenberg evolution equation. These are dual to each other.

Remark 1. We warn the reader that this rather simplistic outline omits
several important points. For example, when trying to quantize a classical
system, say a system with a single particle, we run into the difficulty that
the position (¢) and momentum (p) observables are not (and can never be
made into) bounded operators, and we seemingly fall outside the scope of
the above discussion. This difficulty was resolved by Weyl a long time ago.
The idea is to replace ¢ and p by their complex exponentials €’ and e
(these will be bounded as long as ¢ and p are essentially self-adjoint) and
look at the C* algebra generated by the algebra of polynomials on these.
The resulting C* algebra is called the Weyl algebra. Von Neumann has
shown that all regular, irreducible representations of the Weyl algebra are
unitarily equivalent. See section 2.5 below for more on these facts. A good
reference for the C* algebra approach to quantum mechanics is [Str]. But
see also our appendix II.

2.5 The Weyl C* algebra

As we have seen in section 2.3, the quantization of a classical mechanical
system consisting, say, of a single particle, yields position and momentum
observables Q and P respectively, satisfying Heisenberg’s commutator rela-
tions

[P,P]=0=[Q,Q]; [P,Q]=—ihI.

We know that such observables are represented by a pair of self-adjoint
operators defined on some Hilbert space 5#. Such Hilbert space cannot
be finite-dimensional, otherwise P and () would be represented by matrices
satisfying PQ — QP = —ihl, which is impossible — to see why, simply take
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the traces of both sides of this equality. Thus, 7 is infinite-dimensional.
Could P and @ be both bounded operators on 5 7 The following result
shows that the answer is no.

Lemma 2.2 Let P,Q be self-adjoint elements of a C* algebra such that
[P,Q] = ol for some a € C. Then a = 0.

Proof Note that for all n > 1 we have

[P,Q"] = [P,QIQ" + Q[P, Q"]
=aQ" ' +Q[P,Q"!] .

From this it follows by induction that
[P,Q"] = na@Q" ! .

Taking norms on both sides yields

nlal |Q" | = [PQ™ — Q"P|| < 2P| Q] Q"] - (2.6)

But now, since Q is self-adjoint, we have ||Q"!|| = [|Q|"~!. Moreover, the
commutator relation [P,Q] = al tells us that either a = 0, in which case
we are done, or else ||@Q|| # 0. In the latter case we can divide both the left
and right sides of (2.6) by ||Q"~!||, getting the inequality 2||P||-||Q|| > n|al.
Since this holds for all n > 1 and || P||, ||Q]| are bounded, we deduce that
a=0. O

This lemma shows that, when one quantizes a classical system, the ap-
pearance of unbounded operators as observables is unavoidable. This fact
introduces certain technical difficulties in the study of quantum mechanical
systems.

One way out of such difficulties was devised by H. Weyl. Instead of the
self-adjoint operators P, (), Weyl proposed to consider the one-parameter
groups

U(a) =€ and V(a)=e? | wherea eR .

These are unitary operators, and therefore bounded. They are called Weyl
operators. The physical motivation behind Weyl’s idea is the fact that what
one really wants to understand is the time evolution of an observable, not
so much the observable per se.

The Heisenberg commutator relations for the operators P and () translate
into new commutation relations for the corresponding Weyl operators. This
will be stated precisely below. First we need an identity, the so-called Baker-
Hausdorff formula. The statement below depends on the following concept.
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If A is a self-adjoint operator on the Hilbert space ¢, we say that a vector
W € A is analytic if A™Y is well-defined for all n, and also the exponential

e,

Lemma 2.3 (Baker-Hausdorff) Let A, B be self-adjoint operators on a
Hilbert space. If the domains of A, B, and A + B have a common dense

subspace D of analytic vectors, then in D we have
AeB — A+B+3[AB : (2.7)

provided [A, B] commutes with both A and B.

Proof Note that the right-hand side of (2.7) is equal to

1
ATBEAB]

because [A, B] commutes with A+ B. Let us consider the function of a real
variable « given by

F(a) _ eaAeaBefa(AJrB)efoé[A,B} ) (28)

To prove (2.7), it suffices to show that F'(1) = I (identity operator). We will
show in fact that F'(«) = I for all a. Since we clearly have F'(0) = I, all we
have to do is to show that the derivative F'(«) = 0 for all o. Calculating
the derivative explicitly, we get

o2
F'(a) = e*4eB (e *PAe™P — A — oA, B)) e AFB) =5 IABl - (9.9)

We claim that the expression between parentheses in (2.9) vanishes. To see
why, let ®(a) = e B Ae*P. Then

O'(a) = e B[4, Ble*? = (A, B] |

because [A, B] commutes with B, and hence with e*®. This shows that
®(a) = afA, B] + C for some C. But ®(0) = A, so C = A, and therefore
®(«) = a[A, B] + A. In other words, we have

e BAeP —a[A,B]—A=0.

This proves our claim; the right-hand side of (2.9) vanishes identically, and
we are done. O

With this lemma at hand, we are now in a position to establish the Weyl
commutation relations.
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Theorem 2.6 The Weyl one-parameter groups of unitary operators satisfy
the following relations, for all a, 3 € R:

(1) Ul)U(B) = U(B)U() = Ul + B);
(i) V(a)V(B) = V(B)V(a) = V(e + f);
(iii) U(a)V (8) = eV (B)U ().

Proof To prove (i), apply Lemma 2.3 with A = iaP and B = iGP (note
that in this case [A, B] = 0). Similarly, to prove (ii) apply the same lemma
with A = ia@ and B = i5Q (again, [A, B] = 0). Finally, to prove (iii),
take A = iaP and B = i@ and once again apply Lemma 2.3. This time
[A, B] = —af[P, Q] = —ihaf. Therefore, on the one hand we have

U(@)V(8) = e~ = Pellol0Q)
and on the other hand
V(OU () = 7P P )
Comparing this last two equalities immediately yields (iii). O

The algebra over the complex numbers generated by abstract elements
U(a) and V(B) (o, 8 € R) satisfying the Weyl commutation relations given
in Theorem 2.6 is called the Weyl algebra, and is denoted by @#y. One can
define an involution * : @4y — oAy by letting

Ul@)" =U(=a) , V()" =V(=5)

and extending it to the whole algebra in the obvious way. The elements
U(a),V(B) are unitary, in the sense that

Ul)'U(a) =U()U(a)* =1

by the Weyl relations, and similarly for V'(/3), V(8)*. Finally, one can define
a (unique) norm over &y in such a way that U(a), V(5) and U(a)V(f)
all have norm equal to one (by the Weyl relations, every monomial in the
generators can be reduced, up to multiplication by a complex number of
unit modulus, to the form U(a)V (53), and therefore also has norm one). It
is possible to prove that the completion of &% with respect to this norm is
a C* algebra, still denoted «#y. It is called, not surprisingly, the Weyl C*
algebra.

Thus, a quantum system consisting of a single particle is described by the
Weyl C* algebra. The possible quantum states of such a one particle system
are given by the representations of the C* algebra @y in a suitable Hilbert
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space. The task of finding such representations is greatly facilitated by a
theorem of Von Neumann, stated below.

Definition 2.2 A unitary representation p of the Weyl C* algebra into a
separable Hilbert space F is said to be regular if a — p(U(a)) and B —
p(V(B)) are strongly continuous maps.

Theorem 2.7 (Von Neumann) All reqular irreducible representations of
the Weyl C* algebra <y are unitarily equivalent.

We will not prove this theorem here. The interested reader can consult,
for instance, [Str], pp. 61-62.

2.6 The quantum harmonic oscillator

Let us now see how the quantization scheme described in the previous section
can be applied to the harmonic oscillator, the simplest and most important
example of a Hamiltonian system. The classical Hamiltonian in generalized
coordinates is

21

p
H(q,p) = om + Emw2q2 ; (2.10)

where m is the mass and w is positive constant measuring the frequency of
oscillation. Let us assume henceforth that m = 1, and let us take Planck’s
constant i to be equal to 1 also. Our quantization scheme dictates that p
and ¢ be promoted to self-adjoint operators P and @) acting on some Hilbert
space . Accordingly, the quantum Hamiltonian

H = % (P* +w’Q?) (2.11)

becomes a self-adjoint operator as well.

2.6.1 Computing the spectrum

We want to find the spectrum of H in (2.11). We will in fact find all eigenval-
ues and corresponding eigenvectors. In order to do so, we make the following
assumptions.

(i) The operators P and @ act irreducibly on the Hilbert space .. In
other words, .77 cannot be decomposed into a non-trivial direct sum
of subspaces which are invariant under both P and Q.

(ii) The operator H given in (2.11) has an eigenvalue .
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We shall deal with these assumptions in due time. For now, the interesting
thing is that, as soon as we have these facts at hand, we can determine
the full spectrum of H in an essentially algebraic fashion, with the help of
Heisenberg’s commutator relation

Q.P] = i. (2.12)

In order to do this, we introduce the following operators

a = (wQ +1iP) ,

(w@ —iP) .

8- 8-
S S

These are called the annihilation and creation operators, respectively. Note
that, since P and @) are self-adjoint, a* is equal precisely to the adjoint of a
(i.e. a' = a*). An easy computation using (2.12) yields

aa* = i (wQ +iP) (wQ —iP)

- L Q) 1wl Q)

2w
1 w
- = _ ) 2.1
w ( 2) (2.13)
Similarly, we have
. 1 w
a*a = ;(H—Fg) . (2.14)

Combining (2.13) with (2.14) we deduce that
[a,a®] = 1. (2.15)
Here are some purely algebraic consequences of this last identity. We have
[a,(a*)*] = aa*a* —a*a*a

= aa’a” —a*aa* + a*aa* —a*a*a

= [a,a’]a* + a*[a,a’] = 2a™ .
Thus, [a, (a*)?] = 2a*. By induction we get, for all n > 1,

[a, (a*)"] = n(a®)"'. (2.16)
Two other identities are immediate from (2.15), namely

[H,a] = —wa and [H,a"] = wa* (2.17)



2.6 The quantum harmonic oscillator 45

Now, using the second of our assumptions above, let 1) € S be an eigenvec-
tor of H belonging to the eigenvalue A, i.e. HY = A\i). Then, using (2.14),
we have

w(a*a%—%)w =\ .
Taking the inner product on the left by 1, we get
w (W, a*ay) + Sl = Al -
Since a* is the adjoint of a, this last equality becomes
wlawl? + Sl = Al]?
from which it follows that
(A=3) Il? = wlawl? = 0.

This shows that A > w/2, with equality if and only if ai) = 0. This proves
that the spectrum of H, which we know is real because H is self-adjoint, is
bounded from below by w/2 > 0. Now, from the fact that HyY = A\ and
using (2.17), we see that

aHY = Aay)
implies
(Ha+wa)p = Aay) ,
and therefore
H(ay) = (A -w)ay .

We deduce that either ayp = 0, or else ay is an eigenvector of H with
eigenvalue A — w, and then A — w > w/2. Proceeding inductively, we get a
sequence of eigenvectors

w?aw7a2/¢}7"' 7a/N/(/)7"'
with corresponding eigenvalues
MA—w,A—2w,...,A—Nuw,...

This cannot keep going down forever, because the eigenvalues of H are
all positive. Therefore there exists N > 0 such that vy = a’V1) satisfies
H1py = A\gtpg for some Mg > 0 but aipg = 0. It is an easy exercise to see that
)\0 = w/2.

The above ladder reasoning shows that the assumption that H has an
eigenvalue is equivalent to the existence of a non-zero vector vy € J such
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that aiyy = 0. This vector, which we normalize to be a unit vector, is called
the ground state of H.

In the above argument we have reached the ground state by stepping down
the ladder. Now we can climb it back up to get all the eigenstates of H
and their corresponding eigenvalues. Starting with the ground state v, we
define ¢,, = (a*)"1)g for each n > 0. We claim that each ¢,, is an eigenvector
of H. Indeed, using the second equality in (2.17), we see that

H¢, = Ha*(a*)" Yy = (a*H + wa*)pp_1 ,
whence
Hp, = a*Hop_1 +woy, . (2.18)

It follows easily by induction from (2.18) that ¢, is an eigenvector of H
for each n > 0 (note that ¢g = v). In fact, denoting the corresponding
eigenvalue by \,, we see that (2.18) also implies that A\, = \,,—1 +w for each
n > 1. Since A\g = w/2, we deduce that A\, = (n + %)w for all n > 0.

It is an easy exercise to check that the subspace of 7 spanned by {¢, :
n > 0} is invariant under the operators P and @ (see exercise 4). But now
the irreducibility assumption (i) above implies that # must be equal to this
subspace. In particular, we have proved that the spectrum of H is

o(H) = {(n+%)w:n=0,1,2,...}. (2.19)

The vectors ¢, are pairwise orthogonal, since they are eigenvectors of a
self-adjoint operator belonging to distinct eigenvalues. Note however, from
(2.16), that

lfnll® = ((a®)" 1/J07( *)"1o)
= <an( % Yo)
a ! )"+ (@) ), o)

= n{a"" ( )n Y0, v0) -
This shows that

l6nll* = n{(a*)" 0. (a*)" " 0) = nllgn],

and therefore, by induction,

[nll® = nlllol® = n!
Thus, an orthonormal basis of eigenvectors for H is given by
1

Vp = (a®)"py, n=0,1,2,... (2.20)

Val
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2.6.2 Concrete coordinate representation

We have determined the spectrum of H under the assumptions (i) and (ii)
above. Let us now exhibit a concrete representation of H, on a concrete
Hilbert space 7, that satisfies both assumptions. Everything boils down
to finding 19 € J such that ayg = 0. Let s = L?*(R), and consider
the Schwartz space .(R) C L?(R), which is dense in L?(R). Let Q,P :
S (R) — L*(R) be given by

(@i)(x) = wi(a)
(Po)(a) = ~i22()

These operators are essentially self-adjoint (see appendix I). Accordingly,
the operator a acts on .(R) by the formula

(@)a) = = (wevlo) + (@)

A similar formula holds true for a*+. In order to find the desired eigenvector
for H, we need to solve aiyyg = 0. This is an ordinary differential equation,
namely

Yo(x) = —wa(x) .

Its general solution is ¥g(z) = Ce~3%* | for some (real) constant C. Such
constant is chosen so that 1y has unit L?-norm. Thus,

2
L= ol = 2 [ () ao,
R

m _1
C? = (/ e’ d:c) = d .
oo T

and therefore

We deduce that

Note that 1) is indeed an element of .#(R). With vy at hand, we can now
write down explicitly each 1, of the orthonormal basis of eigenvectors which
completely diagonalizes H. We get

v = (2)° % <wx+ i)"e—%wz |

When the action of the differential operator appearing in this expression is
explicitly worked out, the final result will involve, for each n, a polynomial
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H,(z) of degree n times the Gaussian function e=24%" The polynomials
H,(z) are the classical Hermite polynomials.

2.6.3 Holomorphic representation

Here is an alternative, concrete representation of the Hamiltonian operator
H (which must obviously be isomorphic to the one given in the previous
subsection). It turns out that the assumptions (i) and (ii) we made in §2.6.1
are equivalent to assuming the existence of a separable Hilbert space .7 and
a complete pair of operators P and @ on this space satisfying the Heisenberg
commutator relation (2.12). Let us now prove once again that they exist.

As Hilbert space .77, consider the complex vector space of all holomorphic
functions f : C — C such that

1 _
2—/ 1f(2)]Pe ™ dzdz < oo,
tJc
endowed with the inner product

(F.9) = 5 /(C F()g(2)e* dadz |

As the reader can check, the polynomials ¢, € # given by ¢, (z) = 2"
(n=0,1,...) are mutually orthogonal in # with respect to this inner prod-
uct. Moreover, if f =" f,2" and g = ) g,2" are holomorphic functions in
¢, then

<fvg> = Zanfngna
n=0

where

o0 2
o, = 27r/ P2t le= " dr
0

Lemma 2.4 With the inner product defined above, J is a complex Hilbert
space.

Proof An exercise for the reader. O

Next, define the (unbounded) linear operators P and @ on this Hilbert
space 7 as follows

Qf(z) = 2f(2),

0
Pf(z) = fia—ﬁ.
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Lemma 2.5 The pair of operators P,Q is complete, and it satisfies the
Heisenberg commutator relation.

Proof Let T be a linear operator on .7 that commutes with both P and Q.
Since the kernel of P is the subspace of constant functions, from PT = TP
we see that 7" maps constants to constants. Now let v, = T'(¢,). From
TQe, = QT p, we deduce that ¥, 11(z) = 2, (2). Therefore

Ton =1n = an()(z) = CSOn(Z) )

where ¢ = T'(1) € C. This shows that T' = c¢I, so the pair P, is complete.
We leave it as a very easy exercise for the reader to check that [P, Q] = —il.
O

2.7 Angular momentum quantization and spin

As a second important example of quantization, let us consider the angular
momentum of a particle system. To simplify the discussion, we shall only
treat here the case of a single particle in 3-space. Recall that the classical
angular momentum is given by = x A p, where @ = (x1,2z2,x3) is the
particle’s position and p = (p1,p2,ps3) is its momentum. The components
01, Q9,23 of the angular momentum are given by

Qj = z’fjklxkpl s (2.21)

where €51 is the totally symmetric symbol satisfying e;; = 1 if jkl is an
even permutation of 123, €;5; = —1 if that permutation is odd, and €;;,; = 0
otherwise. Calculating the Poisson bracket {€21,€Q2}, we get

{0, Q) =)

Jj=1

S0 00 0 90
al‘j apj apj afj

= T1p2 —x2p1 = (3.

Thus {Ql, QQ} = Qg, and Similarly {QQ, 93} = Ql and {Qg,Ql} = QQ. One
recognizes here the relations defining the Lie algebra of SO(3).

Now the idea is that, when we quantize this system, we should obtain op-
erators L1, Lo, L corresponding to 21, {23, Q3 respectively (and an operator
L corresponding to ). The Poisson bracket relations should translate into
similar relations for the commutators of these operators. Due to (2.21), we
realize that

Lj = z’fjkl.@kﬁl s (2.22)
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where Zj; are the position operators and p; are the momentum operators.
Using the Heisenberg commutation relations [Zy,p;] = kg, we deduce
(exercise) that

(L1, Lo] =ihLs ; [Lo, L3] =ihLy ; [L3,L1] = ihLy . (2.23)

Thus, we can think of the quantization procedure as giving rise to a repre-
sentation of the Lie algebra of SO(3) into the self-adjoint operators of some
Hilbert space, with the generators being mapped to operators L; satisfy-
ing (2.23). We shall assume that such representation is irreducible (this is
consistent with Wigner’s definition of particle, see chapter 4).

We are interested in the spectral properties of the operators L;. At this
point, we could consider the one-parameter groups of unitary operators gen-
erated by the L;’s and invoke the Peter-Weyl theorem, according to which
the irreducible representations of a compact Lie group (such as SO(3)) are
all finite-dimensional. We prefer instead to proceed in elementary fashion.
For this purpose, it is convenient to consider the operator

[? = 3+ I3+ 13,

Note that, since each L; is self-adjoint, L? is a positive operator. Therefore
L?, being a sum of positive operators, is positive also.

Lemma 2.6 The operator L? commutes with each L;.

Proof To prove this lemma, it is convenient to use the identity
[AB,C] = A[B,C]+[A,C]B . (2.24)
Applying (2.24) with A= B = L; and C = Ly, we get
L5, Li] = Lj[Ly, Li] + [Lj, Ly L; -
Hence we have, using (2.23),

[L2,L1] =0 [L? Ly| =ih(LsLy + LiL3) (2.25)
[L3, L3] = —il(L1 Lo + LoLy) .

Similarly, we have

[L3,L1] = —il(LoL3 + L3Ly) ; [L3,L2] =0 (2.26)
(L3, L3] = il(L1 Ly + LoLy) ,
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as well as
[L3,L1]) = ih(LaL3 + L3Lo) ; [L3, Lo] = —ih(L3Ly + L1L3) (2.27)
[L%, L3] =0.
Adding up the first relations in (2.25), (2.26) and (2.27), we get
(L%, L1] = [L}, La] + [L3, L] + [L3, L]
= 0- Zh(Lng + L3L2) + lh(Lng + L3L2) = 0.
Similarly, we get [L?, Lo] = 0, and also [L?, L] = 0. O

This shows that L? commutes with every element of the Lie algebra gen-
erated by the L;’s. Since we are assuming that this representation is irre-
ducible, it follows that L? belongs to such Lie algebra. Therefore L? must
be a multiple of the identity: L? = AI for some A > 0 (recall that L? is
a positive operator). It is easy to exclude the possibility that A = 0: the
representation would be trivial in this case. Hence we can assume that
A> 0.

Lemma 2.7 The operators L; are bounded.

Proof We claim that sz is a bounded operator. This follows easily from the
fact that LJZ is a positive operator and from the fact that L? > sz. This is
turn shows that the spectrum of L; is contained in the interval [—v/\, VA,
and therefore L; is a bounded operator also. O

We can actually describe the spectrum of each L; quite explicitly. Let
us do it for j = 3. For this purpose, we introduce the following (bounded,
but not self-adjoint) operators Ly = Ly +iLg and L_ = Lj —iLo. In what
follows, these operators will play a role akin to that of the creation and
annihilation operators introduced in the analysis of the harmonic oscillator.

It is an easy exercise to check that [Ls, L] = +hAL.

Lemma 2.8 Let A, B be elements of a Lie algebra such that [A, B] = B.
Then for all o € C we have

B = ¢*Be®4 .
Proof Since AB = BA+ B = B(I + A), we have by induction

A"B = B(I + A)" .

Multiplying both sides of this equality by ™ /n! and adding up the resulting
series we get e“4 B = Be®U+4) = @ B4, O
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Applying this lemma to A = +h L3, B = L4 and a = ish, it follows
that

elSLgL:tef’LSLg — ezshLi )

Taking s = 27 /h we see from this relation that the unitary operator e2miLs/h

commutes with L, L_ and Ls. As before, we deduce that it is a (phase)
multiple of the identity, in other words,

627riL3/h — eiQI )

This equality allows us to prove that the spectrum of the operator Lg is
discrete. We need the following more general result.

Lemma 2.9 Let A be a self-adjoint operator such that e*™4 = €T, for
some 0. Then A has discrete spectrum.

Proof Let us consider the one-parameter group of unitary operators given

by

U(S) _ eisAefi39/27r _ eis(ID

where

P :A—il.
2T

Applying the spectral theorem, we have the integral representation
U(s) = / eNAE(N) .
o(P)
From this and the functional calculus, we can write

U(2m) 1) = / 27 _ 1| dE()) .
o(P)

But the left-hand side of this last equality is zero. Therefore o(®) C Z. This
shows that

U(A)g{nJrQi : neZ} :

™

This shows that the spectrum of A is discrete as claimed. O

Lemma 2.10 The operator Ls has discrete spectrum.
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Proof Applying Lemma 2.9 to A = L3/h, the result follows. We deduce in

fact that
0
o(Ls) C {(n%—%)h : nGZ} .

The inclusion is actually strict, since we know already that L3 is bounded.
O

Obviously, the same result holds for the other two angular momentum
operators L1, L. Summarizing, we know so far that these operators are
bounded with finite spectrum. Each element of the spectrum must therefore
be an eigenvalue. Now, if A € o(L3) and 9 is an eigenvector with eigenvalue
A, then we have

LsLitp = (A£h)Liy .

Thus the operators Ly and L_ have the effect of raising and lowering the
eigenvalues. Using the fact that the spectrum of Lg is finite, we deduce that
there exist integers k and ! with k < [ such that the eigenvalues of L3 are
A+ kb, A+ (K+ DA, ..., A+ (I — 1)h, A + [h. We leave it as an exercise to
deduce from these facts that there exists a positive integer ¢ such that either

o(Ls)={nh : n=—-4,---,—1,0,1,--- ,{} .

U(Lg):{(n—l-%)hl n=-—4---,-1,0,1,--- ,6} .

Note that the entire analysis so far has not used (2.22) at all!. One can use
(2.22) to rule out the second possibility for the spectral properties of the
orbital angular momentum operators.

or

This still leaves open the possibility that there are irreducible represen-
tations for which the generators of the associated Lie algebra have spectra
given by the second of the two options above. And indeed there are. The
quantum observables, however, do not correspond to any classical observ-
able. They are the so-called spin operators Si,S2,S53. They arise from ir-
reducible unitary representations of the Lie group SU(2), which is a double
covering of SO(3) and whose Lie algebra is the same as that of SO(3).

2.8 Path integral quantization

In this section we present the method of quantization of particle systems via
path integrals, first devised by R. Feynman. The basic idea, however, had
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already appeared in the work of P. Dirac. We shall present the mathemati-
cally rigorous results first, postponing the physical motivation.

2.8.1 The Trotter product formula

For simplicity, we deal with the case of one particle in Euclidian space R",
subject to a potential V. We use coordinates x for position and p for mo-
mentum. The classical Hamiltonian is given by

p2
Hcl == % + V(fL‘) .

The canonical quantization procedure described in section 2.3 yields the
Hilbert space L?(R") as the space of quantum states, and the quantum
Hamiltonian becomes the operator given by

h2

H=—A+V.

2m
If V is reasonable (at least square integrable) the domain of this operator
is a (dense) subspace Dy C L?(R™) containing the Schwartz space .7 (R"),
and for ¢ € Dy we have of course

h2

For more reasonable potentials, the operator H will be self-adjoint. We will
have a precise sufficient condition later.
Let us write H = Hy + V, where Hy is the free particle Hamiltonian

h2
Hy=——
0 2m
From this point on, we shall use units for which A = 1. When V = 0, the
time evolution of the free particle is given by

(67itHo,¢))($) _ (47.‘_#)*71/2 / ei|x*y|2/4t,(/}(y) dy .

n

Here we see the free propagator Ko(z,y;t) = (4mit)~/2eile—vl*/4t,
We also know the time evolution of the (multiplication) operator V. It is

a one-parameter group of multiplication operators, given simply by

(™) (x) = eV y(a) .

The real problem is how to obtain the time evolution of the combined
operator H = Hy + V. This is where the Trotter product formula comes to
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the rescue. Let us first state a version for bounded operators. We need the
following lemma.

Lemma 2.11 Let C' and D be bounded operators on a Banach space. Then
we have

1
D _Cel = —§[C,D] +R,

where R is an absolutely convergent series of monomials in C and D of
degrees greater than or equal to three.

Proof Compute the left-hand side by writing out the power series expansions
of the exponentials. The details are left as an exercise. O

In fact, a much more explicit statement is given by the Baker-Campbell-
Hausdorff formula, see [Ros].

Theorem 2.8 (Trotter’s formula I) If A and B are bounded operators
i a Banach space, then

N
ATB i <€A/NeB/N> :
N—oo

where the limit is taken in the operator norm topology.

Proof Let us consider, for each n, the operators S, = e(A+B)/n and T, =
emeB/m To prove Trotter’s formula, we need to show that [|S? — 17| — 0
as n — oo (where || - || denotes the operator norm).
First note that if S and T are operators, we have the identity
n—1
St—T"=> SIS -T)T" "
j=0
This is easily proved by induction on n. This implies that
n—1
ls™ =T < Y ISIP IS =TTt
j=0
Applying this inequality to S = S, and T" = T}, and taking into account
that [|e€|| < ell€ll for every bounded operator C, we get

n—1 )
157 = T < 1S = Toll 3 e+ Bl = 01120
j=0
< nelAHIBl s, — 1, .
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This reduces our task to proving that ||.S, — T},|| converges to zero faster

than n~!. But this is now a consequence of lemma 2.11. Applying that

lemma to C' = A/n and D = B/n, we see that

1 1
where R,, is a bounded operator whose norm is uniformly bounded in n.
This shows that ||S,, — T;,|| = O(n~2) and finishes the proof. O

For unbounded operators (such as the ones we have here), the situation
is not quite as nice, but still sufficiently nice.

Theorem 2.9 (Trotter’s formula II) Let A and B are self-adjoint oper-
ators on a separable Hilbert space.

(a) If A+ B is essentially self-adjoint in Do N Dp then
SN o ( SHAIN 6iB/N)N — (i(A+B)

(b) If A and B are bounded from below, then

S limy o (e—A/Ne—B/N)N _ —(A+B)

Proof See [RS1], page 297. O

Using the above version of the Trotter product formula, one can write
down the time evolution of the Hamiltonian H = Hy + V as a limit, as
follows.

Theorem 2.10 If the potential can be written as a sum V = Vi + Vo, where
Vi € L2(R3) and Va € L™ (R3), then H = Hy+V is essentially self-adjoint.
Moreover, for all 1 € Dy and every xg € R? we have

e_it(HO"'V)@/}(J:O) — lim Amit | eiSN(omTNt) o
N—o0 N R3JR3 R3

x Y(xy)drides ... dey

where




2.8 Path integral quantization 57

Proof The first assertion follows immediately from a theorem of Kato and
Rellich, providing a criterion for self-adjointness. The Kato-Rellich theorem
is presented with proof in appendix I (see theorem 10.11 in §10.10). The
second assertion is a consequence of theorem 2.9 (a) above.

O

2.8.2 The heuristic path integral

The Trotter product formula and the resulting formula for the time evolu-
tion of the Hamiltonian operator were presented in a mathematically rig-
orous way in the previous subsection. But what can one say about their
physical meaning? What follows is a discussion of the motivation behind
these formulas, namely the notion of path integral. We emphasize that the
discussion below is predominantly heuristic.

We assume that H is the quantum Hamiltonian operator of a one-dimen-
sional system, corresponding to a classical Hamiltonian H (via a canonical
quantization procedure, say). We let ¢ and p be the position and momentum
operators. We shall use Dirac’s bra and ket notations throughout. Thus, |¢)
and |p) denote the eigenstates of ¢ and p with eigenvalues ¢ and p, respec-
tively, whereas (g| and (p| denote their “dual eigenstates” (linear function-
als). The reader has the right to be puzzled that we speak of eigenvectors
for the position operator. By way of clarification, in the holomorphic repre—
sentation given in section 2.6.3, the plane wave function |p) = 9,(2) = €’
is an eigenfunction of p with eigenvalue p, and the Fourier transform of such
eigenfunctions give us delta distributions §(z — ¢q) = |¢) as eigenfunctions of
the position operator §. These of course live outside the underlying Hilbert
space. The way to ascribe precise mathematical meaning to these general-
ized eingenfunctions is to introduce the concept of rigged Hilbert space. To
avoid a lengthy digression, we refrain from doing so, but see [Ti]. Instead,
we ask the reader to believe that a rigorous treatment can be done, and to
accept the following facts regarding these generalized eigenfunctions.

(i) (qlg") = (g — '), and (plp’) = (¢ — ¢').
(i) (qlp) = e™".
1=

(i) / dala)al.

1
1=— d
o /R p\p>(p

We remark that the identities in (iii) and (iv) are operator identities, and
they come from the fact that {|¢) : ¢ € R} and {|p) : p € R} are orthogonal



58 Quantum mechanics

bases of the (rigged) Hilbert space. Their meaning is that, if i) is a state
in Hilbert space, then we have the orthogonal decomposition

) = /R (al) |q) dg -

This can be made precise with the help of the spectral theorem (applied to

q)-
Now, in the Schrodinger representation, we know that the time evolution
of a state [¢) is given by

W) (1) = e ) .

Here we are assuming that 7~ = 1. In the Heisenberg representation, the
states are time-independent, and we look instead at the time evolution of
observables. Hence, if A is a self-adjoint operator, then A(t) = et Ae=*H!,
We are interested in the case when A = ¢ (or p). Let |¢,t) be the eigenstate
of ¢(t) with eigenvalue ¢, so that

q®)lg,t) = qlg,t)

These eigenstates remain mutually orthogonal for all ¢, and we have a gen-
eralized version of (iii), namely

1 = /R 0 0) (.1l dq . (2.28)

Let us look at the time evolution of the position operator of our system
between an initial time ¢; and a final time ¢;. The transition probability
amplitude between an initial state |g;,?;) and a final state |gf,t7) is given
by the inner product (qf,t¢|q;,t;). Our goal is to compute this amplitude.
Note that

(ar trlaits) = (qple”HE=1|g;) .

The idea behind the computation is to partition the interval [¢;,ts] into N
subintervals of equal length en = (ty—t;) /N through the points t; = t;+jen,
j=0,...,N. Using the identity (2.28) with ¢ = t; and ¢ = ¢1, we can write

(ar,trlaits) = /<Qf,tf!ql,t1><ql,t1!qz‘,ti>dQ1-
R

This process can be repeated inductively for to,...,txy. We get the repre-
sentation

N—-1
(ar,trlairts) = /RN LT @1 tjalaj t) dar - - - daw
j=0
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Taking into account that

(@1, tj1lag,t;) = (gj+rle”HEn70)g)

we have
Nf
o = Gptlatd = [ TTlale g do-day . (229)
RN 525

Now, the point is that, when € is small, we have an operator expansion of
the form

e~ifle — 1 icH + O(e?) .

When this expansion is used in each term in the product integrand in (2.29),
we are faced with the problem of evaluating (g;+1|H|q;) for each j. Here we
invoke the identity (iv), using the momentum variable p = p;, so that

L / (41105} o3 B las) dp; - (2.30)

(gj+11Hlgq;) = o

In order to compute (p; ]ﬁ]qﬁ, we have to remember that H = I:I(cj,ﬁ) is an
operator involving the position and momentum operators ¢, p, which do not
commute. They can be made to act on either side of the inner product, but
it is necessary to specify an order in which this is to be done. To circumvent
potential ambiguities, we suppose that, whenever we have products of the
non-commuting operators ¢,p in the expression defining H, the p factors
always appear to the left of the ¢ factors. Under this assumption, and taking
into account that (p;| and |g;) are eigenstates (for p and § respectively), we
see that

(p;|Hlg;) = Hl(a;p;)(pjlaj)

where H(q,p) is the classical Hamiltonian evaluated at (¢,p). Using the
identities in (i), we have

(pjlas) = (gjlps) = e P1% , as well as (gjq1|p;) = Pib+t .
Putting these data back in (2.30) for each j, we get

(gj+1|H|g;) = —/H gj, ;)€ 14 dp; .

Taking these expressions to (2.29), we see that the amplitude & = (qy,tf|q;, ;)
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can be written as

,527: e X
/RN/RN Xp Zpgqgﬂ

N—
H 1 —ienH(qj,p;) + O(€y)) day -+ dgy dpy - - dpy

We leave to the reader, as an exercise, the task of verifying that

N-1

[T (1 —iexH(gs,p)+ O(e}))
j=0
N-1
= (1+O(en))exp{ —ien 2 H(q;,p;)
j=0

Therefore the amplitude </ can be rewritten as

N-1
! ; 45+1 — g5
(2m)N /RN/RN exp { ien jZO [PJ o~ (g,p5)

X (1+O(en)) dqq - --dgqn dpy - - dpn .

Since this must hold for all NV, we can take the limit in the right-hand side
as N — oo to get

1 N-1
o = lim —— )
Ngnoo (2m)N /RN/RNGXP reN

[ qj“ H(‘Ijvpj)} x

(2.31)

j=0

X dqy---dgn dpy---dpn .

An heuristic interpretation of this limit can be given as follows. We can
think of the points (t;,¢;) as determining a continuous, piecewise linear
path joining (¢;,¢;) to (ts,qy), the slope in the j-th linear piece being (g;+1—
g;j)/en (because tj;1 —t; = en). We also have a piecewise linear path in
momentum space, interpolating the points (¢;,p;). The integrand in (2.31)
is a function of these two paths, and the integration process happens over
all such pairs of paths. Let us imagine, rather naively, that as N — oo the
piecewise linear paths in coordinate space converge to differentiable paths
q(t) (t; <t < ty) and that their linear slopes converge to the time derivative
g(t). Let us also imagine that the product Lebesgue measures dq; - - - dgy
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and dp; ---dpy/(27)" both converge, in some sense, to certain heuristic
measures:

N—-1 N—-1
H dg; — 9q ; H dpj/(27r)N — 9p .
=0 =0

Then, since

N-1 t

, 4+1—Gj N

ien Y <ij+67NJ —H(Qj,pj)> - l/ (pq — H(g,p)) dt ,
7=0 t

i

as N — oo, it follows from (2.31) that

o = //eXp{i/tjf (pd — H(q,p)) dt} 299p .

This heuristic expression is called the path integral in Hamiltonian form. Of
course, it lacks a rigorous mathematical meaning because

(a) The above heuristic infinite-dimensional measures do not exist;

(b) Even if we could define such measures in the space of all paths, we would
have to ascribe meaning to the integrand; this seems quite problematic,
since the typical (continuous) path ¢(¢) is nowhere differentiable.

Physicists do not stop at such mathematical difficulties. Let us then press
on, and recast the above formula in another form. For this purpose, let us
consider a Hamiltonian of the form

2

H(g.p) = 5 +V(a),

where V is a suitable potential. In this case, the dependence on the mo-
mentum variable p is quadratic. This allows us, even before taking the limit
in (2.31), to perform the integrations in p;, since they are simply Gaussian
integrals. Let us write, for simplicity, ¢; = (gj+1 — ¢;j)/en for each j. The
Gaussian integrals that appear in (2.31) are

p2
1 —ien (ﬁ —pﬂij)

The relevant lemma on Gaussian integration that is needed here, which
involves analytic continuation, is presented with proof in chapter 7. Using
that lemma and the standard technique of completing the square, we find

that
I; = <2m€N) gienmd; /2

(NI

m



62 Quantum mechanics

Putting this information back into (2.31), we deduce that

. _N N-—1 .9

2mien 2 . mq;
pu— 1' —‘7 _— . .. .
o = lim < - ) /R oxp zezv}_() ( 5 V(Qy)) dgy - - - dgn

But now, as before, we note that for a differentiable limiting path ¢(¢), we

N-1 -2 t .9
- md; A I e
]\}gnoo EN JZ (T - V(QJ)) = /tl < 5 V(Q)) dt .

This last expression is precisely the classical action

have

ty

S@i) = [ L.
ti

where L(q, ¢) is the Lagrangian. We deduce at last that, at a purely heuristic

level, that

A = (ap.trlgit:) = //eiS(q,qo 2.

This is the path integral in Lagrangian form. Here 4" is a normalizing
(infinite!) constant. It is not as dangerous as it might seem, because when
computing the actual correlation between the initial and final states, we have
to divide the inner product (g¢,ts|qi, ;) by the product of the norms of the
vectors |g;,t;) and |gg,tr), and in the process the constant goes away. The
real difficulty, of course, lies in the path integral itself. Morally, this “sum
over histories”, as physicists since Feynman like to call it, is an oscillatory
integral (due to the purely imaginary exponent in the integrand), and a great
deal of cancelation is expected, if a finite result is to be obtained. There
are only a few simple situations where the path integral can be explicitly
evaluated. One is the case of a free particle (V' = 0); another is the case of
the harmonic oscillator. The reader is invited to try these cases as (perhaps
challenging) exercises.

Despite its mathematical difficulties (some of which were dealt with in
the previous subsection) the path integral, in its Lagrangian formulation,
provides us in principle with a way to perform the quantization of a particle
system without any reference to operators or Hilbert space. Only the clas-
sical action intervenes, and in principle all quantum correlations could be
computed. The Lagrangian path integral is especially useful when we have
to study systems with constraints. This point of view is extremely fruitful,
and can be used in the quantization of fields, as we shall see in chapter 7.
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2.9 Deformation quantization

We close this chapter with a brief discussion on deformation quantization.
We recall that the classical observables, which are real-valued functions on
the phase space, have the structure of a commutative associative algebra
under ordinary multiplication, and also the structure of a Lie algebra given
by the Poisson bracket. On the other hand, the quantum observables are
operators on a Hilbert space and therefore do not commute in general. The
idea developed in [BFLS] is that we can look at the non-commutative alge-
bra of quantum observables as a deformation of the commutative algebra of
classical observables. In this deformation of algebras we loose commutativ-
ity, but we gain a closer connection between the associative product and the
Lie product which is just the commutator. Under this viewpoint, a quantum
observable is obtained from a classical observable by a sequence of quantum
corrections,i.e, it is a formal power series in Planck’s constant whose coeffi-
cients are real functions on the classical phase space and the product, called
s-product, is such that the commutator reduces to the Poisson bracket as
Planck’s constant goes to zero (the classical limit). The reader can find
in [BFLS] a detailed discussion of these ideas and in [WL] and [Kon| deep
results on the existence and uniqueness of this deformation theory. A possi-
ble interpretation of these results is that Classical Mechanics is an unstable
theory that can be deformed into Quantum Mechanics, which is stable.

Exercises

2.1 Let the unit vector ¢ € S represent a pure state of a quantum sys-
tem with Hilbert space 5. Let Py : 7 — J denote the orthogonal
projection onto the one-dimensional subspace of 7 generated by .

(a) Show that Py is a self-adjoint, positive, and trace-class operator
whose trace is equal to one.

(b) Show that the mixed state associated to the density operator
M = P, equals the linear functional on observables A — (1, Ay)
determined by the pure state 1, i.e. it can be identified with v
itself.

2.2 Show that the application of the Gram-Schmidt orthogonalization
method to the sequence of complex polynomials {1, z,22,...}, with
respect to the inner product given in 2.6.3, yields the (complex)
Hermite polynomials H,,.

2.3 Prove that the coordinate representation and the holomorphic repre-
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sentation of the quantum harmonic oscillator are isomorphic. [Hint:
Use the previous exercise.]

Recall the operators a and a* associated to the Hamiltonian H of the
quantum harmonic oscillator, and the eigenvectors ¢, of H. Using
the fact that

Q= Slata) md P=—ij/fa—a),

show that both P and @) leave invariant the linear subspace of Hilbert
space spanned by {¢o,¥1,...,%n,...}.

Prove the commutator relations (2.23) involving the angular momen-
tum operators.
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Relativity, the Lorentz group and Dirac’s equation

In this chapter, our goal is to show how quantum mechanics had to be mod-
ified to make it into a relativistic theory. The theory developed in chapter 2
is not compatible with Einstein’s special relativity: Schrédinger’s equation is
not relativistically invariant. The attempt by P. Dirac to make both theories
compatible — Dirac’s equation — showed that one had to abandon the idea of
a physical system having a fixed number of particles. Dirac’s theory allows
for creation and destruction of particles, forcing one to take up instead, as
fundamental, the idea of quantum fields, of which particles become physical
manifestations (eigenstates). This was the birth of quantum field theory.

3.1 Relativity and the Lorentz group

At the end of the nineteenth century, the Michelson-Morley experiments
showing that light travels at a speed which is independent of the motion of
the observer relative to its source, plus the discovery by Lorentz that the
Maxwell equations are invariant under a large group of transformations, ex-
posed a contradiction between Newtonian mechanics and Maxwellian elec-
tromagnetism. This lead Einstein to reformulate the laws of mechanics
(keeping the notion of inertial reference frame and Newton’s first law, cf.
chapter 1).

3.1.1 Postulates

In essence, the basic postulates of Einstein’s special relativity theory are the
following.

(1) Principle of relativity: The laws of physics are the same in all inertial
frames.

65
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(2) Invariance of uniform motion: If a particle has constant velocity in a
given inertial frame, then its velocity is constant in every inertial
frame.

(3) Invariance of the speed of light: The speed of light is invariant across
all inertial frames.

Just as in Newtonian mechanics, the space of events & here is four-
dimensional. An inertial frame provides an identification of this event space
with the standard Minkowski spacetime M = R'3 = R*. This vector space
is endowed with an inner product given by

(9079)1\4 = ToYo — T1Y1 — T2Y2 — T3Y3 -

Here, we write z = (2%, 2!, 22, 2%), with (2!, 22, 23) denoting the spatial

coordinates of x and 20 = ct denoting its temporal coordinate (¢ denotes
the speed of light). Writing vectors in M as column vectors and denoting
by 2! the transpose of x, we see that the Minkowski inner product can be
written as

<$7y>M = xtGy )

where G = (g;5) is the matrix

10 0 O
0 -1 0 O
¢ = 0 0 -1 O
0 0 0 -1

This matrix is called Minkowski’s metric tensor.

The physical reason for Minkowski’s inner product structure lies in the
third postulate. Suppose we are given an inertial frame O. If a light source
is placed at (0,0,0) at t = 0 then it sends out a spherical wavefront that —
because the speed of light is ¢ — will reach a given point (2!, 22, 2%) in space
at time ¢ = 2% /c such that

(%)% = (2')* = (2)* = (27)* = 0. (3.1)

This is the equation of a cone in R*, called the light cone. Thus, the wave
with source at the origin traces out the light cone. Let us now consider
another inertial frame O with a common spacetime origin with O, and denote
0 7!, 72, 2%). Then, because the speed of light
in O is also c, the equation of the light cone in this new inertial frame is

the coordinates in O by T = (T

still the same,

@) - @) =@ - @) = 0.
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In other words, the light cone in event space has the same equation across
all inertial frames (with a common origin).

3.1.2 Lorentz transformations

The observation we have just made can be recast in the following way. Let
T & — M and 7 : & — M denote the two frame mappings defining
the two given inertial frames O,O. Then the bijection A : M — M given
by A = .7 o 77! represents the change of reference frame. Since we have
a common event in & that was assumed to be the origin in both frames,
this map satisfies A(0) = 0. Moreover, we have established above that A
must preserve the light cone C' given by (3.1), i.e. A(C) C C. Now, the
second postulate implies that straight lines representing uniform motions in
one reference frame must correspond to straight lines in the other frame.
Hence A maps lines to linest. Under some mild continuity assumptions, it
follows (exercise) that A must be a linear map. We can say more.

Lemma 3.1 Let D be a 4 x 4 real matriz whose associated quadratic form
x +— xtDx vanishes on the light cone C. Then D = \G.

Proof This is left as an exercise for the reader. O

Lemma 3.2 Let A : RV — RY3 be a linear map such that A(C) C C. Then
there exists a constant A € R such that A'GA = \G.

Proof Let D = A'GA. Given x € C, we have Az € C, and so
'Dx = 2'(A'GA)r = (Ax)'G(Ax) = 0.

This shows that the quadratic form of D vanishes on the light cone, and
therefore D = AG for some A, by lemma 3.1. O

Thus, our change of frames A = .7 o 7! is a special matrix, in that it
satisfies A'lGA = MG for some \. Now, it is possible to dilate one of the
reference frames mappings, say 7, by a suitable multiple of the identity
so that the resulting A will satisfy the equality with A = 1. Performing
such a dilation has no physical effect: it simply means changing the unit of
measurement in that reference frame.

1 Actually, a-priori we know this fact only for lines that respect the causality structure induced
by the light cone on Minkowski space, but this needs not bother us here.
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Summarizing, we can think of a change of inertial frames in special rela-
tivity as given by a Lorentz transformation, a linear map that preserves the
Minkowski inner product.

Definition 3.1 A Lorentz transformation is a linear map A : RH3 — RL3
that preserves the Minkowski metric, i.e such that A'\GA = G, or equivalently

<Ax7Ay>M = <$7y>M )
for all z,y € M = RY3,

It is an easy exercise to verify that the set of all Lorentz transformations
is a group under composition. This group is called the Lorentz group. Note
that if {eg,e1,e2,e3} is the canonical basis of M, then a linear map A as
above is Lorentz if and only if (Ae;, Aej),, = gij, where g;; = (e;,e;),, are
the components of the Minkowski metric tensor. This is simply another way
of saying that A!GA = G. In particular, taking determinants on both sides
of this last equation we deduce that det A = +1.

Example 1. Here are two special types of Lorentz transformations that are
worth writing down.

(1) Time-preserving transformations. These are Lorentz transformations
such that (Ax)? = ¥ for all z. Since A preserves the Minkowski inner
product, it follows that A leaves the orthogonal decomposition R =
R @ R? invariant. Hence its restriction to the spatial coordinate 3-space
is an orthogonal transformation. Thus, the matrix A has the form

0 0 O

[a;]

o O O

where A = [a;;] € O(3).

(2) Lorentz boosts. A boost or simple Lorentz transformation along the axis
of a given spatial coordinate is a Lorentz transformation that leaves the
other two coordinates unchanged. For instance, a Lorentz boost along
the x' axis has the form

apgo aopil 0 0

i ajlp aiil 0 0
A= 0 0 10
0 0 01
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From A'GA = G, we deduce that

(a00)® = (a10)* = 1
(a11)® = (a)* = 1
GooGo1 = a10a11
From these relations, it is not difficult to see (exercise) that there exists

a real number 6 such that agg = a11 = cosh 6 and ag; = a1g = sinh 6, in
other words

coshf sinhd 0 O
sinhf coshf® 0 0
A = B =
0 0 0 10
0 0 01
Now, there exists a unique number v such that tanhf = —v/c (note
that |v| < ¢, necessarily). Using this number, we can write coshf = ~
and sinh @ = —yv/c, where

1
1= iseE

With this notation, the Lorentz boost transformation T = Ax can be
written in coordinates as follows:

v v
fozfy<x0——x1); flzfy<x1——x0); 52:1:2; 75 =23 .
c c

The number v is the relative velocity between the two frames: the spatial
origin (7,72, 7%) = (0,0,0) in the frame O satisfies the equation z' —

vt = 0 in the frame O.

Finally, we briefly discuss the relation of causality in Minkowski space.
Let us consider the quadratic form associated with the Minkowski inner
product, namely

Q(x) = af —af — a3 — a5 .
Definition 3.2 A vector x in Minkowski space M = RY3 is called timelike,
spacelike or lightlike depending on whether Q(x) > 0, Q(z) < 0 or Q(x) =0,
respectively.

The set of all timelike vectors in M minus the origin has two connected
components, each of which is a cone in M. We let

Ct={zxecM: Q(x)>0and zg > 0}
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be the positive light cone in Minkowski spacetime. Using this positive cone,
we can define a partial order relation < on spacetime.

Definition 3.3 Given two vectors x,y € M, we say that x causally precedes
y, and write x L y, ify —x € CT.

This order relation is called causality. Now, it is an easy matter to see that
a Lorentz transformation either preserves or reverses causality. The set of all
Lorentz transformations that preserve causality is a group, called the proper
Lorentz group, usually denoted LL. All other Lorentz transformations are
called improper. Special relativity calls for a preservation of causality by all
laws of physics.

Remark 1. It was proved by E. C. Zeeman in 1964 that any causality-
preserving transformation of Minkowski’s spacetime (without any assump-
tion of continuity) must be of the form 7o D o A, where A is a Lorentz
transformation, D is a dilation and T is a translation. In particular, every
such causality-preserving transformation is linear. See [Nal] for a complete
proof of Zeeman’s theorem. As will be seen in appendix II, §11.6, a math-
ematically rigorous way of incorporating causality into a quantum theory
of fields is a central quality of a branch of knowledge known as algebraic
quantum field theory.

3.2 Relativistic kinematics

Note from example 3.1.2 that above the composition of two Lorentz boots By
and B, along the z'-axis (or any other fixed axis) is also a boost along the
same axis, namely By, = BypB,. This immediately yields the relativistic
law of addition of velocities. Suppose O, 01,02 are three inertial frames,
and assume that O; has velocity v; with respect to O, moving along O’s

1 1

x-axis, say, and that Os moves along O1’s z*-axis with velocity vy. Then

the velocity v with which Oz moves with respect to O is given by
U1 + U2

V= — . 3.2
1+ vivg/c? (3.2)
Let us now discuss the relativistic kinematics of a particle with a bit
more detail. Such a particle’s motion is described by a parameterized curve
x(A) = (x*(N\)) in Minkowski space. This curve is called the particle’s
world-line. The motion should respect the causality relation defined above.
In other words, for each A the tangent 4-vector to the world-line at x(\),
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de _ (do
dx  \ldx )’

must lie inside the solid light cone CT, i.e. must be time-like. Thus,

do dx dat dz? dt \ 2 2L (dai\?
bl - g [ = 2 _ -
0 < <d)\’d)\>M I"7ax an <d)\) ¢ Z(dt)

=1

namely

Hence the expression between brackets in the right-hand side must be always
positive, and this tells us that the particle’s velocity in the given Lorentzian
frame satisfies

2 5\ (dal\? 2
v —'v"v—jzl(ﬁ> < c”.
This shows that causality entails that a particle’s velocity can never exceed
the speed of light.

The above parametrization of the particle’s world-line uses as parameter
any monotone function of ¢t = z%/c. There is however a special choice for A
that is very natural: we can use (normalized) Minkowski length. More pre-
cisely, let s denote the Minkowski arc-length along the particle’s world-line
and set 7 = s/c. Infinitesimally, with respect to any other parametrization,
this is tantamount to writing

1 dxH dxv dt
dr C\/g N dA o

The parameter 7 defined is this way is called Lorentz proper time. From a
physical standpoint, 7 measures the time as told by a clock placed at the
particle’s instantaneous location in space. Using proper time, we define the
particle’s velocity 4-vector V = (V#) by

dz# dz#
VH = — = v—.
i~ at
In other words, we have V' = v(c,v). Note also that (V#) has constant
Minkowski length, namely

V,Vyy = VFV, = 2.

3.3 Relativistic dynamics

The momentum 4-vector, or 4-momentum of a relativistic particle, denoted
P = (P"), is defined as P = mV, where m is the particle’s rest-mass. The
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rest-mass is defined as the the usual inertial mass, i.e. a measure of the
particle’s resistance to motion relative to an inertial frame with respect to
which the particle is at rest. The relativistic 4-force F' = (F*) acting on the
particle is given by analogy with Newton’s second law,

dP* dVH
Ff = — = m—— .
dr m dr

Note that we are guiding ourselves by the first postulate: the laws of me-
chanics must remain the same across all inertial frames. Since

(P,P),, = P"P, = m*VV, = m*c?,

P PH
[P0y iy
dr / dr

Using the fact that P = mV = (mye, myv), this last equality yields

we deduce that

dPY
myc— —myF -v = 0,
dr
where we have written F' = (F?, F), and the dot denotes the standard inner

product in R3. Since v = dz/dr, we get

dP° dx
=P
or yet cdP? = F - dx. But dW = F - dz is the infinitesimal work effected
on our particle by the 3-force F'. The law of conservation of energy tells
us that dW = dFE, i.e. this infinitesimal work is equal to the infinitesimal
change of kinetic energy. Thus, dE = cdP°, and we are justified in writing
E = cPY for the particle’s relativistic kinetic energy. Therefore

m02

When v = 0 we get £ = mc?, which is Einstein’s famous formula for the
rest-energy of a particle whose rest-mass is m.

3.4 The relativistic Lagrangian

The reader will not have failed to notice that, in relativistic mechanics,
invariance under Galilean transformations is replaced with invariance under
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Lorentz transformations, which as we have seen is the group of isometries
of the Minkowski metric

ds® = Adt — da® — dy* — dz* = dad — da? — dx3 — da? .

Just as in the case of classical mechanics, one can derive the basic dynamical
laws from a variational principle. For simplicity, we shall do this for the
relativistic free particle (upon which no forces act).

The relevant action happens to be the following. Given a path v in M,

S(v) = —me A ds .

Here m is the rest mass of our particle. This is an intrinsic definition of the

we write

action, in the sense that it does not depend on a particular choice of inertial
frame. Once we fix such a Lorentzian frame, however, we can write

e [ di -

This makes it clear that the relativistic Lagrangian for a free particle is

Following the Lagrangian formalism to the script, the momentum compo-
nents are thus

oL myy
P B L
2
In particular, we have
mu
P = 7
2

The Hamiltonian in this relativistic context, being the Legendre transform
of L, becomes

mu v
H:ZpivifL:ﬁ+m02 17—2.
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This expression simplifies to

The motion of our free particle is such that H is constant along it. This can
be recast in the following way: the kinetic energy of a free particle, namely

E =
2

v

1— —

2
is conserved along the motion. We therefore recover Einstein’s formula from
a variational principle. We can rewrite this last formula in yet another way,
in which only the rest mass m, the energy F and the scalar momentum p

E = c\/p? +m2c? . (3.3)

4

intervene:

In other words, E? = p?c® + m?c*. From this last equality, we see that
the particle’s so-called rest energy Ey (corresponding to v = 0) satisfies
Ey = mc?, which is Einstein’s famous equation. From now on in this book,

we shall work with units for which ¢ = 1, so that (3.3) becomes

E?=p>+m?.

3.5 Dirac’s equation

In the light of special relativity, and despite its important role in the stan-
dard formulation of quantum mechanics, the Schrédinger equation for the
wave function 1, namely

KoLV,

ZE:H@[}, with H=-A+4+V |

has a major shortcoming: it is not Lorentz invariant. Dirac’s attempt to
bring together quantum mechanics and relativity resulted in a new, more
fundamental equation, known as Dirac’s equation, and the notion of spinor.
The equation that Dirac found is Lorentz invariant, but there seemed to
be a price to be paid: one had to allow for eigenstates having negative
energy. Dirac used this seemingly paradoxical fact to predict the existence
of anti-particles (more precisely, the positron). This incredible prediction
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was confirmed experimentally just a few years later, and brought Dirac
universal fame.

The first attempt at a relativistic (Lorentz) invariant equation that could
fill in for the Schrédinger’s equation was the Klein-Gordon equation. The
introduction of this equation is motivated by the so-called correspondence
principle alluded to in chapter 2. If we consider a system having a single
free particle, then its classical non-relativistic energy is simply the kinetic
energy given — up to an additive constant — by

2

E=2

2m

As we saw in chapter 2, the correspondence principle says that, upon canon-
ical quantization, p should be replaced by iV, so that p> = p - p becomes
—V?2 = —A, and E should be replaced by i9/0t. This yields Schrédinger’s
equation for a free particle (V' = 0).

In the case of a free relativistic particle, however, the equation relating
energy and momentum is, as we’'ve seen, 2 = p? + m2. Here, as before, m
is the particle’s rest mass. Hence, if we proceed by analogy guided by the
correspondence principle, we arrive at the Klein-Gordon equation

0? 9
<@—A+m>d) =0.

This equation has some important features, both good and bad from a phys-
ical standpoint:

(a) It is relativistic, 4.e. invariant under Lorentz transformations (good).

(b) It is of second order in time — unlike the Scrodinger (or Heisenberg)
equation, which is of first order in time and therefore an evolution equa-
tion — and therefore less amenable to dynamical interpretation (bad).

(c) It allows for negative-energy eigenstates; in particular the spectrum of
the Klein-Gordon operator is not bounded from below (bad).

(d) Unlike the solutions to Schrédinger’s equation, which as wave functions
give rise to probability densities, the solutions to the Klein-Gordon equa-
tion admit no such probabilistic interpretation (bad).

