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Introduction

This volume offers an introduction to some recent developments in several active
topics at the interfaces between algebra, geometry, topology and quantum field
theory. It is based on lectures and short communications delivered during the
summer school ‘Geometric and Topological Methods for Quantum Field Theory’
held in Villa de Leyva, Colombia, in July 2007.

The invited lectures, aimed at graduate students in physics or mathematics, start
with introductory material before presenting more advanced results. Each lecture
is self-contained and can be read independently of the rest.

The volume begins with an introductory course by Paul Kirk on the history and
problems of geometric topology, which explains how ideas coming from physics
have had an impact on low-dimensional topology in the last 20 years. In the
second lecture, Martin Guest discusses differential equation aspects of quantum
cohomology, as part of a framework which accommodates the KdV equations and
other well-known integrable systems.

We are then led into the realm of noncommutative geometry with a lecture by
Claire Debord and Jean-Marie Lescure, who present a proof of Atiyah and Singer’s
index theorem using groupoids and KK-theory, which they then generalize to the
case of conical pseudomanifolds.

The remaining lectures take us to the world of quantum field theory, starting
with a lecture by Alessandra Frabetti, who presents the Connes–Kreimer algebra
for renormalization and its associated proalgebraic group of formal series after
having reviewed the Dyson–Schwinger equations for Green’s functions and the
renormalization procedure for graphs. We then step into gauge theory with José
Gracia-Bondı́a’s lecture, which sheds light on BRS invariance of gauge theories
using Utiyama’s general gauge theory. David Berenstein then gives a short but
gentle introduction to the rather sophisticated ideas of AdS/CFT correspondence. In
the last lecture, Martin Reuter and Frank Saueressig survey the background material
underlying the functional renormalization group approach to quantum gravity.

xi



xii Introduction

The invited lectures are followed by six short communications on a wide spec-
trum of topics on the borderline between mathematics and physics, ranging from
orbifolds to quantum indistinguishability and involving a multitude of mathemati-
cal tools borrowed from geometry, algebra and analysis.

We hope that these contributions will give – as much as the school itself seems
to have given – young students the desire to pursue what might be their first
acquaintance with some of the problems on the boundary between mathematics
and physics presented here. On the other hand, we hope that the more advanced
reader will find some pleasure in reading about different outlooks on related topics
and seeing how the well-known geometric tools prove to be useful in some areas
of quantum field theory.

We are indebted to various organizations for their financial support for this
school. Let us first of all thank the Universidad de los Andes, which has been
supporting this and many other schools of this kind that we have been organizing
in Colombia since 1999. We are also deeply grateful to the ICTP in Trieste, for its
constant financial support over the years and specifically for this school. We also
thank the IMU for its support. We are also greatly indebted to other organizations –
such as CLAF in Brazil, and Colciencias, ICETEX and ICFES in Colombia –
which also contributed in a substantial way to the financial support needed for this
school.

Special thanks to Sergio Adarve, Alexander Cardona and Andrés Reyes (Uni-
versidad de los Andes), coorganizers of the school, who dedicated time and energy
to make this school possible in a country like Colombia where many difficulties
are bound to arise along the way due to social, political and economic problems.

We are also very grateful to Marta Kovacsics, Ana Cristina Garcı́a and Melissa
Caro for their help in various essential tasks needed for the successful development
of the school. Without the people named here, all of whom helped in the organi-
zation in some way or another, before, during and after the school, this scientific
event would not have left such vivid memories in the lecturers’ and participants’
minds. Last but not least, thanks to all the participants who gave us all, lecturers and
editors, the impulse to prepare this volume through the enthusiasm they showed
during the school, and special thanks to all the contributors and referees for their
participation in the realization of these proceedings.

Hernán Ocampo, Eddy Pariguán and Sylvie Paycha
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The impact of QFT on low-dimensional topology

paul kirk∗

Abstract

In this chapter I discuss some of the history and problems of geometric
topology and how ideas coming from physics have had an impact on low-
dimensional topology in the last 20 years. The ideas are presented largely in
simplified (and morally but not necessarily rigorously correct) form to give
students an overview of the topics unencumbered by the many technical issues
required to put the results on a firm theoretical footing.

The goal of this chapter is to provide theoretical physics students with an
introduction to the impact of modern physics on mathematics, as well as to
provide for mathematics students a gentle but broad introduction to some of the
developments in topology inspired by quantum field theory. No prerequisites
are needed besides the usual mathematical maturity, but the astute student will
recognize the large role that Morse theory plays. Thus, some familiarity with
Morse theory is likely to be useful.

1.1 Geometric topology: a brief history

Geometric topology refers to the study of (usually compact) manifolds.

Let Rn≥ = {(x1, . . . , xn)|xn ≥ 0}. An n-dimensional manifold is a topological space M
equipped with a maximal collection of charts

{(Ui, φi) |Ui ⊂ M open, φi : Ui → Rn≥, φi a homeomorphism onto an open subset}.
The set of points mapped to {xn = 0} by the charts φi is called the boundary of M, denoted
∂M . IfM is compact and ∂M is empty, we callM closed.

There are many different notions of manifold. Manifolds can have many dif-
ferent kinds of extra structures or restrictions (and corresponding equivalences),

∗
Dedicated to the memory of my friend K. P. Wojciechowski.
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2 Paul Kirk

such as an orientation (orientation-preserving homeomorphism), a smooth structure
(diffeomorphism), a PL structure (PL isomorphism), a spin structure (spin diffeo-
morphism), a Spinc structure, an almost complex structure, a symplectic structure
(symplectomorphism), a Riemannian or Lorentzian structure (isometry), a flat or
spherical or hyperbolic structure, a holomorphic structure (biholomorphism), a
Kähler structure, a framing, a trivial fundamental group, a contractible universal
cover, etc.

In geometric topology the focus is on structures such that the corresponding set
of equivalence classes is discrete, and the goal of geometric topology can usually
be stated as follows:

Distinguish all equivalence classes of manifolds with a given structure.

1.1.1 Examples

To a compact, connected 2-manifold one can associate its Euler characteristic
χ (alternating sum of numbers of n-simplices in a triangulation), the number b
of boundary circles, and o ∈ {0, 1} keeping track of whether or not the manifold
is orientable. Then a classical theorem of topology states that two compact 2-
manifolds have the same triple (χ, b, o) if and only if they are homeomorphic.
Thus the class of compact, connected 2-manifolds is classified up to homeomor-
phism by (χ, b, o) ∈ Z× Z≥0 × Z/2, and it is simple to determine which triples
occur.

Another example is provided by a consequence of Smale’s h-cobordism theo-
rem [48]: Every closed manifold homotopy equivalent to an n-sphere Sn = {x ∈
Rn+1|‖x‖ = 1} is homeomorphic to an n-sphere, if n > 4. (Freedman [15] proved
this for n = 4, and Perelman for n = 3.)

Two topological spaces X, Y are homotopy equivalent if there exists continuous maps
f : X→ Y and g : Y → X and homotopies H : X × [0, 1]→ X and K : Y × I → Y

such that H (x, 0) = x,H (x, 1) = g(f (x)),K(y, 0) = y,K(y, 1) = f (g(y)).

More interestingly, two smooth closed n-manifolds homotopy-equivalent to Sn

need not be diffeomorphic. But a consequence of Smale’s theorem is that ifMn is
a smooth homotopy sphere, n ≥ 5, thenM is obtained from a pair of hemispheres
Dn+ and Dn− (with Dn± = {x ∈ Rn | ‖x‖ ≤ 1}) by gluing their boundaries using a
nontrivial diffeomorphism f : ∂Dn+ ∼= ∂Dn−.

Gluing, or pasting, topological spaces X, Y along subsets A ⊂ X and B ⊂ Y using a
gluing map f : A→ B refers to forming the quotient space X ∪ Y/ ∼, where x ∼ y if
x ∈ A, y ∈ B, and f (x) = y. Gluing n-manifolds using a homeomorphism f of their
boundaries results in an n-manifold. If M is an n-manifold and N ⊂ M is an (n− 1)-
submanifold with ∂N = N ∩ ∂M , then cutting M along N means forming the manifold
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(with nonempty boundary) obtained by taking the closure of M −N . There are technical
issues to worry about, and often one uses instead the complementM − nbd(N ) of a small
tubular neighborhood of N . Notice that gluing and cutting are inverse operations.

An earlier example is provided by Thom’s cobordism theorem [53]: two
closed manifolds M,N are cobordant if and only if they have the same
Stiefel–Whitney numbers. Thom determined which numbers occur as Stiefel–
Whitney numbers.

Closed n manifolds M and N are cobordant if there exists a compact n+ 1-manifold W
with ∂W the disjoint union of M and N . The Stiefel–Whitney numbers of a manifold
are a collection of numbers wI ∈ Z/2; one for each multi-index I = (i1, i2, . . . , in), i1+
2i2 + · · · + nin = n.

Yet another example is given by Freedman’s theorem [15]: two simply connected
(see the following) closed 4-manifolds are homeomorphic if and only if they have
isomorphic cohomology rings (see the next section for an introduction to cohomol-
ogy) and the same Kirby–Seibenmann invariant KS ∈ Z/2. One new twist here is
that there remains one unsolved case of the classification of possible ring structures;
namely, the full classification of unimodular quadratic forms over Z (which is deter-
mined by and determines the cohomology ring of a simply connected 4-manifold)
is not known.

