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Preface 

Quantum field theory, the quantum mechanics of continuous systems, arose at the 
beginning of the quantum era, in the problem of blackbody radiation. It became ful- 
ly developed in quantum electrodynamics, the most successful theory in physics. 
Since that time, it has been united with statistical mechanics through Feynman’s 
path integral, and its domain has been expanded to cover particle physics, con- 
densed-matter physics, astrophysics, and wherever path integrals are spoken. 

This book is a textbook on the subject, aimed at readers conversant with what is 
usually called “advanced quantum mechanics,” the equivalent of a first-year gradu- 
ate course. Previous exposure to the Dirac equation and “second quantization” 
would be very helpful, but not absolutely necessary. The mathematical level is not 
higher than what is required in advanced quantum mechanics; but a degree of matu- 
rity is assumed. 

In physics, a continuous system is one that appears to be so at long wavelengths 
or low frequencies. To model it as mathematically continuous, one runs into diffi- 
culties, in that the high-frequency modes often give rise to infinities. The usual pro- 
cedure is to start with a discrete version, by discarding the high-frequency modes 
beyond some cutoff, and then try to approach the continuum limit, through a 
process called renormalization. 

Renormalization is a relatively new concept, but its workings were already evi- 
dent in classical physics. At the beginning of the atomic era, Boltzmann noted that 
classical equipartition of energy presents conceptual difficulties, when one serious- 
ly considers the atomic structure of matter. Since atoms are expected to contain 
smaller subunits, which in turn should composed of even smaller subunits, and so 
ad infiniturn, and each degree of freedom contributes equally to the thermal energy 
of a substance, the specific heat of matter would be infinite.. The origin of this di- 
vergence lies in the extrapolation of known physical laws into the high-frequency 
domain, a characteristic shared by the infinities in quantum field theory. 

Boltzmann’s “paradox,” however, matters not a whit when it comes to practical 
calculations, as evidenced by the great success of classical physics. The reason is 
that most equations of macroscopic physics, such as those in thermodynamics and 

xv 



xvi Preface 

hydrodynamics, make no explicit reference to atoms, but depend on coefficients 
like the specific heat, which can be obtained from experiments. From a modern per- 
spective, we say that such theories are “renormalizable,” in that the microstructure 
can be absorbed into measurable quantities. 

One goal of this book is to explain what renormalization is, how it works, and 
what makes some systems appear “renormalizable” and others not. We follow the 
historical route, discovering it in quantum electrodynamics through necessity, and 
then realizing its physical meaning through Wilson’s path-integral formulation. 

This book, then, starts with a thorough introduction to the usual operator for- 
malism, including Feynman graphs, from Chapters 1-10, This is followed by Chap- 
ters 11-14 on quantum electrodynamics, which illustrates how to do practical calcu- 
lations, and includes a complete discussion of perturbative renormalization. The last 
part, Chapters 15-19, introduces the Feynman path integral, and discusses “mod- 
ern” subjects, including the physical approach to renormalization, spontaneous 
symmetry breaking, and topological excitations. I have entirely omitted non- 
Abelian gauge fields and the standard model of particle physics, because these sub- 
jects are discussed in another book: K. Huang, Quarks, Leptons, and Gauge Field, 
2nd ed. (World Scientific, Singapore, 1992). 

I have chosen to introduce path integrals only after the canonical approach is 
fully developed and applied. Others might want them discussed earlier. To accom- 
modate different tastes, I have tried to make each chapter self-contained in as much 
as possible, so that a knowledgeable reader can pick and skip. 

There is definitely a change in flavor when quantum field theory is conveyed 
through the path integral. Apart from the union with statistical mechanics, which 
immeasurably enriches the subject, it liberates our imagination by making it possi- 
ble to contemplate virtual but fantastic deformations, such as altering the structure 
of space-time. I am reminded of the classification of things as “gray” or “green” by 
Freeman Dyson, in his book Disturbing the Universe (Harper & Row, New York, 
1979). He classified physics gray (and I suppose that included quantum field theo- 
ry,) as opposed to things green, such as poems and horse manure. In a private letter 
dated August 3, 1983, Dyson wrote, “Everyone has to make his own choice of what 
to call gray and green. I took my choice from Goethe: 

Grau, tenerer freund, ist alle Theorie, 
Und griin des Lebens Goldner Baum. 

Dear friend, all theory is grey, 
And green is the golden tree of life. 

I must admit that Hilbert space does seem a bit dreary at times; but, with Feynman’s 
path integral, quantum field theory has surely turned green. 

KERSON HUANG 
December, 1997 
Marblehead, Massachusetts 
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CHAPTER ONE 

Introducing 
Quantum Fields 

1.1 THE CLASSICAL STRING 

We obtain a quantum field by quantizing a cIassica1 field, of which the simplest ex- 
ample is the classical string. To be on firm mathematical grounds, we define the 
latter as the long-wavelength limit of a discrete chain. Consider N + 2 masses de- 
scribed by the classical Lagrangian 

where M is the mass and K a force constant. The coordinate qJ(t) represents the later- 
al displacement of the jth mass along a one-dimensional chain. We impose fixed- 
endpoint boundary conditions, by setting 

The equations of motion for the N remaining movable masses are then 

The normal modes have the form 

q,(f) = cos(wt) sin(jp) (1.4) 

To satisfy the boundary conditions, choose p to have one of the N possible values 

m 
P n =  - (?2= 1,. . . ,N) (1 5 )  N +  1 

1 



2 Introducing Quantum Fields 

Substituting this into the equations of motion, we obtain N independent normal fre- 
quencies 0,: 

where 

wg = 2E 

This is a cutoff frequency, for the modes with iz > N merely repeat the lower ones. 
For N = 4, for example, the independent modes correspond to n = 1,2,3,4. The case 
n = 5 is trivial, since p = T, and hence qj(t) = 0 by (1.4). The case n = 6 is the same 
as that for n = 4, since w6 = w4, and sin($,) = -sinup,). 

When N is large, and we are not interested in the behavior near the endpoints, it 
is convenient to use periodic boundary conditions: 

In this case the normal modes are 

For N even, the boundary conditions can be satisfied by putting 

The corresponding normal frequencies are 

(1.10) 

(1 .11 )  

Compared to the fixed-end case, the spacing between normal frequencies is now 
doubled; but each frequency is twofold degenerate, and the number of normal 
modes remains the same. A comparison of the two cases for N = 8 is shown in 
Fig. 1.1. 

The equilibrium distance u between masses does not explicitly appear in the 
Lagrangian; it merely supplies a length scale for physical distances. For example, it 
appears in the definition of the distance of a mass from an end of the chain: 

x = j u  ( j = l ,  . . . , N )  (1.12) 

The total length of the chain is then defined as 
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Periodic 
I 

0 1  N - N/2 0 Nf2 

Mode number Mode number 

Figure 1.1 Normal modes of the classical chain for fixed-end and periodic boundary conditions 

R = N a  (1.13) 

In the continuum limit 

a+ 0 N +  00 ( R  =Nu  fixed) (1.14) 

the discrete chain approaches a continuous string, and the coordinate approaches a 
classical field defined by 

d x ,  t> qj(t) (1.15) 

The Lagrangian in the continuum limit can be obtained by making the replacements 

Assuming that the mass density p and string tension (+ approach finite limits 

rn 
P = ;  

(+= K a  

(1.16) 

(1.17) 

(1.18) 

we obtain the limit Lagrangian 
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This leads to the equation of motion 

which is a wave equation, with propagation velocity 

c = E  

(1.19) 

(1.20) 

(1.21) 

The general solutions are the real and imaginary parts of 

with a linear dispersion law 

o = c k  (1.23) 

For fixed-end boundary conditions 

q(0, t )  = q(R, t )  = 0 (1.24) 

the normal modes of the continuous string are 

q,(x, t )  = cos(o,t) sin(kj)  (1.25) 

with on = ck,, and 

rn 
k = -  (n = 0,1,2, . . .) (1.26) " R  

The normal frequencies w, are the same as those for the discrete chain for nlN 1, 
as given in (1.6). However, the number of modes of the continuum string is infinite, 
and only the first N modes have correspondence with those of the discrete string. 
This is illustrated in Fig. I .2 for N = 4. Thus, there is a cutoff frequency 

(1.27) 

This is of the same order, but not same as the maximum frequency defined earlier, 
w, = 2c/a, for w, is based on a linear dispersion law. The continuum model is an ac- 
curate representation of the discrete chain only for w < w,. 
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Figure 1.2 Normal modes of a discrete chain of four masses, compared with those of a continuous 
string. The former repeat themselves after the first four modes. (After J. C. Slater and N. H. h a n k ,  Me- 
chanics, McCraw-Hill, New York, 1947.) 

For periodic boundary conditions 

the allowed wave numbers are 

(1.28) 

2 m  (n  = 0,*1,*2, . . .) (1.29) k, = - 
R 

We obtain the cutoff frequency w, by setting n = Nl2. 
The high-frequency cutoff is a theoretical necessity. Without it, the specific 

heat of the string will diverge, since each normal mode contributes an amount kT. 
The value of the cutoff cannot be determined from the long-wavelength effective 
theory, because only the combination c = a q / r  occurs. Absorbing the cutoff into 
measurable parameters, as done in (1.17), is called renormalization. A theory for 
which this can be done is said to be renormalizable. 

Nonrenormalizable systems exhibit behavior that is sensitive to details on an 
atomic scale. Such behavior would appear to be random on a macroscopic scale, as 
in the propagation of cracks in materials, and the nucleation of raindrops. 

1.2 THE QUANTUM STRING 

We now quantize the classical chain, to obtain a quantum field in the continuum 
limit. The Hamiltonian of the classical discrete chain is given by 
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(1.30) 

where p, = mq,. The system can be quantized by replacing p, and q, by Hermitian 
operators satisfying the commutation relations 

tP,, q k l  = - q k  (1.31) 

We impose periodic boundary conditions, and expand these operators in Fourier se- 
ries: 

where P, and Q, are operators satisfying 

The system is reduced to a sum of independent harmonic oscillators: 

The eigenvalues are labeled by a set of occupation numbers {a,}: 

N12 

Em= 1 W ” ( . , + f )  
n=-Nf2 

(1.32) 

(1.33) 

(1.34) 

(1.35) 

where a, = 0,1,2, . . . . The frequency o, is taken to be the positive root of w;, since 
H i s  positive-definite. 

In the continuum limit (1.14) the Hamiltonian becomes 

(1.36) 

where, with x = j a ,  
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(1.37) 

The quantum field 4(x, t )  and its canonical conjugate p(x, t) satisfy the equal-time 
commutation relation 

[p(x, t), 4(x’, f)] = -iS(X - x’) (1.38) 

Just as in the classical case, we have to introduce a cutoff frequency w,. General 
properties of the quantum field will be discussed more fully in Chapter 2 .  

1.3 SECOND QUANTIZATION 

Another way to obtain a quantum field is to consider a collection of identical parti- 
cles in quantum mechanics. In this case, the quantum field is an equivalent descrip- 
tion of the system. Identical particles are defined by a Hamiltonian that is (1) invari- 
ant under a permutation of the particle coordinates and ( 2 )  has the same form for 
any number of particles. The quantized-field description is called “second quantiza- 
tion” for historical reasons, but quantization was actually done only once. 

Let HN be the Hilbert space of a system of N identical nonrelativistic particles. 
The union of all gN is called the Fock space: 

CLI 

S = U %  
N=O 

(1.39) 

The subspace with N = 0 contains the v a c ~ ~ u m  state as its only member. We assume 
that N is the eigenvalues of a “number operator” Nop, which commutes with the 
Hamiltonian. It is natural to introduce operators on Fock space that connect sub- 
spaces of different N. An elementary operator of this kind creates or annihilates one 
particle at a point in space. Such an operator is a quantum field operator, since it is 
a spatial function. This is why a quantum-mechanical many-particle system auto- 
matically gives rise to a quantum field. 

For definiteness, consider N nonrelativistic particles in three spatial dimen- 
sions, with coordinates {r,, . . . , rN}. The Hamiltonian is 

(1.40) 

where Ot is the Laplacian with respect to r,, and where V is a symmetric function 
of its arguments. The eigenfunctions Tn are defined by 
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For Bose or Fermi statistics, qn is respectively symmetric or antisymmetric under 
an interchange of any two coordinates rr and r,. The particles are called bosons or 
fermions, respectively. 

We now describe the equivalent quantum field theory, and justify it later. Let 
~ r )  be the Schrodinger-picture operator that annihilates one particle at r. Its Her- 
mitian conjugate $+(r) will create one particle at r. They are defined through the 
commutation relations 

where [A.B],  = AB * BA, with the plus sign corresponding to bosons and the minus 
sign to fermions. The Fock-space Hamiltonian is defined in such a manner that it re- 
duces to (1.40) in the N-particle subspace. 

A general N-particle Hamiltonian has the structure 

(1.43) 

where the functions g, h, and so on are symmetric functions of their arguments. The 
first term is a “one-particle operator,” a sum of operators of the formf(r), which act 
on one particle only. The second term is a “two-particle operator,” a sum of opera- 
tors of the form g(ri, r2), over all distinct pairs. Generally, an “n-particle operator” 
is a sum of operators that depend only on a set of n coordinates. To construct the 
Hamiltonian on Fock space, we associate an n-particle operator with an operator on 
Fock space, with the following correspondences: 

2 f ( r i )  -+ Jd3r + + ( r ~ r ) ~ r )  

(1.44) 

where for brevity we have written = ~ r , ) ,  g, ,  = g(rl, r2), and so on. 
As an example, suppose the potential in (1.40) is a sum of two-body potentials: 

(1.45) 

Then the corresponding Fock-space Hamiltonian, also denoted H, takes the form 
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The particle number is the eigenvalue of the number operator, defined as 

Nop = Id3r +Yr)+(r) 

By using (2.18), we can verify the relations 

“,,,HI = 0 

[d4r)Jo,1 = $(r) 

[+t(r)Jo,l = -++w 

(1.46) 

(1.47) 

(1.48) 

These imply that the action of fir) on a eigenstate of Nop is to decrease its eigenval- 
ue by I ,  while that of @t(r) is to increase it by 1.  Thus fir) is an annihilation opera- 
tor, while @(r) is a creation operator. The vacuum state 10) is defined as the eigen- 
state of Nop with eigenvalue zero. It is annihilated by all annihilation operators: 

By applying ++(r) to the vacuum state repeatedly, it is easy to show that the eigen- 
values of Nop are nonnegative integers. 

To demonstrate that the quantum field is equivalent to the many-particle sys- 
tem, consider a complete set of states lE,N) of the quantum field, which are simulta- 
neous eigenstate of H and Nop: 

We define the N-particle wave function qE(rl , .  . . ,rN) corresponding to 1E,N) by 

which has the correct symmetry with respect to particle permutation. It tells us that 
the probability amplitude for finding N particles at the positions r, ,  . . . , rN can be 
found by annihilating the particles at the respective locations from the state JE,N), 
and evaluating the overlap between the resulting state and the vacuum state. We 
leave it as an exercise to show that this wave hnction satisfies the N-particle 
Schrodinger equation (1.41). (See Problem 1.3.) 
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1.4 CREATION AND ANNIHILATION OPERATORS 

The field operator $(r) annihilates a particle at r. That is, it annihilates a particle 
whose wave function is a S function. Since the latter can be written as a linear su- 
perposition of a complete set of wave functions, we can express fir) as a linear su- 
perposition of operators that annihilate particles with specific types of wave func- 
tions. Suppose that uk(r) is a member of a complete orthonormal set of 
single-particle wave functions: 

An example of such a set is plane waves: 

(1.51) 

We can expand the field operators with respect to such a basis: 

The coefficient ak and a] are operators that satisfy the commutation relations 

(1.52) 

where the + sign is for bosons and the - sign is for fermions. These relations follow 
from (1.42) and the orthonormality of the functions uk(r) .  

It follows from the commutation relations that, for each k, the eigenvalues of 
ak+ak are integers nk, called the “occupation number of the single-particle state k“: 

(1.53) 

where we have omitted the label k for brevity. The allowed values of the occupation 
number are given by 

= [ : : : ,2 ,  . . . , w (Bose statistics) 
(Fermi statistics) 
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The actions of a and at have the following results: 

(1.54) 

where the isign corresponds respectively to Bose (+) and Fermi (-) statistics, which 
show that a annihilates a particle in the state with wave function u(r), and at creates 
such a particle. We leave it as an exercise to derive these basic results. (See Problem 
1.2.) 

The state 10) corresponding to II = 0 is the vacuum state, which satisfies 

a10) = 0 ( I  .55) 

We assume that it is normalizable: 

(010) = 1 (1.56) 

Obviously all other states can be obtained by creating particles from the vacuum: 

(1.57) 

We can simultaneously diagonalize .Lak for all k. The eigenstates are then la- 
beled by a set of occupation numbers (no, n,, . . . }, and they constitute a basis for 
the Fock space. The total number of particles present is N = cpk. We have 

aluklnO, . . . , nk, . . .) = nklnO, . . . , nk, . . .) 

akino, . . . , nk, . . .) = (-l>”V;;;-lno, . . . , n k -  1, . . .) 

aklno,. i . . , nk, . . .) = (-Iy v--- 1 * nklnO,. . . , nk + 1, . . .) 

where 

(1.58) 
0 (Bose statistics) 
xp<k np (Fermi statistics) 

That is, s = *1 for fermions, depending on whether the number of fermions with 
quantum numbers less than k is even or odd, and the meaning of “less than” is set by 
an arbitrary but fixed ordering. This phase factor arises from the fact that fermion 
creation operators anticommute: ulu; = -uiuS. 

A complete set of states can be constructed by creating particles from the vacu- 
um: 
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(1.59) 

These states are not normalized to unity. When there are many particles present, it is 
more convenient to label the state with occupation numbers { n k } ,  where i?k is the 
number of particles with single-particle quantum number k 

These states can be normalized to unity by choosing 

(1.60) 

(1.61) 

1.5 BOSE AND FERMI STATISTICS 

The term “statistics” refers to the rule for counting the degeneracy of an energy lev- 
el of a many-particle system. In three-dimensional (3D) space, it depends on the 
symmetry of the wave function under a permutation of the particle coordinates. 
Technically speaking, the different possible symmetries correspond to the different 
irreducible representations of the permutation group. 

The completely symmetric and the completely antisymmetric representations 
correspond respectively to Bose and Fermi statistics. They are the only possible 
ones in a two-particle system; but for more than two particles other possibilities ex- 
ist, in which the wave function is symmetric with respect to permutations among 
one subset S of coordinates, and antisymmetric for the complementary set. Called 
“parastatistics, “ such representations correspond to the Young’s tableaux with more 
than one row, or more than one column. Since the particle are identical, there is 
more than one way to choose the subset S. Consequently, such “para” representa- 
tions must be multidimensional. That is, the carrier space for such a representation 
must be spanned by states having the same energy eigenvalue, and they mix under a 
permutation of the coordinates. Therefore, the energy levels of particles obeying 
parastatistics must have intrinsic degeneracies, which cannot be removed by any in- 
teraction that treat the particles as identical. 

The Bose and Fermi statistics can be set apart from the parastatistics by virtue 
of the following properties: 

Under particle permutation, the symmetry character of wave functions is in- 

Energy eigenfunctions do not mix under particle permutation. 
dependent of the number of particles present. 

Parastatistics does occur in atomic physics, but only in the context of “incomplete” 
permutations, which interchange the positions of atomic electrons but not their 
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spins. With respect to permutations of both position and spin, electrons obey Fermi 
statistics, as we know. No known examples of parastatistics have been found in na- 
ture. Perhaps the simple properties itemized above are essential for consistency on 
some level. 

Although we live in a 3D world, some interesting physical systems are effec- 
tively two-dimensional (2D). These include the electron sheets that exhibit the 
quantum Hall effect, the copper oxide planes in a high-temperature superconductor, 
and thin films of superfluid helium on various substrates. In a 2D system, the vari- 
ety of statistics is far richer, because the exchange of two particles in a plane is not a 
unique process; we may rotate the particles about a center through angle nn, where 
n is any odd integer, and the paths corresponding to different n are not necessarily 
equivalent. Consequently, the symmetry group relevant to particle exchange is not 
the permutation group, but the much larger braid group. This circumstance allows 
for fractional spin and statistics; but we shall not discuss this, except for a brief dis- 
cussion on fractional spin in Chapter 19. 

PROBLEMS 

1.1 Consider an actual string made of atoms spaced a = cm apart. Suppose the length 
of the string is I m, and it  is kept at such a tension that the fundamental frequency is 100 
cycles per second (Hz). Find the cutoff frequency, and show that it lies in the infrared re- 
gion of the spectrum. (This gives the Debye temperature.) 

1.2 (a) The basic commutation relation for boson annihilation and creation operator is 

[a, at] = I [a, a]  = 0 

where [A,  B] = AB - BA. From this definition, show that eigenstates In) of at, have 
the properties 

(b) Fermion annihilation and creation operators are defined by an anticommutation 
relation 

{a ,  a'] = 1 ( a ,  a )  = 0 

where { A .  B )  = A B  + BA. Show 

a'aln) = &In) 

atln) = G l n  + 1) 

(n = 0, 1) 

aln) = njn) 
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1.3 Consider the N-particle wave function defined in (1 S O )  

1.4 

1.5 

where IE,N) is an N-particle energy eigenstate with respect to the Hamiltonian H given 
in (1.46). 

(a) Show that it is normalized to unity: 

. . . d 3 r ~ q ~ ( r ~ ,  . . , , rN)/2 = 1 

(b) Show 

1 
ETdr, ,  . , . , rN) = m ( O l $ ( r , ) .  . . $(rN)qEN) 

(c) Show that the wave function satisfies the N-particle Schrodinger equation 

by going to the result in (b), and commute Hal l  the way to the left, where it gives 
zero operating on the vacuum. 

All the results stated hold for both Bose and Fermi statistics (see Huang [ 11). 
A nonrelativistic boson or fermion field $ ( x )  is governed by the Hamiltonian 

The system is enclosed in a large cubical box of volume R (0 + m), with periodic 
boundary conditions. Expand the field in terms of annihilation operators ak for free-par- 
ticle states of momentum k, and show that 

where F(k) = J d'r erk'rz(r). 
Consider a system of N nonrelativistic electrons and N positive ions with Coulomb in- 
teractions, enclosed in a periodic box of volume n. The Hamiltonian is given by 

The ions are heavy. Hence consider R, to be fixed numbers, neglect P,, and drop the last 
two terms. 

(a) Label single-electron states by momentum k and spin s, designated collectively as 
a = { kp} .  The corresponding wave function is 
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(b) To go to the quantized-field representation, replace one- and two-particle operators 
by the rules 

N Em,) + C(4W) a h g  
, = I  P 

(c) Define Fourier transforms: 

where 6, is the Kronecker delta. 

(d) Obtain the Hamiltonian in quantized-field form: 

(e) Show that the second term gives, for small k, 

which is divergent at k = 0. Show that the divergent term proportional to Nz is can- 
celed by the k = 0 limit of the third term. The O(N) term above remains divergent. 
The source of this divergence is the periodic boundary conditions, by which the set 
of coordinates { T I ,  . . . , rN} is being repeated an infinite number of times in space. 
Consequently, the Coulomb energy of an electron diverges, due to long-range inter- 
actions with an infinite number of distant copies. 

It is clear that this is a mathematical artifact, and to avoid it we should treat the ions 
dynamically; but we do not wish to add that complication. The expedient way out is 
to simply leave out the k = 0 contribution in both the second and third terms. Hav- 

(9 
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ing done this, we can ignore the third term altogether, because it sums to zero under 
the assumption that the ions are uniformly distributed in space. Thus we take as ef- 
fective Hamiltonian 

k #O 

This describes electrons immersed in a uniform positively charged background that 
makes the whole system electrically neutral. 

1.6 Imposing periodic boundary conditions means filling infinite space with identical cells 
that contain copies of our system. This problem illustrates the effect of long-range inter- 
actions among the cells. Consider a unit point charge at the center r = 0 of a cubic cell of 
volume L3, which contains a uniform negative charge density, so that the total charge in 
the cell is zero. Impose periodic boundary conditions, and calculate the potential in the 
neighborhood of the unit point charge. 

(a) Show that the potential is given by 

4 r  elk'' 2 m ,  
k, = __ 

L 3 k # 0  k2 L V(r) = -x - (n, = 0,*1,*2, . . .) 

by showing 

(b) For r/L 4 1 ,  show2 

1 c  
r L  

V(r) = - - - + CI(L-~) 

c = 2.837297. . . 
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CHAPTER TWO 

Scalar Fields 

2.1 IUEIN-GORDON EQUATION 

A fast way to go from classical mechanics to quantum mechanics is to replace the 
energy and momentum of a particle by operators, according to the prescription 

p +  -iV 

Making the replacements in the nonrelativistic relation E = p2/2m, and applying the 
result to the wave function, we obtain the Schrodinger equation: 

1 d 
2m dt 

-~ D2+(r,  t )  = i-+(r, t )  

Of course, this is not covariant under Lorentz transformations. For a covariant equa- 
tion, we use the same trick on the relativistic relation L? = p2 + m2. The result is the 
Klein-Gordon equation 

where x stands for x p  = (t, x), and 

in units with c = 1. Assuming that CC, is invariant under Lorentz transformations, we 
have a covariant equation-me that has the same form in all Lorentz frames. What 
is not clear is how to interpret $(x) .  

By analogy with the Schrodinger equation, we might interpret $(x) to be the 

17 
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wave function of a relativistic particle. That would require the existence of a 4-vec- 
tor probability current density j w ,  which should be conserved: dP j p  = 0. However, 
the obvious choice j ,  = I,P$ is untenable, for i,Vt+b is Lorentz-invariant by assump- 
tion, and cannot be part of a 4-vector. 

As in the case of the Schrodinger equation, we can construct a conserved cur- 
rent as follows. Multiply (2.3) from the left by qP to obtain 

Subtracting this from its complex conjugate leads to 

where 

However, the time component 

is not positive-definite, and therefore cannot be a probability density. 
The root of the difficulty lies in the second time derivative in the Klein-Gordon 

equation. As we shall see, this leads to negative frequencies corresponding to an- 
tiparticles. The relativistic kinematics makes it impossible to have a one-particle 
theory. We shall regard $(x) not as a wave function but as a classical wave field, and 
as such should be quantized. 

2.2 REAL SCALAR FIELD 

Consider a real scalar field &r, t), which is invariant under Lorentz transforma- 
tions. The current j @  vanishes identically in this case. We enclose the system in a 
large periodic box of volume R, and expand the field in a Fourier series: 

(2.9) 

where 

because the field is real. Assuming that $(r, t )  satisfies the Klein-Gordon equation, 
we have 
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where 

wz = k2 + m2 (2.12) 

The system is equivalent to a collection of harmonic oscillators, and may be quan- 
tized by imposing the commutation relations 

(2.13) 

where qk0)  is the hermitian conjugate of q k ( 0 ) .  This fixes the normalization of the 
field, left arbitrary by the Klein-Gordon equation. 

Since the Klein-Gordon equation is invariant under time translation, the origin 
of time is arbitrary. The commutations relations in fact hold at any time t :  

(2.14) 

which are equivalent to 

These are called equal-time commutators, which serve as initial conditions for the 
equation of motion. The unequal-time commutators must be calculated from the so- 
lutions, and contain dynamical information. 

In the present free-particle case, the equation of motion (2.1 1) is trivial to 
solve. For given wave number k there are two frequencies Amk, with 

w, = +vvTZ (2.16) 

Taking into account the reality property (2.10), we write the solution in the form 

(2.17) 

where a k  and aL are operators, with commutation relations determined by (2.14): 

(2.18) 
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The normalization factor (2w)-’” in (2.17) is chosen to make the commutators sim- 
ple. We recognize that ak is an annihilation operator, and u% a creation operator for a 
boson, as introduced in Section 1.4. The time-dependent quantized-field operator 
can be represented in the form 

(2.19) 

The positive-frequency part (the first term) annihilates a particle, and the negative- 
frequency part creates a particle. The negative-frequency part is absent in a nonrela- 
tivistic field, because the kinematic relation E = p2/2m allows only one sign of the 
frequency. 

2.3 ENERGY AND MOMENTUM 

Analogy with the harmonic oscillator suggests that the Hamiltonian of the free 
scalar field should be 

In terms of the field $(x) = +(r, t),  it has the form 

H = Id3? H(x) 

(2.20) 

(2.2 1) 

where H(x) is called the Humiltoniun densig. The Lagrangian of the system can be 
obtained through the general relation L(q, .q) = p q  - L@, q): 

L = Id3rL (2.22) 

where L(x) is the Lagrangian density given by 

The last form shows that the Lagrangian density is Lorentz-invariant. In contrast, 
the Hamiltonian density, which is an energy density, cannot be invariant. For this 
reason, relativistic theories are usually specified via the Lagrangian density. 

In terms of creation and annihilation operators, the Hamiltonian takes the diag- 
onalized form 
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(2.24) 

The zero-point energy diverges unless there is a cutoff; but the cutoff has no physi- 
cal relevance, since the energy of any state relative to that of the vacuum is indepen- 
dent of it. The energy of a particle is given by 

@ k = w  (2.25) 

where k is its momentum and m is the rest mass. Accordingly, the total momentum 
operator is 

P = kaza, 
k 

(2.26) 

According to the general principles of quantum mechanics, the Hamiltonian is 
the generator of time evolution, through the Heisenberg equation of motion: 

(2.27) 

The formal solution yields 

&r, t )  = eiHf&r, O)e-jHl (2.28) 

For consistency, we must show that this is consistent with the Klein-Gordon equa- 
tion, which we used to arrive at the solution (2.19). Substituting c#J(r, 0) from (2.19) 
into (2.28), we obtain 

(2.29) 

For the free-field Hamiltonian, we have (see Problem 2. I )  

eiH/uke-iHt = a k e-iwk/ (2.30) 

This demonstrates that (2.28) is the same as (2.19). 

erate spatial translations: 
Again, according to general principles, the momentum operator P should gen- 

- i [P ,  +(r, t ) ]  = O&r, t )  (2.3 1) 

with formal solution 

&r, t )  = e-iP.rc#J(O, t)eiP'r (2.32) 

As a straightforward calculation shows, this is the same as (2.19). 
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2.4 PARTICLE SPECTRUM 
~~ 

The vacuum state 10) is the state of lowest energy, defined by 

aklO) = 0 (all k) 

and normalized to 

(010) = 1 

(2.33) 

(2.34) 

A one-particle state is defined by 

IP) = ,,'lo> (2.35) 

Using the commutation relations, we find 

The field operator has nonvanishing matrix elements only between a one-particle 
state and the vacuum: 

(2.37) 

This is the wave function of a particle of momentum p, normalized to a density 
(2~,,f l)-~.  By successively creating particles from the vacuum, we can build a com- 
plete set of states: 

Vacuum: 10) 

1-particle states: Ip) = aptlo) 

2-particle states: jplpz) = aplta,,f/O) 

2.5 CONTINUUM NORMALIZATION 

In the limit fi + a, the allowed values of k approach a continuum, and we can 
make the replacements 
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+(2T)383(k - k') (2.38) 

We define continuum versions of the annihilation and creation operators by putting 

The commutators then have limiting forms: 

(2.39) 

(2.40) 

The field operator can be represented as a Fourier integral: 

As before, the vacuum state 10) is defined by a(k)lO) = 0 with (010) = 1, and a 
one-particle state is defined by 

IP) = 4P)lO) (2.42) 

Using the commutation relations, we find 

The single-particle wave function is 

(2.44) 

with a particle density (2w,)-l. The normalization is such that the number of parti- 
cles in volume element d3r is the Lorentz-invariant combination d3vl(2wp). The 
Hamiltonian and total momentum now take the forms 

H = I---wgt(k)a(k) d3k 
(2 TI3 

(2.45) 

The choice between discrete or continuum normalization is a matter of nota- 
tion, since we always regard R as large but finite in intermediate steps of calcula- 
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tions. The limit ll -j m is taken only in final answers. This is done to avoid irrele- 
vant concerns about mathematical rigor, such as how to define the Hilbert space 
when the dimensionality is noncountably infinite. The continuurn normalization 
merely anticipates this limit. 

2.6 COMPLEX SCALAR FIELD 

A complex scalar field is just two real scalar fields constituting the real and imagi- 
nary parts. What is new is a symmetry between the two fields, and this leads to a 
conserved current. In physical terms, a complex field can have electric charge, 
whereas a real field must be neutral. 

We denote the complex scalar field by $(r, t) ,  and decompose it into real and 
imaginary parts in the form 

The Lagrangian density is taken to be 

The normalization factor l / ~  in (2.46) is chosen in order that +j has the same nor- 
malization as the real scalar field discussed previously. 

To quantize the system, we impose the commutation relations 

(2.48) 

Thus, the canonical conjugate to $ is $. 

ation operators: 
In accordance with (2.19), we can expand 4J in terms of annihilation and cre- 
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with the commutation relations 

(2.5 1) 

In the complex representation, we have 

where 

(2.53) 

(2.54) 

The total energy and momentum can be expressed as follows: 

There are two type of quanta, which can be designated either as a, and a2 quanta, or 
as b and c quanta. The energy and the momentum do not distinguish between these 
descriptions. We shall see, however, that only the b and c quanta have definite 
charge. 

2.7 CHARGE AND ANTIPARTICLE 

The current density for the complex scalar field is given by 

j @ =  #&,P - (c"dh,b= f(42d*4, - 4 , d ~ 4 ~ )  (2.56) 
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which satisfies the conservation law dg j r  = 0, or 

Integrating both sides over the spatial volume, we obtain 

01 

-xo dQ 
dt 

where Q is the total charge operator 

Q = Jd3xju(x) 

(2.57) 

(2.58) 

(2.59) 

(2.60) 

As we can see, a b quantum carries one unit of positive charge, and a c quantum car- 
ries one unit of negative charge. The u l ,  u2 quanta, which are linear combinations of 
those of b and c, do not have definite charge. By convention, we refer to a c quan- 
tum as an “antiparticle.” Thus, the positive-frequency part of t,h annihilates a parti- 
cle, and its negative-frequency part creates an antiparticle. Similarly, I)+ either cre- 
ates a particle or annihilates an antiparticle. In light of this, we can say that for the 
real field, the particle is its own antiparticle. 

The term “charge” is used in a generic sense, and does not necessarily mean the 
electric charge, since we have not turned on the electromagnetic coupling. The unit 
of charge is arbitrary, because j p  is defined only up to a multiplicative constant. 

It is straightforward to verify that charge is conserved: 

[Qr HI = 0 (2.61) 

This implies that the number of particles N+ minus the number of antiparticles N- is 
a constant of the motion. In the free-field case, this conservation law is trivial, since 
N* are separately conserved. It becomes significant when, in the presence of inter- 
actions, N, are no longer conserved. In that case, N+ - N- is still conserved as long 
as (2.61) holds. 
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2.8 MICROCAUSALITY 

A classical signal propagating according to the Klein-Gordon equation has a group 
velocity 

(2.62) 

which never exceeds 1. This means that events at two space-time points lying out- 
side of each other’s light cone (or separated by a spacelike interval) cannot influence 
each other. In the quantum theory, this means that two field operators at points sep- 
arated by a spacelike interval must commute with each other: 

[+(x),  4 ( x ’ ) ]  = 0 if (x - x ’ ) ~  < 0 (2.63) 

This condition is called microcausality. We must verify that our quantized field the- 
ory satisfies this condition. 

To compute the commutator in (2.63), note that it is a c-number,’ and at fixed 
x’  it satisfies the Klein-Gordon equation, because +(x) does. The initial condition at 
xo = x; is the equal-time commutator (2.15), which is a c-number. Therefore the 
commutator remains a c-number at all times, and we can equate it with its vacuum 
expectation value: 

This defines a Lorentz-invariant correlation function A(x - y) ,  which depends on x - 
y ,  and not on x and y separately, because of the translational invariance of the vacu- 
um state. (See Problem 2.1.) We use the expansion (2.41) to obtain 

Subtracting one from the other, we have 

(2.65) 

(2.66) 

‘A c-number is a “classical” number, a multiple of the identity operator. 
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Since A(x) is Lorentz-invariant, it can depend only on the invariant 

x2 = t2 - x2 (2.67) 

I fx  is spacelike, for which x2 < 0, we can put t = 0. By (2.66) this gives A(x) = 0. m 

The proof of microcausality depends on the initial condition from the commu- 
tator in (2.15), which quantizes the system according to Bose statistics. Had we 
used Fermi statistics by replacing commutator with anticommutator, microcausality 
would have been violated. The particles here have spin 0, since there does not exist 
discrete degrees of freedom corresponding to spin. Our result is partial demonstra- 
tion of the spin-statistics connection, which states that particles with integer spin 
are bosons, while those with half-integer spin are fermions. The second half of the 
statement will be shown in Chapter 6 on the Dirac field. 

2.9 THE FEYNMAN PROPAGATOR 

The propagation of a free particle in the vacuum can be described by the correlation 
function 

in which @t(xl) creates a particle from the vacuum at x,, which is annihilated by 
IcI(x2) at x2. This makes sense physically when t2 > t , ,  Similarly, the correlation hnc-  
tion 

describes the propagation of a test antiparticle from x2 to x,, and is physically mean- 
ingful when t ,  > t2. To obtain a correlation function that has physical meaning, we 
use either A(+) or A(-) depending on the sign of the relative time. The result is the 
Feynman propagatol: or causal propagator: 

where the time-ordering operator T rearranges the operators, if necessary, such that 
the operators stand in such order that time increases from right to left: 

A ( f Z ) B ( t l )  if t, > t ,  
B(t,)A(t2) if t, < f ,  

TA(rZ)B(tl) = (2.71) 

If t2 > t,, the Feynman propagator describes the propagation of a particle from x, to 
x2; if t, < t l ,  it describes the propagation of an antiparticle from x2 to x,. This is the 
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basis of Feynman's famous remark: "An antiparticle is a particle traveling back- 
wards in time." 

To calculate the propagator, we start with the expression 

(2.72) 

and insert a complete set of states between the operators. Since the field operator 
connects the vacuum to one-particle states only, we have 

Using rG(x) = eiP.XrG(0)e-iP.X, and changing the integration variable from k to -k in 
the lower formula, we obtain 

Using the following integral representation 

(2.74) 

(2.75) 

we obtain 

From (2.44) we have 

Therefore 

(2.77) 

(2.78) 

Operating on both sides of this equation by n2 + m2 gives 

(02 + m2)AF(X) = -@(X)  (2.79) 

This shows that the Feynman propagator is a Green's function of the Klein-Gordon 
equation. 
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The Fourier transform of the Feynman propagator is 

1 
k 2 - m 2 + i q  

6 d k )  = 

which has poles at 

ko = *- 

(2.80) 

(2.81) 

corresponding to a particle or antiparticle of mass m. The residue 2~k1(01$(o)10)12 = 

1 reflects the normalization of the wave function. We may view the propagator as 
the propagation amplitude of a virtual particle of 4-momentum kp. The virtual parti- 
cle, whose squared mass k2 ranges between --oo and w, becomes a real particle when 
it “goes on mass shell,” at k2 = m2. 

To obtain A&) explicitly, we integrate over the angles of k in (2.74) to obtain 

(2.82) 

By Lorentz invariance AF(x) can depend only on 

For s > 0, we can put r = 0 to obtain the representation 

For s < 0, we put t = 0 to obtain 

where H i ’ )  and K ,  are Bessel functions. In the timelike region s > 0 the function de- 
scribes an outgoing wave for large s. This corresponds to the iq prescription in 
(2.80). The - i ~  prescription would have yielded an incoming wave. In the spacelike 
region s < 0 it damps exponentially for large IsI. On the light cone s = 0 there is a 
delta-function singularity not covered by the preceding formulas: 

1 
lim AF(x) = -- @x2) 
2-0  4rr 

(2.86) 
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2.10 THE WAVE FUNCTIONAL 

In quantum mechanics, the coordinate representation is defined by basis states Ir) 
satisfying 

with the basic commutator realized through the replacements 

rop -+ r (c-number) 

pop + -iD (2.88) 

A state [ A )  is represented by the wave function 

and inner products are defined by 

@I@ = Id’r+X(r) Gi3(r) (2.90) 

In the analogous Jield representation in quantum field theory, we diagonalize 
the field operator, thus representing it by its eigenvalue, which is a c-number func- 
tion. For a real scalar field 4op(r) at a fixed time t = 0, we denote its eigenstates by 
14): 

where the eigenvalue &r) is a real-valued function of r. The commutation relations 
(2.15) are realized through the replacements 

4op(r) --+ 4(r) (c-number function) 

(2.92) 

where 6/6+(r) is denotes the functional derivative with respect to the value of the 
function $at r. 

A state IA) is represented in the field representation by the wave functional 

which is a complex-valued function whose argument is a function; that is, its value 
depends on the form of the function. Inner products between wave functional are 
functional integrals: 
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(*A, * B )  = fD4 *A*[$1*B[4l (2.94) 

where D 4  denotes the measure on the space of functions. Writing the Hamiltonian 
in the field representation, we have the Schrijdinger equation for the wave function- 
al: 

2.1 1 FUNCTIONAL OPERATIONS 

We digress on functional operations on a functional F [ 4 ] .  First, the functional de- 
rivative SF[4]/64(x) is defined as follows. We make a small change 4 ---f 4 + 64, 
where the function S&x) is different from zero only in the neighborhood of x. Then 
the functional derivative is given by 

(2.96) 

To calculate any functional derivative, we need the elementary functional derivative 
G+(x)/S4Cy), which is obviously proportional to 6(x - y) .  To determine the propor- 
tionality constant, we replace the continuous space ofx by a lattice of spacing a, and 
denote by 4j the value of the function on sitej. Clearly, 

In the continuum limit 

we have 

(2.97) 

(2.98) 

(2.99) 

With this formula, we can calculate a general functional derivative. As illustration, 
take F [ 4 ]  = J d3yl V &y)I2. Then 
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= -2V24(X) (2.100) 

where we have assumed that boundary conditions are chosen such that surface inte- 
grals from partial integrations vanish. 

A functional integral is defined as the limit of an ordinary integral. Again, let 
us replace continuous space by a lattice of discrete points labeled byj .  A function 
+(x) becomes a discrete set of values {q5,], and a functional R4] becomes a func- 
tion of this set F(q5,,&, . . .). The functional integral of F is defined as 

where C is a normalization constant. The continuum limit is to be taken eventually. 
Alternatively, we put the system in a large cube of volume R, with periodic 

boundary conditions, The Fourier components &k) of +(x) are then discrete. The 
functional integral over 4 can be defined as the multiple integral over all Fourier 
components independently: 

(2.102) 

Eventually we take the limit R + m. 

uum limit; but matrix elements of the form 
In either of the preceding methods, the integral by itself may not have a contin- 

usually has a definite continuum limit. 

(2.103) 

2.12 VACUUM WAVE FUNCTIONAL 

We now calculate the wave functional for the free vacuum state. First let US express 
the annihilation operator a(k) in the field representation. From (2.41) we have, at 
t = O ,  

J? Id3? e-ik'r&r) = -i -[[a(k) - at(k)] (2.104) 



34 Scalar Fields 

Solving for a(k),  we obtain 

Now we write 

&k.r wk = g m  e-ik.r = u x  &kr 

(2.105) 

(2.106) 

so that 

+ i~$(r)]e-'~'~ 

__ 
The last step is obtained by expanding m2 + m in a power series in V2, per- 
forming a partial integration in every term, and summing the series again. The sur- 
face integrals generated in the partial integrations vanish as a result of periodic 
boundary conditions. Replacing i&r) by 6/64(r), we obtain 

The virtue of this representation is that the Fourier coefficient in the integrand is in- 
dependent of k. 

The wave functional of the free vacuum satisfies the equation 

Thus, it must be annihilated by the Fourier coefficient in (2.108): 

(2.1 10) 

The solution to this equation is 

where C is a normalization constant. This gives the probability amplitude that the 
field has the functional form +(r) in the vacuum state. The relative probability for 
the field to have a functional form lying in the neighborhood oft$ in the volume el- 
ement D4 of function space is 
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The most probable form is 4 = 0, and deviations from it occur with a Gaussianlike 
distribution. 

The exponent in (2.11 1) can be rewritten in different forms. Introducing the 
Fourier transform 

&k) = Jd’r e-ik’r&r) (2.1 12) 

we can write 

= 1d3r d3r’ $(r)K(r - r’) +(r’) 

where 

(2.1 13) 

(2.1 14) 

For a complex scalar field, there are now two coordinates, which can be taken 
as either (41r 42} or { +, ++}. Inner products of wave functionals now take the form 

or equivalently 

(2.116) 

The complex measure is defined in terms of the real and imaginary parts: 

The vacuum wave functional for the free complex field is just the product of those 
for the two independent real fields. Reexpressing the result in terms of the complex 
field, we have 

2.13 THE +4THEORY 

As the simplest example of an interacting field theory, consider the Lagrangian den- 
sity of the so-called 44 theory: 
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where g > 0. The quartic term makes the equation of motion nonlinear: 

(02 + m2)4 + = O 

The Hamiltonian density takes the form 

(2.1 19) 

(2.120) 

(2.121) 

which suggests that V(&x)) is a potential. 

can be satisfied by taking as initial condition 
To quantize the theory, we impose the equal-time commutators (2.15), which 

(2.122) 

where the creation and annihilation operators a i ,  ak are defined by the commutation 
relations 

(2.123) 

The equation of motion is not soluble unless g = 0. We can always write, as a formal 
solution. 

4(r, t )  = eiHr4(r, O)e-IHr (2.124) 

but this is not simple unless g = 0. 

term and an “interaction” term, at some arbitrary time t = 0: 
To see the effects of the interactions, separate the Hamiltonian into a “free” 

H =  Ho + Hi,, (2.125) 

where 
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(2.126) 

In terms of the creation and annihilation operators we have 

where C, is an irrelevant zero-point energy and S, denotes the Kronecker 6. We use 
the shorthand wI = w k , ,  a, = a k ,  and so on. The interaction Hamiltonian H,,, de- 
scribes four-particle processes that conserve momentum. Substitution of this expan- 
sion into (2.124) generates a complicated series for the time-dependent field opera- 
tor. We shall learn how to organize such terms in a systematic manner in Chapter 9. 

PROBLEMS 

2.1 Space-Time Translation Consider a free scalar field &x), which can be expanded in 
terms of the annihilation operators a,. This problem illustrates the fact that the 4-mo- 
mentum PW = C,k’”a;ak is the generator of space-time translations. 

(a) As a useful tool show that, for two operators A and B, 

(b) Use this formula to show 

and the infinitesimal form 

(c) Establish that P p  is the generator of space-time translations by showing 

(d) Let Icr) be an eigenstate of Pg, satisfying PFJK) = K+Q . Show that this state is 
translationally invariant: 

2.2 Charge Conjugation The designation of particle and antiparticle is a matter of con- 
vention, and we can freely reverse the labels. More specifically, for a complex scalar 
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field fix), construct an operator C that takes bk to ct and vice versa, and commutes with 
Hamiltonian H: 

C$(X)c-' = Q(x) 

[H, C l = O  

P C =  1 

c= 1 

The operation C is called charge conjugation, or particle-antiparticle conjugation. 
We have calculated the function A(x) = (Ol[&x), &O)]lO) in 

(2.66),  but not in a manifestly Lorentz-invariant form. Show that it  can be put into the 
desired form 

2.3 Lorentz lnvariance 

2.4 Spin and Statistics Quantize the real scalar field according to Fermi statistics; in oth- 
er words replace the commutators in (2.15) by anticommutators. Show that this will vio- 
late microcausality. 

2.5 External Source Consider a real scalar field &)\coupled to an external source func- 
tion J(x),  with Lagrangian density 

L(x)  = d%$d,,4 + $ m242 t J$ 

(a) Obtain the Hamiltonian in terms of the creation and annihilation operators a,, a: 
for plane-wave states. 

(b) Suppose that the source is static, that is, that J(x,t) is independent o f t .  Using per- 
turbation theory, show that there is no scattering from the fixed source to second 
order. 

(c) Show that there is no scattering at all, to any order. (Hint: Show that a linear canon- 
ical transformation of ak reduces the Hamiltonian to the source-free case.) 

Suppose that the external source in the previous problem consists of a sin- 
gle static point source: J(x) = g@(r). 

(a) Calculate the change in the energy of the vacuum state to order 2. The result will 
be a divergent integral. Cut it off at a large momentum A. This illustrates a proto- 
type of divergence in quantum field theory. 

(b) Show that all levels of the system shift by the same amount and therefore that the 
divergence in this case has no physical relevance. 

2.7 Yukawa Potential Continuing with the last two problems, suppose the source function 

2.6 Level Shift 

J(x)  consists of two static point sources located at r,,rz: 

J(r ,  t )  = g[@(r - r , )  + @(r - rz)] 

Treating g as a perturbation, calculate the change in the vacuum energy to second order 
in g, and show that there is an attractive potential between the two point sources: 
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g2 e m R  

4 7  R 
V(R)  = -- __ 

where R = Ir, ~ rz/. This is the Yukawa potential, originally proposed as the potential be- 
tween two nucleons due to interactions with scalar mesons. 

Consider a free scalar field in a large periodic box of  volume 
0. Let the Fourier transform be denoted 

2.8 Vacuum Fluctuations 

1 
&k) = - /d3re Ik ‘&r) m 

(a) Show that the vacuum expectation value of &k) is zero. 

(b) By expanding the field in terms of creation and annihilation operators, show that 
the mean-square fluctuation of the Fourier transform is given by 

(c) The mean-square average can be expressed in the field representation as 

where V0[4] is the wave functional ofproduce the last result from this formula. 

(d) Calculate the mean-square fluctuation (O(+z(x)lO) in coordinate space. The result is 
divergent because of the high-momentum modes. Exhibit its dependence on the 
cutoff momentum A. 



CHAPTER THREE 

Relativistic Fields 

3.1 LORENTZ TRANSFORMATIONS 

Relativistic quantum fields can be classified according to the way they transform 
under Lorentz transformations. More specifically, they transform according to irre- 
ducible representations of the Lorentz group. The different representations give rise 
to particles with different values of the spin angular momentum. 

According to the principle of special relativity, the laws of physics should be 
covariant with respect to Lorentz transformations; that is, they should have the same 
forms in all reference frames connected by Lorentz transformations. The simplest 
Lorentz transformation is a “boost” of the reference frame with velocity u along 
some axis, say, the x axis: 

This may be supplemented by a rotation of the coordinate system, say, about the z 
axis through an angle 8: 

x’ = x cos0 + y sin8 

y’ = -x sin8 + y  C O S ~  (3.2) 

Defining a boost “angle” by 

sinh4 = u d l  - u 2  

40 

(3.3) 
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we can write the matrices of these transformations as follows: 

/coshc$ -sinh 0 O \  

c$ coshc$ 1 0 
-sinh Lorentz boost: 

\ o  0 0 1 /  

Rotation: (3.4) 

0 

The inverses of these matrices can be obtained by reversing the signs of and 0. 
The rotation matrices are orthogonal matrices, while the Lorentz boosts are not, be- 
cause the invariant form t2 -x2 for the Lorentz boost is not positive-definite. 

The angles of rotation are not additive, unless the rotations are all made about 
the same axis. Similarly, the velocities of successive Lorentz boosts are not additive, 
unless the boosts are all made along the same direction. 

We use a relativistic notation in which the coordinate 4-vector is denoted by 
xp = (t ,  r) and the metric tensor is diagonal: 

A general Lorentz transformation is a linear transformation A on x that leaves 
x2 = t2 - r2 invariant: 

with the requirement 

which ensures the invariance of x2. In shorthand, we write the transformation in the 
form 

The transformations above form the continuous Lorentz group, which is character- 
ized by six parameters: three velocity components and three angles of rotation. As 
we can see from (3.4), they are represented by matrices with determinant + l .  In 
contrast, the discrete transformations 
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Spatial reflection: t‘ = t x i  = -x 

Time reversal: r i  = -t x ‘ = x  (3.9) 

have determinant -1. These discrete elements together with the continuous Lorentz 
transformations form the general Lorentz group. We shall reserve the name 
“Lorentz transformation” for the continuous Lorentz transformations. 

Any element of the Lorentz group can be built up from infinitesimal ones, with 
the general form 

A P =  v g P +  v U P v  (3.10) 

We write in shorthand 

A = l + w  (3.1 1) 

Lorentz transformations generally do not commute with one other; but the infinites- 
imal transformations do, because their commutators are of second-order smallness: 

( I  + w,)(  1 -+ w*) = 1 + wi + w2 + 0 ( w 2 )  (3.12) 

Thus, group multiplication is equivalent to addition of the w’s. 
An infinitesimal transformation of the coordinate system, characterized by 

boosts with velocities v J  along the xi axes, and rotations of angles gk about the xk 
axes, is described by the tensor 

By raising the lower index, we obtain an antisymmetric tensor 

whose elements can be summarized as follows: 

(3.13) 

(3.14) 

(3.15) 
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3.2 MINIMAL REPRESENTATION: SL(2C) 

It is well known that the smallest faithful representation of the rotation group is 
SU(2), the group of 2 x 2 unitary matrices of unit determinant. For the Lorentz 
group, the minimal representation is SL(2C), the linear group of 2 x 2 complex ma- 
trices of unit determinant. To see this, let us organize the coordinates into a 2 x 2 
complex matrix: 

t + z  x - i y  
x + i y  t - z  X = t + ( ( T . x ) =  (3.16) 

where ak are the Pauli matrices, with the following properties: 

{aJ, a k }  = Fjlk 

a'a2 = ia3 (and cyclic permutations) 

[a',  a2] = 2ig3 (and cyclic permutations) (3.17) 

We see that 

det X =  x2 (3.18) 

A Lorentz transformation that takes X into A" can be represented by the operation 

X' = L( A)XLt( A) (3.19) 

where L(A)  is a 2 x 2 complex matrix and Lt(A) its Hermitian conjugate. Taking the 
determinant of both sides, we have 

det X' = det Xldet L(A)12 (3.20) 

To preserve x2, we must have det X' = det X, and hence 

det L(A) = *l (3.21) 

Consequently det A = i 1. This is a more formal proof of a result stated earlier. The 
matrices L(A) with det L = 1 constitute the group SL(2C). 

Any 2 x 2 can be represented in the form 

A + B ,  B ,  -iB2 
B ,  +iB,  A - B 3  

A + (B.a) = (3.22) 

where A and Bk are complex numbers. The determinant of the preceding equation is 
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A* - 2,B;. Hence L(A) is a matrix of this form, with A* - 2,B;  = 1. We leave it as 
exercises to show that a pure boost and pure rotation are represented by the follow- 
ing: 

4 4 Boost along 8: 

Rotation about 8: 

L(A) = e&’@’* = cosh- - (8.a) sinh- 
2 2 

0 
cos - +i(8.a) sin- 

2 
L ( h )  = ein’u’‘2 = (3.23) 

e 
2 

where 8 is a unit vector, 
angle. 

is the boost angle defined in (3.3), and 0 is the rotation 

3.3 THE POINCARI? GROUP 

The laws of physics should be covariant with respect to space-time translations as 
well as Lorentz transformations. These transformations combined constitute the in- 
homogeneous Lorentz group, or the Poincare group. The transformation law is as 
follows: 

where a p  is a 4-vector. The infinitesimal version has the form 

which contains 10 independent parameters: ap and wp” = - d p .  

transformation 
We can realize the Poincark group on the space of functionsAx), through the 

where we have use the fact that opu is antisymmetric. We can rewrite 

f(x’) = 1 - i 1 
iaHPp + 

2 

(3.26) 

(3.27) 

which defines the generators 
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Of these, 10 are independent operators, constituting the Lie algebra of the Poincare 
group. An arbitrary element of the Poincare group can be written in the form 

exp (ia,Pp - iu, , ,M~”) (3.29) 

where a” and wp‘ represent 10 real independent parameters. 
From (3.28) we obtain the commutator 

[xF, P”] = -igp” (3.30) 

Although derived from an explicit representation, we consider the preceding equa- 
tions as abstract algebraic relations. Such a procedure is analogous to obtaining the 
Lie algebra [J’, J k ]  = iEJklJ1 for angular momentum from the special representation 
J = -ir x v. As abstract relations, the Lie algebra admits half-integer representations. 

The Lie algebra of the Poincare group consists of the following commutators: 

which can be obtained through a straightforward calculation. In physical terms, the 
four generators 

P’* = (H, P‘ ,  P2, P3) (3.32) 

make up the total 4-momentum operator, and = H is the Hamiltonian. The six in- 
dependent components of MP“ are generalized angular momentum operators made 
up of the angular momentum J and the Lorentz boost K: 

(3.33) 

We can recast the Poincare algebra as follows. The last two lines in (3.3 1) are equiv- 
alent to 

(3.34) 
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These relations all involve the inhomogeneous part of the group. The first equation 
above expresses the independence of the spatial translations among themselves, of 
spatial and time translations, and of rotations and time translations. The second 
equation is what one can deduce from J = -ir x v and P = -iv. The other equa- 
tions above describe how energy and momentum change under a Lorentz boost. In 
addition to these, we obtain from (3.31) a closed set of commutation relations 
among angular momentum and boost operators: 

These form the Lie algebra of the Lorentz group 

(3.35) 

3.4 SCALAR, VECTOR, AND SPINOR FIELDS 

In quantum mechanics, the wave functions in a central potential can be classified 
according to orbital angular momenta, which correspond to irreducible representa- 
tions of the rotation group, with possible dimensions 21 + 1 ,  (1 = 0,1,2, . . .). In a 
similar way, relativistic fields transform according to irreducible representations of 
the Lorentz group, which have definite dimensions. Accordingly, a relativistic field 
has a definite number of components, related to the spin angular momentum of the 
field. 

The simplest relativistic field is a scalar field, which may have more than one 
component, but each component +(x) must be invariant under Lorentz transforma- 
tions: 

This says that the transformed field called +', at the transformed coordinate x', is 
the same as the original field called 4, at the old coordinate x. It expresses the fact 
that x' and x are different labels that we use for the same physical point, and the 
scalar field is unaffected by this; but for us the functional form of the field must 
change: 

+'(x) = qb(R-'x) (3.37) 

As we shall see, the spin of a scalar field is zero. 
A vector field such as the electromagnetic field Ap(x) ,  is affected by a change 

in the coordinate system, since by definition its four components transform among 
themselves like XK. The transformation law is 
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A‘+(x’)  = AP,,A”(x) (p= 0,1,2,3) (3.38) 

The spin of a vector field is 1. This will be demonstrated in Section 5.5. 
In general, a tensor field of rank n transforms like a product of n x@ terms, and 

corresponds to spin n. For example, the gravitational field is a symmetric tensor of 
rank 2. 

There are “half-integer’’ representations, analogous to those for the rotation 
group. The latter are representations of SU(2), which generalizes to SL(2C) in the 
present case. To accommodate space-time reflections, we have to include two 
copies of SL(2C), so that they transform into each other under a reflection. Accord- 
ingly, the minimal representation space is spanned by a four-component complex 
field, called the Dirac spinorjeld +;(x), which transforms according to 

where S(A) is a 4 x 4 complex matrix, discussed in more detail in Chapter 6. The 
spin of a spinor field is f . 

In general, a field forming a K-dimensional irreducible representation of the 
Lorentz group has K components: 

$Ax) (a  = 1,2, . . . , K )  (3.40) 

which transform under a Lorentz transformation A according to 

For an infinitesimal transformation A = 1 + w, we can put S(A) in the form 

this defines the coefficients Zg, which, as we will show, constitute the spin matrix. 
Under an infinitesimal Lorentz transformation, then, a general field transforms 

according to 

The change in the functional form of the field can be found by writing 

(3.44) 

Thus 
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(3.45) 

Substituting 4i(x’) from (3.42), we obtain 

This identifies the K x K matrices W’ = -Z’p as spin matrices, since they are added 
to the generalized orbital angular momentum. 

The spin matrix for a scalar field is obviously zero. For the vector field, we can 
find it from its transformation law under an infinitesimal Lorentz transformation 

A&(x’)  =A&) + w,p4@(x) (3.47) 

Putting wap = 4 wpv);,$, we obtain for the vector field 

(3.48) 

As we shall show in Section 5.5, this gives spin 1. The case of the spinor field will 
be discussed in Chapter 6, and is included in the following summary for reference: 

Scalar field: C F u  = 0 

Vector field: 

Spinor field: 

2:; = ggg; - g$g; 

Zg’ = i ( y p y ”  - y’p‘)rs 

where yp are the 4 x 4 Dirac matrices defined in Chapter 6. 

(3.49) 

3.5 RELATIVISTIC QUANTUM FIELDS 

Since quantum fields are operators that act on a Hilbert space, we can represent 
Lorentz transformations by transformations on the Hilbert space. Recall that a 
Lorentz transformation changes the functional form of a classical field: 

In the quantized version, this means that the operator 4o attached to point x is re- 
placed by 4;. Since $a and 4; act on the same Hilbert space, the transformation is a 
mapping of the Hilbert space into itself. Since and 4; are physically equivalent, 
the transformation must be unitary. Thus, there should exist a unitary operator U(A) 
on the Hilbert space, corresponding to the Lorentz transformation A, such that 
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The fact that the transformation is unitary means 

V(A) = U- ' (A)  (3.52) 

From the definition of the primed fields (pd(x) = Sub@b(X), we obtain the condition 

The set of operators U(A) forms an infinite-dimensional unitary representation of 
the Lorentz group. In contrast to this, the finite-dimensional representations of the 
Lorentz group are nonunitary. As examples, we have 

Scalar field: U&x>U-' = &A-'x) 

Vector field: UAP(x)U-' = RCA"(A-'x) 

Spinor field: U+,(x)U-' = S,.&,(R-'x) (3.54) 

We can immediately extend this consideration to Poincare transformations: 

UC$,'(X)U-' = Sabc$b(A-'x- a) (3.55) 

For infinitesimal Poincare transformations, U must be in the neighborhood of the 
identity operator, and linear in the parameters of the Poincart group: 

This defines the Hermitian operators PP and MP", which represent the generators of 
the Poincari: group on the Hilbert space. In contrast, the generators denoted by the 
same symbols in (3.28) are finite matrices, generally non-Hermitian. 

Substituting (3.56) into (3.59, we obtain 

i 

(3.57) 

which is written in an obvious abbreviated notation. Expanding both sides to first 
order in a" and a@", and equating their coefficients, we obtain 

This shows that P P  is the 4-momentum operator, since it generates space-time 
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translations, and Mp” is a generalized angular momentum operator, since it gener- 
ates space-time rotations. The spin matrix Cab induces a mixing of the field compo- 
nents undergoing space-time rotation. 

The generators Pp and Mp” can be constructed explicitly from the field opera- 
tors & Rather than doing this on a case-by-case basis, we shall do it via a unified 
approach in the next chapter. 

3.6 ONE-PARTICLE STATES 

A one-particle state is an eigenstate of P F ,  with energy eigenvalue E > 0, and mo- 
mentum eigenvalue p, such that the invariant mass squared 

p2 - p2 = rn2 (3.59) 

is a fixed number. Such a state corresponds to a particle of mass rn. The P2 of any 
state generally lies in a continuum, but those of one-particle states form a discrete 
set. If there are no massless particles, the invariant-mass spectrum of a field theory 
consists of the vacuum value 0 as a lower bound, a discrete set of particle masses, 
and a continuum separated from the vacuum value by a finite gap. The continuum 
corresponds to states containing two or more particles, whose masses occur within 
the gap. There can be particles whose mass occurs in the continuum, but only if 
these particles are stable against decay, due to selection rules. The gap vanishes 
when there are massless particles, such as the photon. In this case, there is a discrete 
mass in the continuum corresponding to the electron, which cannot decay into pho- 
tons because of conservation laws. 

The one-particle states of a free field can be generated by applying creation op- 
erators al to the vacuum state. If we do this for a nonfree field, we will not get one- 
particle states, because we will not get eigenstates of Pp. Instead, we will have a 
mixture of states involving interacting particles. Nevertheless, we can discuss prop- 
erties of a one-particle state through general considerations, without constructing it 
explicitly. 

We confine our attention to massive particles, with rn > 0. There exists a 
Lorentz frame in which p = 0, called the rest frame. The spin operator S of the one- 
particle state is defined as the total angular momentum in the rest frame. The eigen- 
value of S2 has the form S(S + l),  where S is called the spin of the particle. The pro- 
jection s of S along the momentum of the particle is called the helicity, which for 
rn > 0 has 2s + 1 possible values S, S - 1, . . . , 4. We can label a one-particle state 
by momentum p and helicity s: 

11 -particle state) = (p, s) (3.60) 

The parameters rn and S are suppressed, because they are constants. 

tain Ip, s) from Is) through a Lorentz boost L(p) :  
For rn > 0 a one-particle state in the rest frame is denoted by Is), and we can ob- 
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Applying a Lorentz transformation A to both sides, we obtain 

Now insert in front of the right side the identity operator in the form 

and regroup the factors in the following manner: 

By the group property, the operator within the square brackets can be rewritten as 

which represents a pure rotation called the Mgner rotation: 

It boosts a particle from rest to momentum p, makes a Lorentz transformation A, 
and then brings the particle back to rest. The operation has no effect on the state 
vector except possibly multiplying it by a phase factor, which represents a rotation. 
Thus, the general effect of a Lorentz transformation on a one-particle state is to 
boost the momentum, and rotate the spin by a Wigner rotation: 

For a more explicit representation of R, we insert a complete set of helicity states to 
obtain 

(3.68) 

where Z&(R) are the rotation coefficients. An example of the Wigner rotation is the 
Thomas precession discussed in Section 6.8. 