We leave to the reader the task of examining (a) and (b) above. Let us say
a few words about (c¢) and (d).
The Klein-Gordon equation admits plane-wave solutions of the form

P(t, @) = exp{—i(Et —p-z)},

as long as p € R3 is a fixed (momentum) vector and E is a real constant
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such that E? = p?> + m?. Here it doesn’t matter whether E is positive or
negative; as far as the Klein-Gordon equation goes, positive and negative
values of E are on equal footing. Moreover, the possible values are clearly
not bounded from below. This is the elaboration of (c).

As for (d), it is worth noting that, associated to every solution of the
Klein-Gordon equation, there is something that plays the role of a density,
albeit not a positive one. Indeed, we can define a four-vector (j*) = (p,7),

where
(0 0w
p= 2m(¢ ot 6t¢>
and
Jo= g (V- V)
m

In these expressions, we follow the physicist’s notation * for the complex-
conjugate of ). Now, the four-vector (j#) is divergence-free. To see this,
note that

Op i (w*a% 021p*

ot? ot?

5 o > = %(WAw—(Alﬁ)*Tﬂ) :

Likewise, we have
—1
V.-j = — @AY — (AY)*Y) .
J = oo (7 AY— (AY)Y)
Putting these facts together we deduce that V - (j#) = 0, or more explicitly,

dp
ot

This is a continuity equation akin to Bernoulli’s equation in fluid dynam-

+V.j=0.

ics. However, p is not necessarily positive, so it cannot be interpreted as a
probability density.

Dirac sought after a first order equation that would not suffer from these
difficulties. The equation he found eliminates the bad points (b) and (d)
above (keeping Lorentz invariance), but it still allows for (c). Let us repro-
duce Dirac’s reasoning (in modern mathematical notation). The idea is to
“extract the square-root of the wave operator”; in other words, one seeks a
first order differential operator D such that

32

2 _ =
D _D_w—A.

Writing D = iy*0,,, where 9y = /0t and 0; = 0/0x; for j =1,2,3 and the
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coefficients v* are to be determined, we see by pure algebraic computation
that

D? = %{’y“,'y”}é’uﬁu :
where the brackets represent Dirac’s anti-commutator
{7 = A+
Since we want D? = [0, it follows that
{7 = 29",

where g"” are the components of the Minkowski metric tensor, namely

1 0 0 0
0 -1 0 0

A

(") 0 0 -1 0
00 0 -1

It is worth writing the above relations more explicitly, as follows
() =1, () = (") = () = -1, (3.4)
T = =" (w#v)

These relations define what is known as a Clifford algebra. This can be
realized as a matrix algebra. We can take each v to be a 4 x 4 matrix, as

0 —o
p_ p
K <Uu 0 > 7

where the 0,’s are the so-called Pauli 2 X 2 matrices

(1 0\ (01
0=\ 1) 7 TT\1 0
(0 (10
27\ =i o) " 7\ o 1

The reader can not only check that the Dirac matrices v* constructed in
this fashion indeed satisfy the relations (3.4), but also prove as an exercise
that 4 is the smallest possible order for which such matrix representation of
the Clifford algebra is possible.

follows

Thus, the Dirac operator D must act not on ordinary wave functions, but
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on 4-vector valued functions called spinors. If we look at a spinor solution
to Dirac’s equation

(V"G —m) & = 0., (3.5)

we realize, applying the conjugate operator iy*d, + m to both sides of this
equation, that each component of ¥ satisfies the Klein-Gordon equation.

Now, Dirac’s equation (3.5) is free from two of the three bad features of
the Klein-Gordon equation, while still preserving its good feature — Lorentz
invariance. The Pauli matrices 01,092,035 used above yield the generators
of su(2), the Lie algebra of SU(2), and it is a fact (exercise) that the Lie
algebra of the Lorentz group is su(2) @ su(2). This points towards the
fact that Lorentz transformations will leave Dirac’s equation invariant. The
computation verifying that this indeed happens is left as yet another exercise
to the reader. What about the bad point (d) raised against the Klein-Gordon
equation? We claim that it goes away in the case of Dirac’s equation. This
can be seen as follows. First we take the Hermitian conjugate of (3.5), taking
into account that (7°)" =% and (y9)7 = —47 (j = 1,2,3). We obtain the
equation

Y (=ir°0f + 701 —m) = 0,
where 8); simply means the differential operator d,, acting on the left. If we

multiply both sides of this last equation on the right by 7 and take into
account that 'yofyj = —’yj 'yo, we get

¥ (iy"9f +m) = 0,

where now 1 = 1770 is the so-called adjoint spinor to 1. Using this adjoint
spinor, we define a current 4-vector (j#) whose components are given by

"=y
An easy computation now shows that
\& (]'u) = a,uj'u = (Qﬂ[})ﬁ/“(/) + 7[”7“(@#’) =0.

Therefore the current is conserved, just as in the case of the Klein-Gordon
equation, but this time we see that

7 =% = w60 = vl = [l + [ + el + usl?
which is obviously non-negative and therefore can play the role of a (prob-
abilistic) density.

But Dirac’s equation still suffers from the bad point raised in (c): neg-
ative energy states. These could spell trouble because an electron could
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in principle fall into a state with arbitrarily large negative energy, thereby
emitting an arbitrarily large amount of energy in the process. Dirac’s in-
genious idea, however, was to regard these infinitely many negative energy
states as already occupied by a “sea” of electrons; he used the exclusion
principle discovered by W. Pauli to justify this picture. Holes in this in-
finite sea would appear as positive energy, positively charged particles. If
an electron fell into such a vacant spot, the hole and the electron could be
thought of as annihilating each other, with energy being produced in place
of their combined mass according to Einstein’s E = mc? formula. Dirac’s
prediction of such holes, or anti-particles as they are now called (positrons in
this case), was confirmed experimentally shortly afterwards by C. Anderson.
In face of the fact that particles could be created and destroyed, physicists
after Dirac were forced to give up the idea of systems having a fixed number
of particles. They soon started to study physical processes in terms of fields,
describing particles as properties of fields. For a conceptual description of
these ideas and much more, see the beautiful exposition by R. Penrose in
[Pen].

Exercises

3.1 Let By denote the Lorentz boost along the z'-axis in Minkowski
space, with parameter 6.
(a) Using the law of addition for hyperbolic sine and co-sine, show
that By, = ByB, for all 0, € R.
(b) Deduce from this fact the law of addition of velocities presented

in (3.2).
3.2 Let v*, u = 0,1,2,3 denote the Dirac matrices, and let us write
A5 = 70y 1n243,

(a) Show that 45 is Hermitian and that (y°)? = 1.
(b) Show that {~*,7#} =0, for u = 0,1,2,3.
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Fiber Bundles, Connections and Representations

This chapter represents a predominantly mathematical intermezzo. Here we
present in a condensed and systematic way the language of fiber bundles,
cocycles and connections. This language is absolutely crucial in the formu-
lation of modern field theories (classical or quantum), as we discuss at the
end if the chapter, and as will be exemplified in chapter 5.

4.1 Fiber bundles and cocycles

Let us start with the following basic definition. Suppose E, F, M are smooth
manifolds.

Definition 4.1 A fiber bundle with fiber F, base M and total space E is
a submersion w: E — M with the following property. There exist an open
covering {U;} of the base M and diffeomorphisms ¢; : m=*(U;) — U; x F
such that m o ¢; = m, where my denotes the projection onto the first factor.

It follows that for each z € M, the fiber above z, E, = 7~ 1(x), is diffeo-
morphic to F. Moreover, there exist maps p;; : U; NU; — Diff (F') such that
the map

piop t: (U;NU;) x F— (U;NU;) x F
is given by
¢j o (w,y) = (2, p5(2)(y)) -
The reader can check that p;;(x) o pjr(z) = pix(x) for all x € U; N U; N Uy,

Definition 4.2 A section of the fiber bundle § = (E,m, M) is a differentiable
map s : M — E such that wo s =idy;. We shall denote by T'(E) the space
of sections of €.

80
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We remark here that if the fiber F' comes equipped with a structure, e.g.
as a vector space, group, algebra, etc., and this structure is preserved under
each of the maps p;;, then each fiber £, inherits such structure. It follows
that the space of sections I'(E) also possesses this structure. For example, if
F'is a vector space and p;; : U;NU; — GL(F) then we say that £ = (E,m, M)
is a vector bundle, and in this case I'(F) is an infinite dimensional vector
space (in fact, it is a module over the ring of C'* functions on M).

A section s € I'(F) defines a family of functions s; : U; — F such that
s(x) = ¢i(x,s;(x)) for all € U;. This family of functions satisfies s; =
pij © s;. Conversely, each family {s;} satisfying this condition defines a
section of our fiber bundle.

Definition 4.3 A morphism between two fiber bundles & = (Eq, 71, F1) and
&9 = (Ea,mo, Fy) is a pair of differentiable maps f, f such that the following
diagram commutes

El#EQ

ml lm

MIT)MQ

It follows from this definition that f maps the fiber (E), into the fiber
(E2)f(z)- If the fiber bundles come with some additional structure, mor-
phisms are assumed to preserve such structure.

Definition 4.4 Let M be a manifold and let G be a Lie group. A cocycle of
G in M is an open covering {U;} of M together with a family of differentiable
maps vij - Uy N U; — G such that vi; - vji = ik for all i, 3,k (in particular,
~ii = €, the identity element of G).

Definition 4.5 A representation of G in Diff (F') is a group homomorphism
p: G — Diff(F) such that the map G x F — F given by (g,y) — p(g)y is
differentiable. This map is called a left action of G in F.

The following proposition shows that a fiber bundle with fiber F' can be
constructed from a given family of transition functions and a representation
of a given Lie group G into the group of diffeomorphisms of F'.

Proposition 4.1 Let p: G — Diff(F') be a representation of G, let {U;} be
an open covering of M and let v;; : Uy NU; — G be a cocycle. Then there
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exists a fiber bundle § = (E, 7, M) with fiber F' whose transition functions
pij : Ui NU; — Diff (F) are given by pi; = p o vij.

Let us now discuss two important classes of examples of fiber bundles.

Example 1. The first example is our old friend the tangent bundle. Let M
be a smooth real n-dimensional manifold, let F' = R"™ and let {¢; : U; — R"}
be an atlas in M. We define ~;; : Uy N U; — GL(R™) by

ij (@) = d(pj 0 07 ) (pi(x)) -

The chain rule tells us that this family of maps is a cocycle of G = GL(R")
in M. We take as our representation p : GL(R™) — Diff (R™) the inclusion
homomorphism. Then the tangent bundle of M is the fiber bundle T'M
obtained from Proposition 4.1 for these choices of F, {;;} and p. The
sections of T M are called vector fields and the space of sections I'(T' M) is
denoted by 2" (M).

Example 2. Our second example is the tensor bundle T "*(M) of tensors
over a differentiable manifold M that are r-covariant and s-contravariant.
The starting point of the construction is the tensor product space

Tr,s — (Rn)®r ® (Rn*)®s

which is (isomorphic to) the vector space of multilinear transformations
(R™)" x (R™)®* — R. For each tensor T € T"*® and each invertible linear
map ¢ € GL(R™) the pull-back of T by ¢ is defined as

()O*T()\h'” 7)\7";1)17'” 7”5):7()\10()07"' 7ATOAT;SO(,U1)7'” 7()0(1)8)) :

Thus, for each ¢ € GL(R™) we have a well-defined linear map ¢* : T"* —
T, satisfying

(pop)" =9 oy
() =)

This shows that if we are given a representation p of a Lie group G into
GL(R™) then the map ps : G — GL(T™*) given by p.g = p(g~')* is also
a representation. In particular, taking G = GL(R™) and p = id, we get
the tensor bundle .7"*(M) using the representation p., the cocycle {v;;} of
example 4.1, and applying Proposition 4.1. It is clear from these definitions
that 740(M) coincides with the tangent bundle TM, and that 7%1(M)
coincides with the cotangent bundle T*M. The space of sections of T* M
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consists of differential 1-forms, and it will be denoted by Q'(M). Note that
oe€I'(J"*(M)) if and only if

o X (M) x - x Z(M)x Q" (M) x - xQY(M) =R
is a multilinear map and for each f € C*>°(M,R) we have

U(X17'” 7fX’L Y X,,«;Ckl,"‘ 7a5)
= fO'(Xl,"' 7Xi7"' 7XT;a17"' ,Oés),

as well as

U(X17'” 7XT; Qp,- - 7faj7'” ,O[s)
:fO-(X:l?“‘7X/]";a17“‘7aj"'7as)'

Finally, since the subspace AF(R™) C T%*(R") of alternating multilinear
forms is invariant under the representation p, (exercise), we have a sub-
bundle N*(T*M) of T7%(M). A section of N¥(T*M) is called a differential
k-form on M. The vector space of such sections is denoted by QF(M).

There are several ways of constructing fiber bundles using other fiber
bundles as building blocks. For instance, given two vector bundles &, n over
the same base manifold M, one can define their direct sum £ © n as the
vector bundle over M whose fibers above each point x € M are the direct
sums S @ E7 of the corresponding fibers of £, 7 above x.

Another universal construction is the pull-back. This once again uses
Proposition 4.1. Let £ = (E,m, M) be a fiber bundle with structural group
G, fiber F' and representation p. Let {U;} be an open covering of M and
associated cocycle {7;;}. Given another smooth manifold N and a smooth
map f: N — M, consider the covering of N by the open sets V; = f~1U;
and let 455 : V;N'V; — G be given by 7;; = v;;0 f. Then {#;;} is a cocycle in
N. Finally, let p = p, i.e., keep the same representation of G. Let f*¢ be the
fiber bundle over N obtained from these data (cocycle and representation)
applying Proposition 4.1. This new fiber bundle is called the pull-back of &
by f. Its total space is denoted by f*E. Note that f induces a morphism
from f*¢ to &. The top map f : f*E — E of this morphism has a local
expression (via transition charts) given by the maps

VixF — U;xF
(z,y) — (f(2),y)
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4.2 Principal bundles

Now we move to a class of fiber bundles that is so important (in mathematics
as well as in physics) that it deserves separate treatment. These bundles are
called principal bundles.

Here and throughout, we let G be a Lie group, with Lie algebra ¢ = TG,.

Definition 4.6 A principal bundle with structure group G (or principal G-
bundle) is a fiber bundle (P, 7, M) whose fiber is G and whose representation
p : G — Diff(G) is such that p(g) : G — G is given by left multiplication,
i.e. p(g9)h=g-h.

Note that here we appeal once again to Proposition 4.1. Let us recall
that construction in the context of principal bundles. Let {U;} be an open
covering of the base manifold M, and let {v;; : U;NU; — G} be a G-valued
cocycle in M. Take the disjoint union P of the products U; X G, on which G
acts on the right in an obvious way, and factor it by the equivalence relation
~ identifying (z,9) € U; x G with (2/,¢') € U; x G if z = 2’ € U; N U; and
g = g-7ij(z). The quotient space P = P / ~ is a manifold on which G also
acts on the right. The projection map m is the quotient map on P of the
projections m; : U; x G — M into the base. The quotient action P x G — P
preserves the fibers 7=!(-) and is transitive in each such fiber. The action
of a given group element g on z € P will be written x - g. This right action
defines an anti-homomorphism R : G — Diff(P), with R(g9) = Ry : P — P
given by Ry(x) = x - g, satisfying Rg, 4, = Ry, 0 Ry, for all g1,92 € G.

Conversely, if P is a manifold and G is a compact Lie group and PxG — P
is a right smooth action of G in P which is free (no fixed points), then the
orbit space M is a smooth manifold and the quotient projection map defines
a principal G-bundle over M.

A local trivialization of a principal bundle (P, 7, M) over a neighborhood
U C M is a smooth map 1 : U x G — 7~ 1(U) such that 7o (x,g) = x for
allz € U, g € G. Given a cocycle as above, we can build a family of local
trivializations (or charts) v; : U; x G — 7~ 1(U;) for the bundle in such a
way that the chart transitions are

bitod: (2,9) = (2,9 7i(2)) -

A local section o : U — m1(U) is a smooth map such that 7 oo = idy.
There is a natural one-to-one correspondence between local trivializations
and local sections: given o, let 1), be given by ¢, (x,g) = g-o(x). Note also
that if we are given an open cover {U;} as before and local sections o; : U; —
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7~1(U;), then we get an associated cocycle given by 7;;(z) = o;(z)oj(z)~!

for all z € U; N Uj.

Example 3. Our first example of a principal bundle is the frame bundle of
an n-dimensional manifold M. The group is G = GL(R™). The relevant
cocycle is the same as given in example 4.1. A point in the total space
P corresponds to a point x € M together with a basis (reference frame)
{v1(z),...,vn(x)} of TM,. The right action GL(R™) > 7+ %, : P — P is
given by

Ry (z,{v1(2), ... ,v0(x)}) = (2, {77 oy (2)), ..., 7 Hua())}) .

Example 4. Our second example is the orthonormal frame bundle of an
oriented, n-dimensional Riemannian manifold M. Here, the group is SO(n),
the group of orthogonal n X n matrices having determinant equal to one.
To construct the relevant cocycle, let {p; : U; — R™} be an oriented atlas
on M, and let {vy) (x),... ,vg) (x)} be the basis of TM, whose vectors are
given by

o) o (@) = o

xd

Applying the Gram-Schmidt orthonormalization procedure to this basis (us-
ing the Riemannian inner product on T'M,), we get an orthonormal basis
{egi) (x),... Leld (x)} of TM,. Hence, in order to define~;; : U;NU; — SO(n),
simply let 7;j(x) be the orthogonal matrix that makes the change of basis

{egi)(x), . ,e,(f)(x)} — {egj)(ac), . ,e,(f)(x)}.

Example 5. An interesting and non-trivial example of a principal bundle
that is relevant for our purposes is the Hopf bundle. Here, the group is
G =U(1) = {2z € C: |z| = 1} (which is topologically the unit circle S!),
the total space P is the unit 3-sphere, which we view as a subset S3 C C2,
namely

S? = {(21,22) eC?: |21]2+],22|2:1} ,

and the base is the 2-sphere, which we view as the complex projective space
CP!. The projection map m : S* — CP' is given by m(21,22) = [21 : 22].
The abelian group U(1) acts on S?, in fact in the whole of C?, in the obvious
way: (21, 22) € = (21€", 20€?). The Lie algebra of U(1) is u(1) = {z € C :
Re z = 0}, the imaginary axis.
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Example 6. Another example of principal bundle, of special interest in Yang-
Mills theory, is the quaternionic Hopf bundle. Here the relevant Lie group
is SU(2), which is topologically the 3-sphere S®. We view it as a subgroup
of the group H of quaternions, consisting of all quaternions of norm one.
Recall that

H={q =20+ z1t + 225 + 23k : x0,21,22,23 € R}
where i, j, k satisfy the relations
.2_.2_ 2_ o . . Lo o .., . . .
1 =3"=k"=-1;1j=—3t=k;3-k=—k-j=1;k-1=—t-k=7.

The norm of a quaternion q is given by ||q|| = 23 + 2% + 2% + 23. Our group
then is S* = {q € H : ||q|| = 1}, a subgroup of H. The base space of our
principal bundle is the 4-sphere S*, which is naturally identified with the
quaternionic projective space HP!, just as the 2-sphere was identified with
complex projective space in the previous example. The total space P in this
case is the 7-sphere

ST = {(a1.2) €EXE ¢ [or] + =1} -

and the projection 7 : ST — HP' ~ S* is given by

m(q1,92) = [q1 : g2l = {(Aq1,Aq2) : A € H}

Finally, the right action % :S” x S3 — S7 is given by

Z((q1,92); \) = (q1- A\q2- A) -

The first example we gave (example 4.2) can be generalized: given any
vector bundle (E, 7, M), one can consider the principal bundle of frames for
E as the space P whose fiber over a point x € M is the collection of all
frames for E,. The structure group is Aut(V'), where V is the vector space
on which the vector bundle is modeled. Conversely, given a principal bundle
(P,m, M) with structure group G and a representation p : G — Aut(V)
where V' is some vector space, we see that there is a right action of G on
P x V defined by (p,v) -g= (p-g,p(¢g~")v). The quotient space P x,V of
P x V by this action is a vector bundle over M whose fibers are isomorphic
to V. This bundle is called the associated vector bundle, or vector bundle
associated to (P,m, M) via the representation p.
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4.3 Connections

A connection on the principal bundle (P, 7, M) is a 1-form w on the total
space P with values in the Lie algebra ¢ which is equivariant with respect
the the right action on P, in the sense that Rjw = Adg-1 ow for all g € G.
Here Ad : G — L(¥,9) is the adjoint representation of G, given at each
g by the derivative at the identity of the inner automorphism h — g~ 'hg.
Geometrically, a connection defines a family of horizontal subspaces H, =
ker w, which are invariant under the action, in the sense that (Ry).H, =
H,., for all x € P and all g € G. We have a decomposition TP, = H, © V,
of the tangent space at each point as a direct sum of horizontal spaces H,
with corresponding vertical spaces V,, = T(7 (7 (z)))s. Accordingly, the
tangent bundle of P splits as a direct sum of two sub-bundles, horizontal
and vertical: TP = HP ®VP.

Given a connection on P and a smooth curve v: [0,1] — M connecting the
points x and y, then for each point v in the fiber over = there exists a unique
lift of v to a curve 4: [0,1] — P that projects onto v and has a horizontal
tangent vector at each point. We say that §(1) is the parallel transport of
v along . The parallel transport along a curve v defines a diffeomorphism
from the fiber over x onto the fiber over y that is equivariant with respect
to the right action of G on P.

A connection w in P gives rise to a covariant exterior derivative, which
carries k-forms with values in the Lie algebra into (k4 1)-forms with values
in the Lie algebra. This differential operator d* : A¥(P)®¥% — AM(P)2¥
is given by

d“o(X1,Xo, ..., Xp1) = da(XP, X5, ... X))

for all o € /\k(P) and all vector fields X1,..., X;y1 on P, where Xih is the
horizontal component of X;.

In particular, we define the curvature of a connection w to be the 2-form
Q € A?(P)® ¥ given by

QX,Y) = d“w(X,Y) = dw(X" Yh).

Theorem 4.1 (Cartan’s Formula) We have Q = dw + w A w.

When expressed in terms of local sections, the connection w gives rise
to a family of local ¥-valued 1-forms on the base manifold. These local
forms are defined as follows. Suppose {U;} is an open cover of M and let
o; : Uy — m1(U) be local sections. Take .of; = o;w; this is a 1-form on U;
with values in 4.

Likewise, the curvature €2 gives rise to a family of local ¢-valued 2-forms
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on M, namely .#; = o). Now, using the cocycle associated to the family
of sections o;, we have the following fundamental fact.

Proposition 4.2 The families of local connection forms {<%} and local
curvature forms {%#;} transform in the following way

oy =05 05+ 0" db
Fj =0, Fibij .

where 0;;(x) = ad(y;5(x)) and ad is the adjoint representation of the group
G.

Note that neither one of these families defines a form on the
base M.

However these formulas show that the curvature is a two-form on M with
values in an associated vector bundle: the adjoint bundle. This is the vector
bundle that corresponds to the adjoint representation ad: G — Aut(G).
A section of this bundle is locally given by a function o;: U; — ¢ and
oj(x) = (0;;(x))~1 o 0i(x) 0 0;;(x) where 0;;(x) = ad(v;;(z)). Hence, if X
and Y are vector fields on the base manifold M, then the curvature of the
connection associates to these vector fields a section of the adjoint bundle.
Hence the curvature may be interpreted as a two-form on M with values in
the adjoint bundle. Notice that the connection is not a one-form with values
in the adjoint bundle, because of the second term in its transformation law,
but the difference of two connections is indeed such a form. So the space of
connections on a principal bundle is an affine space modeled in the space of
sections of the bundle Ad(P) ® Q!(M) and a curvature of a connection is a
section of Ad(P) ® Q?(M).

A connection on a principal bundle induces a covariant derivative in each
associated bundle m: E — M. A covariant derivative is a map that as-
sociates to each vector field X on M a linear map Vx: I'(F) — I'(E)
of the space of sections of E that satisfy the Leibnitz rule: Vx(fo) =
X(f)o + fVx(o) for any section ¢ and any smooth function f. Here
X(f)(x) =df(x)- X(z). In alocal trivialization the section o is represented
by a function o;: U; — V and (Vx(0)); = do(z)- X (z)+ A;(z)(0(x)) where
A;: Ui — End(V). To define a covariant derivative the A;’s must transform
as Aj(z) = pij(z)~' o Ai(x) o pij(z), where p;;: Uy N U; — Aut(V) are the
transition functions of the bundle. Since p;;(z) = p(7vi;(x)) where ;; are
the transition functions of the principal bundle and p: G — Aut(V) is the
representation of the associated bundle, it is clear from this formula that a
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connection on the principal bundle induces a unique covariant derivative in
each associated vector bundle.

Example 7. Let us go back to our first example, the Hopf bundle. One
simple way to define a non-trivial connection on this bundle is to consider a
I-form in C? which is U (1)-invariant (and u(1)-valued) and take its pull-back
to S? by the inclusion map j : S — C2. For example, consider

w = 1Im (21 dz1 + Zo dZQ)

and then take w = j*w € Q1 (S?)®@u(1). We leave it as an easy but instructive
exercise for the reader to compute the curvature of this connection.

4.4 The gauge group

Let P be a principal bundle over a manifold M with group G. We will con-
struct an infinite-dimensional group that will act in the space of connections
on P and on the space of sections of associated vector bundles. This group
will play a crucial role in Yang-Mills theory. An element ~ of the gauge
group G is represented locally by a function v;: U; — G that transforms as
vi(z) = ’yi;l(x)’yi(x)’yij () where v;;: U; NU; — G are the transition func-
tions of P. Such an element is a section of the adjoint bundle corresponding
to the adjoint representation Ad: G — Aut(G) that associates to each g € G

the inner automorphism h € G — ghg~'.

This is an infinite dimensional
group whose Lie algebra is the space of sections of the adjoint bundle given
by the adjoint representation of G in the Lie algebra ¢. Given a connection
A and an element v of the gauge group, we have another connection 7 - A

which is locally defined as

(- A)s = 3(@) - Aiw) - (@)™ + ()i

Here we are using the notation v € & +— g-v- g~ ! € ¢ to indicate the
endomorphism of the Lie algebra associated to ¢ € G under the adjoint
representation. The reader can verify that this indeed defines a connection
and an action of the gauge group in the space of connections. The curva-
ture of the connection 7 - A is locally given by ~;(z) - Fi(x) - v;(z)~*. The
reader can also verify that given an associate vector bundle F, given by a
representation p: G — Aut(V), there is a natural homomorphism of the
group of gauge transformations of P into the group of sections of the bundle
Aut(FE), the bundle of automorphisms of E. This bundle is a subbundle of
the bundle End(E) of endomorphisms of E (associated to the representation
G — End(V); End(V) > M +— p(9)Mp(g)~'). Hence the group of gauge
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transformations acts in the space of sections of associated bundles. Many
important action functionals in physics are invariant under the action of the
group of gauge transformations, as we will see.

Let us write down the local expression of a connection A, curvature F' and
the covariant derivative in local trivializations over an open set U C M. We
start by choosing a basis {7} for the Lie algebra & with [T¢,T%] = fobT°
where fgb are the structure constants of the Lie algebra. We also choose a
frame {%}, i.e, vector fields on U that at each point give a basis for the
tangent space. Then we may write

0 o 0
A(=—) = AT and F(—,—) = F} T
(gy) = AT® and P50 = FLT*
where T} and F}j, are functions on U. Then the curvature, which the physi-
cists call field strength, is given by

B B e
5 Au— 5 A+ fonAb AS (4.1)

Fo, =
g oz,

Finally, if we choose a basis {v®} for the vector space V, which is the
fiber of the associate fiber bundle E then a section ¢ = ,v% and the
corresponding covariant derivative is

0
a _ a_ Y _a a b
(Vo 0)" = (V)" = g+ ALt (4.2)
In the above equation, A () is the matrix in the basis v of the linear map
that corresponds to A, (z) € 4 under the representation ¢4 — End(V').

4.5 The Hodge x operator

Let V be a real finite-dimensional vector space, and let g : V' xV — R be an
inner product on V, i.e. a symmetric and non-degenerate bilinear form on
V. Then b induces a linear isomorphism between V' and its dual V*, given
by v — g(v,-).

More generally, consider the space AF(V*) of exterior k-forms on V', where
0 <k <n=dimV. An element of A*(V*) can be written as

a = E ai1i2"'ik)‘i1 AXig -+ A Aik ,
(41,92, ik)

where {A1,A2,..., A} is a basis of V*. The orthogonal group O4(V') of
linear transformations that preserve g acts on AF(V*) by pull-back. We
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claim that there exists a unique symmetric non-degenerate bilinear form g
on AF(V*) that is invariant under the action of O, (V). Indeed, we define

glag A= ANag; BL A -+ A 5k):Z(—1)Sign(U)g(al,50(1)) e glag, Bery) 5
the sum being over all permutations o on k elements, and then extend § to
all of AF(V*) by k-linearity (uniqueness is left as an exercise). The resulting
bilinear form

G: NPV x ARV S R

is easily seen to be symmetric and non-degenerate (i.e. an inner product).
Hence, as before we have a linear isomorphism A*(V*) ~ (AF(V*))*, for all
0<k<n.

Now the Hodge operator x : AF(V*) — A" *(V*) can be defined as follows.
Let p € A™(V*) be a normalized volume form, and note that if we take the
wedge product of a k-form with an n— k-form we get a multiple of i (because
dim A"(V*) = 1). Hence, given 3 € AF(V*), let %3 be the unique n — k-form
such that, for all a € AF(V*),

anxB = §lcf)p .

Suppose we are given an (oriented) orthonormal basis {e!,e? ... "} of V
under the inner product, so that g;; = glet el) = +0;;. The determinant
of the resulting matrix is equal to 1 or —1, and it is called the signature of
the inner product. The signature is independent of which basis we choose.
Denoting by {e1, €2, ...,e,} the dual basis of V*, we see that the normalized
volume form in A"(V*)is u=e; Aea A---e, Given a set of distinct indices
0<iq,...,1; <n,and letting ji, jo,..., jn_k be the complementary indices,
one can easily check (exercise) that

*(61'1 AN AARER eik) = €iyigij1ognop €i1 iK€ A\ €5, A T

Here, we used the so-called Levi-Civita symbol €;,...i,.j; .4, _,» Which is equal
to +1 if {i1 ik, J1 - jn—k} 1S an even permutation of {1,2,...,n}, —1 if
it is odd, and zero otherwise. Moreover, ¢; = g;; = £1.

The Hodge operator is an involution up to a sign. Indeed, it is easy to
see, for example working with the help of an orthonormal basis as above,
that

ox = (—1)F =R gid

where s is the signature of the given inner product, and id : AF(V*) —
AF(V*) is the identity.
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This definition of Hodge operator carries over to differential forms on any
(pseudo) Riemannian manifold M in a straightforward manner. Indeed,
all we have to do is to apply the Hodge x operator just defined in each
tangent space. More precisely, given a differential k-form « on M, define
xa € QF(M) by (%), = *a, € A" F(T*M,) for each x € M. The resulting
operator allows us to define an inner product in the space of differential
k-forms on M: if we are given two differential k-forms «, 8, then a A x3 €
Q™(M) is a volume form, and we can integrate it over M to get a number
(cr, 8). In other words,

(a,ﬁ):/Ma/\*ﬁ.

The Hodge operator can be generalized still further, to differentiable forms
in M with values in vector bundles over M. It is a basic ingredient in the
formulation of the Yang-Mills action. The space of fields is the space of
connections on a principal bundle P over a manifold M endowed with a
pseudo-Riemannian (Minkowski’s) metric g. The Hodge operator gives an
isomorphism between sections of ad(P) ® Q?(M) and sections of ad(P) ®
Q9=2(M), where d is the dimension o M. Another ingredient is the bundle
map Tr induced by the trace map Tr: End((G)) — R that gives a linear map
from the space of sections of the adjoint bundle to the space of functions on
M. So if F is the curvature of a connection A then Tr(F A xF’) is a d-form
on M. Thus we may write the pure Yang-Mills action as

S(A) :/Tr(F/\*F) .

If the group is non-commutative, the curvature is quadratic in the gauge
field (the connection) and so the Yang-Mills Lagrangian is not quadratic
but has also terms of degrees three and four in the gauge field. In particular
the Euler-Lagrange equations are non-linear!

4.6 Clifford algebras and spinor bundles
4.6.1 Clifford algebras

Let V be a finite-dimensional vector space over k =R or C, and let B : V' x
V' — k be a bilinear form. For simplicity of exposition we will assume that
B is positive-definite (in the real case) or hermitian (in the complex case).
Everything we will do in this section can be adapted, mutatis mutandis,
to the general case of a symmetric non-degenerate bilinear form, including
the Minkowski case that will be considered later. Consider the full-tensor
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algebra of V', namely
TV) =ko@ver.
n=1

Let .#(V, B) be the ideal in .7 (V') generated by the elements of the form
vRWw+w®v—2B(v,w) ,

with v,w € V.

Definition 4.7 The Clifford algebra of V' (with respect to B) is the quotient
algebra C1(V,B) = 7(V)/.Z(V, B).

We shall write simply ab for the product of two elements a,b € Cl1(V, B).
If we are given an orthonormal basis {ej,es,...,e,} of V' (with respect to
B), then we have the relations e;e; = —eje; and e% = 1. Therefore each
element 0 of Cl(V, B) can be written uniquely as

0= Oll—i*ZOziei + Zaijeiej + -
i i<j
+ Z Qjyig.is€iy Cin "+ €jg + 0+ Q12..n€1€2 * *~ €y .
11 <t2<-<is

From now on, we shall write simply Cl (V) instead of C1(V, B). The above
expression clearly shows that, as a vector space, Cl (V') has dimension 2".

Note that if v € V has unit norm (B(v,v) = 1), then v? = 1. Hence every
unit vector v is invertible, and equal to its inverse: v~' = v. We define
Pin (V') to be the group generated by all the unit vectors of V.

Lemma 4.1 Ifv € V is a unit vector and w € V is arbitrary, then —vwv ™!

belongs to V' and is the reflection of w across the orthogonal complement of
vin V.

Proof The proof is left as an exercise. O

This lemma shows that we have a well-defined action Pin (V) x V — V
given by w +— fwf~!. Moreover, for each # € Pin (V), the map w > Gwf~?
is a composition of orthogonal reflections and therefore it is an orthogonal
map. This yields a group homomorphism

Pin (V) —— O(V) D SO(V)

Since every orthogonal transformation of V' is a composition of a finite num-
ber of reflections (a classical result) this group homomorphism is surjective.
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Definition 4.8 The subgroup Spin (V') C Pin (V'), called the spin group of
V, is the pre-image of SO(V') under the above group homomorphism.

It follows that every element of Spin (V') can be written as a product of
an even number of unit vectors in V.

Lemma 4.2 The restricted homomorphism

F‘Spin(v) : Spin (V') — SO(V)

has kernel equal to {£1}. Moreover, Spin (V') is a simply-connected group.
In particular, Spin (V') is the universal cover of SO(V).

Proof Again, an exercise to the reader. O

When V is the Euclidean three-dimensional space R?, we deduce from
this lemma that Spin (R?) = SU(2).

4.6.2 Representations of Spin (V') and the Dirac operator

Now, let S be a vector space which is also a left module over the Clif-
ford algebra C1(V). This is the same as saying that we have an algebra
homomorphism p : C1(V) — End(S). This homomorphism restricts to a
representation

p: Spin (V) — Aut(S) .

This representation allows us to define the so called Dirac operator on the
smooth S-valued vector functions on V', as follows.

Definition 4.9 The Dirac operator is the first-order operator D : C*°(V,S) —
C>(V,S) given by

n
Dy = Zeiaei(P?
i—1

where {e;}1<i<n s an orthonormal basis for V and 0., is the directional
derivative in the direction of e;.

We leave it as an exercise for the reader to show that the definition of D¢
is independent of which orthnormal basis one chooses, and that

n
Do = Y
i=1
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in other words D? = A, the Euclidean Laplacian operator. This generalizes
the discussion at the end of chapter 3 on Dirac’s equation.

4.6.3 Spin bundles over a spacetime manifold

Next, we will show how to construct Dirac operators acting on spaces of
sections of vector bundles over a manifold M that admits a special structure
known as a spin structure. This structure is given by a spin bundle over M,
i.e. a principal bundle over M with structure group Spin (V') for a given V.

This somewhat vague description will now be made precise. In the dis-
cussion to follow, the underlying vector space will be V = R~ the
n-dimensional Minkowski space, with inner product given by the bilinear
functional

n
B(v,w) = vlw! — Zviwi )
i=2

Let M be an n-dimensional pseudo-riemannian manifold modeled on V,
i.e., endowed with a Minkowski metric. Let us consider the orthonormal
frame bundle over M

P

l

M

This is a principal bundle with structure group .2, the Lorentz group, which
is the group of all linear transformation of R»™~1 that leave the Minkowski
inner product invariant. As in the previous discussion for the Euclidean
case, there is a universal covering homomorphism (two-to-one) . — &,
where & is the spin group contained in the Clifford algebra Cl (]RL”_l).

Roughly speaking, we say that the manifold M has a spin structure if the
above principal bundle has a double cover. More precisely, a spin structure
on M consists of a double covering P — P with the property that

g —

l
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is a principal bundle over M, so that

_—_%p

lev
P
M
Now let S be a vector space, and let g : C1 (R»~!) — End(S) be a repre-
sentation of algebras. As before, this restricts to a representation

p: Spin (RM™71) — Aut(S) .

N

A
T
-
=

(—

AN

- =

This representation yields an associated vector bundle

S —— F

|

M

Given a connection A on the principal bundle (P, M, Spin (Rl’”_l)), let V
be the associated covariant derivative on the vector bundle (E, M, S). Recall
what this means: if X € 2 (M) is a vector field on M, then Vx is a first
order differential operator on sections of F satisfying the Leibnitz rule. The
Dirac operator D4 acting on sections of E associated with the connection
A will be defined using V.

Take a local trivialization over an open set U C M, and a (smoothly
varying) orthonormal frame {e;(z),e2(x),...,e,(x)} on TM, for all x € U.
These ingredients allow us to identify 7'M, with R"~! and E, with S.
Through these identifications and the representation p, we get a representa-
tion p, : C1(T'M,) — End(E,). Therefore, for each section ¢ : M — E we
define

n

Dap(z) = Y ei(@) (V) (x) -

i=1
It can be shown (exercise) that this definition is independent of the choices
of local trivialization and orthonormal frames used in the construction.

4.6.4 Abstract actions

Let us show how the above machinery can be used to write down natu-
ral actions on spaces of fields. There are fields of two types: force fields,
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which are connections on principal bundles over spacetime M, and matter
fields, which are sections of suitable associated vector bundles over M. For
physically relevant examples, see chapter 5.

In order to construct action functionals, we need the following ingredients.

(1) A manifold M endowed with a Minkowski metric and a principal bundle
over M;

(2) An associated vector bundle (E, 7, M), together with its dual bundle
(E*,7*, M), and a bundle isomorphism

B T

E*

M

(the image of a section 1) of E being denoted by 1), as well as a pairing
map

E*®F

M x R

M

(3) As fields, we take a connection A, a section ¢ : M — FE and a scalar
function ¢ : M — R;
(4) The Hodge x-operator, defined using the Minkowski structure on M.

With these ingredients at hand, we can write down an action functional
as follows:

SA.6.0) = [ TH(FansF)
M
1 1
+ / (wTDAw + 5 (Vo) + pplp + om* + A + w%) v,
M
where dV is the Minkowski volume form, V denotes the Minkowski gradient,

F A =dA+ AN A is the curvature of the connection A, and D4 is the Dirac
operator associated to A.
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4.7 Representations

The theory of Lie group representations is a very broad subject, a significant
portion of which was developed because of quantum physics. Here we con-
tent ourselves with presenting just a few basic results leading to E. Wigner’s
definition of (quantum) particle.

4.7.1 The Lorentz and Poincaré groups

We consider four-dimensional spacetime R = R x R3 endowed with the
Lorentz (or Minkowski) metric coming from the inner product

3
(x,y) = zoyo— Y _ Tjy; - (4.3)
j=1
The (full) Lorentz group is the group of linear isometries of this metric.
We are interested in the connected component of the identity in this group.
This subgroup is the restricted Lorentz group Ll = S0(1,3) of linear maps
of R1? that preserve the bilinear form (4.3) and also leave invariant the
positive cone {z € R : 29 > 0 and (z,y) > 0}.
It turns out that the Lorentz group LL is doubly covered by SL(2,C).
This can be seen as follows. There is a natural identification between space-
time R'3 and the space of 2 x 2 complex Hermitian matrices, given by

To— T3 T +ix .
R1’3€x>—>(0 o 2)62511(2).
xr1 —1r2 Xo+ T3

This identification can also be written as z +— Z?:o xjoj, where o, j =
0,---,3 are the it Pauli matrices

(1 0\ (01
0=\ 1) 7 P71 0
S G A U £
27\ =i o) " 7\ o 1

Using this identification, we define an action of SL(2,C) on Lorentzian
spacetime through the map SL(2,C) x isu(2) — isu(2) given by (A, X) —
AXA*. Note that, when X = Z?:o xjo;, we have

det(X) = af —af —a3 —af = [|=]*.

Since we also have

det(AXA") = det(X) ,
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Fig. 4.1. Hyperboloids in momentum space

we see that the action just defined preserves the Lorentz metric. In other
words, SL(2,C) acts isometrically on spacetime, and we have a well-defined
map SL(2,C) 2, SO(1,3), a group homomorphism in fact. Now, it is
an easy exercise to see that if A € SL(2,C) is such that AXA* = X for all
Hermitian matrices X, then M = £1. From this it follows that ® is a double
covering map, and we have LL =S50(1,3) 2 SL(2,C)/{xl} = PSL(2,C).

The orbit structure of the action of LL on momentum space is fairly
simple. Each hyperboloid (see figure 1) of the form

Hy = {peR™: (") = (") - (p*)° - (0)* =m?}

is invariant under the group action, including the degenerate case m = 0
(the light cone). When m? < 0, we have a one-sheeted hyperboloid. When
m? > 0 we have a two-sheeted hyperboloid, and each sheet is invariant. In
either case, the group action is transitive in each sheet.
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4.7.2 Induced representations of unitary type

Let G be a Lie group, and let H be a closed subgroup of G. Suppose we are
given a representation of H into a Hilbert space. Does it somehow yield a
representation of the larger group? We shall see how to construct such an
induced representation provided we are given the following ingredients.

(1) A principal H-bundle (P, 7, M), where P and M are smooth manifolds.

(2) A representation p: H — Aut(V'), where V is a complex Hilbert space,
through wunitary automorphisms.

(3) A left action G x P % P which is smooth and sends fibers 7! (z) C P

onto fibers. In particular, there is a quotient action G x M R M on
the base. We have a commutative diagram

GxP -2, p

ixr | |

GXMTM

We assume also that the left G-action commutes with the right H-
action on P.

(4) A Borel measure g on M which is G-invariant (g.u = p for all g € G).

Using these ingredients, we will show how to build an induced represen-
tation p : G — U(H), where H is a Hilbert space arising as a subspace of
the space of sections of the vector bundle associated to the representation p.
The most important special case of this construction happens when P = G
and M is the homogeneous space G/H. In this case the third ingredient
above comes for free (take o to be the standard left action by translations,
and let 3 be the obvious quotient action).

Example 8. The main physical example is the case when P = G = SL(2,C)
(the double cover of the Lorentz group), the little group is H = SU(2)
(the double cover of SO(3), the isotropy group of the point (m,0,0,0) in
Lorentz spacetime), and M = SL(2,C)/SU(2) is the hyperboloid {x € R :
z2 — 23 — 2% — 2% = m?} (the orbit of (m,0,0,0) under the Lorentz group).
The manifold M with the metric induced from the Minkowski metric on
R'3 is isometric to hyperbolic 3-space with the hyperbolic metric. Hence
the measure y is the hyperbolic volume form transported by this isometry (so
p Is obviously invariant under SL(2,C)). The representations p : SU(2) —
U(V) are all finite-dimensional (V = C" for some N) and will be described
later.
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Let us go back to the general situation. In order to construct the induced
representation p of the larger group G, let (E,7g, M) be the associated
vector bundle corresponding to the representation p : H — Aut(V) of the
smaller group H. Each fiber V,, = 7' (z) C E is isomorphic to V. The first
step is the following.

Lemma 4.3 The space of sections I'(E) is isomorphic to the space W of
H -equivariant maps f : P — V, i.e. maps satisfying f(p-h) = p(h=1)f(p)
(for allp € P and h € H).

Proof Recall that E = P x V/H, where the H-action on P x V is given by
(p,v) - h = (ph~, p(h)v). Let v € T'(E) be a section of E. For each p € P
there exists v € V such that ¢)(7w(p)) = [(p,v)] (here [-] denotes an orbit of the
H-action). We claim that v is uniquely determined by p. Indeed, if w € V'
is such that [(p,w)] = [(p,v)], then there exists h € H such that p-h~! =p
and p(h)v = w. Since H acts freely on each fiber of P, we must have h = e,
and therefore w = v. Hence we have v = fy(p) for a well-defined function
fy : P — V. This function clearly satisfies f,,(ph™') = p(h)v = p(h) fy(p),
so it is H-equivariant. This defines a linear map L : I'(E) — W, given by
L() = fy. The construction of fy, from 1 can be reversed to show that L
is surjective. Moreover, if f,, = 0 then 1) must be the zero section, so L is
injective as well. O

The second step is to define a left action G x W — W in the obvious way:
if g€ G and f € W, let g- f be given by g- f(p) = f(g~' - p). This is well-
defined, because the left G-action and the right H-action on P commute,
and therefore

g-fp-h) = flg"-(p-h)
= f(lg"-p)-n)
= p(h™)f(g™" - p)
= p(h" (g Np) .
showing that, indeed, g - f € W. Now, this action of G on W can be

transported, via the isomorphism L of Lemma 4.3, to an action v : G X
['(E) — I'(E) according to the following diagram

GxW — W

tiLfll JL—l

GxI(E) —— ~y(E)
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Thus, g - ¢ =(g,9) = L™ (g - fy), for all g € G and all ¢ € T(E).

The third step is to define the Hilbert space of L?-sections of the vector
bundle (E, g, M), on which G will act. To define an inner product on sec-
tions, first we take their scalar product on each fiber, and then we integrate
over the base manifold M using our fourth ingredient, the Borel measure p.
More precisely, if ¢,¢ € T'(E) and z € M, let

<¢($)7¢($)>Vz - <f¢>(p)7f1/)(p)> ;

where p € P is any point such that w(p) = x. This is well-defined, for if
q € P is any other point with 7(¢) = x, then ¢ = p - h for some h € H, and
therefore, by H-equivariance,

(fo(a@), fuo(@)) = (p(h™ ) fo(p), p(h™ ") fu(p))
= (fs(p), fo(0))

where we have used that p(h™!) : V — V is unitary. The inner product on
sections is given by

@0) = [ (6@ v@)y, dulo)

Now let L2(T'(E), 1) C I'(E) be the subspace consisting of those 1 € I'(E)
such that (1,1) < oo. This is easily seen to be a Hilbert space. We shall
denote this Hilbert space by H.

Lemma 4.4 The restricted action v : GxH — H is well-defined and unitary.

Proof The definitions given so far assure us that (g-¢)(x) = [(p,g- fu(p))]
for all ¢» € T'(F) and all g € G, where p € P is any point with 7(p) = x.
Hence, given ¢, € T'(E), we have

(9-0(x),9-¥(@))y, = (9-fs(p).g- fuP))
= (folg™" - p), fulg™" - p))
= (¢(g " 2),0(g" 'w)>vg

—1.

-7t(p) = g~' - z. This shows that

99 / (oo™ alulg )y, ) (44)

Since g; 'y = p (for the measure p is G-invariant), the change of variables
y =g ' 2in (4.4) yields at last (g- ¢, g - 1) = (¢,7). In other words, each
g € G acts on H as a unitary isometry. O

Here we have used that (g~ -p) =g
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Finally, using the action v : G x H — H just constructed, we define a
unitary representation

p:G— U(H)

quite naturally by p(g) = v(g,-) : H — H. This is the induced unitary
representation of G (induced by p: H — Aut(V')) that we were looking for.

4.7.3 Wigner’s classification of particles

In a seminal work, E. Wigner proposed the following mathematical notion
of elementary particle. For a discussion of the physical motivation behind
this definition and of Wigner’s work, see [St], pp. 148-150.

Definition 4.10 A quantum mechanical particle is a projective, irreducible
unitary representation of the Poincaré group.

One can be a bit more restrictive here: the above representations may
be required to satisfy additional conditions, whose nature and relevance are
dictated by physical context. Moreover, instead of projective representations
of the Poincaré group &, one can consider representations of its universal
(double) covering group

P = SL(2,C) x RY3 | (4.5)

that is to say, the semi-direct product of the group SL(2,C) with the trans-
lation group in Minkowski space. This will be the point of view adopted
here.

Our goal in this section is to present Wigner’s classification of particles in
a nutshell. Wigner’s classification theorem provides the (correct) mathemat-
ical framework for the study of elementary particles, and has stimulated a
great deal of research in the theory of group representations. The classifica-
tion amounts to finding all unitary irreducible representations of the group
2. The general problem of finding irreducible, unitary representations of
semi-direct products such as (4.5) was thoroughly investigated by G. Mackey
(but also by Wigner in the specific case at hand). Such representations are
typically infinite-dimensional. In order to simplify our discussion here, we
shall ignore the translation group factor RY® in the semi-direct product
(4.5). This amounts to studying the unitary irreducible representations of
the Lorentz group, or of its double cover SL(2,C). Using the results we
proved in section 4.7.2, it suffices to classify the irreducible unitary repre-
sentations of the isotropy groups of points in Minkowski space with respect
to the underlying action of the Lorentz group in that space.
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The isotropy groups are either isomorphic to the special orthogonal group
SO(3) or the group of Euclidean motions of the plane, F(2). We shall deal
explicitly here with the case of SO(3), which is compact. The Euclidean
group E/(2) is not compact, but a further reduction can be used to study its
irreducible representations (we note that F(2) contains SO(2) as a maximal
compact subgroup).

The fact that SO(3) is compact makes our job easier, because of the
following classical theorem.

Theorem 4.2 (Peter-Weyl) Euvery irreducible representation of a compact
Lie group is finite-dimensional.

Proof The proof can be found in many references, among them [St], ap-
pendix E. O

Now, we’ve seen already that SO(3) is doubly covered by SU(2). Hence
it suffices to determine the irreducible unitary representations of this last
group.

It is not difficult to exhibit countably many (unitary) representations
of SU(2), the double covering of SO(3). The idea is very simple. First
note that SU(2) acts in C2, through skew-hermitian linear transformations.
Therefore we have a regular representation r : SU(2) — Aut(</), where
o/ = C(C?,C) is the algebra of all complex-valued continuous functions on
C?, given by r(A)f = fo A~L. Let V,, C & be the subspace of all homo-
geneous, degree n polynomials (in the complex variables z and w, say). An
element p € V,, can be written in the form

n
p(z,w) = Zajzjw”_j.
=0

In other words, the monomials 27, 2" tw, ..., zw"™ !, w™ are a basis of V,.

If A € SU(2) has matrix

then
po A7z, w) = Z aj (@z — bw)? (bz + aw)n_j ,
j=0

which is still, as the reader can easily check, a homogenous polynomial of
degree n. This shows that r restricts to a representation in V,,, for each n.
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It is also not difficult to see what inner product on V,, one should pick so
that this representation is unitary (this is left as yet another exercise).

We claim that these restricted representations (one for each value of n),
are irreducible, and they are all irreducible unitary representations of SU(2).
There are several equivalent ways of proving these facts, for example using
one of the several alternative formulations of the Peter-Weyl theorem. We
prefer to prove them using the Lie algebra su(2). Recall that if p : G —
Aut(V) is a (say, finite-dimensional) representation of a Lie group G, one
has a corresponding Lie algebra representation p : Lie(G) — End V, given
by
d
dt li=o
If p is reducible, the same will happen to p. Hence, after we prove Theorem
4.3 below, we will have established that the representations of SU(2) that
we constructed above are indeed all the irreducible representations.

pX) = S| plexp (X)) .

Furthermore, any representation of a Lie algebra g into a (complex) vector
space extends to a representation of the complexified Lie algebra gc = C®g,
with the same invariant subspaces. In particular, if the representation of g
is irreducible, so will be the extended representation of gc. These facts are
left as straightforward exercises to the reader.

We will need to use the fact that the complexified Lie algebra suc(2)
agrees with s[(2,C), and as such it has a basis 71,73, 73 (over C) satisfying
the commutation relations

[T, 7] =735 [, 18] =715 [m3, 1] =72 .

These are easily constructed from the Pauli matrices (another exercise). Let
us consider

L=m+4imn; 03=imr3; R=7— i1 .
These elements also form a basis of su(2), and one easily sees that
[93,.[/] = iTg(TQ + iTl) — (7'2 + iTl)(iTg)
= —ilr3, 7o) — [13, 7]
= -1+ = —L.
Likewise, one sees that [03, R] = R.
Theorem 4.3 For each non-negative half-integer s, there exists an irre-

ducible, skew hermitian finite-dimensional representation ps of the Lie alge-
bra s1(2,C) into a complex vector space Vs of dimension 2s + 1. Each such
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representation is unique up to unitary equivalence. Moreover, there exists a
basis {vg,v1,...,v2s} of Vs such that

(a) The linear map ps(03) is diagonalizable in this basis, and
ps(03)v; = (—=s + j)vj, for all 0 < j < 2s;

(b) The operators ps(L) and ps(R) act as shift operators, in other words
ps(L)vj = vj_1 and ps(R)vj = vjq1 (for the appropriate values of j).

Furthermore, these are all the irreducible skew-hermitian representations of
sl(2,C) (and hence also of su(2)).

Proof We perform a ladder reasoning similar to the one used in the analysis
of the harmonic oscillator, or of spectra of the angular momentum operators
(chapter 2). Given a finite-dimensional irreducible representation of s((2, C),
let V' be the complex vector space. Let us keep representing by L, R, 03 the
images of the Lie algebra generators under the given representation. Note
that all eigenvalues of #3 must be real (can you see why?). Suppose \ is
the smallest eigenvalue of A3, and let vg € V be an eigenvector of 03 with
eigenvalue A. Then the commutation relations imply that

93(R1}0) = L93(U()) + RU() = (A + I)RU() .

Hence v1 = Ruyg is an eigenvector of 63 with eigenvalue A+ 1, unless of course
Lv = 0. We can continue inductively as long as we don’t hit the zero vec-
tor, obtaining a sequence of eigenvectors vy, v = Rvg,vo = R%vy,... v, =
RF=1yy with eigenvalues A\, A + 1,..., A+ k — 1 which must terminate be-
cause V is finite-dimensional. In the end we have RFug = 0. The subspace
generated by these k eigenvectors is invariant under 3, R and (by a similar
ladder reasoning going downwards) under L also. But since the representa-
tion is assumed to be irreducible, this can only happen if £k = n. We have
deduced in particular that f3 is diagonalizable, and that L and R act as
shift operators. More importantly, since 63 must have zero trace, we get

n—1
—1
Z()\+j):n/\+%:0.
=0
This shows that
\ = n— 1
2

Hence the eigenvalues of 63 are

n—1 n—3 n—3 n—1

2 ) 2 LA 2 ) 2 )
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a sequence that may or may not go through 0, depending on whether n is
odd or even respectively. We have proved both (a) and (b), provided we
take, of course, s = (n —1)/2. O

Therefore, the irreducible unitary representations of SU(2) corresponding
to massive particles are labeled by a non-negative half-integer s, called the
spin of the particle,

Particles with integrals spin are called bosons. Those with half-integer spin
are called fermions (an example of which is the electron).

On the other hand, the irreducible unitary representations of SO(2) are all
one-dimensional (because the group is abelian) and correspond to massless
particles such as photons. They are labeled by the eigenvalues h € Z of
the angular momentum .J,, which is the generator of the group SO(2) of
rotations in the (x,y,0) plane around the vertical z-axis. The number h is
called the helicity of the particle.

4.7.4 Spinor representations of SL(2,C)

As we have seen, the Lorentz group is doubly covered by SL(2,C). In the
light of the previous discussion, it is a matter of considerable interest in
quantum physics to find all finite-dimensional irreducible representations of
SL(2,C). It is easy to give an enumeration of all such irreducible represen-
tations, although not so easy to prove that the given list indeed exhausts all
possible irreducible representations.

Let us do the easy part. For each pair (s,t) of half-integers, let V%! denote
the complex vector space of all polynomials p(z, z) of degree at most 2s in
z and at most 2t in Z, i.e. polynomials of the form

pz2) = D, D apdt,

0<j<2s 0<k<2t

where the coefficients aj;, are complex. The monomials 212k clearly form a
basis of V!, so dim V*! = (2s + 1)(2t + 1). Now, given A € SL(2,C), say

a b
=)
we define DS(A) : VS — VS by

D' (A)(p(z,2)) = (cz +d)**(ez + d)* p(w, w) ,
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where
az+b

cz+d -’

is the fractional linear transformation associated to A. This is clearly well-
defined and linear in p. It is an easy exercise to verify that D®!(I) is the
identity and that D*!(AB) = D%!(A) o D*!(B). Hence A — D*!(A) is a
finite-dimensional representation of SL(2,C). Such representation is called
a spinor representation of SL(2,C). Now we have the following fundamental
result.

Theorem 4.4 For all non-negative half-integers s,t, the spinor representa-
tion
D3t SL(2,C) — V&t

1s irreducible. Moreover, every finite-dimensional irreducible representation
of SL(2,C) is equivalent to one of these.

We will not prove this theorem here. A complete proof can be found
in [GMS]. Nevertheless, we invite the reader to compare this result with
Theorem 4.3. The derived representation D' at the level of the Lie algebra
s[(2, C) is made up by taking the tensor product of two of the representations
appearing in that theorem.

Exercises

4.1 Let w be the connection of example 4.3 (the Hopf bundle), and let
A the corresponding (local) connection 1-form on the base (S?).

(a) Show that in local coordinates (given by stereographic projection)

A= ‘Im ﬂ .
2 14|22

(b) Deduce that the local curvature 2-form is, in local coordinates,
given by

we can write

1

Fo— A = L dENdz

2 (142

4.2 Work out the analogue of example 4.3 for the quaternionic Hofp
bundle presented in example 4.2. More precisely, let @ be the 1-form
in H? given by

o = Im (qdg1 + @2 dg2) -
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Consider the inclusion j : ST — H?, and let w = j*@ be the connec-
tion defined on the quaternionic Hopf bundle. Again, denote by A
the corresponding local 1-form on the base (S*) defined via stereo-

graphic projection.