Thus one might say that the homeomorphism classification of simply connected
4-manifolds is reduced to an algebra problem. In the case of Thom’s theorem, Thom
first reduced the cobordism classification to a homotopy theory problem, then he
solved the homotopy theory problem. For Freedman’s theorem, the classification
reduces to an algebra problem which is largely solved, but not completely. This is
typical.

As a negative example, it is simple to prove that any finitely presented group is
the fundamental group of a closed n-manifold for any n ≥ 4. Logicians tell us the
problem of determining whether two group presentations give isomorphic groups
is not solvable (no algorithm exists to determine if two presentations determine
isomorphic groups). Thus there cannot be an algorithmic (e.g., a finite set of
invariants) homeomorphism classification of n-manifolds for n ≥ 4.

The fundamental group π1(X, x) of a topological spaceX with a distinguished base point is
the set of based homotopy classes of loops α : [0, 1]→ X,α(0) = α(1) = x. So α ∼ β if
there is a map H : [0, 1]× [0, 1]→ X so that H (t, 0) = α(t),H (t, 1) = β(t),H (0, u) =
x = H (1, u). The group structure is given by following one loop, then the next. Concisely,
it is the group of path components of the based loop space on X. A continuous map
f : X→ Y induces a homomorphism π1(X)→ π1(Y ). A connected space X is called
simply connected if π1(X, x) is the trivial group.
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A good 3-dimensional theory is provided by Waldhausen’s results on Haken
3-manifolds [56]. A closed, oriented 3-manifold M is called Haken if it contains
a closed oriented 2-manifold F ⊂ M (with F �= S2) such that π1(F )→ π1(M)
is injective and such that every sphere S2 ⊂ M cuts M into two pieces, one
of which is D3. Then Waldhausen’s theorem says: if M and N are Haken and
π1(M) is isomorphic to π1(N), then M and N are homeomorphic (and diffeo-
morphic). Thus the fundamental group “classifies” Haken manifolds. Many (but
not all) 3-manifolds are Haken, or can be cut into Haken pieces which can be
analyzed. Later Thurston proved [54] that a closed Haken 3-manifold which does
not contain a π1-injective torus admits a hyperbolic structure. Thus this class
of 3-manifolds is classified by identifying its fundamental group with a Kleinian
group.

An important family of examples comes from considering pairs (M,N ) where
M is an m-dimensional manifold and N is an n-dimensional submanifold (with
n < m). One can ask for a relative homeomorphism classification, i.e., assuming
M0 is homeomorphic to M1 and N0 is homeomorphic to N1, does there exist a
homeomorphism h : M0

∼= M1 such that h(N0) = N1? Other interesting questions
include the concordance problem, where one assumes M0 = M1 = M , and sets
(M,N0) ∼ (M,N1) if there exists an embedding ofN × [0, 1] ⊂ M × [0, 1] which
restricts to (M,N0) and (M,N1) at the endsM × {0} andM × {1}.

The most interesting case is when n = m− 2, the codimension 2 embedding
problem. This topic is generally known as knot theory, especially when M = Sm
andN ∼= Sm−2. The further specialization whenn = 3, i.e., the study of embeddings
S1 ⊂ S3, is usually called classical knot theory (and was first systematically studied
by the physicist Lord Kelvin, who theorized that tiny knots in the “æther” might
explain the subatomic properties of nature).

1.1.2 Invariants

The preceding examples show that classifying manifolds in a certain class is a
subtle problem. One should not expect as clean an answer as for 2-manifolds, or
even Thom’s cobordism theorem. There are several questions to consider: What
class of manifolds do we study? Under what equivalence relation? What kind of
methods can we use? What is considered progress?

The standard approach to a classification problem in geometric topology is to

(i) find a geometrically meaningful and computable set of invariants,
(ii) find a collection of manifolds in the class that realize all the invariants (or determine

their range),
(iii) prove these invariants classify.
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The term invariants refers to some way of associating some object (e.g., in a
category, or set, or group) to each manifold in the chosen class so that equivalent
manifolds are given the same invariant. “Geometrically meaningful” is a vague
term, but ideally the invariants should tell us something interesting about the
geometric problem. As a negative example, consider the invariant of closed n-
manifolds I defined by I (M) = 0 ifM is homeomorphic to a sphere and I (M) = 1
otherwise. Then I is an invariant which partially classifies n manifolds, but it
is useless, because its definition reveals nothing about the underlying geometric
question.

By contrast, the Euler characteristic of a closed, orientable 2-manifold classifies
up to homeomorphism, but in addition it can be defined for any compact space,
and it can be computed in many ways (e.g., from a triangulation, by computing
homology, from a Morse function, or geometrically by the Gauss–Bonnet theorem).
Moreover it has many nice properties (multiplicativity under covers, independence
from the triangulation, etc.). Thus producing new invariants is not by itself progress
(despite frequent claims made to the contrary).

An important requirement is that invariants be computable. This is also a vague
requirement, but to the extent that there are cut-and-paste constructions to produce
new manifolds from old in the given class, a good interpretation of this requirement
is that it is desirable to be able to compute how the invariant changes under specific
cut-and-paste operations.

1.1.3 High and low dimensions

Geometric topology is divided into two distinct topics: high-dimensional
topology, i.e., the study of manifolds of dimension 5 and higher, and low-
dimensional topology, i.e., manifolds of dimensions 2, 3, and 4. The reason for
this dichotomy is technical, but boils down to the slogan “there is more room to
move in high dimensions.” A beautiful construction due to Whitney [59], called
the Whitney trick, uses 2-dimensional disks as guides for various geometric defor-
mations. In n-dimensional topology with n > 4, because 2+ 2 < n it follows that
it is easy to fit the 2-dimensional disk into a manifold in such a way that it does not
interfere with itself and other disks in the manifold (in the same way that circles
in 3-space can be moved off each other by arbitrarily small perturbations, because
1+ 1 < 3).

The upshot of this is that the Whitney trick allows one to prove injectivity of
invariants produced by counting intersections of submanifolds in high dimensions.
This was exploited in the golden era of geometric topology (1955–1980) by many
mathematicians, including Smale, Milnor, Wall, Browder, Sullivan, and Novikov,
by combining cutting and pasting constructions (surgery) with related algebra
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(algebraic K-theory) and homotopy theory (bordism theory). These techniques are
combined in a powerful machine called surgery theory.

It is not correct to say that all classification problems of high-dimensional
topology are solved, but it is fair to say that many important ones have
been, and that surgery theory provides a starting point for investigating high-
dimensional problems which is often powerful enough to solve the problem, or at
least to reduce it to purely algebraic or discrete problems.

In low-dimensional topology, the situation is less clear. In dimension 4, there
is a chasm between the topological theory and the smooth theory (i.e., between
classification up to homeomorphism and up to diffeomorphism). The homeomor-
phism problem was treated satisfactorily by Freedman. The result is that many of
the techniques of surgery theory extend to dimension 4, albeit with much more
intricate proofs using infinite processes in point-set topology. Interestingly, the
homotopy classification of non-simply-connected 4-manifolds is not well under-
stood. Freedman’s results treat the gap between the homotopy problem and the
homeomorphism problem for many fundamental groups.

The diffeomorphism problem is quite different, and a breakthrough came at
about the same time as Freedman’s theorem when Donaldson used ideas from
physics (gauge theory) to produce invariants of differentiable 4-manifolds [5]. The
development of the ideas pioneered by Donaldson has been the focus of most of the
work in the last 20 years in 4-dimensional topology. A major simplification came a
few years later with the introduction of Seiberg–Witten theory [28, 47]. However,
it is fair to say that any kind of diffeomorphism classification in dimension 4 is a
distant goal. As R. Stern puts it, in smooth 4-dimensional topology, “the more we
learn the more we realize how little we know.”

In 3-dimensional topology (and 2-dimensional topology) there is no difference
between homeomorphism and diffeomorphism questions. Depending on one’s
point of view (and the time of day), 3-manifolds are either well understood or
mysterious. One feature of 3-dimensional topology is that there are many structure
theorems, notably the existence and uniqueness of decompositions along 2-spheres
(the connected sum decomposition theorem [30]) and then along tori (the Jaco–
Shalen–Johannsen torus decomposition theorem [22, 23]). The results of Wald-
hausen have already been mentioned: these build on many previous results, but
notably on Papakyriakopoulos’s proofs of Dehn’s lemma and the sphere theorem
[42].

The next major step forward occurred when Thurston proved his hyperboliza-
tion theorem, which inserted the beautiful techniques of Kleinian groups into
the study of 3-manifolds. The recent stunning results of Perelman on Thurston’s
geometrization conjecture can be considered as a continuation of this perspective
in 3-dimensional topology.
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Fig. 1.1. A projection of the unknotted circle

Fig. 1.2. A framed trefoil knot

1.1.4 Links, Reidemeister moves, and Kirby’s theorem

We introduce a few notions from the theory of knots and links, a subject that is
both of intrinsic interest in topology and also a useful tool in the construction of
manifolds.

A link in S3 is an embedding of a finite disjoint union of circles in S3,

n⊔
i=1

S1
i ⊂ S3.

A link with one path component (i.e., n = 1) is called a knot.
A projection of a knot or link is a picture of a generically immersed curve in R2, with

“over and under” data given at each double point, to specify a knot or link in R3 = S3 − {p}.
See Figure 1.1.

A framed link in S3 is an embedding of a finite disjoint union of solid tori in S3,

n⊔
i=1

(S1 ×D2)i ⊂ S3.