Massless particles are special, in that there is no rest frame. A massless particle 
of spin S can have the values kS only. We shall explicitly demonstrate this for pho- 
tons in Section 5.5. A general proof may be found in books on representations of the 
Lorentz group (see, e.g., Tung [ 11). 
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PROBLEMS 

3.1 Verify the Poincare algebra (3.31). 

3.2 Verify the spin matrix (3.48) for the vector field. 
3.3 Verify that the SL(2C) matrices L ( h )  given in (3.23) correctly represent Lorentz trans- 

formations. It is necessary to verify them only for infinitesimal transformations. 

3.4 Show the following identity, which is useful when working with SL(2C) matrices: 

where the components of ua re  Pauli matrices and the components of A and B are num- 
bers. 

3.5 Consider two infinitesimal successive infinitesimal Lorentz boosts with angles 4, and 
A. Show that the result is equivalent to a boost 4, + 4 plus a rotation 4 4, x 4. Here, 
c$= 6 tanh-Iu, where v is the velocity of the boost. Lorentz boosts. 

3.6 (a) Under the action of a Lorentz boost with velocity v, a 4-momentum p p  is trans- 
formed to p'p. show 

pf = + .( Y'_1v.p - 
2 

where y = ( 1 - 

(b) Writingp'p = hP,,p"', obtain the transformation matrix 

(c) Let L(p) be the transformation matrix corresponding to a Lorentz boost that trans- 
forms the rest frame of a particle of mass m into a frame in which the particle has 
momentum p and energy E. Show 

Pk -_  E 
m m 

m "- m(E + m) 

- 

- Pk PPk 

3.7 (a) Consider a particle of mass m and helicity s, moving with momentum p along the z 
axis. Make a Lorentz boost of velocity u along the x axis, so that p + p ' .  Find the 
rotation matrix R', for the Wigner rotation. 

(b) Show that for an ultrarelativistic particle 
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That is, the Wigner rotation is the same as that taking the initial velocity piE to the 
final velocity p'lE'. This shows that the helicity of a massless particle such as the 
photon is Lorentz-invariant. 

REFERENCE 

1. W. K. Tung, Group Theory in Physics, World Scientific, Singapore, 1985, Section 10.4.4. 



CHAPTER FOUR 

Canonical Formalism 

4.1 PRINCIPLE OF STATIONARY ACTION 

The equations of motion for a classical field can be derived from a Lagrangian 
through the principle of stationary action. This approach gives a unified treatment 
of topics discussed previously through special examples. It also makes clear that 
symmetries of the system give rise to conservation laws. Consider a set of classical 
fields collectively denoted by 4(x): 

We denote their space-time derivatives by 

The Lagrangian density is assumed to depend on the fields and their first deriva- 
tives: 

This will ensure that the equations of motion are second-order differential equations 
in the time, as in classical mechanics. We assume that, unless external fields are ex- 
plicitly introduced, space-time is homogeneous. Thus, L(x) depends on x not explic- 
itly, but only implicitly through 4(x) and 4,(x). We consider only local field theo- 
ries, for which the Lagrangian density at x depends only on properties of the field at 
x. Nonlocal terms of the form 

are ruled out, unless Kab(x -y )  cc 6(x -y),  

54 
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The classical action of the system is 

S[#] = I d4XL(X) (4.5) 
I1 

where R is the space-time volume, which eventually goes to infinity. We impose 
definite boundary conditions on the surface of 0, say, # = 0. The principle of sta- 
tionary action, which is a generalization of that in classical mechanics, states the 
following: 

Suppose that &) is a solution to the equations of motion. If we vary its functional 
form by adding an arbitrary infinitesimal function S&x) that preserves the bound- 
ary condition: 

&) ---f &x) + 6&x) 6&x) = 0 on boundary of C l  

then the variation of the action will be of second-order smallness: 

This means that S[#] is at an extremum when #(x) is a solution to the equation of 
motion. 

To find the equation of motion according to this principle, let us calculate the 
variation of the Lagrangian density: 

Using the fact that 

we get 

The last term is a total 4-divergence. It vanishes when integrated over the 
space-time volume, since it then becomes a surface integral by Gauss’ theorem, and 
84 = 0 on the surface. Thus 
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Since S ~ ( X )  is arbitrary, its coefficient must vanish. We thus obtain the equation of 
motion 

where 

(4.10) 

(4.1 1)  

The canonical conjugate to #J(x) is defined by analogy with classical mechan- 
ics: 

(4.12) 

where a dot denotes partial time derivative. The Hamiltonian density is defined by 

Ff(x) = Ff( 7T(x), f#(X),V 4(x)) = 7r$ - L(x) (4.13) 

where &x) should be re-expressed in terms of 4 x )  according to (4.12). The Hamil- 
tonian is given by 

H = I d  3xFf(x) (4.14) 

To quantize the system, we replace the field and its canonical conjugate by op- 
erators, which are defined by the equal-time commutators 

where for bosons we use the commutator 

[A, B]- = [A, B]  3 AB - BA 

(4.15) 

(4.16) 

and for fermions we use the anticommutator 

[A, B]+ = { A ,  B }  = AB + BA (4.17) 

If nfx, t )  = 0, as is the case for the electromagnetic field, then the field conjugate to 
n(x, t )  is not an independent dynamical variable, and should not be independently 
quantized. 
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4.2 NOETHER’S THEOREM 

A transformation 4 ( x )  -+ 4(x) + 6q5(x) is called a symmetry transformation of the 
system if it changes the Lagrangian density only by the addition of a 4-divergence. 
As we have seen, this does not change the equations of motion. More specifically, 
the change must be of the form &(x) = d,W*(x) for arbitrary 4(x) ,  regardless of 
whether it obeys the equation of motion. If the symmetry transformation is continu- 
ous, then there is an associated conserved current density. The formal statement is 
as follows. 

NOETHER’S THEOREM [l J 
mation 

/f: under a continuous infinitesimal trunsfor- 

the change in the Lagrangian density is found to be of the form 

&(x) = d*W,(X) 

without using the equations of motion, then there exists a current density 

j ” (x)  = ?rqx)64(x)  - W*(x) (4.18) 

which, for  fields obeying the equations of motion, satisfies 

d,j”(x) = 0 (4.19) 

ProoJ We calculate the &(x) when the field changes by 64, using the equa- 
tion of motion, but without assuming that 6$ comes from a symmetry transforma- 
tion: 

where the equation of motion was used in the last step. Specializing the preceding 
to symmetry transformations, we equate it with d,WF to obtain 
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The conserved currentjp is called a Noether current, and is determined only up to 
an arbitrary normalization factor. 

Noether’s theorem was proved for classical fields, and one usually extends it to 
quantum theory by replacing the fields inj” by the corresponding quantized fields. 
This does not always give a conserved current in the quantum theory. When the 
quantum current so obtained fails to be conserved, the nonzero divergence d j ’ p  is 
called a “current anomaly.” Some examples of this are discussed in Section 19.8. 

4.3 TRANSLATIONAL INVARIANCE 

An important symmetry for any system is Poincart invariance, which is called a 
“space-time symmetry,” because it is associated with the transformation of the field 
under a change in the coordinate system. We discuss this symmetry by breaking up 
the Poincart group into the translation and Lorentz subgroups. 

Invariance under the translation group should give rise to four independent 
Noether currents corresponding to the four possible space-time translations. Con- 
sider an infinitesimal translation 

xp+ X’L + U’L (4.20) 

under which each component of +(x) independently transforms according to 
4‘(x + a) = +(x). The functional form of the field changes according to 

#(x) = $(x - a) = 4(x) - u,P(b(x) (4.21) 

We shall choose up to have only one nonvanishing component, say, a,, and take a = 
0,1,2,3 in turn. Thus, the change in functional form of the field is 

6&x) = P 4 ( x )  (4.22) 

where we have dropped the proportionality constant -aar because it enters all subse- 
quent formulas only through the overall normalization of the Noether current. Dif- 
ferentiating the above with respect to xfi gives 

The statement of translational invariance is that L(x)  does not depend on x ex- 
plicitly. Hence 

(4.24) 
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from which we read off 

W y x )  = g&*L(x) (4.25) 

The four corresponding Noether currents are denoted by Tc@*, where a labels the 
direction of translation: 

T f“(x) = 7r”;P(b(x) - g’*“L(x) (4.26) 

They satisfy the conservation law 

d & r y ( x )  = 0 (4.27) 

This is called the canonical energy-momentum tensor. It is generally not a symmet- 
ric tensor. The subscript “c,” which stands for “canonical,” distinguishes it from a 
symmetrized version to be discussed later. 

The conservation law can be rewritten in the form 

(4.28) 

Integrating both sides over all space, and assuming that surface contributions van- 
ish, we obtain 

d --pa = 0 
dt 

(4.29) 

where 

P” = I d 3 x T p  (4.30) 

is the total 4-momentum. Thus, T,Oo is the energy density and TZk the kth compo- 
nent of the momentum density. Their conservation laws are given respectively by 
the time and spatial components of (4.28): 

(4.3 1) 

It is clear that T,“ is the kth component of the energy current and T,J is the kth com- 
ponent of the current of the ‘7th component of momentum.” The latter is called the 
stress-energy tensor: These components are displayed in the following matrix: 
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The identification of Too as the energy density is consistent with the definition of 
the Hamiltonian density in (4.13). 

The explicit expressions for the total energy and momentum are 

Po = I d 3 4  n(x)k$(x) - L(x)] = jd3xYqx) 

Pk = Jd3xT(x)ac&x) (4.33) 

where a dot denotes time derivative and %(x) is the Hamiltonian density. We go over 
to the quantum theory by replacing n(x) and &x) by the appropriate operators. 

To show that Pk generates spatial translations, we calculate the commutator of 
+(x) with the total momentum operator 

Pk = J d 3 Y 4 Y ) W Y )  (4.34) 

This does not depend on yo. We are therefore free to choose yo = xo = t, to take ad- 
vantage of the simplicity of the equal-time commutators. Thus, we have 

(4.35) 

The integral in the second term identically vanishes. 

ProoJ Use the representation + = iG/S.rr to write 
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Combining the preceding results, we have 

This shows that the total 4-momentum generates space-time translations. If F is a 
function of 4 and its derivatives, then 

i[P", F] = P F  (4.38) 

Choosing, in particular, F = Pp, we have i[P", P"] = PP". The right side vanishes 
because P p  is independent of space by construction, and independent of time by 
4-momentum conservation. Thus 

[P", P"] = 0 (4.39) 

which is part of the PoincarC algebra discussed in Chapter 3. It is realized here in 
terms of the field operators. 

4.4 LORENTZ INVARIANCE 

Consider an infinitesimal Lorentz transformation in the direction labeled by {a$}. 
For example, a rotation about the x3 axis corresponds to { 1,2}, or a boost along the 
XI axis corresponds to {O,l}.  Under the transformation, the functional form of the 
field changes by S ~ ( X ) ,  as given by (3.46). We have, up to a multiplicative constant, 

S&X) = (x"@ - xpda + z"qcp(x) (4.40) 

where Zap  is the spin matrix, antisymmetric in {a ,  p } .  Differentiating 84 with re- 
spect to xfL, we find 

Sf$,(x) = [X"df i  - xpdn + c"p]4,(x) + (g;@ - g@") (4.41) 

Using the fact that L(x)  has no explicit x dependence, we have 

The statement of Lorentz invariance is that the preceding is a 4-divergence. The first 
term is of the desired form, for it can be rewritten dD(x"L) - P(xpL)  = dp(g"pxaL - 
gp"xpL). Therefore the rest must vanish: 

(4.43) 
dL 
& 
-z%#J + +c*pc#J, + 7pcpp - nP4" = 0 
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With this, we have 

which gives 

W'"(x) = (g"Px" - g""xP)L(x) 

This leads to six independent Noether currents labeled by {a,  p } :  

(4.44) 

(4.45) 

which can be written in the form 

My@(,)  = x"T?P(x) - x P T y ( x )  + ?T"pP+(x )  (4.47) 

where T r v  is the canonical energy-momentum tensor. It satisfies the conservation 
1 aw 

d,Mf@(X) = 0 (4.48) 

and is called the canonical angular momentum tensor. 

boost 
The conservation law gives rise to six constants of the motion, the Lorentz 

(4.49) 

and the angular momentum 

where the first two terms represent orbital angular momentum and the last term is 
the intrinsic spin. 

It is straightforward to verify that K/ and Jk generate Lorentz transformations by 
showing 

(4.5 1) 

where 84 is as given by (4.40). It can also be verified that the commutation rela- 
tions among the operators Pp and M,"*P realize the Poincare algebra (3.3 1). 
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4.5 SYMMETRIZED ENERGY-MOMENTUM TENSOR 

The canonical energy-momentum tensor T f a  is not unique, because the Lagrangian 
density is defined only up to a 4-divergence. We can replace it by any tensor of the 
form 

where XAPU is antisymmetric in hp: 

= -XPA\" (4.53) 

The antisymmetry is a sufficient condition that the conservation law be unchanged: 

A possible change in the total 4-momentum is 

j d 3 x P a  - jd3xT:" = 4 jd3xdAXAua (4.55) 

which vanishes for the following reasons: (1) the term with h = 0 vanishes because 
,Pry = 0 by antisymmetry and ( 2 )  the terms from h = k vanish because they give a 
surface integral. From a physical point of view, therefore, TF" is equivalent to Tg", 
because they give the same total 4-momentum. 

The fact that T f a  is not guaranteed to be a symmetric tensor poses a problem, if 
it is to be used as a source of the gravitational field. We can, however, replace it with 
a equivalent symmetric tensor TP". The condition for symmetry is 

The term in brackets can be rewritten using the condition (4.43) for Lorentz invari- 
ance: 

where the last term vanishes by the equation of motion. Substituting this result into 
(4.56), we obtain the condition 
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a solution to which is 

This term is needed only when the spin is nonzero. 

new angular momentum tensor: 
Corresponding to the symmetrized energy-momentum tensor, we can define a 

This is related to the canonical angular momentum tensor through 

It is easy to show that M P a p  is conserved, and that it preserves the definition of the 
boost and the angular momentum: 

MP"P = 0 
P 

Id3xM""P = Id3xA4:"P 

From a physical point of view, therefore, MPa@ and Mf"P are equivalent. 

(4.62) 

4.6 GAUGE INVARIANCE 

In contrast to space-time symmetries, there are internal symmetries, which are x-in- 
dependent transformations of the field that leaves the Lagrangian density invariant. 

A simple example is a change of phase in a complex scalar field: 

$(x) -+ e++(x) 

@(x) -+ eia@+(x) (4.63) 

This is called a global gauge transformation, where the label "global" refers to the 
fact that a is independent of x. Invariance with respect to it means that the La- 
grangian density is independent of the phase. This is true for the free field, in which 
the fields appear in the combination @t(x)I)(x) or dfi$J(x)d,I)(x). The infinitesimal 
form of the transformation is 

(4.64) 

where we left out a proportionality constant ia. 
In terms of the real and imaginary parts defined by 
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(4.65) 

the transformation is a rotation in internal space: 

+,‘(x) = 41(x> cosa + c$~(x) sina 

&(x) = - 4 , ( x )  sina + 4 2 ( x )  cosa (4.66) 

The Noether current is just the conserved current mentioned in Chapter 2 :  

(4.67) 

More generally, internal symmetries are linear transformations for a multicompo- 
nent field 4g(x), (a  = 1 ,  . . . , K ) ,  of the form 

where Cab are elements of a K x K constant matrix. If the matrix belongs to a K-di- 
mensional representation of some group G, we call G an internal symmetry group. 
The group can be continuous or discrete. In the previous example G = U( l),  the uni- 
tary group of dimension 1. 

Physical examples of conserved charges are 

Electric charge = positive minus negative charge 
Baryon number = number of protons minus number of antiprotons 
Electron number = number of electrons minus number of positrons 

A important case is isospin, which is discussed in Section 7.5. 

PROBLEMS 

4.1 Consider a field $(x) with Lagrangian densityL,(x) + L , ( x ) ,  where the first term has a 
certain symmetry, while the second term does not. That is, under a transformation $(x) 

-+ 4@) + W x ) ,  



66 Canonical Formalism 

whereas Ll(x) cannot be put into this form. IfL,(x) were absent, the system would have 
a conserved Noether current. Show that, in the presence ofL,(x),  the divergence of the 
would-be Noether current is 6LI(x). 

4.2 A condition for Lorentz invariance is (4.43). For scalar fields, for which cap = 0, what 
restriction does this place on the Lagrangian density? 

4.3 Nonrelativistic System A nonrelativistic many-particle system has a second-quan- 
tized Hamiltonian 

where p is the chemical potential. Usually one assumes the commutation relation [$(x), 
$'(y)] = S3(x -y).  We want to see whether this is consistent with the canonical formal- 
ism 

(a) Find the equation of motion using i&= [+, HI. 

(b) Regard H a s  a classical Hamiltonian. Show that the corresponding Lagrangian den- 
sity is 

Work out the equation of motion using the canonical formalism. 

(c) Show that the usual commutation relation [$(x), $+(y)] = f j3(x  - y) is canonical 

(d) Work out the Noether current associated with space-time translational invariance, 
and global gauge invariance. 

Since $(r) and i$+(r) are canonical conjugates in the nonrela- 
tivistic system, it would be awkward to introduce the field representation by diagonaliz- 
ing cCl(r). Show that in this case we can put 

4.4 Field Representation 

where d r )  is a c-number function. 

The nonrelativistic Lagrangian in the last problem differs 
from a relativistic one, in that it is first-order instead of second-order in the time deriva- 
tive. The Dirac field discussed in Chapter 7 also has a first-order Lagrangian. To fully 
explore the consistency of the canonical formalism, let us strip the problem down to 
bare essentials, and consider a classical system with two coordinates a and 6, which are 
like i+P and +. Take the Lagrangian to be 

4.5 First-Order Lagrangian 

L(a, b, 6) = a6 - V(a, b)  

The canonical rule says that a has no canonical conjugate. It is the conjugate to b. Is this 
completely consistent with the Lagrangian and Hamiltonian equations of  motion? 

(a) Find the Lagrangian equations for motion foru andb. 
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(b) Find canonical momenta and the Hamilton equations of motion. Check that they 
are the same as the Lagrangian ones. 

(c) It is thus completely consistent to regard a and h as canonically conjugate. To quan- 
tize the system, impose [a, b ] ,  = -i. 

REFERENCE 
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CHAPTER FIVE 

Electromagnetic Field 

5.1 MAXWELL'S EQUATIONS 

The classical electromagnetic field is described by two 3-vector fields, the electric 
field E(r, t) and the magnetic field B(r, t), which obey Maxwell's equations. In ra- 
tionalized units with c = 1, they read 

dB V x E = - -  
dt 

(5.1) 

where p(r, t )  and j(r, t )  are respectively the external charge density and external cur- 
rent density, which must satisfy the continuity equation 

The second and third equations are solved by introducing the vector potential A(r, t )  
and scalar potential +(r, t): 

B = V x A  

whereupon the remaining two equations become 

68 
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(5.4) 

The potentials are determined only up to a local gauge transformation, which in- 
volves an arbitrary function X(r, 1) 

A - + A + V x  

d X  4-+4--  
df ( 5 . 5 )  

The Lorentz gauge corresponds to the condition 

(5.6) 
a4 V . A  + - = 0 (Lorentz gauge) 
dt 

In this gauge, both potentials satisfy the wave equation: 

(2  # - Vz)A = j 

The symmetric appearance of these equations is sometimes convenient, but it actu- 
ally obscures the physics. These equations seem to indicate that there are four inde- 
pendent propagating modes, but actually there only two-the transverse compo- 
nents of A. This can be shown by going to the Coulomb gauge. 

In Coulomb gauge (or radiation gauge), A is purely transverse: 

V . A  = 0 (Coulomb gauge) ( 5 . 8 )  

The equations for the potentials become 

( -$- - V 2, A = j, 

where j, is the transverse current density 
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d 

dt 
j, = j - - V 4  (5.10) 

which satisfies V.j, = 0. In this gauge, A describes transverse electromagnetic radi- 
ation, whose source is the transverse current density, while # describes the instanta- 
neous Coulomb interaction between charges. The potential between two unit 
charges located at r ,  and r2 is given by 

(5.1 1) 

To show that we can always impose the Coulomb gauge, suppose V.A =J To go to 
Coulomb gauge, we make the gauge transformation A -4 A + vx, with x satisfying 
V2x = -f: The solution corresponds to the statement that x is the electrostatic po- 
tential due to the charge distribution V.A. 

We are using rationalized instead of unrationalized units. The difference be- 
tween these systems arises from the normalization convention for the free fields, 
and is tabulated as follows: 

Rationalized Unrationalized 

4-Current P 4 rj* 

Energy density (E2 + B2)/2 (E2 + B2)/8.rr 
Field operator A 4 TA 

Coulomb’s law q2/r 9214 7rr 

5.2 COVARIANCE OF THE CLASSICAL THEORY 
~~ 

We postulate that the potentials form a 4-vector 

and this determines how Maxwell’s equations transform under a Lorentz transfor- 
mation. Since we always impose a gauge condition, a Lorentz transformation must 
be accompanied by a gauge transformation 

AC” -+ A’1- d’x (5.13) 

in order to maintain the gauge condition. Under an infinitesimal Lorentz transfor- 
mation, therefore, the vector potential transforms according to 
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where ,y is such that A ' P  satisfies the gauge condition. 

form (5.7), which are manifestly covariant 
The Lorentz gauge d F A P  = 0 is covariant, and the equations of motion take the 

0 2 A P  = j P  (5.15) 

where j P  is the conserved 4-vector current density 

j P  = ( p ,  j) 3~'. = 0 (5.16) 

In this gauge, however, the physical degrees of freedom are not manifest. 
In Coulomb gauge, where physical degree freedom are made explicit, the equa- 

tions of motion (5.9) are not manifestly covariant; but they actually are, because 
there always exists a gauge transformation to maintain the appearance of the equa- 
tions in all Lorentz frames. One has to choose between manifest covariance with 
Lorentz gauge, or manifest transversality with Coulomb gauge, and we choose the 
latter. 

The electric and magnetic fields are components of the antisymmetric field 
tensor 

which is gauge-invariant. The dual field tensor is defined as 

In terms of the electric and magnetic fields, we have 

The components of the field tensor and its dual can be displayed as matrices: 

(5.19) 

(5.20) 

(5.21) 
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We see that h‘“ is obtainable from FP“ through the duality transformation 

{E, B l - +  (B9-E) (5.22) 

From the field tensors we can form two independent Lorentz invariants: 

FP”Fp,,= 4 (B’ - Ez) (scalar) 

a F””FUv = -B.E (pseudoscalar) (5 .23)  

In terms of the field tensors, Maxwell’s equations read 

which are gauge-invariant and Lorentz-covariant, and are invariant under the duality 
transformation when j ”  = 0. Since Fp” = -F”p, the first equation is consistent only if 
ad’” = 0. The second equation is identically satisfied by putting Fp” = $Az’ - &4”. 

5.3 CANONICAL FORMALISM 

The Lagrangian density of the free electromagnetic field is 

Apart from an overall factor, this is uniquely determined by the requirement that it 
be Lorentz- and gauge-invariant, and does not contain higher derivatives of A p  than 
first derivatives. The minus sign in front is chosen to give a positive energy density 
for the free field, and the factor i sets the normalization of the fields. To obtain the 
equations of motion from the action principle, we must use the potential A” as the 
field variable. The Lagrangian density then reads 

from which we obtain 

(5.27) 

The equation of motion is 
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(5.28) 

Since the last term on the left side is zero, we have 

d,FP” = 0 (5.29) 

The use of the potential makes d, F,” = 0. Thus, we correctly recover Maxwell’s 
equations for free fields. 

- 

The canonical conjugate to A“ is 

which vanishes identically for v = 0, indicating that Ao is not a dynamical variable. 
The dynamical fields are Ak, with canonical conjugate -Pk = Ek. However, the lon- 
gitudinal part of A has no physical significance, because it can be changed at will 
through a gauge transformation (see Table 5.1 .) The only dynamical degrees of free- 
dom are the two transverse components of A, and we can go to the Coulomb gauge 
to make this explicit. In Coulomb gauge Ao satisfies the Poisson equation, and is de- 
termined by the external charges. 

The canonical energy-momentum tensor is, according to (4.26), 

which can be rewritten using the equation of motion: 

The last term is not symmetric in p and a, and not gauge-invariant. However, it is a 
total 4-divergence antisymmetric in p and v, and is conserved because d,dU(F,”Aa) 

0. As discussed in Section 4.5, such a term has no effect on the conservation law 
and the definitions of total energy and total momentum, and may therefore be omit- 
ted. Thus we take as energy-momentum tensor the symmetric and gauge-invariant 
tensor 

TABLE 5.1 Fields and Canonical Conjugates 

Field Canonical Conjugate Remark 

A0 0 Not dynamical variable 
A -E Only transverse part physical 



74 Electromagnetic Field 

which satisfies 

d p T g  = O  

The trace of the tensor vanishes: 

T C = O  

It is now straightforward to obtain the Hamiltonian density. 

= Too = -FOkFok - L = (E2 + B2) 

The momentum density (the Poynting vector) is 

S h  = pk = FOSFkS = ,+JE'BI 

The total Hamiltonian Hand total momentum P are given by 

H = + 1d3r(E2 4 B2) 

P - I d 3 r E  x B 

The conservation of energy and momentum correspond to the statements 

d 
--3-1+ v.s=o 
dt 

d 
at 
-Sk + d , p  = 0 

(5.34) 

(5.35) 

(5.36) 

(5.37) 

(5.38) 

(5.39) 

where 

I"k = -(EJEk + BBk) + f a,,@* + B2) (5.40) 

is the stress tensor. 
According to (4.47), the generalized angular momentum tensor is 

which satisfies the conservation law 

It follows that the total angular momentum J and the Lorentz boost K are given by 
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(5.43) 

5.4 QUANTIZATION IN COULOMB GAUGE 

To quantize the electromagnetic field, we must first eliminate all unphysical de- 
grees of freedom by fixing the gauge, and in the following we shall use Coulomb 
gauge.' In the absence of external charges, we can set Ao = 0, and write the Hamil- 
tonian in the form 

H = :  ~ d ' r ( E 2 + ~ v ~ A ~ 2 )  ( V . A = 0 )  (5.44) 

The canonical conjugate to A is -E = d A/&, and we would normally impose the 
equal-time commutation relation [E"(r, t),Ak(r', t)]  = iS,,s3(r - r'). But this is incor- 
rect here, because the right side is not consistent with v7.A = 0, nor with one of 
Maxwell's equations V.E = 0. We therefore replace S,,63(r - r') by its transverse 
projection, and take 

[E(r, t ) ,  Ak(r', t)] = iSyk(r - r') (5.45) 

where the transverse delta function Sfk(r - r') is defined by 

(5.46) 

and satisfies 

&8;k(r) = dk8&(r) = 0 (5.47) 

A complete set of solutions to Maxwell's equations in a periodic box of volume 
R are the transverse plane waves 

where E(k) is a unit polarization vector normal to k. For each k, tbere are two inde- 
pendent polarization vectors El(k) and EZ(k); and c,(k), Ez(k), k together form a 
right-handed coordinate system: 

'For quantization in other gauges, see Huang [ I ] .  
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(5.48) 

Having chosen e l (  ), e2(k), there is still arbitrariness in '.A choice of eI(-k), e2(-k). 
By convention, we choose 

(5.49) 

as illustrated in Fig. 5.1. The following sum over polarizations results in the trans- 
verse projection operator (see Problem 5.2): 

kkJ 2 

Z'J(k) xc(k)E{(k) = 6, - - 
& = I  lkI2 

We now expand the field in terms of the transverse plane waves: 

2 

&r, 0)  = -i1 xej(k)[a,(k)ezk - a?(k)e-lk '1 
k 2a ? = I  

(5.50) 

(5.5 1) 

The commutation relations (5.45) are satisfied by imposing the commutation rela- 
tions 

Figure 5.1 Polarization vectors o f  an electromagnetic wave 
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where a,?(k) is the annihilation operator of a photon-a field quantum of momentum 
k and linear polarization s. In the free-field case, the time-dependent operator 
N(r, t )  is simply obtained by replacing (k.r by (k. r - okt) in the exponents in 
(5.511, because 

ezHlas(p)e-zHt = a,(p)e-iwpr (5.53) 

The Hamiltonian and the total momentum operator of the electromagnetic field are 
given respectively by 

P = kaS(k)a,(k) 
k.s 

(5.54) 

These equations show that photons are boson with energy-momentum relation w, = 

jkl. The vacuum state 10) is the state with no photons. All other states of the system 
can be generated by applying creation operators repeatedly to the vacuum state. 

In the limit 0 -+ a, the expansion (5.51) becomes a Fourier integral: 

d3k ’ 
AJ(r, 0) = 1 x e ( k ,  s)[a(k, s)e’k’r + at(k, s)e-ik.r] (5.55) 

( 2 7 T ) 3 a  $=, 

where we write c(k, s) = c,(k) for consistency in notation. The continuum form of 
the annihilation operator is 

a(k, s) = m a , ( k )  (5.56) 

which obeys the commutation relations 

[a(k, s), at(k’, s’)] = ( 2 ~ ) ~ S , , d ~ ( k  - k’) (5.57) 

The Hamiltonian and total momentum now take the forms 

1 d 3 k  
H =  - 1 l-lklut(k, s)a(k, s) 

2 ( 2 4 3  

k af(k, s)a(k, s) 
s= 1 

(5.58) 



78 Electromagnetic Field 

5.5 SPIN ANGULAR MOMENTUM 

According to (5.43), the angular momentum density is 

u = r x [E x (V x A)] (5.59) 

We define the spin density to be the part that is independent of the origin of r. To 
find it, let us first rewrite the preceding in component form: 

u~ = EijkEklnrE '""qxJE'dnAq (5.60) 

Now combine the last two E symbols according to the rule 

We then obtain 

u' = E ' J ~ ( x J E ~ c ? ~  AS - xJEndn A k )  

= eok[xJEqdkAQ - dn(xJE"Ak) + xJ(dnEn)Ak + EnAk] (5.62) 

The factor xJ in the first term cannot be removed by manipulations involving dk, be- 
causej + k. The second term is a total 3-divergence, and can be ignored. The third 
term vanishes because V.E = 0. The last term is independent of r, and is identified 
as the spin density: 

s = E x A  (5.63) 

This is the spatial part of the tensor 

where X$; is the spin matrix given in (3.49). The spin angular momentum is given 
by 

S = Id3r E x A (5.65) 

Using the expansion (5.51), we obtain 

S = ic k[a2(k)tal(k) - al(k)a,(k)] 
k 

(5.66) 

A 

where k = WlkJ. To diagonalize this, we make a linear transform to circularly polar- 
ized photons. 
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The polarization vectors for circularly polarized photons are 

4 = -(€, 1 f ie,) (5.67) .\/z 

where the label k has been suppressed. As one can easily verify, the plane wave 

represents a traveling wave whose polarization vector rotates in a right-handed 
sense about k. This is called a left-circularly polarized wave, because an observer 
facing the incoming wave would see the polarization rotating to the left. Similarly, 
E- corresponds to a right-circularly polarized wave. The annihilation operators for a 
circularly polarized photons are given by 

1 
Left-circularly polarized: a+(k) = 3 [a,(k) - iaz(k)] 

1 
Right-circularly polarized: a-(k) = __ [a,(k) + ia,(k)] (5.69) v2 

The commutation relations are 

In terms of these, the spin operator becomes diagonal: 

S = k[a+(k)ta+(k) - af(k)a_(k)] (5.71) 

This shows that the photon has spin I ,  but there are only two helicity states. The he- 
licity + 1 corresponds to left-circular polarization, and -I corresponds to right-circu- 
lar polarization: 

k 

a,(k) annihilates helicity state f 1 (5.72) 

In terms of circular polarization, the field operator has the expansion 

I 
A(r, 0) = 2 ___ { [e+(k)a+(k) + e-(k)a_(k)]eik.' 

k 6 8  

+ [E:(k)a!(k) + ~f(k)a!(k)] e-ik'r} (5.73) 

In the convention (5.49) the sense of the circular polarizations remains unchanged 
when k -+ -k: 
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(5.74) 

5.6 INTRINSIC PAFUTY 

Let us make a coordinate transformation r + r', with the transformation law 

(5.75) 

Since Ak is a vector field, this induces the unitary transformation U according to 
(3.54): 

3 

U!(r)U-I = 1 pJkAk(r') (5.76) 
j =  I 

where &(r) = &.(r, 0). For spatial reflection r' = -r, we denote the unitary transfor- 
mation by T: 

PAk(r)P' = -Ak(-r) (5.77) 

This establishes the fact that the electromagnetic field has odd intrinsic parity. 

expansion (5.5 1). Using the abbreviation 
To investigate how photon states transform, we substitute into the preceding the 

2 

we have 

1 
PA(r)lP1 = 1 T [ T a ( k ) P 1 e j k r  + Tat(k)P1e-'k '1 

=-I ___ [a(k)e-Ik + at(k)e'k.r] 

=-I ____ [a(-k)eIk + at(-k)e-fk'r] 

k 2wkn 

1 

k w  

I 

k -  

(5.78) 

(5.79) 

where the last relation is obtained by changing the summation variable from k to 
-k. Thus 

!Pa(k)TI = -a(-k) (5.80) 
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which gives 

Pa,(k)P' = - ~ l ( - k )  

Pu2(k)P '  = a,(-k) (5.8 1 )  

In terms of circular polarization, we obtain 

Pu+(k)!PI = -aT(-k) (5.82) 

A one-photon state of momentum k, linear polarization s, is defined by 

lk, s) = a d(k)lO) (5.83) 

States with circular polarization are given by 

which are linearly superpositions of states with linear polarizations: 

(5.85) 

Assuming that the vacuum state is invariant under reflection, we have 

Tlk, k) = Paz(k)PPllO) = - Ik, Z) (5.86) 

Thus, under spatial reflection, left and right are interchanged, and the state vector 
changes sign. 

5.7 TRANSVERSE PROPAGATOR 

We now calculate the photon propagator in Coulomb gauge: 

D{(x) = -i(OJTA'(x)Aj(O)lO) (5.87) 

where the subscript "T" reminds us that the field is transverse: $Ak = 0. Expanding 
the field in creation and annihilation operators, we have 

(Olaf(k, s)d(k',  s')lO)e-fkx (x0 > 0 )  (5.88)  
(O(d(k', s')a'+(k, s)lO)efkx (xo > 0 )  
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where 

and we use the abbreviation 

a’(k, s) = &(k, s)a(k, s) 

(5.89) 

(5.90) 

The vacuum expectation values are easily calculated: 

(Oja’(k, s)aJt(k’, s’)(O) = (Oja’(k’, s’)a’+(k, s)/O) 

= (27~)~S,, ,S~(k - k’)&(k, s)E‘(k’, s’) (5.91) 
Therefore 

(5.92) 

where I’J is defined in (5.50).This can be rewritten as a four-dimensional Fourier in- 
tegral, with the help of the identity 

e-ll“ 

(5.93) 
e - l 4  - 1 ”  

(7- o+> ___ ---I du 
2w 2 m  --x w 2 - u 2 - i v  

The final form is 

P( k) 
( 2 7 ~ ) ~  k2 + iq 

where k2 = kO2 - \k12. The Fourier transform is 

(5.94) 

(5.95) 

This is not Lorentz-covariant, for it is in Coulomb gauge. To prove that the quan- 
tized field theory is covariant, we should exhibit the gauge transformation that will 
maintain the form of the transverse propagator under Lorentz transformations. 
However, this is unnecessary, as we shall show in Chapter 1 1. The point is that non- 
covariant part of the propagator is physically irrelevant, because, owing to current 
conservation, it does not contribute to the scattering amplitude. 

5.8 VACUUM FLUCTUATIONS 

The vacuum state is neither an eigenstate of E nor B, since these operators annihi- 
late or create photons singly. Although the fields average to zero, their mean-square 
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fluctuations are large. This can be shown via direct calculation, as in Problem 2.8. 
We can also demonstrate it through the following argument. The energy density in 
the vacuum state is 

f (OJE' + B*JO) = (OIE210) (5.96) 

for the free-field theory is invariant under the duality transformation. Equating this 
with the zero-point energy per unit volume in (5.54), we have 

(5.97) 

which diverges because of the short-wavelength modes. This divergence is harm- 
less, since only energy differences have physical significance; but the long-wave- 
length part of the fluctuations gives rise to observable effects, including the Casimir 
effect. 

We illustrate the essence of the Casimir effect in a simple one-dimensional ex- 
ample, leaving for the next section a more detailed treatment. Consider the modes 
of a harmonic oscillator in a box of length L.  The zero-point energy is 

m 
w =  - (n = 1,2 , .  . . w) 

L 
(5.98) 

where we have introduced a cutoff functionfiw), with the properties 

There is a cutoff frequency w,, above which f (w)  decreases rapidly to zero, and we 
take the limit w, -+ eventually. Suppose that a partition is inserted, such that nor- 
mal modes are required to have a node at the wall. The modes near the cutoff fre- 
quency are hardly affected, because their wavelengths are vanishingly small. There- 
fore, there are now fewer normal modes below the cutoff, as illustrated in Fig. 5.2, 
and the zero-point energy decreases. 

For definiteness, choose the cutoff function to be 

f( w) = e-"'Wc (5.100) 

The zero-point energy for a box without partitions can be easily calculated, with the 
result 
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cutoff - 

Figure 5.2 When a wall is inserted into a box, those normal modes that do not have a node at the wall 
are suppressed. Consequently, the number of modes below a fixed frequency decreases, and the zero- 
point energy is lowered. 

n. 1 Lo: 77 - - - __ + 0 ( w i 2 )  (5.101) 
2 d  24L 8L sinh2(dwJ) wc--a 

EdL) = - . 

Now insert two partitions centered about the midpoint, separated by distance a. The 
box is divided into three compartments-one with length a and the others with 
length ( L  - a)R-and the zero-point energy becomes 

L - a  Lw," n- ?i- 
(5.102) E(u) = E ~ ( u )  + 2E"- -- 

2 wc-" 2 d  6 ( L - U )  2 4 ~  

In the limit L + m, the attractive force between the walk is given by 

(5.103) 

which is independent of the cutoff. 
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5.9 THE CASIMIR EFFECT 

We now calculate the force between two metallic plates in the electrodynamic vacu- 
um. The first task is to obtain the normal modes of the electromagnetic field in a 
perfectly conducting box of size a x b x c. We choose one comer of the box as ori- 
gin, and use Coulomb gauge. On each face of the box, the boundary condition is 

Eil=O B,=O (5.104) 

where the subscripts I( and A denote respectively the tangential and normal compo- 
nents. We put B = v x A, E = -A, to obtain 

Ail=O ( V X A ) , = O  (5.105) 

On the y-z plane, for example, the boundary conditions are 

A,=  A ,  = 0 d y A ,  - dZAy  0 

The first says that A is normal to the surface, and therefore the second condition is 
automatically satisfied. We must, however, satisfy the gauge condition 

d , A , + d y A , + d z A , = O  (5.106) 

which leads to 

a,A, = 0 (5.107) 

Thus, the boundary conditions in Coulomb gauge are 

For A,, for example, the conditions are 

A complete set of solutions to the wave equation is given by 

(5.108) 

(5.109) 

A,  = + cos(kg) sin(k,y) sin(kg) 
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A,  = sin(kg) cos(k,y) sin(k,z) 

A ,  = sin(k$r) sin(k,,y) cos(k,z) 

where 

with n, = 1,2, . . . ,m. The frequency is given by 

w k  = d k :  + k: + k,' 

(5.110) 

(5.1 11) 

(5.1 12) 

If all three components of k are nonzero, there are two independent solutions corre- 
sponding to the * signs in A,. If any component of k vanishes, there is only one so- 
lution. For example, if k, = 0, then A ,  = A,  = 0, and the * sign does not make any dif- 
ference. We can now obtain the zero-point energy: 

+ 1 dk; + k,' + k;F(dk: + k,' + kj) (5.114) 
k,.k& 

where F(k) is a cutoff function. 
Consider now a large cubicle box of edge L, which is divided into three com- 

partments as shown in Fig. 5.3, with two parallel metallic plates inserted normal to 
the x axis, separated by a distance a, symmetric about the midpoint. The zero-point 
energy is the sum of those of the compartments. That of the middle compartment, of 
dimensions L x L x a, with L -+ 00, is given by 

L 

L 

Figure 5.3 Two metallic plates separated by distance a in the electrodynamic vacuum, which is repre- 
sented by a cuhe of edge L + m,  



where 

5.9 The Casimir Effect 87 

U(a) =&(a, L, L )  

(5.1 15) 

(5.1 16) 

We can rewrite the n-sum using the Euler-MacLaurin formula [2]  

C G ( n )  = / = d n  G(n) + -G(O)- 1 --G'(O) B2 - --G"'(O) B4 + .  . . (5.117) 
n- I 0 2 2! 4! 

where B2 = t, B4 = -8. Using G'(0) = 0, G"'(0) = 4, and the fact that all higher 
derivatives vanish at n = 0, we obtain 

1 "  4 r 

x G ( n )  = [ dn G(n) + - 2 0  / dy$F(+) - - 4!30 
n= I 

This leads to 

7? 

51 U(a) = L2 C,a + c2 - [ 
where 

I "  
8r r  0 

C, = - / dk k2F(k) 

The zero-point energy in the box in Fig. 5.3 is given by 

E(u) = U(U) + 2U((L ~ ~ ) / 2 )  

7? 

720a 
c, + 2 c ,  - 7] + O(L-1) 

(5.1 18) 

(5.119) 

This gives an attractive force per unit area between the plates: 
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or, in practical units, 

v’hc 0.013 
- -  dyn/cm2 f=-w-- a4 

(5.120) 

(5.121) 

where a is in micrometers. Figure 5.4 compares this result and early measurements 
[3], with reasonable agreement. More recent measurements of a similar force be- 
tween a plate and a sphere have achieved much greater experimental accuracy [4]. 

5.10 THE GAUGE PRINCIPLE 

We now discuss how the electromagnetic field should be coupled to charged fields. 
A nonrelativistic charged particle obeys the Schrodinger equation 

d 

dt 
t)(r, t )  = i- t)(r, t )  

Dynekm 2 

0 0.5 1.0 1.5 2.0 

d (micron) 

(5.122) 

Figure 5.4 
steel, -chromium; solid line-theory. [Data from M. J .  Sparnay, Physica 24,75 1 (1958).] 

The Casimir attractive force between two metallic plates in the vacuum: x-chromium 
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where A, 4 are respectively the vector and scalar potentials of an external electro- 
magnetic field and e is the charge of the particle. We can derive the form of the in- 
teraction as follows. In the absence of external fields, the Schrodinger equation is 
invariant under a global gauge transformation 

where w is an arbitrary real constant. The invariance depends on the fact that d&$ 
transforms in the same manner as $. If we make a local gauge transformation, with 
w dependent on r, r, this condition will not hold, for we have 

d.$+ e-'"[dP$- i(dpw)$] (5.1 24) 

To make the equation invariant, we must cancel the terms involving dpw. This can 
done by introducing the fields AP = (A,$) through the replacement 

(5.125) 

The Schrodinger equation is now invariant under the local gauge transformation 

The quantity 

D&rCl(x) = [ d& + ieA&(x)] rCl(x) (5.127) 

is called the covariant derivative, A'" is called the gaugefield, and the recipe for re- 
placing d& by DP is called the gauge principle. 

Actually, the gauge principle works only for a fully relativistic theory. For the 
nonrelativistic Schrodinger equation, it fails to produce magnetic moment terms of 
the form -p.V x A, which has to be put in by hand, with p arbitrary. In the rela- 
tivistic Dirac equation discussed in the next chapter, the gauge principle gives the 
full electromagnetic interaction of the electron, with a completely determined mag- 
netic moment. 

As a relativistic example, consider the complex scalar field with Lagrangian 
density 

which is invariant under the global gauge transformation 

(5.1 29) 
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where w is a constant; but it is not invariant when w depends on x .  To extend the 
symmetry to local gauge invariance, we make the replacement 

where e is the electric charge. The Lagrangian density is generalized to 

which is invariant under the local gauge transformation 

(5.131) 

(5.132) 

where Ax) is an arbitrary space-time function. The Lagrangian density of  the free 
electromagnetic field is included to make the system self-contained dynamically. 

PROBLEMS 

5.1 The Lagrangian density for the electromagnetic field in the presence of an external cur- 
rent densityj” is 

What is the condition onjp for this to be gauge-invariant? 
5.2 Consider the symmetric tensor 

(a) Show that VT” = kJT” = 0, and TIi = 2 .  

(b) Using the preceding conditions show the statement in (5.50): 

5.3 Verify that the field operators (5.51) satisfy the commutation relations (5.45). Show, in 
particular, that the transverse delta function arises from the transversality of the polar- 
ization vectors expressed by (5.50) . 

5.4 Rotations Apply the transformation law (5.76) to rotations. In particular, let R be a ro- 
tations of the coordinate system about z axis through q, and be that about the x axis 
through r 
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x = x‘ 
i: y=-y’  I z = 

x = x’ cos cp + y’ sin cp 

Z = Z ’  

y = -x’sin cp + y‘cos cp 

Show that the creation operators transform as indicated in the following: 

Ra:(k)R1 = e-”+’u;(k) 

Ra;(-k)R-l = e%l(-k) 

Ra?(k)R-l = e%!(k) 

Rat(-k)R-l = e-‘’+’a!(-k) 

(uhj(k)[-’ = a:(-k) 

&zf(-k)[-I = al(k) 

&a:(k)[-’ = a!(-k) 

[a!(-k)[-l = af(k) 

5.5 Two-Photon States 151 We can obtain interesting information about a state of two 
photons by examining its behavior under rotations and reflection. Consider two photons 
with momenta k and -k. There are four independent states of polarization, which can be 
classified according to circular polarizations: 

I++) = d(k)a~(-k)/O) 

I+-) = &k)af(-k)/O) 

I-+) = a!(k)a;(-k))O) 

I--) = a!(k)af(-k))O) 

(a) Verify that, in terms of states with linear polarization, 

I++) + I--) = [a:(k)a:(-k) - a:(k)a:(-k)] 10) 

]++)-I--) = [a:(k)a:(-k) + a:(k)a:(-k)] 10) 

I+-) = [a:(k)a:(-k) + a:(k)a:(-k) + ia:(k)a2(-k) t - ia:(k)a:(-k)] 10) 

I-+) = [a:(k)a:(-k) + a:(k)a:(-k) - ia:(k)a:(-k) + ia:(k)a:(-k)] 10) 

From this, note that the polarization of the two photons are correlated: 

In the state I++)+\--) the planes are parallel 
In the state I++)-/--) the planes are orthogonal. 

In the states I+-) and I-+), the planes have equal probability of being parallel or 
orthogonal. 

(b) Work out the transformation laws for the four polarization states under R,&P, using 
results of the last problem, and the fact that the vacuum state is invariant. Verify the 
results summarized in the table of eigenvalues (listed whenever the state in ques- 
tion is an eigenstate of the operation indicated): 

/++)+I--) I++)-+-) I+-) I-+) 
R 1  1 e-2irp &v 

5 1  1 
P 1  -1 1 1 



92 Electromagnetic Field 

(c )  From the preceding table, verify the following quantum numbers for a two-photon 
state: 

The only state with odd parity is i++)-I--). There are three states with even par- 
ity: /++)+]--), [+-), and I-+). 
For odd total angular momentumJ= 1,3,5, . . . , the only possible states are I+-) 
and I-+). The reason is as follows. The other two states are both eigenstates of R 
and 5 with eigenvalue 1. However, an initial state that is an eigenstate of R with 
eigenvalue 1 must have the rotation properties of the spherical harmonic YJ”, 
and therefore changes sign under 4 for J = 1,3,5, . . . 
For total angular momentum J = 0,1, the only possible states are I++) +I--) and 
I++)-]--), because the other two states have spin projections * 2 along the z 
axis, values that are too large for J = 0,l. 

(d) Verify that a two-photon state cannot have J =  1. 

This givesYang’s selection rule [6]: A spin J particle cannot decay into twophotons. For 
example, just by observing that the ?ro meson decays into two photons, we can conclude 
that its spin cannot be 1. (It is, in fact, a spin 0 particle.) 

5.6 Dirac Monopole A magnetic monopole has a magnetic field Bpole = gf./?, with total 
magnetic flux 47r g. Accommodate such a magnetic field into Maxwell’s equations in 
the following manner. To keep V.B = 0, postulate that there is a return flux 4.rrg con- 
centrated in an infinitely thin string attached to the monopole. The vector potential then 
consists of a part due to the monopole, and a part due to the string: 

where Apole is any vector potential that satisfies v x Apole = Bstrlngr and is, of course, de- 
termined only up to a gauge transformation. 

(a) Give one solution for Apoie 

(b) The shape of the string can be changed through a gauge transformation. For a 
straight-line string leading from the monopole to infinity, show that the vector po- 
tential of the string is of the pure-gauge form 

where 0 is the azimuthal angle around the string. 

(c)  Consider a quantum-mechanical particle of electric charge e in the field of the 
monopole, with wave function +. Show that the string can be transformed away 
through a gauge transformation 

9 + c 2 j g e e  9 

(d) Since + has to be single-value, the coefficient of 0 in the exponent must be an inte- 
ger n ,  and thus 

ge = n12 
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This is the Dirac quantization condition. The mere possibility that a monopole can 
exist quantizes the electric charge. 

(e)  Show that the total angular momentum of the system consisting of a charge e and a 
monopole g points from the cbarge to the monopole, and has the magnitude ge. Ob- 
tain the Dirac quantization condition by quantizing the angular momentum. 

5.7 Cutoff Functions 

(a) Calculate the vacuum energy (5.98) for a one-dimensional system using a sharp 
cutoff, which corresponds to f ( w )  = e(w, ~ wj, and show 

Lwf 3wc 
E(a) = __ - ~ (sharp cutoff) 

4 a  2 

Since this is independent of a, there will be no force between inserted walls. 

(b) Show, on the other hand, that any continuous cutoff function will have a nonzero 
cutoff-independent force. To do this, write 

Since the argument off approaches a continuous variable in the limit w, -+ m, we 
can approximate the sum by an integral, using the Euler-MacLaurin formula 
(5.1 17): 

r n  =B2 + E,(L) = - dn n f -  ~ __ 2L = I w,L 4L 

The cutoff-independent term is the same as that in (5.101). 
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CHAPTER SIX 

Dirac Equation 

6.1 DIRAC ALGEBRA 

A relativistic wave equation must treat space and time on the same footing, The 
Klein-Gordon equation does that, but it involves second time derivatives, a feature 
responsible for its failure as a one-particle equation. Dirac tries to remedy this by 
proposing a first-order differential equation. To obtain a equation for the wave func- 
tion I,!J that is linear in the space-time derivatives a,$, Dirac writes 

where the y are numerical coefficients, so far undetermined. To satisfy the rela- 
tivistic kinematics, flx) must also satisfy the Klein-Gordon equation. Multiplying 
from the left by ( i y p d ,  + m),  we have 

This reduces to the Klein-Gordon equation 

if and only if 

This algebraic relation defines four objects v, which anticommute with one anoth- 
er, with 

94 
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(YO)’ = 1 

( y y  = -1 (6.5) 

Clearly cannot be numbers. They can be represented by matrices, called Dirac 
matrices. 

According to (6.4) -y’*y” should be a Hermitian matrix. Thus y@ is either Her- 
mitian or anti-Hermitian. Putting p # v and taking the trace of both sides in (6.4), 
we obtain 

Tr y’* = 0 (p  = 0,1,2,3) (6.6) 

This condition immediately rules out matrices of odd dimension. I t  also rules out 
dimension 2, for there are only three independent traceless 2x2 matrices-the Pauli 
matrices. Therefore, the dimension must be at least 4. That a 4x4 representation ex- 
ists can be shown by explicit construction. 

Define the following 4x4 Hermitian matrices: 

where 1 stands for the 2x2 unit matrix. and ax are the 2x2 Pauli matrices: 

We shall not use different notations for 2x2 and 4x4 matrices, since the context usu- 
ally makes the meaning clear. It follows from the definitions that 

A standard representation for the Dirac matrices is 

(6.10) 

(6.1 1) 

The matrix yo is Hermitian with = 1,  and yk is anti-Hermitian, with (-yk)2 = -1: 
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(6.12) 

r”(YYr” = r’” (6.13) 

The representation given here is not unique. A unitary transformation Syc‘S’ gives 
an equally acceptable set of matrices, since such a transformation obviously pre- 
serves (6.4). 

The y’” and their products, together with the unit matrix, generate a set of 16 in- 
dependent 4 x 4  matrices, in terms of which any 4 x 4  matrix can be expanded. We in- 
troduce special symbols for some of their products: 

i 
f l u =  $y’”y’”Y”- yYy’”) (6.14) 

The “fifth” Dirac matrix y5 is Hermitian, with square 1, and anticommutes with all 
four yfi: 

In our standard representation it has the form 

0 1  

A = ( *  0 )  

The generalized Pauli matrices Cri““ = -&”have six independent members: 

(6.15) 

(6.16) 

(6.17) 

where ak denotes the matrix of 2x2 blocks made up of Pauli matrices along the di- 
agonal. It is straightforward to show that 

(6.18) 

A complete set of 16 independent 4x4 matrices r, is given in Table 6.1. By de- 
finition, we take To = 1. All the r, are traceless except for To: 



6.1 Dirac Algebra 97 

TABLE 6.1 Matrices of Dirac Algebra 

r n  Number 

Total 16 

TrT,=O (n  # 0) (6.19) 

The set is closed under multiplication and commutation, and is called Diruc alge- 
bra. The commutators are given in Table 6.2. 

An arbitrary 4x4  matrix M can be expanded in the form 

15 
n=O 

M =  -c,rn 

where 

1 
co = -Tr M 

4 

TABLE 6.2 Commutators of Dirac Algebra 

(6.20) 

(6.21) 
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6.2 WAVE FUNCTIONS AND CURRENT DENSITY 

Rewriting the Dirac equation in a 3-vector notation, we have 

(-iff. V + pm) ax) = i- 
d t  

(6.22) 

This looks like a single-particle wave equation with Hamiltonian 

H = a ’  p + pm (6.23) 

where p is the momentum operator. The wave function $(x) is a four-component 
column vector called a Dirac spinor: 

*=( *4 5) 
where I), are complex numbers. The complex conjugate is the column vector 

v=Q)  

(6.24) 

(6.25) 

and there are other types of conjugates: 

Hermitian adjoint: $7 = (+!J: t,?~: $: $:) 

Pauli adjoint: iJ= qPv = (@: $f - & ~ y$) (6.26) 

The Hermitian conjugate of (6.1) reads 

-i[dwJit(X)] yfi+ - rn$+(X)  = 0 (6.27) 

Now write q!tt = qf, and use vyptf ‘  = -f to obtain the equation for the Pauli ad- 
joint: 

Another way of writing this is 

(6.29) 
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where the overhead arrow on dp indicates that it acts to the left. 
The conserved density current is given by 

It is easy to see, with the help of (6.1) and (6.29), that 

(6.30) 

(6.3 1) 

Note that]’ is positive-definite: 

As opposed to 

- **= *,**I + *2**2 - *3**3 - *4**4 (6.33) 

The current j p  can therefore serve as a particle current density. As we shall see, 
however, the Dirac equation fails to qualify as a single-particle equation for a differ- 
ent reason; namely, the energy spectrum is not bounded from below. As we shall 
discuss in Section 6.9, the remedy is a redefinition of the vacuum state known as 
“hole theory,” which makes the system a many-particle system. With this modifica- 
tion, J” will become an operator, whose expectation values are no longer positive- 
definite, but can be interpreted as charge density. 

6.3 PLANE WAVES 

Plane-wave solutions to the Dirac equation can be constructed by putting 

+(x) = e-’p “u( p) (6.34) 

where p p  = (Po, p), and u(p) is a column vector called a Diruc spinor: 

Since fix) satisfies the Klein-Gordon equation, we have 

(6.35) 
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For given momentum, there are two roots for the energy po, with opposite signs: 

po = *E (6.36) 

where E is defined as the positive quantity 

E = + V m  

The Dirac equation now takes the form 

(6.37) 

wherepi is a 4x4 matrix defined by 

# = Y P ,  = VPO - f P k  (6.39) 

It has the property 

#4 +#4 = 2PY (6.40) 

which follows from (6.4). 
To find explicit solutions, we note that 

(# -  m)@ + m) = p 2  - m2 = O (6.4 1) 

Thus, each column of the matrix (# + m )  satisfies the Dirac equation. The explicit 
form of the matrix is 

O m-p' 

m + p o  0 -P3 

$ f m =  
p- m-p' 0 

(6.42) 

where 

P * = P '  kP2 (6.43) 

The number of independent columns can be found by letting p k  -+ 0, since the ma- 
trix is a continuous function o f p k .  In that limit po = *m, and the matrix becomes 
proportional to 
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This shows that columns I and 2 are independent forp" > 0, while columns 3 and 4 
are independent for po < 0. The independent solutions are then columns 1 and 2 of 
(6.42) for po = E, and columns 3 and 4 for pa = -E. We designate them as u(p, s). 
The explicit solutions for po = E are 

1 
0 

P3 
m + E  

P+ 
m + E  

The solutions for p@ = -E are 

where 

c=  J"'" 
2m 

For a given p, these solutions form an orthogonal set: 

E 
m u+(p, s)u(p, s') = - &, 

(6.44) 

(6.45) 

(6.46) 

(6.47) 

For a given energy, the wave functions above resemble those of a nonrelativistic par- 
ticle of spin +-, and it is natural to regard s as a spin label. We shall see that this is a 
correct interpretation. 

Taking the Hermitian conjugate of (6.38), we have 

ut(p, s)( $7 - m )  = 0 

Multiplying the equation from the right by f, and using the identity 

YO$tY@ =d 

(6.48) 

(6.49) 
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we find the Pauli-adjoint equation 

Multiplying (6.48) from the right by u, and (6.38) from the left by ut,  and writing 
out6 more explicitly, we have 

U+( yopo - ykpk - m)u = 0 

tit( yapo + ykpk - m)u = O (6.5 1) 

Adding the two equations leads to the relation 

0 
UtU = II,, 

m 
(6.52) 

We can restate the orthonormality of the solutions in the form 

where the plus sign applies for the positive-energy solutions, corresponding to s = 

1,2, and the minus sign is used for the negative-energy solution with s = 3,4. 

6.4 LORENTZ TRANSFORMATIONS 

Under a Lorentz transformation x' = Ax, the Dirac equation in the new frame reads 

(iypd; - m)$'(x')  = 0 (6.54) 

Note that y" remains unchanged, because it is just a numerical matrix. We relate the 
new wave function to the old through a linear unitary transformation: 

+'(x') = StCl(x) xfS= 1 (6.55) 

where S is a nonsingular 4x4 unitary matrix. To demonstrate Lorentz covariance, we 
shall show that there exists a nonsingular transformation on yp that will restore the 
Dirac equation to the old form. Putting d; = At;d, and multiplying the equation by 
9' from the left, we obtain 

Sl( iypAEd,-  m)StCl(x) = 0 

which reduces to the original equation if (S'ypS)A;l= y" or 

(6 .56)  
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The existence of S will be demonstrated by explicit construction. 
It suffices to consider an infinitesimal Lorentz transformation 

x@ = XI” + WfXV (6.57) 

where wg contains six infinitesimal parameters, the three rotations @ and the three 
boosts v/. of the coordinate frame: 

(6.58) 

We put 

S = l + i R  (6.59) 

where R is an infinitesimal Hermitian matrix linear in w t .  To first order in wf, the 
condition for covariance is 

w;y@ = i[ y’, R] (6.60) 

We can write R as a linear combination of the r, of Table 6. I ,  whose commutators 
are listed in Table 6.2. As we can see, only dl’ can contribute to R. Thus R must 
have the form R = CwP,,(+@”, and a short calculation determines C = 4. Therefore 

(6.61) 

This demonstrates the Lorentz covariance of the Dirac equation. Comparison with 
(3.42) shows that the spin operator is 

Writing S in terms of the parameters of the infinitesimal Lorentz transforma- 
tion, we have 

(6.63) 
1 i 
2 2 

~ = i - - ~ . ~ + - e . u  

A finite rotation about a given axis can be built up from successive infinitesimal ro- 
tations about the same axis: 
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where 0 is a vector whose direction is the axis of rotation, and whose magnitude is 
the angle of rotation. Similarly, for a Lorentz boost of the reference frame with fi- 
nite velocity v corresponds to 

4 4 S = e-’@d2 = cosh- - $.a sinh- 
2 2 

(6.65) 

where 

+=$tanh  ‘v (6.66) 

The advantage of using + is that, unlike v, it is additive for successive boosts. We 
note that S is unitary for rotations, but not for Lorentz boosts. 

The Dirac equation realizes a finite-dimensional representation of the Lorentz 
group. As we have seen in Chapter 3, the smallest faithful representation of the 
Lorentz group is of dimension 2. Here the dimension is doubled in order to repre- 
sent spatial reflections. 

Consider the total reflection of the spatial coordinate system 

In the transformed frame, the Dirac equation reads 

Putting @’(x’) = SI,!@), and multiplying the equation from the left by S’, we have 

which exhibits covariance if there exist S that commutes with P, and anticommutes 
with yk,  with S2 = 1. An obvious choice is 

S = (spatial reflection) (6.68) 

which shows the necessity for 4x4 matrices. 
For total space-time reflection x r  = -x, we have 

(-iy”d, - m)+’(-x) = 0 

with complex conjugate 

(iy*’d, - m)$’*(-x) = 0 
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Accordingly, we put 

To restore the original equation, we seek S that anticommutes with p, and with 
S 2  = 1, and an obvious solution is 

S = y5 (space-time reflection) (6.69) 

For time reversal, which is the product of space-time reflection with spatial reflec- 
tion, we have 

S = y0y5 (time reversal) (6.70) 

This is an algebraic transformation that preserves the form of the Dirac equation 
when t is replaced by -t; but it is not the operation that governs physical states, 
which must be taken as states in quantum field theory. In the next chapter, we shall 
see that physical time reversal must involve complex conjugation of the state. 

For a plane-wave state we have 

(6.71) 

wherep‘ is the 4-momentum with respect to the new frame and s’ labels the new so- 
lutions. Since p~ is invariant, we have 

u’(p’, s’) = Su(p, s) 
- u’(p’, s’) = q p ,  s)S’ 

(6.72) 

In general, we can reshume the four solutions in the new frame; but since a Lorentz 
transformation preserves the sign of the energy, the mixing of solutions can occur 
only among s = 1,2, and separately among s = 3,4. With this freedom understood, 
we sets’  = s by convention. It is straightforward to show (Problem 6.2) that 

(6.73) 

which indicates that positive-energy and negative-energy states have opposite 
parity. 

We see from (6.72) that Uu is invariant under a Lorentz transformation, and 
uypu transforms like a 4-vector. More generally, the transformation properties of 
urpu  are listed in Table 6.3. 

- 
- 
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TABLE 6.3 Transformation Properties 
- uu Scalar 
u y h  Vector 
UY5YC”U Pseudovector 
u&“u Tensor 
11 YSU Pseudoscalar 

- 
- 
- 
- 

6.5 INTERPRETATION OF DIRAC MATRICES 
~~ ~ ~ 

The Dirac matrices ok are velocity components in the sense 

dxk 
- = i[H, xk] = ak 
dt 

(6.74) 

Individually, each component has eigenvalues f 1, but the components do not com- 
mute with one another. This conjures up the picture that the electron performs a cu- 
rious dance at the speed of light about its average motion called the titterbewegung. 
But this motion is not directly observable. (See Problem 6.5.) Expectation values of 
the Dirac matrices, on the other hand, have physical significance. 

Let IE) be a normalized energy eigenstate: 

HI E )  = E I E )  

( E J E ) =  I (6.75) 

We have the trivial identity 

(EI(H0 - 0H)IE) = 0 (6.76) 

which can be rewritten in the form 

( E J ( H 0  + OH - 20H)IE) = 0 (6.77) 

This gives 

where (0) = (EJOJE) / (EIE) .  Choosing for 0 the Dirac matrix b, we find 

(6.78) 

m 
E 

(p  ) = - = -2 (6.79) 
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As we have seen, a is the velocity. Hence the magnetic moment is 

e 
p= -r x a 

2 
(6.80) 

where e is the electric charge. Now put 0 = p in (6.78). A straightforward calcula- 
tion gives 

e 
2E (p) = -(L + 2s) (6.81) 

where L = r x p is the orbital angular momentum and S = u/2 is the spin operator. 
This shows that the gyromagnetic ratio associated with the intrinsic spin is 2, but 
that associated with orbital motion, as in spin-orbit coupling, is 1. We shall verify 
these properties, and give physical interpretations. 

