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Chapter  1 

In troduct ion  and Survey of Resul t s  

Our original motivation for undertaking the work presented in this book* has been to 

clarify the connections between the braid (group) statistics discovered in low-dimensional 

quantum field theories and the associated unitary representations of the braid groups with 

representations of the braid groups obtained from the representation theory of quantum 

groups - such as U~(g), with deformation parameter  q = qN := exp(i~r/N), for some N = 

3, 4, . . . .  Among quantum field theories with braid statistics there are two-dimensional, 

chiral conformal field theories and three-dimensional gauge theories with a Chern-Simons 

term in their action functional. These field theories play an important  role in string 

theory, in the theory of critical phenomena in statistical mechanics, and in a variety of 

systems of condensed mat ter  physics, such as quantum Hall systems. 

An example of a field theory with braid statistics is a chiral sector of the two- 

dimensional Wess-Zumino-Novikov-Witten model with group SU(2) at level k which is 

closely related to the representation theory of ~'~(2)k-Kac-Moody algebra, with k = 

1, 2, 3, . . . .  The  braid statistics of chiral vertex operators in this theory can be understood 

by analyzing the solutions of the Knizhnik-Zamolodchikov equations. Work of Drinfel'd 

[4] has shown that ,  in the example of the SU(2)-WZNW model, there is a close connection 

between solutions of the Knizhnik-Zamolodchikov equations and the representation theory 

*This book is baaed on the Ph.D. thesis of T.K. and on results in [6, 11, 24, 28, 42, 61] 



of Uq(s4) if the level k is related to the deformation parameter q by the equation q = 

exp(/Tr/(k -{- 2)), and k is not a rational number. For an extension of these results to the 

negative rationals see [62]. Unfortunately, the .qU(2)-WZNW model is a unitary quantum 

field theory only for the values k = 1, 2, 3,.- -, not covered by the results of Drinfel'd. Our 

goal was to understand the connections between the field theory and the quantum group 

for the physically interesting case of positive integer levels. (This motivates much of our 

analysis in Chapters 2 through 7.) 

The notion of symmetry adequate to describe the structure of superselection sectors 

in quantum field theories with braid statistics turns out to be quite radically different 

from the notion of symmetry that is used to describe the structure of superselection 

sectors in higher dimensional quantum field theories with permutation (group) statistics, 

(i.e., Ferrni-Dirac or Bose-Einstein statistics). While in the latter case compact groups 

and their representation theory provide the correct notion of symmetry, the situation 

is less clear for quantum field theories with braid statistics. One conjecture has been 

that quantum groups, i.e., quasi-triangular (quasi-)Hopf algebras, might provide a useful 

notion of symmetry (or of "quantized symmetry") describing the main structural features 

of quantum field theories with braid statistics. It became clear, fairly soon, that the 

quantum groups which might appear in unitary quantum field theories have a deformation 

parameter q equal to a root of unity and are therefore not semi-simple. This circumstance 

is the source of a variety of mathematical difficulties which had to be overcome. Work 

on these aspects started in 1989, and useful results, eventually leading to the material in 

Chapters 4, 5 and 6, devoted to the representation theory of U~(9), q a root of unity, and 

to the so-called vertex-SOS transformation, were obtained in the diploma thesis of T.K.; 

see [6]. Our idea was to combine such results with the general theory of braid statistics 

in low-dimensional quantum field theories, in order to develop an adequate concept of 

"quantized symmetries" in such theories; see Chapter 7, Sects. 7.1 and 7.2. 

In the course of our work, we encountered a variety of mathematical subtleties and 

difficulties which led us to study certain abstract algebraic structures - a class of (not 

necessarily Tannakian) tensor categories - which we call quantum categories. Work of 



Doplicher and Roberts [29] and of Deligne [56] and lectures at the 1991 Borel seminar in 

Bern played an important role in guiding us towards the right concepts. 

These concepts and the results on quantum categories presented in this volume, 

see also [61], are of some intrinsic mathematical interest, independent of their origin in 

problems of quantum field theory. Although problems in theoretical physics triggered our 

investigations, and in spite of the fact that in Chapters 2, 3 and 7, Sects. 7.1 through 7.4 

we often use a language coming from local quantum theory (in the algebraic formulation 

of Haag and collaborators [17, 18, 19, 20]), all results and proofs in this volume (after 

Chapter 2) can be understood in a sense of pure mathematics: They can be read without 

knowledge of local quantum theory going beyond some expressions introduced in Chapters 

2 and 3, and they axe mathematically rigorous. 

In order to dispel possible hesitations and worries among readers, who are pure 

mathematicians, we now sketch some of the physical background underlying our work, 

thereby introducing some elements of the language of algebraic quantum theory in a 

non-technical way. For additional details the reader may glance through Chapter 2. 

For quantum field theories on a space-time of dimension four (or higher) the con- 

cept of a global gauge group, or symmetry G is, roughly speaking, the following one: The 

Hilbert space T /of  physical states of such a theory carries a (highly reducible) unitary 

representation of the group G. Among the densely defined operators on 7-I there are the 

so-called local field operators which transform covariantly under the adjoint action of the 

group G. The fixed point algebra, with respect to this group action in the total field alge- 

bra, is the alsebra of observables. This algebra, denoted by ,4, is a C*-algebra obtained 

as an inductive limit of a net of yon Neumann algebras .A,(O) of observables localized in 

bounded open regions O of space-time. The yon Neumann algebras A(O) are isomorphic 

to the unique hyperfinite factor of type III1, in all examples of algebraic field theories that 

one understands reasonably well. The Hilhert space 7/decomposes into a direct sum of 

orthogonal subspaces, called superselection sectors, carrying inequivalent representations 

of the observable algebra .A. All these representations of Jt can be generated by composing 

a standard representation, the so-called vacuum representation, with *endomorphisms of 



.A. Each superselection sector also carries a representation of the global gauge group G 

which is equivalent to a mulitple of a distinct irreducible representation of G. As shown 

by Doplicher, Haag and Roberts (DHR) [19], one can introduce a notion of tensor prod- 

uct, or "composition", of superselection sectors with properties analogous to those of the 

tensor product of representations of a compact group. The composition of superselection 

sectors can be defined even if one does not know the global gauge group G of the theory, 

yet. From the properties of the composition of superselection sectors, in particular from 

the fusion rules of this composition and from the statistics of superselection sectors, i.e., 

from certain representations of the permutation groups canonically associated with su- 

perselection sectors, one can reconstruct important data of the global gauge group G. In 

particular, one can find its character table and its 6-j symbols. As proven by Doplicher 

and Roberts [29], those data are sufficient to reconstruct G. The representation category 

of G turns out to reproduce all properties of the composition of superselection sectors, 

and one is able to reconstruct the algebra of local field operators from these data. One 

says that the group G is dual to the quantum theory described by A and ~ .  

The results of Doplicher and Roberts can be viewed as the answer to a purely mathe- 

matical duality problem (see also [56]): The fusion rules and the 6-j symbols obtained 

from the composition of superselection sectors are nothing but the structure constants of 

a symmetric tensor category with C* structure. The problem is how to reconstruct from 

such an abstract category a compact group whose representation category is isomorphic 

to the given tensor category. It is an old result of Tannaka and Kre~n that it is always 

possible to reconstruct a compact group from a symmetric tensor category if the category 

is Tannakian, i.e., if we know the dimensions of the representation spaces and the Clebsch- 

Gordan matrices, or 3-j symbols, which form the basic morphism spaces. The results of 

Doplicher and Roberts represent a vast generalization of the Tannaka-Kre~n results, since 

the dimensions and Clebsch-Gordan matrices are not known a priori. 

Another duality theorem related to the one of Doplicher and Roberts is due to 

Deligne [56] which requires integrality of certain dimensions but no C* structure on the 

symmetric tensor category. (It enables one to reconstruct algebraic groups from certain 



symmetric tensor categories.) Disregarding some subtleties in the hypotheses of these 

duality theorems, they teach us that it is equivalent to talk about compact groups or 

certain symmetric tensor categories. 

Quantum field theories in two and three space-time dimensions can also be formu- 

lated within the formalism of algebraic quantum theory of DHR, involving an algebra A 

of observables and superselection sectors carrying representations of A which are compo- 

sitions of a standard representation with *endomorphisms of A. This structure enables us 

to extract an abstract tensor category described in terms of an algebra of fusion rules and 

6-j symbols. Contrary to the categories obtained from quantum field theories in four or 

more space-time dimensions, the tensor categories associated with quantum field theories 

in two and three space-time dimensions are, in general, not symmetric but only braided. 

Therefore, they cannot be representation categories of cocommutative algebras, like group 

algebras. In many physically interesting examples of field theories, these categories are 

not even Tannakian and, therefore, cannot be identified, naively, with the representation 

category of a Hopf algebra or a quantum group; see [61]. The. complications coming from 

these features motivate many of our results in Chapters 6 through 8. 

The following models of two- and three-dimensional quantum field theories yield 

non-Tannakian categories: 

(1) Minimal conformal models [7] and Wess-Zumino-Novikov-Witten models [8] 

in two space-time dimensions. 

The basic feature of these models is that they exhibit infinite-dimensional symme- 

tries. The example of the SU(n)-WZW model can be understood as a Lagrangian 

field theory with action functional given by 

s ( g )  = fs" ~r ((g-'O.g)(g-'O"g)) g2z 
k + tr 

where, classically, a field configuration 9 is a map from the two-sphere S 2 to the 

group G = SU(n), and .~ is an arbitrary extension of 9 from S 2 = OB 3 to the ball 

B3; (such an extension always exists, since 7r2 of a group is trivial). The second term 



in S(g) is the so-called Wess-Zumino term which is defined only rood kZ. Classi- 

cally, the theory exhibits a symmetry which is the product of two loop groups, for 

right- and left movers, respectively. For k = 1, 2, 3, . . . ,  the quantum theory associ- 

ated with S(#) has conserved currents generating two commuting ~'~(n)-Kac-Moody 

algebras at level k, whose universal enveloping algebras contain Virasoro algebras; 

(Sugawara construction). From the representation theory of the infinite-dimensional 

Lie algebras of symmetry generators in these models, i.e., the representation the- 

ory of Virasoro- or Kac-Moody algebras, one can construct algebras of so-called 

chiral vertex operators which play the role of Clebsch-Gordan operators of (a semi- 

simple quotient of) the representation category of the Virasoro- or Kac-Moody al- 

gebra. Local conformally covariant field operators are then constructed by taking 

linear combinations of products of two such chiral vertex operators, a holomorphic 

one (left movers) and an anti-holomorphic one (right movers). 

Of interest in relation to the main subject of our work is that the algebras of chiral 

vertex operators, the holomorphic ones, say, appearing in these models provide 

us with categorial data corresponding to non-Tannakian braided tensor categories. 

(This can be understood by studying the multi-valuedness properties and operator 

product expansions of chiral vertex operators. A very thorough analysis of the 

SU(2)-WZW model can be found in the papers of Tsuchiya and Kanie and of 

Kohno quoted in [9]; see also [8, 61].) 

Zarnolodchikov and others have studied "non-critical perturbations" of minimal con- 

formal models which are integrable field theories [10]. Their results suggest that 

there are plenty of massive quantum field theories in two space-time dimensions 

with fields exhibiting non-abelian braid statistics, as originally described in [11]. 

(A perturbation of minimal conformal models giving rise to massive integrable field 

theories is obtained from the ~b(1,3)-field; a field with braid statistics is the field 

obtained from a chiral factor of the ff(s,1)-field, after the perturbation has been 

turned on [12].) To such non-conformal field theories one can also associate certain 

braided tensor categories. However, the general theory of superselection sectors in 

two-dimensional, massive quantum field theories leads to algebraic structures more 



(2) 

general than braided tensor categories, including ones with non-abelian fusion rule 

algebras. A general understanding of these structures has not been accomplished, 

yet. 

Three-dimensional Chern-Simons gauge theory, [13, 14, 15] . 

Consider a gauge theory in three space-time dimensions with a simply connected, 

compact gauge group G e.g. SU(n). Let A denote the gauge field (vector potential) 

with values in g -- Lie(C),  the Lie algebra of the gauge group C, and let ¢ be a 

matter  field, e.g. a two-component spinor field in the fundamental representation of 

O. There may be further matter  fields, such as Higgs fields. The action functional 

of the theory is given by 

S [ A , ¢ , ¢ ]  e.g. g -2 j - t r  (F2)dvol .  

2 A A A A A )  (1.1) (A^dA+ 

+ +m) Cd ol. + . . . ,  

where g, ,~ and m are positive constants, and I is an integer. 

This class of gauge theories has been studied in [13, 14, 15]. Although the results in 

these papers are not mathematically rigorous, the main properties of these theories 

are believed to be as follows: 

The gluon is massive, and there is no confinement of colour. Interactions persist- 

ing over arbitrarily large distances are purely topological and are, asymptotically, 

described by a pure Chern-Simons theory. Thus the statistics of coloured particles 

in Chern-Simons gauge theory is believed to be the same as the statistics of static 

colour sources in a pure Chern-Simons theory which is known explicitly [16]. The 

statistics of coloured asymptotic particles can be studied by analyzing the statis- 

tics of fields creating coloured states from the vacuum sector. Such fields are the 

Mandelstam string operators, ¢, ,(%), which are defined, heuristically, by 

¢~(%) = "~--~ N[¢~(x)P(exp  f~. A~(~)d~")~,]", (1.2) 
t3 

where a and f~ are group indices; % is a path contained in a space-like surface, 

starting at z and reaching out to infinity, N is some normal ordering prescription, 



and P denotes path ordering. (Similarly, conjugate Mandelstam strings ¢~(%) are 

defined.) 

For the field theories described in (1) and (2), one observes that when the group G is 

SU(2) the combinatorial data of a braided tensor category, an algebra of fusion rules and 

6-j symbols (braid- and fusion matrices), can be reconstructed from these field theories 

which is isomorphic to a braided tensor category that is obtained from the representation 

theory of the quantum group Uq(sl2), where 

iw 

q = eh+* , k = 1 , 2 , 3 , . . . ,  

(with k = l + canst.). These categories are manifestly non-Ta=nakian. This is the reason 

why it is not possible to reconstruct field operators transforming covariantly under some 

representation of Ug(sl2) on the Hilbert space of physical states of those theories. However, 

passing to a quotient of the representation category of Uq(sl2), q = exp(iTr/(k + 2)), 

described in Chapters 6 and 7, we ca= construct a semi-simple, non-Tannakian, braided 

tensor category describing the composition and braid statistics of superselection sectors 

in these quantum field theories. In this sense, U~(sl2) is the "quantized symmetry" duai 

to the quantum field theories described above. (For precise details see Chapter 7.) 

The strategy used to prove this duality is to compare the fusion rules and the 6-j 

symbols of Uq(sl2) with the corresponding data of the field theories found, e.g., in [9], and 

to show that they coincide. More precisely, it is quite easy to show that the representations 

of the braid groups associated with tensor products of the fundamental representation of 

Uq(sl2) coincide with those associated with arbitrary compositions of the "fundamental 

superselection sector" of the corresponding field theories. One implication of our work 

is that, in fact, the entire braided tensor categories coincide. This result follows from a 

much more general uniqueness theorem stating that whenever a braided tensor category 

with C ° structure is generated by arbitrary tensor products of a selfconjugate object, p, 

whose tensor square decomposes into two irreducible objects, i.e., 

p ® p  = 1 e ¢ ,  (1.3) 



(where 1 is the neutral object, corresponding to the trivial representation of U~(sI2), to 

the vacuum sector of the field theory, respectively), and a certain invariant associated with 

p, the so-called monodromy of p with itself, is non-scalar, then the category is isomorphic 

to the semi-simple subquotient of the representation category of Uq(sl~), for q = -4-e+~+~, 

k = 1,2,3, . . . .  

The abstract nature of eq. (1.3) suggests that this result applies to a class of local 

quantum field theories more general than the models described above. This observation 

and the fact that those models are not rigorously understood in every respect led us to 

work within the general framework of algebraic field theory. In this framework, p and ¢ 

can be interpreted as irreducible *endomorphisms of the observable algebra A, with 1 the 

identity endomorphisms of A, and eq. (1.3) for a selfconjugate object p of a braided tensor 

category with U* structure is equivalent to some bounds on a scalar invariant associated 

with p, its statistical dimension, d(p); namely (1.3) is equivalent to 

1 < d(p) < 2 .  (1.4) 

The main result of this book is a complete classification of braided tensor categories 

with C*-structure that are generated by a not necessarily selfconjugate, irreducible object 

p whose statistical dimension, d(p), satisfies (1.4). This is the solution to a very limited 

generalization of the duality problem for groups. Our method of classification is unlikely to 

bc efficient for much larger values of d(p) than those specified in eq. (1.4) - except, perhaps, 

for certain families of examples connected with more general quantum groups. However, 

our solution to the problem corresponding to the bounds on d(p) in cq. (1.4) might serve 

as a guide for more general attempts. In particular, our notions of product category and 

induced category might be useful in a general context. 

The constructive part of our classification consists in the description of two families 

of categories: First, wc need to understand the representation theory and tensor-product 

decompositions of Uq(sl~), with q a root of unity; (Chapters 4 and 5, and [6]). This will 

permit us to construct a non-Tannakian, braided tensor category by passing to the semi- 

simple quotient of the representation category of Uq(al2); (vertex-SOS transformation; scc 



Chapter 6 and [61]). The generating object p, of this category can always be multiplied 

with the generator of a category whose fusion rules are described by the group algebra of 

a cyclic group Z~, a = 2, 3,..., without changing the statistical dimension. The second 

task is thus to classify categories whose fusion rules are given by the group algebras of 

abelian groups. 

It turns out that, besides the operation of taking products of categories just alluded 

to, we also need the notion of induced categories which axe, in general, not quotients of 

representation categories; (Chapter 8, Sect. 8.1). 

For a selfconjugate, generating object p, with I < d(p) < 2, our proof of uniqueness 

relies on an inductive procedure reminiscent of what is known as cabeling. In order to 

extend our proof of uniqueness to categories generated by a non-selfconjugate, irreducible 

object, we have to study the interplay between the group of "invertible objects" in a 

category and gradings. This will permit us to separate the subcategories corresponding 

to invertible objects from the entire category and to thereby reduce the classification 

problem to that of categories with a selfconjugate generator whose statistical dimension 

satisfies (1.4); (Chapter 8). 

As a prerequisite to the classification of braided tensor categories with C* structure 

satisfying (1.4), we present a classification of fusion rule algebras which have the same 

properties as the object algebras of a tensor category; (Chapter 3 and Sect. 7.3). Our 

classification is limited to fusion rule algebras generated by an irreducible object p of 

statistical dimension g(p) satisfying 

1 <_ d(p) _ 2 .  (1.5) 

We find that there are many more fusion rule algebras than there are object algebras 

of braided tensor categories. Our classification relies on results of T.K. in [42]. 

When d(p) -- 2 we essentially reproduce the fusion rules of the finite subgroups 

of SU(2) which have been classified and described in terms of certain Coxeter graphs 

by Mac Kay. In the sense that symmetric tensor categories are dual to groups and 

10 



braided tensor categories are a natural generalization of symmetric tensor categories, our 

main result might be viewed as a natural generalization and completion of the Mac Kay 

correspondence for d(p) = 2 to the entire range 1 < d(p) < 2. 

One application of our classification theorems to conformai field theory, in partic- 

ular to minimal conformal models and SU(2)-WZW theories, is that we can reproduce 

the fusion rules, the braid- and the fusion matrices of these models from an algebraically 

simpler object, a quantum group. This is one way of making "the quantum group struc- 

ture" of conformal field theories precise. Our uniqueness theorems permit us, moreover, to 

establish a precise connection between SU(2)-WZW theories at level k and SU(k)-WZW 

theories at level 2 which is useful to understand the details of the conformal imbedding 

of (~(2)k × ~'~(k)2)-Kac-Moody algebra into ~(2k)l-Kac-Moody algebra. For example, 

we find that the braided tensor categories constructed from the representation theory of 

~(k)2-Kac-Moody algebra, with k even, are non-trivially induced by those constructed 

from ~'~(2)h-Kac-Moody algebra. This result is useful in the context of certain systems in 

condensed matter physics. 

We conclude this introduction with some additional comments on the contents of 

the various chapters of this book and a summary of our main results, Theorem 3.4.11 and 

Theorem 8.2.11. 

Survey of Contents 

In Chapter 2 we explain the appearance of certain braided tensor categories, called C*- 

quantum categories, in local quantum theories in two and three space-time dimensions. 

To this end, we use the formalism of algebraic field theory, which - following the arguments 

of Section 2.1 and the introduction - is expected to describe two dimensional conformal 

field theories and three dimensional topological field theories. In Section 2.2 we review the 

C*-algebra approach to local quantum theories with braid statistics, in a form developed 

in [15, 24] generalizing the algebraic field theory of [19] for quantum theories with (pars-) 

permutation statistics. In this framework the objects of the considered C*-quantum cat- 
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egory are a subset of the endomorphisms of the observable algebra ~[ and the arrows 

(or morphisms) are operators in ~ intertwining these endomorphisms. The quantitative 

description of the structure of these categories in terms of R- and F- matrices is derived 

in Section 2.3. In Section 2.4 we show how to extract unitary representations of the braid 

groups equipped with Markov traces from a O*-quantum category. 

The objects of a quantum category together with the operations of taking direct 

sums and tensor products form a half algebra over the positive integers which we shall 

call a fusion rule algebra. An axiomatic definition of fusion rule algebras which forgets 

about their origin from quantum categories is given in Section 3.1. In Section 3.2 we 

show that notions familiar in O*-categories can already be defined from the fusion rule 

algebra itself, namely a unique positive dimension (the statistical or Perron-Frobenius 

dimension) for rational fusionrules and a universal group of gradings. These concepts 

are eventually combined in the construction of quotients of fusion rule algebras, so called 

Perron-Frobenius algebras. In Section 3.3 we demonstrate how non trivially graded invert- 

ible objects may be used in order to derive simplified descript.ions of fusion rule algebras. 

In particular, we derive for cyclic grading goups a general presentation of a fusion rule 

algebra in terms of an accordingly smaller fusion rule algebra, whose invertible objects are 

all trivially graded. We give several criteria implying that this fusion rule algebra is either 

Z2-graded or ungraded. Among the categories that are constructed from Z2- or ungraded 

algebras we find those which are generated by a single object p of dimension d(p) not 

greater than two ( with the exception of two algebras at d(p) --- 2 ). They are classified 

in Section 3.4, using the methods developed in the previous section. More precisely, we 

first determine the fusion rule algebras with a selfconjugate generator of dimension less 

than or equal to two and we analyze the action of the respective groups of invertible 

objects. Composing them with Z~-algebras and twisting them we obtain the complete 

list of fusionrules given in Theorem 3.4.11. 

In the foUowing three chapters we construct the O*-quantum categories with A~- 

fusionrules from the quantum group Uq(sl2). 

For this purpose, we review in Chapter 4 the general defintion of a quasitrian- 
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gular Hopf algebra, [3, 5], and the quantum groups Uq(at,,), [2]. We introduce anti- 

cohomomorphic *-operations on qua.sitriangular Hopf algebras and define the finite di- 

mensional examples U~'a'(s/.,) for q a root of unity. 

The representation theory of U~(sl2) is treated in Chapter 5 following the remarks on 

invariant forms, commutativity constraints and contragradient representations for general 

quantum groups made in Section 5.1. In Section 5.2 we give a summary of the irreducible 

and the unitary representations of U~'a'(sl2), and in Section 5.3 we study their tensor 

product decompositions. The formula given in Theorem 5.3.1 involves projective repre- 

sentations with vanishing q-dimensions, which naturally form a tensor ideal in the category 

of representations of Ug(sl2). The subquotient of the abstract representation ring by this 

ideal is a fusion rule algebra in the sense of Chapter 3, as described in Section 5.4. 

In order to obtain a semisimple category we need not only divide out the radical 

of the objects, i.e., the representation ring, but perform a similar quotient for the entire 

category including the morphisms, i.e., the intertwiners of representations. This procedure 

is described in Section 6.1. We give the explicit definition of the structure matrices and 

verify the polynomial equations for the quotient category in Section 6.2. In Section 6.3 

we prove that this category is a C*-quantum category if q = ezp(q--~). The connection 

between balancing (or statistical) phases of a quantum category and the special element 

of a ribbon-graph Hopf algebra and the relation between Markov traces and quantum 

traces are explained in Section 6.4. 

The first two sections of Chapter 7 are devoted to the mathematical interpretation 

of the structure matrices found in Chapter 2 and the connection of duality theory for 

abstract tensor categories and the notion of duality in terms of global gauge symmetries 

for local quantum theories. We start with a summary of the ingredients entering the 

definition of an abstract quantum category and show its equivalence to the systems of 

R- and F- matrices we have used so far. Furthermore, we draw the connection to the 

theory of inclusions and towers of algebras, see [41, 23], if the category is obtained from 

a set of quasi-commuting endomorphisms on a hyperflnite von-Neumann algebras, e.g., 

a local subalgebra of the observable algebra of a local quantum theory. We review the 
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known duality results, [29, 56], for abstract, symmetric categories and the existence of 

field operators with global gauge group symmetry entailed by them. For braided, non- 

Tannakian categories the notion of duality needs to be modified, involving semisimple 

quotients of Tannakian categories arising from non-semisimple quantum groups. In this 

setting, however, the analogous construction of fields which are gauge symmetric with 

respect to the dual Hopf algebra does not yield an operator algebra with local braid 

relations and a closing operatorproduct expasion. This is explained in Section 7.2. 

The goal of Sections 7.3 and 7.4 is to select from the list of fusion rule algebras 

given in Theorem 3.4.11 those which are actually realized as the object algebras of a 

G*-quantum category and, furthermore, characterize them by the decomposition of the 

tensor products p o p and p o ~ of the generator. The precise correspondence between 

the dimension restriction 1 < d(p) < 2 and the structure of these fundamental products 

is given in Proposition 7.3.1. This result is refined in Proposition 7.3.5, where we show 

that the restriction 1 < d(p) < 2 is equivalent to a two channel decomposition of p o p 

with one object being invertible so that the projections on the invertible object define a 

Temperley-Lieb algebra in End( p®" ). In particular, the exclusion of the D4-type fusion 

rule algebras is inferred from the general result in Proposition 7.3.4 asserting that if p o p 

decomposes completely into M invertible objects, then M = 2" for some n E N. In 

Section 7.4 we exploit the fact that the natural braid group representation in End( p®" ) 
factors through a Temperley-Lieb algebra in order to compute the statistical phases for the 

U*-quantum categories with fusionrules given in Theorem 3.4.11.i). We find consistency 

requirements in this computation that allow us to discard the D- and E-type algebras and 

certain twisted A-type algebras from the list of admissible object algebras. The remaining 

algebras, listed in Proposition 7.4.11 together with their possible statistical phases, can all 

be obtained from a direct product of an A,- algebra and the fusion rule algebra given by 

the group Z~, for some r E N, either by inclusion or by quotienting with some irreducible, 

graded fusion rule algebra epimorphism. 

The results of Section 7.4 suggest that all relevant quantum categories can be 

obtained from a product of a category with A,-fusionrules and a category with Z,- 
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fusionrules. Having constructed categories with A~-fusionrules in Chapters 4,5 and 6 

we are left with the characterization of the quantum categories for the Z~-case. More gen- 

erally, we classify in Section 7.5 the quantum categories for which all objects are invcrtible 

so that the fusionrules are given by a finitely generated, abelian group G. The set of in- 

equivalent quantum categories for a fixed group G carries a natural group structure and 

we show this group to be canonically isomorphic to the cohomology group H4(G, 2; U(1)), 

associated to Eilenberg-MacLane spaces. We discuss in some detail the Z2-obstruction 

of these categories to bc strict , i.e., their non trivial structure if viewed as monoidal 

categories. In the concluding Proposition 7.5.4 we also give the structure matrices for a 

convenient choice of morphisms. 

It turns out that any fusion rule algebra and any choice of statistical phases for 

the untwisted cases of Proposition 7.4.11 is realized by a subcatcgory of a G'quantum 

category with A~-fusionrules and a Z,-category. 

The aim of Chapter 8 is to prove the uniqueness of these categories and to con- 

struct the categories with twisted fusionrules. The main tool in this is the notion of 

induced categories developed in Proposition 8.1.4. We also define an action of the group 

H4(Grad(Obj), 2; U(1)) on the set of quantum categories with fusion rule algebra Obj, 
where Grad(Obj) is the corresponding universal grading group. In the second part of 

Section 8.1 we find conditions that the orbit of a category with respect to this action 

contains a category, which is induced by a smaller one. The obstructions here are found 

to be elements of HS(Grad(Obj), 2; Z2), see Lemma 8.1.13. 

In Lemma 8.2.4 of Section 8.2 we show that this obstruction is trivial in the case 

of A-type algebras. Using the uniquenss of induced categories and the uniqueness of A2- 

categories given in Proposition 8.2.6 we infer the uniqueness and thereby the classification 

of the untwisted A-type (not necessarily C* ) quantum categories in Theorems 8.2.8 and 

8.2.9. The respective categories with twisted fusionrules are presented in Theorem 8.2.10 

in terms of the untwisted categories they induce. Combining these results with Proposition 

7.4.11 we arrive at the classification in Theorem 8.2.11 of C*-quantum categories with a 

generator of dimension less than two. 
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Chapter 2 

Local Quantum Theory with Braid 

Group Statist ics  

2.1 Some Aspects  of Low-Dimensional ,  Local Quan- 

t u m  Field Theory 

As described in the introduction, it is the purpose of this work to elucidate properties of 

superselection sectors of local quantum theories with braid (group) statistics. In partic- 

ular, we are interested in understanding the laws by which two superselection sectors of 

a local quantum theory with braid statistics can be composed. In more conventional field 

theoretic jargon, we are interested in understanding the operator algebra and the operator 

product expansions of analogues of charged fields in theories with braid statistics. This 

involves, in particular, introducing appropriate algebras of f~sion rules and attempting 

to classify them. It involves, furthermore, to characterize and classify the statistics of su- 

perselection sectors, or, in other words, the statistics of "charged fields". More precisely, 

we wish to describe, as completely as possible, those unitary representations of the braid 

group, B=, that describe the statistics of superselection sectors in local quantum theories 

with braid statistics. It is well known [19, 20] that in quantum field theory in four- or 

higher-dimensional space-time the statistics of superselection sectors, or, equivalently, of 
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charged fields, is described by unitary representations of the permutation group, S~o. It 

is quite a recent result, due to Doplicher and Roberts [29], that the representations of 

the permutation group 5'oo and the composition laws of the superselection sectors (fusion 

rules) of a local quantum field theory in four or more dimensions can be derived from 

the representation theory of some compact group which, in fact, has the interpretation of 

a global symmetry of the quantum field theory. 

It is then natural to ask whether the fusion rules and the representations of Boo 

encountered in local quantum field theories with braid statistics can be derived from the 

representation theory of a natural algebra which, moreover, can be interpreted as a gener- 

alized global s~tmmetry ("quantized symmetry") of the quantum field theory? A conjecture 

proposed frequently, but not really well understood (see, however, [30] for an example that 

is understood in detail) is that quasi-triangular (quasi-) Hopf algebras, in particular quan- 

tum groups, could play the role of algebras whose representation theory yields the fusion 

rules and the braid group representations of local quantum theories with braid statistics 

and that they can be interpreted as "global symmetries" of such theories [31, 28, 32]. 

One of our main goals in this book is to describe some classes of local quantum 

theories for which the conjecture just described can actually be proven completely. The 

quantum groups appearing in our examples are Uq(s~), and we shall prove that the defor- 

mation parameter q must have one of the values exp(i~/N), N a positive integer (> = + 1). 

Our results are complete for Uq(sl2). (For some simpler examples, involving quasi-Hopf 

algebras, see also [33].) 

Next, we wish to recall some basic facts about braid statistics. In the context of 

quantum mechanics of point particles in two-dimensional space, braid statistics was dis- 

covered in [34, 35, 3fi]. However, a more precise analysis of braid statistics and a classifica- 

tion of all possible braid statistics requires the principles of local quantum (field) theory. 

Examples of local quantum field theories, more precisely Chern-Simons gauge theories, 

in three space-time dimensions with braid statistics were described in [3fi, 37, 38] and 

numerous further articles; see also [13, 14, 15]. It has been recognized in [15] that, apart 

from permutation statistics, braid statistics is the most general statistics of superselection 
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sectors and charged fields that can appear in local quantum theories in three space-time 

dimensions; (see also [22] for related, partial results). Historically, braid statistics of fields 

actually first appeared in quantum field models in two space-time dimensions with topo- 

logical solitons; (see [11] and refs. given there). It should be emphasized, however, that the 

theory of statistics of superselection sectors in general local quantum field theories in two 

space-time dimensions is considerably more general than the theory of braid statistics. 

But, for the chiral sectors of two-dimensional conformalfield theories, the statistics of su- 

perselection sectors and of the corresponding chiral vertex operators is always described 

by representations of the braid group Boo, generated by certain Yang-Baxter matrices; 

see [21, 9, 11, 26, 27, 28, 22] 

Inspired by results in [16], it has been argued in [24] that the theory of the statistics 

of sectors in general three-dimensional, local quantum theory is equivalent to the theory of 

the statistics of chiral vertex operators in two-dimensional conformal field theory; (i.e., the 

same braid statistics appear in both classes of theories). We may therefore focus our 

attention on the analysis of statistics in three-dimensional local quantum theory. 

Next, we review some characteristic features of local quantum theory in three space- 

time dimensions. 

(a) Spin in ~ree space-time dimensions. 

According to Wigner, a relativistic particle is described by a unitary, irreducible 

representation of the quantum mechanical Poincard group, 15+ T , which is the universal 

covering group of the Poincard group, 7~+ T . In three space-time dimensions, 

iDt+ = 5 ' 0 ( 2 , 1 )  . R 3 . 

The three-dimensional Lorentz group, S0(2, 1), is homeomorphic to R 2 x S 1, its 

covering group is therefore homeomorphic to R s. If one imposes the relativistic 

spectrum condition one concludes that those representations of the quantum me- 

chanical Poincar~ group associated with three-dimensional Minkowski space that 

are relevant for the description of a relativistic particle are characterized by two real 

parameters, the mass M > 0, and the "spin" s E R. In particular, spin need not be 
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(b) 

an integer or half-integer number. 

Localization properties of one-particle states. 

Let us now consider a local, relativistic quantum theory in three space-time dimen- 

sions describing a particle of mass M > 0 and spin s. As shown by Buchholz and 

Fredenhagen [20], one can then in genera/ construct a %tring-like field", ~, with 

non-vanishing matrix elements between the physical vacuum, fl, of the theory and 

one-particle states of mass M and spin s. This result follows from very general 

principles of local quantum theory; (locality, relativistic spectrum condition, exis- 

tence of massive, isolated (finitely degenerate) one-particle states). The field ~k is, 

in general, neither observable nor local. However, as shown in [20], it can always be 

localized in a space-like cone, C, of arbitrarily small opening angle; (see Sect. 2.2 for 

precise definitions and results). Physically, C can be interpreted as the location of 

a fluctuating string of flux attached to a "charged particle". Particles of this kind are 

encountered in three-dimensional Chern-Simons gauge theories, [13, 14, 37, 38, 15]. 

It can happen that the field ~b is actually localizable in bounded regions of space-time. 

(This would be the case in field theories without local gauge invariance.) Then a general 

result, due to Doplicher, Haag and Roberts [19], proves that the spin of particles created 

by applying ~ to the vacuum fl is necessarily integer or half-integer, the statistics of ~b 

is permutation statistics, and the usual spin-statistics connection holds. It follows that if 

the spin of a particle created by applying some field ~b to the vacuum f / i s  neither integer 

nor half-integer then the field ~b cannot be localizable in bounded regions of space-time 

- but ~b is still localizable in space-like cones. It has also been proven in [15] that if the 

spin of the particle created by ~b is neither integer nor half-integer then ~b has necessarily 

non-trivial braid statistics, and a fairly non-trivial spin-statistics connection holds. We 

thus expect that particles with spin s ~ ~Z can only be encountered in quantum field 

theories with a manifest or hidden local gauge invariance. 

Another general result of [15] is that, under a certain minimality assumption on the 

structure of superselection sectors, non-trivial braid statistics can only appear in theories 

in which the discrete symmetries of space reflections in lines and time reversal are broken. 
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Thus the only realistic candidates of relativistic quantum field theories in three 

space-time dimensions describing particles with spin s ~ 1 ~Z and with braid statistics, 

called anyons [36], are Chern-Simons gauge theories described in [13, 14, 37, 38, 15], with 

an action S' given e.g. by (1.1), or non-linear 0(3)-or-models with Hopf terms equivalent to 

abelian Chern-Simons theories. See also [14, 15] for a heuristic discussion of the properties 

of these theories. 

Since a mathematically rigorous analysis of the quantum field theories just referred 

to would be difficult and has, in fact, not been carried out, so far, we shall , in this book, 

follow an a..~ioraatic approach. The formalism most convenient for our purposes turns out 

to be algebraic quantum field theor'g, as originally proposed by Haag and Kastler [17]. 

Since algebraic quantum field theory does not appear to be terribly well known among 

theoretical physicists or mathematicians, we shall now give heuristic motivations of some 

of its main concepts which will then be reviewed more precisely in Sect. 2.2. 

The local,  gauge- invar iant  observables  of  a gauge t h e o r y  are constructed 

from real currents, J ' ( z ) ,  x E M a, a = 1, 2, 3, . . . ,  which commute among each other at 

space-like separated arguments, from Wilson loop operators, W(£),  and Mandelstarn 

string operators, M(3'), where £ is an arbitrary smooth, bounded, space-like loop without 

double points, and 3' is an" arbitrary smooth, bounded, space-like curve; etc.. In order 

to obtain densely defined operators on the vacuum sector, 7-fl, of the theory, one has to 

smear out these currents, Wilson loops and Mandelstam strings: Let f be a real-valued 

test function. We define 

J~(/)  := f d~ J°(~) f ( z ) .  
M~ 

One may expect that da(f)  defines a selfadjoint operator on the vacuum sector ~1. 

Moreover, all bounded functions, A, of J~(f)  are localized on the support of f ,  (in the 

that [A, ds(~/)] = 0 whenever !/is space-like separated from the support of f ,  for sense 

all 

Let ]~ be a finite-dimensional parameter space equipped with a smooth measure, da, 

and let {£(a)  : a E supp da C ~ }  be a family of smooth, space-like loops, free of selfin- 

tersections, smoothly depending on a E ]~ and contained in a space-time region O C M d. 
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Heuristically, we define an operator 

:= f d,, W(£(a)) Wo 

E 

(where the integral is interpreted in the weak sense). One can imagine that Wo defines 

a closed operator on ~1 all of whose bounded functions are localized in O. (Similar idea.s 

apply to the Mandelstarn strings M('y).) 

We now define local observable algebras ~(0 ) ,  for 0 some bounded space-time re- 

gion, as the yon Neumann (weakly closed*) algebras [17] generated by all bounded/unctions 

of the operators 

{a° ( f ) ,  s u p p f C O ,  a = 1 , 2 , 3 , . . .  ; Wo; Mo}.  

As explained above, one expects that if O1 and (92 are two space-like separated space-time 

regions then locality of the theory implies that 

[A,B] = 0 for all A e ~ ( O 1 ) ,  n e ~ ( O 2 ) .  

It is also clear that if Ox C O2 then ~(Ox) C ~(O2). The general properties required of 

the net {~(O)}ocM, of local aigebras are discussed in [17, 19] and will be briefly sketched 

in Sect. 2.2. 

Let U1 denote the unitary representation of 75+ r describing the dynamics of the 

gauge theory on its vacuum sector 7"ix. Let A be an dement of 73+ r projecting onto an 

dement (A, a) E 7~+ r , (where A is a Lorentz transformation and a E R a is a space-time 

translation). Then one expects that, for every observable A E 92(0), UI(A)AUI(A)" only 

depends on (A, a) and is contained in the algebra ~ (O(^,,)), where 

= M': o) e o } .  

Hence we have a representation, a, of 7)1+ on the algebra of observables of the theory given 

by 

~(~,°)(A) = U~(~) AU~(~)*, 

with 

= (o ( , , . . ) ) .  
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We now suppose the theory has some non-trivial conserved charges giving rise to superse- 

lection rules. Let 7/j be a Hilbert space of states of "charge j"  orthogonal to the vacuum 

sector ~1; (the charge is here viewed as being "multiplicative"). It is customary to assume 

that there exist a field ~bJ ('t,) carrying "charge j"  with non-vanishing matrix elements 

between vectors in 7-/j and vectors in 7/1. Here 7- is either a point z E M a (charged 

local fields) or a space-like string starting at a point z E M a and extending to space-like 

infinity (Mandelstam operators in gauge field theories without colour confinement, such 

as three-dimensional Chern-Simons gauge theories). Let {-fret) : ~ E ~ }  be a smooth, 

finite-dimensional family of space-like strings contained in a "space-like cone" C C M d, 

and let &r be a smooth measure on ~ .  Heuristicaily, one defines 

:= 

E 

One may imagine that ~b¢(C) defines a closed operator on the entire physical Hilbert space 

of the theory. Then ~bJ(C) has a polar decomposition 

where i ¢(c)1 is a positive, selfadjoint operator of charge 0, hence leaving all super- 

selection sectors invariant, and U~ is an operator carrying "charge j" and mapping the 

orthogonal complement of the nun space of I bJ(C)l isometrically to (a subspace of) the 

physical Hilbert space. Heuristically, the operators U~ and I J(C)l commute with all 

observables localized in regions space-like separated from C. One can now extend U~ 

to an isometric operator V~, defined on the entire physical Hilbert space, which carries 

the same charge as U~ and commutes with all observables localized in regions space-like 

separated from C, for some cone C containing C. 

For every bounded observable A of the theory, the operator 

= (v/)" Avj 

is then expected to be again a bounded observable, and if A is locali~.ed in a space-time 

region space-like separated from 4 then p~(A) = A. The map p~ is therefore called an 

endomorphism of the observable algebra localized in C. 
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In the next section, we recall rigorous results, due to Buchholz and Fredenhagen [20], 

asserting the existence of endomorphisms with the properties of p~- under very general, 

physically plausible hypotheses on the theory. The Buchholz-Fredenhagen construction 

of endomorphisms does not involve first constructing operators analogous to Vj. Rather 

the existence of such operators - which are bounded versions of charged field operators - 

is derived from the existence of localized endomorphisms. It is one of the major goals of 

our work to construct operators analogous to the operators V~ and discuss their algebraic 

properties, in particular their statistics, for some class of field theories in three space- 

time dimensions characterized in terms of nets of local observable algebras and families 

of localized endomorphisms. 

From now on, we shall work within the formalism of algebraic field theory [17, 18, 

19, 20], motivated by the heuristic considerations sketched above, and our analysis will 

be mathematically rigorous. We expect that the hypotheses on which our analysis is 

based can be verified for some two-dimensional conformal field theories [30, 25] and some 

three-dimensional Chern-Simons gauge theories [38]. 

It should be mentioned that, in Sects. 2.2-2.4 and in Chapter 6, the reader is expected 

to be vaguely familiar with one of the references [11, 15, 22]. 

2.2 Generalities Concerning Algebraic Field Theory 

The starting point of the algebraic formulation of local, relativistic quantum theory is 

a net, {~(O)}, of yon Neumann Mgebras of local observables indexed by bounded, open 

regions, O, in Minkowski space M d. If ,9 is an unbounded space-time region in M e one 

defines an algebra of observables localized in ,9 by setting 

~ ( S ) =  U ~ ( o ) " ,  (2.1) 
OCS 

0 bo~ndqR 

where the closure is taken in the operator norm. We define the algebra ~1 of all quasi-local 

observables as 

= ~(S = M~). (2.2) 
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The algebras 92(S) and 9-1 are C*-algebras. The relative commutant, 92c(S), of 92(S) in 9-1 

is defined by 

92~(S) = {A e 92: [A, B] = 0, for al l  B e 92(,~)}. (2.3) 

The causal complement, S', of a region S C M a is defined as 

S ' =  {~ e M~: (~ - y ) 2  < 0, for all Y • S} .  (2.4) 

Let Co be a wedge in ( d -  1)-dimensional space. The causal completion, C, of Co is defined 

by 

and is called a simple domain. 

a space-like cone. 

e = (c~)' (2.5) 

If the opening angle of Co is less than 7r C is called 

Locality and relativistic covariance of the theory are expressed in the following two 

postulates on the structure of the net {92(O)}. 

(1) Locality. 

92(s') c 92c(s), (2.6) 

for any open region ,.q C M a. 

(2) Poincard covariance: There is a representation, a, of the Poincar~ group, 7~+, 

as a group of *sutomorphisms of 9,12 with the property that 

~¢A,.)(92(s)) = 92(s¢A,.)), (2.7) 

where 

so^,°) = {~ ~ M~: ^-~(~ - . )  ~ S } .  (2.8) 

The properties of a physical system described by {9-1, ~} can be inferred from the repre- 

sentation theory of {92, a}. We focus our attention on the analysis of physical systems 

at zero temperature and density. Then it suffices to consider a restricted class of rep- 

resentations of {92, a} which has been described in work of Sorchers [18] and Suchholz 

and Fredenhagen [20]. Buchholz and Fredenhagen start from the assumption that all 
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representations describing a local, relativistic system at zero temperature and density can 

be reconstructed from what they call massive, single-particle representations [20]. They 

then prove that there exists at least one vacuum representation, 1, of ~ on a separable 

Hilbert space, 7~1, containing a unit ray, f~, the physical vacuum, which is cyclic for 

and is space-time translation invariant, i.e., 

(f~, 1 (cto(A)) f/> = (f/, l(A)f/), (2.9) 

for all A E ~ and all a E Md; here {a t  = a(1,,)} is a representation of space-time 

translations of M ~. [In the analysis of [20] full Poincard covariance is not assumed; it 

is sufficient to require locality and space-time translation covariance. In our analysis, 

space-rotation covariance will be used at some point, but  full Poincard covariance is not 

needed.] It follows from (2.9) that space-time translations are unitarily implemented on 

7~1 by a group of operators Ul(a) = expi(a°H1 - ~. 1~), a = (a °, if) E M a, and it follows 

from the starting point chosen in [20] that  the relativistic spectrum condition, 

") spec , PI C V+ (2.1o) 

holds. 

In the following, we shall assume for simplicity that there is a unique vacuum rep- 

resentation, (i.e., there is no vacuum degeneracy). This assumption must be given up in 

the study of two-dimensional theories with topological solitons [11]. Our analysis can be 

extended to certain theories with vacuum degeneracy without much difficulty, in particu- 

lar to a class of two-dimensional theories with solitons. It can also be applied to studying 

the chiral sectors of two-dimensional conformal field theor/es; see e.g. [23, 22, 25]. We 

shall, however, focus our attention on three-dimensional theories, following [15, 24], since 

these have been studied less intensely. 

If the vacuum is unique, and under suitable physically plausible hypotheses described 

in [20], all representations, p, of ~ encountered in the analysis of relativistic, local systems 

at zero temperature and density have the property that,  for an arbitrary space-like cone 

C C M d, the restriction of p to ~c(C) is unitarily equivalent to the restriction of the 
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vacuum representation, 1, to ~c(C), i.e., 

P ~i'(c) -~ 1 ~'(c) " (2.11) 

A representation of ~[ with this property is said to be localizable in space-like cones 

relative to the vacuum representation. In the framework of [20], only representations, 

p, of ~[ satisfying (2.11) are considered which are translation-covariant, i.e., for which 

there exists a continuous, unitary representation, Up, of M a on the representation space 

(superselection sector) 74~ corresponding to the representation p such that 

where 

and 

p(ao(A)) = Up(a)p(A) Up(-a), 

u , ( o )  = e x p i  • 

(2 .12)  

(2.13) 

• pec  C_ v+. (2 .14)  

A fundamental assumption on the choice of the net {~i(O)} of local algebras is duality, [19, 

20]: One assumes that the algebras ~(O)  are chosen so large that 

1 ( ~ ( s ) ) '  = l ( ~ c ( s ) )  ~ , (2 .15)  

where ~ '  denotes the commuting algebra of a subalgebra, ~ ,  of the algebra, ~(7"/1), of all 

bounded operators on 7"(1, and ~-~ = [~'}' denotes its weak closure. [Duality (2.15) can 

be derived from a suitable set of postulates for local, relativistic quantum field theory, [39], 

and expresses the property that states in 7-/1 do not carry a non-abelian charge.] 

Remark. The analysis presented in this chapter can be applied to the chiral sectors 

of two-dimensional conformal field theory if Minkowski space is replaced by the circle S 1, 

a compactified "light-ray", with a distinguished point P,  the point at infinity, (correspond- 

ing to the auxiliary cone, Ca, introduced below), space-like cones, C, in M d are replaced 

by intervals I C S 1, and Poincar~ covariance is replaced by covariance under PSL(2, R). 

In this case, the spectrum condition becomes the requirement that the generator, L0, of 

rotations of S 1 is a positive operator with discrete spectrum. 
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Next, we construct an extension of the algebra 92 which will be more convenient for 

our analysis. First, we note that  the vacuum representation 1 of 92 is faithful. In the 

following, we shall identify 92 with the suhalgebra 1(92) of ~(7-/x). If ~ is a subalgebra 

of ~i we denote by ~-~ the weak closure of 1(~)  in ~(7{1). Let C, be some auxiliary 

space-like cone in M a of arbitrarily small opening angle, and set 

e.+z:{veM":v-z•C.}. 

We define an enlarged algebra, ~ c . ,  containing 92: 

~Bc" = U 92~(c, + z) ~'" . (2.16) 
~ E M  t 

A fundamental result of Buchholz and Fredenhagen [20] is that  every representation p of 92 

localizable in space-like cones relative to 1 has a continuous extension to ~3 c'.  Moreover, 

given a space-like cone C in the causal complement of C~ + x, for some x • M ~, there 

exists a *endomorphism, P~c, of ~B c" such that 

p~c(A) = A, for all A • 92=(C), (2.17) 

and the representation 1 (~c(-)) of ~B c- is unitarily equivalent to the representation p of 

~B c', i.e., there exists a unitary operator Vc from W~ to ~x such that 

d ( A )  = Y~ p(A)Yj .  (2.18) 

Next, let Pc be a *endomorphism of ~B c" localized in a space-like cone C, in the sense 

of equation (2.17), and let /~d be a *endomorphism of 93 c" localized in a cone C, with 

the property that  ~ is unitarily equivalent to some subrepresentation of pc. Let `9 be 

a simple domain in the causal complement of C~ + z, for some x E M a, with the property 

that C U C is contained in the interior of ,9. Then there exists a partial isometry r s 

o n  ~'~1, called a "charge-transport operator", such that  

for all A E ~c,. It follows from (2.17) and duality, see (2.15) and [19, 20], that 

(2.19) 

~c,~e E ~ (8 )"  c ~ c . .  (2.20) 
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Let p and q be two representations localizable in space-like cones relative to 1, and let pP 

and p~ be two *endomorphisms of ~ c ,  localized in space-like cones, C~ and C~, with the 

properties that  Cp C C'~, Cp U Cg C (Ca + z)', for some z E M ~, and p and q are unitarily 

equivalent to pP and pg, respectively. We define p o q to be the unique equivalence class 

of representations of ~B c" unitarily equivalent to the representation pP o p~ of ~B c" on 7-/1. 

It is easy to check that  p o q is again localizable in space-like cones relative to 1, that it 

is translation-covariant (see (2.12)) and satisfies the relativistic spectrum condition (see 

(2.14)), provided p and q are translation-covariant and satisfy the relativistic spectrum 

condition. It is not hard to see [20] that  if G and C~ are space-like separated (Cp C C'q) 

then pP o pq = p~ o pP. Hence 

p o q  = qop. (2.21) 

Clearly 

l o p = p o l = p .  (2.22) 

Predenhagen [40] has isolated natural physical conditions which imply the following prop- 

erties of representations of ~ localizable in space-like cones relative to 1; see also [20, 19]. 

Property P 

(P1) Every representation p of ~l which is localizable in space-like cones relative to 1, and 

which is space-time translation-covariant and satisfies the relativistic spectrum condition 

can be decomposed into a direct sum of irreducible, translation-covariant representations 

of ~ which satisfy the relativistic spectrum condition and are localizable in space-like 

cones relative to 1. 

(P~) Let p be an equivalence class of irreducible representations of ~[ which are translation- 

covariant, satisfy the relativistic spectrum condition and are localizable in space-like cones 

relative to 1. Then there exists a unique equivalence class, i~, of conjugate representa- 

tions of ~i with the same properties as p such that  p o i~ = i~ o p contains the vacuum 

representation, 1, precisely once. 

From now on, Property P is always assumed to hold; see also [23, 24]. 
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D e f i n i t i o n  2.2.1 We denote by L - L{~I,,~ } the complete list of all inequivalent, irre- 

ducible, translation-covariant representations of ~ which satisfy the relativistic spectrum 

condition and are localizable in space-like cones relative to 1. 

It follows from Property P that, for i and j in L, the product representation, i o j ,  

can be decomposed as follows: 

Nij,h 

i o j = ~ k  (u), with k (u)~_k, (2.23) 
kEL /~=1 

for all # = 1 , . . . ,  Ni£k. The multiplicity, Nij,k = Nil,k, of k in i o j is a non-negative 

integer and, by Property (P2), can also be defined as the multiplicity of 1 in k o i o j. 

The integers (Nij,k) axe the fusion rules of the theory. By the definition of i o j ,  Nij,k can be 

interpreted as the multiplicity of the representation k of ~ in the representation i (p~(.)) 

of ~, where ~ is a *endomorphism of ~3 c" localized in a space-like cone C C (Ca + z)', 

for some z, with the property that j is unitaxily equivalent to i (p~(-)). It is not hard to 

derive from this that, given k, i and j in L, there exists a complex Hilbert space Vk (P~)i, 

of operators, V, from the representation space, 7fi,, of k to the representation space, 7-//, 

of i such that 

i(/c(A))V=Vk(A), for all A 6 ~ ;  (2.24) 

/ the dimension of Vk ( c)i is given by Nij.k, and the scalar product, (V, W), between two 

elements V and W of is defined by 

V ' W  = (V, W ) l l n  h . (2.25) 

By (2.24), V * W  intertwines the representation k of ~ with itself and hence, by Schur's 

lemma, must be a multiple of 1 [~,, because k is irreducible. Intertwiner spaces 

Vk ( / t  o . . . o / ' ) i  axe defined similarly, for arbitrary i , j l , . . .  , j ,  and k in L. 

R e m a r k .  

One purpose of Chapters 2 and 7 is to use the intertwiners in J " " ]}k(PC)i, Z,3, k in L, to 

construct certain (bounded) operators on the total physical Hilbert space of the theory, 
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called charged fields, which have non-zero matrix elements between different superselection 

sectors, are localized in space-like cones and hence can be used to, for example, construct 

Haag-Ruelle collision states [20]. Quantum groups will appear in the construction of such 

fields in space-times of dimension d = 3 and for some class of theories, including conformal 

field theories, in two space-time dimensions. 

The first step in our construction of charged fields is to construct ("horizontal") local 

sections of orthonormal frames of intertwiners of a bundle, Iij,k, of intertwiners satisfying 

(2.24), whose base space is a "manifold" of *endomorphisms, p/, of ~c .  localized in space- 

like cones contained in (C, + z)', for some z, with the property that 1 (pJ(.)) is unitarily 

equivalent to j ,  and whose fibres l~k(pJ)i are isomorphic to C N~j,h. Such local sections 

of frames are constructed as follows: We choose a reference morphism, p~, localized in 

a space-like cone Co C (Ca + z)', for some z, and an orthonormal basis {V~ ik/'-J~lNq'* ke°/ f~=l 
for the Hilbert ,pace V~ (P~)i consisting of partial isometries from "Hk to "Hi satisfying 

(2.24). Given an arbitrary *endomorphism, ~ ,  of ~ c .  localized in a space-like cone 

C C (C, + z)', for some z, and unitarily equivalent to p~, we choose a unitary charge 

s see (2.19), which belongs to an algebra ~ ( S )  '~ C ~c .  associated transport operator re,g, 
with a simple domain S C (C, + z)', containing Co and C. A basis for 1;k(~)~ is then given 

/ k  " N i j , j .  
by {V,~ ( e ) } . = , ,  where 

Note that, since ~ , d  e ~ (S)"  C ~B c', and i is a representation of ~B c', i P,d 

a well-defined unitary operator on "Hi. 

Bundles Zijt..4~,k and local sections of frames of intertwiners in Zijt...j,,k are con- 

structed similarly; see [24]. 

Remark .  

Since, for j E L, g/is an irreducible *endomorphism of ~e. ,  the choice of F~.,~ is unique 

up to a phase factor. This phase factor cannot be chosen continuously, even in "small 

neighbourhoods" of ~ .  These technicalities are of no concern in this book, except in 

31 



Theorem 2.3.1, below. 

2 . 3  S t a t i s t i c s  a n d  F u s i o n  o f  I n t e r t w i n e r s ;  S t a t i s t i c a l  

D i m e n s i o n s  

Let C be a space-like cone which is the causal completion of a wedge Co in ( d -  1)- 

dimensional space. With C we associate a unit vector g E S d-~ which specifies the 

asymptotic direction of the central axis of Co; (for d = 3, ff is the unit vector in R 2 

specifying the asymptotic direction of the half-line bisecting Co). Using polar coordinates, 

g can be described by d - 2 angles; in particular, for d = 3, ff is described by one angle 

0 E ( - x , x ] .  Our coordinates are chosen such that  the unit vector ~' associated with C, 

is given by ( - 1 ,  0 , . . . ,  0). If p is a *endomorphism of 93 c" localized in a cone C, the unit 

vector g associated with C is called the asymptotic direction, as (p), of p. We may choose 
• 

the reference morphisms p~, j E L, such that  as p = ( 1 , 0 , . . . ,  0). In d = 3 dimensions, 

the asymptotic directions of the morphisms pJ inherit the ordering of the angles in (-Tr, 7r]. 

We say that  two *endomorphisms, pl and p2, of ~ e .  are causally independent, de- 

noted pz}~p2, if they are localized in cones C1 and C2 such that  Ca C C~. 

We now recall a basic result proven in [24]. 

T h e o r e m  2.3.1 For p and q in L, let f and f be two *endomorphisms of ~B c" localized 

in space-like cones contained in C~ and unitarily equivalent to p and q, respectively. Let 

} " "  be de ned as in rhea there are the inte. ners ivy (/) and iv? (,')},__, 
matrices, called statistics-(or braid-) matrices, 

(R(j ,p,  as ( f ) q ,  as(pq),k)mo) , 

such that 

v2'(f) v3~(f) = ~ R(j,p, as (f),  q, as (f),  k),~ ' ~  v,~J'(p,) v 2 ( f ) ,  
tw, 

(2.27) 

32 



provided pt, ~ p~. 

auziliary cone Ca. Moreover, the following properties hold. 

The statistics matrices are locally independent of the choice of the 

(a) In d > 4 space-time dimensions, the matrices 

R(j, p, as (pP), q, as (p'), k) -- R(j, p, q, k) 

are indepe,~dent of as ( f  ) and as (p~). 

(b) For d = 3, 

(2.28) 

R(j ,p ,  as (pP), q, as (p¢), k) - R±( j ,p ,  q, k),  (2 .29)  

for as (pP) X as (pq). [The matrices R±( j , p ,q ,k )  depend on i~' and pq only through p 

a~d q ~,~d the sign of as (p~) - ~s(p~).] 

R e m a r k s .  

It is easy  to see that  

+ " "  (2.30) R 0 , p , q , k ) , ~  R : ~ ( j , q , p , k ) ~  ~ = ,~6,~"6 ~ 
l#~,, 

and that  the matrices R+(j,p, q, k) satisfy the Yang-Bazter equations in SOS-form. 

We now assume that  the representations p E L are rotation-covariant. Thus if 0 

denotes a space rotation then 

p(C~o(A)) = Up(O)p(A) Up(O-'), (2.31) 

where Up is a unitary representation of the universal covering group of SO(d - 1) on the 

representation space 7-/r of p. Since p is irreducible and a0~. is the identity when 02, is 

a rotation through an angle 2r,  it follows that  

U~, (02,~) = e 2 ~ " l  (2.32) 
7-~p ' 

where the real number sp is called the spin of representation p; (for d : 3, sp can, a priori, 

be an arbitrary real number, while, for d > 4, sp E ]Z). 

33 



T h e o r e m  2 .3 .2  

R+ (j, p, q, k )~ = e2"~(**+°'-*~-*') R -  (j, p, q, k )~ . (2.33) 

Remark. 

The fact that in d > 4 space-time dimensions R + = R-  and Theorem 2.3.2 imply that 

1 sp E ]7 .  for all p E L. 

All the results reviewed above are proven in [24]. 

Next, we recall what is called fusion of intertwiners [24]. For p, q and r, let f ,  f 

and f be three *endomorphisms of ~c ,  unitarily equivalent to p, q and r, respectively, 

and localized in the interior of a simple domain S C C'. Then there exist Npq,, partial 

isometries, 

~.,.. , .(,) e ~ ( s )  * c ~ c . ,  

p = 1 , . . . ,  Nm,, , such that 

(2.34) 

f ( f (A))  ~ o . , , . . ( . )  = ~ o . . , . . ( . )  p'(A). (2.35) 

Let try(r; p, q) be given by 

Note that Nr,,1 = i, so that there is a unique (up to a phase) isometric intertwiner of the 

type of V~(p") ,  for all r E L. 

T h e o r e m  2 .3 .3  

(a) There exist matrices (~'(j,p,q) k)2~) only depending on the representations 

j , p , q , k , i  and r, (but not on the specific choice of f , pq and f ), such that 

V 2 ( f )  V2(p ' )  = 

~ ' ( j , p ,q , k )L~q . ( r ;p ,q  ) j ( ~ o . . , f ( p ) )  V2'(p" ) . (2.37) 
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The matrices F can be expressed in terms of the matrices R + and R-  as follows 

P(i ,  p, q, k ) ~  = 

R + ( i , q , ~ ,  ~ x  + • - - , ' ~ .  ~= . -  k,.~ R (3, k, r, 1/,61 1)k~1R 0,p,  k, q),a~ . (2.38) 

(b) There ezist matrices (F(3,p, q, kl,,~a) only depending on the representations 

i, p, q, k,i  and ~, (but not on the specific ~hoice of i*, f and f ), such that 

s = 

P(i, p, q, k ) r ~ ( , ;  p, q) v,"(~)  v2(p ' ) .  (2.39) 
Qw 

The matrices ~ can be expressed in terms of R + and R-  by a formula analogous to 

(~.SS); (see Theorem e.S4, (1)) 

(c) The matrices ~" and F are related to each other by the following equations 

~ ~ ' ( j , p , q , k ) ~  F(3,p,q,k)iu,, = 6;6:6~ (2.40) 

and 

pC..,)(j, p, q, k)',~ := ~ " " " "  '~ ' "  F(;,p,  q, k)~a F(j ,p ,  q, k), ~ 
v 

are the matrix elements of orthogonal projections, p(r,,)(j, p, q, k), with 

P("'~')(J,P, q, k)  - -  llv..(.o...)j, 
via 

(2.41) 

(completeness I . (2.42) 

R e m a r k s .  

(a / The consistency of the two equations (2.38) (+ ~ -1  follows easily from Theorem 

2.3.1. Theorem 2.3.3 is proven in [24]. 

(b) We recall that Vk(f ) i  is the Hilbert space of intertwiners V from 7-/k to ~ i  satisfying 

j ( f ( A ) ) V  = Vk(A),  for all A E ~ ,  

see (2.20/. We define Vk ( f  o f ) i  to be the Hilbert space spanned by the intertwiners 

{V2i(f)V~k(p')  : i • L, a =  1,. . . ,Npi,i ,  /~= 1, . . . ,gqi ,~} . 
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Then the matrices R+(j,p, q, k) define unitary maps from ])k ( i f  o p ' ) /  to ])k ( f  o i f ) / ,  

unitary endomorphisms of 1/k ( i f  o p')i, and the matrices P(")(j ,  p, q, k) define orthogonal 

projections on Vk (if  o p')i. 

(c) It is sometimes preferable to use 

^ • r , / , ~  

± 1 " • p l ~  • r ~ r  • l . ~ / l v  ^ r / a 1  Z R ( ,3,p,$)/la R±(p,£,q,k),./3 R:f(1,r,3,~ja. F(1,p,q,r)pl. (2.43) 

instead of (2.38), in order to compute the F matrices from the R ± matrices. It is useful 

to express the matrices R +, R - ,  1 ~ and F graphically as follows 

q,/~ p,~' 

p,a q,B 

*-~ R+(j,p, q, k)i~, ~ (2.44) 

q,/z p,v 

p,a q ,B 

• ~ R 0,P, q, k),~ (2.45) 

p,/~ q,I/ 

r , ~  

k(j, p, q, k)L~ (2.46) 
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r z,/ 

p,a q,B 

p ( j , p , q ,  i,,,, ,--, k ),~, a . (2.47) 

We also introduce the graphical notation 

and 

p,a P , B  

.U 
! J , 
! 
! 

I 
I 

p,a 

/ ^ " -- • 111 J := F(~,p,p,3),~, 

. ) a o  - • _ • i ao  
1~ : =  F(3,p,p,3)lll. 

(2.48) 

(2.49) 

Identities between R +, R-,  ~" and F can now conveniently be expressed graphically. 

It is quite straightforward to prove the following theorem [24]. 

T h e o r e m  2.3.4 The matrices R +, F and ,~ satisfy the equations 

:C 
k... 

r s r s 

s p q s p q 
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r,T 

and ' ~  
j i 

p,a q,B 

For the proof of Theorem 2.3.4 see [24]. 

r,T 

p , a  q , B  

(2.53) 

Remarks. 

(a) Equation (2.38) for F and a similar equation for F follow from Theorem 2.3.4,(a). 

(b) The number dr,p E L, is called the statistical dimension of representation p. If 

R + = R-,  i.e., if the theory has permutation group statistics then d r E N, [19]. It is 

shown in [19, 2O, 23], that dr = d~. From Theorem 2.3.4, (b) and (c), it follows that dr is 

the largest eigenvalue of the fusion rule matriz Np, defined by 

(N~)j~ := ivj,,~. 

This can be shown by noticing the identities 

I 
I 

! 
I 

r p ~  

I 
! 

! 

I 

(2.54) 
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=F_, 
1",Is 

I 
I 

q P 

I 
I 

=ENA  
r 

! 

r 

I 
! 

= E NA dr. (2.55) 
I ,  

Identity (2.54) follows from Theorem 2.3.4,(b) and (c); [22]. Thus (d~)reL is a Perron- 

Frobenius eigenvector, corresponding to the eigenvalue dp, of the fusion matrix Np. Con- 

nected to this result is the interpretation of ~ as a Jones index, [23, 41]. See Chapter 3. 

(c) As a special case of Theorem 2.3.4,(c) we note that  

P 

! 

I 

P 

P 
! 

P 

(2.56) 

This identity is important in the construction of invariants of links and of ribbon graphs 

from the matrices { R ± , F , F } ;  see [43, 28, 44]. 

The main result of this section is the insight established in [15, 24, 22] that  every 

local, relativistic quantum theory, in the sense of Sects. 2.1, 2.2 in three or more space- 

time dimensions [and the chiral sectors of every two dimensional conformal field theory] 

provides us, in a canonical way, with certain combinatorial data, namely the fusion rules 

(Np)pe~, and the s~at/stics-(or braid-) and fusion matrices, R ±, F and F,  respectively. In 

d >_ 4 space-time dimensions, we have that  R + = R- ,  but in d = 2, 3 dimensions R + and 

R-  are, in general, distinct; see Theorem 2.3.2. It is natural to ask, whether these data 

might he dual to some simpler algebraic object, such as a group or a quantum group. In 

a remarkable series of papers [29], Doplicher and Roberts have shown that  if R + = R- ,  
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i.e., for permutation group statistics, the data {(Hp)peL, R, ~',~" } are dual to a co?npac~ 

group, i.e., L can be viewed as the set of finite-dimensional, irreducible representations 

of a compact group, G, N~k,j is the multiplicity of representation j of G in the tensor 

product representation p ® k, and R, F, ~" are standard 6-index symbols associated with 

the representation theory of G. 

The point of this work is to show that if R + # R- ,  (frequently the case in d = 2, 3), 

{(Np)pEL, R±,]P,i  ~} are often dual to some quantum group, [1, 2, 3]. then the data We 

shall discuss in detail one example (see Sect. 6.3.) of a local relativistic quantum theory, 

encountered in the study of three-dimensional Chern-Simons gauge theory with gauge 

group SU(2),which leads to quantum SU(2), i.e., Uq(st2), with q a root of unity. The 

same example appears in the study of two-dimensional Wess-Zumino-Novikov-Witten 

models based on SU(2) current algebra and of minimal conformal model [9, 31]. 

In the next section, we study properties of the representations of the braid groups 

determined by the statistics matrices R ±. 

2.4 Uni tary  Representat ions  of the Braid Groups 

Derived from Local Quantum Theory; Markov 

Traces 

We return to the study of a local quantum theory described by an algebra ~ ,a *auto- 

morphism group, a, and a set, L, of representations localizable in space-like cones. We 

show how, for d = 2 or 3 and assuming that R + # R- ,  the quantum theory determines 

unitary representations of the braid groups, B,, on n strands, for arbitrary n, equipped 

with a positive Markov trace rM. These results are discussed in more detail in [22, 24]. 

For every p E L and every n E N, we define a space fl(") of paths of length n, as 

follows: Every element w E ~(") is a sequence of symbols 

w = (#ictl,/~2a2,..., #,,a,,), with #~ C L, (2.57) 

41 



and a/ = 1,...,Np~_~,u~ , i = 1 , . . . , n ,  with /~0 -- 1. Two neighbors, #~-1 and #~, are 

constrained by the requirement that  Npu~_~,u~ ~t 0. 

We fix a *endomorphism tO' of B c°. With each path w • fl(p"), we associate an 

intertwiner 

v. = H v2- ,~(¢ ' ) ,  (2.58) 
i = l  

intertwining the representation 1 ((pp)n(.)) of 2[ with the representation w+ of 9/, where 

w+ = #,, is the endpoint of w. Here, (pr)" = pr o . . .  op t  (n-fold composition of ] with 

itself). The space of these intertwiners carries a natural scalar product (.,-), defined as in 

(2.21), Sect. 2.1. In this scalar product,  { V , , : w  • ~2(r"),w + = k} is an orthonormal basis 

for the space, l)k ((pP)")z, of intertwiners between representations 1 ((pr)-( .))  of 9A and k, 

i . e . ,  

(V~, V~,) = 6~,~,. (2.59) 

We define a path algebra [45, 46], .4 (fl(")), by setting 

A (a~-~) = @ ~ ( v ~ ( ( ~ ) - ) , ) ,  (2.60) 
kEL 

where ~ (7/) is the algebra of all linear endomorphisms of a Hilbert space ~ .  It is easy 

to see that [24] 

Next, we define a unitary representation of the braid group B,, on n strands with val- 

ues in A (~l(r")): Let a ~ ' , . . . ,  a +̀ ,,_x be the usual generators of B,,. We define a unitary 

representation, ,  of B ,  on l)k ( ( ] ) " )~  by setting 

( ~ 2 v )  = 52 R,~(~, ~')v., ,  (2.62) 

where 

gO ! 

I~lQzl R,~(~, ~') = R ~ (~,-,,P,P, ~,+lLa,a,÷, (2.63) 

if w = (ttl, at)t=t,.. . ,r, a n d  w '  = " ' a "  = ~#*, l )z=l  ...... , where/a[ /It for 

# i, ~i = a, ,  for t # i, i + 1. For all other choices o¢ w', given ~,  we .,et R, ~ (w, w') = 0. 
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Let b k = I-I~=l a~: be an arbitrary element of B,;  e= = :t=1, k= E {1, . . .  ,n  - 1}, for 

a = 1 , . . .  k. We define 
k 

n~ := II  R~:, (2.64) 

with R~ as in (2.63). The representation ^of  B ,  on Yk ( ( f ) " ) x  is then completely 

determined by setting 

' = k. (2.05) (gv)~ :=~P~(~,~')v~,, ~+ =~+ 
~0 

It is not hard to show, see [22, 24], that ": b~--~ b is, in fact, a unitary representa- 

tion of B ,  on 12k ( ( f ) " )x .  This representation admits a unique, positive, normalized 

Markov trace, r~, constructed a~ follows [24]: Given w = ( p l , a l , . . .  , p , , a , )  e ~("), we 

set ~ = (Pl , ' ' ' ,  ~.)" We define 

for ~ = w', and F(w,w') = 0, otherwise; the matrices F (~  ) ,~ l have been defined in (2.48), 

Chapter 2.3. The matrix/0(w, w') is defined similarly; see (2.49), Chapter 2.3. Then ~'~ 

is given by 

r~,Cg) := E: E~ tr (~(~ , ,~2)P~(~2,~3)~(~3 ,~ , ) )  ." (2.67) 
DI i...J,i'et ~ l =  ( Y.l ,..,,P.vt) 

for  1=1,2,3 

The quantity ~-~ (~1) =: Xv is called statistics parameter [23, 22], and one can show [23, 

22, 19] that  the statistical dimension, dp, is given by 

= I ' T ,  ( ' h ) l  • ( 2 . 6 8 )  

The fusion rules (Nv)ve L and the values of the Markov traces r~ ,  

{r~,(~) : b c B , ,p  c L } ,  

on B, ,  for all n = 2, 3 ,4 , . . . ,  are intrinsically associated with the quantum theory de- 

scribed by {~, a,  L}. They do not depend on how the phases and normalizations of the 

intertwiners V~J(p v) are chosen, in contrast to the data {R +, F ,  F}. 
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We know from [43] that a quasi-triangular (quasi-) Hopf algebra K~ with universal 

R-matrix ~ ,  and a list, £ ,  of finite-dimensional, irreducible representations of positive 

q-dimensions of K~ also give rise to representations of the braid groups B,, equipped with 

Markov traces r~ ,  p E £,  for all rt = 2, 3, 4 , . . . .  From the results reviewed in this section 

we know that only those quasi-triangular (quasi-) Hopf algebras, /C, and families, ~, of 

representations of K: can appear in local, relativistic quantum theory for which 

(1) the associated representations of B,, are urtitarizable, for all rt; and 

(2) the Markov traces r~ ,  p E £,  are positive. 

For/C = Uq (sla+l), this restricts the values of q to q = exp(i~r/N), 

N = d + 2, d + 3 , . . . , .  What,  as field theorists, we are longing for is a general theo- 

rem which completely characterizes those fusion rules and positive Markov traces on B, ,  

rt = 2, 3, 4 , . . . ,  which come from quasi-triangular (quasi-) Hopf algebras. We do not know 

a general result of this type, yet. [In d >_ 4 space-time dimensions, the results of Doplicher 

and Roberts [29] completely settle an analogous problem, with/C the group algebra of 

a compact group.] 
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Chapter  3 

Superse lect ion  Sectors and the  

Structure  of Fusion Rule  Algebras  

As proposed in [23], it is of interest to investigate the structure of the chain of algebras 

e.~_-,(~-)'~ (~-)~,o~(~.) '~ (~-)~,o~o,(~.) '~  (~-) , (~1/ 

where p is an irreducible *-endomorphism an ~ a conjugate endomorphism. The point of 

studying algebra chains obtained by alternating compositions of the form (3.1) is that  they 

admit faithful traces which give rise to conditional expectations and thus to Temperley- 

Lieb algebras [41] as subalgebras. This structure has been studied in rather much detail. 

For rational local quantum theories, i.e., theories with a finite number of superselec- 

tion sectors, one finds that  the chain (3.1) eventually leads to a tower in the sense of 

Jones [41]. The factors in these algebras are distinguished by the inequivalent, irreducible 

representations occuring in the compositions p o ~ o p o ~ o . . . ,  which makes it natural to 

try to connect the inclusions of the algebras defining the tower to the fusion rules {Nii,k} 
introduced in Sect. 2.2; see also [47, 41]. Assuming that  every irreducible representation 

of ~ is contained in some p" o ~ ,  we shall explain, in some detail, how fusion rules can 

be recovered from (3.1) and from towers that are in some sense coupled or isomorphic 

to (3.1). 

Since most of the structural information can be obtained from the fusion rules alone, 
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a larger part of this section is devoted to the study of fusion rule algebras, as introduced 

in [47]. In view of a classification problem solved in Section 7.3, we give a formal treatment 

of the action of the group of automorphisms in a fusion rule algebra. 

On the level of algebra-chains, similar to (3.1), automorphisms give rise to concur- 

rent Temperley-Lieb algebras which, for a special decomposition rule for p o ~, lead to 

a complete determination of the underlying theory, as we shall see at the end of this 

section. 

3 . 1  D e f i n i t i o n  o f  a n d  G e n e r a l  R e l a t i o n s  i n  F u s i o n  

R u l e  A l g e b r a s ,  a n d  t h e i r  A p p e a r a n c e  i n  L o c a l  

Q u a n t u m  F i e l d  T h e o r i e s  

an involutive and additive conjugation, - - ,  

- : ~ - - ~ ;  a ---~ g 

w i t h ~ o b = a o b ,  a u n i t l E ¢ w i t h  

l o a = a  and i - = 1  

and an additive evaluation e 

e : q~--* N such that  

e(g) = e(a) ,  e(1) = 1 

and (a, b) := e(a o -b) is the usual euclidian scalar product on NILI. 

It follows, that  the scalar product ( , )  obeys 

Ca o x, y) = (x, ~ o y), 

46 

a × b---~ a o b ,  

(3.2) 

A fusion rule algebra (superselection structure, ...) q, is a positive lattice (1~[ = NILI), 

with a distributive and commutative multiplication 



s o  t h a t  w e  have, for the leneh Ilall := ~ of a ~ ~ ,  

Ilall = I1~11, Ila o bll : Ila ° ~11, etc . .  (3.3) 

Minimal elements, ~, in ~, i.e., vectors that  cannot be written as the sum of two other 

nonzero vectors, are characterized by 

I1~11 = 1. (3.4) 

Every vector of • can be written uniquely as a sum of the minimal elements ~b G q~, and 

any additive bijection of q~ onto itself corresponds to a permutation in 

L = {~ E ~]~ minimal}. In particular, we have that  1 E L, that  the conjugation is an 

involution, ~j --+ ~ ,  of L, and that  

(3.51 

A fusion rule subal~ebra (sub-superselection structure) ~'  is an invariant sublattice of ~, 

which contains 1, closes under multiplication and for which (3.4) holds, for all minimal 

vectors. 

Note that  a fusion rule algebra is simple, in the sense that  there do not exist proper 

ideals, i.e., if/1}o is a sublattice of ~ spanned by minimal vectors with 

~o = ~o and &o o ~ C ~o 

it follows from (3.5) that  1 E ~o and hence ~ = ~o. 

The multiplication in ~ is determined by the products of the minimal elements 

~, o ~j : ~ Jv~j ,~,  (3.6) 
kEL 

where the structure constants Nij,k 6 N are, what we previously referred to as fusion 

rules. 
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In terms of the fusion rules, the definition of the fusion rule algebra is given by: 

a) commutativity Nij,k = Njl,k 

b) associativity ~ v , j , ~  N~.,. = ~ N~,. jVj.,~ 
k l 

c) unit Na,i = NI~,~" = 6i i 

d) involution Nij,~ = N~,~ 

e) evaluation Nii,~ = 6~i. 

(3.7) 

A representation of a fusion rule algebra, r ,  of • on a lattice A = N k is an assignment, 

a ---* p(a), of elements, a, in 6 to additive mappings of A to itself (i.e., p(a) is a nonnega- 

tire, integer k x k matrix), with 

p(1) = I, p(a)p(b) = p(a o b) = d  p(~) = p(~)'. (3.8) 

The representation we are primarily interested in is given by (right) multiplication of ¢ 

on A = ~, so that  

p (¢;) = N~., (3.9) 

where (Nj.)i k = Nij,k are the matrices of fusion rules. 

In fact, any lattice A that  carries a representation of 6 and has an element w with 

(~, p(~),~) = ~(=) (3.10) 

can be written as a sum A = ¢ ,  @ q~,  where ~r, ¢~ are q~-invariant, and Cr is equivalent 

to the right representation. If a representation, p, satisfies [IP (¢,)[I = ][Ni]], then we call p 

dimension preservin#. Eqs. (3.8) yield: 

N ~  = ~ :  lV, j .k~  (3.11) 
k 

N, = 1, N~ = N} (3.12) 

Using (3.10), for w = 1, and (3.12), (3.7) we see that  

N31 = I~/1 = Cj, as well as N~ = C N j C ,  (3.13) 

where (C)ij -- 81~. 
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Moreover, commutativity of o implies 

[l~i, l~j] = 0 .  (3.14) 

Suppose we have a lattice q~, and nonnegative integer matrices l~lj acting on q~,, that obey 

(3.12), (3.13) and (3.14), for a given involution C, then we find that 

a) (I ,N,  N j l )  = 6~j 

b) (I ,N~NjN, i)  = N~j,~ 

c) (I,N~NiNkNt i) = ~ N~j,. N.k,Z 
s~EI, 

(3.15) 

By (3.14), these expressions are completely symmetric in the indices i , j ,  k and g and, by 

(3.12), are invariant under conjugation (i,j,  k,g) --, (L J, k,i),  so that equations (3.7) are 

easily verified. Hence any set of matrices obeying (3.12), (3.13) and (3.14) determines 

a fusion rule algebra. 

From the results reviewed in Sections 2.1-2.4 it is clear that every local quantum 

theory satisfying properties (P1) and (P2) of Section 2.2 defines a fusion rule algebra, q,. 

Let 

p c . =  V ~ ( e , + = )  c° 
=tiM" 

denote the auxiliary C* algebra, introduced in Sect. 2.2, containing the observable al- 

gebra ~; (C, is the auxiliary space-like cone). We define q' to be the fusion rule algebra 

generated, through arbitrary compositions, by the family L of transportable, irreducible 

*endomorphisms of B c" localizable in space-like cones. Let C be an arbitrary, non-empty 

space-like cone space-like separated from C,. We define the yon Neumann algebra 9Yt to 

be the local algebra 

- ~ (C)  := ra(C)". 
By Hang duality in the form considered in [20], 

~ = ~--q-~, 

on the vacuum sector, 7-/1, of the theory. Let U = U(C) denote the group of unitary 

elements in ~t, i.e., 

U := { V  E gJt : V" = V - 1 }  . 
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Since every endomorphism in L is transportable, and hence is unitarily equivalent to an 

endomorphism localized in a space-like cone of arbitrarily small opening angle contained in 

the cone C, we can choose a representative which is a *endomorphism of ~ acting trivially 

on ~ in every equivalence class of unitarily equivalent *endomorphisms in L. By also 

including arbitrary compositions of such endomorphisms we obtain a subset, EndL(C), 

of End(~(C))  which is closed under composition and hence is a (sub-)semigroup. The 

semigroup EndL(C) contains the subgroup, Int(C), of inner *antomorphisms of if)/given 

by 

Int(C) := {a, , :  3V e ~r(c) s.t. av(A) = VAV' ,VA  e 9)I}. 

The fusion rule algebra q, of the local quantum theory under consideration is then given 

by 

Endd C)/Int(C). (3.16) 

The cone C, although chosen arbitrarily, and the von Neumann algebras ffJt = ~Jt(C) and 

can and will be kept fixed throughout this chapter. 
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3 . 2  S t r u c t u r e  T h e o r y  f o r  F u s i o n  R u l e  A l g e b r a s  

We review several results on the structure of fasion rule algebras which are based on the 

theor~ of non-negative matrices, in particular on connectedness arguments and Perron 

Frobenius theory. We focus our attention on the description of the fusion rule subalgebra, 

• p, generated bit a distinguished minimal vector qbp E ~, and comment on the gradation 

induced bit ~p on • in terms of UPerron Frobenius algebras" defined over R +. The proofs 

of the following statements as well as more general aspects of the structure theory will be 

given elsewhere [~].  

The first observation about fusion rule matrices is that they have non-negative 

entries, and, since l~p = l~lg is a fusion rule matrix, too, if 1% is one, fusion rule matrices 

are normal, i.e., 

N,N~ = ~ N , .  (3.17) 

Note that (3.17) defines a symmetric, non-negative matrix with strictly positive diagonal 

elements. Hence it can be decomposed into irreducible parts, each of which is primitive. 

The following lemma holds for arbitrary non-negative matrices. From the superdiagonal 

block form on every Np-invariant domain, Cx = ~ ¢(x,i), we see that the period ax is 
iEZ~ x 

identical with the Frobenius imprimitivity index. 

L e m m a  3.2.1 Let N be a normal n x n-matriz, with non-negative (integer) entries and 

non-zero rows, or columns, and let 

• 

be the cone (positive lattice) on which it is defined, with unit vectors Cx,.. . ,  ¢..  Then 

there is a unique sequence of numbers, aa E N, with ~ ranging over some indez set A, 

~ ^  ~y. C(~,.,), such that the subcones and a unique partition of {1, . . . ,n}.  {1,. . . ,n} = , 

< ) , w i t h  (sublattices) ~(~,0 := {¢J}¢eccx,o R+(N) 

~' = • • ~'c~.,), (3.1s) 
XEA IEZa~ 
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obey 

N (~'c~,o) c ¢c~,,,+~), 
and (3.19) 

and, moreover, W N  is primitive on each ¢(~,0, i.e., (NAN) - [ ¢(a.0 has strictly positive 

matrix elements, for some m.  Furthermore, if  there exists an involution, ~c • Sn, such 

that we have 

CNC = Na, (3.20) 

with C¢~ := ¢-(0, then there is an involution, )~ ---* ~, on A, with a~ = a~, and an enu- 

meration of Za~ such that 

C (~(~.,)) 

o r  

¢(~,-0 (3.21) 

¢(~,x-i) for ~ = ~. (3.22) 

From the superdiagonal block form of Np on every l~p-invariant domain, ¢~ = 1~) /I~(~,0 , 
iEZa~ 

we see that  the period a~ is identical to the Frobenius imprimitivity index.  Also we have 

that the restriction of the matrix l~Ip to a domain/ l~ is irreducible and by standard Perron 

Frobenius theory has an eigenvector in q~ ( components taken in R + ) with positive eigen- 

value, which is unique up to positive scalars. It is called the Perron Frobenius eigenvector 

of the matrix. Any eigenvector of l~lp on/I~ is thus a convex combination of eigenvectors 

on components with the same eigenvalue. A more general version of this observation is 

obtained by induction : 

L e m m a  3.2.2 i) Let S = {N1,..., Nt} be a set of commuting n × n -  matrices, which 

closes under transposition, i.e., l~ E S i fN i  E S .  Define the set P F ( S )  as 

P F ( S )  = { d e  (R+'°)" : 3 (a,) • (R+) k with  N ,d  : ct, d, V i} ,  (3.23) 

then there is a partition 

= @ Ucc , ) (3.24) 
~EA i 
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and Perron ~¢~robenius eigenvectors daz with eigenvalues a = (al) and support in 

C(a,#), i.e., (d~,#, ¢~) # 0 iff i E C(~,#), such that there is an orthogonal decomposi- 

tion 

PF(S)  = ~ P F ( 8 ) ~ ,  (3.25) 
ctEA 

where PF(S)~ is the convez cone spanned by the set of eztremal directions itS=j}1. 

ii) Suppose ,.q is the set of fusion rule matrices of a fusionrule algebra with a finite 

number of irreducible (or minimal) objects. Then the partition in i) is trivial, i.e. 

there is a unique vector d E (R+ ) n, with 

~(d~ = (¢,, ~ = 1 (3.2~) 

and 

The components are 

and take values in the set 

PF(S )  = R+d.  (3.27) 

d~ = (E ¢~) (3.2S) 

(2co~(~)},~=~., .... u [2.00). (3.29) 

Part i) of Lemma 3.2.2 relates to Lemma 3.2.1 as follows: For ,9 = {l~I,, N t} to any 

A E A labelling a minimal, invariant sublattice, there corresponds an extrcmal Perron 

Frobenius eigenvector labelled by a pair (a,j). This description of smallest common 

invariant domains in terms of extremal Perron Frobcnius cigenvcctors of course generalizes 

to involutive sets, S, of matrices with more than two elements. In the proof of the second 

assertion in this Icmma we make essential use of equation (3.13), which shows immediately 

that every irreducible object is in the invariant domain containing 1. Using the numbers 

determined in (3.28) we define a positive function on • sett ing for an arbitrary object 

z E ~, given by x = ~#eL z¢¢~ 

d(x) = ~ x ~ A  (3.30) 
¢ 

53 



We verify that  it satisfies 

d : • , R  + , 

d(= + y) = d(z) + d(y), (3.31) 

d ( z  o = 

We call a function with the properties (3.31) a Perron Frobenius dimension. From ii) of 

Lemma 3.2.2 we conclude that  for fusion rule algebras with a finite number of irreducible 

objects this dimension exists and is unique. Also we have d(1) = 1 and d(= v) = d(z) .  

If we consider fusionrules with an infinite set of irreducible objects this dimension is in 

general not unique as can be seen in the case of ordinary SU(2) -fusionrules. For these the 

numbers, d(=) = (dim(z)),, q • R +, provide a one parameter family of Perron Frobenius 

dimensions. 

In the following we define for a subset T of • its support in the irreducible objects 

by 

supp(T) := {¢ [ (¢~, s) # 0, for some s • T} (3.32) 

The result of Lemma 3.2.2, i), can be applied to define a quotient algebra ¢ / ¢ o  for a 

fusion rule subalgebra ~o C ~, where two irreducible objects,C1 and ¢2, are equivalent iff 

¢1 = zoCa for some z E ~0. We obtain a partition of ¢ by setting C[¢] := supp (¢¢ o q~o) 

¢~ := <{¢¢},~eC~>N, so that ¢ = fD ¢~ and q~o o q~ = q~, where B is the set ofequiv- and  
DqB 

alence classes. The fusion rule matrices, N¢, of ¢ have a unique common Perron Frobenius 

eigenvector d E  R +" q', with e(d-~ = 1, and the components d -~ E R+¢~ of d =  ~ d -~ span 
~EB 

the cone of common Perron Frobenius eigenvectors of representations in Co 

In order to state the next lemma, we define the positive numbers t:~ and N~¢2~ by 

setting 

and 

~ := d -~ / I~  (3.33) 

~ ~ ' ¢ ~ , ~  := ~ d~-------~-a N¢1~,¢. , (3.34) 
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and the positive vectors 

L e m m a  3.2 .3  

~a._ 1 d-~. (3.35) 

i) We have the following equations in R + • ~: 

and 

1 1 
de ¢¢ o ~° - ~¢] (3.36) t~[¢] 

ga og° = g°. (3.37) 

ii) The numbers defined in (3.34) do not depend on ¢1 and ¢3 

the classes [¢11 and [¢21, so that we may define 

ii~) 

ezplicitly, but only on 

N[¢111021,[¢~] = N'~O~,[¢s ] . (3.38) 

The numbers tz a then form the common Perron Frobenins eigenvector, g, of the 

m a t . c e s  a n d  = 1, = a n d  

7EB 
(3.39) 

The numbers N--'~,'f are the structure constants of the multiplication table of the 6~ 's, 

i . e .  I 

g" o ~ = ~ -~,~,'fg,, (3.40) 
"fEB 

and we have that 

N=a,0 = 1. 

Remark. In all statements of Lemma 3.2.3 we understand the multiplication, o, defined 

on the N-algebra • to be extended to the R+-algebra R + • ¢. We easily verify, that  the 

structure constants, N---~,'f, obey all constraints (3.7), necessary for fusion rule matrices 

to define a fusion rule algebra, except that  they are not necessarily integer-valued. This 

motivates the following definition. 
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Defini t ion 3.2.4 For two .fusion rule algebras ~o C ~, the Perron-Frobenius algebra 

of ~ over ~o is the cone freely generated by the indez set B, i.e., all combinations ~ Aaa, 
a E B  

with Aa >_ O, equipped with the conjugation, a --* &, and the R+-bilinear multiplication, o, 

defined by the structure constants, i.e., we have that 

-f 

This algebra is denoted by ~ /~o and is often identified with a subalgebra o f R  + • ¢ through 

the embedding ~ ~ ~a. (II we set (~ ,# )  := 6 a ~  this embedding is even seen to be 

isometric.) 

The use of Perron Frobenius algebras is motivated by the observation that 

N=~,., = 0 

iff there exist ¢= 6 Ca and ¢~ 6 C~ such that 

which is equivalent to 

(3.41) 

@= o @~ ± @~. (3.42) 

Thus the algebra @/@o tells us which ~°-invariant components, ~-v, occur in the product 

of two other components, ~= and ~#. Definition 3.2.4 can of course also be applied 

to Perron Frobenius algebras cI,° CcI,, instead of fusion rule algebras. We can therefore 

iterate our construction and obtain familiar equations, like ~/~o -~ ( ~ / ¢ ~ )  / (~0/~,~), 

for @~, C @o C @. 