See Figure 1.2.
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R1

R3

R2

Fig. 1.3. The three Reidemeister moves

The result of surgery on a framed link is the 3-manifold, M , obtained by cutting out
each (S1 ×D2) and gluing in (D2 × S1):

M =
(
S3 −

⊔
i

(S1 ×D2)i

)
∪
⊔
i

(D2 × S1)i .

Isotopy of links can be described using projections in terms of the three Rei-
demeister moves, illustrated in Figure 1.3. In fact, Reidemeister proved that these
three moves classify links in S3, in the sense that two projections (i.e., pictures like
those in Figures 1.1 and 1.2) of links correspond to equivalent links if and only if
one can get from one projection to the other by a sequence of Reidemeister moves
R1, R2, and R3.

In a different direction, a classification theorem of sorts for 3-manifolds was
proven by Kirby in [26].

It has been known since the 1950s that any 3-dimensional manifold is obtained
by surgery on a framed link in S3. However, many different framed links yield the
same manifold.

There are geometric moves on the set of framed links: isotopy, stabilization
(adding a small, appropriately framed knot away from the rest, as in Figure 1.4),
and addition, or sliding (adding a parallel copy of one component to another
component; see Figure 1.5).

Kirby’s theorem says two framed links give diffeomorphic 3-manifolds if and only
if the framed links are related by these moves. (The stabilization and sliding moves in
this dimension are often called Kirby moves.) In other words, 3-manifolds are clas-
sified by identifying them with equivalence classes of framed links in S3 (note that
any framed link can be visualized as circles in R3 with numbers attached to them).

This suggests a strategy to approach the classification problem for 3-manifolds:
construct a function which assigns a complex number (or an element in an abelian
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Fig. 1.4. A (−1) stabilization of a framed trefoil knot

Fig. 1.5. Sliding one component over another (framings omitted)

group) to each link in S3 (respectively, framed link in S3) in such a way that
links related by Reidemeister moves are assigned the same number (respectively,
framed links related by Reidemeister and Kirby moves are assigned the same
number). This might be a good strategy because one can draw links and framed
links. It may be hard to prove directly that two link projections correspond to
different equivalence classes, but straightforward to show that certain functions are
preserved by Reidemeister or Kirby moves.

This is one place where QFT has had an impact on low-dimensional topology:
The use of Feynman path integrals and the strategy by which physicists compute
them have led to the invention of the new mathematical notion of TQFT. Perhaps
more importantly, the input from physics has led to the formulation of a set of
axioms similar to, but in an important sense fundamentally different from, the
axioms of a homology theory.

1.2 Homology theories

We first review axioms for cohomology theories, which reshaped mathematical
thinking in the second half of the twentieth century. We will take the point of view
suited to algebraic topology, but there are many other points of view, in geometry,
algebra, analysis, etc. For reasons of exposition we discuss cohomology theories,
but each cohomology theory corresponds to a unique homology theory.
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A category C is a class of objects Ob(C), together with a class of disjoint sets Hom(A,B),
called morphisms, one for each pairA,B ∈Ob(C). Moreover, we require that for each triple
A,B,C of objects there exist a composition Hom(A,B)× Hom(B,C)→ Hom(A,C)
denoted (f, g) �→ g ◦ f satisfying

(i) (Associativity) (f ◦ g) ◦ h = f ◦ (g ◦ h),
(ii) (Identity) for each A ∈ Ob(C) there exists a 1A ∈ Hom(A,A) such that for each B, we

have 1A ◦ f = f for f ∈ Hom(B,A) and g ◦ 1A = g for g ∈ Hom(A,B).

A covariant functor F : C → D is one that assigns to each object A ∈ Ob(C) an
object F (A) ∈ Ob(D) and to each morphism h ∈ Hom(A,B) a morphism F (h) ∈
Hom(F (A), F (B)) so that compositions and identity are preserved. A contravariant functor
is defined in a similar way, except that if h ∈ Hom(A,B), then F (h) ∈ Hom(F (B), F (A)),
i.e., the arrows are reversed.

A natural transformation between two functors is, loosely speaking, a functor of func-
tors. More precisely, if F,G : C → D are two covariant functors, then a natural transfor-
mation n : F → G assigns to eachA ∈Ob(C) a morphism n(A) ∈ Hom(F (A),G(A)) such
that if f ∈ Hom(A,B) is a morphism in C, the diagram

F (A) F (B)

G(A) G(B)
�

n(A)

�F (f )

�

n(B)

�
G(f )

commutes. A similar definition works for contravariant functors.

Definition 1.2.1 Let T denote the category of topological spaces with base points
(or, to be safe, CW complexes) and continuous maps, and A the category of
(graded) abelian groups. Let S : T → T be the suspension functor, i.e., SX =
X × [0, 1]/ ∼, where X × {0, 1} ∪ {p} × [0, 1] is collapsed to a point.

A (reduced) cohomology theory is a contravariant functor h : T → A together
with a degree 1 natural transformation e : h ◦ S → h satisfying the following
axioms:

(i) (Homotopy) If f0, f1 : X→ Y are (based) homotopic, then

h(f0) = h(f1) : h(Y )→ h(X).

(ii) (Exactness) If X ⊂ Y , then the sequence

h(X/Y )→ h(Y )→ h(X)

is an exact sequence.
(iii) (Suspension) For each X, the natural transformation

e(X) : h(SX)→ h(X)

is an isomorphism.
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Typically one would also want the cohomology theory to be Z-graded, i.e., there
is a natural decomposition h =⊕i∈Z h

i and e has degree−1, i.e., e(X) : hn(SX) ∼=
hn−1(X).

The group h(S0) associated to the zero-dimensional sphere is called the coeffi-
cients of the cohomology theory. Eilenberg and Steenrod [10] proved (with some
technical conditions, always satisfied when working with manifolds, for example)
that any two cohomology theories with the same coefficients are isomorphic. More
precisely, any natural transformation of cohomology theories which induces an
isomorphism on the coefficients induces an isomorphism for all spaces.

The philosophy that underpins this result is the following. Cohomology had been
constructed in different ways (singular, simplicial, de Rham), and basic properties
(suspension, homotopy, exactness) proved. But in the use of cohomology, typically
the construction of the theory is not important: only its existence and its basic
properties are used for calculations. The Eilenberg–Steenrod theorem confirms
this. One has a list of properties one wishes to have, they are declared to be axioms,
and if one can prove that a unique functor exists which has these properties, then
one expects to be able to calculate using only the axioms. As modest as these
three axioms appear, they form the basis of the vast and beautiful subject of stable
homotopy theory.

From the perspective of geometric topology, several remarks are in order. First,
the homotopy axiom, which gives cohomology its flexibility, implies that homology
theories (which exist in abundance) are not set up to directly investigate problems
unique to manifolds, in particular to attack homeomorphism or diffeomorphism
questions. Second, the exactness axiom implies that the cohomology of a finite
union of spaces is the direct sum of the homology of the pieces.

In contrast, as we will see, the TQFT axioms are built from the start by con-
sidering the category of manifolds rather than all spaces. Moreover, the theory is
multiplicative, in the sense that unions are assigned the tensor product rather than
direct sum. These are two properties which emerge naturally from the physical
considerations.

There is an important way in which homotopy functors like cohomology theories
are used in geometric topology. Given an n-dimensional manifoldM , it may be the
boundary of a manifold of dimension n+ 1:M = ∂W . Assuming it is, one can try
to define geometric (i.e., homeomorphism) invariants ofM by taking cohomology
invariants ofW .

This is a successful strategy. We will give one example, which is based on an
additional axiom which some, but not all, homology theories satisfy, namely the
existence of a ring structure.

(iv) (Ring structure) There exists a natural ring structure h(X)× h(X)→ h(X).
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For example, the ordinary cohomology h = H ∗ with integer coefficients (i.e.,
the unique cohomology theory h such that h0(S0) = Z and hi(S0) = 0 for i �= 0)
has a ring structure called the cup product (in terms of differential forms, this is just
the wedge product of forms). The Poincaré duality theorem implies that if Z is a
compact oriented manifold of dimension 4k, there is an isomorphismH 4k(Z)→ Z

which leads to a symmetric pairing

H 2k(Z)×H 2k(Z)→ Z. (1.1)

Poincaré duality is the main homotopy-theoretical property that distinguishes manifolds
from arbitrary spaces. It says that the ring structure on integral cohomology induces an
isomorphism modulo torsionHp(Z) ∼= Hn−p(Z, ∂Z) for any compact oriented n-manifold
Z and index p. This implies, among other things, that the pairing (1.1) is unimodular
(determinant ±1) when Z is closed. Indeed, much of the theory of manifolds can be (and
is) studied in the Poincaré category, that is, for general spaces (or CW complexes) satisfying
Poincaré duality.

Choosing a basis for the free part of H 2k(Z), we can think of the pairing (1.1)
as a symmetric integral (or real) matrix. The signature, σ (Z), of this matrix is
the number b+(Z) of positive eigenvalues minus the number b−(Z) of negative
eigenvalues.

When Z = ∂W with W compact oriented, it is an elementary exercise to show
that σ (Z) = 0. In other words the geometric information (Z = ∂W ) has the coho-
mology (homotopy-theoretical) implication σ = 0. Hence if σ (Z) �= 0, then Z is
not the boundary of an n+1-dimensional manifold.