6.6 EXTERNAL ELECTROMAGNETIC FIELD 

The Dirac equation in the presence of an external electromagnetic field A+) is 

[ i y W ,  - m] +(x) = 0 (6.82) 

with 

D, = dp + ieA,(x) 

The Hamiltonian has the form 

(6.83) 

(6.84) 

where +(x) = Ao(x) and v i s  the kinetic momentum 

T= p - eA(x) (6.85) 

where p is the one-particle momentum operator defined by [p’, xk] = 

It is straightforward to verify the equations 

dlr 
- = e(E + ~y x B) dt 
da 
- = ~ T X  a 
dt 

(6.86) 

where E and B are respectively the external electric and magnetic fields. The first 
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equation is the analog of the Lorentz-force equation, and the second describes spin 
precession. Taking the dot product of the second equation with T, we have 

dcr 
dt 

T. - = 2.n. T X  ff = 2TX T. ff (6.87) 

Noting that 

? Y X  v = - e ( A x p + p x A ) = - i e B  

we can write 

d a  
dt 

T .  - = - 2 i e a . B  

Combining this with the equation for d d d t ,  we obtain 

d ( 0 .  T) 
= e a .  E 

dt 

(6.88) 

(6.89) 

(6.90) 

In arriving at this equation, we used the identity a x a = 2ia, which can be obtained 
from a x a= 2 i a  by observing that ar = ysa.  

The equations (6.89) and (6.90) have interesting physical consequences [ 11. For 
E = 0, (6.90) states 

d ( a .  v) 
= O  

dt 
(in pure magnetic field) (6.91) 

That is, the spin projection along the velocity, is a constant of the motion in a pure 
magnetic field. This means that the precessional frequency of the spin is exactly 
equal to the orbital frequency. Deviations from this law measure corrections due to 
quantum field effects. 

For B = 0, (6.89) states 

d a  
dt 

= . - = o  (in pure electric field) (6.92) 

Suppose that a longitudinally polarized particle moves along the z axis, loses ener- 
gy, and stops. This equation says daz/dt = 0, or that the particle is not depolarized. 
This result is crucial to the interpretation of the classic experiment [2] that estab- 
lished parity violation in the decay process T- + p- + 5. The p mesons were ob- 
served after being stopped in matter, and found to be longitudinally polarized. The 
preceding result shows that they had the same longitudinal polarization at the mo- 
ment of decay. 
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6.7 NONRELATIVISTIC LIMIT 

We shall study the nonrelativistic limit of (6.82), by first putting it in second-order 
form. Multiplying it from the left by iy“D, + m, we obtain 

(r”r“DIP, + m2>*= 0 (6.93) 

Writing the first term as half the symmetric part plus the antisymmetric part with 
respect to the labels p and u, we can show 

A straightforward calculation gives 

We thus arrive at the second-order equation 

Consider a stationary solution of energy E, with d$J& = -iE$. We can rewrite the 
equation in the form 

[(p - eA)2 - e u .  B + iea . E - m2]$= (E - e+)*$ (6.97) 

where we have used the relation 

The equation displays a magnetic-moment term u. B, with electric-moment term 
a. E generated by the moving magnetic moment. 

In the nonrelativistic limit the components $3 and i+b4 are small, and it is conve- 
nient to rewrite the above in two-component form by putting 

*=($ (6.99) 

where x and 6 are two-component column vectors. Substituting this into the Dirac 
equation (6.82), we obtain the coupled equations 

( E  - e $ -  m)x- u’ (p - eA)e= 0 

(E  - e 4  + m)e-  u. p - eA)X= 0 (6.100) 
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Solving for the “small” component 5, we have 

which shows that it is of order IpllE compared to the “large” component x. 
The second-order equation can be rewritten in the block form 

(6.101) 

(6.1 02) 

where T = p - eA.  We write the equation for x, and eliminate F with the help of 
(6.101): 

(u. E)(U. T) 

E - e $ + m  
T’ - e u .  B f m2 f ie ] x = (E  - e4I2x (6.103) 

which is an exact equation. We go to the nonrelativistic limit by putting 

E=rn+E (6.104) 

and assume E G m and e 4  4 m. Keeping only terms to first-order in E and e 4 ,  we 
obtain 

This has the form of a Schrodinger equation except for the non-Hermitian iE . T 

term, which reflects the fact that xtx is not conserved, due to the existence of nega- 
tive-energy states. A one-particle interpretation is consistent only when this term 
can be neglected. 

The magnetic-moment term has the form 

(6.106) 

where S = a12 is the spin operator. The coefficient of the magnetic field gives the 
magnetic moment: 

e 

2m 
p =  -gs (6.107) 

where 

g = 2  (6.108) 
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is the gyromagnetic ratio. There is a small correction to this value, known as the 
anomalous magnetic moment, due to vacuum fluctuations of the quantum fields. We 
shall calculate the latter in Section 12.3. 

The spin-orbit interaction is contained in the term 

(6.109) 

In a central electrostatic field, with A = 0 and 

E = -;+’(r) (6.1 10) 

we can write 

(6. l l  1) 

where L = r x p . Viewed from a frame moving with the electron, this can be inter- 
preted as the energy -p’.B’ of a magnetic moment p‘ in the magnetic field 

where v = plm. This gives 

e 

2m 
=g’-s 

(6.1 12) 

(6.1 13) 

with 

g’ = 1 (6.1 14) 

which is in agreement with experiments on the fine structure of atomic spectral 
lines. 

6.8 THOMAS PRECESSION 

The electron exhibits two different gyromagnetic ratios: g = 2 with respect to an ex- 
ternal magnetic field, and g’ = 1 with respect to a magnetic field generated by its or- 
bital motion in a central electrostatic potential. To understand these results, consider 
first an electron in an external magnetic field B. It moves in a circular orbit with the 
cyclotron frequency 
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e 

m Wcyclotron = --B (6.1 15) 

The spin precesses about the magnetic field according to the equation dpJdr = 

p x B. With p = gS, this gives a precession frequency 

e 
= -gB 

2m Wprecess,on (6.1 16) 

Thus 

I fg  = 2, as implied by the Dirac equation, the orbital motion and the spin precession 
are synchronized, as stated previously in (6.91). In reality, g deviates slightly from 
2, due to vacuum fluctuations, and g - 2 can be measured to very high accuracy by 
observing the slippage between orbital motion and spin precession. 

Consider now an electron moving in an electrostatic potential in a circular or- 
bit. In the frame moving with the electron, there is a magnetic field B', about which 
the spin precesses with frequency 

(6.1 18) 

with g = 2. However, this is not the precession frequency observed in the laboratory 
frame, due to the Thomas precession. This arises because the electron frame has a 
precession relative to the lab frame, due to the nonadditivity of velocities in succes- 
sive Lorentz transformations. To see this, make a Lorentz transformation from the 
laboratory frame (which is presumed to be an inertial frame) to the instantaneous 
rest frame of the electron at time t. Since the orbital velocity v is small in the non- 
relativistic limit, the electron spinor undergoes an infinitesimal Lorentz transforma- 
tion: 

s, = 1 - 4 a . v  (6.1 19) 

At time t + dt,  the velocity becomes v + adt, where a is the instantaneous accelera- 
tion, and we make a successive Lorentz transformation 

S , = l - : a . a d t  (6.120) 

Over the time interval dt, we have made the overall transformation 

S = S 2 S ,  = ( l - f a . a d t ) ( l - f a . v )  

= I - f a ~ ( v + a d r ) + ~ ( a ~ a ) ( a ~ v ) d r  (6.121) 
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with last term causing the nonadditivity of velocities. Now use the identity 

(a. A ) ( a .  B) = (a. A)(a .  B) = A . B + ia. A x B (6.122) 

and write 

(a. a ) ( a .  v)dt= io. a x vdt (6.123) 

where we have used the fact that a.v = 0 for circular motion. Thus 

1 i 
2 4 

S= 1 - -a. (v + adt) + --u. a x vdt (6.124) 

The last term is a pure rotation-an example of the Wigner rotation discussed in 
Section 3.6. It leads to the Thomas precession, with angular frequency 

T -  - - ?  . a x  v (6.125) 

As illustrated in Fig. 6.1, its sense is opposite that of wrest, and the magnitude is giv- 
en by 

e 

2m 
wT= -B’ 

The spin precession frequency in the lab frame is therefore 

e 

2m 
W,& = wrest - wy = - (g  - 1)B’ 

which leads to the result g’ = g - 1 = 1. 

(6.126) 

(6.127) 

Figure 6.1 Thomas precession. 
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6.9 HOLE THEORY 

The energy spectrum of the Dirac equation consists of a positive continuum extend- 
ing from m to w, and a negative continuum from -m to -. The negative-energy lev- 
els cannot be ignored, because they are required by relativistic kinematics. Their ex- 
istence destabilizes the theory, for, if there are any interactions at all, a particle can 
lose energy and fall down rhe bottomless pit of negative-energy states. Thus, no sta- 
ble particles of positive energy can exist. 

Imagine that the negative spectrum is cut off at some large but finite depth. If 
the particles obey Fermi statistics, the avalanche will stop when all negative-energy 
levels are filled with two particles (of opposite spin). The filled “negative-energy 
sea” will be the state of lowest energy: the vacuum state. Removing a particle in this 
sea will create a hole that appears as an “antiparticle,” in the sense that it can be an- 
nihilated with a particle falling into the hole. Redefining the vacuum state in this 
manner results in “hole theory,” as illustrated in Fig. 6.2. This redefinition of the 
vacuum state stabilizes the theory, and the important points are that 

It is possible only if spin-t particles obey Fermi statistics. 
It makes the system into a many-particle system-a quantized field. 

In hole theory, the absence of a negative-energy particle corresponds to the presence 
of an antiparticle with positive energy. This is expressed through the fact that the 

Figure 6.2 Energy spectrum in hole theory. 
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wave function of an antiparticle of energy E and momentum p is the complex con- 
jugate of that of a particle of energy -E and momentum -p. Accordingly, we shall 
redefine the solutions to the Dirac equation by reversing the momentum for nega- 
tive-energy states. Let the positive-energy solutions be redesignated u+(p, l), u+(p,  
2), and the negative-energy solutions u-(p, l ) ,  ~ ( p ,  2). We choose as a complete set 
the following: 

where 

They satisfy the equations 

with adjoint equations 

U(P> s)(d- m) = 0 

v(p, s)@ + m) = 0 

In these equations, p& is defined such that p" > 0: 

(6.129) 

(6.130) 

(6.131) 

(6.132) 

In 3-vector form, the equations read 

Note that the energy of u ( p ,  s) is still negative, for all we did was reverse the mo- 
mentum, and write its energy as -E (with E > 0). 

The orthonormality of the solutions is expressed by the relations 



116 Dirac Equation 

which are equivalent to 

The completeness of the solution is stated as 

(6.134) 

(6.135) 

(6.136) 

where a and b are spinor indices. This is equivalent to the matrix equation 

The terms above are respectively projection operators onto positive-energy and neg- 
ative-energy states: 

(6.138) 

which have the properties 

Note that the 4-vector p p  in / p  is defined to have positive time component po = E. 
The Dirac equation cannot be a one-particle equation, but it furnishes a finite- 

dimensional representation of the full Lorentz group. As such, it provides a com- 
plete set of one-particle wave functions, in terms of which we can analyze the oper- 
ator of a spin- t field, as we shall do in the next chapter. 
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6.10 CHARGE CONJUGATION 

An antiparticle should have opposite charge to a particle, since it represents the ab- 
sence of a particle in the negative-energy sea. This is intuitively obvious; but let us 
make certain that the formalism gives this result. In the presence of an external elec- 
tromagnetic field A+), the Dirac equation is as given by (6.82). We denote the 
wave function as $(x) for positive-energy plane wave states, and @(x) for negative- 
energy plane-wave states: 

where E = + m. Then (6.82) can be rewritten 

[iyfi(d, + i d , )  - rn] $(x) = 0 

[iy”(d, - id,) - rn] $(x) = 0 

(6.140) 

(6.141) 

which show that the charge indeed has opposite signs for particle and antiparticle. 
The two equations above can transformed into each other through “charge conjuga- 
tion,” or “particle-antiparticle conjugation.” To change the sign of the coupling 
term in the first equation, we take the complex conjugate: 

[-iy*”(d, - id,) - rn] p(x) = 0 (6.142) 

We then make a unitary transformation to bring it to the form of the second equa- 
tion. Thus 

where q is a 4x4 matrix with the properties 

(6.144) 

The solution is, in our standard representation of the Dirac matrices, 

= iy2 (6.145) 

(where 
corresponds to the transformation 

is the second Dirac matrix). In terms of the spinors, charge conjugation 
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Since { 9, f‘} = 0. This shows that particles and antiparticles have opposite panty. 
Like the time reversal discussed earlier, the charge conjugation here is an oper- 

ation on Dirac wave functions, and not on physical states, which are defined in 
quantum field theory. The operation is relevant because we expand the quantum 
field operators in terms of Dirac wave functions. 

6.1 1 MASSLESS PARTICLES 

For a massless Dirac particle, with m = 0, the equation for the Dirac spinor reduces 
to $u(p) = 0, or 

Cr-PU(P) = P&P) (6.147) 

where 

po = *E E = IpI (6.148) 

Since [ak, y5] = 0, we can diagonalize y5, whose eigenvalue *I is called “chirality.” 
The solution with chirality + 1 is called “right-handed,” denoted u,; one with chiral- 
ity -1 is called “left-handed,” denoted uL: 

(6.149) 

Using the relation 

y5a= u (6.150) 

we have 

(6.151) 

which states that the helicity c . p is the chirality time the sign of the energy. Thus, 
for a right-handed particle, the helicity is correlated with the sign of the energy, and 
for a left-handed particle it is anti-correlated. For a given momentum p, the four in- 
dependent solutions are udp, s), where C = R, L denotes chirality and s = & 1 de- 
notes helicity. Explicit solutions can be obtained from (6.45) by putting m = 0; but 
obviously we cannot normalize them according to (13.105). Instead, we put 

It is easy to show Uc(p, s)uc(p, s) = 0, it follows that for, since { y5, f }  = 0, it fol- 
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lows that U and u have opposite chirality. The one-particle states Ip) have the proper- 
ties 

(6.153) 

We must, of course, define the vacuum using hole theory. In analogy with the mas- 
sive case, we define antiparticle spinors: 

For a given p, the independent solutions can be taken to be uR(p, I), uR(p, -I) ,  
u,(p, -I), v,(p, 1). Thus, a right-handed particle is a right-handed screw, and a left- 
handed particle is a left-handed screw. The correlation between handedness and he- 
licity is reversed for antiparticles. 

PROBLEMS 

6.1 Lorentz Boost 
(a) The transformation matrix for an infinitesimal Lorentz transformation is of the 

form S = 1 + iR, where R satisfies (6.60). Review the argument leading to the form 
R = CW,,~“”, and show that C = f . 

(b) Using the identity ?{ cr,“+f = My, show that 

With this, verify the transformation law for U given in (6.72). 
(c) Obtain the free-particle solutions u(p, s )  to the Dirac equation by applying a 

Lorentz boost to the solutions in the rest frame: 

where 4 = tanh-In, and 
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6.2 Intrinsic Parity Show (6.73) that 

and therefore 

yOu(-p, s) = u(p, s) 

rou(-p, s) = -4p, s) 

(s = 1:2) 

(s = 1 2 )  

These relations indicate that particles and antiparticles have opposite intrinsic parity. 

6.3 Pauli Term The Dirac equation describes a particle with g = 2. Physical particles have 
g factors different from 2 because of interactions, which give rise to an “anomalous” 
magnetic moment. The electron acquire the anomalous moment through interactions 
with the quantized electromagnetic field. That for the proton and neutron are dominated 
by the strong interactions. Suppose that the g factor is 2 + K. Show that this can be ac- 
commodated by taking the Dirac equation in external electromagnetic field to be 

The extra term is called the “Pauli term.” For the proton and the neutron, the experimen- 
tal values are K,, = 1.79, K~ = -1.91, respectively. 

6.4 Chiral Current The chird current density is defined by 

Using the Dirac equation, show that 

The chiral current becomes conserved in the massless limit m -+ 0. In quantum field 
theory with electromagnetic interactions turned on, this property is destroyed by the ax- 
ial anomaly [3]. 

The zilterbewegung [4] is a kinematic property of the spin-$ repre- 
sentation of the Lorentz group, the “clockwork” of the Dirac equation. To exhibit this 
motion, construct a wave packet for a Dirac particle: 

6.5 Zitterbewegung 

where E = +-, and w,(p) are linear combinations of Dirac spinors with positive 
(negative) energies *E. Calculate the expectation value of the velocity (v) =I  d - i ~ i ) ~ , t ( y + , .  

Show that 
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where Vg = (27)”s  &p(w: (YW, + w_’cyw_) . Integrate this to obtain the average position 

The last term is the zitterbewegung, which arises from an interference between positive- 
and negative-energy states. On dimensions grounds, we can conclude that the amplitude 
of  this oscillatory motion is of the order of the Compton wavelength llm, and therefore 
unobservable. In the hole theory, when all negative energy state are filled, the zitterbe- 
wegung becomes part of the vacuum fluctuations of the Dirac field, for it can happen 
only when holes are momentarily created as a result of fluctuations. 

(a) From the definition of the Dirac matrices, show that 

6.6 Gordon Decomposition 

(b) Multiply the equation (iyp’d, ~ m)@ = 0 from the left by $y”, and use the identity to 
rewrite the result in the form 

with spatial components 

This is the Gordon decomposition, which splits the current density into a “convec- 
tion” part, plus contributions from the spin. It suggests that the spin is the orbital 
angular momentum of the zitterbewegung. 

(c) Let u, = u(p,, sJ, ( i  = 1,2), be two Dirac spinors. Let 

Show that 

6.7 Massless Particles Consider massless Dirac particles 

(a) Show Udp, s)uC(p, s) = 0. 

(b) Show that the projection operators A,(p) for positive and negative energies have 
the properties 
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CHAPTER SEVEN 

The Dirac Field 

7.1 QUANTIZATION OF THE DIRAC FIELD 

In hole theory, the Dirac equation describes a many-fermion system, and thus the 
Dirac “wave function” I,!@) should be regarded as a classical field to be quantized 
according to Fermi statistics. To carry out the quantization in the canonical formal- 
ism, we take as classical Lagrangian density 

where flx) is a four-component spinor and the independent field variables are the 
components $&). We note that L(x) is Lorentz-invariant, and globally gauge-in- 
variant. This is a first-order Lagrangian density, involving first instead of second 
derivatives with respect to time. We have illustrated the self-consistency of the 
canonical formalism in this case in Problem 4.5. Therefore, following strict canoni- 
cal procedures, we calculate 

The equation of motion is 

which correctly gives the Dirac equation in Hermitian-conjugate form. The La- 
grangian density vanishes for fields satisfying the equation of motion: 

L(x) = 0 (for fields satisfying equation of motion) (7.4) 

The canonical conjugate to q!ro is i$z, since 

123 
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rra = 7 ~ , 0  = i$: (7.5) 

The Lagrangian does not depend on $a*, and therefore $,* has no conjugate. One 
must resist the temptation to make the Lagrangian more “symmetric” by replacing 
i$y,d,$ with (i/2)[$.yL“(d,$) + (d,$)y$J. This would be akin to “adding feet when 
drawing a snake,” as a Chinese saying goes. 

The canonical quantization rules lead to the following anticornutation relations: 

{+o(ri(r, 

(rb.u(r, 4, $/I ( r ’ r  GI = 0 

~clbt(r’, O )  = 6,,a3(r - r’) 

(7.6) 

where a and b denote spinor indices. The anticommutators serve as initial condi- 
tions for the Dirac equation. They also fix the normalization left arbitrary in the 
Dirac equation. 

The Lagrangian density is invariant under the global gauge transformation $+ 
e-Jw$, where w is a constant. The associated Noether current is 

which is conserved: 

The canonical energy-momentum tensor, which is associated with translational 
invariance, is given by 

with conservation law 

(7.10) 

The energy and momentum densities are respectively 

When integrate over space, they give the Hamiltonian Hand total momentum P: 

H =  Jd3r $+(r, l)(-icr .V + pm)lMr, t )  

P = -ild3r ++(r, t)V ~ r ,  r )  (7.12) 

The generalized angular momentum tensor is 
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M g q x )  = $(3)[i(x"y@ -XPrl"a") + f r"a"P]CG(x) (7.13) 

and the angular momentum and the boost operators are respectively 

(7.14) 

From the angular momentum, we can read off the spin operator: 

in agreement with what we found in the last chapter. 
The one-particle solutions obtained in Chapter 6 constitute a basis in terms of 

which the field operators may be expanded. We normalize the wave functions in a 
large periodic box of volume fl, and write 

where 

E p = + W  (7.17) 

The factor d/m/Ep appears because the Dirac spinors are normalized according to 
(6.133) and (6.134): 

- m 
v(p, s)v(p, s') = --d(p, s)v(p, s') = -ass, 

EP 

With this factor taken out, we have simple anticommutation rules 

(7.18) 

(7.19) 
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which lead to the interpretation that aps annihilates a particle whose wave function 
is u(p ,  s) and b,, annihilates an antiparticle whose wave function is vt(p, s). 

Hole theory is implemented through the statement 

ap,lO) = b,,10) = 0 for all p,s (7.20) 

This implies that there are neither particles nor antiparticles in the vacuum state 10). 
In terms of the annihilation and creation operators we have 

p = 1 P(a;,aPs - bpsbis) = 1 p(a&!sap, + bpvp.) (7.2 1)  
PS PS 

If we had not used hole theory, b,, would be creation instead of annihilation opera- 
tor, and bpsbp,t would have eigenvalues 0,l. Consequently, the Hamiltonian would 
not be bounded from below. The sign reversal that makes the Hamiltonian positive- 
definite, of course, depends on the fact that we quantized the system according to 
Fermi statistics. 

The charge operator is given by 

(7.22) 
PS 

which shows that particles and antiparticles have opposite charge. The minus sign 
above arises through rewriting b,,b& as -bJ,bps + 1. This is dictated by the fact that 
bisbp,7 has positive eigenvalues in hole theory. The normalization of Q is arbitrary, 
for the magnitude of the charge is determined only when there is interaction with 
the electromagnetic field. 

7.2 FEYNMAN PROPAGATOR 

The Feynman propagator for the Dirac field is a 4x4 matrix 

where the time-ordering operator T is defined to include a sign change when two 
fermion operators A and B are interchanged: 

A(t,)B(t,) if t ,  > t2 
-B(t2)A(t,) if t2 > t ,  

(7.24) 
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The propagator can be calculated straightforwardly, using the expansions (7.16). Let 
x = ( t ,  r). For t > 0, the only contribution comes from terms in the expansion of the 
form uut:  

(7.25) 

For t < 0 we need only keep terms of the form bbt: 

The sum over spin states results in the projection operators given in (6.137). Sup- 
pressing the spinor indices and going to the limit R -+ a, we have 

(7.27) 

We can make the replacement 

m +$ = m + -+E~- ykpk-+ m + iy'- d - f p k  (7.28) 
dt 

because this operator acts on the exponential factor. For t < 0, make the change of 
variables p --+ -p. Then we have 

Now use the representation 

where q + 0'. Then, the operator idldt in the previous formula can be replaced by 
pO.  The final result is 

(7.3 1) 

We leave i t  as an exercise to show that 

SF(X) = (iyfid, + ~ ) A F ( x )  (7.32) 

where A&) is the Feynman propagator for a free scalar field of mass m. 
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The Fourier transform of the propagator is 

where the right side is the inverse of a 4x4 matrix. The 4-vectorp is arbitrary, with 
either p o  > 0 or po > 0. For p" > 0, we have, according to (6.137), 

(7.34) 

For p o  > 0, let us define qp = -pF ,  Then according to (6.137), we obtain 

2 

-=- ( p  + m, (9 + m, = -Cv(q, s)U(q, s) (PO ' 0) (7.35) 
2m 2m 5: 1 

This shows that the residue at the mass-shell pole atp2 = m2 contains the wave func- 
tions of an electron of momentum p, or those of a positron of momentum q = -p. 

7.3 NORMAL ORDERING 

Both H and Q contain divergent contributions from the zero-point energy and 
charge of the vacuum state. These terms have no physical relevance since energy 
and charge are measured relative to those of the vacuum state. They can be eliminat- 
ed by redefining the reference points, and this can be achieved by arranging the or- 
der of operators appropriately. 

We first introduce the notion of normal ordering. Suppose that 0 is a product 
of creation and annihilation operators. The corresponding normal product : 0 : is 
defined as that obtained from 0 by rearranging the order of the factors, if necessary, 
such that all creation operators stand to the left of all annihilation operators. In the 
rearrangement process, an interchange of two fermion operators gives rise to a fac- 
tor -1. As an example: 

Normal ordering can be naturally extended to a sum of products: 

0, + 0, : = : 0, : f : 0, 

We now redefine the Hamiltonian and the current as 

H = :1d3r@t(r, t)(-ia .V + pm)lCl(r, t )  : 

(7.36) 

(7.37) 
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j p ( x )  = :$+(x)yp~x) : (7.38) 

It is clear that these operators give zero when operating on the vacuum state, be- 
cause annihilation operators stand to the far right. This is just a formal way of stat- 
ing that the zero-point energy and currents are to be omitted. As the notation is 
somewhat cumbersome, we shall not explicit indicate normal ordering unless neces- 
sary. 

7.4 ELECTROMAGNETIC INTERACTIONS 

We consider systems of interacting fields with a Lagrangian density consisting of 
the sum of the free Lagrangian densities of the participating fields, plus an interac- 
tion Lagrangian density that couple the fields together. This is not the most general 
case conceivable, but it is what we can handle mathematically. We illustrate the 
types of interactions commonly encountered. Consider a Dirac field, a complex 
scalar field, and the electromagnetic field, which have free Lagrangian densities 
given by 

L,, = -4 Fp’Fpu (7.39) 

According to the gauge principle, the matter fields can be coupled to the electro- 
magnetic (em) field by replacing dp by the covariant derivative 

where e is the electric charge. Assuming that both the Dirac field and the scalar 
field have the same charge e,  the electrodynamic Lagrangian density is 

where 

The matter fields are coupled through conserved currents, which are the Noether 



130 The Dirac Field 

currents associated with global gauge invariance. For the scalar field, the current 
has an e2 term proportional to A&. This becomes a mass term for the photon when 
+*+ develops a vacuum expectation value, in spontaneous symmetry breaking. 
(See Problem 15.5.) 

The electromagnetic field couples to all charged fields through the gauge prin- 
ciple, and is universal in this sense. The vacuum fluctuations of the electromagnetic 
field include the momentary creation of virtual particle-antiparticle pairs and their 
subsequent annihilation. The temporary charge separation makes the vacuum into a 
dielectriclike medium, and all charged fields of the world participate in this “vacu- 
um polarization,” as their contributions being determined solely by charge and 
mass. 

7.5 ISOSPIN 

The Dirac field can be used in a phenomenological description of protons and neu- 
trons, which are really made of quarks. The effective theory is useful in describing 
the “charge-independent’’ pion-nucleon interactions at low energies. It is based on 
the fact that proton and neutron are almost identical, and so are the three n- mesons, 
and the strong nuclear forces respect the identities. By ignoring the electromagnetic 
and weak interactions, we can regard the proton and neutron as different states of a 
particle called the nucleon, and the rr mesons as different states of the pion. 

The nucleon field is represented by a two-component Dirac field 

(7.43) 

where i = 1 corresponds to proton, and i = 2 to neutron. Each +i is a four-component 
Dirac spinor field. Writing out all the indices, we have eight complex fields i,hia(x), 
with a = 1 ,  . . . , 4 and i = I ,  2 .  By analogy with spin angular momentum, we define 
the isospin ?/2 as generators of rotations in the two-dimensional internal space 
spanned by qIr,  and +2: 

0 1  0 -i 

The proton and neutron states are eigenstates of 7,/2 with respective eigenvalues +f 
and-f:  

(7.45) 

which can be created from the vacuum by applying t+bf(x). We use a shorthand nota- 
tion in which the spinor and internal indices are suppressed. For example, 
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where a,  b are summed from 1 to 4 and i, j are summed from 1 to 2. 

ators ’ I  obey angular momentum commutation relations (Lie algebra): 
More generally we define isospin as an internal symmetry group whose gener- 

Thus one can simultaneously diagonalize r2 = I(Z + 1) and 13, and denote isospin 
eigenstates by 11, 13). The nucleon belongs to the fundamental representation with 

has three components because that is the number of generators of the group. 

I = - .  A ,  in . which I‘= 712. The overhead arrow denotes a vector in isospin space, which 

The pion field has I = 1, and is described by a three-component real field 

(7.47) 

This the “adjoint representation” of the group, which has the same dimension as the 
number of generators, and in which the generators are represented by matrices ? 
taken directly from Lie algebra: 

Experimental evidence dictates that 4[(x) be pseudoscalar, that is, that it change 
sign under spatial reflection. We note that Z3 is not diagonal. The physical pion 
fields, which are eigenstates of 13, are related to +k through 

These operators create states with I3 = + 1, -1, 0 respectively, when they operate on 
the vacuum state, 

“Charge independence” in the pion-nucleon system means that the interaction 
conserves isospin. A Lorentz-invariant effective Lagrangian density, known as 
“pseudoscalar coupling,” is given by 

The vector notation makes manifest the rotational invariance in isospin space. A 
competing model is the “pseudovector coupling” model, with 
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~ ( x ) = i M i y , " ~ ) , - ~ + +  :[a,$. a,?-m2$.?]+gr(?7iysy,~~) .  a,? (7.51) 

Some consequences of isospin invariance are explored in Problem 7.4. 

7.6 PARITY 

We discuss the discrete symmetries, using as an example the electromagnetic cou- 
pling as contained in 

L(x) = -$ F+"F,,, + $[iyp(d, + i d , )  - m] I,!I (7.52) 

Under a Lorentz transformation x -+ Ax, the field operators +&) undergoe a uni- 
tary transformation U given by (3.54): 

U+,(x)U-' = S,&,(k 'x)  (7.53) 

where Sab. This can be extended to spatial reflection x -+ x, t -+ t, for which the uni- 
tary operator U is denoted by T .  For the Dirac field, we have S = f' according to 
(6.69) and (6.70), and thus 

!,?fir, t ) ~ '  = ffi-r, t )  

TRr, t)P1 = R-r, t)f 

Since A ,  transforms like a vector, 

pAk(r, t ) ~ '  = 4 - r ,  t )  

!,?A"(r, 2 ) p - l  = Ao(-r, t )  

Thus we have 

pL(r, t)P' = L(-r, t )  

which show that the Lagrangian L = J d?r L(x) is invariant. 
From the expansion (7.16) at t = 0: 

we have 

(7.54) 

(7.55) 

(7.56) 

(7.57) 
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Using the relations (Problem 6.2) 

(7.59) 

we obtain the statement that particles and antiparticles in Dirac theory have oppo- 
site intrinsic parity: 

(7.60) 

The transformation T may be accompanied by a rotation in spin space with respect 
to the index s, as is clear from (7.58); but we leave it out for simplicity. 

7.7 CHARGE CONJUGATION 

Charge conjugation, or particle-antiparticle conjugation, is defined as a unitary op- 
eration C on the Hilbert space that interchanges particle and antiparticle, and revers- 
es the sign of the electromagnetic field: 

Ca,,C' = b,, 

Cb,,C-' = ups 

CAk(x)C-I = -Ak(X)  (7.61) 

The transformation of Ao(x) is not specified independently, because in Coulomb 
gauge it is not an independent field. It is clear that L(x) is invariant under this trans- 
formation, because the free-field Lagrangian densities are invariant, and the Dirac 
field is coupled to the electromagnetic field through the current density, which 
changes sign. 

To find how the Dirac field operator transforms, let us compare the following 
expansions: 

s) + bpse'p.'u*(p, s)] (7.62) 
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The expansion coefficients satisfy (6.146): 

where q = iy2 is a real 4x4 matrix. Therefore 

(7.64) 

which shows 

Cflr)C-I = T++(r) (7.65) 

Note that the Dirac wave functions undergo complex conjugation, which is a 
nonlinear operation, because (Au)* = A*u*. The field operator, however, undergoes 
a linear transformation, because C(A+))C' = A C+ C-I. The difference can be traced 
to the fact that in the Dirac equation we have to change the sign of the coupling to 
an external electromagnetic field, whereas in the field theory, the electromagnetic 
field is part of the system, and changes sign under charge conjugation. 

7.8 TIME REVERSAL 

Time reversal is the operation of interchanging past and future, represented by a op- 
erator I on Hilbert space. Suppose that 'Po is a member of a complete set of state in 
Hilbert space, where a stands for quantum numbers, such as momentum p and spin 
projection s on a fixed axis. The time-reversed state T P O  must be a member of the 
same set: 

I*, = *; (7.66) 

where Z are the time-reversed quantum numbers, defined by correspondence with 
classical mechanics: 

and the helicity is invariant. The basic property of I is 

that is, it interchanges initial and final states. This can be rewritten 

(7.68) 

(7.69) 

Replacing *b by A q b ,  where A is a complex number, we have 
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(7.70) 

I ( A q U , )  = A * ‘ T q U ,  (7.71) 

Thus, when acting on a number, I takes its complex conjugate. This makes 7 non- 
linear. More specifically, it is called an. “antilinear” operator. A general representa- 
tion of I is complex conjugation followed by a unitary transformation: 

(7.72) 

where it is assumed that U commutes with complex conjugation. For the 
Schrodinger equation 

time reversal means 

(7.73) 

(7.74) 

The system is invariant under time reversal if the time-reversed equation is equiva- 
lent to the original. Taking the complex conjugate, we have 

Thus, the system is invariant under time reversal if the Hamiltonian is real: 

H = H *  

(7.75) 

(7.76) 

which implies that the Lagrangian must be real. 
Without going through all the details, we can conclude that 

The first equation follows from the requirement that A k  transform like the current 
density, which must change sign, because classically it is a velocity. The second fol- 
lows from the fact that yny5 is the transformation that preserves the Dirac equation 
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under time reversal, as shown in (6.70). It is straightforward to  verify that the La- 
grangian is invariant, if the charge e is real. 

There is a theorem known as the PCT theorem, which states that a local field 
theory that is Lorentz invariant is automatically invariant under the product PCT 
even though it may be separately invariant under TC, T separately. We refer the read- 
e r  elsewhere [ 11 for proof. 

PROBLEMS 

7.1 Energy-Momentum Tensor The canonical energy-momentum tensor T c p m  for the 
Dirac field is not symmetric in pa. According to Section 4.5, we can construct an 
equivalent symmetric tensor PW = T r m  + f dAXAFm.  Find X A F a .  

7.2 Propagator Show that the propagator for the Dirac field is related to that of the scalar 
field through 

7.3 Neutrinos Neutrinos are massless Dirac particles. Using the convention for wave 
function given in Section 6.1 I ,  expand the field operator in terms of annihilation and 
creation operators. 

(a) Show that under an infinitesimal isospin transformation, the nucleon field, and the 
pion field transform according to 

7.4 Isospin Transformations 

whe? the components of -0 are arbitrary infinitesimal re_al parameters. 
(b) Let V = *r TI), where y is a 4x4 Dirac matrix. Show that V transforms like a vector 

in isospin space: 

7.5 Pion-Nucleon Scattering As far as isospin properties are concerned, the pion and nu- 
cleon states can be labeled by I and I,: 

Ip)=l" 2 1  I) 2 In) = I f .  -l\) 

(a) A state containing a pion and a nucleon is a direct product in isospin space, as, for 
example, Ir+n) = 11, 1) x I +, 4 )  . However, this is not an eigenstate of total isospin 
and thus not an eigenstate of the Hamiltonian of the system. Show that eigenstates 
of the isospin are the following: 



Reference 137 

(b) For interactions that conserve isospin, the pion-nucleon scattering amplitude de- 
pends only on total isospin and not on I ,  (for the same reason that atomic energy 
levels are independent of the magnetic quantum number, i.e., the Wigner-Eckart 
theorem.) Denote the transition amplitudes by a3,2 and a,/*,  and show that they have 
the form 

( p r + / T b r + )  = u3/2 

where T is the transition operator. The corresponding scattering cross sections are 
proportional to the squares of these amplitudes. 

(c) Neglect al iz  compared to a3,,, and show that pion-nucleon scattering cross sections 
bear the ratio 

This is verified experimentally at low energies. The reason that dominates is 
the resonance scattering T + N + A -+ T + N ,  where A is a particle of spin $, 
isopin 5 ,  with mass 1232 Me\! known at one time as the “33 resonance.” 
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CHAPTER EIGHT 

Dynamics of 
Interacting Fields 

8.1 TIME EVOLUTION 

The dynamics of a quantum mechanical system is governed by the Hamiltonian H, 
which generates time translations. One may view the time development from differ- 
ent perspectives. In the Schriidinger picture, one regards the operators 0, as time- 
independent objects, and the state vector Ts changes with time according to the 
Schrodinger equation 

Assuming that H is time-independent, we have the formal solution 

The matrix element of an operator 0, evolves in time according to 

The subscript "s" identifies states and operators in the Schrodinger picture. 
In the Heisenberg picture, the state is assumed to be constant in time, but the 

operators evolve. The matrix elements of an operator must be independent of the 
picture, and this requirement relates the Heisenberg picture to the Schrodinger pic- 
ture: 

138 
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The “h” subscript denotes states and operators in the Heisenberg picture. The two 
pictures coincide at time t,, taken to be zero. The equation of motion in the Heisen- 
berg picture is 

If the Hamiltonian has explicit time dependence, then e-IrH will be replaced by a 
more complicated evolution operator, but q,, is still defined to be constant in time. 

8.2 INTERACTION PICTURE 

Suppose that the Hamiltonian can be split into a “free” part and an interaction term: 

where H, represents an “unperturbed’ system that we understand. The two terms 
above are time-dependent, even if H is independent of time, By convention, the split 
is made at some fixed time, say, t = 0. Thus, Ho and H‘ are constant operators by de- 
finition, as they are shorthand notations for Ho(0) and H’(0). 

We now introduce the interaction picture, in which H, governs the time evolu- 
tion of operators, while H‘ governs that of the state vector. In this picture, the state 
q, and operators 0, are related to those in the Schrodinger picture by 

Thus, interaction-picture operators are the Heisenberg operators of the unperturbed 
system. 

The equations of motion in the interaction picture can be found by substituting 
(8.7) into the Schrodinger equation, resulting in 

where 

H‘(t) = elH,fH’e-i\f,jf 

We define an evolution operator U(t2, t , )  through 

(8.9) 
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*St) = w4 to>*'dto) (8.10) 

It is a unitary operator, since H' is Hermitian, and the norm of ql ( t )  is conserved: 

The following properties are easily deduced: 

The equation of motion can now be cast in the form 

w t ,  to) 
i- dt = H(t)U(t ,  to) (8.13) 

with the initial condition U(t, t )  = 1. 

commute. Let us divide the time interval ( t ,  to) into N small steps of duration At: 
It is not trivial to solve for U(t, to), because H' ( t , )  and H'(t2)  generally do not 

t - to 
A t =  - 

N 
(8.14) 

To first order in At, the equation of motion gives 

U(to i- At, to) = [ 1 - iH'(to)At]U(to, to) (8.15) 

The last factor is, of course, unity. We built up the finite time interval 1 - to from 
successive infinitesimal ones. Putting 

t, = to + nAt (8.16) 

we have 

U(t, to) = [ 1 - iH'(f,,,)At][ 1 - iH'(tN-,)At] . . [ 1 - iH'(tO)At] 

+ ( 4 3  c H'(t,)H'(t,,)H'(t,) +.  . . 
n<nic l  

(8.17) 

Taking the limit N -+ a gives 
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f 11 

‘0 
dt,H’ ( t , )  + (-i)2 [$, I dt2 H‘ (t,)H‘ (t2) + . . 

+ (-i>” (8.18) 

This is a formal solution to the equation of motion. 

tegral in the third term: 
To make the integration regions more symmetric, consider, for example, the in- 

I ,  = fm, fh2 H’(tl)H‘(t2) 
‘0 fo 

where the integrations extend over region I in Fig. 8.1, in which t ,  2 tZ. If we inte- 
grate over region 11, we would have 

I, = f d f 2  j(zdtl H’(t*)H’(tJ 
‘0 ‘0 

where t2 > tl . The ordering of the operators in the integrand is such that they stand in 
chronological cy-der from right to left. Evidently I ,  = I,, for they differ only by an 
exchange of integration variables. We can therefore replace I ,  by ( I ,  + IJ2,  which 
can be rewritten in the form 

where the time-ordering operator T is the same as that defined in (7.23): 

Figure 8.1 Regions of integration. 
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T[AB . . . c] = +AB . . . C (in chronological order from right to left) (8.19) 

A factor -1 is attached to the result each time two fermion operators are exchanged 
in the rearrangement process. 

For an integral with n factors in the integrand there are n! ways to permute the 
integration variables. Taking lin! of the sum over all possible permutations, we ob- 
tain 

1 '  dt ,  . . . I"-' dt,[H' ( t , )  . . . H' (t,)] = -1 dt, . . . f dt,, T [H ' ( t , )  . . H'(t,)] 
' n  n! lo  'n 

We can now write the evolution in the final form 

O3 (-j>" I 

U(t, to) = 1 dt, . . . f dt, T[H'(r,) . . . H'(t,)] (8.20) 
fl=O C 

which can also be written in a shorthand notation as 

In this form, we should expand the exponential in a power series, and then apply the 
operator T to each term. 

8.3 ADIABATIC SWITCHING 

The operator U(t, to) contains an exponential factor that oscillates rapidly when t -+ 
f m. To make the expression well defined, we assume that the interaction Hamilton- 
ian H' was "switched on" very slowly from the distant past, and will be "switched 
off" very slowly in the distant future. Specifically, we replace H' with 

The limit F -+ 0' is to be taken last, after all calculations. The corresponding evolu- 
tion operator is denoted 

u & * O  (t t ) = Te-'-f;,d'I H J ' l )  (8.23) 

which approaches the S matrix, (or S operator) when to -+ -w, t -+ m: 

This is a unitary operator: 
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S S =  1 (8.25) 

and is central to the theory of scattering, which we shall discuss later. 

Heisenberg picture (0) is unique and normalizable: 
Let us put adiabatic switching to use. We assume that the vacuum state in the 

(010) = 1 (8.26) 

The interaction-picture vacuum state lqo(t)} evolves according to the interaction 
Hamiltonian, with initial condition /To(0)) = lo}, up to a phase factor. By switching 
o f f  the interactions, we make 

lim l*,(t)) = (0) (8.27) 
I+-P 

which defined the phase. In the infinite future we have 

liml*o(t)) = SlO) = eiL(0) (8.28) 
I+ zz 

where L is a real number. Taking the scalar product of the preceding with (01, we ob- 
tain 

eiL = (O(S(O) (8.29) 

The relation between the interaction and Heisenberg pictures can be obtained 
from (8.7) and (8.4): 

(8.30) 

where 

Substituting this into (8. lo), we obtain an explicit form for the evolution operator: 

We can rewrite (8.30) as 

(8.33) 

The initial time t = 0 can be changed to t = to by using the identity U,(t, 0) = 

U,(t, to)U,(to, 0) to write 
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Owing to adiabatic switching, we obtain 

(8.34) 

(8.35) 

Therefore 

This formula is more convenient to use than (8.33), because the two pictures coin- 
cide at t -+ - 03, when the system was being prepared. As we shall see, perturbation 
theory relies on this relation. 

Why is it legitimate to use adiabatic switching? In the theory of scattering, the 
answer is that it reflects what happens in the laboratory. An incident particle, in the 
form of a wave packet, approached the target particle, but did not interact with it, 
until the collision took place. After the collision, the scattered particles eventually 
leave the scattering region as nonoverlapping wave packets, and there is no interac- 
tion after that time. The adiabatic switching is a mathematical simulation of the sit- 
uation, justified by the fact that the scattering cross section is insensitive to the de- 
tailed shapes of the wave packets. 

Actually, adiabatic switching need not correspond to any physical process; in 
general, it serves a more abstract function. When we describe a physical process by 
saying ‘&A interacts with 3,” we have to define what is meant by A and 3, and to do 
that, we must conceptually turn off the interaction. In the theory of metals, for ex- 
ample, it is customary to apply adiabatic switching to the electron-phonon interac- 
tion, which is, of course, always present. What we are doing is to imagine that the 
system was “assembled” by putting free electrons into an idealized lattice. As long 
as the conceptual assemblage took place a long time ago, it should not make any 
difference whether it actually happened; but we need it to identify the “free parts.” 

As long as we accept the crucial formula (8.36), adiabatic switching has done 
its job, and need not be invoked again. 

8.4 CORRELATION FUNCTIONS IN THE 
INTERACTION PICTURE 

A vacuum correlation function is the vacuum expectation value of a time-ordered 
product of Heisenberg field operators: 

where 10) is the exact vacuum state, normalized such that (010) = 1. They are also 
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called vacuum Green j. functions, because they satisfy differential equations with a 
delta-function source. But “correlation function” more closely describes their role 
in our applications. 

In the interaction picture, we can use adiabatic switching to “assemble” the cor- 
relation functions of the interacting system from those of the unperturbed system, 
and this leads to perturbation theory. Consider a correlation function involving two 
operators: 

where we display only the time dependences; the spatial coordinates remain fixed. 
Our objective is to reexpress the above in terms of interaction-picture operators. 

Consider first the time-ordering tl > t2. From (8.36), we have 

Ah(t) = u-yt, -m)AL(t)U(f) -m) = U(-m, t )A , ( t )U- ’ (p ,  t )  (8.39) 

Thus, 

where we have used the relation U-l(-m, tl)U-’(t2, -00) = U(t1. a)u(--cC, t 2 )  = 

U(tl, t2), The time development is represented in Fig. 8.2a by a contour beginning 
from the far right at t = -m, going to t2, then to t l ,  and then back to -w. This contour 
can be deformed to two straight paths from --oo to m, and from m to -m, by rewriting 

Therefore 

t 2  

(a 1 t, c-- -- 

% 00 -00 
( b )  

Figure 8.2 
uniqueness of the vacuum state, the lower branch gives only a phase factor. 

( a )  Contour of time evolution; (b)  contour deformed into two branches. Because of the 
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The new time contour is illustrated in Fig. 8.2b. The returning branch of the con- 
tour, represented by the operator S1, contributes a phase factor when acting on the 
vacuum, for, using (8.28) and (8.29), we can write 

Therefore 

(8.43) 

(8.44) 

The time contour now consists of the path from --CO to co only. The trick to straighten 
the contour works because the vacuum state is unique. If the vacuum expectation 
value were replaced by an ensemble average, then we would be stuck with a contour 
that comes from --co and returns to -00. A technique to deal with such a case has 
been developed by Keldysh [ 11, but we do not need it here. 

We can simplify (8.44) further, by examining more closely the operator 

If all the exponential factors are expanded out, we shall have a sum of terms, each 
containing products of the H' bunched into three groups, of the form 

where we have supplied a redundant T in front, not needed because t ,  > t,. With it in 
place, however, we are free to rearrange all the H' factors in arbitrary order. The 
condition ti  > t,, which determines the relative position of A,(tl) and BL(t2), ensures 
that the factors cannot wind up in the wrong group when the overall time ordering is 
enforced. As a shorthand notation, therefore, we can write 

X = Te-IfTmdT H'(T)A ,(tl)BL(t2) (8.47) 

The correlation function can then be written in a more compact notation: 

(8.48) 

Although derived under the assumption t ,  > t,, this result is also valid for t ,  < t2, as 
one can easily verify by repeating the derivation. The preceding results can be im- 
mediately generalized: 
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(8.49) 

This is convenient for calculations, because the interaction-picture operators evolve 
like free fields. 

8.5 S MATRIX AND SCATTERING 

In a scattering experiment, an incident beam of particles A falls on a target particle 
B, producing a number of outgoing particles C, . . . , D, which are detected by de- 
vices that measure their momenta, and possibly other quantum numbers. We indi- 
cate the reaction by 

The states of the particles are labeled by momentum, mass, spin, and other single- 
particle quantum numbers. 

The wave functions of A and B are wave packets that do not overlap initially. 
When they eventually overlap, the reaction takes place, and after a short time the fi- 
nal particles emerge from the interaction region as wave packets that recede from 
one another, eventually becoming well separated. 

The size of the interaction regime is microscopic, and by comparison the wave 
packet is practically a plane wave. In our theoretical treatment, we idealize the wave 
packets as plane waves; but only before the interaction began, and after the interac- 
tion i s  over. The is done mathematically via adiabatic switching. 

Let us denote the initial and final free-particle states by ai and Qf, respectively. 
In our idealized scattering experiment, Qi is the state prepared in the infinite past, 
and Qf is the state for which the detectors are set up to detect in the infinite future. 
The actual state of the system evolves from a, into some interaction-picture state at 
time to, which is denoted by 

W,”(tO) = U(t,, - c o p ,  (8.50) 

The superscript (+) indicates that eventually final particles will emerge as outgoing 
spherical waves. In the infinite future, the particle detectors look for plane waves af 
instead of spherical waves. The state that will become af is, at the time to, given by 

q ? ( C o )  = U(t,, cQ)Qf (8.51) 

where the superscript (-) indicates that i t  consists of incoming spherical waves in 
the past. The overlap between and T\lr(li) is the probability amplitude that the 
scattering process takes place: 
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This defines the S matrix: 

where li) and v) are free-particle states. Thus, as anticipated earlier, 

The process is illustrated in Fig. 8.3. 

8.6 SCATTERING CROSS SECTION 

If S = 1, then the final state is the same as the initial state, and no actual scattering 
occurs. The probability amplitude that a reaction occurs is therefore the matrix ele- 

r- 
t = O  t = + m  

t=--m t = O  t = + m  

Figure 8.3 
overlap of the two states at r = 0. 

Upper panel shows time evolution of W+) and lower panel, that of W), The S matrix i s  the 
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ment of S - 1. By analogy with potential scattering, we define the T matrix through 
the relation 

( f I ( 5 ' ~  1)Ii) = - i (27~)~84(P~- Pi)U7li) ( 8 . 5 5 )  

where Pf and Pi are respectively the total 4-momentum in the final and initial state. 
The factor 8 ( P ,  - Pi) expresses conservation of total momentum and energy. The 
energy conserving factor 27rG(Py - Pp) is familiar from potential scattering; it 
comes from the assumption that the total Hamiltonian is time-independent, and that 
the process was observed over a long time. The momentum-conserving factor 
( 2 ~ ) ~ 6 ~ ( P ,  - P,) was extracted from the transition matrix element, under the as- 
sumption that the system is invariant under spatial translations. 

The transition probability for the reaction i + f is given by 

The factor ( 2 ~ - ) ~ 8 ( 0 )  
specifically, the limit 

should be interpreted as the total volume of space-time, 

( ~ T ) ~ S ~ ( P )  = 1 d4xeip'x + 1 d4x (8.57) 
P-0 

We omit this factor to obtain the transition rate per unit volume. 
The final statef; which must lie in a continuum of states, is contained in an in- 

finitesimal neighborhood dlR of some state. For example, we may specify that final 
particles are scattered into specific solid-angle elements. The transition rate per unit 
volume into di2 is given by 

(8.58) 

This defines the differential cross section du, with the incident flux I given by 

I = n,n2v12 (8.59) 

where vI2 is the relative velocity of the colliding partners and n ,  and n2 are their spa- 
tial densities. For the decay of an unstable particle from the initial state i, the life- 
time 7 is given by 

where the sum extends over all possible final statesf: 
The S matrix is unitary: $S = 1. In terms of the Tmatrix, this means 
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Putting f = i, we obtain the optical theorem: 

where a,,, is the total cross section. 
The normalization of particle wave functions affects the matrix element (f[qi), 

phase space volume elements, and the incident flux 6 but the cross section is inde- 
pendent of the convention, as long as it is used consistently. A wave function nor- 
malized to n particles per unit volume has the form 

(8.63) (boson) 
s) (fermion) 

where Ecu is 1 for partide, and -1 for antiparticle. This corresponds to a single-parti- 
cle state Ip) with the properties 

(8.64) 

Whatever we choose for n, the convention must be adhered to in the expansion of 
field operators into creation and annihilation operators. 

The convention used in this book is n = 1. With this, the creation or annihilation 
of a boson or fermion is accompanied respectively by a factor (2E)-’/* or (m/@-1/2. 
This is indicated in the field expansions (2.29) and (7.16), respectively, and origi- 
nates from the fact that the boson Lagrangian is quadratic in the time derivative, 
whereas the fermion Lagrangian is linear. If we take 

2E (boson) 

m 
(8.65) 

then these factors disappear in the field expansions, but reappear in the properties 
of Jp). This convention is call invariant normalization, because it has the same form 
in all Lorentz frames. In practice, it makes little difference which convention we 
choose, for these factors appear either with the matrix element, or squared in the 
phase-space volume element.. It is merely a matter of when to include them. 

As an illustration, consider a reaction in which two particles go into Nparticles, 
with initial and final states given by 
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I f )  = IP,’, P2’ ’ . ’ PN‘) (8.66) 

With the convention n = 1, the incident flux is 

(8.67) 

where p denotes 4-momentum and E and m denote energy and mass, respectively. 
The momenta p, and p2 are assumed to be collinear. The differential cross section 
d a  is given by 

N d3p!  
I d a =  n l ( 2 ~ ) ~ 6 4 ( P ~  - Pf)l(flTli)12 

j=I ( 2 4 3  
(8.68) 

where Pi and Pf are respectively the total 4-momentum of the initial and final state. 
The wave function factors are contained in ( f l  TI$. With invariant normalization, we 
take them out of the matrix element, and put their squares under d3pj‘. The transi- 
tion rate I d a  is not changed. 

8.7 POTENTIAL SCATTERING 

To help understand scattering in quantum field theory, we give a parallel description 
of potential scattering in nonrelativistic quantum mechanics. The experimental situ- 
ation is that a steady beam of particles is scattered by a potential well, and detectors 
are set up very far away to register scattered particles of definite momenta. The inci- 
dent beam is represented by a stream of nonoverlapping wave packets, which can be 
considered one at a time. A wave packet must be small enough that it does not over- 
lap the scattering center initially, but large enough that its momentum can be well 
defined. In this sense, we can replace the wave packet by a plane wave. 

In the plane-wave limit, the overall scattering process is described by the sta- 
tionary wave function $(r) of the particle, which satisfies the Schrodinger equation 
with outgoing-wave boundary condition: 

(8.69) 

where V(r) is the scattering potential and 0 denotes the scattering angles. We have 
written r = Irl, ko = Ibl, and E = kiI2m. The incident wave corresponds to exp(ih.r), 
and the outgoing spherical wave corresponds to exp(ik,r)/r. We can calculate the 
number of particles scattered per unit time into solid angle d 0  from the current den- 
sity of the scattered wave. The differential cross section d d d 0  is the preceding rate 
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per unit solid angle, divided by the incident flux. This procedure yields the familiar 
result 

* = I f(fl)12 (8.70) 
d f l  

where f(fl) is called the scattering amplitude. The wave packet nature was taken 
into account through the neglect of interference between incident and scattered 
wave. 

In the laboratory, scattering is a time-dependent process, which can be de- 
scribed by the stationary wave function @+) through the following construction. Let 
the initial wave packet be 

F(r) = I d3kf(k)efk" 

where f(k) is a function peaked about k = b. Then the time-dependent wave func- 
tion describing the actual scattering process is 

*(r, t )  = I d3kf(k)@;kiEf 

where E = k2/2m. A "motion picture" of this wave function will show the wave 
packet being scattered by the potential, receding as an outgoing spherical wave 
front. The stationary wave function obtains in the plane-wave limit f(k) -+ 

We now restate the problem in a more formal language, for comparison with 
a3(k - 16). 

the treatment in quantum field theory. Let us write the Hamiltonian as 

H = H , +  v (8.71) 

with Ho = -V2/2m. Consider the eigenvalue problem with a continuous spectrum E 

(8.72) 

where the superscript (*) labels a solution with outgoing (incoming) spherical 
wave. The unperturbed problem at the same energy E is defined by 

H04ko = E4ko (8.73) 

where 
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4 k  = eik'r (8.74) 

The Schrodinger equation and the boundary condition are incorporated in the fol- 
lowing integral equation: 

(8.75) 

where q + 0'. The term iiq prescribes the way to skirt the pole (E - H0)-I, so as to 
give an outgoing or incoming wave. 

We define the T matrix by 

It satisfies the Lippmann-Schwinger equation 

1 
E - H, + iq 

T =  V +  V T 

and is related to the scattering amplitude through 

(8.77) 

(8.78) 

where k is the scattered wave vector, with magnitude ko and polar angles a. 
The set of wave functions with the (+) and (-) boundary conditions separately 

form complete sets of eigenstates of H (barring bound states). The unitary transfor- 
mation matrix relating the two sets is called the S matrix: 

(kISl16) =(*l;d, *(,.dl (8.79) 

To find the relation between the S matrix and the T matrix, rewrite (8.75) in the 
more explicit form 

(8.80) 

which can be obtained by iterating (8.75), and resumming. In the limit r )  + O+ we 
have 

-- - 7 irra(E-H) 1 

E - H * i q  E - H  (8.81) 

where P denotes principal part. We therefore have 
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I,!/&- $ki = -2m'S(E - H) V4k0 (8.82) 

Now take the scalar product of both sides with respect to $r), noting that 

(I,!/:', I,!/:;') = (k/kJ = (27r)'a3(k- b) (8.83) 

This leads to 

Energy conservation is enforced in the S matrix, but not in the 2' matrix. The latter 
can be defined for arbitrary E ,  including complex values, through the 
Lippmann-Schwinger equation (8.77). 

We can write as an operator relation 

S= 1 - 2 m ' S ( E - H ) T  (8.85) 

The unitarity condition S+S = 1 implies that 

T t - T = 2 m T t S ( E - H ) T  (8.86) 

The diagonal matrix element of this relation gives the optical theorem: 

(8.87) 

where a,,, is the total cross section for incident wave number k andf(0) is the scat- 
tering amplitude in the forward direction. 

8.8 ADIABATIC THEOREM 

The meaning of the S matrix rests on the statements (8.27) and (8.28), specifically 
that the vacuum state in the interaction picture approaches that of the Heisenberg 
picture in the infinite past and in the infinite future. The two limiting states can dif- 
fer only by a phase factor, which defines the S matrix. The assumption was that the 
system did not get excited from the ground state. A formal statement is provided by 
the adiabatic theorem, which can be loosely stated as follows: 

A system being perturbed in its ground state will remain in the ground state, as long 
U J  the pevturbution vanes sujjkiently slowly with rime. 

A precise mathematical statement of the theorem will be given later. We write the 
Hamiltonian in the form 
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H = H ,  + AH' (8.88) 

where H is the interaction to be turned on and off and A is a parameter introduced 
for convenience, to be set to unity at the end of the calculations. The split of H into 
the two terms is made at time t = 0. We enclose the system in a large but finite box, 
and assume that the eigenvalues of H are discrete and nondegenerate. 

Suppose that * is an eigenstate of H, and @ the corresponding unperturbed 
state: 

HlIr = E q  

H"@ = 4 

(@, a) = 1 (8.89) 

In stationary perturbation theory, the relation between Q and @ can be found as fol- 
lows. We write 

* = @ + x  (8.90) 

where (x ,  @) = 0. Note that '4' is not normalized to 1. It simplifies the analysis to 
take the coefficient of @ to be unity. Substituting this equation into H q  = EQ, we 
obtain, after some rearrangement, 

( E -  E ) @  = (H, - E)x-  A H"P (8.91) 

Taking the scalar product of this equation with a, we obtain an expression for the 
perturbed energy: 

E= E + A (@, H'Q) (8.92) 

The perturbed state * is found by solving for x from (8.91). To ensure that the re- 
sult is orthogonal to @, we first multiply both sides of (8.91) by the projection oper- 
ator Q onto the space orthogonal to a: 

We then obtain the result 

* = @ -  

Q @ = 0  

Q x = x  

QH'Q 
1 

A- 
H,-E 

(8.93) 

(8.94) 

The following is an equivalent form of the equation with the unperturbed energy E 

in the denominator: 
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T=@- 1 

H O - E  
A- Q ( H  + E -  EP (8.95) 

The formulas for E and q are valid for any state, as long as the energy levels do not 
cross when A varies from 0 to 1. In particular, we use them for the vacuum state, 
which is assumed to be unique for all A. 

With adiabatic switching, the Hamiltonian is taken to be 

He = H,, i A e--+H’ ( E + O +) (8.96) 

and the time-development operator in the interaction picture is given by 

Let us calculate [Hn, U&]. For the commutator [Hn, H’(t)] ,  we use the formula 

dH’ [H,, H’(t)] = -i-- 
dt 

(8.98) 

which can be deduced from (8.9). Thus 

x T[H’(t,) . . .H’(tn)] 

x T[H’( t , )  . . . H’(t,)] (8.99) 

where, in the last step, we made a partial integration with respect to t , .  The above 
can be rewritten as 

(8.100) due [Ho, U,] = -H(O)U, t- i d - - -  
dA 

or 
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This shows that U, transforms the unperturbed Hamiltonian into the perturbed one. 
We can now give a more precise statement of the adiabatic theorem [2]. 

Adiabatic Theorem Let 

(8.102) 

where Ho@ = &. Then 

lim X, = c q  (8.103) 

where * is the eigenstate of the Hamiltonian corresponding to the unperturbed 
state @, and c is a normalization constant. 

&+O 

Proof Let 

qe = U&.@ (8.104) 

Consider 

Using (8.100), we obtain 

Dividing both sides by (a, U,@), we can rearrange the preceding to read 

In the limit E -+ 0 this becomes 

HX, = (c + A E)X, 

where 

(8.106) 

(8.107) 

(8.108) 

(8.109) 

Thus, X, is an eigenstate of H. To show that it has the correct eigenvalue, we take 
the scalar product of (8.106) with @ to obtain 
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(8.1 10) 

Dividing both sides by (a, U P ) ,  we can rewrite this in the form 

Comparison with (8.109) shows that 

AE = A(@, H'X,) (8.1 12) 

This completes the proof that X, is the eigenstate of H with the correct eigenvalue 
(8.92). rn 

PROBLEMS 

8.1 Show that the term i i~ in the operator (E  - ffok iq)-I in (8.75) corresponds respective- 
ly to an outgoing (+) and incoming (-) spherical wave, as defined in (8.72). 

8.2 (a) Consider the scattering of a charged particle by the Coulomb potential of an atom- 
ic nucleus, as in  Rutherford scattering. The scattering amplitude involves the Fouri- 
er transform of lir, which is ambiguous because of the lack of convergence at large 
r .  Show that by introducing a screening factor rmr, one obtains a definite scattering 
cross section in the limit a -+ 0. 

(b) The screening is a mathematical device like adiabatic switching. Why does it make 
sense physically in this case? 

(c) Can you think of circumstances in which the screening device should not be used, 
because it would correspond to the wrong physics? (Hint; Would you get plasma 
oscillations if the Coulomb potential were screened?) 

8.3 The time-reversal operation I defined in Section 7.8 interchanges initial and final state. 
Show that we must have 

and this implies 

(q), qy) = (lp(?) qrw 
( I )  b )  

where Z denotes the time-reversed quantum numbers corresponding to a. 

8.4 From (8.32), we have the relation U(t, 0) = e'Ho'e-'H' , or 

e-rH/ = e- 'Ho/T e - ~ ~ ~ d / I / f ' ( / ~ )  

where H = H, + H ' ,  and H'(t)  = eLHO'H'e-'Ho'. Obtain from this the expansion formula 



From (8.10 I ) show that the ground-state energy is given by 

where the symbols are as defined in Section 8.8 and we have set the adiabatic 
switching parameter E = 0. 

Expand E in a perturbation series in powers of A. (Eventually A + 1.) 

Under what conditions can this formula be used for an excited state? 
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CHAPTER NINE 

Feynman Graphs 

9.1 PERTURBATION THEORY 

We have obtained the S matrix as an expansion in powers of the interaction Hamil- 
tonian. Perturbation theory is based on this expansion, considered as an asymptotic 
expansion, whose first few terms can give very good approximations. Whether the 
expansion actually converges is usually unknown. The value of perturbation theory, 
however, goes beyond obtaining good numerical answers, for the following reasons: 

The formal sum of the perturbation series, or even a partial sum, can reveal 
interesting properties of the theory, as, for example, the renormalizability of 
quantum electrodynamics. 
Divergence of the perturbation series usually signals “nonperturbative” ef- 
fects, such as the formation of bound states or solitons, and the onset of a 
phase transition. 

In this chapter, we illustrate the use of perturbation theory in the calculation of S 
matrix elements in the 44 theory. The Lagrangian density of the theory is given by 

where the mass mo and coupling constant A, are called “bare” or “unrenormalized” 
constants. They differ from the physical mass and coupling constant, which are 
“renormalized” by the effects of interactions. 

The unperturbed system is taken to be the free field of mass m,, and the corre- 
sponding interaction Lagrangian density is 

160 
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The interaction Hamiltonian differs only by a sign: 

We use the interaction picture, in which the S matrix can be written as the following 
power series in the bare coupling constant: 

where &(x) evolves in time like a free field. Our goal is to calculate the matrix ele- 
ment of S between given initial and final free-particle states. 

The field operator &x) contains two terms: a positive-frequency part that anni- 
hilates a particle, and a negative-frequency part that creates a particle. The nth order 
term in the S matrix is a sum of terms, each of which is a product of creation and an- 
nihilation operators. To obtain the matrix element of such a product, we first try to 
rearrange the order of the factors in normal order-with all annihilation operators 
standing to the right of all creation operators. In general, the factors involved do not 
commute with one another, and we will generate other terms in the rearrangement 
process. This is, however, a finite process, and in the end we will obtain the nth-or- 
der S matrix as a finite sum of normal products. Once this is done, the matrix ele- 
ments can be read off, because a normal product has nonvanishing matrix element 
only between an initial state containing the particles to be annihilated, and a final 
state containing those to be created. In the following section we develop some math- 
ematical tools to implement this task. 