(a) Show that, in these local quaternionic coordinates, we have

A = Im (ﬂ> .
1+ [q]?

(b) Show that the corresponding curvature 2-form F' is given by
_dqNdg
(1+]ql?)?



5
Classical Field Theory

The concept of field is central in modern physics. In this chapter we study
the basic classical fields, such as the electromagnetic field, presenting them
from a unified mathematical perspective. The expression ‘classical field’ is
used here in contradistinction to ‘quantum field” (a concept to be defined
in chapter 6), and is taken to mean ‘field before quantization’. Thus, we
treat fermionic fields as classical, even though strictly speaking fermions are
bona-fide quantum objects, with no actual classical counterpart.

5.1 Introduction

As we shall see, all such fields arise as sections of certain bundles over the
spacetime manifold. The basic paradigm was introduced by C. N. Yang
and R. Mills in their fundamental paper (see [tH2]).  The central idea of
Yang-Mills theory is that there is a background field (such as the electromag-
netic field) which is given by a connection A defined on a principal bundle
over spacetime. The structural group of this bundle represents the internal
symmetries of the background field. The possible interactions — also called
couplings — of the background field with, say, particles such as photons or
electrons, are dictated by the representations of the group. Each particle
field turns out to be a section of the associated vector bundle constructed
from the principle bundle with the help of a given representation of the
group. These fields, say ¢, ¥, ..., together with the background connection,
should satisfy a variational principle. In each case we have a Lagrangian
L =Z(A,p,1,...) defined on the product of the spaces of sections of the
bundles corresponding to each field, and taking values in the space of volume
forms in the spacetime M. Integrating this Lagrangian we get an action

g = /Mz(A,¢,¢,---).

110
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The physically relevant fields are the critical points of this action. These

are solutions to the Euler-Lagrange equations, coming from setting the first
variation of the action functional equal to zero, i.e.

608 0- oS

S0, A T 80

The resulting equations are linear PDE’s in the case of electromagnetic

0; ...

fields and non-linear in the case of gravitational fields. We will construct
a generalization of electromagnetism, the Yang-Mills fields, which will also
lead to non-linear PDE’s.

5.2 Electromagnetic Field

Let us start with the most well-understood of all physical fields, the elec-
tromagnetic field. What follows is elementary, and appears in one way or
another in many physics books.

5.2.1 Maxwell’s equations

The study of electric and magnetic phenomena goes back to the eighteenth
century with the pioneering work of Coulomb on electric charges, but it
only became systematic after Faraday, Gauss, Ampere and Maxwell in the
nineteenth century. Their work culminated in a great synthesis with the
famous Maxwell equations. In the vacuum, these equations read as follows:

v.E-0, vaB-2Z _,
o
B
V.-B=0 , V/\E—i—%—t:O

Here, E = (E1, E9, E3) is the electric field and B = (B, Be, Bs) is the mag-
netic field. These equations make clear that electric and magnetic phenom-
ena are not independent, but deeply intertwined. For instance, the first line
says that, in the absence of electric sources, the electric field is divergence-
free (first equation), while a non-zero magnetic field must be present as soon
as we have a time-varying electric field (second equation). The equations in
the second line have analogous physical interpretations.

5.2.2 The scalar and vector potentials

J. C. Maxwell realized that the above equations could be deduced from the
assumption that both the electric and the magnetic fields where in some
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sense conservative, i.e. derived from potentials. He introduced a scalar
potential ¢ and a vector potential A and arrived at the following expressions

E = -Vp-09,A (5.1)
B =VAA. (5.2)

It is easy to derive the four Maxwell equations from these two. For example,
since the divergence of the rotational of any vector field is identically zero,
taking the divergence on both sides of B = VA A yields V-B = 0, the third
of Maxwell’s equations. Since the rotational of the gradient of any function
is identically zero, we also have, combining the two expressions above,

0B 0A
W_VA <W) =VA(-V¢p—E)=-VAE,
which gives us the fourth of Maxwell’s equations.

It was observed by Lorentz at the end of the nineteenth century that
Maxwell’s equations are invariant under a large group of linear transforma-
tions of spacetime R*. This group is the Lorentz group we met in chapter 3,
namely, the group of isometries of M = R* under the Lorentz (or Minkowski)
metric given by

ds? = —da® — dy?® — d2? + 2 dt? |
where c¢ stands for the speed of light. Lorentz invariance lies at the heart of
Einstein’s relativity theory.

Using coordinates z° = ct,z! = z,2% = y, 2> = 2 in spacetime, we see
that the Lorentz metric tensor g,,,p,v = 0,1,2,3 is given by the diagonal
4 x 4 matrix with diagonal entries goo = 1, g11 = ¢g22 = g33 = —1.

5.2.3 The field strength tensor
A synthetic way to express Maxwell’s equations is obtained using the modern
language of differential forms. Let us consider the 2-form F' in spacetime
M = R* given by
F = Eyda' Ada+Ey da?® A da® + Es da3 A dz®
+ By da? A da® + By da® Adat + Byda' A da? .
There is another 2-form associated to F', called the Hodge dual to F' (see
§4.5), which is denoted by xF' and is given by
xF = Bydz' Ada® + By da® A da® + By da® A da®
+ By dz?® A da® + By da® Adat + Esdat A da? .
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In terms of these forms, Maxwell’s equations in the vacuum become simply
dF =0, dxF=0. (5.3)
Note that we can write
1
F = §FWdac“/\dx” ,
where (F},,,) is the skew-symmetric tensor given by the matrix

0 —E, —Ey, —Ej
E, 0 By —DBy
E, -B; 0 B
Es By —-B 0

This tensor is called the field strength tensor.

What is the relationship between the field strength and the scalar and
vector potentials introduced by Maxwell? Let us consider first the 1-form
A = A,dx*, where Ag = —¢ is negative the scalar potential and Ay, Aa, A3
are the spatial components of the vector potential. Then

dA = d(A,ds") = (0,A,dx”) Ndat = - (0,A, — 0, A,) datdx” .

1

2

Using the equations (5.1), we see after some simple computations that
Fu =0,A, - 0,A, .

In other words, we have precisely F' = dA. Thus, the field strength 2-form
is exact, and therefore it is closed as well: dF = 0.

5.2.4 The electromagnetic Lagrangian

Can Maxwell’s equations be derived from a variational principle? The an-
swer is yes. Note that the exterior product of F' with xF' yields a volume
form in spacetime, which can be integrated. Thus, we may consider the
functional given by

Som(A) = /MF/\ ‘F . (5.4)

This is the electromagnetic action (in the vacuum). The Euler-Lagrange
equations for this functional, obtained imposing the condition that its first
variation vanishes, i.e.

0Sem

54 0
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are precisely the Maxwell’s equations (5.3)! (The proof of this fact uses
Stokes theorem and is left as an exercise). We may therefore regard L(A) =
F A %F as the Lagrangian of electromagnetism (in the absence of charges).

Let us express the Lagrangian (or the corresponding action) using a no-
tation that is more familiar to physicists. Using the Lorentz metric, we can
“raise the indices” of the field strength tensor F},, to get another tensor F*¥
whose components are given by

Y — Fa.p gocugﬁv ]

In this new notation, it is an easy exercise to check that

1

Sem(A) = _Z/MFMVFMVd4x7

where d*z = dx® A dxt A da? A da? is the standard volume form in M = R

5.2.5 Gauge invariance

An extremely important property of the Maxwell Lagrangian is its invariance
under gauge transformations. A gauge transformation has the form

A, — A, +0,0,

where © : R* — R is an arbitrary (smooth)function. It is clear that the
Lagrangian (5.4) doesn’t change when the vector potential (connection) A is
changed in this fashion. Hence we have considerable freedom when choosing
A. For instance, given A we can always make Ag = 0 after a suitable gauge
transformation. Indeed, let

O(t,x) = /tAg(s,m) ds .

Then 9y© = Ag, and therefore the gauge transformed field

t
A, = @H/ Ap(s,x)ds

has A, = 0. We can further gauge transform A’ in many ways to get yet
another connection A” that still has first component equal to zero, provided
we use as gauge a function that is independent of t. One way to do this is
the following. Let

1 d3y
U(z) = —— LA —
(l’) A7 /Vy (tay) ‘.’IJ _ y’



5.2 FElectromagnetic Field 115

Maxwell’s equations show that, because A, = 0, we have 9y(V - A’) = 0.
This shows that U is indeed independent of time (i.e. ¥(x) = ¥(0,x)). Now
let

" /
A, = A, +0,V.
Note that we still have Aj = 0. Using the identity on distributions

2 1 — _ 53 _
V:z: <47T‘.’13—y‘ - 0 (:13 y)7

we see that V - A” = 0 (exercise). In other words, we have 9"A} = 0;
this choice of gauge is called Lorentz gauge. Using the equations of mo-
tion 0,F),, = 0, we deduce that the connection components AZ satisfy the
massless Klein-Gordon equation

DAZ =0. (5.5)
These Klein-Gordon equations admit plane-wave solutions of the form

Ap(x) = eu(k)e T 4 EZ(k)eik'x

for each k € R?*, where the coefficients ¢,(k) € C* (and their complex

conjugates €,

is linear, the superposition principle tells us that these plane waves can be

(k)) are called polarization wvectors. Since the Klein-Gordon

combined to yield the general solution. Later (chapter 6), when we quantize
the electromagnetic field, we will see that these equations (5.5) describe
massless particles, namely photons.

5.2.6 Mazxzwell Lagrangian with an external current

We have presented Maxwell’s equations in vacuo, which are homogeneous,
but of course it is also necessary to consider the electromagnetic field in the
presence of a charge distribution. This is represented by a four-vector (J#) =
(p, J), where p denotes the charge density, and J the associated current. The
inhomogeneous Maxwell equations corresponding to this situation are

OF

E = B-""—Jg
v p, Vx =
B

V.-B=0 , VxE+—aat —0

These equations turn out to be the Euler-Lagrange equations for the action
functional with Lagrangian density given by

1 174
L =~ FuF" =T,
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5.3 Conservation laws in field theory

Just as in the case of classical mechanics, in field theory there is a close
relationship between symmetry and conservation laws. This relationship is
expressed through Noether’s theorem. Rather than present the most general
formulation of this theorem, we will deal here with the case of internal
symmetries only. A symmetry is called a spacetime symmetry if it acts on
the spacetime variables, and an internal symmetry otherwise. For more
details we recommend [Fr, ch. 20], as well as [BL, ch. 3] and [Ma, ch. 3].

5.3.1 The Euler-Lagrange equations

Let us try to free the discussion from the dependence on coordinates. We
shall examine the case of a field Lagrangian depending on a single field ¢.
We make the following assumptions.

(i) The spacetime M is a pseudo-Riemannian n-manifold (typically a
Lorentzian 4-manifold) with a fixed pseudo-Riemannian metric g (typi-
cally the Minkowski metric). The volume element of M can be written,
in local coordinates, as

dVy = /|detg|dz! Nda® A - Ada™ .

(we ignore a sign here, which is determined by a choice of orientation
of M).

(ii) The relevant fields are sections of a vector (or spinor) bundle £ —
M with N-dimensional fibers. These sections will be denoted ¢ =
(¢a)a:1,,,,7 ~. The vector bundle F is provided with a fixed connection,
i.e. a fixed covariant derivative V. In local coordinates z : U — R"
(U C M being a coordinate patch) this covariant derivative has an
expression of the form

Vot = 9;0" +wfgd’

where the wj'?‘ 5 are smooth functions on U.
(iii) The relevant action functional S : I'(E) — R is given by integration of
a suitable Lagrangian density, namely

S6) = [ 200 (5.6)

Here £(¢, V@) € C°(M) for each ¢ € T'(E). Thus, the Lagrangian
density is assumed to depend explicitly only on the field ¢ and on its
covariant derivative.
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We shall presently derive the Euler-Lagrange equations for the critical
points (fields) of the action-functional. Following the recipe dictated by the
calculus of variations, let us work out the variation 45 corresponding to a
given variation d¢ € I'(E) of the field ¢. Since the connection is fixed and
00; = 0;0 for all j, we have

6(V;jo%) = V;(66%) .

Using this fact and taking into account that the metric on M is also fixed,
we see that

55(6) = /M 526, V6) dVy

0L . 0L
_ /M {@(M )+ 50w gy Vi )} V. (5.7)

Let us pause here to understand the invariant tensorial meaning of the terms
in the integrand on the last line of (5.7). Since the expression in brackets
is supposed to be a function on M, the products appearing as summands
must be pairings of the tensor fields involved. In each pairing, a section of
a given bundle must be paired against a section of the corresponding dual
bundle. Thus, since d¢ € I'(E), we see that

0%
— ) eT(EY),
(55r) €T
i.e. a section of the dual bundle E*. Likewise, since the covariant derivative
maps sections of E to sections of £ ® T*M, we see that

(%) el(E*©TM) .

Now, going back to the calculation of 4.5, we note that

0L o . ﬂ L A ﬂ N
% (Gw®®) = a0 T+ () 9 69

Here there is an abuse of notation. All covariant derivatives here are be-
ing denoted by the same symbol, but they live in different vector bundles.
Thus, the covariant derivative on the left-hand side of (5.8) is the pseudo-
Riemannian covariant derivative on 7'M, whereas on the right hand-side we
have the given covariant derivative V acting on ¢ in the first summand,
and the induced covariant derivative acting on the section of I'(E* @ T'M)
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appearing in the second summand. Using (5.8) in (5.7), we get

0L
+/ \% <76¢a> dVr . 5.9

v T \O(Vje9) (59)
Now, suppose the spacetime manifold is compact and has a smooth boundary
OM (with the induced orientation from M). Then, applying the divergence
(i.e. Stokes) theorem to this last integral we get

0L .\ v
+ /6M <78(qubo‘)5¢ > N;dAy . (5.10)

where dApy is the area-form on M and m = (N;)j_; is the unit normal to
the boundary of M. Hence, if ¢ is a critical point for the action functional

S, in other words if the first variation 0.5(¢) vanishes for all field variations
d¢ vanishing at OM, then we must have

0L 0L 0L
— = —-Vj|l=———] =0.
o~ O~ O(V;9)

The symbol on the left-hand side of the above equality stands for the so-
called functional derivative of the Lagrangian. Note that this object is a

section of the dual bundle E*. It is also customary to write

so that the functional derivative of £ with respect to ¢ can be written
without reference to components as

7 0L . (83)

S50~ o0 W \ove

5.3.2 Noether’s theorem for internal symmetries

Let us now assume that the Lagrangian . is invariant under a one-parameter
group of symmetries. In other words, let G be the structure group of the
vector (or spinor) bundle on which the field ¢ lives, and suppose we have a
one-parameter subgroup t — ¢; € G. This induces a one-parameter group of
fiber-preserving self-maps of the vector bundle E, and also a one-parameter
group of self-maps of I'(E), all of which we denote by the same symbol g,.
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In particular, we have a motion of sections ¢; = g:¢. The meaning of the
symmetry in question is that .# is invariant under such motion, i.e.

9 L(¢t,Vy) .

Ot lt=0
Now, we can write g; = 'Y, where Y is an element of the Lie algebra of G.
Fixing a coordinate neighborhood U C M, each field ¢ is represented by a
column vector (¢%)N_,, each g, is represented by a matrix, and

o = g7 g0’ = (eM)ge” .
The first variation d¢ of ¢ along this symmetry is given by

0Py

Sp* = L =Y§ePl.

¢ ot li=o0 59

We call d¢ a wvariation by symmetries of the Lagrangian. The theorem of
Noether tying symmetries of the Lagrangian to conservation laws is the

following.

Theorem 5.1 Let the field ¢ be an extremal of the Lagrangian £. If §¢ is
a variation by symmetries of the Lagrangian, then

div( 0Z 6¢°‘> =0.

OV ¢
In particular, the vector field J given by
07
JH = V&8
OV .0 B ¢

has divergence zero.

Proof Since ¢ is extremal for the action functional with Lagrangian .2, we
know from (5.9) and the fact that d¢ is a variation by symmetries that

07
O:(SS:/V‘(i(SO‘)dV .
v Ve )
for every compact n-dimensional submanifold of M with boundary. Since

V' is arbitrary, the integrand above must vanish identically. Remembering
(5.11), this proves the theorem. O

Remark 1. Suppose we are dealing with a scalar field ¢, defined over flat
Minkowski spacetime M = R*, and let us denote the corresponding Noether
current by j#. We know from theorem 5.1 that J,j" = 0. Separating the
time component ;Y of j from its spatial components, i.e. writing j = (j°, ),
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we see that the equation 0,,j* = 0 becomes 00j° = —V -j. This is similar to
the situation we already encountered in chapter 3 when we discussed Dirac’s
equation: current conservation. Indeed, let V' C R3 be a region in 3-space
with smooth boundary 0V. Defining

Qvit) = /V Ptz P

it follows from the divergence theorem that 9,Qv () is equal to the flux
of j across the boundary 0V. This justifies calling Qv the charge and j
the current associated to the symmetry d¢. The reader can check, as an
instructive exercise, that when % is the Maxwell Lagrangian with a source
term, and the present discussion is adapted to the vector potential A, the
charge and current introduced above are precisely the electric charge and
electric current that are so familiar in electromagnetism. The remainder
of this chapter will be devoted to further important examples of free or
interacting fields and their symmetries and associated conservation laws.

5.4 The Dirac field
5.4.1 The free Dirac field

The free (or pure) Dirac Lagrangian describes a fermion, which mathemat-
ically is represented by a spinor field, in the absence of interactions. The
spinor field 1 is a section of a spinor bundle over spacetime M (whose fibers
are identified with a vector space V isomorphic to either R* or C2, as de-
scribed in chapter 4. For simplicity, let us work on Minkowski’s flat space.
Using the standard Dirac matrices v*, the Lagrangian density can be written
as

Zp = Yy Ou —m)y (5.12)
where ¥ = 1140 is the adjoint spinor to ¢ (here ¢ is the Hermitian conju-
gate to ). See our discussion of the Dirac equation in chapter 3. The Dirac
Lagrangian is clearly invariant under the U(1) symmetry v +— ¢y (a one
parameter group), and therefore we can apply Noether’s theorem to recover
the result that the associated Dirac current

g = Pyt

is conserved, as we saw in in chapter 3. The Fuler-Lagrange equations for
the Dirac Lagrangian yield, not surprisingly, the Dirac equation

(iv"0y —m)y =0 .
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In the exercises at the end of this chapter we analyze the plane-wave solutions
to this equation, and their superpositions to yield a general solution formula
in Minkowski space.

5.4.2 Coupling with the electromagnetic field

Let us now describe how the Dirac field can be (minimally) coupled with
the electromagnetic field. The idea is to replace the ordinary derivative 0,
in (5.12) by a covariant derivative

V. = 0u+iqA, ,

where A, is the vector potential, and ¢ is called the charge. This pre-
supposes a connection on a suitable principal U(1) bundle over spacetime,
and a suitable representation U(1) — V, where V is a vector space (real
4-dimensional or complex 2 dimensional) representing the fiber of the vector
bundle on which 1 lives. Here we shall ignore the interaction of the electro-
magnetic field with itself. The Lagrangian is thus the same as (5.12) with
V, replacing 0, and we get

Lpy = P(iy" Oy — m)d — gy A (5.13)
The Euler-Lagrange equations in this case yield the modified Dirac equation
(iv"0y —m)p = qgy* A . (5.14)

Remark 2. We want to record here an important symmetry enjoyed by the
above Dirac equation. If we have a solution 1 to (5.14) then we can take
the complex conjugate of both sides, getting

[(v")* (=10, — qAu) —m]y* = 0.

Recall that the components A, of the electromagnetic field are real. Now,
the Dirac matrices as we defined them (in the so-called chiral representation)
are such that (72)* = —~2, whereas 7°,v!,7> are real. Multiplying both
sides of this last equation by 72 and using the anti-commutation relations
satisfied by these matrices, we get

(70 — m) (") = gy (= Au) (YY" .
But this equation is again the Dirac equation, with the new electromagnetic
field —A,. In physical terms, if ¢ is a positive energy solution, say, of the

Dirac equation for a particle with charge ¢ in the electromagnetic field A4,
then ¢ = —iy2y* is a negative energy solution to the Dirac equation in
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the charge conjugate field AE = —A,. The operation 1) P, Ay — Ag
is called charge conjugation. The choice of factor —i in the definition of
¥¢ is made so that the resulting operation is an involution, i.e. equal
to its own inverse. If we take into account the interpretation of negative-
energy solutions of Dirac’s equation as representing anti-particles, we can
say, informally, that charge conjugation is an operator that replaces matter
by anti-matter and vice-versa.

To end this subsection, we would like to say a few words about the solu-
tion to (5.14). It is based on the Green’s function method widely used by
physicists. This will in fact lead us to the Feynman propagator for Dirac’s
equation. The method has two steps.

(i) First we solve
(iv"0, — m)G(z,2") = 6W(x —2'). (5.15)

Here, 6 denotes the four-dimensional Dirac delta-distribution. From
a physical standpoint, by analogy with the standard wave equation, the
Green function G(z,2') should be thought of as representing the effect
at x € R* of a wave originated by placing a unit source at 2’/ € R%.
Note that this Green function is a (4 x 4) matrix-valued function (so in
fact the Dirac delta-distribution on the right hand-side of the equation
should be thought of as multiplied by the identity matrix).

(ii) Having obtained G(z,z'), we form its convolution with the right-hand
side of (5.14) and get the following integral equation

ve) = q [ Glaan A, dla’

This integral equation can be solved, in principle, by an iterative pro-
cedure. Taking vy to be, say, any solution of the homogeneous Dirac
equation, we define inductively a sequence of spinor fields v, by

tnin(@) = 0 [ Gla.a)y A d's’

If the limit of this sequence exists, it will be a solution to (5.14).

These steps and the Green function G itself lie at the basis of perturbative
field theory, see chapter 7. The translation invariance of equation (5.15)
tells us that G(z,2’) depends only on the difference z — 2/, so we write
G(z,2') = Gp(x — 2'). In order write down G explicitly, let us denote by
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SF its Fourier transform to momentum space, so that

1 ~ /
Gr(z—1') = —— | Sp(p)e @) gtp (5.16)
(2m)* Jpa

We call Sg the Feynman propagator associated to Dirac’s equation. Note
that the scalar product in the exponential is Minkowski’s. Recall the usual
notational conventions about four-vectors in Minkowski’s space, according
to which p = (po,p), + = (t,x), etc. Recall also that the Dirac delta-

distribution has the following Fourier representation:

1 - /
Sz -2y = / —ip(a=') gy, 5.17
(z —2') ) Jos € p (5.17)

Putting (5.16) and (5.17) back into (5.15) we get

1 —ip-(z—2' 1 —ip-(z—a’
(271')4 /R4(7up‘u B TTL)SF(p) € 7 )d4p = (27T)4 /R4 € s )d4p .

From this equality we deduce that

(Y'pu—m)Sr(p) = 1.

The reader should keep in mind that this is an identity involving matrices,
not complex numbers. It is now an easy exercise to invert the matrix (y*p,, —
m), and from this we get the expression

Yo +m

Sr(p) = P

—m

Going back to (5.16), we obtain the following formula for the Green’s
function:

1 YD +m e
Gr(z—1a') = (27T)4/R4 pzimQ e gl

We will perform a partial evaluation of this integral, reducing it to an integral
over three-dimensional momentum space. Let us write the 4-tuple of gamma
matrices (y#) as (7°,7), so that

Ypu =V po—7-p.

Recall the relativistic energy-momentum relationship E? = p? + m? (we let
¢ =1, as usual). Then we have

pPP-m? =pi—p’—m® = pj— E*.
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t<t

>

G

t>t

Fig. 5.1. Contours for Dirac’s Green function

Therefore we can write

1 a1 —ineti—y PO — Y P+ M
e Y — ip-(x—a’) / ipo-(t—t') d dp .
rle=a') (%ﬂ4A;6 [ o (o—E)po+B) ] 7

The integral appearing inside brackets can be evaluated by means of the

residue theorem. The appropriate contour depends on the sign of t — t/. If
t > t', then we choose the lower contour in figure 5.1, enclosing the pole at
po = E. This yields

[e'e) 0
X / —v-p+m
e—lpo'(t—t) TPoT—YP dpg = —2miRes(py = F
lm (po — E)(po + E) ( )

t—t') Ypo—v-ptm

— _onie—iB(
mie 5E ,
and therefore
Gz —1') = _—Z/ P (@=a) =B (0 — 5 . p 4 m)dg—p .
(27T)3 R3 2F
Similarly, if ¢ < ¢’ then we choose the upper contour in figure 5.1, enclosing
the pole at pg = —FE. Applying the residue theorem as before, we arrive at
Glx—2) = _—z/ P (@) B (_0p — 5. p+ m)dg—p .
(2m)? Jgs 2B
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Remark 3. We have performed these calculations using the contours of

figure 5.1, which cleverly avoid the poles of the propagator on the real line.

Alternatively, we could have kept the (limiting) contour in the real line,

shifting the poles of Sr instead. In other words, we could have used as

propagator

Yo +m

S = —t—F.
#(p) p? —m? +ic

This viewpoint turns out to be very useful when one performs quantization

via path integrals and Feynman diagrams, see chapter 7.

5.4.3 The full QED Lagrangian

Now is the time to take into account the interaction of the electromagnetic
field with itself. This introduces an extra, self-interacting term in the La-
grangian, which is obtained from the electromagnetic field strength tensor.
Mathematically, the field strength tensor is the curvature of the connection
determined by (A,), and is given by

F. = 0,A,—-0,A,,

as we have seen in 3. Therefore, the full Lagrangian of the Dirac field coupled
with this field is

1 — .
.iﬂQED = _ZF;WFMV —|—1/J(Z’)/NVM —m)i/) . (5.18)

This Lagrangian is called the QED Lagrangian (the acronym QED stands
for quantum electrodynamics). It describes the theory before quantization,
of course. Fully expanded out, Zgprp can be written as

1 — _
LoD = _ZFWFW + Y(iy" 0y — m)p — qy Ay . (5.19)

We see very clearly from this expression that ZHgp is obtained as the sum
of the Maxwell with the Dirac Lagrangian, plus an interaction Lagrangian.

Remark 4. We want to point out that the actual Lagrangian of quantum
electrodynamics (before quantization) corresponds to the case when g = —e
(the electron charge). The above Lagrangian corresponds to the slightly
more general case of a fermion with charge ¢.

Remark 5. One can go a bit further and add also an external charge-current
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distribution J* to (5.19) (as in the case of the inhomogeneous Maxwell
Lagrangian), and the result is

1 — . _
Lypp = —ZFWF“” + (i 0, — m)p — JHA, — gyt A . (5.20)

If one takes J* to be the charge-current distribution of an atomic nucleus,
this Lagrangian turns out to be precisely the one that explains most of the
chemistry of the periodic table.

5.5 Scalar fields

Scalar fields are useful mathematical representations of certain types of
bosons, as well as of certain types of mesons.

5.5.1 The Klein-Gordon field

Let us consider first the (hypothetical) case of a scalar field ¢ : M — R
defined over Minkowski’s spacetime M = R'3. The relevant connection
here is the flat connection V,, = 9,,. The Lagrangian is

(6,000) = 5(0,0)(0"6) — m*6*

where m is a constant (mass). Here and throughout, 0" is simply 0, raised
by the metric: 0* = g"”0,, where g"” is the Minkowski metric tensor. An
immediate computation yields

0L _
96

0L
0(9u9)

Thus, the Euler-Lagrange equations applied to this situation give rise to the

—m2¢p =0'¢ .

dynamical field equation
—m?¢ — 9,(0"¢) = 0.
This can be written as
(00" +m?)¢ = 0,
or yet
O+m?*¢ = 0,

where 0 = 9,04 = 9} — 07 — 02 — 03 is the D’Alembertian operator. Thus,
the extremal fields for the above Lagrangian satisfy a linear, second order
hyperbolic PDE, known as the Klein-Gordon equation.
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5.5.2 Complex scalar fields

One can generalize the Klein-Gordon action to cover the case of a complex
scalar field ® : M — C obtained by assembling two real scalar fields ¢
and ¢ with the same mass m, namely ® = (¢1 + id2)/v/2. We write
®* = (¢1 — i2)/V/2 for the corresponding complex conjugate field. The
relevant Lagrangian is given by

Z(9,0,0) = 9,99, — m*d*P .

Note that this is merely the sum of the Lagrangian contributions of both real
scalar fields ¢1, ¢2. Just as in the real case, the Euler-Lagrange equations
applied to this situation yield the Klein-Gordon equation. In fact, varying
®* yields the KG-equation for ®, namely

—0,0"® — m?® = 0,
whereas if one varies ® instead one gets the KG-equation for ®*.

Remark 6. We could proceed as in the previous section on the Dirac field,
and calculate the Klein-Gordon propagator, but we shall not do it here. See
however our discussion of collision processes in chapter 6.

The above Klein-Gordon Lagrangian describes an uncharged scalar field.
One can also consider charged scalar fields. The Lagrangian for this sit-
uation is obtained from the Klein-Gordon Lagrangian through the formal
substitution 9, + 10, — ¢A,. The resulting Lagrangian,

&L = —[(i0, + qA,)®*] (10, — qA,) D] — m*®*P |

is Lorentz invariant, and the corresponding Euler-Lagrange equation is the
genrealized Klein-Gordon equation, namely

(10, — qAu)(10, — qA,) —m?] @ = 0 .

Remark 7. The generalized Klein-Gordon equation is used to model the
behavior of charged 7 or 7~ mesons, which are note elementary, but rather
composite spin-zero particles. See chapter 9.

5.6 Yang-Mills Fields

The theory of Yang-Mills fields is a strong generalization of electromag-
netism. In this theory, the internal group of symmetries is a non-abelian
Lie group, typically SU(2). The proper description of the Lagrangian and
associated action for Yang-Mills fields requires the mathematical language



128 Classical Field Theory

of principal bundles introduced in chapter 4 where we also described the
action of pure Yang-Mills fields and also more general actions where the
Yang-Mills field is coupled to some matter field (a section of a spinor bundle
(in the case of fermions) or a vector bundle (in the case of bosons)).

In pure Yang-Mills, we have a connection A on a principal bundle with
structure group SU (2), say, over spacetime M. Letting %4 = dA+ANA de-
note the curvature of this connection, the pure Yang-Mills action functional
is defined to be

Sym = / Tr(ﬁA/\*ﬁA).
M

where Tr denotes the trace in the Lie algebra, and x is the Hodge-* operator
on (Lie algebra-valued) forms. The Euler-Lagrange equations for this action
functional become

D%4=0 and D%x.%4=0.

They are called Yang-Mills equations. For non-abelian structure groups such
as SU(2), these equations are non-linear PDEs.

5.7 Gravitational Fields

According to Einstein, a gravitational field is a metric deformation of space-
time given by a certain Minkowski metric. This special metric is obtained
via a variational principle, as a critical point of an action functional (the
Einstein-Hilbert action) on the space of all possible Minkowski metrics on
spacetime.

In order to write down the Einstein-Hilbert action in precise mathemat-
ical terms, let us recall some basic differential geometric concepts. Let us
consider a four-dimensional manifold M as the underlying spacetime mani-
fold, and let & be the space of all Minkowski metrics g on M. Given g € %,
we have at each point © € M a Lorentzian inner product (-, -),, so that the
metric tensor

o 0
gij(z) = <%7%>x

satisfies det g;;(x) < 0. Its associated volume element is
d*r = \/—detgij(z)dz" A da® Ada® A dat

As we shall see, the action functional is defined using the curvature of such
a metric.
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5.7.1 Covariant derivative

Let us consider spacetime M with a metric g as above. Let 2 (M) be the
space of vector fields on M, and pick X € 2°(M). Recall that the covariant
derivative with respect to X is a map

Vx: Z(M)— 2 (M)
having the following properties.
1. It satisfies the Leibnitz rule
Vx(fY) = DfF(X)Y + fVxY,

for all C*° functions f and all vector fields Y € 2" (M).
2. It is compatible with the metric, in the sense that

D((Y,Z)) = (VxY,Z)+(Y,VxZ) ,
forall Y, Z € Z(M).

3. It is symmetric, in the sense that
VxY -VyX = [X,Y].

In local coordinates, we can write

0 g 0
Voo = i Bk
ozt oxJ 1 ox
where
4

1 Ogui  Ogui  Ogii
ho= ) g (22 2 =Y
" 2 ;g ( ozt * ozl Ox¥

are the so-called Schwarz-Christoffel symbols.

5.7.2 Curvature tensor

The curvature tensor R of our spacetime manifold (M, g) is defined by
R(X,Y)Z = VxVyZ -VyVxZ -V xy|Z .

In local coordinates, we have
4
o 0., 0 0
dxt’ Qxd” Ox* = " Oz
where the components Riyjk can be computed either as functions of the
Schwarz-Christoffel symbols or directly in terms of the components of the
metric tensor.
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5.7.3 Ricci and scalar curvatures

Contracting the curvature tensor R with respect to its contravariant com-
ponent yields a second-order tensor known as the Ricci curvature tensor,
namely

4
: _ § : v
R,lCij - Rz]y
v=1

The Ricci curvature tensor can be combined with the metric to produce a
scalar in the following way

4
% = Z gij RiCij .
i,7=1

This number is the scalar curvature of the metric g at the point x € M.

5.7.4 The FEinstein-Hilbert action

We now have all the necessary elements to define the Einstein-Hilbert action.
This action is a function Sy : € — R whose value at a given Minkowski
metric is obtained integrating the scalar curvature of the metric with respect
to its volume element. In other words, we have

_ 1 / () d
Spy = e /M% —det g;j(z) d"x

The number G appearing in the normalizing factor before the integral is

Newton’s gravitational constant.
A lengthy calculation departing from the Euler-Lagrange equations for
this functional arrives at the famous Einstein field equations

GY = Ric"j—%giﬂ‘gz.

We can make the gravitational field to interact with a Yang-Mills via the
Hodge operator that now is defined using the Minkovski metric g which
became a dynamical variable. As before we can also incorporate some matter
fields like a fermion v, which is a section of an associated spinor bundle, and
a boson ¢ which is a scalar field. Thus we get the action

S(g, A, é,) = Spr(g) + /M Tr (F4 A +Fa)

b [ (V1Daw e (VOP 4 vt 3mi 3614 0100 ) av
M
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where dV is the Minkowski volume form, V denotes the Minkowski gradient,
FA=dA+ AN A is the curvature of the connection A, and D4 is the Dirac
operator associated to A.

Remark 8. Thus, we see that at the classical level gravity can be incorporated
into a fairly complete field theory without much trouble. As soon as one
tries to quantize this theory, however, the ensuing difficulties appear to be
unsurmountable.

5.1

5.2

9.3

Exercises

The purpose of this exercise is to show that Schrédinger’s equation
(chapter 2) can also be derived from a variational principle. Consider
the wave-function ¥ = (¢, x) of a particle moving about in 3-space,
subject to a potential V', and write down the Lagrangian density

o 1 < 00 oyt

2 ot ot

1 * *
8) = g (VU700 V.

Here the star * denotes complex conjugation, as usual, and V is the
standard gradient with respect to the spatial coordinates (we are
working with units in which Planck’s constant is equal to 1).

(a) If 6¢* is a first variation of ¥*, compute the corresponding first
variation 6.%.

(b) From this computation and the least-action principle, show that
the resulting Euler-Lagrange equation is precisely Schrodinger’s
equation

oy 1

Remark. Note that the above Lagrangian density is not Lorentz
invariant.

Show that the Lagrangian for a charged scalar field is Lorentz in-
variant, as claimed in section 5.5.

Let 7 denote a solution to Dirac’s equation (iy*9d, — m)i = 0 rep-
resenting a fermion in free space. Show that, if we use the decom-
position 1 = (1, ¥r)? into Weyl spinors, where

() - 30-rws (2) - e
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5.4

9.5

5.6
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then v, 1R satisfy the coupled equations

iﬁ“ﬁum —mygr =0 (E5.1)
iU“aMdJR - me =0 )

where the o are the Pauli matrices (¢ being the 2 x 2 identity

0=0Y 5/ =—0¢J for j =1,2,3.

matrix), and where &
In the situation of the previous exercise, let O’ be an inertial frame
with respect to which the fermion is at rest, so that in this frame its
3-momentum p’ = 0 and its energy E’ satisfies (E')?2 = m?2. Verify
that in this frame the coupled equations (E5.1) become the coupled
equations i0yY) = miy, i0yYy = my), and show that the solutions
to these with positive energy E' = m are

r —imt’ r —imt’
wL = we ) de = we )

where w is an arbitrary Weyl (i.e. two-component) spinor.
Consider now an inertial frame O with respect to which O’ and the
particle of the previous exercise are moving with velocity v = (0,0, v)
along the z3-axis of O. Let

coshf 0 O —sinh@
0 10 0
A 0 0 1 0
—sinh® 0 0 cosh@

be the Lorentz boost taking O to O'.
(a) Show that mcoshf = my = E, where v = (1 —v?/c?)~1/2, and
that msinh § = mvy = p (the relativistic momentum).
(b) Using these facts and the result of the previous exercise, show that

o—0/2

YL = 6i(E't+P963)( 0 ) . Yp = ei(—Bt+pz?) (6(;/2> . (E5.2)

is the solution of the coupled equations in the frame O that corre-
sponds to the choice of initial condition w = (1,0)7 in the frame
0.

(c) Write down the analogous expressions in O for the solution that
corresponds to the initial condition w = (0,1)7 in the frame O'.

The intrinsic spin S of a massive particle is defined to be its angular
momentum operator (acting on spinor fields) in a frame with respect
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to which it is at rest. In such rest frame, S is represented by the

4 x 4 matrix
1 /0 0O
Y = -
2<O a’)’
1 .2

where o = (0!,0%,03). The helicity operator h is defined as
h=3p,

where p = p/|p| is the unit vector pointing in the direction of the
particle’s motion. Thus, classically, the helicity measures the projec-
tion of the particle’s intrinsic spin in the direction of motion. Note
that when p = (0,0, p), we have h = X3 = 1diag(c3,03).

(a) Show that the positive-energy solution in (E5.2), written in nor-
malized form as a Dirac spinor as

o—0/2
b By | O

/(/)-‘r - \/56 60/2 )
0

is an eigenvector of the helicity operator h = 33 with eigenvalue
1/2. The normalizing constant 1/v/2 is chosen so that ¥ v, =
Wiy = Plur + Pl = 1.

(b) Similarly, show that the positive-energy solution obtained in the
last item of the previous exercise, which can be written in normal-
ized form as a Dirac spinor as

0
e0/2
ei(fEt+p:Jc3) 0
e—0/2
0

Yo =

5l

is an eigenvector of the helicity operator with eigenvalue —1/2.

Generalize the previous exercise to plane wave solutions to Dirac’s
equation with positive energy E and arbitrary 3-momentum p, as
follows. Consider the Pauli operator o -p = p;o?, and let |+) denote
the eigenvectors of this operator, with eigenvalues 41, respectively.

(a) Show that the spinor field ¢, = !(=F+P®)y (p), where

wrto) = = (o))
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is an eigenvector of the helicity operator h With eigenvalue 1/2.
(b) Similarly, show that the spinor field v ~Bttpa)y_(p), where

u_(p) = % <:_99//22’|__>>> ,

is an eigenvector of the helicity operator h with eigenvalue —1/2.

5.8 Perform analogous computations to the ones above for negative en-
ergy plane-wave solutions of Dirac’s equation (i.e., those with E' < 0)
and deduce that the negative-energy eigenvectors of the helicity op-
erator h with eigenvalues 1/2 and —1/2 are respectively

v = EPD (p) o = ETPD_(p)

where
L () L (=)
vi(p) = ﬁ _679/2,_> , v-(p) = ﬁ 679/2‘+> :
5.9 Combining the exercises above with the superposition principle for

plane waves, show that the general free-space solution to Dirac’s
equation has the following Fourier integral representation:

U(x) = K /3 " (ansus *ip"’“"%—bi,’svs(p)eip"”) p .
R P g—

Here we are writing « = (ct,a:) for the 4-position vector and p =

(wp/c, p) for the 4-momentum (so E = wp, is the energy), and d3p =
dp'dp®dp? for the volume element in 3-momentum space.

5.10  Show that, in the Weyl spinor (or chiral) representation, the left and
right components of the charge-conjugate field 1€ to a Dirac field 9
are given by

Vi = —ioc®vp and YR = ic*y] .
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Quantization of Classical Fields

In this chapter we describe the basic ideas of the quantum theory of fields.
The greater portion of this chapter is devoted to understanding the quan-
tization of free fields. The theory of free quantum fields can be treated in
a mathematically precise, axiomatic way, as shown by A. Wightman. The
(constructive) theory of interacting quantum fields is at present not so well-
developed. But we do discuss scattering processes in some detail at the end
of the chapter. From a physicist’s standpoint, such processes are extremely
important, since they provide a link between quantum field theory and the
reality of laboratory experiments.

6.1 Quantization of free fields: general scheme

As we saw in chapter 2, in order to perform the quantization of a harmonic
oscillator we need to factor the Hamiltonian as a product of two mutually
adjoint operators: the particle annihilator operator, which lowers the energy
level of the Hamiltonian, and the particle creator operator, which raises the
energy level. These two operators completely describe the spectrum of the
Hamiltonian.

The basic physical idea behind the quantization of the classical free fields
(Klein-Gordon, Dirac, Maxwell) is the following. Since the Lagrangians of
these fields are quadratic, the corresponding Euler-Lagrange equations are
linear PDE’s. Therefore we can use the Fourier transform to diagonalize the
quadratic form in the Lagrangian, thereby decoupling the Euler-Lagrange
equations.

In the case of the Klein-Gordon equation, corresponding to scalar bosons,
each Fourier mode is a harmonic oscillator which is quantized as described
above. Hence we obtain a family of pairs of operators, one that creates
a particle with a given momentum and the other that destroys a particle

135
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with that same momentum. The scalar field (corresponding to the classical
solution to the Klein-Gordon equation) is then written as a Fourier integral
having these operators as coefficients. These operators satisfy the commu-
tativity relations of the harmonic oscillator. The next step is to construct
the Hilbert space on which these operators act. We start with the so-called
vacuum state, the state that is annihilated by all the operators that destroy
particles. From the vacuum we construct states with a finite number of par-
ticles, using the operators that create particles. Taking all possible linear
combinations of these states we get a vector space with an inner product
whose completion yields the desired Hilbert space.

In the case of the Dirac equation, corresponding to fermions, one proceeds
along similar lines. There are some important conceptual distinctions, how-
ever. The classical analogue of the harmonic oscillator for the Dirac equa-
tion is not immediately available. The algebra of spinors imposes different
commutation relations from the ones in the case of bosons. In remarkable
contrast with the case of the harmonic oscillator, these Dirac commuta-
tion relations (constituting what is known as a Grassmann algebra) can be
realized in a finite-dimensional Hilbert space!

In the case of Maxwell’s equations, first we have to eliminate the gauge
symmetry that is present (this is called gauge fixing). We then proceed in
the same manner as above.

6.2 Axiomatic field theory

In this section we present the axioms formulated by A. Wightman for quan-
tum field theory of scalar bosonic fields (bosons).

6.2.1 The Wightman arioms

Let us consider spacetime M = R'3 with the Lorentz scalar product. The
group of linear transformations that leave the corresponding metric invariant
is, as we know, the Lorentz group. The Poincaré group &2 is the semi-direct
product of the group of translations (R*) by the Lorentz group. An element
of of & is denoted (a,A), where a € R* and A is an element of the Lorentz
group. The group operation reads

(a,A) - (a’,A') = (a+ Ab,AN") .
Definition 6.1 A scalar Hermitian quantum field theory consists of a sep-

arable Hilbert space 7€ whose elements are called states, a unitary repre-
sentation U of the Poincaré group & in €, an operator-valued distribution



6.2 Axiomatic field theory 137

¢ on 7 (R*) (with values in the unbounded operators of ) and a dense
subspace 9 C I such that the following properties hold.

WAIL.

WA2.

WAS.

WAS.

WAS.

WAG.

WA7T.

WAS.

(Relativistic invariance of states) The representation U : & — U (H)
1s strongly continuous. Let Py, ..., Py be the infinitesimal generators
of the one-parameter groups t — U (te, I), for p=0,...,3.
(Spectral condition) The operators Py and P} — P} — P? — P are
positive operators (the spectral measure in R* corresponding to the
restricted representation R* > a + Ul(a, I) has support in the positive
light cone).

(Existence and uniqueness of the vacuum) There exists a unique state
Yo € Y C F such that

Ula, D)o =1 for all a € R*.

This property actually implies, in combination with the first axiom,
that U(a, A)pg = 1o for all a € R* and all A € £. It also implies
that the projection Py 0,00} s non-trivial and its image is unidi-
mensional.

(Invariant domains for fields) The map ¢ : .#(R*) — O(2) satisfies:
(a) For each f € ./ (R*) the domains D(¢(f)) of p(f) and D(o(f)*)
of p(f)* both contain 2 and the restriction of these two operators to
D agree; (b) o(f)2 C Z; (c) For every fized state 1 € & the map
f = o(f)Y is linear

(Regularity of the field) For every 11,19 € 2, the map ./ (R*) >
[ (b1, o(f)be) is a tempered distribution.

(Poincaré invariance) For all (a,A) € & we have U(a,A)? C 2 and
for all test functions f € /(R*) and all states 1) € P we have

U(a,A)(p(f)U(a,A)il’(/) = @((%A)f)d} .

(Microscopic causality or local commutativity ) If the supports of two
test functions f, g € /(R*) are spacelike separated (i.e., if f(x)g(y) =
0 whenever x —y does not lie in the positive light cone), then the com-
mutator of the corresponding operators vanishes,

[p(f)elg) —e(g)p(f)] = 0.

(Ciclycity of the vacuum) The set Dy C A of finite linear combina-
tions of all vectors of the form o(f1)---o(fn)to is dense in F .

These are the Wightman axioms for a scalar field theory. These axioms

require some modifications for spinorial field theories.
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6.2.2 Wightman correlation functions

Here we introduce the so-called Wightman correlation functions. We also
state Wightman’s reconstruction theorem, which says that, given the corre-
lation functions, we can reconstruct the Hilbert space, the quantum fields
and the entire QFT satisfying the Wightman axioms from these correlations
alone.

For simplicity, let us consider only the case of a quantum scalar field
theory.

Definition 6.2 The n-th Wightman correlation function of a quantum field
theory satisfying the Wightman azioms is a function %, : . (R*) x . (R*) x
- L (RY) — C given by

Wo(f1s f2, s fu) = (Do, 0(f1)d(f2) - - - o(fn)0)

for all f; € Z(R*), where 1)y is the vacuum vector of the theory and ¢ is its
field operator.

We can associate to each Wightman function %, a tempered distribution
in a way that we proceed to describe. The association will depend on a
version for tempered distributions of the so-called nuclear theorem, or kernel
theorem, of L. Schwartz. Recall that if f : R™ — C and g : R* — C, then
their tensor product f ® g : R™™ — C is defined by

f®g($17"'7xm+n) = f('rlv"'axm)g(xm+1v"'7xm+n) .

The kernel theorem for tempered distributions can be stated as follows. The
proof of this theorem is not elementary (L. Schwartz originally deduced it
from A. Grothendieck’s theory of nuclear spaces).

Theorem 6.1 Let B : .7 (R™) x S (R") — C be a separately continuous
bilinear function. Then there exists a tempered distribution 3 € ./ (R™™)
such that B(f,g) = B(f ® g) for all f € L (R™) and all g € ./ (R™).

Proof See [FJ], pp. 70-73 for an elementary proof of a version of this
theorem in which .7, . are replaced by 2, 2’ (ordinary distributions). For
the original proof, see [S]. For a short proof, see [Ehr]. O

Using the kernel theorem, we define the Wightman distributions as fol-
lows. The n-th Wightman correlation function #,,(f1,..., fn) is a multi-
linear function of the test functions fi,..., f,. Hence by Theorem 6.1 and
induction, there exists a tempered distribution W,, € .#/(R%") such that

Wn(.fl?"'?fn) = Wn(.f1®®fn)7
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for all fi,..., fn € Z(R%).

Before we can state our next theorem, concerning the basic properties of
the Wightman distributions, we need the following notions and notations.

(a) An involution on test functions: If f € Z(R*), we write
(@1, 2n) = f(@p,...,21), for all z; € R In particular, for
n = 0,1 the % involution is simply complex conjugation. Note also
that if f € .Z(R*") is of the form f = f1 ® --- ® f,, with f; € S(RY),
then f* = f1 @+ & ff.

(b) An action of the Poincaré group on test functions: If (a,A) € & and
f €. Z(R*), welet (a,A) - f be given by

(a,A) - flz1,...,2p) = f(A Yz —a),...,A" Yz, —a)) .

(¢) For each test function f € #(R*), let f € .Z(R* ) be the test
function given by

f(:L‘l,l‘Q,...,l‘nfl) = f(0,$1+l‘2,...,$1—|—l‘2—}—"-—|—l‘n,1)

(d) A translation operator: If a € R* is a spacelike vector and 0 < j < n,
let Ty, : -/ (R*™) — 7 (R*") be given by

Tojf(x1,...,2n) = f(x1,...,25, Tjp1 —ay...,Tp —a) .

Theorem 6.2 The Wightman distributions of a (scalar hermitian) quantum

field theory enjoy the following properties.

WD1. Positive-definiteness: Given fo € C and f; € S (RY) for j =
1,...,n, we have

n
> Wisklfi©g) = 0.
i,j=0
WD2. Reality: We have W, (f*) = W, (f) for each test function f € .7 (R*").
WD3. Lorentz-Poincaré covariance: For all (a,A) € & and each test func-
tion f € (R™), we have Wy,((a,A) - f) = Wp(f).
WD/. Spectrum condition: For each n > 0, there exists a tempered distribu-
tion Dy, € " (R*™4) such that W,,(f) = Dp(f) for all test functions
f € LR, with the property that the support of its Fourier trans-
form % D,, is contained in Vf_l, where V. C R* is the positive light
cone in Minkowski (momentum) space.

WD5. Locality: If f; and fj11 are spacelike separated test functions in
S (R*), then

Wo(fi® - ®@fifit1® - Qfn) =Wr(fi® - Qfi1®f;® - ®fn) .
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WD6. Cluster property: If a € R* is a spacelike vector then for all0 < j < n

we have
lim W, o T)\a,j = Wj & Wn_j .

A—00

The reconstruction theorem of Wightman is a converse to the above the-
orem.

Theorem 6.3 (Reconstruction Theorem) Let (W,,),>0 be a sequence
of tempered distributions satisfying (WD1-WD6) above. Then there exists
a (hermitian scalar) quantum field theory (¢, 7,U, D ,10) satisfying the
Wightman axioms, whose Wightman distributions are precisely the W, '’s.
In other words, for all test functions fi,..., f, € .7 (R*) we have

Wi(fr @@ fn) = (tho,d(f1) - d(fn)tbo) -

Such quantum field theory is unique up to unitary equivalence.

Proof For a proof, see [Gu], p. 189, or the original reference [SW]. O

6.3 Quantization of bosonic free fields

Let us now give the first important example of a free QFT’s. We shall
construct the field theory for free bosons quite explicitly.

6.3.1 Fock spaces

Let us start with a mathematical definition. Let % be a complex Hilbert
space.

Definition 6.3 The Fock space of F is the direct sum of Hilbert spaces
o0
F(H) =P ™,
n=0

where ) = C and

%"):%@...@%:é%.

j=1
The vector Qo = (1,0,0,...) € F () is called the vacuum vector.
Given v € .Z (), we write 1" for the orthogonal projection of 9 onto

™). The set Fy C .F () consisting of those 9 such that (™ = 0 for all
sufficiently large n is a dense subspace of Fock space.



6.3 Quantization of bosonic free fields 141

Now we define, for each n, the symmetrization operator S, : ™ —
2™ by

Sn(h1 ® - @) = ,Z% ) ® @Yy 5

extending it by linearity to all of (). Likewise, the anti-symmetrization
operator A, : " — 7™ is defined by

Ap(Pr1 @ - @ ) = ,Z 1)y ) @ @ Yy

extended by linearity as before. It is a very simple fact that both S, and
A, are projections, in the sense that S2 = S,, and A2 = A,,.

Using the symmetrization operators, we define the space of states for n
bosons as

A ={p e sp=y} .

Using the anti-symmetrization operators, we define the space of states for n
fermions to be

A ={pe ™ A=y}

With these at hand, we define the bosonic Fock space as

_ é %(n)
n=0

and the fermionic Fock space as
o)~
n=0

Example 1. Let us consider a measure space M with finite measure u. We
take as our Hilbert space 7 = L*(M, du). Then

%(”):LQ(MX---XM,d,u®---®d,u)
={yp:Mx---xM-—C:

[ e )P duten) < 0
Mx---xM

We have also

‘%(n = {1/} € ‘%(n) w(xa(l)f o 71.0'(71)) = 1/’(371: e 7xn)} .
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In addition, 1 is an element of Fock space .7 () if and only if

=0 W ™ )
with (" e ") for all n, and

> [ e < o
n=0

6.3.2 Operators in Fock spaces
Every unitary operator U : s — ¢ in the Hilbert space 7 induces a
unitary operator I'(U) : .F () — # () in the Fock space of 77, given by

Now, let D C 7 be a dense subspace and let A : D — 7 be an essentially
self-adjoint operator. Note that

Dy = ¢€F0:¢(”)€®D

j=1
is dense in % (). We define an operator dI'(A) : Dy — Z# () by
dU(A) | oy = AT @ @I+ IQA® @+ +I0]®-A.

This operator is essentially self-adjoint in D4, and it is called the second
quantization of A. An important special case is the operator N = dI'(I). For
this operator, every vector ¥ € #(") is an eigenvector of N with eigenvalue
n, in other words Ny = nt. For this reason N is called the number operator
(number of particles).

6.3.3 Segal quantization operator

We shall construct the QFT for a free scalar field following the so-called Segal
quantization scheme. This scheme uses creation and annihilation operators,

just as in the case of the quantum harmonic oscillator (see chapter 2).
First we define, for each f € J#, a map b~ (f) : " — # ") by

V()1 @¢2@---@¢Yn) = (f1) P2 ® - @y .

This operator extends to a bounded linear operator on Fock space, b~ (f) :
F(H) — F(H), with norm equal to [|f||. It is adjoint is the operator
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b (f) . F(H) — F(H) is quite simple to describe: bT(f) maps 52"~
to #(™ and is such that

V()1 @@ @) = fROY1 @@+ @y, ,

again extended to Fock space linearly. The operators b~ (f),b"(f) have
the symmetric and anti-symmetric Fock spaces as invariant subspaces. We
remark also that the maps f — b~ (f) and f — bT(f) are complex linear
and complex anti-linear, respectively.

We are now ready to define the creation and annihilation operators.

Definition 6.4 The particle annihilation operator is an operator on sym-
metric Fock space,

a” (f) : Fo C Fs(H) — Fs(H)
given by
a(f) = VN +157(f)

The particle creation operator is defined taking a™(f) = (a™(f))*.

Note that IV is a positive operator, so v/IN + 1 is well-defined. It is not
difficult to check that if ¥, n € Fy then

<\/N T 1b‘(f)¢,n> - <1/), SbH(f)VN 1 1n> .

Therefore we have
0 (f)] = SUHHVN F1.
Example 2. Let us go back to example 6.3.1, where the Hilbert space is

A = L*(M,dp). Recall that ™) = L>(M x ---x M, dy® --- @ dp). The
annihilation operator here is given by

(@ (F)) ™ (@1, - )=V T 1 /me”“) (21, 2a)dp(z)

The creation operator can be written in the following way

(a+(f)¢)(n)(x17 7:En) = %Zf(xj)d}(nl)(l‘l? 7@7"' 7xn) .
7j=1

Definition 6.5 The Segal quantization map
H S [ = O(f): Fo — Fs(H)
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s given by

B.(f) = % (a(f) +a* (1)) -

Theorem 6.4 Let 57 be a complex Hilbert space, and let g be its Segal
quantization map. Then

(i) For each f € F, the operator ®4(f) is essentially self-adjoint on Fy.
(i) The vacuum vector Qg is cyclic, i.e., it is in the domain of every

product of the form ®4(f1)Ps(f2) - ®s(fn), and the set

{q)s(fl)q)S(fQ)"'q)s(fn)QO :n >0, fj € FO}

1s total in the symmetric Fock space.
(i1i) For all ¢ € Fy and all f,g € S, we have the commutation relation

D5 (f)Ps(9)Y — Ps(9)Ps(f)Y = ilm (f,9) ¢ .
Moreover, the unitary operators W (f) = '®\) satisfy
W(f +g) = e UDRW (I (g) .
(iv) If fp — f in A, then
W(fn)o — W(f)Y for all ¢ € F(H)
s (fr)th — @s(f) for all ) € Fy .

(v) For every unitary operator U : & — H, the corresponding unitary
operator T'(U) in Fock space maps the closure of D(®s(f)) into the
closure of D(®4(Uf)), and for all € D(P5(Uf)), we have

F(U)q)s(f)rildj = (I)s(Uf)'(/} .

6.3.4 Free scalar bosonic QFT

Using this theorem, one can establish the quantization of the free scalar
bosonic field of mass m. The end result is a free QFT theory in the sense
of Wightman. The starting point of the construction is to consider the
Hilbert space J# = L?(M,,, di,), where M, C R'3 is the hyperboloid of
example 4.7.2 and p, is the hyperbolic volume form on M,, (recall that M,,
is isometric to hyperbolic 3-space). Next we let F : . (R*) — J# be the
map given by

Ef =V2r fly,
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where f denotes the Fourier transform in Minkowski space, namely

. 1 -
=—— px dz .
F0) = Gz [, €7 f@)da
Here & = (2°, —2', —22, —23) whenever z = (20, 2!, 22, 2%). Using the Se-
gal quantization map @, for S, we take the bosonic fields to be given by
dm(f) = ®s(Ef), for all test functions f € .%(R*). Finally, we consider the
unitary representation U = U, of the Poincaré group in JZ given by

(U (a; A)ip)(p) = e ®p(A""p) .

The corresponding operators I'(Up,,(a; A)) yield a unitary representation of
the Poincaré group in Fock space. We have, at last, the following theorem.