We associate to any pair of sets T, S C {1, . . .  ,n}, the composition 

ToS:= [3 supp(¢ioCj) , 
4£T~]ES 

so that T, S --* T o S is a commutative and associative operation. Further, we denote 

by IT], T C IT] C {1, . . .  ,n}, the set generated by T, more precisely IT] := U Tk °Tk. 
~,l>o 

For any set T, the sublattice @[~] : =  N IT] C ~ is a fusion rule subalgebra of @. 

56 



In the simplest cases T = {p} and T = {p} o {~}, these subalgebras are related to 

the presentation of the fusion rule matrix l~l~ of Lemma 3.2.1 by 

OLd = ~ °  = {~  ¢(~,0, 

and 
(3.43) 

where A. and the enumeration of Zoo. are chosen such that 1 E C(~o,0); hence 

C (¢ (~ . ,0 )=  ~(~o,-0" 

The Perron Frobenius algebra O/¢[popl can be described further by using Lemma 3.2.1. 

P r o p o s i t i o n  3.2.5 Suppose that for a representation p, the fusion rule matriz  l~p has 

imprimitivity indices a~ E N, A E A, and define a partition o f { l , . . .  , n}  = O~ 0 C(~,O , 
IEZ.~ 

according to Lemma 3.2.1, with Ao as above, i.e., 1 E [p o p] = C(~.,o). Then 

i) The Perron Frobenius algebra, ¢/OLoo#], is given by vectors 5 "*(~'0, A E A, i E Z,~, 

s u p p  = Cc ,o, and  1 :=  

ii) The subalgebra O[p]/~Loop ] is generated by an automorphism a := 5 "(~°'1), with 

and is therefore isomorphic to R + ([Zax]). We have that 

#'~ O g(X,/) : g(X,/+l) V)t E A,  i E Za•, 

and 
a~ divides a~o, VA E A. 

(3.44) 

(J) 
iii) There are constants N~xx2,x3, Ai E A, depending on j only modulo the greatest com- 

mon divisor of axt, ax 2 and ax3 , i.e., j E Z(oxl,ax,.,~3 ), such that 

ar(k'-k*-~) 6 "(~''k') (3.45) 
Aa EA,ka EZa~a 
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iv) The vectors, ~ ,  ~ • A, 4 the Pe=on F~obeni,. algebra ¢/%~ ~ (¢/%<)/cEo~ 

are given by 

~ _  1 .~-t  / a 4  ~ °  5-'(4,i ) (3.46) 
~,=0 g4 , )=  .4, o 

j arbitrary, and the structure constants are 

-IV4t42 4+ = ~/a4, a4~_.__a4s 1 
' V a~. (a4,, a4,, a M) 

GX l IGX2 IGxI ) 

(J) (3.47) NIx 42,43 • 
j = l  

Roughly speaking, Proposition 3.2.5 shows that the action of eM on ¢ is graded and 

that the composition law of the invariant domains of q~L~ogl has a periodicity specified 

in part iii). In the following, we shall denote the fundamental imprimitivity of Np, a4., 

characterized in part ii), by % for any label p of the fusion rule algebra and by C~', i • Z ~ ,  

the components C(4o.i). Finally ¢~ := ¢[c~'] - ¢(4o,0. 

We collect the consequences of Proposition 3.2.5 that are relevant for the later 

considerations in the next corollary. 

C o r o l l a r y  3.2.6 For any label p of a fusion rule algebra, there is an integer, %, the 

imprimitivity of p, and a partition 

[p] = (J c; 
iEZ.p 

of the set [p] generated by p into a, subsets, C~, such that 

l•Co, = [po~]; c~=c~_, 
= d  (3.48) 

¢ o C~ = e l i ,  b r  aU ¢ • G 

If p is selfconjugate, it follows immediately that a a = 1 or a a = 2. 

For the simplest nontrivial case of Z2-gradation, we describe the fusion rule algebra 

more explicitly in terms of fusion rule-matrices. In general the fusion rule matrices of 

a Z2-graded algebra defined on ~ = ~° @ 01 (~ = N c*uct, ~i = N c+, i = 1,2) and the 

conjugation have the blockform 

C = Co ~ 01,  (Ci involution on 

m, = m~eN~,  for eeCo  

¢,) 
(3.49) 
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and 

N T= , for , / e e l .  (3.50) 
A T 0 

It is possible to give criteria which determine when matrices of this type define a fusion 

rule algebra, in the sense of Section 3.1, namely that they obey equations (3.12) - (3.14). 

L e m m a  3.2.7 Let {N~},~ be the fusion rule matrices of a f~sion rule algebra ~o = N c" 

with conjugation Co. Suppose, further, there is a representation, 7% of ~o on a lattice 

• , = N c' with conjugatio~ Cx, so that CxTr(¢)Cx -- ~r(¢) = 7r(¢) t. Then the matrices N~, 

N~ and AT, where N~ := ~ (¢~), ¢ e co, and 

A. : O° ~ 01 is determined by A,¢~ = N~¢~, 

define a fusion rule algebra • --- ¢o • ~x with fusion rule matrices given by (3.49) and 

(s.5o) it~ 
A,)A~ = A,A,~. (3.51) 

Note that GiAoCo= Ao. So we have the equ~ions 

C1A, A~C1 = A,A~, 

t t CoA,A,Co = A,A T 

where A, is the block matrix of NT, for y e C1. 

(3.52) 
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3.3 Grading Reduct ion  with A u t o m o r p h i s m s  and 

Normal i ty  Constraints  in Fusion Rule  Algebras 

In this Chapter we show how any simply generated fusion rule algebra, with nontrivially 

graded automorphisrns, can be obtained from a smaller fusion rule algebra with Zb-grading. 

We state the most general presentation of a fusion rule algebra, ff[p], in terms of an algebra, 

in which all automorphisms lie in the trivially graded component. For this purpose, we 

introdu, two co tructions that yield new fusion rule algebras, ( % 0  and zo , %1, 

from a given one, Sip]. We also discuss the crossed product, Z= × S, for arbitrary fusion 

rule algebras, and its use in the classification problem, for q~ = q~[a]" 

The restrictions, Ai, of a fusion rule matriz N a to the components C~ obey constraints 

that are due to the normality of N a. We use them to specify classes of Ao such that any 

fusion rule algebra, q~L~], compatible with one of these Ao has an automorphism in Cz 

and can thus be obtained from a fusion rule algebra generated by a selfconjugate element 

p = ~ .  

Throughout this section, we assume that the fusion rule algebra ~P, with label set C, is 

Z,-graded (e.g., as in Corollary 3.2.6, for C = [p]). Thus we have a partition C = 0 Ci 
iGZ,~ 

and a corresponding lattice decomposition, S = ~ q~i. 
iEZa 

To any fusion rule algebra, S, we can associate the set of invertible objects 

0 u t ( S )  := {¢ E S I ¢ °  ~ = 1}. (3.53) 

It is immediate that Out (S)  only consists of minimal vectors, and thus can be regarded 

as a subset of C. Moreover, it defines a discrete, abelian group with multiplication o and 

inversion ~b -1 = ¢. Equivalently, 0 u t ( S )  is characterized as the subgroup of permutations, 

lr E Sic I of C such that H, given by Hi i = 6i~U) , commutes with all fusion rule matrices 

and hence YI = 1%(1). Referring to the fusion rule algebras (3.16) that emerge from the 

superselection rules generated by transportable *-endomorphisms of a local quantum field 

theory, the group 0 u t ( S )  (and, in particular, the notation) has a natural interpretation. 

If Aut(C) is the subgroup of EndL(C) consisting of *-automorphisms of 93I acting trivially 
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on ffA" then equation (3.16) yields the isomorphism 

Out((I') ~ Aut(C)/Int(C) (3.54) 

Automorphisms (or invertible objects) can be detected fairly easily from the vector, 

of statistical dimensions or from a common Perron-Frobenius eigenvector, ~ ,  for finite 

fusion rule algebras, (I,, by 

Since d~ >_ 1, V¢i 6 (I,, the total number of irreducible representations in ¢i o ¢1, • Nij, k, is 
k 

bounded above by ~ N;j,kdk = d~. d i. Thus d,~ = d~ = 1 implies that  a o ~ is irreducible, 
k 

i.e. a o ~ = 1. Hence a is a *automorphism, and 1W~ is a permutation. (Note that, in 

general, if a matrix, 1N~, with non-negative, integer entries and non-zero rows and columns 

admits a positive eigenvector with eigenvalue 1 then 1N, r is automatically a bijection.) 

If the components Co and C1 of a fusion rule matrix Np are finite then we find from 

the unique Perron-Frobenius vector d =  (d~,d ~) • Co @C1 of A = N~ I Co : Co --, Cl, (i.e., 

A ~  = dpd~; A~a ~ = dp~)  the automorphisms in Co and C1 by (3.55). A similar result holds 

for C k = Co @. . .  @ Ck. Since, for ¢r E Out(~) ,  p o a is irreducible,  the vertices associated 

with automorphism in the graph to which Np is the incidence matrix have exactly one 

incoming and one outgoing edge, (i.e., one undirected edge for p = ~), joining a to sites p~ 

for which dp, = dp. For general undirected graphs we only have the "minimum principle", 

i.e., that the edge degree of sites on which the Perron-Frobenius vector admits its absolute 

minimum is strictly less than dp, and is equal to dp only if all vertices have edge degree dp 

and the Perron Frohenius vector is constant. Hence we expect that,  for dp > 2, non-trivial 

constraints on the set of admissible fusion rule matrices can be found by considering the 

position of automorphisms in the fusion rule algebra. 

Clearly the restriction of the grading map, ¢ ---* Z,  : ~ ~-* i, to Out (~)  is a group 

homomorphism, and its kernel is given by the subgroup Out (~o) C Out (e ) ,  where ~o C 

is the fusion rule subalgebra with trivial grading. Hence the grading gives rise to the 

embedding 

D(~') := Out((I ') /Out (~0) ¢--* Z , .  (3.56) 
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It follows from (3.56) that  there axe integers r and a' with a = r .  a', such that  D(R) ~- Z, 

and a' is the smallest integer such that  R°, R Out(R) ¢ 0. 

These aspects of grading fit into a general context: Let us consider a general fusion 

rule algebra R. Clearly, R contains a natural fusion rule subalgebra on which all gradings 

are trivial, namely the subalgebra Re0, where 

Our notations are those introduced in Section 3.2. It is not hard to see that  the Perron- 

Frobenius algebra over Re0, i.e., 

Grad (R) := R/RCo 

is, in fact, an abelian group, or, in other words, that  N,,on,~ = 67,1, for arbitrary a and 

7 in Grad(R). This observation shows that  an arbitrary grading on R is described by 

a character of the group Grad(R). More precisely, if 

O : ¢ - - * G ,  

with G an abelian group, is a grading of R, i.e., 

and 

e(i) e( j )  = o(k) if Nij,;, ¢ O, 

grad : R ~ Grad(R) 

is the canonical projection from R onto the quotient space Grad(R) then there exists 

a homomorphism of abelian groups, 

e : Grad(R) --* G,  

such that  the diagram 

con~rnut es. 

R grad , Grad(R) 

e %  , , / e  

G 
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We therefore call the map "grad" and its image, Grad(C), the universal grading 

of @. One sees without difficulty that  

grad(C) = grad(C) -1 , for all ¢ C q~, 

where ¢ ~ ¢ is the conjugation on @. 

In general, the restriction of the map grad: q~ ~ Grad(~) to the group of invertible 

elements, Out(6) ,  contained in q~ is a group homomorphism. Its kernel consists of all 

invertible elements of q~0, i.e., 

ker(grad r Out(~))  = Out (q~o) - 

From this remark we conclude that  

D(~)  := grad (Out(@)) -~ Out(/I~)/Out (@0) , 

and D(@) is a subgroup of Grad(~). 

If Ora£1 (@) -~ ga the map "grad" gives rise to the embedding (3.56). 

For any a E q~a, fl Ou t ( f ) ,  we have the decomposition 

r--1 

Out(~)  = ~ ~rY o Out (¢o ) ,  
j=o 

and a bijection 

These facts imply that  the multiplication law on the set Co U Ca . . .  U C~,-I, together with 

a specific automorphism a E C,,, already determine the entire fusion rule algebra. In 

fact, it is true that  one can construct a fusion rule algebra ~ which is Zo,-graded, with 

D(@ ~) = 1, and from which @ can be reconstructed. The two operations on the class of 

fusion rule algebras that  are necessary for this description are defined next. 

Definition 3.3.1 Let @ ~- N c be a fusion rule algebra with multiplication o and conjuga- 

tion - .  Further, let @ be Z=-graded, with @ = ~ @i. 
IEZ,. 
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i) For any b E N, we define the fusion rule algebra Zb * ~ as follows: The underlying 

lattice is N(zbxc) and is spanned by the minimal vectors (k, ¢i), k E Zb, i E C. The 

conjugation is denoted by ¢ ~ ¢c and is given by 

(k'¢)°:= / ( - k - 1 , ¢ ) ,  for ¢ ~ ¢ , ,  i # 0 ,  

/ ( - k , ~ ) ,  for ¢ e ¢0. 

The multiplication is denoted by x and, for kj E Z= i, Cj E ~nj, nj = 0, . . . ,  a -  1, 

j = 1 , . . . , m ,  is given by 

( k1 ,¢1 )  x ( k2 ,¢2 )  x . . .  x (km,¢.m) :-~-~ ( r  21- k I . + . . . - { -  k .m,¢ l  0 . . .  0 ¢'m) , 

where r E N is given by the condition 

ar <_ nl  + . . .  + n m  < a(r + 1). 

i/) For anu 6 ~ Out (~0), we define the f~sion rule algebra r, (¢)  as follows: 
_t 

The lattice ofr6(~) /s the same as for ~. The conjugation, ¢ --* ¢ ,  is ezpressed in 

terms of the conjugation of q~ by 

g 
, I 6o¢ ,  for ¢E'I'~, 

¢ : =  
~,  for ¢ e ¢ 0 .  

i ¢0 ,  

The multiplication is denoted by o' and, for ¢i E • and r E N as in part i), is defined 

by 

~ 1 0 ' . . .  O'¢ra "= ~"r 0 ¢ 1 0 . . . 0  ¢m. 

It is straightforward to show that the multiplications and conjugations introduced above 

define fusion rule algebras, in the sense of Section 3.1. Since the trivially graded auto- 

morphisrns are not affected by these constructions, we naturally have that 

Out (Co) ~ Out ((rs(<~))o) ~ Out ((Zb * ~)o)" 

However, the situation for Out(~) is different: Out (Zb * ~) contains the subgroup ~- Z~ 

generated by (1,1), so that 

Out (zb • ¢)/Zb ~ Out(C), and D (Zb • ¢) ~ Z=~. 

64 



We can find a grading preserving isomorphism of Out (r6(q,)) onto Out(q') i f / / =  a b, for 

some ~ • Out (q,o). For other choices of 6 this is in general not possible. 

Furthermore, it follows immediately from Definition 3.3.1 that,  for any a • Out(q,), 

the map 

Z~ * ~.(q,) -~ ~., (Z~ * q,): (k, ¢) -~ (k, a ~ o ¢) (3.57) 

provides a fusion rule algebra isomorphism. Also, we have that 

r6t (T~,(q,)) ~ "rsto6,(q,), (3.58) 

by natural identification, and an isomorphism 

Z~ * (Z~, * q,) -~ Z~.~, * q,: (k~, (k,, ¢)) - .  (kx + b~- k~, ¢ ) ,  (3.59) 

where kl is chosen in {0 , . . . ,  bl - 1}. We are now in a position to state the presentation 

of all Z,-graded fusion rule algebras in terms of algebras, q,, with D(q,) = 1. 

tl--1 
P r o p o s i t i o n  3.3.2 Suppose @ is g,-graded algebra, with label set C = U Cj, multiplica- 

j=0 
tion o and conjugation -, such that 

D(q,) = Z,  , 

where r > 1 is an integer dividing a, and a" := air .  

Then there exists a Zo,,-graded fusion rule algebra q,', with corresponding constit- ("?C ) uents C" -= Cni, ott -n J 

isomorphism/3, 

an automorphisrn 6 • Out (q,'o') and a fusiorz rule algebra 

/3: r , ( z ,  • q,") ~-, q,, (3.60) 

such that 

i) /3 maps (0, q,'~) bijectively to q,j, for j = 0 , . . . ,  a' - 1, and/3(1, 1) • Out(q,) f3 q,'. 

In particular,/3 is grading presewing. 

ii) D(q,") = 1, i.e., we have 

Out(q,") = o~t (~,") = Out (q,°). 
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By part i) of Proposition 3.3.2 the lattice isomorphism obeys 

~"(~ o" ~') = ~" (~)  o ~" (~, ) ,  (3.61) 

for ~ E C~, • E Cj, i , j  >_ 0, provided the condition 

{ + 3" < a" (3.62) 

holds. This shows that the restriction/~" : ¢~ --~ 4o is a fusion rule algebra isomorphism. 

Also, for a" > 2, the restriction of the fusion rule matrix of some element p E C1 to Co 

remains unchanged. More precisely, for A~ := 1~, r 4o --, 41, we have that 

pH , Ao 

with p" = (/9")-1(p) E C~". The proof of Proposition 3.3.2 can be found in [42]. 

For certain special cases there exist a natural procedure to relate Za-graded fusion 

rule algebras among themselves, with the help of automorphisms. It involves the crossed 

product,  41 x 42 of two fusion rule algebras, 4~, i = 1, 2, with lattice 41 ® 42 = 1~ (c~×c2), 

multiplication (@1 ® @2) o (91 ® 92) = (@1 o 91) ® (@2 o ~2), and conjugation (@1 ® @2) = 

~1 ® ~2 • By 7_~ we denote the fusion rule algebra with C = 7~ and @~ o ~ = ~ + j ,  

~ i ~ ~ - i -  

L e m m a  3.3.3 

i) Suppose 4'  is a 7,°,-graded fusion rule algebra and r E N is prime to a', then 4 = 

x 4 '  is Zo-graded, ~ t h  a = d - r  and 4~o,+j, = { ~ }  ® 4~.  

at-1 
ii) Assume that 4 is a Zo-graded algebra, and a = r . a'. Then 4' = ~ 4~.~ C 4 is 

j = o  

a Zo,-graded fusion rule subalgebra. If, in addition, there ezists an automorphism a, 

a E 4 o ,  N O u t ( 4 ) ,  with a ~ = 1 ,  

and a' is prime to r, then 

is a fusion rule algebra isomorphism. 
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Note that  if • = ~[pl is generated by an element p • C1, then also ¢ '  = ¢[~'opl is gen- 

erated by a t o p • C ' ,  where t is determined by the equation t • a' - - 1  rood r. We will 

be interested mainly in the case where r = 2 and a' is odd for which Lemma 3.3.3 shows 

that  it is sufficient to consider even graded fusion rule algebras. This is because any odd 

graded ~ '  will appear, as Z2 × ¢' ,  in the list of evenly graded fusion rule algebras which, 

in addition, contain an automorphism a ~ Out (~o), with a 2 = 1. 

Returning to Proposition 3.3.2, we note that  if • = ¢~1 is generated by a single 

element p • C1, then the algebra ¢"  in the presentation (3.60) is generated by the corre- 

sponding p" = (~ff,)-l(p) • C"x, i.e., ¢"  = ~Lo"], if it is nontrivially graded. In the follow- 

ing, we shall characterize a class of fusion rule algebras ¢b,l with generating element p, 

with the property that  there is a presentation (3.60) where p" is selfconjugate. 

L e m m a  3.3.4 Suppose that • = CLo] is a Za-graded fusion rule algebra, with a >_ 2 and 

generator p. Then there is a presentation 

/3 II 

¢ -~ r 6 ( Z ~ , ~ " ) ,  6 e O u t ( ¢ o ) ,  , - e l ~ ,  

where the corresponding generator p" = (/3")-1(p) • C"1 is selfconjugate in ¢",  i f  and 

only i f  there is an element a • '~, such that 

o = p. (3.63) 

I f  • is ungraded then there exists some a E ~, with (3. 63), i f  and only i f  we have a pre- 

sentation 
0" 

where the respecti ,e element ¢'  = ( y , ) - i  (¢-1 ® p) generates ¢" and is selfconjugate. 

In any case a is an automorphism and ~l, is either Z~-graded or ungraded. Hence 

r =  ~ o r r = a ,  a n d a E C 2  o r a E C o .  

If we introduce the restrictions 

(3.64) 
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which we regard as [•[ x [G+I [-matrices with non-negative integer matrix elements, then 

condition (3.63) can be reformulated as follows: There exists a ¢~ E ¢2, I1¢~11 = 1, such 

that 

AI ¢~ = ho 1 = Cp. ( 3 .65 )  

It follows then that the restrictions Ti = H~ rci: (I)i --* ¢i+2 are bijections, i.e., 

and 

Ti t Ti = Ti-2 Tit_2 = 1~,, ( 3 .66 )  

hi+2 T,+, = T, A~ = h,+,. (3.67) 

From the fact that Np is normal we obtain the following constraints on the matrices Ai: 

h~ hl = hi-1 A~_I =: Mi.  (3.68) 

We immediately see that any set of matrices obeying (3.67), with arbitrary bijections Ti, 

solve the constraint (8.68). Moreover, it follows from (3.68) that 

IIAill--IIr~.ll, (3.69) 

independently of i. The purpose of the next two combinatorial results is to infer equa- 

tion (3.65) from the knowledge of Ao or M~ = AoAto and from condition (3.68), for i = 1 

(i.e., M~ = AtA~). 

It is standard to define an undirected graph, CA, from a symmetric nonnegative 

integer matrix A E Mat,,(N) by joining two vertices, labelled i and j ,  by exactly (A)ij 

edges and attaching (A)jj loops to every vertex j .  Conversely, to any undirected graph G, 

there corresponds a unique symmetric matrix A, the incidence matrix, such that ~ = CA, 

defines the respective and, moreover, for an arbitrary n by m-matrix A, A := A 0 

bicolored, undirected graph. For convenience, we will often use this (equivalent) graph 

theoretical language throughout the following statements and, later on, in Section 3.4. 

The first result only assumes local constraints on M1, yielding a finite list of possi- 

bilities all of which imply (3.65). 
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L e m m a  3.3.5 Let A be any n by m nonnegative integer matrix, and let the n by n 

symmetric, nonnegative integer matrix M be defined by 

M = A * A .  

Suppose that Cp is a unit vector in N" such that the vicinity of the vertex, v, corresponding 

to Cp in ~M, i.e., the number of its neighbors, the number of edges joining v with each of 

its neighbors, and the number of loops at v, is given by on of the following subgraphs, 

(1,2,3,5,6,7, I0,11, 14, 15,19,23) (3, ,~ ' "  

, , ,::. :: 

( 3 , 7 )  --  ( 4 , 8 1  

Figure 3.1 " ~, 

then there exists a unit vector ¢~ E N "~ such that 

Our second result characterizes a class of matrices, A, by global constraints with the 

property that ,  for two matrices A and/~ in this class, 

M :=  .~* ~ = A ~ A 

implies that  A and A are equivalent, i.e., the exists a bijection T, with A = TA. 

In the application to fusion rule algebras, we will encounter the case where both 

matrices,  A = A1 and A -- Ato defined in (3.64), belong to this class, so tha t  (3.68) implies 

the existence of T : ¢o --+ ¢2, with TAt o = A1, hence Ao = A~T. Thus ¢= := T1 is a solu- 

tion of (3.65), and we can choose T = To. The situation is summarized in the following 

commutat ive  diagram: 
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(~p E q ' 

Lemma 3.3.6 

Q Suppose a bicolorable, connected graph ~ with incidence matrix A has no cycles of 

length two (multiple edge), four or six. Then a component .A of ~2, with incidence 

matrix hth, has the following properties: 

a) Except for loops, A contains only simple edges. 

b) I f  two complete subgraphs of .A have a common edge, they are contained in 

a common, complete subgraph of A.  

c) I f  gr(v) C A is the subgraph of A consisting of all next neighbors v E A, v it- 

self excluded, then the number, L~, of loops at v exceeds the number, E~, of 

connected components of gr(v). We put By = L~ - E~. 

ii) I f  A is a graph with properties a) and b) then A can be uniquely written as a union, 

A = (.Ji Qi of maximal, complete subgraphs Qi of .A such that every edge of .4 is 

contained in exactly one Qi. Moreover, any two Qi's can intersect in at most one 

vertex, and among three distinct Qi's at least two are disjoint. 

iii) For a graph .A satisfying a)-c) we define a bicolored graph CA as follows: The vertices 

of one coloration are identified with the vertices of ~4. The vertices, pi, with edge 

degree greater than one and coloration opposite to those in Jt are identified with 

the Qi's and joined by simple edges, (pl,v),  to the vertices v G Qi c .A. Additional 

vertices, p~, of opposite coloration and edge degree one are joined to each v E .A by 
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simple edges, (p~, v) , j = 1 , . . . ,  P~. It follows that ~.4 has no cycles of lengths two, 

four or six and that ,4 is a component of ~ .  

iv} ~a is unique, i.e., i f  ~ is a graph without cycles of lengths two, four or siz and .A 

is a component of ~, then ~.4 ~- ~. 

For proof of these facts we refer to [42]. From iv) we infer the following Corollary: 

C o r o l l a r y  3.3.7 If  for two bicolored graphs, ~ and ~ ,  without cycles shorter than eight, 

the components of one coloration of ~ 2 and ~,2 are isomorphic then ~ and ~' are isomor- 

phic. 

Although the assumptions in Lemma 3.3.6 axe global and very strong, it turns out to be 

the fitting criteria in the classification problem of Section 3.4., where we impose bounds on 

the norm of Np, thus by (2.23) also on the norm of Ai. In addition we have a prescription 

of how to construct solutions from M which allows for any easy chaxacterization of a few 

exponential cases. 
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3 . 4  F u s i o n r u l e s  w i t h  a G e n e r a t o r  o f  D i m e n s i o n  n o t  

G r e a t e r  t h a n  T w o  

The purpose of this section is to characterize the formal object (half-) algebras of the 

braided tensor categories to be classified in chapter 8. Not assuming any further structure, 

this means a classification of fusion rule algebras, in the sense introduced in Chapter 3. 

In fact we will find fusion rules that do not belong to any braided category. We restrict 

the classification to fusionrules which are generated by a single, irreducible object, whose 

Perron Frobenius dimension does not exceed two. Detailed proofs will be given in a separate 

paper,/ e]. 

and the norm of the graph is defined by 

The first basic ingredient in the classification of fusion rule Mgebras is the classi- 

fication of bicolorable graphs with norm not greater than two. The set of vertices of a 

bicolorable graph r can be divided into two subsets, W and B, such that  no two vertices 

in W and no two vertices in B are joined by an edge. The graph is characterized by a 

matrix,  A : N TM --~ N B , whose entries Aij E N are the number of edges joining the vertex 

i E W with the vertex j E B. The incidence matr ix is then 

Ilrll = IIr rl]. (3.71) 

The proof of the following theorem can be found in, e.g., [45] and references therein. The 

graphs referred to here are depicted in Appendix A together with their norms and Perron 

Frobenius eigenvectors. 

T h e o r e m  3.4.1 

i) The finite, connected, bicolorable graphs with norm less than two are the following : 

At( l  > 1), D,(I  >_ 4), Et(l = 6,7 ,8)  (3.72) 
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ii) The finite, connected, bicolorable graphs with norm equal to two are the following : 

A} 1) (l > 2), D~ 1) (l > 4), E~a)(I = 6, 7,8). (3.73) 

Suppose that  p is a selfconjugate, irreducible object with non-trivial grading in a 

Z2- graded fusion rule algebra. Then by equation (3.12) the fusion rule matrix, l~lp, has 

to be symmetric and if we use that  the grading prescribes an off diagonal block form then 

we obtain the presentation (3.70) for l~lp, so that we can associate to it a bicolored graph 

Fp. If we assume, further, that  the fusion rule algebra is generated by p then this graph 

is connected. Since the Perron Frobenius dimension of p is equal to the norm of Fp we 

can use Theorem 3.4.1 to establish an apriori list of possible fusion rule matrices labeled 

by the respective Coxeter graphs if we require dp not to be greater than two. The next 

lemma is concerned with the question which of these matrices are actually fusion rule 

matrices of a fusion rule algebra. 

L e m m a  3.4.2 Suppose • = O~] is a Z2-graded fusion rule algebra, with selfconjugate 

generator, p, of dimension 

d . < 2 .  

Then the fusion rule matrix, N., of p is the incidence matriz of one of the bicolored graphs 

A ~ , n > 2 ,  D ~ , , , n > 2 ,  Es orEs .  (3.74) 

Furthermore, there is ezactly one fusion rule algebra for each of the graphs in (3. 74) such 

that l~Ip is its incidence matriz. We will thus name these fusion rule algebras by their 

respective graphs. They have the following properties: 

~) The A~-algebra has trivial conjugation, C = 1, a~d Out (An) = {1, a} -~ Z2, where 

a is even-graded, for odd rt, and odd-graded, for even n. 

I f  we denote the basis vectors by pj, j = O , . . . , n - 1 ,  with go:= 1, px :=P and 
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p o Pi = P1-1 + Pj+l, then the structure constants ofpi o pj = ~.Nij.kpk are given by 
k 

Nij~k 

1 if I i - J l  < k < r~fin(i + j, 2 ( n -  1) --(i+j)) 
and k - - - i + j m o d 2  

= (2),, 

ei ~-~-f+ i . 

O, else. 

For the statistical dimension we obtain 

with q 

(3.75) 

ii) The D2.-algebra has trivial conjugation, for odd n, and, for even n, the representa- 

tions corresponding to the vertices of edge degree one at the short legs in the D2,,- 

graph are conjugate to each other, while all other representations are selfconjugate. 

For n > 2, the group of automorphisms of D2, is trivial, and, for n = 2, we have 

that Out (D4) ~ Z3. The statistical dimension of the generator of D2, is given by 

d p = 2 c o s  = 2 , ,  with q = e , . . - 2 .  

iii) The Eo- and the Es-algebra have trivial conjugation; Out (Es) = Out ((Ee).) TM Z2 

and Out (Es) = 1. For Es, the statistical dimension of the generator is given by 

() " d, = 2 cos ~ = :~(V~ + 1) = (2), with q = eli, and,/or Es, we have that d, = 2 
I J  

- L " I  

From this result and Lemma 3.3.4 we imrnediately obtain the list of Z2-graded fusion rule 

algebras with non-selfconjugate generator and the list of ungraded fusion rule algebras. 

Corollary 3.4.3 

i} The Z2-graded fusion rule algebras with non-selfconjugate generator, p # ~, of sta- 

tistical dimension dp < 2 are given by 

~. (A~.+~), n _> 2, and r. (E~),  (3.76) 
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ii) 

where ,~ is the non-trivial, evenly graded automorphism of A2n+a, Es, resp. The 

evenly graded representations thus remain selfconjugate, and the conjugation, re- 

stricted to the oddly graded representations, corresponds to the reflection of the 

Dynkin-diagram. 

An ungraded fusion rule algebra with generator, p, of statistical dimension dp < 2 is 

given by the fusion rule subalgebra of A2,~, for some n > 2, consisting of the evenly 

graded representations, so that, in the notation of Lemma 3.4.1!, i), the generator is 

given by p = P2~-2. In particular, we have that p = fi, and the conjugation is trivial 

for all of these fusion rule algebras. The fusion rule matrix, Np, of the generator 

is the incidence matrix of the graph, An. Thus, denoting the fusion rule algebra by 

this graph, we have that 

A,, C A2n. (3.77) 

o f .  is given by d,  = 2 cos ( ~ - ~ )  = (2) . ,  with q = e a~+t .  The statistical dimension 

(This also includes the trivial fusion rule algebra At = {1), which is obtained from 

~ ) A s  = Z2 • 

The complete list of Z~- or ungraded fusion rule algebras with generator, p, of statistical 

dimension dp < 2 is thus given by 

An, D2., E6, Es, 7t,~, r.  (As,+1), T. ( E6) . (3.78) 

A comparison of (3.75) with (6.43) and [7, 8] shows that the fusion rule algebra An is 
iT 

realized as the tensor product decomposition rule of Uq (sl2), q = e-+~, and in the formal 

operator product expansion of ~'~(2),_l-symmetric WZNW-conformal models. 

An independent way of realizing the structure constants of (3.74) as those of a ring 

over Z is given as follows: 

Consider the sequence of Chebychev polynomials, ~k(X) E Z[X], defined by 

79o(X) = 1, 

7~1(X) = X (3.79) 

and XT~(X) = ~ _ l ( X )  + 7'~+1(X). 
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Let C,  be the ring of dimension n over Z, given by 

C. := Z[X]/ ~' .(X) - Z[X]. (3.80) 

Then the images of the Chehychev-polynomial in this quotient, ~ ,  := [Pk(X)] E C,~, 

k = 0 ,1 , . . .  ,n - 1, for a Z-basis of C,,, and the multiplication in C,  is given by 

7,,. ~j = ~ N , j . ~ ,  (3.81) 
k 

where the Ni£k are precisely the structure constants (3.75) of an A,,-fusion rule algebra. 

In order to provide means by which also the D- and E-algebras can be computed, we 

discuss fusion rule algebra homomorphisms between different algebras, as well as fusion 

rule algebra automorphisms. 

L e m m a  3.4.4 

i) For the Z2- or ungraded fusion rule algebras with a generator, p, of statistical di- 

mension dp < 2, all fusion rule algebra automorThisms are involutive, and there is 

at most one non-trivial automorThism for every fusion rule algebra. I f  the fusion 

rule algebra has a non-trivial conjugation then the automoryhism coincides with the 

conjugation. For the fusion rule algebras with trivial conjugation the automorphisms 

are given as follows: 

a) A2,~+1, Es: The involution "y.,, 7~, resp., is identical to the conjugation of 

r,, (A,,+x), r,~ (Es). 

b) D4,,+2: The involution "Y~,+a exchanges the representations that correspond to 

the vertices of edge degree one at the short legs of the graph D4~+2. 

ii) The non-trivial fusion rule algebra homomorphisms from one of the fusion rule al- 

gebras in (3. 78) into the algebras A .  or-A. are given by 

A2.+z ( TM ' A2.+a, n _> 1, 

z2 ~ A2 -~_ Out (.4,) ,--, .4 . ,  n > 2 ,  

(3.82) 

(3.83) 
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and 

A,, ~ A~n ~ An, n >_ 1. (3.84) 

Here i is the inclusion (3. 77), and the homomorphism ~,~ is defined by its graph, 

depicted in (131) of the Appendix. The composition ~,~ o i in (3.83) is the identity 

on An. Among the fusion rule algebras with generator of statistical dimension ~, D3 

(to be defined below) is the only one for which there ezists a homomorphism to an 

A-algebra: 

D3 ~ As.  (3.85) 

The inclusion is defined by noticing that the subalgebra of O-graded sectors in As is 

isomorphic to DB. 

iii) For every n > 2, there are ezactly two fusion rule algebra homomorphisms D • D - -  0 " ~  , O ' n  n 

of one of the algebras listed in (3. 78) into D2n. They are defined on A4n-3 and on 

7",, (A4,,-B), respectively, and given by the graphs in (B$) of the Appendiz. They are 

related to the automorphisms by the following commutative diagram: 

~ n~,7 D2n 

4 n - 3 0 " ~  ~'n 
(3.86) 

m 

The map (3.84) can thus be eztended to D4, the image of D3 in D4 being the evenly 

graded subalgebra isomorphic to Z3. 

iv) The only hornomorphisms of one of the fusion rule algebras in (3.78) into E6 are de- 

fined on A3 D A2 and Axx. The only possible one on A3 maps the generator p of sta- 

tistical dimension dp = (2)~t = ,¢~, qx = eT ,  to the representation corresponding to 
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the endpoint of the shortest leg in the E6-diagram, with dimension dp = (4)~, - (2)q,, 
i l r  

q2 = e t - i ,  and the non-trivial automorphism of A3 to the non-trivial automorphism 

in Ee, thus providing an inclusion of As into E6 as a fusion rule subalgebra. The 

two possible homomorphisms of Axl to E8 differ from each other by multiplication 

of the automorphism on E6, described in part i), and one, a~ j  is given by the graph 

depicted in (133) of the Appendiz. The following diagram commutes: 

O" E6 
E6<< All 

~'2 - A2~--->A~ ~7 "E o.EB ~)7i, 
E6<< Aij 

(3.87) 

Analogous statements hold for the homomorphisms 

&Be 
A, (Es) (A1,) . (3.88) 

On each of the fusion rule algebras -A2, A4, Dis and A29 there ezists ezactly one 

homomorphism into Es, and there is none for all other f~sion rule algebras listed 

in (5.78). The homomorphism of-A2 to Es maps the representation of statistical 

dimension dp = (2)~, = ](1 + V~), ql = e ? ,  to the representation corresponding to 

the endpoint of the leg of length two in the Es-diagram, with statistical dimension 

d = (7)~ - (5)4 = ~(1 + v/5), q2 = e~ ,  and it therefore provides an inclusion, i, of 

Aa into Es a~ a fusion rule subaIgebra. The homomorphism of A4 to Es is then 

given by the composition i o a2, a ,  being defined in (3.84) and (B1). In (B$) the 

homomorphism, a DE, of Dis to E8 is given by its graph. The homomorphism of A29 

o is defined in (3.86) and (Be). to E8 is the composition cr Dg o aDj where a n 

With the help of the homomorphisms described in Lemma 3.4.4, it is possible to rederive 

the explicit fusion rules, e.g., in the form of the structure constants (4.6), of the D- 

and E-fusion rule algebras from those of the A-algebra; see (3.75). Except for the trivial 

ones, A~ ~ 1 ~ • mad ~ ~/d ~ ~, Lemma 3.4.4 describes the entire set of homomorphisms 
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among the fusion rule algebras in (3.78). The situation described in Lemma 3.4.4v) can 

be summarized in the following commutative diagram : 

"~114 
A 2 9 <  > A29 

)t 4 V ~ /o.DEo. D 
De ~ D e  / -  o 8 

'-8 ._.. _ > 'A4  
IO 0"  2 

(3.89) 

Next we present the complete list of fusion rule algebras with generators of statistical 

dimension equal to two. Our presentation is organized in a way similar to the one above, 

for dp < 2, except that the detailed discussion of homomorphisms is replaced by a study 

of the realizations of these fusion rule algebras by discrete subgroups of SU(2). 

L e m m a  3.4.5 Suppose ~ = &b,] is a Z2-graded fusion rule algebra, with selfconjugate 

generator, p, of dimension 

d.  = 2 .  

Then the fusion rule matriz, Np, of p is the incidence matriz of one of the following 

bicolored graphs 

A=, D=, ~,+2,n0) p > 2, E60), E~ 1), E~ 1). (3.90) 

There ezists one fusion rule algebra for each of the graphs in (3.90), such that Np is its 

incidence matriz, ezcept for D (1) where we have ezactly two inequivalent such algebras p+2, 

for each p >_ 2. 

They have the following properties: 
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i) The A**-algebra has trivial conjugation, C = 1, and only trivial automorphisms, 

O u t  ( A ~ )  = 1. We enumerate its basis by PJ, J = O, 1 , . . . ,  such that po := 1, pl := p 

and p o P1 = Pj-1 + Pj+I. Moreover, dpj =- j + 1. The structure constants, Nij,k, of 

Pl o pj = ~ Nij, kpk are given by the G-Tebsch-Gordan vale, i.e. 

1 i f l i - j l < k < i + j a n d k = _ i + j m o d 2  
Nii.k = (3.91) 

0, else.  

The D~-algebra has trivial conjugation, C = 1, and Out  (Do.)  = s tab(p)  = {1, a }  

Z2. I f  we set Wo := 1 + a, Wx := p and define basis vectors wj, j >_ 2, by wl owj  = 

wi-a + wj+x then d~j = 2, for  ail j ,  and 

wj o wt~ = Wli_k I -4- wj+k • (3.92) 

ii) rheautomo.phi smgroupofD( .Z-a lgebrahasorder4 , i e ,  Out (D(.Z)  = ( 1 , . , = , y ) ,  

with s tab(p)  = {1, cz} ~ Z2, for  p > 2, and a o z = y. The two possible fusion vale 

algebras associated to D(ra)+2 are distinguished by their automorphisras, for  which we 

have either Out (D(p~,) ~ Z2 × Z~, with : '  = y '  = I and C =  1; o r O u t  (Dp(~,) 

z , ,  so that ~y = 1, the conjugation is the inversion on Out ( D ~ , )  and all nonauto 

morphic representations are selfconjugate. Defining the basis vectors, wy, j = 1 , . . .  

. . .  ,p  - 1, as in the case of D ~ ,  and with too :=  1 + a, wp = x + y, we have d~ i = 2 

and 

wj o w~ = Wli_~ I + w,,~t,(2p-(j+k),i+k) • (3.93) 

The automorphisms x and y are evenly graded for  even p, and odd-graded for  odd p. 

Thus, for  odd p, we have that Out  (7"~(~)) ~ Z4, for  O u t ( ~ )  ~- Z ,  × Z2, whereas 

o~t (~.(¢)) ~ out(~), fo r  even p. 

iii) ~or the E~')-algebra we have that Out (E~')) = {1, ~, o -1}  ~_ Z~, and there are three 

representations of dimension two, namely p, a o p and a -1 o p, so that the conjuga- 

tion, given by setting & = ct -x and fi = p, ezchanges the two legs in the E (1) diagram 

opposite to 1. For the one remaining representation, 42, of dimension three we have 

(3.94) ¢ o ¢  = 1 + a + a - 1  + 2 ¢ .  

80 



Furthermore, a cyclic permutation of the set {p, a o p, a - 1 0  p} provides the isomor- 

phism ~. (E~ ~) -~ E l "  For the ~"-alg~bra, we see that Out (~'~) = ~ , o )  ~- Z~, 

where a is evenly graded and N~. is the reflection of the diagram. Moreover, the 

conjugation or* E(71) is trivial, and all representations have integer dimension. 

Finally, E l )  has trivial conjugation, Out (E.C~)) = 1, and all representations have 

integer dimension. 

The fusion rule algebras with non-selfconjugate generator, as well as the ungraded fusion 

rule algebras, axe obtained in a similar way as in Corollary 3.4.3. 

C o r o l l a r y  3 .4 .6  

i) The Z2-graded fusion rule algebras with non-selfconjugate generator, p ¢ fi, of di- 

mension two are given by 

(r)(1) ~ p' > 2.  (3.95) E O) r ,  (E~ 1)) and r .  k - - ' p ' + ' / '  - 

In the case of E(6 x), the generator p is replaced by the representation a o p (or by 

~-, o p) which ~ a generator of El ') with dimension two as well. For ~o (E~')), 

the conjugation is trivial on the evenly graded representations and reflects the oddly 

graded ones. In (3.95), both possibilities for D (a) p+2 are meant to be included, and we 

have that v= D +2 = vv k~2p,+21" 

ii) The ungraded fusion rule algebras with generators of dimension two are given by the 

{r)(a) ~ p' > 1, so that the generator, p', is selfcon- evenly graded subalgebras of \~2p,+31, - 

jugate and given by p' = p o x = p o y. The fusion rule matriz Np, is the incidence 

matrix of the graph Dp,+2, see (A$~). Thus, denoting the fusion rule algebra by this 

graph, we have that 

- -  n(x) (3.96) Dp,+2 C ~2p,+3 ; 

- ( ~ )  Dp,+2 has trivial conjugation, and Out ,+2 = stab(p')  = {1, a}  ~ Z2. 
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The complete list of Zu- or ungraded fusion rule algebras with a generator of dimension 

two is given by 

(n(i) A~, Doo, ~,+2 n(1) (Out "~= Z4 or Z2 x Z,) , p _> 2 , ~'~ \~'2,,+2) 
(3.9v) 

, , , * 

In order to study homomorphisms between those algebras in (3.97) which have a selfconju- 

gate generator, it is useful to find their fusion rule algebra monomorphisms, i.e., inclusions 

of one of the algebras in (3.97) into another one, and fusion rule algebra endomorphisms 

which map the generator to an irreducible object . The latter requirement will also be 

present in our description of general homomorphisms and, further, the object to which 

the generator is mapped has to have dimension two. One consequence of the following 

lemma is that object s of dimension two which generate the entire fusion rule algebra can 

be mapped to the canonical generator by a fusion rule algebra automorphism. 

L e m m a  3.4.7 

i) The f ~ i o n  rule algebra Aoo contai~ no fusio~ rule subalgebr~ from (3.97) other 

than A.o, and the only fusion rule algebra endomorphism is the identity. 

ii) The endomorphisms of the Doo-algebra are given by the inclusions Ik : Doo ~ Doo, 

k = 1, 2 , . . . ,  determined by Ik(a) := and Ik ( ' A  := in the basis of in 

Lemma 3.4.5 i). All subalgebras of Doo from (3.97) are isomorphic to Doo and are 

given by [wk] = im (Ik), k = 1, 2, . . . .  We have that Ik o It = Ik.t. 

iii) There are no fusion rule subalgebrus of E (1) from (3.97), ezcept E O) itself, and 

the only non-trivial endomorphism 7 ~, for which the generator is mapped to an 

irreducible object is identical with the conjugation. 

iv) The only fusion rule algebras from (3.97) that can be included into E(7 a) in a non- 

trivial way are D-'a and E~ t) itself. The subalgebra -Da is generated by the only 

evenly graded object of dimension two in E (1) and contains, besides the unit and 

the generator, only the non-trivial automorphism of E(71). The fusion rule algebra 

generated by the second oddly graded object of dimension two is isomorphic to E 0). 
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The inclusion of E(7 x) into itself is given by the fusion rule algebra automorphism, 

7 ° ,  which ezchanges the two oddly graded object s of statistical dimension ~ and is 

the identity on all other object s. The only further E(*)-endomorphism, ~-~31, can be 

described by the unique homomorphism E(71) -~ D 0), which maps the generator to 

the generator, (see below); ~-~3 t is then obtained by composing this homomorphism 

with the inclusion. Thus we have the following commutative diagram: 

D3 id ~ 

(3.98) 

The endomorphism ~-~* is an idempotent on whose image a ° acts trivially. 

v) The only fasion rule algebra from (3.97) which is contained in E(s 1) is E(s t) itself. The 

only non-trivial endomorphism is the involutive automorphism, 7 ~, which ezchanges 

the two object s with dimension ~ and the two object s with dimension 3 and is the 

identity on all other object s. 

vi) The fusion rule subalgebras from (3.97) of D(p~, are given b u 

[wq] ~ nO) (3.99) Up'+2 

if p = p'(q,2p), (3aoo) 

and 

if 

where q = 1,. . . , p -  1. 

[,,,~1 ~ ~,+~ (3.101) 

2p = (2t + 1)(q,2p), (3.t02) 

Here the structure of the group of automo~his~ in D(,P+2 from (S.99) (Out tDq) k p +2j 
either ~ Z2 x Z2 or Z4) is the same as the one assumed for n (1) The cases (3.100) ~p+2" 
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and (3.102} are distinguished according to whether ~ is even or odd. The subal- O,2p) 

gebras of D~+2 are given by 

[w,] -~ Dr,+2, (3.103) 

whe:e (2t' + 1)(q, 2t + 1) = 9t + 1 (3.104) 

o # 1, on every r)O) mapping the There is ezactly one involutive automorphism, cr ~p+2 

generator to itself and given by D D = a.~ (wj) o~j, none crzu(z ) y and = and there is for 

every -Dr+2. For every two-dimensional object wi, in nO) and -D~+2, there ezists l J J p + 2  

precisely one endo,no~his,n /or the ca~es (S . iO0 and (S.IOS), and there are two 

endomorphisrns for the case (3.99), differing from each other by cr=vD, which map the 

generator Wl to w i. This ezhausts the entire set of endomorphisrns. 

If a homomorphism, a, defined on one of the algebras, ¢, from (3.97) does not map the 

generator p to an irreducible object it follows from a comparison of statistical dimensions 

from (3.55) that  a(p) is the sum of two automorphisms. Since automorphisms close under 

multiplication, and since a(p) is a generator of the image of a, it follows that  

G~ := Out(a(¢)) = supp(a(¢)), 

i.e., a is a homomorphism a : ¢ ~ N[G]. For all fusion rule algebras with only inte- 

ger dimensions, in particular, for those listed in (3.97), one homomorphism with these 

properties is given by a :  ~ -* N1, ¢ ~ d~, (i.e., G -- {1}), and, furthermore, if a(~)) is 

a subalgebra of one of those corresponding to (3.97) we have that  ]G l < 4. In the context 

of group-duality, homomorphisms to fusion rule algebras consisting entirely of automor- 

phisms correspond to the abelian subgroups of that  compact group, whose representation 

theory reproduces the fusion rules given by ¢. Here, however, we wish to focus our at- 

tention on non-abelian subgroups, i.e., we restrict our attention to cases, where a(p) is 

irreducible and hence has the same dimension as p. For a homomorphism a : ¢1 --~ ¢2 

with this property, between fusion rule algebras corresponding to (3.97), a (¢1) is a fusion 

rule subalgebra of ¢2 generated by an endomorphism of dimension two. It is therefore 

isomorphic to some ¢ '  in (3.97). Thus the homomorphism a is described by a surjective 
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homomorphism tr ' :  @1 --~ @', with @' -- [a'(p)], and one of the inclusions of fusion rule 

subalgebras, i : @' ~ @2, given in Lemma 3.4.7. Hence t7 = i o or'. For a complete dis- 

cussion of fusion rule algebra homomorphisms it therefore suffices to consider surjective 

ones, ~ :  @ -~ [~(p)]. 

In the classification of Lemma 3.4.5 we have always fixed a distinct generator, p, 

of statistical dimension two. So we axe, in fact, considering pairs (p, @), where p is 

the canonical generator, with [p] = @. From Lemma 3.4.5 and Corollary 3.4.3 we see 

that  non-isomorphic fusion rule matrices of the selfconjugate generators also lead to non- 

isomorphic fusion rule algebras (which is seen, e.g., by comparing the number of objects 

for each dimension). Hence [p'] ~ [p] implies that  there exists a bijection T,  T t = T - I ,  

with T1 = 1, T p  = p', and T N p T  t = N',,. By the remark in Section 3.1 following (3.15), 

the matrices N~, = T N j T  t define a fusion rule algebra, with conjugation O' = T O T  t and 

lattice [p'], which is isomorphic to [p], and for which N,, = Hi,. Lemma 3.4.5 shows, 

furthermore, that  a given N,, uniquely determines the composition rules, once the group 

of automorphisms is known. (This is, in fact, only needed in the case of D (1) ~ In p+2)" 

particular, this can be used in the case [p'] ~ [p] to conclude that  T extends to a fusion 

rule algebra isomorphism mapping p to p'. 

In summary, we have that  if 

p = p ,  p '=p ' ,  

then 

holds. 

and [p'] 

(p, [p]) (p', [p']) (3.105) 

A consequence of (3.105) is that,  for two selfconjugate generators p,p ' ,  with 

dp = dp, < 2, of the same fusion rule algebra @ = [p] = [p'], there exists a fusion rule 

algebra au tomorph i sm 7, 

'7 : @ ~ @, with "r(P) = P'. (3.106) 

This can also be verified directly from Lemma 3.4.7, where all automorphisms satisfying 

(3.106) axe listed. 
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For a surjective homomorphism a : ¢1 ~ ¢2, between two fusion rule algebras, ¢1, 

¢2, this means that  there always exists an automorphism on ~2 mapping a (pl) to p2, 

so t h a t / r  := 7 o a is a homomorphism & : (p:, Ca) ~ (p2, ¢2), wi th / r  (px) = P2- It follows 

that  all homomorphisms can be obtained from those which map canonical generator to 

canonical generator, by composing them with an appropriate automorphism, followed by 

an inclusion. The classification of homomorphisms, #, with & ( P l ) =  P2, is given in the 

next lemma. 

L e m m a  3.4.8 All fusion rule algebra homomorphisms between the algebras with self- 

conjugate generator of statistical dimension two (as listed in Lemma 3.4.5 and Corol- 

lary 3.4.6, ii)) which map canonical generators to canonical generators are given by the 

following ones: 

i) For every algebra ~ among the ones specified above, there is a unique homomorphism 

it* : A** ~ ~, with the required properties. For every p > 2 and t >_ 1, there exist 

unique homomorphisms from D ~  to -Dr+2 and to D O) p+2 • 

ii) There exists exactly one homomorphism between the fusion rule algebras 

a) Dr,+2 ~ Dr+2, iff  t' = t + s + 2ts, for some 8 >_ 1; 

b) D(2, - -  ~ , + , ,  i ~ p  = m(2t + 1), for some .~  _> 1 and Out (D~(Z) ~ z ,  × z , ;  

c) v()~, _.,, De') and p+n, iff p = cp', 

either c is even, and Out [r)O) ~ -,~ k~p,+2) = Z2 x Z2, 

o . o  odd, \ p'+21 

and only in the last case we have to account/or a non-trivial fusion rule algebra 

automorphism which is the identity on the canonical generator. 

iii) The only homomowhism~ between the E-algebr~, are one, ~oT #ore E(¢) to E(~ ~), 

and one, ~'~, from E(. ~) to E(~ ~) There are no homomo,~hism~ from D-algebras 

to E-algebras, and the only homomorphisms from E O) to a D-algebra are given 

by a unique homomorphism crg: E 0)  -+ D 0), for each structure of D (1). This 
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also yields the entire set of homomorphisms from E-algebras to D 0), by setting 

a ° := a~ o a °r  and a~ := a~°a "T. There ezists a homomorphisma°: E(r a) --~ D(6 x), 

and a homomorphism a° : E(71) --, D~ 1), for each of the two structures of the D- 

algebras. I /~,e  co , , ider  the case Out (D~'~) -~ 7.2 × z2 we obtain, by composi,~g 

~,? ~ ,  ~he ho,r,o,r, orph~,,, fro,r, D~ ~) to - ~  given in part ii)b) (p = 3, ,~ = t = U, 

a homomorphism ~ : E(r 1) --* -Ds. Furthermore, there ezist unique homomorphisms 

a~:  Es (') ~ D(r 1) and a~ : E 0) --* D~ 1), for any one of the possible structures of the 

D-algebras. Eztensions, a~ : E(s~) --~ -D4 and a~ : S~) ---~ -D3, are found from aSs and 

Out o u t  × in the so e a s / o r  

We give a survey of the fusion rule algebra homomorphisms involving the E-algebras in the 

commutative diagram on the next page. Here "76 is the automorphism of D(81) exchanging 

the two oddly graded objects of dimension two, (compare to (3.99), (3.100), with q -- 3, 

p = p ' =  4, and (3.105)). The unspecified arrow, D~ 1) --~ 9a ,  D(r 1) ~ D ,  and D~ x) -~ D~ x), 

are the homomorphisms given in Lemma 3.4.8 ii), and D~ 1) -* D~ 1) is defined by the ad- 

joining commutative triangle. In this diagram, we always assume Out (D(v~2) ~ Z2 x g2 

and omit most arrows from A~ to the D-algebras. 

A large class of fusion rule algebras with generators of dimension two can be obtained 

from the tensor-product decomposition rules for a compact group, G, which has a unitary 

fundamental (in particular faithful) representation p of dimension two. By identifying G 

with p(G) we can assume that 

G C_ U(2). (3.107) 

For dimension two, the requirement that p be irreducible is the same as saying that G 

is non-abelian. The fusion rule algebras we have classified, so far, in Lemma 3.4.5 and 

Corollary 3.4.6 ii), are all those algebras that have a selfconjugate generator. Therefore, 

we restrict our attention to those subgroups G of U(2) for which the fundamental repre- 

sentation is selfconjugate. They are given by those compact groups, G, with the property 

that 

either G C O(2), or G C SU(2). (3.108) 
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The E-Algebra Homomorphisms: 

~,6o CT. D6( ~ A co 

°° ~%---~ °° "- :Z/% ~ 

E(!) o:(~ 7~,r. 3 

E(~ ) < 

~-I" \ 0 o-0 D~ )_ \ ~ ( - j ~  7"°° 

x ,  , ,  - " " ~ '  E 6 << E(BI)<---.--~ E(~) 

<~"------~ D(~') '-" D(-t, } >> B4 
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Since G is assumed to be non-abelian, it cannot be isomorphic to subgroups con- 

rained in 0 (2 )N SU(2). The compact non-ahelian subgroups of SU(2) all contain -1. 

Thus two different subgroups of SU(2) will yield different subgroups in SOs = SU(2)/-4- 1. 

The corresponding SOs-subgroups have half the order, and, except for the smallest 

dihedral-group,/22, which is obtained from {±1, +i~i}i=l,2, s C SU(2), they are also non- 

abelian. The non-ahelian compact subgroups of SU(2) are thus given by the pre-images 

of the polyhedral subgroups of SOs. They are also called binary polyhedral groups. 

They are: the dihedral-groups,, Z~,,, n = 3 , . . . ,  oo, (D== ~ U(1)) of order 4n (of 

order 2r~ as SOs-subgroups), the tetrahedron-group, T,  of order 24 (12 in SOs), the 

octahedron-, cube- or hexahedron-group, O, of order 48 (24 in SOs) and the icosahedron- 

or dodecahedron-group, 3", of order 120 (S0 in SOs). The subgroups of O(2), 7£,, n > 3, 

have rotations characteri~.ed by 7"~ N S0(2) ~ Z,,, and, for them to be non-ahelian, they 

must contain a reflection. As abstract groups, we have that  7£, -~ Z2 ~< Z,~, where the 

adjoint action of Z2 on Z,, is just the inversion on Z,,, and [7£,,[ = 2n. (Let us stress again 

that  the 7 ~  are not isomorphic to any of the binary dihedral groups, since for the latter 

we have that  z 2 = 1 which implies that  z is central. This is clearly not true for 7~ .  Yet, 

the image of D,= in SOa is isomorphic tot 7£,). 

For fusion rule algebras, ~o~ obtained from ~. compact group, G, there is a nat- 

ural way to induce a fusion rule algebra homomorphism, g~, from a group homomor- 

phism ~r. If lr : G --* H is a group homomorphism of compact groups G and H,  and 

p:  H -* U(r=) is an irreducible, unitary representation of H (seen as a group homomor- 

phism with p(H) '  N U(n) = U(1)I), we can define a pull back ~r • p := p o ~r: G -* U(n), 

which is a unitary representation, irreducible only if p(~r(G))' n U(n) = U(1)I.  For the 

action cru of U(n) on the space of representations of H,  given by inner conjugation, 

( up) ( g ) =  u p ( g ) v ' ,  we have that o . ' o  Th s, is a map on equiw- 

lence classes of unitary representations, and we have well-defined multiplicities (cry),,, 

of an irreducible representation, % of G in the representation ~r*p, where p is an irre- 

ducible representation of H. From 7r" (Pl ® P2) = 1r'p1 ® 7r'p2 we easily derive that  the 

matrix ¢ , ,  consisting of these multiplicities, represents a fusion rule algebra homomor- 
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phism, a,¢ : @H ~ Cu- Clearly, aT is a~a inclusion of fusion rule algebras whenever z" is 

surjective. If G C H,  and ~r is the inclusion then it follows from the existence of in- 

duced representations, ps ,  of H, for unitary, continuous representations p of G, that  

a,, : ~ x  --* Cu is a surjection. In this case, the matrix elements of a,, are identical with 

the branching-rules of H ~ G. In the following lemma we relate the subgroups of (3.108) 

to the fusion rule algebras from Lemma 3.4.5 and Corollary 3.4.6 ii), and we explain the 

possible fusion rule algebra homomorphisms in terms of group homomorphisms. 

L e m m a  3 . 4 . 9  

i) The tensor-product decomposition rules of the non-abelian compact groups with a 

self-conjugate fundamental representation of dimension two are given in the follow- 

ing equations: 

~su(2) ~- A~ (3.109) 

"~ (~ ~ D (3 110) ¢~). = 0(2) ~ 

~ ' ,  = ---p+2r~(a), for odd p >_ 3 and 

for even p > 2 and 

• ~., ~- D(~2, forp>_2 and 

¢~,,+~ ~- D~2 , for p >_ l 

~ 7,, Out 2 = , 

Out D 2 = 

Out (D(p~,) ~- Z, × Z, 

(3.111) 

(3.112) 

~ ~ E(~ I) (3.113) 

(I)o ~- E(7 x) (3.114) 

~ j  ~ E .  (1) (3.115) 

ii) The automorphisms of the fusion rule algebras in part i) are obtained from the 

foUowin 9 group-automorpkisms: 
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iii) The 

a) The finite groups, with D-type fusion rule algebras, contain maximal cyclic 

subgroups, Z2p C Z~p and Z~ C ~q, and reflections, Q E ~9~ and S E T~, with 

Q2 = - 1  and S ~ = 1, such that Dp = Z2pOQ. Z2p, and ~g = Z~OS.  Zq. For 

every k ¢ 1, with (k, 2p) = 1, (k, q) = 1, resp., an outer autoraovphism irk on 

29p, 7~g, resp., is defined by taking the k-th power of every eleraent in the 

cyclic subgroup and mapping the reflection to itself. The derived fusion rule 

algebra automorphism, ~,~, obeys the equation a,~ h (wl) = wk. Hence, every 

autoraorphisra of a D-fusion rule algebra can be written as a product of a,~ 

and an autoraorphism, a', with crl(wl) = wl. 7~p and 7£~ admit an outer 

autoraor'phism, 7, which is the identity on the cyclic subgroup and *1(Q)Q,-a, 

rep. *1( S ) S  -1, is a generating eleraent thereof, a n is the only non-trivial auto- 

morphisra on the D-algebras mapping the canonical generator to itself. (It 

ezchanges the one-dimensional representations, z and y}. 

b) An  outer au tomo~hism on the tetrahedron group, 7"/{4-1} = ~ C S03,  is 

given by conjugating its elements with the ~-rotation, mapping the standard 

tetrahedron to its dual tetrahedron (the axis of rotation runs through the raid- 

points of two opposite edges) and so defines (uniquely, up to inner conjugation) 

the outer autorao~hisra, '17" on 7". We have that 7y  = ~rn~ on E(a 1). 

c) From a bicoloration of the centered cube, we obtain a signature representa- 

tion, c : 0 ~ z~, by assigning c = 1 to every element in 0/{4-1} = 0 C SOn 

that matches the bicoloration, and c = - 1  whenever it matches opposite col- 

orations. I f  we identify c E Zu with an element of the center of SU(2), then 

.1o(9) := c(g)g defines an outer autoraorphisra on O, where Out(O) = Zu. We 

have that ano = "70. 

d) The icosahedron-group, 2"/{4-1} = Z C SOn, admits an outer autoraorphism 

which is (contrary to the P-case) not given by an SOn-conjugation. It defines 

an outer automor-phism *1z on 2" C SU(2), where Out(2,) = Zu. We have that 

injections of the fusion rule subalgebras, see Lemraa a.4.7, are obtained frora 
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the following projections onto quotients of the dual groups: 

a) Do* has normal subgroups Zt, <1U(1) <1 Do*, so that, for jk : Do. -+ 730*/ Zk 

Do*, we have that crj~ = 1~ : Do* ~ Do.. 

b) The (binary) octahedron group has normal subgroup 7~ <1 0 (similarly for the 

- v )  v / ~  SOa-subgroups 79~ <~ , with O/  D~ "~ = ~ ~a ~ Sa. From the projec- 

tion of 0 onto ~a we obtain the inclusion D3 '--" E(7 t). 

c) The normal subgroups of T"~ and 79~, with non-abelian quotients are Z¢ <1 Zq <l 

7~, for q'lq, and Zt <~ Z2p <~ O~, for tl2 p. We have the following correspon- 

dences between group epimorphisms and fusion rule algebra inclusions: 

O. -~ ~ /  z.~ ~- n(~),  with kip, yields 

-~( =~_ nO) with Out {D (t) ~ ) C -~,+2 ~, p+21 = Z4, 

or with 0 ~  ( ~ ( ~ )  = ~ ,  × ~ ,  

and D O) ~+2 C 

for odd p 

for even p and ~ odd, 

~<' with Ou~ r ~ , )  ~ : oo~ ( ~ )  z~ × z= 
p+2, \ ~+2J  2 = , 

fo~ even p and even [ .  

z>, - .  'z),,/ z,,,,+,, u z)(,_~.~), with (2k + 1)lp, yields 

-(') with O.t (D(~Z) = Out ~ ~ + , 2  = z , ,  ior odd p, DO_~+~ +2 C ~p+2 , { D(1) 

~nd O u t ( D ~ ) = O u t ( ~ ( '  ~ = Z ~ × Z ,  Sorev~np. k%~-~CT+, +") 

ze, - .  7~,/z~ ~- n(~),  ~ th  klq, yields 

D0~+2 C D|+2, 

Dl+.h C D}+2, 
3ll 

{D (1) with Out 

for even q and even k 3  

with O u t ( D  O) ~ = Z~ x Z2 k ~+2) 
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for even q and odd 
k ~  

-~ +~ c - ~ ,  , for odd q and odd | .  

The surjective fusion rule algebra homomorphisms mapping canonical generator to 

canonical generator arise from the following group-inclusions: 

a) The inclusion O C SU(2) yields, for all fusion rule algebras ¢c  of binary poly- 

hedral groups, a homomorphism 

The inclusions T~ C 0(2) and D,, C D~ yield the homomorphisms 

D,,~ ~ r~C1) D~,, ~ Dr=2, ~p+2  t 

b) 

for all possible structures. 

The non-abelian subgroups of T~p are Dp, with P'IP and of T~, 7~r, , with n'ln. 

v,,, c vp yiel& 

DO) nO) for all P'IP with the respective groups Out. 

T~, c T~ yields 

D (~ )+ 2 -~ D ( ] ) 

1 

D *a~. ~ D ~.~. 
2 2 

for even p and even p', 

for even p and odd p', 

for odd p and odd p'. 

c) The surjective fusion rule algebra homomorphisras involving E-algebras which 

are collected in the commutative diagram following Lemma 3.g.8, are realized by 

inclusions of SU(2)-subgroups. These in turn are obtained from the respective 

embeddings of polyhedra. 

93 



From the form of the Perron Frobenius eigenvectors for graphs with norm equal 

to four it follows that the statistical dimensions, d~, of elements ~ E 4[p] of a simply 

generated fusion rule algebra, whose generator p has dimension dp = 2, are always integer- 

valued, i.e., ~ E N. It is therefore possible that a fusion rule algebra from this class can 

be derived from some sem~simple Hopf-algebra, .A, with a two-dimensional fundamental 

representation p : .4--* Mat2(C), with the property that N ker (p®" ® ~®") = {0~. In 
I'LI71~ 

Lemma 3.4.9, the fusion rule algebras with selfconjuga~e generator p = ~ of dimension 

dp -- 2 have been associated to the non-abelian, compact subgroups, G, of SU(2) and 

0(2) (i.e..4 = T[G]), with n >_ 2 and Out ( D ~ )  -~ Z,, for which there do not exist any 

dual compact groups. Moreover, we managed to relate all fusion rule algebra homomor- 

phisms to group homomorphisms. In particular, all inclusions of one group into another 

one correspond to fusion rule algebra epimorphisms. 

The question remains in which sense this result can be extended to fusion rule 

algebras with a self-conjugate generator p of dimension dp < 2. More specifically, we 
2~v 

should ask whether there exists a Hopf-subalgebra .4 of e.g., Ug (sl2), with q = e~ ,  such 

that the branched tensor product decomposition determined by the representation theory 

of .4 yields Es-fusion rules? We shall see, however, that such an algebra can not be 

quasitriangular. We note that the non-abelian, compact subgroups of U(2) reproduce all 

those fusion rule algebras that are generated by a single element p, with dp = 2, and are 

dual to some compact group. For all these fusion rule algebras, p ® p contains a one- 

dimensional subrepresentation a, namely the one corresponding to the representation 

a(g) := det(p(g)) of the dual group. Hence the element a of the fusion rule algebra 4, 

corresponding to this one-dimensional representation of the dual group belongs to Out(4). 

We are therefore in the situation of Lemma 3.3.4 and conclude that any fusion rule 

algebra 4 = 4o dual to some compact group G with a two-dimensional fundamental 

representation, is of the form 

4 = ( z .  • 4 ' ) ,  

where 4' is one of the Zs-graded or ungraded algebras given in (3.97), and n is determined 

by the cardinality of a(G) C U(1). A class of fusion rule algebras for which there is no 

automorphism a E p o p (and which are therefore not dual to a compact group) consists of 
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the algebras ~ for which D(q~) = 1 and with grading greater than two. For these algebras, 

the restrictions Ao := Yp I Co --4 C1 of the fusion rule matrices Np are determined in the 

proof of Proposition 7.3.1: They correspond to the graphs D(41) and Es (1) (see (7.48)) and 

to A~ 1), A~ 1). A detailed description of the corresponding fusion rule algebras appears in 

the next lemma. 

L e m m a  3.4.10 Suppose that • is a fusion rule algebra with generator p of dimension 

dp = 2, that ~ is Z,-graded, for some 

a > 3 ,  
and that 

D(¢)  = 1. 

Then ~ is one of the following algebras: 

O For ^o ~ De2, the algebra ~, denoted by ~ = Z~C,'~ (A~'~)C'-'~, has a b~is 

{1,aa,a2, as, 7"11 T 2 , . . . , r , - 1 }  , 

with p = 1"1, and the decomposition of '~, as a lattice, 

jEZ,, 

has the following presentation: 

~I'o = (1, 0"1,0"2, aS) N ; (I)j4 = ~ r j ,  j ~ O. 

The elements (1, a,,  a2, as} = Out(q~) form a group: Out (~0) ~ Z4, or Out (q~0) -~ 

Z2 × Z2. Their products with other elements of • are given by 

al or j  = r j ,  for i =1 ,  2, 3, j = l , . . . , a - 1 .  

The multiplication table of the r ' s  is given by 

r jo rk  = 2zj+k, j ~ - k ,  

3 
and "riot_ i = I + E o "  i. 

i=1 

The conjugation on ~ is thus given by 

a--~, = a~ "a , ~ = r_y . 
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ii) For ^o ~ E~', one algebra *,  denoted by * = ~')" -'(A't)) c°-'~, has the foZlowing 

structure: It has a basis {1,ct, a -1, ¢,  Xj, c t°  Xi, ct-1 ° Xi)i=1 ....... 1, with p = X1, 

such that 

~ 0  ~)~j, ~ - - 1 0  X j ) N  , j ~--- 1 1 . . .  , O~ - -  1, 

form the ¢~aded ,ublatti .s.  The elemena {~,..,,~-~} = Out ( ¢ o ) =  Out(C) /o~ 

a group isomorphic to Z3, and ¢ = a o ¢ = a -1 o ¢ .  These relations together with 

~bo¢  = 1 + a + a  -1 + 2 ¢  

determine the subalgebra q~o. The multiplication of the elements in ~ i  with ct is 

given in the obvious way; (Out (~}o) acts transitively and freely on ~ j ) .  Moreover, 

~b o x j  =- Xi + ct o x j  + a -x o Xj . 

The multiplication table of the X's is given by 

and 

Xjoxk = a o x j + k + a - a o x # + k ,  f o r j ¢ - k ,  

X#ox- j  = 1 + ¢ .  

These relations and associativity determine the entire multiplication table, includ- 

ing produc~ o/ the /orm (,~" ox~)o (~" o X~), ~,e=-1,0,1. It follows that the 

conjugation is given by 

a" o xj = a-" o x_j. 

The remaining fusion rule algebras with Ao ..~ E O) and Zo-grading are then given by 

The direct graphs determining the fusion rule matrix Np for the fusion rule algebras 

D(41) (Ai')) (*-'} and E~ (1} (A~X)) (°-2) are depicted in Figures (A24) and (A25) of the Ap- 

pendix. So far, we have found all fusion rule algebras/~ with a generator p of dimension 

dp < 2 and with the property that 

D(~I,) = 1. (3.116) 
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With the help of Proposition 3.3.2 and identities (3.57) - (3.59) we shall arrive at the 

following general classification theorem for fusion rule algebras not necessarily satisfying 

condition (3.116). 

(The algebras will be distinguished according to whether the statistical dimension d o 

of their generator p satisfies d o < 2 or d o = 2, and according to numbers a, a" and r, 

with a = ra",  which are defined by: q~/O0 ~ Z,  (i.e., 'I~ is Z,-graded), Z~ ~ D(O), and 

Z,,, ~ 0"/~5o, where (I," is defined through the presentation (3.60), and D('I~") = 1. Fur- 

thermore, we make use of Out (~I'o) to discriminate between different algebras; Out(~5) 

will be determined.) 

T h e o r e m  3.4.11 Let @ be a fusion rode algebra generated by an element p o f  dimen- 

sion dp not exceeding two. Then ~ is one of  the algebras described below. 

i) For d a < 2, one finds the following list o f  algebras: 

(a) I r a " =  1 then Out (@o) = {1}, and 

¢ = Zr * A., for some n >_ I, 

(b) Let a" = 2. i f  Out too) = {1} then 

o r  

and 0ut(O) ~ Z~. (3.117) 

• = Z r * D 2 , ,  n > 3 ,  and O u t ( O ) ~ Z r ;  

• = Z , * E s ,  and Out(O) -~Z, .  

I f  Out(0) ~ Z2 = {1, a} then @ is one of the following algebras: 

For r even: Zr * A~n-a, n >_ 2, 

"r,~ (Z, * A2,-1) , n > 2, 

Z~* E6, 

~'. (zr • Eo),  

For r odd: ZT * A~.-1,  n > 2, 

with Out(O) ~ 2:2 x Z, ; 

with Out(O) ~ Z2r ; 

with Out(O)~Z~ x Z r ;  

with Out(O) ~ Z2r. 

with O u t ( O ) ~ Z 2 x Z , ~ Z 2 r .  

(3.118) 

(3.119) 

(3.120) 

(3.121) 

(3.122) 

(3.123) 

(3.124) 
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Z~ * r,~ (A2.-1)  ~ -r,~ (Z~ * A2.,-x) 

Z~ * EG , 

zr • ~, (Eo) -~ ~. (Zr • Eo),  

with Out(@) ~ Z2~ ; 

with Out(@) ~ Z~ x Z~ ="~ Z2r, 

t(~) ~ with Ou = Z2~. 

(3.1~.5) 

(3.~26) 

(3.127) 

y O u r  (@o)~ Za--{1,c~, c~ -1} then @ is one of  the following algebras: For (3, r ) =  

Zr * D4 ~ r,~ (Z~ • D4) ~ Z. • r,. ( D 4 ) ,  

For r = 3.r' : Z ,  * D4 , 

-r~, (Z. * D4) ~ r,.-, (Z~ * D 4 ) ,  

with Out(@) ~ Za x Z. ~ Zar. 

with Out(@) ~ Za x Z. ; 

with Out(@) ~ Za.. 

it) For dp = 2, @ is one of  the algebras described in the following list: 

(a) I r a " =  1 then 

Out (@o) ~ z~ = {i,,~} 

and one finds the following algebras: 

1: 

(3.128) 

(3.129) 

(3.13o) 

For r even: Zr * D .  , n ~ 3, wi thout  

, , n > 3, with 

- ( For r odd: Zr * D .  ~ ~ Z~ * , n > 3,  with 

(@o) ~ Z2 × Z~ ; 

O~t ('I'o) ~ Z~ .  

o t(@ )'-" U 0 ~ ~ 2 r .  

(b) I f  a" = 2 then @ is one of  the following algebras: For Out ('I~o) ~ 1, 

Zr * A ~  , with Out(@)~Z~;  

z ,  • E(~ ~) ~ith Out(@) ~ z~ 1 

For Out (@o) ~ Z2 = {1, a}, then 

i f  r is even: Zr * D ~  , with Out(@) ~ Z2 x Zr ; 

~o (zr • o . . ) ,  with Out(@) -~ z~r; 

Zr*  E~ 1), with O u t ( @ ) ~ Z z x Z r ;  

with 

(3.131) 

(3.132) 

(3.133) 

(3.134) 

(3.13~) 

(3.t36) 

(3.137) 

(3.138) 

(3.1~9) 
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i f r  is odd : Z,  • D ~  ~ ~',, ( Z , ,  D ~ )  , with 

Z~ * E~ ~) , with 

~'a ( Z , ,  E~ (')) ~ Z , ,  ~-,~ (E( '))  , with 

For Out (too) -~ Za = { 1 , a , a - ' } ,  then 

i f ( r ,  3) = 1: Z , *  E~ O) ~ T,, (Z , *  E (')) 

with Out(m) 

/ f r  = 37"/: Z, * E~ (*) , 

Out(m) -~ z~, ; 

Out(m) -~ Z2 x Z, ~- Z2, ; 

Out(m) ~ z~, .  

~ (~,)) 
~- Zr  *%~ , 

Za x Z, ~ Za, ; 

withOut(m) '~ Za x Z, ; 

withOut(m) ~ Za,.  

For Out (mo) ~ Z2 (t) Z2 = {1, a, ~, a o ~}, a C stab(p), then 

( , D  (') ~ ~ith O u q m ) - ~ z : × z ~ , ;  

( .( ' .  ~ ( . . . ' ) ~  ~ 
"Q Z~* 0,+2)) = 7'~oe Z~ 0,+2)) , with Out(m) = Z2r × ZZ; 

ij,,-i, e,e~: z , ,  z)l'pL ), p ~ 2, ~ith 

nO) / ~',, Z,  * ~.(p+2)j , p >_ 2 , with 

D 0) ~ (Z ,*  D (') ~ with ~'~ (Z~ • (p+2)/ ~ ~-,~o~ (p+2)) , 

For Out (too) ~ Z~ = {1,~,~2,~a}, then 

( D 0) i f r  is odd: Z,  * DI~)~) re, Z , *  (,+~)/ ,with 0ut(m) 

~ (z,  • ~(') ~ u ~e (z,  • D(') ~ ,  with 0ut(m) "-'(p4-~)] (Pr~)J 

r)(O i f r  = 2 rood 4 : Z, • ~'0,+2)' n > 2, 

with 0ut(m) ~ Z, x Z4 

Out(m) ~ Z2 x Z2 x Z, ; 

Out(m) ~ Z2 x Z2, ; 

Out(m) ~ Z2 × X2,. 

Z4, ; 

Z4r ; 

Z2, xZ2 ; 

~<, (~,,* ~ ' IL , )  ~ ~,*~ (~I:~-~,) ,with Out(m) ~ ~ ,  x ~ ;  

( .<'> ~ ( ,<'> 
r~ Z,  * (p+2)) "~.~-~' Z,  * (p+2)) ,with 0ut(m) ~ z4, ; 

n( ,)  i f r = 4 C :  Z, ,~,(p+2),  P>-2 ,w i th  0ut(m) ~ Z ,  ×Z4; 

DO ) '~ R2 Z , *  Cp+2)] , p > 2 , w i t h  0ut(m) ~ Z 2 ,  xZ2;  

(3.14o) 

(3.141) 

(3.142) 

(3.143) 

(3.144) 

(3.145) 

(3.146) 

(3.147) 

(3.148) 

(3.149) 

(3.15o) 

(3.151) 

(3.152) 

(3.153) 

(3.154) 

(3.155) 

(3.156) 

(3.157) 
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7"~ (Z, * D(')(p+2)) ~ ~ rp (Z, * D (')(p+2)] ~ , with Out(I)) ~ Z4, 

(c) If a" ~ 3 then • is one of the following fusion rule algebras: 

For Out (~o) ~ Za = { 1 , a , a - l } ,  then 

i f ( r ,  3 ) =  1: Z~*E( ' ) (AI ' ) )  (""-2) , with Out( ' I ' )~Za~;  

(Z(61)(d~l))(a"-2)), with Out((I)) ----*~ Z3r ; 

i f r  : 3 r ' :  , w i t h  

For Out ('I'o) U Z2 x Z: = { 1 , a , ( , a  o(},  then 

i f r  is odd: Z r * Di 1) (Ai '))  (°"-2) ,. with O u t ( ~ ) ~ Z 2  × Z2r" 

For Out (¢'o) U Z4 = {1,~,~2,~3}, then 

i f  r is odd: 

Zr* D~ ') (A~')) (°"-2) 

j = 0 , 1 , 2 , 3 ,  with 

i f r  -- 2 mod 4: 

~ r *  n~ 1) (A~I)) (an-2) 

with Out (']~o) 

with Out ('I)o) 

Out(4)  -~ Za × Zr ; 

Out(4)  ~ Z3r. 

with 0 u t ( ~ ) ~ Z 2 x Z 2 × Z r ;  

with Out(,I,) ~ Z2 x Z2r. 

Z2 x Z2~ ; 

"~ Z ;  ~ 4 

(3.158) 

(3.159) 

(3.160) 

(3.161) 

(3.162) 

(3.163) 

(3.164) 

(3.165) 

;(3.166) 

(3.167) 

(3.168) 
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i f  r -~ 4rl : 

w i th  ( ~o ) 

wi th  Out(~o) ~Z4×Zr; 

with  Out(~o) ~Z2 ×Z2r; 

Z4 

(3.169) 

(3.170) 

(3.171) 
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Chapter 4 

Hopf Algebras and Quantum 

Groups at Roots of Unity 

We review the basic theory of Hopf algebras, including the Drinfel'd [3] definitions of qua- 

sitriangularity, and of the double construction and present, as an ezample, the algebra 

Uq (sid+l) first defined by Jimbo [2]. We use results, due to Rosso [48], to define a quo- 

tient, U~q'a(sld+l), of the topologically free algebra, Uq(sg~+~), over C([logq]), which is 

quasitriangular and specializes q to a root of unity. Besides the known Caftan involution, 

we introduce an antilinear *-involution and determine its relations with the R-matrix and 

the coproduct. For U~ "a (sl2), the R-matrix is determined, and the center is presented as 

a C2-variety. 

Quantum groups, an defined in [2], are special types of Hopf algebras, obtained as one- 

parameter deformations of universal enveloping algebras of classical Lie algebras. We 

begin our discussion of their general properties with a brief review of quasi-triangular 

Hopf algebras. 

Hopf algebras axe associative algebras, carrying a comultiplicative structure, which 

is given by a homomorphism, 

A : IC --* ]C ® ]C, 

called comultiplication. The algebra is said to be cocommutative, if A = aA,  where 
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cr : )C ®/C ~ K: ®/C is the transposition a(a ® b) = b ® a. This is the case for the univer- 

sal enveloping algebras of classical Lie algebras. In order to describe braid statistics, we 

perturb cocommutativity by an invertible element 7~ E K: ® K:, called universal R-matrix, 

satisfying 

T~A(a) = aA(a)T~ (4.11 

for all a E/C. For Hopf algebras we require coassociativity 

(1® n ) n  = ( n  ® 1)~ .  (4.2) 

Since the second comultiplication 

a ' =  (4.3) 

is coassociative too, there is a compatibility condition on R: 

( ~  ® 1)Ca ® 1)~ = (1 ® ~)(1 ® a ) ~ .  (4.4) 

In an attempt to describe Knizhnik-Zarnolodchikov systems Drinfeld [4] has proposed to 

perturb coassociativity by an invertible element ¢ E ]C @/C @ K: such that 

(1 @ A)A(a) = ¢(A ® 1)A(a)¢ -I , Va E ~ (4.5) 

leading to quasi-Hopf algebras. The element ¢ has to satisfy certain relations that are 

due to pentagon cycles. 

The unit element of the coalgebra (counit) is a homomorphism, E :/C --* C, satis- 

fying 

(E @ 1)n(a) = (1 @ E ) A ( a )  = a .  (4.6) 

The "inverse" on a Hopf algebra is given by an antihomomorphism, S : E --* ~ ,  called 

the antipode, which is characterized by the property that 

m,2(1@ S)A = m,2(S @ l)n = 1. E, (4.7) 

where Znl2(a ® b) = ab. 

This enables us to define adjoint representations 

ad+~(x) = (L ® R)(1 ® S)n (z )  
(4.8) 

,,d;:(~) = (L ® R)(1 ® S-1)n ' (~) ,  
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with L and R being the right and left multiplication on K:. For quantum groups the 

subalgebra on which ad~g acts trivially coincides with the center of K:. 

We summarize these notions in the following definition. 

D e f i n i t i o n  4.1 [3] A quasitriangular Hop.[ algebra 1C is a coassociative Hopf algebra with 

comultiplication A ,  counit E ,  antipode S and an invertible universal R-matriz, T~ E 

lC ® )C, which intertwines A with A I and satisfies 

(1 ~ A)T~ = ~'~13~'~12 

(~ ~ 1)ze : ze~ze=  ..) 
(4.9) 

From (4.1), (4.7) and (4.9) we can deduce further identities, e.g. 

(1 ~ E ) n  = (E ~ 1 ) n  = 1 (4.10) 

(1 ~ s - 1 ) n  = ( s  ~ 1 ) ~  = ze -1 (4.11) 

and the Yang-Baxter-equation 

"7~23~'~137"~12 = T~12~'~13~23 .*) (4.12) 

As an example we consider the quantum groups Ug (slg+l). The dependence on the 

"deformation'-parameter q = e t is expressed by the fact that the algebra is an E-algebra, 

where E is the ring of meromorphic functions, f ,  for which sinh(t)mf(t)  is analytic, 

for some m E N. The algebra U~ (sla+l) is a topologically free algebra with genera- 

tors 1, el, fl, hi, i = 1 , . . . ,  d, meaning that every element can be expressed as a series 

t"sinh(t)-"p,, ,~, where the p~,,, are ordered polynomials in the generators. 
O < _ m g _ M ,  n > O  

Further, we impose the following relations on the generators: 

(4.13) 

[hi, ej] = a~jej 

[hi, fj] = -a l j f j  

K i - -h  i 
[e. fA = 6 ~ j ~ ,  

*The subscripts label the positions of ~ in ~; ® K; ® K;, i.e. ~ q  is the image of ~ in ~®~ under the 

embedding a ® b --~ 1 ® . . .  ®~ a ® 1 . . .  ®j b ® 1 . . .  ® 1. 
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and 

e, ej  = ej~i ,  f i f j  = f i l l ,  for l i - j  I --- 2, 

elei+l -- (q + q-1)eiei±lel + ei+le~ : 0, 

and f~fi+x - (q + q-X)flfi+,fl + fi±lf~ = O, 

where a i i  ---- 2, ~i±l,i = - - 1 ,  and fti, j = O, for [ i - j I_> 2. 

Depending on whether we choose the functions in E to be complex or real, we 

thus have defined the associative algebras Uq (sgd+l)R (over ER) and Uq (Sgd+l) Cover Ec). 

Clearly, U~ (sld+x) is also an ER-module, and, since ER C Ec, we have that  U~ (Sgd+a)~ C 

Uq (sld+a), as ER-algebras. Also Uq (sld+x) can be seen as a C- or R-module, i.e., a C- or 

R-algebra with additional central generators t and ' -;-~(t)" 

Other prominent subalgebras are defined as in the classical case: Uq(b ±) are the 

Borel algebras generated by the elements el and hi, resp. fi and hi, and U~(n ±) the sub 

algebras generated only by the el's, resp. fi 's. 

The comultiplication is then the Ec-linear homomorphism A : ]C ~ / C  ®E ]C, given 

on the generators by 

A(hl) = h i @ l + l ® h l ,  

A(el) = e i ® q - ~ + q ~ ® e i ,  

A(fl)  = f i ® q - ~ + q ~ ® f l .  

(4.14) 

The Ec-linear counit E :]C ~ Ec is zero on the generators and E(1) = 1. By (4.7), the 

Ec-linear antipode must be given by 

S(ei) = -q- ie l  

s ( f , )  = -qfi 

s ( & )  = - & .  

Note that  its square is an inner automorphism, since 

S2(a) = q-~Saq2S, 

(4.15) 

(4.16) 
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1 
with 6 = x~--~h~. 

z - -  
= > 0  

Here the h~ are defined, for every positive root a, as the same combinations of hi = ha~, 

c~ primitive, as in the classical sial+l-case. 

The Hopf algebra defined above is quasitriangular only for generic specializations of 

q = e t, but  not for the entire ring E. We will use computations, already performed in [48], 

to define a quasitriangular version of a quantum group at a root of unity. 

In a quantum double construction of a Hopf algebra .A. over a ring E, the space, .A*, 

of E-linear forms 

l :  A - - * E  

is considered. It is equipped with a multiplication, by setting 

(t ~ k, Z~(~)) = (t. k, x), (4.17) 

so that  (1, .) = E,  an (opposite) comultiplication 

(z~(1), ~ ~ y) = (t,~. ~>, (4.18) 

so that  E*(l)  = (l, 1), and an antipode by 

(S(1), S(X)) = (l, X), (4.19) 

for x, y E .4. and l, k E .A.*. This obviously defines an associative Hopf algebra over IE 

which we denote .,4 °. The "double-constructed" algebra, D(A), then consists of the space 

v4 ®E v4 °, together with an E-linear map 

m : A ° ®E A ---* A ®E A ° , (4.20) 

such that  D(A), with multiplication 

and 

(z ® i)-(y® i) 

(1® k). (1®I) 

(x ® I)- (1 ~ l) 

(1 ® k). (y ® i) 

:= zy  ® 1, 

:= 1 ® ] : / ,  

: = z ® l ,  

: =  m(k ® y),, 
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and the resulting extensions of coproduct and antipode, define a Hopf algebra over E. 

A formula for m has been given in [48], with the property that  D(A)  is quasitriangu- 

lax, where 7~ • (A ® 1) ® (1 ® A °) C D(A)  ® 0( .4)  is precisely the canonical element in 

A ®  A °. 

If we extend the ring over which Uq (sly+l) is defined to meromorphic functions, f ,  

such that sinh (nl~)" '  . . . . -  sinh (nk~) "h f i t )  is analytic, for some n j , rn j  • N, i.e., for 

generic specialization of ~, it is well known, see e.g. [4, 48], that  for A = Uq (b+), we 

obtain 0(.,4) "~ Uq ( ' l ,+x)  ® U(f) ,  where U(f)  is a second copy of the Cartan subalgebra, 

commuting with Uq (sld+~). For non-generic speciMi~.ations of t, the algebra dual to 

Uq (b +) will be different from Uq (b-). However, it is possible to take a quotient of U~ (b +) 

such that its dual is a similar quotient of U~ (b-).  

The algebra Uq (b +) over Ec has been studied thoroughly in [48]. For the statement 

of the results, we use the generators E~ := e~q~, so that  

A (E~) = Z~ ® 1 -t- qh~ ® E, ; S (E,) = - q - ~ Z , ,  (4.21) 

and 

[hj, Ei] = aijEj ; ad + (El) 1-*¢j (Ej)  = 0, for i # j .  (4.22) 

It is then possible to define, for each positive root, ai5, of sl~+1, with 

o./5 := a~ -F ai+l ~ . . .  ~ aj-1 

for 1 < i < j < d + 1, an element, Ea, by the recursion 

Ea,. i := ad + (E,) (E=,+,.,) , with E=,.,+, := E, ,  (4.23) 

and compute q-analogue commutation relations. 

From these it follows that every element of Ug (b +) can be written as a combination 

of the expressions 

EZ'~)...  E~:,) hl' . . .  h~" (4.24) 

where 8(1) < . . .  < j3(n), n = d(~+l), are all positive roots, with total ordering a~ i < a~, i, 

iff i < i' or i = i' and j < j ' ,  and mj,  l j  E N. It is shown in [48] that the monomials (4.24) 
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form indeed a basis of Uq (b +) over Ec. The subalgebra U~ (b-) of U~ (b+) ° is introduced 

as follows : It is generated by elements F~, 71, defined by the equations 

1 1 
(Fi, E,) - q_~ _ q,  and ('r~,hi) = ~ ,  (4.25) 

and =zero on all other monomlals. We immediately obtain the coalgebra relations 

A(Ti) = ~ / i ~ l + l ® ' y l ,  S ( T i ) = - ' r l ,  and, w i t h h i : = - ~ - ~ a i i ' y i ,  (4.26) 
i 

A(F~) = I ®F~-t- F~@qk,  S(F~)= -F~q ~ .  (4.27) 

Furthermore, one finds the algebraic relations 

['r, FA = 6 , j f j ;  , ,d -  ( f , )  1-'~ (FA = 0, for i # j .  (4.28) 

Defining elements F~ in Uq (b-), for every positive root, a, of sig+~, by the recursion 

f~,. ,  = , d -  (F,)  (f~,+, .~) ,  for i < j - 1 and f~,.,+, = F , ,  (4.29) 

it is possible to write every element as an Ec-combination of monomials in F= and 

"ri, similar to (4.24). The contraction (., . ) :  Uq (b-) ® U~ (b +) --* Ec has been computed 

in [48] as 

<F~" ,1 ,~ " i  . E " "  h; ~' . h:'~> (1)"" F~('~) "y~ . . .  "),~ , E~0 ) . . ~(,,) .. = 

= 6~j~,} q , (1 - q-~)'~ (roD,! 6,,,;,  t , , ]  ' 
'=  l=1 

where Z(1) < < ~(~),  ,~ = ~ the ordered positive roots, t (Z(j ) )  their lengths, " ' "  2 , a r e  

i.e., l ( ~ , )  = j - i, for i < j ,  and the q-an~ogue numbers are 

(n)q . -  q" - q-" - sinh(nt) for q = e ' ,  
q _  q-1 sinh(t) ' (4.31) 

and (n)g! := (n )q (n -  1)q. . . (1)~.  