A more subtle version of this line of reasoning goes as follows. Suppose that one
knows that a class M of 4k manifolds has the property that whenever Z ∈M is
closed, thenZ has signature that lies in a subgroupmZ of Z. For example, Rohlin’s
theorem [44] implies that if Z is a closed spin 4-manifold, then σ (Z) = 16� for
some integer �.

Then given a closed 4k − 1-manifold M , if we assume that M = ∂Z for some
Z ∈M, we can try to define an invariant d of M by the definition d(M) = σ (Z).
This may depend on the choice of Z: perhaps σ (Z′) �= σ (Z) for some manifold Z′

with ∂Z′ = M . But gluingZ andZ′ alongW yields a closed manifold with σ in this
subring. Novikov’s additivity of the signature theorem implies that σ (Z) ≡ σ (Z′)
modm. Hence d(M) = σ (Z) ∈ Z/m is a well-defined invariant ofM , independent
of Z, called the signature defect ofM .

A similar reasoning applied to the Chern–Weil definition of the second Chern
class exploits the fact that c2(P )[M4] ∈ Z rather than R to define the Chern–Simons
invariant for a connection on a 3-manifold in R/Z (see the next section).

Milnor used a similar approach to construct smooth manifolds homeomorphic
but not diffeomorphic to S7 [31]. He constructs a certain 8-manifold Z (in fact,
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Z is a D4 bundle over S4) whose boundary M is homotopy equivalent to S7, and
hence homeomorphic to S7 by Smale’s theorem [48]. IfM were diffeomorphic to
S7, thenM would bound the 8-diskD8, which could then be glued to Z, yielding a
smooth closed manifoldZ ∪D8, which cannot exist, for reasons similar to Rohlin’s
theorem.

A similar approach was taken to try to find counterexamples to the Poincaré
conjecture in dimension 3 using Rohlin’s theorem. Any 3-manifold M with the
homology of S3 admits a unique spin structure, and is the boundary of a spin 4
manifoldW . The signature defect invariant µ(M) = σ (W ) mod 16 is well defined
(i.e., depends only onM), and it was hoped that one could find a simply connected
exampleM with µ(M) �= 0; this would provide a counterexample to the Poincaré
conjecture.

In 1985 Casson [1] showed that this approach was doomed to failure: µ(M) = 0
for any simply connected 3-manifold. However, his methods were far reaching,
and provided another deep link between gauge theory and topology.

Remark. The two fundamental invariants of a closed 4-dimensional manifold M
are:

(i) Its signature σ (M), defined as the difference b+(M)− b−(M), where b±(M) is the
dimension of a maximal positive/negative definite subspace ofH 2(M; R) with respect
to the intersection form, i.e., the symmetric unimodular bilinear pairing of Equation
(1.1).

(ii) Its Euler characteristic, defined as χ (M) =∑n(−1)nrank(Hn(M)). It can also be
defined as the alternating sum of the number of n-simplexes in a triangulation ofM .

Both of these invariants have the property that they are multiplicative with respect
to finite covering spaces M̃ → M .

1.3 Axioms derived from QFT

In this section I explain how considerations of Feynman integration led to the for-
mulation of a new set of axioms for a mathematical theory built to study manifolds.
My first exposure to this axiomatic point of view (the “gluing laws”) came from
Witten’s influential article [60]. It seems that the idea was already present in many
forms before that, including work of Segal [46] on conformal field theory, and
Witten himself had interpreted Donaldson’s 4-manifold invariants from this per-
spective in an earlier article [61]. These ideas have been floating around topology
in some form or another since Feynman introduced the Feynman integral, but they
gained traction in geometric topology with the appearance of Jones’s work on new
knot polynomials [24] and Witten’s interpretation and “extension” in [60]. The
axiomatic point of view was popularized in Atiyah’s book [2].
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A few words about mathematical rigor are in order here. Since presumably the
goal of physics is to describe the nature of the physical universe, and the goal of
mathematics is to describe the nature of the logical universe, it might be unfair
for mathematicians to expect physicists to justify their claims to a mathematician’s
satisfaction. After all, if a model uses mathematical language to accurately predict
physical phenomena, whether or not it makes any mathematical sense need not
concern a physicist. However, for a while it became common for some physicists,
following Witten’s lead, to make mathematical claims (in knot theory for exam-
ple) that were not justified mathematically (and presumably had limited physical
interest). In addition, some mathematicians began to introduce jargon and even
reasoning from theoretical physics into their work, in an attempt to ride the wave
that formed from this new relationship between the disciplines. This led to an
interesting and lively (and ongoing) debate, part of which can be found in the AMS
bulletin articles [3, 18] (see also Kauffman’s review of these articles [62]).

The positive side of the issue is that because speculation in theoretical physics
need not be constrained by mathematical rigor, physicists have been able to make
deep mathematical conjectures which would not have manifested themselves in
the presence of the timidity prescribed by the methods of mathematics. Some of
these conjectures have been subsequently proven by mathematical methods, and it
is uncontroversial to claim that the influence of theoretical physics on mathematics
has been overwhelmingly positive in the last 20 years.

The various examples in use of TQFTs satisfy slightly different axioms, operate
on different categories of manifolds, etc. In some cases the axioms are used in the
construction, in others the axioms serve as guides for desired theorems, and in yet
others the axioms serve only as a loose framework to organize the theory. Ultimately
the goal of a good theory is to provide a systematic way to prove theorems and
construct examples. Adherence to a predetermined collection of axioms is useful,
but secondary.

The exposition I give here is derived (inspired?) from the clear work of Kevin
Walker, who wrote an influential manuscript in 1991 [57], and more recently has
posted a draft of a book on TQFTs [58]. The reader interested in a careful exposition
of this topic is encouraged to read these two sources, as well as many other useful
approaches, such as that taken in Turaev’s book [55] and the many references cited
in that book.

1.3.1 Formal properties of functional integrals

I give an outline of how formal properties of functional integrals from theoretical
physics (also called path integrals or Feynman integrals) motivate the introduction
of axioms. The reader is to keep in mind that none of what follows is supposed to be
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rigorous mathematics, nor for that matter precise. It is meant purely speculatively.
Many details are ignored, and in fact more careful treatments make more careful
constructions. The exposition is meant only to show how the the functional-integral
formalism meshes with the geometric topology goal of understanding how cut-and-
paste constructions of manifolds lead to a list of desirable axioms or properties.
Rigorous mathematical examples will be described later.

First, we will use the word manifold to mean a compact oriented manifold. It
may have a boundary, and typically we will assume that is has a smooth structure.
It is also important to allow corners: a corner is a codimension 2 submanifold which
is itself a codimension 1 submanifold of the boundary; it is defined by relaxing the
charts so that they map to open sets in the quadrant {(x1, x2, . . . , xn) ∈ Rn | x1 ≥
0, x2 ≥ 0}. The corners then correspond to the points mapped to (0, 0, x3, . . . , xn)
by the charts. Sometimes it is even necessary to go further and define higher-
codimensional corners. The motivation comes from the observation that if one cuts
a manifold along a union of transversely intersecting hypersurfaces, the pieces in
the decomposition will be manifolds with corners.

Assume to any compact oriented manifold M of dimension less than or equal
to n+ 1 we have a way to assign some kind of spaces or sets of functions F(M),
called fields. Suppose that we have a well-defined way to restrict fields to compact
submanifolds (usually of codimension 0 or 1) 	 ⊂ M , r	 : F(M)→ F(	) (we
also write f |	 for r	(f )). For each f ∈ F(	) denote by F(M,f ) the preimage
r−1
	 (f ). Assume that all these restrictions commute. Moreover, we assume that the

homeomorphism (or diffeomorphism) group ofM acts on F(M), and the action is
compatible with restrictions in the sense that if h : M → M is a homeomorphism
which preserves a submanifold 	, then the restriction map r	 satisfies r	 ◦ h∗ =
(h|	)∗ ◦ r	 . This is obvious when F denotes the set of maps into some space B.

Example. Take n = 2. For each 3-manifold M , define F(M) to be the space AM of su(2)
connections onM , which we can identify with the vector space of su(2)-valued differential
1-forms onM , 
2

M ⊗ su(2). Restricting connections yields a map AM → A	 .

Next, assume that for each n+ 1-dimensional manifoldM , we have a function
SM : F(M)→ R (called the action) which is local in the sense that if M is the
union of two codimension zero manifolds M1 and M2 along a hypersurface 	,
M = M1 ∪	 M2, then

SM (f ) = SM1 (f |M1 )+ SM2 (f |M2 ).

Here we mean that M is formed by gluing M1 to M2 along embeddings ei : 	 ⊂
∂Mi , or equivalently, that M contains 	 and M1 �M2 is obtained by cutting M
along 	.
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Example continued. For each su(2) connection a ∈ AM and integer k, define the Chern–
Simons action SM : AM → R to be

SM (a) = k

8π

∫
M

Tr(da ∧ a + 2
3a ∧ a ∧ a).

Here the “∧” is a combination of wedge product on forms and matrix multiplication
on the coefficients. “Tr” refers to the usual trace, and the result is an ordinary real-valued
(rather than complex-valued) differential 3-form onM , for the coefficients are taken to be
su(2). This 3-form can be integrated on the 3-manifoldM , yielding a real number.