9.2 TIME-ORDERED AND NORMAL PRODUCTS 

In this section, let capital letters, such as A ,  denote either a creation or annihilation 
operator for fermions or bosons. The commutator between any two boson operators, 
or the anticommutator between any two fermion operators, is a c-number. The same 
is true of the commutator between a boson and a fermion operator. Such a commu- 
tator or anticommutator may be replaced by its vacuum expectation value. We re- 
state the definitions of time-ordered and normal-ordered products in a more formal 
way. 

A time-ordered product (T-product) is defined as 

where { B , }  is the same set of operators as { A , } ,  except possibly in different order, 
such that an operator with a later time label appears to the left of one with an earlier 
label. The quantity qAB is a signature factor: 
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(9.6) 
-1 if {A] and {Bf differ by an odd permutation of fermion operators 

"' = [ +1 otherwise 

Time ordering is distributive: 

A normal product (N-product) is defined as 

where {C,) is the same set as {A), except possibly in different order, such that in the 
set (C,} all creation operators appear to the left of all annihilation operators. The 
signature factor vAC has been defined in (9.6). Normal ordering is distributive: 

We define the contraction between two operators as the vacuum expectation 
value of their product: 

A*B* = (OIABIO) (9.10) 

If there are intervening operators between A and B, then 

A*CB* = i (OIAB/O)C (9.1 1) 

where the sign is i depending on whether an even or odd number of fermion opera- 
tors exchange position when B is pulled across C to the left. If there is more than 
one contraction in a product, we distinguish the different contractions using multi- 
ple dots: 

9.3 WICK'S THEOREM 

The operator form of Wick's theorem tells us how to expand a T-product into N- 
products. A T-product orders operators according to time labels, regardless of 
whether they are creation or annihilation operators. An N-product, on the other 
hand, orders operators according to whether they are creation or annihilation opera- 
tors, regardless of time label. Thus, it is sufficient to learn how to expand an ordi- 
nary product into N-products, because at fixed times a T-product is just an ordinary 
product, and the N-product does not care about time labels. Since a single operator 
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is its own N-product, the nontrivial cases start with a product of two operators. The 
general result will be obtained by induction on the number of factors in the product. 

LEMMA1 

Proof 

(a) For two boson operators, we have 

if A2 is annihilation operator 
i f A 2  is creation operator 

:AIA2: = [ 

(9.13) 

(9.14) 

In the latter case we write 

where the last step follows because (OIA2 = 0. Therefore, if A, is a creation 
operator, we have 

A,A2 = :A,A2: + (OIA,A210) (9.16) 

This is also true if A 2  is an annihilation operator, for then the second term 
vanishes . 

(b) For two fermion operators, we have 

(9.17) A ,A, if A, is annihilation operator 

In the latter case we write 

which leads to the same result as in the boson case. 
(c) If one operator is boson, and the other fermion, then the boson calculations 

apply, for the operators commute. m 

LEMMA2 
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Prooj If C is an annihilation operator, then the lemma is trivially true, for C is 
already in normal order, and all contractions vanish. Hence assume that C is a cre- 
ation operator. To normal-order the given product, we commute (or anticommute) C 
all the way to the far left. First write 

where ( B ,  . . . B,} is the set { A ,  . . . A , }  in normal order. Now interchange B, and C: 

B,C = vncCB, + BZC' (9.21) 

where qnc is -1 if both B, and Care fermion operators, and + 1 otherwise. Thus 

Continuing the process, we obtain 

LEMMA3 

A l A 2 .  . . A,  = :A,A2 . . . A,: + :A;A? .  . . A,: + :A'A 1 2 3  A ' .  . .A,,:  + .  . . 

(all possible contractions) (9.24) 

Proof The statement is valid for n = 2, as demonstrated in Lemma 1. Assume 
that it is also valid for n .  We prove it for n + 1 by multiplying the preceding equation 
by A,,, from the left, and applying Lemma 2 term by term. a 

The extension of Lemma 3 to a T-product is straightfonvard, because for any 
fixed time ordering the T-product is an ordinary product. However, we have to rede- 
fine the contraction symbol to take into account time ordering: 

AB = (OITABIO) 
U 

(9.25) 

Then we have Wick's theorem. 

1 Wick's Theorem 

T(AIA2 ' ' A , )  = :A,A2 ' . A , :  + A , A , A , .  . . A,: + :AIA2A, ' .  .A,,:  t . ' 

U uu 
(all possible contractions) (9.26) 
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Corollary 
combination of creation and annihilation operators. 

Wick> theorem also holds when any A, is replaced by a linear 

A weaker form of Wick’s theorem, which is simpler to state and prove, deals 
with vacuum expectation values, and is given in Section 10.2. 

9.4 FEYNMAN RULES FOR SCALAR THEORY 

Suppose we want to calculate the S matrix element for the scattering process p,  + p2 
+ p3 + p4 to second order in ho. A systematic way is to make a normal-product ex- 
pansion of the S matrix 

S’) = -(2)2j@x, 1 -ih ~ d 4 x 2 T [ ~ 4 ( x , ) ~ 4 ( x 2 ) ]  2! 4! 
(9.27) 

It is convenient to represent the procedure graphically as follows. The basic interac- 
tion consists of a product of four field operators at the same space-time point, 
which we call a “vertex.” It may be depicted as follows: 

# 4 4 4  (9.28) 

I l l 1  
We draw a line sticking out from each field operator, to represent a possible incom- 
ing or outgoing particle. These lines are distinguishable, since each corresponds to a 
factor +(x) at a definite position in the product. 

A contraction according to Wick’s theorem will be indicated by joining the 
lines of the operators being paired. This produces an “internal line” representing a 
propagating virtual particle: 

d4k erk-i 
= iAF(x2 -x,) = i ,/ ~ (q --+ 0+) (9.29) 

( 2 7 ~ ) ~  k2 - in2 + i q  

An uncontracted line is an “external line” associated with a particle in the initial 
state or final state, whose wave function depends on the normalization convention. 
We use the continuum normalization (2.44), with 
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(9.30) 

We can represent the contractions in the form of a Feynman graph. The sim- 
plest, without any contraction, is the "vertex graph" in Fig. 9. la. We have four ex- 
ternal lines, and external momenta can be assigned to them in 4! different ways. 
This combinatorial factor 4! cancels the one in the coupling constant Ao/4!. Thus, 
the vertex graph corresponds to the matrix element 

where 

w, = +- 

and 

(9.32) 

(9.33) 

This factor expresses the conservation of total 4-momentum, and the normalization 
convention (2.44). 

Terms with contractions fall into the following patterns: 

(9.34) 

which correspond to the Feynman graphs in Figs. 9. lb and 9. lc. However, they do 
not contribute to the scattering process under consideration, since they do not have 
four external lines. Their significance will be discussed in the next section. The 
first-order S matrix consists of the vertex graph only: 

(a) (b )  (C) 

Figure 9.1 (u )  Vertex graph; (h) vacuum graph; (c) self-energy graph. 
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Let us now consider the second-order S matrix. There are two interaction vertices, 
as depicted below: 

T[412, 2, 41 424222421 
l l l l l l l l  

(9.36) 

where 4i = 4(xi ) .  We must designate four lines as external particles, and contract the 
remaining lines. A possible pattern of contraction is the following: 

n 
41 41 41 41 42424242 
l I - - l  

(9.37) 

According to Wick’s theorem, we must make all possible distinct choices of con- 
traction schemes, normal-order the results, and add their contributions. In graphical 
terms, to normal-order is to assign external momenta to uncontracted lines. This 
procedure gives rise to the Feynman graphs shown in Figs. 9.2 and 9.3. The pattern 
(9.37) gives rise to the three graphs in Fig. 9.2, which differ only in the assignment 
of external momenta to the external lines. The number of terms in the Wick expan- 
sion corresponding to each of these Feynman graphs is 

(4!)2 
2- = (4!)2 

2 
(9.38) 

The first factor 2 comes from interchanging the positions x ,  and x2, which are to be 
integrated over the same domain. The numerator in the next factor comes from per- 
muting the four lines of each vertex among themselves, but this overcounts by a fac- 
tor 2 ,  because of the following symmetry: interchanging the two internal lines in 
graph 1 of Fig. 9.2 does not lead to a distinct situation. Thus we divide by 2. The 4! 
in both coupling constants are again canceled. If it were not for the symmetry in the 
graph, the factor 1/2! in front of the second-order S matrix would also be canceled. 
The correction factor for overcounting is called the symmetry number of the graph, 
which we shall discuss later in more general terms. 

Graph 1 of Fig. 9.2 represents the following matrix element: 

1 2 3 

Figure 9.2 Second-order graphs for a scattering process. 
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4 5 6 7 8 

I I  1 I I 

I ’  I I I 

9 10 1 1  12 

13 14 15 

Figure 9.3 The rest of the second-order graphs, in addition to those in Fig. 9.2. 

Substituting the Fourier integral for the propagator into the matrix element, we find 

(-&J2 d4k i i 
GI = K12j4--j--l - (9.40) 

( 2 ~ ) ~  k 2 - m 2 + ‘  0 2 7 7  (P, -P3 - Q2 - 4 + iv 

where pi = (q, p,) are 4-vectors. This shows that total 4-momentum is conserved at 
each vertex. 

In nonrelativistic perturbation theory, virtual transitions conserve momentum 
but not energy. That is, virtual particles go “off energy shell.’’ In contrast, virtual 
transitions here conserve both momentum and energy, but the squared mass be- 
comes unphysical, as it is k2 instead of the fixed value m2. We say that a virtual par- 
ticle propagates “off mass shell.” 

It is evident from (9.39) that an incoming particle of 4-momentum pfi is associ- 
ated with factor exp (-ip.x) and an outgoing one, with exp (ip.x). We can therefore 
convert an initial particle to a final one, or vice versa, by simply reversing the sign 
of its 4-momentum. This property is called crossing symmetry. 

From G I ,  we can obtain the contributions G2 and I& of graphs 2 and 3 in Fig. 9.2 
by interchanging momentum labels. To get G2, we interchange p 3  and p4; and to get 
G3, we interchange p2 and -p3. The last operation is an illustration of crossing sym- 
metry. The sum of the three graphs gives 
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where 

Other second-order Feynman graphs are shown in Fig. 9.3, where only graphs 
4-8 contribute to our process, because they are the only ones with four external 
lines. Thus, the complete second-order S matrix is 

(9.43) 

The other graphs in Fig. 9.3, which do not contribute to the matrix element here, 
will be considered in the next section. Even among the graphs included, we only 
need to keep GI  + G2 + G3 for practical purposes, as we shall explain in the next sec- 
tion. 

The nth order S matrix is given by 

In the following, we state the rules to generate all Feynman graphs of this order. 
First, draw n vertices, with four lines emanating from each vertex. We then contract 
the 4n lines attached to the vertices in all possible manners, including no contrac- 
tion. Each distinct contraction scheme gives a graph. We assign external momenta 
to the uncontracted lines (the external lines.) for either incoming or outgoing parti- 
cles. Each distinct assignment gives a Feynman graph. The matrix element corre- 
sponding to a Feynman graph can be obtained by inspection, through the use of the 
Feynrnan rules. For real 44 theory, they are as follows: 

An nth-order Feynman graph consists of n vertices where four lines meet. 
Some of these are internal lines carrying a internal 4-momentum. Others are 
external lines identified with incoming or outgoing particles of definite mo- 
menta. 
Each vertex contributes a factor -Ao. The net 4-momentum flowing into 
each vertex is zero. 
An external line of 4-momentum p contributes a factor ( ~ w J ” ~ .  It is an in- 
coming particle if p o  >O, outgoing if po < 0. 
An internal line of 4-momentum kp contributes a factor 
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iA,(k) = 

Not all internal momenta are independent because of 4-momentum conser- 
vation at vertices. The independent ones are integrated with measure 
(2 7 ~ ) ~ d ~ k .  
Overall conservation of total 4-momentum is enforced through a factor 

where P, and Pi are respectively the total 4-momentum of the final and ini- 
tial states. 
The graph is divided by a symmetry number S.  

In general, the symmetry number has to be worked out for each graph. Howev- 
er, in 44 theory, a rule can be stated for connected nonvacuum graphs (graphs with 
external lines, with no disjoint subgraphs). In such a graph, k internal lines are said 
to form an equivalent set, if they all share the same vertices at both end. If there are 
more than one such set, containing respectively k,,  k,, . . . internal lines, then the 
symmetry number of the graph is (see Huang [ 11) 

S = n k , !  (9.45) 
I 

Vacuum graphs do not follow this rule. An example is given in Section 9.5. 
There are topological relations among graph elements. Consider the more gen- 

eral fl theory, in which K lines meet at a vertex. We may say that an external line 
“uses up” liK vertex, while an internal line uses up 2/K vertex. Therefore, for a 
graph with n vertices, L, external lines, and Li internal lines, we have the relation 

L, + 2Li = Kn (9.46) 

In the case under discussion, K = 4. 
The 4-momenta of internal lines are not independent of one another, because of 

4-momentum conservation at each of the n vertices. There are thus n conservation 
conditions, one of which is taken into account through total 4-momentum conserva- 
tion. This leaves n - 1 constraints on the Li internal 4-momenta. The number of in- 
dependent internal 4-momentum is accordingly 

N i = L , - ( n -  1) (9.47) 

This is the number of 1 d4k integrations in a graph. 
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9.5 TYPES OF FEYNMAN GRAPHS 

9.5.1 Vacuum Graph 

Figure 9.1 b represents a vacuum graph, which describes a vacuum fluctuation in- 
volving the creation and annihilation of two virtual particle-antiparticle pairs. The 
matrix element is 

= -iA,/ d4x1 [iA,(O)]* 

(9.48) 

The final form can be written down directly using the Feynman rules. The factor 
( ~ T ) ~ @ ( O )  represents the integral f d4x, which should be interpreted as the total vol- 
ume of space-time. Vacuum processes such as this one occur with uniform proba- 
bility over all space-time, and they can accompany any reaction we consider. Thus, 
the sum of all vacuum processes (O(S(0) occurs as a factor in any S-matrix element. 
As we shall show below, this factor is a phase exp(ia0), and so does not affect tran- 
sition probabilities. From a practical point of view, therefore, vacuum graphs may 
be ignored. 

9.5.2 Self-Energy Graph 

An example of a self-energy graph is Fig. 9. lc, which describes a particle interact- 
ing with itself while propagating in the vacuum. It does this by emitting and reab- 
sorbing a virtual particle at the same point. Alternatively, we can say that the parti- 
cle creates a virtual pair, which eventually annihilates. The matrix element is 

(9.49) 

Again, we could have obtained this directly from the Feynman rules. 
Such a self-energy “bubble” can be inserted into any line, external or internal, 

any number of times. Some examples are shown in Fig. 9.3. We shall discuss such 
insertions systematically in Section 13.2. At this point, we merely mention that the 
effect of all possible self-energy insertions is to replace the free propagator AF(k) by 
a “full propagator” A;(k), in which the mass pole at k2 = ma is shifted in position, 
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and the residue is also changed. The shifted position corresponds to a “renormalized 
mass,” and the changed residue corresponds to a change in normalization of the 
wave function, by a factor conventionally designated as Z-”*, the “wave function 
renormalization.” 

9.5.3 Connected Graph 

A connected graph does not contain disjoint subgraphs. The converse is a discon- 
nected graph, illustrated by graph 4 of Fig. 9.3, which corresponds to the matrix el- 
ement 

G 4  = GvertexGvac (9.50) 

This describes a vacuum fluctuation during scattering. As mentioned before, vacu- 
um components of graphs can be ignored. 

Graphs 13-1 5 of Fig. 9.3 are disconnected graphs describing separate uncorre- 
lated events. (One takes place on Earth; the other, on Mars 1000 years later, per- 
haps.) For example, graph 13 corresponds to two independent self-energy interac- 
tions; graph 14 represents a scattering event, with a spectator particle interacting 
with itself; and graph 15 describes two independent uncorrelated reactions. Discon- 
nected graphs do not require separate calculations, because they are products of 
lower-order connected graphs. Therefore, we only need to consider connected 
graphs. 

9.6 WICK ROTATION 

In calculating a Feynman graph, we generally have to integrate over internal 4-mo- 
menta. Consider the self-energy graph Gself, where we encounter the integral 

1 
k2 - m 6 + i? 

/=  \d4k (9.5 1) 

Putting aside the question of convergence, let us first describe how the “mass-shell” 
singularity at k2 = mo2 should be handled. Written more explicitly, the integral reads 

(9.52) 
1 

k; - (k2 + m;) - iv I = [ d3k[= dk, 
-= 

The term iq in the denominator displaces the mass-shell poles away from the path 
of integration, as shown in Fig. 9.4 (left). Since the integrand has no other singular- 
ities in the ko plane, we can rotate the ko contour counterclockwise, until it lies along 
the imaginary ko axis, as indicated in Fig. 9.4 (right). This corresponds to making ko 
pure-imaginary : 
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I ko plane 

Figure 9.4 Wick rotation of contour to imaginary axis. The contour never crosses the poles of the 
Feynman propagator shown by the dots. 

ko = ik4 (9.53) 

where k4 is real. We now have an integral over a four-dimensional Euclidean space: 

1 
I=-i d3k dk, (9.54) 1 j-1 k , + k 2 + m $  

where we have taken the limit 77 + 0. Called a Mck rotation, the rotation to the 
imaginary ko axis can be done in all Feynman integrals, because the integrand does 
not contain singularities other than those in the Feynman propagators. A virtual par- 
ticle has Euclidean 4-momentum, instead of Minskowskian, because of the iv in the 
Feynman propagators. 

9.7 REGULARIZATION SCHEMES 

Having defined the contour of integration, we are faced with the problem that I has 
an “ultraviolet divergence” at the upper limit of integrations. We must render it fi- 
nite by introducing a high-momentum (or small-distance) cutoff. Eventually, when 
all graphs are added up, we hope to “renormalize” the theory, by reexpressing the 
cutoff in terms of experimentally measurable parameters. 

Cutting off the high-momentum contributions means modifying the asymptotic 
behavior of the Feynman propagator, and the way to do this is not unique. The sim- 
plest scheme introduces a sharp cutoff A, by replacing I with 

The k4 integration can be performed through contour integration: 

(9.55) 

(9.56) 
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Thus we have 

A k2 
I A  = 4 i n 2 j b  dk vm 3 -2in2A2 (9.57) 

The quadratic divergence when A + 00 is typical of a boson self-energy. 
The sharp cutoff is simple, but not Lorentz-invariant. When it is important to 

keep the theory invariant, we can use the Pauli-Villars regularization, which re- 
places the propagator in the following manner: 

1 
- (9.58) 1 

k2 - rng k2 - m t  k2 - A2 
-+- ~ 

I 

The cutoff A appears as the mass of a fictitious particle, whose propagator has the 
sign opposite that of a physical particle. Since, according to (2.76), the residue at 
the mass pole is the squared modulus of the wave function, the fictitious particle 
here has negative probability, and therefore has no physical meaning. In the exam- 
ple considered, the Pauli-Villars regulator gives the same A -dependent term as in 
the sharp-cutoff case. 

Another Lorentz-invariant cutoff scheme is dimensional regularization, which 
is based on analytic continuation of the space-time dimensionality. To illustrate the 
technique, rewrite I as a &dimensional integral: 

We are interested in its value near d = 4. Using the formula 

we write 

"1 2 

which can be continued to complex d. We then put d = 4 + E,  and obtain 

This gives the same result as the sharp cutoff if we identify A* = m&-'. 

(9.59) 

(9.60) 

(9.61) 

(9.62) 

Still another cutoff scheme is lattice regularization, in which continuous space 
is replaced by a discrete lattice. The advantage of this scheme is that local gauge in- 
variance can be preserved, and that it is well suited for Monte Carlo simulations. An 
example of this is given in Section 16.3. 



9.9 Vacuum Fields 175 

9.8 LINKED-CLUSTER THEOREM 

We distinguished between connected and disconnected graphs, because the latter 
are composed of connected subgraphs. If we know all the connected graphs, that is 
sufficient to generate all graphs. The linked-cluster theorem tell us exactly how to 
do this: 

Linked-Cluster Theorem 

exp(sum of all connected graphs) = (sum of all graphs) (9.63) 

ProoJ: Let denote a connected graph, so that the set of all connected graphs 
is {r,, r2, . . .}. The general graph G contains mi copies of ri, and may be represent- 
ed in the form 

(9.64) 

The factors m,! account for the fact that the copies are indistinguishable, and, as we 
shall show later, arise as symmetry numbers. Summing over all possible choices of 
subgraphs gives the sum of all possible graphs: 

(9.65) 

This the desired result; but it remains to derive the symmetry numbers. Consider the 
graph composed of m T's. If r is of order n, the graph is of order nm, and has the 
form 

Graph - ---!--I d4x, . . . d4x,,( f IT H ( x , )  . . . 
(nm)! 

A permutation the nm vertices has no effect on the integral, but a permutation that 
bodily interchanges two subgraphs does not give a distinct term in the Wick expan- 
sion. Thus, the number of distinct permutations is (nm)!lm!, and the symmetry num- 
ber is m!. This completes the proof. 

9.9 VACUUM GRAPHS 

First we show that a connected vacuum graph is a pure imaginary number. Consider 
fl theory, in which an nth-order connected graph is of the form 
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where Li is the number of internal lines. For a vacuum graph 
lines, and so, according to (9.46), we have 

Kn L . =  - 
I 2  

(9.67) 

there are no external 

(9.68) 

By (9.47), the number of 4-momentum integrations is given by 

Kn 
2 

N, = L ,  - n + I = - - n + 1 (9.69) 

After making Wick rotations in all the ko integrations, the integral gives a real num- 
ber; but the rotations produce a factor iNi. Thus a vacuum graph is of the form 

ifl t N i + L ,  x (real number) = i'+Kn x (real number) (9.70) 

For K odd, the theory is unphysical, because the Hamiltonian is not bounded from 

It follows from the linked-cluster theorem that the sum of all vacuum graphs is 

below. For K even, the graph is pure-imaginary. m 

a phase factor: 

Sum of all vacuum graphs = (OlSlO} = el4, (9.7 1) 

Since vacuum graphs have no external lines, we can freely add them to any graph 
with a fixed number of external lines. Any graph is therefore multiplied by el@, but 
this has no effect on the scattering cross section. Therefore we can ignore all vacu- 
um subgraphs. 

PROBLEMS 

9.1 Complex Field 

For a complex scalar field flx), show that the basic contractions are 

flx)@+b) = (0lTflx)QCV)lO) = &(x - Y )  

fix)@) = 0 

1 

u 

Explain why the second of these is zero. A line in a Feynman graph now has a di- 
rection, represented by an arrow pointing along the flow of charge. 

Assume an interaction Lagrangian density -(A0/4!)( I)'I+!J)~. State the modified Feyn- 
man rules. What restrictions follow from charge conservation? 
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(c) Consider graph 1 in Fig. 9.2 for a complex field. Choose a particular way to place 
arrows on the lines, and calculate the graph. 

9.2 Self-Energy Consider the scalar 44 theory discussed in the text. To any internal line in 
a Feynman graph, we can always add any self-energy graph. The sum of all such addi- 
tions replaces the Feynman propagator iAAk) with a full propagator iA;(k) ,  as illustrated 
in the accompanying figure. Any graph for the full propagator can be dissected into 
“one-particle irreducible” components, which are graphs that cannot be made discon- 
nected by cutting one line. The sum of all irreducible graphs, with external lines omit- 
ted, is denoted iH(k2), where n(kz )  is called the “proper self-energy part.” It is also 
known as “vacuum polarization,” because it describes virtual pair creation and annihila- 
tion in the vacuum, and for a complex field this creates a fluctuation of dipole-moment 
density. 

iA‘F(k) = - + --@+-@-@+... 

@ = .o. + ..@. + ..8. +... 

(a) Show that the full propagator has the form 

1 

k2 - mi + n(k2) + i~ A,‘(k) = 

(b) Calculate n (k2 )  to the lowest order, namely the simple bubble graph. Introduce a 
cutoff A to make it finite. 

(c) Show that the mass of the particle is shifted from m,, to a renormalized value m. 
Calculate M to lowest order in the coupling constant A,,. 

9.3 Scalar @Theory A real scalar field &x) has Lagrangian density 

This theory is unphysical, because the Hamiltonian has no lower bound but we can use 
it to illustrate Feynman graphs. 

(a) State the Feynman rules. 

(b) Calculate the vacuum polarization n(k2) to lowest nonvanishing order, using a 
sharp momentum cutoff. Obtain the renormalized mass. 

(c) Consider a two-particle scattering process. Draw all Feynman graphs for the S ma- 
trix up to order g;. Give the matrix elements in the center-of-mass system, with in- 
cident momenta p, -p, and scattering angle 0. 

(d) Calculate the differential cross section. 

tegral proportional to 
9.4 Pauli-Villars Regularization In Problem 9.3 the vacuum polarization yielded an in- 
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where a Wick rotation has been made to Euclidean space. Calculate this integral using 
Pauli-Wars regularization, as follows. 

(a) Since the integral is logarithmic divergent, we need to regulate only one of the 
propagators. Replace (p2 + 

(b) Rewrite the propagators using the representation 

by (p2 + mi)-’  - C p 2  + @)-I. 

1 ”  - = dcu e-aD D 

From the two denominators, you get two integrals of the form Jgda e-OD-PD’. 

Make the substitution of variables cu = Ax, /3 = A ( l  - x). Then Sgda sTd/3 = dx 
SzdAA. 

(c) Perform the integration over A, and obtain Z(k2) as an integral over x. Find the as- 
ymptotic behavior when M-+ m . 

9.5 Nonrelativistic Electron Gas Consider a gas of nonrelativistic free spin- f fermions 
with fixed density no. The Hamiltonian is 

where $Ax) is the annihilation operator for spin a, which satisfies 

We expand it  in terms of momentum eigenstates: 

The ground state is denoted 10). It is like a vacuum state in hole theory, with all momen- 
tum states k < kF occupied, and the rest empty. The free propagator is defined by 

G$(x, t; XI, t’) = -i(OIT&(x, t)+l(x’, [’)lo) 

where $Jx, t )  are Heisenberg operators. Because of translational invariance, we can de- 
fine 

G:B(k, w )  = d’x dt eiWf-’kx G”,P(x, t;  0,O) 

(a) Show that the propagator is given by a diagonal matrix in spin space: 

1 

w-ek + iq  
Go( k, w) = 

7-[ :: 
where ek = k2/2m and eF = kg12rn is the Fermi energy. More explicitly, 
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where 0 is the step function: B(x) = 1 for x > O,e(x) = 0 for x < 0. 

(b) Next, include Coulomb repulsion between the fermions. The interaction Hamilton- 
ian takes the form 

To ensure charge neutrality, we add an interaction with a uniform background with 
opposite charge density. As shown in Problem 1.5, this is done by omitting the k = 

0 part of the Fourier transform of the Coulomb potential. Show that H I  can be writ- 
ten 

where u(q) = 47re2/q2. Represent the interaction by the Feynman graph 

k ,  cr k ,  o' 

Write down a set of Feynman rules in momentum space. 

(c) The interaction between two particles is screened by "vacuum" polarization, de- 
scribed by the summation of the following diagrams. 

Define the polarization function by 

The effective interaction ueR(q, w )  is defined by the sum 

+ -.---..... (-J . . . . . . . . + . - - -  ..... 0 .... 0 ...... + . * .  
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We can define a dielectric function e(q,  w )  by 

Show that 

(d) Show that the polarization function is given by 

(e) Now we concentrate on the real part of no. Show that 

wherefik) = e(e, - E ~ )  is the Fermi function at zero temperature. The sum of simple 
bubbles is known as the “random-phase approximation” for the dielectric function. 

Consider the limit q + 0 at finite w. Show that (0 

To do this, it might be helpful to rewrite the result of (e) as 

Note that 

now contains a pole at the plasma frequency wo = 4ne2nolm. 

(g) Consider the opposite limit w = 0, q -+ 0. This is the appropriate limit for the 
screening of a static external test charge. Show that 

lim Ren0(q, 0) = -po 
4+0 

where po is the density of states at the Fermi energy: 
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For this limit the result of (e) is useful. 

(h) Show that 

where K~ = 4i7e2p0 is the Thomas-Fermi screening constant. This gives the static 
screened Coulomb potential 

Show that it  takes the form of a Yukawa potential: 

e2 
u,dr) = -e-Ki 

r 
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gapore, 1992, Section 7.7. 



CHAPTER TEN 

Vacuum Correlation Functions 

10.1 FEYNMAN RULES 

The n-point vacuum correlation function is defined by 

where 4 ( x )  is the field operator in the Heisenberg picture and 10) is the exact vacu- 
um state, with (010) = 1. The Fourier transform is denoted by 

These functions give a complete description of the system. As we shall see, they de- 
termine the S matrix. From (8.49), we have the representation in the interaction pic- 
ture: 

(10.3) 

where &x) is the field operator in the interaction picture and S is the S matrix. More 
explicitly, 

where H(x) is the interaction Hamiltonian density. The numerator may be expanded 
into sums of normal products according to Wick's theorem. Since we are taking the 
vacuum expectation value here, all factors in a normal product must be contracted. 
This leads to an expansion of the numerator in terms of Feynman graphs. Just as in 
the case of the S matrix, each graph is multiplied by vacuum subgraphs, and the 

182 



10.1 Feynman Rules 183 

sum of all vacuum graphs occurs as a common factor to all graphs. This factor is 
(OlSlO), which cancel the denominator. We may therefore replace the denominator 
by 1, and at the same time ignore all vacuum graphs. 

The Feynman rules can be derived directly by using the following theorem. 

a Wick's Theorem for Vacuum Expectations 
even number of creation or annihilation operators, and let 

Let a, . . . a2, be aproduct of an 

(a, . . . a2p) (OJT a, . . . a2,10) (10.5) 

Then 

( a ,  . ' . a2J = (ala2) (a3a4) . . . (a2,1a2p> 

+ &'(ala3> (a2a4) ' ' ' (a2p-la2p)  

+ . . . (all possible pairings with signature factor) (1 0.6) 

where the signature factor 8, is defined as follows. For bosons S, = 1. For fermions, 
Sp is the signature of the permutation that will bring the list of operators in the term 
that it multiplies to the standard order a l  . . . a2,. 

The theorem, of course, follows from the operator form given in Section 9.3, but a 
direct proof is simple: The casep = 1 of this theorem is trivial. The general case can 
be proven by induction onp, with the help of the following 

LEMMA 

Proof: Let b, . . . b, be the set a, . . . a2, in chronological order. We may as- 
sume that b,  is an annihilation operator; otherwise, both sides trivially vanish. We 
commute b,  all the way to the right, where it annihilates the vacuum state. Each 
time it commutes across some b,,, we write 

b,bl + [b,, b,] (bosons) 
-b,bl + {b,,  6,) (fermions) 

b,b, = (10.8) 

The commutator or anticommutator above is a c-number, and may be replaced by its 
vacuum expectation value. Further, in the vacuum expectation value, it may be re- 
placed by b,b,, since b,10) = 0. Then, bib, may be replaced by Tblb,, since the oper- 
ators are in chronological order. This proves that a typical term in the expansion is 
generated, whenever b, is commuted across some b,. The signature factor supplies 
the appropriate sign. m 
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As an example, consider the two-point correlation function G2 in 44 theory: 

with the understanding that vacuum graphs are to be ignored. The first term is the 
basic pairing, which gives i h d x  -y).  This is represent graphically by drawing a line 
between the points x and y ,  as shown in Fig. 10. la. To expand the second term using 
Wick’s theorem, write out the time-ordered product as follows: 

(1 0.10) 

where fix) and &(y) are distinguished by heavier and longer lines, because the 
points x and y are “external” points not integrated over, and do not correspond to 
vertices. There are two distinct patterns of contraction: 

n 
41 4,+,414x+y $1 ~l+I4l+&J (10.11) 
U U  uuu 

which correspond to graphs b and c of Fig. 10.1. We are to ignore b because it is the 
same as a when the vacuum subgraph is omitted. To order A, we have 

G2(x, y )  = &(x - y )  + (+Ao)] d4xIiAF(x - xI)[iAF(0)]iAF(xI - y )  (10.12) 

with Fourier transform 

Compared with Feynman graphs for the S matrix with external lines, there are only 
two differences: 

The external 4-momenta are arbitrary, not necessarily on the mass shell. 
Each external line contributes a propagator i&(k), instead of wave function 
( 2 w I p .  

X Y X Y x x i  Y 

( a )  ( b )  (C) 

Figure 10.1 Graphs for a two-point correlation hnction. 
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Other than these exceptions, the Feynman rules are the same as those for the S ma- 
trix. 

10.2 REDUCTION FORMULA 

The converse of the rules stated above is as follows. A Feynman graph for the S ma- 
trix can be obtained from a corresponding one for the correlation function, by per- 
forming the following operations for each external line, of 4-momentum k 

Replace the propagator i&(k) with a wave function ( 2 ~ ~ ) - ” ~ .  
Put k on mass shell. 

While this procedure is correct graph by graph, a neater rule applies to the sum 
of all graphs. The sum of all Feynman graphs can be regrouped, such that all free 
propagators i&(k) are replaced by full propagators i z { ( k ) ,  in which the pole in k2 is 
displaced from the bare mass to the renormalized mass and the residue of the pole 
acquires a factor Z-’’2 from wave function renormalization. Thus, to obtain the S 
matrix from the correlation function, we replace i x ; (k )  by (2~kZ)- ”~,  and then go 
on the renormalized mass shell. This rule is the content of the reduction formula [ 13, 
as illustrated schematically in Fig. 10.2. 

To formally derive the reduction formula, we consider external particles whose 
wave functions are finite wave packets. We shall let the wave packets approach 
plane waves, but only in the final formula. A wave packetf(x) is defined as a nor- 
makable  solution of the Klein-Gordon equation: 

( 1 0.1 4) 

Figure 10.2 
by replacing external full propagators with normalization constants of wave functions. 

Reduction formula in pictures. The S matrix can be obtained from the correlation function 
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where 

(1 0.15) 

Reduction Theorem 
equation, 

For Ax) u normalizuble solution of the Klein-Gordon 

Id4xf(x)(n2 +m2)g(x) = [ lim -1im ] /d3xf(x)xg(x) (10.16) 
xg-m xo+- 

Prooj On the left side, make partial integrations to transfer the operator (n2 + 
m2) tofix), which it annihilates. One is left with surface integrals, which give the re- 
sult. 

Now consider a two-particle scattering process symbolically denoted as 

3 + 4 - + 1 + 2  (10.17) 

Let the Heisenberg field operator of the ith particle be $i = $i(xi), and its normaliz- 
able wave packet bef; =f ix i ) .  The annihilation operator for the ith wave packet can 
be defined as 

t) 

aj(xo) = i l  d3xf,*(x)d0c#+(x) ( 1 0.1 8) 

which is a Heisenberg operator. As xo 3 hm, the wave packets of different particles 
diverge from each other, and eventually the particles will behave like free particles. 
Thus, we may assume 

where a:." and a?' are free-field annihilation operators of the plane-wave state i, in 
the limit a -+ 0. The factor accounts for wave function renormalization. This is 
called the adiabatic condition, which embodies adiabatic switching in the present 
context . 

The free-field operators are defined by the commutation relations 

(10.20) 

where, to avoid too many superscripts, we use a bar to denote Hermitian conjugate. 
These define two equivalent set of operators that may differ by a phase factor, which 
forms the S matrix. The initial and final states are defined by 
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11, 2 out) = ZpU'irqu'lO) (10.21) 

where 10) is the physical vacuum state. The S matrix element is 

(1 ,  2(S13,4) = (1,2 out(3,4 in) ( I  0.22) 

Consider now the vacuum correlation function 

By the asymptotic assumption we have, as t , ,  t2 4 m, and t3, t4 -+ - 00, 

where time-ordering is unnecessary because the operators involved are independent 
of time. Therefore 

We now calculate the left side using the reduction theorem. Go to (10.24), and per- 
form the indicated operation with respect to particle 1, in the limit t, -+ m. This is 
called "reducing particle 1": 

where the first term on the right side vanishes, as it is equal to (OIT (4,4&)a4(0). 
We then reduce the other particles in a similar manner. The final result is 

(1,2 /S)3,4) = ld4x, . . . d4x4 $ ((0: + mf) . . . (17; + m;)G( 1, 2; 3,4) 
zlz2z3z4 

(10.29) 

This is the reduction formula. 
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When we go to the plane-wave limits of the wave packets, the operator 
(0: + m:) can be replaced by (4: + m:), where k ,  is the 4-momentum of particle 1 .  
Thus it vanishes, unless canceled by its inverse from the correlation function. The 
effect is to cut off the external leg in the correlation function, forcing it to go on 
mass shell, and multiplying it with (2k,oZ,)-"2. 

10.3 THE GENERATING FUNCTIONAL 

The vacuum correlation functions may be considered to be the response of the sys- 
tem to an external source J(x) coupled to the field, which is turned on and off adia- 
batically: 

The Lagrangian density in the presence of the source is 

where L(x) is the Lagrangian density without source. We assume that the vacuum 
state 10) in the absence of source is unique, with (010) = 1. When the source is turned 
on and off, it remains unique according to the adiabatic theorem of Section 8.8. We 
denote the vacuum in the infinite past by lo-),, and in the infinite future by lo'),. 
These state vectors describe the same state as lo), but may differ by a phase w[Jl: 

Let us go to the interaction picture with respect to the source interaction: 

H' = 1 d3nJ(x)+(x) (10.33) 

The field operator in this picture is just the Heisenberg operator in the absence of 
source. According to the adiabatic theorem, we have 

10) lo-) = Te-i& df H ' ( 0  

(10.34) 

where 10) is the vacuum state vector at t = 0. Thus 

Taking 6/6J(x) of the right side brings down a factor -i+(x) from the exponent. 
Hence 
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= (-i)”(OlT #(xi) . . . +(x,)lO} = (-ipGn(xl, . . . , x,) (10.36) 
6(o+lo-)J 

6 J(X1) ’ ’ ’ 6 J(x,) J=O 

and we have the expansion 

. d4xIG,(xl, . . . , . J(x,) (10.37) 

This shows that (O+jO-), is the generating functional of vacuum correlation func- 
tions. 

10.4 CONNECTED CORRELATION FUNCTIONS 

In terms of Feynman graphs, we can state 

G,(xl, . . . , x,) = sum of all Feynman graphs with n external lines (10.38) 

where the sum includes both connected and disconnected graphs. (It is understood 
that vacuum components of graphs are to be omitted.) Since disconnected graphs 
are made up of lower-order connected graphs, it is useful to separate out the con- 
nected ones: 

Zn(xl, . . . , x,) = sum of all connected Feynman graphs with n external lines (10.39) 

A general G,  consists of a number of disconnected components, which we can enu- 
merate by giving the “occupation numbers” {ul, u2, . . .}, such that there are a, 
copies of Zk This is indicated by the formula 

where { ul, . . . , u,] is a partition of the integer n, such that 

n = uI + 2u2 + ’ . . + nu, (10.41) 

In each term of the sum over { u,}, there appear n asterisks representing the coordi- 
nates xI, . . . , x, in some fixed order, and P denotes a distinct permutation of these 
coordinates. The number of such permutations is 

n! 
(UI!. . . un!)[(1!)U1 . . . (n!)“,] 

(10.42) 
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When (1 0.40) is substituted into (1 0.37), terms in the P sum give the same contribu- 
tion on integration over xI ,  . . . , x,. Thus we have 

The double sum above is equivalent to a sum over {uk} with no restriction. Thus, 
each is independently summed from 0 to a: 

(1 0.44) 
(-i>” 

= exp 2 -/d4xl . * . d4xn Zn(xI, . . . , x,)J(x,) . . . J(x,) 
n = i  n! 

Thus ln(0+10-) is the generating functional of connected correlation functions: 

z 

i ~ J I = ~ O R \ d 4 x ,  . . .  d4x,,In(x,,. . . , x n ) J ( x l ) ~ ~ ~ J ( x n )  (10.45) 
n!  

This is a form of the linked-cluster theorem 

10.5 LEHMANN REPRESENTATION 

The correlation functions “know” about the mass spectrum of the field theory. For 
two-point correlation functions, the dependence on the mass spectrum is made ex- 
plicit in the Lehmann representation [ 2 ] .  We consider a variety of two-point correla- 
tion functions, which for a real scalar field are conventionally designated as fol- 
lows: 

where +(x) is the Heisenberg operator and 10) is the vacuum state of the interacting 
theory. The corresponding correlation functions for the free field, denoted without a 
prime, have the following Fourier representations: 
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where m is the free-particle mass. 

4-momentum operator, and c$ = c$(O), we obtain 
Consider the function A(+)’. By writing &) = e-rP.x4erP r, where Pp is the 

The state In), with 4-momentum PE, is a “single-particle state” in the sense that 
(014 In) # 0. We assume 

P: > 0 (positive energy) 

P i  > 0 (positive invariant mass) 

Thus 

d4k e(kO)e(k2)S4(k- P,) = 1 

(10.49) 

(10.50) 

when inserted into (10.48), it yields the integral representation 

iA(+)’(x) = I d4k O(P) 0(k2) eik”p(k2) (10.51) 

where the mass spectral function p(k2) is defined by 

which is real, positive-definite, and depends on k2 only (by Lorentz invariance). We 
now integrate over k p ,  keeping k2 = m2, by writing 

I d4k = 1 dm2f d4k s(k2 - m2) (10.53) 

The result is the Lehmann representation for A(+)’: 
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-a 

A(+)’(x) = 1 dm2p(k2)A(+)(x, m2) (10.54) 

A similar result holds for other correlation function: A correlation function is the 
spectrally weighted integral of the corresponding free function, over all possible 
values of the mass. In particular, the full Feynman propagator has the representation 

0 

Ab(x) = c m 2 p ( r n 2 ) A F ( x ,  m2) 

whose Fourier transform gives 

- dm’) 
k2 - m2 - iq 

A; (k)  = b m 2  

(10.55) 

(10.56) 

This immediately implies that for a free field of mass mo we have 

p(m2) = 6(m2 - mo2) (free field) (10.57) 

Consider the function A’(x) defined in (1  0.46). Writing x = (x, l), and taking 
the time derivative at t = 0, we have 

Ayx, 0) = - i { O l [ & X ,  O), C#)(O,O)]lO) = -S3(x) (10.58) 

This is also equal toA(x, 0), since it depends only on the equal-time commutation 
relation. Thus, performing this operation on both sides of the representation A’(x) = 

$;dm2p(m2) A(x, m2), we obtain 

$dm2p(m2) = I (10.59) 

An “elementary particle,” defined as a one-particle state 11) with definite mass m, ,  
corresponds to a delta-function term in the spectral function: 

p(m2) = ZS(m2 - m:) + 4 m 2 )  (10.60) 

where Z = I( 1 1C#)iO)i2 is the wave function renormalization constant. The condition 
(1 5.43) implies 

O s Z a l  (10.61) 

We can see from (10.56) that the particle corresponds to a pole in the full propaga- 
tor. 

In an interacting theory there may exist bound states, which are states of defi- 
nite mass connected to the vacuum through a product of field operators, but not 
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through a single-field operator. They correspond to poles not in the full propagator, 
but in a correlation function involving four or more fields. We shall discuss this in a 
later section.. 

10.6 DYSON-SCHWINGER EQUATIONS 

The Dyson-Schwinger equations are integral equations for vacuum correlation 
functions. We shall illustrate them in a field theory of interacting fermions and 
bosons. The fermion field is denoted I,@) with adjoint Rx), and the real boson field 
is denoted by +(x). The Hamiltonian density is 

where 31, and ~B are respectively the free fermion and boson Hamiltonian density 
and g is a coupling constant. Our discussion will concentrate on two- and four- 
fermion correlation functions, with the boson field relagated to the background role 
of mediating the interaction between fermions. 

We assume that i,b is a column vector and iJ, either the Hermitian or Pauli ad- 
joint; but the number of components are not specified. Similarly, + may be multi- 
component, and each component may be a matrix on the fermion internal vector 
space. The free Hamiltonians, which determine the propagators in Feynman graphs, 
need not be specified in detail. The general form of the Hamiltonian covers a non-' 
relativistic electron gas interacting through phonons, or quantum electrodynamics, 
with q!~ = Y A P .  Our treatment will be based on general properties of Feynman 
graphs, and detailed specifications are purposely avoided, in order to focus on the 
relevant algebraic structure. A property we explicitly assume is that the fermion 
number is conserved. 

We consider the two- and four-point fermion correlation functions: 

where all operators are in the Heisenberg picture and the spin indices are sup- 
pressed. Consider first the two-point function, with Fourier transform 

(10.64) 

The full fermion propagator S(p) is given by 

(10.65) 
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This a matrix on the fermion internal space. The Feynman graph expansion is 
shown in Fig. 10 .3~ .  Owing to fermion number conservation, fermion lines cannot 
terminate, and therefore a single fermion line runs through a graph for S(p). Since 
vacuum subgraphs can be omitted, all graphs for S@) are connected. Denoting the 
free propagator by So, and leaving the momentum argument p understood, we can 
write Fig. 1 0 . 3 ~  in algebraic form: 

where iC@) is the sum of all “irreducible” graphs, with external leg amputated, as 
shown in Fig. 10.3b. Here, an irreducible graph is a connected graph that cannot be 
made disconnected by cutting one fermion line. Sometimes the name “one-particle 
irreducible” graph is used. 

The Dyson-Schwinger equation for G, is obtained by rewriting (10.66) in the 
form 

s = SO - S,CS (10.67) 

When transformed to coordinate space, this becomes an integral equation. The ker- 
nel C is variously called the “proper self-energy, “ or “mass operator.” The explicit 
solution is 

s = (So + Z)-I (10.68) 

This has a simple appearance, but all the complications are buried in 2. 

tors, we have (without bothering to change notation) 
We now turn to the four-point function. In terms of interaction picture opera- 

with the instruction that all vacuum graphs are to be omitted in the Feynman graph 
expansion. The zeroth-order graphs are shown in Fig. 10.4~1 and the second-order 

+ + + ... 

+ ... 

Figure 10.3 (a)  Full propagator S@); ( b )  irreducible component Z@) 
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Yl X i  - 
- =+ s-channel - 

x 2  4 
t-channel 

y2 

-x-x-x 
Figure 10.4 Graphs for four-point correlation function for fermions: (a) two basic patterns of free 
graphs, differing by fen ion  exchange; (6) interacting graphs consists of putting “adornments” on the 
two free patterns. 

graphs, in Fig. 10.4b. Any graph has two fermion lines running through it, and they 
can be drawn either parallel or crossed. The interactions merely “adorn” the basic 
pattern. Each graph with the parallel pattern is in one-one correspondence with one 
having the crossed pattern, in which xl, x2 are interchanged, with a change of sign. 

The Fourier transform is denoted by 

where the measure d4x1 d4x2 d4y1 d4y is left understood . The same set of Feynman 
graphs describes three possible channels of scattering (with off-mass-shell mo- 
menta) : 

s channel: fermion-fermion scattering with center-of mass energy squared 

t channel: fermion-antifermion scattering with center-of mass energy 

u channel: fermion-antifermion scattering with center-of mass energy 

s = @I +P2I2. 

squared t = (p, - q1)2. 

squared u = (p, - q2)2. 

We are interested in deriving an integral equation for the correlation function, and 
the kernel of the integral equation will depend on the channel. We shall consider the 
s channel from now on. 
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Let D(xl ,  x,; yl, y2)  be the sum of all “direct” graphs with parallel fermion 
lines, with Fourier transform (ql, q2(D(pl ,p2) .  Then we can write 

where the operation A,, interchanges the labels 1 and 2 in either the initial or final 
state. Graphs for (q l ,  q2(Dlpl,  p 2 )  are shown in Fig. 10.5. There is only one discon- 
nect graph, the product of two full fermion propagators. We denote it by 

The connected graphs can be decomposed into two-particle irreducible compo- 
nents, that is, connected graphs that cannot be made disconnected by cutting two 
fermion lines. As indicated in Fig. 10.5, the sum of all such irreducible components, 
with external line omitted, is denoted by (q, ,  q2IrJpl,p2). 

We introduce a matrix notation by regarding (pI, p 2 )  as a vector, with the prop- 
erties 

(10.73) 

It should be noted that JpI) @ Jpz) # Jp2) @ Jpl). The vectors in the basis are math- 
ematical constructs without physical significance. In this notation we can write D = 
I + IT I + I I ‘ X I +  . . . , which gives the integral equation 

Figure 10.5 The connected graphs of the four-point function can be expressed in terms of an irre- 
ducible kernel r. 
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D = I + I rD (10.74) 

We can obtain (q , ,  q2/Glpl,p2) by antisymmetrizing (ql,  q21D(p,,p2) with respect to 
either p , ,  p2, or q I ,  q2. Defining the antisymmetrizing operator A by Alp,, p 2 )  = 

/ p2 ,  p l ) ,  we can write the integral equation for G in matrix notation: 

G = K + K T G  

K SE (1 -g)Z=I(l - A )  (10.75) 

Further analysis of the integral equation (10.74) is left to the exercises. 
A t-channel process can be described through the continuation (ql, -q21G(pl, 

-p2) .  Although such a continuation of (10.74) yields an expression for the correla- 
tion function, it is not in the form of an integral equation. To get an integral equation 
for the t channel, we have to go back to the Feynman graphs to define a different 
kernel. We refer the reader elsewhere [3] for a more general discussion, as well as 
derivation of integral equations for higher correlation functions. 

10.7 BOUND STATES 

The distinction between elementary and composite particles is purely theoretical. It 
depends on the model we use to describe the particles. For example, nucleons were 
once regarded as “elementary,” but are now considered bound states of quarks. Sim- 
ilarly, the electron is considered elementary because so far it is adequate to describe 
it by a basic field. Within a given quantum field theory, there is a clear distinction 
between elementary and composite particles. 

Like any single-particle state, a bound state should have definite mass and spin. 
In addition, it must be orthogonal to any elementary particle state. For illustration, 
let us consider a bound state in the s channel, with fermion number 2.  Suppose that 
xI ,  x2 have times earlier than those ofy, ,  y2. We insert a complete set of states into 
the four-point function 

Only states of fermion number 2 can occur, and the bound state will be among 
them, if it exists. Thus we expect the bound state to show up as a pole of the Fourier 
transform, in an appropriate momentum variable. The residue of that pole can be re- 
garded as the wave function of the bound state. 

We introduce total and relative coordinates: 
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y -  YI +Y2 Y = Y l  -Y2 2 
(10.77) 

and consider times such that xl, x2 are well ahead ofy, ,yZ. This means that X O  - Y o  
2 a,  where a is some sufficiently large number dependent on xo and yo, as illustrat- 
ed in Fig. 10.6. We separate out the term fulfilling this condition by writing 

G4 = e(x"- Y o - a )  (Ol[T$(X+x/2)$(X-x/2)][T$(Y +y/2)$Y-y/2) ] (0)  +x 
(10.78) 

where % denotes the rest. Now insert a complete set of states between the two T- 
products, using the completeness relation 

IB) (BJ + ' . ' d3P 
(10.79) 

where 119) denotes a bound state and the dots denote contribution from other states. 
The bound state has fermion number 2, and energy-momentum (E, P). In the rela- 
tivistic case E = w. We have opted to normalize the bound state covariantly, 
and left understood that IB) depends on P. 

Splitting off the contribution from the bound state, we have 

where 

x ( B p ( Y +  ;)+;)lo) (10.81) 

We can take out the dependence on X and Y by using the translation operation 

XO Y O  

4 * * 
Time xo a YO 

(10.82) 

Figure 10.6 Choice of time ordering to exhibit a bound-state pole in the appropriate correlation func- 
tion. 



10.7 Bound States 199 

where Pp is the total 4-momentum operator. Then 

where &(x) is the relative wave function of the bound state: 

where we have displayed the spin indices. 
Now substitute G, into the Fourier transform of G4 in (10.70): 

where does not contain the bound state, and 

where the integration extends over X, Y, x ,  y ,  and 

P1 -P2 
p=Pl+P2  P = 2  

4=41-42 
2 Q = 4r + 42 

Using the representation 

(7) - 0') 

(10.84) 

(10.85) 

(10.86) 

(10.87) 

(10.88) 

we obtain the result 

where 

(10.90) 

We can rewrite 
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- E + P  1 - -- 1 

2E(E - Po) 2E (P2 - M 2 )  

Thus ( q , ,  q2jB[p,, p z )  has a pole at P2 = M 2  : 

(10.91) 

(10.92) 

Since a pole is absent in the term 9 we have 

This shows that, like an elementary particle, the bound state occurs as a mass pole 
in the appropriate correlation function. The residue of the pole gives the bound state 
wave function. In matrix notation, we can abbreviate the preceding as 

(10.94) 

10.8 BETHSSALPETER EQUATION 

Using (10.94) in the Dyson-Schwinger equation G = K + KTG, we obtain the 
Bethe-Sulpeter equation [4] 

More explicitly, 

where for convenience of notation we have written 

dP I ?  P2) = U P @ )  ( 10.97) 

This is not a wave function in the nonrelativistic sense, since the two particles in- 
volved have different time coordinates. But it occurs in the S matrix for bound state 
scattering [3], and is in this sense a natural generalization of the wave function of an 
elementary particle. 
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The normalization of the wave function is not fixed by the Bethe-Salpeter 
equation, but may be determined as follows. Consider the Dyson-Schwinger equa- 
tion G = K + KCG, which can be rewritten 

(K-’ - C)G = 1 ( 

At given P, the bound state occurs as a pole in G at P2 = M 2 :  

0.98) 

0.99) 

where (xnIB) = 0. Substituting this into the Dyson-Schwinger equation and multi- 
plying through by P2 - M2, we have 

i(B) (BI + (P2 - M 2 ) x  C,,l,y,,) (xn\ = P2 - M2 (10.100) 
n 

Now differentiate with respect to P, and then put P2 = M2.  Noting (K-’ - C)lB> = 0 
at P2 = A@, we have 

Sandwiching this between (Bi and IB) leads to the normalization condition 

(10.101) 

PROBLEMS 

10.1 Consider a free real scalar field. 
(a) Show that the only connected vacuum correlation function is 

(b) Hence show that 

W [ J ]  = .I1 d4x d4x2 J(x,)AF(x, - x2)J(x2) 

10.2 From the Lehmann representation (10.56) and discussion of vacuum polarization in 
Problem 9.2, we have alternative representations for the full propagator: 

The iv term can be omitted from the second form, because n ( k 2 )  is generally complex. 
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Assume that the theory has only one stable particle of mass &. 
(a) Show that p(m2) has the general form 

p(m2) = Z@m2 - M2) + e(m2 - 4M2).(m2) 

(b) Show that 

II(M2) = ma 

rI'(M2) = - - 1 
1 

Z 

(c) Express a(m2) in terms of n ( k 2 ) .  (Hint: Equate the imaginary parts of the two 
representations.) 

10.3 To further analyze the Dyson-Schwinger equation (10.74), factor out from D and r 
factors common to all Feynman graphs: 

( s l ,  ~ , I D I P , , P ~ )  = ( 2 7 7 ) 4 ~ ~ 1  + p 2  - q1 - q2)s(qI)s(q2)D@I,~2; ~)S@~)S@J 

(41, q2lrlPI,P2) = (277)4s4(Pl +P2-91-42)~@I>P2; k )  

where k = q ,  - p ,  and 5 and 

(a) Show that the Dyson-Schwinger equation becomes 

are matrices in internal space. 

d4k' - 
5 @ I > P 2 ;  4 = (2?r)4s4(k)[s(Pl)s@2)l-i + J (2,.)4r(Pi + k P2 - k; k -  k')5@1,p2; k') 

(b) Take the kernel from the lowest-order Feynman graph: 
- 
UPI, p2; = g2A(k) 

where A(k) is the free boson propagator. This is known as the "ladder approxima- 
tion,'' because D is the sum of graphs that resemble ladders with increasing num- 
ber of rungs. Put 

and show that 

(c) Solve the preceding equation. Obtain 

10.4 (a) Show that in the ladder approximation the Bethe-Salpeter equation (10.96) is 

p2;  k)  in the ladder approximation, 
whence (41, ~ ~ I D I P I . ~ ~ )  and (q1, q2lGlpI,p2). 



References 203 

wherep, = (Pl2) + p , p 2  = (Pl2) -p. 

(b) Consider a bound state of zero total momentum P = 0. For the fermion, use Dirac 
propagator S@) = CpI - m)-’; for the boson, use massless propagator A(k)  = k2. 
Put 

and show 

By ignoring the second term in the kernel (the antisymmetrizing term), one can 
solve this eigenvalue problem in terms of hypergeometric hnctions [ 5 ] .  
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CHAPTER ELEVEN 

Quantum Electrodynamics 

11.1 INTERACTION HAMILTONIAN 

Quantum electrodynamics (QED) describes the interaction between electrons and 
photons. The Lagrangian density is 

where F P v  = F A “  - dUA& is the electromagnetic field tensor, AIL the 4-vector poten- 
tial, and $the Dirac spinor field. We use Coulomb gauge, in which 

V . A =  0 (11.2) 

The fields are quantized according to canonical commutation or anticommutation 
rules. When there is ambiguity, operators are taken in normal order. The charge eo 

and mass m, of the electron are “bare” or “unrenormalized” parameters. The corre- 
sponding renormalized or physical parameters have the values 

e = -1.6 x C 

m = 9.1 x kg (kilogram) (11.3) 

We are using rationalized electromagnetic units, in which the dimensionless fine- 
structure constant IS 

(1 1.4) 

The smallness of this quantity makes us think that we can use perturbation theory. 
The total Lagrangian can be put in the form 

204 
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L = d3x[  (E2 - B2)  + RiyPd, - mo)+- eojPA,] (11.5) 

where 

j f i  = iW+ (11.6) 

is the electron current density. The total Hamiltonian reads 

H = l d 3 x [ i ( E 2 + B 2 ) + E . V A o +  + t ( a . p + @ r n o ) + + e o j P A P ]  (11.7) 

We note that 

/ d3x E . V A o  = - d3x A o V .  E = -eel d3x joAo  (1 1.8) I 
which cancels part of the interaction term. Thus 

In Coulomb gauge, Ao is entirely determined by j o  through Poisson's equation: 

do v 2Ao z -e 

(11.10) 

Putting E = -dA/dt - VAO, we obtain, after some straightforward calculations, 

H = H e m  + Helectron + Hint (11.11) 

where 

Hem = 1 - j d ' x [ ( l )  d A  2 + (V x A)2] 
2 

= - e o l d 3 x j . A +  - '6  d x  3 d3 y jo(')jo(y) (1  1.12) 
2 4 7 1 ~  - YI 
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In the presence of an external electromagnetic field A fxt, there will be an addi- 
tional term in Hint given by 

Hex, = eoJ d 3 x ~ ~ ; ~ t  - j ‘Aext) (11.13) 

and thus 

H,,, = J d3x[-eoj .(A + A,,,) + eojO(iAO + A:~,)] 

= eo/ d3x[+j0A0 - j kAk  + +jp(x)A fxt(x)] 

Note that there is a factor + in front ofAo, but not A;xt. 
Let us define the “Coulomb propagator” as 

(11.14) 

(11.15) 

(11.16) 

Then the interaction Hamiltonian density can be written in the form 

in practice we can replace this with a simpler expression. As shown in the following 
section, the first two terms can be effectively replaced by eojp(x)Ap(x), because the 
difference does not contribute to S-matrix elements. 

In free propagators and external wave functions, the bare mass m, will be re- 
placed by the renormalized mass m when all Feynman graphs are added up. Thus, it 
is convenient to redefine the unperturbed problem such that renormalized mass oc- 
curs in the free propagator. Accordingly, we take the unperturbed electron Hamil- 
tonian density to be 

H el = $t(-iaV + @m)$ (11.18) 

The difference (mo - m)$tp$ with the original form, called the “mass counterterm,” 
is considered part of the interaction. With this, the interaction Hamiltonian density 
of QED will later taken to be 

H,,,(x) = eo:&+4 +dexr)$ : - 6m:$$ : (11.19) 

where we have used the effective form of the electromagnetic interaction, and 

6m = m - mo (1 1.20) 



11.2 Photon Propagator 207 

This quantity is considered O(e,2) in perturbation theory. In scattering processes cal- 
culated to second order in eo, therefore, the mass counterterm need not be taken into 
account. 

11.2 PHOTON PROPAGATOR 

Since the Coulomb gauge is not Lorentz-covariant, neither is the photon propagator 
(OITAI”(x)A’b)lO) in that gauge. However, the part of the propagator that contributes 
to the S matrix is covariant, because of current conservation. We shall show this in 
the context of electron4ectron (ee) scattering, which is indicated schematically as 
follows: 

e + e - + e + e  

SI s 2  s3 s4 

PI P2 P3 P4 (1 1.21) 

where p ,  and si  refer respectively to 4-momentum and spin. The initial state I i) and 
final state I f )  are denoted by 

(1 1.22) 

To second order in eo, the S matrix is given by 

We use (1 1.17) for this calculation, since the whole point is to show that it can be re- 
placed by the simpler interaction (1 1.19). 

The first-order matrix element is 

Note that this is actually proportional to e;, and the factor 1 in front makes this sim- 
ilar to a second-order matrix element in Feynman graphs. The second-order matrix 
element can be put in the form 

(-i)2 -1 d4x d4y(flT H,,,t(x)Hi,,t(y)li) =-%I d4x d4y(flTjr(x)jS(y))i) DF(x -y )  
(1 1.25) 2 2 

where the transverse photon propagator D, is defined as 
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Df(x - y )  E -i(OlTA’(x)A’(y)JO) (1 1.26) 

There is no need to include the square of the Coulomb term, which is proportional 
to e;f. 

We can write the transition matrix element to order eg as 

where DFV(x - y )  is defined by 

(1 1.28) 

As it is an object in Coulomb gauge, D”” does not transform in a simple manner un- 
der a Lorentz transformation. We shall show, however, that because of current con- 
servation, the part of D”” that contributes to the transition matrix element is covari- 
ant, and that can be taken as the effective photon propagator. The transverse 
propagator has been calculated in (5.94): 

where k2 = ko2 - /kI2 and 

The Fourier transform is 

(1 1.29) 

(1 1.30) 

(11.31) 

The 3-tensor P(k) can be extended to a 4-tensor P ( k )  defined such that it re- 
duces to Zg(k) in the special frame in which the C?ulomb gauge is defined, namely, 
in which k” = (0, k) and 1’’ = Io0 = 0. Let 5“ and k” be 4-vectors that reduce in the 
special frame to 

P = (1 ,O,O,O) 

k” = (0, k) 

where k = W(kl. Then, in a general Lorentz frame, we have 

( 1  1.32) 



11.2 Photon Propagator 209 

(1 1.33) 

We can now write down the 4-tensor that reduces to Dy in the special frame: 

( I  1.34) 

The term -gp” in I&“ gives the covariant part of the tensor, which we call the Feyn- 
man propagator D,: 

D?”(X) = DF”(X) + Df”(x) (1 1.35) 

In terms of Fourier transforms, we have 

(1 1.36) 

The inverse transform o f 5 ,  can be written as 

d4k &k..r 

Df”(x)  = I ~ 

[-pe - kpk” + (k.O(kpe + k”t”)]  (1 1.37) 
( 2 ~ ) ~  (k.Q2 - k2 

The last two terms vanish when contracted with jp j ” ,  because d,jp = 0. In the spe- 
cial frame the first term reduces to 

(1 1.38) 

Therefore 

D?”(x) = Df?‘(x) - g ~ ~ g v o D c o u l ( x )  + (irrelevant terms) (1 1.39) 

The S matrix can now be represented as 

e2 
(fl(S- 1)Ii) = - y \ d 4 x  d 4 y ( f I T j , ( x ) j U ~ ) ( i ) i D ~ ” ( x - y )  (1 1.40) 

To obtain the same result, we can effectively take the interaction Hamiltonian densi- 
ty to be 
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with the contraction rule 

(OIT A@(x)A”(y)10) = iDf”(x - y )  

(1 1.41) 

(1 1.42) 

This replacement applies not only to second-order matrix elements but to higher or- 
der ones as well. This justifies the effective interaction Hamiltonian density ( 1  1.19), 
which we shall use from now on, together with (1 1.42). 

The freedom of gauge choice is reflected in the fact that terms in the photon 
propagator proportional to kpk” have no effect on S-matrix elements. Special choic- 
es of such gauge terms can be useful for technical reasons. A popular form of the 
photon propagator is 

(1 I .43) 

where A is the gauge parameter. The choice h = 0 corresponds to the so-called Feyn- 
man gauge and A = 1, to Landau gauge. 

11.3 FEYNMAN GRAPHS 
~- ~ 

The S matrix in QED can be effectively taken to be 

where4 = p A , ,  = fix,), and so forth. When there are external fields A$,t, we re- 
placed by ,,d +dext. In (1 1.44) we have ignored the term -Sm:$$:, which will be tak- 
en care of later. 