To describe specialization to the case where q is a root of unity, we use, for N _> 3 and 

(n, N) = 1, the ring-homomorphism ~ : Ec ~ C, which assigns to any f : t --, f ( t )  in Ec 

the value ~ ( f )  = f (i-~) ; ~ is well defined since ~ (s inh ( t ) )=  isin ( ~ )  ~ O. 
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Then 

(., .).,, : v~ (b+) ~r v~ (b+) ---, c, 
(4.32) 

<.,.>., = ~ o <.,.>, 

defines a contraction of U~ (b-)  and U~ (b+), seen as C-algebras. The nullspaces, I + = 
N 

{z • U, (b+)] <k, z)~ = 0, Vk • ~ (b-)}, and, similarly, I~, then form C-Hopf ideals, by 

equations (4.17)-(4.19). So we can define the following C-Hopf algebras: 

~'(b+) = v',(b+)/!~, ~o'(b-)= u,(b-)/i~, (4.33) 

which, by the properties of (., .),p, are related as C-algebras as follows. 

Using the intrinsic formula for m given in [48] and identifying hi with hl, this formally 

defines a quasitriangular quantum group, U~ ~a (sl,t+l), at a root of unity, q = e i ~ .  

For a more explicit description we remark that the Borel algebras Lrr=d (b-~) are - q  

generated by the elements [E,] and [h,], resp. iF,] and [Iz,], where [.]: Uq (b +) ---+ U~ ca (b +) 

denotes the complex-linear homomorphism onto U~q "a (b+), and further that  ~ (and ~ )  

can be omitted from the set of generators by setting 

From (4.35) we also infer that the generators obey the Hopf algebra relations (4.21)-(4.22) 

and (4.26)-(4.28), where, e.g., El is replaced by [El] and the expressions in q = e t • E c 
iT, , ,  are replaced by the specialized ones in q = e ~ • C. In the same way we can obtain the 

elements [S=] and [F=] from the specialized versions of the recursions (4.23) and (4.29) and, 

further, they obey corresponding commutation relations. Hence every element in U~ ca (b +) 

can be written as a linear combination of the respective classes of the monomials in (4.24). 

Since, by a s  o <a, b) = ([a], [b]),p, the diagonal form of (., .) in (4.30) with respect to the 

monomials (4.24) is inherited by (., .),p, we have that the set of monomials in U r~a (b+), - q  

with 

[zz%...SZ% h;, ...h~'] ¢ o, (4.36) 
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is a basis, by the nondegeneracy of (., .}op, and similarly for U~ "a (b-). From 

(m),!=0 iff m_>N, for q=e {-~, (4.37) 

we find, that  the expressions in (4.36) are characterized by 

0 < mi < N ,  i = 1 , . . . , n ,  (4.38) 

and the monomials [E~] vanish. 

The formula for the multiplication m (see (4.20)) given in [48] shows that  z~ := 

hi - hi are central elements, and it yields, after quotienting by the Hopf-ideal generated 

by the zi's, the commutator  

[E,, Fj] = 6ii (h,),  . (4.39) 

We collect these observations, based on computat ions in [48], in the following proposition. 

P r o p o s i t i o n  4.2 In the following statements all equations to which we refer should be 

understood as specialized, i.e., we have 

q = e i~  , with N > 3 and l n, N) = 1. 

i) The complex:, associative algebra, U~ ea (b+), defined by generators El, hi, 1 and 

relations (4.~),  together with 

Z ~  = O, for all a > 0, (4.40) 

aohere the E~ are defined by (.~.~3), has a PBW-Basis given by the monomials 

(4.e4), restricted by (4.S8). It h~  a Hopf algebra st,'~cture de~ned by the comulti- 

plication and antipode in (~.~I}. 

ii) The dual algebra (U~q "a (b +))°, with opposite comultiplication, denoted by U~ ea (b-), 

is generated by the elements Fi, hl given in (j.25). It is equally described in terms 

of relations (~.eS) and 

Fff  = O, for all ~ > 0,  (4.41) 

and co-relations (4.e6) and (~.~7), and admits a PBW-Basis analogous to the one 

of U~'a(b+). The contraction <., .),p: U~d (b - )  ® u~cd (b +) ~ C is given by (4.30} 

an~ (4.3~). 
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iii) The algebra, U~ed(Std+l), 'which ~ obtained fro?n V~ed(b +) V v~qed (b -)  by dividing 

out the relations (4.39) and hi = h~, has a PBW-Basis  

{E~% ..E~': h;'.. h7 " ~" • ~()  . r ~ 0 ) . . .  F~(,0} , (4.42) 

with 0 < rni < N;  0 < tl < N,  and is quasitriangular with R-matrix 

= e~p(~) ((-q)'(~(~))E~(,)® F~(1))....- e~p(~) ((--q)'(~("))E~(.)® F~(.)) q-'. 
(4.43) 

Here we use the notations 

~ p ( ~ ) ( X )  := 

and 

Xfrt 
.-i "~'~-')(1 q-2)"~ (m),! E q- 2 
'lr~=O 

t := ~ (a-1) jk hi ® hk , 
jk 

with the inverse, a -1, of the Cartan matriz a, i.e., a ®/3.  t -- (%/3). The algebra 

u~ed(S£d+X) is identical to D (U~"l(b+)) quotiented by the central subalgebra U(O) 

generated by zi = hi - hi. 

There are, of course, further possibilities of defining a quasitriangular quantum group at 

a root of unity. For example, if we insisted on having the entire Borel algebra, Uq (b+), 

without the relations (4.40), the dual algebra Uq-- = (U, (b+)) ° would contain U~ ed (b-) as 

a subalgebra, but, in addition, it would contain elements FaN, defined by 

(FAN, E~) - - -  1, (4.44) 

and =zero on all other monomials. It follows that Uq- is just the Borel algebra of the 

quantum group at a root of unity, U,, defined in [49]. To be precise, we also would have 

to replace the generators hi by generators Ki := q~ and impose the relation K~ ~v --- 1. 

The algebra U~, "a (sld+l), with these modifications in the Cartan generators, is still qua- 

sitriangular, but, in addition, it is a finite-dimensional subalgebra of U,. It is possible to 

show that  the R-matr ix  of U~q ea (sld+l) is also an admissible 7~-matrix of U~, so that Uq 

is quasitriangular, although it is not double-constructed. Here we call a quasitriangular 
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Hopf algebra double-constructed if, for the map 

~ :  JC* ~ ~:, ~n(l)  = ((l , .)  @ 1)Ze 

and hence 

~ ( l )  = (1 ¢~ (l, . ) ) n ,  

we have that 

(4.45) 

/C = i m  ~rn Vim z'~. 

In general, we have for a quasitriangular Hopf algebra 

7~ E im lr~ ® im r ~ ,  (4.46) 

so that ~r~ is well defined on (im ~r~)*. Using equations (4.9) we find that 

l rx:  (im z~)*---* im ~rn 

is an algebra isomorphism, which is anticohomomorphic. Therefore 

(i ~z) ° "~ (4 47) m ~r = im 7rn. 

Thus in the case of a double-constructed algebra, ]C, and by the uniqueness of the multi- 

plication (4.20), (see [3]), we infer that ]C is a quotient of D (im ~rn). 

In the following we shall consider only the double-constructed examples U~ ed (sga+l), 

seen either as a C- or R-algebra, and Uff ~ (Md+l), which is the quantum group over the ex- 

tended ring, E g~ of meromorphic functions, f ,  such that sinh ( n ~ t ) ' ~ ' . . .  sinh (nkt) "~h f ( t )  

is analytic for some h i ,  m i E N. The automorphisms of the Borel algebras can be easily 

described. 

Lem ma 4.3 

0 For *'~*"V Hop/automo,~his~, ,~, of ~°~ (b+) (V,*°° (b+)), th,r, ~r~ i,~rtibl~ ele- 

merits, zll , i = 1 , . . . ,  d in C (E 8~) and  an involut ion,  It, o f  the A a - D y n k i n  diagram, 

i.e., r = id  or ~r(j) = d + 1 - j ,  such  that  

a ( h i )  = h~(j) 

and a ( E i )  = ~jE,~(i ) . 

(4.48) 

(4.49) 
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Moreover, we have that a can be chosen either complez-linear or complez-antilinear 

for U~ ~ (b +) with ring E ̀ ~ and specializations q e R and for U'~g ed (b +) for real 

specializations t E R, so that 

sECt) = t (4.50) 

in both cases, a is complex-linear for non-real specializations and U~ ed (b+). 

Conversely, every map, ~, defined on the generators by (4.48), (4.49) and (4.50) 

e~tend~ uniquely to an automorphism on ~o~/,'~ (b+). 

ii) Similarly the set of anticohomomorphic automorphisms, 5, of Uq (b +) is character- 

ized by 

and 

5(h j )  = h.(~) (4.51) 

5 (Ej) = TIjE,~(j)q-h'(J) (4.52) 

5E(t) = - t  (4.53) 

Thus anticohomomorphic automorphisms only exist for purely imaginary specializa- 

tions, i.e., t E iR or ]ql = 1, and for U~q ea (b+), where they have to be antiIinear. 

The description of antihomomorphisms can be obtained from the above by composi- 

tions with the antipode. 

iii) For specialized parameters t, the scalings Ej ~ TliE j can be obtained by conjugating 

elements of the Cartan lotus so that the group of outer automorphisms is isomorphic 

to Z2. In particular, every cohomomorphic or anticohomomorphic automorphism 

maps U, (n+) to itself and is an involution on f .  

Furthermore, 'the automorphisms specified in i) and ii) have unique extensions to 

Uq (Std+l), given for the generators by 

~(rj) 1 
= - ~4.o~j 

% f TIj 

1 
and 5(Fi)  = "-- q~O)F.(j). (4.55) 

7/j 

These eztsnsions are also cohomomorphic, resp. anticohomomorphic. 

113 



I f  we denote by C the eztension of the 

7i = 1, x = id, then we have the relations 

C 2 

and C ® OT4 

anticohomomorphic automorphism with 

= 1 (4.56) 

= 7Z-' .  (4.57) 

0 will thus be called the conjugation ofU~ (sga+l). 

The symmetry  in the sets of generators and relations of U~ (b +) and Uq (b-)  enables us 

to define involutions on Uq (sga+a), which are important  in the study of highest-weight 

representations. In general for a quasitriangular, double-constructed Hopf algebra, K:, we 

call an R-linear, antihomomorphic involution, 0, on K:, a Cartan involutionif 0 satisfies 

and 

thus 

0 : imTrn ~ im~r~ 

0 : ima-~ ~ imTrn 

(4.58) 

0 ® 07"4 = a n .  (4.59) 

Similarly a *- involution is a R-linear, antihomomorphic involution which also maps im ~r~ 

to im z~  but instead of (4.59) obeys 

* ® * 7"4 = aT4 -1 . (4.60) 

L e m m a  4.4 

i) Assume, that 0 is a Caftan involution and * a ,-involution on a double-constructed 

Hopf algebra 1C. Then we have 

0 ® 0 o A  

and , ® , o A  

= A o 0 ,  O o S = S - l o O  (4.61) 

= a A o * ,  * o S = S o , .  (4.62) 

ii) For the isomorphism 7r~, it follows that 

• "~0 t = 07r~ and S * 7r~z = 7rn • S ' .  (4.63) 
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Thus, if we define nondegenerate, R-bilinear forms on 

Ca, b), := (~-10(a),b> ana 

it follows that (a, b)# is symmetric and obeys 

CA(a), b @ c)e = ( a, ¢b)0 and 

and further that 

( a, b), = (SCb), a ) , ,  

so that 

im ~r~ by 

(°,b). := (a) ,b) ,  (4.64) 

(SCa), b)e = ( a, S(b))s (4.65) 

(zx(a), b ® c). = (a, bc). ; (b ¢~ c, ZX(a)). = (cb, a).  

and (SCa), S(b)). = ( a, b)..  

Suppose a is an automorphism of im ~r~, so that for ,.7" = im r ~  n i m  ~rTr 

a ( J )  = fl and (a  o 0) 2 ry= id3 

and 

(a(a) ,b)s  = (a ,a(b))0,  resp. 

(4.66) 

(4.67) 

(4.68) 

Ca(a), b). = (a, a(b)).. (4.69) 

Then there ezists a unique eztension, &, to ]C, such that 

0' = & o 0, resp. . '  = ,~ o • C4.70) 

is a Cartan-(resp. *-) involution. Moreover, given some involutions 0 and *, then 

all other involutions are given by (~.70) for some ~ ~ t h  (~.SS) and (4.~9), a ~  the 

extension, &, is always cohomomorphic, thus a Hopf-automorphism. 

This, together with the characterization of automorphisms of the Borel algebra and the 

conjugation, C, in Lemma 4.3, put us in a position to find all Cartan- and *-involutions 

of U~ (sld+l). They are given as follows: 
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L e m m a  4.5 i) There ezists a Caftan involution, O, on Uq (sla+l) which is given on 

the generators by 

O(Ei) = q ~ F  i (4.71) 

O(Fi) = E,q - ~  (4.72) 

O(hi)  = h; (4.73) 

eE(t) = t .  (4.74) 

It can be chosen antilinear only i r e  = E g~ or if  t is specialized to real values. In all 

other cases, O has to be complex-linear. 0 is determined uniquely by (4.71)-(4.74) 

and the sign O(i) = +i. 

ii) The Hopf automorThisms , a, of Lemma 4.S O, which give rise to all other Cartan 

involutions by (4.70}, are those with 

,7~ = ,7.(~) • (4 .75)  

iii) The antihomomorphism 

* := C o O  = O o C ,  (4.76) 

where C is given in Lemma 4.3 iv), is a *-involution, for all versions of U a (s£a+a), 

where C is defined. It is given on the generators 

* (h i )  = h i (4.77) 

• ( E i )  = F i  (4 .78)  

• ( f i )  = E i  (4 .79)  

• ~ ( t )  = - t .  (4 .80)  

iv) Equation (4.80) holds for all *-involutions *', so that *' is defined on a quantum 

group whenever * is defined. All possible *' are given by (4.70) where the automor- 

phisms a, specified in Lemma 4.3 i}, are constrained by 

• ~ (,7,) = ,7,,(,). (4 .81)  
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One way to verify formulae (4.59), (4.60) and (4.57) is to directly apply the involutions, 

resp. their compositions with the antipode, to the expression of the R-matrix.  Also 

we can use the fact that these formulae are equivalent to the symmetry relations of 

the forms (4.64) and similar constructions. Following this strategy it is useful to know 

that any bihnear form on Uq (b +) for which the comultiplication is the transpose of the 

multiplication (compare (4.67)) is uniquely determined by the scalar products of the 

generator El and hi. For convenience we give the general forms of the involutions in 

terms of the original definitions (4.13), using the identification 

Fj = q - ,  f t .  (4.82) 

They are 

o ( , j )  = ,1;5)I . ( j )  

o ( / j )  = ,7.(~s.(J) 

o ( h ~ )  : h . ( j ) ;  

and 

• ( ~ j )  - ,  = ,/.(~)f.(j) 

(4.83) • ( f j )  = 7/,(j)e,ffj) (4.84) 

• ( h i )  = h . ( j )  ; 

GEi=e¢, GFj=fj ,  CHj=hj.  (4.85) 

As an example, let us have a more detailed look at U~'a(sl2), for q = ei'~-~, where we 

assume (n, N)  = 1, N _> 3. The relations defining U;'a(st2) are 

[h,e] = 2e 

[h,f] = - 2 f  

and 

qh _ q-h 
[~,/] - 

q _ q-1 

ely = fly = 0. 

The universal R-matrix is given by 

N-1 (1 - q~)" 
T~ = y~ q-}(h®h)q'~ -~) q-~e" ® q-~ f" 

. = o  ( ,~) , !  " 

(4 .86)  

(4 .87)  
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Here we use the q-numbers, defined by 

(n),  q" - q-" (4.88) "-- q _ q - 1  " 

They arise in the calculation of the commutators 

[e , f" ]  = fn-X(n)q(h-n+ 1), 

[/ ,  e"] = e " - ~ ( , ~ ) , ( - h  - ,~ + 1 ) , .  

(4.89) 

For the classification of the irreducible representations of U~'a(sg2), we next describe the 

generators of the center: 

Q = f e + ~ 2 / g  

= e / + ( h - 1 ) '  
2 I q  

(4.90) 

and P = e i ' t h .  

They satisfy the relations 

(q _ q-1)Nj 

or equivalently 

(q - q - 1 ) - j  

i = o  

N - 1  

= - I I  ( q - ( J ) : )  • 
j=O 

(4.91) 

Relations (4.91) define a variety ~ in C 2, on which the Casimir values of (Q, P) have to 

lie. The real part of this variety, ~7~a, is the intersection of ~7 with 

R × s '  = {(Q, P)  I Q • R, I P I = 1 ) ,  

describing representations, that admit sesquilinear forms. A more detailed description 

of ~) will be given in Section 5.2. 
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Chapter 5 

Representation Theory o f  uffed(sg2) 

5.1 Highest  Weight Representat ions  of uredrs£q ~ d+l) 

We show that the irreducible representations of Uq (s£d+l), for q a root of unity, have 

a maximal dimension and can be obtained from Verma modules by quotienting by the 

nultspaces of hermitian and bilinear forms. The contragradient of a representation is 

defined, and categorical aspects are discussed. 

The finite dimensional, irreducible representations of Uq(sla+l) and U~ea(sla+l) are rep- 

resentations of highest weight, because the generators hi of the Caftan subalgebras are 

bounded operators. In the generic case of Uq(sta+~), q2 # root of unity, it is known [50] 

that the highest weights, characterizing the representations, are (up to irrational shifts 

$i ~ $i + r,  where q~ = e ~ )  all integral, and the associated representations can be seen 

as deformations of irreducible representations of the corresponding classical Lie algebras. 

In the rational case, (i.e., q a root of unity) we see from (4.22) that the subalgebra U~(n-) 

is finite dimensional. Therefore, any highest weight will lead to a finite dimensional, irre- 

ducible representation, the dimension of which is bounded by dim U~(n-)+ 1. For Uq(sl2), 

with q2 = e ~  this bound is equal to N. 

A useful tool to determine irreducible representations from their highest weights 

is the study of real linear forms, (., .) and (., .), that are invariant with respect to the 
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antiinvolutions • and $, introduced in (4.23) and (4.24). 

The proof of the following lemma uses the direct sum decomposition 

trq( ~t,~+, ) = 

c ([h,]) • c ([h,]). u,(.+) • u,(.-). C([h, ] )  

• u , ( , - ) .  C([h,]) .  u , (n+) .  

and follows from a standard reconstruction argument. 

L e m m a  5.1.1 

(s.1) 

a) On any pair of highest weight representations WA., VA, (W~r, Vx, respectively) of 

Uq(st~+l), with A* = X o a (At = A o a),  there ezist invariant, real linear forms 

(.,.) : w .  ® y~ --. R([t]), 

( . , .)  : w ~  @ v~ -~ R([t]), 

with the properties 

(.,a~) = (*(a)~,w), 

(.,aw) = (O(a).,w), 
(5.2) 

= f ( - t ) g ( t ) ( v , w ) ,  

= f ( t )g( t ) (~, ,o) ,  for f , g  G R([tl), 

fo, all a e ~Ja~+~), a.d 

(f(t)v,g(t)w) 

(fCt)v,g(t)w) 

which upon specializing to t E iR (i.e. Iql = 1) become sesquilinear, resp. bilineav, 

forms. 

b) The invaviant forms (.,.) and (., .) are uniquely determined by (vx.,vx) ((vAr,vA)), 

~he~e ~ are the highe~t-~eight ~c tor~ .  I,~ p~rt ic , tar ,  i f < ~ , ,  ~ )  = 0 ( ( ~ , ~ )  = O) 

t h e ,  {., .) -- 0 (( . ,  .) - 0).  
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~) I f  A/'x and .M x. are defined by 

and 

.A/f A * = 

{= I (v, =) = o, vy 6 w~. } ,  

{y I (y ,=)  = o, v= 6 v;,}, 

(5.3) 

the quotients Vx/A/'x and Wx. / .Mx.  are ezactly the irreducible representations of 

highest weights A and A*. The irreducible representations can be obtained from (., .) 

and # in the same way. 

In the statements made above, we may aa well replace highest weights by lowest weights. 

By unitary representations we henceforth mean highest weight representations, for which 

(., .) is positive-definite on VA/A/'x, so that the representation space admits a Hilhert-space 

structure. 

In analogy to the classical case, tensor products of representations are defined by 

the comultiplication. The trivial representation is the counit, which by (4.6) can also be 

characterized as the only representation such that Vx = V1 ® VA, for all A. Furthermore, 

for any representation p on V, we can define a representation, pV, on the dual space, V*, 

(V v as a module) by 

pv = pt o S (5.4) 

called the representation conjugate to p. We have that pvv ~ p and that pv is uniquely 

determined by the requirement that the trivial representation is a subrepresentation of 

V ® V v. The latter can he seen by replacing the action of/C on V ® W v, by the adjoint 

representation on Horn(V, W). A trivial subrepresentation of Horn(V, W) consists of an 

intertwiner from V to W, so that V and W have to be isomorphic. Finally commutativity, 

Pi @ Pi  ~- Pi  ~ Pl,  is guaranteed by the invertible intertwiner 

l~j = Pijpi ® #iTS, (5.5) 

where T~ is the universal T&matrix in ]C®]C, and Pii : V~®Vj --, V,.® V~ is the transposition. 

For later applications we want to introduce an antilinear mapping XA : V~ --* V~.., 

replacing the Olehsch-Oordan matrix Pl,xX.v, intertwining V~ ® V~ with 111: 

l ( , ,)  = (x~ l l ,  v) = P,x, .v( , ,  ~ l ) .  (5.6) 
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It is related to the antihomomorphisms S and * by 

= , , . v  ( S - ' ( a ' ) )  

and, having (4.11) for the square of the antipode, can be normalized to 

Xx.vXx = q2S. 

(5.7) 

5.2 The  Irreducible  and Uni tary  Representa t ions  of  

The irreducible representations of U~qea(sl2) are classified and given in a highest-weight 

basis. We use the subjective parameterization by highest weights to discuss the topological 

structure of the center-variety. We show that representations over non-singular points and 

with a diagonal Caftan element, k, are completely reducible. We determine the ranges 

of highest weights for which the irreducible representations are unitarizable with respect 

to * 

In this section we describe the irreducible and unitary representations of U~a(se2), for 

q~ = e2"i-~ a root of unity. The irreducible representations have been determined in [51] 

for the algebra without relations (4.22) and generators e, f ,  k ~ = qh so that  e and f could 

still be invertible. For U~ea(sl~), however, we have only highest-weight representations, 

and any ~ G C appears as a weight. In the next proposition, which summarizes these 

observations, we will see that  integrality of ~ is only necessary to obtain representations 

with dimension less than N (rather than 0% in the generic case). 

Proposition 5.2.1 

a) For U~'a(sl2), with q2 = e2,a~ , any highest weight ~ G C corresponds to an irre- 

ducible representation which is given, in the standard basis {'l)/}/=o,...,p~_l for highest 
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weight representations, by 

hvt = ( ~ - 2 l ) v t  

f v t  = V / + I  

ev ,  = ( l ) , ( a + l - t ) , v , _ , ,  

(5 .8)  

where the dimension px, 1 < Px <- N,  is N if n$ is non-integral and is determined 

by npx - ri(~ + 1) rood N if ~ E ~-Z 
Tt  " 

b) The trivial representation is identified with ~ = O, and the highest weight, ~ v, of the 

conjugate representation p~ = pxv is given by 

~ v = 2 ( p x -  i ) -  ~. (5.9) 

A sesquilinear form on V~ ezists only for ~ E R. 

automorphism, T, with 

Moreover, there is an algebra 

T(e)=e, T(f)=f, T(h)=h+2 N, (5.10) 
n 

such that there is an invertible mapping Fx : Vx ---} V~+~, with 

= 

To prove a), we only need the commutators (4.89), and the fact that  (z)q = 0 whenever 

z E ~ Z  The irreducible representations are then obtained in the usual way. [] 

From the automorphism T, defined in (5.10), we can find all irreducible and unitary 

representations, by only looking at those with )l E [ 0 ,2 ~ ) .  On the center $ ,T(C) -- C 

and T(P)  = eU'~P,  so that  T '~ 13 -- id. Hence the representations belonging to )~ and 

)~ + 2N, yield the same values of Casimirs in f12. More precisely, we have the following 

result: 
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Proposition 5.2.2 

a) Let f~ be the variety described in (4.91). Then the mapping C --~ f$ C C 2, assigning 

to each highest weight the corresponding Casimir values 

is surjective, and can be defined on C/2NZ.  

b) C /2NZ ~ ~J identifies ezactly n(N - 1) pairs o/points, I+ ~ )~_, given by 

)~+ + 1 = +a  + N b m o d  2N,  
n (5.12) 

a =  1 . . . ( N -  1), b = 0 . . . n - 1 ,  

and is injective for all other values of ~, so that V is an infinitely long tube with 

n( N - 1) singular points. 

c) The subvariety describing representations which admit sesquilinear forms is de- 

scribed by R /2NZ ~ ~3~.  Thus ~3~c~ can be identified with the lattice edges of 

1 
, 

o n  the upper half of the torus T 2 = R2/Z × Z. 

The crucial point of Proposition 5.2.2 is that irreducible representations cannot be dis- 

tinguished completely by their Casimir values. A point in ~ only determines the set of 

representations that appear as quotients, e.g. in Jordan-HSlder series, of indecomposable 

representations. Note that, for the dimensions, we have px+ + Px_ = N, and the successor, 

($+2),  of a highest weight )~ is also the lowest weight of an irreducible representation, with 

the same values of Casimirs. For non-singular values of Casimirs, the picture becomes 

much simpler. 

L e m m a  5.2.3 Suppose W is a representation space of Uq(sg2) on which h is diagonal, 

and ( P, Q) has only non-singular eigenvalues in W, i.e., all highest weights ~ occuring in 

w are in (C\.'-Z) 0 (~Z--  ~). Then W is completely reducible. 
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To show this, we restrict our at tention to a single Casimir value, (P, Q), such that  the 

set of highest weights is in {A + 2kN}l, ez, for some A. If hv = Av, for some v, then v is 

a highest-weight vector. Otherwise, we could find some s, 1 < s < N - 1, with e 'v being 

a non-zero highest weight vector. Since its weight (A + 2s) is not contained in the above 

set; this is impossible. With a similar statement for lowest-weight vectors, and since h is 

diagonal, W decomposes into 

The invariant subspaces are 

for which we have 

(B 
w = ~ w ~ + : , ~  (5.z3) 

N - 1  

W~ = y ]  (9 ker(h -- (A - 2k)), (5.14) 
k=O 

k e r f  r W x = k e r ( h - ( A - 2 ( N - 1 ) ) )  and kere  r W x = k e r ( h - A ) .  (5.15) 

Thus all weight spaces in Wa have the same dimension, so that ,  for some basis { v l , . . .  ,vr} 
r (9 

of ker(h - A), we have the direct sum decomposition W~ = ~ ~ ,  lit being the irreducible 
l = 1  

representation <vt, . . . , fN-I'Vl>, f'3 

Next we state a result on unitarity. 

P r o p o s i t i o n  5.2.4 

a) I f  tAe representat ion  on V~ is uni tary ,  then A E ~ ,  and the representa t ion  on V ~ + ~  

is also uni~arizable. 

b) For )t = N + . - .  with s E [ - N ,  N ) ,  V~ is unitarizable i f f  
Tt  

either s e [ - 1 , 1 ] ,  or s = n ,  or ~ = ( - 1 / ( n ~  - n ~+ lr ) ,  
(5.16) 

r= l , . . . ,pt+: ,  £ = - l , . . . , f - -  1, 

where n l  and Pt are defined by the Eucl idian algorithm: 

N = p x n + n x ;  n = p2nx + n 2 , . . . ,  nk-1 = p~+xnk + n k + l , . . . , n t - 1  = PI+xnI  + 1, 

with n~ > nk+~ , N = n - x  , n = no. 
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c) There ezist unitary representations for all singular points in ~ ,  i.e., all dimensions 

p~ = 1 , . . . , N ,  only if n = 1. In this case V~ is unitarizable for 

e { 0 , 1 , . . . , N - 2 } U ( N - 2 ,  N] (mod2N) .  

The proof is elementary, although somewhat tedious, and will not be reproduced here, 

see [6]. 

In the case of unitarity, we define an orthonormal basis { ~ }  with p = pA, and 

m = - j ,  - j  + 1 , . . .  , j ,  with 2j + 1 = p~, which is obtained from (5.2) by setting 

1 

(*)4! ( ~ ,  

The representation then has the form 

2 . q ~ .  

~m+l , e ~  = ~/(j - m)4(j + m + 1)4 " (5.~7) 

f ~  = ~ra-1 , ~ ( j  + m ) j j  - m + 1)4 p 

where we have set k~ = ~(A + 1 - p~) E Z. 

5 . 3  D e c o m p o s i t i o n  o f  T e n s o r  P r o d u c t  R e p r e s e n t a -  

t i o n s  

We present a basic result on the tensor product decomposition of two irreducible, integral 

highest-weight ~presentations of ~ .d  (sl2), for q a root of unity, using non-d~generate 

bilinear forms. We discuss the structure of the indecomposable representations arising 

in this procedure and state the fusion rules for irreducible representations with non-zero 

q-dimensions. 

In this section, we investigate the decomposition of a tensor product of irreducible repre- 

! Z  sentations into its indecomposable parts. If, for two highest weights A and #, A + # ~ ,, , 
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then, using the Casimir P from (4.90), with A ( p )  = p ® p ,  we deduce from Lemma 5.2.3 

complete reducibility, so that 

v. = (5.18) 

In the case where A, p ~ I Z  but A + p 6 *--Z the decomposition of Vx ® V, is similar to 

the one where the highest weights belong to ! Z  The interesting case is the one where 

A, # 6 .!Z. We use the basis (5.17), regardless of unitarity, with kx - ~(A + 1 - Px) = 0. 
! 

All other decompositions can be generated from the automorphisms T:~(e) = -t-ie; 
t 1, 

T ~ ( f )  = +if;  T1(h ) = h + N_ n "  

Our main result is that  the ~'~2-fusion rules of rational conforms, field theory and 

of SU2-Chern-Simons gauge theory can be recovered from the representation theory of 

U~d(sl2), in the following algebraic sense. 

T h e o r e m  5.3.1 The tensor product of two irreducible representation-spaces Vpt and V~n , 

with heighest weights A~ = 2ji = Pl - 1, 1 < pi < N - 1, and with the action of U~d(sg2) 

defined in terms of the comultiplication, has a decomposition into invariant subspaces 

given by 
m:(p~ +m - I,2N- x-(P~ +r~ )) N 

lip, ® V,~ = ~ ~ V, • ~ ~ W,. (5.19) 
i= lP1 -~ l+t i==N+1-(p1 +p2 ) 

i~--p1 +1~+1 rood2 I------P1 +1~ +1rood2 

The spaces 14~ are indecomposable subspaces, with WN = VN and dim Wi = 2N, for i < N,  

s i 2 on which ' bu, not  ani, hes. 

In the proof of Theorem 5.3.1, we make strong use of the fact that the bilinear form 

(., .), introduced in Lernma 5.1.1, naturally extends to tensor products, because 8 com- 

mutes with A, (Lemma 4.4), and is non-degenerate. The derivation of the decomposition 

amounts to an explicit construction of the representation spaces Wi in a natural basis. 

The first step is the computation of all highest weight vectors and of thcir squares with 

respect to (., .). 
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L e m m a  5.3.2 

a) For every i, i = 2j + 1, with 

[ P l - P 2 [ + l < i < p ~ + p 2 - 1 ,  

i - pl + p2 + 1 mod 2 

there ezists exactly one vector, ~ ,  of highest weight in V m ® V~, i.e., 

h~i = ( i - ~ ) ~  , a n d  e~i = O . 

The Q form a basis of ker e. 

b) The squares (~,~) vanish iff 

2N + 1 - (pl +p2 )  < i < N -  1. 

(5.20) 

(5.21) 

In order to determine the vectors ~., we express them in the basis ~ @ ~_,~ with coeffi- 

cients a,,~.i" 

From A(e)~j = 0 we find the recursion 

= q-(~+')'~',,+l ¢ ( "  + 1),(2j~ - ,,), 

"~ {:1~i¢(j2 "~ j l  - -  j - -  n),(1 + j2 + j - j l  + n ) , .  
(5.22) 

,~i ,,j, (i+1) /(Jl+h+J~ Solving this in terms of r, i = -o~ V k 2j, /q, we find for the highest weight vector 

jl + h - j  ] 
~ = {:~i E (--1) n q--(jt--n)(j+l) ~ (2jl -- n)q!(j2 JV j -- j l  JV T~)q[ 

~_-o ~)~-~i T ~ :  j -~-~.' (5.23) 

with dl = e ~ l .  

This recursion can only be solved for i in the range given in (5.20), so that  we have 

found all vectors of highest weight. 
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The expression for the square (~J'~i) is obtained by use of the q-analogue binomial 

identity 

a + B  =~q~C=k-C,-k)~)  k n - k  ' 
77, q k=O q q 

with 

It is given by 

( , )  = ( , ) , . . .  ( ,  - ~ + i)~ 
n , ( n ) ~ . . . ( 1 ) 4  , for a, fl E R, n E N.  (5.25) 

i i 

ol~q('~('~+l)--'Tl(Jl 'T1)--"l(jT1))(jl  - -  j'~ Jr" j)q[(.}*2 - -  J l  -[- J)q[  ( 5 . 2 6 )  

jl  + j ,  + j + l ) 
Jl + j2 - J ," 

To show Lernma 5.3.2 h) it is now sufficient to find the zeros of the q-analogue binomial 

coefficients. 

The non-degeneracy of the bilinear form (., .) now enables us, to assign to each 

vector ~j with (~j, ~j) = 0 an indecomposable subspace W~ within which it is contained. 

In contrast to the classical case, the ~j are no longer cyclic with respect to HI/. However, 

a candidate for a cyclic vector of W~ is given in the next lemma. 

L e m m a  5 .3 .3  

a) The square, with respect to (., .), of a vector of highest weight, ~}, in Vpt ® Vp, is 

zero, iff there e ~ t s  a vector ~j ~ Y~, ® V~,, s~ch that 

= (i- 
and (5.27) 

b) ~j and ~j can be chosen uniquely, up to a sign, by imposing the normalization con- 

ditions 
- -  

and (5.28) 
i i ~i yl 
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of Vp~ ® V~ i~ Theorem 5.3.1. 

Proof. 

a) One easily derives from the invariance of the bilinear form (., .), that if (5.27) holds 

for ,ome vectors e;/and e}, the square of e} is zero: 

_- f0 l) = _- 0 

To prove the converse, we can assume, for (} with (( i , (})  = 0 ,  that by Lemma 5.3.2 

h) 2N + 1 - (Pl +P2)  < i < N -  1. 

Since (., .) is non-degenerate, and since both h and Q are symmetric and commute, 

there has to be a vector ~i that belongs to the same generalized eigenspaces of h 

and Q as (}, but  has nonvanishing scalar-product with (}, i.e., 

h~  = ( i -  1)~ 

i ;'i for ,~ su~ciently l~ge, and (e,,ej) ¢ O. 

(5.29) 

In the following line of arguments, we will see, that any such ~ has the desired 

property (5.27). 

From the relationship of Casimir values with highest weights, as computed in Propo- 

sition 5.2.2 b), and from the hounds on the weights in (5.20), we see that the only 

highest weight vector, having the same Casimir values as ~'} and ~}, is ~ v ~  1 . Since 

we have N + 1 _< 2N - i _< pl + p2 - 1, this vector has non-zero square. As e'~ ~;} 

has to be a non-zero highest weight vector, for some 1 _< s < N, we immediately 

conclude from the previous observations, that 

N-i ii e Cj = a~rN~' 1, (5.30) 
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for s o m e .  # 0. The case s = 0 is excluded, because ~., having, by (5.29/,  a non- 

zero scalar product with ~i' cannot be proportional to ~}. Applying q -  (~)~ to the 

vector d,"-~'-, = ~ e ~ - q i ,  we find e " - ' S e ~  = 0. 

The argument used above now shows that e'fe~ is a non-zero highest-weight vector, 

iff s : 0 and fe~ # O. Finally we show that fe~ # O, which, for some suitable 

rescaling, implies ~ = f e~ ~ O. Assuming the opposite, e~- should be a lowest- 

weight vector which has, by calculations similar to the ones at the beginning of the 

proof, vanishing square with respect to (., .). From Lemma 5.1.1 for lowest-weight 

representations, we conclude that (.,.1 vanishes identically on the sub-representation 

generated by the lowest weight vector e~.. This contradicts, with (5.28) and 

the fact, that ~VN_j~I has non zero square. 

b) We suppose that there are two vectors obeying (5.27 I. Then their difference, 6, 

has to be a multiple of ~.. Otherwise, we have from fe6 = 0, that e6 is a non-zero 

lowest-weight vector with zero square. By the same reasoning as for e~ in part a) 

this is impossible. The proof of statement b) concerning the uniqueness is now just 

a matter of scaling and adding. 

c I So fax, we have constructed a direct sum of cyclic subspaccs in Vp~ ® Vp~, generated 

by vectors ~., for [Pl - P 2  [ +1 < i < min(pl +P2 - 1 , 2 N -  1 - (Pl + P2)), or i = N, 

and by ~., for 2 N  + 1 - (px + p~) < ~ < N - 1, (i - p~ + p2 + 1 rood 2). 

In both cases it can be verified, that fJ~. is in the kernel of e, by using the commu- 

tators (4.89). For i < N - 1, its weight is - 2 ( j  + 1); but  by Lemma 5.3.2 a), there 

do not exist highest-weight vectors with weights below [ pl - p2 ], so that we have 

/ ~  = 0.  (5.3~1 

Hence if (~. ,~.) ~ 0, i.e., i satisfies the restriction in the first summand of (5.19/, 

~ generates an irreducible subspace Vi = U~'a(-,12)~ -, on which the bilinear form 

(., .1 is non-degenerate. We therefore have V/N V( t -- 0 and can complement V~ by 

v, ±, i.e., v~, ® v~, = v, • v~ ±. 
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This yields a decomposition 

mi~(p~ +in -1.2N-1-(p~ +r~ )) N 
Vp, ® Vm = ~ ~ Vi @ ~ ~ Wl,  (5.32) 

i= I.nt --1~ l+ 1 I=IN+t--(Pl +Pl) 
i~Pl +p2+lmod2 i.~pl+p2 +1rood2 

where the W" have the same Casimir values as the subspaces Wi generated by the 

~}. In order to prove c), without constructing Wi explicitly, we want to show that 

W'/Wi does not contain any vectors of highest weight, and therefore has to be zero. 

Suppose [~,] is of highest weight in W'/W~, with weight 

A, 6 { - 2 N + i -  1 , - ( i +  1 ) , i -  1 , 2 N - i -  1}. 

A representative ,~,. in W', with the same weight, cannot be of highest weight itself, 

because all highest weight vectors are already contained in Wi, so that again e*~, is 

of highest weight for some 1 < s < N - 1. The only combinations left are: 

ei~, = ~ with A, = - ( i +  1) (5.33) 
o r  

eN-~, = ~v~_~i 1 with A, = i - 1. (5.34) 

l Y i  In the  second case (5 34), we have  e N- '  (e ,  = 0, so that ,  by a s i = l a r  reason- 

ing,  ~ ,  a ~i 1 ~'i -- ~ j  is of highest weight. We then have ~, = ~ i  + fl~., which is impossible, 

since [~,1 # 0. 

In order to exclude the second case, we first note that 

= = f ~j = 7 ~ . / ,  (5.35) 

for some 7 # O. Since fi~ = O, ~i_j is the lowest-weight vector of the subrepresen- 

tation generated by ~j. Furthermore we have that ei-l~i j = "~j, so that,  by (5.33), 

we have that e I-1 ( ~ j  - " t e e , )  = 0. Thus ~i__¢ = 7e~,. By (5.35), this implies that 

e (72~, - / '~ j )  = 0, and again, with Lemma 5.3.2 a), -r2~, = f,~i~}. This shows that 

[~r] = 0, completing the proof. [] 

We complete our analysis on the decomposition of tensor products with an explicit de- 

scription of the representation spaces W~, equipped with natural bases determined by ~ 

and ~'} in Lemma 5.3.3, with normalization (5.28). 
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The space Wi is spanned by 2N vectors 

¢,.+ , ~ o = ,  m = 

with i = ~_! and j '  = N-~-12 

The representation is given by 

f& 

f~'~ 

f~ 

and 

j , ( j - 1 ) . . . - j ;  

j ' , ( j ' --  1) . . . - j ' ;  

h ~ ,  = 2 m ~ k .  

~m--1 x/(J + m ) j j  - m + 1)~ ; '  

h& = 2.~&, 

-- ~m-I = ¢(j +,~)~(j m + I). ' 

= x / C j , +  m ) , C j ,  - ~ + 1), ~ -1 '2 ,  

= ¢ ( j  + m + 1)q(j - m)q ~m+,', 

= x/(J + ~ + 1) , ( j  - m ) ,  ;' ~nt+l 

1 
+ ~,,,+1, 

x/(J + m + 1) , ( j - , - , , ) ,  

= - x / ( J '  + ' '  + 1 ) j j ,  - ~ ) ,  "- (Pm+l 

f~i_j = O, f(i__j 

re_+, = ~j, ~ .  

~o~,+ = 0,  f¢_~, 

m > - ( j  - 1);  

m > - ( j '  - 1);  

m_< ( j -  1); 

ra ~ ( j ' -  1); 

= W~7, 

= ~o'~,, 

= ~_j ,  

: O. 

(5.36) 

(5.37) 

(5.38) 

(5.39) 
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The representation W~ is visualized in Figure 5.1. Each dot marks a basis vector, its 

height in the diagram indicating its weight. The arrows in upward- or downward direction 

stand for non-zero matrix elements of the step operators e, f ,  respectively. 

For a bet ter  understanding, we introduce the Casimir element 

= - = + j + l  Di Q ~ q ~ q 

(5.40) 

q 

By construction, we have that ~j = f e ~  = D,~.. So if we inductively define ~ by (5.37) 

the action of f on ~ is determined by ~ ~i " " = Di~,~. Having ~!j = ef~_j,  the ~ ,  can be 

consistently defined by equation (5.39). Notice that the ~ are the basis of an irreducible 

subrepresentation and that Di is zero on ~ and ~ , .  This is now used for an inductive 

definition of ~ as in (5.38) and ~o~ as in (5.37). By comparison with the proof of Lemma 

• ~ N - i  5.3.3, we see that,  e.g., ~}+ is proportional to ~N-I-j" 

In this basis the form (., .) has the values 

~'i . i +  . i ± , ,  ( _ i ) . / ' ~ , , ,  ( ~ , ~ , )  1, 

(5.41) 
J-"* 1 

(k),(i- k), 
k = l  

and on all other pairs (., .) vanishes. 

5.4 Fusion Rules,  and q-Dimensions:  Selecting a 

List of  Physical  Representat ions  

In order to show that the tensor product decomposition of U~ ca (sl2) defines a fusion-rule 

algebra, in the sense of Section $.5.1, we need to veri~y associativity, i.e., we have to show 

that the ezcluded representations are an ideal under forming tensor products. This is done 

using a condition introduced by Pasquier and Saleur [5~] which characterizes saturated 

representations of the Borel algebras of Uq (sl2). It is shown that this criterion entails 
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the vanishing of q-dimensions of representations for which it holds. Our criterion and 

the vanishing of q-dimensions are, in fact, equivalent for indecomposable representations. 

The group-like elements of U~ ea (sl2) are used to define characters which diagonalize the 

fusion rules, and the so-called S-matriz is ezpressed in terms of q-numbers. We define 

a subset of representations which will be used in our duality theory. 

It was already pointed out in [52] that the representation spaces Wi have the property 

that  kere = ime N-l,  which we will abbreviate in the following by (E). It is concluded 

from a simple calculation for V2 ® W and an iteration of tensorproducts, that  if (E) holds 

on some space W, it is also true for Vp ® W. 

L e m m a  5.4.1  

i) If  (E) holds on some module W and W = A @ B, then (E) holds on A and B. 

iO (E) holds on V~ only i / p  = N. 

iii) I f  (E) holds on W then it also holds on Vp ® W, p = 1 , . . . ,  N. 

Part i) is a trivial consequence of the definition of direct sums of modules, and ii) is 

immediately checked for the representations given in Proposition 5.2.1. We show iii) 

first for p = 2 .  Let v = ~ ® w + + ~ 2 L ® w _  be in kere, with h w + = ( 2 m T 1 ) w + ,  so 
2 2 

I 2 - r n + k  2 1 2 that  A ( h ) v = 2 m v .  T h e n 0 =  A ( e ) v =  q ~ ® e w + + q  ( , ) ~ ® w _ + q - ~ _ ~ ® e w _  

= = = q~--~ implies ew_ 0 and ew+ q-(m+a)w_. By hypothesis w_ eN-Xy, so that  6v := 

_~ ® y  = ~ ®w+ + ~_ ®w_ for some w~, where we use that  the (0,n)- 
1 2 

graded summand of A(e)" is q"-~ ® e". Hence it is sufficient to show, that  v' E ime, with 

( ' ) i.e., we can assume w_ = 0. In this case we have from v ' = v - g v = ~ ®  w + - w + ,  
2 

A(e)v = 0 that  ew+ = 0, thus w+ = q ~-1 eN-az and w = A(e) N-1 (~½ ® z).  In order to 

show iii) for general p, we use the fact, that  Vp ® W occurs in V2 ®(p-l) ® W as a direct 

summand and apply i). 

This statement only depends on the representations of the Borel-algebra generated 

by e and k. For these, however, the tensor product decomposition is solved by a simple 

basis transformation, showing immediately the invariance of "saturated" representations, 
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as proposed in iii). This, together with the fact that  if a direct sum satisfies (E) then 

all the summands do, makes the convenience of working with this property evident. All 

of this can be understood from a more general representation-theoretical point of view in 

a very natural way [6]. 

In the decomposition given in (5.19), (E) is true on the right summands and false 

on the left ones, so that  we are led to the definition of the fusion rules 

1 if [ p l - p 2 1 + l  

i 

0, else. 

< i 

_~ mln(px +p2 - 1 , 2 N -  1 - (Pl +P2)) 

-- P x + P 2 + l m o d 2  
(5.42) 

The fusion matrix N i is then defined in the usual way, i.e., (Ni)ik := Nii, k. 

These fusion rules show that the list of algebraic objects producing the combina- 

torics of the AN-a series, beginning with ~2-symmetr ic  models in rational conformal 

field theory, and continuing with SU2-Chern-Simons-gauge-theory and towers of algebras 

arising in local quantum theory, can be completed with the quantum group U~(sg~), with 

q = exp( i~ /N) .  

In order to compute the eigenvalues of Hi, we introduce quantum group characters. 

L e m m a  5.4.2 If  we define the r-th q-dimension of a representation space V, d~v, as the 

character 

(5.43) 

then 

a) for the irreducible representations Vp, with highest weight ~ = p - 1 E Z, these 

characters have the values 

(rp), (5.44) 
= (r),  ; 

b) d~ = (p), is positive, for all p : 1 . . .  N - 1, i f  and only i f  n = 1, as for unitary 

representations. 
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In  the  nex t  le rnma we draw the  connect ion of vanishing q-dimensions  and  p r o p e r t y  (E) .  

L e m m a  5 . 4 . 3  If kere = ime ~ - 1 ,  i.e., i f ( E )  holds on some representation space V, and 

if I intertwines V with itself, then 

try (q'hI) = 0,  for r = 1 , . . . , N - 1 .  

Proof. We derive f rom (B)  by  induct ion,  t ha t  Vt = ker e t = ime ~r-t for all l ,  wi th  

O= Vo c ¼ . . .  c V~r_l c VN = V .  

Because  of (q'hl)(Vt) C Vt, the  t race  can now be rewr i t t en  as a s u m  over  charac ters  on 

the successive quotients: 

N - 1  

1=0 

(5.45) 

Obviously,  e m a p s  Vt+l onto  Vt, wi th  e - l (V t_ l )  = lit. We therefore  have  an i somorph i sm 

e*, wi th  

e*: Vt+l /Vt  -*  Vt/Vt-1 (5.46) 

wi th  

Hence  

[h, e*] = 2h and [I,  e*] = 0. 

N_I ) 

[] 

leading to 

W i t h  these  tools in our  hands ,  we axe now in a posi t ion to c o m p u t e  the  eigenvalues of the  

fusion m a t r i x  and  to  show tha t  the  fusion rules axe well defined, in the  sense t ha t  we have 

a s s o c i a t i v i t y ,  i.e., l~l~l~j = l~ljl~. As the  fusion rules themse lves  (wi th  the  representa t ion-  

label ing in t roduced  in Sect ion 5.3) do not  depend  on n,  we will res t r ic t  our  analysis  to 

the  cases n = + l ;  ([ n I> 1 will jus t  p e r m u t e  e igenvectors  and eigenvalues).  
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P r o p o s i t i o n  5.4.4 For q = e+~ let Nq,k = (Ni)~k E {0, 1}, be the multiplicity of Vk in 

 ®yj. 

Then the eigenvaZues o/ Nj are ezactly ~ ,  r = 1 . . .  ( N - 1), and we have that 

IINjll = d}. (5.47) 

Proof. Taking traces of q~ on both sides of the decomposition, we arrive at the familiar 

equation 

or in terms of the eigenvectors 

q" = ( < " "  (5.40) 
Njq, = g ¢ .  

In the special case of q = e+~,  the vectors q,, r : 1 , . . . ,  N - 1, are linearly independent, 

and q, has positive components. Note that  N, = 1 and N~r_, = 1. For even j  < N - 1, we 

can infer the ergodicity of Nj from the fact that  any unitary representation is contained 

in a tensor product of Vj. By a Perron-Frobenius argument, we conclude that  q, is the 

unique vector with Niq , = [[Nj[]q,. Similarly, we find that,  for odd values of j ,  Nj has 

two ergodic invariant subspaces, one spanned by even-dimensional representations, one by 

the odd-dimensional ones. [[Nj][ is now doubly degenerate, with Perron-Frobenius vectors 

ql -4- qN-1. 

With these results, it is not hard to see that  the converse holds, too. 

The multiplicity matrices obey [I~lit [ : a~, for j = 1 , . . . ,  N - 1, only if q = e±-~. 

[] 

Since the matrices l~lj are all diagonalized by the same matrix, 

¢,j  = d,"(j h = ( i j h  , (5.50) 

they evidently commute. In terms of representation spaces, this can also be inferred 

from the associativity of the comultiplication (4.2) and the invariance of (E) under tensor 

products. 
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The first q-dimensions, ~ = []Nj][, can be interpreted as the quantum dimensions of 

the V/s. /'or the fundamental representation V~, for which 1~12 is indecomposable, this is 

the well known formula 

IIN211 = 2cos ~ .  (5.51) 

We conclude this section with a summary of those conditions imposed on a quantum-group 

and a list of those representations of the quantum group that  appear in applications to 

local relativistic quantum theory. The rational fusion rules are only reproduced by the 

subset of representations with ~ E -125" (i.e. p2,, = 1). I5 we denote the representation V~ 

in (5.3) by ~x, ka] then we have that  

N[p~,k~] [px,k~],[p~,kx] ---- 1 
(5.52) 

for k~ = kl + k~ ~ d  N , ~ . , ~ . . , ~  = 1 

and zero otherwise. The smallest subset of representations, invariant under fusion, is 

therefore obtained by setting kx = 0. From Proposition 5.2.1 we see that  it contains the 

trivial representation and closes under conjugation. 

By Proposition 5.2.4, these representations are unitarizable only if n = 1 or 

n = N - 1 .  
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Chapter 6 

Path Representations of the Braid 

Groups for Quantum Groups at 

Roots  of Unity  

6.1 Quot ients  of  Representa t ion  Categories  : 

The  V e r t e x - S O S  Transformat ion  for 

N o n - S e m l s i m p l e  Q u a n t u m g r o u p s  

We develop an intertwiner calculus for non-semisimple Hopf algebras in which the notion 

of irreducibility is replaced by indecomposability, so that Schur's Lemma is not applicable. 

We use this to generalize the "vertez-SOS-transfovmation" which is defined as a map from 

an interturinerspace, e.g., a space of intertwiners between tensor product representations, 

to linear maps on quotients of intertwiner spaces. This yields a rigorous procedure to 

obtain braid group representations of rational local field theories and Boltzmann weights 

of the restricted RSOS-models from quantum groups at roots of unity. (In this contezt, 

we shall speak of a "rational", or "restricted" vertez-SOS-transfovmation.) The ideal 

property of the ezcluded representations is used to show that the resulting SOS-forms 
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of the intertwiners can be written as Enear maps on path spaces. A trace formula for 

the rational vertex-SOS-transformation is given. A more compact presentation of this 

construction may be found in [61] 

From the universal element T~ E KS ® KS of a quasitriangular Hopf-algebra KS one can derive 

representations R v of the braid groups B., on an n-fold tensor product 

of representation spaces Vj~ of the algebra K~, by setting 

RV(al) = 1 ® . . .  ® Rii+x ® . . .  ® 1 

for the generator al of B. .  Here the matrix 

is given by 

= P , , + x  pj.(,+,) n ,  

and commutes with the action of KS. If the representations of/C are completely reducible 

it is well known [53, 43] how to construct representations, R e,  of B,~ on the path space 

P(i l{Je}lJ)--  E e P ( i l J . o ) , - . . , j . ( . ) l J ) .  
,rES,= 

Here the path space "P(ilj: , . . . , j ,  lj) is defined to be the linear span of paths 

ta = (g~a~,bt2a2,...,g,~an), with # .  = j ,  #o = i, and V~,~ is an irreducible subrepre- 

sentation of V~._~ @ VA, where ak = 1 , . . . ,  N~h_lj~,. h labels the multiplicity. 

The construction of R e (Vertex-SOS-transformation) uses the fact that  the compo- 

sitions of Clebsch-Gordan matrices 

and 

P~(,).i = ( P i j , ~ ( a l )  ®... ® l j . ) . . .  (P,h_,j,.~,(ak) ® ljh,~ ... ® lj~) 

... ® 

(6.1) 

(6.2) 
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are a basis of intertwiners between the spaces V/ and K ® Vj, . . .  ® Vj,, and can be 

normalized such that  

Pi,,,,,(i,)P,41,),i = 6~,~,,Sjy . (6.3) 

The matrix elements of 

RP(b) : ~ ( i l Jx , . . .  ,J-[J) ---+ 7~(i[J~(1), .-- ,J~(~)lJ), 

where a is the image of b under the natural projection of Bn onto S, ,  are given by 

RV(b)P~c~')Z = ~ RP(b)~',~ P~'(J~0),~ " (8.4) 
*~'O'(ilA~,)...L(~)ID 

Let us note, at this point, that  the path spaces carry a multiplicative structure by simple 

composition 

Y ] ~ ' ( i l j x , . . .  ,JtlJ) × ~ (J]Jt+l,--. , j , [k)  ~ "P(i] j l , . . .  , j ,  lk ) ,  (6.5) 
J 

giving rise to a path algebra. 

In the absence of complete reducibility, e.g. when/g  = Uq(sga+l) with q = ei"~, the 

Vertex-SOS transformation has to be modified. For this purpose, let us introduce linear 

spaces of intertwiners between an irreducible representation space V and an arbitrary 

representation space W. 

In order to describe the set of irreducible subrepresentations of W isomorphic to V, 

we shall make use of their embeddings. Therefore, let us introduce the linear space of 

intertwiners, 

Int(W, V) := { I :  V ---} W, Ia = aI ,  Va E/C}. (6.6) 

By Int(V, W) we denote the space of intertwiners in reverse direction*. It identifies 

subrepresentations, V ¢ = kerI ,  with the property that  W / V "  ~- V. As an example, let 

us consider K; = U,(Ma), with q = e~  and W = V~v-x ® V~ ® V2 and V = VN_,. Since the 

number of highest- and lowest-weight vectors for a given weight is the same as in the 

generic case, the dimension of Int(W, V) is unchanged. 

*We prefer the more suggestive notation Int(W, V) to Homjc(l:, W). 
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Since intertwiners Pii,k can be defined for all i , j ,  k < N obeying the fusion rules of 

ordinary SU(2), see (5.20), a basis of Int(W, V) is given by 

P(N-I)22.CN-I) = (P(N-,)2.N-2 ® 12) P(N-2)2.CN-I) 
and (6.7) 

As in the generic case, we have a natural map from the space 

ht (w2 ,  w , )  = {R:  W, --. W2, R:  = :R, Va • JC} 

into Horn (Int(W1, V), Int(W2, V)) by left multiplication, denoted by 

~ :  Int(W2, W1) ---+ Hom(Int(W1, V), Int(W2, V)) 
(6.8) 

n -0 ~'(n) .  

To recover the path structure for the rational case, we have to divide out subspaces of 

intertwiners. For this purpose let 

Into(W~, W2) = {X • Int(W~, W2) [ t r (gIJ)  = 0, VJ • Int(W2, W~)}, (6.9) 

where g implements the square of the antipode; e.g., for Uq(sl,,) it is given by g = q6. 

If one of the representations W / =  V is an irreducible representation with non vanishing 

q-dimension we see that Into(W1, W~) can be given as the subspaces of intertwinwers 

without left or right inverse. More precisely, we have 

Int°(W, V) = {I • Int(W, V) [ J I  = 0, VJ E Int(V, W)} 

and (6.9') 

Into(V, W) = {I e Int(V, W) [ I J  = O, VJ  • Int(W, V)} 

If we assume V only to be indecomposable rather than irreducible, "J I  : 0" and " IJ  : 0" 

in (6.9') have to be replaced by "J I  and I J  nilpotent, VJ". These sets are linear spaces, 

and yield common invariant subspaces of the generic Vertex-SOS-transformation, in the 

sense, that 

7~(n) : Into(W1, V) --* Into(W2, V), (6.10) 
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for all R E Int(W2, Wl). The complemented irreducible representations in W isomorphic 

to V are identified with points in 

In our example III~,(VN-~ @ & @ &, VN-~) is spanned by P & - ~ ) ~ ~ , ~ - ~ .  This can be seen 

from the explicit form of the intertwiner 

In this case 

and 

+ where A2 G (A@ 1)A. A left inverse intertwiner P & - ~ ) , ( ~ - ~ ) ~ ~  to P(N-l)22,(N-1) therefore 

has to be ill defined on tz 8 tt @ ti, as 
I a a 

is not ~ossible for highest-weight vectors of irreducible representations. A similar result 

was first obtained in [30]. 

As in the case of the tensor product decomposition, we can find a vector fg>l E 
a 

VN-1 @ 8 VZ, given by 

2tE = ~ t ~ e t i o d + q ~ t ~ ~ ~ ' ~ @ t ~  
(6.12) 



which satisfies (5.25) and (5.26) of Lemma 5.3.3, and therefore yields a subrepresentation 

WN-1 of VN-1 ® V2 ® V2. In fact, it can be shown that all tensor products decompose 

into three sets of subrepresentations: 

a) irreducible representations with highest weights )~ E {0, . . . ,  N - 2} 

b) irreducible representations of dimension N and weights ~ E N Z -  1 

c) 2N-dimensional, indecomposable representations, whose structure differs from the 

one given for the Wi in Section 5.8 only by shifts, a --~ a + N,  in the weights. 

In order to define the rational Vertex-SOS-transformation, we put 

:P(W, V) = Int(W, V)/Into(W, V).  (6.13) 

For any linear map T : Int(W~, V) ~ Int(W2, V), that maps 

Into(Wx, V) into Into(W2, V), 

we have a well defined map ~' : 7~(W~, V) -~ ~(W2, V), given by the condition, that the 

diagram 

Into(W~, V) ~ Int(W1, V) -~ P(WI,  V) 

I T  I T  I T  

Into(W2, V) '--* Int(W2, V) -~ P(W2, V) 

Figure 6.1: 

commutes. Stated differently, if [TI]2 = 0 whenever [Ih = 0, then T is defined by T[Ih = 

[TI]2, from the set of equivalence classes of Int(W1, V)/Into(W~, V) into the quotient space 

Int(W2, V)lInto(W2, V). 

As mentioned in (6.10) this is the case for T = T~(R), for any R E Int(W2, W1), so 

that we have the following definition: 
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Def in i t ion  6.1.1 The rational Vertex-SOS-transformation is the map 

Int(W2, Wl) --* Hom(7:'(Wl, V), P(W2, V)) 

n -~ ~ " t ( R ) ,  

where pr ' t(R) is the eztension of T~(R) given by prat(R) : :  P(R).  

(6.14) 

For 1N_ 1 • R E Int(VN_l ® V2 ® V2, VIv-1 ® V2 ® V~), with R = ) l i p  1 -3v ~o~o, ~i being the 

projections onto the respective subrepresentations of V2 ® V2, the ordinary Vertex-SOS- 

transform is given in the form 

A1 i(;~o-;~,) 
~,(R) = ~ (6.15) 

0 Ao 

where the invariant subspace of P(R),  spanned by the vector (~), is identified with 

Into(VN_, ® Va ® V2, VN-1) ---- (P(~v-1)22,N-1)- Taking quotients for the rational case we 

arrive at the one dimensional space 7)(VN_I ® V2 ® V2, VN-1), on which 7)r't(R) acts as 

multiplication by Ao. 

Clearly this map factors through the composition of intertwiners 

Int(Wa, W~) x Int(W2, W1) --* Int(W.,, W1). (6.16) 

Next, we use the results of the tensor product decomposition (Section 5.3) of Uq(sl2) to 

identify 7>(V~ ® V/, ® . . .  ® Vj., Vj) with the restricted path space, 7),~,t(i [ j l , . . .  ,in l j). 

The latter space is defined in the same way as in the case of complete reducibility, with the 

restriction, that N,,h_~j~,,h # 0 and #k E L, for all k. For any restricted path, the inter- 

twiners P,,(Jdd and Pi,~(id given in (6.1) and (6.2) are well defined and can be normalized 

as in (6.3). 

Lem ma 6.1.2 

a) I / for  I e I~t(V~ ® Vj, ® . . .  ® V,., VA, 5.~(~,d = O, for eve,~ restricted path ~, then 

I E Into(V~ ® Vj, ® . . .  ® V/., V/). 
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b) The images of intertwiners P,~(J,)a in the quotient "P(V~ ® V/, ® . . .  ® V/., V/) form 

a b~i., in 7,(y, ~ V/, ~ . . .  ® vj., yj). 

The corresponding statements are true, i f  we pick a different ordering of the intertwiners 

in (6.1) and (6.~) and, moreover, i f  we ezchange left with right intertwiners. 

P r o o f .  

We first show, that if V/ C V.h_ , ® V/~ ® . . .  ® V/~ is complemented, i.e., its injection 

has a left inverse I : Vuk_ ~ ® V/h ® . . .  ® V/. ---* V/,  then there exists some #k, for which 

Nuh_~ih,~ h ~ O, so that ~ h  = (P~,uh-,i~ ® lih+t " "  ® 1i .)  (V/) is non-zero and comple- 

mented in V~h ® V/h+t ® . . .  ® V/.. Statement a) then follows by induction. 

Suppose that,  for any #k, ~ h  is either zero or not complemented. This means that 

I .  (P~'h-~ih,~'h ® lib+, "'" ® 1i ,)  (12/~h) = O, for all #k. Hence I P k ( V / ) =  O, where 

P" = ~ Pzh-ti,.,h P,,.u,-,ih ® lib+,--" ® 1i. 
~h :N~,h_ , ik ,re, Co 

is the projector on the first summand of the decomposition 

v,,,_, ® v~, ® . . .  ® V/. = 

( °.1, 
Nl~k_l ik,~k :l~O 

Wherefore ~ = ( l  - P,)(V~) # 0 c ~  he complemented ~ d  is ~ont~ned in the second 

summand of (6.17). However, we know that property (E),  introduced in Section 5.4, 

extends to tensor products and direct summands. As (E) is satisfied for all Wi, it also 

has to hold on V/. For j < N~_____22, this leads to a contradiction. The second statement is 

an immediate consequence of a), since for any I E Int (Vii ® Vj, ® . . .  ® V/., V/) 

I - y~  c~ P~(i,),i E Into (Vi ® V/, ® . . .  ® V/., V/) , 

with l ic~ = Pi,~(iOI, (by the normalization chosen in (6.3)). From Lemma 6.1.2, a) we 

find that the rational Vertex-SOS-transformation preserves the multiplicative structure 

of the path spaces, as explained in the following remarks. 
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Under the natural composition, the spaces Into(W, V) have the ideal property 

Int (V, ® Vj, ® . . .  ® Yj,, Yj) X Into (V/® V~k+~ ® . . .  ® Vj,,, V, ) 

c Into (v~ ® vj, ® . . .  ® v~., v , ) ,  
(6.18) 

as well as 

Into (v, ® vj, ® . . .  ® v~,, y,.) × 

c Into (K ® vj, ® . . .  ® Yj~, Y,).  
(6.19) 

With the identifications made above, we can view the rational Vertex-SOS-transforma- 

tion, in the case of Uq(sl2), as the map 

Int (V,: ® . . .  ® V,h, V A ® . . .  ® Vh) -~ Horn (~(IIA...AID, 7~(il,,--.,hlJ)) 
(6.~0) 

R ~ ~ ? ( a ) .  

By (6.18), (6.19) and (6.10), this map is evidently compatible with the multiplicative 

structure defined in (6.5), in the sense that for 

and 
A E Int(V,, ® . . . e Y , , ,  Yj, ® . . . e Y j D  

S E Int(V,h+ , ®.. .®V,h+,,Vi~+, ®. . .®V/m+, , )  , 

7~t(A®B) maps 7~(i[jl,..., J,~lP) x 7~(pljn+x,..., j,,+,~]j) into the product of path spaces 

7~(i[sl,. ,skip) x ~(p[sk+l , . .  ,sk+llj) By ~,t ~,t .. . 7~p (A) ® ~P~j (B),  for all p E L. 

The kernel of the rational Vertex-SOS-transformation is given by 

N Jc (y,, ~ . . .  ® y,, ,  yj, e . . .  e y,., I y , ) ,  (6.21) 
. , N ~ . , i # 0  

where ~(W2, W1 [ V) is the subspace of intertwiners in Int(W2, W~), which map all 

intertwiners Int(W:, V) to Into(W~, V). 

A more efficient way of characterizing ]C(W2, W1 [ V) can be given with the help 

of Lemma 5.4.3. From the proof of Lemma 6.1.2, one can see that the common kernel 

Wi~ d := A ker Pj,,,(j d is the maximal subspace in W := V A ® . . .  ® Vj. satisfying (E). We 
j,, 

associate to it the projection Po = 1 - E P~(j,),jPi,o,(jd, and, as Po E Int(W, W), W, ° is • (J~) 
J , a :  

seen to be a subrepresentation of W. 
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L e m m a  6.1.3 I f  C E Int(W, W), where W is an n-fold tensor product of irreducible 

representations with dimensions less than N, and a E Uq(sl2), then the following trace 

formula holds 

t r (aC r W) = 

N - 1  

E tr(a I Vj) t r  (7~rat(O) r ~(V¢", Vj)) 
1=o 

+ tr (oC. r 
(6.22) 

where C. = PoCP°. 

Proof .  

The second term on the r.h.s of (6.22) can be identified with the second term on the r.h.s 

of t r (aC)  ---- tr((1 - Po)aC(1 - Po)) + tr(PoaCPo). 

In order to evaluate the first term, we note that 

tr  (P,~(j,)jPj,,~(j,)aC P~,(i~)j,Pj,,~,(j~)) 

---- 5jj,tr (aPj,~(i,)C P~'(i,)d' PJ',~'(i,)P~(i,),i) 

= 6 ~ , 6 j j ,  g ~ , t r ( a  r V j ) ,  

where cJ~,li  := Pi,~(J~) C P,~'(J,)d 

are the matrix elements of Pr ' t (C)  on T'(W, ~) .  [3 

Next, we choose functions {fp}p=l,...,N-1, such that t r(fp(qh) r Vp,) = 6p,p, and 

tr (fp(q h) r W) = 0, if W has property (E). With the help of Lemma 5.4.3 we see 

= . , ~ (6~ , ,+1  - ~ , , - 1 ) ,  that any function with fp(1) 6p,, fp ( -1 )  = --6pU-,, fp(q') = a 

r = 1 , . . . ,  N - 1 and fp(q') = fp(q-'),  is a candidate. This defines an inner product of 

A E Int(W2, W1) with B E Int(W1, W~), by 

(A ,B) ,  = tr ( f , (qh)AB I W2) (6.23) 

= tr (Pr ' t (A) "P~"t(B) 1 "P (W2, Vp)). 
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Since the map p, , t  : Int(W2, W2) --* End(P(W2, Vp)) is surjective, we have from (6.23) 

that 

/C (W2, W1 l Vp) = {A I (A, S)p = 0, VB • Int (W~, W2)). (6.24) 

Let us conclude our discussion of the rational Vertex-SOS-transformation, with some 

comments on the structural properties that are present in the vertex picture, but not 

observed in the SOS-picture. First, it is essential to restrict j ~ _~_t, since every subrep- 

resentation isomorphic to VN-_r~ is, by Lemma 5.2.3, complemented, i.e., Into (W, V_~=!) = 

0, and since the dimension of the highest weight spaces is larger than in the generic 

case, 7 ~ (W, V~_~) is described by unbounded paths. An explicit example is given by 

W = V A ® V~ and V = V/, with NA/2Z = 0, j ~ ~v~____!~. From the decomposition of tensor 

products, discussed in Section 5.3, we see that Into(W, V/) is given by the embedding of 

V/ into Wj, (mapping ~ --* ~ ) ,  and Into(V~-, W) by Oi, (mapping ~ --* ~ ,  rest ~ 0), 

where D i is defined in (5.38). 
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6 . 2  B r a i d  G r o u p  R e p r e s e n t a t i o n s  a n d  F u s i o n  E q u a -  

t i o n s .  

With the help of the rational Vertex-SOS-transformation, as defined above, we obtain 

a faithful representation of the braid group on n-strings, B,,, on the space of restricted 

paths 

~'.., (~ I {J,} I J) = Z~ ~ ~'.°- (~ I J.o),...,J.(.) I J) • (6.25) 
~ES.. 

By compatibility with the multiplicative structure of the path algebra, if is sufficient to 

give the generators in Hom(P(k  [ p, q [i), 7~(k [ q, p[ i ) ) ,  by 

, ,", ,-  ----(lk®R~'~(PkP'Y'(13)® lq) Piq,,(ct ) + • iS= = ~_,p (k,q,p,,)t,,, ~, (Pkq,t(v) ® 1.)  P¢~,I(#) 
a,u (6.26) 

rood Int. (Vk ~ V, ~ V~, Yd. 

Here w e  put R;,  = -1. 

Since by the arguments of Section 5.4, for all d E N and q a root of unity, we 

can find a family of indecomposable representations, with nonzero q-dimensions, and 

fusion rules for U~(sld+l), such that 7 ~ (V~ ® Vjl ® . . .  ® Vj., Vk) admits a path basis in 

the above sense, we explicitly include the multiplicities in the following formulas. It is 

convenient to use the following graphical notation for products of intertwiners. A tensor 

product Vjl ® . . .  ® Vj. is represented by n-ordered strings with colours j l , . . .  , j , ,  and an 

intertwiner I : Vj~ ® . . .  ® V~. --* V~ ® . . .  ® V~. by a "deformation" of the strings j l , . - . ,  j ,  

into ix , . . . , i ,~ .  Schematically, this is shown in Figure 6.2: 
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i 1 irn 

Q • t 

1 n 

Figure 6.2 

The generators of these "deformations" shall consist of the intertwiners Pij,~(a), 
Pk,ij(~) and R~,which we represent, graphically, by braids 

] i ] i 

i i i i 

R - 1  , , n ~  = ( j , )  

and forks 

Figure 6.3 

Figure 6,4 

i j k 

k i j 
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The normalization (6.3) is then represented by 

= 61.,l ,~.,,,, 

and equation (6.26) by 

Figure 6.5 

k q p k q p 

q, P, 't')L,u,~u 

i i 

Figure 6.6 

The proof of Lemma 6.1.2 shows that a choice of basis in :P(V~ ® Vj~ ® . . .  ® Vj., Vk) can 

be given for any ordering of the Clebsch-Gordan matrices. In fact, a change of basis 

by reordering can be entirely expressed in terms of the SOS-weights (p+(k, q,p,:~J'a~ 
The following fusion identities mainly rely on the duality relations (4.9) which can be 

reexpressed in term~ of intertwiners by 

( I , @ R ~ )  (R~@lj ) ( l l@P~i , ,~Ca) )=CP~i , , , ,Ca)@l l )RL (6.27) 
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and is represented, graphically, as follows 

i j t 

t m 

i j t 

1 m 

Figure 6.7 

Analogous equations hold, for the reflected version of Figure 6.7; see also [43, 44]. Note 

also, that  the labels in (6.27) do not have to correspond to irreducible representations. 

Let us assume that  we have chosen a basis of intertwiners such that  

(1 v ® X)Ppx,v = (X ® 1,)P,p,v = )~ (Vo) l v ,  

for all ~ E VI*, with v° independent of p. Then we have 

L e m m a  6.2.1 

,) 

(6.28) 

The images of{( l l  ® Pjt, . .(a)) (Pi..,k(/~))},.,.,,6 in ?(Vii ® Vj ® Vt, Vk) form a second 

basis. 

b} The coe~cients, ~o', ezpressing the change of basis 

(1, ® ?jt , . . (a))  Pi.,,,k(/3) = 

~o(i,j, £, k ) ~ f f  (Pii., (#) ® I t )  P,t,k(v) 
r ~ v  

and 

rood Into (V~ ® Vj ® Vt, Vk) 
(6.29) 

(P,J,,O') ® I t )  P,,,~,(,,) = 

~(i,j, l, I.~',~ (l l ® Pit.re(a)) P~m.k(~) mod Into (Vi ® Vj ® Vl, Vk) 
(6.30) 
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can be computed from p-matrices: 

~(i,  j, t, k~ , -~  = - - / r d , ~ '  

~ p ~ ( 1 , m , i ,  ~,a~ I.V'*,an p+(1," " i,1~ k),,,1, ~ p4-(j,i,t, ~J,,O" *'3' r)i.1,, 
(6.31) 

and 
r d . ~  ~(i,  j, t, k)~,.~ = 

rn  IT/ 4- • r , ~ v  4- • • i ,1 / J  )-~p:~(1,i, rn, k)i,'~a p (3,l,i,  k ) r n , a r  / /9 ( 1 , 3 , ' / , , ' F ) . , / , 1  ~ 

n~ 

(6.32) 

The proof of Lemma 6.2.1 is purely computational. For convenience, we understand 

the following equations modulo Into(W, V), without further mentioning. Since :~ ® 1 : 

V~ ® W ---* W is an intertwiner, for any k e V~*, we obtain from (6.26), for k = 1, 

R~P,~, , ( . )  = E P4-O, """ • q, P, 2),,1, P~v.'(#) 

Applying R ~  ® 1, to (6.26) and making u s e  of (6.27), w e  have that 

(6.33) 

(1 ,  ® P,,,,A# ) ) R~, 5~,,(  ~ ) = 

E + "iz~,~ (RZqPk,,t(v)® lv) P (k,q,P,Z)t,,,~, Plv.i(P)" 
I,u, IA 

(6.34) 

4"[ '1 ° I ~ q ~ l a  We now use (6.11) on both sides of (6.12) and invert p t l ,s ,q,  Ui, ln by using 

p~:(1, q, : :~j,l~ • . .q, la : , ' J q , l a  p4-(1, = 5 . ~ .  3, q, 2 )j, ln 
Ot 

(6.35) 

This yields the desired expansion of the basis {(1, ® Pkv,i(/3)) Pqj,i(y)}i,tL n in terms of 

the path basis, with coefficients ^ - i,~n ~o(q, k, p, z)t,t, given by (6.31). 

The expression for @(p, k, - :~J,n= ~, *Jt,~e axe obtained by applying the product of R-matrices 

(R~p ® l q ) .  ( lk  ® R~)  to (6.26) and proceeding in the same way as above. [] 
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i j [ i j [ 

k 

k)v,/~,, = ~ , ~ ( i , j , ~ ,  ","~ 

Expression (6.29) is expressed, graphically, as follows 

Figure 6.8 

To demonstrate the convenience of the graphical notation, we repeat the proof of equation 

(6.31): 

q k p 

i 

q k p 

q 

i 
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p (1,3, q,~)j,1. = q,~),,. ~.= p - ( 1 , j ,  - • • q,1= 

q k p q k p 

k 

j " , . ~ .  

p - ( l , j , q , " ~ ' ~ =  + ' "  • j ,s= = ~)j,l,~ P t .~ ,q ,P ,z ) l . , . t ,  
cz=.,~ 

q k p 

/ 

k 

I 

,=v/JJ.~ 

- -  " • • ~ . q , l Q  p (1,3, q,~)j.l.~ p + ( k ,  • j .6= + k. l , .  q, p, .)t,,.,. p (1, q, k,l).,l= 

Figure 6.9 

q k p 

i 

[] 
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In the same way we obtain 

i j I i j 1 

= k),,,,,,,,~ 
rnot/~ 

k k 

Figure 6.10 

Since the P~,k(a) form a basis of left invertible intertwiners in Int(V~ ® Vj, Vk), w e  

find a dual basis Ph,~j(3) in Int(V~, V~ ® V,.), with 

P k , , j ( ~ )  e , j , k ( , ~ )  = ,~,,~ • (6.36) 

The path expansions of these intertwiners are evidently given by 

( l t  ® P,,.,(v)) (P,,.,.,(~) ® 1.) P,,,.,i(7) = 
(6.37') 

,)~,,,,, ,%,,(t.,) rood Znt. (~  ~ ~, ~). 
..y 

With these orthogonality relations, we obtain the fusion equations in S O S - f o r m ,  by 

expanding both sides of a version of (6.27): 

P,.~ = (P,~,,.,(6")®l,z)(I,.®R;~) ( R ~ ® l . ) ( l v ® P r . , q ( 6 ) ) .  

Together with the reflected version, this yields 

6qq, 4- • j , f a  
6S 'P  (k,q,p,z) t ,~g = 

and 

,b(J,,', s ,  ¢" ' "  + J"~ 
,),,,,,, p (k, , ' ,p ,~), , , , ,e , ,  

m, Tett @ 
(~%'d 

p+(rr t  t, a ,  19, " rn,n ' r  #~m', ( '~ '  

~.~, 6 , , ,  p+(k, p,  q,  i)J:;"~ = 

(6.38) 

~b(k,r, f~¢'¢" + ' '  ,,,:%-r',, n ,  " / m ' , C " I ' P  I, rn' ' P '  - '  - ; r e , t r y  
~e t ,  Ll@ 

p±(k ,  p, r, ,~',Cn i~m,~'t ' " ) i ~ .  ( ' ( J , " ,  s, , , , , , ,  . 

(6.39) 
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6 . 3  U n i t a r i t y  o f  B r a i d  G r o u p  R e p r e s e n t a t i o n s  O b -  

t a i n e d  f r o m  U q ( S i d + l )  

If it is possible to generate all representations in L out of a set of fundamental represen- 

tations ~ - :=  i f 1 , . . . ,  fr} by taking tensorproducts and decomposing, then, by equations 

(6.38) and (6.39), all SOS-weights can be obtained from the weights p+(k, f~, fi ,  Uj,~,"t"a' 

and~o'(k,r, ~" °~q'S~ J,, ~Jm,~,. Comparing the complex conjugate of (6.38) to (6.39), we arrive at 

the following expression of unitarity: 

L e m m a  6.3.1 For a given choice of basis '[Pij,k(a)}, the representations of B ,  on the 

path sapce 7~(i [ {Jl , . . .  ,J,} I J), as defined in (6.e5), are ~nita,~ iff the representations 

of B ,  are ~,nita,'y on ~ (i I {h, , . . . ,  h . }  I J), /or  arbit,'a,'~/ A ,  ~ J:, e = 1 , . . . ,  n, and i /  

= ~, f , ,  t)q,sv • ¢(i , j ,  fT, t )~,~ ~(i, (6.40) 

As an example we may apply this result to Uq(sl2), where ~" = iV2}. 

Since all the multiplicities are unity, we can set Pidk = P~,i. In this case 

~(k, 2, p, i )2  = ~(k, 2, p, i )7 , (6.41) 

and it is sufficient to check, that the expressions 

, " (k ,2 ,p , i )~  := @(k, 2, p, i )2 ~ ( k , 2 , p , i ) 7 ,  (6.42) 

which are invariant under scalings of Pij,k, are positive. 

Their values can be expressed in terms of q-numbers: 

1 

' ( i ~ - J ,  + ~ +J,) ,  (6.43/ , ,~"k  2 .,k~, (J, + ~ + J ' -  J'), ~, , , P , * J k 4 - 1  : (2h + 1), (2i~ + 1), 
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and 

r p : r ~ ( k ,  • ki~ a . p i x : k  - .,kll = 2, p,~)~+1 = 1 - ~ ,2,p,z)/d: 1 

where 2 j ~ + l  = k. 

(2jp + 1)g (2j~ + i)¢ 
(6.44) 

The computation of the braid matrices, for p = q = 2, gives 

p~(k --k 27, 2, 2, Ic)k+~., 6,~ 6,~,, 

for ~ , a , a '  = 4-1, and 

q+½ { -q+~ 

:(k,~.,2,k) = ~ V/(k + 1),(~ - ~), 

~/(k + ~),(k - a)~ ] 
J 

m 

q~:k 
(6.45) 

These representations are therefore unitarizable, iff all q-numbers (n)q, with 0 _< n < N, 

are positive; or, stated differently, iff q = e+i-~. We will see in Section 7.3 how this is 

related to the result obtained in [54] for Hecke-algebras. It is possible to rewrite the 

expressions (6.43) and (6.44) in the form 

zP+X(k, 2, p, .,k+, _ 1 Ak(p+,),i A2p.p+l (6.46) 
' )k+. (p)q!2 "~(~+.),,,i .~k2,k+,, ' 

with 

(jk + h + jl + I)! (jp + jk -- j,)~! (Jp q- jl - jk)e! (2jp + 1)q 

~k,,, = (Jk - jp  +/i)q! (2/k + 1)q 

where k = 2jk + 1 and y = ±1. 

(6.47) 

-'~k+~ 1 This enables us to set ~(k,2,p, up+ 1 = (p)0i, for all k,p,i  and 7, in a normalization, 

where P~,i Pkp,i = Akp.i. The recursions given in (6.38), and (6.39) then take the form 

- l , k + ,  ( 6 . 4 8 )  p~(k,p,q + 1,~)i = ~E pt(k + , , p ,  q, ,) ,÷,  p.~(k,p, 2 , i  + ~jj 
o-=-4-1 

and 

d(k,q+ 1,p,i)~-- ~.t(k,2,p,i  + . )L.  d(k + ~,q,p,~)W, (~.49) 
at  
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where the subscript %" refers to our new normalization in which P~,~T Pkv,~ = Akv,~, with 

Akp,~ as in (6.47). These expressions and the equations 

k+e- 1 pio(k+ 27h2,2, k)k+,, = q:F~&,~6,~,, for ~7:=E1, 

p~(k, 2,2, k ) -  (k),q~} [ (k -q~'-l), (k+l),]qT, (6.50) 

show that the p~-braid matrices can be identified with those found in [9, 55], with the 

indices in reversed order; (one must compare the recursions given there with (6.49)). 

In the following, we show how to construct an inner product on the representation 

spaces of on the braid group representations derived from Uq(sld+l), in order to isolate 

requirements for the spins in the spectrum of the monodromy matrix and investigate 

unitarizability of these representations. We conclude this section with a more systematic 

proof of the above result on unitarizability for Uq(sl2). We start by taking the star- 

conjugate of (6.26) and insert the transposition 

Pp~ : Vp®Vk - ,  Vk®Vp : v ® w  ~ w ® . .  

Using 

see formula (4.24), we find the following equation for R~. 

E " "  (i, , p (k,q,p,,),,,.~. "-fi,,.~(.) ®'-fi,,qj,(v)) 
t,vtJ 

where we have set 

If we represent Pi,qj(a) by 

mod Into (V~, Vp ® Vq ® V~), 

= PqJ.  

(6.51) 

(6.52) 

(6.53) 
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i 

/ < ~  , ,  P,,,i(~) 
q j 

Figure 6.12 

then, in addition to Figure 6.6, we obtain the graphical expansion (see(6.45)): 

i i 

: q, P, ~)l,vtJ 
l,v,/~ 

p q k p q k 

Applying 

Figure 6.13 

to (6.52), and making use of (6.27) and of the Yang-Baxter equation (4.12), (6.52) takes 

the form 

~-]p±(k. q, p,,)t,~.'i"sa Viral(P) Rt. (Pt.,k(v) Rk,®l.). rood Into (V. Vk ~ V~ ® V~). 

(6.54) 
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From the SOS-form of (6.54) we find the following factorized relation for the SOS- 

weights: 

v,,,  (6.5,5) 
E 

Here the sesquilinear forms A/'~,l on Cn~,, ' ,  the spaces of multiplicities, are defined by 

+ ~ ray  ,, I .,v',~,.q : =  ~ , , .~ ( , , ' )  n~ P~,., = P~., (,,) zeP~,,(,,), 
a n d  (6.56) 

(.'V'~,,) ' /" := -Pl,,qk(u') R'~, Pi, q,t(u) = Pj,,,t '(u') ate..-' Pkq,t(u), 

with 

(6.57) 

Using the graphical expression for (6.56) 

q k 

k q 

Figure 6.13 

and with the help of Figure 6.12, (6.55) can also be derived from the diagram in 

Figure 6.14, by either expanding the first braid from above, according to Figure 6.12, or 

the first braid from below, according to Figure 6.6. 
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i 
p J 

k 

Figure 6.14 

The symmetry properties of these forms can be expressed by the monodromy matrix 

which has matrix elements/~(1, k, q, °~k'lv defined by ~']k,lv~ 

MP~, l (v )  "--" "1 k t.~ 1., = 2_., ~ t ,  , q, )~:,, & , , ( - ' ) ,  rood Into (yk ® E ,  ~ ) .  (6.59) 

If we set 

= y., (6.6o) 
MI~ t 

for =, y ~ c~',,.,, we ,ompute ~ro= (6.56) - (6.59) that 

(=, ~);,,~ = (y , , (1 ,  k, q, e)4;, ,~ • (6.61) 

Identifying "P(ilJl,... , i ,  lk) = E~,~ C N'~''' ® - . .  ® C N"-'~"'", the inner product (., .}_ 

defined in (6.60) extends naturally to the pathspace P(i]{ji}]k), so that by (6.61) 

(w',~)_ = ( ~ , ~ ' ) _  for w , w ' e  ? ( i l { j J I k ) ,  (6.62) 
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where/~ acts on C N~,.., ® . . .  ® C ~v~-,j~,~- by/z(1, i, 31, ~1) @ - . - ~  ~(1, #,_  1, J,,, u,~). With 

the help of (., .)_, (6.55) can be reexpressed by 

and 

(R~(~,)~ ', R" (,-,),,)_ = ( " , ' 4 -  (6.63) 

and furthermore 

(/u.o',/.~)_ = (w', w)_.  (6.66) 

If we assume certain weak indecomposability conditions on R P, we can deduce from 

# e ( R P ( B , ~ ) )  ', that # is diagonal, i.e. 

k,a~ e 2"I sL,' (6.67) /z(1, k, q, t)k,1 ~, = 6,~z 

and proportional to unity on :P(i [ {jl} I k), which implies 

S~, d + S~q,i = 5~kq,, + S~,,i rood 1, (6.68) 

whenever all indices obey fusion rules. A solution of (6.68) has the form 

S~'q, i = sk + Sg - 81 + rnkqi mod 1, (6.69) 

with 81 = 0, Sk = 5~ and mk~i is totally symmetric, 

rrt kq j = -- rn l~ 0 

and (6.70) 
mkp1 + mjqr  = m k q I  A- m @ r .  

For highest weight representations, it follows, by application of X, see (5.6), to (6.59) 

that 
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Since by the definition of the intertwiners {Pkq,z(a)}, the form (., .)_ is nondegenerate, we 

conclude from (6.64), that /~  commutes with R P (b) for all b E B,,, and equations (6.61) 

and (6.64) simplify to 

(R"(b),,,', R"(b),,,)_ = <,,,',,,,>_ (6.65) 



and eventually 

Hence/~ is given by 

mkqj = 0 and Sk = S,;. 

#~k,lv ~(1, k, q, ~Jk,lv = 6~,, e 2"~( 'h + s ' - ' D  (6.71) 

Since p(1, k, q, l) and #(i, q, k, l) axe equivalent matrices (by conjugation with a p-matrix) 

and, further, are unity if either k = I or q = 1, we find with (6.71) that 

Sk = sk .  (6.72) 

The spins of the monodromy-spectrum can be deduced more directly if we assume that 

/C is a ribbon-graph Hopfaigebra (Section 6.4 or [43, 44]), i.e. 

M = , ,  A ( , , - , )  ,n , ,  ,,  oo,,,1,n 

so that (6.59) reads 

p~('~) @ po(") P~,,(") = 

(6.73) 
~xk,lv ~(1, k, q, ~)k,l~ Pkq,l(V,) pI('O) rood Into (Vk ® Vp, ½) 

For an indecomposable representation Vp we have 

p,(~) = e2"~"1 rood Into(Vp, Vp), 

so that again 

k~lv ~(1, k, q, l )k ,~ = ~ , ,  e ~ ' ~ ° ~ + s ' - ° ' )  (6.74) 

with ~o = O, , ,  = ,~, by E(~ )  = 1 and S(~) = V.  

For U~(sl~t+1) the spins are determined for highest-weight representations, with 

highest-weight A, by the classical Casimir vMues 

c ,  = ( ~ , ~ ) + 2 < p , ~ ) ,  

so that 

(6.75) 

(6.76) 
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The original computation [43] used the fact that Uq(sia+~) is a one parameter-deformation 

of U(s£,~+l) and proceeded by analytically continuing the spectrum of .AzI in q. A more 

explicit way to find these values is given by computing the ribbon-graph-Mgebra element 

with L ® R(a  @ b)(x) = axb, from known ((4.87), [48]) formulae. If one applies the ex- 
[ _ _  \ 

pression (6.77)to highest-weight-vectors only the term  LZ° will survive, 

yielding the above expression for p~(v). For Uq(sl2) we obtain 

1 C~, = ~ (p2_ 1 ) ,  (6.78) 

so that  for q ---- ei-~ 

Continuing our discussion 

p~ - 1 (6.79) sp - 4N 

(z,y)~q.~ = e2~("+"-")(v,x)~-~.~, with s~ • R / Z ,  

so that  for any choice of sl • R/2Z the form 

(=, ~)~,~ = (=, y)L~ ~,,c,,+,,-,,) (6.80) 

is symmetric and hence admits an orthogonal basis {e~} of CNh~, ~ with 

(e,,, e,) ---- (--1)'~'~,. ' 6,,,~,. (6.81) 

Insert ing (6 .S l )  into (6.55) we see by 

= - i ~e'~" (6.82) Ŷ ±rkk ,~,,.,- n i~i,~'~C-l~"~,,,+"~p,,jz,,,,,~ j (-1)"~,.s+'~, ' p~(k ,p ,~ ,  ] i ,~  

that  for this choice of basis R m represents B ,  in some U(N, M).  If we assume unitarity, 

the numbers n~q,l • Z2 will satisfy constraints similar to the ones imposed on S~,z in 

(6.68), so that  they can also be presented as 

n~i,~ = nl + n i - nk mod 2 

and thus correspond just to a redefinition of the spins. We summarize these arguments 

in the following Lemma. 
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L e m m a  6.3.2 The representations R P of the braid group, defined by a quasi-triangular 

ribbon-graph Hop.f-algebra with *-involution are unitarizable i f f  there exists a choice of 

spins 

s~ E R /2Z  

such that all the forms (.,-)~q,z defined in (6.60) and (6.56) are positive definite. 

As an application of Lemma 6.3.2 we shall show unitarizability of R P for K: = Uq(s£2) 

with q2 a primitive root of unity. 

For Px,P2 = 1 , . . . ,  N -  1, q ?~ O, we define the continuously q-dependent matrices 

e(q) and f (q)  in Mat(Vp), Vp being the inner product space Vp = <(~r_~, . ' .  , ( r ~  >, by 

the normalized representation (5.17), so that 

e(q) = e(q -1) and e(q)* = f (q ) .  (6.83) 

In the domain DN = {t E C ] t # 0; t 4j # 1 j = 1 , . . . ,  N - 1} the map 

Dn ~ Mat(Vp, ® V ~ )  

t -~ n ( t )  

is by (4.87), with t = q] , well defined, continuous and obeys by (4.23), (4.24) and 

(6.83) 

T~Ct) -1 -- T~ (t -1) and 7~(t)* ---- aT~(~. (6.84) 

The spins sp E R / 2 Z  are determined by 

• i~ 2 - - 1  

e " ' ,  = t , . ( 6 . 8 5 )  

From (5.23) we have highest weight vectors ~ in Vp, ® Vt~ , with 

h¢i(t) = (i - 1)el(t) and Pp, m¢i(t) = e l ( t - ' ) ,  (6.86) 

for i = IPl -P21 , - . .  ,pl + p2 - 2,pl + p2. We now consider the expression 

~;;,~,,()=o t (~'(t), ~(t)~'(t)) t-,'-(,,'+,; - ' + ' )  (6.87) 
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for which we find by (6.84), (6.85) and (6.86) 

N;°,~.,(t)  = <e'(O, ~(~(~ ~(~)) 7~(0 ¢ ( t ) > -  ( l~ l  "0 - ' - ( ' ' + ' ; - ' + ' )  • (6.88) 

Here (., .) denotes the canonical inner product on the tensor product space Vp, ® V~. 