Theorem 6.5 The symmetric Fock space Fs(L*(My,, dity)), with its vac-
uum vector Qg and its dense subspace Fy, the unitary representation T'(Upy, (-, -))
and the operator-valued distributions ¢, () satisfy the Wightman axioms for
a bosonic scalar QFT. Moreover, for every f in Schwartz space .#(R*) we
have

Om ((D+m2) f) =0.
Proof The proof uses Theorem 6.4. See [RS2], p. 213. O

Note that the last part of the statement of Theorem 6.5 expresses the
fact that the field operator ¢,, satisfies the Klein-Gordon equation in the
distributional sense.

6.3.5 The physicist’s viewpoint

Let us now discuss the quantization of free scalar fields from a different
point of view, which is more familiar to physicists. In the above mathemat-
ically precise construction of scalar fields, we started with the appropriate
definition of Fock space and ended with a field satisfying the Klein-Gordon
equation in the distributional sense. The method explained here in some
sense reverses this process. We start with a classical solution to the free
Klein-Gordon equation and in the end, after having the quantum field at
hand, we reconstruct the Fock space. We do not mean to imply that the
physicist’s approach is less valid in any way: in fact, it is equivalent to what
has already been done through Segal quantization.

Recall that the Klein-Gordon action for a classical free scalar field of mass
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m is given by
1

S =3 / (0,90"p — m?¢) d*x .

As we know, the Euler-Lagrange equation for this functional yields the free
Klein-Gordon equation

O¢ +m2¢ = 0 (6.1)

A plane wave of the form e™P? is a solution to this equation if and only
if p € R* satisfies the mass-shell condition (p°)? — p? = m?. These are the
Fourier modes into which a general solution of (6.1) should decompose. Us-
ing the superposition of such plane waves (in other words, using the Fourier
transform) and taking into account that we are looking for real scalar solu-
tions to (6.1), we have the following formula for the general solution of the

Klein-Gordon equation:

1 1
dp 6.2
(2m)3 Jrs \/2wp P (6.2)

pO=wp

¢(x) =

(apefip'x + a;eip'x)

where wp = \/p? + m? and d®p = dp'dp*dp>. Note that each coefficient ap
appears alongside its complex conjugate a,. Remember also that the conju-
gate field 7(x) to ¢(x) is obtained from the latter by simply differentiating
with respect to the time component z°, so that

1 (—iwp) i . ip-
o) = (2m)3 /Ra 2wp (g = ape™)

dp . (6.3)

pO=wp

The idea now is that, upon quantization, the coefficients ap, a;, become
operators that we represent respectively by a(p), af(p), on some complex,
separable Hilbert space, with af(p) being the Hermitian adjoint of a(p), and
the resulting quantized Klein-Gordon field operators ¢(x), 7(z) (which we
still denote by the same symbols) should satisfy the commutator relation

[p(x),7(2)] = i8°(z —y) . (6.4)

Proceeding formally, if we impose the commutator relation (6.4) on the field
operators obtained from (6.2) and (6.3) replacing the Fourier coefficients
by the corresponding operators, we see after a straightforward computation
that it is necessary that

[a(p),a’(q)] = (27)*6*(p—q) , [a(p),alq)] = [a'(p),a(q)] = 0.

The bosonic Fock space is formally constructed from a given vector, declared
the vacuum state and usually denoted |€2), simply by applying to this vector
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all possible finite words on the creation operators, taking into account the
above commutator relations. See [PS] for the details we are omitting here.

6.4 Quantization of fermionic fields

In this section we describe the quantization of free fermionic fields. The idea
behind the quantization of the free Dirac field is to transform the coefficients
of the Fourier expansion of the solution to Dirac’s equation (see chapter 5)
into (spinor) operators. Then plug the solution with these operator coeffi-
cients into the quantum Hamiltonian. The correct (anti-)commutation rules
for these operators is imposed by the physical condition that the Hamilto-
nian be bounded from below. The construction of the appropriate Hilbert
space uses Grassmann algebras, as we shall see in the following subsection.

6.4.1 Grassmann calculus in n variables

When we come to study the path integral approach to QFT, the appropriate
way to deal with fermionic fields will be through Grassmann algebras. When
studying fermionic fields, it is necessary to consider Dirac and Weyl spinors,
and these lead us into the realms of real and complex Grassmann algebras,
respectively.

6.4.1.1 Real Grassmann algebras

We shall discuss the subject of Grassmann algebras from an abstract point
of view. The exposition to follow is perhaps a lengthy digression, but we
deem it necessary from a mathematical standpoint. Let us first consider
the case of real finite-dimensional Grassmann algebras, i.e. real algebras
generated by n anti-commuting variables. These can be formally defined as
follows.

Let V' be a finite dimensional vector space defined over the reals, with
dimg(V) = n. Let A(V) denote the exterior algebra of V', namely, the
subspace of the full tensor algebra of V,

FV)=RaVeVeoV)e(VeVeV)e -,

consisting of all completely anti-symmetric tensors. Given a basis for V', say
61,02, ...,0", and any k-tuple I = (iy,is,...,4;) € {1,2,...,n}*, we write

1 . .
gl — H 2(71)0910(1) Q- Q@) (6.5)

where the sum is over all permutations of {1,2,...,k} and (—1)? denotes
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the sign of the permutation o. These anti-symmetric elements generate
A(V'). Now define the Grassmann product (or exterior product) as follows:
if I€{1,2,...,n}"and J € {1,2,...,n}, let

olo7 — g1

where I.J is the k+I-tuple (i1, ...,k; j1,..., ;). The convention here is that
0% = 1. This product is extended by bi-linearity and associativity to all of
A(V'). One easily verifies (exercise) that

olp’ — (—1)‘[“‘]'9‘]9[,

where |I| denotes the number of indices in I. The resulting algebra is the
(real) Grassmann algebra in dimension n, denoted G,,. For each k£ > 0 we
let

NV) = (0" I =k),

the linear span of all # with |I| = k. This is a vector subspace of G,, with
dimension over K equal to

Since we clearly have

it follows that dim G,, = 2".

It should be clear from (6.5) that #/ = 0 whenever I has a repeated index.
The notation has been set up in such a way that, if I = (i1,142,...,4x), then
67 = 01102 ... gk,

Remark 1. Since what we really need are anti-commuting variables, not just
numbers, it may be more natural to replace the vector space V by its dual
V*, regarding each 6 as a one form over V.

Let us now consider polynomial maps P : G,, — G, given by an expres-
sion of the form

P(O',...,0") =ao+ > ab’ +> aitel +---
7 .7

Y iy 07070
i17i27... ,in
Such a polynomial map has degree < m: monomials with > n 4+ 1 terms
will necessarily repeat an index, and therefore will be equal to zero. Note
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that this fact also means that the polynomial algebra P(G,,), defined as
the algebra of all polynomial maps of this form, is in fact identical with the
algebra of all formal power series in the non-commuting variables 6!, ..., 6",

In particular, we may consider the following case, of special interest in
the path integral approach to fermionic fields. Let A = (a;;) be a complex

n X n matrix, and let

92
e =

Then we define

g
—
|
—_
~—

=

This is the exponential of a quadratic form. Note that, since
@tA@ == Z aijﬁiﬁj
2%
we have (©'A0)F = 0 for all & > n/2. Therefore

n2) ()

1 t
exp (—50'40) = > o
k=0

N

(0'A0)F

which is, of course, a polynomial in the Grassmann variables.

Now, the the polynomial algebra P(G,,) is, of course, a differential algebra.
In fact, it is a differential graded algebra), graded over Z/2. This motivates
us to define integration with respect to the Grassmann variables to be the
same as differentiation with respect to such variables! More precisely, the
integral can be taken to be a collection of linear functionals

gl = PG, =R, Te{1,2,...,n}",
defined as follows: if f € P(G,,) and I = (iy,12,...,ix), then

o 8 P
I P o o o
T = aenaem  agn

The notation we shall use is

I = /fd9i1d9i2---d9ik.

f(e,e2, ....6m .

This Grassmannian or fermionic integral has the following easy properties.
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(i) / do* = 0 for all i.

(ii) / 0'd? = 6;; for all 4, .

(iii) / do'de’ = 0 for all 4, 5.

(iv) / f(099(67)do'de? = / £(6%) de / g(67) d@’ for all 7, 7.

Let us go back to the example of the exponential of a quadratic form
O — %9%19 examined above. We are interested in calculating the fermionic
integral of such a generalized Gaussian, namely
[n/2]

(=D*
2k k!

/exp (_%@tA@) dotde? ... don = /(@tA@)k’ dotde? ... dom .

k=0

(6.6)

It is easy to verify that each integral in the right-hand side of (6.7) with

k < n/2 vanishes. In particular, the Gaussian integral on the left-hand side

will vanish whenever n is odd. Let us then assume that n is even, sayn = 2m,
so that in this case

m
/exp (—letA@) d0tde?...aom = U /(@tAe)m do'de? - - - do>™ .
2 2mm)!
(6.7)
Now, if A = (a;;) happens to be a symmetric matrix, then this last integral
also vanishes (this is an exercise). Thus, we will suppose from now on that
A is a skew-symmetric matrix. Here it pays off to interpret our quadratic
form as a 2-form

2m
wpA = ZaijQZAGJ .
,5=1

The iterated exterior product of this 2-form with itself m times yields a
volume form in V, and we can write

WAANWAN - Awa = 2"mIPF(A) QL AO2 A - A O™,

where Pf(A) is called the Pfaffian of A. Expanding out the m-fold exterior
product on the left-hand side, the reader will have no trouble in verifying
that

1 ag
Pf(A) = o > (D) a01)02) to@o@ to@m—1)e@m) »

’ O'GSZm

where Ss,,, denotes the symmetric group of order 2m.
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Lemma 6.1 We have Pf(A)? = det(A).

Proof First note that the Pfaffian is invariant under orthogonal changes
of variables. In other words, if A is an orthogonal 2m X 2m matrix, then
Pf(A'AA) = Pf(A). This follows easily from the definition (work out the
effect of A on the 2-form w,4). Then recall from linear algebra that, since A
is skew-symmetric, there exists an orthogonal matrix A such that B = A'AA
has the form

0 b
b O

0 by
—by, 0

Now, the Pfaffian of B can be explicitly evaluated from

2m m

wp = Zbijei/\ej = QZkaQk_l/\QQk,
ij=1 k=1

and the result is Pf(B) = biby---by. But then det(B) = bjb3--- b7 =

Pf(B)2. Since det(A) = det(B) and Pf(A) = Pf(B), the lemma is proved.

O

Theorem 6.6 Let A be a skew-symmetric 2m x 2m real matriz. Then we
have

/exp(—%@tA@) 6 d6> - d9™ = det(A)? . (6.8)

Proof 1t follows from (6.7) that the integral on the left-hand side of (6.8) is
equal to Pf(A), so the desired result is an immediate consequence of lemma
6.1. O

Remark 2. Using the fact that every 2m x 2m matrix is the sum of a
symmetric matrix with a skew-symmetric matrix, one easily sees that the
above theorem is in fact valid for any A.

6.4.1.2 Complex Grassmann algebras and Hilbert spaces

Everything that we did above for real algebras could be repeated here, re-
placing the real numbers by the complex numbers. But since we already
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know what a real Grassmann algebra is, it is easier to define complex Grass-
mann algebras as complexifications of real Grassmann algebras. For in-
stance, in the case of one degree of freedom, we have the following.

Definition 6.6 A complex Grassmann algebra of with one degree of freedom
s an associative algebra over the complex numbers having two generators, 0
and 0%, subject to the following relations:

00" +60*0 =0, 6> =0, (0")>=0.

The existence (and uniqueness up to isomorphism) of such an algebra is
established using the real Grassmann algebra Go with generators 6; and 0.
We define @ = GE, taking as its generators

01 + 105 0 — 01 — i0o
v2 IRz

A general element of &/ can be written as

f(07,8) = foo+ f100™ + fo10 + f1.076 .

0 =

As in the real case, we can make 7 into a differential algebra introducing
the differential operators

d%f(@*ag) = for — fud”

d
0*,0) = 0*
de*f( ,0) = fio+ fu
These operators satisfy the relation
dd __dd
do do* — do* df -

Again, there is a suitable integral calculus to go along with these differential
operators. The algebraic rules for this integral calculus are the following

[rao = s [rao =

/deG* /d@/d&* = /d@*dﬁ.

In every such Grassmann algebra .o/ there is an involution x : &/ — & given
by %0 = 6%, x0* = 0, x(0*6) = 6*0, and extended by linearity to all of «7.
For each f € o7, we let f* = xf.
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Let us take the time to define a Hilbert space associated to a complex
Grassmann algebra <7 with one degree of freedom. There is a sub-algebra
of o consisting of all holomorphic functions of #*, namely

H ={f(0°) = fo+ f10° | fo,fr €C}.

Now, this sub-algebra can be made into a Hilbert space, in perfect analogy
with the way we made the holomorphic functions in one complex variable
into a Hilbert space in chapter 2. We define an inner product in 47 as
follows: if f,g € J then

(fr9) = /f(e*)*g(e*)e‘)*‘)de*de.

Here e %" = 1 — 9*0 (all subsequent terms of the power series expansion
vanish!). With this inner product, ## is a 2-dimensional Hilbert space over
the complex numbers, and {1,6*} is an orthonormal basis.

Next, we define two operators on .7 that will play the role of the creation
and annihilation operators. Let a : 5 — ¢ be given by

(f)(0") = 107

and let a* : 7 — J€ be given by
(@™ f)(0%) = 07 (07) .

In the natural identification of # with C? as vector spaces, these operators

a_01 a*_oo
~\o o/ \1 0)"

Note that every linear operator A : 5 — 5 can be written uniquely in

become

the form

A = koo + kipa”® + kora + k11a¥a

where k;; € C. In fact, we can also write

(Af)(6") = /A(H*,a)f(a*)e_o‘*o‘ da*da
where A(6*,0) is the kernel of A. This kernel is clearly given by
A(6%,0) = K (0%,0) ,

where K (0*,0) = koo + k100" + k10 + k110*0 is the so-called normal symbol
of A.
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Later (next chapter), when we perform the Lagrangian quantization of
fermionic systems (in perturbative QFT), we shall need to know how to
calculate fermionic Gaussian integrals over complex fermionic fields. For
one degree of freedom, all we need is given by the following result.

Lemma 6.2 Let A: 7 — J be a linear operator, and let b € 7. Then
/exp {0 A0 + 0"+ b"0} dO*d0 = —Aexp{—b"Ab} .

Let us now generalize this discussion to arbitrarily many (but a finite
number of ) degrees of freedom.

Definition 6.7 A complexr Grassmann algebra <, with n degrees of free-
dom 1is an associative algebra over the complex numbers with 2n gener-
ators 01,...,0,,07,...,0;

* subject to the following relations (valid for all
iwj=1,...,n)

070, = —0;07 , 0:0; = —0;0; , 0707 = —070; .

As in the case of one degree of freedom, the square of every generator is
equal to zero. And, as in that case, the existence (and uniqueness up to
isomorphsm) of such a complex algebra is resolved by letting 7, = G(an, the
complexification of the real Grassmann algebra with 2n degrees of freedom,
taking as generators

6, — PjF Wjn  ge _ P53 1Pjim

7 , 07 = 7 , j=12....n,
where ¢;, j = 1,2,...,2n, are the generators of Go,. Also, as in that case,
we can consider the differential operators
0 0
a6; " 907

Integration with respect to these Grassmann variables enjoy the same prop-
erties as before, namely

* 8 *
[ 1@ 0)a0; = S p00)
(and similarly for 67), as well as

/d@;‘dﬂj:/dﬂf/dej:/dej/dﬁf.

Let us define (™ to be the sub-algebra of holomorphic functions of
0* = (07,...,0%). As a vector space over the complex numbers, ™)
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has dimension 2", and a basis is given by the monomials 67 ---67 , where

{i1,...,ir} is an arbitrary subset of {1,2,...,n}. We make ™ into a
Hilbert space introducing the inner product

)= [ 507 gt07)e S0 T asgo
j=1
We have also two families of special creation and annihilation operators

a;,a;: ™ — M) given by

)
007

These operators satisfy the anti-commuting relations

a; f(0%) = 0; f(67) and a;f(0")

f07) .

aiaj +aka; =0, ajaj + aga; = S, ajaj + aga; =0, .

Now, if A : ™ — ™ is any linear operator, we can ask whether A
can be expressed in terms of these creation and annihilation operators. This
is indeed the case, as the following theorem shows.

Theorem 6.7 If A : " — #™ is o linear operator, then there exist
unique complex constants ki, ... ;. .4, ... j, such that

S

n
A= k’blv"'vlr;Jla"' 7Jsa’i1 alrajl aj, -

rs=1 11 < <ipij1 <-<js

Moreover, there exist unique constants A;, .. ;.. ... j, such that, if

s

A07,0) = Aiy i, 05y - 0505, - 05,
then
Af(0%) = /A(e*,e)f(e*)e—z(’?@j [1do;d0; .
j=1
Again, when we deal with the perturbative theory, we will need to know

how to evaluate Gaussian integrals in several Grassmann variables. All we
need is contained in theorem 6.8 below. First we need an auxiliary result.

Lemma 6.3 Let U be a unitary n X n complexr matriz, and let us consider
the n independent Grassmann variables 01,60s, ..., 6, of a Grassmann algebra
with n degrees of freedom. If ¥; = Zj Ui;0; for each i =1,2,...,n, then

n n

[19: = (@ett)]]6: -

=1 i=1
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Moreover,
[19:0 = (detU*)(detU) ] 0;0: = J] 050 -
i=1 i=1 i=1
Proof An exercise for the reader. O

Note however that, under a general linear change of variables T', we have

ﬁdﬁ;‘dﬁi = (detT)" ﬁd&;‘d&i :
i=1 i=1

which is the opposite of the usual Jacobian formula in ordinary n-variables
integration. As a consequence of lemma 6.3, we have the following fact.

Lemma 6.4 The integral

/f(e,e*) ﬁde;dej
j=1

1s invariant under unitary changes of coordinates.

Proof Again, the proof is left as an exercise. O
Theorem 6.8 Let B be an nxn Hermitian matriz with eigenvalues by,bsa, ..., by,.
Then the Gaussian integral with covariance matriz B in the Grassmann al-
gebra of n variables 01, ...,0, is given by
n n
/eZGJBiJ‘@f [ d6;d6; = [[b: = detB.
j=1 i=1

Proof Since B is Hermitian, there exists a unitary matrix U such that
UBU* = D is a diagonal matrix, in fact D = diag (b1, b2, ...,by,). Consider
the change of variables ¥ = U#. Then, by lemma 6.4, we have

/6293327‘9]‘ Hdg;fdgj — /@ZﬁfDijﬁi Hdﬂ;‘dﬁj .
j=1 J=1

But since D;; = d;;b;, this last integral is equal to
n n
/ e 2 TTavrdd; = [] / et qyrdd; = [[bi = detB,
j=1 i=1 i=1

as was to be proved. [l
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6.4.2 The physicist’s viewpoint

Just as we did for bosonic fields, let us briefly describe the physicist’s ad
hoc approach to the quantization of free fermionic fields. We start with
the observation that a general solution to Dirac’s equation in Minkowski
spacetime (see the exercises at the end of chapter 5) can be Fourier-expanded
in terms of basic plane-wave solutions, according to the formula

Y@ = (apatts (D) + 5 0P &

(6.9)
Here, s denotes the field helicity state, and us(p) and vs(p) are four-component
spinors whose general expressions in terms of p need not concern us. Upon

1 1
(27‘{')3 /RS A /2wp SZ‘;_

quantization, the coefficients ap s and bp s are promoted to operators as(p)
and bs(p), respectively. These operators, written in terms of their spinor
components a(p), b%(p), 1 < j < 4, must obey the anti-commutation rela-
tions

{ad(p).aT (@)} = {(¥lp), 0T (@)} = (21)*6) (p — @)1 .

all other possible anti-commutators being equal to zero. These relations
imply that the spinor components of the quantized field ¥ must satisfy the
relations

{qu(ta :I?), lIlkT(t y)} - 5(3) (:13 - y) 5jk .

The operators as(p) and bs(p) are called destruction operators (of particles
and anti-particles, respectively), and their formal adjoints al(p) and bl(p)
are called creation operators.

Now, the fermionic Fock space is constructed following the same procedure
as in §6.3.5. One starts defining a vacuum state |2) annihilated by all
destruction operators:

as(p)|) = bs(p)|2) = 0.

Then, the vectors representing multi-particle states are obtained by letting
any finite word on the creation operators act on this vacuum state. The
fermionic Fock Hilbert space will be the space generated by these vectors
(which are declared to be unit vectors after normalization by a suitable
scalar factor). Since the creation operators anti-commute, exchanging any
two of them in a given word (applied to |2)) will change the sign of the
resulting vector. This expresses the fact that a quantized Dirac field obeys
the so-called Fermi-Dirac statistics. See [PS] and [SW] for more details.
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6.4.3 Wightman axioms for vector and spinor fields

The axioms for a Fermionic field are similar to the ones for scalar bosonic
fields, with a few changes that we indicate below. Let p be an irreducible
representation of SL(2,C) on a finite dimensional space of dimension d (re-
call that all the unitary representations of SL(2,C) are infinite-dimensional,
so p is certainly not unitary). The first three axioms are the same. In Ax-
iom WA4, we have now a d-uple of fields (¢1(f),...,®q(f)). The new axiom
WAD is similar to the old one, whereas axiom WAG6 becomes the statement

that
d

Ula, N (£)U(a, ) =D p(A™ )i ({a, ALS) |

Jj=1

where A is the Lorentz transformation that corresponds to A € SL(2,C)
under the two-to-one covering homomorphism of the Lorentz group. To
state Axiom WA7 we have two cases to consider. If p has integer spin, i.e
p(—id) = id (bosons) then, for f and g are space like separated,

0i(f)9i(9) — ¢i(9)¢i(f) =0 and ¢7(f)9;(9) — ¢;(9)¢; (f) =0
If p has half-integer spin then

¢i(f)pi(9) + ¢j(9)pi(f) =0 and &;(f)d;(g) + b;(9)d; (f) =0

Finally, the vacuum is only required to be cyclic for

The standard reference for this part is [SW, pp. 146-150].

6.5 Quantization of the free electromagnetic field

The Hamiltonian quantization of the free electromagnetic field follows a
similar route as the ones used for the other free field theories described
above, with one important difference: here we have to take into account the
gauge invariance of the action.

Recall from chapter 5 that the free electromagnetic Lagrangian density is
given by

1 1
L =~ Fu B = (B - |BIP) .
Here, as before, I’ = F),,dx#dx" is the field strength, which we know is

an exact 2-form, in other words F = dA, where A = A;dz’, Ag = ¢ is
the scalar potential and A = (A;, Ag, A3) is the vector potential. Thus,
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F is a closed 2-form, which yields the first pair of Maxwell’s equations,
whereas the Euler-Lagrange equations for the action functional built from
the above Lagrangian are precisely the other pair of Maxwell’s equations,
namely V- E =0 and V A B = §,E. One can easily verify (exercise) that
the Hamiltonian in the present case is given by

1
7= [ (BR8P @
R3
Now, if we add an exact 1-form w = df2 to A, the field strength F' doesn’t
change, and neither does the Lagrangian density. In other words we have

invariance under gauge transformations of the form
A, — A, +0,0.

Here €2 is an arbitrary function on spacetime M. Hence we can choose the
gauge in such a way that two things happen: (a) A4g =0; (b) V- A = 0.
That we can, indeed, make such a choice without conflict between (a) and
(b) is left as an exercise to the reader.

After fixing the gauge in this fashion, we can proceed with the quantization
as in the case of the Klein-Gordon field. We apply the Fourier transform
method and get an expansion for the vector potential of the form

A(x)

—ik-x +a;(k)eik-w) dSkZ .

1 2
e /R3 jzlej (k) <CLJ (k)e
The €;(k) are called polarization vectors. The second gauge fixing condition
(b) above implies that each polarization vector is Fourier orthogonal to the
corresponding momentum k.

The quantization procedure now is to simply regard a;(k) and aj(k) as
operators (on a suitable Fock space). These are the operators that, respec-
tively, create and annihilate a quantum of the electromagnetic field with
momentum k and polarization €;(k). The construction of Fock space, and
of these creation and annihilation operators, is completely analogous to the
one performed for the Klein-Gordon field, so we omit the details.

6.6 Wick rotations and axioms for Euclidean QFT

We have seen earlier in this chapter that the Wightman functions

W (@, ...,2n) = (2, 6(x1) - lan)Q)

can be used to completely reconstruct a scalar bosonic field theory. These
functions, as it turns out, can be analytically continued to the so-called
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Schwinger points z; = (im?,x},x?,x?), provided the points z; € %#* are
such that x; # z; if j # k. The map (RY)" — (iR x R3)™ given by

(x1,22...,2pn) — (21, 22,...,2p) is called a Wick rotation. The functions
Sp(x1, 22, ..., xn) = W(z1,22, .., 2n)

are called Schwinger functions.

A set of axioms for the Schwinger functions has been devised by K. Os-
terwalder and R. Schrader in [OS]. These axioms can be used to construct
(via the inverse of Wick rotations) the Wightman correlation functions, and
therefore the whole scalar bosonic theory, by Wightman’s reconstruction
theorem. The Osterwalder-Schrader axioms can be informally stated as fol-
lows (cf. [Ri], pp. 21-22).

OSA-1. Regularity: The Schwinger functions S,, do not grow too quickly
with n.

OSA-2. FEuclidean covariance: The Schwinger functions are invariant under
a global Euclidean transformation (for scalar bosonic fields — in the
case of a fermionic theory, appropriate changes have to made here).

OSA-3. O-S Positivity: The expectation value of a function F' (defined via
the Schwinger functions) of the fields multiplied by the function
F* obtained from F' by reflection across a hyperplane and complex
conjugation is a positive number. This axiom yields the positive-
definite metric of the Hilbert space for the Wightman fields.

OSA-4. Symmetry: The Schwinger functions — in a theory for bosons —
are symmetric under permutations of its (external) arguments. For
fermions, symmetry should of course be changed to anti-symmetry.

OSA-5. Cluster property: A Schwinger functions can be written asymptot-
ically as a product when two sets of its arguments are taken far
apart.

Now, the point is that one has a reconstruction theorem akin to Wight-
man’s.

Theorem 6.9 (O-S Reconstruction Theorem) Suppose we are given a
set of functions satisfying the axioms OSA-1-5 above. Then these function
are the Schwinger functions a unique field theory in the sense of Wightman.

For a more precise (and much more formal) treatment of the Ostwalder-
Schrader axioms, see Kazhdan’s lectures [Kh|, chapter 2. See also [Sch, pp.
97-101] for a precise formulation of a version of these axioms, and a proof
of the reconstruction theorem, in the context of conformal field theory.



6.7 The CPT theorem 161
6.7 The CPT theorem

We would like to add a few informal remarks on the so-called CPT theorem.
There are three very important finite-order symmetries on fields that stand
out. These translate, in QFT, to certain unitary or anti-unitary operators
acting on quantum fields. To keep the discussion short, we only talk about
the effect of these symmetries on fermionic fields. We refer to §6.4.2 for
notation. The symmetries under scrutiny are the following.

(1) Charge conjugation operator As we have seen in remark 5.4.2 (sub-
section §5.4.2), at the classical level we can consider the operator
C : 9 — ¢ = —iy%Y* on Dirac fields. This charge conjugation
operator maps solutions of Dirac’s equation with charge g to solu-
tions of Dirac’s equation with charge —g. In other words, it changes
matter to anti-matter and vice-versa. At the quantum level such op-
erator becomes a unitary operator acting on fermionic Fock space.
In terms of the generators as(p) and bs(p) of fermionic Fock space,
C acts as follows

Clas(p)C = nabs(p)
C™'bs(p)C = myas(p) -

Here n,,n, are phase factors (recall that a unit vector representing a
quantum-mechanical state is determined only up to a phase factor).
It can be shown in the present context that n? = 7713 = 1, and that
Na = —np. We obviously expect C2 = C o C to be the identity, so in
fact C~! = C'. With these relations one can extend C to the space
of all fermionic fields by linearity, using the Fourier decomposition
given in 6.9. The resulting operator on fermionic fields is unitary.

(2) Parity operator At the classical level, the parity operator corresponds
to the reflection (t,x) — (t,—x) on spacetime. Thus, under this
parity transformation, the momentum p of a particle is changed
to —p, whereas its spin remains unchanged (classically, the spatial
coordinate involution & — —a does not change angular momentum).
Upon quantization, we should therefore expect the parity operator
P to be a unitary operator such that

Pilas(p)P - aS(_p) )
P~ b, (p)P = by(—p) .
Again, with these relations one can extend P to the space of all

fermionic fields by linearity. And again, the resulting P is an invo-
lution as well: P = P~ 1.
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(8) Time-reversal operator At the classical level, the operation of switching
t to —t corresponds to the transformation on fermionic fields given
by ¥(t,x) — —y'v3(—t,x). Here, ' and 43 are the usual Dirac
matrices. Time-reversal changes a particle’s momentum p to —p,
and it also reverses spin, s — —s. Hence, upon quantization, the
time-reversal operator T' changes the sign of both momentum and
spin of every destruction operator, namely

Tﬁl“S(p)T = a_s(-p),
T~'by(p)T = b_s(—p)

It can be verified that 7', after being extended by linearity to the
entire space of fermionic fields, cannot be unitary. Rather, it must
be an anti-unitary operator (recall Wigner’s theorem in chapter 2).

One should not expect that a quantum theory of fields might be invariant
under any of these symmetries taken in isolation. As it turns out, it is an ex-
perimentally observed fact in particle physics that parity is violated in weak
interactions (see chapter 9). However, the interesting thing is that any such
reasonable theory will remain invariant under the combined action of C, P,
and T'. More precisely, the CPT theorem states that a Lorentz-invariant field
theory (whose corresponding Hamiltonian is a Hermitian operator) is neces-
sarily invariant under the composite symmetry C' o P o T. One of the great
merits of the axiomatic approach to QFT is to provide a mathematically
rigorous proof of this theorem. The reader may consult [SW] for a com-
plete exposition of this result and its close relationship with the so-called
spin-statistics theorem of W. Pauli. See also [B, ch. 5] for an interesting
conceptual discussion of these topics.

6.8 Scattering processes and LSZ reduction

The main point of contact between quantum field theory and experiment
is provided by scattering phenomena. What physicists actually measure in
the laboratory are scattering cross-sections of particle collisions. Typically,
one has an incoming beam of particles (henceforth called in-particles) that
get together and interact in some manner, producing an outgoing beam of
particles (the out-particles) that scatter away (see figure 1). For each given
state of the in-particles and each desirable state of the out-particles, one
would like to compute the corresponding probability amplitude.

In order to simplify the discussion to follow, we only consider spinless par-
ticles, such as scalar bosons. We think of the in-particles as having momenta
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q1,92,--.,q-, and of the out-particles as having momenta pi,po,...,Ps.
We shall write P = {p;} and @ = {g;}. In general, we have r # s: we
can have creation and annihilation of particles when the interaction occurs.
We should bear in mind, however, that the in-particles represent a com-
mon eigenstate for a commuting set of field operators (corresponding to the
incoming momenta), and similarly for the out-particles. Using Dirac’s no-
tation, we represent the incoming state by |@,in) and the outgoing state by
| P, out). These states should be thought of as asymptotic states — intuitively,
if we recede to the past, the in-particles don’t interact with each other, and
similarly for the out-particles in the future. Hence they are elements of a
Hilbert (Fock) space 5, and correspond to free fields. The scattering pro-
cess can therefore be thought of as an operator S : # — 7, the so-called
scattering operator. What one measures about this process are the so-called
scattering amplitudes, namely the inner products

Spg = (P,out|@,in) .

As we know from quantum mechanics, these complex numbers — known
collectively as the scattering matrix, or S-matrix — represent the probability
amplitudes that the in-particles, initially measured to be in the state |@,in),
will scatter away after the interaction into a set of out-particles in the state
| P, out).

How can we calculate these scattering amplitudes? The answer was given
in 1955 by H. Lehmann, K. Symanzik and W. Zimmermann, through what
is now known as the LSZ reduction formula. The intuitive idea behind LSZ
reduction is that, since the in-particles before collision can be thought of as
created from the vacuum and the out-particles after collision can be thought
of as annihilating into the vacuum, the values of the S-matrix entries should
be expressible in terms of vacuum-to-vacuum correlations. In this section,
we shall present a fairly detailed mathematical treatment of this formula

Collision Process
. . (out)
(interaction)

Fig. 6.1. Scattering
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for scalar bosons. In the exposition to follow, when dealing with quantum
fields — operator-valued distributions — we shall omit entirely their evaluation
against test functions (in Schwartz space), thereby glossing over some very
technical details. Although this may not be considered satisfactory from a
strictly mathematical point of view, we warn the reader that a completely
rigorous treatment is available. See [Kh], pp.405-412, for what is missing
here.

6.8.1 The in and out free fields

Let us consider the case of a bosonic field ¢ of mass m. This field will be, in
a suitable sense to be made precise below, asymptotic in the past to a given
incoming free field ¢i,, and in the future to a given outgoing free field ¢oyt.
We assume that the field ¢ is described by a Lagrangian density which is a
perturbation of a Klein-Gordon Lagrangian, possibly with a different mass
mg, say

1 1
L = 50u00"¢ = 5mGd” + L -

The interaction part of the Lagrangian, %, may contain self-interaction
terms such as ¢ /3!, or even interaction terms with other fields (e.g. fermionic
fields). We do not want, however, interaction terms involving the partial
derivatives of ¢. Therefore, if we consider the Euler-Lagrange equations for
the above Lagrangian, we get the following equation

(O + mg) ¢(x) = jo(z) ,

where jo = 0.%n/0¢. In terms of the Klein-Gordon operator for the boson
of mass m, this can be recast as

(O+m?) ¢(z) = j(x) , (6.10)

where j(z) = jo(z) + (m? — mj) ¢(z). We may solve equation (6.10) using
the method of Green’s function — in this case, a retarded Green’s function
given by

— i 1 —ik-x ik-x
G (z) = (2#)30(1‘0)/@ (e ko _ ik )kO:% Ak

where wy = vk? + m?2. The function 6 is the Heaviside step function (6(s) =
0 when s < 0 and 0(s) =1 when s > 0). Using the incoming field ¢, as an
asymptotic boundary condition and the above Green’s function, we arrive
at the following result.
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Lemma 6.5 The field given by

0(@) = VZon(@) + [ 6@ - p)i)d'y (6.11)
where Z 1is a constant, is a solution to (6.10).

Proof An exercise to the reader. O

The number Z is a normalizing constant about which we will have more
to say later. The important thing to remember here is that ¢;, is a free
scalar field of mass m, i.e. a solution to the Klein-Gordon equation

(O+ m2) ¢in(z) =0

Therefore, we can express ¢, in terms of its Fourier modes (flat waves) as
follows. First let

efzk-:r

(2m)3/2(2wy, ) 1/2

er(x) =

kozwk

Then write, as in section 6.3.4,

Gin(z) = / {ek(x)ain(k) + e,’g(x)ajn(k:)} 3k .

Using the inverse Fourier transform, we can express each coefficient in terms
of the in-field ¢y, itself. For the annihilation coefficients, we get

(k) = [ ()3 o(o) s

where we use the notation fgo)g = f-(0og) — (Oof) - g- A similar formula
holds for the creation coefficients a:n(k:).

Upon quantization, as we saw in section 6.3.4, these coefficients are pro-
moted to operators in Fock space. Recall that these creation and annihila-
tion operators satisfy the commutation relations

[ain(P), ain(@)] = 0;  [ai(p), al (q)] = 6*(p — q) .

Starting from the vacuum vector €2, one builds any given in-particle state
lg1, g2, - , g, in) using these operators in the usual way, namely

r 1/2
q1.q2. g, in) = 27/° (me) al(@). .. af(@)]2) .

=1
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We remark also that everything we did above using the in-field ¢;, can be
done also for the out-field ¢oyt. In particular, we have an integral represen-
tation

6(2) = VD dout () + / Gtz — )iy dy | (6.12)

where G is the advanced Green’s function for the Klein-Gordon operator,
whose explicit computation we leave as an exercise for the reader.

Finally, we need to clarify in which sense the in-field ¢;, and the out-field
dout Tepresent the asymptotic behavior of our interacting field ¢. We make
the hypothesis that the following weak asymptotic relations hold. Given
any pair of states |P, out) and |@, in), and given any solution f to the
Klein-Gordon equation, we have

lim [ (P, out|f(z)8 ¢(z)|Q, in)d®z (6.13)

20— —00
—VZ / (P, out|f(x) g din(x)|Q, in) dz |
Likewise, for the out-field we have

lim [ (P, out|f(z) 8 ¢(z)|Q, in)d®z (6.14)

20 —+00
—VZ / (P, out|(2) B dout (1))@, in) d .

Using the Klein-Gordon equation for both ¢, and f, it is easy to show
(exercise) that the right-hand side of (6.13) is indeed time-independent, as
one should expect by glancing at the left-hand side. Similarly for (6.14).

Given these considerations, we are now ready to formulate a definition of
scattering (or interacting) fields.

Definition 6.8 Given two free scalar fields ¢i, and ¢ouy, an interacting
scalar field of mass m, with in-field ¢, and out-field ¢out, s a quantum
field ¢ (i.e. an operator-valued distribution) having the following properties

(i) It satisfies the equation (6.10) in the distributional sense;
(ii) It admits the integral representations (6.11) and (6.12), also in the
distributional sense;
(117) It satisfies the weak asymptotic relations (6.13) and (6.14), again in
the sense of distributions.

It is for quantum interacting fields defined in this manner (and whose
existence will be taken for granted) that we shall prove the LSZ formula.
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6.8.2 The LSZ formula for bosons

We are now almost ready to state and prove the LSZ reduction formula
for bosons. It will be convenient at this point to introduce the notion of
time-ordered product of a finite number of field operators. Given z,y in
Lorentzian spacetime, and the corresponding field operators ¢(x), ¢(y), we
define their time-ordered product to be

T{p(z)p(y)} = 0(z° -y (z)d(y) + 0(y° — 2°)p(y)d(2)

where 6 is the step function introduced earlier. More generally, if we have
n field operators ¢(z1),...,¢(xy,), we define

T{p(w1) - 9(xn)} = (o)) P (To(n)) »

where {o(1),...,0(n)} is a permutation of {1,...,n} with the property that
the corresponding time coordinates decrease from left to right: 1:2(1) > >

xg(n). Time ordering is a way of incorporating causality into quantum field
theory.
The main result of this section can now be stated as follows.

Theorem 6.10 (LSZ reduction formula) The scattering matriz ele-
ments of an interacting scalar field ¢ having mass m are functions of the
Wightman vacuum-to-vacuum correlations of the field. More precisely, if
Q = {gj}ti<j<r and P = {pipti<k<s represent the in-particles and out-
particles respectively, and if no in-particle momentum qj is equal to an
out-particle momentum py, then

7"+s
(P out|Q in) = (@r 7 /H{‘f—”’” % (Og, +m?)} x  (6.15)

S
x [T e Oy, +m?)} x

k=1
X AQIT §(x1) - Sar)d(n) -+~ d(ys)|Q) da -+~ day dys -+~ dys

Proof In the proof, we will write |Q) and |P) instead of |@ in) and |P out),
respectively. Let us calculate something more general than the S-matrix
element appearing on the left-hand side of the above formula, namely

M = (P|IT{¢(z1) - d(2n)}|Q) -

This is the expected value of the time-ordered product of the field operators
d(21),...,¢(z,) with respect to the in and out states. If there are no field
operators in the time-ordered product, then what we have is precisely the
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S-matrix element that interests us. We can extract from the in-state @ the
particle with momentum g = q; using a creation operator:

Q) = V/2weal (9)1Q)

where |Q’) indicates the state of in-particles q; with j > 2 (i.e., with ¢
removed). Hence we can write

M = 2y (PIT{$(z1) - $(z0) Yl (@)|Q") -

Since we are assuming that there are no out-particles having momentum q,
this last equality can be re-written as

M = /2wy (6.16)
X (PIT{p(21) - d(zn) bl (@) — ab(@)T{d(21) -+~ $(20)}1Q) -

The reason is the following. In the extra term that has just been introduced
in the right-hand side of (6.16), the creation operator alut (q) can be replaced
by its adjoint, the annihilation operator aqyu(q), acting on the left side of
the Dirac bracket, i.e. on the out-state vector |P). This vector, however,
is built from the vacuum state |Q2) by successive application of the creation
operators alut (px). Our hypothesis says that no py is equal to g. There-
fore the annihilation operator aqy(q) commutes with each creation operator
alut (pk), so it can be made to act directly on the vacuum state, producing
0 as a result. This shows that the extra term introduced in the right-hand
side of (6.16) is indeed equal to zero. Replacing the creation operators in
(6.16) by their expressions in terms of the inverse Fourier transforms of the
in-field and out-field, we see that the right-hand side is equal to

— /2wy /eq(x)x

X 00 (PIT{¢(21) -+ &(z0) bin (7) — Gous (2)T{6(21) -+ dzm) Q)

Using the weak asymptotic relations (6.13) and (6.14) with f = e, (clearly
a solution of the KG-equation), we deduce that

=i _{ lim / ea(®) T (PIT{6(21) - 6(20)}6(2)|Q') d2
(6.17)

~ lim [ ey(a) (Plo()T{(z1) - ¢<zn>}\@’>d3x} .

29—+00

0

At this point, we note that as 2° — —o0, the time coordinate 2% becomes

smaller than the time coordinates of each z;, and therefore the field ¢(z) in
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the first of the two integrals above can be absorbed into the time-ordered
product; in other words, we have

T{$(21) - $(zn)}b(x) = T{d(21) -~ d(2n) ()} a5 2° — —o0 .

Likewise, we have

H@)T{é(21) - @(zn)} = T{(@)d(21) -+ d(zn)} as 2” — Fo0.
Therefore we can re-write (6.17) as

where we have introduced the function

Bx) = (PIT{¢(2)p(21) - (2n)d(2)}Q) -

Yet another way to write the last expression for .# is integrate and differ-
entiate with respect to the time coordinate 2, as follows

M= i\/zgq/ﬁo (/ dPzey () 8o B(x) d%) dz®

Calculating explicitly the time derivative, we see that

M =7/ 2—? /x {eq(:c)@gﬁ(x) — ﬁ(z)ﬁgeq(x)} d*z

Finally, using the fact that eq(x) is a solution of the Klein-Gordon equation
— so that 92e, = (A — m?)e, — and integrating by parts, we get

-4¢%5/% ) (38— A+ m?) Bla) d'e

At last, if we take into account the explicit expression for e4(z) and ((z),
we arrive at

:Eﬁ%ﬁﬁ/ —i0e (0, + m?) x
X (P|T{¢(x)$(z1) - - - d(2n)9(2)}|Q") d*

Let us step back and look at what we have accomplished. Using a suitable
creation operator for the in-field, we have been able to extract an in-particle
from the initial state |Q), inserting a field factor ¢(x) in the time-ordered
product, whose correlation with the new initial and the final states is now
acted upon by the Klein-Gordon operator with respect to . One can now
proceed inductively, extracting out one particle at a time from the initial
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state, until we are left with the vacuum vector on the right side of the inner
product (accumulating field factors in the time-ordered product, and Klein-
Gordon operators in the integrand). One can then follow an entirely similar
inductive procedure to remove particles one at a time from the final state
|P) (using the creation operators for the out-field), until we are left with
the vacuum state on the left side of the inner product. The integrand in the
final expression will be a vacuum-to-vacuum correlation of a time-ordered
product of the original factors ¢(z;) with field factors corresponding to the
extracted particles, acted upon by a product of 7+ s Klein-Gordon operators.
In particular, if initially there are no factors of the form ¢(z;), in the end
we will have the expression in the right-hand side of (6.15), so the theorem
is proved. O

There is an alternative way to write down the LSZ formula, which is in
fact much more elegant. The idea is to use the Fourier transform of the
time-ordered correlation functions, namely

n
L€, )= / (QUT{p(wn) ... plwa) H) [ e by - - d'w,
i=1
Using this together with the inverse Fourier transform, the LSZ reduction
formula becomes
(i
X
((2m)3/2 Z1/2)r+s

(P out|@ in) =

r

S
< [T Wi =m*) I (¢ =m®) T(o1,- - s =1, —ar)
k=1

j=1

Here, we are writing p2 = (p?)? — (pt)? — (p2)? — (p3)? for the Minkowski
norm of pj, and similarly for g;. This formula shows us that the values
of the S-matrix entries are the residues of poles of the Fourier transforms
of the corresponding correlations functions, up to a normalization factor
(these poles appear when we put the 4-momenta py,q; on-shell, i.e. when
their Minkowski norms are equal to m?).

We close with two remarks. First, as promised, we have shown that the el-
ements of the scattering matrix of a scalar interacting field can be computed
from the corresponding vacuum-to-vacuum Wightman correlations. These
are however very difficult to compute. Perturbative methods for computing
these Wightman correlations will be developed in the next chapter, and even
then we shall see that there are serious divergences that can only be resolved
with the help of renormalization methods (see chapter 8). Second, a similar
LSZ formula holds for self-interacting fermionic fields (in the absence of an
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external field); see for instance [PS] or [IZ]. However, LSZ reduction does
not make sense for gauge fields, the primary reason being the fact that in
such cases the free part of the Lagrangian is a degenerate quadratic form,
hence non-invertible.
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Perturbative Quantum Field Theory

In this chapter we present the basics on the perturbative approach to the
quantization of interacting fields. This approach was pioneered by J. Schwinger,
S. Tomonaga, R. Feynman and F. Dyson, halfway through the last century.
At center stage here lies the so-called Feynman path integral (a simpler ver-
sion of which we already encountered in chapter 2).

7.1 Discretization of functional integrals

Heuristically, Feynman’s path integral approach to the quantization of fields
starts from a functional integral of the form

Z = /ei5<¢> 2¢ ,

called the partition function, taken over the infinite-dimensional space of all
fields. Here,

S(6) = /M L(¢(x)) d'x

is the action, where .Z is the Lagrangian density of the system, and Z¢ is a
heuristic measure in the space of all fields. Starting out from such a partition
function, one attempts to construct the quantization of the system by writing
down other related path integrals giving the Wightman correlation functions
(see chapter 6). If & is a functional on the space of fields, its expectation
is, again heuristically,

1

©) = 3 [ 0059 7.

In particular, the Wightman k-point correlation functions are

(@lanolaz) -+ o)) = 5 [ 6@)oaa) - dlan)e ™) 7o
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It is hard, if not downright impossible, to put the subject of Feynman
path integrals to a sound mathematical basis, except in the case of free
fields, when the Lagrangian of the system is a (non-degenerate, positive
definite) quadratic form.

The strategy we will follow instead is to split the action as a sum S =
So + ASint where Sy is the quadratic part and Sj,;, the interactive action,
is the integral over spacetime of a sum of higher order monomials in the
field ¢. The case A = 0 corresponds to a free field and in the Euclidean
case to a Gaussian probability measure supported in the Schwartz space of
distributions. This measure can be obtained by a process of discretization
as a limit of finite-dimensional Gaussian measures. The natural way to ap-
proach the general case perturbatively would be to expand the exponential
of the action as a power series in the coupling constant A. Unfortunately,
the coefficients of this expansion involve powers of the field, and since the
measure is supported in a space of distributions and not functions, we face
the usual problem that such powers do not make sense (we cannot multiply
distributions). To circumvent this problem, we will study the perturbative
series of the discretized theory. Here all the coefficients are given by sums of
products of point-to-point correlations of Gaussian measures. These sums
can be organized using the technique of it Feynman diagrams. The idea
would then to take a (thermodynamical and continuum) limit, but a new
problem arises: in many cases the limiting sums are finite-dimensional di-
vergent integrals. This last problem will be treated by renormalization in
chapter refch:R.

7.2 Gaussian measures and Wick’s theorem
7.2.1 Gaussian integrals

We now move to the study of Gaussian integrals in a finite-dimensional
setting. Let A : R™ — R"™ be a positive-definite, symmetric linear map, and
let J € R™. We are interested in the value of the Gaussian integral

Z(A,J) = /n exp{—i((Az,z) + (J,z))} dz .

This value can be obtained by analytic continuation, as we shall see.
Let us first note that for each z € C with positive real part the function

R" 5 2 — exp{—z((Az,z) + (J,z))} € C
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is integrable. Therefore the function

I(z) = /n exp{—z((Az,z) + (J,x))} dx .

is holomorphic in the half-plane {z|Re z > 0}.

Next, let us compute I(p) where p > 0. To do this, we change variables
using an orthogonal transformation 1" that diagonalizes the quadratic form.
In other words, we let T be an orthogonal transformation such that T¢AT =
D, where D = diag{a1,ag,...,a,}, and each ay > 0. Writing z = T'y and
J=T' = (B1,Pa,...,53n), we have

I(p) = /Rn exp {—p (Z aryp + Bkyk> } dy1dys - - - dyn (7.1)
k=1

n
= H/eXp{—pakyi—pﬂkyk}dyk-
k=17R

The integrals in this last product can be explicitly evaluated using the fol-
lowing well-known fact.

Lemma 7.1 Ifa > 0, then

/Rexp{—axQ}dx _ \/g |

More generally, if b is real, we have

/ex {—az? + br} dx = \/Eex {—ﬁ}
R P T\ e TP

Proof Exercise. O

Going back to (7.1), we deduce from the above lemma that

I(p) = He p{ gg’;} o

- (%)/ e N

But clearly

[\

Q.

anﬂk (DTN, J) = (1AL T ) = (A1)
k=1
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Therefore

T n/2 1 p .
1 = | - exp{—= (A " J,JJ)}.
(p) <p> Jaog o5 ¢ )
Now, the point is that this formula makes sense for complex p. More pre-
cisely, let z — /2 be the branch of the square-root that maps C\ R~ holo-
morphically onto the positive half-plane. Then consider the holomorphic
function

~ 71'"/2 1
B (Vz)" /det A

Since I(z) = I(z) for all z € R*, it follows that I(z) is a holomorphic
extension of I(z). Hence we can define the value of the desired Gaussian
integral Z(A,J) to be I(i), that is

exp{—g (A71, )} .

n/2 (,—mi/4\™ .
/ o~ i({Az,2)+(J2)) 10 — i (6 ) ef%<A‘1J,J> . (7.2)
n vdet A

It is worth emphasizing that the main contribution to (7.2) in the right-hand
side is provided by the critical point of the function in the exponent of the
exponential in the left-hand side. Indeed, if S(x) = (Az,x) + (J, z), then

DS(x)v = (2Ax + J,v)

This shows that S has a unique critical point & such that 2Az + J = 0,
ie. T = (—1/2)A"1J. This critical point is a global minimum of S, and
S(z)=(A"1J,J) /4.

These results can be generalized to the case when A is not necessarily
positive-definite, but is still non-degenerate. The formula we obtain in the
end is similar to (7.2) but involves, not surprisingly, the signature of A.

7.2.2 Gaussian measures

Using the above formulas, we can now define a Gaussian measure in R with
given covariance matrix C' as follows

1
7/2y/det C

This is a probability measure:

/nd,uc(z) = 1.

duc(z) = exp{— (z,C~'2)}dz .
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The Fourier transform of this measure is
, 1
[ e (@) = exp{—5 (L.C)}

The moment generating function, on the other hand, is simply

[ e dnota) = expl5 (1.0}

7.2.3 Wick’s theorem

Let us now state and prove Wick’s theorem. This result yields an explicit
formula for the moments (or correlations) of a Gaussian measure.

Theorem 7.1 Let fi,fo,...,fn be linear polynomials. Then
(fifa: - fx) =0 if n is odd, whereas if n is even

(fifa ) = D CUfins F)Cfigs fia) -+ Clfimmrs Fim) (7.3)

where the sum extends over all parings (i1,12), ..., (im—1,im) of the indices

1,2,...,m, and where C(f;, f;) = <fi,C’fj)F.

In order to prove this theorem, we need the following auxiliary lemma in
multilinear algebra.

Lemma 7.2 Let V be a vector space over K = R or C, and let B : V' x
- xV — K be a symmetric n-linear map. If for all x € V we have
2" = B(z, -+ ,x) =0, then B =0.

Proof It suffices to show, by induction, that if 2 = 0 for all 2 then 2"y = 0
for all z,y. This because for each y the map B, : V x --- x V — K given by

By(xth?'” 71.77,—1) - B(.’El,l’Q,"' 7xn—17y)

is (n—1)-linear and vanishes at the diagonal. By hypothesis, for all z,y € V
and each z € K, we have

0=(z+z2y)" =a"+ z(?) "y 4 (n " 1>xy”1 +y" (7.4)

= z(?) "y (n ﬁ 1) zy" ! (7.5)
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Now, taking z1, z9, ..., 2,K pairwise distinct non-zero scalars, we know that
the Vandermonde determinant

1 22 2?71
29 Z% e Z;l*l
det ] ; ) = 21722 Zpn—1 H(Z’i—zj) 350
_ 1<j
-1 Zpy o
Therefore, putting z = z1,..., 2,1 in (7.4) we get a homogeneous (n — 1) x
(n—1) linear system in the unknowns "y, ... xy"~! whose only solution
is the trivial solution 2" 'y = - -2y~ = 0. O

Given this lemma, Wick’s theorem will be a consequence of the following
result. Suppose A : V — V* is a linear operator such that

A(z,y) = (z, Ay) = Z Aijziy; -
t,j=1

is a positive-definite bilinear form. Let us denote by C': V* — V the inverse
of A, its associated positive-definite bilinear form being

d
A ,u) = Z Cij)\iﬂj .

1,j=1

Lemma 7.3 If f € V* is a linear functional, then for every k > 1 we have
/f ko3 (@AT) gy = (2k — 1)C ff/f )2(k=1) g5 {@:A2) gor - (7.6)

Proof Let us write f(x) = Zle a;z;, and let us denote the integral on the
left-hand side of (7.6) by I. Then

Zaz/ zi(f(x)Hte zl@de) g (7.7)

Note however that

Az) § : LA
Te 296 x) Clj676 5 (z,Az)
J
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Hence we can integrate by parts in (7.7) to get

C”/V )2k=1 5' (67%@,1496}) du

L

az

I
M=
M&

=1 1

.
Il

I
M=
M&

C'U/ (2k — 1)(f(x))**2aje” 3 (@A) g

a'L

<

1 1

%

- @)Y / (F@)D b g
\4

ij=1

<.
I

O

Proof of Wick’s Theorem 7.1. Let us denote the left-hand side of (7.3) by
Bi(fi,..., fn) and the right-hand side by Ba(f1,..., fn). Both B; and Bs
are symmetric n-linear forms, hence so is their difference B = By — By. To
show that this difference is zero, it suffices by Lemma 7.2 to show that

Bi(f,-- s ) = Balf,-- -, f) (7.8)

for all f € V*. Applying Lemma 7.3 and induction to the left-hand side of
(7.8), we see that

/f "e %xAx)dx—(2n—1)---3-10(f,f)2n

But all terms in the summation defining the right hand side of (7.8) are
equal to C(f, £)?", and the number of such terms is the number of pairings
of {1,2,...,2n}, which is precisely 2n — 1)l = (2n —1)-(2n —3)---3- 1.
This finishes the proof.

7.3 Discretization of Euclidean scalar fields

We consider fields on a lattice (in e-Z¢). Looking in finite volume (e.g., some
cube in e-Z%), we get that the partition function and the field correlations are
finite-dimensional Euclidean integrals. After we understand these integrals,
we attempt to take limits, by letting € go to zero (continuum limit) and also
the volume go to infinity (thermodynamic limit). For free fields (quadratic
Lagrangian), the thermodynamic and continuum limits exist, and we recover
the Schwinger correlation functions.

To be specific, let us consider the case of the (Euclidean) Klein-Gordon
field in d-dimensional space. Let I' = T, = ¢Z%/LZ%, where L is chosen



7.8 Discretization of Euclidean scalar fields 179

so that L/2¢ is a positive integer. Then T is a cube in the lattice eZ%; note
that in fact

L L
r = {:chZdC]Rd: —§§$J’<§,j:1,2,...,d} .

The volume of this cube is [T'| = (¢7'L)%. If F: T — C, we write

AF(%) dx = adZF(x) .

zel

A scalar field over the lattice I is simply a function ¢ : I' — C. The space
of all such fields is therefore CI'. We define a Hermitian inner product on
Cl by

(. ) = /r o(@)Y(x) dx .

Definition 7.1 The discrete Laplacian on the finite lattice I' is the differ-
ence operator —A : CI' — CV given by

d
1
—Ad(2) = ) (20(z) — ¢la +ee) — oz —eex)) -
k=1
Here, {e1,e2,...,e4} is the canonical basis of R?. Tt is a convention in

the above expression for —A that ¢ is taken to be equal to zero at points
outside I'. Thus, up to a multiplicative constant, the value of the discrete
Laplacian of ¢ at z is the difference between ¢(x) and the average value of
¢ at the neighboring sites of z in I'. The discrete Laplacian is a positive
linear operator, in the sense that

<¢7 —A¢>F >0 provided <¢7 ¢>F >0.
It is also symmetric, in other words (¢, —AY) = (=A@, ), for all ¢, €
CT.

Definition 7.2 The discrete Euclidian Klein-Gordon operator A : C¥ — CU
1$ the linear operator given by

Ap = —Ap+m3¢ .

It is worth to summarize the basic properties of this operator in a simple
lemma.

Lemma 7.4 The discrete Klein-Gordon operator A is positive and self-
adjoint. In particular, it has an inverse.
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Proof Exercise. O

Since we are dealing with finite-dimensional spaces here, every linear op-
erator T : CI' — CI has a kernel, namely a map

I'xT > (z,y)— T(z,y) € C,
such that

To(r) = /FT(wvy)qﬁ(y) dy .

In particular, the discrete Laplacian has a kernel. To identify it, let us
write op(z,y) = afddxy, where 6, is 1 if z = y and zero otherwise. This is
precisely the kernel of the identity operator, since

o) = [ sl )otm)dy.
Now we have the following fact.

Lemma 7.5 The discrete Laplacian operator has kernel

M | =

d
_Z 25F (L‘ y _6F($+66k7 )—5F(x_€6k7y)) .
k=1

Proof Exercise. O

Functional derivatives can also be discretized. If S : C'' — C is a differ-
entiable (typically non-linear) functional, then §S/d¢(x) is defined so that

DS(8)3 = lim (S(0+t50) = 50) = |

We are now ready for discrete path integrals. Let us introduce a measure

0¢(x)dx .

in the space of all discretized fields; we simply take it to be Lebesgue measure
in C', written as

¢ = |] dé(=)

zel

Let Sr : C' — C be an action functional in the space of fields, having the
following form

S0(0) = 5 (6,40) + ASE ()

where S}nt(qﬁ) represents the interaction part of the action and involves
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higher than quadratic terms in the field. The most important example is
the so-called ¢*-action given by

S () = /F b(x) da .