We can represent the basic vertex -ie&x)d(x)ll(x> graphically as shown in Fig. 
1 1.1. The wavy line represents an incoming or outgoing photon, and a directed line 
whose arrow points along the direction of flow of electron charge (which is nega- 
tive), represents either an electron propagating along the arrow, or a positron against 
the arrow. To generate the Wick expansion of the nth-order S matrix, we draw n ver- 
tices, and make all possible contractions of the lines. The only nonvanishing con- 
tractions are the following: 

A@(x)A”(y) = iD[”(x -y)  
U 
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Figure 11.1 At the basic vertex of QED, a photon is emitted or absorbed from an electron line 

Yx~>++ot) = - Y )  (1 1.45) 

where the electron propagator is given in (7.30). The contraction $+(x)I,!@) does not 
occur, because the interaction is defined as a normal product. In contrast with scalar 
(6" theory, the lines meeting at a vertex are all different. As a consequence, the sym- 
metry number is unity for all connected nonvacuum graphs. 

U 

For illustration, we display the Wick expansion of the second-order S matrix: 

S(2) = t(-ie0)2/ d4X,d4X,( I I  + . . . + Z,) (1 1.46) 

The operators I ,  . . . I, contribute to different processes, as indicated below: 

Disconnected: I ,  = :$, A,+ , :  :q22A2tJ2: 

e-e scattering: I2 = :$, A,+l;j;2A2+2: 

Compton scattering: I, = :$, Al+l$2A2+2: + :$lAl+lq2A2+2: 

Electron self-energy: I4 = :ql A ,  $2A2$2: + :$,Al +b2A2+2: 

u 

U u 
1_1 1_1 

u U 

r-7 

1_1 

Photon self-energy: Is = :$, A ,  I+!I~A~I,!J~: 

Vacuum process: I, = :$, A ,  GI $2 A2$2: 

u 

U 

We denote the matrix element for e-e scattering by 

(11.47) 

where p, stands for the 4-momentum and the spin of the ith particle and the initial 
and final states are 

(1 1.49) 
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Explicitly, the matrix element is 

(-ieo)2m2 
l d 4 x ,  d4x2 

ElE2E3E4 
Ge;ee(Pl. P2; P35 P4) = 

where u I  = u(pl, sl), and so on. The two terms above correspond to distinct associa- 
tions of external lines with external particles. The relative minus sign between them 
arises from the fact that the two possibilities differ by an interchange of fermion op- 
erators, which anticommute. In each case, the matrix elements acquire a factor 2 
from the fact that the two vertices can be associated with xI and x2,  respectively, or 
vice versa. This cancels the f in front of the second-order S matrix. Performing the 
space-time integrations leads to 

m2 
Nfi = 

d E l  E2E3E4 

(1  1.51) 

where Pf and Pi are respectively the total 4-momentum of the final and initial states. 
The S-matrix element is represented by the two Feynman graphs in Fig. 1 1.2a. 

The operator Z2 also contributes to electron-positron (ee) scattering: 

- - 
e + e - + e f e  
PI 41 P2 Y2 (1 1.52) 
Sl 01 s2 0 2  

Figure 11.2 ( a )  Electron-electron scattering; (b)  electron-positron scattering. 
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where positron spins are denoted by u. The Feynman graphs are shown in Fig. 
11.2b. Denoting ti) = lpI, s,; ql. 0,) and If) = 1p2, s2; q2, g2), and 

we note the relation 

which is a statement of crossing symmetry. 
It in similar way, crossing symmetry relates Compton scattering 

and electron-positron annihilation 

(1 1.54) 

(1 1.55) 

(1  1.56) 

where photon polarization is denoted by a 4-vector ep, which takes the form 

€F = (0, €1 ,  € 2 ,  0) (1 1.57) 

with the 3-direction taken along the photon momentum. The corresponding Feyn- 
man graphs are shown in Fig. 1 1.3, and the matrix elements are given by 

Figure lI .3  (a) Compton scattering; (b)  pair annihilation 



The statement of crossing symmetry in this case is 

Gannihilation@l, 41; kl,  k2) = GCompton(P1, - k ~ ;  -41, k2) 

The electron self-energy corresponds to 

and the photon self-energy corresponds to 

(1 1.58) 

(1 1.59) 

(1 1.60) 

(1 1.61) 

The Feynman graphs are shown in Fig. 1 1.4. The expression for the photon self-en- 
ergy needs a little explanation. The contractions indicated in I ,  of (1 1.47) give, with 
all spinor indices written out, 

- n  

I 
$1 Y$I$2YV+2 = (OIT ?lalCI2plO) (OIT $lp?2*lo)(r“)ap(r”>hp 

= i s d x l  - X2)pA(Y’)Ap(-i)SF(X2 - X l ) p n ( ~ ) a P  

= -Tr[i&(X, -X”)’”is~(X2 - X i ) y I / ]  (11.62) 

Figure ZZ.4 (a) Electron self-energy; (b) photon self-energy. 
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Figure 11.5 A vacuum graph 

Note the minus sign in (--i)& on the second line. It arises when we had to rewrite $,f~ 
as -#?. As a rule, a closed fermion loop always contributes a factor -1. 

The second-order vacuum graph in Fig. 11.5 corresponds to the matrix element 

In this case, interchanging the two vertices does not lead to a new configuration, 
and the symmetry number is 2. But this is a graph we can ignore. 

Consider now the mass counterterm -Sm:& : in (1 1.19). Because of normal 
ordering, the two fields occurring in this term do not contract with each other, and 
must be contracted with other fields. This term therefore gives rise to a vertex 
where an electron line enters and leaves, with no photon line, and give a factor 
(-i)(-Sm) = ism. Every internal or external electron line should, in principle, be re- 
placed according to 

isF + is, + iSF(iSm)iSF (11.64) 

as indicated in Fig. 1 1.6; but since Sm is considered to be second order in e& the re- 
placement has no effect on second-order matrix elements. Its effect in higher orders 
will be discussed in Chapter 12. We now state the Feynman rules for QED. 

11.4 FEYNMAN RULES 

A Feynman graph is made up of vertices, electron lines, and photon lines. An elec- 
tron line is directed. It describes the propagation of an electron along the line direc- 

i 6m - + -  
Figure 11.6 
graphs above, where a cross denotes a factor is. 

The effect of the mass counterterm is to replace all electron lines by the sum of the two 
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tion, or a positron against the line direction. A photon line has no direction, and rep- 
resents either an incoming or outgoing photon. 

Each vertex emits an electron line, absorbs another electron line, and emits (or 
absorbs) a photon line. Thus, an electron line cannot originate or end inside a graph. 
This means that the “electron number, “ the number of electrons minus the number 
of positrons, is conserved. The number of photons, on the other hand, is not con- 
served. 

A graph consists of a number of electron lines going through the graph, and a 
number of electron lines in closed loops. On these lines are vertices from which 
photons are emitted or absorbed.. A closed loop must have at least two vertices. 

A disconnected graph is a product of its subgraphs. Thus it suffices to consider 
connected graphs, whose contribution to the S matrix may be obtained as follows: 

Each vertex with 4-vector index p contributes a factor -ie,yk. The total 
4-momentum flowing into a vertex is zero. 
Each internal photon line of 4-momentum k contributes a factor ibFp,,(k), 
where p and u are contracted with the indices of the vertices at its ends. 
Each internal electron line of 4-momentum p contributes a factor if&). 

Each external photon line of momentum k and polarization E contributes a 
wave function factor &/-, where p is contracted with the index of the 
vertex to which the line is attached. 
Each outgoing external electron line of momentum p and spin s contribute a 
wave function factor 

F i i ( p ,  s> (ifoutgoing electron) 
EP 

F + p ,  s) (if incoming positron) 
EP 

Each incoming external electron line of momentump and spin s contribute a 
wave-function factor 

{$u(p, s> (if incoming electron) 

E+p, s) (ifoutgoing positron) 

Each closed electron loop contributes a factor -1. 
There is an overall factor ( ~ T ) ~ S ~ ( P , -  Pi). 
Each independent internal 4-momentum k is integrated over, with measure 

Connected nonvacuum graphs have symmetry number 1. The symmetry 
d4k42 T)4. 
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number of a vacuum graph is generally different from 1, but vacuum graphs 
should be ignored. (See below.) 
The contribution of a Feynman graph to a correlation function follows the 
same rules as above, except that the wave function factors of external lines 
are replaced with propagators. 

11.5 PROPERTIES OF FEYNMAN GRAPHS 

In a general Feynman graph, let 

n = number of vertices 

E, = number of external electron lines 

Ei = number of internal electron lines 

P, = number of external photon lines 

Pi = number of internal photon lines (11.65) 

Note first that n - P, is the number of vertices that do not emit external photon 
lines. Since these vertices must be connected in pairs by internal photon lines, we 
have n - P, = 2Pi, or 

Since an external electron line must enter and exit the graph, E, is an even integer. 
An external electron line touches only one vertex, while an internal electron lines 
touches two. Therefore 

The number of internal 4-momenta is Pi + Ei, but not all are independent because of 
4-momentum conservation at the vertices. The overall 4-momentum conservation is 
not a restriction on internal lines. Therefore there are n - 1 constraints, and the num- 
ber of independent integrations over internal 4-momenta is 

N = P , + E , - n +  1 (11.68) 

We can now show that, just as in scalar theory, a vxuum graph in QED is a 
pure imaginary number. In a vacuum graph, n must be even. There are E, electron 
propagators of the form 

p 2 - m 2 + i q  

where ( p  + m) yield a real number when operating on a Dirac spinor and the de- 
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nominator is real after a Wick rotation. Hence each electron propagator contributes 
a pure-imaginary factor. There are Pi photon propagators of the form 

i 
k2 + iq 

which is pure-imaginary after a Wick rotation. 
Therefore a vacuum graph is of the form 

r 5 (-iAo)"iEl+Fl+Nj d4k, . . . d4kNf(k , ,  . . . , kN) (1 1.69) 

wherefis real and a factor iN comes from the Wick rotations. Noting that (-Q' is 
real because n is even, we have r - iEI++Pl+N x (real number). Since E, = P, = 0, we 
have El = n, PI = nl2, N = (nl2) + 1 ,  Thus El + P, + N = 2n + 1. Therefore 

- i x (real number) (11.70) 

As shown in Section 9.9, this means that the sum of all vacuum graphs gives a phase 
factor, and consequently we can ignore all vacuum subgraphs. 

A useful property, known as Furry? theorem [l], is that a graph or subgraph 
with an odd number of external photons may be ignored, because it is cancelled by 
similar graphs. This is because such a graph must contain one closed electron loop 
that emits an odd number of photons. As illustrated in Fig. 11.7, there exist a graph 
identical in every way except that the sense of the electron is reversed. These two 
graphs go into each other under charge conjugation, which sends eo to -eo. Hence 
the sum of the two graphs is zero. 

Suppose the interaction Hamiltonian density is of the form 

fix) = P(X) + e<x> (11.71) 

as, for example, H(x) = eo@$ + eO$&ext#. The following double series expansion 
makes it possible to take P into account to order n, and Q into account to order m, 
independently: 

Figure 11.7 According to Furry's theorem, these graphs cancel each other. They have an odd number 
of external photon lines and no external electrons lines, and differ only in the sense of the closed electron 
loop. 
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(11.72) 

For example, in an atomic p r d e m ,  we might want to treat the Coulomb interaction 
A& exactly, but take radiative corrections into account only to second order. 

To derive this expansion, we start with the perturbation series 

( - l )k  
S = 1-1 d4x, . . . d4xkT{ [ (P(x l )  + Q(xl)] . . . [(P(xk) + Q(xk)]} (1 1.73) 

k o  k! 

and group terms by the number of factors of P. Terms in which P occurs n times, re- 
gardless of the number of Q factors, have the form 

To get S, we multiply this by (-i)"+*l(n + m)! and sum over n. Using 

we obtain the desired result. m 

PROBLEMS 

11.1 Write down the matrix elements corresponding to the contractions in (1 1.47). 

11.2 Draw all fourth-order Feynman graphs for electron-electron scattering, that is, graphs 
with four vertices. Write down the corresponding matrix elements using the Feynman 
rules. Include all graphs, connected or disconnected. 

11.3 (a) Draw all fourth-order Feynman graphs for photon-photon scattering (scattering 
of light by light), and write down the corresponding matrix elements. 

(b) Adopt the matrix elements obtained above to the scattering of light by an external 
Coulomb field (Delbriick scattering). 

11.4 Adopt the matrix element for Compton scattering to the scattering of an electron by an 
external Coulomb field, with emission of light (bremsstrahlung). 

11.5 Consider the scattering of light by a Dirac particle of charge e and mass M ,  to lowest 
order in e. Obtain the matrix element in the limit M +  a, and calculate the differential 
cross section. The particle can be a proton, except for the neglect of the anomalous 
magnetic moment. 

REFERENCE 

1 .  W. Furry, Phys. Rev. 51, 125 (1937). 



CHAPTER TWELVE 

Processes in 
Quantum Electrodynamics 

12.1 COMPTON SCATTERING 

We shall derive the differential cross section for Compton scattering. The S matrix 
element has been given in (1 1 S 8 ) :  

1 m 
(12.1) 

*fi= -m 
where 

w=ko 

Ep = +v$.z-2 (12.2) 

and the photon polarization vectors have the form 

€fi = (0, € 1 ,  8 , O )  (12.3) 

with the x3 axis taken along the photon momentum. 
Since the S matrix element is of second order in eo, we can put eo = e.  We can 

also drop the iq  in the propagators, because the internal momenta are fixed, and not 
integrated over. The transition matrix is thus 

220 
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Tfi = Nfie2E2 UI (12.4) 
G.1 + - m2 - k2)2 - m2 

We now use the relations 

(1 2.5) 

The first holds because it is true in the laboratory frame. The second is a statement 
of transversality, and the third is a statement that the photons are real (i.e., on mass 
shell). Therefore we have 

Using the identity 

we can write 

($1 + kl)2 - m2 = 2p,.k, 

- k2)2 - m2 = -2P I 4 2  (12.6) 

(12.7) 

(12.8) 

Hence 

Tfi = fe2Nfi(ii2rul) ( 1  2.9) 

where 

The differential cross section is given by 

(12.11) 

where I = 1 in the normalization we are using. The final spin states are summed 
over, because they all contribute to the cross section. The initial spin states are aver- 
aged over, because we assume that the incident electron is unpolarized. 

We now work out the kinematics of the reaction. In the laboratory coordinate 
system, shown in Fig. 12.1, we have 
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b Photon Electron 

Figure 12.1 Kinematics of Compton scattering 

Let 

f EZ E2 + w’ - w - m  

(12.12) 

(12.13) 

Energy conservation requires f = 0, or 

0 = d ( k l  - k2)2 + m2 + w’ - w - m  

= ~ W Z  + w12 - 2ww1c0s0 + m2 + w1 - w - m (12.14) 

where 8 is the scattering angle. A little algebra yields the relation between the final 
photon frequency and the scattering angle: 

w w‘ z 

1 + (w/m)(l- G O S O )  
(12.15) 

In the cross section, the integration over the final momenta p2 is entirely fixed by 
momentum conservation, while the k2 integration is limited to a solid-angle element 
da.  The magnitude of k2 is fixed by energy conservation. The “phase-space’’ inte- 
gral is 

E2wI3 (G2 [ d ; b i ]  f=o = mw ( 2 ~ ) ~ S ~ ( p ,  + k2 - k,)S( f )  = - - (12.16) 

Putting all this together yields 

(12.17) 



12.1 Compton Scattering 223 

where a = e214-ir is the fine-structure constant. 
To perform the sum over the initial and final spin states, we insert projection 

operators for positive-energy states, and then sum over all states with the given mo- 
menta: 

where 

(12.18) 

( 1 2.1 9) 

(12.20) 

(12.21) 

The spin traces can be evaluated using the basic identities listed in Table 12.1. 
The result for the differential cross section for polarized photons is 

TABLE 12.1 Traces of Dirac Matrices 
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du a2 w WI - + - + 4($,.{2)2 - 2 - - 
d f l  4 m 2 (  d)" w' 0 

(12.22) 

Summing over the final photon polarization, and averaging over the initial polariza- 
tion, we obtain the Klein-Nishinaformula [ 11: 

(12.23) 

In the low-frequency limit wim + 0, this approaches the Thomson cross section 

cos20 (12.24) 

which is symmetric about 0 = 90". As the energy of the incident photon increases, 
the distribution tends to peak about the forward direction. Graphs for the angular 
distribution, normalized to unity in the forward direction, are shown in Fig. 12.2, 
with comparison to experiments [ 2 ] .  

12.2 ELECTROMAGNETIC FORM FACTORS 

Consider the scattering of an electron by an external electromagnetic field A;'. If 
the external field is very weak, we can treat it in lowest-order perturbation theory, 
but in principle consider radiative corrections to all orders. The S matrix element 
between the initial state 1 and final state 2 is then, according to (1 1.72), 

0 30 60 90 120 150 

Lab Angle (degree) 

Figure 12.2 
Theovy qfRadiution, 3rd ed. Oxford Univ. Press, London, 1954). 

Angular distribution in Compton scattering, with r = wim. (After W. Heitler, Quanfuni 
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where 

Hext(x) = e&x)b e x ‘ ( x ) ~ x )  (1 2.26) 

For a static external field, we have the following in lowest order (n = 0): 

s = -ieo j d 4 x ( 2 i i ~ ( ~ x ) y ~ ~ ) l  I >  ~ ; t ( x )  

-ieom 
= 2rS(E2 -El)- (t7,)Yl”Ulke”‘(P2 - PI> (1 2.27) m% 

This is represented by the lowest-order Feynman graph in Fig. 12 .3~ .  The transition 
probability per unit time is formally given by lS2,(*/2d(O), and the scattering cross 
section is given by 

The electron wave functions are normalized to unit density, and hence in the labora- 
tory frame we have 

(12.29) I =  1/ IP 
E ,  

( b )  

Figure 12.3 (a) Proper vertex graphs. (b) Vertex graphs with insertions. 
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which is the velocity of the incident electron. 
To include higher-order radiative corrections, we only need to replace U2y”u , 

by a more general quantity corresponding to the Feynman graphs in Fig. 12.3, 
which are call “vertex graphs.” These graphs can be separated into two categories: 
the “proper” ones and “improper” ones. The former, also called “one-particle irre- 
ducible,” are connected graphs that cannot be made disconnected by cutting one in- 
ternal line. The improper graphs have insertions on the external lines, and con- 
tribute to mass renormalization of the external particles. 

The sum of the proper vertex graphs, with external wave functions omitted, de- 
fines the “proper vertex part” A”: 

r%7,, PI) = Y” + A”’@,, PI) (12.30) 

where the term y is the bare vertex, and A (p2, pi)  is defined by the series of graphs 
in Fig. 1 2 . 3 ~ .  The scattering cross section to first order in the external field, with all 
radiative corrections taken into account, is given by (12.28) with U2y’%I replaced by 
- u 2 r ~ u I .  

By Lorentz covariance, r”(p2,pl) must be of the form 

where C, are Lorentz-invariant functions o f p ,  andp,. Let 

(12.32) 

When the external lines are on mass shell, withpf = p :  = m2, there is only one inde- 
pendent invariant, which we shall choose to be k2. Current conservation requires 

This leads to the conditions Cl = C, = 0 and C, + C, = 0. Consequently, there are 
only two independent functions C, and C,, and we can rewrite the vertex operator in 
terms of two invariant form factors: 

1 
2m 

r”(p1, p2> = Fl(k2)y” + -F2(k2)io“uk, (12.34) 

It should be emphasized that there will be extra form factors when p ,  and p2  are not 
on mass shell. 

We now use the Gordon decomposition (Problem 6.6) 

- I -  
u2y%d, = -u2(P” + io“”k,)u, (12.35) 

2m 
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to write 

- 
u2r~(pz,pI)uI = --!-lr,[F,(Pp + ia""k,,) + F2i&"'ku]ul 

2m 

1 -  
= -u2[F,PP + (F,  + F,)ia""k,]u, 

2m 

Two alternative form factors are 

(12.36) 

(12.37) 

which are respectively the electric and magnetic form factors. 

corrections fully taken into account, is given by 
The S matrix element for scattering from a weak external field, with radiative 

S = - iedJ d4x eik.x U 2 P ( p 2 ,  pl)u,AFt(x) (12.38) 

where 

m 
N =  

ElE2 
(12.39) 

For a static field this reduces to 

S = -iNeo2d(E2 - El)\ d3x e-ik-x 

To discover the physical meaning of the form factors, consider forward scatter- 
ing in the nonrelativistic limit, for which 

k-rO p + 2 m  N + l  (12.41) 

First look at the F,yP term in the vertex part. Using the Gordon decomposition to 
rewrite U,yl"u,, we can write the nonrelativistic limit in the form 

s, *-- ieoF(o) 27rS(E2 - E , ) j  d3x e-'k'xi2(Pp + i a " ' k u ) u l A ~ t ( ~ )  (12.42) 
2m 

For an electrostatic potential A ,  = V(r), A k  = 0, the second term vanishes when k -+ 
0, and we have 

SI -+ -ied;l(0)2d(EI - E2)J d3r e-'krV(r)ii2uI (12.43) 
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This shows that the coupling constant to an electrostatic potential is ed;,(O), which 
is by definition the electric charge of the particle: 

e = e&', (0) (12.44) 

Next choose the external field be a static magnetic field B, with A' = 0, A = r x 

B/2. We have 

AFt(P* + io+"k,) = -A.(p, + p2) + i A , d $  (12.45) 

The first term gives no contribution in the limit k -+ 0, because S&rA = 0. The sec- 
ond term can be worked out as follows: 

Thus 

ie 
m 

SI += -2rCj(E, - E 2 ) / d 3 r  e-'k'rG2S.Bu, (12.46) 

where S = u/2. This describes the scattering of a particle of magnetic moment 

e 

m 
p Q = - S  (12.47) 

which is the Dirac moment, with g factor 2. 

ward scattering from an external magnetic field is, in the nonrelativistic limit 
Consider now the F@" term in the vertex part. The S-matrix element for for- 

S2 -+ eOF2(0)27i6(E, - E2)1 d3r  e-ik'rG2S.Bu, (12.48) m 

which describes the effect of an extra magnetic moment over and above the Dirac 
moment: 

p1 = $F2(0)S (1 2.49) 

This is called the "anomalous magnetic moment." The total magnetic moment is 
thus given by 

(1 2.50) 
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The g factor is given by 

g = 2  I + -  [ :;:;] (12.5 1) 

The factor 2 comes from expressing it in units of the Bohr magneton eAi2mc. 

12.3 ANOMALOUS MAGNETIC MOMENT 

From the second-order Feynman graph in Fig. 1 2 . 3 ~  we obtain 

The integral is divergent both in the ultraviolet (q  + w ) and in the infrared ( q  -+ 0). 
The ultraviolet divergence is logarithmic. We introduce both high-q and low-q cut- 
offs, and explain later how to dispose of them. 

The factors in the denominator of the integrand can be combined with the help 
of Feynman’s formula [3]: 

I S((Xl + .  . . +&) - 1)  

(x , a ,  + . . . + x,JJ,)“ = (n  - 1 ) L  dx, . . . dx, (12.53) 
1 

a ,  ’ ’ ’ a, 

In particular, 

1 ’  1 
- = L d x  [ax + b(1 -x)]’ 
ab 
1 I S ( x + y + z -  1 )  
- = 2 j  dx dy dz 
abc 0 (ax + by + C Z ) ~  

(12.54) 

We can now rewrite our integral in the form 

(12.55) 
I d4q N P  

RW(pl, p 2 )  = -2iei I, dx dy dz S(x + y + z - I)! - - 
( 2 7 ~ ) ~  D3 

where 
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Now change the integration variable from q to q +yp ,  + zp,. Generally, doing this in 
a divergent integral can introduce ambiguous terms that depend on the cutoff 
scheme. Here it is safe, because the divergence is only logarithmic. We now have 

(12.57) 
I d4q Mp 

Ap(pl, p2)  = -2ie;L dx dy dz 6(x + y + z - I ) /  - 
(2,.)4 (4* - c + i T ) 3  

where 

where k2 = (p, 
the identities listed in Table 12.2, we can rewrite 

Note that k2 < 0, so that C i s  positive-definite. With the help of 

Mp = -2$f4 + 4m(Ap + B P )  - 2m2Y (12.59) 

Further simplification can be made by noting that terms linear in qp may be 
dropped because they integrate to zero, and that y and z may be interchanged be- 
cause the rest of the integrand is symmetric in y and z. Since we are on mass shell, 
we may also use the Gordon decomposition. After some algebraic manipulations, 
we obtain 

1 d4q q2 + (x -yz)k2 + m2( 1 - 4x + x2) 
d x d y d z 6 ( x + y + z -  I ) / - - -  

1 d x d y d z 6 ( x + y + z -  1)xyJ- d49 1 

(2 ( 4 2  - c + i 77 )3  

(12.60) 
(2.rr)4 ( 4 2  - c + i 4 3  

The form factor F ,  is ultraviolet and infrared-divergent, but F2 is finite. 
To calculate F2, we need the integral 

I = / d 4 q  1 

(42 - c + iq)3 
(12.61) 

TABLE 12.2 Useful Identities 

y* y" y* = -2 y" 
y* y" yo  y* = 4g"O 

y* y"1 ye2 y"3 yA = -2 y"ly"2 y"3 
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We perform a Wick rotation qo -+ iq4, and use the fact that the surface area of a 4- 
sphere of radius R is 27? to obtain 

in 
Z=-27?ii  dR ( R 2 + q 3  2C - - -- R3 1) 

(12.62) 

Substituting this into (12.60), we obtain 

(12.63) dxdydz6(x+y+z-  1) X Y  
( 1 - x ) ~  -yz(k2/m2) 

which gives 

(1 2.64) 

In the formula (12.5 1) for the g factor, we may replace F2(0)/F,(0) by F2(0), and e, 
by e, since F,(O) = 1 + O(e,2). Therefore 

g = 2  I + -  ( 2:) 
(12.65) 

where a = e2/477 is the fine-structure constant. The second term comes from the 
anomalous magnetic moment, and is known as the Schwinger correction. 

The anomalous magnetic moment of the electron has been calculated to sixth 
order in quantum electrodynamics, beyond which the weak interactions should be 
taken into account. The result is as follows: 

(12.66) 
1 ff 

2 2 n  
-g = 1 + - - 0.32848 

The first term is the prediction of the Dirac equation, dated from 1928, and the sec- 
ond the Schwinger correction [4] arising from one Feynman graph. The third term is 
the result of summing 18 Feynman graphs [5], while the fourth involves 72 Feyn- 
man graphs [6]. The comparison with experiments [7] is as follows: 

~ :gtheory = 1 + (1 159651.7 * 2.2) x 

fgexDt= 1 +(1159656.7+3.5)~ (12.67) 

The theoretical value was computed using the fine-structure constant [8] 
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1 
- = 137.03608(26) 
a 

(12.68) 

which was obtained experimentally via the Josephson effect. 
The anomalous magnetic moment of the electron arises from the electromag- 

netic interactions. Nucleons, on the other hand, have strong interactions, which give 
dominant contributions to their anomalous magnetic moments. The values are rela- 
tively large, as can be seen from the following experimental values of the total mag- 
netic moments: 

2.79 (proton) 
-1.91 (neutron) 

where M is the nucleon mass. 

(12.69) 

12.4 CHARGE DISTRIBUTION 

The charge form factor can be written in the form 

4 
27? t 

F,(k2) = 1 + -I’d. dy dz S ( X  + y  + z - 1) 

-R2 + ( 1 - 4x + x 2 )  + (x - yz)(k2/m2) 
( 1 2,70) 

[R2 + (1 - x ) ~  -y .~ (k~ / rn~) ]~  

where we have performed a Wick rotation and changed the integration variable to 
R = q. As we shall see, the high-momentum cutoff A can be absorbed 
through charge renormalization. 

The lower cutoff E is introduced to avoid the “infrared catastrophe” occurring at 
k2 = 0 and x = 1. The divergence occurs because the photon is massless, and an infi- 
nite number of channels for multiphoton emission simultaneously open up at the 
same threshold. Our lower cutoff essentially supplies the photon with a finite mass 
and, of course, violates gauge invariance. This divergence is real, and must be can- 
celed by the addition of Feynman graphs with soft-photon emission from the exter- 
nal lines. Emission of photons of arbitrarily long wavelength cannot be detected by 
any conceivable measuring device, and must therefore be included as part of the 
physical process. The Feynman graphs for the soft-photon processes are themselves 
infrared-divergent. It can shown, however, that when all relevant graphs are 
summed up, the infrared divergences cancel (See Bjorken and Drell [9]). 

We shall deal only with the ultraviolet divergence here. The form factor at zero 
momentum transfer is given by 

eJ ,%In1 -R2 + (1 - 4x + 9) 
F,(O)= 1 +-I dxdydz6(x+y+z- I)/  dR (12.71) 

2772 0 E [R2 + (1 - x ) ~ ] ~  
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which contains the ultraviolet divergence. To isolate it, we define the finite quantity 

(12.72) 

and write 

The divergent factor F ,  (0) can now be absorbed through charge renormalization: 

The charge distribution in the physical electron is given by the Fourier transform of 
f ( k 2 ) .  To second order in eo, we can takef(k2) = 1 + F,(k2)  - F,(O), and replace e, by 
e ,  since the errors incurred in so doing are of a higher order. 

The charge structure of the electron has not yet been seen in experiments be- 
cause it has such a small radius. The proton, on the other hand, has stronger interac- 
tions, and a bigger charge radius, which has been detected experimentally via elec- 
tron-proton scattering (see Hofstadter [ 101). In this process, the electron produces 
the virtual photon that probes the charge structure of the proton. Figure 12.4 shows 

0 2 4 6 8 1 0 1 2  

- k2  
Figure 12.4 
ing. [After E. E. Chambers and R. Hofstadter, Phys. Rev. 103, 1454 (1956).] 

Charge form factor of the proton obtained from experiments on electron-proton scatter- 
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the results forf2(k2) at various incident laboratory energies of the electron [ l  I]. The 
straight-line fit in the semilogarithmic plot corresponds to a Gaussian distribution 

f (  k2) = e-.$ d4 (12.75) 

where q2 = -k2. This gives the charge radius of the proton as 

r, = 0.70 x cm (12.76) 

PROBLEMS 

12.1 (a) Set up the differential cross section for electron-electron scattering, using the 
matrix element (1 1.51). Regard all particles involved as unpolarized. Work out 
the kinematics, and specify the independent variables. Express the result as spin 
traces. 

(b) Do the same for electron-positron annihilation. Obtain the matrix element from 
(1 1.59) for Compton scattering through crossing symmetry. 

12.2 Consider Mott scattering, the scattering of an electron by an external Coulomb field. 
This is the relativistic version of Rutherford scattering. Take Akext = 0, and 

The problem is to calculate the differential cross section 

d a  d3p2 1 
- = 1 ---j-27rS(E2 - E , ) ~ x l U ~ f u , 1 ~  
d n  ( 2 4  spin 

Choose kinematics such that E2 = El  5 E, Ip21 = lp,l = p .  The incident velocity is u = 

plE. 
(a) Evaluate the spin sum: 

where 0 is the scattering angle in the laboratory frame. 

(b) Obtain the Mott cross section [ 121: 

- du 
dCl 4p2$sin4( W2) 
_ -  
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12.3 The proton and neutron have strong interactions, whose contribution to the anomalous 
magnetic moments dominates over that produced by electromagnetic interactions. A 
phenomenological way to take this into account is to introduce a "Pauli term" in the 
Hamiltonian density (see also Problem 6.3) 

where K~ = 1.79, K~ = -1.91, and p,, = /e(/2M is the nuclear magneton. The neutron, al- 
though electrically neutral, interacts with the electromagnetic field through this term. 

(a) State the Feynman rules for the Pauli term. 

(b) Obtain the matrix element for electron-neutron scattering. 

(c) Obtain the matrix element for the creation of a neutron-antineutron pair by two 
photons. 
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CHAPTER THIRTEEN 

Perturbative Renormalization 

13.1 PRIMITIVE DIVERGENCES IN QED 

Feynman graphs are generally ultraviolet-divergent, and a high-energy cutoff A is 
needed. The cutoff sets the scale at which the coupling parameters in the La- 
grangian are defined. The process of renormalization relates the parameters at one 
scale to those at another. When this is achieved, we can express the “bare” parame- 
ters defined at the cutoff scale to the “renormalized” ones at a lower energy scale. In 
this chapter we show how this is done in perturbation theory in QED. 

A Feynman graph in QED may be represented schematically in the form 

(13.1) 

where Pi is the number of internal photon lines, Ei the number of internal electron 
lines, and N the number of independent internal 4-momenta. This integral, which is 
generally divergent, is being cut off at a momentum A much larger than any physi- 
cal momenta in the problem. We define a primitively divergent graph as a divergent 
graph that becomes convergent when any one of its internal lines is cut, that is, 
when any integration variable is held fixed. Any divergent graph can be reduced to a 
primitively divergent one by cutting a sufficient number of internal lines. This is ob- 
vious because the graph becomes convergent when all internal lines are cut. 

The superficial degree of divergence I) of a primitively divergent graph may be 
obtained by counting powers: 

D = 4N-2P,  - E, = 4 - P e -  4 E, (13.2) 

where the final result follows by eliminating N. Pi, Ei using (1 1.66)-( 1 1.68). This 
number is independent of the number of vertices, and decreases with increasing 
number of external lines. This property is what makes the theory renormalizable. 

It should be noted that the actual degree of divergence may be smaller than I). 

236 
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Note also that the counting procedure cannot be used for a non-primitively diver- 
gent graph. For example, the integral s dk dp k-‘p-2 is logarithmically divergent; but 
power counting would give D = 1, which suggests incorrectly that it is convergent. 

Since D 2 0 for a divergent graph, and D decreases with the number of exter- 
nal lines, there exist only a finite number of types of primitively divergent graphs, 
and they can be classified according to P, and E,. There are six possible cases, as 
shown in Table 13.1. Among these, the vacuum graphs can be ignored. The graphs 
with three external photon lines can be ignored according to Furry’s theorem. The 
graphs with four external photon lines are logarithmically divergent individually, 
but it turns out that the sum over the 4! possible assignments of external momenta 
gives a convergent result. Therefore, there are only three types of primitively diver- 
gent graphs: electron self-energy (SE), photon SE, and vertex. 

Assume that we know how to renormalize the primitive divergences. Then con- 
sider a connected nonvacuum graph. We define its skeleton graph as the graph ob- 
tained after the removal of all SE and vertex insertions. The skeleton may be con- 
vergent or divergent. If convergent, we reinsert the renormalized SE and vertex 
parts. If divergent, it must be primitively divergent. To prove the last statement, as- 
sume the contrary. Then, by cutting a sufficient number of internal lines, the graph 
can be reduced to a number of components (possibly disconnected), one of which is 
primitively divergent. The latter must be either an SE or vertex graph; but these 
have been removed by assumption. Therefore the divergent skeleton graph must be 
primitively divergent. The procedure to renormalize a connected nonvacuum graph 
therefore reduces to that for the primitive divergences. 

13.2 ELECTRON SELF-ENERGY 

The full electron propagator is defined as 

where @ is a Heisenberg operator and $ is an interaction-picture operator. Its ex- 
pansion in terms of Feynman graphs is shown in Fig. 13.1, where C(p) denotes the 
proper self-energy part, which is the sum of all one-particle irreducible graphs. 
Without taking into account the mass counterterm, we have 

where we denote the electron propagator in momentum space as SF (without the 
tilde). Taking the inverse of both sides, we obtain 
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TABLE 13.1 Primitive Divergences in QED 

P, E,  D Graph Example Remark 

0 0 4 Vacuum Can be ignored 

0 2 1 Electron SE 

1 2 0 Vertex 

Actually logarithmically 
divergent 

Logarithmically 
divergent 

Logarithmically 
divergent by gauge 
invariance 

2 0 2 PhotonSE 

3 0 1 3-photon 

A 
Canceled 
(Furry’s theorem) 

Sum of 4! graphs 
convergent 

4 0 0 Light-light 
scattering 
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- ++,+J@-+... 

Figure 13.1 Graphs for full electron propagator and the proper self-energy part H. 

where we have left the iy term in the denominator understood. 
To include the mass counterterm, we make the replacement is, 4 is, + 

iSFi6miSF in all the Feynman graphs. This means that Z(p) is replaced by Z@) + 6m. 
Consequently we have (S')-' = $ - m + + 6m + C@), or 

1 
p -  m + 6m + Z(p) 

S'(p) = (13.6) 

By Lorentz invariance, we can write Z(p) in the form 

Thus 

Mass renormalization consists of the assertion that the pole of the full propagator is 
located at m. Therefore 

A(m2) + Sm = 0 (13.9) 

Since A(m2) is divergent, this shows that 6m must also be divergent 
Another divergent quantity is B(rn2), and it is customary to put 

(13.10) 

so that 2, -+ 0. However, we regard it as an infinite series in e &  with divergent co- 
efficients. At the mass pole we have 



240 Perturbative Renormalization 

(13.1 1) 

This shows that .\/zs is the renormalization constant for electron wave functions. To 
verify this explicitly, we examine the self-energy insertions on an external electron 
line. The Feynman graphs in this case are the same as those in Fig. 13.1, except that 
the leftmost line is taken to be an external line. The sum of the graphs give 

u’(p) = { 1 + iSFi(C(p) + 8m) + [iSFi(C(p) + Sm)12 + . . .)u(p) (13.12) 

The operator in brackets gives 

Therefore 

We have shown that the wave function renormalization constant is e. Therefore, 
a factor % goes toward the renormalization of the vertex that absorbs this parti- 
cle. 

We have yet to show that the electron propagator is finite after mass and wave 
function renormalization. To do this, we first analyze the skeleton self-energy 
graph. Later, we shall discuss how to make insertions. The skeleton is just the sec- 
ond-order proper self-energy graph: 

d4k yp(4m - 2(p- k + m))y ,  
k2 + i q ) [ ( p  - k)2 - m2 + iq] 

-2(p - k> + 4m 
(1 3.15) 

d4k 
( 2 7 ~ ) ~  (k2 + i q ) [ (p  - k)2 - m2 + iq] 

= -jeij ___ 

This integral is logarithmically divergent for large k, and must be cut off. Using the 
Feynman formula (12.53) to combine the factors in the denominator, we can rewrite 

(13.16) iz@> = e i l  -----I d4k I d~ 2(P - k) - 4m 
( 2 ~ ) ~  o (( 1 -x)k2 + x [ ( p  - k)2 - m2] + iv}2 

The denominator has the form 

(k  - ~ p ) ~  + x[( 1 - x)p2 + m2] 
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Changing the variable of integration to q = k - xp, and omitting in the numerator a 
term 4,  which integrates to 0, we have 

C = x[m2  - (1 - x)p2]  (1 3.17) 

We now have to evaluate an integral of the type 

For simplicity, we cut off the spatial integral at 191 = A. The qo integration can be 
performed through contour integration, which yields 

1 (13.19) - - - 

Thus we have 

A 
0 (q2 + c)3'2 A-x m 

A 

I = 2 i 7 ? 1  dq '* + 2i+ In - + (finite terms) (13.20) 

Using this result, we obtain 

(13.2 1) 
ieo2 1 A 

~ ( p )  = Gl dx[( I - - 2mlln - + (finite terms) 
m 

which gives 

3eim A 
A($)  = -- In - + A , ( p 2 )  

8 d  m 

e 2  A 
m B(p2) = & 1 n - + B , ( p 2 )  

where A ,and B ,  are finite, and vanish on mass shell. Thus 

Sm - 3ei A 
m 87? m 

In - + O(e$ 

ed A 
Z, = I - - In - + O(e$) 

87? m 

(13.22) 

(13.23) 

(13.24) 
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The result of mass and wave hnction renormalization to second order can be 
summarized by the statement 

(13.25) 

where 

where po is a 4-momentum on mass shell. It remains to be shown that this form is 
correct to all orders. 

Mass renormalization first made its appearance in Lorentz’ calculation of the 
self-force of the classical electron. Lorentz modeled the electron as a spherically 
symmetric uniform charge distribution of radius a.  The self-force F, is the sum of 
all the forces between charge elements, with retardation taken into account. In the 
limit a -+ 0, the result is [ I ]  

(13.27) 

The first term, which arises from the Coulomb self-energy, is divergent. The second 
term is independent of a, and gives the famous radiation damping. The other terms 
vanish when a -+ 0. The equation of motion for an electron of “mechanical mass” 
ma is 

mov = F,,, + F, (13.28) 

where F,,, is the external force. When a + 0, this has the form 

2e2 
3c3 

mv = F,,, -!- -v 

where 

4 dede’ m = m o + -  ___ 
3 c 1  4 m  

(13.29) 

(13.30) 

is the renormalized mass, to be taken from experiments. The self-energy diverges 
like a-’ classically, but only logarithmically in QED. The difference can be attrib- 
uted to the presence of the Dirac sea of negative-energy electrons [2 ] .  
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13.3 VACUUM POLARIZATION 

We can take the free photon propagator to be 

(13.31) DF”(k) = -- gF” 
k2 

where, for simplicity, we have dropped the subscript “F” and the iq term in the de- 
nominator. The full photon propagator is given by the series of graphs shown in Fig. 
13.2, which can be reduced to one-particle irreducible components. The sum of all 
one-particle irreducible graphs, with external photon lines omitted, is called the 
vacuum polarization tensor KI+”(k). It describes virtual electron-positron pairs pro- 
duced by a photon propagating in the vacuum. In terms of this tensor, we can write 
the full photon propagator in the form 

iD‘@”(k) = iDp’(k) + ioF~(k)in,,(k)ioP’(k) + . . . (13.32) 

Because of current conservation, or gauge invariance, we should have 

kFrI,”(k) = nu /p  = 0 

We can therefore put 

(13.33) 

IIwU(k) = (g+”k2 - k+P)e611(k2) (13.34) 

This form guarantees that the photon has zero mass, unless II(k2) develops a pole at 
k2 = 0, which does not happen in perturbation theory. Note that J3(k2) is defined 
with e; factored out. 

To avoid a profusion of indices, we shall regard D ’ F ”  as a 4 x 4 matrix D’, with 
matrix multiplication defined such that an upper index can be contracted only with 
a lower index. To be able to invert these matrices, we define the transverse and lon- 
gitudinal projection operators PT(k) and PL(k) as follows: 

+ + ... 

+ ... 

Figure 13.2 Full photon propagator and the vacuum polarization tensor. 
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In matrix notation, they have the properties 

(13.35) 

(1 3.36) 

The free propagator D is proportional to the unit matrix, while the vacuum polariza- 
tion tensor takes the form 

T(k2)  = k2ein(k2)TT (13.37) 

In this notation, we have 

DO'(k) = B(k)  + iD(k)iT(k2)iD(k) + . . . 

= !D[ 1 - iT(k2)iS(k)]- '  

= -- [ 1 - e@I(k2)TT]-' 
1 

k2 
(13.38) 

Now note that 

(1 - A  T ~ ) - I  = 1  AT^ + A++ + . . . 

(13.39) 
1 

I - A  = 1 + (A + h2 + .)PT = ___ T T  + T L  

Thus 

or 

T L  

k2[ 1 - e ;n(k2)]  k2 
_ -  Tr @(k)  = - (1 3.40) 

The terms proportional to k P  can be dropped, because they do not contribute in 
Feynman graphs owing to current conservation. Hence we take 
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D’P”(k) = gPi’D’(k) (13.42) 

where 

- 1  

k2[ 1 - ean(k2)] 
D’(k) = (13.43) 

The divergences are now isolated in the function lI(k2j, whose skeleton can be 
obtained from that of the vacuum polarization tensor, given by its second-order 
Feynman graph in Fig. 13.2: 

1 
p - m  p - P - m  

(13.44) 

which is quadratically divergent. By (13.34), the degree of divergence of n(k2j 
should be reduced by 2, and we expect the latter to be logarithmically divergent. But 
(13.44) violates gauge invariance, since k,n@”(k) # 0. 

The violation of gauge invariance originates in the singular nature of the cur- 
rent, in which the electron field and its canonical conjugate are coupled at the same 
point, in a product of the form $a(x)@p(x). By reversing the order of 7 and +, one 
would generate a meaningless term involving S3(0). To avoid the singularity, we 
could replace the factor by qa(x + E)+& - E ) ,  and take the limit E -+ 0 eventually; 
but to make the product gauge-invariant, we have to amend it further and take the 
current to be 

with E -+ 0. This procedure is called the “point-splitting method, “ and will yield a 
gauge-invariant vacLium polarization tensor [3]. 

We use the following shortcut, which yields the correct answer. By (13.34), we 
can calculate n ( k )  through the relation 

(13.46) 
1 

3k2 
e$(k2j = --KIP .(k) 

To ensure n ( 0 j  = 0, we replace this by 

1 
3k2 

eirI(k2) = --[rI;(k) - n;(O)] (13.47) 

The subtraction reduces the quadratic divergence to a logarithmic one. Explicitly, 
we have 

A 
127? m 

In - + R(k2) + O(e;j n(k2) = -- 
1 

(13.48) 
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where 

1 '  
2 r  0 

R(k2)= dxx(1 -x)ln (1 3.49) 

We now define the renormalized charge. The convergent part of II(k2) is de- 
fined by making one subtraction: 

rIc(k2)  = rI(k2) - rI(p2) (13.50) 

where p2 is an arbitrary scale parameter. To second order, we have 

(13.51) 

where 

where 

with normalization 

d ( l ) =  1 

Defining a scale-dependent charge e(p2)  by 

e2(p2) E e$Z(p2) 

we can write 

e2(p2) e2,d - = ( 5) 1 - e2(p2)II,(k2) 

(13.53) 

(13.54) 

(13.55) 

(1 3.56) 

The conventional electronic charge is defined at the value p2 = 0, which corre- 
sponds to a static interaction with zero 4-momentum transfer. The fine-structure 
constant is therefore related to e2(0) = eo2Z(0). In the conventional notation 

z, = Z(0)  (1 3.57) 

we have 
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Defining 

k2 
e2(0)dc(k2) = lim e2(p2)d- 

p2-0 P2 

we can write the photon propagator in the form 

where the right side involves only finite observable quantities. 

( I  3.58) 

(13.59) 

13.4 RUNNING COUPLING CONSTANT 

Using the momentum transfer as the renormalization scale, we have 

e2(k2) 
e@’(k) = -- 

k2 
(13.60) 

That is, to the order considered, the full propagator describes a free photon coupled 
through the scale-dependent charge e(k2), also called the “running coupling con- 
stant” for this reason. We can define a running fine-structure constant 

e2 ( k2) 
a(k2) = 7 

To relate it to the value at k2 = 0. use the relations 

A 
In - -R(k2) 

e2(p2) ei 1 2 d  m 

A 
In - 

e2(0) ei 12712 m 

1 1 
- f -  

1 

1 +- 1 1 _ _ = _  (13.61) 

where we have used the fact R(0) = 0. These are, of cou~se, correct only t o  order e,,:. 
Subtracting one equation from the other, we obtain the following after some re- 
arrangement: 

(13.62) 
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The function R(k2) is real for k2 .< 4m2, below the pair-production threshold. For 
k21m2 negative and large 

(13.63) 

13.5 FULL VERTEX 

We represent the proper ful l  vertex in the form 

with graphical expansion as shown in Fig. 13.3. There are an infinite number of 
skeleton graphs, whose sum is denoted by A:. Current conservation implies 

The second-order skeleton graph gives 

d4k +(PI - k + m ) Y ( p 2 - k + m ) X  (13.66) AP(p2, p I )  = -iea/ - 
( 2 ~ ) ~  k2[(p ,  - k)2 - m2][(p2 - k)2 - m2] 

where the iv devices have been left understood. (To this order there is no difference 
between A and A*.) This integral is both ultraviolet- and infrared-divergent, and we 

. 

Figure 13.3 The proper full vertex I'p and the skeleton A*P.  Note that external lines are omitted, by 
definition. 
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cut it off and high and low momenta. The ultraviolet divergence is logarithmic, and 
can be isolated by subtracting the integral a tp ,  =p2  =po, wherePo is a 4-momentum 
on mass shell: 

ei A 
L=---ln- 

87? m 
(13.67) 

Thus 

where A! is ultraviolet convergent. We will not deal with the “infrared catastrophe.” 
(See the remarks in Section 12.4.) The proper full vertex now takes the form 

where 

1 z, = __ 
1 + L  

(13.69) 

(13.70) 

is the vertex renormalization constant. Like Z,, it must be considered a power series 
in eo2 with divergent coefficients, even though formally it approaches 0 when A -+ 
00. To second order, we can rewrite our results in a suggestive manner: 

(13.71) 

where the convergent part is given by 

r:(p2,pI) = Y P  + M P , ~ P J  (13.72) 

13.6 WARD IDENTITY 

Equivalent forms of the Ward identity are 

d 
rQp. p )  = - IS(p)l-’ 

dP, 
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To prove it, we can use the identity 

1 1 1  1 1 1  
a + b  a a a  a a a  

- + - b - + - b - b - + . . .  1 

to show 

d 1  1 1 1 
Ap, p + A p , - m  p - m  

- lim -[ 
J P p p - m  

1 1 --v- p - m  p - m  
- 

(13.73) 

(13.74) 

(13.75) 

This states that differentiating a free electron propagator is equivalent to the inser- 
tion of a vertex that emits a photon of 4-momentum k = 0. This interpretation comes 
from the form of the currentjp = q-yfi+, which embodies current conservation. The 
proof can then be stated graphically, as shown in Fig. 13.4. The more general 
Ward-Takahashi identity states, in equivalent forms (see Problem 13-1), 

From (13.25) and (13.71), we have 

Figure 13.4 
momentum. 

Graphical proof of the Ward identity. A cross indicates the insertion of a photon of zero 4- 



13.7 Renormalization to Second Order 251 

Thus, the Ward identity states 

z, =z, 
This is verified in our second-order calculations. 

( 1 3.77) 

(13.78) 

13.7 RENORMALIZATION TO SECOND ORDER 

We can summarize our results so far as follows: 

where the quantities with a subscript “c” are finite. We have proved (1 3.79) to sec- 
ond order, but, as we shall show, they are true to all orders. 

Consider the full vertex YP, including improper (one-particle reducible) 
graphs, as shown by the second-order graphical expansion in Fig. 13.5. Omitting 
momentum arguments for simplicity, we can write it in the form 

Rewriting this in terms of finite functions, we have 

(13.81) 

The factor Z2% goes toward the renormalization of other vertices and/or external 
lines. The factor in brackets is the renormalized charge: 

(13.82) 

It is important to note that the renormalized charge e depends only on the pho- 
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Figure 13.5 The full vertex can be expressed as a product of full proper vertex and full propagators. 

ton renormalization constant Z,, not on the renormalization of the electron propaga- 
tor or the vertex. This is because Z, = Z,, as guaranteed by the Ward identity. Be- 
cause of this fact, Z3 is universal. If we bring in other charged fields into the system, 
such as nucleons or T mesons, then Z3 will acquire contribution from all fields 
through vacuum polarization, but it will be the common charge renormalization 
constant for all fields. 

13.8 RENORMALIZATION TO ALL ORDERS 

We now describe the renormalization program of Dyson and Ward [4 ] ,  following a 
version due to Gell-Mann and Low 151. The first item of business is to specify how 
SE and vertex parts are to be reinserted into a skeleton graph. Consider first the ver- 
tex part. We regard the skeleton A9 as a functional of the free electron propagator S, 
the free photon propagator D, and the free vertex y: 

Sum of skeleton vertex graphs 3 AE[S, D, y ; e,, p ,  p ’ ]  (1 3.83) 

It also depends on the bare charge eo and external momenta p ,  p ‘  as parameters. 
With this notation, we can write 
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That is, A, is obtainable from A,* by inserting the full propagators S’, D’ in place 
of the free propagators S,D and full vertex in place of the free vertex y: The skele- 
ton A:[S, D, y; eo, p ,  p ’ ]  is only logarithmically divergent, but A, is much more di- 
vergent, due to the insertions. 

For the electron self-energy, there is an ambiguity known as an “overlapping di- 
vergence, “ as illustrated in Fig. 13.6. It is not clear whether A should be regarded as 
an insertion into B, or vice versa. We avoid this problem by using the Ward-Taka- 
hashi identity to expresses S’ in terms of the vertex: 

The right-hand side is actually independent ofp,, but for definiteness we take po to 
be a 4-momentum on mass shell. Mass renormalization consists of the statement 

( I  3.86) 

The photon self-energy also contains overlapping divergences. To circumvent 
them, we mimic the Ward identity by defining an auxiliary function Wp(k) by dif- 
ferentiating the inverse photon propagator: 

Using (1 3.34), we can write 

W,(k) = 2ik, - ik,T(k) 

where 

kp d 
k2 dk, 

T(k) = - - [k2egII(k)] 

(13.87) 

(13.88) 

(13.89) 

We then define the skeleton of T, denoted by P, by removing all SE, vertex, as well 
as W, insertions. The skeleton is logarithmically divergent, and we can again isolate 
the divergence through one subtraction. To recover D’ from W,, use the formula 

Figure 13.6 An overlapping divergence. 
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1 

0 
[iD'(k)]-' =I dx kPW,(xk) (13.90) 

An ambiguity occurs in the definition of the skeleton of T, because the external 
momentum k can be routed through a graph in more than one way. The difficulty 
occurs in graphs of W, containing at least three closed electron loops, and are there- 
fore at least of order eb4, but can be overcome by the proper convention for momen- 
tum routing [6]. 

Divergences in perturbation theory can be absorbed into renormalized coupling 
constants because the effective coupling constant at one energy scale can be related 
to that at any other energy scale. This property depends on the scaling properties the 
insertions, which lie at the heart of renormalizability. 

The graphs in A* are all of even order, and a graph of order 2n contains factors 
of e,, S, D, and y to various powers, as indicated schematically below: 

A:,, - eFS2nDny?n+' (1 3.91) 

Under the scale transformation 

Y - a Y  
D + b D  

S + a-'S 

where a and b are arbitrary number, we have 

A;,, -+ ubnATn 

(13.92) 

(13.93) 

Therefore, we have the scaling law 

aA;Jl[S, D, y; eo, p ,  p'] = A;[a-'S, bD, a y; b-'e,, p ,  p ' ]  (13.94) 

For the functional P, a graph of order 2n has the structure 

TZn - e ~ S 2 n + ' ~ u ( 2 i k , ) ' ~ u  (13.95) 

where u is an integer that receives an additive contribution 1 from each differentia- 
tion of an electron line, and 0 from that of a photon line. Under the scale transfor- 
mation (13.92) supplemented by 2ik, -+ 2ik,/b, we obtain 

TZ,, + bn-lT2,* (13.96) 

Therefore a second scaling law is 

b-'T*[S, D, y, 2ik,; eo, k] = r*[u-IS, bD, ay, b-'2ik,; b-'eo, k] (13.97) 
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The functions S’, D’, and satisfy the following coupled functional equations: 

rxP, P’) = yU + Au*[S’, D’, r; eo, p ,  $1 

[s’@)l-’ = [S’(Po)l-l + (P -PO)”rJP. Po) 

W, = 2ik, + ikuT*[S‘, D‘, r, K eo, k] 

1 

0 
[D‘(k)]-‘ = I dx k”WJxk) ( 1 3.98) 

The solutions to these equations are divergent, because the functionals A* and T* 
have skeletal divergences. However, they are only logarithmically divergent, and can 
be made finite through one subtraction. Using the abbreviations A*@, p’)  and P ( k )  
for the functionals, we define two finite functionals by1 

where p is an arbitrary reference momentum andp, is the momentum of an electron 
on mass shell, with p i  = m2. The subscript jbO = m instructs us to commute jbo all the 
way to the right, and then replace it by m. Thus 

where L is a power series in ez with logarithmically divergent coefficients. The same 
is true of T*(p).  

By replacing A*, T* respectively by x*, y*, we have, from (13.98), a set of fi- 
nite functional equations. The renormalized functions$ B, T, $are defined as solu- 
tions to these finite equations, with e, replaced by an appropriately defined renor- 
malized charge e(p) :  

We fix the normalization of s”l by the condition 

‘For simplicity, we have chosen to subtract r,, at a mass-shell rnornentump,. Actually the subtrac- 
tion can be made at any momentum, whose invariant mass would then serve as an extra renormalization 
parameter in addition to /.L. 
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Then we have 

[S”’(p)l-’ = * - m + ( P  - P o ) ” K k  Po) (1  3.103) 

with the property 

[ ( B  - m)S”’(P)l,,o = 1 (1 3.104) 

The normalization of 6 is such that 

To complete the renormalization scheme, we show that the renormalized quan- 
tities are proportional to the unrenormalized ones. Note that T, can be rewritten as 
follows: 

1 r, = yU + A,*-L y,, = (1 - L )  y,, + -A:) ( I - L  
1 

y,, + ~ A s [ g  6, T; e, p ,  p ’ ]  (13.106) 

where 

Z ’ = I - L  ( 1 3.1 07) 

This shows that the subtraction is equivalent to rescaling. Similarly, we can write 

E, = 2ik, + ikdT*(k) - ~ ( p ) ]  

where 

Z(p2) = I - 4 P ( p )  

Using the scaling properties (1 3.94) and (1 3.99, we obtain 

(1 3.109) 

(13.1 10) 
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Thus, the system of equations (13.101) can be reduced to (13.98) by putting 

1 

Z’ 
r=--T 

(13.1 11) 

This explicitly shows the connection between the unrenormalized and renormalized 
quantities. 

The system of functional equations is a formal property of perturbation expan- 
sions. There is no guarantee that the expansions converge, or that the functionals ac- 
tually exist mathematically. Our best indication that the process makes some sense 
is still the good agreement between perturbation theory and experiments. 

13.9 CALLAN-SYMANZIK EQUATION 

Under a change of scale, the running coupling constant changes according to 

e2(p2) = eiZ(p2) (13.112) 

where the renormalization constant Z(p2) depends on the cutoff A, the electron 
mass m, and the bare coupling ei = e2(A2). It can depend only on the ratios 
p2/A2and m2/A2, because it is dimensionless. In a more general discussion, we 
would treat the mass as another running coupling constant, but here we shall assume 
p2 %=- m2 and set m = 0. Thus we rewrite (13.112) in the form 

a(p2) = a(A2)Z -, a(h2) (S ) 
or, putting x = p2 and y = A2, 

(13.1 13) 

(13.114) 

Differentiating both sides with respect to x at fixed y ,  and then setting y = x, we ob- 
tain 
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where 

(13.115) 

( 1 3.1 1 6) 

The function P(a) is the “P function, “ also called the Gell-Mann-Low function [7]. 
It generates scale transformations called renormalization-group transformations. 
The P function of QED to lowest order in perturbation theory can be obtained from 
(1 3.63): 

(13.1 17) 

Since this is positive, the coupling grows at high energies, and consequently we can- 
not investigate the high-energy behavior of QED using perturbation theory. In quan- 
tum chromodynamics, on the other hand, the P function is negative at small cou- 
pling, and thus the coupling vanishes at high energies-a behavior known as 
asymptotic freedom. 

An important property of the P function is that it depends only on a. We can 
obtain the running coupling constant a(x) by integrating (13.1 15) to obtain 

(13.118) 

where a2 = a(x2), aI  = a(x,). This equation expresses the essence of renormaliza- 
tion: A dimensionless coupling constant at one energy scale can be related to that at 
another energy scale, without reference to any intrinsic scale. This means that there 
is nothing special about the cutoff; it is just a scale like any other. Where P(a) = 0, 
the value of a is at a fixed point, where it remains invariant under scale changes. 
These fixed points define possible quantum field theories, and are therefore physi- 
cally interesting. We shall take up this subject in Chapter 16. 

We can abstract from QED a general property of renormalizable field theories. 
Let G‘(p; A, go) be a renormalized correlation function, which is generally diver- 
gent, and depends on a high-momentum cutoff A. The external momenta are collec- 
tively denoted by p ,  and go is a dimensionless coupling constant at the energy scale 
A. “Renormalizability” means that 

(1 3.1 19) 



13.10 Triviality 259 

where g is the renormalized coupling at the energy scale p. The renormalized corre- 
lation function G is assumed to be a finite function of its arguments. The cutoff de- 
pendence is isolated in the dimensionless renormalization constant Z. We assume 
that p andp  are much greater than the particle masses, which have been neglected. 
Since the left side of the equation is independent of p, so must be the right side. 
Thus, we can write 

Carrying out the differentiation, we obtain 

(13.120) 

(13.121) 

where partial derivatives are carried out with all other arguments held fixed. We 
rewrite this in the following form, which is called the Callan-Symanzik equation 
PI: 

where 

(1 3.122) 

(13.123) 

The first equation gives the P function, while the second is called “anomalous di- 
mension.” 

13.10 TRIVIALITY 

Landau [9] noted that, by calculating the renormalized charge using a plausible par- 
tial summation of Feynman graphs, one arrives at the conclusion that it vanishes in 
the limit of infinite cutoff. He concluded that this absurd result invalidates quantum 
field theory, which should be “buried with due honors.” 

We can derive Landau’s result as follows. Substituting (1 3.1 17) into (1 3.1 18), 
with a2 = &(A2) and aI  = a(k2), we obtain 

1 A2 +- In - 
a(p2) a(A2) 247? p2 

1 -- -- 1 
(13.124) 
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This is essentially (1 3.6 l), though it pretends to be more accurate. Taken seriously, 
this implies that, if (.(A2) 2 0, then 

(13.125) 

This is referred to as “triviality.” 
Similar perturbative calculations also point to triviality for scalar qb4 theory. 

(See Problem 13.4.) The conclusion for 44 theory is supported by numerical calcu- 
lations, and can be established more rigorously, as we shall show in Chapter 17. The 
result for QED is plausible although not proven; but even if proven, it hardly invali- 
dates quantum field theory. 

To view this alarming result in proper light, we have to understand what renor- 
malization is really about, and we shall explain that in Chapter 17. In the meantime, 
we offer the following observations: 

Triviality has no impact on practical applications, because the renormalized 
charge is insensitive to A, as it goes like (In A)-’. One can therefore choose a 
finite value of A to fit experiments. 
By accepting a finite A, however, one seems to negate renormalization, 
which says that we can hold the renormalized charge fixed at an arbitrary 
value, and send the cutoff to infinity. We shall see in Chapter 16 that this is 
possible only if the theory is based on an “ultraviolet fixed point,” as in one 
with asymptotic freedom. It is not correct for a theory governed by an “in- 
frared fixed-point,” as is the case for 44 theory. In the latter case, the renor- 
malized charge assumes the fixed-point value. 
Although the mathematical QED appears to be an “infrared”-type theory; 
the physical QED may not be, for it is embedded in the standard model, 
which is, in turn, embedded in some grand, yet unknown, unified theory. We 
offer a scenario for this in Section 16.9. 

PROBLEMS 

13.1 Ward-Takahashi Identity 

(a) Show that the Heisenberg operators i,b and 7 satisfy the equations of motion 

( W J p  - mo)* = eoYAp* 
- 
t,b-iy?,, - mo) = eoqpA, 

and from these show that the currentj, = $p$, as a Heisenberg operator, is for- 
mally conserved: d p j p  = 0. 

(b) Consider the quantity 

W X l ,  XbY)  = (OIT t ,b~l)ax*l~~gl)lo) 
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where the operators are in the Heisenberg picture. Because of translational invari- 
ance, the Fourier transform of Vp can be written in the form 

Obtain b as an expansion in Feynman graphs, and show that 

where P is the full vertex. 

(c) Using current conservation, show that 

This is the spatial form of the Ward-Takahashi identity. Take the Fourier trans- 
form to obtain the form in momentum space: 

13.2 Corrections to Coulomb’s Law Consider the scattering of an electron from an infi- 
nitely heavy point charged, with 4-momentum transfer kp = (0, k). The electrostatic po- 
tential V(r)  is the Fourier transform of the scattering amplitude with respect to k. 

(a) Show that the potential is related to the running coupling constant a(k2): 

(b) The deviation from Coulomb’s law may be attributed to the fact that the electron 
is a charge distribution. Show that the charge density is given by 

(c) Evaluate p(r) for small r, and compare the result with the Coulomb potential. 

13.3 Landau Ghost According to (l3.60), the full photon propagator is related to the run- 
ning coupling constant through e,@’(k) = - 4 ~ a ( k * ) l k ~ .  Show that the Landau formula 
(13.124) leads to 

There is a pole other than the photon pole at k2 = 0. Show that it  cannot correspond to a 
physical particle because the residue has the wrong sign. Estimate its location in phys- 
ical terms. This is called the “Landau ghost,” a curiosity that belongs to the same cate- 
gory as tachyons and Maxwell demons. 



262 Perturbative Renormalization 

13.4 Coupling-Constant Renormalization Consider scalar q'~~ theory. Ignore mass 
renormalization and set the bare mass to zero. The proper vertex G is given to second 
order by the following Feynman graphs: 

(a) Show that 

where A is the cutoff and 

d4k 1 1 A2 =-In--- I@> = -i\ __ 
(2,rr)4 (k2 + i q ) [ ( k + ~ ) ~  + iq] 16T? -p2 + iq 

(b) Define the renormalized coupling constant at scale /.L by A(Alp, A,) = G@,; A, An) 
with all p f = -p2. Show that 

Use the notation A(p) = A(A/p, Ao), An = A(A), rewrite this as 

3 h  +--- In - 1 -- _ -  1 

N-4 A(A) 1 6 ~ 3  P 

which is valid to second order. This exhibits triviality; for the theory to be physi- 
cal, A(A) 2 0. Hence A(p) -+ 0 when h -+ c ~ .  