If we restrict the values of ~ E DN, by Itl = 1, (6.88) implies 

o t ~f;,~,,( ) e R.  (6.89) 

o Comparing (6.87) to (6.56) we see that  Af;,~,,( ) is the square of a multiplicity vector 

with respect to the form defined in (6.80), and is therefore nonzero for 

dim7 >, (Vp, ® V~, V~) = 1. (6.90) 

If for fixed i,p~,p= (6.90) is true for ~ = e~'2-~, (n ,N)  = 1, then we find from the fusion 
• n n 

rules (5.19), that  it also holds for ~ = e'%---TN, (n', N') = 1 with N' >1 N or for generic t. 

Hence if, for ~ = e~'~, Nm~,~ = 1, then we have 

o ~ " (6.91) x;,~.,( ) # o for arg(0 ~< 2--fi" 

From 

we obtain 

x; ,~, , (1)  = (~'(1), ¢(1))  > 0 

A/'~,~(t) > 0 for t = e ~2-~ . 

Combining (6.93) with Lemma 6.3.2 we find the following lemma. 

L e m m a  6.3.3 For Uv(sl2), with ~ = e ~  , the braid matrices 

p*(i,p,q,k)~ 

defi~e unitarizable representations of the braid group. 

(6.92) 

(6.93) 

170 



6 . 4  M a r k o v  T r a c e s  

The definition of q-dimensions is generalized, using the observation of Drinfel'd [5], that 

the square of the antipode of a quasi-triangular Hopf algebra is an inner automo~hism 

We eztend the selection criteria already encountered in Section 5.4 to the general case, 

i.e., we show that the set of indecomposable representations with zero-q-dimensions is 

an ideal under forming tensor products. This completes the rigorous construction of 

brai group representations on path spaces from quasi-triangular Hopf algebras in the case 

where semisimplicity is not assured. We define a Markov trace on these representations 

and identify spin, statistics parameter and statistical dimension with central elements of 

a ribbon-graph Hopf algebra, as defined by Reshetikhin and Turaev [4~]. 

The discussion of Markov traces and their role in the vertex-SOS-correspondence re- 

quires certain restrictions on the Hopf algebra/C and its representations. The first is the 

restriction to quasitriangular ribbon-graph Hopf algebras, introduced in [44], that contain 

a central element v with 

v 2 = uS(u) ; 

and 

S(v) = v ,  E(v)  = 1 (6.94) 

. M  = v ® v A ( v - 1 ) ,  (6.95) 

where u = m(l @ S-x)aT£. Suppose that/C admits a star involution satisfying (4.24). In 

this case u is unitary, so that we have p2 = 1, for p = vv*. On unitary representations we 

therefore have, from Pi(P) > O, that v is unitary. Its eigenvalue on ~ is thus identified 

with the phase factor e2'~"i and we have sj = sj. 

The element g = uv -1 satisfies 

S 2 ( a )  = g a g  -1 Va ~ 

and (6.9e) 
ZX(g) = g ~ g 

and gives rise to a general definition of the q-dimension, dp, of an indecomposable repre- 

sentation Vp: 

dp := tr(g [ Vp). (6.97) 
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In the following we shall consider a set £t of indecomposable representations that closes 

under taking tensor products, i.e., 

W~ ® W e = ~ m  W, @ C ~'~," , (6.98) 
qt 

mad conjugation, i.e., for each a E £' ,  there is some a v E £*, with #=v(a) = p~(S(a)). 

The fusion rules {N~,~} again commute and axe symmetric in the first two indices. We 

have the following result. 

Lemma 6.4.1 For a s~tstera £t of indecomposable representations of a ribbon-graph Hopf 

algebra , closed under taking tensor products and conjugation , we have 

N ~ s v , l = l  iff a = / 3  and d = ¢ 0 .  

This follows from the fact that we have the identifications 

given by 

and 

Int (W: ® W#v, 1) ~ Int (Wo, W=) ~ Int (1, W,, ® We~ ) 

(l ® x ,  P=~,~(x)) 

fo, z,z'e Int(W.,  we ) ,  • e we ,  t ~  w ' .  

The composition is given by 

P , ,~vU)  P=ev,a(r) = 

= l(z~) 

= t(z'g~) 

tr(gIZ' t w:) 

d: 
(dim Wo) tr ( I I '  [ W:) .  

(s.9o) 

(6.1oo) 

In the last identity we used the fact that the W= is indecomposable, i.e. 

Int (Wo, W~) = C- 1 ~ Int° (W~, W~) , (6.101) 

where Int, (W,, IV=) only consists of nilpotent mappings. The expression (6.100) is non- 

zero iff d= ~ 0 and 11' is invertible. Since W a is also indecomposable, by assumption, the 

latter implies W~ ~ W a. 
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From the commutativity and associativity of the tensor product we infer, that 

Nafl%1 : ~a~,.y v ~-!fv.y,1 

is completely symmetric in all representation labels. If £t is generated from some fun- 

damental set Y with ~rv = y and ~" t3 £e = 0, where £~ is the set of indecomposable 

representations with vanishing q-dimension, then £ ,  := f..r f3 £t is a maximal conjugation 

invariant subset that obeys 

and 
£t ® £ .  C £o 

(6.102) 
7 n £ o  = o. 

Hence, defining £ = £t\£o, we have the following decomposition laws 

v,®y~ = ~ y~®c~,i,e ~ 
kE£ ctE£° 

K®W,, = ~ *  w~®CN'-~ 
~ez:. 

w . , ® w ~  = ~ * w , ® c ~ , . , .  
~E£o 

Wo ® C N~j'* 

(6.103) 

Generalizing Lemma 6.1.3 by using (6.101), this allows us to identify the quotient space 

P(V~ ® V#, ® . . .  ® V#~, Vk) with the path spaces 7~(ilJl,.. .  ,j,,[k) constructed from the 

fusion rules {N~j,,k} for i,.i,, k e £. 

P 

P 

b L "'" 
o o 0  

pV 

pv 

Figure 6.15 
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Consequently, it is always possible to assign to a pair (K;, ~ )  a path representation 

of the braid group in a unique way. For any path representation of the braid group /3, 

with fusion matrices {F} (resp. {~}), we can define Markov trace as in (2.67). If we take 

the SOS expansion of the operator depicted in Figure 6.15 and use (6.99) we obtain the 

following expression in the vertex picture. 

L e m m a  6.4.2 For any pair (/C, ~') with ~v  = jr and ~ f3 £g = 0, and for the definition 

of the path representation of B ,  given as above, the Markov trace is determined by 

1 r~(b) = ~ tr (g®"RV(b) r Vr®'~ ) . (6.104) 

[] 

This trace has an obvious generalization to different colorations (i.e., different represen- 

tations involved) if we restrict b to the appropriate subgroup of B,,. 

By Lemma 6.1.3 we have that  

-rr,,,(b) = E d,, (R"(b) r v (v,®,,, v,.)) (6.1o5) keg "~P tr 

This show that  r~t is positive for all n iff dp > 0 for all p E £.  

We can easily compute the statistical parameter of a representation from the diagram 

P 

pV = (lp ® PI,~,,) (P~ ® lp,..) ( lp ® Pmv,.,) (6.106) 

P 
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From a ~ 1,v Peev,1 = 1, ~ S(a)P~v 1, Va E ]C, u = rn(1 ® S-I)o"R. and (6.100), we have 

i p,,(,,-i) ~-~..., 

The analogue of Theorem 2.4.c) can be shown by inserting the projection 

P~.,(v) P ,~(v)  into (6.105) and making use of 
v 

= 

. .  ( ~ .  r ~ (v~ ® v,, v,)) = .N,,,,,,.6..,.. 
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Chapter 7 

Duality Theory for Local Quantum 

Theories, Dimensions and Balancing 

in Quantum Categories 

7.1 General  Def init ions ,  Towers of  Algebras  

In this section we give the complete definition of a quantum category. We show that a 

quantum category can equivalently be described by a system of structure constants, namely 

fusionrules, and R- and F- matrices. We also introduce C*-structures and discuss their 

consequences for the ezistence of balancing phases, positive traces and dimensions. We 

explain the result of Doplieher and Roberts on the duality of compact groups and propose a 

generalized notion of duality. Finally, we show how quantum categories arise in algebraic 

field theory and relate them to the theory a subfactors and towers developed by Jones. 

The structural data of local quantum theories, in terms of fusionrules and R.- and F- 

matrices, which we investigated in chapter 2, and the data obtained from the intertwiner 

calculus for quasitriangular Hopf algebras explained in chapter 6 fulliill the same types 

of equations, which were, in our language, interpreted in the graphical Yang-Baxter- 

and Polynomial Equations. In fact, in the construction of charged field operators with 

176 



permutat ion statistics and gauge group symmetry, as proposed in [19] it is needed that 

these two sets of structure matrices are equal. In order to organize our language, it is 

helpful to observe that  fusionrules, R- and F- matrices are precisely the structure constants 

needed to determine (up to equivalence) a certain type of braided tensor categories. We 

review the notions entering their definition : 

i) We start  with a semisirnple, abelian, finite, reduced category over C. It consists of a 

set, Obj, called the objects. To any pair of objects X, Y E Obj is associated a vec- 

torspace, denoted Mot(X, Y) or Int(Y, X), over C, called the (space of) morphisms 

from X to Y. We have distributive, associative composition 

Mar(Y, z) ® Mar(x, Y) Mar(x, z) 

so that ,  in particular, End(X) := Mor(X,X) is an associative C- algebra with 

unit. Semisimplicity of the category means that  End(X) is semisimple and that  

the pairing Mot(X, Y) ® Mar(Y, X) ~ End(Y) is non-degenerate. In this case the 

category is abelian iff it has subobjects and direct sums. The subobject requirement 

is that  to any projector II E End(X) there exists an object U and morphisms 

It/E Mot(U, X) and Pu E Mar(X, V), such that PuIu = 1 and II = It/Pu. If we 

consider also the object V and morphisms Pv and Iv  associated to the projector 

1 - II we obtain what is called a biproduct, X = U @ V. The axiom of direct 

sums states that  to any pair of objects, U and V, there exists an object X with 

a biproduct,  X = U @ V. We call a category reduced if equivalent objects are 

equal, i.e., if for two objects X and Y there are morphisms / E Mot(X, Y) and 

g E Mor(Y,X), w i t h / g  = 1 and g / =  1, then X = Y. With these assumptions 

any object,  X, with dim(End(X)) < oo can be decomposed into a finite direct sum 

of irreducible objects, 

x = l v x , j j ,  
je t :  

where j E £ iff End(j) = C.  The category is said to be finite if dim(End(X)) < oo 

for all objects X E Obj and rational if [£[ < oo. Thus, the objects are naturally 

identified with N ~:. 
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ii) A tensorproduct on such a category consists of a binary operation, o : Obj x Obj --* 

Obj : (X, Y) --* X o Y, together with a bilinear product of morphisms 

o : Mar(X, X')  ® Mar(Y, Y') ---} Mar(X  o Y, X '  o Y'):  I ® J ---* I o J .  

This product shall be compatible with composition, in the sense that 

(I  o J)(I '  o J') = (II') o (JJ ' ) ,  

whenever defined, which makes o into a distributive operation on N c. Thus, the 

tensorproduct on Obj is completely determined by the fusionrules : 

with i , j  E £. 

iii) A category is called a tensor category or monoidal category if there is an isomor- 

phism, a(X,  Y, Z) e Mar(X o (Y  o Z), (X  o Y)  o Z), which satisfies the pentagonal 

equation 

a ( W o X ,  Y, Z) a(W, X, Y o Z )  = (a(W, X, Y) o lz)  a(W, XoY ,  Z) (1w o a(X,  Y, Z)) 

and the isotropy equation 

a(X' ,  Y', Z')(I o (J o K)) = ((I o J) o K) a(X,  Y, Z) 

for all possible objects. This makes (Obj, o) into an associative algebra. Moreover, 

we may define F- matrices by the commutative diagram of isomorphisms : 

f~zer. Mor(I , j  o k) ® Mar(t , i  o l) 

Mar(t,i o (i o k)) 

vC~,;.k,O e~  ~ ~ Mo,-(t, i o j )  ® Mar(t, l o k) 

Mar(t, (i o j )  o k), 

(7.1) 

with i,j, k,t E £. Here the vertical arrows are given by the compositions I ® J 

(I o l)J, and I @ J -~ (I o 1)J, and the lower horizontal arrow is defined by left 
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multiplication of a. The F-matrices obey an analogous pentagonal equation, 

(~ .F( i , j ,k , s )  ®IN.,,,) (~), live.,. ® F(i,s,l , t))(~o F(j,k,l ,s)  ® IN,.,,) 

-- ( ~ ,  ln,~,. ® F(s,k,l,t))Tla (~s 1N.t,o ~ F(i,j,s,t)), 

and any such system of F-matrices defines a unique associativity constraint a. The 

category is called strict if a = 1 E End(X o Y o Z). 

iv) A tensor category is called braided if there exists for any pair of objects X, Y E 

Obj an isomorphism ¢(X, Y) E Mor(X o Y, Y o X), which satisfies the hexagonal 

equations: 

aCg, X, Y) ¢+(XoY, Z) aCX, Y, Z) -- (¢(Z, Z) + o 1y) aCX, Z, Y) ( l x  o ¢+(Y, g)), 

where ~ m e+ and e-(X,  Y) = ¢(Y, X) -1 ,and the isotropy equation 

¢(X', Y') (I o J) = (J o I) ¢(X, r).  

We define structure matrices, 

,'+(i,j,k) : Mo~(k, i o j )  ~, Mo~(k,j oi) 

by left multiplication with E+(i, j). They fullfill the respective hexagonal equation, 

((D, r+(i,k, l) ®llv, j,,) F(i,k,j , t)  (~ ,  r±Cj, k,l) ® 1N,,.,) (7.3) 

= F(k,i , i , t)  (G, 11%., ® r~(l,k,t)) F(i,j ,k,t),  

and a system of r-matrices obeying (7.3) defines a unique commutativity constraint 

e. Frequently, we shall use the R-matrices, 

R+(i,j,k, t) : ~D Mar(l, ioj)@Mor(t,  lok) 
IE£ 

defined by 

R~(i,j,k,t) = f ( i , k , j ,~ ) (~  r(j,k,s) ± ® 1) f ( i , j ,k , t ) - ' .  (7.4) 

A braided tensor category is called symmetric if • + -- e- .  

, Mo (Z,i o k) Z o j ) ,  
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v) The category is rigid if to any object X 60bj one can associate a conjugate object 

X v and morphisms ~x a Mot(l ,  X v o X) and ~t x E Mot(X o X v, 1), such that 

(4txolx)a(X,XV, X) (ix OOx) = ix 
and (ixvo~t~)~(xv,x,x~)-,(O.o~x~) = ~. 

(7.5) 
If these objects and morphisms exist then they are unique up to isomorphisms 

starting in X v. Also the equations (X @ y)v = X v @ yv  and (X o y)v  = yv  o X v 

hold true in a reduced category. A choice of conjugates yields a transposition 

' : M o t ( X , Y )  ~, Mot(yV, x v) 

and more generally an isomorphism 

Mot(X, Y o Z) ~ Mot(X o Z v, Y), 

which for the symmetric, bilinear form (X, Y) = dim(Mot(X, Y)) provides equa- 

tion (3.2). The conjugation defines an involution on the set of irreducible objects 

£, and we can verify the axioms of a fusion rule algebra given in chapter 3.2 for the 

algebra (Obj, o). 

In the following we shall call an abelian, sem_isimple, finite, rigid, braided tensor 

category a quantum cate$ory. As opposed to symmetric categories the equation 

(lxv o r(X))~x = ~,(X", X),~x , (7.6) 

with I~(X,Y) := ¢(Y,X)E(X,Y),  defines set of non-trivial automorphisms r(X) 6 

E,~d(X). 

L e m m a  7.1.1 The automorphisrns defined in (7.6) have the following properties: 

~) r( x )  ~ independent of the choice of conj,,gaes ( X",,~t~,,~x) 

b) r (V) I  = I t ( X )  for aU I ~ Mot(X,  Y)  

# ~(x ~) = ~(x), 
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d) r ( X )  o r (Y)  = #(X, y)2 r ( X  o Y) 

Considering equation d) of Lemma 7.1.1, it is reasonable to introduce a notion of a square 

root of r (X) .  Also we wish to introduce categories with a *-structure : 

vi) A quantum category is balanced if there exist automorphisms tr(X) E End(X) 

such that  

a) ~ ( X )  ~ = rCX) 

h) ~(Y)Z = 1 ~ ( x )  for all I ~ Mo,-(x, Y)  

c) ~CX v) = ~ ( x ) ,  

d) a (X)  o a(Y) = I~(X, Y) g(X o Y) 

It is evident that any balancing {a (X) )x  can be multiplied by a Z2-grading of the 

category, in order to obtain a new balancing structure and that  any two balancings 

differ by a Z2-grading. From b) we have that  a balancing is uniquely determined by 

the numbers a(j) E C. 

vii) A C* category is an abelian category if the morphisms form Banach spaces with 

an antihnear involution" : Mor(X,Y)  --, Mor(Y,X) such that  HHI[ _< IlZllllJII, 

Ilrll = IlZll, III*Xll = IIZlP and (I J)* = J ' I  °. It is clear that any C*-category 

is semisimple and that  it is, up to *-isomorphism, uniquely determined by the set 

£ of irreducible objects. A C*-quantum category is a quantum category with a 

G'-atructure such that  ( I  o J)* = I* o J"  and a and ~ are unitary. The spaces 

Mor(k,i o j) thus admit an inner product and the R- and F- matrices are unitary 

with repect to this product. Conversely, any unitary set of such structural data 

uniquely defines a C*-quantum category. 

A peculiar feature of C*-quantum categories is that  they are always balanced. 

L e m m a  7.1.2 In a G*-quantum category let )~x E End(X) be defined by 

= o 1) (7.7) 

181 



We have that ~x is normal and that its unitary part ao • U(X) in a polar decomposition 

$x = ao(X)-XPx, withPx > O, is a balancing structure of the category. 

A final important structural ingredient in the study of C*-quantum categories are 

traces. In order for a trace on the endomorphism spaces to factorize with respect to the 

tensorproduct, we have to use the balancing structure in its definition: 

L e m m a  7.1.3 For a balanced quantum category we define a set of linear functionals, 

trx • (E,d(x))',  by 

t rx( I )  = Vq~x((Ia(X) ~') o 1)e+(XV,X)Ox (7.8) 

It has the following properties: 

a) trx is independent of the choice of conjugates. 

b) t r r ( I J )  = t rx (J I )  for all I e Mar(X, Y )  and J • Mar(Y, X) .  

c) tr(xor)(I o J) = t rx ( I ) t r r (J )  for all I • End(X),  J • End(Y).  

d) trx(I) = trxv(I') /or all I • E~d(X). 

e) I f  we have a C*-quantum category and trx is defined with respect to the canonical 

balancing {ao(X)}x given in Lemma 7.1.~ then it is a positive state on the C*- 

algebra End(X). 

From Lemma 7.1.3 it follows that 

d(X) : =  trxOx) (7.9) 

is a dimension and, for C'-quantum categories, it is positive for the balancing {ao(X)}x. 

Hence, in the latter case it coincides, for rational categories, with the unique Perron 

Frobenius dimension given in (3.30). 

The best known example of a C*-quantum category is the representation category, 

Rep(G), of a compact group G. Its obejects are the inequivalent, finite dimensional, 
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unitary representations of G and the morphisms are the intertwiners, Home(V,  W) - 

I,~t(W, v) =_ Mar(V, W), between these representations. The conjugation is given by 

passing to the contragredient representations, and the commutativity constraint is given 

by the transposition e(V, W)(v ® ~,) = u, ® v of factors in V o W -- V ® W. This is a 

strict, symmetric C*-quantum category, with do(X) = 1, for all X ~ Obj. 

More generally, we can consider the representation category Rep(~) of a quasi- 

triangular quasi Hopf algebra ~.  The antipode, the 7g-matrix and the t-matrix yield 

the conjugate objects, the commutativity constraint and the associativity constraint, re- 

spectively, using formulae (5.4) and (5.5). A balancing structure is implemented for a 

ribbon-graph Hopf algebra by the special, central element v from (6.94) and(6.05). This 

category is semisimple - and hence a quantum category - if K; is semisimple. However, in 

the case of primary interest to us ;~ is not semisimple and we have to divide out the ideal 

of intertwiners discussed in Chapter 6.1. Using the trace introduced above we can give a 

more general and concise definition of the Into-spaces, namely 

Ir, t.(V, W)  := {I e Int(V, W):  tr(v)(1J) = O, VJ e Int(W, V)}. 

We denote this quotient category by Rep(E). Here, the trace tr(V), defined on Endjc(Y) =- 

End((V))  in Lemma 7.1.3, is related to the canonical trace try on Bade(V)  by 

tr¢y) (x)  = , r v ( g I ) ,  

where g is as in (6.96). 

Two quantum categories are equivalent if there exists an invertible, compatible ten- 

sor functor between them. On the level of structural data, equivalence is expressed as 

follows: Suppose we have two quantum categories, one characterized by the set of struc- 

tural data {£., N~i,k , F( i , j ,  k, t), R(i , j ,  k, t)}, the other one by the respective set of data 

{~, ~ro'k , ~b(i, j ,  k, t), p(i, j, k, t)}. Then the two categories are equivalent iff 

a) There is a bijection 

' :  ~. -~ 2 : i --} i' (7.10) 

such that 

Nij,k = N i ' # , k '  
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b) There is a set of isomorphisms 

T~ : Mor(k , i  o j )  ---* Jl4or(k',i' o j ')  

such that 

~(~,j ,k, t)($,  TJk ® T~) 
p(i,j,k,t) (~, T:j ~ T~k) 

= (~t  T~i ® T~k) F(i, j, k, t) 
(7.11) 

= (~,  T[~ ® TS) R(i , j ,k , t )  

Note that it is sufficient to specialize to i = 1, i.e., to the r( i , j ,  k) -matrices, in the 

second equation of b). In the case of C*-categories the isomorphisms T~ are assumed to 

be unitary. We next quote the famous result of Doplicher and Roberts on the duality of 

compact groups. 

T h e o r e m  7.1.4 [~9] Suppose C is a strict, symmetric C*-quantum category with ao( X )  = 

1, for all X • Obj. Then there exists a unique compact group G such that C is equivalent 

to Rep(G). 

In local quantum field theories in the formulation of [19], as described in Chapter 2, 

G*-quantum categories arise in a natural way. The fusion rule algebra was already derived 

at the end of Chapter 3.1, using *-endomorphisms of the local algebra ff)I localized in a 

given spacelike cone. More generally we consider these endomorphisms to be the objects 

of a category where the tensorproduct is given by the composition of endomorphisms. 

The morphisms are the intertwiners 

Mot(p1, p2) := { I  e ~)I : Ip l (A)  = pa(A)I, VA • if)I} 

and the tensorproduct is given by 

I o J : :  Ia ' (J )  = a (J ) I ,  for all I • Mor(a' ,  a), J • Mor(p', p). 

The category is strict and the commutativity constraint is obtained from the charge 

transport operators. The structural data of this category are disussed in Chapter 2. In 

four and more dimensions, this category is also symmetric and the natural balancing is 

trivial, so that we can apply Theorem ?.1.4. We say that the local quantum theory is dual 
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to the group G associated with the category where the cornmutativity constraint ~(i,j) 

is multiplied with a - sign if i and j obey para-Fermi statistics [19]. 

The main purpose of finding a dual group is to construct field operators with a 

group symmetry. To this end we use the intertwiners between the representations of the 

local algebra rather than the intertwiners between the endomorphisrns. They are related 

to each other by (2.18). We define the physical Hilbcrt space of the theory as 

~ . .  := ~ V j ,  @ % ,  (7.12) 
S E L  

where 7-(j is the representation space of representation j E L of 9g, and Vj,, is the represen- 
w ~ ~ e  

tation space of the corresponding representation j '  of G. Let ~.ex~x=1 be an orthonormal 

basis in Vj,. We define a linear map Pk, i,(a; ex) from Vi, to Vk, by the equation 

for arbitrary v E Vv and w E Vi,. 

If the local quantum theory under consideration is dual to the group G, in the 

sense of the definition given above, we can introduce charged "field operators", Ctx(p/), 

by setting 

¢tx(p/) = ~_, Pk,i,(a; ex)® V2k(pJ') * , (7.14) 
i ka  

where the two intertwiners are related to each other by the isomorphisms Ti~. It is easy 

to check that these fields obey ordinary Bose- or Fermi local commutation relations: If ~" 

and pk are localized in space-like separated space-like cones then 

where the minus sign is chosen if j and k obey para-Fermi statistics, and the plus sign is 

chosen otherwise. 

Let x and x ~ denote the representations of ~ and G, respectively, on 7-(r~,.. Then 

we have from (2.20) and (7.14) that 

_ -  (v) (e(A)), 
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for all A E ~,  and 

(g_l)  = (7.17) 
M 

where {j'(g)~, } are the matrix elements of j'(g) in the basis {e~} of Vj,. 

In low dimensional quantum theories with braid statistics our notion of duality 

must be modified. We say that a local theory is dual to a quasitriangular Hopf algebra 

K: iff its category of superselection sectors is equivalent to the quotient category Rep(]C). 

Contrary to the case of semisimple groups or Hopf algebras, this causes difficulties in 

the construction of field operators with an explicit Hopf-aigebra symmetry, since Rep(JU) 

is in general non-Tannakian for non-semisimple /C, i.e., it is not realizable in terms of 

vectorspaces and linear maps between them. The extent to which analogous field operators 

obey local braid relations is discussed in Chapter 7.2. 

An important consequence of properties (P1) and (P2) of Chapter 2 - in particular 

of the rigidity assumption - is that the index of an irreducible sector is finite, i.e., 

Ind(p) = [ p ( ~ ) :  ~ 1  < o~, (7.18) 

where the index, IN : M], of the embedding of a v o n  Neumann algebra N in M is defined 

in [41]. It has been shown in [23] that (7.18) is equivalent to (P1)  and (P2).  Also it is 

proven in [23] that the dimension given in (7.9) is related to the index by 

Ind(p) = d ( p )  2 . (7.19) 

For an irreducible endomorphism p, we have by rigidity isometries F,o~,l E Mar ( l ,  p o ~) 

and F~op.X E Mar ( l ,  t~ o p), with 

p (r;o,.1) r,o,,1 = ~d(p)  -~ and ~ (r;o, . ,)  r~o,., = ±d(p)  -1 , (7.20) 

where the sign is always + if p f i ~  and an invariant with respect to normalization if p 

is selfconjugate. In this case, if the + sign appears we call p real and pseudoreal if the 

- sign appears. 

Finally, we present some elements in the categorial description of local theories that 

are related to the theory of subfactors. Assume that 9~ C ~;~ is an inclusion of type III1 
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von Neumann algebras (with the same units). Let L2(931) be the Hilbertspace obtained 

from 9J~ and from a state on 9Jl, and let JffJI denote the modular conjugation with 

respect to a cyclic, separating vector f/E L2(O31). We then define the modular extension 

931a C ~(L2(~)J~)) of ~ over 91 as 

~ x  := Jffitg~JgJl. 

It is shown in [23] that  the modular extension of p(9~) by p o ~(gJl) is isomorphic to 9YL 

The action of ~ on L2(p(ffA)) is given by 

M.p(A) := ±d(p)p(r#op,x)* p o ~(Mp(A)rpo#a ) 

where A, M E 9)l and the sign is as in (7.20). For the projection 

eo := rpo~,lr~o~a E 9~I, 

we then check that  

where 

eo.p(A) = e0(A), for A e 9/t 

~0: p(~) , pop(~) 
p(A) ~-~ p o p(r~#,lp(A)r~#,x) 

is a conditional expectation 

indexconditional expectation, i.e., a positive, linear map e : 9Jl ~ 91 between included 

von Neumann algebras such that 

e(mn)=e(m)n, if ne~. 

It is a known fact that this projector together with the extended algebra generates the 

extension : 

(p(~),e0) = ~ .  (7.21) 

Inductively, we thus have a tunnel (tower) of successive modular extensions 

. . .  c p o ~ o p(~) c p o ~(~) c p(~) c ~ .  
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Furthermore, from the series of isometries 

re2. ) := (p o ~)- (r~.,1), 
r(2.+i) := (p o #)" o pCr#op,1) • 

we obtain the conditional expectations 

(7.23) 

e . (A) = p o ~(r(.)'Ar(.)). (7.24) 

They correspond to the sequence of projectors 

e .  :=  r ( . ) r ( - ) ,  (7.2s) 

which obey the relations of the so called Temperley-Lieb algebra: 

~ p e n  en..t-1 e n  = e n , 

and (7.26) 
e , ,e ,~  = e ,~e , ,  if  In--m] ~_ 2. 

~3p =_ I n d ( p ) .  

Here 

w h e r e  

As an alternative to the chain in (7.22) we can consider the sequence of inclusions 

... C M,, C M,,+I C ..., (7.271 

M2.  := (p o p ) n ( ~ ) ,  N frYE = E n d ( ( p  o ~)'~), 
(7.2s) 

M2n+l := (p o #)" o pCffYE)' N frYE = E n d ( ( p  o ~)" o p) .  

The advantage of confining ourselves to the commutants M, is that they are all type Ik or 

111 yon Neumann algebras and that they arc purely categorial. We also have conditional 

expectations E~+ I : M,,+I --* Mn by setting 

E~+l(a) := r c z ) . r ( . ) ,  . e M.+I ,  (7.29) 

However, (7.271 is in generalnot a sequence of modular extensions (tower), i.e., the 

modular extension of M, over M,-z is contained in, but not equal to M,,+I. Still, if the 

theory or category is rational then the sequence (7.27) becomes a tower for n > [L:[.More 

precisely, we have 
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Lemma 7.1.5 

Let M, C . . .  C M~_, C M~ C . .. be the chai~ of algeb,as de~eg  in (Z~7), and let C~ ~), 

# = O, i ,  be gi~e,  b~ C~") = {j  [ j • (p o ~)"} and C~ ~ = {k I k • (p o ~)" o p } .  Then 

M2,,+# has a decomposition into simple factors 

M2.+#= @ M~.+# 
kEC(# ~) 

where M~,,+# acts faithfully on Mar(k, ((p o :)" o p#),  by left multipUcation, i.e., 

Mka,,+# ~-- End(Mar (k,((po fi)'~ o p#))). 

The inclusion matriz, A(a'~+#), of M~,,+#-I C M2,+# is equal to the restrictions of the 

/usio,, ,.,de mat. i= N~ : C~ " - ~  --, C¢0"~, for # = o, and N,  : C~'O --, C~ "o, for # = ~. 

The seq,,e,,ce . . .  C CO# "~ C @ + ' . . .  C C# is st.cay monoto.ouay increasing, or 

d# ") =c# ,  ,,,her, C# a,~ th, minimal in,,ariant ,ets 4 ~ N ,  gi,,en in ¢hapter s.e. 

A very important ingredient in the study of inclusions of yon Neumann algebras are 

Markov traces. On the algebra Moo = U M,~ a Markov trace, "rM, is characterized by the 
r t  

properties that  it is a positive trace and that 

7"M(ae,~) = ~ p l r M ( a  ) , for all a • M,+I .  

It is easily shown that  the functional given by the formula 

rM := d(p) -{2'~+#)tr(.o.)-op#(a), for a • Man+#, 

where tr  is as in Lemma 7.1.3, is weU defined on Moo and is a Markov trace. It also 

satisfies 

~M(E."(a)) = ~ ( a ) ,  for a • M.  

so that  

ru(a) = E~. . .E~(a) ,  for a E M , .  

This trace is in fact the only possible normalized Maxkov trace on Moo. 
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7.2 Quantum Group Symmetries of Charged Fields 

We start from a physical Hilbert space which carries unitary representations of an observ- 

able algebra over M 3 and a Hopf algebra, IC, and define, in analogy to the case where ]C is a 

group algebra, spaces o f field operators that transform covariantly (contravariantly) under 

the adjoint action of 1C. We ezplain how this notion of symmetry eztends to conjugates 

and compositions of field operators and derive the resulting commutation relations and op- 

erator product ezTansions , in case ~ is semisimple. We show that commutation relations 

and operator product ezpansions hold for non-semisimple algebras IC only in a weak sense, 

i.e., the respective equations have to be contracted with ~-tensors with non-zero quotients 

in the intertwiner calculus of Section 6.1. For Ug (sl2), we show that if the total order 

of the monomials does not ezceed the level these contractions can be omitted. It would be 

interesting to see how these subtleties have to be treated in conformal theories [9], where 

we have a similar construction of primary fields in which the quantum group is replaced 

by a current algebra. 

In general, there is no procedure to construct a field algebra, ~'(C), generated by charged 

fields, ¢(pr), where pP is a morphism of the observable algebra A localized in a cone C, 

which has a quasi-triangular Hopf algebra K: as a symmetry algebra and closes under the 

commutation relations determined by the universal R-matrix of K:. 

In our context, charged fields with K: symmetry are defined as follows. 

The "fieldspace" .T~°v(C), with elements ¢(pr), pp being localized in C, is a subspace 

of ~ (7-/vhy..). The Hilbert space 7-/phy.. carries unitary representation s, denoted r ,  of K: 

and ~1, with 

~: C ~ ' ,  (7.30) 

and contains the vacuum sector, 7"/1, which is determined by 

7/1 = {v e ~,~,,. I~(a)v = S(a)v;Va e ~:} 

and ~ E 7~1, 

(7.31) 

where 12 denotes the vacuum vector. 
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The space ~ ° " ( C )  is defined as the span of finite dimensional Banach spaces, 

F~, C ~B (~r~ . . ) ,  that  axe characterized, for any *endomorphism ~'  localized in C, by 

F~, = {¢ (/~') • ~'~°'(C) ] ¢(F")Tr(A) = ~r ( ] ( A ) )  ¢(pP), VA • 9.1}. (7.32) 

E symmetry  is expressed by the fact, that  .T~°"(C) is invaxiant under the action of E on 

(7-/phy..)given by the adjoint representation adTc defined in (4.8). 

It is not hard to see that the finite dimensional spaces F~. are also invaxiant under E,  

and if ~ '  and ~ are equivalent as representations of 92 on 7-/1, then F~  and F~, are 

equivalent as E modules. 

We now assume that F#, is irreducible as a E representation, and 

~r(~).~l°'(C)fl = 7-/phy.. • (7.33) 

Fa,, is identified with an irreducible E-representation Vp by 

V~ - .  F~.: , -* ¢ ( , , ~ )  , 

with 

~d~(a) (¢ (2, ~))  = ¢ (~*, ~ ) .  

For the charge transport operator F~,,~ E ~-c,, see (2.19), with 

we h a v e  

r ¢ . ~ , ] ( A )  = ~(A)  r~, ~,.  

(7.34) 

. (r~. ~,) ¢ (2, ~ )  = ¢ (R (~ ,  ~ )  2, ~ )  = r (F, i )  ¢ (2, ~ ) ,  (7.35) 

where we use that F~,,~ E ~B e" and hence R ( ~ ,  p~) commutes with the action of E. 

From (7.31)-(7.35) it follows that 7"/phr.. is described by 

~p~y.. = E v~ ~ n ,  (7.36) 
gEL 

and the fields axe given by 

¢ (2, p~) = )--~(1, ® (z, .)) P, td(t,) ® V,~ j (p~) (7.37) 
i j r  
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for some set of intertwiners P~,j(v) e Int (V~ ® V~, Vj). 

From now on we assume that  the g-representations associated to different sectors 

are inequivalent and that  the intertwiner P~,j(v) are a basis of ~' (V~ ® t 'i ,  V~). With the 

conventions (5.6) and (6.51) we can compute the *-conjugate of (7.37): 

(¢  (z,/re))* = c t  (XZ, p~) (7.38) 

where 

with 

¢' C~, ¢') = E (~,.,(~)(~ e nJ)) ® v': ~ (¢') 
i j r ,  

v~ (¢'):= vj (¢')". 

and 

The relations of these fields with K: and 92 are given by 

~d~(~) ¢* (~, l )  = ¢,  ( ~ ,  t )  (7.39) 

~r(A) c t  (z, pp) = c t  (z, pp) ~ (pr(A)) " (7.40) 

The total covariant (contravariant) field-algebra ~"°v(C)(~ 'c~(C))  is the algebra gener- 

ated by elements in ~'[°v(C). Note that 5r~°nt(C) = ~'[°v(C)*. The transformation laws of 

the monomials in .T'c°'(C) (~'¢°'aCC)) are 

.d~(.)  (¢ (~1, ¢~')... ¢ (~,, ¢~)) = 

(~,C--,)(~) ~, ® . . .  ~ x . ,  ¢ ( . ,p") . . . ¢  ( . , ] - ) )  
(7.41) 

.a+C.) (¢t (x~,,~,). . .  Ct C~°,,~)) = 

(Ac"-I)(.) ~1 ~. . .  ~ ~,, ¢' ( . ,¢") . . .¢ '  (.,¢")) 

with zx @ . . . ® x ,  e Vp~ ® . . . ® V p . .  

Let us assume that ]C is dual to 92, in the sense explained in Chapter 7.1, so that the 

identifications of ]C-representations with superselection sectors coincides with (7.10). If 
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K: is semisimple, this implies commutation relations for the fields, that close in ~-~o~ (PA) 

and are given by the universal R-matrix of/C: 

¢ (~,, ~) ¢ (~, ~) = 

= (~. ®~., n-~ ¢ ( , . . )  ¢ (.,p')} 

and 
~bt (yu, pq) e t  (a:~, ~') = 

tensorfactors, and ~ q V~, y~ q V~. 

operator product expansions: 

(~.~z) 

(7.43) 

(yq®xp P~ ~ e t  = , R~P~  et ( . , f )  ( . ,p , ) ) ,  

where ~' and p~, resp. p~ and pq, are spacelike separated, P~q is the transposition of 

Moreover, with the relation (7.11), we have the 

and 

¢ (~,, f )  ¢ (~,, p~) = 

-~Ja l  = ~ a~,(f; 1~, q) F(1, ~, ~t, r)~,,~ Fro.,,.. (#) (z. @ y.,  P~,,.(v) ¢ (., p')> 
fc,/a,l~' 

(7.~4) 

e t  (zp, f ' )  e t  (yp, p~) _-- 

~,(r; q,p) ,.,1 et = F(1,q,p,r)q,l~ (-fi¢,~(v)(~:.®y~),p ~) Fp.o~-,..(#). 
le~wV 

(7.45) 

If we turn to the case in which ~ is no longer semisimple equations (7.42)-(7.45) no longer 

hold, since the intertwiner spaces Into (V~ ® V~ ® V~, Vk) and Into (V~, V~ ® Vp ® Vk) are 

nontrivial. There is, however, a way of understanding commutation relations if we consider 

the subspace of ~ (7-/p~,.), spanned by the monomials ¢ (., p~' ) . . .  ¢ (., p~") "smeared out" 

only over a certain subspace of VpL ® . . .  ® Vp~. To be precise, we define the subspaces 

.T~°~ (p~, , . . . ,  p~) as the restriction of ¢ (., p~l)...  ¢ (., p~-) to 

~ ~ e Int(~,  ~ ,  V . . .  e Y~.), 
pEL 
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seen as a subspace of Vp-1 ® . . .  ® Vp,, i.e., .T':°I (p~ ' , . . . ,  p~") is the linear span of all 

fields 
(x, z~,...~. ¢ (., ~ ,  ) . . .  ¢ (., ¢ - ) ) ,  

with • E Vp and I~$,...~. • Int (V~, V~, ® . . .  ® V~.). 

Similarly we define ~::.'~ ( /~" , . . . ,  ] " )  by restriction to the subspace 

~--]~mlnt (Vp, ® . . .  ® Vp,,, I/p) ® Vp 
pEL 

of Vp~ ®.,. ® Vp,, i.e., the span of all 

(im...p,,x ' e t  (., p~,) . . ,  e t  (., pp,)) . 

Note that  the spaces ~o]/¢o~ (~, , . . . ,  ~ . )  are invariant under the adjoint action of K: and 

coincide, for semisimple K:, with the total space of monomials. However, the collection of 

these subspaces does not form an algebra. 

From the definition of the ver tex -SOS  transformation and assuming that we have 

duality in the sense of the equivalence (7.11) , we see that we have to reinterpret the 

commutation relations (7.42) and (7.43) as being valid only inside of the contractions 

restricting them to T~'.'[. 

They can be expressed in coordinates if we fix a basis e~ in V m and a dual basis ~ '  

in V~. 

If we denote the matrix elements of I~,~,...~. • Int (V~, V~, ® . . .  ® V~.), Im...~.,~ • 

Int (V,, e . . .  e Y,., Y,) and a ~  by 

(e~,I~,~,..~,,t ~' ® . . .  ® ¢.~'") 

(e'  ¢~... ~ e - ,  *,,...,.~,ee) 

and (gr ® t~, :~ R~ e~ ® ea) 

= (I~,~,...~.)] ~ ..... 

= . . . . .  

= (R ~ ) ' `  

and the field components 

¢= (p~) := ¢ (%, ~ )  ; ¢ t  (~,) := Ct (e=, ~ )  
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we obtain in place of (7.42) and (7.43): 

and 

(z~,,...~.)$ ' ' "  ¢,, ( : ' ) . . . ¢o . (# - ) . °  

{~,~}'~'~+~ 
(7.46) 

(I,,...,..,)$' ..... Ct  ( f , ) . . . ¢ t  ( f . ) . .  
{"0 

~'""" (R + V ' " - '  ¢~, ( : ' ) .  (7.47) 

¢,k ( : ' )  ¢,k_, ( : ' - ' ) . . .¢~.  ( :")  "-- 

for any fl, I¢$,...¢. e Int (V~, V~, ® . . .  ® V~.), Ip,...,..~ e Int (Vp, ® . . .  ® Vp., Vp), v° • ~ ,  

and ~'+~ and ~h, resp. ~ - ~  and ~,h, spacelike separated. The expressions from (7.46) 

and (7.47) are contained in (e~) ® ~p ,  e~ e Vp, and vanish if we insert Ig.g,...g. q 

Into (V~, V~, ® . . .  ® V~), resp. Ip,...p~ E Into (Vp, ® . . .  ® Vp~, Vp), so that the "internal 

states" on which/C acts are actually described by the path spaces P (V~, V~ ® . . .  ® V~.) 

and 7 ~ (V~ ® . . .  ® V~., V~). 

In the same way we find operator product expansions in constructions generalizing 

(7.44) and (7.45), relating the restricted monomial spaces by e.g. 

peg 
>'7= ( : ' , . . . ,  ~") c ~(~) 

so that, eventually, 

~:,: (~', . . . ,  i ~) c ,~(~) ~ ~-~ ( : ) .  
laE£ 

The necessity of contracting the fields is in fact not surprising, since we cannot expect to 

recover the entire R-matrix, R/•., if V/® Vj contains representations of zero q-dimension, 

from the information (the braid matrices) given by the statistics of superselection sectors. 

We conclude our discussion of the field construction with a remark on Uq(sga). 

If we put q = e~,  we see from the tensor-product decomposition (5.19), that any 

monomial expression ¢ (., ~ ) . . .  ¢ (., p~') can be reproduced from the contracted prod- 
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ucts, i.e., we have 

¢,, (#,).. .¢,. (#n) • ~ : j  (~,,... ,#.) 

for all {o~}, whenever ~ p~ - (n - 1) < N, where the labels p~ are the dimensions of the 
i----1 

quantum group representations. Thus, with these bounds on the dimensions, (7.46) and 

(7.47) hold even when the tensors I~$,...~. and Ip,...p,.~ are omitted. 
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7.3 T h e  I n d e x  and  F u n d a m e n t a l  D e c o m p o s i t i o n s  

In this section we investigate, for G*-quantum categories, the connection between the 

structure of the tensorproducts p o p and p o # of an irreducible object p and its sta- 

tistical dimension d(p). In particular, we find criteria in terms of these fundamental 

decompositions which are equivalent to the statements d(p) <_ 2 and el(p) < 2. We also 

prove that if ~he fundamental decompositions contain only invertible objects then the ele- 

menta in p o ~ form a group isomorphic to (Z2) M. The proofs are given in the formalism 

of C*-quantum categories as arising in local quantum theories (see Chapters P and 7.1). 

They can be translated into the language of abstract tensor categories without difficulty. 

The classification of fusion rule algebras presented in Section 3.4 was based on the ADE 

classification of graphs with norms not larger than two and is therefore associated to 

local quantum theories that  are generated by a single localized *-endomorphism, p, with 

Ind(p) < 4. In general, the computation of the index, Ind(p) = [p (~)  : 93I], is rather 

difficult, so one is interested in replacing the index by other more computable quantities, 

which involve the use of locality and braid group statistics. 

From the obvious inequalities for statistical dimensions, 

d~ > 1, and ~ = ~ N , o , , ~ d ¢  > # { ¢ :  ¢ e p o p } ,  
,k 

it is clear that  if Ind(p) < 4, p o p, as well as p o fi, cannot contain more than four 

irreducible subrepresentations. Also, it has been observed in [23] that ,  for selfconjugate 

sectors p with two-channel decompositions, p o p : 1 @ ¢, the existence of a unitary braid 

group representation enforces that  Ind(p) _< 4. Below, we extend this result and list five 

classes of endomorphisms, characterized by the decomposition of p o p and p o fi, for which 

Ind(p) < 4 follows. The purpose of Proposition 7.3.1 is to show that  it is possible to find 

constraints on the decompositions of p o p (resp. p o #) equivalent to the index restric- 

tion. More precisely, we prove that,  for any endomorphism p which does not belong to 

one of the five classes, Ind(p) > 4. In the description of these decompositions we not only 

count the total number of irreducible subrepresentations, but also the number of automor- 

phisms in p o p (p o ~, resp.). We shall see that the representation a in the decomposition 
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p o p _ a @ ¢ is found to be an automorphism if and only if the corresponding projection 

e~(p, p) E p2(ffy[), N 9I[ satisfies a Temperley-Lieb relation. The group of automorphisms 

in p o #, i.e., 

stab(p) := {a I a o p -~ p} 

- -  which is important in cases ii) and iii) of Proposition 7.3.1 - -  is studied in generality, in 

the course of the proof. During the proof, we shall have to make a small detour, in order 

to rederive the braid-statistics formulation in terms of statistics operators from the theory 

developed in Section 2.2. The possible forms of the fusion rule matrix, Np, restricted to the 

0-graded sectors, will be given in terms of graphs, for each case separately, and knowing 

that  the index of p is given by the square-norm of these graphs we can find the possible 

values of Ind(p):  Ind(p) • {4cos 2 ~)lv=s ...... . In the more complicated cases, ii) (¢ ¢ a) 

iii) and iv), of Proposition 7.3.1, we shall reach the accumulation point, 4, of this set, 

and it turns out that,  for p = ~, the fusion rules are dual, in the classical sense of [29], to 

the dihedral-(ii) and iii)) and the tetrahedron-group (iv)), regarded as discrete subgroups 

of sv(2). 

P r o p o s i t i o n  7.3.1 Suppose that p is a localized irreducible *-endomorphism of a local 

quantum theory with braid group statistics. Then 

Ind(p) < 4 

i f  and only i f  the composition of p with itself has one of the following decompositions into 

irreducible endomorphisrns: 

o) p 

4) p o p  = 

ii) p o p  = 

i i i)  p o p = 

i v )  po~ = 

where a, a~, i = 1, 2, 3 are localized *-automorphisms, i.e., al o Oi "~ ~i o al ~- id, and 

¢,  ¢ '  are irreducible localized ~-endomorphisms. Under these assumptions p generates 

a Z- or Zn-graded superselection structure in which all sectors have finite indez, and the 

is an automorI:hism 

ax @ a2 0 ¢ , or, equivalently, p o # = l @ a @ ¢'  ; 

1 ~ ax ~ a2 ~o'3;  

1 @ ¢ ,  with ¢ o p = p @ p o a x O p o a ~ ;  
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restriction of the fusion rule matrix to fusion between O- and 1-graded sectors is given by 

the incidence matrix of one of the following bicolorable graphs: 

o) A2 ; 

&_>s, D.>s,  Es,,,s(Ind(p) < 4); A®, = 4); i) 

it) D4 (¢ = as ,  Ind(p) < 4)', ~.>sn0), D =  (¢  # as , Ind(p) = 4) ," 

iii) Di'); 

i.) 

(For the definition of these graphs see Appendix A.) 

Proof. We first assume that Ind(p) _< 4 and show that o) - iv) are the only possible 

inclusion graphs. We consider the superselection structure, @, generated by p. Since 

Ind(pl  o P2) = [Pl o p2(gJI): 9~I] _< [Pl o p2(9~) : p2(ffJI)] [p2(ffJI) : 9Tt] = Ind(pl ) Ind(p2) ,  

[23], we have that Ind (pi) < o% for any sector pi E 4, and can thus assume properties (P1) 

and (P2) of Chapter 2 to hold on 4. It follows that the fusion rule matrix, Np, is well de- 

fined on • and has only finitely many entries in each column and row. Moreover, we can as- 

sign to the sectors Pl E ¢I) the statistical dimensions, & = Ind (pl) ~ < 0% which form a pos- 

itive eigenvector of Np, according to (2.54), with eigenvalue dp = fl~ = Ind(p)~. Further, it 
.. r'(n+1) follows from (P1) and (P2) that,  in sequences. C (n) C ,.# C . . . ,  # = 0, 1, each of the 

= II C(n) subsets C(# '*) of 4,  as defined in Lemma 7.1.5, is finite. We denote by C~ ~ # C • the 

(possibly infinite) union of these sets, whose elements are the "#-graded sectors". We use 

the inclusion matrices, A("), of the commutant algebras M,,-1 C M,, which are, by Propo- 

sition 3.2.1 i), just the restrictions A (=") := I% [ C~ ("-I) ~ el "), A (2n+I) := I% [ Co (n) --* C~ "), 

C (") labelling the factors of M~.+#, in order to define matrices A,, : C~ --* C~', with only 

finitely many non-zero entries, by setting 

:= / (A(="+')) on C.(") 

( 0, elsewhere. 

For these matrices, h n + l -  An has non-negative entries, which are zero at positions 

where entries of An are non-zero. Thus, for the graphs, P2. = (A2n,Co(n),C~n-1)),  P2.*1 = 
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(A2,,+I,Co("),C[")), we have that F .  is a subgraph of r .+ l  (i.e., it is obtained from 

F.+I by a~mputating only the edges that are joined to vertices in IF.+ll \ IF. I ) .  These 

graphs therefore inductively define Foo = (Aoo,C~,C~),  with AM = Np r Co°° : C~' --~ C~ °, 

A~ = l~p I C~ : C~ ~ C~. As in iv) of Proposition 3.2.1, we have Perron-Frobenius vec- 
1 

tors (~/'~, "y") e Co ~ x C~, with finitely many non-zero components, such that A,p? n --/3~3'" 
l 

and A~V'* =/3~r/", and, for the vectors formed from the statistical dimensions d # E C~, 
1 l 

we have that A~d ° /3~d x and t 1 = Aood = / 3 ~ d  °. Since A~ - A. has non-negative entries, it 

follows from 0 < (d ~, [A.  - A.] T/") + (7", [h~ - A.] d °) = /3~ - fl~. [(d 1, 77") + (d °, 7")1 

that  fl~ < • .  Thus, as the /3. are monotone increasing, /3. --* s u p &  < ft.- (In order 

to show that /3p = sup/3,, for the general infinite case, one has to go back to the deft- 
n 

nition of the index [23], since, for general infinite Np, there corresponds to any eigen- 

value ~ > s u / ~ .  a sequence of numbers, d~, which form an eigenvector of No). For 

Ind(p) < 4, it follows that any subgraph F .  C Foo has norm HF.II -- ]IA,,]I < 2. The finite, 

bicolorable graphs with norm not larger than two have been classified in Theorem 3.4.1 

~0)  from which we also find the non- and are given by A. ,  .a0).2.+1, D. ,  DO), Ee,7,8, ~8,7,s, 

bicolorable graphs 74,, A~, D~2 and ~,. (These graphs are given in Appendix A.) It 

follows from A,,1 = ¢.,  that each of the indecomposable graphs, F . ,  has at least one ver- 

tex, 1, with edge degree one, which excludes A~ 1) from the above list of bicolorable graphs. 

It is easily verified that the only infinite series of graphs F,, C F.+I C . . . ,  which can be 

constructed from the above list are A.  C A.+I C . . .  and D .  C D.+I C . . . ,  where the 

common vertex, 1, is given by an endpoint of A. ,  in the first series, and the endpoint of 

the short leg of D,,, in the second series. Besides the infinite graphs Aoo and boo, we are 

left with the finite graphs A. ,  D . ,  D~ ~), Es,7,s, ~(~) which are listed in o) - iv). In any J-~6,7,8, 

case, we have tha t /3 .  --*/30, since/3. = 4 cos 2 ~ (=  4 cos' 2 ~_1)  tends to 4, as A.  T Aoo 

(D .  T D . ) ,  and we have tha t /3 .  = 3. ,  for n > d i a m ( r ~ ) ,  when the graph Poo is finite. 

The sites in P~  at which we have automorphisms, i.e., the sites corresponding to the 

smallest component of the Perron-Frobenius vector of the incidence matrix of Poo, have 

been indicated by (*) in the graphs of the Appendix. 

We are now in a position to derive the decompositions of p o p and p o ~, stated 

in Proposition 7.3.1, from the list of possible inclusions by considering the normality 
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- t t C~ °, i.e., by determining the solutions constraint (3.68) imposed on A M : -  N, I C~ ° : CF 

of AMA~ =/~o~A~. We first note that,  since 2 ~ [IAooll -- IIAMA~II ~ = AM , the graph 

associated to AM has to appear in the classification of graphs with norms not larger than 

two, given in Theorem 3.4.1 . Since any cycle (subgraph isomorphic to A(1)) has norm 

equal to two, the only graphs in this set with cycles of length two, four or six, are A~ I), 

A(3 I) and A~ I). All other graphs, in particular those listed in o) - iv) of Proposition 7.3.1, 

fulfill the prerequisites of Corollary 3.3.7. Thus if there is some AM, IIAMII ~ 2, for which 

there exists a non-isomorphic solution, A~, of the normality constraint, A~ has to be of 

type, A(~,,)+~, n -- 0,1, 2. Since Aoo : C~ --* C7 ° has no cycles of length two, four or six, 

we have, by Lemma 3.3.6, that the component A := (F~)~ = (F'n~ of the twice iterate \ oo/c 

of one coloration obeys a) - c) of Lemma 3.3.6, so, by iv) of the same lemma, FM = ~.4. 

( A  OP~ contains a double edge and is therefore excluded For A 0), we see that  An := \ a /c 

i ( A  (1)"'~ and ,4 a := ( A  (1P'~ statements a) - c) are as a candidate for I"oo , b u t , f o r A l : = ~ ,  1 j c  \ s /~ 

easily verified. We therefore obtain the only FM = (AM, C~, C~ °) with non-isomorphic F "  

by going through the construction of ~ t  given in Lemma 3.3.6. We conclude that 

Ax : 

and (7.48) 

It follows from (7.48) and the positions of (*) in (A10) in Appendix A, that ,  for real- 

izations of 9 (1) in a fusion rule algebra, we have that Out (Co°°)= C~ = {1, a~,an, a3}, 

(thus ~ Zn x Z2 or g4), and decomposition iii) follows. Similarly, we have for E80), that 

Out (C~') = {1, a, ,  an, } (hence ~ Zs and a~ = aria), and therefore C~' = {p, a ,  o p, an o p}. 

If we define ¢ E Co°° by p o ~ = 1 ~ ¢,  (i.e., Co°° = {1, a~, an, ¢}),  decomposition iv) fol- 

lows, since ¢ is a neighbor of every element in C~ ° in the graph Es 0). For all other 

graphs, listed in o) - ii), we have by Corollary 3.3.7, a bijection, E : C~" ~ C~ °, such that 

AME = AM. If we apply E to the C~-part ,  d °, of the Perron-Frobenius eigenvector of Np, 

d = (d °, d~, . . . )  E C~ @ C~ ° ~ . . .  (if C~ = C~ ° put d ° = d~), obtained from the statistical 

dimensions, dp, which is the Perron-Frobenius eigenvector of AM in the finite case, then 

we find that 

--1 - t  1 Edo = d ; 1 E A L d  ' = d;  x (Ao~-x )  ' d x = d;  x = d, AMd = d 2. 
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By (3.55) the equation d~( 0 = d/ implies that ~ (Out (Co~)) = Out (C~). Hence there is 

at least one automorphism in (C~), namely al := El .  More generally, the set 

s tab(p)  : =  I o p = p}  

is a subgroup of Out (Co°°), since 1 = ~oe - d~ and because of grading considerations. 
dp - -  

Hence, using stab(p) ~ Aut ( F ~ ) :  ~ ~-* N~ [ Co ~,  stab(p) is also a subgroup of the graph 

automorphisrns of F~ that  fix the vertex associated to p. It consists of the vertices in Foo 

of edge degree one that  are joined to p and is given, in the case where llF~o II -< 2, by Z4 

or Z2 x Z2 for D(41), Z3 for D4, Z2 for D~, r~(1) and A3, and is trivial for all other cases. " - ' n >  s 

If I] : C*** ~ C~', as defined above, exists it follows, that  I](a) o # = p for any 2" := 

~(s tab(f ) )  C {p o p}. Also, :~ consists of automorphisms and, as A := ~-1~ ,  is an auto- 

morphism of F** fixing p, for any I]' : Co°° -* C~' with/k**~]' = A**, we have that  A maps 

stab(p) to itself. Thus 2" is independent of I3. Conversely, if, for a E C~, = off = p holds 

we have, from Lemma 3.3.4, that a 6 {p o p} N Out (C~°). For any such automorphism, 

we can define 1~= := N~ [ CoO° : C~ ~ C~', with /kooE= = A~, so that a = ~=1 E 2-. In 

conclusion 

2" = ~=(stab(p))  = {a E C~°: a o ~ = p} = {p o p} D Out (C~) , 

and (7.49) 

IZ[ = [stab(p)l, for Out(C~') ¢ 0, and 2 =  O, for O u t ( C ~ )  = 0. 

We now can assign to the remaining inclusions the decompositions o) - ii) by comparing 

the isomorphic inclusions 1 ~  and F~ and their automorphisms. Since, in these cases, the 

number, vp, of representations in p o ~ is less than four, we have that  vp = lip o ~112 = 

lip o pH 2 is equal to the number of representations in p o p; (here [](.)t] is the euclidean 

norm of eq. (3.3)). Since vp < 3 and ]stab(p)l > 1, the number ~?p = v p -  ]stab(p)] of 

non-antomorphic representations in p o p obeys ~/p _< 2 and ~p = 2 only for vp = 3 and 

r~(1) D ~  and D4 for which [stab(p)l = 1. However, the only cases with vp = 3 are ~',,>s, 

stab(p) =g2 or ga, so that  there is at most one non-automorphic representation in p o p. 

This completes the first part  of the proof, showing that  Ind(p) _< 4 leads to the decompo- 

sitions listed in o) - iv). 

It remains to prove the converse implication, i.e., to derive Ind(p) < 4 from the given 

202 



decompositions. 

We first note that  if 0"1 E p o p, which means that  there exists an isometry 

0 # Fpop,,r~ EInt (p o p, al) ,  and 0"1 is a localized automorphisms, then we have, for the 

:=0"~-1 o p ~ p o 0"~-1 (,,=,,, for 0"1~P), that  ~ o p(A)r.o.,1 = r.o.,~A, *-endomorphisms 

for all A E ~ c . ,  where F$op.1 := 0"i -1 (Fpop,~). Similarly, we find an operator Fpo~,l, with 

p o ~(A)Fpog,1 = Fpo$oA, VA E ~c . ,  such that  there always exists a conjugate sector. It 

follows from the result in [23], that  Ind(p) < 0% for all cases. Hence Ind(¢) < ~ ,  V¢ E @, 

@ being the sectors generated by p. Moreover, we find from i) that  

and from ii) that  

p o ~ =  1 e ¢ '  (7.50) 

p o ~ =  l e ~ ¢ '  (7.51) 

where ~b' : =  o'11 o ~ ,  8xld 0" : :  0"11 o 0"2- 

The assertion follows for cases o), iii) and iv) from the basic properties of sta- 

tistical dimensions, namely: d.~.~ = d.1 • d~, d . , ~  = d.l + d~ and d.  : 1 iff a is an 

automorphism. For o), we have d. = 1, for iii) ~ = dl + d~ + d., + d., = 4, and for iv), 

= 1 + 6 ,  d~d. = d. + d ~ d .  + d.~2d " = 3d., hence d~ = 3 and d. = 2. The proofs of i) 

and ii) require some additional knowledge on connections of automorphisms to conditional 

expectations and Temperley-Lieb algebras. 

We first consider two irreducible *-endomorphisms, pl and p2, which are arbitrarily 

localized and have finite index, and assume that  there exists a localized automorphisms, 0", 

with 

0" E Pl o P2- (7.52) 

From an isometry, Fp~o~,..,, intertwining 0" with a subrepresentation of Pl o p~, we find 

an isometry (0",)-1 (Ppto~,.,) which intertwines the vacuum representation with the 

• -endomorphism ( (a ' ) - '  o Pl) o P2, so that ~2 ~- (0",)-1 o Pl by property (P1) and Fp~o~,~, 

is unique up to a phase factor. It follows that N.~m,., = 1 and dp~ = d~. In particular, 

for some choice of #2, there exist a localized unitary operator, F.,oh,.~ , and an isometry, 
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Fho~,l , such that 

r.,o,~,., = r;,o~,., a '  (r~o,~,~) . (7.53) 

These properties imply that the projections e., (p~, p2) := F~o~,,~,F~o~,., are unique and 

obey 

e., (Pl, P2) ~--" r;,o~,., ~' (el (P2, P2)) r.,o~,.,, (7.54) 

where e m = el (P2, P2) is just the Temperley-Lieb projection introduced in Section 2.5. 

Moreover, we have that e , (p l ,p2)- -e , (p2 ,p l ) .  Let us assume there exist an endo- 

morphism, ps, and an automorphism, a", with a" E P2 o p3- We immediately find that 

p2 o a" "~ pa, dm = d m =  dp3 , that the isometry, Fmops,,,,, is unique up to a phase and can 

be expressed,similarly to (7.53), by 

r.~o....,, = .2 (r~o. , , . . )  r.~o~.l. (7.55) 

where r~o.,,,~ is unitary, and Fmo~,l is normalized, relative to F~om,1, such that 

(7.20) holds. The identity following from (7.55) for the (unique) projection e,,, (P2, Pz) = 

Fmom.,,,,F~o~,,,,, is expressed by 

r* e.,,(.2,p~) = p2(~o. , , . . . )  e~(p2,~2) p~(r~o.,,,..) (TZ0) 

It is straightforward to derive the generalized Temperley-Lieb relation 

~Pl (eo-,, (P2, P3)) eo-, (el, P2) el ({~o-,, (P2, P3)) = el (eo-,, (P2, P3)) (7.57) 

from the previous equations and from relation (7.27), i.e., 

and, similarly 

~e., (pl, p,) pl (e.,, ( , , ,  p3)) ~., (pl, p=) = ~., (pl, p2). (7.58) 

Prom (7.57) and (7.58) we can infer that Ind(p) < 4, in case i), by using the statis- 

tics operator which is fundamental to previous approaches [19] to braid statistics and 

whose definition requires the explicit use of charge-transport operators and reference- 

(spectator-)endomorphisms. We therefore briefly rederive its properties from those of the 

statistics-matrices discussed in Theorem 2.3.1. 
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For this purpose we consider three irreducible, arbitrarily localized *-endomor- 

phisms, Pl, i = 1, 2, 3, which are equivalent to causally independent  endomorphisms,  ~i, 

with as (~1) > as (P2) > as (p3)- Then there exist charge t ransport  operators F~,,~, e ~c -  

obeying (2.19). We choose the frames, {V~ (p,)}, {V~ (~,)}, of different fibres Yt (P,)~, 

l~t (~i)~ ~-* 2:e,,,~ , related by (2.26). This yields a relation between the natural  frames, 

{V 2 '  ( p l ) . . .  V:"- ' "  (p,,)}, of l;, (pl o . . .  o p.~)~ ~ 2"~,,...,.,~ gven by the equations 

v2 (~)  v~  (~2) = ~ (r~,,~,~, (r~,~)) v2 (~) v~  (~2) (7.~) 

and 

i (r,,,.~p, (r~.,~) p~ o ~,2 cry.,.,)) v2 (.~) v~  (p2) vJ ~ (p~) ,. 

The statistics operator e + (Pl, P2) is given by 

~+ (.,,,2) = .2 (~,, . ,)  r~ , .  r,,,., pl (r~, . )  

(7.60) 

Clearly, it is a unitary operator in ~c -  intertwining pl o p2 with p2 o pl and, a priori, it 

might  also depend on ~1 and ~2. The connection to the statistics matrices is obtained if 

we combine eqs. (7.59), (7.61) with (2.27), using that  ~ X ~ 2 ,  and as (~1) > as (~ ) .  We 

find that  

v 2 ( . i ) v 2 ( . 2 ) :  E R+ ,' v:, (.2) ,$" . (7.62) 
k'a'.~' 

Since ~+(P~,P2) : Int (p20pl,pl op2) ~ Hom(F~(pl op2)k ,Yi(p2 oP1)k ) is an isomor- 

phism, we infer from the properties of statistics matrices (see Theorem 2.3.1) that  

c+(pl,p2) only depends on the asymptotic direction of pl and P2 , and we will write 

e-  (p,, P2) if as (Pl) < as (P2). Obviously we have that  

~- (p,, p2) : (~+ (p2,.~)) -~ (7.63) 

Equations (7.60) and (7.62) also imply the identi ty 

(pl ( ~  (p2, p~))) v2 (pl) y~  (p2) ~ "  (p3) = 

R *  (k, p2, p~,m)~:~' v2 (pl) y$¥' (p3) ' ' '  ,~, (,2). 
(7.64) 
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This identity, eq. (7.62), the Yang-Baxter equations for the statistics matrices, and the 

injectivity of Int (P3 o P2 o Pl, P~ o P2 o p3) ~-~ Hom (13~ (PI o p2 o ps),,,, 13~ (P3 o p2 o p~),~) 

yield the Yang-Bazter equations for the statistics operators, i.e., 

~ (p~, p~) p~ ( ~  (p~, p~)) ~ (p~, p~) = 
(7.65) 

p~ (~  (pl, p~) ) ~ (~1, ~)  ~1 ( ~  (~,  ~ )  ) . 

For detailed calculations see [24]. If we specialize (7.62) to i = 1, k = [pt], and use the 

normalization V ~ d  (pl) V~']t (p~)= Fv, o~,~t(a) V it (pt)for the isometries, Fv~o~.v~(a), 

we obtain the following presentation 

r~::i: " 1  s ' ~  l a '  ,, , 

~ . a a  I 

In the case of interest we have that  Pz = P2 - P, and the summation in (7.66) ranges over 

pt E {~,~}, %b ~ ~r, a = a' = 1, so that 

~+(p,p) = z.((% + 1) ~.(p, ,)-  1), (7.67) 

where 
~,p l l  

R(1, p, p, o')pzt 
q"= R(1 ,p ,p ,¢)~ l l  ~ - l '  z o : - R ( I ' p ' P ' ¢ ) ~ I I "  

The consequence of having a two-channel decomposition is that  the braid group rep- 

resentation given by the generators T,~ := ~p'~ (c+(p, p)), with T.Y.+IT,, = T.+ZY,~T.+I, is 

contained in the set of representations of the Hecke algebra, H~,,oo, since we also have that 

~.~ = (q. - 1) ~.  + q., i.e., the ideal Z C C [Boo], with C [Boo]/I  = Hq.,oo, is annihilated by 

our representation of Boo. As remarked in [22], one can then utilize the classification of 
_l_ =~rl 

unitary representations of H~., as given in [54], to find the possible values of qt: qt = e N,  

N = 4 , 5 , . . . , o o .  

For the associated projections en q.+z - P" (e.(p, p)), we find the usual Temper- 

ley-Lieb relations (7.27), with fl = ~ ,  provided a is an automorphism and using (7.57) 

and (7.58), with p = p~, i = 1, 2, 3, and a = a '  = a". In this case, one finds, by inserting 

(7.67) into the Yang-Baxter equation, the compatibility condition 

# = q. + q; '  + 2.  (7.68) 
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More precisely, for Hti, ~ = C [Boo]/I x A~,~ = C [B~]/I~,  we have that  I H C I~, i.e., 
, tip ' qp 

.z~,~ is a quotient of Hqp,~, if and only if (7.68) holds. From this we obtain the possible 

values of dp: 

7r  
d. = 2 cos ~ ,  (7.69) 

which, in particular, shows that  Ind(p) < 4. 

We remark here that,  for the situation where p o p ~ a q) ~b, the Temperley-Lieb 

relations for the projections e,, := p" (e~(p, p)) imply that  a is an automorphism. This is 

most easily verified by computing ~+(a, a) from E+(p, p) with the help of the polynomial 

equations and the cabelling procedure. It turns out that  

4 ¢+(a, a) = z, q, I .  (7.70) 

However, a result in [19] tells us that if e+(a, a) is proportional to the identity a is an 

automorphism. 

Finally, for case ii) we only assume that p o # = 1 @ a @ ¢ and show that  Ind(p) = 4 

follows. The peculiarity we exploit here is that  the decomposition of p o ~ yields an 

automorphism a, with a o p ~ p, which, in the language used above, means that the 

subgroup stab(p) C Out(~)  is nontrivial (~  252). At the level of a local algebra, a stabi- 

lizer subgroup of Aut(C) can be defined similarly, by stab(~l) := {a e Aut(C) : a(A) = A, 

VA E ~},  where ~1 C ff)I. If we restrict the projection 7r' of Aut(C) onto the quotient 

Aut(C)/Int(C) ~ Out(C), as discussed in Section 2.5.3, to stab(p(ffJ/)) it is clear that its 

image lies in stab(p), i.e., we have a group homorphism lr given by 

7r: stab(p(ff)I)) --~ stab(p) 

Aut(C) --~ Out (~) .  

For a representative a ' C  Aut(C) of [a'] e stab(p), there exists a unitary operator 

F~,op,p E U(C), with o ' o  p(A)P~,op,p = P,,op,pfl(A). Thus a := ar:,o,., o a '  is an element 

in stab(p(ffiI)) with [a] = [a'], showing that  ~r is surjective. Since p is irreducible, it also 

follows from p(ff)I)' N U(C) = C1 that  ~r is injective. Hence 

~ b ( p )  s t a  = s t a  . 
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In particular, this implies that stab(p(DX)) is an ahelian group, although its elements are 

in general not causally independent, and the group extension 

o -~ I , u ( c )  - - - ,  ~ - - - ,  ~ t . b (p )  --~ o 

splits. Here, Q C Aut(C) is the respective preimage of stab(p). 

The one-dimensional space Int(a o p, p o a) -- Int(p, p o a), is spanned by either 

U+(a) := ~+(p,a) or U-(a):= c-(p,a) ,  so U + ( a ) =  e2"~i'~'U-(a) and by the definition 

of the statistics operator, we have that 

p(r.~.) = r.~. U~(a), (7.72) 

a~}~p and as (a~) <> ~(p). where 

Since p o a = au*(~) o p, we find that a ~ U:l:(a) defines two projective representa- 

tions of stab(p) in U(C). Thus there are 2-cocycles 7 + e B2(stah(p)), with 

where ~+ ~ 7-  by 7-  = 7 +. 6 (e2-,,) 

If we let F ~ , ~ i . ~  =/~± (Fo~ ~) F~i~ be the charge transport operator for the 

composed automorphism a o/~ = # o a e stab(p(gX)), we can relate these cocycles to the 

charge transporters, by inserting (7.72) in (7.73). This yields 

~ ( r . ~ . )  = 7~(a,#) r . ~ . .  (7.74) 

Applying # to (7.72), it follows that 

, (U+(a)) = 7 ~ ( a , ~  U~(a).  (7.75) 

From (7.73) and (7.75) it follows immediately that 7+(a, #) is a homomorphism in both 

arguments separately, and, by (7.61), we have that c*(a,#) = 7+(a ,#) l .  Since U+(a) 

is proportional to U-(a) ,  we conclude from (7.75) that 7+(a,#)----7-(a,#).  In other 

words, the sectors in stab(p(ff)l)) obey ordinary Fermi-Bose statistics among themselves, 

i.e., e+(a,#) = ~-(a,l~ ) ---: 7(a,#). Moreover, it follows that 6 (e 2"~) = 1, so the value of 
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the monodromy m(p, cT)= e+(a,p)e+(p, a)= U-(a)*U+(a)= e ='~'~'~ defines a character 

on stab(p). 

We can define a second operator U(a),  which is different from U+(a), for p ~ ~, by 

setting 

~(~) := d~ ~ o ,, (r;o.,~) r,o., , ,  (7.7o) 

so that ~ (~ )  e ~t (p  o ~, p). 

p o p ( ~ ) '  n ~ ,  and 

Also, since a o p = p and by (7.76), we have that  U(a) E 

y(~) r~o.,~ = r.o.,1. (7.77) 

From the irreducibility of ~ and # o a and from (7.76) it follows that  U(a)  is unitary. Thus 

ay(.) o # = ~ o a. This shows that  a ~ U(a)  is a unitary representation of stab(p), since, 

by (7.77), no 2-cocycles (as in (7.73)) can arise. Therefore we can write Y(~) in the form 

u ( , , )  --  ~ (~,~(,~));  r~o,,.,~(,-,) r ;o~ , , , (~ ) ,  (7 .78)  
k , a = l  

where hk:  stab(p) ~ End (CN,°p,h), a ~-* hk(a), is a unitary representation of stab(p) on 

C~r~°p, ~, and hx(a) = 1. 

The left inverse, ~p, of ~, defined by 

$ ~,,(A) = r .o, ,~p(A)r.o. , , ,  A e ~ t ,  (7.79) 

maps Int(~ o a, ~) to Int(a, 1). It therefore follows from Schur's Lemma that  

~. (~(~)) = o, for ~ ~ 1. (7.80) 

Note that,  by the "generalized" Temperley-Lieb-relations (7.57), we also have that  

~,~ (~.( ,~ o p))  = ~ - ~ ,  

for all ~ ~ stab(p). 

In the case of interest, 

1 - el(~, P) - e.(~, P)) to 

~(~) = h~(~) + (1 - h~(~)) e,(~, p) + (h.(~) - h~(~)) ~.(~, p). 
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(7.81) 

# o p = 1 ® a @ ¢, (7.78) specializes (with F~oa.~F~-oa,, = 

(7.82) 



If we apply the left inverse to (7.82) and use (7.80) and (7.81) this yields the following 

equation for 3: 

# = 2  (7.83) 

Here h,r(a) and he.(a) are characters of stab(p) and, because of the equation 

fl = ~ = dl -t-do q-d~ = 2 q- d~, 

they are constrained to satisfy _l+a~(~) _ de > 1. If ¢ is an automorphism stab(p) 
h,C~) -- - 

is of order three, thus isomorphic to Zs, and therefore ¢ -  ~. Also, we have that 

h,.(a) = (h,~(a)) -1 is a third root of unity, and it follows that  

For a ~ which is not an automorphism, we show that  s t a b ( p ) ~  Z2, so that  h , ( a ) ,  

h~(a)  E ~1, - 1 ) .  The only solution of (7.83) with 3 > 3 is therefore he(a )  = - 1 ,  h , ( a )  = 

1, and we obtain that  

3 = 4 .  

This completes the proof of Proposition 7.3.1. [] 

The statement of next lemma can also be expressed as the fact that  all sectors in stab(p) 

are either fermionic or bosonic and obey trivial statistics relations among each other. 

The superselection structure of stab(p) may be realized by any finite, abelian group. 

This changes if we assume that  the automorphisms stabilizing p constitute the entire 

decomposition of p o p, i.e., if we assume supp(p o ~) = stab(p) and p o p contains at least 

one invertible element. Still there exist fusion rule algebras for any abelian group G such 

that  G ~ stab(p), but  if we require this fusion rule algebra to describe a quantum category 

(resp. a local quantum field theory) these automorphisms are given by the representations 

of a finite, abelian reflection group, i.e., stab(p) ~ (Z2) N for some N.  The best known 

examples are those for N = 1 which arises in the quantum category constructed from 

U~q "a (nl2), q = e~ ,  with Aa-fusion rules, realized by the S-0(2)k=2 WZNW-model  ( or any 

other c = ] -RCFT ) or the critical Ising model, and for N = 2 where the category is 

obtained from the dihedral group, D2 C SU(2), with DO)-fusion rules, and realized by 

the SU(2)/D2-orbifold model at c = 1 or a 4-state Potts model. 
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For the proof of these assertions the following presentation of skew-bihomomorphic 

forms on abelian groups will be useful. 

L e m m a  7.3.2 Let O be a finite abelian group and 

f : G × G--~ V(1) 

a nondegenerate bihomomorphic form. 

0 I f / h a s  trivial diagonal, i.e., f ( a , a )  = 1, Va E G, then 

× . . .  × z v , )  ( 7 . 8 4 )  

where the orders divide each other as va I v2 I " "  Ivk and "x " means orthogonal 
1 

with respect to f . On each factor Gj = Zvj x Zvj with generators ~ and rl, f is 

determined by 
2,ri 

= e ( 7 . 8 5 )  

i 0 f f f  is only skew symmetric, i.e., f(¢~,19) = f ( f l ,  a), V a , ~  E G, and f(cx, a)  = q-l, 

then either 

a} f has trivial diagonal; or 

b} G = 7"2 ×-G, with f ( r , r )  = - 1  for the generator z of the Z2-part, and f is 
J.  

nondegenerate and has trivial diagonal on G, or 

there is some (unique} m > 1, such that G = (Z2-. × Z2-.) × G, where f is given 
I 

on the generators ~ and r I of the (Z2.- × Z2-)  part by 

f(~,~/) = e ~ - ,  f (~ ,~)  : 1 but f07,~/) : - 1 .  (7.86) 

Furthermore, f is nondegenerate with trivial diagonal on G. 

We shall not give a detailed proof of this fact here but  satisfy the reader's curiosity with 

a few remarks. The first part is a standard exercise in normal forms, using the invariant- 

divisor form G = Z ~  × .-- × Zv., vl I ui+l, of the group and the nondegeneracy of f .  If f 
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is only skew, then  a --* f ( a ,  a )  is a homomorph i sm G ~ Z2, so there  is some 7" E G, with 

f(7", a )  = f ( a ,  a ) ,  Va E G and 7"2 = 1. In case a) we have 7" = 1, in case b) 7" ~ 1, with 

f(7",7") = - 1 ,  and G is s imply given by G = 7"±. The  complicat ions arise when 7" ~ 1 and 

f(7", 7") = 1. T h e n  7" is contained in some maximal  Z2= with genera tor  ~, so 7" = ~2(~--~). 

The  relevance of s tudying nondegenerate ,  b ihomomorph ic  forms becomes clear in 

the  next  lemma.  

Lemma 7 .3 .3  Suppose that, for an irreducible object p, of a C*-quantum category, 

supp(p o if) : s tab(p) .  Then 

i) the multiplicity of  o" E p o ~ is one, for  all o" E stab(p) ,  and ar2p = Istab(p)J. 

ii) Let f ( a ,  fl) := R+(p,a,  fl, p)~ for all a, fl e stab(p) .  Then f is bihomomorphic and 

skewsymmetric, and 

f ( a , , ~ )  = e ±a'/a° e Za.  (7.87) 

All selfconjugate elements a e stab(p) ,  i.e., a a = 1, are real. 

iii) f is nondegenerate. 

Proof." 

a o p = p is irreducible.  

t ha t  

i) We first repeat  an argument  given in the proof  of Proposi t ion 7.3.1. We have tha t  

Thus  1 = N ,  op,p = N¢,pop. From p o fi = ~ a we have 
a'Estab(p) 

a z d , = l .  

dp.d~= ~ 1 = ]stab(p)], 
cEstah(p) 

ii) T h e  num ber  f ( a ,  fl)6k.6.p :=  R:t(p,a,  fl, p)~ E U(1) is well defined because 

d im (Int (p o a o fl, p)) = 1. The  claim of L e m m a  7.3.3 is tha t  the sectors in s tab(p)  

obey  trivial statistics,  so m ( a , 3 ) =  ~(3, c ~ ) E ( a , 3 ) =  1, which on the  level of R- 

matr ices  means  R+(p,3,  a ,p ) "R+(p ,a ,3 ,  p)~ = 1. But this is just expressed by 
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the skew symmetry, f ( a , / 9 ) =  f(/~, a).  The polynomial equations on the one- 

dimensional intertwiner spaces, Int (p o a l  o . . .  o a2, p), are given by 

k(p, ~, f~, p)% R~(p, :. o/~, % p); = R~:(p, ~, % p): R~(p,/~, % p); k(p, . , /~ ,  p)'..o~ 

etc., which imply that  f is homomorphic in every component,  after cancelling the 

F-matrices.  

It is clear that  we always have a normalization of intertwiners such that  

r : a :  . ( r a ~ : ) =  ~ ( r : a , , )  r~a,~ = 1 (7.88) 

for all a E stab(p), with ct ~ &. However, for a 2 = 1 this can a pr /or / s t i l l  vary by a sign 

(pseudoreality). To exclude this possibility note that  in general 

(- ,  a) = : " -  r~,~ r ' ~ : .  (7.89) 

For a 2 = 1 this specializes to e(a,  a)  = e 2'~°" and hence f(a, a)  = e 2'~'°" E Z2. The sta- 

tistical parameter  is then $= := Ct (F:at,1) e(ot, rr)/2t (I~atat,1)~-- e 21riOt" but also $= := 

2x/Oa * 
e r.a,;a (r_,1). With e 4'r/e" = 1 this implies reality for a and (7.88) holds for any a, 

i.e., by unitari ty we have r~oa:  = a (Fao=:). For the unitary intertwiners, Fpo,,p we have 

an F-mat r ix  identity 

P.oa,p Ppoa,. = qo~ p (I'~oa,t) 

for some qoa. We obtain 

r , ~ , ,  = ~ r io . , ,  p ( r . o ~ : )  = ~ .  r io . , ,  p o ~ ( r ~ o . : )  = ~ .  p ( r ~ o . : )  r* , pOO~p , 

which yields, after multiplication of Fpoa,p from the right, 7~a = 7~a. Hence 

p (~ (~, a)) r,o.., r,o~., = ~ : " -  p (r~o~:) 

= e 2~rIO*' rpoa,p r ~ t t , p  

and therefore f ( a ,  a)  = e 2"~°" , for general a .  
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iii) First let us record a simple consequence of the equation 

- .  - O N , i , k ,  ° ' ~  e ~ a ~ '  ~ " " ° ~ ' ~  
: g~ S)slat 

(compare (2.38)) for the matrices, ~b, defined by 

(7.90) 

p' (r,~o.~,..(..)) r.,o..,v(/3) = E ~(i , j ,k, t)L~ r.,o,~,..(u) r.,o..,v(~). 

If (7.90) is specialized to j = l = s = r = p and k = a, i = /3  G stab(p), then we find 

~(/3, p,,~, p)." = a+(p,,~,/3, p)~ 

and therefore 

/3 (r.o., .)  reo.,. = f(~, /3) reo.,, r.oa,..  (7.91) 

We introduce an orthonormal basis, {I=}=ot~b(.), on the ]stab(p)[-dimensional In- 

tertwiner space Int (p o # o p, p) by 

I,~ := F*op,p a (Ppo~,a) F=o.,. (7.92) 

and consider the action of the complete set of orthogonal projectors, {E6}6ot~b(p), 

given by 

on Int (p o ~ o p, p), with respect to the basis (7.92). A matrix element of B s  is 

a (r,o.,~) roo.,. 

~(r~s , . )  o(r .o . , , )  r~0,,, 

o (r.o,,.) r.o.,. 

1 , 
- istab(p) I r~0 , . ,3  (r;os.,) r ~ o , . , r L , . ,  a ( r ,os . , )  r .o , . ,  

given by 
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where we use the basic commutation relations and (7.20). If we insert (7.91) we 

obtain 

1 (/(6,z) r;o,,p riop,.) roo ,p I3 Es I .  = Istab(p)l  

hence 

1 (7.94) 
Istab(p)l  f ,~o  , 

E (7.95) Es I,~ = Istab(p)-------/ ~ot,,~,,) 

For any character a E G of a finite abelian group G, we know that Ic--T a(g) = 5~j. 

So if Af C stab(p) is the degenerate subgroup of a bihomomorphic form f ,  i.e., 

.hf = {a  ] / ( a , ~ )  = 1 V~/E stab(p)}, then this means 

1 f 1 f o r a E N "  
istab(p) I ~ f ( a , ~ ) =  [ (7.96) 0 else. 

With this formula we find from (7.95) 

E6 I= = ~ I,~o.y. (7.97) 
$ -tEN" 

However, by completeness, E Es = 1, this implies X = {1}, i.e., f is non degener- 
6 

ate. With this knowledge the orthogonality relations E,~E~ = ~,~E,~ can be easily 

verified. [] 

The remarks made in Lemma 7.3.3 will now serve as an important tool to prove the 

following assertions on the situation where p o p decomposes entirely into invertible ele- 

ments. Proposition 7.3.4 classifies the possible groups, stab(p), to be of the type (Z2) M 

and gives the general spectra of the statistics operators e(a, ~), c(p, p), in a suitable choice 

of generators of stab(p). 

P ropos i t i on  7.3.4 Suppose p is an irreducible object of a quantum category and assume 

that p o p decomposes into invertible elements. Then 

i) supp(p o fi) = stab(p), and for any a l  E p o p we have p o p = ~ al o a .  
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ii} All elements in s tab(p)  are selfconjugate, i.e., there is some M E N, such that 

stab(p) -~ (z~) M , 

so, in particular, Id.I = 2 ( ~ ) .  

iii} For  any given a~ E p o p, let q: stab(p)  ~ U(1) and A E U(1) be defined by 

~(p,p) = A e - ~ ' ' ,  ~ q(~) ~,o=(p, p) (7.98) 
:Es t ab (p )  

and q(1) = i .  Then we have that the bihomomorThism f defined in Lemma 7.3.3 

is a ~-coboundary given by 

f = 6q. (7.99) 

We have 

and further 

The constant A ~ is given by 

q (a )  2 = e 2:'i°" , (7.100) 

q4 = 1, f2 _ 1. 

A 2 = e 2 " ~ i ( ' t ' - ' ' , ) .  ( 7 . i 01 )  

Ira1 is replaced by a'~ = fl o ax, f l e  stab(p) ,  then the quantities A' and q' associated 

I to a 1 are given by 

A' = q(fl) A,  and q'(a) = f ( # ,a )  q(a). (7.102) 

There is a choice oral  and a system of generators of stab(p) such that the quadratic 

function q : s tab(p)  ~ Z4 is as in one of the following cases: 

a) s tab(p)  = G = (Z,  x Z=) N with generators ~i, lli, i = 1 , . . . ,  N,  and 

Jw 

q (~'r/i ~' = ( - 1 ) ,  =, , for ei,$1 6 {0, 1}. (7.103) 

In this case A = 4-1 according to whether p is real or pseudoreal (i f  selfconju- 

gate) and 

0= = 40. mod  1, Va E p o p.  (7.104) 
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b) stab(p) = Z,  × G, 

that 

q (~" 9) = i -"  q(g), for  ~ ~ {0, 1} 

and g G -G, q(g) E Z2 as in a). Furthermore, A = =l=e~-, and 

1 
0= -4- ~ = 40p rood 1 , 

where + applies for a E al o G, and - for a E r o al o G. 

c) stab(p) = (Z2 × Z2) × G, with additional generators ~ and b, so that 

q (7"" bS g) = (--1) "s i 6 q(g) , 

with G as in a), and an additional generator T of Z2, so 

(7.105) 

(7.106) 

with e, 6 E {O, 1} and g E G, q(g) E Z2 as in a). We have A =  4-1, and 

0o = 4 0 p m o d l ,  f o r a E G ' ,  

1 
0 = + ~  4 0 p m o d l ,  f o r a E b o G '  

(7.107) 

where G' = {1, T} X G. 

Proof." 

i) These are simple consequences of the fact that  al  E p o p and al o ~-t = 1 implies 

p = o'1 o p . 

ii) For some ax, let A and q be defined by equations (7.98). We first show (7.99), using 

the fact that q(a) can be interpreted as the ratio of two particular intcrtwiners. To 

sec this let R=, L= E Int (p o p, al o a) be given by 

and := r ;o . , . ,  p (r~oo,.) 

First, it follows from 

A e -2"~e" q(a) R= 

L. := r;o.,., p (~+(- ,p) )  r.oo,. .  (7.108) 

: R= ~+(p, p) : r;o.,., p (r~o=,.) ~+(p, p) : 

= r;o.,.~ ~+(p,p) p ( .+ (~ ,p ) )  r.o~,. 

= Ae -2"i0" p (e+(a,p))  r,o~,, = Ae -~'~'°' L= 
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that  

n~ = q(~)-i  L~. (7.109) 

This implies 

r;. . , . ,  p(r.oa,.r.o~,p) = q(~)-'  r;. . , . ,  p (~+(~,p)) r. .~, ,  p(r.o~,.) 

= q(~)-'  r~ . , . ,  p ( .+(~,p)~(rpo~, . ) )  r ~ . , .  

: ~(o)-,  r ; ° . , . , ,  (, (.-(~.o/) ~°~.,.+(°.,)) ~.0o,~ 

= q(")-' v(•)-' r~ . , . ,  p (~÷(~ ,p)~  (~+(, ,p))  . -(t~, . . ))  r.o~,, r.o. , .  

= q(o)-, q(~)-, R-(p,~ ,~ ,p):  r;o.,., p(~÷(o,p) o (~÷(~,p))) r , o o . . ~ . ° . .  

For L e d  .. ,Z • stab(p) there is a unitary, r=o~,~, with p (r:o~,a.) r.oo,, r.o~,. = 

Fp,=~,, and p (F:o~,=~) e+(a,  p) a (e+(/3, p)) = e+(a/3, p) r=o~,=~. Hence multiplying 

both sides of the above equation with al (F'=o~,=~) from the right we obtain 

P ~  = q(a) -~ q(~)-~ f( f l ,  c~) L,,~. (7.110) 

But by (7.109) this implies (7.99). This, however, implies that f is symmetric as 

well as skew symmetric, hence f • Z2 C U(1) and f f  - 1. Now we use the non- 

degeneracy of f on stab(p) × stab(p) and the normal form of Lemma 7.3.2 to see 

that  all vj = 2 in (7.85), i.e., the claim of ii), stab(p) = (Z2) M, is true. If we 

specialize 

f ( ~ , ~ )  = q(-) q(~) q(-  o t~) -~ (7.111) 

to a = /3  and use a ~ = 1, we find q(a) 2 = f ( a ,  a) ,  which together with (7.87) gives 

(7.100). Finally q(a) 4 = f ( a ,  a)  2 = 1, so q: stab(p) ~ Z4 C U(1). 

The formulae (7.102), expressing the dependence of A and q on al ,  follow directly from 

the defining equations (7.98). 
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The equation (7.101) follows from the monodromy spectrum rn(p, p) = e(p, p)2 = 

e2"Q s'-s'`*') e,,t.~,(p, p) and relation (7.118) of Lemma 7.4.1, below. If we at tempt E 

to compute the statistical parameter of, p, we find from 

~p :=  k e-2~ri#p * 

and the generalized Temperley-Lieb relation (7.57), that 

1 A - l = - -  E q(a), (7.112) 
dp oe,ts~p) 

where dp = q - ~ ,  the sign depending on the reality of p. In order to obtain the 

more detailed information on the braid matrices, given in part iv), we have to use the 

presentation of stab(p) and f in Lemma 7.3.2. We shall restrict our attention first to 

case a), where f has trivial diagonal or, equivalently, all sectors in stab(p) are bosonic. 

This implies that q2 = 1. G has the decomposition G = (Z2 × Z~) x . . .  ~ (Z2 × Z2), with 

generators T/i, ~i in each factor, and f (7/i, 7/j) = f (~i, ~j) = 1 and f (% ~j) = ( - 1 )  6',#. Thus 

from (7.111) the value of q on a general element in G can be computed from q (T/i) and 

q (~,) • { + 1 , - 1 }  as 

q ~'T/¢' = I I  q(~:'7?si')=l-X(-1)"S'q(~:')q(71: ') 
i= l  i=1 

(7.113) 
(__1),~ " i "  iv 

= I I  q ( ( i )"  q (7 i )"  • 
i= l  

To prove (7.103) we have to show that al can be chosen such that q(~i) = q(r/i) = 1. 