IfM = M1 ∪	 M2, then because integrating forms is a local operation,∫
M

Tr(da ∧ a + 2
3a ∧ a ∧ a) =

∫
M1

Tr(da ∧ a + 2
3a ∧ a ∧ a)

+
∫
M2

Tr(da ∧ a + 2
3a ∧ a ∧ a),

and so SM (a) = SM1 (a|M1 )+ SM2 (a|M2 ). Notice that no Riemannian metric is used to define
SM , and hence one says the action is “topological.”

Next we assume that there exists some kind of measure on F(M,f ) for each
M and f ∈ F(∂M), so that the circle-valued function eiSM : F(M,f )→ S1 is
integrable. Then define

Z(M,f ) =
∫
F (M,f )

eiSM ∈ C. (1.2)

The main point of this expression is that the result depends only onM and f . Hence
we think of Z(M,−) as a complex-valued function on the set of fields F(∂M) on
∂M . In the case that ∂M is empty, we write

Z(M) =
∫
F (M)

eiSM ∈ C. (1.3)

We assume that all the structure (including the measure on F(M)) is equivariant
with respect to diffeomorphisms.

Example continued. For the Chern–Simons action this gives Witten’s “invariant”

Z(M) =
∫
AM

eiSM .

This is not a mathematical definition, because the integral is not defined; in fact no appro-
priate measure exists.

Suppose thatM is the disjoint union of two manifolds,M = M1 �M2. We have
restriction maps F(M)→ F(Mi), i = 1, 2, which combine to give a product map
F(M)→ F(M1)× F(M2), f �→ (f |M1, f |M2 ). We assume this map is a natural
bijection, i.e., we assume that a field is determined by its two restrictions, and that
any two restrictions determine a unique field. Similar comments apply to a disjoint
union 	 = 	1 �	2.
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Since SM = SM1 + SM2 , assuming Fubini’s theorem holds, it follows that

Z(M) =
∫
F (M1)×F (M2)

eiSM1 eiSM2 = Z(M1) · Z(M2) (1.4)

and, if theMi have boundaries,

Z(M,f ) = Z(M1, f |∂M1 ) · Z(M2, f |∂M2 ). (1.5)

Next we examine what happens when a manifold is cut. Suppose that the closed
n+ 1-manifold M contains a hypersurface 	. Cutting M along 	 yields a mani-
fold Mcut with two boundary components: ∂Mcut = 	 � −	. Notice that cutting
a manifold along a hypersurface need not disconnect it, and so Mcut might be
connected. We assume that fields on M correspond (bijectively) to fields on Mcut
which agree on 	 and −	, i.e.,

F(M) =
⋃

a∈F (	)

F(Mcut , a, a).

Thus it is natural to assume that

Z(M) =
∫
a∈F (	)

∫
F (Mcut ,a,a)

eiSM =
∫
a∈F (	)

Z(Mcut , a, a). (1.6)

If M is not closed, assume that 	 lies in the interior of M . Thus ∂Mcut =
∂M �	 � −	. We interpret Equation (1.6) as an equation of functions on F(∂M),
i.e., for f ∈ F(∂M),

Z(M,f ) =
∫
a∈F (	)

∫
F (Mcut ,a,a)

eiSM =
∫
a∈F (	)

Z(Mcut , f, a, a). (1.7)

A special case is whenM = 	 × [0, 1]. We can cutM along 	 × { 12}, for each
of the two pieces ofMcut is homeomorphic toM; Equation (1.7) implies that

Z(	 × I, f0, f1) =
∫
a∈F (	)

Z(	 × I, f0, a)Z(	 × I, a, f1). (1.8)

More generally, every manifold with boundary has a collar ∂M × [0, 1] ⊂ M
with ∂M = ∂M × {0}. CuttingM along 	 × {1}, one sees that

Z(M,f ) =
∫
a∈F (∂M)

Z(∂M × I, f, a)Z(M,a). (1.9)

Equation (1.9) restricts the class of functions F(	)→ C that can arise as func-
tions of the form Z(M,−): if we define π	 : Funct(F(	),C)→ Funct(F(	),C)
by

(π	(�))(b) =
∫
a∈F (	)

Z(	 × I, a, b)�(a), (1.10)
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–F1 F2Σ −ΣM1 M2

Fig. 1.6. Mcut

then Equation (1.8) shows that π	 is a projection (π2
	 = π	), and Equation (1.9)

shows that π	(Z(M,−)) = Z(M,−).
Notice that ifMcut is the union of two manifolds,Mcut = M1 �M2 with ∂M1 =

−F1 �	 and ∂M2 = −	 � F2 (see Figure 1.6), then Equations (1.7) and (10.7)
yield

Z(M,f1, f2) =
∫
a∈F (	)

Z(M1, f1, a) · Z(M2, a, f2) (1.11)

for fixed f1 ∈ F(F1) and f2 ∈ F(F2). This can be interpreted as anL2 inner product
of the two functions Z(M1, f1,−) : F(	)→ C and Z(M2,−, f2) : F(	)→ C.

Working formally (and fixing f1, f2), we rewrite Equation (1.11) as

Z(M) = 〈Z(M1,−), Z(M2,−)〉L2(F (	)).

This suggests that one might be able to find a subspace

V (	) ⊂ Funct(F(	),C),

namely, the image of the projection π	 (or a subspace of this image, which contains
all the functions Z(M,−) for any M with ∂M ⊃ 	 and in which these functions
span a dense subspace), and an identification

¯ : V (−	) ∼= V (	)∗ (1.12)

compatible with this L2 inner product in the sense that if 〈−,−〉 : V (	)×
V (	)∗ → C denotes the usual contraction, then Equation (1.11) reads

Z(M,f1, f2) = 〈Z(M1, f1,−), Z(M2,−, f2)〉.
Moreover, Z(Mcut , f1, f2) ∈ V (	 � −	), but becauseMcut = M1 �M2, we have
Z(Mcut , f1, f2, a, a) = Z(M1, f1, a) · Z(M2, a, f2) with Z(M1, f1,−) ∈ V (	)
and Z(M2,−, f2) ∈ V (−	). So we assume that V (	 � −	) = V (	)⊗ V (	)∗.
One can similarly justify

V (F1 � F2) = V (F1)⊗ V (F2). (1.13)
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This is most conveniently reinterpreted as a cobordism property: ifM is a manifold
with ∂M = −F ∪	 then

Z(M) ∈ V (−F �	) = V (F )∗ ⊗ V (	) = Hom(V (F ), V (	)). (1.14)

Equation (1.11) implies that ifM = M1 ∪	 M2, then

Z(M) = Z(M2) ◦ Z(M1) : V (F1)→ V (F2).

In more detail: Z(M1) ∈ V (F1)∗ ⊗ V (	), Z(M2) ∈ V (−	)∗ ⊗ V (F2), so
Z(Mcut ) ∈ V (F1)∗ ⊗ V (	)⊗ V (−	)∗ ⊗ V (F2). Equation (1.11) shows that con-
tracting out the middle two factors yields Z(M). But this is the same as composing
the two linear maps Z(M1) and Z(M2).

Since any manifold M can be “cut” along the empty manifold into two pieces
M1 = M and M2 = ∅, for the theory to be nontrivial one should assume that
V (∅) = C. Then, thinking ofM as a cobordism from ∅ to ∂M , one gets the linear
map Z(M) : C→ V (∂M), which is the same thing as a vector Z(M) ∈ V (∂M).

Example continued. For the Chern–Simons action, if the orientation of a 3-manifoldM is
reversed, the value of the Chern–Simons function changes sign: S−M (a) = −SM (a). Hence
eiS−M (a) = eiSM (a), and so

Z(−M) = Z(M).

Finally, we assume that the path integral is an oriented homeomorphism
(or diffeomorphism) invariant. If h : 	→ 	 is a homeomorphism, then it
induces a bijection on fields, h∗ : F(	)→ F(	), and hence an isomorphism h :
Funct(F(	),C)→Funct(F(	),C). Because any homeomorphism of 	 extends
to some manifold, one of whose boundary components is 	 (e.g., 	 × [0, 1]), it is
reasonable to assume that it preserves the subspace V (	), i.e., we assume there is
an action of Homeo(	) on V (	).

However, the setup allows us to conclude a much stronger modular invariance
as follows. Suppose that the homeomorphism h : 	→ 	 extends to a diffeo-
morphismH : 	 × [0, 1]→ 	 × [0, 1] such thatH |	×{0} = Id andH |	×{0} = h
(e.g., if h is isotopic to the identity). The existence of the diffeomorphism H and
naturality allow us to conclude that the following diagram commutes:

V (	) V (	)

V (	) V (	)

�Z(	×I )

�

Id

�

h∗

�
Z(	×I )
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But it is safe to assume that Z(	 × I ) : V (	)→ V (	) equals the identity. This
is because Z(	 × I ) = Z(	 × I ) ◦ Z(	 × I ), so that Z(	 × I ) is an idempotent.
But also, if M is any manifold with boundary 	, then Z(	 × I )Z(M) = Z(M),
and so Z(	 × I ) acts as the identity on the (dense) span of the Z(M) in V (	).
Hence we conclude that the action of Homeo(	) on V (	) factors through the
mapping class group Homeo(	)/isotopy.

1.3.2 Axioms for a TQFT

Motivated by the (nonrigorous) musings of the previous subsection, as well as
some known examples, a picture gradually emerged of a new kind of functor
with some superficial similarities to cohomology theory, but suited to the cut-
and-paste methods of geometric topology. Many mathematicians and physicists
have contributed to the development of these ideas, starting perhaps with Segal’s
conformal theory article [46] and Witten’s Jones polynomial article [60], with
Atiyah as a strong advocate for the exploration of these ideas.