Since the proton has charge whereas the 
neutron is neutral, one might expect the proton to be heavier because of the electro- 
magnetic self-energy; but in fact, the opposite is true. To understand this, one must in- 
clude the magnetic self-energy due to the anomalous magnetic moment. This can be 
done phenomenologically using the Pauli term described in Problem 12.3: 

13.5 Neutron-Proton Mass Difference [ lo]  

where +o = (e1/2M is the nuclear magneton, with A4 the nucleon mass. The self-energy 
now is the sum of the graphs shown in the accompanying figure. 
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(a) Show that, for large momentum cutoff A, the self-mass 6M is given by 

M 257 M 2 r  

where a 
(b) The experimental value of the neutron-proton mass difference is approximately 

1.26 MeV, or 

+ is the fine-structure constant. 

a - 1.23- 
AM 
M 2 r  
- -  

Show that this can be fit with a value AlM = 1, which is physically reasonable. 
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CHAPTER FOURTEEN 

Path Integrals 

~ -- 

14.1 PATH INTEGRALS IN QUANTUM MECHANICS 

Quantum mechanics is based on the commutation relation between the momentum 
operator pop and the coordinate operator qop at equal times, say, t = 0: 

[POP> sop1 = -i (14.1) 

In the Heisenberg picture, the coordinate operator at time t is given by 

q OP ( t )  = &HIq OP (14.2) 

where H i s  the Hamiltonian operator. If 14') denotes the eigenstate of qop with eigen- 
value q' ,  then the eigenstate of qOD(t') with eigenvalue q' is given by 

Iq', t ' )  = e'H"lq') (14.3) 

The transition amplitude defined by 

contains a complete description of the quantum-mechanical system. Through the 
Feynman path integral [ 11, we can express this amplitude in terms of the classical 
Lagrangian, and thus obtain an alternative formulation of quantum mechanics that 
makes no reference to a Hiibert space. 

To derive the path-integral representation, we break up the time interval t" - t' 
into N equal pieces, and use the identity 

(14.5) 

264 
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To simplify the notation, let 

Then we can write 

,+H(r”-r’) = T N  

(14.6) 

( I  4.7) 

with the understanding that N + m. Now insert complete sets of coordinate eigen- 
states between factors of T to write 

where 

(14.9) 

and 

Next replace the matrix element (q ’ l j l q )  by the mixed matrix element (p(Tlq), by in- 
serting complete sets of momentum eigenstates in appropriate places: 

where 

( 14.12) 

A classical Hamiltonian H(P, q )  can be defined through the relation 

To obtain H(p, q) ,  we pull all the pop occurring in H to the far left, commuting 
across the qop if necessary, and then replace them by the number p .  Writing 
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(14.14) 

we have 

The time evolution over the interval At = A is now effected by T(p, q), a c-number. 
The crucial step toward obtaining the final result is to make the replacement 

which is exact in the limit A -+ 0. The purpose is to make T(p, q j  a unitary transfor- 
mation over the finite time interval A. Putting (plq) = exp(ipq), we obtain 

We can think of b,, qj} as successive samplings of a path in phase space at 
equal time intervals A, and the whole path ( p ( t ) ,  q(z)} is covered when A --+ 0. In 
that limit (qi-, - qJ/A becomes the velocity q(t), and the integrals over qi and pi be- 
come functional integrals: 

where the limits of integration denote the endpoint 

The measures of the functional integration are given by 

N- I 

I =  I 
Dq = n dqi 

( 14.1 9)  

(14.20) 

which, however, do not have well-defined limits when A -+ 0. For this reason, we 
retain the discrete time steps for all intermediate computations, and take the desired 
limit only in the final answer. 

Assume that the classical Hamiltonian has the form 
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(14.21) 

We can then perform the momentum integrations in (14.18) to obtain the final result 

(14.22) 

where 
and t": 

is a normalization constant, S is the classical action between the times t' 

(14.23) 

and L(q, q )  is the classical Lagrangian: 

L(q, q )  = f m q 2  - V(4) (14.24) 

The representation (14.22) is the Feynman path integral. It gives the transition am- 
plitude as a "sum over histories"-a sum over all possible paths leading from the 
initial state to the final state, weighted by i times the classical action of the path. An 
illustration of such a path is shown in Fig. 14.1. In the limit A -+ 0, the limiting 
paths are generally discontinuous. 

'0 q N  ' I  

Coordinate 

Figure 14.1 
dently over all possible values. 

The coordinates q,(i = 1,  , . . , N - 1) that make up the path are to be integrated indepen- 
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Consider the following matrix element of coordinate operators: 

I f  tz > t l ,  we can proceed with the same treatment as before. The only difference is 
that, when complete sets of coordinate eigenstates are inserted, we will pick up a 
factor of the eigenvalue 4(tz)4(t,). If t2 < t , ,  on the other hand, the procedure fails to 
go through. We can state the following general result: 

where T is the time-ordering operator. If we try to express a matrix element of field 
operators that are not chronologically ordered, we would be faced with multivalued 
paths, and new methods would be needed to render the paths well-defined. 

14.2 IMAGINARY TIME 

The time in the transition amplitudes can be analytically continued to pure imagi- 
nary values. In this domain the integrand of the path integral is real instead of pure 
imaginary, and this makes it convenient for some computations. The pure-imagi- 
nary time is called “Euclidean time,” because it converts Minkowskian space-time 
to a 4-dimensional Euclidean space. 

Let us go back to (14.4) at the beginning, and insert a complete set of energy 
eigenstates: 

At) = (q”, t ”Jq ’ ,  t’) = (q”leiHLJg’) 

where t = t“ - t’, and the nth eigenstate defined by 

(14.27) 

(14.28) 

The energy spectrum is bounded from below by assumption. We can therefore ana- 
lytically continuef(t) to negative imaginary time 

t = - i T  ( T > O )  (14.29) 

The result may be written 



14.3 Path Integrals in Quantum Field Theory 269 

f(--iT) = 1 pne+‘ (14.30) 
n 

where 

where Qn(q) is the wave function of the nth eigenstate. The oscillatory terms are 
now replaced by damped exponentials. For example, we can extract the energy 
eigenvalues one by one from the asymptotic behavior 

The Feynman path integral for imaginary times can be obtained by repeating 
the derivation of (14.22) using imaginary time intervals, with the result 

(14.33) 

This is an integral over paths q ( T )  in imaginary time, with given endpoints q”,q’. 
The “Euclidean action” S, is defined as 

(14.34) 

Note that the Hamiltonian, rather than the Lagrangian, appears in the integrand. The 
ground-state wave function can be related to the path integral as follows: 

where 

(14.36) 

14.3 PATH INTEGRALS IN QUANTUM FIELD THEORY 

Consider a scalar field 4(x) in D spatial dimensions in the Schrodinger picture, with 
Hamiltonian density 

H ( * x j ,  4(x))= 47?(x)+ tIV4(x)12+ V(&X)) (14.37) 
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We enclose the system in a large periodic box, and introduce a high-momentum cut- 
off A, so that the number of degrees of freedom is finite. The path-integral formula- 
tion can be taken over from that in quantum mechanics. We can view +(x) as a co- 
ordinate labeled by x, and denote the eigenstate of &x) by I@}. The eigenstate of 
the Heisenberg operator 4(x, t )  is then 

14‘, t ‘ )  = eiH“j4’) (14.38) 

The transition amplitude between two such states is 

From our earlier discussion, we can write down the path-integral representation 

where the limits on the D 4  integration refer to the endpoint condition 

The Feynman path integral is obtained by carrying out the DT integration: 

where S is the classical action: 

1” 

(1 4.42) 

and L is the classical Lagrangian density: 

L(x, I )  = 4 P + ( X ,  t)r3,#(x, t )  - V(qj(X, t))  (14.43) 

It is straightforward to generalize (14.41) to 

(4”? t ” l ~ 4 0 p ( X l >  t l ) .  . ‘ I,)l4’, t‘) 

(14.44) 
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14.4 EUCLIDEAN SPACE-TIME 
~~ 

As in quantum mechanics, we can use imaginary time T = it. Together with the spa- 
tial coordinates x, we have Euclidean space-time coordinates xE = (x, T )  of dimen- 
sion d = D + 1. The generalized transition amplitude becomes 

4” 

6 
= N j ,  D4 &x,,  7 

where SE denotes the Euclidean action: 

(1 4.45) 

The path integral extends over all such fields with the specified endpoints. Note that 
there is no longer a distinction between upper and lower indices on a‘. For infinite 
time interval, 7’‘ - T’ + 30, we write 

(14.47) 

It is assumed that the initial and final constraints become irrelevant in this limit. 

space-time x = (x, xo) and Euclidean space-time xE = (x, xd): 
For future reference, we summarize the relation between Minkowskian 

xg = -1xd 

ddx = -iddxE 

(14.48) 

The relation between Minkowskian momentum k and Euclidean momentum kE is 
defined such that such that kAd = kdc,: 

kg = ikd 

ddk = iddkE 
d 

(14.49) 

We will omit the subscript “E” on Euclidean quantities when the context makes it 
unnecessary. 
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14.5 VACUUM AMPLITUDES 

We have obtained path integrals for transition amplitudes between field eigenstates. 
For practical calculations, however, it is more convenient to work with amplitudes 
taken between vacuum states. To derive path integrals for the latter, we first couple 
the field to an external source J(x, t ) ,  which is switched on and off adiabatically: 

(14.50) 

The classical Lagrangian density becomes 

The transition amplitude in the presence of external field is denoted by 

For simplicity we have written x = (x, t) .  By taking the functional derivative of this 
amplitude with respect to J(x), we insert a factor -i&) in the integrand. Thus 

We now show that the vacuum correlation function can be obtained by letting 
t '+ --tc, andt" -+ 00. 

Assume for simplicity that the external source is present only during a finite 
but large time interval T: 

J(x) = 0 for It/ > T (14.54) 

Eventually, we shall take the limit T + 00. Consider the transition amplitude (42, 
t21$1r t l)J for 2,  before the source was turned on, and t2 after the source was turned 
off. Assuming that the eigenstates of the field form a complete set at any time t ,  we 
have 

Thus, for t ,  < -T, t2 > T, we can write 

The amplitudes (&, t2/4, T )  and (+', -Tl141, ti) pertain to source-free time inter- 
vals, and may be calculated as in the following example: 
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where we have inserted a complete set of energy eigenstates, with vacuum state sat- 
isfying q 0 )  = 0. To pick it out, we go to the limit of large imaginary t2 - 7: so that 
contributions from all other states are damped out: 

(42, tzI4, T )  /- (4210) (014) (14.57) 

In the original amplitude, then, let us make t l  -+ im, t2 --$ -zoo, T+ im: 

The integral on the right side can be written as 

where HJ is the total Hamiltonian in the presence of source and (O+lO-), is the vacu- 
um to vacuum amplitude in the presence of source discussed in Section 10.4. We 
can now write the following for this amplitude: 

(14.60) 

In taking the limit of large imaginary time, the real part of the time is kept arbitrary. 
All this does is make sure that oscillating phases damp out. Using (14.52) to rewrite 
the right side above in terms of path integrals, we have 

(14.61) 

where (4 4) = Jddd(x)&x).  Taking functional derivatives of both sides, we obtain 

On the other hand, we have seen in Section 10.4 that 
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Therefore 

According to the linked-cluster theorem (10.45), iW[J ]  = In (0’10-), is the generat- 
ing functional of connected correlation functions. We now have the representation 

The last term is irrelevant, since it is independent of J(x).  

14.6 STATISTICAL MECHANICS 

As (14.64) shows, there is a similarity between a vacuum correlation function in 
path-integral form and an ensemble average in statistical mechanics. In fact, in Eu- 
clidean space-time the generating functional (14.65) is just the logarithm of the par- 
tition function in the presence of an external field: 

where S[4] is the Euclidean action (14.47), with subscript “E” suppressed, and 

is an integral over Euclidean space. In statistical mechanics, we would make the 
identification 

where E[+] is the energy functional of a classical field +(x) and ,B is the inverse 
temperature. The thermodynamic free-energy density is proportional to the generat- 
ing functional: 

1 In Z[J]  f [ J ]  = -- lim ~ pf- R 
(14.68) 

where R is the volume of the d-dimensional space. Like the generating functional, 
it is determined only up to an additive constant. 

We see that (14.66) gives on one hand the generating functional for a quantum 
field theory in d space-time dimensions, and on the other hand the partition func- 
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tion for a classical field in d spatial dimensions. This is a special case of an equiva- 
lence between quantum field theory and quantum statistical mechanics, based on a 
correspondence between imaginary time and inverse temperature: 

, p H  f---$ e-PH 

translation operator density matrix (14.69) 

On the left, the Hamiltonian H appears as the generator of the Lie group of time 
translations. On the right, the same operator appears in the Boltzmann weight in a 
statistical ensemble. The deeper reason for this correspondence remains one of the 
great mysteries in physics. 

For practical use of the correspondence, consider a quantum field at absolute 
temperature p', in d - 1 spatial dimensions. Denote the field by 4(x, T) ,  where 
(x, T )  denotes Euclidean space-time coordinates. We use field eigenstates I$) as a 
basis to calculate the partition function (with no external field): 

where $(x) denotes a time-independent field. The matrix element in the integrand 
above is a transition amplitude with the same initial and final states. We can write it 
as a path integral in Euclidean time: 

where H(+(X, 7)) is the Hamiltonian density and Cn is the volume of the (d - 1)-di- 
mensional spatial box. To obtain the partition function, we integrate over the initial 
field $(x). This removes the restrictions to particular initial and final fields, but the 
initial field is still constraint to be equal to the final field. Thus 

In the limit R -+ m, we recognize this as the generating functional of a Euclidean 
quantum field theory (at absolute zero) in a flat box of thickness p ,  with periodic 
boundary conditions required along the short edge. Along the long edges, which 
eventually tend to infinite length, we normally impose periodic boundary condi- 
tions anyway. The box is depicted in Fig. 14.2. In the limit of infinite temperatures 
( p  -+ 0) the volume flattens to a box in d - 1 dimensions, and we recover the classi- 
cal system mentioned earlier. In the limit of absolute zero ( p  -+ w) we have a quan- 
tum field theory in d Euclidean dimensions. 

In statistical mechanics, there is the Ginsburg-Landau themy, in which the par- 
tition function has the form 
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Figure 14.2 A flat box in d dimensions, of thickness p, contains a quantum field with periodic bound- 
ary conditions. The partition function in path-integral form describes either a system of space-time di- 
mension (d -  1 )  x p at absolute zero, or a system of spatial dimension (d  - 1 )  at temperature p I. 

where $(x) is a classical field enclosed in a &dimensional volume. One imagines 
that this was obtained by summing over all variables in a microscopic partition sum, 
while keeping a certain “order parameter” 4 ( x )  fixed. This order parameter charac- 
terizes phase transitions. It vanishes at the critical point of a second-order phase 
transition, and in the neighborhood of such a point one can expand the energy func- 
tional in powers of the order parameter: 

(14.74) 

where the parameter a, r ,  u, . . . are phenomenological quantities that may depend 
on the temperature. The functional E[4] is called the “Ginsburg-Landau free ener- 
gy.” In this fashion, the theory gives a macroscopic description of phase transitions, 
yielding phase diagrams and critical exponents. We see that the Ginsburg-Landau 
theory also gives a quantum field theory. The significance of the critical point will 
be discuss in more detail in Chapter 16. 

14.7 GAUSSIAN INTEGRALS 

When it comes to actually performing path integrations, there is only one path inte- 
gral we can do, and that is the Gaussian integral. It is based on the elementary for- 
mula 

(14.75) 

which can be generalized to 
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(14.76) 

Now consider a product of II such integrals, and regard the integration variables 
u l ,  . . . u,, as components of a vector. Then we can write 

where K is a real symmetric matrix, and J a  vector with real components: 

The measure Du is defined by 

Consider now an average with respect to a Gaussian weight: 

(14.77) 

(14.78) 

(1 4.79) 

(14.80) 

Iffcan be expanded in powers of its arguments, all we need is the average of a prod- 
uct of the u values. To calculate the latter, introduce an “external field” J ,  and con- 
sider 

The average is obtained by setting J ,  = 0. Then, we get a nonzero answer only if m 
is even: 

(14.82) 
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On carrying out the differentiations, we get a sum of terms, but only those free of J 
terms can survive. Thus, the final result will be the sum of all possible matrix ele- 
ments +(K-')py, in which {p, y }  is a distinct pairing of indices among the set 
{ a I ,  . . . , a,}. For a symmetric matrix K, we can omit the factor t in +(K-l)pF and 
count the pairs (p, y }  and { y, p }  as the same. Defining a contraction between 
4 r I ,  u,2 as 

u,Iu,2 = (K-1)qa2 
U 

we have, once again, Wick's theorem for averages: 

(14.83) 

( U a I  . . . Uom) = (u,Iu,2u,3u,4 ' . .) + . . . 
u 

(sum of all possible pairings) (14.84) 

To generalize the preceding calculations to functional integrals, we need to go 
to the limit where the vector components u, become a field variable &), with the 
discrete label CY replaced by the continuous coordinate x. Correspondingly, the ma- 
trix element Kmp becomes a continuous function K(x, y) .  We can use Dirac notation 
by regarding +(x) as the coordinate representative of a vector in a Hilbert space, and 
K(x, y )  as the coordinate representative of an operator on that space. The basis vec- 
tors ix) satisfy 

I ddxlx) (xi = 1 (14.85) 

We write 

(14.86) 

and 

The Gaussian functional integral is 

(14.88) 

where the measure D 4  is defined only up to a multiplicative constant. The determi- 
nant det K can be calculated through the relation 
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( 1 4.89) In det K = T r  In K 

which is easily proved for a finite matrix by going the representation in which K is 
diagonal. 

As an example, consider the kinetic operator of a free field in Euclidean space 

K = - # + m 2  (14.90) 

where 8 = Cdi_ ,a2 / ix~ .  The matrix element is given by 

(14.91) 

We introduce momentum basis lk) through 

(xjk) = eik-x (14.92) 

with 

The matrix is diagonal in the momentum representation: 

= (27+'Sd(p - k)(k2 + m2) 

Thus 

(plK-'(k) = ( 2 ~ ) ~ S ~ ( p  - 
1 

k, (kz + m2) 

(14.93) 

(14.94) 

(14.95) 

The determinant is given through 

In det K = Tr In K = I *In(k2 + m2) (14.96) 
(2 ,.)d 

This is divergent, and requires an upper cutoff. 
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14.8 PERTURBATION THEORY 

Consider a scalar field 4(x)  in d-dimensional Euclidean space-time, with Euclid- 
ean action 

S[4l= S0[41 +S,[+l (14.97) 

which consists of a free and an interaction term: 

We can rewrite, in a matrix notation, 

Sd41 = +(4> K 4 )  

where K = -$ + m2. In the Fourier representation 

we have 

(14.98) 

(14.99) 

(14.100) 

(14.101) 

(14.102) 

The generating functional for connected correlation functions is 

WJI = -ti In Z [ a  (14.104) 

The unperturbed system is described by the free partition function 

'We temporarily restore h for scaling purposes, and as a convenient device to show the classical 
limit. 
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Using (14.77), we obtain 

Z(”)[JI = ~[det(hA,)]1’2e(”E~/” (14.106) 

where is a normalization constant and AE is the Euclidean propagator: 

(1 4.107) 

The correlation functions in the unperturbed system can be calculated using Wick’s 
theorem: 

(4(xl) . . . NX,))~ = sum of all possible pairings (14.108) 

where the average ( )o is taken with respect to S0[4],  and “pairing” means a group- 
ing of all members of the set { 4(xl), . . . , &x,)} into distinct pairs, with each pair 
contributing a factor 

We now outline different methods to get a perturbation expansion for the parti- 
tion function. The most straightforward is an expansion in powers of Si[4]: 

The quantity inside the average ( )” can be expanded as an infinite series in &x), 
and the average calculated using Wick’s theorem. This gives an expansion in terms 
of Feynman graphs for Z[Jl, and we get a sum of connected graphs when we calcu- 
late In Z[Jl. The constant 2(”)[0] then becomes an irrelevant additive constant. 

An alternative method is to use the “cumulant expansion.” In its generic form, 
this gives an expansion of In (8) in terms of the moments (x”), and works for any 
definition of the average ( ). It is Straightforward to write down the expansion: 
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1 1 
= (x) + ~ [ ( x ' )  - (x)'] + ;[(x3) - 3 ( ~ )  (x') + (x)~] + . . . (14.1 11) 

To apply this to the partition function, we write 

Thus 

In z[Jl = In ZO)[O] + ( A )  + - (A):] + . . . (14.1 13) 

where A = -( l/h){Sl[+] + ( J  +)}. This will generate connected Feynman graphs for 
correlation functions. 

Another method is to regard the interaction Hamiltonian as a function of &x), 
and write 

even though it may depend on c?~(x). The partition function may be expanded in 
powers of S,[+], and further developed as follows: 

or 

This is an alternative starting point for the Feynman graph expansion2 

(14.1 16) 

2For an explicit example, see Huang [2] 
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14.9 THE LOOP EXPANSION 

Connected Feynman graphs can be classified according to the number of closed 
loops in the graph. For any connected Feynman graph, let 

n = number of vertices 

I = number of internal lines 

E = number of external lines (14.117) 

Each internal line carries an internal momentum that is integrated over. Not all the 
internal momenta are independent, on account of momentum conservation, but each 
closed loop can be associated with a loop momentum, and thus the number of loops 
is equal to the number of independent internal momenta. To find this number, we 
note that each vertex imposes one condition of momentum conservation, and there 
is one condition of overall momentum conservation. Thus, the number of indepen- 
dent internal momentum is 

e= I -  n+ 1 (14.1 18) 

which is equal to the number of loops. 
Now consider the power of ti multiplying a Feynman graph. We can find this 

number by examination of (14.1 16). Each vertex comes with a factor ti-', since it 
comes from a factor A-' V. Each internal line results from an application of A6/U 
twice to Z0[d = C exp[(J AEJ)/2fi] to bring down a factor ti-'AE. Thus it comes with 
a factor A. Thus, when external lines are ignored, a connected graph is proportional 
to 

j p n + i  = tic ( 14.1 19) 

where a term +1 is added to the exponent because the generating functional is A In 
2. In the classical limit A + 0, we have only tree graphs-graphs with no closed 
loops. The first quantum correction is given by one-loop graphs, and so forth. 

As A + 0, we can calculate the partition hnction 

through a saddle-point expansion. Suppose that the exponent in the integrand has an 
extremum at 4 = &: 
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(14.121) 

This is a saddle point, on the assumption that S[4] is analytic, and therefore cannot 
have an absolute maximum or minimum. To carry this out, it is convenient to rede- 
fine the variable of integration as 4 + c$o, and write 

Then 

(14.123) 

with 

Thus we have an expansion in powers of ti, and therefore in the number of loops: 

1 1 
A 

In Z [ a =  -- (S[$O] + (4 &)} - T l n  det Q + O(A) (14.125) 

where we have dropped a J-independent constant. It should be noted that c$~ and Q 
are functionals of J .  In this expansion, the first term comes from tree graphs, the 
second term originates from a one-loop graph, and the O(h) term represents two or 
more loop contributions. Applications of this formula can be found in Section 15.7. 

14.10 BOSON AND FERMION LOOPS 

We have seen in Chapter 1 1, in particular (1 1.62), that a closed fermion loop carries 
an extra minus sign, because fermion operators anticommute. The point is that a 
closed fermion loop is the result of a contraction of the form 
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(14.26) 

To write this as a product of two fermion propagators, we reverse the order of I+!J{+~, 
thus getting a minus sign. Fermions are set apart from bosons just by a minus sign. 
In the wave function of a many-particle system, the minus sign occurs in the signa- 
ture of a permutation of two particles. In Feynman graphs, the minus sign occurs in 
closed loops. 

To illustrate this difference, let us compare free boson and fermion theories, 
coupIed to external field in such a manner that all Feynman graphs are one-loop 
graphs. Consider the classical Lagrangian density 

where W(x) is an external field coupled to a pair of fields. Decomposing the field 
into real and imaginary parts 

(14.128) 

we can write 

The Euclidean action is given by 

S[*,3 $2, w = (91, v -  W*i) + (*2* ( K -  W$2) ( 14.1 30) 

where K = -# + m2. To quantize J, as a boson field, we write the path-integral rep- 
resentation for the generating functional: 

1 
det(K - w) 

- - (14.131) 

The connected Feynman graphs are generated by 
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In Z,,,,,[ w] = - In det(K - W) = -Tr ln(K - W) 

2 1  

= 1 ;Tr(K-' + constant 
n= I 

(14.132) 

The traces can be calculated in the coordinate representation: 

Tr(K-' w) = \ ddx (xlK-' W x )  = \ ddx AE(0)W(x) 

Tr(K-' W)' = \ ddxddy (xlK-' w) (,vlK-' W x )  = ddxddy A& - y )  W(y)Ae@ - x )  W(x) 

Tr(K-' w)" = \ddcl . . . ddx, A&, - x ~ ) W ( X ~ ) A E ( X ~  -x3)W(x3) . . . AE(x, -xl)W(xl) 

(14.133) 

These give the Feynman graphs shown in Fig. 14.3. The factor lin in (14.132) cor- 
responds to the symmetry number n. If the field I) is a fermion field, each loop will 
give a factor -1, and thus the generating functional becomes 

(14.134) 
" 1  

n=l n 
In Zfermion[ w] = -1 -Tr(K-' + constant 

This result would follow if we can redefine the functional integral to give 

How to do this is discussed in the next section. 

I 
I 

I 
I 

I 
I 

Figure 14.3 
theory, each graph is replaced by its negative, and thus det K is replaced by (det K)-'. 

One-loop graphs generated by In det K in a boson theory. For the corresponding fermion 
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14.1 1 GRASSMANN VARIABLES 

We may regard a general Gaussian integral as a way to represent the reciprocal of a 
determinant. The question is how to represent a determinant instead of its recipro- 
cal. Let us go back to an elementary Gaussian integral. We want to define variables 
q* and 77, and a sense of integration, such that we can write 

1 dT*dT &v*q = A ( 14.1 36) 

Clearly this is impossible if 77* and 77 are ordinary numbers; but it is possible if they 
are Grassmann variables, which are anticommuting objects defined in the following 
fashion. 

Consider first two Grassmann variables vl and q2, defined by the relations 

( 14.1 3 7 )  

This is different from fermion creation and annihilation operators because the anti- 
commutator is always zero. The most general function of two Grassmann variables 
must be linear in each: 

where C, is a complex number. We now define integration to mean 

We also define dql  and dT2 such that they anticommute with each other, and with 
ql and q2. Thus 

1 dTII772 = -7721 drll = 0 (14.140) 

It follows that 

(14.141) 

1ntegratingf(ql, q2) by these rules, we have 
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r r  

(14.142) 

The exponential function reduces to a bilinear form: 

&7177. = 1 + A ~ ~ 7 7 ~  

Therefore 

To get (14.136), we must therefore take 7 and q* to be two independent Grassmann 
variables. 

We can now write a representation for a determinant. Consider a set of Grass- 
mann variables { q,}, such that 

7:=0 

(To  vj1 = 0 

j d T i  = 0 

1 dvivi = 1 ( 1 4. I 44) 

Suppose there are an even number 2N of variables. We divide them into two sets, la- 
beling one set (v,}and the other {$}. The asterisk here serves merely as a distin- 
guishing label, and does not denote conjugation of any sort. We form the quadratic 
form 

(14.145) 

where A,, is a real symmetric matrix. Through a linear transformation, we can diag- 
onalize A ,  and obtain 

(14.146) 

where A ,  are the eigenvalues. Any power of X higher than X" must vanish, because 
at least one of the Grassmann variables must appear twice. Therefore 
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1 1 
2 N! 

ex= 1 +x+ -p+. . . +  -p (14.147) 

When we integrate over all the Grassmann variables, only the last term survives, be- 
cause all other terms must have at least one integral of the form Jdr], which vanish- 
es. Thus 

I D V * D ~ ~ X  = D ~ * D ~  P (14.148) 

where Dr] = n,dr],. The sign of this quantity depends on the order of the factors. 
Now consider 

where there are N factors. In the expansion of this quantity, no r ]  may appear twice 
in a one term. Therefore a typical term in the expansion is obtained by choosing one 
term from each factor, which gives n A , ~ ; y * r ] ~ .  The total number of terms in the ex- 
pansion is the number of ways to choose one term from each factor, or N! Thus 

( 1 4.1 50) 

Integrating over the Grassmann variables, we obtain 

I Dr]*Dqe(vaAv) = * det A (14.151) 

where the sign + depends on the ordering of variables in Dr]*Dr]. We have thus rep- 
resented a determinant as a integral of Gaussian form. A more general form is 

where { b,} and {@}are sets of Grassmann variables. 
The fermion analog of (14.13 1) is therefore 

(14.153) 

where {fix)} and { p(x ) }  are Grassmann fields. 
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PROBLEMS 

14.1 Show that a correlation function in terms of path integration is automatically time-or- 
dered; 

(4”> t”l~4(t,)4(f2)114’3 t’) = (Dq)q(tI)q(t2) “P[ $jj jL(q(t) ,  4(1))] 
&‘)=q’ 

q(r”)=q” 

14.2 Calculate the transition amplitude (x2, t21xI, tl) for a nonrelativistic free particle, using 
the path-integral method. 

14.3 Let the partition function be aJ1 = I D 4  e-s[41-(Jd). 

(a) Illustrate the fact that z[Jl generates correlation functions, by showing 

(b) Illustrate the fact that In z[Jl generates connected correlation functions, by show- 
ing 

14.4 Consider a free scalar field whose Euclidean action is represented in the form So[+] = 

(4, K+), where K is the operator K = -a2 + m2. 

(a) Calculate the partition function, and from it obtain the correlation function 
(&x)4(y)) .  Show that it is given by 

(b) Continue the result to Minkowski space-time and verify that it is the Feynman 
propagator iAF(x). 

14.5 Consider the correlation function in Problem 14.4 form = 0. 

(a) Show through a scaling argument that 

(b) Show ford = 3 

(c) Show for d = 2 

1 1x1 
(&x)4(0)) = - In - 2a a 

where a is an arbitrary constant. 
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14.6 For a set of variables u,(a = I ,  . . , n), Wick's theorem says that (u,, . . . uam) is the 
sum of all possible pairings. The theorem is correct, even when some of the factors are 
equal. To illustrate this, consider the case when they are all equal: 

(a) By direct computation, show 

1 
(u2) = yA 

(u4) = 3( u2)2 

(u6) = 1 5 ( ~ ~ ) ~  

(242.) = C"(U2)n 

where C, = (2n - 1)!/[2"-'(n - l)!]. 

(b) Calculate the same using Wick's theorem. First, (u2) defines the contraction. To 
calculate (u4), note that there are three ways to form pairs among uuuu, and each 
gives ( u ~ ) ~ .  Similarly, there are 15 ways to form pairs among uuuuuu, with each 
giving (ti2)'. Show that C, is the number of way to form pairs among u2". 

14.7 To illustrate how a simple field theory emerges as an approximation to a more compli- 
cated system, consider a two-dimensional flexible membrane in thermal equilibrium 
with its environment. We describe the thermal fluctuations in terms of the local height 
&x, y) of the membrane over some reference x-y plane. Ignoring the possibility that 
the membrane might fold over itself, we take &x, y) to be single-valued, and take the 
energy to be proportional to the area of the membrane: 

E[ 41 = (T dx d y 6  

where m is the surface tension, and, with r = {x,  y ,  &x, y ) } ,  

g =  

For small #I we find 

d r d r  d r d r  -.- 
dx ax dx Jy 
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Therefore, 

where C is a constant, and the terms left out are higher-order terms in 4 and its deriva- 
tives. 

14.8 Grassmann Variables The Anderson localization problem is the study of the fol- 
lowing single-particle Hamiltonian: 

VZ 
H = - -  + V(r) 

2m 

where V(r) is a random potential. It is useful to define the Green function 

where 

that is, and E, are respectively the exact eigenstate and energy of the random 
Hamiltonian. To make analytic progress, it is necessary to perform averaging over the 
random potential, denoted by ( of G, and G+G-. To illustrate the difficulty of the 
problem and the technique developed to solve it, let us consider (G&. 

(a) Derive the following functional integral representation of G,: 

where $ is a complex scalar field. 

(b) It is difficult to compute (G+)l,,, because of the denominator. Show that the de- 
nominator is det{-i(E - H * ig)- '}  and use the fermion representation to show 
that 

G+(c r' )  = 1 D$DIyc DxD,y* @(t+,!,o')e-L 

where ,y is a Grassmann field and 

L = i( MVCM - H* i v ) a )  + ,~*cv)(E - H * i g ) , y ~ )  

(c) Assume that V(r) is a Gaussian random variable obeying 

Using the fact that 



References 293 

if A is a Gaussian random variable whose mean is 0, show that 

( G J ~  r’)),,,, = J DQDQ* DX DX* e-Leff 

where 

This Langrangian now describes an interacting fermion--boson system. The random 
variables have been removed and standard field theory methods can be applied. A 
similar procedure can be used to compute the more useful quantity (G+G--),m. 
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CHAPTER FIFTEEN 

Broken Symmetry 

15.1 WHY BROKEN SYMMETRY 

When the Hamiltonian of a system is invariant under a symmetry operation, but the 
ground state is not, we say that the symmetry is “spontaneously broken.” By apply- 
ing the symmetry operation to the ground state, we transformed it to a different but 
equivalent ground state. Thus the ground state is degenerate, and in the case of a 
continuous symmetry, infinitely degenerate. The actual ground state of the system, 
of course, can only be one of these degenerate states. 

Let the degenerate ground states be denoted la). In the case of broken continu- 
ous symmetry, a is a continuous label, and we can construct a state JLY(x)) that coin- 
cides with different ground states at different points in space in a continuous man- 
ner. This state is orthogonal to the true ground state, and, in the limit of infinitely 
slow variation of a ( x ) ,  a state of vanishing excitation energy. This is an intuitive pic- 
ture of the Goldstone mode, an excitation whose energy vanishes in the limit of zero 
momentum. In a relativistic system with no long-range interactions, one can prove 
that such a mode corresponds to a zero-mass particle called the Goldstone boson 
(see Problem 15.4). In a ferromagnet, the Goldstone mode corresponds to spin 
waves, as we shall show later. 

Broken symmetry is ubiquitous in nature. For example, a solid has rigidity be- 
cause the atoms occupy fixed positions, breaking translational invariance. When 
you kick a stone, no doubt remains in your mind about this quality’-as forcefully 
demonstrated by Dr. Johnson in his famous retort to Bishop Berkeley.2 In the break- 
ing of translational invariance, the Goldstone mode corresponds to acoustic 

‘We paraphrase Anderson [I] .  
’From James Boswell’.y Life ofJohnson [2]: 

After we came out o f  the Church we stood talking for some time together of Bishop Berke- 
ley’s ingenious sophistry to prove the nonexistence of matter, and that every thing in the Uni- 
verse is merely ideal. I observed that though we are satistied his doctrine is not true i t  is im- 
possible t o  refute it.  I  never shall forget the alacrity with which Johnson answered, striking 
his foot with mighty force against a large stone t i l l  he rebounded from it  “I refute it thus.” 

294 
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phonons. Less obvious is the breaking of gauge symmetry, manifested in Bose-Ein- 
stein condensation. This appears to be the most prevalent form of symmetry break- 
ing in nature, exhibited in such diverse phenomena as superfluidity, superconductiv- 
ity, mass for elementary particles, and the inflation of the early universe. Modem 
pioneers in this subject include Anderson, Nambu and Jona-Lasinio, and Goldstone 

It may seem puzzling that broken symmetry can occur at all. Consider a ferro- 
magnet, where rotational symmetry is allegedly broken, through the fact that all the 
atomic spins point along the same direction. However, rotational invariance implies 
that all directions of the total spin are equally probable, and its average over a statis- 
tical ensemble should therefore be zero. This puzzle is usually resolved by consider- 
ing the spin density S(B, a)  in a system of volume a, in the presence of a small ex- 
ternal magnetic field B. The point is that the limits fl -+ 00 and B + 0 do not 
commute. That the ensemble average yields zero is the statement 

c31. 

lim lim S(B, a) = 0 
Cl-a B - t O  

whereas spontaneous magnetization means 

lim lim S(B, a)  # 0 
B-0 Cl-m 

(15.1) 

(15.2) 

Although mathematically useful, this formulation masks the physics. 
The physical reason for symmetry breaking is that, during its dynamical evolu- 

tion, the system gets stuck for a long time in a certain pocket of states. In a ferro- 
magnet, neighboring atoms prefer to have parallel spins, and if thermal agitation is 
reduced, all the spins would line up. The total spin can still freely rotate in space, but 
the rotation is very slow, because it requires the cooperative effort of a large number 
of atoms. When the number of atoms becomes macroscopically large, the total spin 
is forever stuck in a definite direction. What causes spontaneous symmetry break- 
ing, then, is a breakdown of ergodicity. 

A generic example of spontaneous symmetry breaking is the real +4 theory, 
with energy functional 

(15.3) 

The potential V(+) is shown in Fig. 15.1. There is only one minimum at + = 0 if 
r > 0, but there are two minima at + = *- if r < 0. From the point of view of 
statistical mechanics, the two minima + = 5- are equally probable, and there- 
fore the ensemble average of + must be zero. The time average of +, however, is not 
necessarily the same as the ensemble average. In the case r < 0, the system can go 



296 Broken Symmetry 

4 
r>O rcO 

Figure 15.1 The potential has two minima. When the field &x) assumes the value at one of the rnini- 
ma at all x,  it takes a long time before one sees a global transition to the other minimum, because fields at 
different x have to flip simultaneously. This is the underlying cause of spontaneous symmetry breaking. 

back and forth between the two minima, but the transition takes a long time, be- 
cause it requires a simultaneous transition at all x. On the basis of simple models in 
statistical mechanics, one can estimate this time to be of order elL, where R is the to- 
tal volume. Thus, ergodicity fails when R + m. 

The failure of ergodicity can be demonstrated through a Monte Carlo simula- 
tion of the 44 model on a four-dimensional (4D) Euclidean lattice [4]. As the field 
configuration evolves in time by successive Monte Carlo updates, we record the in- 
stantaneous field (4), averaged over all lattice sites. This is shown in Fig. 15.2 for 
different values of r, with A = 1000, for a lattice with lo4 sites. We can see that there 
is a phase transition at a critical value r, = -165. For r > rc, the average field makes 
small fluctuations about zero. As we approach r,, the fluctuations become more pro- 
nounced, with (4)  making flip-flops between periods of positive and negative val- 
ues. The time between flip-flops increases as r --+ r,, and when r < r, it becomes un- 
observably long, presumably of order elo4. The average field now makes small 
fluctuations about a nonzero value. 

15.2 FERROMAGNETISM 

Consider a nonrelativistic gas of magnetic atoms with spin f ,  described by the 
Hamiltonian 

(15.4) 

where a, is the 2 x 2  Pauli spin matrix of the ith atom. For simplicity we choose 
V(r, - r,) = -JS3(ri - r,), with J >  0. We thus specialize to short-ranged forces. Going 
over to a field representation, we take 

(15.5) 
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Figure 15.2 Time evolution of  the spatial average of  the instantaneous field in 44 theory, in a Monte 
Carlo simulation, for different values of the squared mass r = m2. A symmetry-breaking phase transition 
occurs at r = - I  65. [After K .  Huang, E. Manousakis, and J .  Polonyi, Phys. Rev. 3 5 3  I87 (1987).] 

dropping an irrelevant constant term. The use of a 6 -function potential makes the 
ground-state energy divergent. Although this is easy to fix (see Huang IS]), we shall 
not be concerned with it here. The field operator satisfies fermion anticommutation 
relations 

where a$ are spin indices. We enclose the system in a box of volume fl, which 
eventually tends to infinity. The total number of particles N = Sax ++((/ also tends to 
infinity such that n = N/R is finite. 

We use the mean-field approximation, through the replacement I+!$* + 
(Ic;tm,b), where ( ) denotes ground-state expectation. The mean-field Hamiltonian is 

(1 5.7) 
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where the factor of f in front of J has gone away, because there are two possible 
ways of making the replacement. Taking the direction of (@@) to be the z axis as, 
we write ($tm,b) = is, where 

Thus 

(15.9) 

The rotational symmetry of the system is spontaneously broken if S # 0. 
The mean-field Hamiltonian describes two free Fermi gases, with up spin and 

down spin, respectively, for which the single-particle energies are EF = (p2/2m) i 
JS. In the ground state, the two gases must have the same Fermi energy EF, for oth- 
erwise we can lower the total energy by transferring particles from one gas to the 
other. This is illustrated in Fig. 15.3. Denoting the number of particles in the two 
gases by N,, and the total volume of the system by R, we have the conditions 

N+ -N- 
R 

= S  

- - JS=-+JS=EF P f  P' 
2m 2m 

E 

E F  

T 

JS 

JS 
2 

( 1 5.1 0) 

Figure 15.3 Energy-momentum relation for spin-up and spin-down fermions. 
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where n = N/R is the total density. The Ferrni momenta of the two gases are defined 
by 

in terms of which the conditions become 

p! +pS = 677% 

p j  - p j  = 67?S 

p z  - p l  = 4mJs 

(15.1 1) 

(1 5.12) 

These equations determine the three unknowns p+,  p- ,  S. Adding and subtracting the 
first two equations yield 

pi = 3 ? 9 ( f l  i 9 1 ’ 3  (15.13) 

Substituting this into the third equation gives the condition for S: 

Let 

(15.14) 

(15.15) 

Then the condition for Y is 

( 1 + y)*l3 - (1 - Y ) ~ / ~  = Jbr ( 1 5.1 6 )  

where b = (9ff)-’4rnn’/3. This may be solved graphically, as shown in Fig. 15.4. The 
symmetric case Y = 0 is always a solution. Two symmetry-breaking solutions r = kro 
arise when J >  Jc, where 

bJ, = 4 ( 1 5.1 7) 

As discussed in Section 15.1, choosing one of these roots leads to spontaneous 
magnetization. From the form of the mean-field Harniltonian, it is obvious that a 
symmetry-breaking solution has lower energy than the symmetric one. 

The symmetry-breaking solution exists only if b > 0, which means n > 0. Thus 
it is possible in unbounded free space only in the limit N -+ m. 



300 Broken Symmetry 

- 1 '  ' 

Figure 15.4 Graphical solution for the magnetization density. The horizontal axis is r = (u:). Sponta- 
neous magnetization occurs when the slope of the straight line exceeds :, which happens when the 
spin-spin interaction is sufficiently strong. 

15.3 SPIN WAVES 

Spin waves are the Goldstone modes arising from the breaking of rotational symme- 
try. To demonstrate its existence, we perturb the system with a small external mag- 
netic field 6B(x, t )  transverse to the spontaneous magnetization, and calculate the 
linear response. The Hamiltonian becomes H + 6H(t), with 

6H(t) = -1 d3x[I,ht(x)c$(x)].6B(x) (1 5.18) 

where &6B = 0. The spin density can be represented in the form 

where x = (x, t )  and G is the propagator: 

With the perturbing field, the propagator becomes G + SG, and the linear response 
in the spin density is given by 

6S(x) = -i lim Tr[cSG(x, y ) ]  (15.21) 
Y+.X 

The mean-field Hamiltonian now becomes HMF + 6HMF(t), with 
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6HMF(t )  = - / d 3 x  ~,b~(x)a . [SB(x)  + J SS(x)]i,b(x) (15.22) 

where the first term contains the external perturbation and the second terms comes 
from the induced magnetization. The propagator can be represented by the Feynman 
graphs 

(1 5.23) 

which gives 

6G(x, y )  = i l  d4x' Go(x - x')a.[GB(x')  + J SS(x')]Go(x' - y )  (1 5.24) 

where G,Op(x) is the unperturbed propagator. (See Problem 9.5.) Substituting this 
into (15.21), we obtain the equation 

where i = 1,2, and 

n,,(x) = iTr[afGo(x)cr,Go(x)] 

By symmetry in the xy plane, we can put 

n,(x) = s,n(x) 

where 

n(x) = iTr[a, G"(x)cl Go(x)] 

Introducing the Fourier transforms 

S Q ~ )  = d4x elkxSs,(x> 

Sgz(k) = I d4x eZkXSBf(x) 

S ( k )  = I d4x erkXn(x)  

(15.26) 

(1 5.27) 

(15.28) 

(,1 5.29) 

where k = (k, w), we can write 
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6ZL ( k )  = fi(k)[6B”, ( k )  + JGS”,(k)] ( 15.30) 

where the subscript 1 denotes a component in the x-y plane. The spin waves are so- 
lutions to the homogeneous equation 

6zL(k)  = Jfi(k)GS”L(k) (15.31) 

There is always a trivial solution. A nontrivial solution will indicate the existence of 
“excited states” in the field-free system. As we shall see below, it is easy to prove 

1 
J 

fi(0) = - (15.32) 

which shows that there exist solutions at k = 0. However, these are states of constant 
density, in both space and time, and thus correspond to other ground states. For this 
reason, we might call this statement the “ground-state theorem.” To show the exis- 
tence of spin waves, we must prove the “spin-wave theorem” 

(15.33) 

This states that there exists a Goldstone mode, a non-uniform state that joins 
smoothly onto some ground-state in the long-wavelength limit. To establish this, all 
we have to dols  show that H(k)  is regular at k = 0 (see Problem 15.1). An explicit 
calculation ofH(k) yields more information: 

(15.34) 

The conditionf(k) = 0 then determines a relation between Ikl and w, the dispersion 
law for spin waves. 

To establish (15.32), turn on a spatially uniform external field B. By rotational 
symmetry, the magnetization must have the form 

B 
S = --f(B2) 

B 
(1  5.35) 

where B = /BI. Since we are dealing with a ferromagnetJ(0) # 0. The only nonvan- 
ishing Fourier component of S is that with k = 0, w = 0: 

(15.36) 

Now rotate B slightly by letting B -+ B + SB, with B.6B = 0. To first order we have 
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(15.37) 

where the subscript I denotes components transverse to the original direction. We 
can continue to use (1  5.30): 

s3L(o) = f i (O)[  6EJO) + Js5L(0)] (15.38) 

where fi(0) now depends on B. This gives a second expression: 

1 - J f i ( 0 )  
S3JO) = 

Comparing the two equations for S-S,(O), we obtain 

1 -Jfi(o) - B 
_L_ 

fi(0) “w2) 

( I  5.39) 

(1 5.40) 

Thus, when B ---f 0, we have fi(0) = 1/J. 8 

15.4 BREAKING GAUGE INVARIANCE 

When Kamerlingh Onnes liquefied helium in 1908, and not long after observed 
strange behavior in liquid helium [6], and discovered superconductivity [7] (after 
trying unsuccessfully to fix what was thought to be a short circuit [S]), he observed 
for the first time broken gauge symmetry. 

Both the strange behavior called “superfluidity” in liquid helium, and the su- 
perconductivity in certain metals, are manifestations of a Bose-Einstein conden- 
sate, formed by a macroscopic number of bosons in a single quantum state. The 
condensate wave function $(x) is a complex number with a definite phase, and the 
existence of such a phase in the ground state breaks global gauge invariance-a 
symmetry associated with particle conservation. The ground state of the system is 
labeled by the phase, and hence infinitely degenerate. 

Consider a nonrelativistic boson system described by a field operator q(x), 
which is denoted with a caret to distinguish it from the c-number $(x). Let IN> be 
the ground state with N particles, where N eventually approaches infinity. The 
macroscopic occupation of a single state is indicated by the fact that the amplitude 
to annihilate a particle at any point x is of order ” I 2 :  

n 

$(x) = ( N  - I]@(x)lN) = O(N’’2) (15.41) 

This amplitude defines the condensate wave function. Yang [9] calls this condition 
“off-diagonal long-range order” (ODLRO), and proved that it is possible only if 
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$(x) is a boson field, or a product of an even number of fermion fields, but not for a 
product of an odd number of fermion fields. The distinction between O(N) and O( 1 )  
exists only in the limit N -+ m, and this underscores the fact that spontaneous sym- 
metry breaking is a macroscopic phenomenon. 

Let US describe the system using states in the grand canonical ensemble, which 
are not eigenstates of particle number, but an average number N is determined by 
the chemical potential. Then the condition for ODLRO, or Bose-Einstein condensa- 
tion. can be stated in the form 

$(x) = &x)) = O(N'\2) (1 5.42) 

where ( ) denotes average with respect to the grand canonical ensemble. This condi- 
tion was suggested much earlier by Penrose and Onsager [lo], but we deviate from 
historical order in the interest of pedagogy. The condensate density is defined by 

(1 5.43) 

where R is the volume of the system. This should remain finite in the thermody- 
namic limit R .+ m, N -+ m, at fixed density NIR = n. 

To study the condensate in more detail, take the Hamiltonian to be 

(15.44) 

with 

[+(X), @T(y)] = S 3 ( x  - y) (1 5.45) 

The particles interact through a &function potential, which reproduces low-energy 
scattering if 

4 n-a 
g =  m (1 5.46) 

where a is the S-waveAscattering length.3 Clearly H is invariant under the global 
gauge transformation q ( x )  -+ e'"W(x). The Heisenberg equation of motion reads 

(1 5.47) 

Now put 

'For derivation, see Huang [ I  I]. 
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$(x, t )  = fix, t )  +&x, t )  (15.48) 

where ax, t )  = ( T ( x ,  t ) )  is a c-number function and 

&x, t>> = o (15.49) 

A 

The operator @(x, t )  annihilates a particle not in the condensate. Substituting 
(15.48) into the equation of motion, and taking the grand canonical average, we 
obtain 

-V21,!J+&*i/?+g[21,!J(&~&)+ 1 I,!J*(&2)+{&t&2)] = i -  4J (15.50) 
2m dt 

Assuming that almost all particles are in the condensate, we neglect the terms in 
square brackets and obtain an equation for the condensate wave function: 

(15.51) 

This is called the Gross-Pitaeveskii equation [ 121. The same equation occurs in op- 
tics and plasma physics, where the custom is to call it the “nonlinear Schrodinger 
equation [ 131.” 

For a static solution, put 

$(x, t )  = q(x)e-’tOf 

so that 

1 

2m 

The spatially uniform solution is 

-_ v2q --Eoq + gq*$ = 0 

(15.52) 

(15.53) 

( 1 5.54) 

where a is arbitrary. The normalization condition (15.43) requires IqI2 = no, the con- 
densate density. In this approximation no = n, the total density. Thus, e0 = gn. In 
physical units 

(15.55) 

This gives the energy per particle in the condensate. 
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There is an uncertainty relation between the phase 8 of a many-body wave 
function and the number of particles (see Problem 15.2): 

h t l h N 2  f ( 1 5.56) 

Thus an isolated system with a definite number of particles does not have a definite 
phase. If two such systems come into contact, and can exchange particles, then the 
relative phase becomes definite. Such a relative phase has been observed between 
two Bose condensates of sodium atoms, by Ketterle and his team at MIT [14], 89 
years after Kamerlingh Onnes created a condensate in the laboratory. The interfer- 
ence fringes can be seen in the photograph in Fig. 15.5. 

15.5 SUPERFLUIDITY 

In quantum mechanics, the gradient of the phase of a wave function is a particle 
current density. Here, since the wave function is macroscopically occupied, the cor- 
responding current density is a hydrodynamic quantity that describes superfluidity, 
the frictionless transport of particles. From the Gross-Pitaevskii equation, we have 
the conservation law 

where 

1 

2m 
j = -i[q!PO$- $OI,!J*] 

P =  $*$ 

(1 5.57) 

(15.58) 

Figure 15.5 Interference fringes between two Bose-Einstein condensates of Sodium atoms observed 
by Ketterle and his MIT team. This shows the phase coherence of each condensate.. The fringe period is 
15 Fm, which is the de Broglie wavelength hlmv of the atoms, where u is the relative velocity of the two 
condensates as they approach each other. [Photograph courtesy W. Ketterle.] 
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In the ground state the entire system can be regarded as a superfluid at rest. When 
boundaries conditions are changed slowly, the adiabatic theorem tell us that the 
ground state changes slowly in response, and this leads to a frictionless superfluid 
flow described by j and p. Friction will occur as soon as the system can be excited 
from the ground state into a mode that lacks phase coherence. In the neighborhood 
of the ground state, there is the Goldstone mode, which corresponds to long-wave- 
length phonons [ 151, but they maintain the phase coherence. Vortex excitations, on 
the other hand, do disrupt phase coherence, and destroy superfluidity. 

To investigate vortices, let us put 

(1 5.59) 

Then the current can be expressed as 

j = PV, (15.60) 

where 

1 
m 

v , =  -ve (15.61) 

is the "superfluid velocity." [In physical units, v, = (ti/m)VO.] In order that +!J be sin- 
gle-valued, the phase angle 8 can change only by a multiple of 2.rr over a closed path 
C in space. Therefore, the circulation of the superfluid velocity is quantized: 

(15.62) 

where n = 0, + I ,  . . . . If n f 0, then C must encircle a line on which p = 0, for oth- 
erwise we could shrink C to a point, at which the phase angle 0 becomes undefined. 
This line of zeros is the core of a vortex with quantized vorticity, and can terminate 
only on the boundary of the system, or terminate on itself by forming a closed 
curve. 

nates (r, cp, z), and put 
To describe a vortex with core along the z axis, 

with the boundary conditions 

let us use cylindrical coordi- 

(15.63) 

fCr) 1 f(4 3 0 (1 5.64) 

It is easily verified that this corresponds to a linear vortex with quantum number n. 
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We can rewrite the Gross-Pitaevskii equation is dimensionless form by introducing 

r 

"2 

where ( is the correlation length. Thenfsatisfies 

d2f d !  
s2- + s- + (s* - n2)f- sff3 = 0 

ds2 ds 

( 1  5.65) 

(15.66) 

which can be solved numerically [ 161, with the result for n = 1 shown in Fig. 15.6. 
The asymptotic behaviors are given by 

n2 
f - 1 - 7  ( s * l )  

S- 

f = Cs+ (s < 1) ( 1  5.67) 

where C is a constant. It is found that the energy is proportional to n2. Thus vortices 
with In1 > 1 need not be considered, for they will break up into vortices with lnl = 1 
to lower the energy. The linear vortex described has macroscopic energy, since it has 
a linear core whose dimension is that of the box containing the system. Finite-ener- 

1 .o 

0.5 

0 2 4 

r f 5 
6 

Figure 15.6 
lation length is [= %/SF, where p is the chemical potential. 

Vortex solution to Gross-Pitaevskii equation with one quantum of circulation. The corre- 
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gy solutions are vortex rings-those in which the vortex core forms a closed curve. 
The solution above gives an approximate picture of the flow near the core. 

The vortex core is devoid of superfluid, and filled with particles not in the con- 
densate (the ones whose field operator is @), whose effects were neglected in the 
Gross-Pitaevskii equation. The core renders the space nonsimply connected, and 
makes it possible to have fcdx.v, # 0, even though v, is the gradient of a function. 

As a simplified model, we assume that the density of the superfluid is constant, 
except that it vanishes inside vortex cores, taken to be tubes of radius a, with energy 
per unit length u. The system is then described by the energy functional 

E[vJ = I d3X vf + U L  
2 

( 1  5.68) 

where L is the total length of vortex cores in the system. The integral J d3x extends 
over the space outside vortex cores only. The superfluid velocity v, is not irrotation- 
al, and may be decomposed it into longitudinal and transverse parts: 

v, = VL + VT 

vL= v w  
v , = v x A  (15.69) 

where Vw describes irrotational flow, while v x A arises from vortices. Substitut- 
ing this into (1 5.62) yields 

icds.V x A =  2n-n ( 1 5.70) 

(the mass is m = 1). Thus, A can be likened to the vector potential set up by steady 
currents flowing along the vortex cores. The energy functional can now be written 
as 

E[vJ = u ” / d 3 ~ [ J v w ( 2  + 1v x AI2] + vL[A] (15.71) 
2 

At very low temperatures, vortices are suppressed because the cores cost energy. 
The low-energy excitations are longitudinal phonons, corresponding to the Gold- 
stone mode. 

The superfluid density ps is a transport coefficient that describes the response 
of the system to an imposed motion. It measures that part of the system that does 
not respond to a shear force. This analysis is described in Appendix B, and we shall 
just make use of the result here: 

(15.72) 
D -  1 
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where D is the dimension of space, and p the inverse temperature. The thermal aver- 
age indicated by () is weighted by the energy functional (15.71). This indicates that 
the superfluid density differs from po as a result of vortex activlty represented by vT. 

Putting D = 3, and using as integration variable w = vT&p0, we have 

PS 1 JDww(x).w(0)es[wl 
- = 1 - 2 1 d 3 x  
Po J Dw c s L w I  

(15.73) 

where 

1 
2 

S[w] = - / d 3 y  w2(y) - puL[w] (15.74) 

where L[w] is the total length of vortex cores. The integration J Dw extends over 
the space of all possible vortex cores, which form arbitrary loops in space. This pos- 
es an insurmountable problem. 

In contrast, the vortex cores are pointlike in 2D, and the superfluid density can 
be calculated exactly, for a dilute gas of vortices. As we will show in Chapter 18, 
this gives a complete understanding of the phase transition associated with 2D su- 
perfluidity. 

15.6 GINSBURG-LANDAU THEORY 

A generic model of gauge symmetry breaking is represented by the Ginsburg-Lan- 
dau free energy 

where $(x) is a complex order parameter. This is also the Euclidean action of a com- 
plex field. Writing 

(15.76) 

we have 

where 

(15.78) 
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with R2 = xu$:. There is global gauge invariance associated with a constant phase 
change of $, or a rotation in 4,-42 space. This symmetry is spontaneously broken if 
($) # 0 in the infinite-volume limit. 

In Fig. 15.7, the potential is plotted over the 4,-42 plane for u2 < 0. It has a 
wine-bottle shape, which makes lfl > 0 in the ground state. In contrast to Fig. 15.1, 
where the potential breaks a discrete symmetry, the potential minimum here gives a 
continuous set of degenerate ground states. 

The condition 11) I > 0 is necessary but not sufficient for spontaneous breaking, 
which requires ($) # 0. For the latter to be true, the fluctuations of the phase e(x) of 
the field have to be small. Let us put 

and rewrite the action in the form 

As a indication of the fluctuations of 6, consider (6(x)6(0)) for fixed p. This gives 
the probable value of qx), when e(0) is specified. The result can be obtained from 
Problem 14.5: 

(15.81) 

For d 2 3, the fluctuations are bounded, and we expect (+) f 0. For d = 2, they di- 
verge at large x, indicating that the phase angle becomes random when taken modu- 
lo 2 ~ .  Hence we expect ($) = 0. This case will be studied separately in Chapter 18. 

The Ginsburg-Landau model can be used in different physical problems: 

91 gg e 92 

Figure 15.7 The “wine-bottle” potential makes 14 > 0 in the ground state. But gauge symmetry is bro- 
ken only if (#) # 0, which means that, in addition, the fluctuations of the phase 8 must be small. This 
condition is fulfilled ford 2 3, but not ford = 2. 
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For d = 3, the model reduces to the Gross-Pitaevskii equation. We can ob- 
tain the vortex model of superfluidity by choosing u2 and u4 in such a man- 
ner as to trap the order parameter at a steep minimum. That is, we fix the 
value at 11) = -u2/u4, with V’ = 0, V” % 1. Then we introduce the vortex core 
as a cutoff, such that I) = 0 inside. 
For d = 4 - E ,  we can model the A transition in liquid helium at temperature 
T, by choosing u2 = a ( T -  Tc), where (Y is a constant and T is the absolute 
temperature. The critical exponents can be calculated as a expansion in pow- 
ers of E,  and we extrapolate the results to E = 1. The reason we cannot do the 
calculations directly in d = 3 is that there are infrared divergences. 
For d = 4, we have a quantum field theory with broken symmetry. This is 
used in the standard model of particles, grand unified models, and the theo- 
ry of the inflationary universe. 

15.7 EFFECTIVE ACTION 

We assume d 2 3, with (I)) # 0. The value of (I)) is not exactly at the minimum of 
the potential V(I)), because of fluctuations. We use real components 4, and define 

Then, in the presence of external source J(x), the exact average field is given by 

(15.83) 

Now we ask, “Given ~ ( x ) ,  what is the corresponding source function J(x)?” To ad- 
dress this question, we make the Legendre transformation 

to use 7 as independent variable. The quantity r[q] is called the efective action. 
Taking the functional derivative of (15.84), we have 
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Thus 

The average field (+J can be obtained by setting J =  0: 

(15.86) 

(15.87) 

We can expand the effective action in terms of the average field 77: 

ddx,r,(x,, . . . , 

The function I?&,, . . . , x,) is the sum of all one-particle irreducible Feynman 
graphs. 

Proof Consider the generating functional of a fictitious field theory whose 
action is T[q]: 

We put in the parameter a for mathematical purposes. As a --3 0, the integral is 
dominated by the saddle point of the exponent. The saddle-point condition is pre- 
cisely ( 1  5.86), and thus 

lim au[J a] = r [ ~ ]  + (4 77) (1 5.90) 
Q - t O  

By (15.84), this states 

lim aU[J a] = W[JJ  (15.91) 
0-0 

The right side is the sum of all connected Feynman graphs of the original field the- 
ory. The left side is the classical limit of the generating functional of the fictitious 
field theory, which is given by the sum of all connected tree graphs of that theory. 
From (1 5.88),  we see that the fictitious field theory is nonlocal, and the vertices in 
the tree graphs are the “blobs” r,,(x,, . . . , x,,). We can represent the connected 
graphs in w[Jl as tree graphs with “blobs” for vertices, where each blob is a sum of 
all one-particle irreducible graphs with the appropriate number of external lines. 
Therefore, T,(x,, . . . , x,) is the sum of all one-particle irreducible graphs of the 
original field theory. 
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15.8 EFFECTIVE POTENTIAL 

We choose a constant source function, so that the average field will be a constant 
~ ( x )  = u. The effective action per unit volume will be a function of u, which we de- 
fine as the eflective potential: 

where R is the volume of the &dimensional Euclidean space. The minimum of V,, 
gives the exact average field. 

We now calculate the effective action to one-loop order. According to the 
method described in Section 14.9, we first make a saddle-point expansion of the 
partition function (1 5 32). At the saddle point +(x) = &(x), we have 

(15.93) 

Expanding the action about the saddle point to second order, we have, in an abbrevi- 
ated notation, 

where Q is a functional of 40. Substituting this into (15.82) and performing the 
Gaussian integration, we obtain the partition function to one-loop order: 

W[J] = S[$oJ + (4 +(,) + t In detQ (1 5.95) 

The one-loop effective action is given by 

n771 = W[JI - (4 77) 
= S[&] + (4 (40 - 7)) + t In detQ (15.96) 

We still have to express the saddle point $o in terms of the average field 77. Treating 
+o - 77 as a small quantity, we write 

where we have used ( I  5.93). Therefore, to one-loop order, 
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r[ q] = S[ q] + t In det Q[ 771 (15.98) 

Now we use the explicit form of the action (1 8.14). With $,(x) = v, + [,(x), 
where u is constant, and &) small, the action to second order in 5 is 

(15.99) 

The saddle-point properties (1 5.93) are 

V’(v) = -J 

Q,p(x, Y )  = amp[-$ + V”(u)Iadd(x - Y )  (1 5.100) 

Therefore 

(15.101) 
1 1 

-In det Q = -Tr In Q = 0 1 *In[k2 + V”(u)] 
2 2 (2 TId 

which gives4 

( 1 5.102) 

PROBLEMS 

15.1 Spin-Wave Theorem Consider the problem of ferromagnetism in the mean-field ap- 
proximation. 

(a) ,By examining the equation for &k), show that it is regular at k = 0, and therefore 

(b) Verify fii(0) = 1/J by direct calculation. 

(c) Show that the dispersion law for spin waves is of the form w 

a Hermitian operator for the phase exists. For a boson field, write 

W k )  L i ?  fim. 

Ikl’. 
15.2 Number-Phase Uncertainty Relation This problem addresses the question whether 

rl(x) = a e l @ x )  

4This was first derived by Coleman and Weinberg [ 171 and Jackiw [ 181. For an application of this 
formula in the Weinberg-Salam model, see Huang [ 191. 
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(a) Suppose that ~ x )  is a classical field. Show that the following transformation pre- 
serves the measure for functional integration: 

Dp DO = Dq? Dip = D(Re (L)D(Im $) 

This result suggest that p and 8 are canonically conjugate in quantum mechanics. 

(b) Quantize +(x) through the equal-time commutator [+(x), t,ht(y)] = S3(x - y). As- 
suming that p ( ~ )  and e(x) are Hermitian operators, show that they are canonically 
conjugate, by showing 

(c) Let O = Nx,) be the phase operator at some point xo, and let N = J b x  p ( x )  be the 
number operator. Assuming the validity of the commutator derived in part (b), 
show the uncertainty relation 

A O A N ?  f 

(d) Let vn) = nln), where n = 0, 1, 2 . . . (see Louisell [20]). Using the commutator 
derived in part (b), show that 

which is meaningless. Hence there does not exist a Hermitian phase operator 8 .  

(e) Show, however, that the matrix element above is meaningful when n and n’ are 
large enough to be considered continuous. It then becomes the derivative of a 
delta function. The matrix element is analogous to (plxip’), where [p ,  x ]  = -i. This 
shows that the phase can be represented by a Hermitian operator if the system 
contains a large number of particles. 

15.3 Effective Action The effective action can be expanded according to (15.88): 

n v i  = ro + I d d x  r r (x )~(x )  + :jk, ddxzr,(x,,x,)v(x,)g(x,) + 

(a) Find T,(x) .  