Clearly any map q from the generators of stab(p) to Z2 extends uniquely to a homomor- 

phism t~: stab(p) --* Z2, such that q(~i) = q(~i), t~(r/i) = q (r/i), (but in general ~ ~ q). 

Since f is nondegenerate there exists some a~ • stab(p) with f (cq, g) = q(g). If we now 

set aI = a~oa~ we find from (7 .102) tha t  q ' (~ i )=  f(aq,~i)q(~i)= q(~ i )q (~ i )=  1 and 

also q' (r/i) = 1. Thus, for a given choice of generators ~ and 7/i of stab(p), al is in fact 

uniquely determined by q (~i) = q (~/i) = 1. 

Using 
N 

= 2 " ,  
{,,s} 

el,61E {0,1} 
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and Istab(p)l : 4 N we find from (7.112) that  A = 4-1. Inserting this into (7.101) and 

using 0.~o,, = 0¢~ + 0a = 0¢~ rood 1 in the bosonic case we arrive at (7.104). 

For the cases b) and c) we can repeat the above procedure on the G-parts. Again 

from orthogonality, r ± = G, we have in case b) q ( r ' 9 )  = q(T)" q(g), that  e E {0, 1}, and, 

since q(T) '  = f(T,T)---- - 1  and because of the freedom to change the sign of q(r)  by 

replacing cr x by r o ~1 we can choose ~1 such that  q(T) = --i, and q(g) as in (7.103) on G. 

From the equation Z q(a) = E (--i)'q(g) = (1 -- i)2 N, and Istab(p)[ = 2 (2N+1) 
afistab(p) c=O,l~E 

we find the value of A. This yields ( with (7.101))  40, = ¼ + 0.~, and since Or.ogoc, l : 

0~..o~ + 0,q = ~ + 0.i ,  we find (7.105). 

Similarly we can choose a,  in case c) (with m = 1) such that  q(r)  = 1, q(b) = i and 

q on G ~ (TZ., x Z2) N as in a). We then find E q(a) = 2 (N+I) and [stab(p)l = 4 N, so 
aEstab(p) 

that  A = 4-i. Similarly as in b), this, together with 0~,~% = ~ mod i, g E G, implies 

formulae (7.107). [] 

We can now use this result and the previous ones on fusion rule algebra.s, in order to obtain 

a sharper version of Proposition 7.3.1 in the case where d(p) < 2. This restriction on the 

dimension eliminates the possibilities iii) and iv) of Proposition 7.3.1. The decomposition 

under ii) belongs to only one inclusion, namely D4. The associated fusion rule algebras 

given in (3.128),(3.129) and (3.130) of Theorem 3.4.11, with stab(p) = Za, we can be 

excluded, by Proposition 7.3.4, to be associated to any C*-quantum category. If we also 

require d(p) > 1 the only remaining case is the two channel decomposition in i). The 

ratio of the two eigenvalue of the monodromy re(p, p) = e(p, p)2 is q2, related to the index 

by (7.68). Thus, we can exclude the d(p) = 2 cases in i) if we require the monodromy to 

be nonscalar. To summarize, we have: 

Proposition 7.3.5 Suppose that p is an irreducible object of a C*-quanturn category. 

Then the following are equivalent: 

0 

i < d(p) < 2 
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ii) We have a decomposition 

pop  = a+~b , 

where ~b is an irreducible and a an invertible object, and the monodromy of p is 

nonscalar, i.e., 

re(p, p) = e(p, p) '~ Cl0o..  

iii) The O- and I- graded part of the fusion rule algebra are finite and the restriction of 

the fasion rule matr~z Np corresponds to one of the following bicolorable graphs: 

Ai (1 >_ 3), D2, (I > 3), E6, Es .  (7.114) 

The results proven above also lead to the exclusion of various fusion rule algebras at 

d v 2. For instance, if we consider the series of fusion rule algebras obtained from ~(1) 
= ~2pi+2, 

p' E N, (see Lemma 3.4.5 ii) (3.93)) by the procedure given in Proposition 3.3.2, we find 

for the element f := (0,t%,), that f o f  = ~ ~1 o a  if grad(f)  = 1 and f o f = ~ a 
aEG aEG 

if grad(f)  = 0, where G = Out (@0) = stab(f) .  In the list of possible fusion rule alge- 

bras, Theorem 3.4.11 ii), the cases G = Z2 × Z~, (3.146)-(3.150), for any p, and G = Z4, 

(3.151)-(3.158), are both represented. For p = 2p', the existence of the sub-quantum cat- 

egory with generator f and Proposition 7.3.4 imply that  only the fusion rule algebras 

with G = Z~ x Z2 are admissible. Comparing this to Lemma 3.4.9, (3.111) and (3.112), 

we then find as a result that  all fusion rule algebras with selfconjugate generator, p, of 

dimension dp = 2 which describe a quantum-category are in fact realized by a compact 

subgroup of SU(2) or 0(2). At the dp = 2-threshold we also encounter the first two ex- 

arnples of fusion rule algebras, specified in Lemma 3.4.10, which cannot be deduced from 

a selfconjugate version. However if, as in the case of D~ 4) (A~I)) (a-2), a >_ 3, p o p = 2% 

then the monodromy ¢(p, p)2 clearly has to be scalar, so either ~(p, p) = e2"~(°"-~°')l or 

c(p, p) = e2'~(°"-½s~) (e~(p, p) - e~(p, p)). For these two possibilities,the statistics parame- 

ter $v := P (1~,,g,1) c(p,p)p(r,o~,l)is either a phase, i.e., 141 = 1, or ~p ---- 0, both contra- 

dictory IA,[ = 1~ = ~" A similar argument applies to exclude the algebras Es (A~I)) (a-2) 

and descendents, (3.159)-(3.162), from those consistent with a quantum category. 
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7.4 Balancing Phases 

In this section we compute the possible balancing or statistical phases for the fusionrules 

determined in Theorem 3.~.11, assuming that they are associated to some C*-quantum 

category. This computation, based on the situation described in Proposition 7.3.5, imposes 

consistency conditions by which the E- and D- algebras and certain twisted A- algebras 

can be ezcluded. It will be seen in Chapter 8 that the remaining fusionrules are in fact all 

realized as object algebras of a C*-quantum category. In the derivation of these results we 

again use the language of local quantum theories which can be easily translated into the 

general categorial formulation. 

As we have seen in Lemma 7.1.2, any C*-quantum category admits a natural bal- 

ancing. The balancing endomorphisms, in this case, are all unitary and are determined 

by their values on the irreducible objects. We thus have phases 0p E R/7/., defined by 

1~pll e 2"~8" e 2"w~Op (7.115)  o(p) = + R ( 1 ,  p ,  -J l = :  = , 

where the sign is as in (7.20). These phases will be called spins or statistical phases, 

in reference to the spin-statistics theorem for relativistic local quantum field theories. 

For some simple quantum categories, the spins can be computed directly from the fusion 

rules, without any further knowledge of the category beyond its existence. In doing so, 

we encounter consistency relations by which most of the exceptional fusion rule algebras 

from Theorem 3.4.11 can be excluded as building blocks for quantum categories. 

One of the main tools used to determine spins comes from the analysis of the braiding 

relations involving invertible objects a, i.e., a E Out(e).  Since, for any a E Out(e)  and 

irreducible ¢ E ~, a o ¢ is irreducible, too, wc find that 

eCa, ¢) o c(¢, a) =: rn(a, ¢) = race, a) = e 2"'e'(¢) • l ,  (7.116) 

with 

®~(¢) = O~ + 0~ - 0~o~ mod 1. (7.117) 

The properties of the phases O,(¢) that can be obtained from the polynomial equations 

have already been mentioned at the end of Section 3.3. We give a more complete summary 
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in the following lemma. 

L e m m a  7.4.1 Suppose C is the fusion rule algebra of a C*-quantum category, and let 

0 . (¢ )  e R/z, ¢ ~ c ,  ,, ~ Out(C) 

be defined as in (7.117). Then the following statements hold. 

i) For any a E Out(C), the map 

0,~ : C ---* R / Z  

is a grading, i.e., there ezists a character, 

e : :  Crad(C) -~ R/Z,  

such that 

ii) The assignment 

O~ = O~ o grad. (7.118) 

is a group homomorphism. 

O ' :  Out(C)  
A 

---* Grad(C) 

~ ---, O;  

A A 

iii) / f i* :  Grad(C) --~ D(C) is the pull back of the inclusion D(C) C Grad(C) then 

O': Out (Co) ~ keri" ~ (Crad(¢ ) /D(C) ) .  

Thus there exists a homomorphism 

O": D(C) ---* D(¢)  

~/th e"g, (g,) = e; ,  (g,) 

/ I  such that i* o O~ = Osr~a(~) . 

(7.119) 

(~.12o) 
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Proof. If Ca • ¢1 o ¢2, i.e., there exists an isometry I'~,0¢,,¢~ # 0, it follows from 

e 2~(e*('/'I )+e'(~ )) F¢1 o¢~,¢3 

= ¢~(~(¢~,=)) ~(¢~,=)~(~,¢~)  ¢1(~(=,¢~)) r~lo~,~, (7.121) 

= F¢,o~,¢, ¢ (Ca, a) = F¢,o¢~,¢~ e 2"~e'(¢") , 

that O.  (Ca) = O~ (¢~) + e~ (¢~) mod 1, i.e. O~ is a grading. Here we use the notation 

¢ ( I ) ,  as in the frame work of local field theories, instead of the more conventional notation 

1¢ o I, for an object ¢ and an arrow I. Similarly, we have that  O~1o~,(¢ ) = O~,(¢) + 

O . , (¢ )  mod 1, using the fact, that al (~ (~2,¢)) e ( a l , ¢ ) i s  equivalent to e (a ,  o a2,¢).  

This shows that ®~ is a grading, and hence, by the considerations of Section 3.3, can 

be expressed by the homomorphism O' ,  and a ~ O" is also a homomorphism. Clearly 

we have that  0,, 1 (a2) = 0,,3 (al) ,  which implies 0',,1 (grad (a2)) = 0..,-' (grad (trl)), and 

therefore, since grad (a) = 1, Ya • Out (~0), statement iii) of Lemma 7.4.1 follows. [] 

In the Z.-graded case, the most general expression for 0 . ( ¢ )  can be found without diffi- 

culty: 

L e m m a  7.4.2 Assume ¢ is the fusion rule algebra of a C'-quantum category and 

Grad(C) = Z. .  Let r be given by D(~)  ~- Zr and the inclusion D ( ¢ )  C Grad(q~) by 

a"Zr C Z~, where a = r • a". Then there is a homomorphism 

77 : O u t  (q 'o)  --* Z. , ,  

and, for any fized a~ • Out(~) with grad (a,)  = a", a number he I • Z:, with 

such that 

h., ~ 7/(at) mod a" ,  (7.122) 

e ' [ °~(¢)  = (k  h'~ + T2~!) grad(C) a modl, 

for all ~ • Out (¢o), ¢ • ~ and k • z. 

(7.123) 

Proof. Clearly every 0 E Grad'~ff?) = Z.  is determined by some number h® 6 Z=, so that 

e ( g r a d ( ¢ ) )  = h_~o grad(C) mod 1. 
a 
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A character 0 is in keri* iff it annihilates a"Zr C Z,,  i.e., iff he is a multiple of r. Hence 

keri" = O: 3~e e Z w , :  e(grad(¢) )  = ~ grad(C) mod 1 . 

The homomorphism e ~ : Out (00) ~ keri  ° from Lemma 7.4.1 iii), is then determined by 

the homomorphism '7: Out (O0/--'  Z°,,, with %(11 = ~,~, • ~rthermore,  hy Lemma 7.4.1 

ii), h :  Out (O0) --* Z,  with G~(1) = h~ is a homomorphism. Therefore, for some fixed 
a 

al E Out(O) with grad al = a", 

' k ' e~,(1) k h~, ,7(~) O ° t  °t3(1) = 0 ° ' ( 1 )  + = --a + a '---V- 

So  far this is the general form of a character on Z x Out (O0). However, in order to be 

a character on Out(O), we have to make sure that it vanishes on the kernel of the pro- 

jection a~ ×/5 ~ a~ o 15, which is generated by a~ × ai  -r. The latter yields the condition 

hot = t/(a~) mod 1. Together with Lemma 7.4.1 i) we obtain the assertion for ®~o~(¢) 

from the formula for O'o~o~(1 ). [] 

It is clear that  the above result gives an exhaustive description of the homomorphisms, 

--~ Oo, since Z × Out (O0) --~ Out (O) :  k × fl --~ a~ o ~ is surjective for any al E Out(O) 

with grad (a l )  = a". The choice of hot depends on at  as 

h,,tot~ - hot = r~](/~) mod a .  (7.124) 

In the case where al = (1, 1) is the canonical automorphism of the presentation • = 

r= (Z. • O"), with Grad(O") ~- Z. . ,  then h~, is constrained by hot -- r/(a) mod a", as 

a~ = a. The relevance of Lemma 7.4.2 can be understood if we rewrite equation (7.123) 

in terms of the spins: 

O'-O°**°~°¢'=(kh°---L~+rJ~ ! ) a  grad(O) - 0°'°t~ m°d  1 " (7.125) 

Suppose we know the spins of elements in Out(O). Then (7.125) gives the change of the 

spin-value of an arbitrary representation¢ under the multiplicative action of Out(O) on O. 

The determination of the values 0o, a E Out(O) is the content of the next result. 
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L e m m a  7 .4 .3  Suppose ~ is a Z,-graded fusion rule algebra of a C*-quantum category, 

and let a" and r be as above. Then there are homomorphisms 

and 

,7 : O u t  (+0) --* 7,.,, 

8 : O u t ( + 0 )  --' g 2 ,  

and, fur ther ,  for any riced ax • O u t ( a )  with grad (an) = a '1, constants 

h,,t • Z2. and e,,t • Z2, 

constrained by 

and 

7/(o'~) = h,,, m o d a "  
(7.126) 

~/(cr[) = r ( ~ a , + h a ~ )  m o d 2 ,  

such that 
6 (/3 ) k 2 

oa,~o~ = 2 2~ (ha, + r~a,) mod 1 

for oll /3 e Out  (¢0) and k • Z, and equation (7.1e5) holds for any ¢ • ¢ .  

(7.127) 

k' /3' ( 1 " o / 3 ' )  = a" -  k' we obta in  Proof. If we insert  ¢ = a t o into (7.125) and use grad a 1 

tha t  

0a[ot 3 + 0a[,ot 3, = 8a[+h, ot3ot3, + ha--Lt k .  k' mod  1. (7.128) 
r 

In par t icular ,  we find, for k = k' = 0, tha t  Out  (fro) ~ R / Z  :/3 ~ 8~ is a homomorphism.  

Since for spins we have 8~ = 0t~ = 80-t = -0tJ mod  1 the range of this map  is in ] Z / Z ,  

i.e. 20~ = 0 mod  1, V/3 e Out  (¢0).  The  spins on Out  (/bo) are therefore  given by 

1 6(/3) rood 1 (7.129) 0~ = 

where ~ : Out  (¢o)  ~ Z2 is a homomorphism.  Setting/31 = 1 and k = 0 we obta in  the  de- 

composi t ion 0.,o a = pk + ~8(B). The  numbers  Pk E R / Z ,  k E Z, are defined by pk := 0a[ 

and satisfy P0 = 0, pk = P-k and, by (7.128), pk + pv  = p~+v + ~ kk' rood 1. The  most  I" 

general solution of these equat ions is given by Pk = kst~_ where q E Z ~  obeys 2 r  ' 

q = hat rood r .  The  la t te r  constraint  is solved if we pick some ha~ E Zz.  such tha t  its 

image under  the  project ion Zz,  ~ g 2 , / a Z 2  = Z .  is the  original h,,t, and set 

q = ha, q- r .  ~,,1 mod  (2r)  
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with e,, • Z2. (ff a" is even this is also well defined for the original h,, • Z.) .  Finally we 

have to make sure that O,:o0 as given in terms of the above decomposition, is well defined, 

i.e., we have to impose the condition x ,. 55(a,)  = p, = - V  = - i ( h ~ ,  +re~,)  mod 1, 

which is just  condition (7.126). This, together with Lemma 7.4.2, proves the claim of 

Lemma 7.4.3. [] 

For convenience and later applications we give a more detailed description in special cases: 

C o r o l l a r y  7.4.4 Let • be as in Lemma 7.4.~ 

i) I f  a" = 1 then there is some h 6 Z2o such that for 

o h 
0÷ := 0~ + ~a grad(C)(a + grad(C)) ,  

W~ ha'0e 

85 + 8~ = 9:o~, Va • Out (C) ,  C • q>. (7.130) 

In particular, a ---* O~ is a homomorphism of Out(~)  to Z2 whose kernel contains 

all a ' ,  a • Out(C),  and s t ab (C) /o r  any C • ¢.  I f  it also contains Out (¢0), i.e., 

8~ = 0, Va • Out (~0), then h can be chosen such that 8: vanishes for all invertible 

elements. 

ii) I r a " = 2 ,  and, for a , • O u t ( q ' )  with g r a d ( a x ) = 2 ,  there is some p • ¢ with 

at o fi = p and grad(p) = 1, then there is some h,, • Z2, and homomorphisms 

obeying 

such that 

and 

'7, 6 : Out(C) -+ Z~ 

~/(a~) = ha, mod 2 and 6 (a~) = rh,~ mod 2 

6(fl) k2h~, 
0,:o~ = mod 1 (7.131) 

2 2r 

= h. 2r k(k + grad(C)) + + grad(C) mod 1 (7.132) 
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I f  h,,~ is even, i.e., there is some %~ E Z, with h¢~ = 2%t , then 

%' grad(C) 2 mod 1 

is well defined and there ezists a homomorph i sm f/:  Out(C) ~ Z2 with fl (ax) = 0 

such that 

o ~(~) O~ + O~ -- 0°°4, = - ~ -  grad(C) (7.133) 

and a ---* O~ is a homomorph i sm Out(+) --* ]Z /Z ,  with O °,,, = O. In particular, we 

have 

0~,;o4, = O~ , for  all ¢ • ¢ .  (7.134) 

Iy h., is odd, then we have ~ # 1. / f  Out (¢0) = {1, ~I}, with ~ # 1, and ~ : 

Out(C) ~ Z2, is the canonical isomorphism, with ~r (a~) = 1, then 

hat o, - 0~o, = ~ -  (~(~) + grad(C)), (7.135) 

for any ~ • Out(C) and ¢ • ¢. 

Thus for  odd h,,t, a~ • stab(¢ ) implies grad(C) -= r mod 2. 

Proof. 

i) Clearly, for a " =  1, 77 does not appear in the formula and h = h.~ is independent 

of al. The equation (7.130) then follows immediately from Lemma 7.4.3 and implies 

the remaining remarks in i). 

ii) From (7.125) and Lemma 7.4.3 we obtain, for the case a" = 2 and al o # -- p with 

grad(p) = 1, that  

0 = O~- 8p = 8~-- O,~to ~ = h*---2-t grad(~) - O~ = 
a 

- T ~ s T '  so = . , = 0 .  

The first part of Corollary 7.4.4 ii) is obtained simply by specializing Lemma 7.4.3 

to a"-= 0 and inserting ~,~ = 0. The following statements are again immediate 

consequences of (7.132). [] 
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In the proof of Proposition 7.3.1 the unitary representations of the braid groups and the 

Temperley-Lieb algebra, that  arise in local quantum field theories have been considered. 

It follows by straightforward translation that  all of the statements made there also hold for 

a general C*-quantum category. In particular, we have Temperley-Lieb projectors e~(p, p), 

for any invertible a • p o p, which satisfy the generalized Temperley-Lieb equations (7.57) 

and (7.58), and, for a two-channel-situation p o p = a @ ¢, the decomposition (7.67) of 

the statistics operator. 

The restriction of the possible values of qp to qp = e ~:~-, where N is the Coxeter num- 

ber of the inclusion graph of the tower discussed in Section 3.4, evidently has to imply cer- 

tain restrictions on the possible values of spins. These are given in the next 1emma. Here 

* 1 we also distinguish the situations corresponding to the two signs in rpop,lp (rpop,1) = ± aS' 

dp > O, for p selfconjugate. If the positive sign holds p will be called real, for negative 

sign p is called pseudoreal. 

Lem ma 7.4.5 Suppose that for an object p • • of a C*-quantum category 

p o p = a l  q-~b , 

with al • Out(~)  and ¢ irreducible, and assume, further, that its monodromy, re(p, p) = 

e(p,p) =, is not a multiple of the identity. Let a be given by Z= ~ Grad (~L~]), so a" = 1 

or ~. Then there ezists some t • Z4=, some N • N and a sign such that 

t 
-4-0~1 = - m o d l  

a 

and (7.136) 
3 t 

-I-0p = 4--N + ~aa rood 1. 

Here N is the Cozeter number of the inclusion N,,  i.e., IINpll = Id.I = 2cos and, 

comparing with Corollary 7.~.~ we have 

t = +2h m o d a ,  for a " = l ,  
(7.137) 

t = q-h~ 1 m o d a ,  for a " = 2 .  

For the representation ¢ '  := al o ¢,  with ¢ '  E p o ~, we have 

2 ±O¢,=~modl, (7.138) 
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independent of t. 

and 

Proof. 

statistical parameter: 

In the selfconjugate case, i.e., i f  al = 1, we find t = 6a, with 6 E Z4 

6 even, for p pseudoreal 
(7.139) 

6 odd, for p real. 

With the decomposition (7.67) of the statistics operator, we can compute the 

:= p ( r ~ , l )  ~+(p,p) p(r~o~,l) 

= z , [ i q , +  

qp "-I- 1 ] 
= ZpL ~p - 1  ] 

by the generalized Temperley-Lieb equation (7.57). Using (7.68) we obtain 

) t p  - -  Z p  

1 +qp 

as in the self-conjugate case of [23]. Comparing with the expression in [15] 

a~ = ± e - ' " ' ,  = z ; '  e - " ' ,  d~ 
we find 

(7.14o) 

e4fiop = qp Zp 2 • 

Further, the monodromy re(p, p) satisfies 

2 re(p, p) F~op,. = % % 1-'pop,,,., 

which has to coincide with a similar equation, where the eigenvalue is expressed in terms 

of spins, i.e., 

2 2 = e~.<2e,- , . l )  zv qp 

Combining these equations we have 

e2~/(4°'-$',) = q~. (7.141) 

With qp = e + ~  equations (7.136) follow from (7.141). In terms of t and N we also find 

• £ t 
= e ~ " ( ~ + ; )  (7.142) Z p  
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In the selfconjugate case we can use the polynomial equation 

to obtain 
1 

~, = r~ , , l  p ( , - ( p , p )  r.~.,z) : ~ ~ z ;  1 q;Z (7.143) 

with e = 1 for real p and e = - 1  for pseudoreal p, and dp = 2 cos ~ .  Together with (7.140) 

this yields 

Zp 

The statement on reality and pseudoreality of p now follows by comparison with (7.142). 

For 0~, defined in Corollary 7.4.4, we have 0 = 0 ~ -  0~---0~,1o p - 0 ~ - =  0°1 , hence 

0~ 1 _ 2h rood 1. Equations (7.137) are thus found by inserting the expressions of Corol- 
a 

lazy 7.4.4. It follows from (7.67) that q~ is the ratio of the eigenvalues of the monodromy 

re(p, p). In terms of the spins, this ratio is expressed as e2~d( °~-e~t ) = e2~°~ ' O~t (~b I) = 

e~'~°~ ', since ~b' is trivially graded. Thus equation (7.138) follows from a comparison of 

these phases. [] 

The special situation in which the generating object p has a two-channel decomposition, 

p o p = az + ¢,  allows us to determine the spin for each object by an inductive procedure. 

Although the following arguments and computations apply to the general framework of 

a quantum category with arbitrary, compatible fusion rules, they are closely related to 

the analysis of exchange algebras in conformal field theories presented in [55]. First, we 

shall give a formula relating the matrices R+(k, p, q, l)  and R - ( k ,  p, q, l)  which is derived 

in [15] for general local quantum field theories, using the spatial rotation group in M s and 

the actual spins. However, the proof given below only uses elementary identities of the 

categories under consideration, so that only statistical phases appear in the statement. 

L e m m a  7.4.6 For any C*-quantum category let the unitary maps 

R:L(k,p,q,t)  : ~ C~V,,., ® CN,,., __. ~ CN,,.~ ® CN,,., 
i j 

~ita R - (  k, q, p, t )  = ( a+  ( k, p, q, t )  ) -~ be aefi,~ed as ~.aZ.  The.  the foZZo~,~g eq~.t io ,  fo~ 

the matriz elements holds 

R+ ( k, p, q, _j~.P~J"~" = e 2~¢~(°' +°j-°~-°h) R -  ( k, p, q, l),,,~,J't" , (7.144) 
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for  any orthonormal basis of  arrows or intertwiners. 

Proof. Fixing an orthonormal basis, P~oq,i(v), v = 1 , . . . ,  Nkp.~, we consider the composi- 

tion 

Z := ~+(q,k)~+(k,q)k (~+(p,q)) r~op.,(v)r,oq,,(p). 

The definition of the R-matrices yields 

/ = ~ R+(k,p, q, f~,'~'V ~+(q, k) e+(k, q) r~oq,j(;) rjo~,,(~') - - / tz , '~  

i v ' .  ~ 

= ~ e 2~i(eq+eh-ej) l?+(k , ,  , ,  p~J~': -- , ,e, 7,~, , , ,  r~o~,j(v') rjo,,t(p ) 
jr ' ., '  

using the fact that the l~koq,j's diagonalize the monodromy m(k, q). Alternatively, we 

evaluate I using the polynomial identity for Fkop.i(v): 

I = c+(q, k) q (Pkop.,(v)) E+(i,q) F,oq,t(p) 

= e ~'~(°'+°'-e') ~+(q, k) q (rko~,,(~)) ~- ( i ,  q) r~o~,,(~) 

= e 2~(°'+e'-s`) e+(q, k) e - (k ,  q) k (e-(p,  q)) F~oe,i(v) Fioq,t(#) 

= e "~ ( ° '+ ° ' - ° ' )  ~ R - ( k , p ,  ~ i , " :  ), 
j r ' .  ~ 

where e-(p,q) = (e+(q,p)) -x. The identity (7.144) is n o w  obtained by comparing the 

coefficients of the two expressions given for I. [] 

Note that (7.144) is not a proportionality relation among R-matrices, but it is a relation 

of R-matrices and diagonal maps on the path space, similar to the ones used in (7.60). 

In special cases, however, where we can show that the R-matrix is in some sense block- 

diagonal, (7.144) implies strong restrictions on the values of spins and the possible form 

of the F-matrix isomorphisms. The precise statement is given in the next corollary. 

Corol lary  7.4.7 Suppose we have irreducible objects k, l, p, so that the statistics operator 

is block-diagonal on Int(k o p o p, l), in the sense that 

R + ( k , p , p , t )  E ~ End (c'V',.i ® C N j . , ' ) j  C E n d (  ~]~ CN'"'s ® CNi''' ) j  
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(or, more specifically, + J'~*' R (k, p, p, £)i..,,, = 0, for i # j ) .  Then for any ~ 6 supp(p o 

p) n supp(£ o f~) the spins obey 

8t + Ok - 28j = 8~ - 289 mod 1, (7.145) 

whenever the corresponding block of the F-matrix 

F( k, p, p, e)~::: : C ~ ,~  ® C N', '  -~ C N~',' ® C N,~,' 

i8 n o n  zero .  

If, for irreducible objects, k, l and p, we have that there is a single object, j ,  with 

supp(p o k) C1 supp(Z o ~) = {]} 

then the equation (7.1~5) holds, without any assumption on the R- and F-matrices, and 

O~ is independent o f ~ / o r  all ( 6 supp(p o p) N supp(l  o f¢). 

Proof. Assume R±(k,p ,p ,£)  has the proposed form and consider the block-matrices 

u ® wi th  :  fwe spe- 

cial ize (7.144) to p = q = p and i = j we find the equation 

n+(k,p,p,~) i = e,.,(.o,-~,-o.) n-(k,p,p,~)i  

thus 

M(k,  p, ;, e){ = 6ji e 2"i(~°~-°'-°k) lcNhp, ~ Nip,,, (7.146) 

where M(i, j ,  k, l) := R+(i, k,j, l)R+(i, j, k, l). 

As remarked earlier, the isomorphism F(k,  p, p, £) : ~]eCN~p.# ®C Njp,* --) ~-~@CN~¢,l@C Npp,~ , 
3 

diagonalizes the monodromy matrix, M(i , j ,  k, l) , in the sense that,  for 

/V/(k, p, p, ~ ) =  F ( k , p , p , ~ ) M ( k , p , p , ~ ) F ( k , p , p , ~ ) - l E E n d ( ~ C n k ~ . l ® c N p p . ~ ) ,  

w e  h a v e  

~l(k,  p, p, ~)~, = 6~, ca"'(2°"-°¢) lc~k¢,, n~.,¢. (7.147) 

It follows, that (7.146) is equivalent to 

~(k, ;, p, ~)~ e~='('~-~') = ~(k,  p, p, ~)~ e ~ " ( ~ - ~ . - ~ ) ,  
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for all ~ E supp(p o p) n supp(t o Ic) and j e supp(k o p) n supp(ff o t), which implies the 

assertion. 

If supp(k o p) n supp(ff o l )  consists only of one object,  j ,  then the prerequisite on the 

block-form of the R-matrix is void. Moreover, in this case the F-matr ix  provides an 

isomorphism of CiV*~z ® CN~p, L ~ ~ CN~(, ~ ® CiV.p,(, so none of the different blocks can 

be zero, if ~ E supp(p o p) n supp(l o k). Hence equation (7.145) holds without further 

assumptions. [] 

If dp < 2 it is possible to find situations in which Corollary 7.4.7 is applicable: 

C o r o l l a r y  7.4.8 Suppose for p and ¢ irreducible and al E Out(@) we have pop = tr~ + ¢  

and let the spins be given by the ezpressions in Lernma 7.4.5. 

i) If, for irreducible k, t E @, 

l E p o p o k  

then 

and l ¢ al o k 

(1 t) 
O k + O t - 2 O i = - I -  2 - N + ~ a  m o d l  (7.148) 

holds for all j E supp(k o p) A supp(t o p). 

ii) If  for an irreducible object k E @ also j := k o p is irreducible then their spins are 

Proof. 

3 t ( l + 2 g r a d ( k ) ) + ~ - f f m o d  1. ±2(0  - (7.149) 
related by 

i) In the two-channel case, the .~-matrix diagonalizes R±(k,  p, p , l )  in the same way it 

diagonalizes the monodromy, using the fact that the multiplicities in the decompo- 

sition are at most one. If, in addition, we choose k and l such that l ~ ~1 o k we 

have an isomorphism 

~--~9 Cn~"J CNJ" "* CN~*'* P ( k . , . p . l )  : 
J 
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ii) 

as N ~ , z  = 0 and N.p,~ = 1. 

Clearly the action of the statistics operator e+(p,p) on the intertwiner space 

CNh~, L ® CN..,~ is given by f t(k,  p, p, l)  = - z p l ,  so that  also R+(k, p, p, l) is a mul- 

tiple of identity and, in particular, block-diagonal. Furthermore,  since ~" are isomor- 

phisms, ~'((k, p, p, l)~ # 0, for all j E supp(k o p) A supp(l  o ~), and thus, by Corol- 

lary 7.4.7, 0z + 0k - 20j = 0~ - 20. = 0~ + 0~, - 20. rood 1. Inserting here the ex- 

pressions from Lemma 7.4.5 gives (7.148). 

The final s tatement of Corollary 7.4.7 applies to this situation if we set l := al o k, 

so that  ~ o l = ~ o a~ o k = p o k = j .  Clearly al  E l o k = a~ o k o k, so that  (7.145) 

holds for ~ = al and can be written as 

2(0j - 0k) = 20. - e . , ( k ) ,  

where ®~ is the gradation given in (7.123). From O ~ ( f i ) =  8~ we find that  

O~(k )  = T~grad(k) ,  and (7.149) is obtained from the values given in Lemma 7.4.5. 

[] 

The relation (7.148) among the spin values can be used as a recursion formula for the 

spins of certain sequences of objects. For any maximal sequence of this type we then 

find from (7.149) that  its length has to be a multiple of the Coxeter number N. This 

observation excludes most of the exceptional fusion rule algebras. The solution to the 

recursion and the precise termination-condition are given in the next lemma: 

L e m m a  7.4.9 Assume p,~b E @ are irreducible and al E Out(@) udth p o p = t h + ~b. Let 

~i, J = 1 , . . . ,  L, be a sequence of objects satisfying 

such that 

~ i = 1 ,  ~2 = P (7.150) 
and ~2j E p 0 ~2j-1, ~2#+1E po ~2j, 

~i-x ~t ~i+1 for all j = 1 , . . . ,  L .  (7.151) 
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i) I f  t and N are as in Lemma 7.~.5, then the spins are 9iven by 

j 2 -  I t 
--1- Oej - 4 ~  + ~aa grad ((j) mod 1. (7.152) 

Here we have that grad ((1) = O, .for j odd, and grad (~i) = i, for j even. 

ii) Suppose the sequence cannot be continued after L steps, i.e., 

; o ¢L = & - i  i /  L is even 

p o (L = (L-1 if  L is odd. 

Then L + 1 is a multiple of the Cozeter number N.  

Proof. 

i) To compute the spins of the sequence ~j it is convenient to use another sequence, 7j, 

of objects given by 72(j+i) : :  a] o ~2(1+I) and "~2j+1 : :  U~ O ~2j+1, j = 1 , . . . ,  L. For 

these we have, with 71 = 1, the simpler recursion relations ")'i+I 6 p o 7j and 7j+I 

al  o 7j-l- 

Equation (7.148) of Corollary 7.4.8 is now applicable to the triple k = 7j-I ,  J -- 7j, 

l = "yj+l, for any j ,  i.e., we have 

O.yj+~ + O.yi_ ~ - 20.yj = -t- ~-~ + ~ rood 1. 

With the initial data, -t-0.~ = 0 and -t-0. n = ~ + ~ rood 1 this can be easily inte- 

grated to 

+ 0 ~ j - -  5 2 4 ~ + -  1 (J --4____Z_ 1)2 t rnod 1 . (7.153) 

From Corollary 7.4.4 we see that,  for any ax with al o # = p, where grad(p) = i,  the 

following relation holds for any ¢: 

o~ = O.ro~ - 0 . , , (grad(C)  + ,~). (7.154) 

This allows us to compute the spins 0 6. from the spins 0~s given in (7.153). Inserting 

the value of 0,~ given in Lemma 7.4.5 we obtain equation (7.152). Finally (7.154) 
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can also be used to find the spins of all compositions cr~ o ~j which can be expressed 

as foUows: 
j 2 _  1 t 

+ O~I'°~ -- 4 ~  + ~aa (grad (~i) + 2n) 2- (7.155) 

Note that ,  by identification of the 1 in grad (~i) E {0, 1} as the conventional gener- 

ator of g4~, the above equation is meaningful, however the squared term in (7.155) 

cannot be substituted by grad (a~' o ~j) E g ° .  

ii) It is again convenient to work with the sequence "Yi for which the termination con- 

dition is # o "~L = 7L-1 or p o "YL = ~1 o "YL-1. We can now use the formulae from the 

proof of part i) to compute 

( L  - 1) 3 t (1 + 2grad (3'L)) rood 1 
- - - W - -  + T ~ +  T~ 

where grad (TL) = L - 1. If we compare this to (7.149) in Corollary 7.4.8, with 

j = tr, o "~L-1 and k = ~/L, we find as a condition on L: -~-  = 0 rood 1. This is just 

the assertion. [] 

Note that  not all fusion rule algebras with a generator of dimension dp < 2 have a two- 

channel decomposition to which the above analysis applies, namely those obtained from 

the D4-algebra. For these, however, we have that  p o p and p o ~ decompose entirely into 

invertible objects, i.e., supp(~ o p) = stab(g). In order to discuss the possibility of finding 

spins and eventually quantum categories for fusion rule algebras of this kind, we first 

elaborate on the observation, already made in the proof of Proposition 7.3.1 that  the 

objects in stab(p) := {or: Cr O p = p} C Out(~)  have half integer spin. 

L e m m a  7.4.10 Let q~ be a Z=-graded fusion rule algebra of a C*-quanturn category, and 

a", r as in Lemma 7.~.~. 

Then we fir~d for ann p ~ 6,  with grad(g) = 1, that 

08 - 0,  v/3 c s tab(g) ,  if,~' is odd, 
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and, for a" even, we have a homomorphism 

0:  stab(p) --~ Z~: f l  ~ O~. 

The gradation O~ for elements fl E stab(p) is given by 

e~(¢)  = 0a grad(e) mod L.  

Proof. For any p and/~ E stab(p), we clearly have that  ®~(p) = 0a. Since ~ ~ O~ E 

Grad(q~) is a homomorphism, ~ ~ 0~ is one, too. Since stab(p) = stab(~), we find from the 

gradation of O# that  0 = Oa(p) + ®~(~) = 20# rood 1, so that  0~ E ~Z/Z.  Assume now 

that  p has grad(p) = 1 in a Z.-graded fusion rule algebra. Then we find from Lernma 7.4.2 

that  ®a(p) = ,~,,, and therefore a"0a = 0 mod 1. This shows that  0~ = 0, for odd a". The 

general form of O~ follows from the same lemma. [] 

The formulae and constraints obtained in the previous lemmas, especially in Lemma 7.4.9, 

allow us to discard from the list of fusion rule algebras in Theorem 3.4.11 those which are 

not realized as object algebras of a C*-quantum category. Together with Proposition 7.3.5 

we can summarize the results of Sections 7.3 and 7.4 in the following proposition. 

P r o p o s i t i o n  7.4.11 Suppose p is an irreducible object of a C*-quantum category. Then 

i} The statistical dimension of p obeys dp < 2 if and only if we have that 

p o p = a @ ¢ ,  

where a is invertible and ¢ irreducible, and, furthermore, re(p, p) = c(p, p)2 is non- 

scalar. 

ii) I f  i} holds for p, and p generates the fusion rule algebra, ~, of the C*-quantum 

category (or if we restrict our consideration to the subcategory associated to the 

fusion rule subalgebra generated by p} then • and the statistical phases are restricted 

to the following possibilities: 

a} • is a fusion rule subalgebra of some An x Z, (the crossed product being the 

same as in Lemma 3.3.3}, namely (3.117} or (3.1e0} of Theorem 3.4.11. The 
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inclusion, i, of  q~ is given as follows: 

for ~ = A ~ * Z , ,  

i : O  "-~ A2. x Z .  

n > l ,  
(7.156) 

is the inclusion (3.77) from Corollary 3.4.8, multiplied with the identity on 

the Z,-factor; for • = A2,-x * Z~, n >_ 2, we have 

i : q~ ~-* A2 , - l  x Z2~ 
(7.157) 

k) 

where ~ e A2,-a, grad(()  e {0, I}, and a generates Z2r. 

b) The fusion rule algebra is given by either (3.1~I), with n odd, or (3.125), with 

n e v e n  s i . e .  t 

= r .  ( A 2 . - x  * Z . )  , 

with n >_ 3, and 

r = n + 1 mod  2. (7.158) 

iii) Let pj, j = O, . . . , n - 1  denote the irreducible elements of the An- fus ion  rule algebra 

as defined in Lemrna 3.~.~ i) with fusionrules (3.75). The possible statistical phases 

can be given in terms of the s tandard  spins of A,- fus ion rules, 

,t. ( j  + l ) 2 - 1  
0Pi "-- 4(n + 1) mod , 

and the set of possible statistical phases, {Or}, of the fusion rules corresponding to 

Z,  are labelled by r E Z2r, with rr  - 0 mod 2, and are determined by 

r£ 2 
0:'=, -- "~r  mod  1, (7.159) 

where a is the generator of Zr. 

a) I f  ¢ is a fusion rule subalgebra of A ,  × Z~ and i : ib ¢--* An × Z~ then every 

choice of statistical phases is given by 

+Sk = O~(k) mod 1, k E e~, 
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where  0 : A n  x Z ,  --* I~/Z is given  by 

0e®~' = O~ t" + e"~, mod 1 , (7.160) 

f o r  s o m e  ~- as above. 

b) F o r  • = r~ (A2,,,-1 * Z~.) the possible phases  are g iven  by 

2r+l 
4- 0(,j,k) = O Z" + ~ (grad (p#) + 2k) 2 rood 1,  (7.161) 

f o r  k = O, . . . , r - 1, and s o m e  r E Z4~. 

Proof. First we shall use the previous results to exclude all fusion rule algebras not listed 

in Proposition 7.4.11 from those realized in a C*-quantum category. The most important 

tool here is Lemma 7.4.9 ii). It states that if A is the matrix-block of Np restricted to ~0 

and we consider the bicolored graph associated to it, every path in this graph starting at I 

for which two succeeding vertices of one coloration are distinct and which terminates at 

a point of edge degree one (i.e., an end point of an "external" leg) has to have a length L 

with the property that N divides (L + i). Since all bicolored graphs with norm less than 

two are trees~ any such path is without self intersection, thus rercscnts an AL-subgraph 

with Coxeter number L -{- 1. By monotonicity of the norm with respect to subgraphs it 

follows that  L + 1 < N, and therefore by Lemma 7.4.9 ii) 

N = L + I .  

Again, monotonicity implies that the AL-graph is already the entire graph. 

This fact can also be verified by finding paths in the E- and D-graphs violating the 

condition N/(L + I). For dp < 2 and a" = 2 in Theorem 3.4.11, this excludes the algebras 

(3.118), (3.119), (3.122), (3.123) and (3.127) with two-channel decompositions of p o p. 

The only admissible algebra with a" = 2 is the one in (3.117), since the bicolored graph 

associated to A is the Coxeter graph Al,,. From Proposition 7.3.4 ii) and the following 

remarks we learned that the D4-algebras (3.128), (3.129) and (3.130) arc not admissible 

either. The additional constraint (7.158) will be obtained in the following calculation of 

the spins. 

240 



From Lemma 7.4.3, (7.120), we find the form (7.159) by specializing to Out(Co)  : 1 

and a " =  1, so that  both 7/ and 6 axe trivial. Setting r = - ( h e r  + re¢~), the constraint 

r r  --- 0 mod 1 is equivalent to (7.119). In order to treat  the case @ = A ,  × Z,,  with a" = 1, 

we use Corollary 7.4.4, i). As Out (¢o) = 1, we have 0°~ = 0, so that  formula (7.123) yields 

O~.~j = 0~ + O:j, (7.162) 

for ~ ~ ¢0, (i.e. grad(~) = 0 and 0~ = 0~), where ~ is the generator of Z,,  with grad(o) = 1, 

and r = h(a + 1) mod 2a; (this form is equivalent to r a  = 0 mod 2). 

As suggested above, in the computation of the A,-spins, we mainly make use of 

Lemma 7.4.9 i). For the selfconjugate case, p o p = 1 + ¢,  this has to be specialized to 

t = 6a, with 6 E Z4, as described in Lemma 7.4.5 and we obtain using that  ¼grad ((j) = 

_ 1  (j2 _ 1) mod 1 
4 

) + o~j - ~- ~ - 6 mod 1. (7.163) 

Let us choose a basis of the A,-fusion rule algebra : {~ol = 1, ~o2 = p , . . . ,  ~0,}. Then N o 

is given by 

p o ~  = ~o~-1+~0~+1 , f o r i = 2 , . . . , n - 1 ,  

and polo, ,  = ~o,,+~O,_l. 

The only path,  {~j}, in the A--~-graph, which satisfies the prerequisites of Lemma 7.4.9 is 

the following 

so that  

~ = ~o~ f o r i : l , . . . , n ,  

and ~ = ~0(2n+l)_ I for i = (n + 1 ) , . . . , 2 n ,  

N c o x . = L + l  = 2 n + 1 .  

Evidently we have the consistency requirement that  0ei = 0~N_~ 

turns out to be equivalent to 6 = -Ncox. mod 4. We find 

l1 /{ j ~ -  1 Woo=. + 0 ~ j =  ~- Nco..  = 

using that  Nco~. is odd. 

j 2  _ 1 

4Ncox. ' 

(N0o~. - j )*  - 1 

4Ncox. 

(7.164) 

,Vj = 1 , . . . , L ,  which 

j odd 

j e v e n  

(7 .165)  
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Comparing (7.165) to the explicit formula for the inclusion 

i(~j.) = Pj-a ,  j o d d ,  

i(~oj) = P N - j - I ,  j even,  

we can summarize (7.165) in the formula 

+ 0~, ,t. V~ E ~4~. = Oi(~) 

This proves the assertion of Proposition 7.4.11, ii) a): ~ = An * Z~. 

For the cases ~I, = A2,-1 * Z, and • = r~ (A2,,-1 

is clearly ~j = (pi-1,0).  Here the relevant formula to 

given by (7.150). If • = A2,-1 * 7., we have that  a~ = 

(7.166) 

* Z,),  the path we have to consider 

find the possible values of spins is 

1, so 0~[oej = 0ei , which is the same 

as requiring t to be even. With t = 2r and a = 2r we obtain 

r (grad(pj ,  k)) u mod 1 (7.167) + = 0;t; + 

and this expression is now well defined for grad (pj, k) e Z2,. The  second term in (7.167) 

has precisely the form (7.159) for the spins of ¢ = 7.2,, the contraint (2 r ) r  - 0 rood 2 

being automatically fulfilled. 

Finally we consider (7.150) for ~ = T,,(A2,,-1 * 7.,). Since 0~;o,j = 8~._3op; -- 

0pu_j_ 2 we obtain additional contraints on t, r and N,  which are given by: 

t --= 1 mod 2 (7.168) 

and n -= r + l m o d 2  (7.169) 

To show this we use (7.155) and we replace a = 2r and t = 2r + 1 to find (7.161). Propo- 

sition 7.4.11 is thereby proven. [] 

Let us add a few remarks concerning the reality of selfconjugate objects, p, with p o p = 

1 + ¢.  From Lemma 7.4.5, (7.132), we see that  the value of 0p already determines whether 

p is a real or a pseudoreal object. For instance, for p 6 A~, it follows from 6 - - N  rood 4 

and N =- 1 mod 2 that  p is real. This is what we expect,  since the reality property provides 

a Z2-grading, Grad (71~) = 1. However, if p ~ AN-1 has the standard spin, 0~', as for the 
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fundamental representation of Uq (s/2), it is pseudoreal. The remaining possible values of 

spin for a selfconjugate p can be derived from Proposition 7.4.11 as follows: 

The possible spins of A2n-1 are found from the inclusion i : A2,-1 ¢'-* A2,~-1 x Z2. 

For a given r E Z4, as in (7.159), this yields the general expression of Lemma 3.4.10 for 

the selfconjugate case with 

6 -- r rood 4. (7.170) 

The remaining fusion rule algebra with selfconjugate generator is A2n, n > 1. It appears 

in the classification as A,~ x Z2, where the isomorphism is given by 

a" ---* I Pi j ~ e rood 2 (7.171) ® 

t PN-i J = - e m o d 2  

where a is the generator of Z2, E E {0, 1}, j = 1 , . . .  ,n.  Following Proposition 7.4.11, ii) 

we can for ~ x Z2, we can determine the spins for some choice of r E Z4. This induces 

spins on A2n, reproducing the formula in Lemma 7.4.5 with 

6 --= N + r mod 4. (7.172) 

The observation made in this discussion is that a selfconjugate sector p, with p o p = 

1 + ¢, can be changed from real to pseudorcal and vice versa by tensoring it with a sernion, 

whereas its reality properties are unchanged if it is tcnsored with a boson or a fermion. 

We note that all the fusion rule algebras with sclfconjugatc-gcnerator are contained 

in part a) of Proposition 7.4.11 ii), i.e., they do not involve any r~-operation. We also 

notice that the only enclosing algebras Az¢-I x Zr listed in part a) are those with r even. 

However, for odd r, i.e., r = 2r ~ + 1, we have, by virtue of Lernma 3.3.3, an isomorphism 

~: A N - I × Z r  ~ A N - 1 , Z r  

@ a  ~ (~, l + r ' . g r a d ( ~ ) ) .  

The canonical generator of gradation is therefore p -- p2 ® a l+r' and the parameter t from 

Lemma 7.4.9, (7.147) is related to r in (7.159) by 

t -- 4r(r '  + 1) 2 mod 8r .  (7.173) 
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It is not hard to show that the list of fusion rule algebras in Proposition 7.4.11 is not 

redundant, i.e., no two fusion rule algebras are isomorphic to each other. The transfor- 

mation of spins under fusion rule algebraautomorphisms are given by automorphisms of 

Z2r, changing the constant r. The sign ambiguity in the determination of the spins reflects 

the fact that we can obtain from any braided category a second, in general inequivalent, 

one by replacing the statistics operator c by e -1 everywhere. 
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7 . 5  T h e t a -  C a t e g o r i e s  

In this section we present a complete analysis of categories for which all irreducible objects 

are invertible. In reference to what is known as 0 - (or abelian) statistics in quantum field 

theory we call these categories 0 - categories. The fusion rule algebra, ~ , associated to a 

0 - category is thus entirely described by an abelian group, G,  namely • = N a , where the 

composition law on ~ is induced by that on G.  The classification of 0 - categories can be 

reduced entirely to a problem in group cohomology. The relevant classifying constructions 

are obtained from are the Eilenberg - MacLane spaces, H(G, n ) ,  which are the homology 

groups of complezes denoted by A( G, n ) .  

In the following discussion we shall not consider the most general aspects of this 

construction, but rather exemplify it for the complex A(G, 2) which is obtained by start- 

ing from the ordinary inhomogeneous chain complex over G, here denoted by A(G, 1). We 

provide the basic tools, e.g., a chain equivalence for cyclic groups, the KLinneth formula 

and the universal coefficient theorem, allowing us to compute the homology- and coho- 

mology groups of A(G, 1) and A(C, 2) in low dimensions. (For details, generalizations and 

proofs we refer the reader to the textbooks [59]). To begin with, we review the definition 

of the complex A(G, 1): 

This complex has a grading, A(G, 1) = ~ A,~(G, 1), where each A,~(G, 1) is a free 
n > 0  

Z-module, and a canonical Z-basis is given by cells, c~ = [gl [ . . .  [g-], gi E G, g~ # e, 

where e is the unit element in G. We use the convention that  c~ = 0 if gi = e, for some 

i = 1 , . . .  ,n.  The boundary, 0 E End(A(G, 1)), is a map of degree -1 ,  with 0 2 = 0, and 

has the form 

0 [gx I . . .  I g-] -- 
rt--1 [g, I . . .  I g,] + E~=I (-1.) 3 bl [ . . .  [ gJ" g3"+l [''" I g-] + (--1-)" b~ I''" I g--d " 

(7.1-74) 

The resulting sequence of maps of the chain complex is commonly summarized in a dia- 

gram 

~=o A~(G, 1) -~ Z[G]/1.25 ,o, A2(G, 1) as (7.1-75) 0 ~  25 ~ . . .  
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We use the notation Bk(G, 1):= im0k+~ = imO fq A~,(G, 1), for the boundaries, for the 

cycles we write Zk(G, 1):-- ker0 N A~,(G, 1), and the homology groups are denoted by 

Hk(G, 1) := Z~,(G, 1)/Bk(G, 1). For small k and abelian G, the homologies can be readily 

computed. Of course, we have 

Ho(a, 1) = Z. (7.176) 

Since Za(G, 1) = A~(G, 1), and O[g ] hi = [g] + [hi - [gh], Hx(G, 1) is the abelian group 

with generators [9] and relations [g] + [hi = [gh], so 

i~ : G , __H~(G' 1) (7.177) 
g , [g] 

is an epimorphisms, and, for abelian groups G, an isomorphism. For finite cyclic groups, 

G ~ Zo, all homology groups are known, 

H 2 . ( Z . , 1 )  u 0 ,  
and 

H2.~+I (Z,,1) -~ Zo. 

(7.178) 

This result is obtained from a simpler chain complex, M(a, 1), which is homologicaily iso- 

morphic to A(Z. ,  1). It is a free Z-module with grading, M(a, 1 ) =  • M.(a, 1), and 
n > 0  

each M.(a,  1) is one-dimensional. Hence there are generators v,,, and to,~ such that 

M~,.(a,  1) = Zv,. ,  m = 1, 2 , . . . ,  and M2..+l(a,  1) = Zto,., m = 0, 1, . . . .  The boundary, a, 

is given by 

OVm = atOm-l ,  and 0to,, : 0. (7.179) 

Clearly this is the simplest chain complex producing the homology groups (7.178). In 

order to define a chain equivalence, we introduce, for some fixed generator 1 E Z,, the 

cochain/~ e Hom (As (Z,, 1), Z), given by 

f~(i) = i ,  for 0 < i < a, (7.180) 

and the cocycle 2' E Hom (A2 (Z=, 1), Z), (with 6(~/) = ~/o 0 = 0) by 

v ( i , j ) = / 1  a < i + j < 2 = ,  0 < i , j < a  
(7.181) 

L 0 O < _ i + j < a .  
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We note that  

6 Z = , ~ .  (7.182) 

The two complexes are related by chain transformations I : M ( a ,  1)--* A(Z, ,  1) and 

P : A(Z . ,  1) --+ M(a, 1), i.e., I and P have degree zero and intertwine the boundary by 

POA=OMP and IOM=OAI. (7.183) 

The explicit formulae for P and I read 

P2~ ([~, I i l  I . . .  ] ~ ]J~]) 

= 

"W m 

(7.184) 

x,,,, (~,,,,) = ~ [i, 11 I . . .  I ~,, 11] 
i~.....i..ez. (7.185) 

I 2 , ÷ ~ ( ~ )  = ~ [1 l i~ I . . .  I ~- ] 1] 
Q , . . . f i~6Z~ 

from which (7.183) can be verified easily. Here 1 is a fixed generator of Z, .  The situation 

is summarized in the diagram (the maps ¢ are defined below): 

0 , ?, a AI (Z , , 1 )  ' o A2(Zo,1) ' a Aa(Za,1) ' 

0 0 
0 ~ Z ( Zwo ~'" Zvl ~ Zwl ( - a  

(7.186) 

for which (7.183) expresses the fact that  each square involving either P or I commutes. 

Equation (7.183) also implies that  P and I map boundaries and cycles onto one an- 

other. Hence they induce maps of the homology groups H ( P ) :  g (Zo) --* H(M(a, 1)), 

and H ( I ) :  H(M(a, 1)) ---* H ( Z , ,  1). It is shown in [57] that  there exists a homotopy 

¢ : A(Za,1)  ~ A(Z , ,  1) for IP  ~ 1, which proves I and P to be the injection and the 

projection of a contraction, respectively, i.e., we have that  

PI  = 1, 0 ~ + ¢ 0  = 1 - I P ,  
(7.187) 

¢ I  = 0, P ~  = 0. 
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From this one sees that H(P) and H(1) are isomorphisms of the homology groups, 

with H(P) = H(1) -~. A popular strategy to compute the homologies for an arbitrary 

abelian group consists of the repeated application of the K(inneth formula which expresses 

Hk (G~ 6)G2, 1) in terms of Hr (GI) and HI (G2), r,s _< k, starting from the results on 

cyclic groups. We carry out this exercise for the group H2(G, i). We consider the cycles 

[z I Y] - [Y [ z] 6 Z2(G, 1) and their classes in H2(G, 1), 

{g I h} = [gl h] - [h I g]. (7.188) 

Using the relations in H2(G, 1) given by the boundaries, 

0[gl h i  k] -- [h I k] - [gh I k] + [g I hk] - [g I h], (7.189) 

we show that {g I h} is bilinear which means that we have a homomorphism 

/2: A2G - '  H2(G, 1) (7.190) 

gAh ---, { g [ h } .  

The Kfinneth theorem for H2(G, 1) asserts that the map 

¢ : / / 2  (G,, 1) • / / 2  (G2, 1) 6) Cl ® G2 -~ / /2  (Cl 6) G2, 1) (7.191) 

is an isomorphism, since Tor (Z, C~) = 0 and by (7.177), where ¢ is induced on H2 (V~, 1) 

simply by the inclusion of cycles and, on V, ® G2, we de~ne f by 

¢ (gl ® g2) -- {gl I g2}. (7.192) 

Having a natural decomposition of A 2 (G1 6) G2) with mixed term G1 ® G2, we obtain the 

commuting diagram: 

A2G1 6) h2G2 6) G1 ® G2 

i2,01 6)/2,02 6) ido,®02 

H2 (G,, 1) 6) H2 (02, 1) 6) C1 ® C2 

, A 2 (G1 @ G2) 

l i2,(c1~02) (7.193) 

, //2 (G1 (9 G2, 1) . 

It demonstrates that  if i2,a~ and i2,02 are isomorphisms then the same is true for i2,01e02- 

Since, by (7.178), we have that A2Z~ = H2 (Z~, 1) = 0, we conclude that (7.190) yields an 

isomorphism for an arbitrary abelian group G. 
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Similarly, ASG appears as a subgroup of H~(G, 1), with inclusion 

gx ^ g, ^ g3 ~ E sgn Or)[g.o)lg.~(2) lg, , (3)]  , 

xE S= 
(7.194) 

but, due to non-trivial torsion, Tor (Gt, G2), present in the Kfinneth formula, and because 

//3 (Z,, 1) # 0, this is obviously not an isomorphism. 

As originally intended, we shall now proceed with the construction of the complex 

A(G, 2), for an abdian group G. To begin with, it is essential to remark that A(G, 2) can 

be equipped with the structure of a differential, graded, augmented (DGA-)algebra. This 

structure manifests itself in the existence of an associative, graded product, *, defined on 

pairs of cells, which obeys the Leibnitz-rule, i.e., 

deg (cl * c=) = deg (cz) + deg (c,) 
(7.19S) 

and OCca * c2) = ( O c l ) *  c= + ( - 1 )  d~z(cl) cl * (Oc=) . 

On A(G, 1), * is given by 

Lql I . . .  I a,,] * L%+1 I . - .  I g,,+~] = ]E sgn ( , )  [g-o) I . - .  I a,rO,+~)] (7.196) 
xESp,q 

where Sp,, C S~+, is the subgroup of all permutations, called (p, q)-shuffies, with 

. ( i )  < ~ ( j ) ,  for 1 < i < j _< p 
- (7 .197)  

and for p + l _ i < j < p + q .  

For cells of dimension less than two (7.196) yields 

[g] • [h] = Lql h] - [h I g] = - [ h ] ,  [g],  (7 .198)  

and 

~] • [h I k] = [g I h I k] - [h [g I k] + [h I k I g] 
(7.199) 

= [ h l k ] , [ g ] ,  

for any g, h, k E G. 

The first step in the construction of A(G, 2) is the definition of a doubly graded, 

free Wmodule, A(O, 2) = e A(.,~)(C, 2). 
n#T~t 
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A Z-basis of A(.,=)(G, 2) is given by elements [c, I - . .  I ~ ] ,  where ~, • A(G, 1) are 
m 

cells with E deg (ck) = n. The total degree of a cell in A(G, 2) is then 
k=l 

deg ([cl [ . . .  [ c.~]) = m + ~ deg (ck).  (7.200) 
k=l 

Since A(G, 2) has a differential and  a multiplicative structure, there are two possible 

boundary operators: One is defined similarly to the boundary (7.174) on A(G, 1), namely 

O': AC.,=)CG ,2) -~ A c . . . .  ~)(G, 2) 

~([c, I . . .  i ~ ] )  = ~ ( - i )  ~°s¢~°~i[°~l) [c, ] . . .  ] cj,~j+~ I . - - I ~ ] .  
j= l  

The other one is obtained by extending 0 on A(G, 2) to a derivation, 

(7.2ol) 

a" : A(.,=)(G, 2) - .  A(,~_I,,,,)(G, 2) 

(7.202) t t t  

0"([c1 I--. I ~ ] )  = ~ ( - 1 P  °s([°'l'°'-']) [c, I - . - 1 0 9 1 . . .  I~.] • 
j= l  

Besides the conditions (O') 2 = (¢3") 2 = 0, one can also prove from (7.195) and (7.201) that 

O ' O ' +  0"0 '  = 0. (7.203) 

Thus (A(G, 2), 0', 0") is a double complez, and we can define A(G, 2) to be the corre- 

sponding condensed complex, where the grading, A(G, 2) = (E) A,,(G, 2), is given by 
n>o 

A.,(G, 2) = (~) A0~_i,i)(G , 2), 
j=O 

and the boundary, O: A.(G,  2) ---* A._,(G,  2), by 

0 ---- 0 ' +  0". (7.204) 

(In the generalized form of this construction, one can also obtain A(G, 1) systematically 

from the complex A(G, 0):  0 4--- Z[G] ~ 0 *-- 0 . . . ,  and define complexes A(G, n) induc- 

tively, for arbitrary n.) 

We remark that 
S:A(G, 1) ~ A(G, 2) 

(7.20S) 
c - ,  [c l  
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for any cell c, is a chain transformation, i.e., OS = SO, of degree one. The induced homo- 

morphism S. : H(G, 1) ~ H(G, 2) of the homology groups of degree one is called the sus- 

pension. In order to describe the cells of A(G, 2), we adopt the convention to replace dou- 

ble brackets by double bars, e.g. [[gllgzlgz] l [-q,] 1 [gslg6]] = [gxlg, lg3llg4Hgslgs] e Aq(G,2). 

A Z-basis of A(G, 2) is given, up to dimension five, by 

Ao(a,  2) = Z ,  

A~(G,2) = 0, 

A2(G, 2) = Z[G] = S(A~(G, 1)), 

A~(G,2) = S (A2(a ,  1)) (7.206) 

A,(G,2) = S(A~(a, 1))e ~ Z[gllh], 
g,aea 

As(a,2) = S ( A , ( a , a ) ) e  @ Z[gJhllk]e ~ Z[gll~lk] 
g,h,kEG g,h,kEG 

where O := a\{e} .  

Obviously the homology groups of dimension not greater than two remain unchang- 

ed, i.e., we have 

Ho(G, 2) = Z ,  H~(G, 2) = 0, (7.207) 

and 

s .  o~,: a -~ H2(a,2) (7.208) 

is an isomorphism, where il is as in (7.177) and S. is the suspension. Also the cycles 

gs(G, 2) = S (g2(O, 1)) axe the same, so S. is onto, but  we have to add the boundaries 

O[gllh]-- [g lh] -  [big] (7.209) 

to S(B2(G, 1)), in order to obtain B3(G, 2). From (7.209) it follows that {glh} E ker S., 

and, by (7.190), 5'. o i2 = 0. Since the latter map is surjective, we conclude 

H3(G, 2) = 0. (7.210) 

The equations (7.189) and 

c3 [galgalg',lg4] = Lq21gzlg,]- [glg21gslg4] + [gllg2g31g4] - [galg=lgsg,~] + Lqzlg2lgs] (7.211) 
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hold also for cells in A(G, 2), because S is a chain transformation. 

generators of B4(G, 2) axe given by 

and 

The remaining 

0blh l lk]  = - [ [g lh ]*  k] + [0[alhl I [k]] (7.212) 

= -[glhlk] + [glklh] - [kMhl  + [hllk] - [g. hlk] + [gllk] 

O[gllhl k] = [[g],  [h lk ] ] -  [MlO[hlk]] (7.213) 

-- [qlhlk] - [hlglk] + [hlklg] + [glib] - MIh.  k] + MIk]- 

From (7.209) we see that [gllg] and [g[lh] + [him are cycles. Using the relations (7.212) 

and (7.213), we find that they are not independent in H4(G,2): 

{glib} := M I h ] + [ h I M  (7.214) 

= [g. hllg. h l -  [gllg] - [hllh].  

Further manipulations with (7.212) and (7.213) prove that {g[I h} is bilinear which, by 

(7.214), is the same as saying that [aIM is quadratic. To be more precise, we introduce 

the abelian group P4(G), with generators {g}, g E G, and relations 

{g.  h. k} - {g.  k} - { h - k }  - {g.  k} + {g} + {h} + {k}  = 0 
(7.215) 

~ d  {g} = {g -~} .  

Then the previous observations imply that there exists a homomorphism 

~, :  r ,  CC) - ,  H4(G, 2) 
(7.216) 

with 3'a({g}) -- [gllg]. 

For cyclic groups G = Z=, the chain contraction (7.187) to the complex M(a, 1) can be 

used to prove that "/4 is an isomorphism. This depends crucially on the existence of 

a multiplication on M(a, 1) for which P and I are homomorphisms. Then the maps 

P#([cx I . . .  I ~ ] )  :-- [P (cx ) I  . . .  I e ( c ~ ) ]  a n d / #  ([cx I . . .  I c~]) := [I (c~)I  . . .  I I ( c~ ) ]  

define a contraction of A(G, 2) to the complex M(a, 2) which is constructed similarly. 

The homology groups in M(a, 2) can be computed easily, and we find that 

P, (Z,) -~//4 (Z°,2) ~ Z(2.~)= (7.217) 
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where [1[[1] = ~ ( ~ )  is a generator if I 6 25, is a generator. The proof that ")'4 

in (7.216) is an isomorphism, for general, abelian groups G, now follows the same lines 

as the one for is in (7.190). Using that H2(G, 2) ~ G and Hi(G,  2) = Hs(G, 2) = 0, the 

Kfinneth formula yields an isomorphism 

(:/-/4 (G,, 2) (9//4 (G2, 2) (9 G1 @ G2 -*/ /4  (G1 (9 G2, 2) (7.218) 

which, on/ /4  (G~,2), is given by the inclusion of cycles and, on G1 @ G2, is given by 

~ ' ( g l  ® g 2 )  = [gzllg2] + [g2H.qz] = {.ix Jig2} • (7.219) 

Notice that, besides r4 (Gk) with inclusion Jr: r ,  (v~) ~ r ,  (Cl (9 v2), k = 1, 2 ,  

F4 (G1 (9 G=) also contains a crossed term given by the image of 

~:  Vl ~ C2 ~ r ,  (01 (9 c=) :  gl ® g2 -~ {gl-  g=} - {gl} - {g2} .  (7.220) 

If we compare formulae (7.214), (7.219) and (7.220) we obtain the following commutative 

diagram 

r ,  (o~) (9 r .  (G,) (9 O, ® C, 

1 74,c~ (9 %.c= (9 ida: ®c= 

//4 (O,, 2) (9/-/4 (G=, 2) (9 G, ® G2 

c ~  

, r4 (GI • G2) 

1 74(cl.c,) (7.221) 

, //4 ( a ,  (9 as ,  2) . 

Thus, with (7.217), this implies, that 74,0 is an isomorphism , for arbitrary G. We note 

here that the suspension 

S.  : Ha(G, 1) - ,  H4(G, 2) (7.222) 

vanishes on AaG C Ha(G, 1), generated by the expressions in (7.194), by the symmetry 

of (7.212) in g and h. Moreover, r~(G) is closely related to the symmetric part of G ® G 

by homomorphisms 

D : r4(G) 

Q : G ® G  

---* G ® G : { g }  ~ g ® g  and (7.223) 
r , ( c )  : g ® h ~ {g. h} - {g} - {~}. 

The maps D and Q satisfy Q D  = 2, and 2 - DQ = 1 - T,  with T(g  ® h) = h ® g. From 

ira(D) = ker(1 - T) and D(im Q) = ira(1 + T) we obtain a map 

D :  F,(G) l i m Q  ~ ker(1 - T) / im(1  + T) ~ G / 2 G  , (7.224) 
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where the isomorphism on the right hand side is induced by G --* G ® G/im(1 + T) : 

g --. g ® g. The group on the left hand side is given in terms of generators {g}, g E G, 

and relations, {g. h} = {g} -{- {h} and 2{g} = 0, and hence is equal to G/2G. Since 

is onto this yields kerD C imQ, and, by DQ = 1 + T, we have kerD = Q(kcr(1 + T)). 

Also, we have kerQ = ira(1 - T)  C ker(1 + T),  so that  

is an isomorphism. 

Q :2G ~ ker(1 + T ) / i m ( 1  - T)  ~ ke rD (7.22s) 

In particular, we find that 

D o 7~ -~ o S. - 0, (7.226) 

where we use that  D o 7~ "1 is the restriction of T/: Ak/Bk --~ G ® G, with I / ( [ g [ [ ~  = g ® h 

= d   ([glklh]) = 0, to  Hk. 

Let M be any abelian coefficient group. The cochains (A*(G,n; M), 6), n = 1, 2, 

with Ak(G, n; M)  = Horn (As(G, n), M) and 6 = 0 °, define cohomology groups which we 

denote by H*(G, n; M). We write 

Bk(G, n; M) C Zk(O, n; M) C AS(O, n; M), 

for coboundaries and cocycles. The main link between the homology groups determined 

above and cohomology groups is provided by the universal coefficient theorem which 

asserts that ,  for n = 1,2, 

0 --* Ext(Hk_,(G,n),M) ~ Ht(G,n;M) -% Hom(Hk(G,n),M) --~ 0 (7.227) 

is exact and splits. Here the epimorphism, a,  is naturally induced by Zk(G,n; M) "~ 

Hom(Ak(G,n)/Bk(G,n) ; M )  ~ Hom(Hk(G,n);M). The left te rm in (7.227) arises 

from the identi ty 

Ext  (Hk(G, n), M)  ~ Hom (Bk(G, n), M)/Horn (Zk(V, n), M) , 

and 5 is induced by 0" :  Hom(Bk_l(G,n), M) --* Z~(G,n; M). If G is torsion-free, or if 

M is a Q-module, e.g., M = R, Q, R / Z . . . ,  then Ext(G,  n) = 0, and a is an isomorphism. 
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Note that the map from (7.205) also induces a suspension 

S*: H~(G, 1; M) -* Hk+1(O, 2; M),  

for cohomology. Among the immediate consequences of (7.227) are 

H°(G, 1;M) = H°(G, 2;M)= Hom(Z,M) ~ M 

Hz(G, 1;M) = 0 

H'(G,2;M) ~ Hz(G, 1;M) -~, Hom(C,M) .  
S. i~0= 

(7.228) 

H'(G, 1;M) ~- , Ext(G,M)@Hom(A'G,M),  (7.229) 
(6o~;.)-%~;o= 

and 

Ha(G, 2;M) , Ex t (G,M) .  (7.230) 
(s.oso~;)-' 

Thus S* : Ha(G, 2; M) ~ H=(G, 1; M) is just the inclusion of Ext(G, M). 

The cocycle condition, # E Z2(G, 1; M) for some # :  G × G --* M :  (g, h) ~-* #([glh]), 

can be derived explicitly from (7.189) as 

0 = (g#)(g, h, k) = #(h, k) - ]1(gh, k) + #(g, hk) - #(g, h), (7.231) 

and the additional condition for # to be in S* (Za(G, 2; M)) C Z2(G, 1; M) takes the 

form 

u'(g, h) := ~(h,  g) = u(g,  h) ,  (7.232) 

by (7.209). Here we denote #(g, h) = #([g I h]). 

The coboundaries are given, for any ~ : G ~ M, by 

(6~)(g, h) = ~(g) + ~(h) - ~(g. h). (7.233) 

Thus, in a fashion more accessible to calculations, the formal identities (7.229) and (7.230) 

can be restated as follows: The map & which assigns to each # : G x G --* M, with (7.231), 

a skew-bilinear form in Hom(A2G, M), by 

a(~ )  = ~ - ~ ' ,  (7.234) 
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is surjective and vanishes on boundaries. For any symmetric cocycle, #, there exists an 

abelian group E D M, with ElM ~ G, and a section ¢ : G --* E,  with lr o ¢ = ida, such 

that  /~(g, h) = ¢(g-  h) - ¢(g) - ¢(h)  E M. If Ext(G, M) = 0 ,  then we have ¢(g) = 

g + A(g) E G @ M = E; hence/~ = 6A, for any /~ G ker &. In the last considerations we 

made use of the well-known one-to-one correspondence between Ext(G, M) and the in- 

equivalent, abelian extensions of M over G. 

There is another interpretation for H2(G, 1; M) in terms of central eztensions of M 

over G. The aim of our discussion is now to find interpretations for HS(G, 1; M) and 

H4(G, 2; M),  at least when M = R/Z ,  and investigate how they are related by the sus- 

pension. Contrary to the previous example, S* is going to be very different from a mere 

injection. From (7.227), (7.216), (7.210) and (7.190) we find 

c ~  

Hs(G'I;M) qoS-t~,~ ' Ext(A2G, M)@Hom(H3(G, 1);M) (7.235) 

and 

H4(G, 2; M) , Horn (F,(G), M) . (7.236) 

For later applications, we give a more detailed description of the relations (7.235) and 

(7.236) and the associated complexes. The elements of AS(G, 1;M) can be given as 

functions, f :  G x G x G ~ M :  Lqlhlk] --, F(g, h, k), (a = a \{e}) ,  ~ d  the cocycle con- 

dition, f E ZZ(G, 1; M),  becomes, with (7.211), 

0 = (6f)  (gl ,g2,g3,g,)  

= f (g,, gs, g4) - f (gxg=, gz, g4) + f (gl, g=gz, g4) - f (gl, g,, gsg4) + f (gl, g2, ga) , 
(7.237) 

and the coboundaries are as in (7.231). Denote by [)t] the generators of As(G, 2; M), 

where ~ :  G x O ~ M and S'([A]) = ~ e A2(G, 1;M). The elements of A4(G, 2;M) can 

then be given as pairs [f,r], with f : G x G x G---* M and r : G x G - *  M, so that  

[f, r]([glhlk]) = f(g, h, k) and [f, r]([g]lh]) = r(g, h). The suspension is induced by the 

omission 

and we find from (7.209) that  

S*([f,r]) = f ,  (7.238) 

(7.239) 
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for the coboundaries in B2(G, 2; M). 

Since, by (7.238) and S*g = gS*, we have that 

if[f, r]) ([g~ 19,1g:~lg4]) = (6f) (g~, g,, g3, g4), 

the cocycle condition, [f,r] 6 Z4(G,2; M), is given by f 6 ZS(G, 1; M) and we obtain the 

two equations 

0 = (6[I, rl)C[gihllk]) (7.240) 

= - f ( g ,  h, k) + f(g, k, h) - f(k,  g, h) + r(h, k) - rig.  h, k) + r(g, k) 

and 

0 = (61I,  ])(Lqllhik]) (7.241) 
f(g, h, k) - f(h,g,  k) + f(h, k,g) + rig , h) - r(g, h. k) + r(g, k). 

The definition of F4(G) in terms of the relations (7.215) allows us to identify the space 

Horn (F4(G), M) in (7.236) with the set of M-valued quadratic functions, 8, i.e., with all 

functions 8 : F4(G) --* M, with 

O(ghk) - O(gh) - O(gk) - O(hk) + O(g) + O(h) + 8(k) = 0 
(7.242) 

and 8(g) = 8 (g- ' )  . 

The isomorphism of (7.236) is then given by 

8(g) := 7; o a([f; r]) = r(g,g). (7.243) 

In particular, (7.236) implies that a cocycle If; r] is a coboundary iff the diagonal of r 

is zero, and, conversely, to any quadratic function 8, there corresponds a cocycle with 

(7.243). We now claim that 

0 ~ Horn (A=G,M) ~ Hom(G®G,M)  D_~ Hom(r~(G) ,M) S-o(~_~')" H3(G, 1;M ) 

(7.244) 
is exact, where ~r is the projection onto A2G, and D is given in (7.223). The definition of D 

implies exactness at Hom(G ® G, M), and the composition of maps at Horn (P4(G), M) is 
1 * zero by (7.226). Suppose now t h a t 8  6 ker (S* o (74-) ), for some quadratic function 8. 

Then there is a representing cocycle If; r I with (7.243), and S*([f, r]) = 6~ 6 Ba(G, 1; M), 
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so f = 6%. The function # is then also represented by the cocycle [f, r] - 5[~] = [0, p], 

p ---- r - (:~ - A'). The cocycle conditions (7.240) and (7.241) show that p is bilinear and 

O ® C 

8(g) = p(g ® g) ---- D*(p)(g), for some p • Hom(G ® G, M ) ,  (7.245) 

which proves exactness of (7.244). 

In order to extend results on the cohomology of cyclic groups to arbitrary abelian 

groups, we consider the dual version of (7.221): 

H 4 (G1 @ G2, 2; M)  

= 4,(C;l ~C;2) 

Hom (r. (Gx • G~), M) 

2 H 4 ( G , ,  2; M) @ Horn (~1 ® G2, M) 

= %,el @ %,c~ @ id 

2 @~=_~ I-Iota (r4 (a~),M) • Horn(a1 ® a2,M). 
(7.246/ 

The horizontal arrows in (7.246) that project onto the direct summands of the spaces 

H4(G1 @ G 2 , 2 ; M )  and Hom(P4(G1 @G2),M) are obtained from the inclusions in 

(7.221). Thus, to every quadratic function 8 on G1 @ G2 , we associate unique ele- 

ments O~ • Horn ( r ,  (G~);M) , defined by the restrictions of 8, and some q = r*(0) • 

Horn (O1 ® a=, M),  where r is given in (7.220), such that 

0 ((gl,g=)) = 01 (gl) ÷ 82 (g,) + q (gl ® g2) .  

If we set K c  := ker (S* o (-r~l) ") = i r a ( D * ) C  Hom(F, (G) ,  M ) t h e  composition 

K(clec2) = Kcx @ Kc= ~ Hom(Gx ® G2, M)  

(7.247) 

(7.248) 

holds in the sense that Kc,  are suhspaces of Hom (r4 (Ci) , M)  in (7.246). To see this, 

we define p e Hom((G1 ~ G2)® (G1 @ G2),M) to be equal to q on G1 ® G2 and zero 

on all other Gi ® Gi. Then P((gl,g2)® (gl,g2))= q(gl ®g2), and (7.247) implies that 

Horn(G1 ® G2, M) C K(a,¢a=). So, if # • K(a, ec , )  then (0 - D*(p)) = ~#, • K(a, ea,), 

and therefore there is some ~ with p((gl,g2) ® (gl,g2)) -- 01 (gl) + #2 (g2). Setting g, = 0 

yields 01 = D*(~) [ G1 ® G1 • Ks, ,  and (7.248) follows. 
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The image of S* in H s (Gx ® G2, 1; M)  is thus described by 

s* o (7;')* (nomCr4CG, @G2),M)) -- 

(~) S* o ~ Hem F4 ~ ,M 
i = 1 , 2  

HomCr4 Cad, M) IKa, • 
i = 1 , 2  

(7.249) 

The complete image of S* can now be easily determined by starting from (7.217) and 

iterating (7.249). Note that  D'Q* = 2, found from (7.223), implies 

2 H o m ( r 4 ( a ) ,  M)  C KG, (7.250) 

so that  all elements in imS" are of order two. 

This observation leads us to consider cohomology with Z2-coefficients. Since reduc- 

tions of coefficients strongly depend on the original group M, we shall avoid complications 

by restricting our attention to the case M = R / Z  (in which we are actually interested). 

First, we remark that there is an involution, ~', on A4(G, 2; R /Z)  with 

= [ - / ; r ' ] .  (7.251) 

One immediately verifies that  it maps cocycles to cocycles, that ~-6[A] = -6[A] and that 

the induced map ~ is the identity on H4(G, 2; M).  It follows that 1 - ~ "  maps any cocycle 

[f; r] to a coboundary. Since we have coefficients R / Z  we can choose this as 

(1 - 9v) ( [ f ;  r]) = 2 6 [ . 1 ,  

where/~ 6 A2(G, 1; R/Z) .  Another representative of the cohomology class of [f; r] is then 

given by []; 9] := [f, r] - 6[#], which, by the last formula, is fixed by 9 t'. This means that, 

in every cohomology class, we have a representative with 

2 ]  =- 0 mod 1 and ~ = : ' .  (7.252) 

We denote the space of cocycles obeying (7.252) by Z4.r,~(G, 2; R/Z) .  The restricted 

projection g4,r,~(G , 2; R /Z)  -~ H4(G, 2; R /Z)  is still onto, and its kernel is given by 

4 .__ 4 S 4. B,r,~ = . -  Z~r,= ~ CI Since ~" acts as - 1  on the boundaries, the ~--invariant set is 

given by 2(B4(G, 2; R /Z) ) ,  where we use the notation pG = {g 6 G : gP = 1}. But for [~], 

4 with g[A] 6 B,r=~(G, 2; R /Z) ,  this implies 2[A] 6 ZS(G, 2; R/Z) .  Since by (7.230) we have 
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that  H3(G, 2; R /Z)  = 0, we can find some/ t  6 A2(G, 2; R/Z) ,  such that 2[A] = 25#. For 

[A'] = [A] - 6#, we then have 5[A'] = 5[A] and A'(g, h) 6 }Z/Z.  We conclude that 

s:.~(c,2; R/z) :  ~(.,(c,2; R/z)) : B, (c,2; l z / z ) .  (7.2~) 

Similar to S" in (7.238), we have a well defined suspension of cocycles 

S:r,~= : Z,4r,=~(G, 2;R/Z) --~ Z 3 (G, 1; ]Z/Z) (7.254) 

[f;r] ~ f .  

By (7.253), it has the property 

s:,= (B:.mm(O, 2;R/Z)) : B~ (O, 1; ~Z/Z). 

Together with Z4.,.=~/B4.y== ~- H4(G, 2;R/Z) this induces a homomorphism 

~:,=~ • H ' (0 ,2 ;  R /z )  -~ ~ (o,1; }z /z) .  (7.255) 

The connection of S-:r-~ and S" is obtained by considering the short exact sequence of 

coefficients 

0 -, }Z/Z ~ R/Z ~ R/Z -~ 0 (7.256) 

and the associated long exact sequence 

-~ H2(G,R/Z) ± H ~ (G, ~Z/Z) -~ H~(G,R/Z)i H3(G,R/Z) , (7.257) 

where ~ is the connecting homomorphism, and ~ and 2 the maps induced from (7.256). 

We find the following commuting diagram 

S * 

n'(G, 2; R/Z) , H3(a, 1; R/Z) 

~3 (c,l ,~z/z) 

(7.258) 

For genera/abelian groups, working with this substitution of the coefficients tends to be 

rather awkward. However, for cyclic groups, the decomposition of S* according to (7.258) 

turns out to be pertinent. First, we observe that,  for G = Zo, H2(G, R / Z )  = 0 implies 
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$ = 0 in the exact sequence (7.257), and ~ is injective. From (7.217) and (7.236) we find 

that  

H 4 (Zo, 2; R/Z)  ~ Z ( 2 , o ) .  (7.259) 

and the generating quadratic function ,0a, is given by 

j~ 
oacj) = (2a)~ rood i ,  Vj • Za.  (7.260) 

Moreover, since Z~ ® Z~ : Za, the bilineax functions are generated from 

p(i ® j )  ---- i__j mod 1, Vi,j  • Z . .  (7.261) 
a 

By (7.244), the kernel of S* (which is, with injective ~, also the kernel of ~ , y ~ )  is given 

by Z.  and has generator (2, a)Oa = D*(p). Hence 

Comparing this to 

i S i ~ , ~ " ~ Z (  ) m * ~ m = 2,o • (7.2o2) 

which follows from/'/2 (Z,,  1) = 0, (7.178) and (7.227), we infer that S- :y~  is surjective, 

and hence 

imS* = im~ = ker 2 = 2 ( g  a (Z, ,  1; R/Z) )  . (7.264) 

For odd orders a, the groups (7.263) and (7.264) axe trivial and 0, = D*(p), so that the 

representing cocycle in 4 Z.~y~ of the class of 0o is 

r(i , j)  = p( i®j ) ,  w , j • z . ,  
(7.265) 

f -- 0. 

For even order a =: 2a', the groups (7.263) and (7.264) axe Zz and the generator Oa is 

mapped to the non-trivial element in H 3 (Z,,  1; ~Z/Z) .  

We shall use the special dependence given in (7.258), with i mapping into and S-~y~ 

onto, in the way, that, for a n y  representative f • Z s (Z,,  1; ~Z/Z)  of the non-trivlal 

cohomology class, we can adjoin some (unique) r : G x G ---, R/Z ,  such that 

[f:  r] • z.'~=~' ( z . , 2 ; R / z )  = d  r(j ,j)  = 0 .g )  
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In order to determine a cocycle f of this kind, we employ a chain contraction of the cochain 

complex A ° (Z,, 1; M) onto the cochain complex M°(a, 1; M) , where Mk(a, 1; M) = 

Hom(Mj,(a, 1),M), M.(a, 1) as in (7.179) and 6--- 0% The projection and injection are 

I* and P*, from (7.184) and (7.185), and the homotopy is ¢°, and we obtain a diagram 

an in (7.186) with all arrows reversed. 

The cohomology groups of Z,  can be computed directly from M*(a, 1; M) as follows: 

Since 0 is zero on M2,,+x(a, 1), 6 vanishes on M2m(a, 1; M), and we have 

B2'~+I(a, 1;M) = 0, (7.266) 

Z2'~(a, 1; M) = Hom(M2.~(a, 1); M) ~ M .  (7.267) 

Furthermore, it follows from (7.179) that 

B2"(a, 1; M) = a-Hom(M2,~(a, 1); M) ~ aM, (7.268) 
and 

Zam+l(a, 1; M) = ,(Horn (M2,,+,(a, 1); M)) ~ , M .  (7.269) 

Finally 

H2"(a, 1;M) ~- M/aM, (7.270) 
and 

H2m+a(a, 1;M) ~ , M .  (7.271) 

In particular, for odd dimensions, two cocycles are cohomologous only if they are equal. 

Equation (7.271) confirms that H a (a, 1; ]Z /Z)  ~ , ( Z , )  = Z2 for even a, and the 

non-trivial cocycle is 

q: M3(-,1) -~ I S / Z ,  
(7.272) 

with q(wx) = ~ m o d l .  

Thus, a non-trivial cocycle f E Z 3 (Z,, 1; ~Z/Z) is given by 

f = P;(q), (7.273) 

where P has been defined in (7.184). The explicit expression is then found from (7.184) 

a s  

f(i,j,k) = q(Pa([ilJlkl)) (7.274) 

1 = 5/~(i) 7( j ,k)  m o d l ,  
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for M1 i , j , k  E Z . ,  and with /~,7 as in (7.180) and (7.181). To find the cocycle [f;r] e 

g _ ~  (Z.,2; R /g )  representing the class of the generator 0. E F4"~.), we have to solve 

the following set of equations for r : X. x Z. ~ R/g :  

and 

r ( j , j )  = 

r ( i , j )  = 

r ( i , j )  + , ( i ,  k) - r ( i , j  + k) = 

j 2 

- -  mod 1, 
2a 

r ( j , i ) ,  (7.275) 

1 /~(i) 7(J, k) mod 1. 

Here we used that f is symmetric in the last two arguments and f = - f .  One easily 

verifies that 

r ( i , j )  - D( i ) f l ( j )  rood 1 (7.276) 
2a 

is a solution, by viewing the left hand side of (7.276) as a 2-coboundary for fixed i 

and using (7.182). In a more systematic approach, this particular cocycle can also be 

obtained from the chain complex M.(a,  2) that we mentioned previously as being ho- 

mologicMly equivalent to A. (g. ,2) .  Starting from ff C Z4(a, 2; R/Z)  C M4(a, 2), with 

~([Wo I w0]) = ~ mod 1 and ~([w,]) = ~ mod 1, [f;r] is the same as (P#)* (~). More 

precisely we have 

r ( / , j )  - @(P#(tillj])) = 4([P([/])I P([J])]) 
(7.277) 

y ( i , j , k )  = @(P*([i lJlk]))  = ~([P([ i lJ lk] ) l ) ,  

which reproduces (7.274) and (7.276). We interrupt our line of arguments with a summary 

on cohomology of cyclic groups. 

L e m m a  7.5.1 For any a E N, we have 

H 4 (Z., 2; Wz) ~ z(2,.).. 

(Here (2, a) = 1 if a is odd and (2, a) = 2 i a is even.) A symmetric cocycle [ f ; r ]C 

Z.'4~= (Z., 2; R / Z )  with the property that [f; r] generates U 4 (Z., 2; R/Z),  is given by 

1 
rCi, j )  - (2, a)------~ B ( i ) B ( j ) m o O  1 

(7.2783 
1 

f ( i , j , k )  - - - / ~ / ( i ) 7 ( J , k )  mod I (2,a) 
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for  all i , j ,  k G 7`.. For the suspension 

S*:  H 4 (Z.,  2; R /Z)  ---* H a (Z.,  1; R /Z)  ~- Z.  

~ e  hal)e 

,mS* = 2(Ha(7` . , I ;R/7`) )  -~ 7`(2..) 
and (7.279) 

ker S* = 2H 4 (7`.,1; R/7Z) ~ 7,.. 

In part icular , /or  e,,en a, the co~vde f ~ z ~ (7`., 1; R/7`) f~o~ (7.~7s) represents ~ non- 

trivial cohomology class in H a (Z.,  1; I{/7`). 

The technology presented so far allows us to generalize Lemma 7.5.1 to arbitrary finite 

abel, an groups 

a = 7`.t @. . .  @ 25... (7.280) 

First, the quadratic forms of G are decomposed by iterating the lower horizontal map in 

(7.246): 

Horn (r,(a), R/z) ~ (~ Horn (r, (7`o,), R/7`) 
i = l  

Horn (7`., ® 7`.j, R / Z ) .  (7.281) 
l<_i<j<_n 

For any 0 E Horn (F4(G), R /Z)  and any g E G, given by g = g l . . .  g. ,  g, E Z . , ,  w e  c a n  use 

(7.247) to write the components of 0 in (7.281) in the form 

o(g) = ~ o, (g,) + ~ p,~ (g, ® g~) , (7.282) 
/=1 i < j  

where 0, E Horn(F4 (Z . , ) ,R/7` )  is given by 0, = 0 I 7`-, and p,j G Hom (7`., ® 7`.j, R/7`) 

by p,j (g~ ® gj) = 0 (gl gj) - 0 (g,) - 0 (gj). More explicitly, we have 

gom(r,(G),R/7`) -~ ~7`(2,.,)., * @ 7`(.,,.j) (7.283) 
/=1 l <i<j<_n 

in the sense that,  for some given generators ~, of 7`,, C G, i = 1 , . . .  ,n,  we have 

7, v~ + E 7",j 0 ( ~  . . .  ~:") = (2, a,) a------~ (a,, ai) v, vj mod 1 , (7.284) 
i=1 l_</<j<_n 

where r, E 7`(2,.,)., and rij E 7`(.~,.j). The decomposition (7.248) together with the special 

result (7.279) put us in the position to determine which of the functions 0 from (7.284) have 
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bilinear extensions to G ® G, i.e., 0 6 im D*, and are thus annihilated by the suspension 

map in (7.244). The condition is 

0 e K e  iff (2, a l ) [ r l ,  V i = l , . . . , n .  (7.285) 

From the two short exact sequences 

0 , imD* ~ Hom(I'4(G),lC/Z) ,, Hom(kerD,  R /Z)  

S" 
0 , kerS* ~ H4(G, 2;R/Z) , imS*CHS(G, 1;R/Z) 

, 0 

,0 

(7.286) 

we can derive the unique isomorphism ~7, which, together with (7.225), yields 

A 0 (7 287) im S* ker D "~ 

For G as in (7.280) this group is Z(a~,2) @ . . .  @ Z(a,,2), and the map i* can be explicitly 

given, once we pick t~i = al (~i) as the generators of kerD,  which are of order two, for 

even ai, and zero, for odd al. We have 

rl mod 1. (7.288) c(o) (~,) - (2, a,) 

For the computation of representing cocycles for the associated cohomology classes we no- 

tice that by the commutativity of (7.246), the following short exact sequence is a canonical 

presentation of H4(G, 2; N/Z) in terms of cocycles and coboundaries, compatible with the 
decomposition (7.281): 

i = l  /=1 

N C] 
B'(a, .; ~ / z )  z,(a, a; R/z)  

@ (~) Horn (Z,,, ® Zai, R / Z  ) 
i<_l<j<_n 

,, H'(C, ~; R/z) ,0 
(7.289) 

Here the surjection onto H4(G, a; R/Z)  is given for the crossed terms by the identification 

Horn (Z., ® Z.~, R/Z) , Z"(G,2; R/Z) 

p~ , , [0; p], 
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where p e Hom(a ® a ,  R/Z) = @ Hom (Z..  ® Z. . ,  R /Z )  is equal to fli on the summand 
T$ 

with r = i and s = j and zero for all other r and s. 

Furthermore, the inclusion Z 4 (Z.,,  2; R /Z)  C Z4(G, 2; R / Z )  is naturally given by 

(r/#) : A 4 ( Z . , , 2 ; R / Z )  --+ A4(G, 2;IR/Z), where ~ri#: A.(G, 2) --+ A. (Z. , ,2)  is the chain 

map obtained from the projection vi : G --+ Z.~, with 

71"? ([gl I . . .  I gn]) -- [~'i (gl) [ . . .  I ~ri(gn)] , 

g, e G. Explicitly, [f/, rl] e Z 4 (Z.,,  2; R /Z)  is identified with [f; r] E Z4(G, 2; R / Z )  by 

~(g, k) = ~, (~ , (g ) ,~ , (k) )  
and (7.290) 

f (g ,  h, k) = f,  (~ri(g),Tri(h),ri(k)). 