Let us also consider a linear functional J : I' — R. The (generalized) discrete
partition function Zp(J) is given by

Zol]) = /C SO g

Now, if we are given an observable & in the space of fields, its expectation
is defined to be

1
0) = Vi —Sr(¢) Drd .
(0) = o) Jor 07 00
Likewise, if we are given k such observables, their correlation is given by
1 —Sr(¢)
(0102 Oy) = ——= | 01(¢)02(¢) - Ok(d)e N
Zr(0) Jer

In particular, the k-point Schwinger correlation functions are given by

k
(@lon)olaz) - o(or)) = g [ TLotepe @ 0.
j=1

Everything here, of course, provided these integrals exist. The existence
depends on imposing reasonable conditions on the action functional. When
the action is a positive definite quadratic form (as is the case for the discrete
Klein-Gordon action), the partition function is a Gaussian integral that can
be explicitly evaluated (see section).

Lemma 7.6 The Schwinger k point correlation functions satisfy the identity

1 ) 0
e - e 7:(] )
<¢(.’E1)¢($2) ¢($k)> ZI‘(J) 5J($1) 6J($k) F( ) o
Proof Differentiate under the integral sign. O

Let us now evaluate these integrals in the case of interest to us, namely
the Klein-Gordon field. Let us denote by C = Cr : C' — C' the positive,
self-adjoint operator which is the inverse of the Klein-Gordon operator A.
The fields are now real, and so the partition function is

Zr(J) = /Rr e~ 2(6 AN+ grg |
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Using the results on Gaussian integrals of section , we see that
Zy = Zp(0) = 2m)"V2Vdet C |
and also that
Zr(J) = ZyerHCr

Therefore, by lemma 7.6, the k point correlation functions are given by

(D) d(x2) - dlag)) = i( i 0 ))6§<J,CJ>F

Zo \0J(x1)  0J(zy, J=0"
More generally, we have
Lemma 7.7 If f1, fo, ..., fr are arbitrary polynomials, then
o ) 1
— R N _<J7CJ>I‘
(fifor--fu) = f1 (5J> i <5J> e> e
Proof Exercise. O

7.3.1 The Fourier transform

Oftentimes, when studying field theory, we need to pass from coordinate
space to momentum space and vice-versa. What allows us to do this is the
Fourier transform, for fields on our finite lattice I' = T, j, = ¢Z¢/LZ? (where
as before L/2¢ € N). In order to define the Fourier transform in this finite
setting, let us first consider the dual lattice to I, namely

27

F*
L

7d /2_7TZd
€
Given p € I and = € I, we write

D-x = p1T1 + P2+ -+ Paxq -

Definition 7.3 The Fourier transform of F : ' — C is given by

Plp) = /F Flz)e ™ dz .

Just as with the standard theory of the Fourier transform, here too we
have an inversion formula,

F(x) = /* E(p)e™® dp .

The integral over the dual lattice ['* is defined exactly as before. So is the
hermitian product of dual) fields in C'".
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Now suppose we have a linear operator A : C' — C on the space of

- / Az, y)dy) dy
N

Then we define its Fourier transform to be the linear operator A : CI™ — CI”
given by A(g?)) = A(¢). If we express A through its kernel,

(Ad)(p) = /*fl(p, q9)é(q) dq

fields, say given by

then it is clear that such kernel is given by

Alp,q) = /F e P [ /F Az, y)ePV dy} dz .

The main example is provided by the discrete Laplacian, whose kernel, as
we saw earlier, is

d

—A(z QZ (20r(x,y) — or(z + €ex, y) — or(xz — cex, y))
k=1

One can prove (exercise) that in this case the kernel of the Fourier transform
of the Laplacian is given by

—A(p,q) = 5F*(p7Q)D8(p)7

where
5 4
= _22 1 —cos (epg)) -
k=1

We can use this fact to study the discrete Klein-Gordon operator as well.
In this situation we find that the free covariance or propagator that we met
earlier (which is in fact a discrete version of a fundamental solution to the
Klein-Gordon equation) is given by

r+ m? + De(p)

From this and the expression obtained earlier for the partition function
Zr(0), we see that

d 1/2
Z0(0) = det (27Cr) = [[ (%L ! : )> .

d 2 D
5 m +
pel* e\P

Cr(z,y) = dp . (7.9)
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Going back to (7.9), we analyze the behavior of the propagator when we
take the thermodynamic and continuum limits. This will be very important
when investigating the perturbative expansion of the scalar field, see the
next section. First of all, when we let L — oo (thermodynamic limit), we
get

o lim O L ety d?
(x7y) = Lgréo F(x7y) - (27T)d /C?(E) m2+D8(p) P

where Q(e) = R?/ (2£) Z%. Second, when we now let ¢ — 0 (continuum
limit), then as long as © # y, we do get a finite limit, given by the integral

C lim C° L Y

(x,y) - EE% (x,y) - (27T)d /]Rd m2+p2 b,

This integral (for x # y!) converges, as one can easily check using the
residue theorem. When = = y the integral obviously diverges, but we have
the following asymptotic behavior. As |z — y| — 0, we have

Cla.y) |z —y|~@=2)  ford>3
x,Y) ~
Y log |z — y| for d =2

7.4 Perturbative quantum field theory

Here we consider perturbative theory, in which the Lagrangian is a pertur-
bation of a quadratic Lagrangian, which once again involves

(i) Discretization (to a lattice in Z9).

(ii) Finite volume approximation.
(iii)

Perturbative expansion in terms of the coupling constants

(iv) Feynman diagrams.

(v) Continuum and thermodynamical limits of Feynman diagrams.
)

(vi

There are problems of two kinds here. There is a divergence problem, and

Euclidean field theory and statistical mechanics.

there is also the problem that the Lagrangian is in general non-invertible.

7.4.1 Perturbative Euclidean ¢*-theory
We shall study here the so-called ¢*-theory, in its Euclidean form. In this
scalar (bosonic) theory, the interaction part of the Lagrangian consists of
a single quartic monomial of the form A¢?*/4!, where A > 0 is the coupling
constant.
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7.4.1.1 Asymptotic expansion: heuristics

Ideally, we know from Wightman’s reconstruction theorem (chapter 6) that
we can recover a quantum field theory from its Wightman correlation func-
tions. In Euclidean QFT (i.e., after a suitable Wick rotation), the relevant
correlation functions are the Schwinger n-point functions. In the present
situation (¢*-theory), these Schwinger functions are given by

Suler, 2, wn) = o / O(e1)o(wz) - oan)e 8 12 duc(9) |

where duc is the Gaussian measure with correlation operator C' given by
the inverse of the Klein-Gordon operator, and Z is the quantum partition
function

The naive standard approach to the study of these integrals is to write down
an asymptotic expansion of the form

[e.9]
Sp(z1, 22, ..., 28) ~ Z S k(T1, T2, oy ) AP
k=0

for the n-point Schwinger function, where

(-1 1
"7 R@F”

< [ oton)---oten [ ot dy)k duc(9)

and a similar asymptotic expansion for Z.

Spk(T1,22,.. ., 20) =

This is all purely formal. Indeed, as we noted at the end of section 7.2,
although the measure duc(¢) exists in the infinite dimensional setting, the
typical field ¢ in its support is not a function but merely a distribution, and
therefore the above integrals expressions do not even make sense. Hence
the strategy to follow is to work with the discretization process described
earlier, where everything makes sense.

7.4.1.2 Discrete Schwinger functions

We shall work with the discretized field in a finite lattice A C R¢, as in
the previous section. We would like to calculate the Schwinger correlation
functions given by

S 2, swn) = | Gl)olwa) - oen) e 8 WO duc(s)
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where, as before, duc is the Gaussian measure with correlation operator
C = A~! (the inverse of the discretized Klein-Gordon operator) and

/qs Ydr =) ga)t
TEA

Here, everything is in principle computable, since we are in a finite lattice.
We can expand the exponential as a (formal) power series in A, obtaining

Sg(xl,xg,...,xn)
(e%e] k k
= [ st oty C o ([ o ar) aucto
=0
— (—1)F

2 RI(41)

This shows that we can write each Schwinger function as a perturbative

k k
= 2 k)‘k - (w1)p(2) - - - ¢(%)JH1 </A ¢(yj)4 dyj) dpc () -

series
SMxy,xa,. .. 2 Z)\k W1, 22, 1)
where
Sh (a1, @2, @) = ]iri'))k AR
Jme [an| [ oot om)* -+ o) duc(s)

(7.10)

Note that we have interchanged the order of integration (Gaussian measure
first, then the product measure dy; - - - dyx). This interchange is legitimate
because the integrals over A are just finite sums.

Now, the point is that the integral appearing in the right-hand side of
(7.10) can be evaluated explicitly with the help of Wick’s theorem. For n
odd, the integral is equal to zero. When n is even, the final result will involve
a sum of terms corresponding to all possible pairings of the n + 4k terms
appearing in the integrand, namely

P(x1) -+ dlan) d(y1)o(y1)d(y1)d(yr) -+ dyr)d(yr) P (yr)O(yr) -

The number of all such pairings is (n + 4k — 1)!!, a large number even
for modest values of n and k. The task of computing the Wick sum can
be considerable simplified by collecting together large groups of identical
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terms, each group being characterized by a combinatorial device known as
a Feynman diagram, as we shall explain.

Before jumping to a formal definition of Feynman diagrams, let us examine
a simple example in detail.

Example 1. Let us consider the case when n = 2 (that is to say, we are
interested in the 2-point correlation function Sa(x1,x2)). The first term in
the sum defining So(x1,x2) has k = 0. In this case there is only one pairing
d(x1)p(x2), and we easily get

Sz.0(x1,22) = C(21,72)

The second term in the sum has k = 1. In order to apply Wick’s theorem,
we need to write down all possible pairings of the six terms in the product

(1) d(z2)P(y1) (Y1) P (y1)d(y1)

Here there are two cases to consider.

(i) The term ¢(x1) pairs up with ¢(z2), and the four copies of ¢(y1) make
up two more pairs. This can be done in 3 ways, each contributing

C(x1,29)C(y1,y1)*

to Wick’s sum. This case can be represented graphically as in figure 1
(a). The diagram displays an edge connecting the two white vertices
labeled x1 and xo, and two loops forming a figure eight connecting a
single black vertex to itself (not labeled in the figure, but corresponding
to y1).

(ii)) The term ¢(x1) pairs up with one of the four copies of ¢(y1), the term
¢(x2) pairs up with a second such copy, and the two remaining terms
pair with each other. Here there are altogether 12 possibilities, each
contributing

C(x1,y1)C(x2,y1)C(y1,y1)

to Wick’s sum. Again, this information can be encoded graphically, see
the diagram in figure 1 (b). Note that now the diagram is connected;
there are two edges connecting the white vertices labeled x1 and xo
to the (unlabeled) black vertex, which is also connected to itself by a
loop.

Note that adding up the total number of possibilities in both cases we get
3412 = 15, which is precisely the number of possible pairings of six objects
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(O

1 T2 1 T2

(@) (0)

Fig. 7.1. The two Feynman diagrams in .73

(6 -1 =5-3-1=15). Summarizing, we have shown that

S9.1(z1,22) =
1

~ 57 [3C(x1,x2)C(y1,y1)2 +12C (21, y1)C(x2,y1)C (y1,y1)] dyr -
A

This can be re-written as
Soa(z1,22) = (7.11)
1 1
- g/ 0(1?1»1?2)0@173/1)2@1 - 5/0(1‘17y1)0($27y1)0(3/17y1)dy1-
A A

How are we to interpret the numbers appearing in front of these integrals?
The answer pops up if we go back to figure 1 and examine the symmetries
of both Feynman diagrams. We are not allowed to change the positions of
the labeled vertices 1 and xs. In figure 1 (a), this forces us to leave the
edge connecting these two labeled vertices untouched; the remaining figure
eight has a symmetry group generated by three elements of order two: for
each loop in the figure, there is a reflection about the symmetry axis of
that loop (switching its ends) — call these reflections a and b — and also an
involution ¢ that switches both loops. These generators satisfy the relations
a’? = b> = ¢? = 1 and cac = b. The reader can easily check that the resulting
group of symmetries has order 8. This is precisely the number that appears
in the denominator of the fraction multiplying the first integral in (7.11).
The situation in figure 1 (b) is even simpler. Here the only possible symmetry
besides the identity consists of a flip of the single loop in the picture about
its (vertical) axis, keeping the labeled vertices in their places. Hence the
symmetry group has order 2, which is once again the denominator of the
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fraction that multiplies the second integral in (7.11). These remarkable facts
are valid in general, as we shall see in the sequel.

7.4.2 Feynman diagrams

Now that we have seen some examples of Feynman diagrams and how they
appear in the perturbative expansion of a scalar field theory, let us proceed
to a formal definition of these combinatorial objects.

Definition 7.4 A Feynman diagram with n external vertices and k inter-
nal vertices consists of three finite sets V., E and F, having the following
properties.

(i) The setV is the disjoint union V. UV; where V. has n elements called

external vertices and V; has k elements called internal vertices;

(i) The set F' has an even number of elements, called ends of edges, and
the set E — whose elements are called edges — is a pairing of the set
F, i.e. there exists a two-to-one map of F onto E;

(11i) There exist a map O : E — V x V/ ~, where ~ is the equivalence
relation (a,b) ~ (b,a), called the incidence map, and a surjective map
v: F —V such that if e € E, if d(e) = {a,b} and e = {«a, 5} C F,
then {7(a)77(/6)} = {a7b};

(iv) If v € V. then y~1(v) has only one element, called an external end;
if v € V;, then v~1(v) has at least two elements.

An edge having an external end is called, not surprisingly, an external
edge. We also remark that in the ¢* theory under study in this chapter,
all graphs appearing in the perturbative expansion have the property that
7~ 1(v) has exactly 4 elements for every v € V;.

The reader can check that the formal definition given above indeed cor-
responds to the intuitive notion of Feynman diagram given before through
examples.

Definition 7.5 In a Feynman diagram, the valency of a vertex v is the
number of elements in v~ 1(v) C F.

In other words, the valency of a vertex v is the number of ends-of-edges
that meet at v. Thus, every external vertex has valency equal to 1. For the
Feynman diagrams appearing in the ¢*-theory considered in this chapter,
every internal vertex has valency 4. This is the case, of course, of the
diagrams in figures 1 and 2.
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(xO
(xO

O——O O——O
1 T2 x1 x2 Z1 Z2

Tl €2

(D

Q|

T T2
X1 T2

Fig. 7.2. The 7 Feynman diagrams that make up 75,

Now we need a notion of equivalence between two diagrams. This is akin
to the notion of isomorphism of graphs, the main difference here being that
we have to take into account the ends of edges, in addition to vertices and
edges.

Definition 7.6 An equivalence between two diagrams

G; = (V}, Ej, Fy;05,75) (5 =1,2) is a triple of bijections Vi — Vo, By — Ej
and Fy — Fy that are compatible with the incidence and pairing relations
given by 0;,7;.

We also need the notion of automorphism of a Feynman diagram. Roughly
speaking, an automorphism of a diagram is a bit more special than an equiv-
alence of that diagram to itself: we don’t want an automorphism to move
the external vertices around. Here is the formal definition.

Definition 7.7 An automorphism 0 : (V, E,F;0,v) < of a Feynman dia-
gram consists of the following three maps:

(i) a bijection 0y : V — V such that GV’V =idy,;
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(ii) a bijection 0 : E — E that is compatible with Oy with respect to the
incidence relation;

(iii) a bijection Op : F — F that is compatible with both 0y and 0.

It is worth remarking that even when 6y = idy and 0 = idg, it may
still happen that 0p # idp. It is clear how to compose two automorphisms
of a Feynman graph G, and it is clear also that, under this composition
operation, the set of all automorphisms of G is a group, denoted Aut(G).

Let us denote by %, ;. the set of all Feynman diagrams with n external
vertices and k internal vertices up to equivalence. We have the following
basic combinatorial result.

Lemma 7.8 Let G € %, be a Feynman diagram whose internal vertices
have valencies ny,no, ... ,ng. Then the automorphism group of G has order
given by

k!
AUH(G)] = 5 (m!)(na) -+ (ne)

where Pg is the number of possible pairings of adjacent internal vertices of

G.

Proof An exercise in combinatorics to the reader. O

For the purposes we have in mind (namely, perturbative expansions) it
will be convenient to label our Feynman diagrams. We will consider two
possible types of labeling. Given G' € %}, we can label its external ver-
tices by x1,x9,...,T,, keeping the internal vertices unlabeled. The class of
all such externally labeled diagrams (up to equivalence) will be denoted by
ﬁﬁk The second type of labeling is that in which, in addition to label-
ing the external vertices of G as before, we label and its internal vertices
by y1,%2,...,yk. The set of all such (externally and internally) labeled dia-
grams will be denoted by %, .. Clearly, every automorphism of an externally
labeled diagram preserves the external labels.

We need also the notion of a vacuum diagram.

Definition 7.8 A vacuum diagram is a Feynman diagram without external
vertices.

Some examples of connected vacuum diagrams are shown in figure 3. We
shall assume that the countable collection of all connected vacuum diagrams
(up to equivalence) is enumerated Vi, Va,...,Vj, ...
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7.4.3 Algebraic structure of Feynman diagrams

Let 7 = UZy, be the collection of all (equivalence classes) of externally
labeled Feynman diagrams. Then .# has the structure of an abelian semi-
group under the operation of disjoint union:

Gi1 € yshkUG? €7, = G1®Gy=G1UGs € §1+n2,k1+k2 :

na,ka

The neutral element is, of course, the empty diagram: G® @ = R G = G.

Now let o7 (%) be the algebra of all complex-valued functions defined on
F. An element of o/ (.%) is a formal, and possibly infinite, linear combina-
tion of diagrams, such as

ZajGj , where G; € # and a; € Cfor all j .
J
Note that o7 (.%) contains all formal power series in any number of variables,
e.g.
W pp G @GR ® - ® GJF
J1.d2 ik G 2 ko
(J1,d25 2Jk)

Here, naturally, G™ means the product G ® G ® --- ® G (n times). In
particular, we can exponentiate any Feynman diagram, namely

1 1
e = +G+ G+ =G+
2! n!

This has the familiar properties of the exponential, such as e¢116¢2 = &1 .
eC2,

We can assign a scalar value, or weight, to each element of our algebra, in
a way that will be most convenient in our study of perturbative expansions.
This value will depend also on the correlation operator C' and on the finite
lattice A introduced earlier. Let C(X) be the algebra of formal power series

in A. We define the value map v : o/ (F) — C(\) as follows. Given G € .F

we let
v — (V@)
@ = (N [ ]

C(e)dyidys - - - dy - (7.12)
e€cE(G)

where V;(G) is the set of internal vertices of G, E(G) is the set of edges,
C(e) = C(v,w) is the value of the propagator when the vertices of e are v, w,
and where the k = |V;(G)| internal vertices of G are labeled yi, 2, ..., Y.
We extend the definition of v to the whole algebra /(%) in the obvious
fashion. However, to make sure the definition is consistent, we need the
following simple lemma.
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Lemma 7.9 The right-hand side of (7.12) is independent of the internal
labeling of G.

Proof If o :{y1,y2,...,yx} < is a permutation, then its induced change of
variables in (7.12) has Jacobian determinant equal to 1. O

We have also the following natural result.

Lemma 7.10 The value map v : &/ (F) — C(\) is a homomorphism of
algebras.

Proof The map v is C-linear by construction. Hence it suffices to show
that it is multiplicative (in .%). If G = G’ ® G"” then obviously V;(G) =
Vi(G"Y U Vy(G") and E(G) = E(G') U E(G"). Let us write k' = |V;(G)|,
k" = |Vi(G")|, and let us label the vertices of G so that yi,...,y, are the
vertices of G' and yy/41,. .., yr 1k are the vertices of G”. Since there are no
edges joining vertices of G’ to the vertices of G”, the product in the integrand
of the expression defining v(G) splits. Therefore, applying Fubini’s theorem

we get
V(G) = (—)\)k’/-‘rk” / H C(e) dyl “ee dyk/dyk/+1 “ e dyk’+k’/
Ak 4K
ecE(Q)
= (_)\)kurk// / H 0(6/) dyl o dyk/X
A
e’'eE(G")
8 /Ak” H C(e") dypr+1 -+ - dypr-4

elleE‘(G//)
= v(G")-v(G")
O
Before we go back to the perturbative expansion of ¢*-theory, we need
one more result concerning the relationship between the algebraic structure

of a Feynman diagram and its group of automorphisms. Recall that we have
enumerated all connected vacuum diagrams as Vi1, Va,...,Vj, ...

Lemma 7.11 Fvery externally labeled Feynman diagram G admits a unique
representation of the form

G=Vhevie -eVmedh, (7.13)

where each kj > 0 and m s the smallest possible, and G! is the mazimal sub-
diagram of G all of whose connected components contain external vertices
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of G. In particular, we have

|AW(G)| = Kyl - El | Aut(VD)[F1 - | Aut(Vi)[Fm | Aut(GH)] . (7.14)

o

Fig. 7.3. Some examples of (connected) vacuum diagrams

Proof We present a brief sketch of the proof, leaving the details as a combi-
natorial exercise to the reader. A connected component of G either contains
external vertices, or it doesn’t. In the latter case, it is necessarily a (con-
nected) vacuum diagram, i.e. it is equal to some V;. We can factor out from
G all vacuum diagrams, putting equivalent diagrams together (writing their
disjoint union as powers of a same vacuum diagram). The subdiagram G*
of G that is left after this finite process contains all the external vertices of
G. In this way, we obtain the representation in (7.13). Now, every automor-
phism of G maps connected components onto connected components, and it
also fixes the set of external vertices pointwise. Hence it must map G* onto
itself, and it must also permute the vacuum components of the same type.
There are k;! possible permutations of the k; components equivalent to V.
This accounts for the product of factorial terms in the right-hand side of
(7.14). The rest of the formula is clear. O

7.4.4 Back to ¢*-theory

Now we have all the tools at hand to calculate the perturbative expansion
of the discrete Schwinger functions in the case of scalar ¢*-theory.
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Theorem 7.2 For all n > 0 and each k > 0 we have

kgh _ e
ZNSy (1,22, ) = 2 Ant(G)]
Gefmk

Proof The proof combines Wick’s theorem with the combinatorial lemmas
of the previous subsection, and is left as a (challenging) exercise for the
reader. O

Corollary 7.1 For all n > 0, the discrete n-point Schwinger correlation
function is given by

A _ _
ST, 22, ., Ty) = %]Aut(Gﬁ)] .

Proof Apply Theorem 7.2 and Lemma 7.11. O

7.4.5 The Feynman rules for ¢* theory

We summarize the above discussion by stating the Feynman rules for com-
puting the amplitudes of graphs in the scalar ¢* theory. First we state
these rules in coordinate space. It is necessary to undo the Wick rotation
we performed in the beginning, going back to Minkowski space. Then the
Euclidean propagator (for d = 4), given by

1 e z=y)
Clz,y) = ) A4p2+m2dp,

becomes, after the change p? — ip?, the Feynman propagator

1 —jetr(z—y)
D = d*
F(:Evy) (271_)4 /R4 p2—m2—|—i€ p,

where now it is implicit that the dot product represents the Minkowski inner
product (in particular, p? = (p°)2 — (p')? — (p?)? — (p*)?). We are now ready
to state the Feynman rules in coordinate space.

Feynman rules in coordinate space:

(1) To each edge with endpoints labeled x and y, we associate a propagator
Dp(x —vy).

(2) To each internal vertex labeled by y we associate the weighted integral
(—iA) [ d*y.

(3) To each external vertex labeled by x, we simply associate the factor 1.
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(4) Divide the product of all these factors by the diagram’s symmetry factor.

These rules can be Fourier transformed into corresponding rules in momen-
tum space. In this situation, each edge of our Feynman diagram is labeled
by a momentum variable and is given an arbitrary orientation. The rules
become the following.

Feynman rules in momentum space:

(1) To each edge labeled by p, we associate a propagator given by
1
p?—m?+ie
(2) To each internal vertex we associate the weight (—i)) times a delta
function that imposes momentum conservation at that vertex.
(3) To each external vertex labeled x we associate the factor =% where
p is the momentum (pointing away from x) labeling its external edge.
(4) Integrate over each momentum variable, normalizing each integral by
the factor ﬁ

(5) Divide everything by the diagram’s symmetry factor.

The computation of the Feynman amplitudes can therefore be performed
in two ways (coordinate or momentum space), and what takes us from one
to the other is the Fourier transform. Let us illustrate this equivalence by
means of two examples. In the first example the Feynman amplitude will
be a convergent integral, whereas in the second the amplitude will diverge
(and renormalization will be necessary, see chapter 8).

Example 2. Let us consider the Feynman diagram G of figure 4. This dia-
gram has six external vertices labeled x1,...,xg and three internal vertices
labeled y1,y2,ys, with each y; (j = 1,2,3) adjacent to x9; and x2;_1. Note
that the symmetry group for this diagram is trivial. Indeed, the external
vertices x; remain fixed, hence each y; is fixed as well, which fixes the three
edges connecting these three vertices. Therefore the symmetry factor is
equal to 1. Applying the Feynman rules in coordinate space, we see that
the amplitude for this graph is

3
Ag(l'l, ce ,xG) = (—Z'A)g /// HDF(yj — xgj_l)DF(ij — yj) X
j=1

x Dp(y2 —y1)Dr(ys — y2) Dr(y1 — y3) d*yrd*yadtys

On the other hand, in the dual diagram in momentum space there are six
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external momenta p1,pe,...,ps, and three internal momenta ki, ko, ks (in-
tegration variables). Hence, if we apply the Feynman rules in momentum
space, we get

-y\3
Ao, ... a6) = i;;;?ﬁ / - / i1 —pay Pz i tpsTs—poTo)

d(p1 —p2+ ko — k3)d(p3 — pa+ ks — k1)d(ps — pe + k1 — ko) X
6 . 3

7 7
d*kyd*kod ks d*py - - - d*pg
XHP?—m2+iagk§—m2+ia 1@ ma s be

This second value for the amplitude is supposed to be equal to the first.
Showing that they are equal seems a rather daunting task. But it could be
done, if only we could make sense of the product of delta functions appearing
in the integrand in the right-hand side of this last formula. This will be
done below, after this example and the next. There is something more we
can say here, without having to do the integrations explicitly. Using the
conservation of momenta at each vertex we deduce easily that the external
momenta satisfy the relation pg = p1 — p2 + ps — p4 + ps. This means that
the Fourier transform of the Feynman amplitude in momentum space is a
function of only five of the six external momenta. When this information
is used in the last formula above, we get that Ag is a function of the five
differences x1 — xg, . .., x5 — xg, a fact that may not be apparent if we look
at the first expression for the amplitude. But it is consistent with the fact
that the Feynman amplitudes (or the correlation functions) are translation
invariant (this comes from the Lorentz invariance of the field). We emphasize
that the amplitude in this example is given by a convergent integral.

L6 L5

Ys

Z1 T4
Y1 Y2

Z2 zs3

(a) (0)

Fig. 7.4. Feynman diagram for example 2: here, momentum conservation tells us
that p1 +ps +ps = p2 +pa+ pe
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Example 3. Now let us consider the Feynman diagram G of figure 5, with two
external vertices labeled x1 and x9 and two internal vertices labeled 1y, and
yo. The symmetry group for this diagram has order 3! = 6, corresponding
to the permutations of the three internal edges, which are the only possible
symmetries. Following the Feynman rules in coordinate space, the amplitude
of this diagram is given by

(—z)\

Ag(z1,22) = / Dr(y1 — 1)Dp(y2 — y1)* Dz — y2) dyrdys .

On the other hand, if we apply the Feynman rules in momentum space, we
arrive at

A e (plm p2$2)
1, T
6(@1,2) 27T 20 / /HJ 1 pj —m? +ie)[[o (k2 —m? +ie)
X 0(p1 — k1 — ko — k3)0(ky + kg + k3 — p2) d*k1d*kad k3 d*p1d*ps .

If the rules are consistent, these two values for the amplitude must be equal.
They are, and once again this involves understanding the meaning of the
product of delta distributions in the integrand of this last formula. See
the discussion below. As in the previous example, we note that momentum
conservation tells us that p1 = po, and this in turn implies that the amplitude
Ag(x1,x2) Is in fact a function of the difference x1 — xo. Unlike the previous
example, however, this amplitude is divergent (and in order to extract from
it a physically meaningful number, renormalization must be applied; see
chapter 8).

Y1 Y2
Ty T2

b1 P2

k3
(a) (b)

Fig. 7.5. Feynman diagram for example 3: here, momentum conservation implies
p1 = D2

How are we to make sense of the products of delta functions that appear in
these examples? What do physicists mean by that? Although in general we
cannot multiply distributions, here the situation is much simpler because the
expressions of momentum conservation at the vertices, taken in as arguments
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1. Propagators:

q > —m?+ie

: __iptm)

D - p2—m?+ie
2. Vertices: N . = —ig

3. External legs:

\—« = u®(p) H/ = u°(p)
D PN
\T = °(p) ﬁ/: v (k)

Fig. 7.6. Feynman rules for a Yukawa theory

of the delta functions, are linear expressions in the momenta. Thus, suppose
G is a Feynman graph with m external momenta p1,...,p, and n internal
momenta ki,...,k,, collectively denoted by p and k respectively. If s is
the number of internal vertices of GG, the momentum conservation at each
vertex is a linear form on p and k, say ¢;(p,k), 1 < j < s. Hence for each
given p, we have a surjective linear map L, : (R*)" — (R*)®, whose s image
components are precisely these linear forms. For instance, in example 3 we
have

Ly(k1, ko, k3) = (pr — ki — ko — k3, k1 + ko + ks —p2) .

We define the product of delta distributions as follows:

[T, k) = 8(Ly(k)) -
j=1
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Thus, when computing the Feynman amplitude Ag in momentum space,
if we first integrate over the internal momentum variables k (ignoring the
exponential factors of the form e”®), we get the Fourier transform Ag,
which is given by an expression of the form

Ag(p) = / £ (0, ) (L (k) dbs

where f(p,k) is a (rational) function of the momenta. Now, for each p we
can certainly find an invertible linear map 7}, : (R*)" — (R*)" such that
moT = Ly, where  : (R*)" — (R%)* is the linear projection onto the first
s components. Using T}, as a change of variables, i.e. letting ¢ = T),(k), we
can re-write the Fourier transform of the amplitude as

Ac(p) = /f(p,Tp‘l(q))5(7r(q))detTp—1dk
= /f(vapl((h,--.,qnS,O,O,...,O))detTpldql'udqnS,

The role of the product of delta functions is now clear: it amounts to a
reduction on the number of integrations over internal momenta. The reader
can verify that there is a relationship between the number of integrations
performed and the number of loops in the Feynman diagram.

7.4.6 Perturbative theory for fermions

The perturbative theory for bosons developed so far can be adapted for the
Dirac field, with some significant changes that we briefly indicate. Recall
from chapter 6 that the Dirac field can be thought of as a Grassmann field,
whose values in spacetime are given by anti-commuting variables. Just as in
the bosonic case, we can write an action functional. This functional, with a
source term, can be written as follows:

Zina) = [ ex { [ (@i = myp -+ s+ i) d%} 2590,

where the source field n(z) takes values in a Grassmann algebra. Using the
standard trick of completing the square, we can re-write this formula as

2] = Z exp{ [ #@)sete — vyatw) d4zd4y} |
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where Z is the value of the generating functional when the source field is
equal to zero, and where Sr is the propagator

1 je— i (@—y)

2m)4 | p—m+ie

Sp(z —y) = (

With this propagator at hand, we can try to imitate the procedure used for
scalar fields in order to calculate the correlations of this fermionic theory.
The idea is the same: we differentiate the generating functional with re-
spect to the source components, which are Grassmann variables. We learned
about Grassmann differentiation in chapter 6. In any case, we find that ev-
erything works provided we have a version of Wick’s theorem in the present
context. This amounts to knowing how to evaluate Gaussian integrals in-
volving Grassmann variables. We know how to do that already: this is
precisely the content of Theorem 6.8 of chapter 6.

Hence, everything we did so far in this chapter can be adapted to fermions.
We have perturbative expansions of correlation functions in terms of Feyn-
man diagrams and, just as before, only the connected diagrams will matter.
We also have Feynman rules for computing the amplitudes associated with
such diagrams. We shall not elaborate on these rules beyond merely stating
them. For details, the reader is invited to look in chapter 4 of [PS]. We
will in fact be a bit more general here and consider the rules for a theory
involving a Dirac fermionic field 7 coupled with a bosonic field ¢ through
the so-called Yukawa potential V = ginp¢ (g being the coupling constant).
In this theory, we will have two types of edges: the scalar particles (bosons)
are represented by dashed lines, and the fermions are represented by solid
lines. The Feynman rules in momentum space are stated in figure 6.

7.4.7 Feynman rules for QED

We can turn to the case of Quantum Electrodynamics (QED), where we
have a fermionic field (whose particles and anti-particles are electrons and
positrons, respectively) interacting with a background electromagnetic field.
The full Lagrangian density for QED is

gQED = 1;(“7 - m)w - %FMVFHV - 6157“'(/}14“ 5

Here, as we saw before, A, represents the connection (vector potential), and
F,, is the its curvature (the field strength tensor). We interpret the con-
stant e as a coupling constant; one can therefore write down a perturbative
expansion as a power series in powers of e. As before, we have sums of
amplitudes over connected Feynman diagrams, and corresponding Feynman
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Photon propagator: AR AVAVAVAVAANY = __Zg%‘?
q q® +ie

New vertex: . W
= —ijey

External photon lines:

A =S ) Rl = = G0

p p

Fig. 7.7. Additional Feynman rules for QED

rules for computing such amplitudes. The Feynman rules for QED are given
in figure 7.

7.4.8 Power counting

Let us consider a perturbative field theory whose Lagrangian involves both
bosons and fermions. We assume that we have already performed a pertur-
bative expansion, and we examine a given Feynman amplitude of a (con-
nected) Feynman diagram G in this expansion. Let us evaluate the contri-
bution to the degree of superficial divergence of G, denoted w¢, of a term in
the Lagrangian that involves r derivatives acting on the product of b bosons

and f fermions. The propagators for bosons contribute %(—Qb), and the

propagators for fermions contribute %(— f); here, it is necessary to divide
by 2 because each propagator corresponds to an edge of G having two ver-
tices. The integrations over internal momenta contribute 3(b+ f)-d (where
d is the dimension). The delta function imposing momentum conservation
at the vertex reduces the number of integrations by 1, and therefore con-
tributes —d to wg. Therefore, since each derivative contributes with 1, the

net contribution of this vertex to wg is

1
5(-2 = f+bd+ fd)—d+r.
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This can be written as wg = d — d, where

bd—2)  f(d—1)

6 =
2 2

+r.

7.5 Perturbative Yang-Mills theory

In Yang-Mills theory, the gauge invariance implies that the quadratic form
appearing in the Lagrangian is non-invertible.

7.5.1 Ghosts and gauge-fixing

This problem was solved by Faddeev and Popov in 1967 with their theory
of ghosts and gauge fixing (Landau gauge). Also by Fradkyn and Tyutin in
1969 (Feynman gauge). In 1971 t’'Hoof gave a formal proof of the validity
of these theories.

The idea behind the Faddeev-Popov construction is to proceed through
the following steps

(1) Gauge firing. Once the gauge invariance is understood one performs
a gauge fixing. This means that one finds a submanifold of the space
of connections, {A4; F(A) = 0}, that is intersected by each orbit of the
gauge group at exactly one point. This yields the notion of a determi-
nant (the Faddeev-Popov determinant) of an operator M such that the
partition function of the theory can be written as

Z - / ¢i9(4) det (M) 5(F(A)) 24 .

(2) Ghosts One writes the determinant of M as the exponential of a trace
by introducing Grassmann fields 7,7 so that

det (M) = exp{/(~~)dndﬁ} .

(3) One incorporates the determinant as well as the d-function into the
exponential, writing

Z = / eSANN) g Adndm

(4) Perturbative expansion. Now one writes
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where Sq is the quadratic part of the action, Sy¢ is the non-quadratic
part, and g is a coupling constant, and then one performs a perturbative
series expansion as in the case of invertible Lagrangians.

The main difficulty to extend perturbation theory to the case of gauge
theories is that the quadratic part of the Lagrangian is no longer invertible
due to the gauge invariance. One possible strategy to overcome this problem
is to perform the path integral in the quotient space by the gauge group
action. In order to construct a formal measure on the quotient space we start
by gauge fixing: we represent the quotient space by a submanifold ¥ of the
space of connections % which is transversal to the orbits of the gauge group
¥ intersecting each orbit in a unique point. Such a submanifold is usually
given by the zero level set of the function F' on the space of connections.
The idea is to construct an induced “measure” on 3, restrict the gauge
invariant functional we want to integrate to X, and integrate it with respect
to the induced “measure”. Of course the result must be independent of the
choice of ¥, which requires that the induced “density of the measure” should
contain a Jacobian determinant related to the derivative of F', the so called
Faddeev-Popov determinant. To make this picture clearer let us examine
an analogous finite-dimensional problem.

7.5.2 A finite dimensional analog

Let G be a compact Lie group of dimension [ acting on the right on R™ by
isometries and so that the projection of R™ onto the orbit space R"/G is
a trivial principal bundle. Let S: R™ — R be a G-invariant function. We
want to express the integral

Z= / expliS(a))de

in terms of an integral in the orbit space. In order to do that, we will
represent the orbit space by a submanifold 3 C R that intersects each orbit
in a unique point. We may assume that ¥ = {x € R"; F'(x) = 0} where F' is
a smooth fibration onto R!. Let d\y, = §(F(z))dz be the restriction of the
Lebesgue measure on ¥ and take a volume form dvy on G, invariant by right
translation. On X x G we will consider the product volume form dAy; x dv.
By invariance, the Jacobian of the diffeomorphism ®: ¥ x G — R" given by
®(y,9) = Ry(y), is a function det(A) that depends only on the first variable.
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Since S(®(y,g)) = S(y), we have

7= / expliS(y)]det(Ay))dAs x dvy
YXxXG

_ / iy / expliS(y)]det (A(y)) drs, .
G P

We may also write this equation as
Z = / exp[iS(x)]det(Ax(x))d(F(x)) dx ,

where det(Ayx(x)) = det(A(y)) if  is in the orbit of y € ¥. The next
step in the Faddeev-Popov procedure is to write the delta function and the
determinant as an exponential. For the determinant, the trick is to use
anti-commuting variables and write

det(Ax(x)) = /exp[i(E Ay c)]dedc

If the gauge fixing map F' can be translated to give another gauge fixing
Y, ={z € R"; F(z)—z = 0} in such a way that det(Ax, (z)) = det(Ax(x)),
we again have

Z = /n exp[iS(x)] det(Ax(x))é(F(x) — z) dx

for all z, and we can integrate over z with a Gaussian density to get

= 2 ex LZHQ exp [¢S(x)| de T T) —z)dx
z=N(©) [ d p[ 25 }/ p [i5(2)] det(As(2))S(F(x) — 2) dz

Interchanging the integrals and using that

/Rl exp [#ﬁz”g] 5(F(z) — 2)dz = exp [7—1‘11};?)112} ,

we get the following expression for the integral:

=N [ do [ dn [ dnexpli(S() = Ser(e.7.m) - Sar()
where Spp(x,7,n) = TAxn is the Faddeev-Popov action and
_iIF@)P
2€

is the gauge fixing action. The new action is a function of more variables.

Sar(x)

The gauge invariance of the initial action implies that its quadratic part
cannot be inverted, and this problem is eliminated by the introduction of
the new variables.
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7.5.3 The Faddeev-Popov and gauge firing actions

We now consider the pure Yang-Mills integral
. 1, .
Z- /@A exp[l/(—Z(Fw,)Q)] i

As gauge fixing we can take a Lorentz gauge: F(A) = 0"Ajf(x) or some
translation of it F'(A) —w*(z). As in the finite-dimensional example, we can
write this integral as

Z- / Pa / P ASDF(4)) det (%)

where (A%)f = Af + é@ua“ + fabcAZ. For an arbitrary function w?®, the
Faddeev-Popov operator associated to the gauge fixing F'(A) = 9™uAj(z) —
w(z) is

0F(A“ 1

U 1o

o g

where D, (a%) = 0,a® + ¢ f“bCAZaC is the covariant derivative. To lift the
determinant of this operator to an exponential, we use anti-commuting fields,
called Faddeev-Popov ghosts,

det (éﬁ“Du) = /9095 exp[i/d4x5(—@“DM) .

As in the finite-dimensional example we can integrate over w® with a Gaus-
sian weight to lift the delta function also to a exponential, thereby getting
the gauge fixing action

Sar(A) = / d4x2i§(amz)2 ,

and the ghost action
San = i/d%E(—@"DM) c.

We remark that in calculating the correlation functions, the infinite factor
| 2A appears both in the numerator and in the denominator and so it
cancels out. In the case of QED, the Faddeev-Popov determinant does not
depend on the connection A and so it can be moved outside of the integral,
and therefore it also cancels when computing correlation functions. So in
this case the ghosts do not appear. We can also incorporate fermions in the
theory as before. We can see that the quadratic part of the total Lagrangian
can be used to define the propagators, which are the following;:
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(i) Ghost propagator

| iba
k? + ie
(ii) Vector boson propagator
kuky . idap
(=gmu + (1 =8 k2 )k:2 + i€

To complete the Feynman rules we need also to describe the vertices.
(i) Boson-ghost vertex
gfabcka
“w
(ii) Three-bosons vertex

—ig f™ (k1 — k2)Agu + (k2 — k3)ugur + (k3 — k1)u 9,

(iii) Four-bosons vertex
—ig? [f abe pade (g G — GuoGup) + Permutations

(iv) Integrals over propagators and delta functions at the vertices, as before.

7.5.4 The BRST cohomological methods

As we have seen the Faddeev-Popov method consist in breaking the gauge
invariance by a gauge fixing and extending the phase space by introducing
new fields, the ghost fields and anti-ghost fields. This approach was sub-
stantially improved by C. Becchi, A. Rout, R. Stora and I.V. Tyutin that
introduced in the theory some cohomological methods inspired on the work
of Koszul in the 50’s. They discovered a global symmetry of the Faddeev-
Popov action, the BRST differential which is a nilpotent derivation acting on
the extended space containing the fields, anti-fields, ghosts and anti-ghosts.
The zero-dimensional cohomology of the associated complex is the space of
gauge invariant physical fields.

To introduce these new ideas we will analyze a very simple finite-dimen-
sional situation where the space of fields is a finite-dimensional vector space
V and the group acts as translations by vectors of a subspace W C V.
The orbit space is therefore the quotient space V/W. We consider the
algebra A = Pol* (V) ® Pol~ (W), where Pol™ (V) is the symmetric tensor
algebra of V' and Pol~ (W) is anti-symmetric tensor algebra of W. The
elements of a basis {v!,..., 9"} of V generate Pol* (V) with the relations
v;v; = v;v;, whereas a basis {w!,..., W™}, w* = C’;?‘vj, generates Pol™ (W),
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with w*w? = —wlw®. This is a graded algebra: A = Ag® Ay --- & A,
where an element of Ay is of the form P(v!,---  v™)w™ ... w* where P is
a polynomial. We can also write A as a super-algebra A = Ay @ A; where
the elements of Ag have even grade and the elements of A; odd grade. The
parity of an element a € Ay U A; is defined as |a|] = 0 if a € Ay and
’CL‘ =1if a € A;. Note that A, - A; C Ak+l: Ay - Ay C Ag, Ay - A1 C Aq,
Aq-A; C Ap, the elements of Ay commute with everybody, and two elements
of A; anticommute. An odd derivation of a graded algebra A is a linear map
s: A — A that maps Ag into Ay, A1 into Ag and satisfies the graded Leibnitz
rule:

s(a-b) =s(a) b+ (=Dl s(b) .

for homogeneous elements. A differential is a nilpotent of order two odd
derivation: s o s = 0. In our example we can define a differential by

s(v') = Cw®
s(w*) =0,

extending it to the whole algebra by the Leibnitz rule. The grade of s
is one since it maps Ay into A1, so it defines a cohomology H*(A) =
ker(s|Ag)/Im(s|Ag—1). It is easier to compute this cohomology if we make
a better choice of generators adapting the basis of V to W: v/ = w’;j =
1...m. Then we can define a homotopy h as a graded derivation by

,UOC
h(v!)=0, j=1,...,m.

If N: A — N is the linear operator such that N(a) = ka for a € Ay, then
we have

hs+sh=N, [h,N]=][s,N]=0

Thus, for a € A, k > 0 with s(a) = 0 we have

a= %(hs + sh)(a) = %s(hp)

which implies that H¥(A) = 0 for k > 0. Furthermore, H°(A) is clearly
isomorphic to the algebra (Pol™(V/W)) of invariant polynomials. Thus,
by introducing the ghost variables we have described the gauge invariant
polynomials cohomologically.

We can also describe cohomologically the gauge fixing procedure. Let us
consider, in the finite dimension space V', a submanifold ¥ transversal to
the gauge orbits and given by a set of polynomial equations G, = 0 which
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we assume are independent ( they define a submersion on another vector
space whose dimension is the codimension of ¥ in V). We introduce the
anti-ghost variables w,, and define

s(wa)
s(vj)

Now the algebra is negatively graded. Again the cohomology H~* vanishes
for k > 0 and H? is isomorphic to Pol(V)/(Is), where (Ix) is the ideal of
polynomials that vanishes on 3.

Let us use these ideas to construct the infinitesimal BRST symmetry of
the Faddeev-Popov action for pure Yang-Mills.

We may write the Yang-Mills Lagrangian as

Ga ,
0.

—ZG‘;WG“W
where G}, = 0,4}, — 0, A} + gffCAZAﬁ is the field strength, f; are the
structure constants of the Lie algebra (A4, = AjT, where Ty, Ty, are the
generators of the Lie Algebra with commutators [Ty, Tp] = fg,T¢). We have
incorporated a coupling constant g in the self-interaction of the gauge field
for the perturbation expansion.
The Faddeev-Popov action is

_ _ 1
Lrp(A,n,m) = —ZGZVGC‘“” + 70" Din° — 2€( LA
where D} = 640,49 f “bCAIZL is the covariant derivative. Let us construct an
infinitesimal symmetry of the Faddeev-Popov action as an odd derivation s.
So it is enough to define s in the generators, A,,7n,7. We start by defining

sA,=—-D,n

Since the Lagrangian of pure Yang-Mills is invariant by an infinitesimal
action of any element X of the Lie Algebra, and the infinitesimal action of
X has the same form as s, it follows that sLyj; = 0. Now let us consider
the gauge fixing part of the Lagrangian:

(5 (BuA)?) = = (0,410, D"

On the other hand, for the ghost part of the Lagrangian we would have

s(M0" Dyn) = s(1)-(0" Dyn)) —7-5(Dpn) -
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and
S(Dun) = D,u(sn) + (SDu)n = Du(sn) + g[SA;mn]

= Dy(sn) = g[Dun,n] = Dy(sn) — Du(%g[’?v )

Now it is clear that the whole Lagrangian will be invariant if we define

s(n) = %g[nm]

and
s(m) = (0,4")

It is easy to see that the derivation s is nilpotent of order two. From the
definition of s it is clear how to define the grades which is called the ghost
number: A, has ghost number 0,  has ghost number 1 and 7 has ghost
number —1.

The Lagrangian BRST formalism uses the following steps:

(1) Start with a gauge invariant Lagrangian Lo = Lo(¢)

(2) For each gauge degree of freedom introduce a ghost field n* whose ghost
number is defined to be +1.

(3) Construct a BRST transformation s in the extended space of fields so
that the initial action is invariant and the s> = 0.

(4) Enlarge again the space by introducing a anti-ghost field g of ghost
number —1 and an auxiliary field a of ghost number 0. Extend s by
s(f) = o and s(a) = 0.

(5) Define the effective action by adding a BRST invariant term to the
original action of the form s(1)) for some fermion in the algebra of fields
with ghost number —1.

(6) The zero cohomology should give the space of physical observables (gauge
invariant fields).

In [BV], Batalin and Vilkovisky extended the above cohomological meth-
ods to cover constrained quantum systems much more general than Yang-
Mills. Their method is closer to a hamiltonian formulation.

They extended the phase space as follows. To each commuting (anti-
commuting) gauge parameter they introduced a ghost fermionic (bosonic)
field. For more complicate constrains they have also to introduce ghost of
ghost variables. Then they doubled the space by introducing an anti-field
corresponding to each field (including the anti-ghosts). The fields and anti-
fields form a graded algebra. Representing all fields by the same symbol
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®4 and all anti-fields by " they defined the anti-bracket between two
functionals F(®4, &%) by

sEFotG  §RF LG

F,G) = -
(£6) = 5a 5B%  0D% JBA

Where 6% and 6% denotes left and right functional derivatives, that are equal
to each other modulo the sign of the fields involved. This anti-bracket has
ghost number +1 and is odd. The BRST transformation is represented in
terms of this antibracket by a functional S:

sF=(S,F).

The nilpotency of the BRST transformation is then equivalent to the so
called classical master equation

(S,8)=0.

This equation is solved inductively S = Sy + S1 + - - - starting with Sy, the
original classical action. The solution of the classical master equation gives
the action that is used in the path integral quantization. By construction
this action is BRST- invariant but the formal measure of the path inte-
gral may not be. The invariance of the formal measure under the BRST
transformation is given by the equation

AS =0
where A is the second order differential operator

st st

A=455a5,

where the sign depends on the parity of the field ®*. The second-order
differential operator A is nilpotent of order two, is odd and has ghost number
-1. It is not a derivation of the product and the failure to be a derivation is
given by the anti-bracket:

A(AB) = A(A) - B— (-1)4A.AB) = (-4, B) .

If the formal measure is also BRST- invariant, then the path integral is re-
duced to the zero set of the BRST transformation (fixed point of symmetry),
which in several cases is finite dimensional. If this is not the case we have to
construct a quantum action by adding quantum corrections to the classical
action:

W =28+hW, +hWy+---
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in order to solve the quantum master equation
1
§(W, W) =ihAW .
Notice that the quantum master equation reduces to the classical master
equation when A — 0. Although the classical master equation has a solu-
tion for general gauge theories, there may exit obstruction for the existence
of the quantum master equation that we call an anomaly that prevents
quantization. In theories, like Yang-Mills, in which there exists a solution
of the quantum master equation, there exists a quantum BRST symmetry
o such that

oA = (W,4),

which is again nilpotent of order two. For more details on classical and the
quantum BRST the reader should consult [HT], see also [FHM] and [Sth].
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Renormalization

We saw in chapter 3 that, when attempting to construct a relativistic quan-
tum theory of particles, Dirac and others realized that the number of parti-
cles in the system could not be taken to be constant, because new particles
are constantly created and also destroyed. The solution to this problem was
to develop instead a relativistic quantum theory of fields, because a field
corresponds already to infinitely many particles. However, for many years
there were serious doubts in the physical community concerning the foun-
dations of this theory because, as we have seen, many of the calculations
done in the perturbative theory give rise to infinities. The situation changed
completely in the late forties when R. Feynman, J. Schwinger, S. Tomonaga,
F. Dyson, and others developed a procedure to remove these infinities from
the calculations, and the finite results obtained had an impressive agreement
with experiment. The idea of renormalization was born. For this discov-
ery, the first three shared the Nobel prize in 1965. In the early 70’s a new
breakthrough was achieved when G. t’Hooft and M. Veltman (Nobel prize
1999) proved the renormalizability of gauge theories. Finally K. Wilson de-
veloped the concept of renormalization group, related to critical phenomena
connected with phase transitions. His ideas were later used in perturbative
quantum field theory, as we will describe below, and also in constructive field
theory. For these developments, Wilson received the Nobel prize in 1982.

8.1 Renormalization in Perturbative QFT

As we have seen, the coefficients of the perturbative expansion of the cor-
relation functions of field theory in terms of powers of the Planck constant
and of the coupling constants can be described by a finite sum of amplitudes
which are finite-dimensional integrals of rational functions, each integral be-
ing associated to a Feynman diagram. This formula, which is a consequence

213
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of the Wick theorem on Gaussian integration, is problematic because many
Feynman diagrams give rise to divergent integrals. This is to be expected,
since a typical Gaussian field is not a smooth function (or a smooth sec-
tion of a fiber bundle) but it is a Schwartz distribution and the perturba-
tive expansion of the correlation function involves integration of products
of distributions which in general are ill-defined mathematical objects. The
formula for each amplitude of a Feynman integral is given by the Feynman
rules of the theory. Theses rules are based on the Lagrangian of the theory,
and they start by describing all possible Feynman diagrams of each order,
and then associating propagators to each line of the diagram and coupling
constants multiplying an integration on the internal vertices. The formula
for the amplitude of a diagram D is therefore a product of distributions
[Leri Af (z;, — xy,) over all lines [ of the diagram with endpoints labeled
by four vectors x;,, s, of Minkowski space. The Fourier transform of each
of these distributions is given by

i : - CN—
A; (p) = limeyo iP(p)(p* — mj +ie) ™",

where m; > 0 and Pj(p) is a polynomial (of degree zero in the case of a
scalar field). The divergences of the Feynman amplitudes are due to the
slow decay of the propagators in momentum space (ultraviolet divergences)
and also to singularities of propagators at zero momentum which generally
occur in the presence of massless fields (infrared divergence). In order to
get finite results for the correlations functions and S-matrix, we have to
renormalize the theory. This procedure involves two steps. The first one
is to regularize the theory by introducing a cut-off. One possible cut-off is
the lattice discretization where the cut-off is the lattice width and the box
volume. This is very natural, since it is a finite dimensional approximation
to an infinite dimensional problem. However, it has the disadvantage of a
severe loss of symmetry. A choice of cut-off that preserves Lorentz symmetry
is the following. First we write

A (p) = lim (p) /0 da exp [ia(p® —mj +i€)] .

The corresponding regularized expression is

&lr’e(p) = 1im€lOPl(p)/ dav explio(p® — le + i€)] .

The corresponding distribution in coordinate space,
2

AP (z) = Zpl(za—z)/ — exp [ia(m% —i€) — Z'E 7
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is now a smooth function with moderate growth. Hence the product

H A;’E(xil - xfl)

leL(D)

is a well-defined smooth function as well as a distribution on R*". Its limit
as r — 0 and € — 0 has singularities at coincident points (the generalized
diagonal). However the limit defines a continuous functional in the sub-
space .#n(R4") of test functions ¢ € .#(R%") that vanish on the diagonal
to sufficiently high order N = N(D). The renormalization procedure con-
sists in subtracting cut-off dependent counter-terms from the Lagrangian, by
splitting the bare parameters of the Lagrangian (masses and coupling con-
stants) into a sum of physical parameters and cut-off dependent divergent
parameters, so that the amplitude of each diagram computed with the mod-
ified Lagrangian will be equal to the original amplitude where counter-terms
that vanish on .y (R%") are subtracted, so that the remainder extends to a
functional on .7 (R%"). As K. Hepp remarked in [He], this renormalization
procedure may be interpreted as a constructive form of the Hahn-Banach
theorem. That this construction can be made in a consistent way in all
orders was first established by Dyson in [Dy]. However the proof was in-
complete since it is necessary to develop a combinatorial way to organize
the construction of the counter-terms that is rather complicated, due to the
presence of sub-diagrams with overlapping divergences. This combinato-
rial construction was performed by N. Bogoliubov and O. Parasiuk in [BP].
This proof was rather complicated and had also some mathematical gaps
that were fixed by Hepp in [He]. Zimmermann in [Zi], gave a much cleaner
proof working directly in momentum space, using very clever and elegant
combinatorial formulas that we will describe below.

In the case of gauge fields, the above regularization does not preserve
gauge symmetry. A new regularization, called dimension regularization, was
developed by G. t'Hooft and M. Veltman in [tHV] to extend this procedure
to gauge field preserving gauge invariance in the limit where the cut-off is
removed. As we have seen before, to formulate the perturbative expansion of
the correlation function of gauge fields we have to fix the gauge and introduce
ghost fields. In this setting the gauge invariance is expressed by a set of
identities among the correlation functions, called the Ward identities in the
case of QED or Slavnov-Taylor identities in the case of non-abelian gauge
theories. The regularization and counter-term subtraction destroys these
identities and a major effort of the theory is to prove that these identities
are restored in the limit when the cut-off is removed given finite and gauge



216 Renormalization

invariant renormalized correlation functions that can be used for physical
predictions.

Let us discuss in more details the approach of Zimmermann. The Feyn-
man rules in momentum space associate a Feynman propagator to each line
of a diagram. This propagator may be written in the form

1
B—12—m?+ie(l>+m?)

This way to present the Feynman propagator breaks Lorentz invariance and
we have to prove that it will be restored in the limit as € | 0. The amplitude

of a diagram is a function of the external momenta ¢ = (qi,...,q,), the
masses m = (mq,...,my) and €, and is given by the integral
P(k,q)
I(g,m,e) = [ dk . ,
H?:l fj(kv q,m, E)
where k = (ki,...,kn) are the loop momenta, f;(k,q,m,e) = I3 — 1> —

m? +i(1> + m?) and the 4-vectors [; are linear combinations of the external
momenta and loop momenta. We consider also the associated Euclidean
integral

P(k,q)
H?:l €j (kv q, m) ’

with e;(k,q,m) = lj2~70 + l? + m? To compare the two integrals when € > 0
we just need the following simple estimates:

Ie(q,;m) = [ dk

12 —i—le < 1
1B —12—m? +ic(l?+m})| ~ ¢
and
12 1
<3/14+—=.
|l(2)—l2—ml2+ie(l2+ml2)] - + €2

These estimates imply that

. 1 1
—i—\lg—lQ—le—l—ze(lQ—l—m%)]gz—i— 1+€—2.

1 <l2—}—ml2
Vite — 1

Therefore, the Minkowski integral is absolutely convergent if and only if

the Euclidean integral is. With this observation, Zimmermann extends the
power counting theorem that Weinberg [We] proved for Euclidean integrals
to the following.
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Theorem 8.1 If all masses are positive, the Minkowski integral is absolutely
convergent if and only if it has negative dimension as well as all sub-integrals

of the form

P(k,q)
I(g,m,e, H) = dV —== ,
( ) H Hj:l fj(k7q7m7€)

where H is any affine subspace of RY™. Here, the dimension of a ratio-
nal integral is d = di + do where dy is the number of integration variables

(dimension of H) and dy is the degree of the integrand with respect to the
integration variables.