The axioms listed in the following are probably best thought of as guideposts
for what one would like a TQFT to satisfy, rather than a complete collection.
These axioms may not to be strong enough to compute with: extra structure and/or
axioms may be needed. For example, Witten argued in his article that for the theory
based on the Chern–Simons integral, each 3-manifold must be endowed with a
trivialization of its tangent bundle. Moreover, any computable cut-and-paste theory
will require cutting along properly embedded manifolds with boundary, leading
to the introduction of many more necessary (and technical) axioms, as was made
clear in Walker’s article [57]. Further technicalities arise when one tries to deduce
existence or uniqueness of a theory constructed in a particular way (e.g., starting
with a quantum group).

Nevertheless, the perspective has proved extremely useful. Profound theorems
have been proven in Donaldson–Floer theory, Gromov–Witten theory, Seiberg–
Witten theory, Heegaard–Floer homology, etc., and the TQFT perspective affords
a way to organize the results (and provides conjectures to pursue).

A mathematical way to describe what a theory is typically takes the following
form. One starts with a category C (or a more general notion) one wishes to study,
and a theory will be a functor (or a sequence of functors) to some other (usually
algebraic) category A which satisfies properties that reflect the kinds of operations
in C one wants to understand, in a hopefully simpler way.

So we need to start with an appropriate C. Because our goal is to study compact
manifolds, we might want C to include all compact manifolds of dimension n+ 1.
They may be equipped with additional structure, such as an orientation, a smooth
structure, a Spinc structure, a framing of the tangent bundle, a choice of cohomology
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class, an equivalence class of triangulations, a parameterization of its boundary,
etc. We might also want to study knots or links, so perhaps some extra structure
on our n+ 1-manifolds consists of a properly embedded codimension k (typically
k = 2) submanifold, or even a properly embedded graph of some sort.

We wish to study the homeomorphism problem, so we take our morphisms to be
homeomorphisms (or diffeomorphisms) which preserve the extra structure, rather
than all continuous maps (in marked contrast to the case for cohomology theories).
Because we are interested in cut-and-paste along codimension 1 submanifolds, we
need to consider n-dimensional manifolds and their homeomorphisms also. The
corresponding extra structure should be present.

A good start is the following. Let Mn+1 denote the category of oriented compact
manifolds of dimension n+ 1 with possibly nonempty boundary, with homeomor-
phisms as the morphisms. Let Mn denote the category of closed oriented compact
n-manifolds. There is a boundary functor ∂ : Mn+1 →Mn which takes a manifold
M to its boundary ∂M . Let A denote the category of finite-dimensional complex
vector spaces and isomorphisms (or, more generally,R-modules and isomorphisms
for some commutative ring R).

Then, motivated by the discussion of the previous section, we can define an
n+ 1-dimensional TQFT to be a pair (V,Z) where:

(i) V is a functor

V : Mn→ A

satisfying the following:

(a) There is a natural identification of V (−	) ∼= V (	)∗.
(b) There is a natural identification V (	1 �	2) ∼= V (	1)⊗ V (	2).
(c) V (∅) = C.

(ii) Z is a natural transformation from the functor T : Mn+1 → A taking every n+ 1-
manifold to C and every homeomorphism to the identity to the functorV ◦ ∂ . That is,Z
assigns a homomorphism Z(M) : C→ V (∂M) (equivalently, the element Z(M)(1) =
Z(M) ∈ V (∂M)) to eachM ∈Mn+1. The assignment Z satisfies:

(a) (Collar) Z(	 × I )= Id ∈ V (−	 �	)=V (	)∗ ⊗ V (	)=Hom(V (	), V (	)).
(b) (Disjoint union) IfM = M1 �M2 is a disjoint union, then

Z(M) = Z(M1)⊗ Z(M2) ∈ V (∂M1)⊗ V (∂M2) = V (∂M1 � ∂M2).

(c) (Pasting) If ∂M = F , and 	 ⊂ M is a closed surface in the interior ofM , so that
∂Mcut = F � −	 �	, then

c(Z(Mcut )) = Z(M) ∈ V (F ),

where c : V (F � −	 �	)→ V (F ) is the contraction

V (F � −	 �	) = V (F )⊗ V (	)∗ ⊗ V (	)→ V (F )⊗ C = V (F ).
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To have any hope of being able to compute “from the axioms,” one would surely
need a more detailed list of axioms, which includes cutting along n-manifolds 	
with nonempty boundary properly embedded inM . This might require Mn+1 to be
defined as the category of compact n+ 1-manifolds with boundary and corners up
to codimension 2, and Mn to be compact n-manifolds with boundary, and Mn−1

to be closed n− 1-manifolds. (For example, consider cutting the 2-disk D2 =
{x ∈ R2 | ‖x‖ ≤ 1} along the properly embedded arc A = [−1, 1]× {0}.) More
sophisticated theories might require looking even deeper, i.e., allowing corners of
higher codimension.

As more precise properties are proscribed, one expects a more computable
theory, but in any specific example it may be hard (or impossible) to establish the
desired properties.

1.4 Donaldson–Floer theory

1.4.1 Outline of the construction and properties

Donaldson–Floer theory is roughly a 3+1 theory. It did not develop from the TQFT
perspective, but fits (loosely) into the framework. We outline its construction,
but the novice should understand that the precise mathematical definitions and
constructions are complicated, particularly in their analytical aspects. Two careful
expositions of this topic are [8] and [7].

To begin with, we outline the construction for closed and simply connected
4-manifolds. Given a smooth closed 4-manifold M , a principal SU (2) bundle
π : P → M over M is uniquely determined by its second Chern class c2(P ) ∈
H 4(M) = Z. An SU (2) connection, a, on P is a choice of a subspace Hp ⊂
TpP at each point p ∈ P such that the composite Hp ⊂ TpP dπ−→ Tπ(p)M is an
isomorphism. The precise definition can be found in any geometry book. The
important properties are as follows (here 
iM (ad P ) = C∞(∧iT ∗(M)⊗ ad P )
denotes the vector space of differential i-forms with values in the Lie algebra
vector bundle associated to P ):

(i) A connection a gives a way to take directional derivatives of sections of vector bundles
E associated to P . The directional derivative is denoted da : C∞(E) = 
0

M (E)→
C∞(T ∗M ⊗ E) = 
1

M (E).
(ii) A connection a has a curvature 2-form F (a) ∈ 
2

M (ad P ) which obstructs the com-
muting of second directional derivatives (F (a) = d2

a ).
(iii) The space of all SU (2) connections A(P ) on P forms an infinite-dimensional affine

space modeled on 
1
M (ad P ).

(iv) The infinite-dimensional Lie group G(P ) (with Lie algebra 
0
M (ad P )) of automor-

phisms of P acts on A.
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The (square of the) L2 norm of the curvature of a connection defines the Yang–
Mills action:

YM(a) =
∫
M

‖F (a)‖2dvolM,

which is constant onG(P ) orbits, and hence descends to the orbit spaceA(P )/G(P ).
Chern–Weil theory implies that when c2(P ) ≤ 0 then YM(a) ≥ −8π2c2(P ). Thus
if a connection a satisfies YM(a) = −8π2c2(P ), it realizes the absolute minimum
of YM(a). Such connections are called instantons. They are also called anti-self-
dual (ASD) because they satisfy the equation ∗F (a) = −F (a). Here ∗ denotes the
Hodge ∗-operator acting on 2-forms; this operator induces the Poincaré duality
isomorphism on harmonic forms. (There are no instantons on P if c2(P ) > 0, but
changing the orientation ofM changes the sign of c2(P ).)

The moduli space M(P ) of instantons on P → M is defined to be the quotient

M(P ) = YM−1(−8π2c2(P ))/G(P ). (1.15)

After perturbing the action YM slightly if needed, and with the additional topo-
logical hypotheses b+(M) ≥ 2 on M , M(P ) is a smooth orientable (typically
noncompact) manifold of dimension

dimM(P ) = −8c2(E)− 3
2 (χ (M)+ σ (M)).

(See Equation (1.1) and the last paragraph of Section 1.2) A choice of orientation
of a maximal positive definite subspace of H2(M; R) determines an orientation of
M(P ).

What one does next is technical, but the following comment may help. Given
a manifold B, one way to distinguish submanifolds of B is to pair them with
cohomology classes of B. In other words, ifM1 andM2 are n-dimensional (closed,
oriented) submanifolds of B, then one can ask whether α(M1) �= α(M2) for some
cohomology class α ∈ Hn(B). What follows is an application of this idea when
B = A(P )/G(P ) andM1 =M(P ).

There is a mapµ : H2(M)→ H 2(M(P )) which (essentially) takes an embedded
smooth 2-manifold F ⊂ M representing α ∈ H2(M) to the first Chern class of
the line bundle LF →M(P ). Here LF is the (Quillen) determinant line bundle
over M(P ), a bundle whose fiber over a ∈M(P ) is the complex line (∧top ker
� ∂a)∗ ⊗ (∧topcoker � ∂a) for an appropriate Dirac operator �∂ on F coupled to the
(restriction to F of) a.