Exactness of (7.289) also implies that two cocycles with a decomposition of this form 

are cohomologous iff their contributions in each Horn (Z,, ® Z . i , R / Z ) ,  1 < i < j < n, 

are equal and the respective components in Z 4 (Z,, ,2; R /Z)  have the same class 

in the space H 4 (Z.~,2; R /Z) ,  for all i = 1 , . . .  ,n. Suppose now we have a quadratic 

function, 0, given by (7.284), with coefficients rl E Z(2,,0,~ and rlj E Z( . , ,  D. Then we can 

use the compatibility of (7.289) with (7.281), the canonical representatives for the mixed 

terms and the explicit formulae for the cocycles (7.290), given in Lemma 7.5.1, to obtain 

a representing cocycle for the class associated to 8. It is given by [f; r], where 

( ~ '  ~ ~,, ~ ~ / ~ ( ~ ) ~ ( ~ i )  
• . . , .  ,,1 . . .  ~ )  = (2, a,) a------~ 

i=1 

+ ~ to" 
I<i<i<,~ (al, aj) vl/~j" mod I , (7.291) 

and 

• ".. . , . . . ~ " )  = ~ T g - - - T X _ ~ ( y , ) 7 ( p i , T h ) m o d l .  f (~? ..  ~ , , ,  i f ,  . ..'" ~ ,  r, 
i = l  

The advantage of this normalization is that [f; r] 6 ker S* if f -- 0 (instead of just 

f -- 6~). 

Alternatively, we can find from these expressions representatives in Z ~ ( G ,  2; R/Z) ,  

defined in (7.252). They are obtained from If; 6] = [f; r] - ~[~], with 

• ' ' ~ n  , ' 1  " ' ' ~ )  : E 2(al, aj) ~(ill) J~(l~J) , 
l<i<j_<n 
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so that 

"%n ,~1  " ' ' ~ )  (2, a,) a, i=1 

~j 
+ ~ 2(~, ,~;)  (/~ (~') ~ (zj)  + ~ ("j) ~ (z '))  l<_i<j<n 

and 

] (~? . . . .  .. ~ - ,  ~ '  .~- , ~7 • • • ~ - )  

~'ija..________jj 
+ ~ 2(a, ,a j)  ~ (~') ~ (~j' ~j) (7.292) 

l<i<j<n 

"rljal 
-- ~ 2 Ca,, a;) ~ (~'' " ) / 3  (~;).  

l_<i<i_<- 

Given these normal forms, we end here our discussion of the algebraic properties of the 

cohomology groups H*(G, 2; R/Z)  and turn to their interpretation in the context of 0- 

categories. 

In general, if a cohomology group, Hk(G, n; M), with k > n > 1, admits an inter- 

pretation (e.g., in terms of a classification of certain algebraic objects), we expect that 

there exists a similar interpretation of the group Hk+l(G,n + 1; M), which is related to 

Hk( G, n; M) by the suspension S* : H k+l ( G, n + 1; M) ---* Hk( G, n; M), and, further, that 

there is a connection between these interpretations which is parallel to S*. We already 

encountered the example S* : Ha(G, 2; M) ~ H2(G, 1; M), where the suspension could be 

interpreted as the inclusion of the group of abelian extensions of M over G into the group 

of central extensions of M over G. A similar relation can be found for Ha(G, 1; R/Z)  and 

H,(a, 2; R/z). 

The group Ha(G, 1; R/Z)  can be naturally interpreted as the classifying object of in- 

equivalent, relaxed, monoidal C*-categories with fusion rule algebra ,~ = N a. Analogous 

results have been obtained in slightly different contexts, with possibly nonabelian G, like 

in the classification of WZW-actions with gauge group G [60], or in the guise of quasitrian- 

gular quasi-Hopf algebras, A = C[G] ~ C(G), with certain restrictions [33]. Nevertheless 

we shall recall the derivation in a purely categorial language. For a category of the type 
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specified above, the composition of two irreducible objects is again irreducible, hence the 

associativity isomorphism, 

a~,h,k E Mor(g  o (h o k), (g o h) o k) (7.293) 

for irreducible g, h and k, is irreducible, too, and, as the arrow space in (7.293) is one- 

dimensional, we can consider it to be a scalar. A realization as a linear map is obtained 

if we choose a basis, Fuoh,g.h E Mor(g • h, g o h), and let a act on these arrows by left 

multiplication, i.e. 

ae,a,k (le x Phok,a.k) P,o(h.k),u.h.k = ~(9, h, k,g. h. k)~]~ (Fgoh,u.h X lk) Fg.hok,g.h.k, (7.294) 

the ~-matrices are numbers. We shall use the simpler notation 

(7.295) ~(g,  h, k, g .  h .  k)~:~ =: e '~t("'h'k) . 

Clearly the numerical data from (7.295) and a choice of basis determines a uniquely. In 

order for ~ to determine a monoidal category, it has to satisfy the pentagonal equation, 

(gl o g~) o (g~ o g , )  

meaning that  the following diagram has to commute 

591,93 ,g:l og4 
g~ o(g,  o (g~ o g,))  

[ lg~ x Otg2,ga,g 4 

O~gt ,g2 og:l ,g4 
g~ oCCg= o g3) o g,)  

~gl  og-j ,g3 ,g4 
, ((g~ o g=) o g3) o g, 

agx,~,g , x lg, I 

, (g, o (g~ o g~)) o g , .  
(7.296) 

In terms of f : G x G x G --~ R/Z ,  this is equivalent to 

f (gl, g=, g3- g,)  + f (gl .g~, g3, g,)  = f (g~, g~, g,)  + f (gl, g=. g~, g , )  + f (gl, g=, g3) .  

If we consider f as an element of A3(G, I; R /Z)  and compare this to (7.237), (7.296) is 

reexpressed as 

f ~ Z~(C, I; R / Z ) .  (7.297) 

We may now ask when two categories C and C' with identical objects, • = N a, and defined 

by cocycles f and f '  are isomorphic. An isomorphism maps the spaces Mor(g o h , g .  h) 
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onto each other. Thus if {P~oh,uh} is the image in C of the basis chosen in C' then there 

obviously has to exist ~ : G x G --* R / Z  with 

P'goa,gh = e-2"ix(g'a)Pgoh,ga , (7.298) 

and f '  is the cocycle determined in the basis (7.298) instead of {Pgoh,gh}. From (7.294) 

we see that  they are related by 

f(g,  h, k) - if(g, h, k) = -;<g,  h) - ~,(gh, k) + ;~(h, k) + a(g, h. k) 

(6~)(g, h, k). 
(7.299) 

Thus f and ff  define isomorphic categories iff 

f - f '  • B3(a ,  1; R/Z).  (7.300) 

Hence the possible associativity arrows and thereby the possible inequivalent monoidal 

categories with • = N ° are identified with elements in Ha(G, 1; R/Z) .  

An analogous interpretation can be found for H4(G, 2; R /Z)  if we require that  the 

(relaxed) monoidal C*-categories, with q~ = N a , in addition admit a braided structure. 

We call a braided category of this type a 0-category. The statistics operators of a 0- 

category 

e(g, h) • Mor(g o h, h o g) (7.301) 

are determined, for irreducible objects g, h • G, and a fixed basis {Fgoh,h.g} , by some 

r : G x G --* R /Z ,  so that  

e(g, h) F~oh,h.g = e 2~'(g'h) F~oh,h.g • (7.302) 

For general objects X and Y, e (X ,Y )  has to satisfy the isotropy and the hexagonal 

equation, which can be summarized in the polynomial equations. 

We shall use them here in the form of Theorem 2.3.4, where the R-matrices are 

defined by 

ag,k,h (lg x E(h, k)) a;,h, k (Fgoh,g.h x lk) Fg.hok,g.h.k 
(7.303) 

= R(g, h, k, g .  h. k)~:~, (Loh,9.h × lh) rg.ho~.~.~.,. 
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Combining (7.294), (7.295) and (7.302) we find 

R(g , h, k, g" h .  k)~:~ = e 2,{('(h'k)+y@'k'h)-y(g'h'k)) • (7.304) 

From this, together with the ~-matrices 

~(g,  h, k, g . h . k )~:~, = e -2'~y("'h'k) , (7.305) 

we can reduce the first polynomial equation 

• . . k ~ l .  k ~ t . k . g  R+(1 g, h, k , l .  g h k ~t'g'k R+(l ,g ,  k,1.  g .  jt.g ~ ( l .  k, g, k, l .  g .  h .  ~Jg.h ] l . g . h  
(7.306) 

= ~(t ,  g, h, t .  g .  h)',:~,,~+(t, g .  h, k, t .  g .  h.  k ~'~ ]l.g.h 

to the condition 

f ( g ,  h, k) - f ( g ,  k, h) + f ( k ,  g, h) - r(h,  k) + r (g .  h, k) - r(g,  k) 
(7.307) 

= (6f)( t ,  g, h, k) - (6f)( t ,  g, k, h) + (6f)( t ,  k, g, h) 

on the functions f and - r .  Since the pentagonal equation also holds for 8-categories, 

the right hand side of (7.307) vanishes by (7.297). We recognize the resulting equation 

as the cocycle condition (7.240). Similarly, we obtain (7.241) from the second polynomial 

equation. Thus, a pair of functions f and r defines via (7.295) and (7.302) a 8-category 

if and only if 

[1; fl e Z ' ( C ,  2; R /Z) .  (7.308) 

Again [/; r] and [f'; r'] define the same category iff they differ by a rescaling of the basis 

as in (7.298). Besides (7.299), we obtain from (7.302) 

r(g, h) - r '(g,  h) = ,X(g, h) - )~(h,g).  (7.309) 

Comparison with (7.239) then shows that the 8-categories constructed from [f;r]  and 

[f'; r'] are isomorphic if and only if 

If;,]  - [5;, ']  e B' (C,  2; R/Z) .  (7.310) 

This establishes the interpretation of H4(G,  2; R/77.) as the class of 8-categories with 

q, = N °. 
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Notice that  we have by (7.302) 

~(g, g) = ~''(.,") 1,o, (7.311) 

showing that r(g, g) is a basis-independent quantity. For a 8-category the dimensions of 

irreducible objects are all one) so that the statistical phase, 0(g), of an irreducible object g 

is equal to its statistical parameter. Hence, we obtain from (7.311) the identification 

0(g) = r(g,g) mod 1. (7.312) 

Let us also introduce the (basis-dependent) function ~/: G --) R/Z by 

We easily find that  

and 

~(g) = - 7 ( g - ~ )  mod 1 

"7(g) - '7'(g)  = A(g ,g -1 )A(g - l , g )  mod 1. 
(7.314) 

Hence, for elements g E =G of order two, q,(g) is an invariant and 7(g) E ] Z / Z .  In other 

words: "y distinguishes among the selfconjugate elements 2G the real (~,(g) = 0) and the 

pseudoreaI (~/(g) = ~) ones. Furthermore ~/: 2G ~ ~Z/Z is a homomorphism. 

For the following considerations let us denote by Cat (G) the class of 0-categories 

with ¢ = N °.  So far, we have achieved an identification of Cat (G) and H4(G, 2; R/Z)  only 

as sets. Apparently Cat (G) also carries a group structure induced by this correspondence 

which we want to describe more directly. 

To this end we define a composition of 0-categories associated with two abelian 

Cat (G)  x C a t ( H )  ~ C a t ( G @ H ) ,  

( c o , c , )  --, c~ • c , , .  

groups G and H. 

(7.31s) 

The objects in Ca @ C~ are given by N c ® N H ~- N (GeH) with composition 

(gl, ~i) o (g=, h2) = (g~ o g,, h~ o h,) 
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and the arrows are given by 

Mor ((gl, h i ) ,  (g,, h2)) = Mor (gx, g,) ® Mor (hi, h , ) ,  

with correspondingly factorized arrows a and ~. 

In the cohomological translation, this corresponds to the embedding of the pure 

terms in (7.246), H4(G, 2; M) @ g4(g,  2; M) ~ H'(G @ H, 2; M).  If G contains a sub- 

group G, with inclusion i : G ~ G, then we have the natural map 

i*: Cat (G) --, Cat (G) ,  

which restricts all arrows to the objects in N ¢ and obviously corresponds to 

;#" : H ' ( C ,  2; R /Z)  , H ' ( G ,  2; R / Z ) .  

Let us choose this injection to be diag : G ¢--* G @ G : g ---* (g, g) and consider the compo- 

sition 

Cat(a) × Cat(a) ~ Cat(C~C) --* Cat(a) 

1 2 (Co, Ca) --, Cb@C ~ ~ Cb.Cg=diag*(Cb@Cb). 
(7.316) 

This is by construction precisely the multiplication induced by H4(G, 2; R/Z) .  Therefore 

the correspondence between 0-categories and group-cohomology is in fact a group homo- 

morphism, once Cat (G) is endowed with the group structure given in (7.316). The unit 

element in Cat (G) is the ordinary representation category of G, where the statistics oper- 

ator is just  the flip, and thanks to the special properties of H4(G, 2; R/Z) ,  especially that 

ireS* C 2(Ha(C, 1; R /Z) ) ,  the inverse, C', of a category C E Cat (G) can be obtained by 

setting ¢'(g, h) = e(h, g)* and cx' = a. (For general, monoidal C*-categories with • = N c, 

the definition of an inverse requires a choice of basis.) As the key observation of our 

discussion on 0-categories, let us record their correspondence with cohomology groups in 

the following proposition: 

Proposition 7.5.2 For C E Cat ( G) and a given arrow-basis, let the R- and ~-matrices 

be defined as in (7.P94) and (7.303). Then the assignment 

R) - ,  [/; r], 
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specified in (7.e95) and (7.S04, yields an identification o f t  and its basis with a cocycle 

in Z4( G, 2; R/Z).  The category C is trivial iff [f; r] is a coboundary. The induced map 

Cat (G) ~ H4(G, 2; R/Z)  

is an isomorphism of abelian groups, where the mult@lication in Cat (G) is given by 

(7.sie). 

The isomorphismexplained in Proposition 7.5.2 serves as a tool to translate the results on 

the properties H4(G, 2; R/E) into the context of the group Cat (G). They are gathered 

in the next proposition: 

P r o p o s i t i o n  7.5.3 

i) For a O-category C • Cat (G), the function Oc : G --. R/Z;g  ~ Oc(g), defined by the 

star.tidal phases Oc(g), ~ quadratic (see ( 7 . ~ ) )  and yiel,~ an inva~ant for each C 

which is separating in Cat (G). Conversely, to every quadratic function 8 • F4(G), 

there ezists a unique category C • Cat (G) such that 0 = 8c. Hence 

Cat (a )  - ,  r , ( a )  : C -~ oc (7.317) 

is a group-isomorphism. 

it) Let G and H be finite abelian groups, Ca • Cat (a)  and CH • Cat (H) two cor- 

responding O-categories, with statistical phase functions OG and OH , and q • 

Hom(H ® G, R /Z )  a bilinear function. Then there is a unique O-category 

C = Ca @q CH • Cat (G @ H) (7.318) 

called the sum of Ca and CH with "statistical interaction" q, such that the objects 

and arrows of C' are as in the sum (7.315), and 

but 

~ ((gl, h i ) ,  (g2, h~)) := e ~'q(h''~ ~ (gl,g~) ~ ~ ( h l , h ~ ) .  (7.319) 

273 



The statistical phases of C are given by 

Oc((g, h)) = OG(9) q- OH(h) + q(h,g).  (7.320) 

Every O-category C ~ • Cat ( G @ H) is isomorphic to a category given in the form 

(7.318), where q E Hom(G ® G, R/Z) is unique, and the categories Cc and CU are 

unique up to isomorphisms. If  two O-categories C { E Cat (G @ H), i = 1, 2, have 

a presentation of the form (7.318), in terms of Civ • Cat (V), C~H • Cat (g), and 

ql • Hom(H ® G,R/Z) ,  the product in Cat (G @ H) can be ezpressed as 

c'  . c ' =  (c~ .c~) ,(,~+~, (el,. C~,). (7.32~) 

Also we have that 

Cc @a CH ~ CH @q, Ca. (7.322) 

Suppose C • Cat (G1 D G2 ~ G3) is decomposed in two ways 

(Ca, @q~, Cc,)@(~,+~,,)Cc, =Ca, ~(~I,+~],) ( Cb' @q,, c,) (7.323) 

w h e ~  (q,3 + q13) • Horn (a~ e (a l  • a2) ,  R / z )  is wriuen as the sum of q,~ • 

Horn (V~ ® a, ,  R / z ) ,  i = 1, 2, and similarty (qh + qh), then we have 

I 

qlj = qij (7.324) 
Co, ~- cb , .  

( / = ~ 1 )  
Hence, for any C • Cat G~ , there is a unique, well defined presentation of C 

as a sum of O-categories, C{ • Cat (G~) , with statistical interactions given by q~i • 

Horn (Gj ® G,, R/Z), i < j ,  denoted by 

n 
C --- ~ (q,j,~<i) C~, (7.325) 

i=1 

such that the statistical phases are given by 

OC (g l  " " "gn)  w ~Ogi(g{)'~ E ( 7 . 326 )  

where gi E G~. 

i=I  
q,j (gj, g~) , 

l <_i <j<_n 
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iii) Let Oat °(G) be the set of monoidal C'-categories with • = N a and 

~ :  cat  (a )  --, ca t  ° (a )  (7.327) 

the identification of O-category as a category in Cat °( G) by omission of the braided 

structure, i.e., e. I f  Cat °(G) is equipped with the same multiplication (7.316), so 

that a is a homomorphism, we have Cat °(G) ~ Ha(G, 1; R / Z ) ,  and the unit ele- 

ment, Co E Cat °(G), is characterized by the fact that there is an orthonormal basis 

of arrows such that 

Otg,h,k = (rooh,g.h X lk) rg.hok,g.h.k r;o(h.k),g.h.k (lg X rhok,h.k)* , (7.328) 

and it is realized by the ordinary representation category of G. 

For a O-category C E Cat (G) the corresponding category in Cat °(G) is trivial, i.e., 

a(C) = Co, iff  Oc eztends to a bianear form p G Hom(G ® G, N/Z), meaning that 

Oc(g) = p(g ® g), or equivalently, iff Oc vanishes on ker D "~ 2G, where D is given 

in (7.~S). 

Further, we have that 

20 -~ ima C Cat °(G) (7.329) 

and clearly 

(c~ e ,  c ~ )  = ~ (c~)  • ¢ ( c ~ ) .  

iv) I f  we define, for a O-category C e Cat ((7) the function on 2G given by 

(7,330) 

7c = 20c r 2G 

this is a character 7c E ~0 with 

(7.331) 

7c(g) = f ( g , g , g )  E ~Z/Z, (7.332) 

for any g E 2G A selfconjugate object g E 2G is real i f  Tc(g) = 0 and pseudoreal if 

7 r i g )  = ~- 2" 
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In part i) of Proposition 7.5.3 we merely put the isomorphism (7.236) into the language 

of 0-categories, using the identification of the statistical phases (7.312) with the quadratic 

functions in (7.243). 

Part it) is an application of the Kiinneth formula (7.246), where the spin formula 

(7.320) is a repetition of (7.247). In the construction of (7.319) we use that the rep- 

resenting cocycle of the mixed term can be chosen in the form [0; p]. The direct sum 

decomposition of the cohomology groups entails, as elementary consequences, equations 

(7.321)-(7.324) which by iteration yield (7.325) and (7.326). 

The map a, which is investigated in part iii), is, in cohomological terms, just the 

suspension S* from (7.238). The kernel of a, a -1 ({Co}), is found from the exact sequence 

(7.244) or (7.245), whereas the formula for the image (7.328) follows from (7.287). The 

obvious relation (7.330) corresponds to (7.248). In part iv), the properties of 7 from 

(7.313), evaluated on elements of order two, are summarized. Finally, we combine the 

correspondence of Proposition 7.5.2 and formula (7.291) to provide a normal form of 

0-categories, for a fixed choice of generators of the underlying group G. 

Proposition 7.5.4 Let G be a finite abelian group with generators ~i, i = 1 , . . .  ,n, such 

that 

C = Zo,(~t,) @. . -  @ Z,,,,(~¢,,). (7.333) 

Then 

i) the group of O-categories over G is given by 

Cat(C) ~ ~)Z(,.°,)°, ~ @ Z(.,..,), (7.334) 
i=1  l<_i<j<_n 

and, for a given category 

C = ( r l ,  1 < i < n ,  r,i, 1 < i < j <_ n) (7.335) 

with ri E Z(2,~),,i and rlj E Z(,~.~j), the statistical phase function is given by 

k rl rlj 
oc ( , , "  . . .  , , " - )  = , = ,  (2, a,),,-~ " + ,_<,<j~. ~ (a,, aj) ,,,,,~ rood 1. (7.336) 
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The set ker a of categories which are trivial as monoidal C*-categories is character- 

ized by the condition 

(2, a~) l 'q ,  i = 1 , . . . , n .  (7.337) 

the set of monoidal C*-categories that can be equipped with The image of a, i.e., 

a braided structure, is given by 

a(Cat  (G)) ~ Z(,,~,) e " "  • Z(,,~.). 

More explicitly, there are categories 79~ E C a t ° ( G ) ,  i = 1 , . . . , n ,  

{:D~}~,= even are independent generators of order two, and 

(7.338) 

such that 

a(C) = "r~79t @- . .  @ r,~V, (7.339) 

where e is defined in (7.S84) and the sum is as in (7.Sla). 

There exists a choice of arrows such that the R-  and F-matrices are given as follows 

~c(v,#,,7,  v + p + "J0,+n) = ( - 1 )  (7.340) 

and 

.~(~+n) '-<~<J-<" (7.341) P~(v ,# ,ThV + # + ,i;(~+~,) = e '=' 

Here we abbreviated v = ~'~ .. . ~," and used the functions fl and 7 defined in (7.180) 

and (7.181). The remaining matrices are given by 

.,~(~+n) .~(,,+~,) @(v, ~,,7, v + g + .J(v+~,) = @(v, #,,7, v + g + '/JO.+n) 

and (7.342) 

.~(~+.) .~(~+~) 
R-(v ,  #,,7, u + # + .j(~+~) = R+(v, #, 7, u + # + . j (~+.) .  

For this normalization, @c is in {+1} and n + in (7.3~I) is independent of v. Fur- 

ther, @c = 1 holds i f  and only i f  C E kercr. The normalization (7.3~0) provides 

a homomorphism 

a(C) ---* ~c (7.343) 

into the group of possible associativity structures of a category with a fixed basis, 

which is a right inverse to the map assigning to each set of ~-matrices the equiva- 

lence class in Cat (G) of categories they define. 
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iii) The composition of arrows depicted in ($.56), which appears in the aziom of conju- 

gate elements, is given, in the normalization (7.3g0), by 

(l".-,ogaXl)" ,'.g-,,g,g-, (lXV,o,-,,1)=e2'a'vc(')e(g-x,1) (7.344) 

w h e r e  

= 
i= l  

re only depends on a(C) and 

mod 1. (7.345) 

a(C) ~ 7c e Horn(G, } ~,,/Z) (7.346) 

is a homomorphisrn. 

If  tel := ~ denote the generators of the subgroup 2G = Z(2..0 ~ . . -  @ Z(2...), we 

have, w i~  

-yc ( , ¢  . . .  , ¢ )  = ' '  ' '  (7 .347)  

where p(a) = 1, for a - 2 mod 4, and p(a) = 0 otherwise, that, for arbitrary C all 

elements in 2G N 2G are real (7c is zero), and, with H := 2G /2G N 2G , the map 

is surjective. 

A 
Cat(C) ~ H 

( 7 . 3 4 5 )  
C - '  Ve 

In the first part of Proposition 7.5.4, the isomorphism (7.317) from Proposition 7.5.3 and 

the formula for quadratic functions, (7.283) and (7.284), are combined, so that the con- 

dition (7.337) corresponds to (7.285). In (7.340) and (7.341), we inserted the expressions 

from (7.291) into (7.295) and (7.304), using that 2 f  - 0 mod 1 and that f is symmetric 

in its last two arguments. In part iii), the function 7c from (7.313) has been evaluated, 

yielding a basis-independent statement on the reality of selfconjugate elements. 

Given the classification of and the normal forms for #-categories, we anticipate to 

find some conceptual insights by addressing the question of duality. In fact, the duality 

problem, as posed in Chapter 7.1, can be solved for #-categories in a straightforward 
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manner. However, since we also included categories in our discussion that are not equiv- 

alent to any str/ct monoidal category, it is necessary to extend the range of dual objects 

from coassociative to quasi-coassociative Hopf algebras, first introduced by Drinfel'd. We 

recall how the properties described in Chapter 4.1 have to be altered, in order to yield 

the definition in [4]. In the first place, coassociativity (4.2) is abandoned and replaced by 

the weaker condition (4.5), for some invertible element ¢ E )C ®s. The latter is subject to 

the pentagon equation 

(id ® id ® A)(¢)(A ® id ® id)(¢) = (1 ® ¢)(id ® A ® id)(¢)(¢ ® 1). (7.349) 

The Hopf-algebra axioms (4.6) and (4.7) remain valid. Also the commutation relation 

(4.1) is assumed to hold, but the condition (4.9) becomes 

(A  ® i d ) ( n )  = ¢s12 Rls ¢~-s12 R2s ¢ 
(7.3s0) 

zx)(ze) = ¢; lZqS ¢21s ze12 ¢-1.  

For quasi-coassociative Hopf algebras, the notion of equivalence is given by so-called twist- 

transformations: For any invertible element F E/C ®2, another quasitriangular quasi Hopf 

algebra is defined by the coproduct 

AF(a)  = F A ( a ) F  -1 , (7.351) 

the 7~-matrix is then given by 

"R v = a ( F ) .  Tt .  F -1 (7.352) 

and the coassociativity isomorphism by 

On the dual space, /C*, we still have a product induced by A for which, by lack of 

associativity, basic properties, like the uniqueness of inverses, may fail to hold. However, 

if we assume that two-sided inverses in/C ® (~C*) ®n are unique then the antipode on/C 

is unique and antihomomorphic, although it is in general not anticohomomorphic. With 

this assumption on/C and/C v, the twist transformations are not entirely arbitrary. The 
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algebra can be equipped with a proper counit, E F, and an antipode, S F, only if the 

elements 

are central, and if 

are invertible and 

1 ® E ( F )  and E ® I ( F )  (7.354) 

qF=m(I ® S)(F) and pF =m(S ® l) (F- ')  (7.355) 

is central. In this case we have 

and 

P E  " q F  

E F =  E 

SF(a) = qF S(a) qF 1 . (7.356) 

If a quan tum category has integer dimensions we can always realize it, in the naive sense, 

as the representation category of some semisimple quasi-Hopf algebra, )C. The unitari ty 

constraints on the category then make it possible to choose K: to be a quasitriangular,  

quasicoassociative *-Hopf algebra. 

The *-prefix signifies that  K: admits  an antilinear an t i involu t ion , . ,  such that  

A .  = * ® * A  

*®*T~ = T~ -1 

. ® . ® . ¢  = ¢-1 .  

The twists are therefore restricted to those with 

(7.357) 

F* = F -I . 

If the uni tary  representations of an algebra /C of this kind obey the selection rules of 

= N a then we have 

~: ~ c[0] o(a) 

A(~) = ~ ,  ~ e 0 (7.358) 
and 

O ' *  = O " - 1  . 
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The elements T~ E )C ®= and ¢ E ]C ®a can be considered to be functions R E C(G × G) 

and ¢ E C(G x G x G) on the discrete commutative space defined by the fusion rules. 

Using (7.357) we can set 

¢(g @ h @ &) = e -'~'f(g'h's) (7.359) 

n ( g  ~ h) = e ' ' ¢ "  ~) (7.380) 

with functions f : G x G x G ~ R/Z and r : G x G --o R/Z. Conversely, given func- 

tions f and r we can express the elements of K by 

1 
T~ - iCl ,  ~ e ='~'~(~''~') o'1 (gl )  o"2 (g2) o1 @ 0"2 (7,361) 

and 

1 
¢ -  [GIa ~_, e-='rii(g"g"a') ax(gx)a=(g=)aa(ga)ax®a=®cr3. (7.362) 

g~EG,a'~EG 

Thus all the conditions on 7~ and ¢ to define a quasitriangular quasi-Hopf algebra can be 

translated into conditions on r and f. 

Since K is commutative and accidentally cocornmutativc and coassociative, the com- 

mutation relations (4.1) and (4.5) are automatically true. Not surprisingly, the pentagon 

equation (7.349) reduces to the cocycle condition (7.237) on f and the axioms (7.350) 

turn out to be equivalcnt to equations (7.240) and (7.241). If we choose as a twist- 

transformation 

F(g ® h) = e 2"ix(g'h) (7.363) 

we find, for the functions f '  and r '  that determine CF and T~ F, that 

If'; ~'] - If; ~] = 6[~] e B'(C, 2; R / Z ) .  

The coproduct remains the same, since ]C is commutative 

From this we infer a statement analogous to that of Proposition 7.5.2, namely 

that (7.359) and (7.360) induce an isomorphism of H4(G, 2;R/Z) onto the group of 

twistinequivalent, quasitriangular, quasiassociative *-Hopf algebras, whose unitary repre- 

sentations obey the fusion rules ~ = l~ ~. 
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A quadratic function 8 on G can be identified, setting 

V(g) = e -2'~ie(a) , (7.364) 

with some element V E K:, which satisfies 

z~,(v) v ® v ® v = (A(v))~3 ( ~ x ( v ) ,  1) ( 1 ,  zx(v)) 
and (7.365) 

s ( y )  = v ,  

and, conversely, if (7.365) holds for some V the function • given in (7.364) is quadratic. 

For the abelian algebra K: we notice that m(T~), given by 

m(Tz) = e"'(""),  (7.366) 

is a twist-invariant.The assertion for Hopf-algebr~ corresponding to Proposition 7.5.3 

now reads as follows: I f /C is the *-Hopf algebra from (7.358) then, to every unitary 

element V E K: which obeys equations (7.365), there exists an ( up to twist-equivalence 

unique ) quasitriangular quasi Hopf algebra structure (~ ,  ¢) such that 

v - '  = , - . (n) .  (7.367) 

We observe that V is precisely the central element of a ribbon-graph-Hopf algebra as 

defined in (6.94) and (6.95). The element U = m(S ® 1)a (~ )  is then 

u(g) = e~'*(9'"-') (7.36S) 

c ( g )  = (uv -~) = e 2 ~ ( " ) ,  (7.369) 

and 

with "r defined in (7.313). Note that G is grouplike (i.e., 7 is a homomorphism) if we are 

in the coassociative case, ¢ _= 1, or if we have chosen the normalization yielding (7.345). 

The case where [/; r] E ker S ° occurs iff )C is twist equivalent to a properly coassociative, 

quasitriangular Hopf algebra. The corresponding condition 8 E i m  D ° simply means that,  

for V E ]C, there exist some 7~ E ]C ®2 such that the equations (4.9) hold for 7~, and V is 

given in terms of 7~ by (7.367). The group structure induced by H4(G, 2; R / Z )  is just given 

by the multiplication (¢~, TQ)(¢2,7~2) = (¢~¢2, Tt~T~2), and the direct sums from (7.246) 
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correspond to the direct sums of the Hopf algebras, with ~ and T£ defined analogous to 

(7.319). 

The description of the isomorphisms (7.236) in this language suggests that quasitri- 

angular quasi Hopf algebras are the appropriate object for which a nonaSelian general- 

ization of (7.236) should exist. Thus, given some associative algebra ]C, with a list of rep- 

resentations C, a fusion rule algebra ~ = N c, and some "quadratic" element V E/C N ]C I, 

one may hope to find conditions such that V determines, up to twist equivalence, a unique 

structure (A, T£, ~) such that V is the twist-invariant ribbon-graph element of ]C. We shall 

leave this as an open problem. 
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C h a p t e r  8 

T h e  Q u a n t u m  C a t e g o r i e s  w i t h  a 

G e n e r a t o r  of  D i m e n s i o n  less  t h a n  

T w o  

8.1 P r o d u c t  Categories  and Induced  Categories  

In the first part of this section we introduce the notion of product categories. We de- 

fine an action of the group, H'(Crad(Vbj), 2; v (1 ) ) ,  of O-catego~es on the set of quan- 

tum categories with object (fusion rule) algebra Obj.  It is denoted C ~ C q, for q E 

H4(GradObj, 2; U(1)), and C ~ is a diagonal subcategory in the product of C with the 

respective O-category. 

Next, we define the class of fusion rule algebra homomorphisrns to which the subse- 

quent definition of induced categories applies, namely the irreducible, coherent or graded 

homomorphisms, f : Objl ~ Obj2. They are equivalently described by a subgroup of 

invertible objects, k e r r  = f - l ( 1 ) ,  whose action on the irreducible objects, J~ C Obja, 

by multiplication is free and Obj2 is given by the orbits of ker f . For a given coherent 

homomorphism, f : Objl ~ Obj2 , and a quantum category C2, with object algebra Obj2, 

we show that there exists a unique quantum category C1, with objects Objl, such that f 

extends to a compatible tensorfunctor. We say that C1 is induced by C2 and f . 
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We prove that for a coherent homomorphism f : Objl ~ Obj2 and a quantum 

category C1 with objects Objl there ezists a quantum category C2 with objects Obj2 such 

that C1 is induced by C2 and f if and only if the subcategory associated to k e r f  is trivial 

and the monodromies of elements in k e r f  with all other objects vanish. 

The remainder of this section is devoted to the question for which categories C1 it 

is possible to find a O-category, q E H4(Grad(Objl, 2; U(1)), such that C q is an in- 

duced category with respect to some graded homomorphism f defined on Objl • We find 

the relevant obstruction to lie in H5( Grad((gbj)/(ker f ) ,  2; Z2). We derive explicit 

ezpressions for the case where Grad(Obj) is a cyclic group. 

In the previous chapters various results on fusion rule algebras have been obtained by 

using the special properties of invertible elements of a category. More specifically, we 

showed in section 3.3 that nontrivially graded, invertible elements allow us to describe 

fusion rule algebras in terms of smaller ones. In section 7.3, we learned that this leads, 

for the case of fusion rule algebras with generators of small dimensions, to the situation 

where the generator is selfconjugate. Finally the categories that contain only invertible 

objects have been characterized in section 7.4. The purpose of this chapter is to combine 

and extend these techniques, in order to describe categories with nontrivially graded, 

invertible elements in terms of simpler ones. This requires the definition of a number of 

relations between categories, namely "subcategory", "products of categories" and, most 

important, "induced categories". We start by explaining what we mean by a product 

category. For two categories C1 and C2 with objects in Objl and Obj2, we introduce a 

category, Ct @ C2, whose object set is H Objl×Obj2, i.e., a general element has the form 

Y]~X~ • obj~ nxix2 (X1, X2), and its sets of morphisms are given by 

G Ho c(c"x,x ,c"Y,Y ) Mo l (Xl,Y1) ® Mo  (X2,Y2) 
x,,r, e obj, (8.1.1) 

equipped with the obvious composition law. The tensor product for the objects is the 

hnear extension of (X1,)(2) o (Yt, Y2) = (X1 o Y1, X2 o II2), and the tensor product of 

285 



morphisms is the one naturally induced from Vee¢, C1 and C2. The special isomorphisms 

and a are obtained from ~i and a i in Ci, i = 1, 2. One easily verifies from (8.1.1) that  

there are isomorphisms among the objects, A + B ~, A ~ B, (X, Y1) + (X,  Y2) 

(X, Y1 @ Y2) and (X1, Y) + (X2, Y) ~ (X1 @ X2, Y). It is possible to define a quantum- 

category, C1 ® C2, whose objects are the equivalence classes of CI@ C2, given by Objl ® 

Obj2 = l~(JlxJ2) of Obji = l~ J~, and for which there exists an injective tensor functor 

C1 ® C 2 ~ CI~C 2. In the language of structural data which we have used in previous 

sections, the underlying fusion rule algebra for l~( J1 x J2) is given by the constants 

= ( 8 . 1 . 2 )  

accounting for the dimensions of 

Mar((kl]e2),(ixi2) o (JiJ2)) = Mo,'l(]el,il o jx)  ® Mar2(]e2,i2 o j2) .  (8.1.3) 

The fusion matrices can be expressed as 

F ( ( i l ,  i2), (Jl,  J2), (]el, ]e2), ( l l ,  12)) = T23 ( f ( i l ,  Jl,  kl, 11) ® F(i2, J2, k2,12)T23 : 

Mar  ((Sl, s2) , (Jl, J2) o (]el, ]e2)) ® Mar  ((11,12) , (il, i2) o ( '1, s2)) 
8152 

--* ,as2 ~ Mar((Sl ,  82), (ii, i2) o (Jl, J2)) ® Mar  ((I1,12), (nl, a2) o (]el, k2))8.1.4 ) [  

where we used the identification (8.1.3) and the transposition, 7"23, of the second and 

third factor of the resulting fourfold tensorproduct. Furthermore, the fundamental braid 

matrices, with r ( i , j ,  k) := R+(1 , i , j ,  k), take the fonowing form 

r( ( i l ,  i2), (31,/2), (]el, k2)) = r ( i l , J l ,  kl) ® r(i2,J2, ]e2) : 

Horn( (k l , k2 ) , ( i l , i 2 )o ( j l , J2 ) )  , H o m ( ( k l , k 2 ) , ( j l , J 2 ) O ( i l , i 2 ) ) .  
(8.1.5) 

The intrinsic invariants of the product category, the statistical phases and the statistical 

dimensions, are given by 

d(ix,i2) = dix di 2 

0(il,i2 ) = 0il + 0i2 rood 1. (8.1.6) 
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Clearly the gradation of C 1 ® C 2 is given by 

grad : 

For categories with 

J~ × v2 , Crad(C~ ® C2) = Grad(C~) • Grad(C~) 

(ii , i2) , ( g rad l ( i l )  , grad2(12) ) . (8.1.7) 

invertible elements, we already used this structure: If 8 i • 

H o ~ ( r 4 ( J i )  , U(1)) are the statistical phases of C1 and C2, 81 + 82 E Ho~(r4(J1 
J2) ,U(1) )  is the statistical phase of CI ® C2. The procedure of taking products of 

categories is, of course, associative, i.e., (CI ® C2) ® C3 -~ Ci ® (C~ ® C3). 

The notion of a subcategory has already been used on various occasions in the previous 

chapters. If j l  C J is a subset of irreducible objects closed under tensor products, so 

that Obj t = H J' C Obj = 1~I J is a fusion rule subalgebra, then we find a subcategory, 

C I, by restriction of the objects to Obj t and the morphisms to those between elements 

in Oby.  The braid- and fusion matrices are obtained by restricting their arguments to 

Obj'. 

Suppose C is a category with gradation Grad(C). Then we have a fusion rule algebra 

monomorpldsm 

( : J ~ J × Grad(C) : j -~ (j ,  g r a d ( j ) ) ,  

identifying J as a fuison rule subalgebra of J ×  Grad(C). Let q • Horn(P4(Grad(C)), 

R/Z), defining a 8-category, CGrad(C), q, with object set l~Grad(C), and braid- and fusion 

matrices given by I/q, rq] • H 4 (Grad(C), 2; n~/~), as in section 7.4. We then consider 

the product category C @ CGrad(C), q with fusion rule algebra J ×  Grad(C) which, by 

the above inclusion (, contains a category Cq with fusion rule algebra H J. For two 

quadratic forms ql and q2 on Grad(C), the category (Cqt) q2 is the subcategory of (C ® 

CCrad(C),qt ) ® CGrad(C),q2 , whose irreducible elements are (j, grad(j), grad(j)), j • J. 

By associativity of the category product and the fact that g "--* g ® g defines the 

inclusion of the subcategory, we have that 

Ccr~d(c),(q,+q~) ~ Ccr~d(c),ql ® C c ~ ( c ) m ,  

287 



as in (7.369). This yields immediately the canonical isomorphism (Cql) q2 -- C ql+q2. 

For the group of quadratic forms on the universal grading group of a fusion rule 

algebra, this procedure defines, therefore, a free action, C ---* C q, on the set of categories 

realizing this fusion rule algebra. The braid- and fusion matrices, rq and F q, of C q can 

be given in terms of the original data as follows: 

Fq(i, j ,  k,  1) = e -2xi  fq(grad(i),grad(j),grad(k)) F(i ,  j ,  k, l), 

rq (i, j, k) = ~2~ r, (gr~(~),9~oa(j)) r(i, j, k) ,  (8. t.8) 

and the statistical phases and dimensions of C q are found from 

= ~ ,  

q = Oj + q ( g r a d ( j ) ) m o d l ,  (8.1.9) 0 i 

for all j E J. In this formula, one application of our manipulations becomes apparent: 

Suppose H C J is a subgroup of the set of invertible elements, Out(l~J), and grad:H 

Grad(C) is injective. The restriction of the category to 1~ H yields a 0-category and 

hence determines an element ~ e Hom(r4(H),n~/z), where, by assumption, r4(H) is 

a subgroup of r4(Grad(C)). For coefficients n~/2~, the character ~ can be extended to 

F4(Grad(C)), i.e., to a quadratic form, q, on Grad(C). If we started from C -q the 

subcategory on H would be trivial, and, conversely, using that (C-q) q = C, we can 

think of C as being included in the product of a category with the same fusion rules but 

trivial statistical phases for the objects in H, with a 0-category in which H is contained, 

too, but which carries the statistical phases given for C. If H is a direct sumrnand of 

Grad(C) this 0-category can be assumed to consist of H only. 

Next, we explain an important tool for the analysis of the gradation reduction of cat- 

egories analogous to that for fusion rule algebras, namely induced categorial structures. 

To be more specific, we consider a fusion rule algebra epimorphism ( : Objl  --~ Obj2 

and a category C2 with object set Obj2. A category C1 with object set Objl  is then 

called induced by ( and C2 if ( extends to a tensor functor from C1 to C2. 
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In the following discussion we shall find conditions on ~ such that  a unique, induced 

category C1 exists for every category C2, and we shall also determine those categories 

C1 which are induced by some C2, given ~. The first simplification we make is to confine 

our at tent ion to "irreduciblC fusion rule algebra homomorphisms, meaning that  ~ shall 

map irreducible objects to irreducible objects. In this case, ~ : N J1 ~ I~ J2, is already 

given by ~ : ,/1 -~ ,/2. The structure of irreducible fusion rule algebra epimorphisms can 

be conveniently described as in the next lemma. 

LEMMA 8.1.1 

Suppose ~ : J1 -~ J2 eztends to an irreducible fusion rule algebra homomorphism, and 

let 

Then 

kerC := {or E J1 : C(tr) = 1} .  (8.1.10) 

(i) ker¢ is a subgroup of invertible objects. 

(ii) The action of ker¢ on J1 by multiplication is free, and different orbits of ker¢ are 

mapped to different objects in J2. 

(iii) I f  R is a subgroup of invertible elements in a fusion rule algebra N J which acts 

freely (b~/ multiplication) on J, then the Perron-Frobenius algebra, NJ/N R, (see 

section $.~) is a fusion rule algebra, H(J/R), where the irreducible objets, J /R ,  are 

the orbits of R. The projection 7r R : J --~ J / R  eztends to an irreducible fusion 

rule algebra epimorphism. 

(iv) For ~ as above, there ezists an injection i : J1/ker ~ "--* Y2, eztending to a fusion 

rule algebra monomorphism, such that 

( = i o rrker¢. (8.1.11) 

Proof: We remark that, for fusion rule algebra homomorphisms ~, with ~(1) = 1 and 

~(X V) = ~(X) v - in particular, for irreducible ones and ones that extend to tensor 

functors of categories - we have that ~(X) is invertible (irreducible) only if X is already 
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invertible (irreducible). To see this, we may write X V o X = Y + IlXII2x, so that  

¢ ( x )  v o ¢ ( x )  = ¢(Y)  + IIX11~1. If ~(X) is invertible we have that  ~(Y) = 0 and 

IlXll = 1. Hence Y = 0, and X is invertible. This i,~,'-ediately implies the assertion in 

i). Also, if ~( j )  is irreducible and ~(i) = ~(j)  then 

1 = ii~CJ)ll 2 = (¢Cj) ,¢( i ) )  = ~(~( j  o iv ) )  = 

= ~ N~,v ,  = ~ ~ , J  = I {~ E ke,~ : j = ~ o ~}tJs'-l.12) 
a E ker~ tr E ker~ 

where e (the evaluation) is defined as in section 3.1. 

This equation shows that  two irreducible elements which are mapped  by ~ to the 

same object  differ by multiplication by an object  in ker a, (the converse being trivially 

true). Furthermore,  the invertible object  is unique, which implies s tatement  ii). 

In order to show iii), we use the definitions in Lemma 3.2.2, denoting by [j] E J/R 

(or C[J] C J )  the orbit  of j E J under the action of R. For the dimensions we find, 

with 0r E R, j E J ,  that  

d(~oj) = d~ dj  = a t = :  d[j 1, (8.1.13) 

i.e., they depend only on orbits. Thus, the component  of the dimension vector corre- 

sponding to an orbit [j] is given by 

d-['i] = E 6 ¢ 5  = d[j] E ¢1 ,  (8.1.14) 
iec~]  i ec~ j  

wh im has the norm IId~lll = d[j]~/I R I, since I C[j] [=1R I- 

For the constants in (3.24), we thus obtain 

~[./] ---- d[./]. (8.1.14a) 

u s i n g  (8.1.13)  and (8.1.14a) we see that  the d imensions  in (3.25) cancel and,  by ( 3 a 9 ) ,  

we obtain for the fusion rules of l~J/I~ R 

N[il[J],[/~I = E NiJ, ~ (8.1.14b) 
k e c[~j 
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for arbir tary representatives i E C[i], j E C[j]. Since these are integers, N J / N  R = N ( J / R )  

is a fusion rule algebra. 

With  (3.26) and (3.27), we also find the corresponding vectors in (~+)J  

~1  -- 1 E eJ -- eJ o ~11, j E C[j]. (8.1.14c) 
I R I j e c ~  1 

Clearly the projection ~r R : J ~ J / R  : j ~ [j] extends to an irreducible fusion rule 

algebra epimorphism and k e r  7r R = R .  The claim in iv) is a direct consequence of the 

previous statements. 

[] 

Given an exact sequence of irreducible homomorphisms, 

7r R 
0 ~ R ~ J ~ 7 --~ O, (8.1.15) 

7 

where R consists only of invertible objects, we can describe J ,  in analogy to groups, as 

an extension o f t  over R. For this purpose, we choose a map 7 : J --* J ,  with ~rRo 7 = i d  

and 7([11) = 1. Then 

r : J x R - .  J, de f ined  by ([j] ,g) ~ 7([./]) o g, (8.1.16) 

is one to one, since R acts freely on J .  The "cocycle" of the extension is given by a map 

A : 7 3 --* N R : ([i], [j], [k]) ~-* A[i][jl,[k] , (8.1.17) 

determined by 

7([i]) o 7([J]) = E A[i][J],[ k] o 7([k]), (8.1.18) 

[k] e 7 

using the isomorphism F of (8.1.16). 

For the objects in (8.1.17) we infer the relations 

A[i][i],[k ] = A[j][q,[k], 

AL/IL/lV ix] ~ R, A[~I[jV,[1] = 0, for [i] # [j], 
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A[i][J][k],[l] := E A[i][J],[s] 
[d 

and, fur thermore,  

o A[s][k],[l] = E A[il[t],[t] o A[j][k],[t] , (8 .1 .18c)  
It] 

7rR (A[i][j],[/~]) = N[i][j],[/~] " 1 .  (8.1.18d) 

The da ta  needed for the extension of 7 over R can thus be viewed as l~R-valued (instead 

of t~-valued) fusion rules. Due to the ambiguity in our  choice of 7, we have a natural  

notion of equivalence: 

A ~  A I 

with 

if and only if there exists a map a : ff ~ R, 

A t = (8.1.18e) [/l~],[k] o-([i]) o a([./ ]) o a ( [k ] )  - t  A[~]b.],[k ]- 

For example, the sequence (8.1.15) sphts. In other  words, J = J x R, as fusion rule 

algebras, a n d / ,  ~'R are the canonical maps, iff A ~ 1. 

Conversely, given j and R, a "cocycle" A as in (8.1.17), obeying the relations (8.1.18a), 

(8.1.18b) and (8.1.18c), defines a fusion rule algebra, J = J x A R, which yields a se- 

quence of homomorphisms as in (8.1.15), and the sequences for A and A I are isomorphic 

iff A ~ A I. 

For an adequate definition of induced categories, it is necessary to impose an additional 

requirement on the fusion rule algebra homomorphisms that  shall be considered. In 

order to arrive at such a definition, the following notion is useful: The  free action of the 

subgroup of invertible elements R on J is called coherent iff the objects A[il[Jl,[k] E N R, 

as well as the objects A[il[jl[k],[t I ~ r~ R in (8.1.18c), are of the form Na, where N E 1~ 

and a E R. 

By (8.1.18d), this imphes the existence of invertible objects v[i][j],[k] E R, with 

A[ilb.],[k ] = N[il[Jl,[k] a[i][j],[/0], (8.1.19) 

and the constraints (8.1.18a)-(8.1.18c) reduce to 

o'[i][j],[k] = a~] [ i ] , [k ]  
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and 

a[i][j],[s] o U[s][k],[t] = a[i][t],[t] o a[j][k],[t] (8.1.21) 

where the right hand side (the left hand side) of (8.1.21) is independent of [t] ([s], resp.), 

as long as the fusion rules are obeyed. We say tha t  an irreducible fusion rule algebra 

homomorphism, ~ : J1 --* J2, is coherent if ker¢ has a free, coherent action on J1. We 

wish to express this property in a second, different way: 

For a given 7 : 7 --* J ,  we introduce a function 

elk] : J x J --, C[k ] 

with (C[k] = ~ l ( [ k ] ) ,  as in section 3.2) by setting 

¢[kl(7([i]),7([J])) = o 7([k]), (8.1.22) 

and requiring the covariance condition 

~b[k l ( ao i ,#o j )  = ao#o¢ [1 , ] ( i , j ) ,  Va,# E R. (8.1.23) 

These functions relate the fusion rules of J and J through the equation 

Nij,k = 5k,¢tk](i,j) N[/] [j] , [k] - (8.1.24) 

It follows tha t  the restriction 

~ :  supp(i o j )  ~ supp([i] o [./]) (8.1.25) 

is injective. The fusion rule relations accompanying these functions are as follows: 

~[kl(i,J) -- ¢[klCJ, i), (8.1.26) 

and 

¢[0 (¢[,1(i, j) ,  k) = ¢[z] (i, ¢[~](J, k)) =: ¢[t](~, J, k), (8.1.27) 

where the objects in (8.1.27) are independent of [s] and [t]. 
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In our applications we shall encounter only a special case of irreducible, coherent 

homomorphisms, ( : J1 --4 J2, namely graded ones. They are characterized by the 

property that 

g,-~a~ : k~,.C ~ C,.,~d(~.h) (8.1.28) 

is an injection, or, equivalently, that ( is a fusion rule algebra monomorphismif restricted 

to the trivially graded subalgebra, (NJI)o. It easily follows from (8.1.28) that graded, 

irreducible fusion rule algebra homomorphisms are coherent, and 

gradl (tr[i][j],[k] ) = grad 1('7([i])) grad I ('7([~]) ) gradl('7([k ]) )- I . (8.1.29) 

We note that, for any irreducible graded homomorphism (, there exists a unique group 

homomorphism, (# ,  such that the diagram 

J1 ( ' J2 
,radi i lgr~2 (8.1.30) 

commutes. 

have that 

Moreover, if ( maps onto the trivially graded component (N J2)O then we 

ker (#  = gradt(ker (). (8.1.31) 

Hence, for a graded lrR, we have the exact sequence 

0 , n ,  , o , , a ( ,  , , o , a a ( # )  ,0 (8.1.32) 

With (8.1.15), it follows immediately that two graded extensions (8.1.15) are equiv- 

alent if and only if the corresponding sequences (8.1.32) are equivalent. (In particular, 

(8.1.15) splits iff (8.1.32) splits). 

For irreducible, coherent fusion rule algebra homomorphism, the existence of corre- 

sponding induced categories is guaranteed by the following proposition. 
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PROPOSITION 8. I.~ 

Suppose that ( : Objl ~ Obj2 is an irreducible, coherent fusion rule algebra homornor- 

phism, and that C2 is a quantum category with object set Obj2. 

(i) Then there ezists a category C1, unique up to natural isomorphism, whose object 

set is Objl and for which ~ can be eztended to a tensor functor from C1 to C2. 

(ii) The O-subcategory of C1, given by the fusion rule subalgebra 1~1 ter(  C Objl, is 

trivial. 

P r o o f .  

We first comment  on some properties of a general tensor functor, (~, .T', C), extending 

an irreducible fusion rule algebra homomorphism (. By ~-: Morz (X  , Y)  ---* Mor2(¢(X),  

((Y)), we denote the map between morphisms with the properties that  ~ ' ( l Ix)  = 

lI((x) • End2(i(X))  and that,  for the isomorphisms C ( X , Y )  • Mor2(¢(X ) o i (Y) ,  

( ( X  o Y)), 

Jc(I o J) C(X,  Y)  = C(X' ,  Y')  (.~(I) o .T'(J)) , (8.1.33) 

for arbi t rary I • MOr l (X ,X '  ) and J • MOrl(Y ,Y '  ). For the restrictions 

: ( ~  kEC[~] M ° r l ( k , X )  , Mor2([kl,(~(X)) , (8.1.34) 

and 

.T" : ( ~  keC[~l M o r l ( X , k  ) , Mor2(~(X),[k]) , (8.1.35) 

we note that  the spaces on the left hand sides (right hand sides) of (8.1.34) and (8.1.35) 

are dual to each other by multiplication on X (on ( (X)) .  From the functoriality of 

~" and the fact that  ~(lIk)  = lI[k ] it follows that  the maps in (8.1.34) and (8.1.35) 

preserve the contraction and are thus injective. To the decomposition of the semlsimple 

algebras E n d l ( X  ) = (~k E ObA End(Z)k  and End2(~(X)) = (~[k] E obj= End2( i (X)  )[k] 

into sums of simple algebras (e I .  MatNx,~(C)), according to the channels k, we 

can associate a parti t ion of 1I X and lI((x) into minimal central projections, ~rk(X ) E 

E n d l ( X  ) and ~r[k](l(X)) E End2(i(X)).  Using the fact that  the representation of 
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Endl (X)  on the space ~ k  Mar(k ,X)  by multiplication on X is faithful, we find from 

injections (8.1.34) and (8.1.35) that 

~" : ( ~  k • Ci~ ] Endl(X)k  , End2 (~(X))[k] (8.1.36) 

is an inclusion of algebras. For irn.7: C Mar2 (~(X), [k]), we also have that .T'(a)I = 0 

if a • End l (X)  and I • (ira.7=) 1- C Mar2([k],~(X)). But since we require that 

Jr(lIx) = ]I((x) , it follows that (ira .F) 1- = O. Hence the maps ~- in (8.1.34) and (8.1.35) 

are, in fact, isomorphisms. The induced direct sum decomposition of Mar2 ([k], ~(X)) 

is given by a refinement of the partition of unity, 

~r[k](¢(X)) = E #k(X)'  (8.1.37) 
k G d[,.] 

where we define ~rk(X ) = ~'(lrk(X)) • End2 (¢(X))[k]" Counting ranks and dimensions 

we recover the equation 

N((X),tk] = E NX, k" (8.1.38) 
k • Ct~ ] 

Similar to the "End-spaces", the "Mar-spaces" can be decomposed according to chan- 

nels given by k • J,  and we have an injection 

j r :  ~ keC[~] Marl (X ,Y)k  ~ Mar2(i(X),i(Y))[k] (8.1.39) 

for all X, Y • Objl. As a consequence of semisimplicity, the image of the map in 

(8.1.39) is given by 

i r n Y  = { I  • Mar2( ( (X) , ( (Y) )  : ~k(Y)I  = I~k(X), Yk • C[k]}. (8.1.40) 

The compatibility of these decompositions with the tensor product is expressed by the 

formula 

o r )  = 

i,j : Ctk](id)=h 

7r[k ] (~(X o Y)) C(X, Y)(~i(X)  o ~j(Y)) C(X, y ) - l ,  

(8.1.41) 
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where the functions ~b[k ] : J × J ---* C[k ] are defined in (8.1.22), (8.1.23), for coher- 

ent homomorphisms. The image of the ( i , j ) - th projection in the sum (8.1.41) in its 

representation on Mot  2 ([k], ~(X o Y)) is given by the image of 

M O r l ( i , X  ) ® M O r l ( j , Y  ) ® Mor2([k], [i] o ~/]) ~ Mor2([k] ,¢(X o Y))  

I ® J ® g ---* .T( Io  J ) g  (8.1.42) 

and has dimension Nx, iNy ,  jN[ilb.l,[k ] = Nx,iNyjNii,Ct~](i,j). Summation over i and j 

yields Nxoy,  k = ~']~ij Nx , iNy ,  jNij ,k = ~-'~ij Nx,iNyjN[,q[j],[k] 6k,Ctkl(ij) as the total rank 

of ~k(X  o Y) .  As for general tensor functors, the braid- and associativity isomorphisms 

are related by 

~2 (¢(x),  ¢(Y), ¢(z)) = 

= (c (x ,  y ) - i  o ~ ) c ( x  o Y, z)-~.r(,~l(x, Y, z ) ) c ( x ,  r o z ) (~  o c (r ,  z))  
(8.1.43) 

and 

e2(((X),((Y)) = C(Y,X)-I~r(¢I(X,Y))C(X,Y). (8.1.44) 

For the proof of existence and uniqueness of induced categories it is useful to introduce, 

for a (not necessarily irreducible) fusion rule algebra homomorphism ¢ : Objl ~ Obj2, 

the natural notion of a pulled back category, ¢¢ where C2 is an arbitrary braided tensor 2 ,  

category with object set Obj2: The object set of C i is given by Objl, with the same 

tensor product. The morphism spaces of C i are defined in such a way that there are 

isomorphisms: 

V : M o r ~ ( X , Y )  ~-, M o r 2 ( ( ( X ) , < ( Y ) )  , V X ,  Y E Objl. (8.1.45) 

The composition- and tensor-products of morphisms are defined to be the ones in- 

duced by ~D, and the braid- and monoidal isomorphisms are given by EI(X , Y )  := 

e2(C(X), C(Y)) and a i ( X  , Y, Z) := a2(C(X), C(Y), C(Z)). 

Note that, in contrast to the categories C 1 and C2, there exist, in Ci, pairs of different 

objects which are equivalent. More precisely, X "~ Y, in C ¢, iff ¢(X) = ~(Y) in Obj2 , 2 
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since for such objects Mor¢z(X , X)  -~ End(¢(X)) contains the isomorphism 29-1(1I¢(x) ). 

The equivalence classes of objects in C2 ¢ are identified with im ~ ~ Obj2. 

The two categories are related by a tensor functor 

( ¢ , 2 9 , u ) :  , 

This allows us to factor any tensor functor, (~,~', C) : C1 --* C2, by the unique functor 

(id, ~,  C-) : C1 --* C ~ such that the diagram 2~ 

Cl (ia,:F,c) ,c¢ 

C2 

(8.1.46) 

commutes. 

To prove uniqueness, we show that, to every pair of categories, C1 and C~, with functors 

(~, :, C) and (~, ~', C') to C~, one can associate isomorphisms (id, ~i, A): Cl -. ¢~ and 

(id, ~2, B): C2 c --~ C~ such that the following diagram commutes: 

cl 

(id' "A)l l(ia'a"B) (8.1.47) 

For the endomorphism algebras in C2 ( we have the decomposition into simple subal- 

gebras, E n 4 ( X  ) = 0 En4(X)[k] , induced by D, with minimal, central projec- 
[k] • Jr. ¢ 

tions ~[k](X) := 29 -1 (~r[k ] ( l (X))) .  The refinement of the partition of unity, analogous 

to (8.1.37), is given by the projections ~k(X) := ~-(~rk(X)) = 29-1(~k(X)) e 

En~(X)[k]. The equation (8.1.41) for products also holds true in S n ~ ( X  o Y)[k]" 

We now first determine the functor (id, g2, B) of C2 ¢ onto itself. A large class of such 

functors, exhaustive for 0-categories and most other examples in this work, is given by 
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the "~oboundaries" o f  a set of isomorphisms, U(X) • End~2(X), X • Objl: 

a2(I) := U(Y) IU(X) -I, I • Mor~(X,Y), 

and 

B(X,Y) := U(XoY) U(X)-IoU(Y) -'. (8.1.48) 

One easily verifies (8.1.33), (8.1.43) and (8.1.44), with ~" = ~2, C = B, ~ = id, e2 = 

el = e i,  a2 = a l  = a i. As in (8.1.40), we have that 

f-(MOrl(X,Y)) = {I • Mor~(X,Y) : ~rk(Y)I -- ICrk(X), V k • C[k]} 
(8.1.49) 

and similarly for ~-~(Morl(X,Y)). Since, for a given X e Objl and [k] G imp, ~r~ and 

~ ,  k G C[k ], form partitions of unity in En4(X)[k] of equal rank, there exist invertible 

maps U(X) such that 

U(X)~rk(X)U(X) -1 = ~ ( X ) ,  V/c • J l .  (8.1.50) 

For a functor (id, ~2, B) defined, as in (8.1.48), for a collection of isomorphisms U(X) 

satisfying (8.1.50), we immediately find from (8.1.49) that 

G2:  ~-(Morl(X,Y)) ~' ~-4(M°ri(X,Y)), 

i.e., that G2 provides an isomorphism between the images of :F and ~l, for any given 

pair X,Y  • Objl. This shows that the map ~1 : M°rl(X,Y) ~-' MOr~l(X, Y) is well 

defined and unique if (8.1.47) is required to commute, in the sense of abelian categories. 

In order to examine the tensor product structure, we consider the endomorphisms 

a(X, Y) := U(X o Y) C(X, Y) U(X)  -1 o U(Y)  -1  C'(X,  y ) - I  (8.1.51) 

in En4(X  o Y). Using the decomposition (8.1.41) for ~k(X o Y) and ~ ( X  o Y), it is 

a straightforward computation to show that 

a(X, Y) ~'k(X o Y) = ~(X o Y) a(X, Y). (8.1.52) 
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Hence, by (8.1.49), there exists a unique isomorphism A(X, Y) E Endll(X o Y) such 

that 

2 ( A ( X , Y ) )  = a(X,Y).  (8.1.53) 

For the functor (id, ~1, A):  C1 ~ C~, properties (8.1.33), (8.1.43) and (8.1.44) are then 

verified by a computation, without difficulty. This proves the uniqueness of induced 

categories. For the proof of existence, we again consider the pull back, C2 ~, of C2 with 

respect to ~ : Objl ~ Obj2. In our previous discussion, we remarked that, for the 

minimal, central projections of E n 4 ( X  ) = e [~ ]En~(X) [k ] ,  we can express the rank in 

terms of the multiplicities of X E Objl by 

rk(~r[k](X)) = ~ NX, k . (8.1.54) 
kEC[H 

An  induced category C1 can now be defined, for any partition of unity in End'2(X)[k] 

as in (8.1.37), provided the projections, 7rk(X), k E J1, satisfy the condition 

r k ( ~ r k ( X ) )  = NX,  k . (8.1.55) 

By (8.1.54), we can always find such a partition. 

The morphism spaces of C1 are then defined by 

MOrl(X,Y) := { I E  Mor(2(X,Y) : I~rk(X ) = lrk(Y)I, Vk E Ctk]}. (8.1.56) 

They obviously close under the composition induced by C2 ~. The projections 7r k yield a 

direct sum decomposition, 

Mor~2(k,X ) = Mor2([kl,~(X)) ~- ~ M°rl(k,X), 
kEC[H 

which must be preserved by any morphism. Hence X ~ Y in C1 if[ dlm(Morl(k,X))  

= dim(Morl(k, Y)) which holds iff NX, k = Ny,~, Vk E J1, i.e., iff X = Y. 
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For tensor products, the decomposition of Mor~(k,X o Y) can be written as follows, 

using a natural isomorphism, as in (8.1.42): 

Mori(k ,X o Y) = Mor2([k],~(X o Y)) 

-~ ~ M°r2([i],~(X)) ® M°r2(~],~(Y)) ® M°r2([k],[i]° ~]) 
[i],[/] • im ¢ 

~- ~ Mo-,.l(i,X) ® Morl(j ,Y) ® Morx(¢[k](i,j),i o j) 
i,j • Jx 

~ ~ Morl(i ,X ) ® Morl( j ,Y ) ® Morl(k',i o j), 
/*' • Ctk] i,l:¢tk](i,j)=ie 

and the projection on the kt-th summand in (8.1.57) is given by 

(8.1.57) 

and 

compare to (8.1.41). Now we may define the tensor product of morphisms 

I E MOrl(X,X'), J E MOrl(Y,Y'): 

I o I J := C(X', Y')(I o J)C(X, y ) - l .  (8.1.6o) 

By (8.1.58) and (8.1.59), 1 o I J lies in MOrl(X o Y,X' o Y'), as defined in (8.1.56). 

Furthermore, we define braiding and associativity isomorphlsms in Mori(X o Y, Y o X) 

and in Mor~(X o(Y o Z),(X o Y)o Z) by setting 

el(X, Y) := C(Y,X) ¢i(X,Y) C(X,Y)- I ,  (8.1.61) 

,~,(x,Y,Z) : =  c ( x  o Y ,Z)(C(x ,Y)  o ~)~,~(x,r,z)(~o c ( Y , Z ) - ' ) c ( x , Y  o z)  -1 

(8.1.62) 
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~,,(x, Y) = ~[kl(x o Y) ~ ,~(x) o ~j(Y). (8.1.58) 
i,j:¢tkl( i,j):k' 

Its rank is given by ~'~ij Nx,iNy, jNij,k' : NXoY, k'. It is thus equal to the rank of 

7rk,(X o Y). Hence there exist isomorphisms C(X, Y)[k] E End~2(X o Y)[k], and therefore 

isomorphisms C(X, Y) = @[k]C(X, Y)[k] E End~2(X o Y), such that 

C(X,Y)~r~(X,Y)C(X,Y) -1 = 7rk(X oY), Vk E J1; (8.1.59) 



From (8.1.59) we immediately find that 

, , ( x , Y )  , ~ ( x  o Y)  = ,~k(Y o x )  ~ , ( x ,Y ) ,  i.e., ~x(X,Y) e Mo~,(X o V,V o X), 

using (8.1.26). Condition (8,1,27) is needed to prove an ana.logous property for al. Using 

(8.1.27) and applying (8.1.59) repeatedly, we find that the projections ~'k ((X o Y) o Z) 

and a'/c (X o (Y o Z)) are given by 

Iv k (( X o Y )o g) = C( X o Y, Z)(C( X, Y)o ]I)IrO(X, Y I Z)(C( X, y ) - i  oII) C( X o Y, Z) -1, 

(S.l.SS) 

with 

and 

4 , ( x , r  I z) = 
r~$,] : 

¢t,j(r,,,i)=~ 

~r[k ] ((X o Y) o Z) 7r,(X) o ~,(Y) o 7rj(Z), 

.k(Xo(roZ)) 

with 

= C(X, YoZ)OIoC(Y, Z)) ~(X I Y, Z)(]IoC(Y, Z) -I) C(X, YoZ) -I, 

(8.1.64) 

7tO( X [ Y,Z) = E r[k](X °(Y °Z)) ~rr(X)°~r'(Y)°IrJ (Z)" 
l',$~j : 

¢C~l(,',,,j)=k 

Clearly we have that a¢2(X,Y,Z)rc~(X I Y,Z) = v~(X,Y  I Z)a~(X,Y,Z),  so that 

al(X,  Y, Z)~r k (X o (Y o Z)) = ~r k (( X o Y) o Z) a l (X  , Y, Z), and hence it follows that 

al(X,  Y, Z) 6 Morl (X o (Y o Z), (X o Y) o Z). 

On the category C1 constructed from these data, we have a tensor functor to C2 : 

(C,z), c )  : cl , c~ ,  (8.1.65) 

where D is the restriction of the morpklsm map in (8.1.45) to the subspaces Mo~I(X , Y) 

C Mor¢2(X, Y). This completes the proof of assertion i) of Proposition 8.1.2. 
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In order to prove part  ii) of Proposit ion 8.1.2, i.e., triviality of the 0-category associ- 

ated with ker~ C J1, we establish an explicit relation among the braid-matrices of the 

two categories. Recall that ,  for k ~t 4,:[k](i,j), we have that  Morl(k, i  o j )  = 0. Hence, 

by (8.1.34), there is an isomorphism 

~il, i : MO,.l(%](~,j),~oj) ~, ~,.([k],[~]olj]), 
x , cCi , j )  -1 .~(x). (s.1.68) 

For the braid matrices r, given by 

r l ( i , j , k )  : MOrl(k , io j  ) , Mor l ( k , j o i  ) : lr ~ e l ( / , j ) I ,  

and similarly for r 2 ([i], [j], [k]), the following diagram commutes: 

(8.1.67) 

MO~l(k, i  off) 

M~.([k], [i] o [./]) 

r1('i 'J' k) ,/~O, r l ( k , j  o i ) 

H[k] 
,2([i], ~], [k]), ~o,2([k], ~] o [/]) 

(8.1.88) 

Since r2(l ,  I, I)  = r 2 ([u], [u], [~r2]) = I, it follows that  r l (U , ~r ~r 2) = e2~/0(u) = I, for 

all u E ker~. Here O is the quadratic form which, by Proposit ion 7.4.3, determines the 

category of ker~ uniquely. Thus 0 = 0 rood 1, and this implies part  ii) of Proposit ion 

8.1.2. 

[] 

As a supplement to our discussion of braid matrices presented in the proof of Propo- 

sition 8.1.2, we wish to give the explicit relations between the fusion matrices F 1 and 

F2, for the case that  C1 is induced by C2. Since the fusion rule algebra homomorphism 

: Objl --+ Obj2 is assumed to be coherent, we have that Morl(l , i  o j  o k) -- 0, for 

i , j , k , l  E J l ,  unless I : ~[l](i,j,k). In this case, we infer from (8.1.34) that  there are 

two natural  isomorphisms 

pi(jk)[4 , ~(ij)k[4 : Mot I (~[l](i,j, k), i o j o k) -~, J~or 2 ([I], [i] o ~] o [k]), 
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defined by 

and 

P{~it)(I) := (1I o C( j , k )  -1) C( i , j  o k)- l~ ' ( I ) ,  (8.1.69) 

p  J)k(i) := ( c ( i , j )  o 1[) c(i oy, (8.1.70) 

We introduce the following notation for the usual isomorphisms decomposing the space 

Mar(l , i  o j  o le) into the basic spaces Mar(k , i  o j):  

/~(jk) : ~ [ ~ , M a r l ( s , j o k ) ® M a r l ( l ,  i o s )  ---, Marl( l ,  i o j o k  ) 

I ® J ~ (1I o I)J,  (8.1.71) 

and 

~ i j ) t  : ~ , M a r l ( s , i o j ) ® M a r l ( l ,  s o k  ) ----, Marl( l ,  i o j o k )  

I ® J ~ ( I o l I ) J .  (8.1.72) 

The isomorphisms ~]([j][k]) and #~[i]b'])[k] are defined similarly. The decomposed spaces 

on the left hand sides of (8.1.71) and (8.1.72) associated with the two categories C1 and 

62 can be related to each other directly by using the isomorphisms given in (8.1.66).  By 

(8.1.27),  we can write, for l = ¢[~]( i , j ,k)  : 

H ®2 : M a r l ( s , j  o k) ® Marl ( I , i  o s) 
$ 

: ~ Mar  l (¢[s]( j ,k) , j  o k) ® Mar  1 (¢[l](i,~b[s](j,k)),i o ~b[s]( j o k)) 

~rJ ~ ~n3~[ '] (j k) (]~[,] ~ [ , ] ' ~ [ q  
, ~ Mar 2 (Is], [j] o [k]) ® Mar2 ([/], [i] o [s]) 

[s]eirru~ (8.1.73) 

which provides an isomorphism that factors. On the decomposition given in (8.1.72) 

H ®2 is defined in the same way. We consider the following diagram of isomorphisms, 

assuming that I = ¢[l](i,j, k) : 
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H®2 

- - ( ~ M O r l ( S , j  o k) 
a ® M o r l ( l , i  o s) 

Morl  (l, i o (j o k)) 

I p~(jk) 

M~2([l], [i I o ( [ . / ] ,  [k])) 

l ~q([jl[k]) 

, ( ~ M o r 2 ( [ s ] ,  [j] o [k]) 
[ o] @Mor2([l], [i] o [s]) 

F:(i,j,k,t) 

Vtl(i , j ,k) 

~2([i], [J], [k]) 

F2([i], [/], [k], [t]) 

, ( ~ M O r l  ( s, i o j)  - -  
8 ®MOrl(l, s o k )  

, M o ~  (l, (i o j )  o k) 

p(ij)k 

, M a r  2 ([I], ([i] o [j]) o [k]) 

, ~ M o r 2  ([a], [i] o [j]) ,  
[,] ®Mot2([/] ,  [s] o [k]) 

H®2 

(8.1.74) 

Here the squares on top and at the bo t tom of the diagram commute as a consequence 

of the definition of F-matrices.  From (8.1.43) we find that  the square in the center 

commutes,  where a l  and a2 act on i o ( j  o k) and [i] o ([j] o [k]), respectively. Commuta-  

tivity of the squares on the left and on the right of (8.1.74) can be verified by a direct 

computation.  We summarize the resulting relations between the fusion matrices F1 and 

F 2 in the formula 

Fl ( i , j , k , l )  = (H®2) -1 F2([i], ~/], [k], [I])H ®2. (8.1.75) 

This formula is consistent with the relation following from (8.1.68), i.e., 

r l ( i , j ,  k) = H-lr2([i], [j], [k])H. (8.1.76) 

If we use bases in the spaces M o r l ( k , i  o j)  obtained from some choice of bases in 

Mor2([k], [i] o [j]) by application of H,  we infer from (8.1.75) and (8.1.76) that  

t ~°~0~ = F l ( i , j ,  k , t ) i ,  Fl(a °i,l~°J,v°k,a°l~OVO jo'o#oa 

3 0 5  

(8.1.77) 



and 

rl(tr  o i , #  o j ,  tro # o k) = r l ( i , j  , k),  (8.1.78) 

where ~ , # , u  E ker¢ (so that ,  by (8.1.23), [~r O i] = [i]). In our analysis we have not, so 

far, considered the special balancing elements tr(X) E E n d ( X ) ,  with e(Y, X ) e ( X Y )  = 

a ( X  o r ) a ( X )  -1  o a(Y) -1,  which, in our context, are given by a ( X )  I Mo l(k,X) = 

e 2'ri~k, k E J1, for statistical phases (or spins) 0/c. If we consider balanced tensor 

categories and tensor-functors between balanced tensor categories - which, in addition 

obey . ~ ( a ( X ) )  = a ( { ( X ) )  - then all of the results above still hold. The condition 

analogous to (8.1.77) and (8.1.78)is then given by 

O~oj = Oj, Vcr E R, Vj E J1- (8.1.78a) 

The next question we wish to address is whether the triviality of the 0-category of 

ker (  is also sufficient for a category C1 to be induced by a category C2, for a given 

( : Objl ~ Obj2. As a first step, we show that  in this case the equations (8.1.75) and 

(8.1.76) can be solved on the level of structural  data. 

L E M M A  8.1.3 

Suppose C1 is g quantum cate#ory, R C Objl a sub#roup of invertible elements with 

a free and coherent action on J1, and the O-subcategory associated with R is trivial up 

to isomorphism. Assume further that the balancing elements, Oj, of C1 are R-invariant,  

i.e., equation (8.1.78a) holds. Then there ezist matrices F2 and r 2 defined on vec- 

tor spaces modelled on basic spaces Mor2([i],[j ] o [k]) --- CN[i],[~],[i], as in (8.1.68) and 

(8.1.7,~), bottom lines, and correspondin 9 isomorphisms 

° .  

H~] : M o t  1 (~bk(i , j ) , i  o j )  

such that equations 0.Z.75) and hold. 

, cN[~],[J],[~'], (8.1.79) 
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Proof .  

We first make a choice, corresponding to a map 7 : J1 = J 1 / R  --* J1 : [k] 

7([k]), with ~r 2 o "y -- id-]l , of representatives in the classes of J1.  We further intro- 

duce N[il,[Jl,[kl-dimensional spaces Mor2([k], [i] o ~]) with "canonical" elements ~{k] e 

E n d 2 ( [ k ] ) .  

The fact that  the 0-category associated to R is trivial implies, for the structural  data, 

that  there exist numbers  J~a,/~ E C (of modulus one, for C*-categories) such that  

F I (  °r, I% u, or 0 I • 0 U)llaOl~ 0 llaol~o u = Aa'lJAa°l~'U lIl~OV o llaol~o~, , 
A l~,U Aa, l~OU 

rl(a,/~,a o/~)]I=o~ = A~,. 1i.o~, 
A/~,a 

~l,a = )~(~,i = 1 .  (8.1.80) 

Hence, for i , j  and k in R, we can solve eqs. (8.1.75) and (8.1.76) by setting 

and 

H[1 ] ('[Io'o/~) : .~o',~ ~[11, Vo', il~ E J~, (8.1.81) 

FI([l l ,  [I], [I], [I]) : :  id ,  r2([l], [l], [1]) := i d .  

Next, we a t tempt  to find a convenient normalization of the maps 

H °'°~'(['/])'" H{./.i"°~(['/]): Endl(aOl~O~l([j]))--* End2([j]), [j]-3/: [1] ~] , 

For a given choice of these maps, we define numbers 

by setting 

v~[./]Ca,#,v), ~ ] ( (~,~,v)  : End2C[j]) --, End2([j]) 
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and 

. . , , .  ...o,,,~o-~([j]), ,~ (~,, v, o~ o "r ( [J] ) ,  ~ o ~, o ,, o "r( [ . / ] ) )  "" [1] ® n~ ]  ) ~ z 

= Tb'](a'l't'v)kS[J] °'r(~]) ® b'] ]" 
(8.1.85a) 

For arbitrary assignments a[j],b[j] : R --* C, U(1), resp., with a[j](1) = b[j](1) = 1, 

L/] # 1, we de~ne the maps H ~  ~(~])'" and H~,"°~(~I) of (8.1.83) as fonows: 

If  w e  set  

H'r([J]),~ [~] (~,o~(b'])) 

H~] ~([jl) (~.o-r(L,'l)) 

= %.](g) ~[j], 

= b[i](g) ~[~1, (8.1.86) 

all other maps are uniquely determined by (8.1.85), with a = 1, provided we assume 

that  

~b.](1,1 z,v) = ' = (pb.](1,/z, v) 1.  (8.1.87) 

Note that  (8.1.87)is consistent with (8.1.86) for/~ = 1, or v = 1, because Fl( i  , 1, j ,  k) = 

F l ( i , j ,  1, k) = id. With this normalization, we consider the pentagon equation 

o,. o,.) ®.) ,  

= (1I® F l ( a  oT([ j l ) , /%v,a  ot t  o v o T ( ~ l ) ) ) T  12 

(8.1.88) 

mad conjugate it by H ®3. Combining this identity with (8.1.82) and (8.1.87), we find 

the resulting equation on End2([j]) to be 

%.] (0 - ,  ~ , , . , )  = 1, ( 8 . 1 . 8 9 )  

and 

~p~]Ca,~,v) = 1, 
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by a similar argument. Thus, if we put 

F2([ j ] ,  [I], [I], [ j ]) = F2([1], [ i ] ,  [ j], [ j ])  = i d  (8.1.90) 

0 • 

we have a solution for (8.1.75), provided either i , j  E R or j, k E R. Denoting by ~ , a  "" b'] 
0 • 

and H~i~ the isomorphisms defined by setting a[j] = b[j] -- 1, we find that, in the general 

case, 

and 

abl(g o ~,) o,,O~,(~]),,, H~.~(b']),~ _ 
a[jl(/Z) H[j] 

H~i,,o.y([.y] ) _ b[j](~,b~).o ~u) H[j] ° ,,uo-),([./]) (8.1.91 / 

In order to determine the coefficients a[j](#) and b[j](#) in such a way that eq. (8.1.90 / 

c ~  be ex tended  to F,.([1], [5], [1], [5]), we defne numbers ¢[j](,~ I ~',~), Pb'](~,~) and 

~[j](~, ~) in E~,d,.([5]) by setting 

(H.,aoT([J]) H~OaoT(L/]),u~ FI(#,  7(~/ ] ) ,u , /zouoaoT([ j ] ) )  ~] ® [./] j a o 

H~,Uo(7o'y(b'])x 
: ~(~ I., ~)(-~7 (~)'~ ® ~ /8.1.9~) 

and 

H~°7([J])'ar 'a  oT(~]) ,a  /~o7(~/]) ) p[j](a,/~) H~i~°7([J]) ~] i t , #  o = , 

(8.1.93 / 

In order to derive relations for the constants ~[j] introduced in (8.1.92), we consider the 

following two special cases of the pentagonal equation: 

( ~  (,~,-,(~D,,,, ,,o ,,o -,/~1/) ® ~) (~ ® F, (~,,, o ;(~D,,,,  ~o ,,o ,,o .~(~]))) 

( ~  (;(~]/, , , , , , , , ,  o,, o ; (~ ] ) )®  ~) 

= ( ~  ® a (~ o ; ( [ j ] ) ,  . ,  ,., ~ o.o ~ o ;(IS])))  rl. .  

(~ ® F1 (~, ~(~1),  v o v, ~ o ,  o ~ o ~ ( ~ 1 ) ) ) ,  
(8.1.94) 
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and 

( ~  ¢~,~, ~ 1 1 ,  ~ o ~ o ~(~1/~ ® ~ ) ( ~  ® F1 ~ , ~ o  ~(~]~, ~, ~ o ~o  ~o ~(~1~/) 

-- (~ ® ~ 1 ~  o~,~(~]~,~,~ o ,  o ~ o~(~1~/)~12 

Conjugating these equations by H ®3 we find, using (8.1.90): 

¢[j](1 [ ~r,~) eb'](~ I ~,~) = %.](1 I ~ , ~ o ~ ) ,  

¢[~]0' I ~ ,~ )eb ' ] ( l l  ~, v) = ¢[j](1 I a o ~ , u ) .  (8.1.95) 

In particular, since the two equations defining ¢[j](~ I a, v) have to be compatible with 

each other, we conclude that  

¢~] (11 . , . )  e z2(n,u(1)) ,  (8.1.96) 

and, moreover, that  every ¢[j](~ I ' ,  ") is a 2-boundary. 

Next, we study the implications of the hexagonal equation 

(,1 (~, ~ o ~ ( ~ ] ) , -  o ~ o 7(~]))  e u)  El (~, ~ o ~([j]), ~, ~ o ~ o ~ o ~(~]))  

F1 (~, v, a o 7([J]), a o ~ o u o 7(~/])) (8.1.97) 

which, upon conjugation with H ®2, takes the form 

p[i](~, ~) ¢[~](~ I ~, ~) p[j](-, ~) = p[j](~, o ~, ~). (8.1.98) 

From (8.1.98) we see immediately that  ¢[jl(1 [', ") is a symmetric 2-cocycle and, there- 

fore, lies in the kernel of the isomorphism 

a :  z2(n,u(1))  ~ ~ ( A 2 R ,  U(1)),  (8.1.99) 
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as defined in (7.190). Hence, since E~ei(R, U(1)) = 0, we have that  ¢[j](1 I , )  e 

B2(R, U(1)),  i.e., there exists a function fl[j]: R ~ U(1) :  a ~-* fl[j](a), such that  

,o[./1 (o-) ,o~] (~) (8.1 .lOO) 
• ¢ [ j ] ( 1  I o-,~) = ,~U](o- o~) 

Denoting by ¢~1 and 8 ° the constants defined in (8.1.92) for the choice of isomorphisms 
o 

H as given in (8.1.91), we deduce from (8.1.92) the relation 

,~[j](~o,.,) b[j]C~,)~,[j](~) ,/,~.](1 I~,~,). 
• ¢ [ . / ] (1  I~,v) = ,~](~)aFj](,.,) b~](~o,.,) (8.1.101) 

Thus if we require the normalization to be of the form 

a ~ l ( g )  = ~ ] ( g ) ' ~ l ( g ) ,  b~l(g)  = Z~ l (g )~b l (g ) ,  (8.1.102) 

for some m a p s  ~L/] : R --~ U(1)  and r[j] E Horn(R, U(1))  --- /~, we obta in  that  ~b[j](1 I 

#,  v)  = 1, and,  by (8.1.95),  ¢[ j ] (~  I a, v) = 1. Therefore,  set t ing 

F2([1], [j], [1], [j]) = id, (8.1.103) 

this choice of H-isomorphisms provides a solution of (8.1.75), whenever i, k E R. Sup- 

pose p~](a, ~) is the constant determined in (8.1.93) for the case ~ = r = 1. Then the 

general form of p[j] is described by 

pb.]t , ~), (8.1.104) 

independent  of ~. Another  special case of the hexagonal equation is given by 

( r ( a  o "r(~]), a o -y([/])) ® ll) F(tz , a,-r([j]), a o tz o 3,([j])) -1 (r(a, lz, a o/z) ® ll) 

= F @ ,  s o  g o  ® . ( = , .  o s o  g o  

f(~r,/z, 'r([j]) , a o ~ o -r([j])) -1. 
( 8 . 1 . 1 0 5 )  

After conjugation with H ®2, this equation becomes 

p[j]( a, 1) = p[j]( a, tz ), 
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i.e., p[j] is independent of #. Furthermore, we see that ,  since ~b[./](a [ # ,u )  = 1, 

(8.1.98) imphes that  a ~ pb.](a, 1) is a homomorphism. We can therefore choose 

r ( a )  = p~(a, 1) -1 ~/~,  and hence p[j](a, #) = 1. The fact that  the balancing elements, 

j ~ Od, are invariant under the action of R yields the equation 

,. (~r, .  o "r([./]), or o ~. o V(L/]))" (# o "r([J]), or, or o ~ o "~(~])) = d'"~( °" +O...C~)-O... . .C~)) = 1, 

(8.1.107) 

so that ,  by conjugating with H ~  7([j])'~ and using (8.1.93), we find that  

fi[./ l(¢,/.t) --- p [ . / l (a ,#)  -1  = I .  

If we set 

"2([. / ] ,  [1], [ j ] )  = , 'X[1] ,  [ j ] ,  [ j ] )  = 1 (8.1.108) 

the H-isomorphisms determined so far also yield a solution to eq. (8.1.76), for i E R or 

j c R .  

For a given choice of ~i,d consistent with our normalizations for i E R or j E R, we "'[~], 

introduce invertible linear maps 

\ #v,o" ] \ # v , a  ] 

as the transforms of the F-matrices,  i.e., 

and 

: - " ~  t, r-,/[~]~],~,,,,,,[~,]'~ ) t .  ~' ~,.,o-,(t,]),,,o-,@)i~,l ® ~'~i"°"°"E'~t'~,t~°"(C~'D), (8.1.109) 

-~o",'([,;]),~o~([./]) ,~ ~o~":'ot'~l~,t~lo~([k]),o"~ 
" ' [k]  ~ " ' [k]  ) 

\ #v,  ¢ / '~ " ' [k]  )"  
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Here we are using the invertible objects a[i][j],[k] E R, defined, for a coherent action of 

R, in eq. (8.1.19). Moreover, we are identifying Homc(Mor2([k], [i] o [j]) ® End2([k]), 

End2([i]) ® Morz([k], [i] o [/])) and Homc(End2(~] ) ® Mor2([k], [i] o ~]), Mor2([k], [i] o 

[j]) ® End2([k]) ) with Endc(Mor2([k], [i] o [j])) by using the canonical elements ~k • 

End2([k]). The pentagonal equation for k := ~ o a[i][j],[k] o 7([k]), 

(~ ( o , . , ( I , l ) ,  ~ o . , ( t~ l ) ,  o o ,<) ® ~) 
= (~I®Fl(#oa,7([ i l ) ,yoT(~l) ,ao#ok))T12( l I®Fl(# ,a , i . ,ok ,#oaok)) ,  

(8.1.111) 

yields a factorization of FL of the form 

Similarly, we find that 

\ #v,a / \ # l , v  ] r R ~ # l , a  " (8.1.113) 

,r'I'l  l' : (t,l l, E,<l  a (E,l l, 
r . \  o',,,,# / \ # o a ,  l , , /  \ a,,,,, / 
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(8.1.116) 

Finally, from the equation 

( a  (#,-y(tiD,-rC~D, # o e)  ® ~,) 0 r ® El(#, k', v, # o ,, o k')) 

(F1 ('rCI~D,'r(~D, ~',,' o ~') ® ~,) 

(8.1.114 0 

w h e r e  ~ '  = ,r[i][j],[k] o 7 ( [k ] ) ,  we o b t a i n  the relation 

A([,]~], [k]~ := ~z ([~][J], [k]~ ~ .  ([~][j], [~]~-t = _~R ([,][j] ' [k]~-xfr ([~][j], [k]~ 
\ # ,v  / \ 1v ,#  / \ 11 ,v  / \ # l , v  / \ 11 ,#  / '  

(8.1.115) 

so that  eqs. (8.1.112) and (8.1.113) can be rewritten as 



Replacing the isomorphisms,  ~ i , j  by the maps "'[k], 

H~k~r([i])'#°'r([J]) = A (  [i]~]' [k]'~-lH~7([i])'#°3'(['/]) , (8.1.117) 
\ a , #  / 

corresponds to replacing the "structure constants" ff£ and FR by F~ ([i][j],[k]~ = ~ k  O'Vd~ 1 

FR(t~,~kl) = 1 , ,  fonows from eqs. (8.1.118), (8 .1 .1m and (8.1.109), (8.1.110). 

Note tha t  F£ = FR = ~, and hence A = lI, when [i] = 1 or ~] - 1, so tha t  the 

i somorphisms determined previously remain unchanged in this case. Thus,  sett ing 

F2([i], [j], 1, [kl) = F2(1, [i], [Jl, [k]) = id, (8.1.118) 

we have found a solution to (8.1.75) when either i or k are restr icted to R. A complete 

solution to (8.1.75) can be found by using the hexagonal equat ion 

= F1 (#, a o 7([i1),  v o 7([J]) ,  # o k") (1I ® r t (k" ,  # ,  # o k")) 

F1 (a  o 7([i]), v o 7([J]), #, # o k") ,  
(8 .1 .119)  

with k" = ~ o ~ o  ~[i][~],[kloT([k]). With  (8.1.108) and (8.1.118), we derive from (8.1.119) 

the equat ion 

(H~/] °7([i])'# ® n[k ]"~°a°TC[i])'v°7([j])'~r'(a) -" 1 o 7([i]), #, v o 7([j]), # o k") 

= H~iV°TC[J]) @ H ~  7([i])'~°~°7([j]). 

Sett ing 

F2([i], 1, ~/1, [k]) = id (8.1.120) 

we thus find a solution to eq. (8.1.75) if only j is restricted to R. 

In the remainder  of the proof we show that ,  for the choice of H 's  satisfying (8.1.108), 

(8.1.118) and (8.1.120), we can flnd F2's tha t  provide a complete  solution of (8.1.75). 
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For this purpose,  we define maps 

& ( i , j , k , [ t ] )  : ~[~ M°r2([s],  ~1 o [k])@Mor2([l], [i] o [a]) 
Is] 

----} ~ Mor2([s], [i] o ~]) ® M2([1], [s] o [k]) 
[,] 

th rough  the equat ion 

rri,J ,~ rrCt,] (i,j),k ~ k))  Ct,] (J, t)  "'[s]~"'[l] J Fl(i 'j 'k'¢[l](i 'J' ¢[,](i,j) 

: fi"2(i,j,k,[l])[: I (H~ik ® HI~¢t'I<J'k'), 

with F2(i,j, k, Ill) = id if i , j  or k belongs to R. 

(8.1.121) 

For a E R, i,j, k E J1 and l = ~b[/](i,j, k), we may consider the following special case 

of the pentagonal  equation: 

[,] [d 

= ( ~  1I ® F l ( a  oi , j ,k ,  ao l))T12 (~]~ 1I ® F(a,i,~bts](j,k),o'o 0) . (8 .1 .122 ) 
[,] [~] 

The t ransformed equat ion for the F2's simply reads 

F2(i,j, k, [l]) = fi-'2(a o i,j, k, [l]). (8.1.123) 

By considering the equations obtained by replacing (~, i, j, t)  by (i, ~, j, k) and (i, j, ~, k), 

we also find tha t  

P2( i ,~  oj ,  k, If]) = P 2 ( i , j , ~  o k, Ill) = P2( i , j ,k ,  Ill), 

for all a 6 R. Hence, one can assign, in a well defined manner ,  linear maps  F2 to every 

quadruple  of objects in J1/R such tha t  

F2Ci,j, k, [l]) = F2([i], ~1, [k], [l]). (8.1.124) 

These maps  provide us with a general solution to (8.1.75). Similarly, we introduce 

functions r2 by sett ing 

HJ,i " " [k]rl (i, j ,  ¢[k] (i, J)) = ¢2(i, J, [k ] )H~.  (8.1.125) 
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The hexagonal equation 

(rl(~, k, ~ o k) ® ~)F1 (~, k,j ,  ~ o etzl(k, j))  (r~ (j ,k,  ~t~l(k, j ) )  ® ~) 
= Fx (k, ~,j ,  ~ o ~t~(k, j))  (~  ® r~ (~o  j, ~, ~ o e[,](k, j ) ) ) r ~  (~,j,  k, ~o  ~[,l(k, j))  

yields the equation 

~2(J, k, [I]) = /~2(a o j,  k, [I]), (8.1.126) 

and an analogous equation, with k and j exchanged, proves invariance under the action 

by a E R on the second argument. Hence we can write 

~2(i,j, [k]) =: r2([i], ~], [k]), (8.1.127) 

and r 2 is a solution to (8.1.76). 