If the criteria of the above theorem are satisfied we deduce that the Feyn-
man integral defines, for € > 0, a smooth function of the external momenta.
As we mentioned before this function is not Lorentz invariant. So the next
step is to prove that as € | 0 it converges to a Lorentz invariant distribution
in .#/(R*"). In this proof one uses the so-called Feynman trick,

—(n— o Pk, q)
I(qg,m,e) = ( 1)!/dk/Ad (i aifi(k,q,m,e))m

with da = dap -+ - day,—1 and oy = 1 — Z?;ll a;j, and where A is the simplex

n
A = a:Zajzl,ajZO
j=1

The reader is invited to prove (a generalized version of) Feynman’s trick in
the exercises at the end of this chapter.

It is clear that if the Feynman integral associated to a diagram D has
positive dimension it is divergent, and hence needs to be renormalized by
subtracting counter-terms. The strategy is to expand the integrand in Tay-
lor series and subtract the part with positive dimension. But even if the
dimension is negative, it can also be divergent due to the presence of a sub-
diagram with positive dimension, i.e. the divergence happens when some
of the momenta go to infinity and some others remain finite. If a diagram
is divergent but does not have any divergent subgraph we say that it is
primitively divergent. Such a diagram is renormalized by subtracting from
the integrand the divergent part of the Taylor expansion of the integrand
around zero momenta, and then we can use the above Weinberg theorem to
conclude that the renormalized integral is absolutely convergent. If we de-
note the integrand by .# (D) and its Taylor polynomial up to the superficial
divergence of the diagram by Tp.# (D) then the renormalized amplitude of
the primitively divergent diagram is I(D) = [(1—Tp).# (D). If the diagram
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is not primitively divergent we need an inductive procedure that requires a
combinatorial analysis.

Definition 8.1 A subdiagram of a Feynman diagram I’ is a diagram ~ such
that the set of lines of v is a subset of the set of lines of I' and the vertices
of v are the end points of its lines. If v is a subgraph of I then the reduced
graph '/~ is the graph obtained from T' by collapsing the lines of y to points.

Notice that if 71, . .., 7. are the connected components of v then ¥ (I'/~) =
(V(D\Y (7))U(V1U...V,) where V; = {#(v;)} and the lines that connects
a given vertex of ¥ (I')\ ¥ (7) to V; are the lines in £ (I')\ £ (7y) that connect
this vertex to some vertex in {#'(7;)}. An important concept is that of a
one-particle irreducible graph, 1PI. These are connected graphs that remain
connected after the suppression of one internal line. Any graph is a tree
whose vertices are 1PI graphs. A forest is a family % of subgraphs of G
such that any two graphs in .% are either disjoint or one is strictly contained
in the other. The relevant forests for renormalization are the forests Zy;, of
divergent 1PI subgraphs. The final formula for the renormalized amplitude
of any diagram D is

Renorm I(D) = / > I 1,7 (D))

FDiv YEFDiv
This is known as the forest formula of Zimmermann.

Remark 1. The combinatorics of the Feynman diagrams has reached a much
higher status in the recent development of renormalization by A. Connes
and D. Kreimer [CK1, CK2].

The proof of the BPHS theorem is quite involved. In [Pol] (see also [Sal]),
Polchinski gave a much simpler proof for the ¢* theory using the renor-
malization group approach developed earlier by L. Kadanoff and K. Wilson
[Wil] (see also [Sh]) to describe critical exponents in phase transitions of
statistical mechanics models. Polchinski’s method was extended to cover
QED and Yang-Mills in [KK], [KM1] . The renormalization group method
is based on the physical intuition that a physical theory is scaling (energy,
momenta, mass) dependent. In each scale we should have an effective the-
ory given by an effective Lagrangian and the renormalization group equation
tells us how to transform the effective action from one scale to the other.
We may parameterize the scales by a cut-off parameter A. The renormal-
ization transformation relates a Lagrangian £ at scale A with an effective
Lagrangian Z.g at scale A; < A which has the same correlation functions.



8.1 Renormalization in Perturbative QFT 219

This gives a dynamics in the space of Lagrangians whose evolution, in renor-
malizable theories, converges to some fixed point. In the original approach
by K. Wilson, what is called a renormalization group was in fact a discrete
semi-group generated by a map in the space of theories. In Polchinski’s
approach, the evolution in the space of theories is given by a first-order
differential equation, the flow equation.

Let us explain the main ideas of the flow equations method in the case
of the ®* theory. The first step is to regularize the bare propagator with a
cutoff Ag and a also introduce a flow parameter 0 < A < Ay, so that

1 _ICQ-!—2m2 k2 4m2
CMop)y == —— e 2 —e az | .
(p) P p—

We denote by fia A, the Gaussian measure of covariance RCAA0. For A < Ay,
this Gaussian measure converges, as A — Ag, to a Dirac measure at ® = 0.
To the interaction part of the bare action we add the counter-terms:

Sho — /dac (%@4(17))
+ [t (GaA0)B@P + 3000870 + AP )

The generating functionals of the Schwinger functions are given by the ex-
pression

Ao

ZA’AO(']) = /d,U«A Ao (@)6_%Sint(¢‘)+%<¢'at]> :
and the generating functional of the truncated Schwinger functions by

cRWMR(T) _ ZMo(J)
Z5A0(0)

Finally we consider the generating functionals of the amputated truncated
Schwinger functions

Ao

er (B0 +IRR) /dﬂA,Ao(‘I’)e_%S""t(M(b) :

Note that

1A

LAM0) =0 = en!™ = zMM0(0) |

Hence

LA (g) = 2 (6, (€M) ) (9) — WM (M) (g)
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Its n-point function in the momentum space has an expansion as a formal
power series in A, namely

LMy py Zhl XAAO (P1s---Pn)

where %f}l’Ao (p1,...ppn) is given by the sum of values of connected Feynman
graphs with n external legs and [ loops. Taking the derivative with respect
to A on both sides of the above equation defining the amputated truncated
Schwinger functional, and using the loop expansion, we get the system of
equations that we describe below.

Let w = (wl,l ...Wn_14), where the wj, are non-negative integers, let
lw| = > wiy, and let

n—1 4
i=1 p= 1( pla“)
The system of flow equations is the following
AA
81\86‘)9%,7{ 0(171: s 7pn) =
1 1
2 (2m)4

S DN D DD S E v

O nidne=nl+lo=l witwrtw3z=w i3 < <ip;

/ dle ONC™MM (k) - awggAlAgH(k,pl,---,pn,—k)

X 8‘”3@ACA’A°( ) X aLUQE%/;T/ILOJrl( —P;Djyy- - 7pjn2) . (81)

Here, we have p = —p;, — - — p;,, and j1 < -+ < jn, satisfies

{il,...inl,jl,...jnZ}:{1,...7’L} .

In the ®* theory, because of the symmetry ® — —®, all the n-point functions
for n odd vanishes. Then in the above formula the integers n,nq,ny are all
even.

Notice that the equation defining the various generating functionals above
are just formal expressions since the support of the Gaussian measure is the
space of distributions and, since the product of distributions is not well de-
fined, the integrands do not make sense. Therefore we have first to discretize
the space and restrict to a bounded volume, perform all the manipulations
and later take the continuous limit and the thermodynamical limit. For
finite values of Ay we get that the continuous limit of each coefficient of
the loop expansion converges to a function that is smooth in the variables
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and also in the parameters, and the above system of differential equations
holds in the limit. As we remarked before, as A — Ay the Gaussian measure
dpip a, converges to a delta function at ® = 0. Therefore LAoAo — S{}{% and
also

0“Lyn=0 for n+w>5.

That the ®* theory is renormalizable is the content of the following result.

Theorem 8.2 The coefficients
v(Ao) =D Hlu(Ag)...c(No) = D Hley(Ao)
=1 =1

can be adjusted so that the limit

li lim L =L
AOILHOOA% l,n(ph ,pn) l,n(ph ,pn)

exists for all n and for all l.

To prove this theorem we need to bound the solutions of the system of
flow equations by an induction procedure, and for that we need some renor-
malization condition that we impose as

gt =g, =0, 9. =0.
A direct calculation in the tree level (1=0) gives

A\ ALA
g{),l, 0= 0 ) 9%0727 O(p7 _p) =0 )

AA AA
Zo3 "(p1yp2,p3) =0, Z541 " (p1,p2,P3,P4) =9 -

Notice that with the above conditions, for each [ the right hand side of
the system of flow equations involves only terms where the second index is
smaller than [. Hence, to estimate the left hand side at the level n,l by
induction we have to have an estimate of the right hand side at the level
n + 2,1 — 1 and below that. To perform the induction step we have to
integrate the estimate in the derivative with respect to A. If n + |w| > 4
the bounds decrease with increasing A. In this case we integrating from Ag
down to A using the initial condition 8“’.,2’3%)’1&0 (p1,---,pn) = 0. In the few
other cases we integrate from A = 0 up to A firstly at zero moments using
the renormalization condition and extend to all momenta using the Taylor
formula (see [Mul]). The theorem follows from the two lemmas below.
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Lemma 8.1 There exist polynomials P;, Py with positive coefficients that
depend only on l,n,w such that

d —n—|w A+m
L (prse o pa)| < (A+m) Py <log " )P2 <A’f‘m)

This lemma is proved by an inductive procedure starting at [ = 0 and
n = 4, where we can take

g

P1:1 and PQI (A—}—m)‘l*n*‘w‘ .

From the flow equation we get from this an estimate of J,0%.%1 2. From
that we get by integration that the estimate for 8“’31)’"2/\0 holds. We proceed
by induction that increases n 4 21 and for n 4 2l constant decreases in n.

Lemma 8.2 There exist polynomials Ps, Py with positive coefficients that
depend only on l,n,w such that

» A 4 m)>nll Ao +m P
9809 L;};LAO(ph”"pn) = ( (A jm)2 b (10g Om >P4 (A‘%—’m> '
0

This lemma is proved by the same inductive scheme on the flow equation

derived with respect to Ag and using the previous lemma. The theorem is
an easy consequence of this lemma.

To prove renormalizability of gauge invariant theories following the above
ideas, we have to face the problem that gauge invariance is destroyed by the
regularization. In fact the Schwinger functions are not individually gauge
invariant but the gauge invariance of the theory is expressed by some iden-
tities between the different Schwinger functions called the Taylor-Slavnov
identities (generalizing the Ward-Takahashi identities in QED). Since the
Taylor-Slavnov identities are not satisfied after the cut-off, a careful analy-
sis must be performed to prove that they are restored when the cut-off goes
to infinity. This is done in chapter 4 of [Mul]. See also the short survey [K].

8.2 Constructive Field Theory

The great success of the perturbative theory discussed in the previous section
and the impressive precision of its predictions naturally indicates that it
is really a perturbative expansion of a quantum non-linear theory. The
program of constructive field theory is to build non-linear examples and
analyze the spectrum of the particles. One should look for a Hilbert space,
a positive energy representation of the Poincaré group in this Hilbert space
and an operator-valued distribution satisfying natural axioms and having a
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non-trivial scattering matrix. To be physically relevant the theory should
also exhibit what is called a “mass gap”. This means that the spectrum
of the Hamiltonian, which has zero as an eigenvalue with the vacuum as
eigenvector, must have a gap between 0 and a positive number m. The
importance of this mass gap is that it implies the exponential decay of the
correlations and, in the case of QCD, it explains why the nuclear forces
are strong but short-ranged. The development of this program in the 70’s
involved very hard mathematical estimates in functional analysis, and the
final outcome was the construction of families of non-trivial theories for
spacetimes of dimensions 2 and 3.

From the intimate connection established by Osterwalder and Schrader
between the Minkowski and Euclidean formulations of quantum field theory
one can formulate the existence problem in the realm of Euclidean Quantum
Field Theory, where the goal is to construct interesting probability measures
on the g-algebra generated by the cylindrical sets in the space of distribu-
tions. Here a cylinder is a set of the form {® € /5 (®(f1),...,P(fn)) €
B C R"}, where f; € . are test functions and B is a Borel set. The idea is

Smt(q))duc where dpuc is the

to make sense of the formal definition dy = %e‘
measure in the distribution space defined by the quadratic part of the classi-
cal action, Sy, is higher order part of the action, for example, Si;(®) = A®*,
and Z = f o e‘sim(q’)d,uc is the normalizing factor. As we have mentioned
before, this expression is formal because the functional S;,; does not make
sense in the space of distributions. A natural strategy would be to use a
cut-off A such that for the corresponding measure dpc(p) the definition does
make sense and we get a measure dup in some space of functions. The next
step is to renormalize the action by adding a counter-term with the same
terms that are in the original Lagrangian but multiplied by coefficients that
depend on the cut-off (and will diverge as we remove the cut-off). Then we
have to prove some a-priori bounds on the renormalized measure that are
uniform in the cut-off and use these bounds to prove the convergence of the
approximate measures to a measure in the distribution space. In the 70’s
many papers by A. Jaffe, J. Glimm, B. Simon and others were dedicated to
this program and the final outcome was the existence of the measure, and
of the mass gap, when the space-time has dimension 3 with Sj,;(®) = \®*
for small A and in dimension two with S (®) = AP (P) where & is any
polynomial bounded from below (the so-called &2(®)y theory).

The question of compatibility of special relativity and quantum theory in
four-dimensional spacetime remains one of the greatest challenges in mathe-
matics and in physics. This question, even for the A®? theory is not resolved
in dimension 4 although most people believe that the theory does not exist
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in this dimension. The same problem is expected for Quantum Electro-
Dynamics. This is probably related to the fact that these theories are not
asymptotically free. A theory is said to be asymptotically free if the quan-
tum behavior at short distances (high energy) approximates the classical
behavior, i.e. interaction decays with energy and particles start to behave
like free particles. On the other hand, one the greatest discoveries of the
70’s is the asymptotic freedom of Yang-Mills theories with non-abelian gauge
groups. D. Politzer, D. Gross and F. Wilczek received the Nobel Prize for
this discovery that justifies the use of perturbative expansions in the strong
interactions. It also indicates that a quantum theory for Yang-Mills in space-
time of dimension four may exist. In fact, the Clay Mathematics Institute
established as one of the Millennium Problems: a quantum theory of the
four-dimensional Yang-Mills system and the existence of a mass gap, with
a one million dollar prize for its solution. Notice that the possible existence
of a mass gap for the Yang-Mills theory is a quantum effect. It is not mani-
fested classically, since all the gauge bosons, without the symmetry breaking
by the Higgs boson, are massless. See chapter 9.

Exercises
8.1 Prove the easiest version of Feynman’s trick: if a,b are non-zero
numbers, then
1 / ! dx
ab 0 lra+ (1 —x)b)% "
8.2 Generalize the previous exercise as follows. Let a # 0 # b be complex

numbers, and let o, 8 > 0. Then
1 F(a+5) /1 21— g)ft
o |

@5~ T(@r(d) o

za+ (1 —x)bjots

To prove this formula, perform the substitution z = za/(xa+(1—x)b)
in the integral on the right-hand side to see that the said integral is
equal to a~*b"PB(a, ), where B(a, 3) is the beta-function

B(a, ) = /01 2271 - 2P dz

Then apply a well-known identity relating the beta and gamma func-
tions.

8.3 Using exercise 2 and induction, prove the following general formula.
If a1, ao, ..., a, are non-zero complex numbers and oy, as, ..., a, are
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positive numbers, then

1 T(og 4+ o)

attag? - -ap” o T(ay) - T(an)

1 1 a;—1
x/ - 117] sz Ydxy - dxy, .
0 [Zmz a; Zal

This formula generalizes the Feynman trick used in the present chap-
ter. Why?
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The Standard Model

In this chapter we will describe the most general Lagrangian that is both
Lorentz invariant and renormalizable. This is the Lagrangian of the Stan-
dard Model that describes the interaction of all known particles with all
known forces, except for gravity. The group of internal symmetries of the
Standard Model is U(1) x SU(2) x SU(3). All particles predicted by the
Standard Model have been detected experimentally except for one, the Higgs
boson, that plays an essential role as we will see below. The elementary mat-
ter particles are the leptons (electron, electron neutrino, muon, muon neu-
trino, tau, tau-neutrino and the corresponding anti-particles), the quarks
in six different flavors (up, down, charm, strange, top, bottom) and each
in three different colors (red, blue, green), their anti-particles. The inter-
action carriers are the photon for the electromagnetic field, three bosons
associated to the weak interaction, corresponding to the internal symmetry
U(1) x SU(2), and eight gluons associated with the strong interaction, cor-
responding to the group SU(3) (each also coming in three different colors),
plus the hypothetical Higgs boson which is the only one not yet detected
experimentally.

We emphasize that the Standard Model as presented here is a semi-
classical model. After the appropriate Lagrangian is written down, it is
still necessary to quantize it. No one knows so far how to do this in a math-
ematically rigorous, constructive way. The next best thing is to use the
methods of perturbative QFT (chapter 7), and renormalization (chapter 8).
This, of course, we will not do. However, we do want to remark that very
good results matching experiment can be obtained from just the simplest,
first order Feynman graphs! These have no loops, and therefore require no
renormalization. It is indeed a remarkable feature of the Standard Model
that it produces good predictions even at the semi-classical, pre-quantized
level.

226
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9.1 Particles and fields

As we already discussed, in particle physics we classify particles in two major
groups, according to whether they satisfy or fail to satisfy Pauli’s exclusion
principle. Thus, they can be fermions, with half-integral spin, or bosons,
with integral spin. On the other hand, we also know that in QFT everything
physical is defined in terms of fields. There are two basic types of fields:

(i) Interaction carriers. These are also called force fields, and are gauge
fields. Their particle manifestations are bosons. They subdivide fur-
ther into

e Photon 7% carrier of the electromagnetic interaction.
e Weak bosons W+, W, Z0: carriers of the weak interaction

e Gluons G; (i =1,...,8): carriers of the strong interaction.

See table 9.1

(ii) Matter fields. These are fields whose associated particle manifestations
are fermions, and can be further subdivided into

e Leptons: these do not “feel” the strong force, their interactions being
mediated by the carriers of the electromagnetic and weak interac-
tions only. Examples of leptons are the electron, the muon, the tau
particle (and corresponding anti-particles: the positron, etc.) and
all neutrinos. See table 9.2.

e Hadrons: these are subject to the strong interaction (which is very
short-range). They subdivide even further into mesons (such as the
so-called pions) and baryons (and their corresponding anti-particles).
Examples of baryons include the proton and the neutron. See table
9.4.

From a mathematical standpoint, the two basic types of fields described
above are very distinct:

(i) Interactions carriers are connections on certain auxiliary vector bun-

dles.

(ii) Matter fields are sections of specific vector bundles over spacetime
(M, g).

The description above is certainly not complete. In particular, hadrons
are not elementary: they are made up of elementary particles called quarks.
More about that below.
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Interaction Boson Spin
Gravitational “gravitons” (conjectured) 2
Electromagnetic photons ~° 1
Weak force weak bosons Z°, W+, W~ 1
Strong force gluons G; (postulated) 1

Table 9.1. Interaction carriers.

Lepton Mass in MeV/c?>  Lifetime in s
Electron e~ 0.511 %)
Electron neutrino v, <3x10°6

Muon p~ 105.658  2.197 x 1076
Muon neutrino v,

Tau 7~ 1777 291 x 10715

Tau neutrino v,

Table 9.2. The three generations of leptons (spin 1/2).

9.2 Particles and their quantum numbers

Certain particle decays are never observed in nature or the laboratory. For
instance, the proton p™ and the positron e™ have the same charge, and the
proton mass (energy) equals approximately that of the positron plus the
energy of a single photon ~%; nevertheless,

p*—»e*—i—'yo.

This strongly suggests that some quantum number exists which is not pre-
served under such putative decay, preventing it from happening. Such quan-
tum number is called the baryon number, denoted B. It is postulated that
B =1 for baryons and B = 0 for leptons, and that the total baryon num-
ber in a given particle-to-particle interaction should be conserved. These
is indeed satisfied in all events occurring in nature, and in all experiments
performed in the lab. Equivalently, one could assign a lepton number L =1
to leptons, and L = 0 to all other particles.

In fact, one can actually be more specific and define one quantum number
for each type of lepton. For instance, another example of a particle decay
that is never observed is the muon g~ decay. Such muons are negatively
charged leptons just as electrons, but heavier. Despite charge and energy
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conservation, we have
- - 0
nwoo- e + v .

Again, this is explained by the introduction of yet another quantum number,
the so-called muon number L, equal to 1 for muons, —1 for anti-muons, and
0 for other particles, and a corresponding conservation law. One can simi-
larly define several other quantum numbers, and corresponding conservation
principles.

These ad-hoc conservation principles are dictated by experimental obser-
vation, and the challenge is to incorporate them into a coherent mathe-
matical model. From a mathematical standpoint, it should be clear after
our discussion of Noether’s theorem in chapter 5 that such conservation of
various quantum numbers should correspond to symmetries of the model.
These quantum numbers are defined in terms of various representations of
a suitable symmetry group. This is consistent with the mathematical inter-
pretation of particles advanced by Wigner, as we saw in chapter 4.

9.3 The quark model

The quark model was proposed by M. Gell-Mann in 1964. It postulates that
all hadrons are composite states of more elementary particles called quarks,
along with their anti-particles (called anti-quarks). Quarks and anti-quarks
are fermions. According to this model, baryons are composed of 3 quarks,
whereas mesons are made up of one quark and one anti-quark (see table
9.5). In the original proposed model, quarks came in three different types,
or flavors, namely the up quark u, the down quark d, and the strange quark
s. Empirical facts and symmetry considerations lead to the introduction of
three other quarks, namely the charmed quark c, the top quark t, and the
bottom quark b. See table 9.3.

Despite its success in the explanation of hadron “genealogy”, including
the prediction of new hadrons, the initial quark model suffered from two
embarrassing problems. The first trouble was that quarks were not, and
have never been, observed in isolation. This was explained by the concept
of quark confinement, the mechanism of which is still not fully understood.
The second trouble was the violation of Pauli’s exclusion principle: there
are particles such as the A™" hadron which are made up of three identical
quarks (uuu, in this case, see table 9.4). The way out of this second trouble
was the introduction of a new quark property called color.

Recall that in QED, the interaction between two charged particles, such as
electrons, is mediated through the emission and absorbtion of photons (the
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Flavor Charge Mass range (in GeV/c?)

up u % 1.5 to 4.0 x 1073
down d —% 4to8 x 1073
charmed ¢ 2 1.15 to 1.35
strange s —% 80 to 130 x 1073
top ¢ 2 169 to 174
bottom b -3 4.1 to 4.4

Table 9.3. The three generations of quarks (spin 1/2).

Baryon g¢qqq Charge Strangeness

ATT uuU 2 0
AT uud 1 0
A udd 0 0
A~ ddd -1 0
D ks UUS 1 -1
>0 uds 0 -1
Y*- dds -1 -1
=*0 uss 0 -2
= dss -1 -2
Q- sS8 -1 -3

Table 9.4. The baryon decuplet.

electromagnetic interaction carriers). In quantum chromo-dynamics (QCD),
the basic particles are quarks, and they have “colors”. Color is a quantum
property of nuclear interactions akin to charge in electromagnetism. Quarks
come in three colors: R, B,G (for red, blue and green, respectively). Anti-
quarks come in three “anti-colors”, or complementary colors: R, B,G (also
called cyan, yellow and magenta, respectively). Quarks and anti-quarks
interact with each other by exchanging colors. The interactions carriers are
called gluons. The gluons themselves are said by physicists to be “bi-colored
objects”.

9.4 Non-abelian gauge theories

The Standard Model is a gauge theory with symmetry group U (1) x SU(2) x
SU(3). Let us therefore digress a bit and recall some of the basic structure
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Meson ¢qq Charge Strangeness

70 un 0 0
ot ud 1 0
T du -1 0
n dd 0 0
Kt us 1 1
K° ds 0 1
K~ su -1 -1
K sd 0 -1
7 su 0 0

Table 9.5. The meson nonet.

of such theories. We do everything locally, and leave to the reader the task
of translating everything into the coordinate-free language of bundles and
connections, as presented in chapter 4. See also §9.6 below.

9.4.1 The Yang-Mills Lagrangian

At a semi-classical level, one can formulate a Yang-Mills theory with general
non-abelian symmetry group G. The formulation mimics that of electromag-
netism, which is an abelian gauge theory with group U(1). For concreteness,
the reader can think of the case when G = SU(N). We assume that we have
a gauge field A, i.e. a connection, which will be coupled with a matter field
W, represented by a section of a suitable vector bundle over spacetime. We
are given a representation R : G — Aut(V'), where V is a finite-dimensional
complex Hilbert space (e.g., we could have G = SU(N) and R the regular
representation of G into V = CV). Let {T%} be the generators of the Lie
algebra of G in the representation R, and let us write A, = AjT} (when
G = SU(N), there are N? — 1 generators). Recall that the structure con-
stants of the Lie algebra of G are implicitly defined by the relations

[T,%,T}bz] = if“bCT,% . (9.1)
We define a covariant derivative on matter fields by
DV = (0, —igASTR) W . (9.2)
Here g is a constant, called the coupling constant.
As in the case of electromagnetism, we let the field strength tensor be
given by
Fu, = 0,A, —0,A, —ig[A,, A . (9.3)
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From (9.1) and (9.2), a one-line computation left as an exercise shows that
be pb
F, = 0,47 — 0, A, +gf"ALAL . (9.4)

Let us now define an appropriate Yang-Mills Lagrangian density. The kinetic
part of this Lagrangian is given by the curvature of our connection, namely

, 1
Lk — = Tr(Fu F1) . (9.5)

This is also sometimes called the pure Yang-Mills Lagrangian. In keeping
with the paradigm provided by electromagnetism, we now couple the gauge
field with the matter field in the most economic way, the so-called minimal
coupling, by means of a Dirac current, namely

LI = V(i) —m)T . (9.6)

where M is a constant and Ip is the Dirac operator defined as follows. We
think of each component W% of ¥ as a spinor (¥%(x) € R?* or C?), for
each « = 1,2,...,dim R/4 (here dim R denotes the real dimension of the
representation of G). We take I) to be the direct sum of the usual Dirac
operators on each component,

DU = ZEB’YMa,u\IIOC?

where v* are the usual Dirac matrices. The total Yang-Mills Lagrangian is
therefore the sum of (9.5) with (9.6), namely

1 a va 0 (
By = —Z FMVFM —|—\I/(1D —m)\I/, (9.7)

where we have taken the trouble of spelling out the trace defining the cur-
vature in terms of the field strength components.

Now, the main thing to observe is that the Yang-Mills Lagrangian as we
have just defined is gauge invariant. Indeed, let x — U(z) € G be a local
gauge transformation. We may write U(x) = exp (igf0*(x)T5), where the
0%(x) are local functions over spacetime. We have

U — U(x)¥

i

Ay e U@)AU (@) = = (9,0 (2) Ul(x) -

g

The reader can now verify as an exercise using these transformations that
the covariant derivative transforms as D,V — U(xz)D,V. From these facts
it follows at once that the Yang-Mills Lagrangian (9.7) is gauge invariant,
as stated.
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9.4.2 Spontaneous symmetry breaking

The formulation of non-abelian gauge theories given above seems fine but,
as far as its physical contents goes, it suffers from a major drawback: all of
its fields are massless! Recall, by analogy with the Klein-Gordon field, that
the mass terms in the Lagrangian are those that are quadratic in the fields
— but there are no such terms in (9.7). This would not be a problem if the
only field we cared about were the electromagnetic field, whose carrier is
the photon, which as we know is massless. But it is certainly not acceptable
even for other gauge fields such as the weak interaction fields — the weak
bosons are known to be massive particles.

It turns out that the reason for this masslessness feature of the Lagrangian
(9.7) is its excess of symmetry. In the mid sixties, P. Higgs created a mech-
anism for breaking the symmetry, allowing the gauge and matter fields to
acquire mass. The idea is to introduce a new (bosonic) field, called the
Higgs field, which is subject to a quartic potential that shifts the vacuum
to a new place, around which part of the original symmetry is lost. This
is known as Higgs mechanism or spontaneous symmetry breaking. The role
of the Higgs field is to break the symmetry by shifting the classical vacuum
(the minimum of the action) away from the origin. If we expand the La-
grangian in powers of the deviation from the shifted vacuum and diagonalize
the quadratic part by defining new fields as linear combination of the old
ones, we will see that the coefficients of the diagonal terms are the masses
of the fields (again, the reader should keep in mind the analogy with the
Klein-Gordon field).

Let us explain this idea in more detail, working in perhaps the simplest
non-abelian situation, namely the case when the symmetry group is SU(2)
and there are no matter fields. In other words, we start with the pure
Yang-Mills Lagrangian

1
g}QM = _Z TI'(FMVFMV) .

We will describe the Higgs mechanism which, in the present context, allows
the gauge bosons to acquire mass. Let us add to our theory a scalar doublet

field
+
¢ = <((Z;0> ’

subject to a potential of the form

Vigle) = 33 [(610)? 7]
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where A and v are real constants (v will determine the new vacuum state).
Our new Lagrangian reads

Ly = (D) (Dus) — 52 (6102 — 7] — {TR(FWF™) . (98)

Now, the new vacuum states of the theory should correspond to the min-
ima of the potential V. These are degenerate minima, occurring at those
fields ¢ such that ¢T¢ = v2. These vacua are in the gauge-group orbit of the

constant field
0
o = (v) .

The idea now is to fix the gauge so that this is our new vacuum state, and
to expand the potential around this new vacuum. The original SU(2) sym-
metry will therefore be lost in the process, but we will achieve our goal of
giving mass to the gauge bosons. Note that the field ¢ has four real compo-
nents (or two complex ones) and since the group SU(2) is a 3-dimensional
Lie group, we can use a gauge transformation to gauge away three of the
four components of ¢, getting a representative of the form

0
#z) = <U + %h(m)) ’

where h is a real scalar field. Let us then write the expression of the La-
grangian for this ¢, in terms of h. Using the fact that the generators of
the Lie algebra of SU(2) are given by the Pauli matrices, we see after some
computations that

_ 9 4 a 0
DM¢— <8M+EAM0><U+%h>

_ (-%}(Alg —iA2) (v+ %h))

(3
T50uh — §A% (v + 5h)

Let us now introduce the linear combinations

1
+ _ 1 2
AL = E(AM:FAH)'

Using this notation and the above computation, we can calculate explicitly
the first term in the right-hand side of (9.8), obtaining

1 2 h 2 2 h 2
(Duﬁb)T(Duﬁb) = 5(6“¢)(a“¢)+%AuAZ <U+E) +%A2A“3 <v Jr(ﬁ)) )
9.9
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Note that, since
1
A+ Lot gt 2 Ap2
AMAM = 2(AMA —I—AMA )

the second term in the right-hand side of (9.9) is telling us that the gauge
bosons associated with the fields AL and AZ both have the same mass m 4,
given by
L oo _ g9

3" = 7
in other words, m4 = gv/ V2. Therefore, the linear combinations Alj and
A, also have the same mass my4. The mass of the third gauge boson Ai
can be read off from the third term in the right-hand side of (9.9), and
we see that it must also be equal to m4. Thus, in this Yang-Mills theory
with symmetry breaking, the gauge bosons have all acquired mass (and
the masses are equal). The Lagrangian (9.8) also tells us, of course, that
the Higgs boson itself is a massive particle (its mass being mpy = A, the
parameter in the potential V).

The Higgs field can also be coupled with the matter field ¥ in the full
Yang-Mills Lagrangian, giving it mass. We will describe this mechanism
directly in the context of the Standard Model below.

9.5 Lagrangian formulation of the standard model

The Standard Model Lagrangian is a gauge field Lagrangian, with gauge
group U(1)x SU(2)x SU(3). The basic paradigm leading to the construction
of such Lagrangian is provided by Yang-Mills theory, as described in the
previous section: the interaction fields are given by connections, and the
matter fields by sections of suitable vector or spinor bundles over spacetime.
In the sequel we will describe the Lagrangian as usually presented in the
physics literature. In the next section we will describe also the intrinsic
geometric meaning of this Lagrangian.

9.5.1 The electroweak model of Glashow-Weinberg-Salam

According to the electro-weak theory of Glashow-Weinberg-Salam, the inter-
actions between the leptons are mediated by the bosons of the gauge group
U(1) x SU(2). This theory presents a unification of the electromagnetic
and weak interactions. Let us progressively describe the ingredients in the
construction of the electroweak Lagrangian. This will be a U(1) x SU(2)
gauge invariant Lagrangian.
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9.5.1.1 The kinetic terms

Let us first describe the kinetic Lagrangian, and later the part corresponding
to the interactions with leptons.

(i)

(i)

We have a U(1) gauge field, or abelian connection (B,). As we saw
in chapter 5, the corresponding field strength tensor B, is given by
B,, = 0,B, — 0,B,,. The kinetic part of the Lagrangian associated
with this field is

1
"gk?n = _ZBMVBHV . (910)

In order to incorporate the weak interaction into the model, one needs
the gauge fields (W,). These constitute a non-abelian connection with
group SU(2). The corresponding covariant derivative is given by
ig2
DN = 8# + 7 WH s

where g9 is the so-called weak coupling constant. The field strength
tensor must be defined in a covariantly natural way, and the way to
do this is to write

Wy =D,W, —D,W, . (9.11)
This in turn can be re-written as
ig
2
Now, as dictated by the Yang-Mills paradigm, we define the kinetic

W = (0,W, — 0,W,) + ==(W,W,, — W, W,) . (9.12)

part of the Lagrangian density corresponding to the weak field as the
curvature of our SU(2) connection, namely

1
Ly = =5 T(W, W) (9.13)

Let us record here the effect of a gauge transformation ¢ — U1 on a
given lepton (fermion) field ¢, where U € SU(2) is a unitary matrix. We

have the transformation rule

N
W, — W, = UWHUT+9—26MU-UT.

expressing the fact that (W),) is a SU(2)-connection, and therefore two
things happen:

(a) D;ﬂﬁ = UD;M .
(b) W — W/w = UI/VMVU]L .
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Using these facts, it is an easy exercise to check that the Lagrangian (9.13)
has the appropriate SU(2) gauge covariance.

We may now put together the U(1) and SU(2) gauge fields, getting the
total kinetic Lagrangian density of the electroweak model. This is simply
the sum Z5Y = fk?n +.ZY

ins 10 other words

L5 = —i B, B" — éTr(WWW‘“’) (9.14)

Both kinetic terms making up the right-hand side of (9.14) have a clear

geometric meaning: they are the curvatures of the corresponding gauge
fields (B,,) and (W,,).

Next, we wish to recast the above formula (9.14) in a slightly different

notation, making the expression in terms of coordinates more explicit. For

this purpose, we recall that any element of SU(2) can be written in the form

U = exp(—ia%o,) ,

where o, a = 1,2, 3, are real scalars and the o, are the Pauli spin matrices,

(01 (0 i /10
01 = 1 0 , 02 = i 0 703_0_1 3

which, as we know, generate the Lie algebra of SU(2). Thus, each gauge
field W), can be written as W, = W/o,, in other words

I Wi W — W2
ee\w+awE o -wE )

namely

It is convenient to introduce the following complex fields

1 .

W = E(Wﬁ—zWi) (9.15)
1

W, = — (W, +iW}2) (9.16)

V2

so that W, = (W,")*. Similarly, we define

1
V2

One can easily check (exercise) that

(Wi, FiW2,) .

W3, = oW —0,W3 —igg(W, W, — W, W),
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Using this notation and the above relations, we can re-write the kinetic
Lagrangian of the electroweak model as follows:

1 1 1
i = = BB — W, WP — SW L W (9.17)

The details of this calculation are left as an exercise.

The gauge bosons of the theory are defined in terms of the given gauge
fields as follows. The W and W~ vector bosons are the particles associated
to the fields W* given in (9.15). We define the field Z,, by the orthogonal
combination

Z, = Wg’cosﬁw — By sinf,, ,

where 6,, is a constant, called the Weinberg angle. We also define the field
A, by the orthogonal combination

A, = Wj’sinﬁw—i-Bucous.

These fields correspond merely to a rotation of Wi’,Bu by the Weinberg
angle. The vector boson ZY is the particle associated to the Z ., field, whereas
the field A, is the electromagnetic field, whose associated particle is our old
friend the photon . One might be tempted to fancy that the Weinberg
angle is a quite arbitrary parameter, but this is not so. It has to be carefully
chosen so that, after the SU(2) gauge symmetry of the electroweak model
is spontaneously broken (as we explain below), the vector bosons acquire
mass, while the photon remains massless. In fact, it may be shown that the
Weinberg angle and the coupling constants are related as follows

g2 g1
Vi + 95 Vi + 95

9.5.1.2 Leptonic interactions

cost, = sinf,, =

Now we have to describe the interactions of the gauge fields with the lep-
tons. Recall that leptons are fermions, and as such they are represented
mathematically by spinor fields. Given a spinor v in the Dirac representa-
tion, we can consider the pair of Weyl spinors consisting of the right and
left components of v, namely

b = S, YR = 21+,

2 2
where 7° = i7%y192+3 (the v* being the usual Dirac matrices). Note that

the matrices defining vy, and g are projection matrices, since

50 iﬂ]g - [50£9°)]
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Thus, we may identify ¢ with the pair v 1,9 r. The decomposition

_ %Z)L)
v <1/JR
is called the chiral representation of the spinor .

Remark 1. For use below, we recall the relationship between the three 2 x 2
Pauli matrices o’ and the 4 x 4 Dirac matrices v*, namely

0 o° ; 0 o
0 L ;
v —<1 O> and -~y _(—ai O> (1=1,2,3),

where we have defined ¢° = I (the identity matrix). In more compact
notation, this can be re-written as

0 ot
"
= (o )

where 3 = 0¥ and 7@ = —¢* (i = 1,2,3).

It is an experimentally observed fact that parity is not preserved under
weak interactions. This fact has lead physicists to treat the left and right
components of the lepton (and quark) fields as quite different objects. Let us
consider for instance the first generation of leptons, namely e, .. The basic
assumption is that the left-handed components ey, and v,;, form a doublet

e __ Ver
L er

which is sensitive to SU(2) gauge transformations, whereas the right-handed
components er and v are regarded as singlets, sensitive only to U(1) gauge
transformations. In particular, the electron and electron-neutrino interact
with the weak gauge fields only through their left components. Working by
analogy with the Dirac current for the electromagnetic Lagrangian, the min-
imal U (1) x SU(2) gauge covariant way to define the coupling of these lepton
fields with the gauge fields turns out to be (in the chiral representation)

int

¢ = (65)T51D, 05 + (eR)TJMiD;eR + (Ver) 0™i0,veR - (9.18)

Here, there are two covariant derivatives in action, given by

g g
Dy = (9, + 72 W, + 713”)1/;

Do = (9 + 5 B)Y
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Note that the first covariant derivative, containing the W, fields, only in-
tervenes in the first term on the right-hand side of (9.18). So there is no
interaction of the W, fields with the right components of the electron and
electron-neutrino fields, as expected. Note, however, the following fact: no
right-handed neutrino has ever been found! Thus, in the Standard Model
there is just one singlet in each lepton generation — ¢.e. three lepton singlets
altogether: egr,ur and 7. No right-handed neutrino fields. Accordingly,
we drop the last term in the interaction Lagrangian (9.18), writing instead

it = (éi)TE“iDuéi + (eR)TO’“iDLGR . (9.19)

One defines the doublets of the remaining two generations

L pp) 0 F TL
and the corresponding singlets pg, T in a completely similar way, and the

T

. . . . ‘LL . . .
partial interaction Lagrangians .7, and .}, by analogous expressions to

(9.19).

9.5.1.3 Symmetry breaking mechanism

The electroweak Lagrangian, as defined so far, has that serious defect en-
demic to non-abelian gauge theories: all of its particles are massless! The
reason is that there are too many symmetries. We already know the recipe
for remedying this situation: the Higgs symmetry-breaking mechanism. We
will break the SU(2) symmetry of the electroweak model, still keeping its
U(1) symmetry. Let us briefly indicate the results, leaving the computa-
tional details as an exercise. We introduce the Higgs field as the scalar

doublet
_l’_
o= (%)

V(g'6) = SN(eT6— )P

subject to the potential

We use the SU(2) gauge invariance to fix the new ground state to

-=()

and expand the Lagrangian around this new vacuum. Due to this gauge
fixing, we only care about fields ¢ which are perturbations of the new vacuum
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0
¢ = v—i—%h

where h is a real field. This time the covariant derivative applied to ¢ gives

us
D,b = 1
= () * % (s )

L g (ﬂWj@H—%h))
1 .
2 \ Wi+ Zh)

Note that we are employing here the weak boson fields Wf Using the above

of the form

expression for D,,¢ to calculate (D“gb)(TDugZ)), we deduce after some lengthy
computations that the kinetic electroweak Lagrangian with the Higgs field
added in is equal to

1 2 1 2
ng[i—{lfew = 5(8uh)(8“h) + %W;W+“ <U + ﬁh>

Lo, o < 1 >2
+ —(97 +93) ZuZ" (v + —=h
191+ 92) Zy 7
1

V2
From this expression of the Lagrangian, its is not difficult to check that
the masses of the gauge bosons Wff and Z, are now positive. One can
also check that the field combination A, = Wj sin 0, + By, cos 6, (where 6,,
is the Weinberg angle) remains massless. This field is identified with the
electromagnetic field, and its carrier is the photon.

Now, what about the leptons? In order to give them mass, we need to
couple them with Higgs field. This requires adding new terms to the elec-
troweak Lagrangian, and these terms should be Lorentz and gauge invariant.
The way to do this is to add a “mass Lagrangian” for each lepton generation.
For instance, for the first generation we have

1
— N202h% + — 20k + §>\2h4 .

Liass == —Ce |(£1)10)er + eh(o107)] - (9.20)
where ¢, is a coupling constant (it has to be very small: the added mass
Lagrangian should not upset the perturbative calculations of QED!). The
expressions for the mass Lagrangians of the other two lepton generations are
entirely analogous, and we omit them. Note that (9.20) can be re-written
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in terms of the components of the left lepton field as follows:
L = —co | W67+ eL6V)en + ehl(67) ver + (¢ es)]
After fixing the gauge so the symmetry is broken, we get

ceh
L s = —Cel (eTLeR + eTReL> - % <6TLeR + eEeL> .
Note that the neutrino field has disappeared from the scene. It continues
to be a massless particle, whereas the electron has acquired a mass, as it
should. Analogous results hold for the other two lepton generations.

Remark 2. There is strong empirical evidence that massive neutrinos exist
(albeit with a very small mass). The Standard Model has to be slightly
modified in order to accommodate such experimental evidence. This can be
done, but we will not discuss it here. See [CG, chs. 19,20].

9.5.2 Quantum Chromo-Dynamics

The theory describing strong interactions is known as Quantum Chromo-
Dynamics, or QCD for short. The interaction carriers are gluons, and the
matter fields are quarks. QCD is a non-abelian gauge theory, with gauge
group SU(3), the color group. Each quark ¢ (a generic notation for any one
of the six flavors u, d, ¢, s,t,b) is a triplet

qr
q = |
49
and the same is true for the corresponding anti-quarks g. We require gauge
invariance under the group SU(3).

9.5.2.1 The gluon gauge fields
The gluon gauge fields (G,) determine an SU(3) connection, and the cor-
responding covariant derivative (using the fundamental representation of
SU(3)) is given by
Dug = (9 +1igsG)q -

The constant g3 is the so-called strong coupling constant. Under a gauge
transformation ¢ — ¢’ = Uq (U € SU(3)), we have the following transfor-
mation rule

G, HG;:UGHUT+gi@“U-UT.
3



9.5 Lagrangian formulation of the standard model 243

Note that G, belongs to the Lie algebra of SU(3), which consists of trace-
less, Hermitian matrices. This Lie algebra is 8-dimensional, and a basis is
provided by the Gell-Mann matrices

010 0 —i 0 1 0 0
M=100],x=|i 0 o] ,x=[0 -1 0],
000 0 0 0 0 0 0
00 1 00 —i 00
M=l00 0] ,x=(00 0] ,x=[(00 1],
10 p i 0 0 0 1
00 0 L {100
M=100 —i| ,d=—[01 o0
0 0 V3o 0 —2

Using this basis, one may write
1 a
G, = 3 Gida -
The field strength tensor associated with this SU(3) connection is given by

G, = D,G, — D,G,
= 0,Gy — 0,G, +igs|G,. G .

Following the Yang-Mills paradigm, we know that the kinetic Lagrangian
of the strong interaction must be defined as the curvature of our SU(3)
connection, namely

1
L = —5 TG G™) .

9.5.2.2 Quark interactions

So much for the kinetic part of the QCD Lagrangian. Now we need to take
care of the part corresponding to the interactions with the quark fields. Let
us first describe the electroweak interaction of quarks. The quark model
must be able to explain certain nuclear decays such as the neutron decay
n — p+ e + V.. This decay, at quark level, is simply the decay of a
down quark into an up quark plus an electron and an electron neutrino, i.e.
d — u + e~ + 7. This decay is due to the the weak interaction, whose
carrier is the W boson. Therefore, working by analogy with the muon decay
p- — v, + e + Ve, which is also mediated by the W boson, one sees that
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the left-handed components uy, and dj of the up and down quarks should
be put together in a doublet
1 _ [ur
q;, = (dL>

while the right-handed components ur and dg, just like the right-handed lep-
tons er and v g, are unchanged by SU(2) transformations. Similar doublet-
singlet arrangements should hold for the other two generations, namely the

doublets
2 _ (cL 3 _ (tr
qr, = <5L> y d, = (bL> )

and the corresponding singlets cg, sg and tg, bg.

Given such symmetry structure of quark fields, it turns out that there
is only one way to make the quark dynamical Lagrangian density invariant
under U(1) x SU(2) gauge transformations. Again the guideline is provided
by analogy with the Dirac (QED) Lagrangian. We get, for the up-down
generation,

2% = qri [% + Py, + ﬂBM] ar

2 6
. 2igy
+URi |0y + TB“ UR (9.21)

—}—@’L’ {@L — %BM] dp .

The fractions 2/3 and —1/3 multiplying igi B,, in the second and third lines
above reflect the fact that the up quark carries an electromagnetic charge
of 2/3, whereas the down quark carries an electromagnetic charge of —1/3.
Completely similar expressions .Z%* and .Z*? hold for the charmed-strange
and top-bottom quark generations. Hence the dynamical part of the the
total quark Lagrangian is

gg;jrk _ gu,d_‘_‘}zﬂc,s +$t’b.

9.5.2.3 Coupling with the Higgs field

Let us now quickly describe how the quarks acquire mass. The procedure
is essentially the same as in the case of leptons. There is an important
difference, however. In our model, the left lepton doublets have the neutrino
fields as their first components, and these are massless. By contrast, both
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components of the quark doublets, which we write as

, i
ai, = (Zi) i=1,2.3,

should have mass. The interaction Lagrangian corresponding to quarks cou-
pled with the Higgs field can be written as

d
"zﬂquark fﬁ =+ 'i/ﬂH )
where:

(i) The interaction of the down quarks d, s,b with the Higgs field is given by
2 = = { i) ol + G @) o'l

The coefficients G% determine a 3 x 3 matrix which a priori is quite
arbitrary.
(ii) The interaction of the up quarks w,c,t with the Higgs field is given by

2 = =Y {Gullan) io* e, + G (wh) 6T io%gE ]

Here, the matrix
0 1
.2
io? = (_ 1 O)

interchanges up and down components of the Higgs field. The choice of
sign is made so that the above partial Lagrangian is SU(2) invariant.

Upon SU (2) symmetry-breaking, following the Higgs strategy already de-
scribed, the partial Lagrangian (i) becomes

Lo = —0 3 {CH) dy + G ()}
Likewise, (ii) becomes
Ls = —v > { G )y + Gl ()l |
From these last two expressions, it is possible to verify that all quarks have
acquired mass. We will not do this here. However, we will make the following
remarks. The 3 x 3 matrices G% = (Gd) and G4 = (G%) are arbitrary, but

they can both be reduced to diagonal form by multiplication on the left and
on the right by distinct unitary matrices, say

G¢ = DI MDDy,
GY = UlM“Up .
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Here the matrices M? M" are diagonal matrices (whose diagonal terms
correspond to the fermion masses). This requires a change of basis in the
quark fields, namely

d/Li = D?dji,v lei = ngJL

ulLZ = UzjuJL , ulRi = U}i%ju%
The fields in this new basis are called true quark fields. In this basis the
quadratic form corresponding to the quark fields becomes diagonal, and one
can read off the quark masses from the diagonal terms.
Now, it turns out that, in terms of these true quark fields, the part of the
quark Lagrangian corresponding to the interaction with the weak fields can
be written as

1 Vud Vus Vub EHd/L
, _
v = o (e th) (Ve Voo Voo | | sl | W
S Gy V;fd V;fs V;fb E'ub/L

Here we have reverted to using the flavor names as indices. The angle 6,, is
the Weinberg angle. The 3 x 3 matrix V appearing in the right-hand side
of the above expression is equal to the unitary matrix ULDTL. This matrix
is called the Kobayashi-Maskawa matrix. As we can see, it mixes the three
generations of quarks.

9.5.3 The final Standard Model Lagrangian

In order to write the final Lagrangian of the Standard Model we have to col-
lect together all the contributions in the previous subsections, including the
Higgs field. From Noether’s theorem (see chapter 5) each remaining sym-
metry of the model generates conserved currents and charges. The charges
of the SU(3) symmetries are the quark colors. The photons, which are the
quantum particles that intermediate the electromagnetic interaction, do not
have electrical charge because the corresponding symmetry group is abelian
and there is no interaction between photons. Since SU(3) is non-abelian,
the gluons do carry color charges, even though they have no mass. We must
of course include fields corresponding to the three families of leptons and
quarks that we mentioned before. This gives rise to a rather complicated
expression for the Lagrangian, which is the following.
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1 a ra (e} ro v
Lo = -7 (GWG“ + W, W + By, B") (9.22)

+Du¢'D o+ (26T — o' 9)?

— ) ) )
+ g <5u - 592W50a - Eng/‘ — 593Gz)\a> qr

+ idpy"* <8M + gngu — 593GZA(1> dr
. 2i P

+ ury" | Oy — §ngN — 593G,/\a UR

+ il (QL — §Q2W,f“0’a + 591BM> lr

+iegy" (Oy +ig1By) er

+ kiqrodr + kUqrriour + kL der
+h.c.

The abbreviation “h.c.” stands for the sum of Hermitian conjugates of the
terms displayed, so the above formula is in fact twice as long when written
in full.

Remark 3. This is just the classical description. In order to quantize the
theory two other developments played a fundamental role. The first was the
discovery of asymptotic freedom by D. Gross, F. Wilczek and D. Politzer
(Nobel Prize in Physics 2004), that allows the use of perturbation theory in
QCD when the scale of energy is high or distances are small, see [GW], [P].
This means that the strong force that acts on the quarks decreases with the
distances between the quarks so that at very small distances they behave
as free particles, whereas if the distances increase, it increases strongly ac-
counting for confinement of quarks in QCD. The second important step was
the proof by t’Hooft-Veltman (Nobel Prize in Physics 1999) that non-abelian
gauge theories are renormalizable, see [tHV].

Remark 4. The Standard Model also contains 19 free parameters (masses,
coupling constants, etc.) that cannot be computed by the theory: they
have to be obtained experimentally. This stimulated the search for unifica-
tion models with a small number of parameter where the Standard Model
could be imbedded. The biggest challenge is to include gravitation, whose
Lagrangian is highly non-renormalizable, in the quantum theory. String the-
ory, see [Polc], which has just one parameter, is a serious candidate for this
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model since it contains both the standard model and gravitation. However
there are a huge number of string theory models, due to different compactifi-
cations of part of the higher dimensional spacetime, giving different physical
predictions, and there is no experimental data to select one out of them all.
More recently, Alain Connes [CCM] proposed a new unification model based
on non-commutative geometry.

Remark 5. A very lucid description of the Standard Model at the level
presented in this chapter can be found in the book by W. Cottingham and
D. Greenwood [CG]. A more sophisticated treatment is given by A. Chamsed-
dine in [Ch]. Note that, apart from a a slight change in notation, the SM
Lagrangian expression presented in (9.22) is exaclty the same as the one
given in [Ch]. For a very interesting phenomenological description of the
model see M. Veltman’s account in [V].

9.6 The intrinsic formulation of the Lagrangian

Having presented the semi-classical expression of the Lagrangian of the Stan-
dard Model as given in the physics literature, we would like to give a brief
explanation of the intrinsic (i.e. coordinate-free) mathematical meaning of
such Lagrangian. The Lagrangian itself will depend only on the 1-jet of the
fields involved.

There will be several ingredients. First we will need certain connections
corresponding to the interaction fields. We will also need several vector or
spinor (Hilbert) bundles over spacetime, whose sections will be the mat-
ter fields. These vector bundles are obtained as associated bundles of the
principal bundles where the interaction fields live, via suitable group repre-
sentations. The various kinetic terms of the Lagrangian arise directly from
the covariant derivatives induced by the interaction field connections on
these associated vector bundles.

Here are the building blocks.

(i) Spin bundle and Clifford connection. All bundles will be defined over a
spacetime M. As always, M is assumed to be a spin 4-manifold, with
a Lorentzian metric which in general will be non-flat. We start with a
Lorentz principal bundle over M and an associated vector bundle

R4(—>E

|

M
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We also consider a Clifford connection on this vector bundle, i.e. a
connection V¢ : T'(TM) x I'(E) — I'(F) having the following proper-
ties.

(a) It is compatible with the metric: for all sections 1,0 € T'(E) we
have

where (-, -) denotes the inner product on fibers.
(b) It is compatible with Clifford multiplication: for all X € I'(T'M),
all A € I(T*M) and all ¢ € T'(F), we have

Vi) = (VxA) -+ A-(Vxy),

where - denotes Clifford multiplication.

It is a theorem that we shall not prove here that, given a spin bundle
(E, M) as above, there exists a unique Clifford connection defined over
E. See the book by B. Lawson and M. Michelson [LM].

Let us briefly describe how one can write down an expression for the
Clifford connection in local coordinates. Let w denote the Levi-Civita
(Lorentz) connection on M. Recall (see chapter 4) that w is a matrix
w = (wh) of 1-forms which can be written in local coordinates as

wh = wh dz? .
The matrix w is anti-symmetric: w} = —w,,. By a slight abuse of

notation, let v* denote the Dirac matrices transported via the repre-
sentation of SL(2,C) defining the vector (spinor) bundle E to matrices
acting on the fibers of F. Then the Clifford connection on E can be
written a follows:
1
Q= Jwrmy”

Here, as usual, we write v, = g,,7", where g, = gt are the com-
ponents of the Lorentzian metric tensor on M. Thus, the Clifford co-
variant derivative of any section ¢ € I'(F) is given in local coordinates
by

1
Vi = <3u + ZWZWW"> b

Note that we have used Clifford multiplication on the fibers of F, as
we should. Therefore, the local expression of the corresponding Dirac
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operator is simply

1
Dy = <7"5M + fZﬂ"%W") Y.

(ii) Basic Hermitian bundles. The matter fields are constructed from the
following auxiliary Hermitian vector bundles.

a) dtructure grou , with representation 1:
S group U (1 ith rep ion 1
C——F!
M
b) Structure group SU(2), with representation 1:
( group : p
C (GEENG EQ
M
¢) Structure group SU(2), with representation 2:
(c) g
(CQ o E2
M
d) Structure group SU(3), with representation 3:
( group : p
(CS o ES
M
e) Structure group SU(3), with representation 3:
(e) group : p
e
M
f) Structure group SU(3), with the trivial representation:
( g
C —— E‘3

|

M



9.6 The intrinsic formulation of the Lagrangian 251

The Hermitian structure on each of these bundles is pretty obvious.

(iii) The matter bundles. These are constructed from the above auxiliary

vector bundles by suitable tensor products.

(a)

Left-quark doublet bundle 25 = E' @ E? @ E3 ® E. Here the
representation is 1 ® 2 ® 3, and the vector bundle is

CC2eC3eR* — 2]

|

M

Up-quark singlet bundle %z = E' ® E2 ® ok ® E. Here the rep-
resentation is 1 ® 1 ® 3, and the vector bundle is

CCC*eR* %

|

M

Down-quark singlet bundle 2y = E' @ E? ® E ® E. Here the
representation is 1 ® 1 ® 3, and the vector bundle is

CRCC}*R* %

|

M

Left-lepton doublet bundle .%;, = E' ® E? @ E3 @ E. Here the
representation is 1 ® 2 ® 1, and the vector bundle is

CRC2CR*— 2%

|

M

Right-electron singlet bundle &z = E' @ E? @ E3 ® E. Here the
representation is 1 ® 1 ® 1, and the vector bundle is

CRCRC®R*~——4Er

|

M
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(iv)

(vi)

The Standard Model

(f) Higgs bundle # = E' ® E? ® E3 @ E. Here the representation is
1® 2 ® 1, and the vector bundle is

CRC?RCRR*——#

|

M

Charge conjugation. On each building block vector bundle described
above, we can define an anti-linear bundle involution. Taken together,
these yield a charge conjugation operator on the space of fields.
Kobayashi-Maskawa matriz. As we saw, there are three generations
of quarks and leptons. The coupling of the Higgs field with the mat-
ter fields mixes these three generations. The way the mixing is ac-
complished is through the so-called Kobayashi-Maskawa matrix (also
called Cabibbo-Kobayashi-Maskawa matrix).

Higgs morphism. In order to incorporate the symmetry breaking mech-
anism that assigns masses to leptons and quarks, we define a bundle
morphism

End QR ® 2r)

\

In coordinates, its expression is

(l‘,h) = (‘r»Tx,h)»

dr 0
Ten :
i <QL> ~ (hdR)

One easily checks (exercise) that this definition does not depend on
the choice of trivialization.

where

One should also take into account that there are three generations of
leptons and quarks. With these ingredients in place, one can define the
Lagrangian of the Standard Model intrinsically as a map

Lsu 2 — I'(M xR)
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where the domain of Zs)s, namely 2, is the product space
3 3

3 3 3
T(@) x [[T(2y) < [[T(%) x [[T(2R) x [ [ T(i) < [[T(&k) xT(o£) .
i=1 i=1 i=1 i=1 i=1
The definitions have been set up so that the formula (9.22) now makes
sense. Note that I'(M xR) = C°°(M), so the Lagrangian evaluated at a 17-
tuple of fields produces a function over M which can therefore be integrated
over M to yield a number (the value of the action at that 17-tuple of fields).
This Lagrangian is by construction invariant under the gauge group G =
U(1) x SU(2) x SU(3) (it is also Lorentz invariant, so the gauge group can
be enlarged by taking the product of G with the Lorentz group), and it
respects charge conjugation.