With some hard work due to many people, including Donaldson, Taubes, and
Uhlenbeck, one can define integer-valued diffeomorphism invariants of M for M
a 4-manifold with the following extra structure:

(i) M is closed,
(ii) M is oriented,
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(iii) M is simply connected,
(iv) b+(M) ≥ 2,
(v) a positive integer k is given such that 8k − 3

2 (χ (M)+ σ (M)) is even, say 2nk ,
(vi) nk classes x1, x2, . . . , xnk in H2(M) are specified,

(vii) an orientation of a maximal positive definite subspace of H 2(M; R) is specified.

Note that a diffeomorphismφ : M → M ′ preserves (or pulls back) all this structure.
To this data, associate

D(M) = (µ(x1) ∪ · · · ∪ µ(xnk )
) ∈ H 2nk

c (M(P )) = Z,

where H 2nk
c (M(P )) denotes the compactly supported cohomology of M(P ).

Equivalently, count the number of points in the intersection of the vanishing loci
of sections of each line bundle LFi , where Fi ⊂ M represents xi . This is most eas-
ily understood in the special case when 8k − 3

2 (χ (M)+ σ (M)) = 0, in which case
there are no xi andD(M) is just the count (with signs) of the (compact, hence finite)
0-dimensional space M(P ), i.e., the algebraic count of instantons on P → M .

No doubt this is a massively complicated and technical definition, and the proof
that it is well defined, independent of all the auxiliary choices (such as a Riemannian
metric) used to define it, and is a diffeomorphism invariant of M with this extra
data is difficult. However in the 25 years that this subject has existed, the path one
follows in proving such facts has become clear, if not simple. Indeed, Seiberg–
Witten (SW) theory has largely replaced Donaldson’s instanton theory because on
the one hand the gauge theory framework had become mainstream by the time
SW came along, but also because many of the analytic features of SW theory are
simpler than those of Donaldson theory.

Nevertheless, for a decade, Donaldson theory was the only game in town for
smooth 4-manifold topology. At the end of this section I will list some of the many
important theorems proven using this technology.

So far I have not made much progress towards describing any TQFT-like struc-
ture: what has been accomplished is the definition of an invariant for closed 4-
manifolds (with all the extra structure). We still need a theory of 3-manifolds, and
this is provided by Floer’s instanton homology.

Some hints on how to proceed have already appeared. First, the Yang–Mills
action (given by the L2 norm of the curvature of a connection) is borrowed from
physics; indeed, this action was studied by particle physicists interested in phe-
nomena arising on considering non-abelian structure groups, like SU (2). Second,
it is known in physics that functional integrals of the type∫

F
ekiS
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can sometimes be understood (approximated or asymptotically computed as k→
∞) in terms of data (the signature and determinant of the Hessian) coming from
the critical points of the action S (the method of stationary phase). Since the set of
absolute minima of the Yang–Mills action is the space M(P ), one then expects to
find a relationship between the path integral and invariants derived from M(P ).

The construction of the corresponding V (	) for a 3-manifold 	 is intuitively
simple. For technical reasons one needs to assume that 	 is a closed 3-manifold
with the same homology as S3. Any principal SU (2) bundleP over	 is necessarily
topologically trivial, P ∼= 	 × SU (2). One denotes by A(	) the space of su(2)
connections on the trivial bundle, and by G(	) the corresponding group of bundle
automorphisms. Then the Chern–Simons action previously defined gives an R/Z ∼=
S1-valued function:

CS : A(	)/G(	)→ S1, a �→
∫
	

T r(da ∧ a + 2
3a ∧ a ∧ a). (1.16)

Building on work of Taubes [49], Floer [14] viewed this as a Morse function
on the infinite-dimensional singular manifold A(	)/G(	) and constructed the
corresponding chain complex.

Digression on Morse theory
Recall that Morse showed how a generic function f : M → R on a closed (finite-

dimensional) manifold gives rise to a chain complex.
Morse proved every smooth function f : M → R is arbitrarily close (in the Cr topol-

ogy) to a function for which every critical point m ∈ M (a critical point of f is a point
m ∈ M satisfying dfm = 0; other points are called regular points) has a parameterized
neighborhood (U,p) ∼= (Rn, 0) such that in these coordinates,

f (x1, . . . , xn) = −x2
1 − · · · − x2

i + x2
i+1 + · · · + x2

n.

Thus critical points are isolated, and hence on a compact manifold finite.
The number i is called the Morse index of f at p. The implicit function theorem implies

that at a regular point coordinates can be chosen so that f (x1, . . . , xn) = x1. A gradient
flow line for f , defined in terms of a fixed Riemannian metric on M , is a smooth path
α : R→ M such that 〈α′(t), X〉 = dfα(t)(X) for all t and X ∈ Tα(t)M .

Morse takes the free abelian groupCi(M) generated by this set of critical points of index
i. Then a differential ∂ : Ci(M)→ Ci−1(M) is defined by setting

∂p =
∑
q

[p, q]q,

where the integer [p, q] is defined to be the number of gradient flow lines α : R→ M of f
(counted with sign, i.e., taking a certain orientation into account) limiting to p as t →−∞
and to q as t →∞. (The number of flow lines from x to y is finite if the Morse index of y
is one less than the Morse index of x.)
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Then ∂2 = 0, and the homology of the chain complex (C∗(M), ∂)

Hi(M) = ker ∂ : Ci(M)→ Ci−1(M)

image ∂ : Ci+1(M)→ Ci(M)

is isomorphic to the ordinary (e.g., singular) homology of M . An exposition of this topic
can be found in Milnor’s classic text [32].

Floer applied these notions to the infinite-dimensional manifold A(	)/G(	),
viewing the Chern–Simons function CS as a Morse function. Floer showed that
∂2 = 0 and that the homology is independent of the (appropriate) perturbation of
CS and the choice of Riemannian metric on 	.

This produces the instanton chain complex IC∗(	), and its homology, called
instanton homology, produces the abelian group IH∗(	). This group plays the role
of V (	), i.e., we set

V (	) = IH∗(	).

In fact IH∗(	) is a topological invariant of 	. The fact that CS is a circle-
valued function, rather than a real-valued function, introduces some subtleties; for
example, the Morse index is only well defined modulo 8, and so IH∗(	) is Z/8
graded. (We are allowing V (	) to be an abelian group rather than a complex vector
space.)

The generators of IC∗(	) are the critical points of CS. A straightforward cal-
culation shows that these critical points are precisely the equivalence classes of
connections a whose curvature F (a) equals zero, the flat su(2) connections on 	.
It is well known that the space χSU (2)(	) of gauge equivalence classes of SU (2)
flat connections on 	 (or G connections for any compact Lie group) is a real-
algebraic variety homeomorphic to the conjugacy classes of representations of the
fundamental group π1(	):

χSU (2)(	) = {a ∈ A(	) | F (a) = 0}/G(	) ∼= Hom(π1(	), SU (2))/conjugation.

The fundamental group is the most important invariant of a 3-manifold, and so
the critical points of CS can be understood in terms of this important algebraic
topological invariant. Indeed, an algebraic count of the points in χSU (2)(	) gives
Casson’s invariant [1, 49], a manifestly topological invariant whose construction
solved several important problems in low-dimensional topology and motivated the
enormous growth in the study of combinatorial invariants of 3-manifolds. (From
the current perspective, Casson’s invariant is just the alternating sum of the ranks
of the instanton homology groups.)

For disconnected manifolds 	 = 	1 �	2, one defines inductively IH∗(	) to
be the tensor product IH∗(	1)⊗ IH∗(	2). It is a bit tricky to justify V (∅) = Z,
for the empty manifold admits no connections (and hence no flat connections). If
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one tries to avoid this problem by working with the three-sphere S3, one runs into
some difficulties in that the only flat connection on S3 is the trivial connection up to
the G action (the only representation of the trivial group is trivial). Moreover, one
really needs to remove the trivial connection as a generator of IC∗(	), because the
quotient A(	)/G(	) is not a manifold near the trivial connection. These problems
are serious enough to prevent viewing Donaldson–Floer theory as a bona fide
TQFT.

The differential ∂ : ICi(	)→ ICi−1(	) provides the connection between
instanton homology and the Donaldson invariants, and in fact explains the name
“instanton homology.” This works as follows. A gradient flow line for the Chern–
Simons functional CS is a path at , t ∈ R such that

dCSat (X) = 〈a′t , X〉 for all t and X ∈ Tat (A(	)/G(	)). (1.17)

To make sense of this, we first need to explain in what sense the infinite-
dimensional manifold A(	)/G(	) is a Riemannian manifold. This is done using
the L2 inner product on A(	). Now, A(	) is an affine space with linear model the
space of su(2)-valued 1-forms 
1

	 ⊗ su(2) on 	; thus, given any a ∈ A(	),
the tangent space TaA(	) is canonically identified with the vector space 
1

	 ⊗
su(2). Thus we define the Riemannian metric on A(	) as an L2 inner product:

〈X, Y 〉 =
∫
	

(X, Y )sdvol	 for X, Y ∈ 
1
	 ⊗ su(2), (1.18)

where (X, Y )s denotes the inner product in the fiber over s ∈ 	 of the bundle
of su(2)-valued 1-forms (explicitly, (X, Y )s = tr(Xs ∧ ∗Ys), where ∗ denotes the
Hodge ∗ operator on 	 and tr the trace on 2× 2 matrices). The inner product is
preserved by the G(	) action and descends to an appropriate Riemannian metric
on the quotient A(	)/G(	). This explains the inner product in Equation (1.17).