Finally, the assumed invariance of the "balancing phases" under a E R allows us to 

define such phases on J 1 / R  by setting 

Oj =: 0[if m o d l .  (8.1.128) 

Clearly, for the structural data r2, F 2 and 8 just constructed, the pentagonal-, 

hexagonal- and balancing equations can be derived directly from the corresponding 

equations in C1, via (8.1.75) and (8.1.76). This completes the proof of Lemma 8.1.3. 

[] 

This result leads us to a formulation of the basic criterion for the existence of induced 

categories. 

P R O P O S I T I O N  8.1.4 

Suppose that C1 is a quantum category with object set Objl ,  and let R C Objl  be a 

group of inverZible objects with free and coherent action on J1, so that we have a fusion 

rule algebra epimorphiJm 7r R : Objl  ~ Obj l  ~- lq(Jx/R). Then there ezi.~tJ a category C 2 

with object set Obj l  such that C 1 iJ the category induced by C2 and r; R if  and only if the 

following two condition~ are met  in C 1: 
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(i) The O-subcategory associated to R is trivial. 

(ii) The balancing elements (statistical phases) are R-invariant, i.e., 

Oj = Oaoj, Va E R. 

Proof :  

As a first step in constructing C2 we build a certain category C1, related to C1 by a 

tensor functor 

(id,.T', 1[) : C 1 --o C1. (8.1.129) 

The object set of C1 is the same as that of C1. However, two objects X and Y in C1 are 

equivalent ( Z  m Y) iff 7rR(X ) = 7rR(Y), i.e., modulo equivalence, the object set of C1 

is Objl. 

From the building blocks 

M([k],X) := ~ Marl (k ,X)  (8.1.130) 
kEC[k] 

we define the spaces of morphisms 

Mar l (X  ,Y)  := ~ Homc(M([k],X),  M([k], r ) ) ,  (8.1.131) 
[k] 

equipped with the obvious composition of morphisms. 

For I e Mar l (X,  Y), we define the action of 3r(I) on M([k]Z) into M([k]Y) by left 

multiplication on X, i.e., for v = ~_,keCtk I v k e M([k],X), with v k E Mar l (k ,X) ,  we set 

.T'(I)(v) = E I r k '  I v  k e Marl (k ,Y) .  (8.1.132) 
kEC[~] 

In order to find the (unique) tensor product on C1 such that a functor (8.1.129) exists, 

we use the collection of isomorphisms 

r lor : G M([i], X) ® M(b'],Y ) ® Mar2([k], [i] o ~/]) 
[i],[j]es,/R 

, M([k],  X o r ) ,  
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which, for v i e Morl( i ,X)  C M([i],X), vj E Marl( j ,Y)  C M(~]Y) and w E 

Mor2([k], [i] o [j]), are given by 

( i J )  -1 
r~]or(~ ~ . j  e ~) = (~ o . j)  H[k] ('~) 

E Morl(¢[k](i,j),X o Y) C M([k],X o Y). 
(8.1.133) 

The tensor product of two morphisms I E Mor l (X,  X ~) and J E Morl(Y, Y~) is then 

given by 

(r~j)r~]y = r[k]x,,Y,,rI ® J ® 1I). (8.1.134) 

It is immediately clear from (8.1.133) that  

Y( I  0 J) = ~'(I)~Sr(J), (8.1.135) 

for a rb i t r a ry ' /E  Morl (X ,X  ~) and J E Morl(Y, Y'). If the isomorphisms in (8.1.133) 

are chosen as proposed in Lemma 8.1.3 we conclude that  C1, equipped with the following 

braiding and associativity isomorphisms 

~I(X,Y) :-- .T(el(X,Y)),  

~I(X,  Y, Z) := J:'(al(X, Y, g)), (8.1.136) 

is a quantum-category, and (id,.T, 11) is a trensor functor. Since the pentagonal and 

hexagonal equations follow easily from (8.1.136), we are left with proving the isotropy 

equations 

~I (X ' ,Y ' ) ( I~J)  = (J~I)-~I(X ,Y),  (8.1.137) 

a n d  

~I(X', Y', Z')(I~(J'6K)) = ((I~J)-gK) ~I(X,Y, Z), (8.1.138) 

for I E MorI(X,X'), J E MorI(Y,Y') and K E Morl(Z, Zt). 

From the corresponding isotropy equations in C1 and from relations (8.1.67) and 

(8.1.68) w e  obtain that  

o vj) Hff~{ -i  = 
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for v i E M o r l ( i , X ) ,  vj E M o r l ( j , Y )  and w E Mar2([k],[i] o LT]). Hence 

-g l (X ,Y)F~]y  = F [k] (£Th [k])), (8.1.139) Y,X \~I~ T12 ® r2([i], [J], 
[ilLi] 

where T12: M([i] ,X)  ® M(Lj],Y ) ~ M([j] ,Y) ® M([i] ,X)  is the flip of factors. From 

(8.1.139) and the definition (8.1.134) of the tensor product 5, we deduce (8.1.137). 

Similarly, (8.1.75) and the commutativity of the top of the total square in (8.1.74) 

imply that  

a l ( X ,  Y, Z)(vi  o (vj o vk))p icjk) (H®2)-l(z)  = 

((v i o vj) o Vk)tZ(iJ)k (H®2) -1 (F2([/], LJ], [k], I/])(z)), 
(8.1.140) 

for z e ~ [ , 1  Mar2( [4 ,  L/] o [k]) ~ M2([t], [i] o [4)- In terms of the isomorphisms r 

introduced in (8.1.132), this relation reads as follows: 

F Y'z 1I) 

[4 

PX°Y 'Z(gThFX'Y  1I®2)T34( ~ 1I ®3 [/]))i8.1.141) = "[/] ~K.L/ Is] ~ ~ F2 ([/], LJ], [k], 
[4 [ilL/][k] 

From (8.1.141) we de,ire (8.1.138) in the s~me way as we found (8.1.137) from (8.1.139). 

This establishes existence of a category C1 and of a functor (8.1.129), with the property 

that  X w. Y iff ~rR(X ) ---- lrR(Y ). 

For some choice of a map 7 : Objl ~ Objl , with 7r R o 7 = id, we then define C2, as 

an abelian category, to be the subcategory of C1 with 

Mor2(X , Y) = Mar 1(7(.X),7(17)). (8.1.141a) 

Furthermore, for each X with ~rR(X ) = .,~, we select a particular isomorphism Q(X)  E 

Morl(7(~Y),X),  with Q(V()f)) = 1. We define a functor between abelian categories, 

(~rR, g ) :  E1 ---* C2, by setting 

g(I )  := Q ( Y ) - I I Q ( X ) ,  (8.1.141b) 
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for I 6 MOrl(X,Y). The tensor product of two morphisms T 6 Mor2()~' ,2 ' )  and 

] 6 Mot2 (9 ,  I 7"t) is defined by 

I o  2 j := Q(TCX) o 7(]7"t))-lcrsJ)Q(7(X) o 7(9) ) .  (8.1.141c) 

Defining C(X, Y) 6 End2(X o Y) by 

C(X, Y) := Q(X o y ) - I ( Q ( X ) - S Q ( y ) ) Q ( 7 ( 2 )  o 7(17")), (8.1.141d) 

then, for the functor 

(Tra, G, C) : Cl , C2, (8.1.141e) 

the compatibility condition (8.1.33) is readily verified. For the braiding- and associa- 

tivity isomorphisms defined by 

~2(2 ,Y)  := Q(7(9)  o T ( 2 ) ) - 1 g  1 ( 7 ( 2 ) , 7 ( 9 ) ) Q ( 7 ( 2 ) o 7 ( 9 ) ) ,  

and 

~2(2, 9, 2) := 

Q(7(Jt o r )  o 7(2)) -1 (Q (7(2) o 7 ( r ) ) - 1 @  al (7(2), 7(r), 7(2)) 

(.~Q (7(~'), 7(2)) ) Q(7(2) o 7(~" o 2)) 
(8.1.141f) 

we also find relations (8.1.43) and (8.1.44). Thus (8.1.141e) is, in fact, a tensor functor of 

quantum categories. Proposition 8.1.4 follows by considering the composition of tensor 

functors 

(TrR,~o.T',C) : C 1 , C 2. 

[] 

Application of Proposition 8.1.4 requires that the subgroup, R = ker~, of invertible 

elements has trivial categorial properties, in the very strict sense that  the braided, 

monoidal category associated to it is trivial, and all monodromies with other objects of 

the total categories vanish. (This can be expressed here by the invariance of statistical 
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phases.) In many situations, however, this information is not available, but only the 

triviality of the monoidal category associated to R is known. The following discussion 

is devoted to the question to what extent this suffices to conclude that ,  to a category C 

with objects Obj, one can associate a category C with objects Obj = Obj /R such that  

C is induced by C and ~r R. 

We first recall some notat ion and some simple facts that  have been used earlier. 

We assume that  R C Obj is a subgroup of invertible objects with a free, coherent 

action on the irreducible objects, J C Obj, of a rigid, braided, monoidal category, C. 

We denote by 

~rl~ : Obj --* Obj ---- 1~ J,  j ~-* ~], (8.1.142) 

with ] := .I/R, the fusion rule algebra homomorphism onto the Perron-Frobenius fusion 

rule algebra Obj, whose irreducible objects, ] ,  are the orbits of R in J.  There is a uni- 

versal gradation, grad, assigning to each irreducible element an element of Grad(Obj), 

see end of Chapter  3.3. Defining 

R0 := ( #  • R : grad(#) = 1), (8.1.143) 

we have the following commutative diagram: 

0 , R ,  , Obj  7rR ,, Obj  ,0  

, Ro" , R g r a d  Grad(Obj) , Grad(Obj) ,0 

(8.1.144) 

in which the rows are exact sequences. We define 

/~ := R/Ro ~- grad(R) C Grad(Obj). (8.1.145) 

For any choice of 7, as in (8.1.15), the algebra Obj can be described by the fusion rules 

of Obj and, with (8.1.18) and (8.1.19), by elements a[i][j],[k] E R satisfying (8.1.20) and 
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(8.1.21). To any map 7 : ] ~ J ,  we associate a unique map y : J ---* R characterized by 

j = ~/(j) o 7(~J]), for j E J, (8.1.146) 

such that  

y ( # o j )  = #o~?( j ) ,  ~/(7(~])) = 1, for # e R ,  

and, fur thermore,  

~?(k) whenever k E i o j . 
- , z ( i ) , 7 ( j ) '  

(8.1.147) 

Our first result on induced monoidal categories is a simple modification of Proposi t ion 

8.1.2. The  fusion rule algebra of a category without  braided s t ructure  can be non- 

abe]Jan. For the notion of a coherent action of R on J to be meaningful, we shall then 

have to assume that  

# o j  = jo#, for #ER, jE J .  (8.1.148) 

As a consequence, the Perron-Frobenius algebra Obj and the elements A[i][j],[k] are well 

defined, and we impose conditions (8.1.19) and (8.1.21), but  omit (8.1.20). 

PR OPOMTION 8.1.5 

Suppose that ( : Objl --, Obj2 is a coherent fusion rule algebra homoraorphisra; (Obji is 

possibly non-abelian). Assume that there is a seraisimple, raonoidal category, C2, with 

objects Obj2. 

(i) Then there is a monoidal category, C1, unique up to natural isoraorphisms, such 

that there ezists a tensor functor, 

(~ ,~ ' ,C)  : Cz , 62 (8.1.149) 

compatible with the associativity constraint and eztending ~. 

(it) The monoidal subcategory associated with R is trivial. 
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P r o o f :  We can adapt the proof of Proposition 8.1.2 word by word, discarding the 

definition of e for the pull back category and omitting the definition in (8.1.61). This 

will work, since these constraints were only used for the verification of the compatibility 

condition (8.1.44) which can be ignored for a monoidal functor, as in (8.1.149). 

Moreover, commutativity of the fusion rules, with the exception of condition (8.1.148), 

has nowhere been used in the construction of the functor (8.1.149) and of the associativ- 

ity constraint in the proof of Proposition 8.1.2. Part ii) of Proposition 8.1.5 is obvious. 

[] 

Next, we wish to formulate a result analogous to that of Lemma 8.1.3, concerning 

the dependence of the structure matrices on the action of R. Although the monoidal 

subcategory corresponding to R is assumed to be trivial, it is, in general, not possible to 

eliminate the R-dependence of the associativity constraint by an appropriate definition 

of isomorphisms, rri'J 

Yet, if we assume that the category is equipped with a braided structure, a convenient 

general form of the r2- and F2-matrlces can be derived, following the lines of reasoning 

in the proof of Lemma 8.1.3. But first we study an invariant for braided categories 

which was already used extensively in Section 7.4. 

LEMMA 8.1.6 

Suppose R C J is any subgroup of invertible objects of a quantum category, C. 

(i) Then there exists an invariant of C, given by a character 

rh E Hcrrn(R ® Grad(Obj), U(1)), (8.1.150) 

= C r a d ( n ) )  such that 

e(a, j )e( j ,a)  : rh(grad(a), grad(j)) laoj, 

for a E R, j E J. The restriction of rh to fl  ® TI is symmetric. 

(ii) Let E := i*(Hom(Grad(Obj) ,Crad(Obj),U(1)) ) be the subgroup of characters 

defined in (8.1.150) with symmetric restriction to R ® f~, extending symmetrically 
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to bai,~ear /or ,~ on Crad(Obj). Here i* i~ the V~,U back o / i :  ~® araa(Obj) 

araa(Obj)¢~, arad(Obj). We aenote by 

[rh] E Horn(R® Grad(Obi) , U(1)) /E (8.1.151) 

the class of ~n in the quotient. 

Then [,~] i, unchanged ~/ C i~ replaced by C q, det~ned in (8.1.7) and (8.1.S), with 

Ho (r4(Orad(Obj)),V(1)). rot there q q E 

that rh t is the invariant (8.1.150) of C q. If  Grad(Obj) is cycUc then the r.h.s, of 

(8.1.151) is trivial, and Vn = O, for some C q. 

P r o o f :  

For each ~ E R and X E Obj, we define the endomorphism m(t z, X )  E End(X)  by 

~(x , , )~ ( , ,  x )  =: ~ ,  o m(, ,  x ) .  (8.1.152) 

Clearly m is isotropic, i.e., m ( ~ , Y ) I  = I m ( ~ , X ) ,  for any I E M o r ( X , Y ) .  Using the 

hexagonal equations, 

a( I~ ,X ,Y)e (X  o Y ,~ )+a(X ,Y ,~ )  = (e(X,~) + o ] I ) a ( X , ~ , r ) ( a  o e(Y,l~)+), 

with e(X, Y ) -  = (e(Y,X)+) -1, we easily find that 

m(~, x o Y) = m(~, x )  o .~(~, Y), 

i.e., m(~, .) is a grading. We thus have that,  for j E J, m(l~,j) = ~z(IZ, grad(j))lI/ ,  with 

~(l~, .) • Hom(arad(Obj) ,  U(1)). By a similar hexagonal constraint, we obtain that  

tact,, x )  raCy, x )  = taCt, o ,,, x ) ,  

for X • Obj, and ~, v • R. These properties of m, together with the symmetry obvious 

from definition (8.1.152), imply the general form (8.1.150). 

From (8.1.8) and (7.267) we have that, for any ~u • R and g • Orad(Obj), 

,~q(,,g) = ,~( , ,g)  6q(,,g), 
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where 6q(p,g) :-- q(Izg)q(g)-lq(p) -1, and rhq is the invariant of C q. It is clear from 

(7.295) that  6q G E,  so that  [~hq] = [rh]. Conversely, assume that  r h e  E. Then we may 

use a result from Section 7.4, namely that  the map 

: G®o C -~ r4(G), 

[g ] hi ~ {gh} - {g} - {h}, (8.1.153) 

with G ®, G := G ® G/im(1 - T) = G ® G/([g [ hi - [h I g]), as in (7.276), is injective. 

Hence 

~)*:  Hom(P4CG),U(1)) ~ Hom(G®,G,U(1)), 

onto, and thus, given rh G E,  there exists a q G Hom(r4(Grad(Obj)),U(1)), is with 

~ ( g , h )  -- (~*(q)(g,h) = 6q(g, h) = q(gh)q(g)-lq(h) -1. 

We have Th ---- rh~ iff 

q(g) = ( 8 . 1 . 1 5 4 )  

where 7r is the projection: GradCObj) -~ G := Grad(Obj)/R, ~ 6 Hom(r4(G), U(1)), 

and e 6 Horn(G, z2). The fact that  the map 

i t : R ® Grad(Obj) ~ Grad(Obj) ® Grad(Obj), (8.1.155) 

induced by the inclusion R C Grad(Obj), is into, for a cyclic Grad(Obj), and that  the 

right hand side is already symmetric implies the last assertion in part  it) of Lemma 

8.1.6. Note that ,  for general R and Grad(Obj), the group (8.1.151) is non-trivial, and 

(8.1.155) may have a kernel. 

[] 

We are now in a position to prove the following generalization of Lemma 8.1.3. 

LEMMA 8.1.7 

Suppose that C is a quantum category, with objects Obj, and R C Obj is a subgroup of 

invertible elements with a free, coherent action on J C Obj. Assume, ~urthermore, that 
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the category associated to R is trivial as a monoidal category. Denote by r l  and F1 the 

usual structure matrices of C and by 

~r R : Obj ~ Obj 

the fusion rule algebra homomorphism defined in (8.1.14~). Finally, let 7 : ] --* J be 

an arbitrary map with lr R o 7 = id from which 71 : J ~ R and a[i][jl,[k] are defined as in 

(8.1.1~6) and (8.1.147). Then 

(i) there ezist vector spaces Mor2([k] ,  [i] o [j]) ~ C~'['][i],[ k] and i.,omorphisms rri'j . .  [/~], as 

in (S.I.79), such that the mat~ces 22 and ;2, defined by (S.I.1~) and (S.I.125), 

satisfy the "gauge-constraints" 

~'2(#,i , j ,[k]) = [~2(i,j,#,[k]) = 1, (8.1.156) 

(ii) 

and 

f o r i , j ,  k E J and g E R. 

r2 (7 ( [ J ] ) , # )  = 1, (8.1.157) 

The residual "gauge freedom" preserving the constraints (8.1.156) and (8.1.157) 

is generated through transformations of the R-category preserving (8.1.156), for 

• ~ T_Ti,j i , j  E R, by natural transformations of the Mor2-spaces. More precisely, z r "'[k] 

is a set of isomorphisms consistent with (8.1.156) and (8.1.157) then any other 

such set is given by 

(8.1.158) = ..[~] --[~], 

where ai'J "'[k] E Endc(Mor2([k],  [i] o [j])) has the form 

~(k) a[il[j] (8.1.159) • ~'J'[k] = ,~(~(i) o %]bl , [kl ,n( i ))~(~(i) ,  ~[~][jl,[k]) ~( i )~( j )  [k] 

with k = ~b[kl(i,j), ~ :  J --, U(1) (or C), 

w E Z 2 ( R ,  1;U(1)) .  
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(iii) I f  the "gauge constraints" are obeyed the ~'2" and ¢2 matrices can be expressed by 

matrices F 2 and rg~, whose indices only depend on the classes in Obj, and by 

P := ¢2 tR×R 6 H o m ( R  @ R, U(1)) ,  (8.1.160) 

as follows: 

¢2(i, 4, [l]) = 

.,,(.(j), ~(4)).o (,,-tj]t,,:l,t,, ], . (4 ) . ( j ) - ' ) . , .  (gr~a(n(j)), gra<' r (~] ) ) )  '~ (tJ], [41, Ill), . 
(8.1.161) 

P2(i, j ,  4, [l]) = 

= (@,'(,'[,]~].t,,].',(J)-')® ~-.,,,)~([,]. ~l.lkl. m) 
$ 

(® ~,,.. ®,'(ot,~t,~,t~,',(J))) 
$ 

: ( G  ~IN.,. ~ o(~t.]tk],m, ,7(J))) b~,([il, ~], [~], Ill) 
$ 

(~]~P(a[J][k]'ts]'rl(J))-Is @ ~N':°J) "(8.1.1621 

The matrices #2 and F2 are unity if [i1 = 1, [j] = 1 or [k] = 1, but, in general, 

they do not satisfy the pentagon- and hexagon equations. 

(iv) /fP~ and r l  are the structure matrices in a new gauge, (r-riJ~' k"[k]]  ' as in (8.1.158), 

then they are given by the same fomrulae (8.1.161) and (8.1.16~), inserting 

p'(~,, v) - ~(v,  ~,) p(~, ~,), 
~ ( u ,  v)  

ra[./][k]~-i ~([.j] ,  [k], [I]) = a[~ If'j] ~2([.J], [k], [I]) k [1] / , 

: 

[d 

F2([i], [j], [k], [I]) 

r r "  o., % ,o- ,,=[./][k] ,~ a [ i l [ , ]~- i  
~ [i][,],[t] [J][k],[d)[o1 '~' [~] g • 

[,] 

(8.1.162a) 

(8.1.162s) 

(8.1.162¢) 
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P r o o f :  

(i) The proof of the first part of Lemma 8.1.7 is merely a recapitulation of those 

arguments of the proof of Lemma 8.1.3 that do not require the triviality hut only 

the existence of a braided structure. As in (8.1.80) and (8.1.82), triviality of the 

monoidal category associated to R implies that there exists rra'~ "" [1] ' a, ~ E R, such 

that 

F2(o',#,v,[l]) = 1, 

for ~,~,,,, e R. Imposing (8.1.86), P~.(#,~,V(tj]),[/]) = 1, and P~.(V([/]), 

/z, v, ~]) = 1, we derive from the pentagonal constraint (8.1.88) the invariance 

corresponding to (8.1.89) and (8.1.90), namely 

#2(/~,v,j,[jl)-- F2(j,#,v,[j])= 1, (8.1.163) 

for #, v E R and j E J. We retain the "gauge freedom" expressed by (8.1.91). 

From the pentagonal equations (8.1.94) the cocycle condition (8.1.96) for 

¢~](1 I~ ,v)  = P2(~,~(~]) ,~,L/])  

is derived. Assuming only the existence of a braided structure, we find from 

(8.1.97) the constraint (8.1.98), with p[j](#,a) = ~2(/z,a OT(LJ]) ,[j]). Hence 

~b[j](1 ]., .) is symmetric and therefore a coboundary. Having a solution fl[j] : a --* 

fl[j](a) to (8.1.100), we can therefore find a gauge such that ¢[j](1 I',  ") -- 1. This 

implies, with (8.1.94) and (8.1.95), that 

P2(~,J,,,, L/I) = 1, (8.1.164) 

for # ,v  E R and j E J; (compare to (8.1.103)). We see from (8.1.102) that 

if we impose (8.1.163) and (8.1.164) and keep the r4~'v for # ,v  E R, fixed, 
"'[1]  ' 

then the remaining freedom in choosing H~j] j and H ~  is given by the "gauge 

transformations" 

~(~ ° J) H"'J 
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where { : J -~ V(1) (or C) 

Hom(R,U(1)), with r[11 = 1. 

t ransformat ion law then  reads 

is any function,  with ~ I R = 1, and r[j] • 

For the ~2-matrices with a rguments  in R the 

1 
~2(J , , ,  [/]) , - -  ÷2(J,~,, L/I), ~L/](/*) 

~2(/, ,J,L/]) , ~](~*)~2(~, ,J ,L/]) .  (8.1.166) 

Considering (8.1.97) and an analogous equat ion for the inverse r-matrices,  we see 

that ,  in any gauge consistent with (8.1.163) and (8.1.164), 

~2(J, ' ,[J]), ~2(',J,[J]) e Hom(R,U(1)), 

for all j • J ,  i.e., 

~2(J,# o v, ~]) ---- ~2(J,#, ~/]) ~2(J, V, [/]), (8.1.167) 

and similarly for ~2(',J, [/]). 

Sett ing r[/] := ~2(~/(~]), ., ~]), a t ransformat ion of the form (8.1.165) produces 

the desired constraint  (8.1.157), as fonows from (8.1.166). 

Imposing the normalizat ion conditions discussed above, we next consider the spe- 

cial F2-matrices defined in (8.1.109) and (8.1.110). The  pentagonal  equations 

(8.1.111) and (8.1.114) yield the relations (8.1.112), (8.1.113) and (8.1.115). Per- 

forming a gauge t ransformat ion as in (8.1.117), we finally find a set of isomor- 

phisms such tha t  the F2-matrices fulfill (8.1.156). 

(ii) For a general gauge t ransformat ion 

Hid , aid rri'J (8.1.167a) [k] "'[k] "'[k], 

ai ,]  with "'[k] • GI( M°r2([k]' [i] o [j])), the conditions (8.1.156) and (8.1.157) yield the 

constraints: 

Aij a~,o,,$ (8.1.168) [ k ] ® A ~  ~ = a , , ' -  "" 
"'[kl ¢~ "[k] 

Ai,J ~ aJ,# a i,#°j (8.1.169) [k] ® A = ® "'[k] -[k] 

. A ~  ([j]) = A~.I[J])'/a , (8.1.170) 
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where k = ~b[k](i,j ). The most general solution to these equations can be found 

by first specializing to i E R or j E R and determining the form of A~.iJ and A~.~. 

The result is 

Al~iJ : A~.~ = w(p, rl(j)) ~,(po j) (8.1.171) ~(~,) ¢(J) ' 

where ,,, e Z2(R, 1; r](1)) (see Section 7.4) and ~ : J ~ t](1) (or C). Here we 
( ) ) - 1  

may assume that ¢ I R - 1, since we can substitute ¢'(j) -- ¢(j) ¢(y(j)  and 

w' : w(6¢) -1 without changing A~:/. Equations (8.1.168), (8.1.169) and (8.1.171) 

give a complete description of how the transformations ~i,j depend on the objects -[k] 

i in an orbit [i] and j in an orbit [j]. This dependence can be absorbed into the 

prefactor of a [i][j] in (8.1.159), using identities (8.1.147) and 6w -- 1. [k] 

(iii) We assume that equations (8.1.156) and (8.1.157) hold true. The hexagonal equa- 

tion (8.1.105) and the inverse version thereof provide us with the following formula 

for the action of R: 

I;2( p o j ,  v, [ j ])  ---- "r2(p, u, [ I ] )  I ;2(j ,  u, [ j ] ) ,  

' :2(", l '  o j ,  [./]) = ':2(~', ~', [1]) ,:~.(,,,./, [ j ] ) .  (8.1.172) 

In particular (8.1.172) and (8.1.167) show that the restriction of ~2 to R × R is a 

bihomomorphism, justifying our definition (8.1.160) of p. 

We immediately find, with (8.1.157), (8.1.167) and (8.1.172), the general form 

~2(J,~,[/])  = p ( ~ ( j ) , v ) ,  

r2(V,j,[~']) -: p(V,~l(j)) r'n(grad(v), grad(9[(~'l))). (8.1.173) 

If we insert (8.1.156) and (8.1.173) into the hexagonal equation (8.1.119) and use 

(8.1.147) we arrive at 

-~2(i,#,j, [k]) = p(a[i]Li],[k] ,p) . (8.1.174) 

The expressions (8.1.173) and (8.1.174) for #2- and/~'2-matrices with arguments in 

R enable us to find the general transformation properties of the structure matrices 
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under the action of R: The hexagonal equation preceding (8.1.126) yields 

÷20, o j ,  ~, [l]) = 

: pO,, '~(to))~ (g,,,~aO,), g,,~a(-y([to]))) ~,(~[j]tk],[~], ~,)-~,~(J, to, [t]), 

and, similarly, from the inverse hexagonal equation 

(8.1.175) 

~B(j, ~, o to, [l]) = p(,7(J), z )p(%][k] , [~ ,  ~),~2(J, to, If]).  (8 .1 .178)  

The solution to (8.1.175) and (8.1.176) is given precisely by the expression in 

(8.1.161), where r2 only depends on the classes of the objects i , j ,  to in Obj. The 

dependence of the F2-matrlces on the first and third entry under the action of R 

has already been determined in the proof of Lemms. 8.1.3. With the help of the 

pentagonal-equation (8.1.122), the invariance (8.1.123) was inferred, so that by 

using a similar argument for the third index we can write 

P2(~,J, to, [z]) = ~ o ( [ i ] , j ,  [to], [~]). (8.1.177) 

The pentagonal-equations 

(@ p~(,,,,, J, t.])® ~ . . , , )~ . ( , , , .  o j, to, t , ] ) (@ ~'.(,., J, to, t.])® ~,.,,) 
$ ,II 

= p. ( .o~, j ,  to,[~])(@ ~.,,.,. ® p2(~,.,.,[t])) 
$ 

and 

((9 P. o,J,., [.]) ® ~,,.,.,)~, (,. ~ o j.~. [~])(@ p.(j,., ~, i.]) ® ~N,.,,) 
$ $ 

= ( ~  IIN,,.. ® F2(",l~,k,[ll))F2(i,j, g o k,[/l) (8.1.1781 
, 

yield the following formula for the action of R on the second index 

po  ([i], ~, o j ,  [k], if]) = 

= [,D (G ® 
$ $ 

= (~)s 1IN"" ® P(~[,][k],[l],l~))F~([i],J;[k];[l])(~P(cr~][k],[s])s ® 1IN-,,)i8.1.179) 
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The general solution to (8.1.177) and (8.1.179) is given by (8.1.162). Note that, 

by (8.1.21), the two expressions given in (8.1.162) and (8.1.179), respectively, are 

equivalent. 

(iv) The gauge dependence given in (8.1.162a) is derived by applying a natural trans- 
. . 

formation to the defining equation (8.1 .l6O). By the very construction of the Aa3 PI ' 
this corresponds to adding a coboundary 6w E B ~ ( R ,  2; ~ ( 1 ) )  to the &category 

associated with R c Obj. Formulae (8.1. 

applying a gauge-transformation 

62b) and (8.1.162~) are obtained by 

to the identities 

Until now, we have considered the general case of coherent fusion rule algebra homo- 

morphisms. This structure has turned out to suffice to conclude the existence of induced 

monoidal categories, in Proposition 8.1.5, and to derive the general dependence of the 

structural data, braid- and fusion matrices, on the group action, (i.e., the action of R 

on J c Obj) in Lemma 8.1.7. In order to give a characterization, analogous to the 

one in Proposition 8.1.4, of those categories that are induced, as monoidal categories, 

by smaller ones, we need to find more convenient expressions for the R-dependence of 

r- and F-matrices from which the structural data of a smaller, braided, monoidal cat- 

egory can be extracted. This problem can be subdivided, in a natural way, into two 

steps: First, we discuss the action of the subgroup, Ro, of elements in R with trivial 

grading (see (8.1.143) for the definition). Subsequently, we determine the dependence 
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of the structural data of the reduced category on the action of the graded subgroup 

= R /Ro;  (see (8.1.145)). The advantage of working with graded fusion rule algebra 

homomorphisms is that formulae (8.1.162) simplify considerably. As a consequence, the 
2 

~2- and F2-matrices will then satisfy pentagonal- and hexagonal equations, up to scalar 

multiples. For the first step, we make use of Lemma 8.1.6 which implies that all mon- 

odromies with entries in R0 vanish. (Note, however, that, since we have no evidence for 

the existence of coherent, non-graded fusion rule algebras with R0 ~ 1, the following 

discussion could turn out to be superfluous.) 

L E M M A  8.1.8 

Let C be a braided tensor category and R C Obj a subgroup of invertible objects with a 

free, coherent action on J C Obj. 

(i) The subgroup, RO, of R defined in (8.1.143) also has a free, coherent action on J C 

Obj. The Perron-Frobenius algebra, Obj t = Obj /Ro ,  contains R as a subgroup 

of invertible objects with a free, graded action on j I  : J/RO. The situation is 

summarized in the following commutative diagram: 

I 
o~ 

grad 

Grad, Obj) 

7r1~ 

4 

lr R 

1 
, ,  Obj' 7r k , ,  Obj 

, Grad(Obj' )  ,, Grad(Obj)  

l 

(ii) The subcategory associated with RO has abelian permutation group statistics. 

(8.1.182) 

It 

is trivial as a monoidal category. There is a "bosonic" subgroup R + C Ro, and 

either R ~  = RO or Ro/R+o ~- Z2, with the property that the braided tensor category 

of R~  is trivial, and C is induced, as a braided tensor category, by a category on 

ob j"  := Obj / R +. Moreover, e is induced by a category on Obj' iff RO = R+o • 
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(iii) Let us suppose that C is induced, as a monoidal category, by 7c R and a category "C 

with object set Obj. Let us assume, moreover, that C and -C are equipped with a 

braided structure. Then there ezists a braided, monoidal category C I with objects 

Obj I, such that C is induced, as a braided category, by C I and IrRo , and C I is 

induced, as a monoidal category, by -C and r E. In particular, we always have that 

RO = R+O • Up to automorphisms of C, the functor from C to -C is therefore given 

by the composition 

C (~R°'~'C°),C' (~,~=,C),~, (8.1.183) 

where the first functor is compatible with the commutativity constraint. I f  C is 

induced by -C, as a braided category, then also C I is induced by -C, as a braided 

category, and the functor (Ir ~, ~,-C) is compatible with the associativity constraint. 

P r o o f :  

(i) As a subgroup of a freely acting group, R0 clearly also has a free action on J .  

Hence Obj I = Obj /Ro is a fusion rule algebra, and 

: Obj Obj' : j {1} 

is a fusion rule algebra homomorphism.  Clearly, 7fRo maps invertible objects to 

invertible objects, and the restriction, ~rRo : R --~ R C Obj t, is the ordinary 

project ion amounting to taking the quotient by R0. The fact tha t  R acts freely 

on J implies tha t  /~ also acts freely on jr. Hence 7rj~ is well defined, assigning 

to {j} the class L/] - [{J}], (where, on the left, we may pick any representat ive 

j E {j}).  The  composition of 7r~ with ~Ro is just  ~R, as indicated in the top row 

of (8.1.182). 

Let us now suppose that  we have chosen a map 7 : ] ~ J ,  along with the 

corresponding map 7/ : J --, R, and elements a[i][j],[t] E R. To any section 

¢ : R ~ R, with ~rRo o ¢ = idyt , we associate a choice of a map 70 : j i  __. j as 

follows. It is clear tha t  there is a unique map ~ : j t  ~ / ~  such that  the diagram 
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J '7 - R  

J' ,, 

(8.1.184) 

commutes, and that  f/({#} o {j}) = {Iz} o fl({J}), for any p E R, with {p} the 

corresponding element of R. We define 

7°({j})  := ¢ ( ~ ( { j } ) ) o T ( I { j } ] ) .  (8 .1 .185)  

For j E ( j}  = ~rRo(j), it then foUows from 

.Ro(7°({j}))  = ~({j}) o -Ro(7C[{J}])) 

= - R o ( , ( ~ ) )  o ~ R o ( T ( ~ ] ) )  

= ~Ro(J)  = {J} 

that  7 0 is an admissible selection of representatives in the classes of j r .  Since 

j = ~/0(j) o 70({j}), and by (8.1.185) we find that  the map ,7 ° : J -* R0, with 

~°(a o j )  = a o ~(j) ,  is determined by 

,(j) = ,o(j) o ~(~({j})). (8 .1 .186)  

From (8.1.185) or (8.1.186) we see that  

A{i}{j},{k} = N{i){j),{k} a{i){j),{k}, (8.1.187) 

where we use the definitions of (8.1.18) and (8.1.19) with respect t o / t o  and 7 o . 

The invertible object a in (8.1.187) is given by 

~{~}{#},{k) = ¢(~({i})) o ¢(V({j})) o ¢(O({k})) -1 o ~[{i}][O'}M{~}}" (8.1.188) 

It follows immediately from this expresion that  ~rRo is coherent whenever 7r R is 

coherent. 
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From (8.1.31), and since grad(R0) = 1, we infer that ~r~Ro is an isomorphism. 

Using the properties of 7rRo and the commutativity of (8.1.182) this proves that 

the restriction 

grad : R ~ Grad(Obj') (8.1.189) 

is an injection. Hence 7r/~ is a graded and thus coherent fusion rule algebra homo- 

morphism. We remark that r/, as defined in (8.1.184), corresponds to the choice 

of ~ : ,i --~ j i  given by 

~(L/]) := ~R0(7(b])). 

The elements in .~ corresponding to this choice are given by 

(8.1.190) 

~[,:]~],[k] = "R.o(°[i][,S],[k]) • 

They can be uniquely determined from 

= 

using that (8.1.189) is injective. This proves part i) of Lemma 8.1.8. 

(ii) From Lemma 8.1.6, i) we see that 

~(~ ,x)  = ~(x ,~)  -1,  for ~ • R0. 

(8.1.191) 

( 8 . 1 . 1 9 2 )  

For X = p E R0, this proves that the category determined by R0 has permutation 

group statistics. For the quadratic function q(a)lIaoa := E(¢,a), this implies, 

using that q(ap) q(a) -1 q(p) - i  = ~(a,p) ~(p~): 

q E Horn(R0,E2). (8.1.193) 

Hence we can define a subgroup R + := ker q for which the associated 0-category is 

trivial. Let ct be the non-trivial element in Horn(Z2 ® E2, U(1)), and consider the 

function r2(#, a)~ (q(/z), q(a))-1.  The logarithm of this function is skew symmet- 

ric and vanishes on the diagonal. Hence r2(P, ~)o~(q(p), q ( a ) ) - i  can be written as 
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~(/~, u)~(a,/~) -1 for some function ~: R0 × R0 --+ U(1)(C). Gauging the r4~'a with "'[1] 

~, i.e., adding the coboundary 6~ • B4(R0, 2; U(1)) to the structure constants of 

the 8-category determined by R0, we can achieve that 

~0(., ~) = ~(q(~), qC~))- (8.1.194) 

With (8.1.193), this implies that r2 6 Horn(R0 @ R.0, U(1)). Thus the monoidal 

category determined by R0 is trivial. If we set R = R + in Lernma 8.1.7, iii) we 

infer from equations (8.1.161) and (8.1.162), using that p : ÷2 IRoxRo = 1 and 

grad(~/(j)) = 1, for all j • J,  that there is a choice of H ' s  such that 22 = r2 

and Fg. = kz  are invariant under the action of R +. As described in the proof of 

Proposition 8.1.4, this implies the existence of a braided category, C", with objects 

Obj" = Obj / R + and a functor 

(Tr~o,Y,C) = C ~ C", 

i.e., C is induced by C" and lr~o. In C" we have that Rg = RO/R+O, so that, for 

q ~ 1, we conclude that Rg ~- z2, where Rg is generated by a fermionic object a, 

with e"(a, a) = -1I. 

Since q IRo is an invariant, we conclude that C is induced by a category on Oh~ 

only if q - 1 on R0, i.e., R0 = R +. If this is the case the previous argument shows, 

in particular, that g is induced by 7fRo and a category on Oh~. This proves part 

ii) of the lemma. 

(iii) Suppose that C is induced by C and rr R and that both, C and C, are equipped 

with a braided structure. We then have a collection of isomorphisms, ui'J "'[k] : 

M o r l ( k , i  o j )  ~ Mor2([k], ti] o[i]) ,  such that (8.1.75) holds. We may consider 

the category C !, with objects Oh~, which is induced by C and r/i. A choice of 

/~-invariant structure matrices,/v¢., can be found for any collection 

H{~}{J) : Mo~({~}, {~} o {i}) -~ Mo~2([{k}], [{~}] o [{i}]), [k] 
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by use of (8.1.85). Setting 

{~} := (8.1.195) 

we obviously have a solution to eq. (8.1.75), relating the structure matrices F 1 

and t~ of C and C I. By the R0-invariance of the F~-matrices, it follows from 

(8.1.174) that, for #~. defined by (8.1.76) in terms of the rl-matrices , one has that 

~:~ (tr{i}{j},{k} ,/t) = 1. Hence, in particular, we conclude that 

q(a{i}{j},{k} ) = I.  (s.1.1o6) 

However, (8.1.147), (8.1.193) and (8.1.196) imply that 

j -~ q(~0(j)) (8.1.197) 

is a B-grading on Obj. By definition of R0, this has to be trivial on R0. This 

means that q rp, o= 1, i.e., the subcategory R + of R0 is trivial as a braided category, 

as well. Thus, there exists a unique braided monoidal category C I with objects 

Obj I such that C is induced, as a braided category, by C I and ~rRo. This proves 

(8.1.183), with (Try, ~', C) a functor compatible with the associativity constraint 

and constructed from the isomorphisms H~:] }{j}. 

If we assume that C is induced by C, as a braided category, then we find structure- 

matrices for C, C I and C such that, for suitable isomorphisms HI~, the data (rl ,  F1) 

of C and the data (e2, #2) of ~ are related by (8.1.75) and (8.1.76). Furthermore, 

for suitable isomorphisms ~ i d  the data (r l ,F1)  of C are related to the data "'{k}, 

(¢ ?,'~ 2, 2J by the same equations. It follows immediately that the isomorphisms 

//{~){~} defined by (8.1.195) provide a solution to eqs. (8.1.75) and (8.1.76) if [k] 

we insert the structure matrices of the categories C I and C. Using the arguments 

of Proposition 8.1.4, this is seen to imply that we can choose (~rk, ~', C) to be 

compatible with the cornmutativity constraint. [] 
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If we assume that R0 does not contain a fermionic object, i.e, R0 = R +, then Lemma 

8.1.8 shows that it is suffiicient to study graded fuison-rule algebra homomorphisms 

(R0 = 1), in order to get a complete characterization of induced categories. In fact, in 

most applications, we will have graded fusion rule algebra homomorphisms right from 

the beginning. 

The advantage gained from a graded action of R on J ist that, for a convenient 

choice of 7, and by use of (8.1.29), the structure constants r2 and F2, as presented 

in (8.1.161) and (8.1.162), will be proportional to r2 and F2, and the corresponding 

factors of proportionality do not depend on the arguments of ~2 and F2 but only on 

their gradings. Let us recall some basic facts on graded fusion rule algebras and present 

simplified versions of eqs. (8.1.161) and (8.1.162). If R has a graded action (8.1.144) 

reduces to a pair of short exact sequences: 

7 

I 
0 7rR ,, ,] ,0 

grad 

Obj) 

! 
,R ,  , J  

1 
, R" grad ,Grad(Obj) 

! 
. Grad ,0 

(8.1.198) 

where the squares in the middle commute. Here we also require a section ~ : Grad(Obj) 

Grad(Obj), with ~r~ o~ = id. With any such ~ we can associate a symmetric cocycle 

e Z2(Grad(Obj),l; R), 

by setting 

grad (~(g, h)) ~- ~2(g) ~2(g" h) -1 ~(h), (8.1.199) 

where we use exactness of the lower row in (8.1.198). The ambiguity in choosing ¢, 

corresponding to multiplication by a function $ : Grad(Obj) --~ R, implies that ~ is 
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only given up to boundaries 6A. As explained in the analysis following (7.287), the 

possible ~'s correspond to the classes 

[~] • Ext(Grad(O-~j),R) C H 2 (Grad(Obj),l;R) (8.1.200) 

which describe the possible extensions of R over Grad(Obj), given by Grad(Obj) and 

the short exact sequence in (8.1.198). 

The circumstance that, from two groups, R and Grad(Obj), and an extension [~], one 

finds a new group, Grad(Obj), containing R and Grad(Obj)/R ~- Grad(Obj) motivates 

the following generalization, where the gradation groups are replaced by fusion rule 

algebras. We assume that Obj is a fusion rule algebra, R an abelian group and [~] C 

Ext(Grad(Obj), R). Then the algebra Obj ~)[~] R is defined as follows: The objects are 

of the form ~"]~eR(X~,/~), with (X + Y, #) = (X,/~) + (Y, ~), for X~, X, Y E Obj. Thus 

the irreducible objects are given by J = {(j, tz)}je],~ER. The tensor product is defined 

by 

= ( 8 . 1 . 2 0 1 )  

where we have chosen some representative ~ • [~]. 

Up to isomorphism, this fusion rule algebra is independent of the particular choice 

of a representative in the class [~], because (j,i~) ~-~ (j,l~ o A(grad(j))) provides an 

isomorphism from the algebra defined with the help of ~. ~A to the algebra defined with 

the help of ~. 

The universal grading is given by the group Grad(Obj) associated to the extension 

[~] of R over Grad(Obj). An injection R ¢--* Grad(Obj) and a choice of some section 

: Grad(Obj) ~ Grad(Obj) satisfying ~rtlo ~ = id and eq. (8.1.199) determines the 

grading to be given by 

grad(( j ,~))  = ¢(grad( j ) )  o ~ .  (8.1.9.02) 

The algebra Obj ~ ]  R contains R as a subgroup of invertible objects with a free, graded 

action on J.  The quotient of Obj (~)[~] R by R is precisely Obj, with a homomorphism 
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7r R given by 

~rR((j,/z)) = j .  (8.1.203) 

In fact, these properties determine the algebra Obj (~)[~] R completely. 

L E M M A  8.1.g 

Assume that R C Obj is a subgroup of invertible objects with a free, graded action on 

J. Let Obj :-- O b j / R  be the Perron-Frobenius quotient by R, and denote by [~] 6 

Ext(Craa(Obj),R) the extension o/ gradation groups induced bu (S.1.lS2). Then the 

following statements hold ~rue: 

(i) For any ~ E {Grad(Obj )  ---, Grad(Obj )} ,  with 7r~ R o ~ = id, there is a unique 

choice of a map 7 : ] ~ J, with w R o 7  = id, such that 

ff g~(-~-~([./])) = gr,~d(7([j])) , (8.1.204) 

i.e., the right, outer square in (8.1.198) commutes. The corresponding map ~7 : 

J --~ R, and the group elements, a[i][j],[k] are given by 

g,-,~a(,7(j)) = gr,~a(.~)(¢ g~(b;-ga(~]))) , (s.1.2o5) 

a[i][./l,[k ] = ~(grad([i]),grad(~])), (8.1.206) 

where ~ E [~] is the representative obtained from ~.  

(ii) Furthermore, 

Obj ~- Obl (~)[~1 R (8.1.207) 

as a fusion rule algebra, i.e., Obj, R and [~] determine Obj completely. If, for 

some ~ G [~¢], the tensor product Obj (£)[~1 R is given by (8.I.~01) then an explicit 

isomorphism of fusion rule algebras is given by 

(E/ l ,u) , u o T ( [ j ] ) ,  

with inverse j , ( [ j ] , r / ( j ) )  , (8.1.208) 

where 7 and rl are the maps associated with ~ and some section ~b by (8.1.~04) 

and (S.1.~05). 
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P r o o f .  i) We first consider the expression on the right hand side of (8.1.205). Using 

that  7rR# o ~ = id, it follows that the expression lies in the kernel of 7rR#. Hence, by the 

exactness of the lower sequence in (8.1.198), we find a function ~/ : J ~ R such that  

(8.1.205) holds. The covariance condition 7/(a o j )  = a o 7/(j) is obvious from (8.1.205). 

Hence the map "y([j]) is well defined by setting j = ~/(j) o 7([J]). Inserting 7([J]) in 

(8.1.205), we arrive at (8.1.204). Equation (8.1.206) is found by combining (8.1.29), 

(8.1.199) and (8.1.204). 

Par t  ii) of the lemma can be verified directly by using the results of part  i). 

We remark that  the map ~/from J to R can be expressed in terms of the function 

[] 

TIt : Orad(Obj) ~ R, g --~ g(~o l rR#(g ) ) - i  (8.1.2o9) 

'7 = '71 o grad .  (8.1.210) 

In the next lemma we evaluate the expressions for the structure matrices found in 

Lemma 8.1.7, using the special forms of 7, 7/and ~r[i][j],[k] given above. The problem of 

extracting a braided tensor category with object  set Obj from a category on Obj can 

then be translated into a problem of group cohomology. 

LEMMA 8.1.10 

Suppose that R C Obj is as above and that C is a braided, monoidal category, with 

objects Obj, which is trivial on R as a monoidal category. 

Let ~ : Grad(Obj) --* Grad(Obj) be an arbitrary section and ~ E Z2(Grad(Obj) ,  1; R) 

the associated, symmetric cocycle. Then the following statements hold true: 

(i) There ezist vector spaces Mor2([k], [i] o [j]) = CN['IlJl,[~I, and isomorphisms rri'j 

as in (S.1.79), such that the matrices and ae ned (s.I.1 0, can be 
2 

ezpressed by the phase factors p introduced in (8. t .160) and by matrices F2 and 
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2 r2, in the following way: 

P2(i,j, 4, [t]) = 

= p(~(grad([i]) o grad(~]),grad([k])). ~(grad([Jll, grad([k])) -1, ~(j)) 
2 

F2([i], [if, [k], [1]) 
(8.1.211) 

~2(i, 4, [if) = 

= p ( , (~ ) . , (k ) )p  (~(gr~a(~]),  grad([k])) . , (k) • , ( j ) - l )  ~ (gr~d( , ( j ) ) ;  ~ g~(~-~([j]))) 

r2([ j ] ,  [k], [l]), (8.1.212) 

where ~ i-, given in (8.1.e05) and ~ in (8.1.150). 

(ii) We define w • AS(arad(Obj) ,2;M) (with M = C or U(1), and A*(G,n;M)  as 

in Chapfer 7.$) by the following formulae: 

w([gl I g2 I g3 [g4]) = w°(gl,g2,g3,g4) :-- 

-- P(~(gl • g2" g3, g4)~(g2 " g3, g4) -1,  ~(g2, g3)) 
(8.1.213) 

w([gl I g2]lg3]) ~ w+(gl,g2 I g3) := 

-- P(~(gl "g2, g3), ~(gl, g2))rT"t (~(gl, g2), "~(g3)) -1 
(8.1.214) 

~([g311gl I g2]) - -  w-(gl,g2 I g3) := 

: P(~(gl" g2,g3),  ~ ( g l , g 2 ) )  -1  (8.1.215) 

Then w is a cocycle, i.e., 

,~ e z s (arad(Obi), 2; M ) .  (8.1.216) 

(iii) The reduced structure matrices obey the following modified categorial equations. 
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Pentagonal equations : 

( ~  P2([i], [./1, ik], [s])® lily,,,,)(~D 1IN,~., ® $'2([i], [s], it], [t])) 
[,] [~] 

( G  P2([/], [k], [l], [,11 ® ~,., ,) 
[,] 

= w O ( g i , g j , g k , g l ) - l ( ~  tIN,,,. ® ~2([ , ] , [k l , [ l l , [ t l ) )T12(~  IIN~,,. 
[,] [,] 

® F2([i], [j], [s], [t])) 

Hexagonal, "t- : 

(8.1.217) 

( ~  ~2([i], [k], [11) @ ][2Vzj,,) ~2([i], [k], ~], It]) ( O  ~2(~], [k], [I]) @ llNi,,,) 
[tj [t] 

= w+(gi ,gj  I gt)-lj~2([k], [i], [j], [t]) ( ~  ]IN,~, , ® r2([l], [k], It]))J~2([i], F], [k], [t]) 
[~] (8.1.218) 

Hexagonal, - : 

( ~  ~2([k], [i], [l]) -1 ¢D 1IN~.,,)~2([i], [k], [j], [t]) ( ~  ~2([k], [j], [I]) -1 @ "~Ni,,,) 
[z] [t] 

= ,,,-(gi, gj I g~)P2([k], [i], [./], [t])(( D 1IN, j., ~ #2([k], [l], It])-1)P2([i], [./], [k], [t]). 
[/] (8.1.219) 

Here we ave using the abbreviations gi = grad([i]), etc.. 

(iv) For any ~ • A4(Grad(Obj) ,2;  M ) ,  we set 

2 

f2([i], [j], [k], [/]) = )~([gi I g5 1 gk])f2([i], [J], [k], [I]), 

r2([i], [j], [k]) = ~([gillgj])¢'2([i], [j], [k]).  (8.1.22o) 

Then the matrices F 2 and r 2 satisfy the modified categorial relations (8.I.217), 

(s.I.~Is) and (S.1.~19), where ~ is replaced by 

' ~(6~) - i  (8.1.221) ~ . 

Hence, the obstruction against finding a solution to the usual categorial equations 

by rescalings, as in (8.I.~20), lies in 

H s (Grad(Obj),  2; M) . (8.1.222) 
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Proof. 

The assertions made in Lemma 8.1.10 are verified by straightforward computations 

which we will not reproduce here• Nevertheless, we shall assist the readers' task with 

the following remarks and formulae. 

i) In order to obtain (8.1.211) and (8.1.212) we insert (8.1.206) into the relations (8.1.161) 

and (8.1.162). Since a[i][j],[/=] only depends on the grading of its indices, and since the 

grading of the summation indices in (8.1.162) is fixed by gi, gj and g/¢, the diagonal 

matrices in (8.1.162) are, in fact, multiples of the identity which combine to the factor 

in (8.1.211). 

ii) The cocycle condition (8.1.216) is given by the following five equations: 

w 0 E Z 4 ( G r a d ( O b j ) , l ; M ) ,  (8.1.223) 

and 

wO(gl, g2, 93, g4)wO(g2, gl, g3, g4)-lwO(g2, g3, gl, g4)wO(g2, g3, g4, gl) -1 = 

= w-(g3,g4 I gl)-lw-(g2g3,g4 [gl)w-(g2,g3g4 I gl)-lw-(g2,g3 [ gl)8.1.224)( 

wO(gl, g2, g3, g4)wO(gl, g2, g4, g3)-lwO(gl, g4, g2, g3)wO(g4, gl, g2, g3) -1 = 

= w+(gl,g2 I g4)co+(gl,g2g3 I g4)-lw+(glg2,g3 [g4)w+(g2,g3 I g4) -1 
(8.1.225) 

,,,+(gl,g2 f g3)~+(g2,gl I g3)-' = ,,,-(g3,g2 1 gl),,,-(g2,g3 f g~)-i (8.1.226) 

wO (91, g2, g3, g4)wO (g l, g3, g2, g4)-lwO(g3, g l, g2, g4) " 

• wO(gl, g3, g4, g2)wO(g3, gl, g4, g2)-lwO(g3, g4, gl, g2) 

= w+(gl,g2 I g3)-lw+(gl,g2 ]g4) -1 "  

• w-(g3,g4 I g2)w-(g3,g4 I glg2)-l~-(g3,g4 I g l ) .  
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For the verification of (8.1.216) it is useful to observe that the special function w, 

given in (8.1.213)- (8.1.215), has the symmetry properties 

w+(gl,g2 l g3) = w~(g2,gX I g3) 

wO(gl, g2, g3, g4) = wO(gl, g3, g2, g4) = wO(g4,g2,g3,gl). 
(8.1.228) 

Parts iii) and iv) simply follow by inserting formulae (8.1.211) and (8.1.212) into the 

usual categorial equations and formulae (8.1.220) into the modified categorial equations 

(8.1.217)- (8.1.219). The expressions for 6:~ are given by (7.290), (7.293) and (7.294). 

[] 

The strategy we are pursuing here for expressing categories with graded subgroups by 

smaller ones involves the concept of induced categories, combined with the operation 

C ~ C q, for q E Hom(F4(Grad(Obj)),U(1)),  described at the beginning of this chap- 

ter. In the examples we are interested in, the categories associated with the subgroups of 

invertible dements can be converted into categories with permutation statistics. Thus, 

the remaining obstruction to trivialize such a category is the extendabihty of the rel- 

evant quadratic forms, i.e., the signatures, to the entire universal grading group. As 

a starting point to a more detailed analysis of this situation we make the following 

definition: 

Consider the map 

i 2 :  R/2R ----* Grad(Obj)/2 Grad(Obj) (8.1.229) 

defined by requiring commutativity of the diagram 

pR 
0 ,2R" , R ,, R/2R ,0 

0 ,2 ar d(Obj), ar d(Obi) pa ,, ar d(Obj)/2 ar d(Obj) ,0 
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The groups in (8.1.229) contain only elements of prime order two and thus give rise 

to vector spaces over the field Z2, (with scalar multiplication (e,g) ~ ge,~ E Z2). We 

can therefore find a space complementary to the kernel, (R • 2Grad(Obj))/2R, of i 2. 

Its prelmage,/~, in R is characterized by the properties 

2R C/~ C R 

R / 2 R  = (R fq 2Grad(Obj))/2R @ /~/2R. (8.1.231) 

Def in i t ion .  

We shall call a subgroup/~ C R satisfying (8.1.231) a maximal, signature-extendable 

subgroup (for reasons that become clear below). 

LEMMA 8.1.11 

Let C be a braided, monoidal category with objects Obj, R C Obj a subgroup of invertible 

elements with a free, graded action on Obj, and f~ C R a mazimal, signature-eztendabIe 

subgroup thereof. 

Assume that ~ • g o m ( R  ® Grad(Obj), U(1)) (see (8.1.150)) has a symmetric ez- 

tension to Vrad(Obj)®2, i.e., the class [,~], as in  (S.1.151), is trivial: [~ ]  = 0. 

Then we have the following results: 

(i) There ezists a quadratic/unction q • Horn(r4(Grad(Obj)) ,U(1)) such that Cq 

is induce& as a braided catego~, by some category 5, with objects 0"-~ := Obj / h 

and homomorphism, r h. 

(ii) The subgroup fl  : r i t (R ) ~ R/h, of invertible elements in ~ j  obeys 

Here, the quadratic form q can be chosen such that the subcategory o f f  associated 

with R is trivial, as a monoidal category, and has permutation statistics. This 

enables us to find, for some gauge, an element 

p • Hom(/~®/~,g2) • (8.1.233) 
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Moreover, we have ghat 

= o,  o n  ( s . 1 . 2 3 4 )  

P r o o f .  

(i) We take it from Lemma 8.1.6 that there exists a quadratic function @ E 

H o ~ ( r 4  (a rad(Obj ) ) ,U(1) )  such that 

~qo ~ 1 ,  (8.1.235) 

as defined in (8.1.152). In particular, the monodromies on R vanish, and hence 

the quadratic function qO, given by qO(g) := p(g,g), g E R, satisfies 

q0 e Hom(R, Z2). (8.1.236) 

The quadratic function ~0 can always be multiphed by an expression of the form 

(8.1.154) without changing (8.1.235). Hence q0 can always be replaced by 

q = q0 ~-1 , (8.1.237) 

with 

(i.e., e is extendable to Grad(Obj)). Next, we show that, for any given subgroup 

-~ C R satisfying (8.1.231), we can find an ~ such that /~ is in the kernel of the 

quadratic form q. 

Since the map i 2 in (8.1.229) gives rise to a linear map between vector spaces over 

the field Z2, we can find a homomorphism 

~b : Grad(Obj)/2 Grad(Obj) ~ R / 2 R  (8.1.238) 

such that ~b o 12 is the projection onto the summand R / 2 R  in the decomposition 

(8.1.231), i.e., 

~b o i 2 [R/2R = id . (8.1.239) 
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Clearly, q0 __ 40 o pR, for some ~0 e H o r n ( R / 2 R ,  U(1)).  

Setting 

c = 40 o ¢ o p a ,  (8.1.240) 

it follows from the equation e o i = 30 o ¢ o pG o i = (l 0 o ¢ o i 2 o pR and from 

(8.1.239) that  e o i ~ .  Inserting this choice of e into (8.1.237) we obtain that  

q r  k -- 1, 

in the category C 4, with ~ = ~°e-1. 

Thus, we can find a gauge in which 

(8.1.241) 

P : -  ~2 rk× k - -  1, (8.1.242) 

where the ~2-matrices are the ones computed for C ~. Together with (8.1.235), this 

shows that  the F2- and ~2-matrices in (8.1.161) and (8.1.162) are/~-invariant,  and 

hence C ~ is induced by some category C with objects O~b'j. 

(ii) We remark that the direct sum decomposition in (8.1.231) is equivalent to the 

conditions, 

k n 2 C, :d(Obj)  = 2R 

and • c k + 2 Gr:Z(Obj). (8.1.243) 

If we take (8.1.243) modulo k and use the fact that  Grad(O'-~) = ~r k (Grad(Obj))  

we find that  /~ C 2Grad(O"~).  However, 2R C /~ also implies that  2/~ = {1}. 

This, in summary,  yields the inclusion (8.1.232). Of course, we still have that  

rh -- 0 for the category C, so that  (8.1.233) follows by the same arguments as in 

part  i). 

[] 

The special situation to which the s tudy of braided, monoidal categories is reduced in 

Lemma 8.1.11 allows us to find particularly simple representatives in the cohomology 
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class of the cocycle introduced in Lemma 8.1.10 it). To this end, we propose to make 

choices 7, as in (8.1.198), such that  the associated extension (see (8.1.199)) factorizes. 

The relevant group-theoretical lemma in this context is the following one. 

£EMMA 8.1.1~ 

Let G be a finite, abelian group, and let R be a subgroup with 

R C 2 ( 4 0 )  C 2 G .  

Define ?r and 6 by the short exact sequence 

(8.1.244) 

0 , R ,  / ,G  ?r , , 6  , 0 .  (8.1.245) 

Then there exists a section 42 : G --, G and presentations of the groups R and G 

R = ~2(Cl) O " "  @ Z2(ck) (8.1.246) 

6 = Z2,~1(b1) O " "  • Z2"~(b/~) ¢ H (8.1.247) 

with generators C l , " "  ,ck E R, b l , ' "bk  E G, and H C G, such that the extension 

e Z z t ( 6 ,  R) C H2(6 ,1 ;  R) is given by 

k 
~(hb~' ...T;~', gb;~' . . .b~')  = H c~1(u1'"1)" (8.1.248) 3 

j : l  

Here 
j 'o  , o < , , j + p j  < 2-J, 

7j(v, tL) (8.1.249) 
1 , vj + ~ j  >__ 2ni. 

P r o o f .  

The first step is to present G as a sum of cyclic groups, z ~ ,  whose orders are powers 

of primes. It is clear that  any element of order two lles entirely in the direct sum of the 

Z2,~-subgroups. Hence we can write 

G = ~2mI (b 0) (~ ' ' "  (~ ~2ml(b~) (~ H o 

with 2 ~ -- z2((b°) 2cm1-1)) ( ~ . . . ¢ z 2 ( ( b ° )  2(m1-1)) 
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for generators b°, . . .  , b~ C C, and rrt 1 _< m 2 _<.. .  < rn I. The subgroup 2(4C) is given 

by the direct sum of cyclic subgroups with rnj > 2. Given the generators b 0, we can 

define characters ct i E Horrt(2C, Z2 ) by s e t t i n g  ai((bo) 2(mj-x)) : (--1) gq. Their pull 

backs are given by i*(aj)  E Horn(R, Z2). Let j1,1 < J l  < l, be the smallest integer 

such that  i*(cti: ) # 1, and let e 1 E R be such t h a t  i * ( O t j l ) ( C l )  = - 1 .  It follows that  

R c z2( (s° l )  • 

and that  

where bjl is of the form 

i (c l )  = (bj ) 

l _ z..2(,~_,~h) bjl = bo.,1 1-[ (b?)'  
i > j x  

for some zi E N . In particular, bjl has order 2mh, and we can replace b° by bjx as a 

generator of G. Since R can be seen as a vector space over z2, we can write 

R = =2(Cl) • ker(i*C~jl) ) • 

The image o f / ~  := k e r ( i * ( c t j l ) )  under i lies entirely in the subgroup of G generated by 

b0x+l,-.. , b~. Repeating the above argument for the inclusion of R t in this subgroup 

we obtain generators c2, bj2, and so forth. If we add the cycfic groups with i * ( a j )  = 1 

to H ° and use that  m j  > 2 we find that  the groups R and G of (8.1.244) have the 

following presentations: 

G = z2(,~+x)(bl) @.- .  @ =2(,k+x)(bk) @ H, (8.1.250) 

and R has the form (8.1.246), with the property that  the inclusion i : / t  ~-~ G is given 

by 

i ( c j )  = b 2"i . (8.1.251) 

The presentation (8.1.247) of G follows immediately, and the projection 7r : G ~ G is 

given by setting Ir(bj) = bj and 7r(h) = h, for h E H.  
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We now define a section ¢ : G -* G, with lr o ¢ = id, by setting 

h) = (8.1.252) 

where f j  : Z2-1 --, Z2~¢+, is the function fj(v) = v, for ~ = 0 , . . .  , 2 nj - 1. In analogy 

with eq. (7.235) for the quantities given in (7.233) and (7.234), we have that  

6/~ = 2"~ ~ .  (8.1.253) 

Hence the extension defined by 

i(~(a,b)) = ~(~) ¢(b) ~ (= .  b) -1 (8.i.254) 

is the one given in (8.1.248) 

[] 

In the special situation described in Lemma 8.1.11. ii) it is possible to eliminate the 

prefactors w ° and w + in equations (8.1.217) and (8.1.218) by a substi tution of the form 

(8.1.220). Moreover, one can find a simple, factorized form of w-  in (8.1.219). This, 

however, requires some basic knowledge of the group Hs(G, 2) which has been computed 

in [57]. The cycle 

1 
~:(g) := ~ O[gJgl]g l g] 

= - [ g  I g I g I g] + [gllg I gl - [g I gllg], (8.1.255) 

for g E 2G, i.e., g2 = 1, plays a crucial role in this analysis, since the homomorphism 

A = F4(2C) , Hs(G,2)  : {g} ' i (g)  (8.1.250) 

describes the torsion-free part of the homology group. Furthermore,  using that  

Hom(Hs(G, 2),M) ~- HS(G, 2;M), for M = U(1), C, 

induces the dual homomorphism 

A* : H5(G,2;M) , Hom(F4(2G);  M) ,  (8.1.257) 
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defined, for a cocycle w e ZS(G, 2; M),  by 

A*(w)(g) = wO(g,g,g,g) -1 w-(g,g I g) w+(g,g ] g ) - l .  (8.1.258) 

We easily check that ,  for g E 2G, the expression (8.1.258) depends, in fact, only on the 

cohomology class of w. Since, with the help of Lemma 8.1.12, we can find a decompo- 

sition of G into cyclic groups for which the cocycle considered here factorizes, we only 

need to know the groups HS(Z2- ,M).  It has been shown in [57] that ,  for these groups 

the map A defined in (8.1.256) is onto, and the kernel is generated by {gh} - {g} - {h}. 

This shows that  A*, as defined in (8.1.257), is injective, and its image is Horn(  2G, M). 

Hence 

Ha(Z2 . ,  2; M)  ---, Z2, 

, , . ,  ~ A*(, , , ) (2--1),  (8.1.259) 

is an isomorphism. The  non-trivial cohomology class can, for example, be represented 

by the cocycle 

w 0 -- 1 , w + -- 1, 

( 2~i t.y(i, k ) ) (8.1.260/ ~ - (J ,k  I 0 = e=p ~ 2 -  

where j , k , l  E Z2-, and 7 is as in (8.1.249), with n = nj .  For the special cocycle in 

Lemma 8.1.10, ii), the invaxiant 

is given by 

A*(w)(g) = p(~(g,g),~,(g,g,))-i rh(~(g,g),~(g)), (8.1.261) 

for g e 2 a r a d ( ' ~ ) .  In the case where 2R = 1 (i.e., R = 2R), we easily see that  

2Grad(Obj)  ---, R :  g ~-, ~(g,g) is a homomorphism.  If we assume, fur thermore,  tha t  

= 0, it follows that  

A*(,,,) e H~(2C, - ,~d(Obj ) ,  ~2) .  (8.1.262) 
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The results on HS(G, 2; M)  cited above, together with the normal  form for extensions 

given in Lemma 8.1.12, allow us to find a particularly simple representative in the 

cohomology class of the cocycle w in Lemma 8.1.10 ii), assuming that  the conditions 

(8.1.232), (8.1.233) and (8.1.234) in Lemma 8.1.11, ii), hold. More precisely, we have 

the following result: 

LEMMA 8.1.13 

Let C be a quantum category and R C Obj a graded subgroup of invertible objects with 

C 2 (4 ( a r a d ( O b j ) ) )  . (8.1.263) R 

Assume that all monodromies with objects in R vanish, i.e., 

rh = 1.  (8.1.264) 

Suppose that R and arad(Obj) ~- Grad(Obj)/R are presented as in eqs. (8.1.1~46) and 

(s .m~7)  4 ~emma 8.~.1,, ane ~et ~ e E=t(C,.ae(O~j),R) be the e=tension given 

in (8.1.258). Let w • Zs(Crad(Obj) ,2;M) be the cocycle defined in terms of ~ as 

~Ti'J for which J~2(t7,//., b,, [1]) = 1, /or in Lemma 8.1.10, ii), /or a choice of gauge of "'[k] 

cr, p , v  • R, so that p • H o m ( R  ® R,U(1)).  Let cj • X 2 be the invariants given by 

, j  := A*(w)((bj) 2(~'-a)) = p(cj, c j ) .  (8.1.265) 

Then: 

(i) The cocycle w is cohomologous to the cocyele & given by 

~0=1, 

~ + = 1 ,  

~,-(a, b l c) = e~p(2,~i  2-"~ ,~.(c) -yA,~Aa),,~.(b))), 
i,e i = - i  (8.1.266) 

where the 7cj's are the projections onto the cyclic factors in (8.1.t47), i.e., 
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and 7j is aJ in (8.1.~49). 

(ii) The F 2- and r2lmatriceJ defined in (8.1.~0), where A • A4(Grad(Obj), 2; M)  is 

Juch that dJ = w(6A) -1,  Ja~iafy the usual pentagonal equationJ and also one of the 

hezagonal equation.~. The only categorial equation that is modified iJ the second 

hezagonal equation: 

(~ ) "2 ( [k ] ,  [i], [t]) -1 ~ H)F2([i],[k],[j],[t])(~r~.([k],[j],[t]) -1 ® ~) 

B] [l] 
= Co(g, I gk)F2 ([k], [i], [j], [t]) ( ~  II ® r2([k], [/], [ t ] ) - l )F2 ([i], [j], [k], [t]). 

[t] (8.1.267) 

(iii) Let R + be ~he subgroup generated by {cj : ej = 1}. Then C is induced a.~ a 

braided, monoidal category by some category -C, with object set Obj := Obj /R  +, 

and projection lrR+. 

P r o o f .  

If ~ = 0 it follows that  the quadratic function in H o m ( r 4 ( R ) ,  U(1)) characterizing 

the category C R associated to R has values in z2, so that  CR is triviM as a monoidaJ 

category. Hence there exists a gauge in which l~2(a,# , u, [1]) = 1, for a, #, v • R, and, 

as R ® R has only elements of order two, with p • Hom(R  ® R, Z2). Let e l , ' "  , c/~ be 

the generators of R in the presentation (8.1.246) that  are used for the factorized form, 

eq. (8.1.248), of the extension. We define/3 • Hom(R  ® R, Z2) C Z2(R,  1; U(1)) by 

setting 

{ p(ci, c#) , 
/3(ci, cj) = 1 , 

If we perform a gauge transformation with 

for i < j ,  
otherwise.  (8.1.268) 

Ai,J [h] := /3(T/(i) o ~(gl,gj),~ICJ))/3(~lCi),~(gi,gj)), (8.1.269) 

as in eq. (8.1.159), the braid matrix on R, pl :=/3t/3-1p, defined as in eq. (8.1.162a), is 

diagonal in the generators cj, i.e., 

p'(ci, ci) = 
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as follows by using that  ppt = rh = 1. We have tha t  pt rR+xR+_= 1. By using that  

rh _-__ 1, we find from Lemma 8.1.7, iii), that ,  in this gauge, the/~'2- and 62-matrices are 

independent of the R+-action. This implies part iii) of Lemma 8.1.13. The cocycle 

col constructed from pl and ~ differs from co, as determined by p and ~, by a cobound- 

ary. This can be seen from (8.1.162b) and (8.1.162c), where the gauge-transformation 
2 

(8.1.269) corresponds to rescaling the r2- and F2-matrices by some ~1, with 

We therefore have that  

~l([g]lh]) = 1, 
~(~(g, h), ~(gh, k)) 

~x([g l h l k]) = fl(~(g, hk), ~(h,k))  " (8.1.271) 

and 

with 

k 

¢°+(gl,g2 [g3) = IXco~(~rj(gl) ,~rj(g2llTu(ga)) ' 

j= l  

_ [~,~ (k+l,m)"rj (k,l)] (8.1.274) co (k,,Im) = oj 

Thus co factorizes completely into cocycles over the cyclic subgroups, Z2- i , each of which 

is cohomologous to the cocycle given in eqs. (8.1.260) if Ej = - 1  and to the trivial cocycle 

if Ej = 1. Therefore w ,~ co~ ~ &, as defined in (8.1.266). This proves part  i) of Lemma 

8.1.13. The s tatement  in part  ii) is a direct consequence of Lemma 8.1.10, iv). 

[] 

We already found that  A*(w), as defined in eq. (8.1.261), is independent of the par- 

ticular choice of gauge we have made. It is straightforward to check that  A*(co) is also 
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(8.1.273) 

¢o' = co(6~1) -1 . (8.1.272) 

Inserting expression (8.1.248) for ~ into the formulae for the cocycle cot in Lemma 8.1.10, 

ii), and using the special form (8.1.270) of p l  we find that  

k 

coO(gl'g2'g3'g4) : IX  coO(Trj(gl)'~rj(g2)'~rj(g3)'Irj(g4)) ' 
j : l  



independent of the particular section ¢ :  Grad(Obj) ~ arad(Obj) ,  with ~r# o ¢ = id, 

we use to define the extension (. Thus A*(w) is a true invariant of the category C. 

Furthermore,  one easily verifies that  A*(w) does not change if C is replaced by C q, for 

Ho~(r4(oraa(Obj)),U(1)). In particular, if C is of the form C ~ Ca, where some q 6 

is induced by some category on Obj, the obstruct ion A)(w) has to vanish. 

We conclude this section with a summary of results for a cyclic grading group. 

C O R O L L A R Y  8.1.I~ 

Let C be a quantum category with objects Obj, and let R C Obj be a graded subgroup. 

Assume that Grad(Obj) is cyclic, so that, for some numbers n , m  G 1% Grad(Obj) = 

z , , , (g )  and R = ~(o- ) ,  and grad: R ~ a r a d ( O b j )  : o- ~ g - .  

(i) If  A*(w) # 1, then m a n d s  are even, i.e., m = 2m' and n = 2n'. In this cane, 

we conclude that 

C a) there ezists a quadratic form q 6 Ho~(r4(Grad(Obj)),U(1)),  and, d•n- 

ing R t := T.rn,(o- 2) C Tan(O') = R, a quantum-category, C, on the objects 

O~j = Obj / R'  such that e ~ dq, where d is the category induced by C and 

~rR, , and the monodromy Th vanishes on C. The subgroup, R = 7rR,(R ) = 

Z2(@), of invertible elements in Obj is embedded into Grad(Obj) = Z2n(~) 

by gra'--aO ) = ~b. 

(b) There ezists a gauge for the structure constants of C such that 

F2(i , j ,  k, [11) = 

= (_ l ) r / ' ( g~( J ) )  [7(gi+g,,g~)--T(gi,gk)] ~,2([i], b'], [k], [/1) 

,hCJ, k, [t]) = 

= ( - 1 ) ' ( ~ ( J ) ) n ' ( g " r a d ( k ) ) ( - - 1 ) 7 ( g i ' g k ) [ , ' ( ~ ( k ) ) - n ' ( ~ ( J ) ) ]  ~2([j] ' [k], [/]). 
(8.1.275) 

Here '7 e Z2(Zn, 1; 2~2) is as in eq. (7.e34) , and 

1 , for n < v < 2 n ,  
,1'(~") = o , / o r  o _ <  ~ , <  n .  
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we denote by ~] e 06j = O'-~ / h the h-orbit of order two of j e b-'~ ~nd 

by gj = grad([j]) the grading in Grad(Obj) = ~ ( ~ ) ,  with ~ := ~r#(.~). 
f ,  ^ 

(c) The F- and f-matrices satisfy the modified categorial equation, (8.1,$17} 

- (8.1.~19}, where the eoeycle w E Z S ( ~ , 2 ; U ( 1 ) )  is of the form given in 

(8.1.~73) and (8.1.~7~), with 7j replaced by 7 and ej = -1 .  There ezists 

a function )~ E A4(Grad(Obj),2; U(1)) so  that the r 2- and F2-matrices 

defined by (8.1.~20) satisfy the ordinary pentagonal equations for a monoidal 

category on Obj and the hezagonal equations 

( ~  r2([i], [k], [l]) @ at)F2([i], [k], ~], [t]) ( ~  r2([j], [hi, [l]) ® 1I) 

[l] [0 
= F~([k], [i], [j], [ t ] ) ( ~  at ~ r2([t], [k], [t]))F2([i], IJ], [k], [t]) 

[0 

(~]~,2([k] ,  [i], [l]) -x  ~ at)F2([i], [k], [/], [ t l ) (G,2C[k] ,  ~], It]) -1  ~ at) 
It] [4 

[ 21ri 
= ezpk n gkTCgi, gj))F2([k], [i], ~], [t])(~]~ at ® r2([k], [I], [t]) -1)  

[t] 
F2([i], [j], [hi, [t]). 

(8 1.276) 

(ii) I f  A*(w) = 1, then C ~- Cq, where C is induced by some category with objects 

Obj = Obj / R and projection rr R. 

P r o o f .  

We first remark that rh always has a symmetric extension, since, for a pair of cyclic 

groups H C G, the induced map H ® G ---, G ® G = G ®s G is injective and all extensions 

over U(1) are tivial. If the integer rn is odd we have that  R = 2R, and if n is odd we 

find that  i2, as defined in (8.1.229) and (8.1.230), is an isomorphism. In both  cases 

it follows that  R is a maximal signature-extendable group. By Lemma 8.1.11, ii), the 

category C is of the form described in part  ii) of the corollary. In particular, we have 

that  A*(w) = 1. 

In the case where both  integers, n and m, are even one finds that  i2 ~- 0, and the 

maximal signature-extendable group is R t = 2R. Using Lemma 8.1.11, i), we can 
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describe C a s  C ~ d q, where d is induced by a category Cwith objects O'-~ -- Obj /R ' ,  and 

projection ~rR,. If ~ e H o m ( R  ® R, Z2) is the basic braid matrix of C, see eq. (8.1.160/, 

and ~ e Hom(Z2($) ® Z2(~), ~2) the braid matrix of C" then, since ~ - 0 in both 

categories, 

= (#-') 
^ 77/. I T tg  I 

= ) 

= = ) (8.1.277) 

Hence if A*(w)c ---- 1 the same equation holds for A*(w)~-. It then follows from Lemma 

8.1.13, iii) that R + C/~, i.e., Cis induced by some category Con Obj = ~ j / [ l  = O b j / R  

mad ~r k. This imphes that C is induced by C and that ~r R = ~rit o ~rR, , proving part ii) of 

Corollary 8.1.14. If c(w)(g ) = A*c-(w)(~n' I ---- --1, then the formulae for the structure 

constants, eqs. (8.1.2751 and (8.1.276/, immediately follow from Lemma 8.1.10 and the 

fact that w is cohomologous to the cocycle (8.1.260/, where 2 n is replaced by n. The 

section ~ : Grad(Obj) -- ~ ( ~ )  ~ Grad(O"~) = •2n(.0) for which the expressions in 

(8.1.275) have been computed, is defined by 

~(.~v) ---- .~*', with v -- 0 , . . .  , n - 1 .  (8.1.278) 

This completes the proof of the corollary. 

[] 
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8 . 2  T h e  As - C a t e g o r i e s  a n d  M a i n  R e s u l t s  

In the first part of this section we present a classification of semisimple, monoidal as well 

as quantum categories with A,,- fusionrules. In particular, we show that the monoidal 

categories are uniquely determined by the statistical dimension of the generating object, p, 

and, .for braided categories, by the eigenvalues of e(p, p).  In both eases they are realized 

by the category nep(UJsl2)), as described in Chapter 7.1. 

We show that in the case of Obj2 = A,, fusionrules the gS(Grad(Obj2),  2; Z2)- 

obstruction discussed at the end of the previous chapter vanishes. This is used to show 

that the quantum categories with Zr * A2,~-1 - and Zr * A ,  - fusionrules are isomorphic to 

subcategories of a product of a O- category with group Zr and a 7~ep( Uq(sl2) ) - category. The 

quantum categories with T=(7-s,*A2,,_I) - fusionrules are described in terms of the categories 

they induce by the graded homomorphism f* : Z2~ * A2,~-1 --~ r~(Zr * A2,-1) • 

Combining these resultes with the restrictions on fusion rule algebras and statistical 

dimensions obtained in Proposition 7.~.11 we arrive at the classification of C ° - quantum 

categories which are generated by an object of statistical dimension less than two. 

In this section we shall be concerned with proofs of uniqueness of some simple 

categories. Together with the existence guaranteed by the explicit constructions based 

on quantum groups and O-categories, this allows us to give a classification of quantum 

categories with a generator of dimension less than two. 

We begin with a proof of existence and uniqueness for monoidal categories with 

A,~-fusion rules, disregarding any braided structure. For this purpose, we need to gather 

some basic facts concerning these categories. 
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Suppose that  C is a semi-simple, rigid, monoidal category with Ak+l-fusion rules, for 

k _> 1. We denote the objects of C by P0 = 1 ,p l , . - -  ,Pk, as in Lemma 7.3.2. i). We 

choose a pair of morphisms d 1 • Mor (1 ,p  I o Pl) and d[  • Mor(p  1 o Pl, 1) such that 

(VQI ol)a(pl,Pl,Pl)(1OVql) = (1o'OI)oz(p1,Pl,Pl)-l(01ol) = 1. (8.2.1) 

We define a sequence of numbers d j , j  = O, 1 , . . .  : 

d o = 1, dl 

and dj+ 1 + dj_ 1 = dld j . (8 .2 .2 )  

For a given d~, we introduce two bilinear forms on one-dimensional spaces, as follows: 

pj : Mor(pj+~,pj  o m )  ® M o r ( p j , p j + ~  o m )  ---, c 

I ® S ---+ (1 o O~)a(pj,pl,Pl)-l([ o 1)J  (8.2.3) 

and 

qj : M o r ( p j , p j + l  opl ) ® M o r ( p j + l , p j  opl ) ----} C 

/ @ s -. (1 o d~)=(p#+1, pl, pl)-l(/o l)S, (8.2.4) 

where j = 0 , 1 , . . .  , k -  1. 

We have the following results concerning these quantities. 

L E M M A  8.~.1 

Let C be a semi-simple, rigid, monoidaI category with Ak+l- fusion rules. 

(i) The number dl (and thus every d j )  is an invariant of C independent of the choice 

of ~91 and tg~. There exists some l • Z2(k+2) with (I, k + 2) = 1 such that 

dl  = 2 c o s  = (2)q, (8 .2 .5 )  

iw l  

with q = et+2. Furtherraore, 

dj = ( j + l ) q  # O, 
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for j = 0 , . . .  ,k ,  and 

dk+ 1 = O. 

(ii) For j = O, 1 , . . . ,  k - l ,  the bilinear forms in (8.e.3) and (8.~,.~) are non-degenerate 

and related b~/ 

(iii) If C is a C*-catego731 , then 

dj+l t (8.2.6) 
P J -  dj q j" 

t -- ± 1 moa (k + 2) .  (8.z7) 

P r o o f  ° 

From the pentagon equation 

~(pj o pl,pl,pl)~(pj,pl,p I o pl) = (~(pj,pl,Pl)o 1) ~(pj,pl o pl,Pl)(1 o ~(pl,Pl,Pl)l 

and (8.2.1) we immediately derive the identity 

1=((ljo11) o~I)~(pjop1,Pl,Pl)-1(~(p~,pl,Pl)Ol)((1O~l)O1). (8.2.8) 

From the isomorphism I~ pjm)pl, as defined in equ. (8.72), we find sequences of mor- 

phisms I~ E Mor(pj+c, pjopl ) and J~ E Mov(py, pj+copl), e = ±1, for j = 0 , . . . ,  k -1 

when ~ = 1, and j = 1,... k when e = -1, such that 

~(,j,,~,p~)(1 o~) = ~ ( q  o I) :~, (8.2.9) 
¢ 

where we sum over c = {±1} whenever the morphisms are defined. Inserting (8.2.8) we 

find that  

ljol = y ]  q (1 o o~)~(p~+ , ,p l ,p , ) -* ( s~  o 1) (8.2.10) 
c 

which is just  the parti t ion of l jo l  ¢ End(pj  opl  ) into the minimal projections associated 

to the channels pj+c. Since I~ is the corresponding injection, we obtain that  
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In terms of the forms defined in (8.2.3) and (8.2.4) this is expressed as 

1 = q j ( J ? , I  +) = pj(JT+l,I~-+l) (8.2.11) 

for j = 0 , . . .  , k - 1. This equation already implies that  none of the qj's is degenerate 

and that J~ ® I~ ~ O, whenever defined. For the map 

Pj : M°r(Pj+l,Pj o p l )  -+ Mor(pj,Pj+l opl)*  _- Mor(pj+ 10pl ,Pl) ,  

I ~ pj(I , . )  = ( l o ~ ) a ( p j , p l , P l ) - l ( I o l ) ,  

the inverse is explicitly given by 

16~-1(I) -- ( i  o 1) a(pj+l, Pl, pl)(1 o ~1) .  (8.2.12) 

Similarly, the inverse of 

~j(I) ---- qj(l T, -) = (1 o "0])a(p j+l ,  P1,P1)-1( I o 1) 

is given by 

~;1( i )  = ( i  o 1) ~(pj, pl, pl)(1 o ~1).  (8.2.13) 

I f  we apply  (1 o ~ )  a(pj ,Pl ,Pl )  -1 to (8.2.9) f rom the ]eft we obta in  that  

dl -- p j ( I ? , J ? )  -k q j - l ( I ; , J j - ) ,  (8.2.14) 

for j = 1 , . . .  , k - 1, and, in addition, that  

dl = pO(Io+,:o+), dl = q k - l ( I k , J i ) .  (8.2.15) 

Since both  forms, pj and q~, are non-zero and lie in the same one-dimensional space, 

there exist ~j • C*, j = 0 , . . . ,  k - 1, such that pj = ~j q~. From (8.2.11), (8.2.14) and 

(8.2.15) we find that 

dl ~0 -1  = = ~ k - l '  

and a~ : ~j + ,¢;~1, (8.2.16) 
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so that ,  by (8.2.2), 

dj = ~j-1 " " ' "  " ~0" 

The existence of a solution to (8.2.16) thus implies tha t  

dj 7t O, for j = 0 , . . .  ,k,  and dk+ 1 = 0 .  (8.2.17) 

It is straightforward to verify that  (8.2.17) holds if and only if d 1 is of the form stated in 

(8.2.5). The  fact tha t  dl is an invariant follows from (8.2.1) which constrains rescalings 

1 
to be of the form ~1 = A01, ~ = ~ 0[ ,  so that  dl in (8.2.2) is unchanged. We therefore 

have proven that  pj  and q~. are invariantly related to each other  as in (8.2.6), with a 

factor only depending on d 1. 

If we are considering a C*-category we can choose 01 and 0~ such that  

0 i = s g n ( d l )  ~[. 

With this normalization, we find that  

qj(I*) = sgn(dl)~l(I*). (8.2.17a) 

For I E M o r ( p j , p j + l  o Pl), we find from (8.2.17) 

0 < I * I  = p j ( ~ ; l ( I * ) , l )  = ~ j q j ( Z , ~ j l ( l * ) )  

= ~j  sgn(dl)  q j ( I )  qj ( I )* ,  

and hence 

sgn(dj+l) (8.2.18) 

Using the explicit expressions for a t, i.e., d~ = ( j  + 1)q, we see that (8.2.18) holds if and 

only if l satisfies the constraint (8.2.7). 

[] 

The relations found in Lemma 8.2.1, now serve us as a tool to consistently define 

isomorphisms between the Mot (k ,  i o j )-spaces and the M o r ' ( k , i  o j )-spaces,  of two 
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categories C and C I of this type, providing an equivalence of the F-matr ices  of C and 

C I. In our next lemma we derive this equivalence for a certain type of associativity 

constraint. This will be sufficient to prove the equivalence of the monoidal categories C 

and C I. 

LEMMA 8. ~. 

Suppose thai C and C t are two monoidal categories with Ak+ 1-fusion rules and with the 

same value, dl, for the invariant dimension of the generator. 

(i) For any sequence of isomorphisms 

Hp~ ,Pl 
Pj+I : M°r (Pj+I ,P j  ° Pl) --~ M°r ' (P j+I ,P j  ° Pl), 

with j = O , . . . , k  - 1, and H l l P ' ( l l )  = 11, there ezists a unique sequence of 

isomorphiJms 

HPi + I ,pl pj : M°r (p j ,P j+I  ° Pl) ~ Mor ' (p j , p j+ l  O pl),  

with j = 0 , . . .  , k - 1, such that, simultaneously, 

pt (T_i-Pj,PI Hpj+a,px~ (8.2.19) 

and 

t (Hpj+x,px Hpj,pl~ (8.2.20) qj~ PJ ® Pi+~ ) = ql" 

For these, have that Hf""'01)= 
Hi,p 1 (it) For any given choice of isomorphisms ..~ , as in i), and with H J ' I ( l j )  := l j ,  

there ezists a unique completion of the choice of isomorphisms 

H~ 'j : Mor(k ,  i o j )  -~ Mor ' (k ,  i o j )  

such that the diagram 
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~ Mor(,,j  O#Ol) ® Mor(k,i o s) F(i,j, pl,k) , ~  Mor(,,i o j )  ® Mot(k,,  o pl ) 
$ tl 

(~ Mo~'(,, j o 01) ~ Mo,-'(k, i o ,)  F'(i, i, e~, k),  ( ~  Mo~'(,, i o j)  ~ Mo~'(k, ,  o e~) 

(S.2.21) 

commutes, for all i , j ,k 6 J. 

P r o o f .  

It is clear that, by the non-degeneracy of pj and p~, there exists a unique sequence of 

H p#+I'p*p# such that (8.2.19) holds. Since d I = d~, and thus dj = d~, we immediately find 

from (8.2.6) in Lemma 8.2.1 that (8.2.20) is automatically fulfilled. From (8.2.20), 

q0(~1,1) = 1,  (8.2.21a) 

and Hl~m(1) = 1, we obtain that HP*'P'(dl)  = d~. 

For a given choice of H~ 'p* we now show part ii) of the lemma. The proof will proceed 

by induction in n. Assuming that we have defined 

H; 'p~ : Uo~(l, i  o pj) - .  Mo~'(l,i o p#), 

for all j = 0, . . .  ,n, and that 

O Mo,(, ,  Pi o pl) ~ ]#o,(t,i o ,) FCi, V#, Px, l ) ,  (~) Mo,(,,  i o pj) @ Mo,( l , ,  o px) 
$ $ 

I H 2 ]H ®2 

~Mor'(,,pjopl)®Mor'(l, ios) Ft(i'pJ'pl'l),~Mor'(,,iopj)® Mor ' ( l , a  o pl)  
$ $ 

(8.2.221 
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commutes, for j = 0 , . . .  ,n  - 1, we can find unique isomorphisms, H~ 'a"+l, for i, l E J,  

such that (8.2.22) commutes for j = n. 