Exercises

9.1 Give a detailed proof of the U(1) x SU(2) gauge invariance of the
electroweak Lagrangian.

9.2 Do the same for the U(1) x SU(2) x SU(3) gauge invariance of the
Standard Model Lagrangian.

9.3 Using the Euler-Lagrangian equations for the action-functional as-
sociated to the QCD Lagrangian, show that the components of the
gluon field strength tensor satisfy the equations

a‘uGa,uu — jau7

where the current components are given by
av faGchuu+Z— VlAa
J = 93 | Jocb by - ary 9 qr

Here, f{. are the structure constants of the group SU(3).

9.4 Prove that the definition of the Higgs morphism given in §9.6 is
indeed independent of the choices of trivializations of the bundles
involved.
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Appendix I: Hilbert spaces and Operators

In this appendix we present a crash course in functional analysis on Hilbert
spaces. We limit our presentation to those facts and results that are essen-
tial for the proper foundations of quantum theory. These results include the
spectral theorem for unbounded, self-adjoint operators, the functional cal-
culus for such operators, Stone’s theorem, and the Kato-Rellich theorem, all
of which are presented here with complete proofs. The literature on Hilbert

space theory is incredibly vast. Among the references we found most useful
are [RS1, RS2], [Th], [L] and [AJP].

10.1 Hilbert spaces

We start with the definition of inner product space, or pre-Hilbert space.
We are interested only in complexr Hilbert spaces.

Definition 10.1 A (complex) inner product space (V,(-,-)) consists of a
(complex) vector space V' together with a map (-,-) : V- x V — C, called an
inner product, satisfying
(i) (v,v) >0 for allv eV, and (v,v) =0 if an only if v =0;
(i) (-,-) is bilinear and skew-symmetric:
o (au+ fv,w) = a(u,w)+ [ (v,w) for allu,v,w € V and all o, B €
C; -
o (v,w) = (w,v) for allv,w € V.
An inner product on V' induces a norm on V', namely ||v|| = 1/(v,v), and
this norm gives rise, of course, to a metric: d(v,w) = ||v — w||.

Definition 10.2 A Hilbert space .77 is a complex inner-product space which
1s complete with respect to the metric induced by its inner product.

254
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Example 1. Let (X, ) be a measure space, and consider Li(X), the complex
vector space of all measurable functions f : X — C which are square-

/ fI?dp < oo
X

We regard two functions in LZ(X ) which agree p-almost everywhere as equal.
Define an inner product in Li(X ) as follows:

integrable, i.e. satisfy

(1) = [ fadu.

Then Li(X ), endowed with this inner product, is a Hilbert space (exercise).

Example 2. Let I be a (finite or infinite) index set, and let ¢*(I) c CI!
denote the complex vector space of all sequences x = (z;);er such that

Z lzi* < oo .

el
It is implicit that convergence of the series entails in particular that all but
at most countably many terms are non-zero. Then ¢?(I) is an inner-product
space under the inner product

il
This inner product is complete (exercise), so ¢?(I) is a Hilbert space. When
I is finite, say with cardinality n, then ¢?(I) = C".

10.2 Linear operators

Let us introduce the basics on linear functionals and operators in Hilbert
spaces.

Let T : S — 37’ be a linear operator between Hilbert spaces. If 57’ = C,
we call T a linear functional. As usual in linear algebra, we denote by ker T’
the kernel of T, i.e. the subspace of J# consisting of all £ € S such that
T(§) = 0. The operator T' is said to be bounded if ||T(&)| < C||£]| for all
& € A, for some constant C' > 0. The smallest such constant is called the
operator norm of T', denoted ||T'||. A bounded operator T" as such is bounded
if and only if it is continuous. The kernel ker T" of a bounded operator T is a
closed subspace of #. We are interested primarily in the case of operators
mapping a Hilbert space 57 into itself. The space of all such bounded linear
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operators 1" : .7 — ¢ will be denoted B(.7). Endowed with the operator
norm, B(.7) is a Banach space (a complete normed linear space).

Let us first deal with linear functionals. The fundamental fact about
bounded linear functionals is known as Riesz’s representation lemma. In the
proof, we will need the notion of orthogonal complement of a given subspace

V C 4. This is simply the subspace V+ = {¢ € #: (£,0) =0Vv e V}.

Lemma 10.1 (Riesz) If ¢ : & — C is a bounded linear functional, then
there exists a unique n € A such that ¢(&) = (&, n) for all & € H.

Proof Let V = ker ¢. Since ¢ is bounded, V is closed in 7. If V = 4, then
¢ = 0 and there is nothing to prove. If V # ., then V= is one-dimensional.
Indeed, if u,v € V* are both non-zero, then

o)

¢(v)

is in V+ and satisfies ¢(w) =0, so w € VNV = {0}. Now let u € V- be
such that ¢(u) = 1 and take 1 = ||u|| 2w € V*, so that

o) = T = Il

Let L : # — C be the linear functional given by L(§) = ¢(&) — (&,n). If
€ €V, then ¢ L n, and therefore L(¢) = 0. If instead £ € V-, then & = \p
for some A € C and

L(&) = Ag(n) — X (n,n) = M¢(n) — [In*) = 0.
Since # =V @ V1, this shows that L = 0, and we are done. O

w = u—

The Riesz lemma has many applications. Here is one of the most basic.
Let T : 5 — ¢ be a bounded linear operator, and let n € 5. Then
the correspondence £ — (T'¢,n) defines a bounded linear functional on J7.
By the Riesz lemma, there exists a unique element T*n € . such that
(TE,my = (&, T*n) for all £ € . The map T : n +— T*n defines a bounded
linear operator on 47, called the adjoint of T

Definition 10.3 Several types of operators occur naturally in applications.
(1) An operator T € B(J) is said to be self-adjoint if T = T*.
(2) An operator T € B() is an isometry if (T¢,Tn) = (£,n) for all
E&ne .
(8) An operator U € B(J) is said to be unitary if UU* =U*U =1 (I
being the identity operator).
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It is an easy exercise to prove that U € B(J¢) is unitary if and only if U is
a surjective isometry. In particular, a simple example of an isometry which
is not unitary is provided by the right shift operator T : {?(N) — ¢2(N) given
by T(x1,z2,...) = (0,21, z2,...), which is clearly not surjective.

10.3 Spectral theorem for compact operators

A linear operator 1" : 57 — 7 on a Hilbert space 57 is compact if it maps
bounded sets onto relatively compact sets. Equivalently, T" is compact if the
image of the unit ball is relatively compact in 7.

Example 3. Here is a prototypical example. Let 7 be a separable Hilbert
space, and let {e,},>1 be an orthonormal basis for 7. Given a sequence
{An}n>1 of real numbers, say with |\,| > |Ap41] for all n and A, — 0 as
n — oo, let T : A — A be the linear operator with T'(e,) = Ape, for alln
(and extended by linearity). Then T is compact and self-adjoint. The proof
is left as an exercise.

The spectral theorem for compact, self-adjoint operators states that the
above example is the only example up to unitary equivalence. Before we
carefully state and prove this result, a definition and an auxiliary lemma are
in order.

We define the spectrum of T : 77 — 3 to be the set

o(T)={NeC: ker(T — \I) #0} .

The spectrum of a compact operator is always non-empty, as the following
result shows.

Lemma 10.2 If T : 2 — 5 is compact and self-adjoint, then T has an
etgenvalue.

Proof We shall prove that either ||T'|| or —||T'|| is an eigenvalue of T. We
assume ||T’|| # 0, otherwise there is nothing to prove.

First we claim that ker(7? — ||T|?I) # 0. To see why, let (u,) be a
sequence of unit vectors such that ||Tu,| — ||T||. Since T is compact, we
may assume also that Tu,, — w, for some w € 5. Now we have, as n — o0,

IT2un = [ T1Punll* = IT%unll* = 2 TP Tunl* + | T
< 2|7 = 2| T)*||Tun® — 0 . (10.1)

Note that self-adjointness was used in (10.1). But T?u,, — Tw, because T
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is continuous. Since (10.1) implies
lun = 17177 % | — 0

as n — 00, it follows that u,, — v = ||T||2T'w. Therefore T?v — ||T||?v = 0,
and this proves our claim.
The rest is now very easy, since

0 = (T2~ |TIPDw = (T - |TID)(T +|T|D)v

implies that either (T + ||T||I)v = 0, in which case v is an eigenvector with
eigenvalue —||T'||, or w = (T'+||T||I)v # 0, in which case w is an eigenvector

with eigenvalue ||7T]|.
O

We are now ready for the first version of the spectral theorem.

Theorem 10.1 Let T : 5 — 5 be compact and self-adjoint. Then

(i) The spectrum o(T) is at most countable, and contained in R;
(ii) The subspaces ker(T — A1) C A with X\ € o(T') are pairwise orthog-
onal;
(ili) We have A = @ yco(r) ker(T — M) ;
(iv) For each € >0, 3 \co(ry, |z dimker(T — AI) < oco.

Proof First note that, if A € o(T'), then A is real, because T is self-adjoint.
Next, if \,u € o(T) are distinct then, given v € ker(T' — AI) and w €
ker(T — uI), we have

(Tv,w) = (v,Tw) = (A,w) = (v, pw)

This proves (ii).

Now, for each A\ € o(T), let JA = ker(T — AI). Note that, whenever
A € o(T)is # 0, 74 must be finite-dimensional. Indeed, the restriction T'| 4
maps ¢, into itself, and since Tv = Av for each v € J&, this restriction
is in fact a multiple of the identity, which can never be compact unless
ny = dim 473 is finite. But more is true. If € > 0 is given, let

= B 4.
Xea(T), | N\|>e

Then T(5¢) C J°. Let ey € J4 be a unit vector, for each A\ € o(T).
Then {Tey : |A| > €} is a relatively compact set, so we can find a sequence
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(An) with |A\,| > € such that (T'ey,) converges. But is A\ # p are any two
elements of the spectrum, then

||T€/\—T6,u”2 = ||)‘6>\—:u€,u”2 = )‘2+H2 > 2 >0,

which is a contradiction unless .7 is finite-dimensional. This proves (iv),
and it also proves (i) (why?).

Finally, let V = @, o(T) F4,. Then V is closed subspace, and it is T-
invariant. Hence so is its orthogonal complement. The operator T'|y . :
VL — V1 is compact and self-adjoint. But every such operator must have
an eigenvalue, by lemma 10.2. This contradicts the very definition of V,
unless V' = . This proves (ii). O

This theorem implies that every compact, self-adjoint operator can be
diagonalized. More precisely, we have the following result.

Corollary 10.1 A compact, self-adjoint operator T : 7€ — € admits an
orthonormal basis of eigenvectors.

Proof For each A € C such that s = ker(T — A\I) # 0, let By be an
orthonormal basis of J74,. Each e € B, is an eigenvector with eigenvalue A,
and UB), is a basis for .# because, as we have seen, 7 = @ 3. O

Remark 1. If {e, },>1 is a basis of eigenvectors for T', with T'e,, = \,e,, for
all n (A, € R), then for each v = >  ane, € H we have Tv = > apApen.
Since T is compact, we know that |A,| — 0 as n — oo. This justifies the
remark we made immediately after example 1.

Remark 2. The function ¢ : X\ — dimker(7 — AI) characterizes T' com-
pletely up to unitary equivalence. In other words, if T; : 54 — 5 (i = 1,2)
are both compact and self-adjoint, then T3 is unitarily equivalent to 75 if
and only if o7, = ¢1,. The proof is left as an exercise.

10.4 Spectral theorem for normal operators

A bounded operator T : 7 — 7 is said to be normal if it commutes with
its adjoint: T'T* = T*T. This wide class of operators includes of course
all self-adjoint operators, as well as all unitary operators. It also includes
all multiplication operators, when . = LZ(X ) (where (X, p) is a finite
measure space): given any bounded measurable function g : X — C, the
operator M, : Li(X) — Li(X) given by Mg = g - is bounded, and
My = Mg; in particular, MjM, = Mz, = Mgg = MyMy, so My is normal.
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As it turns out, multiplication operators as above are the only normal
operators up to unitary equivalence. This is the contents of the following
spectral theorem.

Theorem 10.2 (Spectral Theorem) Let T' : 5 —  be a bounded,
normal operator on a separable Hilbert space. Then T is unitarily equivalent
to a multiplication operator. In other words, there exist a o-finite measure
space (X, ), a bounded measurable function g : X — C and a unitary
isometry U : A — L7(X) such that the diagram

w L.

v| lv
L2(X) —— LA(X)

commutes (i.e. T =U*MyU ).

The proof of this theorem will be given in appendix II, after we talk
about C* algebras and their representations. As we shall see there, the
above theorem holds true for any finite set 17, ..., 7T}, of commuting normal
operators; in this case, the same unitary isometry U conjugates each T; to
a multiplication operator My, € B (LZ(X )), where g; : X — C is bounded
and measurable.

10.5 Spectral theorem for unbounded operators
10.5.1 Unbounded operators

The vast majority of operators (in Hilbert space) that appear in applications
ranging from classical to quantum physics are unbounded operators. These
operators are usually only densely defined. Let us formulate the appropriate
definitions.

We consider operators of the form T : V — 3, where V C 7 is a
(not necessarily closed) linear subspace, which are linear. We say that T is
densely defined if V is dense in 7. We say that T is closed if the graph
Gr(T) = {(v,Tv) : v €V} is a closed subspace of J @ .

Example 4. Let (X, ) be a measure space, and let g : X — C be a mea-
surable function. Define V, = {¢ € LZ(X) D gp € LZ(X)} This is a dense
subspace of Li(X). The multiplication operator My : Vi — Li(X) given by
My(p) = gy is therefore densely defined, and it is also closed. The details
are left as an exercise.
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We shall frequently write 7" : dom (7') — ¢, sometimes also (7', dom (7)),
when we want to specify a linear operator T'; it is implicit here that dom (7)
is the domain of T. The image of T" will be denoted by ran(T'), as is
customary among functional analysts. The graph norm on dom (T) is the
norm defined by

ol = loll* + I o]

for all v € dom (7"). That this is indeed a norm, deriving from an inner
product, is left as an exercise. One can show that the operator T is closed
if and only if the graph norm is complete for dom (T") (i.e. iff dom (7') is a
Hilbert space under this norm).

Let us now define the adjoint of a densely defined operator T : dom (7') —
. First, we define its domain dom (7%) to be the set of all n € 7 such
that the correspondence & — (T¢,n) extends to a bounded linear functional
¢p : A — C. This extension is unique because dom (T') is dense in 7. Then
dom (T™) C 4 is a linear subspace, and by Riesz’s representation theorem,
there exists v, € J such that ¢,(§) = (£, v,). We define T% : dom (T%) —
€ by T*(n) = vy. It is clear that T is linear and satisfies (T°¢,n) = (£, T™n)
for each ¢ € dom (T") and each 1 € dom (7). The operator T* is the adjoint
of T'. The reader is invited to prove that T™ is always a closed operator.

A few more definitions are in order. Given two linear operators T, .S on ¢,
we say that T"is an extension of S, written S C T, if dom (S) C dom (T") and
S¢ =T¢ for all £ € dom (S). An operator T : dom (T') — H is symmetric
if for all én € dom (T') we have (T'¢,n) = (£, Tn). It is easy to see (exercise)
that T is symmetric iff T C T*. We say that T is self-adjoint if T = T*; in
other words, T is self-adjoint if dom (7") = dom (T*) and T is symmetric.

10.5.2 The Cayley transform

Let T : dom (T') — . be a densely defined, symmetric operator. The
Cayley transform of T is the linear operator W defined as follows:

(i) dom (Wr) ={(T'+i)v: v e dom(T)};

(ii) Wr((T +i)v) = (T —i)v, for all v € dom (T).
In order to see that Wy is well-defined, note that if w € dom (W7) then
w = (T+i)v for a unique v € dom (7). Indeed, if we had (T'+i)vy = (T+1)ve
then £ = v; — v would satisfy T¢ = —i&, but this is impossible unless £ = 0,
because T is symmetric:

—ill&|? = (T¢,€) = (£, T¢) = ilé|* .
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Hence Wr is well-defined, and clearly linear. Moreover, an easy calculation
yields
I(T £ 4)ol* = [IT0]|* + o]

for all v € dom (T'). Hence ||(T+i)v||? = ||(T—i)v||?, and therefore ||Wp((T+
i)v)|| = ||(T + i)v|| for all v € dom (7). This shows that Wrp is a partial
isometry, i.e. it is a linear operator which is an isometry wherever it is
defined. Note also that Wy is onto the subspace ran (Wr) = {(T" — i)v :
v € dom (T")}. Thus, we can view the Cayley transform as a correspondence
k : T +— Wy that sends densely defined symmetric operators to partial

isometries of .. We shall see that such correspondence is one-to-one and
onto. This requires the following three lemmas.

Lemma 10.3 Let U : dom (U) — S be a partial isometry such that I — U
has a dense image in . Then

(a) I —U :dom (U) — ran ((I — U)) is bijective;
(b) The linear operator Ay, defined by taking dom (Ay) = {({ —U)¢ :
Eedom(U)} and Ay((I —U)E) =i(I +U)E for all £ € dom (U), is

symmetric and densely defined.

Proof (a) Let £ € ker(I — U); then for each n € dom (U) we have

= (&m —{Em=0.
Hence £ L ran (I — U), and since ran (I — U) is dense in .7, it follows that
¢ = 0. This shows that I — U is injective (hence a bijection onto its image).
(b) The operator Ay is clearly densely defined, for its domain is the
ran (I —U). Now suppose v = (I —U)¢ € dom (Ay) and w = (I —U)n €
dom (Agyr). Then on the one hand we have
(Ayv,w) = (i(§+UE),n—Un)
i[{U&n) = (& Un)] (10.2)
and on the other hand
(v, Apw) = (- UE,i(n+Un))
= —i[—(U&n) + (&, Un)] , (10.3)

From (10.2) and (10.3) it follows that (Ayv,w) = (v, Ayw), so Ay is sym-
metric. O
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Lemma 10.4 Let T : dom (T') — S be densely defined and symmetric, and
let U : dom (U) — A be a partial isometry with ran (I — U) dense in J .
Then we have Wy, =U and Aw, =T.

Proof For each & € dom (Ay) we have Wy, (Ap€ + i€) = Ay — €. But
dom (Ay) =ran (I — U), whence £ = (I — U)n for some n € dom (U). This
means that

Apé —i&=iI+Un+il —U)n=2in,
and also

Avé+iE =il +U)n—i(I —U)n=2iUn .

Therefore Wa,,(2in) = 2iUn, i.e. Wy, = U. This proves the first equality
in the statement. The second equality follows from a similar argument. O

Lemma 10.5 Let T : dom (T') — 4 be a symmetric operator. Then the
following statements are equivalent.
(i) T is closed;
(ii) ran (T'+ 1) is closed;
(iii) ran (T — i) is closed.

Proof The equivalence of all three assertions is an easy consequence of the
fact that the operators (&, 7€) — (T £ )¢ from Gr(T) onto ran (T + i) are
both unitary. The details are left as an exercise. O

Lemma 10.6 Let T : dom (T') — 4 be symmetric and densely defined. Let
Ni =ran (T £ i)". Then we have

Ny =ker(T* —i) and N_ =ker(T" +1) . (10.4)

Moreover, endowing dom (T*) with the graph norm, we have the following
orthogonal decomposition

dom (T*) = dom (I) @& N4 & N_ . (10.5)

Proof Let & € N4, and take any n € dom (7). Then (T + i)n,zi) =0, i.e.
(T'n,&)+i(n,&) = 0. Hence £ € dom (T%) and (n, T*¢ —i&) = 0, so (T —1i)¢
is orthogonal to dom (7'). Since dom (7") is dense in ¢, it follows that
(T* — 1) =0, i.e. &€ ker(T™* —i). This shows that Ny C ker(7™ —4). For
the reverse inclusion, note that the argument just given is itself reversible.
This proves the first equality in (10.4). The proof of the second equality is
similar.
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In order to prove (10.5), we first show that N, and N_ are orthogonal
subspaces, relative to the graph inner product (-,-) on dom (7). Given
&+ € Ny we have, using (10.4),

<€+7 §*>T* = <T*§+7T*§*> + <€+7 §7>
- <i£+7 _i€—> + <€+7€—>
=0.

Next, we show that Ny L dom (7). It suffices of course to show that
N 1 dom(T). Let £ € Np = ker(T* — i) and n € dom (T"). Then, using
the fact that T' is symmetric, we have

Mg =TT )+ (§m) = (66, Tn) +(Em)
= (@T"&m) + (&)
= i (—iE+T*,n) = 0.

The proof that N_ L dom (7") is entirely similar.

Finally, in order to establish equality in (10.5), it suffices to show that the
orthogonal complement of dom (7") in dom (7T*) with respect to the graph
inner product falls within N, @ N_. Let v belong to such orthogonal com-
plement. Then (v,7n),. = 0 for all n € dom (T'), that is

(v,m) + (T, T*) = 0,
or yet (using symmetry)
<v+ (T*)Qv,n> =0

for all n € dom (7). Since dom (T') is dense in 7, it follows that (7%)%v =
—v. This can also be written as

(T*+) (T —i)v = (T*—=))(T"+i)v = 0,

and this implies that (T —i)v € ker(T™ 4 i) = N_ and that (7" +i)v €
ker(T* — i) = N,. But since
1

v = —[(T"+iv—(T"=1i)n],

21

it follows that v € N, @& N_. This completes the proof. O

The following theorem is a key result concerning the Cayley transform and

will be used in the proof of the spectral theorem for unbounded self-adjoint
operators.
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Theorem 10.3 The Cayley transform k is a bijection between the set of
densely defined, symmetric operators T : dom (T') — F and the set of par-
tial isometries U : dom (U) — H such that ran (I — U) is dense. Moreover,
T is self-adjoint iff Wr = k(T) is unitary.

Proof Given T : dom (T) — 5 densely defined and symmetric, let U =
Wr = k(T). Then ran (I —U) = dom (7). Indeed, dom (U) = ran (T + i),
so if £ € dom (U) then £ = (T + i)n for some n € dom (T"), and therefore

I-U)=T+in—Wp(T+i)n=(T+i)n— (T —1i)n=2in € dom(T) .

This shows that ran (I —U) C dom (7T'), and the argument is reversible,
so dom (7') C ran (I —U) as well. Hence Wr is a densely defined partial
isometry with ran (I — Wyp) a dense subspace. Applying lemmas 10.3 and
10.4 we see at once that k : T — Wy is surjective and injective (for there we
constructed the inverse ! quite explicitly). This proves the first assertion
of our theorem.

To prove the second assertion, let 7" be self-adjoint. Then by (10.5) in
lemma 10.6, we have N = N_ = {0}. Thus, we have that dom (W) =
ran (T'+ ) is dense (because its orthogonal complement in .7 is N4 ) and
ran (Wp) = ran (T — ) is also dense (because its orthogonal complement in
A is N_). But since T is self-adjoint, 7' is closed, and therefore ran (T + i) =
A (we are using lemma 10.5 here), which shows that Wy is unitary. Con-
versely, if Wy is unitary then ran (7' + i) = . Hence T is closed (again by
lemma 10.5) and we have Ny = N_ = {0}. Now lemma 10.6 tells us that
dom (7*) = dom (T') = dom (T"). This proves that T is self-adjoint, and we
are done. O

Let us now examine Cayley transforms of multiplication operators. We
consider a measure space (X, u) and for each measurable function ¢ : X —
C we consider the multiplication operator M, : D, — Li(X ) given by

My,(f) = ¢f, where D, = {f € LZ(X) cof € Li(X)}

Lemma 10.7 Let ¢ : X — R be a real-valued measurable function. Then
the Cayley transform of M., is My, where 1 = (¢ —i)(¢ +i)~L. Moreover,
M, is self-adjoint.

Proof For each { € D, we have

Wi, © (My+19)€ — (M, —1)¢ .

o -
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Since |p(z) +14) 7' < 1 for all z € X, it follows that dom (Wyy,) = Li(X)
(check!) and in addition we have, for all € dom (Way,),

Wa,n = Wi, [(90+i)(<,0+i)_17]]
= (p—i)e+i)"'n = ¢n
= Myn .

Hence Wy, = My as asserted. Now, since

W(@)| = o —il lp+i™t =1

for all x € X, we see that 1) maps X into the unit circle. This shows that
o(My) C T', and therefore My, is unitary. Since My = k(M,), it follows
from theorem 10.3 that M, is self-adjoint. O

10.5.3 Unitary equivalence

Just as in the case of bounded operators, the suitable notion of equiva-
lence between densely defined, unbounded operators is unitary equivalence.
Given Hilbert spaces J#,9 and two operators T : dom (7T) — 4 and
S : dom (S) — ¢, with dom (T") C 4 dense in # and dom (S) C ¥
dense in ¢, we say that T and S are unitarily equivalent if there exists a
unitary isometry U : 7 — ¢ such that UTE = SU¢ for all £ € dom (7).
The isometry U is called by functional analysts an intertwining operator
between 1" and ST.

Lemma 10.8 Let T : dom (11) — 54 and Ty : dom (1z) — 5% be densely
defined, symmetric operators. Then 11 and Ty are unitarily equivalent if
and only if Wr, and Wy, are unitarily equivalent.

Proof Let U : 764 — 7 be a unitary operator intertwining Wz, and Wr,.
Let us write W; = Wy, for simplicity of notation. Using lemma 10.3, we see
that

U(dom (T1)) = U(ran (I — Wy)) = ran (I — W3) = dom (1) .

Moreover, using the fact that ran (I — W) is dense in J# (again by lemma
10.3), we see that UT) = ToU, because

UTy(I —Wh)é = UG +Wh)E) = i(U + Wal)E
= (I +Wo)UE = To(I — Wa)UE
= TyU(I —Wi)¢.

t Dynamicists (such as the authors of this book) prefer the term conjugacy.
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This shows that U intertwines 77 and T5. The converse is easier, and is left
as an exercise. O

10.5.4 The spectral theorem

We are finally in a position to state and prove the spectral theorem for
unbounded self-adjoint operators.

Theorem 10.4 Let T : dom (T') — S be a densely defined operator. Then
T is self-adjoint if and only if T is unitarily equivalent to a multiplication
operator M, where ¢ is a measurable and real-valued function on some mea-
sure space.

Proof Let T : dom (T') — S be self-adjoint. Then its Cayley transform Wy
is unitary, hence normal, and so by the spectral theorem for bounded normal
operators (theorem 10.2), we know that there exists a measure space (X, )
and a measurable function ¥ : X — T such that Wy is unitarily equivalent
to My : LZ(X) — Li(X). In other words, there exists a unitary operator
U: 7 — LZ(X) such that UWr = MyU. We claim that 1 cannot be equal
to 1 on a set of positive p-measure. If £ C X were such a set, then we would
have (I — My)1g = 0 (check!). However, I — Wy is injective, so I — My is
injective as well. This contradiction shows that ¥ # 1 p-almost everywhere.
Hence we can defined ¢ : X — R by

p(x) = i(1+9())(1 —9() " .

This is a well-defined measurable function, and applying lemma 10.7 on
easily sees that Wy, = My. Thus, we now know that U intertwines Wr
and Wyy,. Therefore, by lemma 10.8, it follows that T" and M, are unitarily
equivalent. The converse is much easier and is left as an exercise. O

10.6 Functional Calculus

In this section we develop a version of the so-called functional calculus for
unbounded, self-adjoint operators as a consequence of the spectral theorem.
Given a metric space X, we denote by BM(X) the space of all bounded
measurable functions X — C. Endowed with the sup-norm || - ||oc, BM(X)
is a Banach space, in fact a Banach algebra (see appendix II). The goal
of functional calculus, for a self-adjoint operator T in a Hilbert space 2,
is to make sense of f(T) for all f € BM(R). This is tantamount to find-
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ing a special type of representation of BM (R) into B(.¢) called a spectral
homomorphism.

Definition 10.4 A spectral homomorphism is a map m: BM(X) — B(%)
with the following properties.

(i) 7 is a continuous representation of the Banach algebra BM (X).

(ii) For each & € S, the function v : BxC given by ve(E) = (m(1g)&,§)
defines a complexr measure on X (here Bx denotes the Borel o-
algebra of X ).

Given a representation my : C(X) — B(4), let us agree to call a vector
¢ € A cyclic if {mo(f)¢: f € C(X)} is dense in J. If a representation
has a cyclic vector, we call it cyclic. Cyclic representations are obviously
irreducible. As it turns out, every representation of C'(X) into B(J¢) can
be written as a direct sum of cyclic representations. This fact, which we
simply assume here, will be proved later (appendix II) in the much more
general context of C* algebras.

The important abstract fact about spectral homomorphisms is the follow-
ing.

Theorem 10.5 Let X be a compact metric space, and let my : C(X) —
B(4) be a representation. Then there exists a unique spectral homomor-
phism m: BM(X) — B(J) extending mo (i.e. such that 7|c(x) = 7o)

Proof Due to the observation just preceding the statement, it suffices to
present the proof when 7y has a cyclic vector £ € 7. The correspondence
[ (mo(f)E, &) defines a complex linear functional on C'(X). By the Riesz-
Markov theorem, there exists a finite, complex Borel measure p on X such
that

(ro(F)E,€) = /X f du

for all f € C(X). Let us consider the Hilbert space L2 (X), of which C(X)
is a dense subspace. Given f,g € C(X) C L2(X), we have

(f.9) /X af di = (mo(af)E.€)

= (mo(g)m0(f)E, )
= (mo(f)&, m0(9)§) -

This shows that the map f +— my(f) extends continuously to a linear isom-
etry U : LZ(X ) — . This isometry is onto ¢, because & is cyclic. Hence
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U is unitary. This unitary map gives rise to an isometry U : B(x) —
B(L2(X)) given by U(T) = U~'TU. Now, U conjugates the representation
7o to a representation 7y : C'(X) — B(Li(X)). In fact, for each f € C(X)
and each ¢ € L2 (X) we have

To(f)e = U tmo(/)U(p) = UM (mo(fe)é) = fo = Myp .

Hence 7o(f) = My, a multiplication operator, for all f € C'(X). But this
has an obvious extension to a representation 7 : BM(X) — B (Li(X )): one
simply defines 7(f) = My for all f € BM(X). Finally, let 7 : BM(X) —
B(4#) be given by 7(f) = Un(f)U~'. This clearly extends 7, and one
verifies at once that it enjoys properties (i) and (ii) of definition 10.4. Thus,
existence of 7 is established. Uniqueness is in fact easier to prove; it is left
as an exercise. O

Remark 3. This theorem remains true if we replace C'(X) with Cy(X), the
space of continuous functions vanishing at oo on a locally compact space X.

Combining this remark, the above theorem, and the spectral theorem
for unbounded self-adjoint operators, we arrive at the following version of
functional calculus.

Theorem 10.6 Let T : dom (1) — S be a self-adjoint operator. Then
there exists a unique spectral homomorphism © : BM(R) — B(J) such
that w((t +i)~Y) = (T +i)~L

Proof By the spectral theorem 10.4, T' is unitarily equivalent to M, : f
©of, where ¢ : X — R is measurable ((X, ) some measure space). Hence
we may assume, in fact, that 7= M,. Let 7 : BM(R) — B(Li(X)) be
given by m(¢) = Mye,. This is well-defined, because 9 o ¢ is bounded and
measurable, for each ¢ € BM(R). We clearly have

T(P1e) = Myyn)op = Mpop)- (o)
- M’Ll)logo 'M’LZJQOgD = ﬂ'('(/}l)ﬂ'('(/)Q) :

One also shows quite easily that m(¢1 + ¢2) = w(¢1) + m(¢p2). Thus, 7
is a spectral homomorphism. Moreover, letting 1 (¢t) = (t +4)~!, we have
Yop=(p+i)"!, and therefore

m((t+1)71) = Mgy = (Mg +4) "' = (T+i)7" .

This establishes the existence of w with the desired properties.
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Now, for uniqueness. Suppose m, o are spectral homomorphisms into
B(s#1) and B(.7%3) respectively. and that

m((t+0)7") = (T+i)" = m((t+49)7").
Let &/ C BM(R) be the algebra of all f € BM(R) such that m(f) =
72(f). The sub-algebra of ./ generated by the constants and (t +1i)~! € &
separates points, because (t 4+ )~ ! already does, and it is also closed under
conjugation. By the Stone-Weierstrass theorem, such sub-algebra is dense in
Co(R), and therefore &7 O Cp(R). By theorem 10.5 and the remark following

it, o = T1|cy(r) = T2lcy(r) has a unique extension to BM(R). But then it
follows that m = ms. O

10.7 Essential self-adjointness

Let T : dom(T) — # be a densely defined operator. We say that T
is essentially self-adjoint if T is symmetric and has a unique self-adjoint
extension. Equivalently, 7T is essentially self-adjoint if it is symmetric and T
is self-adjoint. The following result gives us a useful criterion for essential
self-adjointness.

Theorem 10.7 Let T : dom (T') — S be a symmetric, densely defined
operator. Then the following are equivalent.

(a) T is essentially self-adjoint;
(b) ran (T + i) C A are dense subspaces;
(¢) ker(T™ £ i) = {0}.
Proof Recall from lemma 10.6 that
dom (T*) = dom (T)® Ny & N_ . (10.6)
(the closure being with respect to the graph norm of dom (7)), where
Ny =ran (T £4)" = ker(T* 1) . (10.7)

The equivalence between (a) and (b) follows easily from (10.6), whereas the
equivalence between (b) and (c) is immediate from (10.7). O

The following example is of fundamental importance in Quantum Me-
chanics.

Example 5. The Laplace operator. Perhaps the most important example of
a self-adjoint operator is the Laplacian L = —A. The minus sign is chosen
because in this way L is a positive operator. We define this operator on
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Euclidean d-dimensional space R% as follows. First we look at L = —A on
the Schwarz space .7 (R%) C L%(R%), a dense subspace of L?(R?), defining
it directly by the formula

d
Z f . forall ¢ e C(RY) . (10.8)
j=1 .7

Let us verify directly that —A is essentially self-adjoint on . (R%). In order
to do this, we use the Fourier transform . : L*>(R?) — L?(R%) given by

1 —i(&,x
(F)(§) = W/Rd p(z)e &) do

We assume the reader knows the basic properties of the Fourier transform,
among them: (i) the fact that .Z is a unitary isometry; (ii) the fact that
F(On,p) = —i&;.F (p); (iii) the fact that F maps . (R?) into itself.

The fact that —A is it symmetric is a consequence of one of Green’s identi-
ties, and is left as an exercise. Hence, in order to show that —A is essentially
self-adjoint, it suffices to show, by theorem 10.7 above, that ran (—A +14) C
L?(R%) are dense subspaces. Let us show that ran(—A +1i) O .7(R%).
Given f € Z(R%), we need to solve the PDE

(—A+i)p = f. (10.9)

The Fourier transform is tailor-made for such problems! Applying it to both
sides of (10.9) we get

(—lEP+)@€) = f(&) (£eR™),

where the hat denotes Fourier transform. Hence we have

a6) = é@ e S(RY

and by Fourier inversion we deduce that

1 f©e p
Pl = g [, S @

is the desired solution. This shows that ran (—A + i) is dense, and the proof

that ran (—A — i) is dense is the same. Thus, the Laplacian is essentially

self-adjoint on .7 (R%), as claimed.

In fact, the unique self-adjoint extension of —/A can be defined directly
via the Fourier transform in the following way. Let P : R* — R be the
polynomial P(§) = — Z;l:l 5]2 (the symbol of —A), and consider the multi-
plication operator Mp : p +— Py, with domain dom (Mp) = {p € L*(R?) :
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Py € L*(R%)}. Note that dom (Mp) contains .7 (R?) as a dense subspace.
We let dom (—A) = .#~!(dom (Mp)) and define the extension

—A: dom (—A) — L*(R%)

by —A =% 1o Mpo.Z. Since Mp is self-adjoint in its domain dom (Mp)
and .F is unitary, it follows that —A is self-adjoint on dom (—A) D .7 (R%).

10.8 A note on the spectrum

The spectrum of an operator T : dom (T') — S is the set o(T) of all A\ € C
such that ' — A : dom (T") — . does not have a bounded inverse. The
complement of o(7) in C is called the resolvent set of T, and for each A
in the resolvent set, (' — A\)~! is called the resolvent of T. Certainly every
eigenvalue of 7' is in the spectrum, but not every element of o(7") needs to
be an eigenvalue; in fact, T' may have no eigenvalues at all!

We distinguish two subsets of the spectrum whose elements exhibit very
different behavior. If A € o(T), then we call dimker(7" — \) the multiplicity
of A\. We define the point spectrum o,(T") to be

op(T) ={X € o(T) : Xis isolated and has finite multiplicity } .

We also define the continuous spectrum (also called essential spectrum) of T
to be the set 0.(T") whose elements are approzimate eigenvalues of T in the
following sense. An element A\ € o(7') is an approximate eigenvalue if there
exists a sequence &, € dom (T) with [|&,|| = 1 such that (i) [|[(T"— )&, — 0
as n — oo; and (ii) (&,) converges weakly to 0, i.e. (&,,1m) — 0 as n — oo,
for each n € 2. It turns out that for self-adjoint operators the point and
continuous spectra are a dichotomy.

Theorem 10.8 (Weyl) If T : dom (T) — J is a self-adjoint operator,
then o(T') = 0,(T) U o.(T)

For a proof of this result, see [RS1]. We note that the spectrum, point
spectrum and continuous spectrum of an operator 7' : dom (T') — J are
all invariant under conjugacies by unitary isometries, in other words, if U €
B(#) is unitary and S = U™ITU, then 0,(S) = 0,(T), 0.(S) = 0.(T) and
o(S)=o(T).
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10.9 Stone’s theorem

A major application of the functional calculus developed in section 10.6 is a
proof of Stone’s theorem. Stone’s theorem states that every evolution group
has an infinitesimal generator. As we saw in chapter 2, this theorem is
crucial in the Heisenberg formulation of Quantum Mechanics.

Definition 10.5 An evolution group on a Hilbert space S is a one-parameter
family (Uy)ier of unitary operators Uy : A — A such that

(i) Upys = UUs for all t,s € R;
(ii) t — Uy is strongly continuous.

As the following result shows, every self-adjoint operator in Hilbert space
gives rise to an evolution group by exponentiation.

Theorem 10.9 Let A : dom (A) — F be a self-adjoint operator. Then
itx

U, = expitA, given by functional calculus applied to fi(x) = e"*, is an
evolution group. Moreover,

(a) Uy(dom (A)) C dom (A) for all t € R;
(b) For each & € dom (A) we have

hm (Utf §) = iA¢; (10.10)

(c) Conversely, if & € A is such that the limit in the left-hand side of
(10.10) exists, then & € dom (A).

Proof The fact that (Uy) is well-defined and a one-parameter group is an
easy consequence of the properties of x — €*. Property (b) follows from
functional calculus applied to the functions x — (e — 1)/t (for t # 0) and
x +— iz (for t = 0). In order to prove (c), we define an operator B in J¢ as

follows. First we take
dom (B) = {{ €7 hm (Utf €) exists } .
Then we let, for each £ € dom (B),
B¢ = Jim H(Ui£ ) (10.11)

One easily checks that —iB is a symmetric operator., and that —iB D A
(exercise). But since A = A*, we know that A is closed, and therefore we
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have iA = B. Now (a) follows as well, for if £ € dom (A4) and s € R, then
Us¢ will belong to dom (A) provided we can show that

hm (Ut(U f) Usf)
exists; but since Uy is continuous, we have

hm (UtU§ Us€)

Us [hm (U — f)]
This finishes the proof. O

Remark 4. The operator B = iA is called the infinitesimal generator of
(Up)ter- In general, given an evolution group (Uy)ier, we define its infinites-
imal generator B to be the operator defined as the limit (10.11).

Stone’s theorem is the converse of theorem 10.9.

Theorem 10.10 (Stone) Let (Uy)icr be an evolution group in Hilbert space
. Then there exists a unique self-adjoint operator A : dom (A) — J such
that B = i A is the infinitesimal generator of (Up)icr.

Proof We shall define A on a certain dense subspace of 7, the prove that
A is essentially self-adjoint, and finally verify that U; = e”A

For each ¢ € C§°(R) and each & € 77, let

o = /Rap(t)Utfdt e .

We define D = {{, : ¢ € CP(R), & € s}. Then D C S is a linear
subspace. We claim that D is dense in JZ. To see why, let £ € J be
arbitrary, and for each n > 1 let ¢, € C§°(R) be such that supp¢, C
[-n~1,n7!], ¢n > 0 and [; o, = 1. Then we have

16—l = | /R on (UL — ) di|

< sup [[U—&l — 0
[t|<n—!

as n — 00, so §,, — & and the claim is proved.



10.9 Stone’s theorem 275

Next, we define A : D — J2 as follows. If n = {, € D, let

L1
An = —ilim —(Usn —n)

L1

= —ilim — [ p(t)[Us€ — U dt
s—0 8 R

— it [T =) e
s—0 Jr S

— —i [ YU,
R

where in the last step we have used Lebesgue’s dominated convergence the-
orem. It is clear that A defined in this way is linear. We claim that A is
essentially self-adjoint. The fact that A is symmetric is an easy exercise.
Thus, by theorem 10.7, it suffices to show that ker(A* + i) = {0}. Let
¢ € ker(A* —i). Since for all n € D we have Uyn € D for all ¢, we see that

%@Utﬁ) = ({,iAUm) = —i(A"Um) = ({,Um) - (10.12)
Solving the resulting elementary ODE, we get (&,Uin) = (£,n)e’ for all
t € R. But since

& Um)y [ < Il Ul = NiElUmll < oo,

we see that (10.12) is possible iff (£, 1) = 0. Since D is dense in 77, it follows
that £ = 0. The proof that ker(A* + i) = {0} is entirely analogous. This
establishes the claim that A is essentially self-adjoint. Therefore the closure
A is self-adjoint.

The final step of the proof is to show that U; = €4 for all t € R. Let
¢e€DcCD=dom (14_1) Then on the one hand, by theorem 10.9 (a) and
(b), we have

. d .~ .
"¢ e D and %(e’mf) = iAe¢ . (10.13)
On the other hand,
d
- (Ui) = AU . (10.14)

Writing ¢ (t) = Upé — €/4¢ and using (10.13) and (10.14), we see that

() = PAUL —iAe™e = iAy(t) .
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Therefore, since A is self-adjoint, we have

S B0) = (0, 90) + (B0, 9/ (1)
= (), (1)) — § (0(0), ()

=0.

This shows that |[1(t)||*> = constant. But 4(0) = 0, so ¢(¢) = 0 for all ¢.
Hence Uyé = e*4¢ for all t, and the proof is complete. O

Remark 5. Stone’s theorem characterizes one-parameter groups, and as we
saw in chapter 2, it is essential in the study of the dynamical evolution of
closed quantum systems with a finite number of particles. It is however
insufficient for the study of the dynamics of open quantum systems (such as
a quantum gas in the grand-canonical ensemble). For the study of such open
systems one needs results about one-parameter semigroups of operators, the
most fundamental of which is the so-called Hille- Yoshida theorem. See [AJP]
for more on this subject.

10.10 The Kato-Rellich theorem

As we saw in chapter 2, the time evolution of a non-relativistic quantum
system having a fixed number of particles is determined by the Schrodinger
operator H = —A+V in L?(R%), where V is the interacting potential. The
Schrodinger operator yields a unitary group in Hilbert space, via Stone’s
theorem, provided we know that H 1is self-adjoint. Thus, we need good
criteria for self-adjointness.

The simplest such criterion is provided by the Kato-Rellich theorem. In a
nutsehll, this theorem states that a small linear and symmetric perturbation
of a self-adjoint operator is still self-adjoint. As we saw in section 10.7, the
Laplacian —A is self-adjoint (in the Sobolev space H?(R?), say). We can
regard the potential V' as a kind of perturbation, and deduce the required
self-adjointness of H if the right conditions are met.

Before we can give the statement (and proof) of the Kato-Rellich theorem,
we need a definition. Let A : dom (A) — . be a self-adjoint operator, and
let B : dom(A) — J be a linear operator. We call B an A-bounded
operator if there exist constants «, 3 > 0 such that

IBEI* < ollAg)* + BlIEl* | (10.15)

for all £ € dom (A4). The infimum over all @ > 0 with the property that
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(10.15) holds true for some 3 > 0 (and all £ € dom (A)) is called the A-
norm of B, and it is denoted N4 (B).

Theorem 10.11 (Kato-Rellich) Let A : dom (A) — S be a self-adjoint
operator, and let B : dom (A) — H be an A-bounded symmetric operator
with Na(B) <1. Then T = A+ B : dom (A) — S is self-adjoint.

Proof Since B is symmetric, it is clear that A + B is symmetric. Hence
it suffices to show (see theorem 10.7) that there exists A > 0 such that the
operators A+ B+ \i : dom (A) — . are both surjective. Since Na(B) < 1,
we know that there exist 0 < o < 1 and 3 > 0 such that, for all £ € dom (A),
we have

IBEI < allAg]? + BlEN? = o (I14€]2 + Ba~ i ]12) (10.16)
= oAz @iy

Let us then take A = (ﬁa‘l)%. Since A is self-adjoint, the operators A + \i
are both invertible. Hence, writing ¢ = (A4 i)~ 5 for n € 2 and plugging
it in (10.16), we see that

IB(A = Xi)"'n)|* < alln® .

Since this holds for all 7, we deduce that B(A 4 \i)~! are operators with
norm < « < 1. The usual Neumann series trick (geometric series) now
tells us that I + B(A £ \i)~! are invertible operators in 2, with bounded
inverses. Therefore, since

A+BxXi=(I+BA£X)") (AL N),

we see that the operators A + B £+ Ai : dom (A) — S are both bijective.
This proves that A 4+ B is self-adjoint. O

Exercises

10.1  Show that an inner-product space is a Hilbert space iff every bounded
linear functional on .7 is representable (in the sense of Riesz).

10.2  Let T € B(s#). Prove that ||T||?> = | T*T]||.

10.3  Let S,T € B(4) be self-adjoint operators. Show that ST is self-
adjoint iff ST =T'S.

10.4  Show that the linear operator of example 1 is indeed compact and
self-adjoint as claimed.

10.5 Let T : 5# — 3¢ be a compact operator. Prove that T* is compact.
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10.6  Show that if T : 5 — S is Hermitian then T + i is self-adjoint

10.7  Let T : dom (T') — JZ be a linear operator in Hilbert space. Show
that the graph norm of dom (7') derives from an inner product. Show
also that this norm is complete if and only if T is closed.

10.8  Let T': dom (T') — # be a linear operator, and let J : 7 & 7 —
J & A be the operator J(&,n) = (—n,§).

(a) Show that Gr(T™*) = J(Gr(T))*;
(b) Deduce that T* is closed.

10.9  Supply the details of the proof of lemma 10.5.

10.10 Show, as claimed in the first paragraph of section 10.7, that a densely
defined operator T' : dom (T') — . is essentially self-adjoint if and
only if T is symmetric and T is self-adjoint.

10.11 Using Green’s second identity

/ (uAv — vAu)dx = / (u@ —v@> do(z) ,
Br 8Bg on on

applied to u,v € #(R?) and to the ball B C R? of radius R cen-
tered at 0, and letting R — oo, prove that (—Au,v) = (u, —Av), in
other words, that —A is a symmetric operator on the Schwarz space
S (R9).

10.12 Show that the spectrum of —A is equal to [0, c0).

For the following two exercises, we need a definition. Let T : dom (T') —
L?(R4) be a linear operator and let A € C. A sequence {t,} in L?(RY) is
spreading for (T, \) if (i) ||¢, || = 1 for all n; (ii) supp(¥,) C R? is compact,
and moves off to infinity as n — oo; and (iii) ||[(T — A),|| — 0 as n — co.

10.13  Show that if 7" : dom (T') — L?(R%) and A € o.(T) (the continuous
spectrum of T') then (T, \) has a spreading sequence.

10.14 Let H = —A + V be a Schrédinger operator on L?(R3), where V :
R3 — R is a confining potential, i.e. V is continuous, non-negative
and satisfies V() — oo as |z| — oo. One knows that H is self-
adjoint on its maximal domain (the Sobolev space H?(R3)). The
purpose of this exercise is to show that H has discrete spectrum.

(a) Let A € o0.(H) and let {,,} be a spreading sequence for (H,\).
Show that (¢, (H — A\)¢y,) — 0 as n — oc;
(b) Show that

(Y, (H — Ny = /Rg |V, |2 dz + /Rg V0t |? de — X ;
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(¢) Show that (b) contradicts (a), whence o.(H) = ©;

(d) Deduce from Weyl’s theorem that the spectrum of the Schrédinger
operator H is discrete;

(e) If o(H) = {1, A2,...} with |A,| < |Any1], show that |A\,| — oo as
n — oo.

10.15 Recall the following fact which is at the root of Heisenberg’s uncer-
tainty principle (see chapter 2). If A, B are two self-adjoint operators
in Hilbert space and 9 € dom (A) N dom (B), then

(¥,ilA, Bl) = —2Im (A, Bi)) .

This exercise outlines the proof of a refined version of the uncertainty
principle for the Laplace operator, namely that on L?(R%) we have

A > (d—2)?

> (E10.1)

Let us denote by P; the j-th momentum operator ¢ — —ihd;v, and
as usual by M, the multiplication operator ¢ — ¢1). We leave to
the reader the task of identifying suitable domains of self-adjointness
for the operators appearing in this problem.

(a) Prove that, for each 1) € .7 (R?),
d
DB = 0y, —A) .
j=1
(b) Prove that

i [Mig-1PiMpy-1, My,] = dhMy -2 .
j=1

(c) Deduce from (b) and the Heisenberg principle that
d
dﬁHM‘x‘—ld)HQ = —QImZ <M‘x‘—1.PjM|x|—1’¢},Mx]1/}> .
j=1

(d) Applying the identity P;M, = Mp,, + M,P; (with ¢ = |z|71) to
(c), deduce that

d
(d = 2| Mg = ~2Tm Y (P, My o210
j=1
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(e) Using (a) and applying the Cauchy-Schwarz inequality (twice),
show that
d
I Y (P, Moy 2w0)| < (= A0) 2 | Mgy
j=1

(f) Deduce from (d) and (e) that

(d—2)? (d—2)?
4

<¢>—A¢> > T <w:M\x\*2¢> )

and verify that this is the exact meaning of (E10.1).

1M1 |* =

10.16  Stability of matter. Apply the result of the previous exercise to
prove that the hydrogen atom is stable, as follows. The Schrédinger
operator for the hydrogen atom is

h? e?
omT af
Here e denotes the charge of the electron, m its mass, h is Planck’s
constant, and the term V(z) = —e?/|z| is Coulomb’s potential.

(a) Using the previous exercise, show that
h? e?
= SmlaP af
(b) Analyze the expression on the right-hand side and deduce that in
fact
2me?
H > -=5
(¢) Verify that this means that the energy of the hydrogen atom is
bounded from below

In particular, the electron cannot fall onto the nucleus, and the atom
is stable. This was one of the early triumphs of Quantum Mechanics.
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Appendix II: C* Algebras and Spectral Theory

As we saw in chapter 2, the language of C* algebras provides a natural frame-
work for laying down the mathematical foundations of Quantum Mechanics.
This appendix is dedicated to the elementary theory of such algebras. In
particular, we shall present a complete proof of the spectral theorem for
bounded self-adjoint (or normal) operators in Hilbert space. This is but one
of many important applications of this beautiful and powerful theory. We
shall also attempt to explain in a nutshell how nets of C* algebras can be
used to build the foundations of Quantum Field Theory.

11.1 Banach algebras

A normed algebra is an algebra o/ over K = R or C which has a norm | - |,
satisfying the usual properties:

(i) |z| > 0 for all z € o7, with equality iff x = 0;
(ii) |ox| = |af - |z| for all @ € K and all z € 7
(ili) |z +y| < ||+ |y| for all z,y € o
(iv) |zy| < |z|-|y| for all x,y € 7.

The norm |- | generates a metric topology in 7. If this metric is complete,
we say that <7 is a Banach algebra.

Example 1. Examples of Banach algebras abound.

(1) The algebra of all continuous functions over a compact space X with
values in K, C(X, K), under the sup-norm, is a Banach algebra.

(2) Let E be a Banach (or Hilbert) space over K. Then the algebra of
all bounded K-linear operators over E, denoted L(E) or B(FE), is a
Banach algebra under the usual operator norm.

281
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(3) The algebra L (X, u) of all complex L functions over a measure space
(X, ) is a Banach algebra, the norm being the L°° norm. Note that
if X is a compact Hausdorff space and p is a finite Borel measure,
then C(X) = C(X,C) is a (dense) sub-algebra of L*>°(X, u).

Note that if .o/ is a Banach algebra, it may or may not have a unit e € /.
If it does, we can always rescale the norm so that |e|] = 1 (note that, in
any case, condition (iv) already implies that |e] > 1). The spectrum of an
element x € o7 is the set of all z € K such that x — ze is not invertible as
an element of /. If &/ does not have a unit, we may adjoin one if necessary
by a simple construction called unitization. The idea is to take an element
e not in 7, declare it to be a unit, and let & = & @& Ce (direct sum as
Banach spaces), extending the multiplication to /T so that the distributive
law still holds. It is not difficult to extend the norm of & to a norm in
o/T. For a more intrinsic construction in the context of C* algebras, see
exercise 1. A Banach algebra with unit will be called unital.

Lemma 11.1 The unit e of a unital Banach algebra </ has a neighborhood
all of whose elements are invertible.

Proof Given any v € & with |v| < 1, let y = e — v. Then one sees that y is
invertible, with y=! = e + v +v? +.... The series converges because |v| < 1
and .7 is complete. O

From this point onwards, we assume that all algebras are over K = C.

Proposition 11.1 The spectrum of x € o7 is always closed, bounded and
non-empty. If z € C is in the spectrum, then |z| < |z|.

Proof Let z € C be such that |z| > |z|. Then y = = — ze is invertible, with
yil = 2! (e +z e 22?4 ) .

Hence, if z is in the spectrum of z, then |z| < |z|. This shows that the
spectrum of z is bounded. Now, lemma 11.1 implies that the set of all
invertible elements in &/ is open. Therefore the spectrum of x must be
closed (if zyp € C is such that = — zge is invertible, then = — ze is invertible
for all z sufficiently close to zp). It remains to prove that the spectrum of z
is non-empty. We argue by contradiction. Suppose z — ze is invertible for all
2z € C, and let f: C — & be given by f(z) = (x — ze)~!. This is certainly
not constant. Hence we can find a continuous linear functional A : &/ — C
such that F' = Ao f: C — C is also not constant. But it is an easy matter
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to check that F' is an analytic function. Moreover, we have |F(z)| — 0 as
|z| — oo (use (iv) here). This shows that f is bounded, hence constant by
Liouville’s theorem. This contradiction shows that the spectrum of = cannot
be constant. 0

Notation. We shall write o(x) for the spectrum of x. The complement
C\ o(z) is sometimes denoted p(x) and is usually called the resolvent set of
x.

Here is an important consequence of the above.

Theorem 11.1 (Gelfand-Mazur) Let K be a normed algebra over R which
1s also a field. If K is complete, then either K =R or K = C.

Proof Let e € K be the unit element. First suppose that there exists j € K
such that j2 = —e. Then we see that K is also an algebra over C, for we
can define, for each z = x + iy € C and each v € K,

z-v = zv+y(jv) .

Using the norm |z| = |z| + |y| in C, we see that K becomes in fact a Banach
algebra over C. Now, if v € K, then o(v) # @ by proposition 11.1, so let
z € o(v). Then v — ze is non-invertible in K, but since K is a field we must
have v — ze = 0, i.e. v = ze. This shows at once that o(v) = {z}, and that
the map ¢ : C — K given by ¢(z) = ze is a field isomorphism, so K = C in
this case.
If however there is no element in K whose square is equal to —e, we adjoin
a new element j ¢ K, and look at K + jK, declaring j?> = —e and making
K + jK into an algebra (over C) in the obvious way. We also define a norm
in K+ jK by |v+ jw| = |v|+ |w|. The reader can check as an exercise that
K + jK is a Banach algebra with this norm. By what we proved above, we
have K + jK = C, so K = R in this case.
O

Let us now consider ideals in a Banach algebra /. A linear subspace
I C & is said to be a left ideal if x C I for all x € &. If Iz C I for all
x € o/, then I is called a right ideal. If I C &7 is both a left and a right
ideal, we say that [ is a two-sided ideal. Of course, these distinctions are
immaterial when &7 is a commutative algebra. An ideal I # &/ is said to
be maximal if it is not properly contained in any other ideal. The reader
will have no trouble in checking the usual properties of ideals in the present
context. In particular, the topological closure I of an ideal I C &/ is also an
ideal.
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Proposition 11.2 Let &/ be a Banach algebra, and let I C o/ be a closed
ideal which is also proper and two-sided. Then </ /I is a Banach algebra.

Proof That the quotient of an algebra by a two-sided ideal is an algebra is
standard (exercise). As a norm in /I, define

|z +I|| = inf |z + v
vel

(here || is the norm in 7). We leave it as an exercise for the reader to show
that this is indeed a norm in &7 /I and that such norm is complete (this of
course requires the completeness of <7 and the closedness of I). O

We note that a maximal ideal M C &/ is necessarily closed (exercise).
The following is an important fact concerning complex Banach algebras and
maximal ideals. All ideals to be considered will be two-sided.

Proposition 11.3 If & is a complex Banach algebra and M C & is a
mazximal ideal, then < /M = C.

Proof First we claim that </ /M, which we know is a Banach algebra by
proposition 11.2, is in fact a field. Let € &7 be such that x ¢ M, so that
x4+ M # M. We claim that there exists y € &7 such that (x+M)(y+ M) =
e + M (which is the unit in «//M, as the reader can check). Since M
is maximal the ideal generated by M U {x} must be equal to </. Hence
there exist y € &/ and m € M such that xy + m = e. This shows that
xy+ M = e+ M, and since (x + M)(y + M) = xy + M, this proves the
claim. We have thus shown that for each x in &/ but not in M, the element
x+ M is invertible in .7 /M. Hence </ /M is indeed a field. By the Gelfand-
Mazur theorem, either «&//M = C or &//M = R. But «//M contains
{ze + M : z € C} = C, which rules out the latter. Therefore < /M = C.