(b) Show J dz r,(y - z)G2(z - x) = -S(J - x), where G,(x) is the two-point correlation 
function. 

(c) Take the Fourier_transform to get r2 (k )  &.4) = -1. Find ]T,(k) from the known 
general form of G,(k). 

15.4 Goldstone’s Theorem [Zl] Consider a relativistic complex scalar field gx),  whose 
Lagrangian density is invariant under a global gauge transformation. Corresponding to 
this invariance is a conserved Noether currentj,(x), with 

The corresponding conserved charge is denoted by Q, with the property 
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Assume that the global gauge symmetry is spontaneously broken: 

where 10) is the vacuum state. Goldstone's theorem states that a massless particle ex- 
ists. This only relies on current conservation, and does not depend on the detailed form 
of the Lagrangian. Prove it following the steps outlined below. We write $ = $(O),jp = 

(a) Consider the quantity 
jp(0) .  

Write out the commutator, insert a complete set of states between the operators, 
and note 

wherep, is the 4-momentum of the state In) and F(p') is a Lorentz-invariant func- 
tion. With this, show that 

(b) So far we have used Lorentz invariance and assumptions about the mass spec- 
trum. Now use current conservation in the form d T p  = 0 to show that F(m2) is of 
the form 

F(m2) = CS(m2) 

Thus, a massless particle exists if and only if C # 0. 

(c) Consider ro, and use the fact ($) # 0 to show that C # 0. 
In the presence of long-range interactions, the Goldstone 

mode is transformed. For a system interacting with the electromagnetic field, the 
gauge symmetry is enlarged from a global to a local one. When this symmetry is bro- 
ken, the Goldstone mode becomes the longitudinal component of the electromagnetic 
field, and the photon acquires mass. This is called the Higgs mechanism. In a super- 
conductor, the symmetry breaking results from the presence of a condensate of bound 
electron pairs-the Cooper pairs. 

Consider the relativistic classical Lagrangian density for a complex field $ cou- 
pled to the electromagnetic field, in (3 + 1)-dimensional Minkowskian space-time: 

15.5 Higgs Mechanism [22] 

L(x)  = - a  FF"Fpy + (Dh,b)*(Dp$) - V(yF$) 

where Dp$ = (3' + iqAp)@, and V(yF$) = A(P$ -p,J2 is the potential causing spon- 
taneous symmetry breaking. For a superconductor q = 2e. The notation is that of 
Chapter 5. 
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Show that the Hamiltonian is 

H = ~ d 3 x [ f ( B 2 + E 2 ) + l ~ 2 + I D f 1 2 +  v] 

and from this show that the lowest-energy solution is A” = 0, Ic, = G e i m o .  Thus 
local gauge symmetry is broken. 

Choose the “unitary gauge, “ in which IG(x) is real. Show that the classical equa- 
tions of motion are 

dwFfiv = -2q2@A” 

D”D”Ic, = 2UP” - @)Ic, 

Since d,a,FP” = 0, we must have dpAf i  = 0 whereever Ic, f 0. 

Put Jl(x) = po + ~ ( x ) ,  and show that 

(n2 + 2q2p0) A” = 0 

(El2 + 4AP”)V = 0 

When quantized, the theory has a vector particle A” of mass 4 6 ,  and a scalar 
particle 17 of mass 2 a .  There is no massless scalar particle. 
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CHAPTER SIXTEEN 

Renormalization 

16.1 THE CUTOFF AS SCALE PARAMETER 

In perturbation theory, we encounter divergent Feynman graphs that must be cut off 
at high momentum. The cutoff marks the energy scale at which known physics ends 
and the unknown begins, and would be necessary even if there were no divergences. 
It is presumed that we observe the world at an energy scale far below that of the cut- 
off, but the Lagrangian of the system is specified at the cutoff scale, with parame- 
ters appropriate to that scale. It would be desirable to express them in terms of low- 
energy parameters, without explicit reference to the cutoff, and renormalization is 
the means for doing that. 

To ensure that we remain in the low-energy domain, we would like to take the 
cutoff to be infinite, but this cannot be done by declaration. In the absence of exter- 
nal fields, the action of the system does not contain an intrinsic energy scale apart 
from the cutoff. Thus, the cutoff disappears from the action when we reduce all 
quantities to dimensionless form. The only way to tell whether it is finite or infinite 
is to calculate some physical quantity with dimension, such as the correlation 
length, from the theory. The cutoff is infinite when the correlation length diverges, 
in which case the system is said to be at a critical point. To approach the limit of in- 
finite cutoff, therefore, we must adjust the parameters so as to make the system “go 
critical.” We shall explain this in a concrete example. 

Consider a scalar field &x) in &dimensional Euclidean space-time, with clas- 
sical action 

We place our system in a large hypercube of volume R, with periodic boundary 
conditions, and eventually let R + m. Fourier transforms are defined by 

320 



(1 6.2) 

with &* = &. In the limit R -+ a, we write 

(16.3) 

(16.4) 

The action can be rewritten in the form 

The first term is called the “kinetic term,” and S,[4] contains the interactions: 

where 6 denotes the Kronecker delta (6). The partition function is given by 

where 

where is a normalization constant. 
With units such that ti = c = 1 ,  the dimensionality of any quantity can be ex- 

pressed as a power of length, or equivalently momentum. The dimensionality of a 
quantity X ,  denoted by [A, can be deduced from the assertion that the action is di- 
mensionless. Using the cutoff momentum A as unit, we have 

[A = A-P (16.9) 
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which means that X transforms like A-p under a change of scale, or that XAP is di- 
mensionless. It is straightforward to verify the following: 

( 1 6.1 0)  

The exponents above are the so-called canonical dimensions. It is convenient to use 
the following dimensionless quantities: 

P 
Momentum: q = 

Fourier component: 'ps = 114 
Coupling constants: u, = A-a-d+oldi2 ga 

The partition function can then be written in the form 

The action is written 

where 

r = 2u2 

and the interaction term can be represented in the form 

(16.11) 

(6.12) 

(6.13) 

(6.14) 

(6.15) 

We see that A has disappeared. It merely provides a scale to measure physical quan- 
tity with dimension, such as the correlation length $, defined through the asymptot- 
ic behavior of a correlation function: 
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( 1 6.1 6) 

Here, r i s  measured in the same unit as x, such as meters. Using A-’ as unit for dis- 
tance, we have 

( 1 6.1 7) 

where 6 is dimensionless: 

[ = A $  ( 1 6.1 8) 

Ignoring the pathological case r= 0, we see that an infinite cutoff corresponds to the 
limit 5- . 

The theory at the cutoff scale, called the “bare theory,” is specified by the cou- 
pling constants u,. The value of the cutoff is reflected solely in these coupling con- 
stants. A renormalization-group (RG) transformation is a coarse-graining operation 
through which we lower the cutoff without changing the system. When the cutoff A 
is lowered to p = A/b, the “bare” couplings u,(A) will change to the “renormalized” 
ones u,(p). The system should remain unchanged, even though it appears to be 
changed, because the effective couplings are different. We shall define the RG 
transformation explicitly later. For the present, assume that such an operation has 
been defined. 

Let us consider the parameter space spanned by all the u,. This is a space of all 
possible Hamiltonians, if you like. Each point in this space specifies a system with a 
specific value of 5, and therefore of A. Successive RG transformation generate an 
RG trajectory that flows in the coarse-graining direction. Since the cutoff is lowered 
in an RG transformation, the correlation length decreases along an RG trajectory. 

There may exist “fixed points” that are invariant under RG transformations. 
Since 5 decreases under an RG transformation, we must have 5 = 0 or 5 = at a 
fixed point. We ignore the case 5 = 0, and concentrate on 5 = m. Since this corre- 
sponds to an infinite cutoff, we cannot place a bare system exactly on it, but only 
approach it as a limit. If the RG transformation is unique, which we assume, then 
two different trajectories cannot intersect except at a fixed point. This is why a tra- 
jectory can be continued backward, even though it is only defined for forward mo- 
tion. This makes the RG a true group. 

A fixed point is a source or sink of trajectories. To trajectories flowing away 
from it, the fixed point appears as an ultraviolet (UV) fixed point, since it represents 
the infinite-momentum limit. We call them UV trajectories. To trajectories flowing 
into it, the fixed point appears as an infrared (IR) fixed point, and we call them ZR 
trajectories. Thus, whether a fixed point is UV or IR depends on the trajectory one 
chooses. On the other hand, the correlation length at the fixed point is an intrinsic 
property. 

The correlation length along an IR trajectory must be infinite, since it must de- 
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UV fixed point 

Bare system \ 

Renormalized 
system 

(scale p=hI b) 

Renormalized 

IR fixed point 

Figure 16.1 
or IR  fixed point. 

How to approach the infinite-cutoff limit depends on whether the theory is base on a UV 

crease along the trajectory, and it is infinite at the endpoint. Thus, we cannot place a 
bare system on an IR trajectory, but must approach it as a limiting trajectory, and in 
that limit the system goes to the 1R fixed point. A UV trajectory is different. Since 
the correlation length is finite, we can place our bare system on it. The difference 
between UV and IR trajectories is illustrated in Fig. 16.1. 

The limit of infinite cutoff is also known as the continuum limit, because the 
unit of length approaches zero. As illustrated in Fig. 16.1, the continuum limit may 
be based on an UV fixed point, or an IR fixed point. They define different limiting 
theories. A theory of the UV kind conforms to our thinking in perturbative renor- 
malization; namely, we can keep the renormalized parameters fixed at arbitrary val- 
ues while letting the cutoff go to infinity.. A theory of the IR kind has no freedom. 
The renormalized parameters assume the fixed-point values. 

An interesting possibility is that both UV and IR trajectories exist, and are near 
each other, as shown in Fig. 16. I .  The system may appear to be following one tra- 
jectory at first, but make a switch later. As we speculate later, this may be the case 
for QED. 

16.2 MOMENTUM SPACE RG 

Wilson [ I ]  proposes a RG transformation whereby the cutoff is reduced from 1 to 
lib by integrating out the modes in between. This gives a new action containing 
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fewer degrees of freedom. There are three steps, as illustrated in Fig. 16.2, and de- 
scribed in the following: 

16.2.1 Designating Fast and Slow Modes 

Decomposing the field into a "slow" part uq and "fast" part&: 

'py = aq 'L? 
uk = 0 unless Ikl < l / b  

1 fk = 0 unless - 5 /k/ 5 1 b 

where b > 0. The partition function can be rewritten in the form 

and we imagine that the J Dfintegration is carried out. 

cutoff 

A 

"Fast' 
modes - ---- 

Choosing 
modes 

Coarse- 
graining 

Rescaling 

(16.19) 

(16.20) 

Figure 16.2 RG transformation in momentum space 
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16.2.2 Coarse Graining 

Define a new action 3[a] dependent only on the slow fields through the relation 

where %is a constant. The new action is expanded in the form 

3[a] = ; 1 [zq2 + Y , ] u q u - q  +3/[U] (1 6.22) 

which defines 2, rIr and new parameters in 3/[a]. The constant 9( is put in to absorb 
any constant terms generated, to make this expansion possible. We put 

/9l<l/b 

which defines the exponent 7, the anomalous dimension. (See Problem 16.1 .) The 
partition function is now rewritten 

but its value is unchanged. 

16.2.3 Rescaling 

For comparison with the original action, rescale the cutoff to 1, and normalize the 
field such that the coefficient of the q2 term is f . This is done by defining 

The spatial volume changes to 

a' = 

The action can be rewritten as 

(1 6.25) 

(16.26) 

( I  6.27) 

where Y' = b2+'+,. We use q in place of q', since it is just an summation variable. 
We can expand the interaction term in the form 
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( 1  6.28) 

and read off the renormalized parameters u,?‘. The RG transformation is the opera- 
tion 

Note that ui depends not only on the scale parameter b but also on the initial values 
{ u a }  as well. 

It is convenient to parametrize the trajectory by an additive parameter t defined 
by 

b = e‘ ‘0 (16.30) 

with an arbitrary origin to. The coupling constants along the trajectory are then 
functions oft:  

u,: = u,(t) (16.3 1) 

From (16.28), which gives u(t)  in terms of some initial value uo = u(to), we can cal- 
culate the tangent vector along the trajectory: 

We can erase the memory of the initial state by taking the limit uo -+ u*, where u* is 
a fixed point. If this can be done, we have the conventional /3 function of perturba- 
tive renormalization: 

16.3 REAL-SPACE RG 

The coarse-graining process of the RG transformation can be performed in real 
space. This is Kadanoff’s “block-spin” transformation [ 2 ] ,  which historically pre- 
cedes Wilson’s momentum-space formulation. The system is defined on the dis- 
crete sites x of a &dimensional hypercubic lattice, with lattice spacing a = A-’.  We 
consider again a scalar field whose value at sitex is denoted by &. We make the fol- 
lowing correspondence with the continuum formulation: 
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(16.33) 

where x and y denote nearest-neighbor sites. The lattice action is accordingly 

where the sum extends over all distinct nearest-neighbor pairs < x p .  We introduce a 
dimensionless field cpx and coupling constants u,: 

(16.35) 

The action can then be written as 

where a does not appear explicitly. To approach the continuum limit, we must tune 
the parameters u, such that the correlation length becomes infinite. 

The partition function is 

where 

(16.37) 

(16.38) 

The steps in an RG transformation are illustrated in Fig. 16.3, and described in the 
following pragraphs. 

16.3.1 Making Blocks 

We begin by grouping the sites into blocks, f? sites on a side, and denoting by X the 
position at the center of a block. (In Fig. 16.3 the blocks have f?=  2.) The average 
field at average position Xis  defined as 

(16.39) 
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Block 

M 
a 

M w 
a 28 

Make blocks Coarse-graining Rescaling 

Figure 16.3 RG transformation in real space. 

By introduce a block field &, we can trivially rewrite the partition function in the 
form 

z = 1 D+/ ~ c p  6(qx - (cp)x)e-S[pl (16.40) 

where 

(16.41) 

16.3.2 Coarse Graining 

We integrate over the original field, holding the block field fixed, to define a new 
action @] dependent only on the block field: 

e-~[+l E 7\11 DV II - ( c p ) x )  e+[pl (1 6.42) 

The partition function now takes the form 

We can expand the new action in the form 

( 16.43) 

where z = i 9 .  
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16.3.3 Rescaling 

The spacing between block sites Xis  f? times larger than that for the original sites x. 
We restore the original spacing by introducing site variables 

= xie (16.45) 

At the same time, the normalization of the kinetic term is restored to + by trans- 
forming the block field to 

The action then takes the form 

where we use x instead ofx‘ as summation index. The partition function can now be 
written as 

and the problem reduces to that in momentum space. 

(1 6.48) 

16.4 RENORMALIZATION OF 
CORRELATION FUNCTIONS 

The n-point correlation function in momentum space is 

(1 6.49) 

where lpil < A, and go(A) denotes the set of bare coupling constants. In terms of the 
dimensionless field cppiA = AcPp and dimensionless bare coupling constants by uo, 
we can write 

where 

(16.51) 
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This gives the transformation law 

( 1  6.52) 

(16.53) 

To make contact with perturbative renormalization, choose 

(1 6.54) 
A b = -  
P 

where p is the renormalization scale, to be held fixed while we make A -+ 00 by 
making uo -+ ur. Multiplying both sides of (16.53) by A-, = (bp)-", we obtain 

In perturbative renormalization, this is usually written in the form 

(16.55) 

(16.56) 

where g denotes the renormalized coupling constants and G,' is the renormalized 
correlation function. We see that the cutoff dependence can be isolated in a factor, 
while the rest of the function depends on the renormalized couplings. 

16.5 RELEVANT AND IRRELEVANT PARAMETERS 

Consider a fixed point u.. If there is a UV trajectory flowing out of it, then a point u 
on the trajectory goes away from the fixed point under the RG transformation. In 
this case ZI is said to be a relevant parameter, because u - uc grows. On the other 
hand, along an IR trajectory that flows into the fixed point, we have (u - u*) --$ 0, 
and u is said to be irrelevant. Relevancy and irrelevancy are properties associated 
with directions in parameter space with respect to a given fixed point. 

In the neighborhood of a fixed point, we can neglect those couplings that van- 
ish rapidly. Let us assume that we can limit the number of couplings to a finite num- 
ber K ,  and represent them as components of a vector 
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- U =  (::) 
U K  

(16.57) 

We parametrize the trajectory by t ,  so that the tangent vector to the trajectory is 
d;/dt. In the neighborhood of ut, to linear order in l- ;*, the RG is represented by 
a matrix equation 

(16.58) 
d 
At 
-(Z-G*)=R(Z-Z*) 

where R is called the RG matrix. Let us diagonalize R: 

RT= (1  6.59) 

The eigenvectors ;define the principal axes, along which we have 

(16.60) + u(t)  - I;* = ZeA’ 

where Z is some constant vector. If A > 0, the principal axes correspond to a relevant 
direction, for the trajectory flows away from the fixed point. If A < 0, we have an ir- 
relevant direction, and 2- ;* -+ 0. The eigenvalues of the RG matrix furnish infor- 
mation about the nature of the RG flow and consequently the geometric properties 
of parameter space in the neighborhood of the fixed point. 

The linear analysis becomes inadequate if there are null eigenvalues A = 0. The 
corresponding directions are said to be “marginal,” and the flow patterns have to be 
investigated in a higher order. 

16.6 THE FREE FIELD 

We work out the RG for the free field, or Gaussian model, defined through the ac- 
tion 

where 4 is a real scalar field, with dimensionless form cp, and 

Y = 2u, 

(16.61) 

(1 6.62) 
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Since 'p-q = pq*, we can write 

(1 6.63) 

where the sum over q extends only over a hemisphere. We write the same action ei- 
ther as SO[+] or S,[qo]. The partition function is 

where 

The partition function can be calculated directly; but, for illustration, we shall carry 
out RG transformations "by the book." 

Decomposing the field into fast and slow components, cp = f + o, we have 
,&a_, = 0, because their ranges are disjoint. Thus, the free action decomposes into 
separate sums with no cross-term: 

The partition function factorizes: 

and integrating over the fast modes yields an overall factor: 

Thus, the slow modes undergo renormalization solely because of rescaling. With 
q' = qb, we have 

(1 6.69) 

where 
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cp', 9 = b-'uq.,,, (1 6.70) 

Thus the RG transformation gives 

Y' = b2r (16.7 1) 

We put b = P o ,  and regard r as a function oft:  

Since r and to are arbitrary, we have 

r(t) = coe2' (1 6.73) 

where co is a constant. 
The RG trajectories are illustrated in Fig. 16.4. There is only one fixed point at 

Y = 0, the Gaussian fixed point. It is an UV fixed point, corresponding to the high- 
momentum limit t + --oo. The parameter r(t) exhibits asymptotic freedom, since it 
vanishes in the limit of infinite momentum scale. The negative Y axis is unphysical, 
since it corresponds to systems whose energy spectrum is not bounded from below. 

To verify that the correlation length diverges at the Gaussian fixed point, recall 
that the correlation function ford > 2 is given by 

(&)4b)) = c e-V%lwI (16.74) 

The dimensionless correlation length is thus 

5 = r-"* (16.75) 