I-[i,P~+i To this end, we have to show that, independently of the choice of . . j  , the diagram 

for the restrictions to one summand on the left hand side: 

Mar(pn-1,  Pn o Pl) 

®Mar(pt,i o Pn-1) 

H@2 

Mar'(Pn-1, Pn o Pl) 

@Marl(pt, i o Pr*-l) 

F(i, p. ,  Pl, P~) 

Fl( i, P., Pl, Pt) 

' ~e:: l : lMar(pt+c, i  o pn) 

®Mar(p~+e, p$ o Pl) 

H®2 

, ~ = i l M a r ' ( p ~ + ~ , ~  o p . )  

®Mar'(pt_~, pto Pl) 

(8.2.23) 

commutes, whenever I = p~ E i o pn_l , t  = 0, . . .  ,k. We show this by expressing 

the matrix elements of these maps by matrix elements of F({,pn_l ,Pl ,pt)  and the 

isomorphisms ~j and/~j from Lemma 8.2.1 (which are mapped, under the action of H, 

into ~ and ~ ) .  In order to derive a useful relation, we consider tile pentagonal equation 

~(i, p . ,p l  o p l ) ( i~  o ~ (p . ,  pl, p l ) - ' )  ~(i ,  p .  o p~, p~)-~ 

= ~( i  o p . , p ~ , p l ) - ~ ( ~ ( i , p . , p , )  o I ~ ) .  (8.2.24) 

Now, choose I E Mar(pt,i  o Pn-1), J E Mor(pn-l ,Pn o Pl), L' E Mar(pt+e,pt o P1), 

and K E Mar(io  Pn, Pt+e), and multiply (8.2.24) with (((1i o J ) I ) o  11)L' from the 

right and with K o ,91 from the left. This yields 

K ( l i  o [(1 ozg~)a(pn,pl ,Pl)-l(J o l l )])a(i ,  pn_ l ,P l ) - l ( I  o l l )L '  

= (1 , , , .  0 o [ ) ~ ( p ~ + e , p ~ , p ~ ) - l ( [ ( g  o l ~ ) ~ ( i , p , , p ~ ) ( l ~  o v)I]  o h ) L ' ,  
(8.2.~5) 

using only the isotropy (8.1.38). The term in square brackets on the left hand side is 

found to be qn- l ( J )  e Mar(p,, o Pl, Pn-1), and the right hand side is identified with 

one of the bilinear forms (8.2.3), or (8.2.4) between L' and the term in square brackets, 
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depending on E = f 1. With an appropriate substitution of L', and using identity (8.2.6), 

we obtain the following explicit formula: For E = 1, 

with L E Mm(pt+i o pl,pt), identifying, with I j  -+ 1 f C, both sides of (8.2.26) with 

@-numbers. In terms of F-matrices, this equation can be rewritten as 

where we view K E M r ~ ( p t + ~ ,  i o pn)* and L E Mm(pl, pt+i 0 pi)*. 

Similarly, we find, for c = -1, 

with K E Mm(pt-1, i 0 pn)* and L E Mor(pt, pt-i o pi)*. Note that the equations 

(8.2.19) and (8.2.20) can also be expressed as 

and that (8.2.22) commutes for j = n - 1, by our induction hypothesis. This allows 

us to relate the matrix elements of F(i, pn, pl, pt) to the ones of F1(i, pn, pi, pt), using 

formulae (8.2.27) and (8.2.28), and to prove commutativity of (8.2.23) whenever the 

morphism spaces are non-empty. 

Next, we assume that pt E iopn+i and derive a second set of relations among F-matrix 

elements. For this purpose we consider the pentagon equation 



We choose I C Mar(pt+e, i  o Pn), Y' C Mar(p,*,p,*-i o Pt), and we multiply (8.2.31 / by 

K o 0 1  from the left, and by (((1, o J ' )Z)o  l l ) L  from the right. 

This yields 

K( l io  [(1,*_ 1 oOl )c t (pn_ l ,P l ,P l ) - l ( J to  l l ) ] ) a ( i ,  pn, P l ) - l ( I  o 1)L 

---- (lt  otgtl)a(pt ,Pl ,Pl)  -1 ([(K o l l )a ( i ,p ,*_ l ,P l ) ( l i  o Jr)I] o l l ) L .  
(8.2.32) 

Substituting J =/~n- l (J ' )  E Mar(p,, opl , P,*-I) = Mar(p , , - l ,  pn opl)*, we obtain from 

(8.2.32), in F-matrix language, the equation 

( J®K,  F( i ,  p m p l , p t ) - l I  ® L) = 

_ 4+1 ( g  ® q t ( L ) , F ( i , p , * _ l , P l , P t + l ) ~ l l ( J ) ®  i) ,  for ~ =  1, 

d r - 1  
- dt ( K @ p t - I ( L ) ' F ( i ' P , * - I ' P l ' P t - 1 ) p ~ l l ( J ) ® I ) '  for ~=-18,.2.33)( 

for J ® K E Mar(p,*-l,p,* o Pl)* ® Mar(pt , i  o P,*-I)* and I , L  arbitrary. By sij~ilar 

arguments as for (8.2.23), we see that (8.2.33) implies the commutativity of 

• 1 * 

Mar(.,*_1,.,* o.~). (F(., .,*, .I, .~)- ) ,O.Mar(s,i  o.j)* 
®Mar(pt, i  o P,*-I)* ®Mar(pt ,  s o Pl)* 

H* ® H* ]H* ® H* 

Mar'(.,*_1,.,* o pl)*, (F'(I'""'"I'"0-I)*, (~ouar'(s,i o.j)* 
@Mar'(pt, i o P,*-I)* @Mar'(pt, s o Pl)* 

(8.2.34) 

Since the space (~)= Mar(s ,  i o pj ) ® Mar(pt ,  s o Pl) is at most two-dimensional, the image 

of Mar (Pn+ 1, P,~ o pl) ® Mar (Pt, i o p,*+ 1) in it may be expressed as follows 

q .  := FCi, p,*,p~,pt)CM~Cp,*+~, p,* o p~) ~ M a r ( ~ , i  o p,*+~)) 

= FCi, p - ,p l ,p , ) ICMar (p . -1 ,p -  o .1)* ® Mar(p , , i  o . . _1 ) * )± )  

= ( F ( i , . . , p 1 , ~ ) )  (Mar(p._~,p.opl)*~Mar(p~,/o.._1)) (812.35) 
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From (8.2.35) and (8.2.34) we conclude that H ®2 maps Qn onto Qt n. We may then 

consider the following diagram: 

Mor(pn+l ,Pn o Pl) ® Mor(p t , i  o Pn+l) 

rrP.,Pl ® Hp, P,,+l 

Mo¢(pn+~, pn o m) ® Mo~'(p~, i o Pn+~) 

F(i,  pn,..~pl, Pt) , Qn 

-1 _~ H®2 

F'(i, pn,~ pt), O" 

(8.2.36) 

Since, for 1 < n < k and Pt E i o Pn+l, all other isomorphisms between one-dimensional 

spaces are already determined, there exists a unique H~ ~+I such that (8.2.36) com- 

mutes. Combining the commutativity of (8.2.23) and (8.2.36), we obtain the commu- 

tativity of (8.2.22), with j = n. Since F(i,  1 ,p l ,p t )  = id, and since the isomorphisms 

H~ 'm axe already defined, the claim for n = 1 is clear. For n = k, the commutativity 

of (8.2.22) is identical to that of (8.2.23), since Pk o Pl = Pk-1, and the induction can 

be terminated without any further definitions of H's . This completes the proof of the 

lernrna. 

[] 

Incidentally, the uniqueness of the isomorphisms in Lernma 8.2.2., ii) allows us to 

show that all natural transformations that leave the F-matrices of an Ak+l-category 

invariant have to be trivial. More precisely, a natural transformation is defined by a set 

of isomorphisms, h~ j, of the spaces Mot(k ,  i o j) ,  i, j ,  k C J, which, for An-fusion rules 

with Nij,k E {0,1}, can be given by C-numbers. A natural transformation leaves the 

F-matrices invaxiant if 

h®2F(i, j,  k, l) = F(i ,  j ,  k, 1) h ®2, (8.2.37) 

and a family of natural transformations obeying (8.2.37), called trivial., 

h~,j = Ai Aj 
Xk ' 
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for some function A: S ~ C. (We use the conventions h~ '1 = h~ 'i = id, A 1 = 1). To 

show that  (8.2.38) holds in our example, we first find Apl such that  h~ l'px = A2. We 

then define 

n Ap 1 
AP" := H h ~ - 1 , , 1 '  for n = 2 , . . . , k .  (8.2.39) 

j= l  

This implies equation (8.2.38), for i = Pn, j = Pl and k = Pn+l- Since the maps 

pj and qj also represent F-mat r ix  elements, we have to satisfy (8.2.19) and (8.2.20) 

with ptn = ~p-2Pn and qt n -- A2qn, yielding h p'*'p' h p'+l'm p,,+, ~ = A2~ and hence equation 

(8.2.39), for i = Pn+l, J = Pl and k = Pn. By Lemma 8.2.2, the completion of the 

i,p~,s compatible with (8.2.37) is unique, and hence the expression (8.2.38) is the only hj 

one possible. This observation, made on the level of structural  data,  can be put  into 

the formal language of categories as follows: 

C(X,Y)  • End(X o Y), with 

(C(X, Y) o 1) C(X o Y, Z),~(X, Y, Z) = . (X ,  Y, Z) C(X, Y o Z)(1 o C(Y, Z)), 

and C(X', Y')I o J = I o J C(X, Y), (8.2.40) 

with I E Mor(X,X' )  and d E Mor(LY' ) ,  can be epxressed by a collection of iso- 

morphisms, A(X) E End(X), which are isotropic, i.e., A ( X ' ) I  = IA(X), for all I E 

Mot(X, X')  : 

C(X, Y) = A(X o y ) - I  (A(X) o A(Y)) . (8.2.41) 

For a monoidal An-category, there exist exactly two solutions to (8.2.41) differing by 

the Z2-grading of the An-fusion rules. We can interpret the expressions in (8.2.40) and 

(8.2.41) as non-commutative generalizations of cocycle- mad coboundary conditions, i.e., 

we can interpret (8.2.40) and (8.2.41) as triviality of a generalized second cohomology 

group. 

Lemma 8.2.1 and Lemma 8.2.2 now put us in a position to prove the first result on 

the classification of categories. 
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PROPOSITION 8.~.5 

For every I = 1 , . . .  , k + 1, with (l, k + 1) = 1, there ezists a semisimple, rigid, monoidal 

category, unique up to natural equivalence, with Ak+l-fusion rules, such that 

/ \ 171" 

\ / C  -t" ~d /  
(8.2.42) 

It is given by the semisimple quotient of the representation category of Uq(sl2), with 
i~r| 4- - -  

q = e k+~ . R is isomorphic to a C*-category if and only if 

l e {1, k-i- 1}.  (8.2.43) 

This is the complete list of monoidal categories with Ak+l-fusion rules. Categories 

corresponding to different values of l (i. e., different dl) are inequivaIent. 

Remark: This result is generalized in [63], using the representation theory of Hecke 

algebras. More precisely, it is shown that  the monoidal categories with Uq(sln) - fu- 

sionrules, with n > 2, are precisely the Uq(sln) - categories and that  they are uniquely 

determined by the statistical dimension of the fundamental  representation. 

P r o o f .  

The first step in the proof of Proposition 8.2.3 is to extend the commutat ivi ty  of (8.2.21) 

to arbitrary representations and use this to prove uniqueness of an Ak+l-category, for 

a given d 1. For this purpose, we define 

F ' ( i , j , k , l )  := (H®2) -1 F' ( i , j , k , l )H  ®2 

: ( ~ M o r ( s , j o k ) ® M o r ( l ,  i os) 
$ 

, ~ M o r ( s , i  o j ) ® M o r ( l , s  ok), 
, (8.2.44) 

where the F-  and FI-matrices are the structural da ta  of two categories C and C I with 

same dl,  and H~ J are the isomorphisms specified in Lemma 8.2.2. To show the that  
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~ MarCs,j o k) ® Mar(l , i  o s) 
$ 

H®2 

~ Mar ' ( s , j  o k) ® Mar'( l , i  o s) 

F(i, j, k, I) , ~ Mar(s, i o j )  ® Mar(l, s o k) 
$ 

I ll®2 

F'(i, j, k, I) , ~ Mar'(s, i o j)  ® Mor'(l, s o k) 
$ 

(8.2.45) 

COmmutes is equivalent to showing F = F u, by (8.2.44). By assumption, we have that  

both maps, F and F n, satisfy the pentagon equation, and, by Lemma 8.2.2, that  

Fn(i, j ,  pl,1) = F( i , j ,  p l , l ) ,  (8.2.46) 

for all i , j ,  I E J. Substi tuting (8.2.46) into a pentagonal equation for F u, we obtain 

1[ ® F"(i , j ,  pn+e,t) = 
~=-t-1 

= T 1 2 ( ~  1[ ® F ( s , p n , P l , t ) - l ) ( ~ F " ( i , j , p , , s ) ® l I )  
$ $ 

( ~  1[ ® F ( i , s , p l , t ) ) ( ~ F ( j ,  pn, Pl ,S)® lI).  
, , (8.2.47) 

From (8.2.47) and the pentagonal equation for F we see that  if 

FU(i, j, Pro, l) = F(i, j, Pro, I) (8.2.48) 

holds, for m = 1 , . . .  , n, it also holds for m = n + 1. Hence (8.2.48) follows by induction 

which proves (8.2.45). 

In order to construct the explicit functor of equivalence, (id, ~ ,  C) : C ---} g I, we 

proceed in the same fashion as in similar constructions in section 8.1. We first fix an 

arbitrary set of isomorphisms 

~ r :  Mar( i ,X)  , M a r ' ( i , X ) .  (8.2.49) 

This extends by functoriality and, since Mar(X,  Y)  ~- ~ i  Horn(Mar(i, X ), Mar(i, Y ) ) , 

to a unique functor of abelian categories. Using that  Mar(k ,  X o Y) ~- @ij Mar(i, X)  ® 
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Mar(j, Y)@Mar(k , io j ) ,  as specified in (8.2.42), we can define C(X, Y) E Endl(X oY) 

uniquely by the formula 

C(X, Y)(~'(])  o ~(j))H~'Y(R) = y ' ( ( i  o J ) K ) ,  (8.2.50) 

where ] E Mar( i ,X ) , J  • Mar( j ,Y)  and [( • Mar(k,i  o j). The compatibility with 

tensor products of morphisms in (8.2.33) follows immediately from the form of (8.2.50), 

using the fact that, by semisimplicity, it suffices to check (8.2.33) when it is multiplied 

by some (~-(]) o ~(j))H~'J(I~) from the right. The verification of (8.2.43) is done 

similarly, multiplying 

;)o o (8.2.51) 

from the right, with i • Mar( i ,X) , J  • M a r ( j , Y ) , K  • Mar(k,Z),  S • Mar(s, j  o k), 

and T • Mar(t,i  o s). Here we need to employ isotropy, eq. (8.1.38), of both a and a' 

and, furthermore, commutativity of (8.2.45). 

We may now consider the monoidal representation category of Uq(al2), with q = 
iwl  

e * + * , l = l , . . . , k + l , ( l , k + 2 ) = l .  

We restrict the set of objects to those generated by the two-dimensional fundamental 

representation with highest weight A = 1, i.e., to all integral highest weight representa- 

tions, VA+I, A = 0 ,1 , . . .  , k, and to the indecomposable projective modules Wi,i • z, 

as defined in section 5.3. 

We pass from this category to its semi-simple quotient. Hence we have exactly k + 1 

irreducible objects left over, and, by Theorem 5.3.1, these satisfy the Ak+l-fusion rules. 

If we use {v0,vl} , as a basis for the representation space V2 of highest weight A = 1, as 

in Proposition 5.2.1, and let {/0, ll} be its dual basis in V2* , with liv j = 6ij , the invariant 

tensors 01 and 0[ are of the form 

tgl --- a(v0 @ Vl - q Vl @ v0) • Home,(,12)(1, V2 ® V2), 

and 

0~ = ~(/1 ® lo - q-1 lo ~ / 1 )  E Homuq(,12)(V2 ~ V2, 1) .  
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From the  equa t i on  

we see t h a t  (8.2.1) is sat isf ied iff a = f~ - l ,  so t h a t  

dl = = -(q+ q-l) = -(2)q. (8.2.53) 

Comparing (8.2.53) to (8.2.5) in Lemma 8.2.1 (with dl ~ -dl, for I --~ k + 2 - I), wc 

see that, for all admissible values of dl, there exists a realization of an Ak+l-category 

obtained from the representation category of some Uq(812). Having proven uniqueness, 

for each value of 41, this completes the classification of monoidal At+l-categories. 

Finally, we wish to prove the result concerning a C*-structurc. In Lemma 8.2.1 we 

already found that I -- 1 or k + 1 are the only compatible values. In order to see 

that we can implement a C*-structure in both cases, we first show that there exists 

an inner product on the Mor(k,i o j)-spaccs such that the F-matrices define unitary 

maps. We have proven in Lemma 6.3.3 that, for I = 1, there exists an inner product 

such that the braid matrices are unitary. From the hexagonal equations, as expressed 

in Lemma 6.2.1, we see that the F-matrices can bc written as products of unitary braid 

matrices and are therefore unitary with repsect to the given inner product, too. This 

system of F-matrices can be multiplied by the trivial 3-cocycle .f E Z3(Z2, 1; R/Z), as 

described in (8.2.8), preserving the pentagonal equation and unitarity. For the invariant 

d' 1 associated with these data, wc find 

1 = e2Xil(a,a,a) F(p lP l ,P l ,P l )~  = _ F ( p l , P l , P l , P l ) ~  _ 1 (8.2.54) 
d~ 41 ' 

where  a = g rad(p1)  is the  non- t r iv ia l  e lement  in g2, so t h a t  d~ is precise ly  the  invar ian t  

for  I = ]¢ + 1, and  the  resu l t ing  s t r u c t u r a l  d a t a  are equivalent  to  those  of  Uq(812) , with  
i lr  

4 - - -  
/s+'~ 

q ~  - - e  

Once  we have  u n i t a r y  F - m a t r i c e s ,  we can  i m p l e m e n t  a C * - s t r u c t u r e  as follows: Wc 

define a pos i t ive  defini te inner  p r o d u c t  on each of the  basic  spaces ,  M o t ( k ,  X ) ,  wi th  
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k • J and X • Obj, and denote by *, with 

* : Mar(k ,X)  , Mar(k,X)* = Mar(X,k),  (8.2.85) 

the associated involution. This involution extends uniquely to * : Mar(X, Y) 

Mar(Y,X),  by (I J)* = J'I*, yielding a C*-structure on C. We consider the map 

P(X,  Y)  • End(X o Y) defined by the equation 

P ( X , Y ) ( I  o J)K = (K*(I* o J*))* ,  (8.2.56) 

for I E Mar(i ,X),  J E Mar(j ,Y)  and K E Mar(k,i o j). It is immediate  from 

(8.2.56) tha t  P(i , j )  = lIioj, for i , j  • J. For i • Mar(i ' ,X),  J • Mar(j ' ,Y) ,  and 

~[ • Mar(k', i' o j'), we obtain the relation 

((i o J) o K)*P(X,  Y)( I  o J)K = 6ii,6jj,6kk,(i , I)(J, J)(K, K), (8.2.57) 

so that  P(X,  Y) > 0 as an element of the C*-algebra End(X o Y). Hence there are 

isomorphisms C(X, Y) e End(X, r ) ,  with P(X,  Y)  = C(X, V)*C(X, Y) and C(i,j)  = 

llioj, for i , j  E J. If we apply the natural  t ransformation (id, II, C) to this category we 

find that  (8.2.56) holds with P = 1, and, by semi-simplicity, we conclude that  

( A o B ) *  = A * o B * ,  (8.2.58) 

for any A e Mar(X,X ' )  and B e Mar(Y,Y').  Since G(i,j) = 1I, the F-matr ices  do 

not change under  this change of tensor product .  Thus,  if the inner product  chosen on 

Mar(k, X)  coincides, for X = i o j ,  with the one determined previously, the F-matr ices  

are also uni tary  in the new category, based on (8.2.58). With  these two ingredients, it 

is now easy to show that  a(X, Y, Z) is unitary, too. 

From the explicit formula (5.23) for highest weight vectors in tensor products  we see 

that ,  for J l  = J2 and j -- 0, 

TO~ = (g-1 ® 1 ) ~ ,  (8.2.59) 
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with g = (_q) -h ,  S2(a) = gag-l,4)~ 6 Homu,(si2)(1, VA+ 1 @ VA+I) and T(v ® w) = 

w ® v. For the dement  ~ • Hornv,(sla)(V),+l ® V~+I, 1), with 

(I ® ~)(~ ® 1) = (~ ® I)(i ®,9~) = /I;~, (8.2.80) 

we find from (8.2.59) that  

d x := ~gf~a = irvx+1(g - I )  = (-1)X(~ + 1)q = (A + 1)_q.  (8.2.61) 

Hence these quantities coincide with the ones defined by the recursion (8.2.2). This 

could also be derived from the existence of a balanced, braided structure, and thus of 

cyclic traces, compatible with the tensor product.  It is of special interest to observe 

that  

= (_1) l+k+l d _j dj. (8.2.62) 

q-__ 
If we denote by Ck, l the category obtained from Uq(sl2) , with q = e k+2, 1 = 1 , . . . ,  

k + 1, (I, k + 9.) = 1, the uniqueness assertion shows that  there exists an isomorphism 

(id, ~ ,  C) : Ck,l ' Ck,,l, 

only if k = k I and I = 1 I. However, in order to prove that  all Ck, 1 are inequivalent, we 

have to consider isomorphisms 

( ( , ~ - , c )  : ck,~ , cv ,v  (8.2.63) 

where ( is an arbitrary fusion rule algebra isomorphism. Clearly, this is only possible 

for k = k'. Also we need to have that  dj = 4 ( i ) .  So if ((1) = 1 we also have 

that  d 1 = all, and hence l = l I. The isomorphism ( also has to preserve the Perron- 

Frobenius eigenvalue, dl~ "F', of the fusion rule matrix, i.e., dl~ "F" = d ~ ' .  This implies 

that  ( ( j )  E {j, k - j } .  Moreover, ( has to preserve the gradation, i.e., ( ( j )  = j rood2. For 

odd k, ( ( j )  = j is therefore the only possibility. For even k, we also have ( (pj)  = p~ opj, 

as fusion rule algebra isomorphism. In the last case, I has to be odd. Hence, by (8.2.62), 
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~1 ---- dtk-1 ---- t~(1)" Since the existence of (8.2.63) implies that  d~(j) = dj, we find that 

d~ = all, and thus I = 11. This proves that  all categories Ck,1, for different pairs (k, l), 

are inequivalent.  

[] 

Next, we supplement the classification of monoidal categories with A,~-fusion rules by 

an investigation of the possible braided structures for these categories. More precisely, 

we show that  if the fusion rule algebra Obj is generated by an irreducible object,  p, with 

p o p = 1 + !b, tb E J ,  then the obstruction possibly present in the modified hexagonal 

equations and described by HS(Grad(Obj), 2; U(1)) vanishes. Furthermore,  we show 

that  the possible fusion- and braid matrices for the fundamental  object  p can all be 

obtained from Uq(sl2). A general argument, often referred to as "cabehng', then shows 

that  the entire braided category is isomorphic to the semisimple category obtained from 

Uq(sI2). The first result is obtained by solving a set of simple, algebraic equations. 

LEMMA 8.1~.4 

Suppose C is a semisimple, monoidal category with objects Obj, and let p E J C Obj be 

an irreducible object with 

p o p  : 1 + tb,  (8.2.64) 

where ~b E J. Denote by 

F(p,p,p,p) : ~ Mor(s,pop)®Mov(p, p o s ) - - .  ( ~  
a=l,~ s=l,lh 

Mo,.(,,, p o p) ® Mo,-(p, ,, o p) 

(8.2.65) 

the fundamental fusion matrix. Consider the modified hezagonal equations: 

( ( ~  ,-(p,p,,) ® ~) F (p ,p , , , , )  ( ( ~  ,.(p,p,,) ® ~) = 
s-:l,~ s : l ,~  

= F ( p , p , p , p ) ( ( ~  ~ @ ,'(,,, p, p)) F(p, p, p, p) , 
s=l,~ 
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( G . (p,p, . ) - i  ® ~) FCp, p,p,p) ( O "(p,", ' ) - i  ® ~) -- 
s=1,9 s=1,9 

---- w - F C P ' P ' P ' P / ( O  ~ ® r ( p ' s ' p ) - l )  FCp, p,p,p). 
s=1,,k (8.2.66a) 

These equations have a solution with r(p,p,s)  E End(Mor( s ,p  o p)),  with r(s,p,p),  

rCp, s, p) -1  E Horn(Mot(p,  s o p), Mot(p,  p o s)), and r(1, p, p)Clp) = rCp, 1, p)( lp)  = lp 

i/ and only i/  

~ -  ---- 1. (8.2.67) 

Up to natural gauge transformations, the solution is uniquely determined by the invarian~ 

t E C* defined by 

~(p, p, ¢ )  =: t -x  ~Uo~(¢,.op) • (8.2.68) 

A solution to the modified hezagonal equations ezists for t E C* l i f t  4 ~ --1. There ezists 

a gauge and a choice of basis in the morphism spaces such thai the matriz elements of 

the r's and F's are given by the following formulas: r(p, p, d2) is given by (8.~. 68), and 

r(p,p, 1) = t 3, 

r(¢ ,  p, p) = r(p, ¢ ,  p) = - t 4, 

F ( p , p , p , p ) l  = - F ( p , p , p , p )  = (2)~,  ' 

F ( o , p , p , p ) ~  = 1 ,  

and F(p,p,p,p)¢l = (3)t '  (8.2.69) 
((2)~,)' " 

P r o o f .  

We begin by recalling some properties of the linear transformation F(p, p, p, p) given 

in (8.2.65). As before, we may use the canonical element lp E End(p) to associate to 

the matr ix block (F(p,p,p,p))]  a unique element in End(Mor(1 ,p  o p)) and thus a 

C-number. Pdgidity, eq. (8.2.1), implies that  this number  is non-zero. Hence we can 

define an invariant dp E C* of the category C by the equation 

-1 1 (F(p,p,p,p)_l) l l  (8.2.70) d ,  ~Mor(1,pop) = ( f ( p , p , p , p ) ) l  = 
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where the second equality in (8.2.70) follows from (8.2.1). Concerning the bilinear form 

Pl, defined by 

Vl : Mor(tb, P o p) 

I ® J  

® Mot(p, 4/o p) ---, C 

(l ®~I)  F ( p , p , p , p ) - l ( I  ® J) , 
(8.2.71) 

as in (8.2.3), we know from the proof of lemma 8.2.1 that it is non-degenerate, with an 

explicit inverse given by (8.2.12). This shows that the matrix block (F(p, p,p,p)-l)@l ~_ 

O, and hence the linear transformation 

FCp, p, p, p)l : Mo, (~ ,  p o p) ® Mo,'Cp, p o ~) = ,Mov(1,p op) ® End(p) ,  

(8.2.72) 

does not vanish. Furthermore, the isomorphism F(p, p, p, p) is constrained by the pen- 

tagonal equation 

( F ( p , p , p , p ) ® ~ ) ( G  ~ ® F ( p , s , p ,  1)) (F(p, p, p, p) ® ~) = 
s=1,9 

= ( G  ~®F(8,p,p,1))T~. ( 0  ~®F(p,p,8,1)), 
• =I,VJ s=l,VJ (8.2.73) 

which, incidentally, also implies (8.2.70). We define isomorphisms ~s : Mot(p, s op) --o 

M'or(p, p o s) by setting 

F(p, s, p, 1) = ~s ® ]IMor(1,Vop), (8.2.74) 

so that q~l -- IIEnd(p)- Furthermore, we define an isomorphism F 6 End((~s  Mot(s,  p o 

p) ~ M~(p, ~ o p)) hy 

F :-- F ( p , p , p , p ) ( ( ~  ]I ® @s). (8.2.75) 
s 

From the pentagonal equation (8.2.73) we conclude that 

F~= G ~.~, (8.2.76) 
s----1,@ 

is diagonal with respect to the one-dimensional subspaces corresponding to the chan- 

nels s = 1,~b. Clearly we have that ~1 ~- 1, since F(1,p,p,  1) : F(p , I ,p ,  1) = 
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F ( p , p , l , 1 )  = II. Of course, the diagonal matrix (8.2.76) has to commute  with the 

F-mat r ix  which by (8.2.72) is non-diagonal. We conclude that  (8.2.76) has to be a 

multiple of the identity, i.e., since A 1 = 1, we have that  F 2 = 1, or 

F(p,p,p,p)  - I  = ( ( ~  II ® ~s) F ( p , p , p , p ) ( ( ~  I[ ® ¢~s) . 
$ $ 

Inverting eq. (8.2.66) and inserting (8.2.77) yields: 

(8.2.77) 

( ~ r ( p , p , , )  -1  @ 1[) F ( p , p , p , p ) ( ~ r ( p , p , s )  -1 ® ]I) 
$ $ 

= F ( p , p , p , p ) ( ~ l I ®  (~s r(s ,P,P)- l¢s))  f ( p , p , p , p ) .  
$ 

If we compare this to (8.2.66a), we find that  

, (s ,p,p)  = v , , ( p , s , p )  (8.2.78) 

For s = 1, (8.2.78) implies (8.2.67), i.e., triviality of the HS(Grad(Obj),2;U(1)) - 

obstruction if p generates Obj. Conversely, for D -  = 1, and with eqs. (8.2.77) and 

(8.2.78), any solution to (8.2.66) turns out to also be a solution to (8.2.66a). Besides 

the invariants r (p ,p ,  s) and dp, we introduce a fourth invariant, y E C*, by setting 

Y ][Mor(p,¢op) := ¢~1 r ( ¢ , p , p )  = r(p,~b,p) ¢ ¢ .  (8.2.79) 

With  the diagonal matrices D, Q c End((~ s Mar(s, p o p) ® Mar(p, s o p)) given by 

D := diag(r(p,p, 1), r(p,p,~b)) and Q := diag(1,y), we can write the hexagonal 

equation as an equation between endomorphisms: 

D F D  = F Q F .  (8.2.80) 

Using that  F 2 = 1, we infer from this equation that  DQ commutes  with F, and since 

F is non-diagonal, D Q  is a multiple of the identity, i.e., 

r(p,p, 1) = y r(p,p,~b). (8.2.81) 
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Using that  F ~ +lI, we also find that  

detCF) = - 1 and frCF) = O. (8.2.82) 

Hence, from (8.2.80), 

det( D ) 2 = - det( Q ) , 

or y = - r ( p , p ,  1) 2 r (p ,p ,¢ )2  . (8.2.83) 

The general solution to (8.2.81) and (8.2.83) can be parametrized by a number  t E C* 

with the property that  

r ( p , p ,  1) = t 3, 

r(¢ ,p,p)  ----- - t 4 ¢ ¢ ,  

r ( p , p , ¢ )  = - t  - 1 ,  

, ( p , ¢ , p )  = -t4¢  . (8.2.84) 

From (8.2.70) and (8.2.82) we find that 

1 
El l  = - F ¢ ¢  = ~-~p. (8.2.85) 

If we take the trace on both  sides of (8.2.80) we obtain, with (8.2.85) and F 2 = 1, the 

relation 

1 (r(p,p,  1)2 _ r (p ,p ,¢ )2 )  = 1 + y ,  (8.2.86) 
dp 

which, by (8.2.84), yields the expression 

dp = - (2)t, . (8.2.87) 

For arbi trary zgp E M a r ( l ,  pop) and 0¢ E M a r ( l ,  ¢ o ¢ ) ,  we next determine basis vectors 

I E Mar(p, d2 op), J e Mar(p, r h o o ¢ )  and g e Mar(¢ ,p  op) such that  F(p,p,p,p)  

has the matr ix elements given in eq. (8.2.69), and, in addition, that  

. F ( ~ , p , p ,  1)p 9 = F(p,~b,p, 1)~ = F ( p , p , ~ , l ) ;  = 1 .  
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The morphisms I, J and K are unique up to a change of sign, I, J, K ---* - I ,  - J ,  - K .  

We first determine K and I from the equations 

F(¢ ,p ,p ,  1 ) (K®O¢)  -- I@Op 

1 
F ( K ® I )  - K ® I  + O p ® l p .  d. 

(8.2.89) 

These equations have unique solutions K and I, up to a sign. The last matrix element 

of F in the basis {0p @ lp, K @ I}, 

1 
F¢1 -- 1 d r '  (8.2.90) 

is obtained from det(F) = -1 .  The condition that F(p, ¢, p, 1)~ -- 1 means that 

J -- (I)¢(I), (8.2.91) 

which, together with (8.2.75), yields the formulas for the matrix dements of F(p, p, p, p) 

given in the lemma. Using (8.2.91) in (8.2.84), we also find the formulas for the r- 

matrices. Finally, the equation F(p, p, ¢, 1)~ -- 1 follows from (8.2.88). The fact that 

these matrices provide a sohition to the hexagonal equation (8.2.66) can be verified by 

direct computation or by the observation that these data are identical to the ones for 

uq(sl2),  q = t 

[] 

The observation, made in Lemraa 8.2.4, that the braid- and fusion matrices of the 

fundamental representation p coincide with those of Uq(sI2) is, in fact, sufficient to infer 

that the entire category is isomorphic to the one obtained from Uq(812). This insight is 

based on the following cabeling argument which is an easy consequence of the hexagonal 

equation. 

LEMMA 8.~.5 

Suppoae C and C I are braided tenJor categoriea for which there exists an isomorphinm 

7 ,  c )  : c - ,  c'  (8.2.92) 
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between monoidal categorieJ. Asnume that T C J in a Jet of irreducible objectn which 

generate Obj and for which the equation 

J=(eCt,,)) = ccs , t )  e'(~Ct),~(,)) cct ,  s) -1, V t , ,  e T ,  (8.2.93) 

holds. 

Then (8.~.92) iJ also an i.~omorphinm between braided ca~egorieJ. 

P r o o f .  

In order to prove Lemma 8.2.5, we need to verify that 

U(e(X,  Y))  = C(Y, X)  e'(¢(X), ¢(Y)) C(X,  y ) - i  (8.2.94) 

holds for each pair, (X, Y), of objects. Since both isomorphisms, e and e I, are isotropic, 

it foUows that, for subobjects .~ C X and Y C Y, (8.2.94) holds for (.~, ? )  whenever it 

is true for (X, Y). Conversely, if W = X @ Y and (8.2.94) holds for (Z, X) and (Z, Y) 

it also holds for (Z, W). If we apply 9 r to the hexagonal equation 

e ( x  o v, z )  = 

= ,~(Z, X, y)-1 (~(X, Z) o l) a(X, Z, Y)(1 o ¢(Y, Z)) a(X, Y, Z) -I 
(8.2.94) 

and use the fact that ((, 9 r, C) is a monoidal functor, so that e' satisfies an equation 

analogous to (8.2.94), we find that (8.2.94) holds for the pair (X o Y, Z) if it holds 

for (X, Z) and (IF, Z). Similarly, the pairs solving (8.2.94) close under taking tensor 

products in the second arguments. Thus, if by assumption (t, a) is admissible, for 

t, 8 E T, then we can build any object X from 8 E T by a succession of steps which 

preserve the validity of (8.2.94). Hence (t, Y) is admissible, for every t E T and Y E Obj. 

Applying the same argument to the first argument, we can prove (8.2.94) for all pairs. 

This completes the proof of the lemma. 

[] 

Combining Proposition 8.2.3, Lemma 8.2.4 and Lemma 8.2.5, we arrive at the follow- 

ing result on braided tensor categories with An-fusion rules. 
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P R O P O S I T I O N  8.IL 6 

For every l E Z4(k+2), with (l, k + 2) = 1, there ezists a unique quantum category Ck,l 

with Ak+l-fusion rules (k > 1), and satisfying 

( ' )  
r ( p l , P l , P 2 )  = e~p  - -  2 ~ i  4(~  -{- 2----"'~ " 

It is isomorphic to the semi-simple category obtained from Uq(sl2) , 

l 

Two categories, Ck, 1 and Ck,l, , are isomorphic as braided cateqories i f f  I = l t. 

are isomorphic as monoidal cateqories iff 

(8 .2 .95)  

with q l / 2 =  

They 

l t -- -t-I r n o d 2 ( k + 2 ) .  (8 .2 .96)  

The category Ck,l is isomorphic to a C*-category iff 

I -- :l:l  r o o d ( k + 2 ) .  (8 .2 .97)  

This is the complete list of quantum categories with Ak+l-fusion rules. 

The category Ck, 1 has the invariantn 

( +2)) ;.,o, r ( p / , p j ,  1) = ezp ~,4(k + 2) " j ( j  =: ' 

for j = 0 , . . .  ,k.  The Oj's are balancing phases for Ck, 1. 

structure is given by the phases 

, J Oj - Oj + ~ rood1 .  

(8 .2 .98)  

The only further balancing 

(8 .2 .99)  

P r o o f .  

From Lemma 8.2.4 (with p -- Pl and ~ -- P2) we know that ,  for some ~v en  r(pl ,Pl ,P2)  

__ _ f - l ,  the matrices F ( p l ,  Pl,  Pl, Pl) and r (p l ,  pl ,  I)  are uniquely determined up to 

natural  equivalence. In particular,  for the invariant d I of Lemma 8.2.1, we have that  

dl  = - (2)t2 • 
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The restriction on dl given in eq. (8.2.5) of that lemma is equivalent to the condition 

(8.2.95) for the value of t. Hence, for any of these values of t, we find, according to 

Proposition 8.2.3, a unique monoidal category. With given eigenvalues, r(pl,  Pl, 1) and 

r(pl,Pl,P2) , of ~(PI,Pl) E End(pl o/01) -- C1 @ C1, we see that (8.2.93) holds for 

T : {Pl}. Since Pl generates all objects of the category we conclude from Lemma 8.2.5 

that, for a given value of t, one can find at most one braided structure on the given 

monoidal category. Thus, for a given r(pl,pl,p2) as in (8.2.95), there exists at most 

one braided tensor category. Each of these possible categories does in fact exist and 

can be obtained from the representation category of Uq(sl2), for the given value of qU2. 

This is easily verified by applying the transformation TT£, (where T£ is the universal 

R-matrix of Uq(sl2) ) to the highest weight vector ~2/2 @ ~12/2 E V 1 @ V 1 corresponding 

to the eigenvalue ql/2, i..e., t = _ql/2. This proves existence and uniqueness of the 

categories Ck, 1. In order to compute the invariants r(pj,  pj, 1) we simply compute the 

eigenvalue of T R  for the invariant vector ~01 E Vj ® Vj, given by 

j/2 
Oj -- ~1 = ~ (_q)Cj/2-rn) ~jq-1 @ ~j_-kl ; (8.2.100) 

m=-j/2 

(compare to (5.23) for highest weight vectors). Using the equation (a®l)Oj = l®S-1(a) 

and eq. (8.2.59) for an element # satisfying (6.94), we see that 

TTZOj = T( l®u)Oj  = (u9 - l ®  II)Oj , 

where u is as in the definition of a ribbon-graph Hopf-algebra; see (6.92) and (6.93). 

It follows that the special central dement v = ug -1 acts on Vj l i k e  r(pj, pj, 1)1[. By 

(6.93), this implies that the phases 0j given in (8.2.94) are indeed balancing, i.e., that 

r(p~, p~, pk) ,'(pj, p~, pk) = e2" ~(o,÷o~-o~). 

If the braided category Ck,l is a C*-category then the corresponding monoidal category 

is a G*-category, too, and hence condition (8.2.43) of Proposition 8.2.3 must hold. If 
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Ck, I is a C*-category, as a monoidal category, then the projections in E n d ( p  1 o Pl) 

have to be selfconjugate, and, using that I r (p l ,P l ,1 )  ]=l r ( p l , P l , P 2 )  I = 1, it follows 

that e(pl, Pl) is unitary. From the iterative construction of all the other isomorphisms 

e(X, Y) obtained from the cabeling formula (8.2.94) and orthogonal decompositions of 

objects, we find that all ¢(X, Y) are automatically unitary. Thus, for the values of l 

given in (8.2.97), which is consistent with (8.2.7) of Lemma 8.2.1, the category Ck, t is a 

C*-category as a braided tensor category. This completes the proof of the proposition. 

[] 

The example k = 1 has already been studied in section 7.4 by observing that the 

A2-algebra is just a Z2-fusion rule algebra and by noting that 0-categories are classified 

by Hom(r4(z2) ,  V(t))  = ~4. A ~-~lgebra is ~Iso contained in Ck,l, for a general 

k > 1, which contains the invertible object p/~. The structural data of the corresponding 

subcategory are given by 

k l  
O - - -  rood1 , 

4 

and F(Pk,Pk,Pk,P , )  = d~ -t  = ( - 1 )  kz. 
(8.2.101) 

The results stated in Proposition 8.2.3 and Proposition 8.2.6 can be used to find all 

the categories with An-fusion rules. To this end, we observe that A2n -~ f in  × Z2. The 

corresponding graded projection ~n : A2n -~ An, and the injection i : An ¢--* A2,~, with 

~n o i = id, are given in Lemma 7.3.4, ii). We have that ker(~n)  = {1,P2n-1}- Suppose 

now that C is a (braided) monoidal category with An-fusion rules. Then there is a unique 

number l, I = 1 , . . .  ,2n (I E Z4(2n+l), with ( l , 2n  + 1) = 1), respectively, such that C 

and ~n induce Ck, l as a (braided) monoidal category, for k = 2 n -  1. The E2-subcategory 

of the induced category has to be trivial. Having the explicit data (8.2.101), and with 

k = 2rt - 1, this property can be expressed in terms of I as follows: 

1 = 0 rood2,  for monoidal categories ; 

1 - 0 rood4,  for braided categories. 
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Conversely, if, for C2n_l,l, the Z2-subcategory is trivial as a monoidal  category, then we 

can use formulae (8.2.11) and (8.2.12) for the dependence of the r- and F-matr ices  on 

the Z2-action. Since Grad(.4n) = 1, we also have that  ¢ = 1, ~ = 1, and 7 : .An ~ A2n 

is precisely the injection i of fusion rule algebras, and, finally, 7/(j) = pgrad(j) It 

follows immediately from equ. (8.2.11) that  C2n_l, 1 is induced, as a monoidal category, 

by some category with .4n-fusion rules and (n. If, in addition, the ~.2-subcategory of 

C2n_l, l is trivial as a braided category it follows from equ. (8.2.12) that  C2n_l, l is also 

induced as a braided category by some category C with filn-fusion rules. We thus have 

estabhshed a one-to-one correspondence between categories C with .4n-fusion rules and 

categories C2n_l, l with A2n-fusion rules, where l is constrained by (8.2.102). Clearly, 

every category C2n_1, l contains a subcategory C with .4n-fusion rules, as An C A2n. If 

C2n_l, 1 is also induced by some C', i.e., if there is a functor ((n, ~', C) : C --o C', then, 

since the restriction of (n to .4,~ C A2n is the identity, the restriction of the functor to 

yields an isomorphism C ~- ~1. Hence the An-category associated to C2n_1,~, where 

l obeys (8.2.102), can be identified with the corresponding subcategory. We denote by 

C-n, t the braided category with .4n-fusion rules which induces C2n_1,4/, with [ E Z2n+l, 

([, 2n + 1) = 1 and n = 1, 2, . . . .  The relation between C-r,, t and C2n_1,4 t can be writ ten 

compactly as 

C2n_1,4 / ~_ C-n, [ @ Cza,q=0 , (8.2.103) 

where the functor yielding (8.2.103) extends the isomorphism A2n ~ An × Z2. Any 

monoidal category C with An-fusion rules induces a monoidal category C2n_l, l with 

A2n-fusion rules, where, by eq. (8.2.102), l = 27 mod4(2n + 1), with / e Z2(2n+l ). 

Following eq. (8.2.96) of Proposit ion 8.2.6, this category (viewed as a monoidal  category) 

is equivalent to the one with l = 2 ( / +  ( 2 n +  1)), so that  l may always be chosen to be a 

multiple of four, i.e., l = 4[. However, the category C2n_1,4 / is induced by C~,[ also as a 

monoidal category. By the uniqueness of inducing categories, this implies that  C ~ Cn,r" 

Hence all monoidal categories with An-fusion rules can be obtained from a braided 

monoidal category by omission of the braided structure. It is obvious from (8.2.103) 

388 



that  C,,i ~ Cn,P, as (braided) monoidal categories, if and only if e2n_l,4 [ --- ~2n-l,4P" 

Proposition 8.2.6 implies that  this is the case if and only if [ = r ,  for the braided 

situation, and [ = 4"i ~ mod(2n+l)  if we consider only the monoidal structure. Moreover, 

(8.2.103) shows that  Cn,i is a C*-category iff C2n_1,4 f is one. Finally, we remark that,  

by the invaxiance of the g2-action, the invariants of C2n_1,4 f satisfy 

r (p j , p j , p s )  -- r(p2n_l_j,P2n_l_j,Ps), for a -- 0 , 2 , . . . 2 m i n ( j , 2 n - 1 - j ) .  

In particular, e(Pl,Pl) has the same spectrum as ¢(P2(n-1),P2(n-1)), where P2(n-1) is 

the generator of -4n with Perron-Frobenius dimension less than two. We summarize 

these conclusions, derived from Proposition 8.2.6, in the following corollary. 

COROLLARY 8.~. 7 

Let p be the canonical generator of the An-fusion rules, with p o p = 1 + ~b. 

(i) For every 1 E Z2n+l, with (1, 2n + 1) = 1, there ezists a unique quantum category, 

Cn,b such that 

r ,.(.,.,,~) = e~p(- 2~i - - - - -y) .  (8.2.1o4) 
2n + 

This given the complete list of quantum categories with An-fusion rules. They are 

C*-categories iff 

[ -- 4- n 2, mod(2n + 1).  (8.2.105) 

For each Cn,[, there is a unique set of balancing phases, Oa, given by 

e 2~riO~ = r ( a , a , 1 ) ;  (8.2.105a) 

e.g., ~2 ,~ ,  = ~ = p ( 6 ~ i ~ / ( 2 ,  + 1)). 

(ii) Every rigid, monoidal category with An-fusion rules is obtained from a quan- 

tum category by omission of the braided structure. We have that Cn,[ ~- Cn,P, as 

monoidal categories, iff 

- + r mod(2~ + 1). (8.2.106) 
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They are C*-categories iff(8.2.105) holds. 

(iii) The category C-n, [ is isomorphic to the subcategory of the semisimple quotient of 

the representation category of Uq(sl2) , ql/2 = ezp(27ri[/(2n + 1)), generated by 

the (2n - 1)-dimensional representation p = V2(n_l). 

At this point we have all the technical insights that  allow us to classify all possible 

quantum categories with untwisted fusion rule algebras given by Zr * An and Y~r * A2n-1 

as subcategories of products of Uq(sl2)-categories and 0-categories of cyclic groups. The 

simplest result is the following theorem. 

THEOREM 8. ~,. 8 

Let ~ • An ~ ~ x An, with r ,n  > 1, be the fusion rule algebra specified in eq. (7.11~7) 

of Theorem 7.3.11. 

For every i e Z2n+l with ([, 2n + 1) = 1 and every q • Hom(r4(7~.),  U(1)),  we can 

define a quantum category 

Cn,rC[,q) := Cz,,q ® C-n, [ (8.2.107) 

with the fusion rules specified in the hypothesis. 

(i) The categories Cn,r(i,q) constitute the complete list of quantum categories with 

~. * An-fusion rules. I f  there is an isomorphism of quantum categories 

(¢,.7:, C) : Cn,r([, q) ~ Cn,r(e, ¢)  (8.2.108) 

then ~ is uniquely determined by its restriction, ~o : Zr ~ Zr, to the subgroup of 

invertible objects. Furthermore, 

[ = i', 

and q = G (q')" (8.2.109) 

(it) There ezists an isomo~hism of the form given in (8,$.108) between monoidal 

categories if  and only if 

[---- + r mod ( 2n + l ) , 

and S* o (741)*(q) = S* o (741)*(q') . (8.2.110) 
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where S and 74 are as in section 7.~, and the monoidal structures, 

ires* = 

of the two categories are identified b~l the unique isomorphism between them. 

(iii) The categor~ Cn,r([, q) is C* iff 

[ = 4- n 2 rood (2n + 1) .  (8.2.111) 

It is alwa~ls balanced, and the possible balancing phases are given b~l Z2-gradings, 

E Horn(Zr,Z2),  of the group of invertible elements. For an irreducible object 

j E An and a a E 7~., thel.I are given b~l 

ezp(21ri 0 c (~d)) = r ( j , j ,  1) q(~r) e(er) (8.2.112) 

P r o o f .  

For the graded subgroup, R -~ ~r, of invertible objects we have that  grad: R --~ 

Grad(Obj)  is an isomorphism, i.e., Grad(Obj)  = 1. In particular, we have that the 

obstruct ion A*(w) from equ. (8.2.61) is always trivial. Thus, if C is a category with 

Zr * .4n-fusion rules it follows from Corollary 8.1.14, ii) that  there exists a quadratic 

function q E Ho~(r4(~-¢) ,  U(1)) such that C ~ cq, and C is induced by a category Cn,[ 

with objects Obj = O b j / R  = -~n and a homomorphism 7r R : ~r * An ~ An : (or, j )  --* j .  

From formulae (8.2.4) and (8.2.5) for the structure constants of a product  of categories 

we see that  the r- and F-matr ices  of Cn,r(1, q -- 1) are invariant under the ~r-action. 

Hence Cn,r([, 1) is also induced by vr R and a category on -4n which, by comparison 

of structural  data,  e.g., of r (p ,p ,~ ) ,  has to be Cn,T" By the uniqueness of induced 

categories, it follows that  C ~ Cn,r([, 1). Clearly, we have that  

 .,rCf, ql) q2 ql.  q2). (8.2.n3) 

Hence, in particular, C is of the form (8.2.107). An isomorphism ~ : ~. x -4n --* Zr × / i n  

has to map the ungraded subalgebras An onto each other. Since all objects  in -4n 
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have different Perron-Frobenius dimensions, this map from An to -~n, denoted by f ,  is 

uniquely determined. Moreover, ~ has to map invertible objects to invertible objects. 

Hence its restriction to ~-r, ~0 : Zr --* Zr, is a well defined group isomorphism. It follows 

that, for j E An and u E Zr, ~((~,j))  = (~o(u),f(j)), i.e., ~ is unique for a given ~0. 

For the canonical generator p of the ungraded An-subalgebra satisfying p o p = 1 + ~b, 

the fact that (~,.T, C) is an isomorphism of braided categories imphes that r(p, p, ~b) = 

r' (f(p), f(p), f(~b)) (see (8.2.104)), and hence that [ =/~. Furthermore, the isomorphism 

(8.2.a08) imposes on the quadratic, invariant functions q and q' the equation q(a) = 

q'(~o(tr)), for all invertible objects a, i.e., q = ~(q ') .  Conversely, if (8.2.109) holds we 

have (according to section 7.4) an isomorphism (~0,-T0, C0): Cz,,q --* Cz,,q, which, when 

tensored with the identity on dn, b yields the isomorphism (8.2.108) for the product 

categories. 

For the proof of part ii) of the theorem it is sufficient, as in the case of braided 

categories, to show that there exist isomorphisms for the categories associated to the 

trivially graded objects and for the categories associated to the invertible objects. As a 

first condition we obtain eq. (8.2.106) of Corollary 8.2.7. If (0 : ~- ~ 7~. is the restriction 

of ~ to the invertible objects it induces an isomorphism, (0 # : irn S* o 3,41 (r4(zr)) 

im S" o-,/41(I'4(~.r)), and the two categories are isomorphic iff ¢0#(S * o 741(q)) : 

S*o741(q~ ). Since the group on which ¢0 # is defined, is either {1} or =2, it is independent 

of ¢0. Hence the requirement in (8.2.110) is also independent of ¢. 

To prove part (iii) we remark that Cn,r([, q) is a G*-category if and only if Cn,[ and 

Cz,,q are G*-categories. Since 0-categories always carry a G*-structure, we are left with 

condition (8.2.111), as in eq. (8.2.105) of Corollary 8.2.7, i). A set of balancing phases 

of a product category is given by the product of balancing phases of the individual 

categories, e.g., by the phases given in eq. (8.2.105a) of Corollary 8.2.7, i), for the Cn,F 

factor, and the quadratic function (7.296), for the Cz,,q-factor. Taking into account that 

distinct sets of balancing phases can only differ by E2-gradings, we arrive at (8.2.112). 

[] 
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Notice that  the fusion rule algebra isomorphism 

~ : 77.. 2 X .An ~ A2n : ( e , j )  ~-~ p [ o j  ( h = 2 n - 1 )  

extends to an isomorphism of braided categories, 

( ( , . ~ ' , C )  : Cn,2C[,q ) "--+ C2n_1,1, 

if and only if 

[ =-- n21 m o d ( 2 n + l ) ,  

and q(j) = 1)t ) 4 j2 , j E Z 2  " 
(8.2.114) 

The basic strategy to describe the categories associated to the z~. * A2n-l-fusion rules 

relies on the fact that  

i : Z r * A 2 n - 1  ~ Z2r(g) × A 2n-1  

( k , p )  ~ ( g r a d ( ( k , p ) ) , p ) ,  (8.2.115) 

is an inclusion of fusion rule algebras, see (7.255). Here grad( (k ,  p)) = g2k+e, where 

e = 1 if p is graded non-trivially, and e = 0 otherwise. A large class of braided tensor 

categories with Zr * A2n-1  " fusion rules is therefore provided by the subcategories of 

the product categories Cz2, ,q @ C2(n_l),l • For a given q E Hom(r4(z2r), U(1)), and 

I E XSn with (l, 2n) = 1, we denote this subcategory by Cn,r (l, q). It is obvious from 

the definitions that 

Cn,r (I, ql) q2 : Cn,r (l, ql"  q2), (8.2.116) 

for any pair q l ,  q2 E Hom(r2(~.2r), U(1)). The subcategory associated to the 

graded fusion rule subalgebra, xv C Xr * -4n, is characterized by the restriction, 

£*(q) E Horn(r4(Xr) ,  U(1)) , of the qudratic function q, where { : Xr ~ X2r is the 

monomorphism obtained from (8.2.115). 

Notice that ,  for a quadratic function ta E Ho~(r4(~2), V(1)), given by 

T "2 (8.2.117) 
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for some r E Z4 , we have by composition with the invariant (8.2.95) 

Ck, l ~-- Ck,(l_r(k+2) ) , (k = 2n - 2 ) .  (8.2.118) 

This isomorphism can be used to generate an equivalence of the higher graded categories. 

To this end, we consider the following commutat ive diagram of inclusions, where we only 

assign the fusion rule algebra monomorphisms to the arrows : 

Cz2,,q ® Cz2,~ ® C2(n_l) , l  , i d ® ( g r a d ° ' i d )  " Cz2,,q ~ C2w(n_X),l 

Cz2.,q.~.(~ ) ® C2(,~-1)j C~.2.,~ ® C2(.-1),(z-2,~,-) 

i = (g~ad, p2) [ i  = ( g ~ d ,  p~) 

T 

J 
c.,.(l ,  q. ~*(~))  , - , c . , . ( t  - 2 . , . ,  q) 

(8.2.119) 

Here, i is as in (8.2.115), with p 2 ( ( k , p ) )  -- p . Furthermore,  the project ion map, 

~r : Z2r --* Z2 , yields the quotient by 2(Z2r) - 7_¢ , and we use the notat ion 

6(g) := g®~ r ( g )  . Using that  7 r o g r a d  = g r a d  ° o p 2  , we see tha t  this diagram 

commutes for the fusion rule algebra homomorphisms,  and all but  the b o t t o m  line can 

be extended to inclusion functors of braided categories. Therefore,  the two categories 

in the bo t tom line are isomorphic to the same subcategory and thus isomorphic to each 

other. 

Fur ther  equivalences of categories can be obtained from the automorphisms of 

z r  * A2n-1 .  The  only non-trivial fusion rule algebra au tomorphism of A 2 n _  1 is given 

by 7n which, in Lemma 7.3.4,i)a), is defined by 

~.(pj) = p~ o (p~._x)) j (8.2.120) 

We denote by av : g ~ gV, with (v, 2r) = I, the automorphisms of Z2r. The group 

of automorphisms of Zr * A2n-1 is then generated by ~n and ~v which can be uniquely 

defined by the commutative diagram 
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, A2n_ 1 , i J Z2 r × A2n_ 1 

&v o~ ~ av x 7~ = (8.2.121) 

Zr * A2n_ 1 " i j Z2 r × A2n_ 1 

with ~ = 0, 1 mad (v, 2r) = 1 . More explicitly, &v mad qn are defined by 

#.((k,pj))  = (k, ~ . (pj ) ) ,  (8.2.122) 

for k E ~ ,  pj E A2n-1 .  

Generalizing formulae (8.2.104) we find, for j = 1, 2 , . . .  , k - 1, the values for the 

invariants of Ck, t (k = 2(n - 1)) 

r(pj ,pj ,p2)  = -ezp(2~r i  4( k l+ 2) (j2 + 2 j -  4)) (8.2.123) 

from explicit computations of the spectrum of R = TT~ on Uq(s/2)-representations. In 

particular, for k = 2(n - 1), we have that  

r(pk-1,  Pk-1, P2) = -- ezp(--21ri ~n ) (8.2.124) 

where en 6 Z8n, with e 2 : 1, is given by 

1 if n is even 
(8.2.125) en = l + 4 n  i f n i s o d d  . 

This shows that  there exist functors of braided categories extending 7n between precisely 

the following pairs : 

(7n, jr ,  C) : C2(n_1),i ' C2(n-1),,,.l " (8.2.126) 

From the functors in (8.2.126) we obtain canonical isomorphisms between the categories 

Cz,.,q @ C2(n_l),l mad Cz,.,q@C2(n_l) , cnl, for fixed q, and thus, by completing the square 

in (8.2.121), the isomorphisms 

(5,., jr, c )  : c . , . ( t ,  q) , c . , . ( ~ . ,  t, q) .  (8.2.127) 
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In the same way we obtain the isomorphisms 

(a . ,  ::, c )  : c . A I ,  q) , c,,~(t, ~;(q)). (s.2.12s) 

With the definition of the Cn,r(I, q) -categories at our disposal, we are in a position to 

describe the classification of categories which have the second type of untwisted A-fusion 

rules, namely the Zr * A2n-1 fusion rule algebras. 

T H E O R E M  8.$.g 

Let Zr * A 2 n _ l ,  with r > 1, n >__ 2, be the fusion rule algebras specified in (7.130) and 

(7.1$4) of Theorem 7.5.11. Denote by p the canonical generator with p o p = a + ~b , 

where a is the invertible object of order r. 

(i) All  quantum categories with Zr * A2n-1 -fusion rules are isomorphic to Cn,r(l, q),  

for some l c ~ s . ,  with (t, 2n) = 1, and some q e H o m ( r 4 ( z 2 . ) ,  U ( 1 ) ) .  For  a 

given p, I and q are determined - up to the equivalence described in (8.~.119) - by 

the formulae 

r ( p , p , ¢ )  = - ezp(-27rl  8~ ) q(grad(p)) ,  

r (a , a ,  a 2) = q(grad(p)) 4 . (8.2.129) 

The only isomorphisms between these categories are compositions of those given 

in (8.,$.i19}, (8.~.1e7) and (8.e.1~8), and, for n = 2 and r even, one further 

functor. 

(ii) The category is a C*-  category if  and only if  

l =_ ±1 m o d ( 2 n ) .  (8.2.130) 

There are two possible sets of balancing phases for Cn,r(l, q) : 

.~v(2~iol.,.~) ) = ~ v ( 2 ~ i  t j(j + 2)) q(graa(,, pA) ,J 

with s E ~r,  pj E A2n-1,  j = 0, 1 , . . .  , 2(n - 1), and e : -4-1 . 
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P r o o f .  

The fusion rule algebra Er * A 2 n - 1  has a graded subgroup, R := y r ( a ) ,  with generator 

a = (1,1) ,  which is included in G r a d ( O b j )  = ~2r(g) (with generator g := grad(p )  ) 

by the map a s ---* g2S . It defines the graded fusion rule algebra homomorphism 

lr R : Ob j  = Yr * A2n_  1 -----* Obj  = O b j / R  = A2n_  1 , 

( s ,  p j )  , , , (8.2.132) 

so that  G r a d ( O b j )  ~- Y r .  

We consider a braided tensor category C with Yr * A 2 n - 1  - fusion rules and compute 

the invariant (depending on R) A*(w) 6 H o m ( 2 G r a d ( O b j ) ,  22) • Corollary 8.1.14,i) 

states that  if A*(w) is non-trivial then r = 2r I is even, and we can find a monoidal 

category on A 2 n - 1  and braid matrices r ( i , j , k )  such that  the modified hexagonal 

equations (8.2.76) hold. If we identify all representation labels in (8.2.76) with the 

fixed A 2 n - l "  generator Pl, i.e., [i] = [j] = [k] = It I = P l ,  we arrive at the equations 

(8.2.66) and (8.2.66a) given in Lemma 8.2.4. For n = 2, gi = 9 i  = gk = grad(p )  = 1 

(in additive writing), and 7(gi ,  g j )  = 1, we obtain for the prefactor in (8.2.66a) the 

equation 

This contradicts the assertion (8.2.67) of Lemma 8.2.4. It follows that  

A*Cw) _--- 1 , (8.2.133) 

for all braided tensor categories with yr * A2n-1- fusion rules. Hence, by Corollary 

8.1.14, ii), there exists a quadratic function q e g o m ( F 4 ( G r a d ( O b j ) ) ,  V(1)) such 

that  C --- Cq, and C is induced by some category C2(n_l),l with A 2 n - l - f u s i o n  rules 

and by 7r R.  For the category, Cz2,,q=O ® C2(n-1),l, with Z2r × A2n-1- fusion rules, 

the subgroup G = ((a,  1)}aEz2, - ~2r of invertible objects fullfills the hypotheses 

of Proposition 8.1.4, since the braid matrices of tensor product of categories have no 
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mixed terms, i.e., the monodromy, rh E H o r n ( R  ® a r a d ( O b j ) ,  u(1)), as defined in 

Lemrna 8.1.6, is trivial : rh _= 1. There therefore exists a category, C, with A2n_ 1 - 

fusion rules such that  ¢z2,,q=O ® C2(n-1),l is induced by C and by the graded fusion 

rule algebra homomorphism ~r : Z2r X A2n_  1 ~ A2n_ 1 : g ~ PJ ~-~ PJ " By virtue 

of the inclusion i G : A2n-1 ¢--* Z2r X A2n_  1 : pj  ~-* 1 ® p j ,  (1 = neutral  element) 

of fusion rule algebras, C2(n_l) , l  i s  a subcategory of Cz2,,q=0 ® C2(n-1),l, and since 

7r G oi a = idA2,_ 1 , the composition of the corresponding functors yields C ~ C2(n_l),l. 

The inclusion i : Z2r * A2n-1 ~ 2~2r X A2n-1,  given in (8.2.115), then extends to an 

inclusion of the braided tensor category Cn,r(l, q = 1) into Cz2,,q=o ® C2(n-1),l .  Since 

lr R = lra o i ,  we find that ,  by composition of this inclusion with the functor onto 

C2(n_l) , l ,  Cn,r(l, 1) is induced, as a braided tensor category, by C2(n_l),l and ~r R .  

From the uniqueness of induced categories we conclude that  C ---- Cn,r(l, 1), and finally, 

with (8.2.116), we find that  

C ~- Cn,r(l ,q) , 

proving the first assertion of the theorem. The invariants in (8.2.129) are simply those 

inherited from Cz2,,q ® C2(n-1),l • If we denote by rq and ro the braid matrices of the 

two factors, then (8.2.5) implies that  

r(p, p, ~b) = rq (grad(p) ,  grad(p) ,  grad(d2)) ro(TrR(p), ~rR(p), 7rR(¢)) , 

and r(a, a, a = rq (grad(a),  grad(a) ,grad(a)  2 ) .  

Hence, setting Pl = ~rR(p), P2 = 7rR(¢),  grad(a)  = g r a d ( f )  = grad(p)  2 , and with 

the help of formula (8.2.95), we obtain (8.2.129). 

A generator p of the ~. *A2n-1 - algebra, in the sense of Theorem 7.3.11, is character- 

ized by the facts that  grad(p)  is invertible in (i.e., a generator of) G r a d ( O b j )  ~- 2~2r 

and that  dp = 2cos(2-~). If n ~ 2 the only automorphism of ~ . *  A 2 n - i  which maps 

such a generator to itself is the identity, since tensor products with p have at most two 

irreducible summands  and the equation pop : a+~b implies that ,  since ¢ is not invert- 

ible, a is mapped to itself. The only exception from this implication occurs for n = 2 
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a n d ,  even. In this case, P2 E A3 is invertible, and an au tomorphism ~ on Zr*A2n-1  

can be defined from the equations ~( ( s ,p l ) )  : i s, Pl)  and ~((s, a ) )  = (s, P2 o a ) ,  for 

s E gr and a E {1, P2}. This fusion rule algebra homomorphism extends to a functor  

((~,~, C) : C2,r(/, q) , c 2 , , ( - l , q ' ) ,  (8.2.134) 

with 

q (g, dCp/) = -e p(2 i qCg, dCp/), 

for any even , ,  any odd I E Z16 and any q E ttomCr4CGradCObj)), U(1)) .  

Thus,  a general automorphism ~ on Zr * A2n-1 is, for n ~ 2,  uniquely determined 

by the image, ~(p),  of the generator p .  Since the group {&v : v E Z2n, (u, 2 , )  = 1} of 

automorphisms on Zr * A2tt_l acts transitively on the invertible elements in the ring, 

Grad(Obj) -~ g2r,  and each graded component  contains at most two objects with 

dimension 2eos(~n) which are mapped  onto each other  by ~n,  we see that  the group 

of automorphisms,  defined in (8.2.121), acts transit ively on the set of generators.  This 

proves that  every automorphism on gr * A2n-1 is of the form (8.2.121) and, for rt = 2 

and , even, can also be composed with the special au tomorphism ~ defined above. 

The  categories Cn,r(l, q) are those with a generator p and an invertible object a ,  

with p o p = ~r + ~b. Let us assume that  there is an isomorphism 

~ t  

::, c )  : c. , .( l ,  q) , c,,,.(l', 4 )  

between two such categories. We can always write such a functor  as a composit ion of 

the functors given in equations (8.2.127/, (8.2.128 / and, for n = 2,  (8.2.134 / with a 

fur ther  functor  for which ( maps the objects p and ~ - and thereby all dements  of 

gr * A2r,_I generated by p and t7 - onto each other.  For the latter ,  it follows from 

(8.2.129 / tha t  (q/4 = (qt)4. A quadrat ic  function q on the cyclic group Grad(Obj), 

with q4 = 1, is always of the form q = 7r*(w), where w ~ H o m ( r 4 ( g 2 ) ,  U(1)) is as 

in (8.2.1171, and ~r : g2r -~ g2 is the quotient by 2(g2r/ .  Hence, for qt = q-~r*(~v), we 

399 



find from the first equation in (8.2.129) that l ~ = l + 2rtT mod(Sn) .  For any T E Z4, 

we have already costructed the corresponding functors in (8.2.119). This completes the 

proof of part i) of the theorem. 

The proof of the second part of Theorem 8.2.9 uses the facts that an induced category 

is a C*-category if and only if the inducing category is C* and that g-categories are 

always G'*-categories. This shows that it is sufficient to verify the existence of a C*- 

structure on the A2n-1- category. Condition (8.2.130) is thus the sa~ne as (8.2.97). 

The balancing phases recorded in (8.2.131) are simply those inherited from the cate- 

gory Cz2,,q ® C2(n_l),l, multiphed with a z 2- grading, (s ,pj)  ~ eJ, which accounts 

for the only ambiguity in choosing the phases 8(2,p J.) , for a given braided tensor category 

[] 

The remaining An- categories we want to determine are those with 

ra ( ~  * A2n-1) fusion rules, (see Sect. 3 for definition). The group R of invertible 

elements for this algebra is E2r and the induced grading, grad : R --~ Grad(Obj), has 

2R as a kernel .Thus, contrary to the previous cases, only the subgroups of R of odd 

order are graded, and hence, for r = 2P-r I , with r I odd, the order of Grad(Obj), where 

Obj is the image of a graded homomorphism on Obj ,  is always a multiple of 2(p+I) . 

Fortunately, there is a second way to treat this situation: 

We shall use the fact that there exists a graded homomorphism from an untwisted 

fusion rule algebra with a higher grading onto the twisted algebra under consideration. 

Before constructing this homomorphism, we must briefly recapitulate the definition of 

ra(Zr * Obj) and the composition laws described in Definition 3.3.1. To this end we 

recall some notations used to describe extensions of cyclic groups. We consider the short 

exact sequence 

4OO 



~Irlrgt le 

I I 
0 , ~ . , ( ~ )  z . , , .  ~.,,. • ' ~ r ( ~ )  , , ~ ( ~ )  , 0  

(8.2.135) 

of cylic groups with specified generators, homomorphisms im, r(u)  = v r and ~rm, r(V) = 

~,  and where /3m, r is the section given by 

/3m, r : Zr --* Zrm : ~J ~-~ v j , j = 0 , 1 , . . .  , r -  1, 

with rm,r  o/3m,r = id .  Further,  we define the map 

Xrn,r : ~rnr ~ ~rn 

by im,r(Xm,r(g))  = g (~m,r( lrm,r(g)) )  -1  

(8.2.t36)  

1, 
7a ( i ' J )  =-- ~"(g~'gJ) = 0, 

with i , j  = 0 , 1 , . . . ,  a - 1 .  Then  

"(8.2.137) 

When there is no confusion about  the choice of generators we use an additive notat ion 

with generator  1; e.g., equation (8.2.137) can be wri t ten as 

j = ~m,.(~m,.(j)) + im,.(Xm,.(j)) .~od(mr), 

for j = 0,..., mr - 1. We also define the cocycle 7a 6 Z2(Za(g), Z) by 

a < i + j < 2 a ,  
(8.2.138) 

O < i + j < a ,  

~.~,° - a 7 °  r o o d ( a m ) ,  (8.2.139) 

(compare to (7.234) and (7.235)). For a fusion rule algebra (Obj,  o) ,  the composition, 

Oa, of Ta(Obj)  is given by 

z oa y = a ~/~(gradCz)'grad(y)) o z o y (8.2.140) 

where 7a is defined with respect to a given generator,  g ,  of Grad(Obj)  ~- Za(g),  and 

a E Ro = ( a  : a o a v = 1, grad(a)  = 0} .  The composition, % ,  of the fusion rule 

algebra zr  * Obj is given by 

(k l , Z l )  oo t (k2,z2) = (k l + k  2 + T a ( g r a d ( z l ) , g r a d ( z 2 ) ) ,  z l o  z2) , (8.2.141) 
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for kj • Zr and z j  • Obj .  We choose a generator, ~,  of Grad(2¢ * O b j ) =  Zar(.q) 

such that  

g r a d ( ( k ,  z ) )  = .~(,,k+~,,o(g,-~(~,))) . 

The product,  o%,,, for ra (Y-r * Obj) is therefore given by 

(8.2.142) 

( k 1 , ' 1 )  o.),,.,. (k2,  *2) =" (8.2.143) 

= (kl  + k~ + ~o(gradI*l) ,gr~d(*2)),  a~°'(~'~k'' ' ' ) 'g'~¢*~'' ' ) )  o . ~ o  .~ ) .  

Using the identi ty 

r "tar (grad(kl ,  z I), grad(k2, *2)) = (8.2.144) 

-- /3oo,r(kl) + f~oo,r(k2) -{- ? a ( g r a d ( z l ) , g r a d ( , 2 )  ) 

- / ~ , r ( k  1 + k2 + 7a(grad(*I ) ,grad(z2) ) )  

we showed in (3.48) that  

z ,  • . o ( o b j )  , ,  ~... ( 2  • o ~ j )  : ( k , . ) ,  , (k, a-#,,~,,(k) o z)  (8.2.145) 

is a fusion rule algebra homomorphism. Furthermore, we have the isomorphism 

Z m * ( E r * O b j )  ' Z m r * O b j  : ( k , ( I , z ) )  , * ( r k + f l m , r ( l ) , z )  , (8.2.146) 

for k E ~rn , 1 E Zr , z G Obj , which preserves the generators of the grading groups. 

Suppose tha t  a E t a r o ,  (i.e., a o a  v = 1, grad(a)  = 0 and a m = 1). Then we 

may consider the composition of homomorphisms 

: ( j , . )  

, ~ , ( ~ ,  obj) ,  

, ,  
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,, (=, ,  obj))  

. ~-,, (=,. • o b j )  

' O",,.,,'(J), ax,, . , .u) o . )  

(8.2.147) 



/ 

Here we use tha t  the inverse of (8.2.146) maps ( j ,z) to ~Xm, r(J), (~rm,r(j),z)) and 

that  the last epimorphism in (8.2.147) maps (k, 1) to z .  The fusion rule algebra 

homomorphism f* is irreducible and graded, and its kernel is given by 

ke , ' f*  = {(rl, a - t ) }  ~ t e r ~  = ~ n .  (8.2.148) 

The existence of a graded homomorphism f* allows us to identify a category, C, with 

ra (~r * Obj) -  fusion rules with the category C with ~nr  * Obj-  fusion rules, that  is 

induced by C and f * .  The family of all balanced, braided tensor categories C which 

are of this form is characterized by conditions i) and ii) of Proposition 8.1.4, where 

R = k e r f * .  

We specialize this result to the case, where Obj = A2n_ 1 , a = 2, a = P2(n-1) and 

m = 2, i.e., we have 

]* : g2r *A2n-1 -~ r a ( ~  *A2n-1)  

(8, p~) , , (~, "2(r,-~) o p j ) ,  

with ~ = 7r2,r(s), and 

x2,,(8) = { 
0, 
1, 

and the kernel of f* is given by 

s = 0 , 1 , . . . , r - - 1 ,  
s = r , r + l , . . . , 2 r - - 1 ,  

(8.2.i49) 

kerr*  = {1 ,~ ] .  ~ g2, 

with 5], := (r, ,o2(._1)), 

and grad(r,) = 2r moa(4,). 

(8.2.150) 

The conditions for Cn,2r(1, q) to be induced by some category on ra (~- * A2n-1) are, 

according to Proposition 8.1.4 : 

and 

i) 

ii) 

r (~ ,  5],, I) = 1 

8~oj -- 8 i modl, Vj E Z2r * A2n-i - 
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To check i), we compute,  using (8.2.101), 

rCZ, F`, 1) ---- rq (grad(F,),  gradCF`), 1) ro([a], IF`I, 1) 

---- q(2r) ro(P2Cn_l),  P2(n-1) , 1) 

= ( - 1 )  to" (_1)I(r ' - l)  - - 1 ,  
(8.2.153) 

Expressing q in terms of To E ZSr, this is equivalent to 

( - 1 )  r°C'+j) = ( - 1 )  l ( j+l-n)  , for j = 0 ,1 , . . .  , 2 ( n -  1), 

which, for j = 0, is precisely the equation (8.2.153). Hence, with (l,2n) = I, i.e., 

I -- 1 rood2, (8.2.151) and (8.2.152) are equvalent to 

i) To - 1 rood2 

and ii) r - n + l r o o d 2 .  (8.2.154) 

It is remarkable that  i i)  of (8.2.154) is a condition on the fusion rule algebra only. The 

first constraint is equivalent to the requirement that  5 e Hom(Z4r  ® Z4r, U(1)) does 

not degenerate on 2 (Z4r), i.e., that  6q(2r, 1) = - 1 .  In particular, i) is independent of 

the choice of generators and the natural  Z2 - ambiguity of the quadratic form. A form 

with this property shall be called an odd quadratic form on Z4r. 

In order to describe the structure matrices, we introduce the choice map, in the sense 

of equ. (8.1.5), 

7* : "ra(Zr * A2n-1) ' Z2r * A2n-1  

p j )  , , p j ) ,  

404 
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q(2r + grad(s ,  p j ) )  q (grad(s ,  p j ) ) - i  = ( _ l ) l ( j + l _ n )  " 

where we define ro E XSr by q(j )  = e z p ( 2 7 r i T o ~ ) .  Using that  E o (s ,  pj)  = 

(a + r, P2(n-l)-j  ) ,  and applying formula (8.2.131) for the balancing phases, condition 

(8.2.152) becomes : 



with f* o 7" = id. The map ~/ from equation (8.1.46) is then given by 

v/ : Z2r * A2n_ 1 ~ ker f* : (s, pj) , ~ E x=,'(2) , (8.2.156) 

which is of the form (8.2.10), i.e., 7" is the choice defined by Lemma 8.1.9 for the section 

= f~2,2r .  For an automorphism ~ of the fusion rule algebra W~2r * A2n-1 for which 

i ( ~ )  = ~ ,  (8.2.157) 

we can define a unique automorphism, ~, on Ta(Y-¢ *A2n-1) by requiring the following 

diagram to commute : 

Z2r * A2n_ 1 

f,  

~ ( ~ .  A 2 . - 1 )  

* Z2r * A2n-1 

f,  

, ~ . ( ~ .  A 2 . - 1 )  

(8.2.158) 

We easily check that  (8.2.157) holds for the automorphisms Tn and an  defined in 

(8.2.122). The corresponding maps on Ta(Zr * A2n-1) a re :  

~ . ( ( s ,  pj)) = (8, pj o (p2C._l))J) ,  

and &v((' ,Pj))  -- (8 + ( ~ ) ~ r 2 , r ( g r a d ( s , p j ) ) , p j  o (p2(n_l))h~(grad(s'~.)2)i59) 

where 

h~ : z2r - ,  z2 : g ~ x 2 , 2 r ( ~ 2 , 2 , ( g ) ) ,  

with (v, 2r) = (v, 4r) = 1 , 8  E 7~0 and j = 0 , 1 , . . . , 2 ( n - 1 ) .  Since the correspond- 

ing automorphisms &v ~ of the grading group, with &~ = g~, for g C Grad(Obj) ~- 

•2r, generate again the entire group Au~(Grad(Obj)), we have that  the group of au- 

tomorphisms generated by the elements in (8.2.159) acts transitively on the generators 

of ra  (Y-r * A2n-1) • From this we conclude, by the same arguments as for the untwisted 

algebras, that  the automorphisms in (8.2.159) generate all automorphisms if n > 2. 

For n = 2, categories exist only for odd r ,  in which case we find, with (3.48), that  

ra(Zr * A3) ~ Zr * ra(A3).  However ra(A3) ~- A3, since P2 o Pl = P l ,  so that  the 

fusion rule algebras ra(Zr  * A3) are, in fact, untwisted algebras. 
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Having a one-to-one correspondence between the automorphisms of the fusion rule 

algebras Z2r*A2n-1 and r~, (~_¢*A2n_l) , we can establish an analogous correspondence 

between equivalences of categories associated to these fusion rule algebras. We denote 

by Cn,r(l,q), with l E ZSn, (l, 2n) = 1, q E Hom(I'4(Z4r), U(1)),  q = odd and 

n -- r -t- 1 rood2,  the category induced by Cn,2r(l,q) and f* :  There is a functor 

(1", y* ,  c*)  = c,,,2~(t, q) ---, d,,,,(t, q) .  (8.2.160) 

Suppose that ~ is an isomorphism of the Z2r * A2n_ 1 - algebra which extends to a 

functor 

(~, bv,C' ) :  Cn,2r(l,q) ~ Cn,2r(l',q') , (8.2.161) 

for some l t and qt. The corresponding isomorphism ~ defined by (8.2.158), also extends 

to a functor, (~, ~', 0 ) ,  from Cn,r(l, q) to some other category Cn,r(l", qU) with fixed 

generator. It follows from (8.2.158) that Cn,2r(lt,r t) is induced hy d,,,, .(l",q"), and 

hence, by uniqueness of induced categories, we conclude that l t = 1", ql = qtt, and 

there is a functor (f*, Y ,  C') such that 

c.,2~(t,q) (~' y '  c) 

(i*, ~, c) 

In particular, we have the isomorphisms 

' n , 2 r~  , q ) 

(f*, Y, c') 

g "I' '" ' n , r (  , q  ) 

(8.2.162) 

and, for (v, 2r) = 1, 

(a~, ~, ~) : g,,~Ct, q) , d, , , ( l ,  ~*(q)).  
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(8.2.165) 

(id, .f:, d) : Cn,r(l, q) } dn,r(l + 2nz, q.  ~r~r,r(w)) , (8.2.163) 

where w is given in (8.2.117) and, as 6(Tr~r,r(w))(2r, j ) = 1, Vj  E Z4r  , q " ~r~r,r(W ) is 

odd if q is odd. Moreover, from (8.2.127) and (8.2.128), we obtain the isomorphisms 

(Tn, fr, O) : Cn,rCl, q) , Cn,r(en I, q),  (8.2.164) 



From the invariants r ( i , i , j ) ,  with Nii,j = 1, defined for the category Cn,2r(l,q) we 

obtain the corresponding invariants ÷ (f*(i),  f* (i), f* (j)) = r(i, i, j )  on dn,r(I, q). If 

the object p, satisfying pop = t r+¢ ,  denotes the fixed generator of ra (Zr*A2n-0 then 

pO := 7*(P) is the fixed generator of 2~2r * A2n_ 1 , and it satisfies pO o po = ao + ¢o ,  

where f* (a  °) = a and i f ( ¢  °) = ¢ .  Hence, the invariants defined in equation 

(8.2.129) of Theorem 8.2.9 for the objects, po and a ° , yield invariants ÷(p, p, ¢)  = 

r(p°,p°,~b°) and ~(a, cr, a 2) = r (a° ,a° , (a° )2 ) .  From this it follows, by the same 

arguments as for Theorem 8.2.9, that for n > 2, the only isomorphisms among the 

Cn,r(l, q)- categories are given by compositions of those given in (8.2.163), (8.2.164) and 

(8.2.165). We thus obtain the following classification of categories with ra (~r * A2n-1) - 

fusion rules. 

T H E O R E M  8.~.10 

Let r~(z,  • A 2 , - 1 ) ,  (r  > 1, n > 2), be the fusion rule algebra Jpeci~ed in (7.1Sl) 

and (7.135) of Theorem 7.5.11. Denote by p the fized generator with the property that 

p o p = a + ~b, where a is the invertible object of order 2r. 

(i) There ezist quantum categories with 7"a(Z, * A2n-1) " fusion rules if and only if 

r = n -  1 rood(2). (8.2.166) 

For I 6 ~s,,, with (l, 2n) = 1, and every odd q e Hom(F4Cx4r), U(1)) ,  there 

ezists a quantum category, Cn,r(I, q),such that 

l 
~ ( . , . , ¢ )  = - e~p(-2~i  ~ )  qCc) 

and r(~, ~, ~2) = qCc)4, (8.2.167) 

where c :=  132,2r(grad(p)) generates Z4r , and q is odd iff  6q(c 2r, c) = - -1.  This 

catego~ u induced by the category, (~n,2r(l,q) given in Theorem 8.~.g and f * .  

F o r .  = 2 (~  - -  1 rood2),  we h~ve thor ~ o ( ~ * . 4 3 )  - -  ~ *  n~ . For ~ > 2 ,  the 

only isomorphisms between these categories are those given in (S.2.1#S), (S.~.164) 
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and (8.2.165). None of these categories is equivalent to a category with ~ .*A2n_ 1 - 

fusion rules. 

(ii) The category Cn,r(l, q) is isomorphic to a C*-  category i f  and only i f  

l -- +1 m o d 2 n .  (8.2.168) 

There are two possible sets of balancing phases for Cn,r(l, q) : 

ezp(27riO(s,p¢) ) = e j exp(27ri -~nI j ( j  + 2)) q(152,2r(grad(2 , pj)) ) 

with s E Xr, pj E A2n-1 ,  j = 0 ,1 , . . .  , 2 ( n -  1), and e = +1.  

(8.2.169) 

If we combine the classification of categories in Theorems 8.2.8, 8.2.9 and 8.2.10 with 

the description of possible fusion rule algebras given in Proposition 7.3.25, we finally 

arrive at a characterization of braided, monoidal G'*- categories that are generated 

by a single object of statistical dimension less than two. It is remarkable to see that 

the constraints imposed by the monodromies ~n E H o r n ( R ®  Grad(Obj) ,  U(1)) ,  as in 

(8.2.150), with re(p, p) = ~(p, p)2, are sufficient to single out precisely those fusion rules 

for which quantum categories exist. Moreover, a comparison of (7.2.58) with (8.2.112) 

and (8.2.131) and of (7.2.59) with (8.2.169), concerning the possible values of l and q, 

shows that all the statistical phases described in Proposition 7.3.25,ii), are realized in 

some quantum category. 

Notice that, by use of the isomorphisms (8.2.118) and (8.2.163), we may always shift 

the parameter l E XSn, with I = +1 m o d 2 n ,  labelling C*-categories with Xr*A2n_ 1- 

or ~'a(~" * A2n-1) - fusion rules, such that 1 = 1 rnod8n.  According to the result on 

equivalences given in Theorems 8.2.9 and 8.2.10, an equivalence between two categories 

with n > 2 and the parameter l constrained in this way, mapping the distinguished 

generators onto each other, exists if and only if the quadratic functions are the same, 

and in this case the category is unique (up to isomorphism). 
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We have to formulate the main result of this work for C*- categories only, since 

Proposition 7.3.25 has been proven under the assumption that a C*- structure exists. 

There is, however, little doubt that our classification can easily be extended to the 

general, semisimple case. 

THEOREM 8.~.. 11 

Suppose C is an abelian, monoidal, rigid, braided, balanced C*- category. Assume, 

further, that equivalent objects in the object set, Obj , of C are equal and that Obj - 

as a fusion rule algebra - is generated by a single, irreducible object, p. Let 

a(p)  :=  ~;z e -2 '~ ,  • 

be the statistical dimension of the generator, where Ap ia ~he statistical parameter de- 

fined by 

Ap'~; 'dp lp  -- ( lp  o va;) a(p,p, pV)* (e(p, p) o Ipv)  a(p,p, pV) (lp o 'alp) 

with tgp E Mor(1 ,p  o pV). Let Op be the balancing phase of the generator. 

(i) The following are equivalent : 

(a) 

1 < Id(p)[ < 2 ,  

(b) 

(c) 

(d) 

d(p) = rl=2cos(N), N = 4,5,... 

pop = a + ¢  , 

whe,~ ~ and ¢ are irreducible, re(p, p) = ~(p, p)2 

identity, and a is invertible. 

( y c comes ~ o m  a local quantum field theo,'u ) 

is not a multiple of the 

pop  = a + ¢  , 
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where ~r and ~b are irreducible; the projections in End((p o p)o p) 9iven by 

e l  ---- e g ( p , p )  o l p  , 

e 2 = a(p, p, p) ( l p  o e a ( p , p ) )  a(p,p, p)* , 

where e~(p,p) E End(po p) is the projector correspondin 9 to the subobject, 

a ,  satisf]/ the Teraperle~j - Lieb - equations, 

/3 e l e 2 e l  = e I , 

/ 3 e 2 e l e 2  = e 2 , 

(i i)  

with modulus, /3, different from four ( h e n c e , / 3  < 4 ) .  

If  one of the conditions in i) is fullfilled then the categor!/ C (without balancing) 

is equivalent to one of the followin9 braided categories (defined with respect to the 

fized 9enerator p ): 

(.) yor n ,r  ~ N, w i t h .  > 2, r > 1, and q ~ Ho,-,,(r4(~.), V(1) ) ,  

~ . , . ( ± . 2 ,  q) ,  

which is defined and described in Theorem 8.~.8 as the product Cz,,q ®Cn,+n2 

• It has fusionrules 

* f ~  , 

as in ( , H T )  of Theorem , 4 . n .  

(b) For n,r E N, with n >_ 2, r >_ 1, and q E Hom(F4(~2r), U(1)), 

Cn,r(~l, q), 

defined as a subcatego~ of Cz~,q ® C2(n_l)-i.- 1 bT/ virtue of the inclusion in 

(8.$.114) and described in Theorem 8.P..9. It has the fusionrules 

Zr * A2n_l 
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(iii) 

a, in (3.I~,0) and (3.Ie4) of Theorem 3.4.II. 

(c) f o r  n , r  E I~, with n > 3, r > 1, r - n - 1  rood(2), and q E 

gom(r4(z4~),  V(1)),  with q odd, 

~.,.(+1, q), 

defined a, the category inducing Cn.2r(=l=l,q) by the graded morphiJm in 

(8.P,.I~7) and de,cribed in Theorem 8.1L10. It ha, fu,ionruleJ 

"ra (Zr * A2n-1)  , 

o~ in (3.1~1) and (3.1~5) of Theorem 5.4.11. 

In a) and b) we include the po,,ibility r = o o  for a torsion free grading group, 

with r 4 ( z )  - Z .  For each of the,e categorie, balancing phane, ezi, t and are 

uniquely determined up to Z2- grading~. 

The categorie, in ii), for given n, r, q and a given ,ign in the 1-argument, are 

inequivalent a, braided categorie, with a du, tingui, hed generator p, with the ,ingle 

ezception of 

((, y,  c )  : e2,r(±], q) , c2,r(+1, 4 ) ,  

where q'(gr=d(p)) - ¢~ q(gr=d(p)). In any of the ca.e . . ) ,  b) and c), the 

group of the automorphi, m,  Aut(Obj)  of the fu,  ion rule, ( modulo the ezcep- 

tional one ) act, freely and tran,itively on the Jet of generator,, {j  : d P'F" = 

Id(p)l.  grad(j)  generate$ Grad(Obj) },  and can be extended to equvalence, of cat- 

egorieJ. For ca, e a) we have that Aut(Obj)  ~ Au t (Grad(Obj ) ) ,  and, for cases 

b), with n > 2, and c), that Aut(Obj) ~- z 2 @ Aut (Grad(Obj ) ) .  
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A p p e n d i x  A 

Undirec ted  Graphs with N o r m  not 

Larger than Two 

We give a list of all undirected, connected graphs with norm not larger than two. We 

distinguish between bicolorable and non-bicolorabIe graphs and indicate the possible bicol- 

orations by "white and black vertices. By Kronecker's theorem, the norm of such a graph is 

2 cos ( ~ ) ,  where N = 3 ,4 , . . . ,  oo is the Cozeter-number of the graph and is given below 

for graphs with norm less than two. The graphs with N = oo for which there ezists a pos- 

itive eigenvector with eigenvalue two are included. For each graph, the components of the 

Perron-Frobenius vector, ~ are given by the numbers indicated at the vertices which are 

with e~,  and N is the Cozeter num- ezpressed in terms of q-numbers (n)q :=  q_~-x , q = 

bet of the graph. The vector d is  normalized such that its smallest component on the graph 

is one, ezcept when all vertices have edge degree two in which case we set c~:= (2, 2 , . . . ) .  

The sites where the Perron-Frobenius vector attains its minimum are marked by a "* ", and 

the number, g, of such sites is indicated, (for each coloration separately, in the bicolorable 

case). 
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A . 1  B i c o l o r a b l e ,  f i n i t e  g r a p h s  

a) N<oo  

A2.,n~l: * c" _- • • (2)q (3)q • - - - . -C 

(2n-I)q 
N = 2 n + l ,  

go=l, g l = l  (A1) 

A=._,, n > 2 : 
(2)q (3)q 

c , 
(2n-2)q go=2, gz=O (A2) 

D4 : N = 6 ,  

9o=3,  g z = 0  (A3) 

D2., n _ > 3 :  * -  C (2)q (5)q 
e )q~-(2n- I)q 

(2n-2 
±(2n-I)q 
2 

N = 4 n - 2 ,  

9o=1, 9 z = 0  (A4) 

D=.+z, n >_ 2 : 
(2)q (5)q 

I 

(2n~_l)q ~'(2n)q 
E i ( 2 n ) q  

g ~- 47/,! 

9o=1, gi--0 (A5) 

Es: , o I, o , 
(2)q(5) q~ (2)q 

(3)q_ (4)q-(2)q (Z)q - 

N = 12, 

go=2,  g , = 0  (A6) 

413 



(1) 
Dh.1. n 2 2 >TF . 7-2< go = 2, g1 = 2 ( A l l )  
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E 0) : * O 
2 

2 

g0=3,  g l = 0  (A12) 

E (1) : 

2 3 

4 
A 

3 2 
g0=2,  gl = 0  (A13) 

E~ 1) : 

2 3 4 5 

6 
A v 

4 
o go=l ,  g~=0 (A14) 
2 

A . 2  B i c o l o r a b l e ,  

N - c ~ )  

i n f i n i t e  g r a p h s  ( c o r r e s p o n d i n g  t o  

A~: C -- 0 : 

2 3 4 5 
go=l, g~=O (A15) 

Doo : go=2, g l = O  (A16) 

A o o , o o  0 ~ ~ ¢ 

2 2 2 2 
go=O, g l = 0  (A17) 
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A . 3  N o n - b i c o l o r a b l e ,  f i n i t e  g r a p h s  

~. ) /v<~ 

i 

A1 : N = 3 ,  g = l  (A18) 

i 

A., n > 2 :  * 
(2)q (3)q (4)q 

= O N = 2 n + l ,  

(n-l)q (.n_)q g = 1 (A19) 

b) N = o o  
2 2 

• 0 0 

g = 0 (A20) 

A--, (Z)(~ A.,,,___2: ~ = = 
2 2 2 2 

-_ ~ g=0 (A21) 
2 2 

> Da : D~ : • . .  g = 2 (A22) 

A . 4  N o n - b i c o l o r a b l e ,  i n f i n i t e  g r a p h s  ( N  = co)  

- 2 2  2 
g = 0 (A23) 
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A.5 The higher graded fusionrule algebras 

i) The fusion graph for algebra D~ 1) (A~1))('-2): 

/ \ 

{ l,O-i , 0"2,0"3 } 

ii) The fusion graph for algebra E 0) (A~')) (~-2) 

(A24) 

X_, - - * - -  -I v aoX2 
/ ~ %\ / 

x ~ ~ - I  oN 
aoX_l Xe coX3 a 

(A25) 
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Appendix B 

Fusion Rule Algebra 

Homomorphisms 

B . 1  e ,  " A 2 ,  --+ ,4~ 

• o o °  

lJ 
0 O O  

0 0 

A A 
- -  O . D - -  . . .  ~ 
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