O

A character (or multiplicative linear functional) of a complex Banach
algebra o/ is an algebra homomorphism ¢ : &/ — C; thus ¢ is C-linear
and p(zy) = @(z)p(y) for all z,y in /. We also require characters to be
continuousf. The set of all non-zero characters of & is usually denoted 7.
Note that for all ¢ € &/ we have ¢(e) = 1, provided &/ has a unit e. The set
o/ 1s called the Gelfand spectrum of <. We put a topology on the Gelfand
spectrum of &/ as follows. Note that < is contained in &/*, the dual of &/
as a Banach space. Let &/* be given the weak™ topology, and give &/ the
induced topology.

1 For C* algebras continuity is automatic!
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Lemma 11.2 If ¢ : o — C is a character of a complex Banach algebra of
with unit, then ||¢|| = 1.

Proof Let x € &/ be such that |z| < 1, and suppose |p(z)| > 1. Then, while
|z < |z|™ < 1 for all n > 1, we have |p(z")| = |p(z)"] = |o(z)[* —
as n — oo. This contradicts the continuity of ¢. Hence |p(z)] < 1 for all
x € o/ with |z| < 1, s0 ||¢] < 1. Since p(e) = 1, we see that in fact ||| = 1.

O

The above lemma shows that < is in fact contained in the unit sphere of
/. Now we have the following result.

Theorem 11.2 The Gelfand spectrum o is a compact Hausdorff space
under the weak* topology.

Proof The weak® topology is Hausdorff, and by Alaoglu’s theorem (see
[RS1]) the unit ball @/* is compact in this topology. Hence it suffices to
show that &/ is closed in /", Suppose we have a net {@)}rea of elements
of ,Q?j and that ¢ € &/ is a limit point of this net, i.e. for some totally
ordered set & C A we have limgsy @i () = ¢(z) for all x € o/. Then, from
ea(zy) = ea(z)ea(y) we deduced that ¢(zy) = ¢(x)p(y) for all z,y €
whence ¢ is a character, i.e. ¢ € /. This shows that < is closed as claimed,
and therefore compact. O

There is a very close relationship between maximal ideals and characters,
in any Banach algebra /. This relationship is even closer when 2/ has a
unit, as the following result shows.

Proposition 11.4 Let &/ be a complex Banach algebra with unit. There
exists a one-to-one correspondence ® : of — M, where M is the set of all
maximal ideals of < .

Proof Given a character ¢ € ;z;'? define ®(p) = ker . This kernel is easily
seen to be a maximal ideal in &/ (exercise), so we have a well defined | map
b o/ — #. We claim that & is one-to-one. Suppose 1,y € & are
such that ker p; = ker¢y. Given z € o/, we have z — ¢1(z)e € kerpq,

because p1(e) = 1. Hence z — p1(z)e € kerygy as well. Thus we have
v2(x — ¢1(x)e) = 0, whence @a(z) = v1(x)p2(e) = p1(x) (because pa(e) =
1). This shows that ¢; = @2 and so @ is injective as claimed. To see

that ® is onto, let M C o/ be a maximal ideal, and consider the canonical
projection mys @ &/ — o/ /M, an algebra homomorphism. By the Gelfand-
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Mazur theorem, there exists an isomorphism ays : @/ /M — C. But then
oy = apromy : &/ — Cis a homomorphism, and clearly pps(e) = 1, so ppr
is a character. Since ajy is an isomorphism, we have ker pp; = ker mpy = M.
Hence we have ®(¢pr) = M, which shows that ® is onto. O

This proposition allows us to carry the topology of o over to M. T hus,
the space of maximal ideals in &7 is a compact Hausdorff space in a natural
way.

11.2 C* Algebras

In applications, especially to Quantum Mechanics, we are not so much in-
terested in arbitrary Banach algebras as we are in those that carry some
additional structure. Thus, we are usually interested in algebras of self-
adjoint operators in some Hilbert space, or more generally in algebras of
operators in Hilbert space which are closed under taking adjoints. This
motivates the following definitions.

Definition 11.1 A Banach x-algebra is a complex Banach algebra </ to-
gether with an involution x — x* on &/ satisfying

(i) (z+y)" =2"+y"

(i) (ax)* =ax*;
(iil) (zy)" = y"a*;
(iv) ||lz*|| = [|z||, for all z,y € < and all « € C (here and throughout,

| - || is the norm in <f ).

Definition 11.2 A C* algebra </ is a Banach *-algebra such that ||x*z| =
lz||? for all x € <.

Here is some additional terminology. The elements x € </ (a Banach
x-algebra or C* algebra) with x* = z are called self-adjoint. If © € o is
such that z*x = zz*, then z is called normal. When & has a unit e, we
define o(z) = {a € C: ae — z is not invertible} to be the spectrum of z,
as for general Banach algebras. From now on we shall deal exclusively with
C* algebras.

Example 2. Let us now present some important examples of C* algebras.

(1) Let X be a compact or locally compact Hausdorff space, and let o/ =
Co(X) be the space of continuous functions f : X — C which vanish
at infinity, in the sense that for each € > 0 the set {x € X : |f(z)| >
e} is compact. Of course, Cyp(X) = C(X) = C(X,C) when X is
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compact. Let .o/ be endowed with the sup norm || f|| = sup,cx | f ()],
and let f*: X — C be given by f*(x) = f(x), for all x € X. With
addition and multiplication defined pointwise, we see at once that </
is a C*-algebra, in fact a commutative unital C*-algebra, with unit
given by the constant function f = 1.

(2) Let o be any subalgebra of B(J), the space of bounded operators in
a Hilbert space 2, which is closed under the operations of taking
adjoints and also closed in the norm topology of B(#). Then < is
a C* algebra, and it is usually non-commutative. This class of exam-
ples includes, of course, finite-dimensional algebras such as M,(C),
the algebra of n X n complex matrices.

(3) Consider once again L*°(X, u), the algebra of L*° functions over a finite
measure space (X, p). With the involution defined by conjugation,
and the operations of pointwise addition and multiplication as in
example (1), L*>°(X, ) is a commutative C* algebra with unit. Un-
like example (1), however, L>°(X, ) displays the extra feature of
possessing a pre-dual as a Banach space, namely L'(X,u). A C*

algebra with this property is called a von Neumann algebra.

We shall see in due time that the above examples (1) and (2) constitute
all C* algebras up to the appropriate notion of isomorphism.

Lemma 11.3 Let a be a self-adjoint element of a C* algebra o7. Then we
have ||a™|| = ||la||™ for all n > 1.

Proof First we prove the statement for powers of 2. Since a* = a, we have
la2|| = |la*a| = ||a]|?. By induction on k, it follows that [|a" | = ||a||?", since
the powers of self-adjoint elements are self-adjoint. Let us now prove the
statement for arbitrary n. Again we proceed by induction, on the (unique)
k such that 28 < n < 2F+1. Suppose the statement holds true for all m
such that m < 2%, i.e. [|a™| = ||a]|™ for all m < 2*. Given n such that
2k < n < 26+ et k, = 28 —n < 2% Then we have

lal™ 5 | = fla™* | < fla| - [l = fla™] - [la]*" -
Here we have used ||a*|| = ||a||*», which is true by the induction hypothesis.
Hence [la]|” < |[|a™||. But ||a"||] < |la||™ always, so [[a™| = ||a|™. This
completes the induction and finishes the proof. O

Definition 11.3 Given a C* algebra o/ (or more generally a Banach alge-
bra) with unit, the spectral radius of a € o7 is r(a) = sup{|A| : A € o(a)}
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Lemma 11.4 The spectral radius of a € < is given by r(a) = lim, o ||a™||*/™.

Proof The reader is invited to supply a proof as an exercise. The existence
of the above limit is a simple consequence of the fact that the sequence ||a™||

is sub-multiplicative (i.e [|a™*"] < ||a™]| - ||a™]|, for all m,n > 1). O

Note that we always have r(a) < ||a]|. The following lemma tells us that
for self-adjoint elements equality holds.

Lemma 11.5 If a € & is a self-adjoint element of a C* algebra <7, then
r(a) = |lal|.

Proof This is an obvious consequence of lemmas 11.3 and 11.4. O

More generally, lemma 11.5 holds true for normal elements. This is left
as an exercise.

We have yet to introduce a suitable notion of morphism between C* al-
gebras.

Definition 11.4 A x-morphism between two C* algebras </, % is an alge-
bra homomorphism ¢ : of — 9B that commutes with the x-involutions, i.e.

o(a*) = ¢(a)*, for all a € 7. If both algebras are unital and ¢ maps the
unit of &/ to the unit of B, then ¢ is said to be a unital x-morphism.

A s-morphism of C* algebras will sometimes also be called a C* homo-
morphism.

Lemma 11.6 Let ¢ : &f — P be a unital x-morphism between two unital
C* algebras. Then r(¢(a)) < r(a) for all a € .

Proof 1t suffices to show that oz(¢(a)) C ou(a). Let A € o(¢(a)). Then
¢(a) — Aeg is non-invertible in A, where ey is the unit of . Note that ¢
carries invertible elements in </ to invertible elements in . Since

p(a) — Neg = ¢pla — Ney) ,
it follows that a — Ae is non-invertible in o7, and therefore A € o/(a). O

We leave it as an exercise for the reader to remove the hypothesis in lemma
11.6 that both algebras and the x-morphism are unital.

In the definition of *-morphism given above, we did not require that -
morphisms be continuous. It is a consequence of the result below that such
an assumption is unnecessary.
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Proposition 11.5 Let ¢ : &f — A be a x-morphism between C* algebras.
Then ¢ is norm-contracting, i.e. ||¢p(a)||z < ||al|w -

Proof Let z € o be self-adjoint. Then ¢(x) is self-adjoint in %, whence by
lemma 11.5 we have

lp(@)ll2 = ra(d(@) <ru(e) =[],

where we have used lemma 11.6 as well. Hence ||¢(z)||2z < ||z|» whenever
x is self-adjoint. For arbitrary a € &7, the element a*a is self-adjoint, so

l6(a)ll% = lé(a*a)llz < llaalls = llall%,

i.e. ||¢(a)]le < |la|le, and we are done.
O

We are drawing closer to the commutative Gelfand-Naimark theorem. Our
next lemma justifies the name Gelfand spectrum that we gave to <.

Lemma 11.7 Let &/ be a commutative C* algebra with unit. Given a € <7,
we have X € o(a) iff there exists ¢ € o such that p(a) = \.

Proof If A € o(a), then a — Ae is not invertible, so the ideal I = (a —
Ae)gf is proper. Let J O I be a maximal ideal. By proposition 11.4,
there exists ¢ € & such that ker ¢ = J. In particular ¢ vanishes over I,
and so p(a — Xe) = 0, i.e. @(a) = X. Conversely, if ¢ € o/ is such that
©(a) = A, then a — Ae cannot be invertible: if b € & were an inverse, then
1 =¢((a— Ae)b) = p(a — Xe) - ¢(b) = 0, which is absurd. Hence X € o(a).

O

From now on, we shall write o () instead of o for the Gelfand spectrum
of a C* algebra /.

There is a natural way to associate to each element a € & of a C*
algebra with unit an element a € C(o(«)), namely the functional given by
a(p) = p(a), for each ¢ € o(<7). The map a +— a is called the Gelfand
transform.

Theorem 11.3 (Gelfand-Naimark) The Gelfand transform o/ — C(o(</))
18 a *-isomorphism, and it is also an isometry, provided <7 is a commutative
C*-algebra with unit.

Proof 1t is clear that @ — a is a homomorphism of algebras, and that it
sends the unit of &7 to the unit of C'(o(</)) (the constant function equal to
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1). We claim that it preserves the *-involutions of both algebras. To prove
this claim, we use the fact that ¢(a) is real for each self-adjoint a € o/ and
each ¢ € o(47). Given an arbitrary element a € &7, let us write a = b + ic
with b, ¢ self-adjoint, namely,

1 . 1 *
b:E(oH—a ) and C—E(a—a ).
Then, for each ¢ € o(4/), we see that
p(a”) = @b —ic) = p(b) —ip(c)
= ¢(b) +ip(c) = (b +ic) = p(a) -

This shows that a* = a*, as claimed. Now, the Gelfand transform is also
clearly injective. We claim that it is an isometry. Indeed, it follows from
11.7 that for each a € & we have ||a||c = 7(a) (check!). Therefore we have

lal% = lla*allee = r(a*a) = [la*all = |lal?

where we have used lemma 11.5 together with the fact that a*a is self-adjoint.
Thus the Gelfand transform is an isometry as claimed. In particular, it
is continuous. Our final claim is that it is onto C(o(«7)). Indeed, the
image in C(o(«/)) of o/ under the Gelfand transform is a closed algebra
that contains the constant functions, separates points and is closed under
complex conjugation. Therefore it is equal to the whole C(o(47)), by the
Stone-Weierstrass theorem. O

Let us extract some important consequences of the Gelfand-Naimark the-
orem.

Corollary 11.1 Let ¢ : &7 — P be an injective homomorphism between
two C* algebras. Then v is an isometry.

Proof We already know that v is norm-contracting. We may assume that
both algebras are unital, passing to ¥ : & — BT if necessary (details
are left as exercise). In order to prove that ||¢(a)||%z = ||a| for a given
a € o/, we may restrict ¢ to ¢ : C*(a,ey) — C*(¢(a),en), where the
restricted domain C*(a, e,/) is the C* subalgebra of </ generated by a and
e, and similarly for the restricted range. Both C*(a, ey ) and C*(¢(a), ez)
are abelian C* algebras. Applying the Gelfand-Naimark theorem 11.3, we
deduce that C*(a,ey) = C(X) and C*(¢(a),ez) = C(Y), where X and Y
are compact Hausdorff spaces (the Gelfand spectra of both abelian algebras).
We are therefore reduced to proving that if ¢ : C'(X) — C(Y') is an injective
C* homomorphism, then it is an isometry. But every such homomorphism
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is of the form ¥(p) = ¢ o f, where f : ¥ — X is a surjective continuous
map (this is an easy exercise). Therefore ||[1(¢)]lco = [|l© © flloo = ||¢|loo, for
all ¢ € C(X). This finishes the proof. O

Another consequence of theorem 11.3 is the following result.

Theorem 11.4 Let X and Y be compact metric spaces. Then X andY are
homeomorphic if and only if C(X) and C(Y') are isomorphic C* algebras.

Proof One implication (=) is obvious. To prove the converse implication,
we first claim that X = o(C(X)). Indeed, let ® : X — o(C(X)) be the
map = € Z, where & : C(X) — C is the multiplicative linear functional
z(p) = p(x). Then @ is injective and continuous. We shall presently see
that it is also onto. Note that any A € o(C(X)) is also a positive linear
functionalf. By the Riesz-Markov theorem, there exists a Borel probability
measure p on X such that A(p) = [y ¢du for all ¢ € C(X). Since A is
multiplicative, we have

/X phdn = Mew) = A()AW) (11.1)

() (o) s

for all p,¢ € C(X). Let U,V C X be any two disjoint open sets with
p(U) > 0 and (V) > 0. Choose ¢ € C(X) so that ¢ > 0 on U and ¢ =0
everywhere else; choose ¢ € C'(X) likewise with respect to V. Then ¢-1) = 0,
so A(¢y) =0. But [y ¢dp >0 and [y 1) du > 0 by construction, and from
11.2 we deduce that A(¢) > 0, which is a contradiction. From this it is
an easy matter (exercise) to see that p is an atomic measure supported at a
single point x¢ € X; in other words, pt = d4,, the Dirac measure concentrated
at xo. Hence for each ¢ € C(X) we have

AMp) = /deém = ¢(wg) = To(p) -

This shows that the map @ is onto as claimed, hence a homeomorphism.
Thus, now we know that X = ¢(C(X)) and Y = o(C(Y)). Hence, if
C(X) and C(Y) ar isomorphic as C* algebras (so that they are isometric,
by the above corollary) then by lemma 11.8 below, ¢(C(X)) and o(C(Y))
are homeomorphic. Therefore X = Y, and this finishes the proof of our
theorem. 0

t If o € C(X) is > 0, write ¢ = |f|2 = ff for some f € C(X); then A(¢) = A(ff) = |A(f)|? >0,
because A is *-preserving
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The lemma referred to in the above proof is the following.

Lemma 11.8 If ¥ : o/ — & is a C* isomorphism then U : 0(B) — o()
given by ¥(p) = @ o ¥ is a homeomorphism.

Proof An exercise for the reader. O

11.3 The spectral theorem

The main application of the commutative Gelfand-Naimark theorem, for our
purposes, is to a fairly simple proof of the spectral theorem for bounded,
self-adjoint operators. We shall first formulate and prove a C* version of
the spectral theorem with an extra hypothesis. We need a definition.

Definition 11.5 Let o C B(4) be a C* algebra of operators on a Hilbert
space FC. A vector v € A is said to be of-cyclic if o/ (v) = {Tv: T €
o/} C I is dense in .

Theorem 11.5 (Spectral theorem I) Let o/ C B(%) be a commutative
C* algebra of operators in Hilbert space, containing the identity operator,
and let v € I be an o -cyclic vector. Then there exist a finite measure
space (X, ) and a unitary isometry U : L*(X, ) — S such that U*TU :
L*(X,u) — L*(X, i) is a multiplication operator, for each T € < .

Proof There is no loss of generality in assuming that the cyclic vector v has
unit norm. From the Gelfand-Naimark theorem, we know that &/ = C(X),
for some compact metric space X. For each f € C(X), let us denote by
Ty € < the corresponding operator in Hilbert space via such *-isomorphism.
Let A, : C(X) — C be the linear functional given by \,(f) = (Tyv,v). Note
that A\, (1) = ||v]|> = 1. Moreover, if f € C(X) is > 0, so that f = gg for
some g € C(X), then

)\v(f) = )\v(gy) = <Tg§(v)7v>
= (T4(v). Ty(v)) = |Ty()]> =20

Hence ), is a positive, normalized linear functional on C'(X). By the Riesz-
Markov theorem, there exists a regular Borel probability measure p on X
such that

Ao(f) = /deu, for all f e C(X) .
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Now consider the Hilbert space L?(X, p1), of which C(X) is a dense subspace.
We define an isometry U : L*(X,u) — 42 as follows. If f € C(X), let
U(f) =Tys(v). Note that U is linear on C(X), and

IUNIP = (Tp(), Ty () = (Tizv,0) = Al )
— [ 1P dn = 1P
X

Hence U is norm-preserving on C'(X), and therefore it extends uniquely to
an isometry U : L?(X,u) — . But since v € J# is cyclic, U(C(X)) is
dense in 7. This shows that U is onto 7, hence in fact a unitary isometry.

Finally, given f € C(X), let My : L*(X, ) — L*(X, ) be the multipli-
cation operator M(¢) = f¢. Whenever ¢ € C(X), we have

Tr(Up) = TiT,(v) = Tre(v) = Ulfe) = UMs(p) ,

and thus U*TU(¢) = M/(p). Since C(X) is dense in L?(X, y), it follows
that U*TyU = My, and this finishes the proof. O

In the context of the definition just preceding the above theorem, let us
agree to call a closed subspace W C S cyclic (or «7-cyclic) if there exists
a vector w € W such that <7 (w) is dense in W.

Lemma 11.9 Let &/ C B(J) be a unital C* algebra of operators in Hilbert

space. Then there exists a decomposition H = @, _; H; into mutually or-

el
thogonal, <7 -invariant cyclic subspaces.

Proof We apply Zorn’s lemma to the family of all direct sums of mutually or-
thogonal, &7-invariant cyclic subspaces of 7, partially ordered by inclusion
in an obvious way. Let V = @, .; H; C ¢ be a maximal such direct sum,
and suppose V # JZ. Take v # 0 in the orthogonal complement of V', and
let W = o/ (v) C #. Then W is cyclic, and V! = WV = Wo @, H; is a
strictly larger direct sum in the family, a contradiction. Therefore V = 7.

O

With this lemma at hand, we are now in a position to prove a more
familiar version of the spectral theorem.

Theorem 11.6 (Spectral theorem II) Let T € B() be a self-adjoint
operator. Then T is unitarily equivalent to a multiplication operator.

Proof Let o/ € B(J) be the C* algebra generated by 7' and the iden-
tity, i.e., the C* algebra arising as the closure (in the operator norm) of the
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polynomial algebra generated by 7. By lemma 11.9, there exists a decom-
position " = @,.; H; of the Hilbert space 7 into mutually orthogonal,
gfp-invariant subspaces. For each i € I, let T; = T'|y, : Hi — H;. Then
each T; has a cyclic vector v; € H;. By theorem 11.4, there exists a finite
measure space (Xj, ;) and a unitary isometry U; : L?(X;, ;) — H; such
that UT;U; = My,, where f; € L>(X;, j1;). Now define

U = @Uz . @LQ(Xi,,LLi) — .
icl icl
This linear operator is a unitary isometry, and it conjugates T' to @, ; My,.
To finish the proof, it suffices to show that this last direct sum of multi-
plication operators is itself (unitarily equivalent to) a multiplication oper-
ator. Let (X, u) be the measure space obtained as the disjoint union of
(Xi, pi). To wit, aset F C X is p-measurable iff ENX; is y;-measurable for
each 7, and p(E) = > ,c; ui(£ N X;). There is a natural unitary isometry
U': L*(X, p) — @P,er L2 (X, i). Moreover, if f: X — C is defined so that
flx, = fi for each i, then f € L*°(X, u). Letting U = U oU’, we see at once
that U is unitary and U*TU = My : L*(X, u) — L?(X, u). This shows that
T is unitarily equivalent to a multiplication operator, as was to be proved.

O

We end this section with a couple of remarks. First, note that the measure
space (X, pu) constructed in the above proof will in general be an infinite
measure space. Even if J# is separable, the naive construction in the proof
will in general yield only a o-finite measure. This is somewhat unpleasant,
but can be circumvented: indeed, one can show that if (X, ) is o-finite,
then there is a finite measure space (Y,v) such that L?(X,u) is unitarily
isometric to L2(Y,v). This is left as an exercise for the reader.

Second, the above version of the spectral theorem can be considerably
strengthened if one makes full use of lemma 11.9. The result is an improved
version of 11.5 in which the hypothesis that our commutative C* algebra
o/ C B(4) has a cyclic vector can be dropped. Note that such an improved
version contains the case of the C* algebra generated by any finite collection
of commuting operators T; : & — €, i = 1,2,...,n, i.e. T;T; = T;T;,
which are assumed to be either self-adjoint or normal. This form of the
spectral theorem is especially suitable for the quantization scheme described
in chapter 2, for a system with a finite number of particles.
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11.4 States and GNS representation

The Gelfand-Naimark theorem for commutative C* algebras provides a con-
crete realization of such an algebra as a space of continuous functions on
some compact space. The proof made essential use of multiplicative func-
tionals, or characters. For non-commutative algebras, this approach will not
do, since characters need not exist. For example, the C* algebra M, (C) of
complex n x n matrices (n > 1) carries no such multiplicative functionals
(see exercise 2). Thus one needs to consider the next best thing, namely
positive linear functionals.

Definition 11.6 Let &/ be a C* algebra. A self-adjoint element a € < is
said to be positive if o(a) C [0,00). The set of all positive elements of < is
denoted by <, .

Note that 7, is a convex cone in /. In particular, positivity induces a
partial order in &7: given two elements a,b € o7, we say that a < bif b—a
is positive.

Definition 11.7 A linear functional p : o — C is said to be positive if
p(a) >0 for all a € o,

For instance, characters, when they exist, are certainly positive linear
functionals.

A positive linear functional is automatically bounded; the proof of this
fact is left as an exercise (see exercise 5). If p : &/ — C is positive, we can
therefore look at its norm ||p||.

Definition 11.8 If p : &/ — C is positive and ||p|| = 1, then we call p a
state. The set of all states of </ is denoted S(<7).

Two of the most important examples of states are vector states and nor-
mal states. These are defined relative to a given representation of our C*
algebra in Hilbert space; hence we first pause for this crucial concept of
representation.

Definition 11.9 A representation of a C* algebra <7 in a Hilbert space is a
x-homomorphism 7 : of — B(J). If w is injective, then the representation
is said to be faithful.

Example 3. Vector states. Given a representation w : &/ — B(J¢), we say
that a state ¢ : @/ — C is a vector state for (w, ) if there exists a unit
vector { € A such that p(a) = (w(a),§) for all a € o .
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Example 4. Normal states. Again we consider a representation m : of —
B(s#). We say that a state ¢ : &/ — C is a normal state for (w, ) if
there exists a positive, trace-class operator p : ¢ —  such that p(a) =
Tr(pm(a)) for all a € of. The operator p is usually called the density matrix
of the state. Note that every vector state is a normal state. Indeed, if
¢ : o/ — C is a vector state for (w, ) with unit vector £, take p : H# — A
to be the orthogonal projection onto the one-dimensional subspace generated
by &. Then p is positive and trace-class, and for all a € &/ we have

(m(a)§, &) = (m(a), p™E)
= (pm(a)§, &) = Tr(pm(a)) .

Normal states play a key role in the mathematical formulation of quantum
statistical mechanics [AJP], as well as in algebraic quantum field theory (see
section 11.6 and [H]).

We shall soon see that the set of all states is closed in the weak* topology,
and that it is also convezx. First we digress a bit to talk about approximate
units in a C* algebra.

Definition 11.10 An approximate unit in a C* algebra o is a net {uy}rea
of positive elements uy € <4 such that

(1) A1 < Ag = uyy Sy
(ii) for each a € o/ we have ||a — uya| — 0 and ||a — auy| — 0.

An approximate unit in &/ always exists: this is not entirely trivial, but
is nevertheless left as an exercise (see exercise 7).

Example 5. Let 7 be a separable Hilbert space, and let {e1,2,...,€pn,...} C
J€ be an orthonormal basis. For each n > 1, let P, : 2 — 3¢ be the
orthogonal projection onto the closed linear subspace spanned by the finite
set {e1,e2,...,en}. Then (P,)p>1 is an approximate unit for o/ = K (),
the C* algebra of compact operators on #, but not for B(J).

For our purposes in this section, the important fact concerning positive
functionals and approximate units is the following.

Lemma 11.10 Let (uy) be an approzimate unit in <7, and let p : o7 — C
be a positive linear functional. Then p(uy) — ||pll. In particular, if <7 is
unital, then ||p|| = p(1).

Proof Since p is positive, it is order-preserving, and so (p(uy)) is a net.
Since we also have p(uy) < |lp|| - [luall < ||pll, and therefore o = lim p(uy)
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exists, and a < [|p||. On the other hand, if a € &7 is such that ||a|| < 1, then
using the multiplicativity of p and the self-adjointness of u) we have

lp(au)]? = [p(a*a)p(ul)| < pla*a)p(us) , (11.3)

where we used also that u3 < uy for all A. But p(auy) — p(a) and p(uy) —
a, and moreover p(a*a) < ||p||. Hence, from 11.3 we deduce that |p(a)|? <
allpll, for all a € o7 with ||a]| < 1. Taking the supremum over all such a, we
see that p||? < a|p||, i.e. a > ||p||. This shows that ||p|| = a = lim p(uy) as
claimed. The last assertion in the statement is clear. O

Proposition 11.6 The set S(o7) of all states of a C* algebra <7 is a weak*-
closed, convex subset of of*.

Proof 1In fact, S() is weak*-compact, as follows easily from Alaoglu’s
theorem. The convexity of S(«7) is an easy consequence of lemma 11.10.
Indeed, if pg, p1 : & — C are states, then for each 0 < ¢ < 1 we have that
pt = (1 —t)po + tp1 is a positive linear functional (obvious); if (uy) is an
approximate unit in 7, then on one hand p¢(uy) — ||p¢]|, and on the other
hand

pe(un) = (1 =t)po(unr) + tp1(un)
= (I =t)lpoll +tlorl = A =t)+t=1

Therefore ||p¢|| = 1, i.e. p; is a state for all 0 < ¢ < 1. O

Another important property of positive linear functionals needed below is
the following version of Cauchy-Schwarz’s inequality.
Lemma 11.11 If p : & — C is a positive linear functional, then for all
a,b € o we have |p(a*b)|> < p(a*a)p(b*b).

The proof is left as an exercise. Here is an immediate consequence of the

Cauchy-Schwarz inequality that is crucial in the GNS construction to follow.

Lemma 11.12 If p : o — C is a positive linear functional and a €
then p(a*a) = 0 if and only if p(ba) =0 for allb € .

Proof If p(a*a) = 0, then by lemma 11.11 we have |p(ba)|?> < p(bb*)-p(a*a) =
0, so p(ba) =0 for all b € o7. The converse is obvious (take b = a*). O
We are now ready for the so-called GNS construction, which is the basis

for the proof of the non-commutative Gelfand-Naimark theorem; here, GNS
stands for Gelfand-Naimark-Segal.
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Theorem 11.7 (GNS) Let o7 be a C* algebra. Then for each positive linear
functional p : &/ — C there exist a Hilbert space J¢,, a vector {, € J,, and
a representation w, : &/ — B(J€,) with the following properties.

(i) For each a € o/ we have p(a) = (mp(a),,&,), where (,) is the inner
product in J,;
(ii) The orbit w,( )&, is dense in H,.

Proof Given p: ./ — C as in the statement, let I, = {a € & : p(a*a) = 0}.
Then, by lemma 11.12, I, is a left ideal in &/: for p(a*a) = 0 implies
p(a*b) =0 for all b € <7, so in particular, letting ¢ € &7 and taking b = c*ca,
we have p((ca)*ca) = 0, whence ca € I, for all ¢ € &/. It follows that the

quotient J, = <7 /1, is a complex vector space, and we can endow it with
the inner product

(a+1,,b4+1,) = p(a™) .

Let ., be the completion of %;j, with respect to this inner product. For
each a € &7, consider the linear map o/ — o7 given by left multiplication by
a. This map induces a linear map 7 /I, — 4/ /I, which is clearly bounded
and thus induces a bounded linear operator w,(a) : ¢, — J,. The map
a € mp(a) is the desired representation. Note also that by construction,
mp(a)(x +1,) =ax +1,, for all z € &7

To finish the proof, we need to find &, € J, such that (i) and (ii) hold
true. If &7 has a unit 1 € &, take £, = 1 + I,; in this case (i) and (ii) are
obvious. If &7 does not have a unit, let (u)) be an approximate unit (one
always exists, by exercise ), and define £, = limy (u) + I,) € J%,. Then (ii)
is a consequence of the fact that auy — a for all a € o/. Moreover, for all
such a we have

(Tp(a)§p,€p) = h)r\n plauy - uy) = p(a) ,
so (i) holds true as well. O

The state space S(7) has the following separating property.

Lemma 11.13 If a is a positive element of a C* algebra <7, then there
exists p € S(&) such that p(a) = ||al.

Proof Let C*(a) be the C* algebra generated by a and the unit of & (if < is
not unital, consider its unitization &/ instead of 7). Since C*(a) is abelian,
the commutative Gelfand-Naimark theorem tells us that C*(a) = C(o(a)).
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Let p : C*(a) — C be the linear functional that corresponds, via this *-
isomorphism, to evaluation at |ja|| € o(a). Then ||p| = p(1) = 1, and
p(a) = |la||. By the Hahn-Banach theorem, p extends to a linear functional
p: o/ — C with the same norm. To prove that p € S(&7), it remains to
show that p is positive. Let x € &7, (the positive cone of &7), so that z is
self-adjoint and o(x) C [0,00). It suffices to show that p(z) is in the convex
hull of o(z). If the latter is not true, then we can find a disk D(zg, R) in
the complex plane such that o(z) C D(zp, R) but p(z) ¢ D(z9, R). Thus,
on one hand we have that the spectral radius r(z — 29) is < R, and on the
other hand R < |p(x) — 20| = |p(z — 20)| < ||z — 20|| (because ||p|| =1). But
T — 29 =2 — 2o -1 is a normal element of /. Hence, applying lemma 11.5,
we see that r(x — z9) = || — 20]|. This is a contradiction, and the lemma is
proved. [l

We are now ready for the central result of this section. The non-commuta-
tive Gelfand-Naimark theorem asserts that every C* algebra can be faithfully
represented as an algebra of operators in some Hilbert space. Since by
corollary 11.1 every injective homomorphism of C* algebras is an isometry
onto its image, the Gelfand-Naimark theorem can be stated as follows.

Theorem 11.8 (Gelfand-Naimark) Every C* algebra of is x-isomorphic
to a x-subalgebra of B(F) for some Hilbert space . If of is separable,
then one can take F to be separable as well.

Proof Let F' C S(47) be any non-empty family of states with the property
that for each 0 # a € &7 there exists p € F such that p(a) # 0. For example,
one can take I' = S(&/). Define 7 = @ - 7, where 7, is given by the
GNS construction, alongside the cyclic representation 7, : & — B(J,).
Let 7 : & — B(#) be given by the direct sum of representations

m(a) = Z®7rp(a) s H— I

peF

Since ||m,(a)|| < ||a|| for each p € F, it follows that ||w(a)|| < [la| as well,
so m(a) € B(4, and so 7 is a well-defined representation of the C* algebra
o/ in . If a # 0, then my(a) # 0 for at least one p € F, so ¢(a). This
shows that 7 : &/ — B() is faithful. This proves the first assertion in the
statement. Now suppose that &7 is separable. Then each cyclic Hilbert space
Jt, is separable (by property (ii) of the GNS construction). Let {a,, : n € N}
be a countable dense set in {a € & : |la|]| = 1}, and for each n > 1 let
pn € S(&) be such that p,(a,) = 1, a state whose existence is guaranteed
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by lemma 11.13. Then F' = {p, : n € N} C S(&) is countable. Therefore
H = @ ,cp /), is separable, and the representation 7 : & — B(J) as
given above is faithful. This finishes the proof. O

11.5 Representations and spectral resolutions

In this section we present more details on the representations of commutative
C* algebras, and apply the results to the spectral decomposition of a self-
adjoint operator on Hilbert space.

By the commutative Gelfand-Naimark theorem, it suffices to consider rep-
resentations of C'(X), where X is compact Hausdorff. It turns out that, for
everything we do in the sequel, local compactness suffices. Hence we shall
deal with the C* algebra Cj(X) of continuous functions vanishing at infinity
on a locally compact Hausdorff space X. Given such a space X, let & be
a o-algebra of Borel subsets of X. The elements of & are sometimes called
events.

Definition 11.11 A projection-valued measure on (X, %) is a map P :
B — B(A), where H is a Hilbert space, with the following properties.

(i) P(X) = Ly, the identity operator;

(11) P(E1 N Eg) P(El)P(EQ) for all E1, Ey € AB;

(iii) P(UPE;) =Y .1° P(E;), whenever the E; € B are pairwise disjoint;
(iv) P(E)* = P(E) for all E € A.

Note that (ii) implies P(E)? = P(E) for all E € 2. This idempotency
together with the self-adjointness condition (iv) tell us that P(E) is a pro-
jection operator on Z, hence the name. Note also that any pair of non-zero
vectors v,w € J determines a complex measure fi,,, on (X, Z) given by
tow(E) = (P(E)v,w). Thus, each projection-valued measure (P,.7°) on
(X, %) gives rise to a family of complex measures on (X, %) called the
spectral measures of (P, 7).

Now, it turns out that continuous functions on X (vanishing at co) can be
integrated against a projection-valued measure (P, ) and the result is a
bounded linear operator on 7 this is the content of the following theorem.

Theorem 11.9 Let P : # — B(J) be a projection-valued measure over a
locally compact Hausdorff space X with Borel o-algebra . Then for each
f € Co(X) there exists an operator Ip(f) € B(J) such that

(Ip(f /f ) dpt,w ()
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for all vyw,€ H. Moreover, f — Ip(f) is a representation of Cy(X) in
B(2).

Remark 1. The operator Ip(f) whose existence is asserted by the above
theorem is denoted

In(f) = / f(x) dP(z)

and is called the integral of f with respect to (P,.#’). The name and notation
are justified by the fact that Ip(f) is the limit in norm of Riemann-Stieltjes
sums of the form ), f(xy) P(E) (see exercise 10).

Proof Let us consider the sesquilinear form By : 7 x 7 — C given by

By(vw) = [ @) dnula).
This form is continuous. Indeed, we have |Bf(v,w)| < |pywl - || f]loo, where

o] = sup > pow(Ei) (11.4)

1

the supremum being taken over all countable partitions of X into Z-measurable
sets. Since for each ¢ we have

o (Ei)| = | (P(Ei)v,w) | = | {P(Ei)v, P(E;)w) |
< [[P(E)o] - [ P(Ew]l

we get, using the Cauchy-Schwarz inequality in 11.4,

1/2
ol < sup (Z|1P<Ei>v||2) -<Z||P<Ei>w|12>

= [off- flell -

1/2

This shows that |Bf(v,w)| < || f|lso||v] - ||w]], so By is continuous as claimed.
Using Riesz representation, we deduce that there exists a unique bounded
linear operator Ip(f) : J€ — J such that B¢(v,w) = (Ip(f)v,w) for

all v,w € . It is straightforward to check that Ip(f) = Ip(f)* for all
fe C()(X )

It remains to prove that Ip : Cp(X) — B(J¢) is multiplicative. First
we claim that oo, Tyw is absolutely continuous with respect to fi, ., where
Ty = Ip(f). Indeed, for all events E, F' € % we have

iy (F) = (P(F)P(E)o,w) = (P(E N F)o,w) = pyo(ENF) . (115)
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Therefore we get

Hv,wa(E) = <P(E)U,wa>

where in the last step we used (11.5). This shows that oo, Typw <K fho,w, With
Radon-Nikodym derivative a.e. equal to f. But then we see that, given

f?g € CO(X)7

<ngv,w> = / Jgdpyw
X

= / gdﬂv,wa
X
= <Tgv, wa>
= (T§Tyv,w) .
Since this holds for all v,w € S, it follows that Ty, = TyT,, i.e. Ip(fg) =
Ip(f)Ip(g). This shows that Ip is a representation as claimed. O

We have just proved that every projection-valued measure on (X, &) gives
rise to a representation of the commutative C* algebra Cy(X) in Hilbert
space. Let us now prove a converse to this result. We shall say that a
projection-valued measure (P, ) is reqular if the variations of the measures
[y are regular Borel measures on (X, %) for all v,w € J7.

Theorem 11.10 Let X be locally compact and Hausdorff, and let m :
Co(X) — B(H) be a non-degeneratet representation. Then there exists

a unique reqular projection-valued measure P on the Borel sets of X with
values in B(A) such that

w(f) = [ fe)api)
for all f € Cy(X).
Proof We know from proposition 11.5 that 7 is norm-contracting, in other

words [|7(f)]] < ||f|lcc- Thus, for each v,w € S, the correspondence f —
(m(f)v,w) defines a bounded linear functional on Cy(X), with norm < [|v]| -

t Here non-degenerate means: «(f)v =0 for all f € Co(X) = v =0.
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|lwl]|. Applying the Riesz-Markov theorem, we get a unique, regular complex
Borel measure fi, ., on X such that

(r(f)v,w) = /X f it |

and |pyw| < ||v| - JJw||. Note that the correspondence is sesquilinear as a
map from S x 5 into the space of complex Borel measureson X. If £ € A
is a Borel set, the map (v, w) +— i, (E) is also sesquilinear (into C), and
therefore the Riesz representation theorem yields pu, ,(E) = (P(E)v, w) for
some operator P(E) € B(s¢) with |P(E)| < 1.

In order to prove that P : 8 — B(J) as defined above is indeed a
projection-valued measure, we need to verify conditions (i)-(iv) of definition
11.11. Let us first verify condition (ii). We note that if ¢ € Cy(X) then

dﬂv,w(aﬁ)w(x) = 90(1') duv,w(x) (11'6)
for all v,w € 4. This happens because, for all ) € Cy(X), we have
[ 9@ (o) = r(who.m(@)u)
= (W(w) ()v, w)

= (m(eY)v, w)
= 1/) ) dpto,uw () -
Let us now suppose that ¥ € #. We clalm that
dppEypw(®) = 1p(@) diww() - (11.7)

Indeed, for all ¢ € Cy(X) we have

/Xso(fﬂ) dpppyw(®) = (T(@)P(E)v,w) = (P(E)v,m(p)w)

— /X ‘P(x)lE(x) dﬂv,w(x) ,

where we have used (11.6), and so (11.7) follows. Hence, if F' € £ is any
other Borel set, we have

/‘LP(E)v,w(F) = /FlE(x) d#v,w(l‘) = Mv,w(EmF) .

This shows that (P(F)P(E)v,w) = (P(EN F)v,w) for all v,w € 4, and
therefore P(ENF) = P(E)P(F)
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Next, we verify that condition (i) holds. Note that i, p(x)w = fiv,w for
all v,w € S, because for cach E € % we have

MU,P(X)w(E) = (P(E)v, P(X)w)
= (P(X)P(E)v,w)
= (P(E)v,w)
= Nv,w(E) ,

where we have used condition (ii), already established, and the self-adjointness
of P(X), which will be proved below. Hence, for all f € Cy(X) we have

(n(f)o, P(X)w) = /X £(2) bty pxr0 ()
— / F(@) dpo() = (m(f)o,w) .
X

Thus, we see that (P(X)w(f)v,w) = (w(f)v,w), for all v,w € #°. This
shows that P(X)7w(f)v = w(f)v for all f € Cy(X) and all v € 5. But since
by hypothesis 7 is non-degenerate, {7(f)v: f € Co(X), v € H#°} is dense in
€ (check!). Therefore P(X) = I, and condition (i) holds true, provided
condition (iv) is true.

But the self-adjointness condition (iv) is easy to check. Since 7 is a *-
morphism, we see that (7(f)w,v) = (7 (f)v,w) for all f € Cy(X) and all

v,w € I, that is
/ fd/lw,v = / fd,uv,w
X X

= / fdﬂv,w :
X

From this it follows that fi, . = ftw,w, and in particular

<P(E)v7w> = Mv,w(E) = Mw,v(E)
= (P(E)w,v) = (v, P(E)w)

for all v,w € 4, and therefore P(E)* = P(FE), as required.

Finally, the o-additivity condition (iii) is also easy. If {E;} is a countable
family of pairwise disjoint elements of A, then for each pair (v,w) € " x
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we havef

<P(UiEi)an> - Nv,w(UiEi) = Zﬂv,w(Ei)

= > (P(Ejv,w) = <Z P(Ei)v,w> .
This shows that P(U;E;) = >, P(£;). This finishes the proof of our theo-
rem. O

The results presented above allow us to establish the following spectral
decomposition theorem for bounded self-adjoint operators in Hilbert space.

Theorem 11.11 (Spectral theorem III) Let T' € B(.5) be a self-adjoint
operator, and let Bt be the Borel o-algebra of o(T). Then there exists a
unique projection-valued measure P : By — B(H) such that

T = / AdP()) .
o(T)

Moreover, T is in the norm closure of the set of all orthogonal projections
that commute with all bounded operators commuting with T .

Proof The idea is to combine the commutative Gelfand-Naimark theorem
with theorem 11.10 above. Let o7 = C*(I,T) C B(J) be the C* algebra
generated by I = I, and T. Since this algebra is abelian, the commutative
GN theorem yields a -isomorphism o/p = C(o(%/7)), where o(gofr) is the
Gelfand spectrum of «7r. We claim that o (<) is homeomorphic to o(T') C
R. To see why, let ® : o(e#1) — o(T) be given by ®(¢) = ¢(T) € R. This is
clearly continuous. It is injective, because ®(p1) = ®(p2) implies ¢1(T) =
w2(T), which in turn yields ¢1(p(T")) = w2(p(T")) for every polynomial p €
C[X]. Since {p(T") : p € C[X]} is dense in o/, it follows that ¢1(A) = wa2(A)
for all A € o7p, and so ¢1 = ¢2. The map @ is also sujective: if X\ € o(7T),
then T'— Al is non-invertible, so _# = (T'— A\l )« is a proper ideal in 7.
Hence _# is contained in a maximal ideal; this is equivalent to saying that
there exists a multiplicative linear functional ¢ : @7 — C with ¢ C ker ¢,
i.e. o(T — XI) =0, whence ¢(T') = A. Thus, being a continuous, bijective
map between o(o/r) and o(7T), which are both Hausdorff spaces, ® is a
homeomorphism. This homeomorphism in turn yields a C* isomorphism
Clo(etr)) = C(o(T)): given f € C(a(T)), let B(f) = fo® € Clo(ay)).
Now, there is an obvious representation of «7p in B(.#), namely the

1 The reader should check that all series appearing here are convergent.
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identity representation 7 : o/ — B(J) given by 7(A) = A. We know
also that there is a x-isomorphism V¥ : o/ = C(o(T)) given by ¥(A) =
Ao ® ! where A(p) = @(A) is the Gelfand transform of A. Hence we
define 7 : C(o(T)) — B(#) by 7 = 7o U1 which is easily seen to
be a non-degenerate representation. Everything has been set up so that
m(p(A)) = 7(p(T)) = p(T) for each polynomial p = p(A € C(o(T)). On the
other hand, by theorem 11.10, we have

wuw=Amﬂ»ﬂm»

where P is the projection valued measure associated to w. In particular,
taking f = idy(7) (the identity polynomial), we see that

w(idyr) = T = /U(T)/\dP()\) . (11.8)

This establishes the first assertion of the theorem, except for the uniqueness
of P, which is left as an exercise (see exercise 11).

Let us now suppose that S € B(.#°) commutes with 7". Hence it commutes
with every A € op. Using the isomorphism ¥ defined above, let us write
fa=V(A) for each A € o/. We know that

o) = ) = [ a0

Now, from SA = AS we have (Av,S*w) = (SAv,w) = (ASv,w), and
therefore

[ W dimsu) = [ fal) disiay)
o(T) o(T)

for all A € op. But o(T) is compact and second countable, i.e. a Polish
space, and in such a space any finite Borel measure is regular, hence deter-
mined by the values of its integral against continuous functions. Therefore
Py, S w = [Svw, for all v,w € . In particular, ju, g+ (E) = psv,w(E) for
all Borel sets £ C o(T), that is

(P(E)v,S*w) = (P(E)Sv,w) ,
or yet
(SP(E)v,w) = (P(E)Sv,w) .

Since this holds for all v,w € J#, we see that P(E)S = SP(E), for all Borel
sets E C o(T). In other words, each spectral projection P(E) commutes
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with each operator that commutes with 7. This proves the second assertion
in the statement of the theorem, and we are done. O

11.6 Algebraic quantum field theory

In this section we present a very brief description of the algebraic approach
to QFT. This approach has been developed by R. Haag, D. Kastler, H.
Araki, H. Borchers, D. Buchholz, K. Fredenhagen, S. Doplicher, J. Roberts,
among many others (see [H| and the references therein). Now that we have
the basic language of C* algebras at hand, the description is not too difficult
to present.

11.6.1 The algebraic approach

The algebraic approach makes free use of the theory of operator algebras,
both concrete C* algebras and von Neumann algebras. Let us start with
some basic observations, which will eventually lead to a (tentative) definition
of an algebraic QFT.

(1) In the Wightman formulation of QFT (see chapter 6), the fields are
operator-valued distributions. From a physical standpoint, such
fields are supposed to represent local operations.

(2) Locality suggests that we consider for each open neighborhood ¢ C R*
in Minkowski space the (topological vector) spacet Z(0) of C* test
functions f : R* — C with supp(f) C &. The corresponding smeared
fields

o) = [ B @

which, we recall, are unbounded operators in some Hilbert space 57,
generate a polynomial algebra over C with monomials of the form
O(f1)@(f2) - Pn(f). Let us call this algebra Z(0).

(8) The algebra Z(0), and a fortiori the C* algebra it generates, can
be quite wild. One can look instead at the spectral projections of
the operators ®(f), or bounded functions of them, via functional
calculus. These projections generate a C* algebra o/ (€) which is
(one hopes) more amenable to analysis.

(4) We are thus lead to consider a net of algebras & = {&/(0): ¢ C R*}
of bounded linear operators in Hilbert space. Here & varies over all
open subsets of Minkowski spacetime.

t In fact, in the Wightman formulation, one considers the Schwartz space .#(€) corresponding to
tempered distributions, but here we stick to () as it seems more suitable to encode locality.
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An analysis of Wightman’s axioms for QFT suggests that the net of alge-
bras € +— o/ (€) should satisfy the following properties.

(i) Isotony: O C Oy = o/ (01) C o/ (02).
) Additivity: ,,Q{(ﬁl @] ﬁg) = ﬂ(ﬁl) vV ﬂ(ﬁg)
(i) Hermiticity: each </ (0) is involutive, i.e. a x-algebra.
) Poincaré covariance: there is a representation (a,A) — U(a, A) of the
Poincaré group & into the direct limit & = lim &/ (&) such that, for

each (a,\) € & and each open set & C R?,
Ua, N7 (0)U(a,A)™! = &/ (AO +a) .

(v) If 01 and O are space-like separated in R*, then for each A; € &7 (0))
and each As € @7(03), we have [A1, A2] = 0.

(vi) Given & C R?, let 0 C R* be its causal completion (see section 11.6.2
below). Then 7 (0) = o/ (0).

This formulation should in fact be slightly changed, so as to accommo-
date for general symmetries. We discuss this point further below, in §11.6.3.
One should also take into account that any reasonable theory is supposed to
accommodate both bosons and fermions, and these have different symme-
tries. Thus, a rotation of 27 around an axis in spacetime leaves a bosonic
field unchanged, but changes the sign of a fermionic field. Therefore it is
more appropriate to consider, instead of the Poincaré group &, its universal
covering group .

11.6.2 Causality structure
As we have seen before in this book, for a quantum theory to be compati-
ble with relativity it must address the issue of causality in an appropriate
manner. It must face the fact that the propagation of any signal is limited
by the speed of light.
Let us briefly discuss the causality relation in Minkowski space M = R4
(see chapter 3). We denote by

<$7y>M — xOyO . xlyl _ x2y2 _ x3y3

the usual Minkowski inner product of M. Given an open set & C M, we
define its causal complement to be

0 ={zeM: x—y,x—y)y <0Vyeo}.

In other words, &’ is the set of all points in Minkowski space which are
spacelike with all points of &. A set & C M is said to be causally complete
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if 0" = 0. Note that if 0 is causally complete, then so is &”. Let us denote
by K the set of all causally complete subsets of M. Given 01, Oy € K, we
define their wedge as

O1 N\ Oy = 01N Oy
and their join as
O1N Oy = (ﬁl U ﬁg)// = (ﬁi A ﬁé)/ .

With these lattice operations, we have the following simple fact.

Lemma 11.14 The set K of all causally complete subsets of Minkowski
space has the structure of an orthocomplemented lattice.

Proof Exercise. O

The simplest (and smallest) causally complete regions are double cones,
also called diamonds. Given x € M, let C*(z) C M be the forward light-
cone of x, i.e. the set of all y € M which lie timelike with respect to z, in the
sense that y° — 20 > |y —x|. Let the backward light-cone C~(x) be similarly
defined. If z,y € M are two distinct points with y € C*(z), we define
the double-cone with vertices z,y to be K, = C*(x) N C~ (y). These and
their causal complements determine a sub-lattice of K, and this sub-lattice
is oftentimes quite sufficient for the deployment of the causal structure in
algebraic QFT.

11.6.3 Von Neumann algebras in QFT

A x-subalgebra ¥ C B(¢) is called a von Neumann algebra if it is closed
in the weak topology of B(J¢). Since every weakly closed subset of B(.¢)
is also closed in any stronger topology, it follows that every von Neumann
algebra is a C* algebra, but not conversely. The theory of von Neumann
algebras seems especially suitable to help incorporate the causality relation
of Minkowski space into QFT in a natural way.

Given any subset . C B(.¢), we define its commutant to be

S = {TeB(#): TS=ST forall Se.7} .

The following result due to von Neumann is fundamental. See [AS] for a
proof.

Theorem 11.12 (von Neumann) Let . C B(J) be a non-empty subset.
Then
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(i) " is a von Neumann algebra;
(i) " D, and in fact " is the smallest von Neumann algebra con-
taining 7;
(iii) " = ..

This theorem allows us, in particular, to regard the set #* of von Neumann
subalgebras of a given von Neumann algebra ¥ as an orthocomplemented
lattice. The lattice operations are defined as follows. The prime operation
is the commutant. Given ¥#1, %5 C ¥, let

NNV = NNY,

and

NNV Yy = (U )"

One easily checks (exercise) that (7% A,V,)) is a lattice. The attentive
reader will not fail to notice that this lattice structure is akin to the lattice
structure of causally complete subsets of Minkowski space. This is one of the
main reasons why the theory of von Neumann algebras is especially suitable
for a proper formulation of algebraic QFT.

Summarizing, an algebraic quantum field theory should consist of net of
von Neumann algebras 4 = {i(&)} satisfying the postulates formulated
above. We are being rather sketchy here, but let us add a bit more infor-
mation in the following question/answer format.

(i) Why is the weak topology the relevant topology to be used? Here is a
(partial) justification. Given a state w over ¥ = (&), we know that
w(A*A) > 0 for every A € ¥. Let us agree to call A an operation
if A is norm non-increasing as an element of B(.%). Here J¢ is the
Hilbert space into which the algebra ¥ is represented Thus, if A is an
operation, then w(A*A) < 1. Hence we may interpret w(A*A) as a
probability, namely the probability that a transition from the state w
to the state Aw (given by (Aw)(B) = w(A*BA)) occurs. Now, such
transition probability can never be measured with absolute precision.
Instead, it is only determined up to an error. Thus, if Ay,..., A, are
operations and pi,...,p, are the corresponding measured transition
probabilities, all we can say is that |w(AJA;) — pi| < €;, where ¢; is the
error in the i-th measurement. But this is tantamount to saying that
w lies in some weak neighborhood, namely

{oe? Jp(AjA) —pil <e, i=1,...,n}.
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In other words, the very physical limitations of measurement dictate
that the “right” topology in the space of states is the weak topology.

(il) How is the causality structure formalized in algebraic QFT? First, we
are given a net of von Neumann algebras i = {{(0) : & € K}. These
von Neumann algebras are supposed to represent observables. In QFT,
not all fields can be observed (e.g. the strength field of an electron), so
each von Neumann algebra is to be regarded as a subalgebra of a C*
algebra §(0), of local fields in ¢. Causality is incorporated into the
theory by requiring that the natural map K — 4 given by & — (0)
be a lattice homomorphism.

(iii)) How does one take account of symmetries in this theory? Let us say a
few words about that. First, let us agree to call a map 7 : 4 — 4 a net
automorphism if it is on-to-one and onto and respects the net structure,
and if, for each ¢ € K, there is an isomorphism 74 : (&) — 7(HU(0)).
The automorphisms of 4 form a group, denoted Aut(il). Given a
group G, which we want to impose as a group of symmetries of our
theory, we simply require that there be a representation a : G —
Aut (). This approach should also be natural from the point of view
of gauge theory. As we know, the gauge group of a QFT is supposed
to represent the internal symmetries of the theory (recall for instance
the example of electromagnetism). Here, given a symmetry group G,
and the corresponding representation «, we may consider the subgroup
Gint C G consisting of those g’s such that the automorphism «, maps
each local algebra (&) to itself. This is the gauge group of the theory.

Exercises

11.1  Unitization. Let o/ be a C* algebra without unit. Then there exists
a C* algebra o/ * with unit containing .27 as a closed ideal such that
AT /o = C. Prove this statement by working through the following

steps.
(a) Let 7 : &/ — B(<) be the map given by 7w(z)y = zy for all
x,y € o/. Show that 7 is a homomorphism with ||7(z)|| = ||z for
all z;

(b) Let # C B(4/) be the algebra of operators of the form 7(z) + A,
where [ : &/ — &/ is the identity operator, for all x € & and all
A € C. Show that £ is a C* algebra;

(c) Show that #/n(</) = C.
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11.2 Show that M, (C) has no proper ideals. Deduce that there are no
non-trivial characters ¢ : M, (C) — C.

11.3  Let p: M, (C) — C be a positive linear functional. Show that there
exists B € M,(C)+ such that p(X) = tr(BX) for all X € M,(C).
[B is called the density matriz of p.]

11.4  Let p: o — C be a positive linear functional on a C* algebra o7,
and let @ € /. Show that the linear functional z +— p(a*za) is
positive.

11.5  Prove that every positive linear functional on a C'x algebra is bounded
and self-adjoint.

11.6  Give an example of two bounded, self-adjoint operators 717,75 :
A — ¢ on a Hilbert space ¢ such that o(T1) = o(T5) and yet T}
and T, are not unitarily equivalent.

11.7  Approximate units. Let o/ be a C* algebra and let @7, be its positive
cone.

(a) Show that 7, is a directed set.
(b) Show that A = &/, N{a € & : |ja|]| < 1} is order isomorphic to
.
(c) Deduce that A is an approximate unit in 7.
11.8  If a € & is normal, show that r(a) = ||a|.
11.9  Fill in the details of example 3, supplying the proofs.

11.10 Let (P, %) be a projection-valued measure over a locally compact
measurable space (X, %). Let f € Cy(X). Given n > 1, let s, :
X — C be a simple function of the form

m
= > fla)ip (=
k=1

(where {F4, Ea, ..., E,,} is a measurable partition of X and xj € F

for all k) with the property that |f(x) — s,(2)| < n~! for all z € X.
Prove that

/ f(2)dP() - fl <1

on

k=1

This shows that the integral of f relative to (P, ) is the norm limit
of Riemann-Stieltjes sums.

11.11 Show that the projection-valued measure whose existence we proved
in theorem 11.11 is unique, by working through the following steps.
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(a) Let (Q, ) be another projection-valued measure such that 7' =
fa(T) AdQ(N). Show that p(T') = fU(T)p()\) dQ(X) for every poly-
nomial p(\).

(b) Using the Stone-Weiertrass theorem, deduce from (a) that

FNAPO) = [ QW)
o(T) o(T)
for all f € Cp(X).

(c) Denoting by ufi » and ugw the spectral measures for P and @
respectively, show that ufi w(G) = ufi »(G) for each closed set G C
o(T). [Hint: Let f € Cp(X) be such that 0 < f < 1 everywhere,
with f(A) =11iff A € G. Look at f,(A) = f(\)"™ an integrate.]

(d) Deduce from (c) that the measures pl,, and pg. agree on all
Borel sets, for each pair (v,w) € J x S, and therefore that
P(E) =Q(E) for all E € A.

11.12  Let K () be the space of compact operators on a Hilbert space 2.
Show that K () is a *-ideal in B(5).
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