which diverges as r -+ 0. 

~~~ 

16.7 IR FIXED POINT AND PHASE TRANSITION 

An IR fixed point is the endpoint of an IR trajectory that forms the dividing line be- 
tween two different phases. We illustrate this with 44 theory in d = 4 dimensions. 

5= 00 
- .  , ,  - I  

- I  ( I  , ' - I  u2 
0 

Gaussian fixed point 

Figure 16.4 RG trajectories for u2. the dimensionless squared mass. Arrows point along directions of 
coarse graining. There is an U V  fixed point at u2 = 0. Tick marks indicate equal increment of the dimen- 
sionless correlation length (, which diverges at the fixed point. 
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The RG trajectories are shown in Fig. 16.5 This parameter space is spanned by u2 
and u4. Only the upper half-plane has physical relevance, since we must have u4 3 0 
for the energy spectrum to be bounded from below. The Gaussian fixed point occurs 
at the origin, and there is an IR trajectory flowing into it. The points P and Q repre- 
sent cutoff theories, which approach continuum limits at any point on the IR trajec- 
tory. From any point in the neighborhood of the IR trajectory, coarse graining will 
tend to decrease u4, bringing the system close to the origin. Thus, in the continuum 
limit, the renormalized system approaches the Gaussian fixed point, the free-field 
theory. This is the phenomenon of “triviality”. 

As illustrated in Fig. 16.5, the contours of constant 5 are parallel to the IR tra- 
jectory, along which 8 = m. The contours of equal separation in 6 become infinitely 
dense in the neighborhood of the IR trajectory, and the latter resembles a bottomless 
ravine. This ravine is in fact a phase transition line that divides the ~ 2 - ~ 4  plane into 
the symmetry-broken phase to the left, and the symmetric phase to the right. The 
points P and Q approach continuum limits in the respective phases. In this limit we 
have u2 -+ 0 and A -+ 03, and thus the mass parameter is indeterminate: 

m2 -+ 2u2A2 (16.76) 

Thus we can set it at an arbitrary value, and this is called “mass renormalization.” In 
the symmetric phase, where m2 is positive, it gives the squared mass of the field 
quanta. In the broken phase it is negative, and contributes to the vacuum field 
(4) = GZ&. 

d=4 

P 
RG 
t r a j ec to ry  

t 
Gaussian fixed point 

Figure 16.5 
Gaussian fixed point. It represents a phase-transition line, along which the correlation length is infinite. 

RG trajectories of 44 theory in four Euclidean dimensions. An IR trajectory flows into the 
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We can interpret the +4 theory as a Ginsburg-Landau theory for an order para- 
meter +. In this case, u2 is regarded as a temperature. The points P and Q in Fig. 
16.5 correspond to thermodynamic states near a second-order phase transition, and 
the eigenvalues of the RG matrix determine the critical exponents (see, e.g., Huang 
[31). 

16.8 CROSSOVER 

When a trajectory flows from the neighborhood of one fixed point to that of anoth- 
er, the qualitative nature of the system changes. This is called crossover behavior, 
and is illustrated in Fig. 16.6, for 44 theory in d = 4 - E dimensions (E  -+ O+). 

The Gaussian fixed point describes a massless free field, but the nontrivial 
fixed point describes something else. To illustrate the difference in an extreme limit, 
imagine that the nontrivial fixed point recedes to the far corner of the second quad- 
rant. The potential will become a steep double well, with the field trapped in two 
possible values, and the fixed-point system will resemble an king model. 

Consider the trajectory marked with point P in Fig. 16.6. At very short-distance 
scales, the system is near the Gaussian fixed point, and will remain there through 
orders of magnitude of coarse graining. Thus the system appears to be a massless 
free field through orders of magnitudes of scale change. When we continue to 
“zoom out,” eventualiy the system leaves this neighborhood, and begins to move to- 
ward the nontrivial fixed point. Once it gets under way, the system moves quickly 

t 
Gaussian fixed point 

Figure 16.6 
Gaussian fixed point to a different behavior near the nontrivial fixed point. 

As P flows along the trajectory, the system crosses over from free-field behavior near the 
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until i t  comes close to the nontrivial fixed point, like the point P referred to previ- 
ously, where the system remains Isinglike through orders of magnitude of scale 
change . 

If we imagine performing experiments on this system, we would first see the 
system at low energies, corresponding to a point far downstream on the trajectory. 
When the energy scale is increased the system will quickly settle down to king be- 
havior, and remain there until we enter the realm of “high-energy physics,” when al- 
most suddenly we see it as a free field whose mass exhibits “asymptotic freedom.” 
The term “crossover” emphasizes the suddenness of the transition. 

16.9 RELATION WITH PERTURBATIVE 
RENORMALIZATION 

The Wilson RG supplies a physical basis for renormalization, but does not furnish 
tools for carrying it out. To implement it, the only analytic method we have is still 
perturbation theory. Perturbative renormalization, of course, predated and inspired 
the Wilson RG. It has been very successful in dealing with divergences in a practi- 
cal way. It has even achieved some physical understanding when the theory happens 
to be asymptotically free, that is, based on an UV fixed point, but it fails to uncover 
the basic structure when the governing fixed point is IR. When guided by the Wil- 
son RG, perturbation renormalization acquires a roadmap. It does not make calcula- 
tions any easier, but at least one is more aware of the possible terrains. 

What one does in perturbative renormalization may be summarized as follows. 
The immediate task is to calculate a correlation function by expanding it in terms of 
Feynman graphs. A graph is represented by a integral, which may be divergent. In 
that case, it is rendered finite by introducing a cutoff momentum A: 

wherep is an external momentum. Let us suppose, as in typical situations, that it di- 
verges like In A. Then, one subtraction will render the integral finite. That is, we 
write 

where pn is a momentum that sets the renormalization scale Ipo12 = pz. The diver- 
gence is now isolated in the first term. One then shows that, when all the Feynman 
graphs are added, all such divergent terms can be absorbed into renormalized cou- 
pling constants. The result is summarized by formula (16.56). The miracle is that a 
subtraction made in a graph somehow turns into a multiplication of the coupling 
constant. The rederivation of (16.56) through the Wilson RG shows the equivalence 
of the result in the two approaches. The methodologies are also the same. The renor- 
malization scale p, established by the choice of subtraction point in perturbative 
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renormalization, corresponds in the Wilson RG to the effective cutoff p = hih. The 
important difference is that, whereas in perturbative renormalization is seen as a 
subtraction point to get rid of divergences, in the Wilson RG it is the result of coarse 
graining, and thus has physical meaning. The Wilson RG has a better vantage point, 
for it works with the action as a whole, instead of individual Feynman graphs. One 
limitation of the present formulation of the Wilson method is the explicit use of a 
sharp momentum cutoff.2 

Certain folk beliefs growing out of perturbative renormalization need to be re- 
vised. It is usually assumed that renormalized coupling parameters can be held 
fixed at arbitrary values, while we send the cutoff to infinity. This is not always cor- 
rect. As we have discussed, renormalized parameters can be considered arbitrary 
only if the continuum limit is realized by placing the theory on a UV trajectory. If 
the continuum limit is realized by approaching an IR trajectory, then the renormal- 
ized coupling constants are fixed; they assume the values at the IR fixed point. 

It is also a common belief that interactions are either “renormalizable” or “non- 
renormalizable.” In the former, Feynman graphs can be made finite through a finite 
number of subtractions, whereas in the latter category they would require an infinite 
number of subtractions. This is an artificial distinction based on the idea that the de- 
gree of divergence of a Feynman graph is determined solely by its topological struc- 
ture, without reference to the scaling properties of the coupling constants. As illus- 
trated in Problem 16.2, a proper counting of the degree of divergence must take into 
account the cutoff dependence of the coupling constants. 

A better criterion for a “renormalizable” theory is that the Lagrangian contain 
the same interaction terms at all length scales. One can then make the subtractions 
in the Lagrangian itself, by introducing counterterms. As a general requirement, 
however, this is impossible. Although we can choose the Lagrangian at a particular 
energy scale, its form at lower energy scale is not under our control. The system 
evolves along an RG trajectory, and relevant interactions emerge, while irrelevant 
ones die out. The limitation to the same set of interaction terms merely means that 
we are sufficiently close to a fixed point that all irrelevant interactions can be ig- 
nored. 

In discussing the relation between the Wilson RG and perturbative renormal- 
ization, the case of QED remains a puzzle. This is ironic, for perturbative renormal- 
ization scores its greatest triumph in QED, and yet the fixed-point structure is not 
clear. On one hand, the success of perturbative renormalization is based on the 
recipe of the UV type, that we can keep the renormalized parameters fixed at arbi- 
trary values while letting the cutoff go to infinity. Yet, perturbation theory also 
shows that there is no UV fixed point-the theory is not asymptotically free. In- 
stead, a partial summation of Feynman graphs suggests that there is an IR fixed 
point, which leads to triviality. What is going on? The importance of this theory im- 
pels us to offer a scenario. 

We have to distinguish between the mathematical QED, the theory described in 

2Polchinski [4] attempts a reformulation of the Wilson RG with a more general choice of cutoff 
function. 
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Chapter 1 1, and the physical QED, which is embedded in the larger standard model, 
the still larger grand unified model, and beyond. In the energy scale of current ex- 
periments, the mathematical QED is an excellent model. However, we must keep 
our distance from the IR trajectory, by keeping the cutoff large but finite. As the cut- 
off approaches infinity, the renormalized charge will tend to zero, but with logarith- 
mic slowness, since all divergences in QED are logarithmic. From a phenomenolog- 
ical point of view, the cutoff dependence is so weak as to be undetectable; however, 
the effective charge can be set at an arbitrary value by adjusting the cutoff. 

A possible scenario for the physical QED, which is embedded in a larger model 
of unified interactions, is the following. The true trajectory of the theory may well 
lie on an UV trajectory, similar to the upper curve in Fig. 16.1. On energy scales of 
our experiments, however, the true trajectory may be close to an IR trajectory, simi- 
lar to the lower curve in Fig. 16.1. The mathematical QED is modeled after the IR 
case, because that yields a simplier description. 

16.10 WHY CORRECT THEORIES ARE BEAUTIFUL 

Physicists are always sure that they possess the correct picture of the world, because 
their theories are not only “true” but also “beautiful.” 

In the Newtonian view, the world was made up of particles ruled by the elegant 
canonical laws, and that encompassed everything. As Laplace said, given the posi- 
tions and velocities of all the particles of the universe at any one time, one could de- 
termine the course of the universe for all times. 

With the discovery of electromagnetism, the “luminiferous ether” joined “pon- 
derable matter” as ingredients of the universe, and the picture was complete. Lord 
Kelvin was of the opinion that physics in the next century would be concerned only 
with “the next decimal place.” 

But then came relativity and quantum mechanics, more impressive and beauti- 
ful than ever. “Quantum mechanics,” said Dirac, “has explained all of chemistry and 
most of physics.” 

We have since progressed from atoms to nuclei to quarks in one direction, and 
from galaxies to black holes in the other, both heading toward the Planck scale. As 
always, some believe that the end is in sight. 

How is it that our effective theories at different scales are so compelling as to 
make physicists think they are gods? The answer is that, like Aesop’s mouse, they 
walk in front of a lion, and the lion is renormalization. 

Because of renormalization, we can understand the observed world on its own 
terms, without reference to detailed structures of a lower level. Thus the proper way 
to calculate satellite orbits is to use Newtonian mechanics, even in the postquantum 
era. And it is better not to mention quarks when we describe superconductivity. The 
fact is, a system in coarse grain can appear completely different from that in fine 
grain. Looking at a certain canvas through a microscope, one perceives only paint 
pigments. But when viewed with the naked eye, a Rembrandt might emerge. At dif- 
ferent ranges of length scales, the world will appear to be governed by different 



340 Renormalization 

fixed points, because of the phenomenon of crossover. A fanciful interpretation is 
shown in Fig. 16.7. 

The task of the physicist has been to find out where our RG trajectory came 
from, This is done by guessing the Hamiltonian, and working out its low-energy 
consequences to compare with experiments. This process is perhaps what Einstein 
had in mind when he said [5] 

The axiomatic basis of theoretical physics cannot be abstracted from experience, 
but must be freely invented. . . . Experience may suggest the appropriate mathemat- 
ical concepts, but they most certainty cannot be deduced from it. 

Through “free inventions,” physicists have had remarkable success in the seem- 
ingly impossible task of reverse coarse graining. In this they have been guided by 
the faith that a “true” theory must be “beautiful.” This mysterious unity prompted 
Wigner [6] to wonder about the “unreasonable effectiveness” of mathematics, and 
Dirac3 to extol formalism. We can perhaps understand it by noting that what one 

? 
0 

0 Galaxies 

Figure 16.7 Under a change of length scale, the world’s RG trajectory crosses over from the domain of 
one fixed point to another. This might explain why “true” theories are “beautiful.” 

31n a two-lecture series on creativity in physics at Harvard University in 1960, Dirac said in the 
first lecture that he was always guided by “correct formalism.” But Heisenberg, in the second lecture, 
emphasized physical intuition. 
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really tries to do is to construct fixed points, which are purely mathematical objects 
endowed with a high degree of symmetry and universality. 

PROBLEMS 

16.1 (a) We have defined our field 4 ( x )  with Fourier transform 4k for finite volume, and 
&k) for infinite volume, such that the free action is dimensionless: 

Verify the canonical dimensions for &x), &, and &k). 

(b) Show that, according to the canonical dimensions, the correlation function in the 
massless case should have the behavior 

(c) A change of scale changes the cutoff from A to Alb without changing the physi- 
cal content of the theory. In an interacting theory, this changes the free part of the 
action to (b-V2)Jddx d++(x)dp&x), as indicated in (16.22). Show that 

which gives rise to the term “anomalous dimension” for the exponent 77. 

16.2 Thep = 0 component of does not appear in the action Za21&p)12. Does this mean 
that $,, can be scaled differently from 4p with p # O? This would mean, in case of 
spontaneous symmetry breaking, that the vacuum field (4) scales differently from 
44.4. 

Solution. The answer is “no,” for physical reasons. At finite x,  fix) should be in- 
dependent of the boundary conditions when the size of the box containing the system 
goes to infinity. Let boundary condition A be periodic, and B be that the field vanishes 
at the boundary. The vacuum field is constant in finite portions of space, but must drop 
to zero at the boundary. If a constant field scales differently from a nonconstant one, 
then we can tell the difference between A and B, even in finite portions of space. 

Consider a scalar theory with interaction g444 + g6@ in d = 4 space-time dimensions. 
Assuming that the only intrinsic scale is the cutoff momentum A, we have g4 = u4, g6 = 

U ~ A - ~ ,  where u, is dimensionless. In d = 4, g, is distinguished by the fact that it is di- 
mensionless. As far as the S matrix is concerned, this theory is equivalent to a 44 theo- 
ry with an effective coupling constant. To illustrate this fact, consider the various irre- 
ducible correlation functions through illustrative examples. 

16.3 
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Gs= Gi= 

(a) Consider the graphs for the irreducible self-energy G2, G; in the accompanying 
sketch. Show that they have the same degree of divergence A2, as in pure @ the- 
ory. 

(b) Show that the irreducible vertex graphs G4, Gd diverge like In A, as in pure 44 
theory. 

(c) Show that the irreducible graph for the six-point function G6 is convergent. The 
ones involving g,, such as GQ, vanish when A * m. This shows that the correla- 
tion function depends on g,  only through the four-point function, as vertex inser- 
tions. 

(d) Can we renormalize this theory like it is a 44 theory? 

16.4 In a &dimensional scalar theory with all powers @ in the interaction term, as repre- 
sented in (16. l), there is a particular power M such that the coupling constant gu is di- 
mensionless. Show that, as far as the S matrix is concerned, this theory is equivalent to 
a @“theory with effective coupling constants dependent on all the gK. To do this in a 
systematic way, repeat the analysis of Section 13.1 on the enumeration of primitive di- 
vergences. Show that the only primitively divergent graphs are those with M or fewer 
external lines. 
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CHAPTER SEVENTEEN 

The Gaussian Fixed Point 

17.1 STABILITY OF THE FREE FIELD 

To study renormalization in greater depth, we investigate the space of Hamiltonians 
in the neighborhood of the one fixed point we know about-the Gaussian fixed 
point, corresponding to a massless free field with Hamiltonian density f(~34)~. 

We want to know, in particular, whether the fixed point is stable against pertur- 
bations. Were we to displace the system from the origin of parameter space along 
some direction, by adding extra terms to the action, would the system return to the 
origin under coarse graining, or would it go off on a tangent? Stability would mean 
that we have picked an “irrelevant” direction in parameter space, and instability 
would mean that the direction is “relevant.” In the former case we would have “triv- 
iality,” and in the latter, “asymptotic freedom.” But since the parameter space was 
not there to begin with, we must invent it. The possibilities are vast, for the only 
condition is that the space contain the null element. In our investigation, the choice 
is dictated by what we can mathematically handle. 

The simplest extension is to add a mass term u2#*. This is a relevant term, as 
we can see in Fig. 16.4. Under coarse graining, u2 runs to infinity without reaching 
a fixed point. At smaller length scales, on the other hand, it approaches zero. This 
means that the mass is asymptotically free, which is hardly surprising, since it is in- 
tuitively clear that mass can be neglected at high energies. 

The situation becomes more complicated when we introduce the simplest inter- 
action ~ ~ 4 ~ .  The parameter space is now spanned by u2 and u4, and the physical re- 
gions corresponds to the upper half plane u4 ? 0. The Gaussian fixed point is stable 
if d 2 4, as indicated in Fig. 16.5: but it becomes unstable for t i  = 4 E ( F  -+ 0’). as 
indicated in Fig. 16.6. When d decreases from 4, what happens IS that a nontrivial 
fixed point splits off from the Gaussian fixed point and moves to the upper half- 
plane. The Gaussian fixed point is now unstable, but the trajectories flowing from it 
are confined to an infinitesimal strip above the u2 axis. When d changes in the op- 
posite direction, the nontrivial fixed point moves toward the Gaussian fixed point, 

343 
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merges with it at d = 4, and then moves off to the unphysical lower half-plane when 
d > 4 .  

In condensed-matter physics the interesting case is d = 3. In this case, the non- 
trivial fixed point is presumably located at a finite distance from the origin. The mo- 
tivation for studying the case d = 4 - E is the hope that the critical exponents at the 
nontrivial fixed point can be extrapolated to E = 1. For particle theory, however, the 
physical case is d = 4, and we are stuck with the fact that the C$4 interaction is irrele- 
vant. To avoid triviality, we must keep a finite cutoff A. Physical quantities depend 
only on In A, and are therefore not sensitive to changes in A. While this is accept- 
able from a phenomenological point of view, it does not seem very satisfactory. This 
provides an incentive to inquire whether there are relevant directions emanating 
from the Gaussian fixed point ford  3 4. 

17.2 GENERAL SCALAR FIELD 

We shall study the real scalar field C$(x) in d Euclidean dimensions, whose action is 
given in (1 6.1). In terms of the dimensionless variables in (1 6.1 I), it has the form 

S[p] = I ddx[ f ( & , ~ ) ~  + u2q? + u4p4 + u6q6 + . . .] (17.1) 

In momentum space it has the form given in (1 6.13): 

(17.2) 

where r = 2u2. However, we shall start with a more general theory, to see whether 
the above form is closed under RG. In particular, we want to know whether RG gen- 
erates derivative couplings and nonlocal interactions not included above. By deriva- 
tive coupling, we mean terms containing derivatives of the field not of the form 
( d ~ ) ~ ,  such as 

A nonlocal term involves fields at different space-time points, such as 

Of course, in a cutoff field theory ostensibly “local” interactions are nonlocal with- 
in a spatial distance of order A-’. By “nonlocal” terms, we specifically refer to 
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those for which the range of nonlocality is large compared to A-I. We shall first 
consider a very general model containing arbitrary derivative and nonlocal cou- 
plings, in order to show that, in an infinitesimal RG, such interactions are not gener- 
ated if they were not present originally. We shall then revert to the action of (1 6.1). 

To generalize the action given in (1 6.13), we replace u, by an arbitrary function 
of momenta 

Since this quantity multiplies the symmetric combination qq, . . . ( ~ 4 ~ '  we may take 
it to be a symmetric function. The kinetic term fx(q2 + r ) ~ p , q - ~  is generalized by 
replacing r by the momentum-dependent quantity 

w(q) = r+c4q4 +c,q6 + . . . (1 7.4) 

Our starting point, then, is the action 

where S(q) is an abbreviation for S(q,  + . . . + q J .  It will be understood that the sum 
over a extends over even integers only. This form is quite general. For example, in 
coordinate space the kinetic term has the form 

where (dq )2n  = (2qCrp)". The other terms in the action contain similar derivative 
couplings; but in addition, nonlocal terms can arise. For example, u4(q) can contain 
a term of the form s , , ,92s9~,q4s(qI )0(q~) .  This will give a nonlocal term with an infi- 
nite range of the nonlocality. But we are not actually going to use these interactions, 
and will not bother to impose physical constraints. 

17.3 FEYNMAN GRAPHS 

The RG has been described in Section 16.2. We introduce Feynman graphs in order 
to make certain arguments important for our later calculation. When the field is 
split into slow and fast parts with cp = u + f ;  the kinetic part of the action is additive: 
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because a&, = 0, as their domains do not overlap. The partition function can be 
written 

where N-’ = JDfexp{- S2yl} is a constant, and (O),  denotes averaging overfwith 
weight exp{- S,M}. The new action 3[u] for the slow fields is given through 

(e-s/[”~fIj~ &lcI (1 7.9) 

and after scaling transformations we extract the renormalized coupling constants. 
To calculate s[u] in terms of Feynman graphs, we make the expansion 

( 1 7.1 0) 

The interaction S, is a sum of vertices illustrated in Fig. 17.1, where each line ema- 
nating from a vertex is a sum of one slow and one fast line. Aff the slow lines be- 
come external lines, and all the fast lines are internal lines to be integrated over. We 
substitute the sum of vertices into (1 7. lo), and expand in powers of u. The averag- 
ing with respect tof’can be done using Wick’s theorem: 

(A ,  . . .f,,)/= sum of all contractions 

where a contraction is a pairing of thefvalues, with each pair contributing a factor 

(17.11) 

(1 7.12) 

- -  + - - - .  - - 
f CT 

Figure f 7 . l  
are internal lines to be integrated over, and the slow lines are external lines. 

The interaction vertices. Each line is a sum of a slow line uand a fast 1ine.f: The fast lines 
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Figure 17.2 
graphs can be ignored. 

Graphs with n external lines contribute to the renormalized parameter u,:.  The vacuum 

The average of an odd number offvalues is zero. This generates Feynman graphs in 
the usual way. For example, the first two interaction vertices give rise to the Feyn- 
man graphs shown in Fig. 17.2. Averaging the first vertex yields a four-line graph 
that contributes to u;, and a two-line graph that contributes to u;. Similarly, averag- 
ing the second vertex yields contributions to u&u;,u;. Vacuum graphs are irrelevant 
because they contribute only to the constant 5'(. With this expansion, we have the 
rules 

c ~ [ ~ ]  = sum of all Feynman graphs 

- 3[a] = sum of all connected Feynman graphs (17.13) 

The second statement is the linked cluster theorem. We will not state the Feynman 
rules in detail, for we shall not need them for later calculations. 

17.4 WEGNER-HOUGHTON FORMULA 

Consider an infinitesimal RG transformation at the cutoff momentum. We put 

b = e' ( t  + 0) ( 1 7.14) 

Wegner and Houghton [ 11 show that the renormalized action can be obtained exact- 
ly to order t ,  with the momentum-dependent interactions introduced earlier. What 
makes this possible is that all the internal momenta in Feynman graphs are confined 
to a thin shell 5 of thickness O(t) in momentum space: 

(17.15) 

Specifically, we have the following simplifications: 
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To first order in t ,  only tree and one-loop graphs contribute. Some of the lat- 
ter are shown in Fig. 17.3. 
A one-loop graph with two or more vertices is generally O(t2), except that it 
is O(t) when all the internal lines carry exactly the same loop momentum. 
This requires that the total momentum of external lines at any one vertex be 
zero. 

To show the second statement, consider graph c in Fig. 17.3, which is proportional 
to 

where external momenta are denoted p ,  and internal momenta are denoted q. This 
integral is O(t2) in general, because there are two q integrations, and each ranges 
over a momentum shell of thickness O(t). An exception occurs when p ,  + p2  = 0. 
The integrations are then constrained by 6(q, + q2), and the graph becomes O(t). 

We have shown in Section 14.9 that the sum of tree and one-loop graphs is giv- 
en by the first two terms in a saddle-point expansion of the partition function. In 

This argument appIies to any vertex of a graph, even if it is a subgraph. 

\ I  Y 

(d) le 1 ( f )  
Figure 17.3 One-loop graphs 
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this particular instance, the simplifications mentioned above make the calculation 
even easier. We expand the action in powers of$ 

with 

( 1 7.17) 

where P,[cT] is associated with tree graphs, while Q4[o] is associated with one-loop 
graphs. The terms not displayed can be neglected. 

Prooj Each& in the expansion corresponds to an internal line in a Feynman 
graph of momentum q. In the one-loop graphs we need, there emerge from every 
vertex two-and only two-internal lines with equal and opposite moinenta (since 
the external lines must have total zero momentum). Thus we need not go beyond 
quadratic order in&, and of the quadratic term we only need to keep terms of the 
form f$-4. 

SinceL, = f:, the modes q and -q are not independent. We rewrite 

(17.18) 

where 5' denotes a hemisphere of the thin shell 5. We can now integrate over$ 

(17.19) 

The renormalized action to first order in t is given by the Wegner-Houghton formu- 
la 

?[CT] = S[a ]  + tB[CT] 

(17.20) 
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The quantity B[u]  is O( 1) because the summation over the thin shell [is O(t), and it 
is divided by t. This result is valid only to order t, but exact to all orders in the cou- 
pling constants u,(q). With momentum-dependent couplings u,(g), the theory is 
very general, but not all choices of u,(q) are physical. What constraints are needed 
to make the theory physical is a problem that has not been investigated systemati- 
cally. 

17.5 RENORMALIZED COUPLINGS 

We still have to transform to rescaled variables according to (1 6.26). To first order 
in t, we need only to transform S[u].  From (1 7 .9 ,  we obtain 

Putting b = 1 + t and keeping only first-order terms in t, we obtain 

(1 7.2 1) 

(17.22) 

(17.23) 

where ~p;, is as defined in (16.25). The partition function can now be written as 

where 

S"Cp'] = S[cp'] + tB[Cp'l+ tC[cp'l 

(17.25) 
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I t  is clear that if all u,(q) = 0, then the action is invariant under RG. This establishes 
the Gaussian fixed point 

If the action does not contain odd powers of the field initially, then none will be 
generated to first order in t, because Q,[cp] is even in w, as we can see from (17.17). 
If no derivative couplings were present initially, then to first order in t none will be 
induced. This can seen as follows. Derivatives are generated by momentum-depen- 
dent terms, and can occur only in C[cp] in the term 

If only nonderivative local couplings were present at the start, then the preceding 
vanishes except for a = 2, for which it gives a term proportional to q2. Therefore no 
derivative couplings are generated to first order in t .  We have thus shown that the 
action (1 7.1) is closed under RG to first order in t. 

To obtain the RG equations, we expand B[cp] and C[cp] in powers of cp to rewrite 
S'[cp] in the form (l7.l) ,  and read off the new coupling functions uL(q). This is 
straightforward but messy, and we shall do it only to linear order in the couplings. 
But first, some general comments about the f l  function. 

In terms of RG, the momentum q in u,(q) is on the same footing as a, as it is a 
label for the type of interaction. To emphasize this, we write 

The p function in our case is defined by 

( 1  7.27) 

where u r  - u = O(t) by construction. By considering a function u,,,(t), we can write 

(1  7.28) 

where u(t)  stand for the set of all couplings at t and t = 0 corresponds to the cutoff 
scale. We have calculated /? exactly to first order in t. The f l  function one uses in 
particle theory corresponds to 

where u* is a fixed point. To calculate this will require integrating the fast modes 
over a finite instead of an infinitesimal shell in momentum space. This seems diffi- 
cult, but its equivalent has been achieved via perturbation expansions in special 
cases. Such calculations are the forte of perturbative renormalization, although in 
that context one is not aware of the role of u.. 
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Our modest calculation has nontrivial consequences. By placing u(0) at the 
Gaussian fixed point 

u(0)  = u* = 0 (17.30) 

we obtain the exact p function at the Gaussian fixed point. This gives us the tangent 
vectors of all the trajectories at that point, and we can tell which directions are irrel- 
evant or relevant. 

17.6 THE RG MATRIX 

We study the tangent vectors to RG trajectories at the Gaussian fixed point. For this, 
we need only the linearized RG equations. All tree graphs can be ignored, since they 
are at least of second order in the couplings. The only relevant graphs are the one- 
loop graphs with one vertex, the first graph in each row of Fig. 17.3 (the “octopus- 
es”). It is easily verified that to this order 77 = 0. 

We revert to the action (1 7. l), with momentum-space representation (1 7.1). 
From (1 7.2) we have 

- 
= q 2 + r + Q  (17.31) 

where 

For B[q] given in (17.25), we neglect the P, term, and obtain 

(17.33) 

Since the shell 5 is thin, we set q2 = 1, and replace the sum by the volume of 5: 

(1 7.34) 

where Ad is the surface area of a unit d sphere, given by 
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Thus, to first order in urn, 

(17.35) 

(1 7.36) sd 
= constant + - 1 (a + I>(& + 2)anl-~/2u,+2 2 qq)cpq, . . . p4, 

2 a = 2  l q j l ~ ~  

The constant term can be ignored. From (17.25) we have, with 7 = 0, 

which gives 

r 

“I + qcp1 = 1 2 Rt-a’2S(q)cpq, ’ ’ . cpqa 
a=2 IqjlcI 

Putting a = 2n ,  we obtain the linearized RG equations [2] 

(2n + d - nd)u2, + SAn + 1)(2n + 1 ) ~ ~ ~ + ~  d ~ 2 n  - =  
dt 

( n =  1 ,2 , .  . . ,a) 

Let I,!I be the column matrix whose elements are $,, = uZn: 

*=(  8) 
We can rewrite (1  7.39) in the form 

(17.39) 

(1 7.40) 

dlCr 
- =M$ 
dt 

(17.41) 

where M is the RG matrix: 
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1 -  + Sm,n+,(n + 1) ( n + - ;) s, (17.42) 
2 

Now consider the eigenvalue problem 

M*= A* (1 7.43) 

The eigenvectors +b correspond to “principal axes” in the parameter space, along 
which we have the behavior dQldt = A*, or 

$(t) = $(to)eh(r-ro) (1 7.44) 

The origin to is arbitrary, except that it should be such that @ is small; but it should 
not correspond to the Gaussian fixed point, where @ = 0. 

The eigenvalue A characterizes the trajectory tangent to the corresponding prin- 
cipal axis at the Gaussian fixed point: 

1. If A < 0, then Q + 0 as t + a ~ .  The couplings constants are irrelevant. Under 
coarse graining, they tend to approach the Gaussian fixed point. On such a 
trajectory, the Gaussian fixed point is IR, and the theory is trivial. 

2. If A > 0, then 9 grows with t. The coupling constants are relevant. Under 
coarse graining, they tend to go away from the Gaussian fixed point. On 
such a trajectory the Gaussian fixed point is UV, and the theory is nontrivial. 
The trajectory is specified by some initial condition at an arbitrary point 
t = to, and it flows away from the Gaussian fixed point. The latter can be 
reached by letting t + -00, in which limit the couplings vanish. This is as- 
ymptotic freedom. 

3. The case A = 0 corresponds to “marginal” coupling constants. In this case, 
we have to go beyond the linear approximation in order to determine the 
true behavior. 

Using (17.39), we can put the eigenvalue equation (17.43) in the form 

n(d -  2) - d +  A 
(n  = 1,2,  ’ . . , aJ) ( 17.45) 

Sd(n + 1)(2n + 1) U2n 
U2n+2 = 

which is a recursion relation starting with u2 = r12. The case d = 2 will be treated 
separately. For d > 2, it is convenient to introduce a parameter a by writing the 
eigenvalue in the form 

A = 2 + (d - 2 ) ~  (1 7.46) 

The recursion relation can then be put in the form 
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(d- 2)(a + n - 1) 
2Sdn + l)(n + i) U2n 

U2n+2 = 

whose solution is 

(17.47) 

(1 7.48) 

The potential with these coupling constants is referred to as the eigenpotential. Us- 
ing the abbreviation 

(1 7.49) 

we have 

m 

[M(u - 1, 112, Z )  - 11 (17.50) rsd 

2(a - l)(d- 2 )  uu($(x>) 1 ~ 2 n ( P 2 " ( ~ >  = 
n= I 

where M(a, b, z )  is the Kummer function 1131: 

If a is a negative integer, the power series breaks off to become a polynomial of de- 
gree la(. Otherwise, its asymptotic behavior for large z is given by 

(1 7.52) 

The eigenpotential U , ( Y )  describes a field theory lying on a trajectory tangent to a 
particular principal axis with respect to the Gaussian fixed point. The principal axis 
is identified only through the eigenvalue parameter a. 

For a polynomial potential of degree K in @, then, we have a = -K + 1. The 
corresponding eigenvalues are 

A=2[1 -(d-2)(K- I) ]  ( K =  1,2,. . .) (1 7.53) 

The case K = 1 corresponds to a free field with squared mass r, which is relevant for 
all d. For K 2 2, we have A < 0 for d 2 4. For d = 3 it is negative except for the mar- 
ginal case of K = 2. This case corresponds to the $4 theory in d = 4 - E,  with RG 
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flow as shown in Fig. 16.6. The Gaussian fixed point is, in fact, relevant in this case. 
The case d = 2 will be analyzed separately later. 

In summary, all potentials that are polynomials in c#? lead to triviality ford  5 3,  
except for the free field, and the 44 theory in d = 3. 

17.7 NONTFUVIALITY AND ASYMPTOTIC FREEDOM 

We investigate relevant directions for d > 2. They correspond to positive eigenvalues 
A > 0. or 

2 
a > -- 

d - 2  

The eigenpotentials have the following asymptotic behavior for large cp: 

(1 7.54) 

(17.55) 

Nothing in canonical field theory rules out such a potential. 

which evolves in t according to 
Sufficiently close to the Gaussian fixed point, the potential is proportional to r, 

r(t) = r(tO)eh(l-'O) = CeA\' (1  7.56) 

with C = r(to)exp(-t,). This is a running coupling constant, with an arbitrary renor- 
malized value r(to) at the reference point to. The theory is nontrivial, because the po- 
tential does not tend to zero in the low-momentum limit. Instead, we have asymptot- 
ic freedom, corresponding to the fact that the potential vanishes in the limit t + -00, 

which corresponds to infinite momentum. 
In order to have spontaneous symmetry breaking on the semiclassical level, the 

eigenpotential must have at least one minimum in 4. The power-series expansion 
for the eigenpotential reads 

a(a + 1lZ3 + + . . -1 (17.57) rsd 

ua(cp') = + (3/2)2! (3/2)(5/2)3! 

A sufficient condition is that U'(0) < 0, and U > 0 for large z. The first is satisfied 
by choosing r < 0. Asymptotically, U is proportional to r[(a - l)T(a)]-'; the rest of 
the factors are positive. Thus we must have (a - l)T(a) < 0, which is equivalent to 
T(a - 1) < 0. Using the formula T(a)T(-a) = d s i n ( m ) ,  and the fact that T(a )  is pos- 
itive for a > 0, we find that a must be in one of the open intervals (-1, a), (-3, -2), 
and so on. For a nontrivial theory, we have A > 0, or 2 + ( d  - 2)a > 0. Combining 
these requirements, we obtain the sufficient condition 
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Figure 17.4 Eigenpotentials for d = 4. Theories with these potentials are covariant with respect to RG. 
The curves correspond, from top to bottom, to values of the eigenvalue parameter a uniformly spaced 
from -0.999 to 4.001. All potentials behave like exp $2 for large Cp. The theories are all nontrivial and 
asymptotically free. The limiting case a = - I  is the Cp4 theory, which is trivial. (After Halpern and Huang 
~ 7 1 . 1  

( 1  7.58) 

A family of eigenpotentials for this range of a, and d = 4, is plotted in Fig. 17.4. 
The eigenpotential U, corresponds to a theory that lies on a trajectory tangent 

to a principal axis. Generally, we can consider a theory on an arbitrary trajectory, 
which is represented near the Gaussian fixed point by a linear superposition of the 
eigenpotentials. This gives us considerable freedom in choosing potentials. 

17.8 THE CASE d = 2 
~~ ~~ ~ ~ ~ 

We now calculate the eigenpotential for d = 2. Going back to (17.45), we have 

with the recursion relation 

27T(A - 2) 
( n  + 1)(2n + 1) U2n 

U2nt2  = 

(17.59) 

(1 7.60) 

where A is the eigenvalue of the RG matrix. Write the recursion relation in the form 
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(2n2 + 3n + 1) 112n+2 + f ?U2” = 0 (17.61) 

where 

? = 4142 - A) (1 7.62) 

Multiplying both sides of the recursion equation by z”, and summing over n from 1 
to w, we obtain a differential equation for the eigenpotential: 

d2U dU 1 r 
22- + ~ f -$U= - 

dz2 dz 2 2 

where z = (p‘. We seek the solution that satisfies 

U--J +rcp2 

Changing variables back to cp = G, we have 

d2U 
- + ? U = r  
dcp2 

(1 7.63) 

(17.64) 

(1  7.65) 

The solution is 

U(cp2) = -‘o[cos(ycp) - I J r! 

For 4 > 0, the eigenpotential is periodic, and thus w is an angular variable. The 
Euclidean action 

leads to the equation of motion 

(17.68) 

which is called the “sine Gordon equation.” For 0 < < 8n,  the potential is rele- 
vant, and the theory is asymptotically free. For ? > Srr, it is irrelevant, and the the- 
ory is trivial. These conclusions agree with those arrived at through perturbation 
renormalization [4]. 

As we shall see in the next chapter, the angular nature of the field dictates the 
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existence of vortices, which cannot be described within the linear approximation 
considered here. 

PROBLEMS 

17.1 Show that the anomalous dimension has the value 7 = 0 to one-loop order. (Hint: Ob- 
tain 7 from the Wegner-Houghton formula, which represents a sum of one-loop 
graphs.) 

17.2 Consider a Ginsburg-Landau theory with free energy +j-d”~[(dcp)~ + r$] .  Show that 
d2 In Z/dr2 = W4. (If we regard r as a temperature, this gives the heat capacity.) This 
shows that d = 4 is a “critical dimension” of the Gaussian fixed point, in that perturba- 
tion theory in powers of r breaks down f o r d  5 3 .  This is why, in the theory of  critical 
phenomena, one considers d = 4 - E, and uses a double perturbation expansion in r and 
E. The d = 2 case in the last section is in a different category, for the rq? term is re- 
placed by cos v, making cp an angle. This is discussed in Chapter 18. 

17.3 For d = 2, give the eigenpotential and the corresponding equations of motion for the 
field, when y = i K .  Argue that this result is valid by analytic continuation from real y. 
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CHAPTER EIGHTEEN 

In Two Dimensions 

18.1 ABSENCE OF LONG-RANGE ORDER 

We consider systems in two Euclidean dimensions, which may be statistical systems 
in two spatial dimensions, or quantum field theories in one spatial dimension. These 
interpretations are merely different aspects of the same partition function in the lan- 
guage of path integrals. For definiteness, we phrase our discussion in terms of sta- 
tistical mechanics. 

From a physical point of view, the essence of two-dimensionality is that long- 
range order cannot be maintained over arbitrarily large distances, due to large fluc- 
tuations of the Goldstone mode [I]. An equivalent statement is that spontaneous 
breaking of a continuous symmetry is impossible [2]. We shall illustrate this in a 
simple model. 

Consider a collection of atoms in a plane, in which a crystal of size L x L be- 
gins to form. Let x denote an equilibrium lattice site and u(x>, the deviation of an 
atom's instantaneous position from x. We can make the decomposition 

(18.1) 

where qA(k) is the amplitude of a normal mode of type A, of wave vector k. In ther- 
mal equilibrium, the amount of energy residing in this mode is given by 

where wA(k) is the normal frequency. At absolute temperature T, this should be 
equal to T by equipartition, in units with Boltzmann's constant set to unity. Thus 

( 18.3) 

'Spontaneous breaking of a discrete symmetry is possible, as in  the 2D lsing model. 

360 
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For large L,  the mean-square displacement is given by 

( 1  8.4) 

Since formation of a crystal means that translational invariance is broken, there ex- 
ists a Goldstone mode whose frequency o,,(k) approaches zero in the limit k + 0. 
This corresponds to lattice phonons, with w,(k) = ck, where c is the velocity of 
sound. Thus we have a lower bound: 

( 1 8 . 5 )  

where A is the inverse lattice spacing. As L -+ 00, the integral diverges like In L.  This 
shows that crystalline order cannot be maintained over long distances, for it will be 
disrupted by long-wavelength density fluctuations. 

18.2 TOPOLOGICAL ORDER 

Although long-range correlations are eventually disrupted, they can extend over a 
considerable distance, because (u2) diverges only logarithmically. In fact, there can 
exist patches of crystalline structure of macroscopic size. The boundaries of these 
patches are domain walls, which can be modeled by removing lines of atoms from 
the lattice, leaving chasms across which the atomic interactions are altered. Domain 
walls so created are illustrated in Fig. 18.1. The endpoint of a domain wall is a “dis- 
location center,” or “center” for short. To find a dislocation center through a site-by- 
site inspection would be very tedious; however, there is an easier way. Let us go 
around a circuit made up of successive lattice steps, such that we make n steps in 
each of the four directions. For example, Fig. 18. l a  shows a circuit with n = 3, start- 
ing at A .  On a perfect lattice a circuit will return to the starting point, but it does not 
close if we go around a dislocation center. The difference between the starting point 
A and the endpoint B is called the Burgers vector. When we go around a single dis- 
location center, the Burgers vector is either +1 or -1, as illustrated in Figs. 1 8 . 1 ~  
and 18.1 b. We call the + 1 case a “center,” and other an “anticenter.” In general, the 
Burgers vector of a circuit is the sum of contributions from the centers enclosed. It 
is a topological property independent of the size and shape of the circuit, as long as 
it goes around the same set of centers. We now imagine that the imperfect crystal is 
very large, so we can draw a circuit C of macroscopic size, on whose scale the lat- 
tice appear to be almost a continuum. We associate with C a topological orderpara- 
meter- defined as 

@(c> = (N+ - N . )  (1 8.6) 

where N ,  is respectively the number of centers and anticenters enclosed by C, and 
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Figure 18.1 
A - B between the start and finish is called the Burgers vector. 

Dislocations in a 2D lattice. A circuit around a dislocation fails to close, The difference 

( ) denotes thermal average. This is a loop function, and quite different from a local 
order parameter. 

A isolated center can cost a lot of energy, because a domain wall must extend 
from the center to the surface of the system, and there is a fixed energy per unit 
length. On the other hand, the domain wall that connects a center with an anticenter 
has energy proportional to their separation. Thus, in an infinitely large system, there 
must be an equal number of centers and anticenters, tied in pairs by domain walls. 
These pairs may form an “ionized” gas, or a collection of tightly bound “dipoles,” 
as illustrated in Fig. 18.2. These configurations are characterized by different be- 
haviors of the topological order parameter. 

In the ionized state, the centers are uniformly distributed. The probability of 
finding a center or anticenter inside C is proportional to the area enclosed by C. The 
average value of N+ - N- is therefore proportional to the statistical fluctuation a, 
the square root of the area, or the perimeter L(C) of the closed loop, 

In the bound state, on the other hand, a bound pair makes no contribution to the 
order parameter, unless it is cut through by C. The number of pairs cut is propor- 
tional to L(C), and a cut pair contributes *I with equal robability. Therefore, the 
average contribution is proportional to the fluctuation &. 

Thus, up to a proportionality constant, we obtain 
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Figure 18.2 ( a )  Ionized gas of dislocation centers and anticenters; (b)  bound pairs 

~(c> = { L(C) 
(ionized state) 
(bound state) 

(1 8.7) 

where L(C) is the perimeter of the loop C. The two cases become distinct for large 
loops, such that L(C) -+ m. In a thermodynamic treatment of this system, one finds 
there is a phase transition between a low-temperature bound phase and a high-tem- 
perature ionized phase. In the bound phase the system responds to an external stress 
like an elastic solid, whereas the ionized phase cannot support any stress at all, but 
flows like a liquid. This model forms the basis of a theory of 2D melting [ 2 ] .  We 
shall discuss the phase transition in the equivalent XY model. 

18.3 XYMODEL 

The XY model consists of a 2D square lattice of classical spins s, of unit length, 
which are free to rotate in the x-y plane. The energy of the system is given by 

(18.8) 

where 0, is the angle of si with respect to some fixed axis and ( i j )  denotes a nearest- 
neighbor pair. This is invariant under a simultaneous rotation of all the spins. The 
partition function is given by 

( 1  8.9) 

where /3 is the inverse temperature. The absence of spontaneous magnetization in 
2D can be proved rigorously, and is known as the Mermin-Wagner theorem [3]. Our 
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physical discussion earlier shows that there can be large but finite patches of mag- 
netization; however, long-range correlation is disrupted by defects, which in this 
case are vortices, as illustrated in Fig. 18.3.They have the property that the spin ro- 
tates through 27r around a vortex, and -277 around an antivortex. They bear a one- 
to-one correspondence with dislocation centers and anticenters, and we can take 
over the idea of topological order from the 2D crystal. 

The XY model has been studied in great detail [4]; but we are interested only in 
the continuum limit, in which we can make the replacement 

where a is the lattice spacing. This leads to an energy functional 

(18.11) 

where po is a constant. This looks just like a free field theory, and we seem to have 
lost the vortices. However, there is an important difference, namely, 8 has physical 
meaning only modulo (27~). The system has a kind of gauge invariance, and, as 
pointed out by Berezinskii [ S ] ,  this gives rise to vortices. 

To explain the peculiarities of an angular field, consider the Ginsburg-Landau 
(GL) functional 

Vortices Antivortices 

Figure 18.3 
after a global spin rotation through 90". 

Vortices and antivortices in the X Y  model. Lower panel shows equivalent configurations 
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where $ is a complex field. By putting 

* = <p&J (18.13) 

we can rewrite 

V(P> = .2p’ + U4P4 (18.14) 

Now choose u2 and u4 in such a manner as to trap p at a steep minimum at Po = 

q, with 

5 )  V(p0) = 0 V”(p0) 9 1 (18. 

With this, we can identify our continuum model with a limit of the GL model: 

E[O] = EGL[po, O] + Const. (18. 

With this, it is convenient to take the spin variable as rC, = V‘&eie, as it is a complex 
representation of a planar spin. The spin-spin correlation function has been calcu- 
lated by Berezinskii [ 5 ] :  

This is equal to (cos(e(x) - O(O)) ) ,  because (sin(&) - e(0))) = 0. This correlation 
function is “gauge-invariant,’’ for it depends only on 8 modulo (277). 

Consider the gauge-variant correlation function (see Problem 14.5): 

Formally this is just a correlation function of a free field in 2D. It says that the 
probable value of e(x) increases with distance, when it is fixed at x = 0. If e(x) 
were an ordinary scalar field, this would simply mean that the field amplitude gets 
larger and larger. But since O(x) is an angle, this says that it makes an increasing 
number of revolutions as 1x1 increases. Sufficiently far the origin, therefore, O(x) 
mod(277) will be randomized, and will average to zero. Therefore, in an infi- 
nite 2D system 
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This statement is equivalent to the Mermin-Wagner theorem, and has been proven 
more rigorously by Hohenberg [6] and Coleman [7]. 

Consider now two paths P and Q with the same endpoints, as illustrated in Fig. 
18.4. The phase change along P and Q may differ by a multiple of 27r, since only 0 
mod(27r) has physical meaning: 

ds.VO= 2 m ~  (TI = 0, +l, +2,  . . . ) (1 8.20) 

We can regard the two paths as a closed path C = Q - P. When C is continuously de- 
formed, the line integral cannot change continuously, but must jump by units of 
*27r. These quanta are vortices or antivortices, defined by 

Qcds.VB, = k2rr (18.21) 

For counterclock-wise C, the sign +1 (-1) corresponds to a vortex (antivortex). We 
shall refer to the quanta generically as “vortices,” and regard an antivortex as a vor- 
tex with vorticity -1. 

The loop C cannot be shrunken to a point, because the angle becomes ill-de- 
fined. Therefore the function &(x) has singularities at the location of the vortices, 
and we need a short-distance cutoff. This is introduced by decreeing that there is a 
“vortex core” of radius a, inside of which we set po = 0. This renders the space ef- 
fectively nonsimply connected. 

An explicit solution for the vortex field is 

where (r, p) are cylindrical coordinates with respect to the vortex center. The refer- 
ence axis cp = 0 is arbitrary, and changing this axis is a gauge transformation. That 
the phase angle increases by +277 around the vortex is the hallmark of a “gauge soli- 
ton”: A transformation in spatial coordinates induces a “gauge transformation” of 
the internal coordinates. The velocity field of a vortex is gauge-invariant: 

Figure 18.4 
presence of vortices within the close path Q - P. 

The phase change along P and Q may differ by an integer multiple of 27r. signifying the 
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(18.23) (3, VO*(Y, fp) = f- 
r 

where (3, is the unit vector in the fp direction. The velocity field is tangent to circles 
about the vortex center. The velocity in this case corresponds to the difference be- 
tween neighboring spins in Fig. 18.3. 

The energy of a vortex is, up to an additive constant, 

(1 8.24) 

where R is the radius of the whole system. The energy of an isolated vortex diverges 
as R -+ w; but that of a dipole pair remains finite, because the corresponding veloc- 
ity field is short-ranged. Thus, in an infinite system there must be equal numbers of 
vortices and antivortices. The vortices are just like dislocation centers in a 2D crys- 
tal, and we can take over the definition of the topological order parameter (1 8.6), 
with the property (1 8.7). 

18.4 KOSTERLITZTHOULESS TRANSITION 

To see whether a system of vortices can undergo a phase transition, consider an ion- 
ized gas of N12 vortices and N12 antivortices, with uniform density. The free energy 
of the system at temperature T is given by 

F = E - T S  (1 8.25) 

where E is the total energy: 

(1 8.26) 
R 

E = N n p o  In - 
a 

and S is the total entropy, the logarithm of the number of ways to distribute the vor- 
tices and antivortices in space. The number of ways to place one vortex is (Ria)', the 
ratio of total area to the area of the core. Thus 

(1 8.27) 

The free energy is thus 

(18.28) 
R 

F = N(n-p,, - 2T)ln - 
a 
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This shows that there is a critical temperature 

( 1  8.29) 

For T 1 T, the free energy decreases with increasing t, favoring the creation of free 
vortices. If T < i“,, however, the free energy is minimum at N = 0. That means that 
the free vortices will form tightly bound pairs. This phase transition, which marks a 
change in topological order, is known as the Kosterlitz-Thouless transition [8]. 

18.5 VORTEX MODEL 

We can now describe the continuum limit of the XY model taking vorticity into ac- 
count, in a manner similar to that described in Section 15.5. Since the vortex core 
renders the space non-simply connected, VO has both longitudinal and transverse 
parts: 

vO= v w  -k V x A (1 8.30)  

where Vw is a regular function, representing spin-wave contributions, while V x A 
is singular, coming from vortices. We can obtain A from the expression for VO,, but 
it is easier to find it from the defining condition 

For pointlike vortices, this can be rewritten in differential form: 

V2A = - i n ( x )  (1 8.32)  

where 4 is the unit vector normal to the plane of the system and n(x) is the “vortex 
charge density”: 

The vortices are centered at r l  . . . rN, with “charges”pi = +1 for vortex, -1 for an- 
tivortex. Using the 2D Green’s function 

1 1x1 G(x) = -- In - 
277 a 

we obtain 

(18.33)  
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(1 8.34) IX - Ti/ 
N 

A(x) = 2 d2y G(x - y)n(y) = -$I pi In - 
i= 1 a 

This holds outside vortex cores. Inside any vortex core, A(x) = 0. 

ized to 
In the presence of N vortices, the energy functional (1 8.1 1) should be general- 

E N [ 4  = POId2xlVd12 + N p  
2 

= ‘OJd2x[IVwl2 + IV x AI2] + N p  (18.35) 
2 

where p is the chemical potential-the energy required to create a vortex core. We 
can calculate the vortex contribution more explicitly: 

(18.36) 

Since the total vorticity should be zero for an infinite system, 

N 

C P J  = 0 (18.37) 
I =  I 

We see that the vortex system is equivalent to a neutral 2D Coulomb gas. 
The energy functional can now be represented in the form given by Kosterlitz 

[91: 

Ed01 = E w a v e [ ~ l +  Evortex(r1 . ’ . r d  

E,,,[W] = “j d2xlV6.p 
2 

The partition function is given by 

( 1  8.38) 

Z,,, = \ Dw exp[-$,,,(Vw)2] 
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where 

zz & (1 8.40) 

is the vortex fugacity. The sum over N extends over even integers only, the sum over 
pi is subject to Zpi = 0, and the r integrations are subject to Ir, - r,l> a. As is usual in 
calculating grand partition functions, we keep the volume SZ large but finite, and 
take the limit SZ += co in physical quantities, such as R-l In ZVortex. 

In the limit z -+ 0 we have a dilute gas of vortices. To order z2, we need only the 
trivial case AT = 0, and the case N = 2, corresponding to one vortex-antivortex pair. 
Sincepp2 =-1, we have to this order 

The mean-square radius of a vortex-antivortex pair is 

8.42) 

which diverges at the critical temperature T, = 7rp0/2. This value agrees with ( 8.29) 
arrived at by an intuitive argument. The fugacity expansion is valid only when the 
vortices are bound in pairs, and fails when they become ionized. 

18.6 2D SUPERFLUIDITY 

We take the formula for the superfluid density from Appendix B: 

(1 8.43) 

where 

V T = V ~ A  (1  8.44) 

Taking the Fourier transform of vT in a large periodic box of volume SZ, we have 
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Then 

(1 8.45) 

(1 8.46) 

Specializing to D = 2, we have 

where n(k) is the Fourier transform of the vortex density: 

N 

n(k) = 1 2 n p i  e-ik'r'' 
i= I 

Thus 

(1 8.48) 

(1 8.49) 

For small k, we write 

n(k)n(-k) = ( 2 7 1 9 ~ 1  ptpJe-Jk(rr-r') 
J J  

= ( 2 ~ ) ~  1 pJpJ{ 1 - ik.(r, - r,) - f [k.(r, - r,)l2 t . . . }  (1 8.50) 

The first term vanishes because Cp, = 0. The second terms vanishes when integrated 
over r,. When the third term is integrated over the coordinates, we have 

1.J 

I d2rl d2r2[kfr, - r2)I2 = P k p I  d2r,  d2r2(r1 - - r,)P 

k2 
= -/d2rl 2 d2r,lr, - r2I2 (18.51) 

Anticipating the integrations, we can take 
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( 2  nj2 k2 
n(k)n(-k) = -----xppg,lr, - ',I2 + O(P) 

1.J 

(1  8.52) 

To order z2 we need to average the preceding over configurations with only one vor- 
tex-antivortex pair: 

( 1  8.53) 

where (?) is given by (1 8.42). To this order, the denominator Z,,,,,, = 1 + O(z2)  can 
be set to unity. Thus, the fugacity expansion of the superfluid density is given by 

or 

where 

( 1  8.56) 

As noted before, the fugacity expansion is good at low temperatures, but breaks 
down at the KT transition point. 

~~ ~ 

18.7 RG TRAJECTORIES 

We make an RG transformation through the scale change a + ae', without altering 
the system. For infinitesimal t ,  we rewrite (1 8.55) by splitting the integral: 

The first term gives 1. The lower limit in the second term can be restored to unity 
through rescaling. Thus we obtain 

+ 2 d z 2 t  4 2dz2[ 1 + (4 - 2 7 ~  KO)t] ~ ~ - ~ ~ ~ 0  + O(t2) (1  8.58) 
1 - = _  

Ks KO 

Now defining the scale-dependent parameters 
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1 
+ 2 d t  zyt> + O(t2) - - 1 

K(t) K(0) 

z*(t) = z2(0){ 1 + [ 4  - 2.rrK(t)]t) + O(t2) 

with z(0) = z and K(0) = KO. Then we can write 

(1 8.59) 

(1 8.60) 

which has the same form as (1 8.55) ,  except for a change of parameters. As we can 
see, K, is scale-invariant. 

The differential form of (1 8.59) gives the RG equations of the XYmodel [9]: 

_ _  ' =2nJz2+0(z4)  
dt K 

dz' 
- = 2 ( 4  - 2 . n ~  + 0 ( ~ 4 )  ( I  8.61) 
dt 

The line z = 0 is a continuous distribution of fixed points. An isolated fixed point 
occurs at z = 0, K = 2/7r. This is the critical point of the KTtransition, and we call it 
the KTfixedpoint. In terms of the temperature T = po/K, the critical point occurs at 
T, = .rp0J2. Let 

T-T ,  
Tc 

7 =  - (1 8.62) 

Then, near the KT fixed point, to first order in 7 and second order in z, we have 

d r  
- =  (2  7+z2 
dt 
dz 
dt 
- _  - 227 (1  8.63) 

From the first equation, we see that d7 /dt > 0. Thus trajectories always flow in the 
positive 7 direction. 

Dividing the first equation by the second, we obtain dddz = 2 d z i 7 ,  which 
leads to the orbit equation 

72 - 2d22 = c (1  8.64) 

where C is an integration constant. The trajectories are hyperbolas, as shown in Fig. 
18.5. There are two asymptotes corresponding to C = 0. The left asymptotic is the 
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Figure 18.5 RG trajectories of the XY model in the neighborhood of the Kosterlitz-Thouless fixed 
point, in the parameter space spanned by a temperature T and the vortex fiigacity z. All points in the 
shaded region have infinite correlation length. 

transition line of the KT transition. In the region to the left, all trajectories flow into 
the fixed line. This means that z is irrelevant, and there are no free vortices. The cor- 
relation length diverges in the entire region, and the correlation function has alge- 
braic rather than exponential behavior. 

The region to the right of the transition line represents the high-temperature 
phase, where all trajectories eventually tend toward large 7 and z. Points A and B in 
Fig. 18.5 lie on opposite sides of the KT transition line, with A in the low-tempera- 
ture phase and B in the high-temperature phase. 

In the region between the right asymptote and the positive   ax is, all trajectories 
are UV, and the fixed line is unstable against vortex creation. 

We have derived the RG equations in a fugacity expansion to order z2, and this 
covers only an infinitesimal strip just above the negative 7 axis. We can analytically 
continue the RG equations to positive 7, but the domain of validity remains an in- 
finitesimal strip. Fortunately, this is sufficient to give a complete understanding of 
the KT transition, because the strip contains the fixed point. 

The correlation function of this model is the same as (l8.17), except that the 
phase angle should include contributions from vortices: 

e(x) = w(x) + v(x) 

where w(x) represents the spin-wave part and 

is a sum of vortex contributions (1 8.22). The correlation function is thus 
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The spin-wave factor is given by (1 8.17), and Kosterlitz [9] has calculated the vor- 
tex contribution in the low-temperature phase at the KT fixed point: 

where r = (XI. Thus in the low-temperature phase 

(1 8.67) 

(1 8.68) 

which verifies that the correlation length is infinite. 
In the high-temperature phase, the correlation length 6 is finite, but diverges at 

the critical point. Recall that 5 0~ e-‘ under a scale change. Let AT be the distance to 
the transition point at fixed z.  To find how 6 depends on AT, we shall find how Ar 
depends on t .  

In the high-temperature phase, since C > 0 in (1 8.64), we put C = a2. The tran- 
sition line corresponds to a = 0. A point such as B in Fig. 18.5 moves along the tra- 
jectory when t changes, but moves to a different trajectory when a changes. We 
want to find the correlation between these movements. The distance to the transition 
point at constant z is given by 

(18.69) 

where c = f i z z .  By integrating the RG equation for T, we obtain its t dependence 
(with arbitrary origin): 

which becomes -1rl2a = t when a -+ 0. In terms of AT, then, we have 

where c’ is a constant. Therefore the correlation length diverges like 

(1 8.70) 

(18.71) 

(1 8.72) 

This exhibits an essential singularity, and the usual notion of critical exponent does 
not apply. 
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Fisher and Nelson [ 101 suggest the following generalization for the RG equa- 
tions for D = 2 + E :  

d 1  E - - = 2 d Z 2  - - 
dt K K 

(1 8.73) 
dz2 

dt 
- = z2(4 - 2.rrK) 

The extra term the first equation comes from the fact that K is no longer dimension- 
less. The second equation is unchanged because z remains dimensionless. We see 
that the KT fixed point is moved to a location above the z axis. But there is no longer 
a line of fixed points. As shown in Fig. 18.6, there is a line crossed by trajectories at 
normal incidence. It is this line that becomes the fixed line at z = 0 when E + 0. The 
fact that the fixed point is off the z axis means that the fugacity expansion no longer 
yields exact answers. 

18.8 UNIVERSAL JUMP OF SUPERFLUID DENSITY 

Ordinarily, when a superfluid is heated, the superfluid density decreases to zero ac- 
cording to a power law. Nelson and Kosterlitz [ 1 11 pointed out that in 2D the super- 
fluid density suddenly jumps to zero at the transition point, with a universal discon- 
tinuity. This can be seen by inspection of Fig. 18.5. We recall that K, is scale 
invariant in 2D, and therefore has the same value along a RG trajectory. Thus, as 
point A approaches the transition line, K, 4 2177, the KT fixed point. At point B ,  on 
the other hand, K, = 0, because it is equal to its value at high temperatures. There is 
thus a discontinuity across the phase transition line: 

1 I K  

Figure 18.6 RG flow in 2 + E dimensions. The dotted line becomes the fixed line when E + 0. 
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(low- temperature phase) 

0 (high-temperature phase) 
Ks=(" ( I  8.74) 

The superfluid density is ps = P'K,, in some natural units, in which the energy 
functional is $poJdx(V8)2. In physical units the superfluid velocity is (A/m)VO, and 
all densities acquire the units (h/m)2.  Thus the superfluidity density has a disconti- 
nuity given in physical units by 

(18.75) 

where the numerical value refers to helium atoms. The jump is universal in that it 
depends only on atomic constants. It has been tested in experiments on helium films 
from different laboratories, using different methods to measure the superfluid densi- 
ty, with different film substrates and thicknesses.Very good agreement was ob- 
tained, as shown in Fig. 18.7. This indicates that only the temperature and vortex fu- 
gacity are relevant parameters. Other parameters that vary from experiment to 
experiment, such as film thickness and the nature of the substrate, are irrelevant. 

6 X lo-' 

4 x 10-9 

1 .o 2.0 

Tc  (K) 

0 

Figure 18.7 Compilation of data on the superfluid jump in thin helium film from different laboratories. 
The straight line is the prediction from the vortex model ApE = KoTc, with KO = 3.491 x g em-* K '. 
[After D. J.  Bishop and J. Reppy. Phys. Rev. Leit. 40, 1729 (1978).] 
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PROBLEMS 

18.1 A general vortex is a configuration &x, y )  satisfying ic dxk b&x, y )  = 2 m 0 ,  where uo 
is the circulation. We have uo = 1 in (1 8.2 1). Clearly, the configuration has to be singu- 
lar, like ( 1  8.22). A manifestation of the singularity is that the current defined by )(x, y )  
= E~/~/I#I(x, y )  fails to satisfy the expected identity a"jk = 0. 

(a) Verify that a solution to the vortex condition can be written 

X 
4(x, y )  = no tan-' - 

Y 

(b) For this configuration show that 

18.2 Obtain equations for the RG trajectories of the XYmodel by integrating the RG equa- 
tions (18.63), which are valid for all T, but only for small z. Use the relation (18.64) to 
express z in terms of T. The constant Cis  negative for point B in Fig. 18.5, and positive 
for points A and C. 

(a) For points C and B, put C = bZ and show that 

which are valid for bt * --oo, where b < 0 for A ,  and b > 0 for B. As a quantum 
field theory, the coupling constant z is trivial in the former case, and asymptoti- 
cally free in the latter. 

(b) For point B, put C = -aZ, and show that 

~ ( t )  = 2at 

z(t)  2 w' J$l + 2 4  

which are valid for la1 G 1, It( 1. There is no fixed point in this region. 
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CHAPTER NINETEEN 

Topological Excitations 

19.1 TOPOLOGICAL SOLITON 

A soliton is a solution to a classical field theory that describes a localized distur- 
bance with finite energy. A topological soliton is one stabilized by topology; that is, 
it cannot be continuously deformed to the vacuum. We introduce the subject 
through an simple example. 

Consider the so-called sine-Gordon theory in 1 + 1 dimensional Minkowskian 
space-time, with Lagrangian density 

(19.1) 

where the potential includes an appropriate constant to make it nonnegative. The ac- 
tion is 

which leads to the equation of motion 

(19.3) 

We encountered this theory in Chapter 17 in Euclidean space-time, as a quantum 
field theory with asymptotic freedom. It is also the XY model discussed in Chapter 
18, in the presence of an external magnetic field W. We view it here as a classical 
field theory in one spatial dimension. 

The topological essence of this model is as follows [ 1). The field variable $(x) 
is an angular variable defined on a circle S' .  We impose the boundary condition 
e ' l=  1 at x = fm, and this compactifies the manifold o fx  to S' .  Thus 4 ( x )  represents 

380 
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a map S’ -+ S‘,  which falls into classes labeled by an integer winding number, 
which denotes the number of time the cf, manifold is covered when the x manifold is 
covered once. The winding number is invariant under homotopic transformations- 
continuous deformations of the field configuration. 

We now discuss properties of the solutions. The Hamiltonian is given by 

The classical vacuum-the configuration of lowest energy-corresponds to &x, t)  
= 0 mod(27-r). A topological soliton is a solution in which the field approaches dif- 
ferent but equivalent values as x + *m, such as 

(1  9.5) 

The solution can be obtained by minimizing the Hamiltonian. Consider first a static 
soliton. Since the potential is zero only when 4 = 2m, to keep the potential energy 
small, cf, would like to switch from 0 to 255- suddenly, but that would cost too much 
kinetic energy. A compromise is struck by having the transition occur in an interval 
of some width L. The kinetic energy is then of order 1/L, and the potential energy is 
of order WL. Thus 

1 
L 

Energy- - + WL (19.6) 

Minimization with respect to L gives 

1 
L - -  

C W  

Energy - <W (19.7) 

The soliton is a “kink” in the field centered at some location xo, as illustrated in Fig. 
19.1. The energy is independent of xo. 

We can construct a time-dependent soliton, which moves with a definite veloc- 
ity without changing its shape. To do this, let 

( = P u t  (19.8) 

The equation of motion can be written in the form 

(19.9) 
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(C) 

Figure 19.1 
antisoliton pair. 

(a)  Topological soliton stabilized by boundary condition; (b)  antisoliton; (c) soliton- 

where 4’ = &$//a(. This is like Newton’s equation in mechanics, with conserved 
“energy” given by 

c= ;(4’)2+ V ( 4 )  (19.10) 

This can be integrated to yield 

Choosing C = W/( 1 - z?), we have 

(19.11) 

( 19.12) 

which gives the solution 

where x, is an arbitrary constant. The name soliton was derived from the “solitary” 
wave witnessed in 1834 by J. Scott Russell [2]: 
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I was observing the motion of a boat which was rapidly drawn along a narrow 
channel by a pair of horses, when the boat suddenly stopped-not so the mass of 
water in the channel which it had put in motion; it accumulated round the prow of 
the vessel in a state of violent agitation, then suddenly leaving it  behind, rolled for- 
ward with great velocity, assuming the form of a large solitary elevation, a rounded, 
smooth and well-defined heap of water, which continued its course along the chan- 
nel apparently without change of form or diminution of speed. I followed it on 
horseback, and overtook it  still rolling on at a rate of some eight or nine miles an 
hour, preserving its original figure some thirty feet long and a foot to a foot and a 
half in height. Its height gradually diminished, and after a chase of one or two miles 
I lost it  in the windings of the channel. Such, in the month ofAugust 1834, was my 
first chance interview with that singular and beautiful phenomenon. 

Such solitary waves have been observed in plasmas and optical media. But our in- 
terest here is confined to the topological aspects of static solitons. 

19.2 INSTANTON AND TUNNELING 

The static soliton is obtained by putting u = 0: 

Classically, this represents a time-independent field configuration in one dimen- 
sion. However, in quantum theory, we can interpret x as Euclidean time. In this 
view, +(x) is the coordinate of a particle, and the soliton (19.14) interpolates be- 
tween the vacua c$(-cc) = 0 and +(w) = 2m- in Euclidean time. 'tHooft [3] named it 
the "instanton," for one could imagine that the vacuum "pops" at time xo. We can 
show that the instanton give the transition amplitude for quantum tunneling between 
the two vacua. 

Consider a quantum-mechanical particle of unit mass and coordinate 4, mov- 
ing in a potential V ( 4 ) ,  which possesses two minima at 4, and &, as shown in Fig. 
19.2. The amplitude for a particle to tunnel from 4, to +2 at zero energy is given in 
the WKB (Wentzel-Kramers-Brillouin) approximation by 

( 19.1 5) 

In this semiclassical approximation, the particle is a wave packet of zero classical 
energy, whose motion is described by classical mechanics (in real time) except for 
the tunneling. It was located initially at $,, and makes a quantumjump with proba- 
bility lTWKs12, to appear at +2 with zero velocity. Thereafter, its motion is again gov- 
erned by classical mechanics. 

The quantum jump can be regarded as a process happening in imaginary time 
T = it, with transition probability amplitude 
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Figure 19.2 An instanton gives the dominant Feynman path for tunneling between the two minima of 
the potential V. It describes imaginary time development with inverted potential -V. 

The Euclidean action is 

with the boundary conditions 

( 19.1 6 )  

( 19.1 7)  

(19.18) 

In the semiclassical limit, the dominant path is a solution to the classical equation of 
motion 

(19.19) 

which describes the motion of a particle in the potential -V($) with the given 
boundary conditions, as shown in Fig. 19.2. To solve the equation, note that the con- 
stant of motion corresponding to energy is 

and the value of the action at the minimum is 

We use (19.20) to rewrite V = <V<V = V'%?(d+/dT), and obtain 

(19.20) 

(19.2 1) 

(19.22) 
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Thus, in the saddle-point approximation we have 

This show that the instanton is the Feynman path that dominates the tunneling am- 
plitude in the semiclassical limit. 

19.3 DEPINNING OF CHARGE DENSITY WAVES 

We now apply the instanton description of tunneling to a physical problem. In lin- 
ear-chain conductors, such as TTF-TCNQ (tetrathiafulvalene-tetracyanoquin- 
odimethane), there exists a periodic charge distribution Ax, t )  called a charge densi- 
ty wave (CDW)4: 

where is a uniform background density, po is the amplitude of the CDW, Q is the 
wave number, and 4(x, t )  is the phase relative to an underlying periodic lattice. 
When the wave number Q is the same as that of the lattice, the latter presents a com- 
mensurate potential that pins the CDW, preventing it from sliding. In equilibrium, 
then, 4x. t )  has a value 4o everywhere. If we turn on an external electric field, the 
potential will become “tilted,” as shown in Fig. 19.3, and the CDW can slide by tun- 
neling from c $ ~  to 4, = $o + 27r. This process cannot take place throughout the chain 
simultaneously; the probability of that is nil. As a result of random fluctuations, 
thermal or quantum mechanical, a small one-dimensional “bubble” of phase 4, oc- 
curs somewhere, and then expands to engulf the whole chain [S]. 

$0 $1 

271: 
< * 

Figure 19.3 The potential seen by a charge density wave in an external electric field. In a small “bub- 
ble” in space, the phase angle 4 can go from 4,, to 4, by tunneling. 
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What happens in real time may be described as follows. In the absence of an 
electric field, the periodic lattice potential leads to a sine Gordon equation for 
&x, l), and there are soliton solutions. Random fluctuations can create a soliton- 
antisoliton pair somewhere along the chain, so that &x, t )  looks momentarily like 
the configuration in Fig. 19. lc. In the presence of an electric field, there is incentive 
for the pair to grow in order to lower the energy, and the size of this excitation ex- 
pands to eventually cover the entire chain. 

We treat the creation of the bubble as a tunneling process-a quantum jump in 
Euclidean time. Outside this transition, the motion proceeds according to classical 
mechanics in real time. This description is a one-dimensional version of Coleman’s 
theory [6] of a bubble of “true vacuum” in a background of “false vacuum.” 

The Lagrangian density in real time is given by 

1 d 4 2  1 d 4 2  
L(x, t )  = - - - - - 

2 (  dt ) 2 (  & )  -v(4) 
V ( 4 )  = W( 1 - cos 4) - €4 (1 9.25) 

where -Wcos 4 is the commensurate potential due to the underlying lattice, and E is 
the external electric field in suitable units. We have rescaled the variables to ab- 
sorbed physical parameters such as charge and mass, so as to present a neat form for 
mathematical analysis. The fact that the electric field is coupled directly to the 
phase 4 may be seen as follows. The current density in the system isjm &$/dt. Its 
interaction energy with an external electromagnetic field A contributes to the action 
the term 

d 4  dA 
-1dxd tA-  d t  = / d x d t - 4 = - f d x d t  dt €4 (19.26) 

where we have assumed that the external field is adiabatically turned on in the infi- 
nite past, and off in the infinite future. 

We treat the electric field E as a small perturbation. The equation of motion of 
the system is 

except for the quantum jump, which is described by 
+ E ( ~ ,  T)  of the equation in Euclidean time T = it: 

(19.27) 

a 2D instanton, a solution 

(1 9.28) 

and seek a solution such that the entire chain is at &(x, T)  = +o as T+ -00, and a fi- 
nite-sized bubble of phase 4, = 4o + 27r appears somewhere at T = 0. At this time, 
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the quantum jump is complete, and the bubble subsequently expands classically. 
The semiclassical picture is based on the fact that tunneling occurs with very small 
probability, and is treated as a rare interruption of the classical motion. 

For the formal solution, we take advantage of the symmetry under Euclidean 
time reversal, and impose the boundary conditions 

"E = 0 (19.29) 

but we use the solution only for --oo < r 5 0. The symmetry of the boundary condi- 
tion makes it possible to have a solution that depends only on 

(19.30) 

The boundary conditions then become 

lim&(s) = +o 
S - + P  

K(0) = 0 (19.31) 

where the location of the quantum jump is taken to be s = 0. Because of translation- 
al invariance, the action should be independent of this location. The probability for 
a quantum jump per unit length of the chain is exp(-S), with 

The solution we seek corresponds to a spherically symmetric configuration in 
the X--7 plane, as illustrated in Fig. 19.4. At T = 0 it looks like a soliton-antisoliton 
pair, and this is the bubble created through tunneling. The instanton should have a 
mean radius R, with & = 4o outside the radius, and & = 4, inside. The wall of the 
excitation is of thickness 1/ W, with energy W per unit circumference. Thus, the cor- 
responding action is 

S = 2.rrRFW- rR2e(+, - &) (19.33) 

where 4, - 40 = 27~. Minimizing this with respect to R. we obtain the radius and 
corresponding action: 

W 
2 7TE 2E 

so = - 
<W 

fi0 = - (19.34) 
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Figure 19.4 Upper panel represents the instanton that gives the tunneling amplitude for formation of a 
small bubble of new phase. Lower panel shows the field configuration at Euclidean time T = 0. which 
consists of a soliton-antisoliton pair created locally through tunneling. This bubble expands in real time 
to eventually engulf the whole x axis. 

After the bubble is formed it expands according to the equation of motion in real 
time. The behavior is described by the analytic continuation of the Euclidean solu- 
tion, which becomes a function of x2 - t2. Thus the size of the bubble expands ac- 
cording to 

R(t) = v?gG (19.35) 

and the unit of time is set by whatever physical parameters we have used as scale. 
What we have described is the sliding of the CDW by one lattice length due to 

tunneling. It is clear that this process repeats, and generates a current proportional 
to the transition probability: 

(19.36) I 2. Ce-W12€ 

This current is extremely small, and has not been detected experimentally, because 
it is masked by currents arising from thermal fluctuations. In an incommensurate 
lattice, the CDW is pinned not by the lattice, but by impurities. The depinning due 
to tunneling across impurities can be described in a similar manner [7]. 
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19.4 NONLINEAR SIGMA MODEL 

We turn to a model with interesting topological properties. Consider a unit 3-vector 
field n(x) in a d-dimensional Euclidean space. The Euclidean action is 

S = a I ddx d b ,  d b ,  (19.37) 

where a = 1,2,3 labels field components, and the Greek index p = I ,  . . . , d is a Eu- 
clidean index for general d. For specific dimensions such as d = 2 or d = 3, we 
switch to Roman indices k. In physical applications, this model is variously known 
as the “classical Heisenberg model” or “O(3) nonlinear sigma model” (for historical 
reasons that need not concern us). The nonlinearity arises from the constraint 

nana= 1 (19.38) 

The designation O(3) refers to the fact that n(x) may be identified with a point on 
the surface of a three-dimensional sphere, and therefore corresponds to an element 
of the rotation group O(3). 

Since rotations can also be represented by SU(2), we can map the model to one 
involving a spinor field. Let z be a two-dimensional spinor: 

z=(::) 

where zi are complex-number fields, with the condition 

ztz = zyz, + z;z2 = 1 

We can represent n in the form 

n = ztuz 

where a, (a = 1,2,3) are the 2x2 Pauli matrices. More explicitly, we put 

n l  = 2Re(zfz,) 

n2 = 2Im(z:z,) 

n3 = zyz, - z;zz 

Thus 

(19.39) 

(1  9.40) 

(19.41) 

(19.42) 

(1 9.43) 
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A straightforward calculation shows 

Thus the action can be written in the form 

We can define a vector potential by 

Then the action can be rewritten in the form (see Problem 19.2) 

which is invariant under the local gauge transformation 

z(x) -+ e’d”)z(x) 

AP(x) -+ AP(x) + dpW(x) 

(1 9.44) 

(1  9.45) 

(19.46) 

(1 9.47) 

(1 9.48) 

The field n(x) can be visualized as a point on the surface of a sphere, which 
constitutes the 2-sphere S2. For a finite-action solution, it must approach a constant 
vector at infinity: 

(19.49) 

For definiteness, we take no = (0, 0,  1). Spatial infinity is thus identified as one 
point, and the space is effectively compactified from Euclidean space Rd to the 
d-sphere Sd. A finite-energy solution therefore corresponds to a map 

n(x): sd + S 2  (19.50) 

These maps fall into homotopy classes C,,, characterized by a winding number rn. 
The maps in each class are “homotopic,” in the sense that they can be continuously 
deformed into one another [8]. The classes { Co, C1, . . . } form a group, the homo- 
topy group. For a map Sd -+ X ,  the homotopy group is denoted by TAX), called the 
“dth homotopy group” of X. In particular, T,(X) is called the “fundamental group” 
of x. 

For the O(3) nonlinear sigma model, the relevant homotopy groups are rd(S2): 

7r,(S*) = 0 
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(19.51) 

where 0 denotes the trivial group containing only the identity, Z, denotes the set of 
integers (0, & I ,  *2, . . .}, and Z2 is the group (0, I }  mod(2) under addition, or 
{ 1, -1 } under multiplication. We see that there are topological solitons for d > 1. 
They can be regarded either as a static soliton in d spatial dimensions, or an instan- 
ton in d - 1 spatial dimensions and one Euclidean time dimension. We discuss the 
different dimensions separately. 

19.5 THE SKYRMION 

The Skyrmion [9] is a static soliton of the O(3) nonlinear sigma model in two spatial 
dimensions. Let us represent n(x) by a unit vector whose tip lies on a sphere in an 
internal space with axes labeled u = 1,2,3. There is thus an internal coordinate frame 
attached to each point x, and we take all these frames to have the same relative ori- 
entation. An element of the surface of the sphere is dS = (dS', d S ,  dS3), with 

(19.52) 

where we have parametrized the surface of the sphere by two coordinates ([I, p). 
The magnitude of the surface element is 

(19.53) 

As x ranges over the compactified spatial S-, n(x) ranges over the internal S. The 
winding number of the map n(x) is the number of times the internal s? is covered, 
and is thus given by 

1 
Q = - I dS(x) 

47T x 

(1 9.54) 

where dS(x) is the surface element corresponding to n(x), and the preceding integral 
extends over the range such that x covers S once. A convenient way to express this 
condition is to use (XI, x2) as the parameters (,$I, p). Therefore the winding number 
of the configuration n(x) is given by 

(1 9.55) 
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which has possible values 0, 51, *2,  . . . . The configurations with Q > 0 are soh- 
tons, and those for Q < 0 are antisolitons. 

We can rewrite the winding number in the form 

(19.56) 

Now note the identity 

Thus, the action can be written in the form 

which shows 

S 2 2 7 r Q  (19.59) 

and the equality holds if and only if 

din + €'idin x #'n = 0 (1 9.60) 

Solving this equations gives a soliton with finite action. 
To find explicit solutions [ 101, use cylindrical coordinates for x: 

x' = r cos cp 

x2 = r sin cp 

and parametrize n(x) through 

n,(x) = (f sinf(r), cosf(r)) 

wheref(r) satisfies the boundary conditions 

(19.61) 

(1 9.62) 

(19.63) 

More explicitly, 

n,(x) = sinf(r) cos cp 

n2(x) = sinf(r) sin cp 
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The vector n(x) is (0,  0, -I 
f and cp are just the polar 
complex variable 

n3(x)  = cosf(r) (1 9.64) 

) at x = 0, and approaches (0, 0, 1)  as 1x1 -+ m. We see that 
angles of n in spherical coordinates. Now introduce the 

f w = elatan- 
2 

Then’ 

2w 
n ,  f in2 = ___ 

1 + w*w 

1 -w*w 
n3 = ____ 

1 + w*w 

and (1 9.60) becomes 

(1 9.65) 

(19.66) 

(1 9.67) 

which are just the Cauchy-Riemann condition that w be an analytic function of z, 
with 

We rule out branch cuts, and obtain the general solution as a meromorphic function 

( 1  9.69) 

where A is an arbitrary scale parameter and mi and nj are positive integers. In order 
thatf(r) -+ 0 at infinity, we must have 

To find the winding number, note that for a given value w, z satisfies the poly- 
nomial equation 

(19.71) 

which is of degree Cm,, and therefore has Cmi roots, generally different. That is, the 
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given value w occurs at Xm, generally different points in space. Therefore the wind- 
ing number is 

(19.72) 

The antisoliton is defined as the solution with negative Q, with the same boundary 
condition (19.49). It corresponds to the complex conjugate of w(z), for then n2 
changes sign while n ,  and n3 are unchanged, and Q changes sign. 

For Q = I ,  take w(z) = z/A. This leads to 

r 
f(r) = 2 tan-’ - 

A 
(1 9.73) 

The size of the soliton A is arbitrary. Putting A = 1, we have 

r 
n, = - 

1 + r? cos cp 

1-9 
n3 = ~ 

1 + r ?  

with corresponding spinor representation 

f 
Z ]  = cos- 

2 

f 
2, = eip sin- 

2 

(19.74) 

(19.75) 

To obtain the corresponding antisoliton, replace cp by -cp, or replace n2(x) by -n2(x). 
We visualize this soliton in the two views presented in Fig. 19.5. In Fig. 9.52 we 
sketch n(x) along a radius from the origin in the spatial plane. In Fig. 931, we su- 
perimpose the internal SZ on the compactified spatial p, showing a “hedgehog” 
configuration. 

The solution can be viewed as an instanton, if we regard X I  = x as space, and 
x2 = 7 as imaginary time. As illustrated in Fig. 19.6, the instanton evolves along 
world lines shown in Fig. 19.6a, and the tip of the vector n(x, T )  traces closed loops, 
as shown in Fig. 19.6b. When (x, T )  covers space-time once, the locus of n(x, T )  
sweeps over the 2-sphere once. 
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(a) (b) 
Figure 19.5 (a )  Skyrmion as static soliton-the spin along a radius in the 2D plane turns 180” when 
we go from the origin to infinity; ( h )  when internal space is superimposed on the compactified real 
space, we get a “hedgehog.” 

19.6 THE HOPF INVARIANT 

Viewing the Skyrmion as a static soliton in 2D, it is natural to ask how it propagated 
in time. To consider this question, we go to d = 3, where n(x) represents the Hopf 
map S3 -+ 9. 

Let us parametize S 2  by two parameters (tl, (*), and consider first a continuous 
map R3 -+ S 2 ,  represented by the hnctions 

51 = f i ( x ’ ,  x2, x3) 

(2 =f i (xI ,  x2, x3) 

3 
I 

(19.76) 

Figure 19.6 (a)  Skyrmion viewed as instanton developing in imaginary time T at fixed position x; (b) 
the spin traces out loops in internal space corresponding to the various world lines C, ,  C,. 
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For a given point on S2,that is, for a given ((I,  t2), this equation gives two relations 
among the coordinates {xi, x2, x3), and one combination of the coordinates remains 
arbitrary. This means that the inverse map of a point on S is a curve on R3, and the 
curve must be a closed loop, since a point has no boundary. Two different closed 
loops cannot intersect, for otherwise the intersection would be mapped to different 
points. To ensure that the closed loops do not run off to infinity, we require 

where C is a constant. This compactifies R3 to S3,  and the mapfis the Hopf map, 
which is illustrated schematically in Fig. 19.7. As shown in the figure, two loops in 
three-dimensional space are characterized by a topological invariant, the linkage 
number, giving the number of times one loop winds around the other. The linkage 
number is a property of the map, called the Hopf invariant. If we displace the image 
points P' and Q' continuously, the loops P and Q will change, but the linkage num- 
ber will remain the same. It is now evident that n3(S2) = 2. 

The Hopf map can be represented by the spinor representation introduced earli- 
er in (19.41): 

n(x) = z+(x)az(x)  (19.78) 

We can write the spinor z in the form 

(19.79) 



19.6 The Hopf Invariant 397 

where U E SU(2) and z,, is some fixed spinor. An element of SU(2) is of the form 

U =  b , + b . o  (1 9.80) 

with ho + lbI2 = 1. Therefore the manifold of SU(2) is S3, and (19.78) represents a 
map S3 -+ 9. Since n is invariant under the gauge transformation z -+ e'yz, the in- 
verse map is a circle on S3,  as depicted in Fig. 19.7. 

Since z(x) is a map S3 -+ S3, the representation (19.78) involves a two-step map 
S' + S3 -+ 5"-, and the winding number of the step 9 -+ S3 is the Hopf invariant: 

1 
27T2 

H = -1 dS(x) (19.81) 

where dS(x) is a volume element of the S3 manifold of z(x) and the integral is such 
that x ranges over its S3 manifold once. The factor 2n2 is the volume of S3. Parame- 
trizing the manifold of z by 3 parameters ( A , ,  A2, A3), we can write 

(19.82) 

The Jacobian in the integrand is @JkkaAldJA2dkA3,  which is a 3-form constructed 
from z. There is only one such 3-form E'JkA'dJAk, with Ak = -iztdkz. Thus we have the 
Hopf invariant up to a normalization constant, which can be calculated from an ex- 
plicit construction ofz(x). (See Problem 19.3.) The result is 

(19.83) 

As we have seen in (19.47), A is like a vector potential. The corresponding 
magnetic field is a topological current density that is identically conserved: 

B = V X A  (19.84) 

There is an interesting parallel with classical electromagnetism. Because of the 
gauge invariance ( 1  9.48), we can impose Coulomb gauge V x A  = 0. Putting 

V x B r  j (19.85) 

we can write 

(19.86) 

Thus the Hopf invariant can be rewritten as 
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H =  - jd3xB.A=- -  1 
477-2 

I E'/k 1 - I d3x  1 d3y Bi(x)B(y)$- 
(2rr)2 4rr Ix - YI 

(19.87) 

This can be understood in terms of Gauss' formula for the linkage between two 
closed loops P and Q, such as those illustrated in Fig. 19.7: 

(19.88) 

To derive this formula, consider the solid angle subtended by loop Q at point x ,  and 
count the number of 4.n increments as x traverses loop P. The gradient of the solid 
angle in question is the magnetic field created by a unit current flowing in loop Q, 
which can be obtained via the Biot-Savart law. Thus (19.87) calculates the Hopf in- 
variant of the configuration by calculating the Gaussian linkage between loops of 
the topological current. 

Finally, we express the topological current (or magnetic field) B in terms of 
n(x): 

(19.89) 

This is the only invariant we can construct out of n,(x) involving two derivatives. 
The constant in front can be determined by direct computation, but a faster way is as 
follows. The conservation law is 

dBi dB2 dB3 - + - + - = o  
&I ax2 2 x 3  

(1 9.90) 

The magnetic flux Q normal to the x1-x2 plane is a topological charge, which is con- 
stant of motion for Skyrmions, and should coincide with the winding number of 
S2 -+ S 2  calculated in (19.55): 

19.7 FRACTIONAL SPIN 

We now show that the spin of the 2D Skyrmion is an arbitrary real number Ell]. We 
regard n(x) = n(x, 7) as a 2D Skyrmion evolving in imaginary time T, and imagine 
that it makes one complete rotation in space as it propagates from T = - to 7 = m. 
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Imaginary 
time 

/ A 

S kyrm ion 

Figure 19.8 A Skyrmion makes complete rotations during its imaginary-time evolution. The number 
of rotations is the Hopf invariant of the space-time configuration.We introduce a spectator anti- 
Skyrmion, in order to have a vacuum on the space-time boundary. 

In Fig. 19.8, we show two world lines of points on the Skyrmion, identified by giv- 
en values of the spin. For example, the world line at the center of the Skyrmion has 
n = (0, 0, -1). The initial and final states of the Skyrmion are the same, but any two 
world lines are linked once. The number of complete rotations made by the 
Skyrmion is, in fact, given by the Hopf invariant of n(x, 7). To see this, imagine that 
at 7 = --CO a Skyrmion-anti-Skyrmion pair was created, and pulled apart. The 
Skyrmion propagates in the manner indicated, with the anti-Skyrmion as a passive 
spectator, and eventually the pair annihilates at 7 = CQ. World lines from the anti- 
Skyrmion are indicated by dotted lines in Fig. 19.8, which completes the Skyrmion 
world lines into closed loops. On the space-time boundary we now have the vacuum 
configuration n = (0, 0, 1). Hence the function n(x, 7) is a Hopf map 9 + 9, and 
the linkage of any two closed world lines is the Hopf invariant. 

Now describe the process in Minkowski space-time, by continuing 7 = -it. The 
Minkowski action is 

(19.92) 

We can add to this a term 0 H, where 0 is an arbitrary real number, without chang- 
ing the equation of motion, This is because H i s  an integer and cannot change in the 
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continuous variations made in applying the action principle. Thus, the amplitude for 
the process is 

where N is a normalization constant, such that the vacuum-vacuum transition am- 
plitude is 1. For all paths contributing to the preceding integral, H = 1 .  Thus, relative 
to the vacuum-vacuum amplitude, we have 

A( 0) = ele ( I  9.94) 

Equating this to e2m,’, where J is the spin of the Skyrmion, we obtain an arbitrary 
real number: 

(S kyrmion) 
e 

J =  - 
2 T  

(19.95) 

This result does not contradict basic principles of quantum mechanics, for the rota- 
tion group in 2D is the Abelian group U(l), and thus the angular momentum may 
have continuous eigenvalues. 

Continuing in this vein, we can view the time development of the Skyrmion, 
described by a configuration with nonzero Hopf invariant, as a 3D static soliton- 
the “Hopfion.” To find the spin of the Hopfion, we go to d = 4, where n(x) becomes 
a map 9 + 9, with ~ ~ ( 9 )  = Z,. The additive topological invariant has possible val- 
ues 

I =  0, 1 mod(2) ( 1  9.96) 

As before, we may add to the Minkowski action a term # l without affecting the 
equation of motion, but now we must require eZie = 1. Therefore the values for 0 are 
quantized: 

e =  m (19.97) 

where n is an integer. Repeating the argument in the last section, we find that the 
spin of the Hopfion must be integer or half-integer: 

0 I1 

277 2 
(Hopfion) (19.98) J = - = -  

This is, of course, implied by the angular momentum commutation relations in 
3D. What is unusual is that we can construct half-integer spin states from boson 
fields. 
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19.8 MONOPOLES, VORTICES, AND ANOMALIES 

According to (19.91), the topological charge of a Skyrmion is the magnetic flux 
normal to the x’-x2 plane, in which the static Skyrmion resides. If we follow the 
time development in imaginary time x3,  the Skyrmion will sweep out a flux tube, 
which cannot terminate because of the conservation of the topological current 
(1 9.90). However, there exist monopole configuration in d = 3 that will destroy the 
conservation law, for example, the “hedgehog” configuration 

g y  n,(x) = - 
1x1 

(19.99) 

which is singular at the position of the monopole. This means that the world line of 
the Skyrmion can be of finite length, terminated at both ends by monopole and anti- 
monopole, respectively. Such singular configurations may be ruled out in a classical 
theory, but cannot be ignored in quantum field theory, for the path integral extends 
over all fields, singular or not. In quantum theory, therefore, the monopoles render 
the topological current “anomalous.” 

To demonstrate the existence of the monopole, let us calculate the vector poten- 
tial corresponding to a Skyrmion in the x1-x2 plane, with topological charge Q = 1. 
From the explicit solution (1 9.75), we find 

2D space 

(a ) 

Figure 19.9 (a) A Skyrmion appears where the Dirace string of a 3D monopole pierces a sphere sur- 
rounding the monopole. ( h )  In another view, the world line of a Skyrmion in imaginary time is a Dirac 
string. The world line is generally terminated at both ends by monopole and antimonopole. The possibil- 
ity of termination makes the topological Skyrmion current anomalous. 
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f (4  Ak(r, (p) = d k q  sin2- 
2 

(1 9.100) 

wheref(0) = n;A") = 0. The magnetic flux through a loop C of radius r is given by 

which is 2n- for r = 0, but approaches zero as r -+ m. The total flux over the x'-x2 
plane is therefore zero, in contradiction with the fact that Q = 1 by construction. The 
discrepancy is due to the failure of the relation between the flux and the topological 
winding number, because of the presence of a monopole in d = 3. As illustrated in 
Fig. 19.9a, where the compactified x'-x2 plane has a spherical surface, the flux 
through the closed loop C, is 2 r ,  but that through C, is zero. This implies that there 
is a monopole inside the sphere, which terminates the flux tube of the Skyrmion. In 
this picture, the world line of the Skyrmion is the Dirac string of the monopole. 
When we open up the compactified sphere, the world line of the Skyrmion is as il- 
lustrated in Fig. 19.9b, which is terminated by the monopole. 

Apart from the short-distance singularity, a single monopole has infinite action, 
and would not contribute to the path integral; however, a monopole-antimonopole 
pair can contribute. Thus the topological current in the O(3) nonlinear sigma model 
in d = 3 should have a nonvanishing divergence given by the monopole density in 
the vacuum state. In analogy with the XY model in d = 2 ,  the theory should have a 
phase in which monopole-antimonopole pairs are tightly bound, and one in which 
they are ionized. The topological current will be normal in the former phase and 
anomalous in the latter. Such a scenario is supported by numerical studies [12]. 

The mechanism that causes a current anomaly can be demonstrated analytically 
in the simpler XY model. In the presence of an external magnetic field W, the XY 
model is described by the Euclidean version of the sine-Gordon model (19.2), with 
action 

S [ 4 ] = I d x d y [ f ( d 4 ) 2 +  W(1 -cos 4)] (19.102) 

which describes the propagation of the 1D soliton in imaginary time. The topologi- 
cal current density is 

and we have d"jk 5 0 for nonsingular field configurations. However, the conserva- 
tion is violated by a vortex configuration &(x, y )  that satisfies 
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where C is a closed loop containing the origin of the x-y plane. As shown in Prob- 
lem 18.1, a solution is 

X 
C#Io(x, y )  = vo tan-' - 

Y 
(1 9.105) 

For fixedy > 0, this is a one-dimensional soliton with boundary conditions 

( 1 9.1 06) 

As shown in Problem 18.1, we have for this configuration 

V.j = 2.rr voS2(x) ( 1 9.107) 

Thus we expect the current to be anomalous in the high-temperature phase above 
the Kosterlitz-Thouless transition. This is verified in a more detailed analysis [ 131. 

A physically important anomaly occurs in the the chiral current of a Dirac field, 
discussed in Problem 6.4. For a massless field, this current is conserved in a classi- 
cal theory, but not when the theory is quantized. The divergence of the current turns 
out to be given by a magnetic charge density. The current is somewhat different 
from those considered above, in that it is not defined as a topological current. We 
refer the interested readers elsewhere for a full discussion [ 141. 

PROBLEMS 

19.1 To illustrate topological solitons in a theory different the sine-Gordon case, consider 
the nonlinear Schrodinger equation (Gross-Pitaevskii equation) introduced in Section 
15.4, in one spatial dimension: 

There exist topological soliton solutions, stabilized through the fact that the phase of 
Nx, t )  approach different values as x -+ fm. 

(a) Seek a solution of the form 

where U is some constant, andfin is real. Show that 

f ' + i ( 2 k - U ) f ' + ( k 2 - w ) f - g f 3 = 0  

(b) Choose k =  U/2. The equation then reduces to 
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vcf) = - a g  f - - f 4  

2 ’  4 ‘  

where LY = k2 - o. Regard the motion as that for a particle of unit mass in the po- 
tential Vcf), which for a 0 has a minimum aboutf= 0. and then falls off outside 
that. Consider motions confined to this central region. Obtain the orbit equation 
from conservation of “energy.” The soliton corresponds to a zero-energy solution 
that traverses the central minimum when 5 goes from --oo to +m. 

19.2 The O(3) nonlinear sigma model has a remarkable local gauge invariance, revealed 
through the spinor representation (19.41), in which a vector potential (19.46) emerges. 
The form of the action (1 9.47), which exhibits the gauge invariance, can be established 
by explicit calculation, or through the following considerations. 

(a) Consider the Lagrangian density 

where A”@) is regarded as an independent vector field. Show that the equations 
of motion give (1 9.46). 

(b) Since there is no kinetic term f o r k ,  it cart be eliminated through the equations of 
motion. Show that L(x) is equivalent to 

U H  
L(x) = d p z t d p z  + + (Z+ d,Z)(Z+ d p Z )  = dpz+ d P z  + (Ztd.Z)(Ztd.Z) 

where in the last step one uses the fact ztz = 1. 

19.3 The spin variable n(x) in the O(3) nonlinear sigma model in d = 3 represents a Hopf 
map S3 -+ 9. Because of the boundary condition n(x) j (0, 0, 1) at infinity, the space 
of x E R3 is compactified to $. In this problem we construct a configuration with 
Hopf invariant 1. 

(a) Use spherical coordinates x = (r,  0, cp). Show that 9, which is the surface of a 
four-dimensional sphere of unit radius, can be parametrized by the four coordi- 
nates 

(bo, b) = (cos y, sin y cos 0, sin y sin 0 cos cp, sin y sin 0 sin cp) 

( o ~ y < ~ )  ( o ~ e < ~ )  ( O S ~ < ~ ~ )  

where f ir)  has the properties ‘L(0) = T, fia) = 0. The volume element is sin2y 
sin0 dyd8 dcp, and the total volume of the space is 2+. 

(b) The map n(x) is constructed by identifying (bo: b) with its spinor representation 
(19.41): 

z,(x) = cos y + i sin y cos 0 

z2(x) = e’q sin y sin 8 
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Calculate n,(x), and show that lzll = 1 ,  z2 = 0 gives n, = (0, 0, 1) and Iz2/ = 1, 
z, = 0 gives nz = (0, 0, -1). Sketch the loci n(x) = n, and n(x) = n2 in R3. Show 
that the former is the z axis and the latter is a circle in the equatorial plane. They 
are thus closed loops with linkage number 1 .  This shows that the Hopf invariant 
of the map is 1. 

(c) Calculate the vector potential, and verify 

Ak = cos Odky - 4 sin 2 y  sin 8dk0 + sin2 y sin28dkq 

E ' J ~ A ~ ~ ~ A ~  = 2sin2 y sin eEiikdiy 9% a%p 

(d) The Hopf invariant His the winding number of the map S3 -+ S3 represented by 
z(x): 

This verifies the normalization constant in (1  9.83). 
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APPENDIX A 

Background Material 

A.l NOTATION 

We generally use units in which c = ti = 1. When we have to distinquish between 
space and time, the dimensional of space is usually denoted by D, and that of 
space-time, Euclidean or Minkowskian, by d. 

In relativistic systems, the metric tensor g’” in the d = 4 Minkowski space is di- 
agonal, with goo = -g” = -2’ = -g 33 - - 1. The position and gradient 4-vectors are 
denoted as follows: 

x’ = (x0, x’, x2, x3) = (XO, x) = ( t ,  x, y, z)  

X’ - - gyvxY = (xO, -x) 

x2 = X’X’ = (x0)2 + XkXk = (XO)2 - x2 

d =-=(--,v) d d 

’ &’ 

Greek indices have the range 0, 1, 2, 3, while Roman indices have the range 1,2, 3. 
Repeated indices are summed over their range. The dot product between two 4-vec- 
tors can be written in various forms: 

The Kronecker 6 is defined by 

406 
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1 if n = m  
0 if n + m  Snrn = ('4.3) 

When n and rn consist of complicated expressions, we write &(n - m )  = an,, and 
the subscript "K" (Kronecker) is omitted if there is no chance of confusion. 

Dirac S function is defined by 

& - t o )  = 0 (if t # r&) 

It has the properties 

A usefid relation is 

1 I - = P- + i a S ( t )  
t - i q  t (7 + O+) 

where P denotes principal value: 

We have occasion to use the representation 

(77 + 0') 

Other useful functions are 

dw -- (77 + 0')  -- 

(-4.7) 
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A.2 CLASSICAL MECHANICS 

A classical particle is an object characterized by a position vector q whose compo- 
nents { q ' ,  . . . , qD}  are functions of the time t. In the nonrelativistic regime, the time 
dependence is governed by Newton's equations: 

(A.lO) 

where m is the mass and V(q) is the potential. The Lagrangian function is defined by 

where q2 = q'q'. Newton's equations can be represented in the form 

(A. 12) 

If there are Nparticles, this equation still applies, provided we interpret q as the col- 
lection of all the coordinates. 

A.3 QUANTUM MECHANICS 

Classical mechanics must be supplanted by quantum mechanics, whenever any rele- 
vant physical quantity of dimension energy x time becomes comparable to or small- 
er than Planck's constant 

h = 6.27 x lo-*' ergsls (A. 13) 

The state of a system in quantum mechanics is associated with the direction of a 
vector in a Hilbert space-a ray in Hilbert space. Two vectors differing only in nor- 
malization represent the same state. Physical observables are associated with Her- 
mitian operators on the Hilbert space. The inner product between two state vectors 

and Ca are denoted either by the notation ('P, Ca) commonly used in mathematics 
or by the Dirac notation ('P I@)). The inner product between 'P and O@, where 0 is a 
Hermitian operator, is denoted by the equivalent notation 

For a nonrelativistic particle in one dimension, the relevant operators are mo- 
m e n t u m ~  and position x,  which are defined by the commutation relation 
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In, x] = -ih (A. 15) 

where f = h / 2 ~ .  We summarize properties for a one-dimensional system. It is 
straightforward to generalize them to higher dimensions. 

We assume that there exists a Hamiltonian operator H@. x), which is Hermitian 
and time-independent, and it generates time translations: 

It + dt) = 1--Hdt It) + O(dt2) L I (A.16) 

where It) is the state of the system at time t. For time translation over a finite interval 
At, we subdivide the interval into N successive infinitesimal intervals. In the limit N 
--+ we have 

For a nonrelativistic particle, we take 

P2 H =  - + V(X) 
2m 

(A.17) 

(A. 18) 

by correspondence with classical mechanics. 

operator, denoted here by xoP, with the properties 
A useful basis for the Hilbert space consists of eigenstates Ix) of the position 

XOPIX) = xlx) 

(xlx') = 6(x - x') 

dx Ix) (XI = 1 1, (A. 19) 

An alternative basis is the set of eigenstates of the momentum operator ip), with the 
properties 

(A.20) 

In the coordinate basis, the state is represented by the wave function 
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The momentum operator is represented by -ikd/dx and the Hamiltonian, by a differ- 
ential operator: 

h* d2 
H@, X) = -- - 

2m + ‘(’1 (A.22) 

The statement that H(p, x) generates infinitesimal time translations becomes 

where we have used the property (x’lflx) = S(x - x’)H@, x). This leads to the 
Schrodinger equation 

It follow from this equation that there is a conservation law 

with 

P =v* 

(A.24) 

(A.25) 

(A.26) 

where p is the probability density for finding the particle at x at time t and j is the 
corresponding probability current density. For a real wave function,j = 0. 

The operators p and x in infinite space have continuous spectra of eigenvalues. 
It is more convenient to work with countable sets of eigenvalues and eigenvectors. 
To do this, we enclose the system in a large but finite box of dimension L,  and let 
L + a at the end of all calculations. The boundary condition imposed on the sur- 
face of the box is not crucial, because it usually affects the wave function only in a 
finite layer near the boundary, and has no effect on volume properties, such as the 
energy density. A convenient choice is the periodic boundary condition flx + L )  = 
rl/(x). For a plane wave $(x) = elkr, this means that the wave number k is restricted to 
the discrete values 
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k =  - 2 m  (n = 0,  +1, * 2 , .  . . ) (A.27) 
L 

A sum over states labeled by k approaches an integral in the large L limit: 

(A.28) 
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Linear Response 

We illustrate the calculation of a response function to a disturbance in the path-inte- 
gral formalism, where no references are made to Hilbert-space states and operators. 
It is suited to macroscopic descriptions based on the Ginsburg-Landau free energy, 
which may be looked upon as a very general quantum field theory. We consider the 
example of superfluidity, and derive formulas used in Chapter 15. 

Superfluidity is a transport property defined in terms of the response of a sys- 
tem to an imposed velocity field. We assume that the imposed field wi(x, t )  is infin- 
itesimal, and adiabatically turned on and off: 

Wi(X, 0 (B. 1) 

In response, the momentum density of system changes by an amount &(x, t). The 
Fourier transforms of these quantities are denoted by 

We consider spatial dimensions D = 2,3. The linear response is defined by a re- 
sponse function x: 

6(g'(k, 0)) = X"k, w)iP(k, w )  (B.3) 

where ( ) denotes thermal average. The inverse Fourier transform reads 

Consider the static response 

412 
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For an infinite system with rotational invariance, this is a tensor dependent only on 
k’. Its most general form is thus given by 

where A and B are two scalar functions associated respectively with the longitudinal 
and transverse responses. The longitudinal response for long wavelengths defines 
the total mass density p of the system: 

p = A(0)  (B.7) 

while the transverse response defines the “normal fluid density”: 

The “superfluid density” is the difference 

ps A(0)  - B(0) (B.9) 

These definitions can be justified as follows [I ] .  
For concreteness, consider D = 3. The response in ordinary space is 

S(g‘(x)) = I $$eik.’X~(k)G’(k) (B. 10) 

Consider the limit of a spatially uniform velocity 

w’(x, t )  = w ’ (B. 1 1) 

The slow time dependence from adiabatic switching is left understood. In an suffi- 
ciently large system, S(g‘(x)) should be independent of position, so we can put 
x = 0: 

(B. 12) 

For a system enclosed in a rectangular box of size L ,  x L2 x L,, we have 

iP(k) = S u ’ l  8 x  e-ik.x = wiF(k’)F(k2)F(k3) (B. 13) 
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where 

F(kj) = Tf2 -Lj12 dxJexp(-ikjxj) ,,+27~ S(kj) 

Thus, 

(B.14) 

(B. 15) 

Choose Sd to point along the x axis. We make different choices according to the 
geometry. 

First put the system between flat disks with normal along the x axis, as shown 
in Fig. B. 1. This is realized by first letting L2 + a, L3 + ~ 0 ,  and then L ,  + @J. The 
imposed velocity field can be created by moving the disks in the x direction with in- 
finitesimal velocity wi. The entire system must move with the disks, and therefore 
the induced momentum density is the total density p times the velocity: 

= w1 lim lim lirn X"(k) 
k1-0 k2+0 k3-O 

(B. 16) 

Therefore 

p = lim lim lirn ~ " ( k )  (disk geometry) (B. 17) 
k'-0 k2-0 2-0  

Next put the system in a long pipe with axis along the x axis, moving in the x direc- 
tion at velocity Sd, as shown in Fig. B. 1. This is realized by first letting L ,  + ~ 0 ,  and 

Figure B.1 Fluid placed in containers of different geometry, to illustrate the concept of normal fluid: 
(a)  Disk geometry-the system is placed between large moving plates, and the whole system moves with 
the plates; (b)  pipe geometry-the system is placed in a long moving pipe. The normal fluid component 
moves with the pipe, while the superfluid component remains at rest. 
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then L ,  + w, L, -+ m. The normal fluid is the part of the system that exhibits fric- 
tion, and moves along with the pipe. Its density p,, is therefore given by 

p,, = lirn lim lim ~ " ( k )  (pipe geometry) (B. 18) 
k3-0 k2-0 kI-0 

To calculate ,yl ', we turn to (B.6), and note that 

1 (disk geometry) 
k2 (k')2 + (k2)2 + ( k j ) 2  [ 0 (pipe geometry) 

(B. 19) -- (k'>2 - k'k' 

Therefore 

(B.20) 

Let us now calculate the superfluid density for a system described by a velocity 
field v(x), with Ginsburg-Landau free energy 

E[v] = "1 dDx Iv(x)12 
2 

The partition function of the system is 

(B.2 1) 

where p is the inverse temperature. We impose a prescribed velocity field w(x), un- 
derstood to be switched on and off adiabatically. The energy becomes 

E,[v] = "1 dDx Iv(x) - w(x)I2 (B.23) 
2 

The first-order change in energy is 

6E = I dDx g(x)w'(x> (B.24) 

where 

which is defined as the momentum density. This averages to zero in the unperturbed 
system. With the external velocity field, the average momentum density becomes 
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(B.26) 

Taking the functional derivative with respect to w'(y), we obtain 

To first order in o , we can neglect the second term, and integrate both sides to ob- 
tain the linear response 

= P p i l  dDy(vi(x -y)uj(O))wj(y) (B.29) 

where ( )  denotes thermal average without external field and we have assumed 
translational invariance. We Fourier-analyze wjb), and on comparison of the result 
with (B.10), obtain the response function 

x"k) = PptJ  dDxe-ik'x(u'(x)u'(0)) (B.30) 

Then we decompose the velocity field into longitudinal and transverse parts 

v = V L  + VT (B.31) 

with G 7 .  vL  = 0, and V x v T =  0. Then 

We have used (v [ (x)v+(O))  = 0, which follows from the fact that there is no cross- 
term in the energy E[v]. 

To obtain the superfluid density, we have to decompose 2' into longitudinal and 
transverse parts. We write in matrix notation 

where 
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Taking the matrix trace of x, we have 

Tr X(k) = A(k2)  + (D - 1)B(k2) 

Thus 

Tr X ( k )  - A(k2) 
B(k2) = D- 1 

The superfluid density is 

Tr x(0) - 
p.F = A(0) - B(0) = A(0) - 

D -  1 

Tr x(0) A(k0) - - 
D - -- 

D -  1 D -  1 

We now calculate Tr x(0): 

The longitudinal contribution satisfies the f-sum rule: 

Thus 

(B.34) 

(B.35) 

(B.36) 

(B.37) 

(B.38) 

(B.39) 

(B.40) 

(B.41) 
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