A straightforward calculation using Equations (1.16), (1.17), and (1.18) and the
formula for the curvature in terms of 1-forms, F (a) = da + 1

2a ∧ a, shows that
the gradient flow equation can be rewritten in the form

dat

dt
= ∗F (at ). (1.19)

A path of functions ft : R→Maps(A,B) can be viewed as a function R× A→
B by the rule (t, a) �→ ft (a). In the same way, a path of connections at on 	 can
be viewed as a single connection (which we denote a) on the 4-manifold R×	.
A simple calculation shows that on giving R×	 the product Riemannian metric,
Equation (1.19) is converted into the instanton equation

∗4F (a) = −F (a)
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on R×	. Up to the action of G this works in reverse as well: an instanton a on
R×	 (with finite L2 energy) can be gauge transformed to the form a = at for
some path of connections on 	 that is a gradient flow line for the Chern–Simons
action; in particular, the limits as t →±∞ are critical points of CS, i.e., flat
connections on 	.

Recall that in the formula ∂p =∑q[p, q]q, the expression [p, q] denotes the
algebraic count of gradient flow lines between critical points p and q. In our
context this is just the count of instantons on R×	. This establishes the link
between instanton homology and Donaldson’s invariant, which counts instantons
on closed 4-manifolds.

Now to continue building in the TQFT apparatus, one would like to define
D(M) ∈ IH∗(	) when M is a 4-manifold with nonempty boundary (with extra
structure as in the closed case), and then to prove a gluing theorem. The details are
even more daunting than what has come so far, so I only give the barest of outlines.

Given a 4-manifold M with boundary 	 and a principal su(2) bundle P over
M , add a collar [0,∞)×	 to M (call the result M∞), and for each fixed critical
point a of CS on 	, consider the instanton moduli space

M(P, a)

= {A ∈ A(P ) | ∗ F (A) = −F (A), ‖F (A)‖L2 <∞, lim
t→∞A|t×	 = a}/G(P )

– in other words, the moduli space of finite Yang–Mills energy instantons over
M∞ which limit to the flat connection a on 	. As before, use cohomology classes
xi ∈ H2(M) and the map µ : H2(M)→ H 2(M(P, a)) to cut down this moduli
space until it is a 0-dimensional, compact oriented (using an orientation of H2(M)
as in the closed case) manifold, i.e., a finite number of signed points. The sum of
these signs gives an integer na . Then take

D(M) =
∑

a∈critCS

na · a ∈ IH∗(	).

This leaves the problem of gluing, which is analytically the greatest challenge in
this subject and, although I didn’t mention it before, has already come up at every
stage in the construction. The question is: How does one glue instantons on one
4-manifold to instantons on another 4-manifold which share a common boundary
to produce an instanton on their union?

Changing the orientation of 	 does not change the critical points of CS,
and so the generators of the chain complexes IC∗(	) and IC∗(−	) are the
same, although their Morse indices are different. One defines an inner product
IC∗(	)× IC∗(−	)→ Z using instantons again: given a generator of IC∗(	)
(i.e., a flat connection a ∈ IC∗(	)) and similarly a generator b ∈ IC∗(−	),
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define 〈a, b〉 to be the signed count of the finite-energy instantons on R×	
that limit to a as t →−∞ and b as t →∞. This descends to an inner product
IH∗(	)× IH∗(−	)→ Z.

Suppose then thatM1 andM2 are 4-manifolds, with ∂M1 = 	 and ∂M2 = −	.
We letM = M1 ∪	 M2 be the closed manifold obtained by gluing them along their
boundaries; equivalentlyMcut = M1 �M2. Now D(M1) ∈ IH∗(	) keeps track of
how many instantons on M1 ∪ ([0,∞)×	) limit to each flat connection a on 	.
(We suppress any mention of the xi , which may be needed to cut down the moduli
space. Note, however, that the Mayer–Vietoris sequence allows us to relate H2(M)
with H2(M1)⊕H2(M2).)

Similarly, D(M2) ∈ IH∗(−	) keeps track of how many instantons on M2 ∪
((−∞, 0]×	) limit to each flat connection b on −	. The proof of a gluing
formula of the form

D(M) = 〈D(M1),D(M2)〉

is typically carried out by a “stretch the neck” argument. One makes use of the
metric independence of all the invariants to find a sequence of metrics which allows
one to identify an exhausting subset of M(M) as the union of M(M1),M(M2),
and M(R×	). The sequence of metrics is obtained by identifying a tubular
neighborhood of 	 in M with (−ε, ε)×	, and then stretching in the normal
direction, i.e., replacing (−ε, ε) by (−R,R) where R→∞. Conversely, given a
triple of instantons in M(M1),M(M2), and M(R×	), one uses cutoff functions
to glue them together to get a near-instanton on M , which, by PDE methods, is
then shown to lie close to an instanton.

1.4.2 Some results proven using Donaldson–Floer theory

The results obtained using the theory of instantons on 4-manifolds were spec-
tacular breakthroughs in geometric topology. To fully appreciate them it helps to
know a little bit of the high-dimensional manifold theory (i.e., surgery theory),
in that perhaps the main lesson learned is that smooth 4-dimensional topology is
completely unlike higher dimensions (dim ≥ 5) or lower dimensions (dim ≤ 3).
Moreover, the contrast with topological 4-manifold theory sharpens this distinc-
tion. The important results of Freedman [15] showing that, if one ignores smooth
structures, 4-manifolds behave similarly to high-dimensional manifolds, appeared
at roughly the same time as Donaldson’s first breakthrough.

Donaldson proved [5] that a simply connected smooth 4-manifold M with
b−(M) = 0 (i.e., with positive definite intersection form) has a standard inter-
section form, i.e., there exists a basis {xi} for the free abelian group H 2(M) such
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that xi ∪ xj = δi,j . Using Freedman’s theorem, the conclusion reads that M is
homeomorphic to a connected sum of CP 2s.

Shortly after, building on ideas of Freedman, Donaldson, and Gompf, Taubes
proved [51] that R4 admitted uncountably many distinct (i.e., nondiffeomorphic)
smooth structures.

One important result [6] is that the cut-and-paste machinery described can be
used to show that if the closed 4-manifoldM is the connected sum of two manifolds
M = M1#M2, then D(M) = 0. This provides a way to prove that manifolds are
homeomorphic but not not diffeomorphic to connected sums.

Donaldson theory is well suited to study Kähler surfaces, and in particular
algebraic surfaces over C. This is because the instanton equations can be perturbed
on such manifolds to take a special form whose solutions can be understood using
the tools of algebraic geometry. Namely, the instanton moduli spaces on a Kähler
manifoldM can be identified with the moduli space of stable holomorphic rank 2
bundles overM . In particular, it can be shown in many cases thatD(M) is nonzero
whenM is a Kähler surface. As a consequence, Donaldson showed that there exist
smooth complex surfaces that are homeomorphic but not diffeomorphic.

This approach was pushed much farther by many mathematicians, notably
Friedman and Morgan [16]. For example, they proved that up to holomorphic
deformation, there are only a finite number of algebraic surfaces within a given
diffeomorphism type.

Further results include calculations by Kronheìmer and Mrowka [63], Fintushel
and Stern [11, 12], and others on how the invariants D(M) behave under various
cut-and-paste operations.

There have also been important contributions to 3-dimensional problems. An
early consequence concerns the following problem about knotsK : S1 ⊂ S3: when
is such a knot the boundary of a smoothly or continuously embedded diskD2 ⊂ D4?
If yes, the knot K is called smoothly or topologically slice. The set of knots
modulo slice knots forms an important but mysterious group. Many examples of
knots which are topologically but not smoothly slice have been constructed (see,
e.g., [20]).

Other results include the work of Fintushel and Stern [11], who computed
the instanton homology of a class of 3-manifolds (the Seifert-fibered homology
spheres) and proved that certain infinite families of Seifert-fibered homology
spheres are linearly independent in the (abelian) homology cobordism group. (This
is the group of all oriented 3-manifolds 	 homology-equivalent to S3 modulo the
equivalence relation that identifies 	1 and 	2 if there is a 4-manifold M with
∂M = 	1 � −	2 such that M has the homology of S3 × [0, 1].) The calculation
of this group is needed to solve the problem of deciding whether all manifolds (in
all dimensions) are triangulable.
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1.5 Seiberg–Witten theory

In 1994 Seiberg and Witten published the article [47] which introduced a new PDE,
the Seiberg–Witten (SW) equations, into the study of 4-manifolds. By this point
the framework of gauge theory coming from Donaldson theory had become part
of the arsenal of 4-dimensional topology. Applying the Donaldson–Floer machine
is difficult for several reasons, including the fact that the structure group SU (2)
is non-abelian, but most seriously because the instanton moduli spaces M(P ) are
noncompact, and their natural compactifications tend to be quite complicated.

By contrast, although the SW equations are a bit more complicated algebraically
than the instanton equations, they are based on the structure group U (1), and, most
importantly, the SW moduli space (solutions of the SW equation modulo bundle
automorphisms) is compact. This was quickly recognized to be a fundamental
simplification, and it is fair to say that SW theory immediately replaced Donaldson
theory as the tool of choice to study smooth 4-manifolds.

Since the introduction of SW invariants for closed manifolds, cut-and-paste
constructions have figured prominently in the applications. Constructing a 3+1-
dimensional TQFT from SW theory is an ongoing project. I will outline how SW
invariants are constructed, but much more briefly than I did for the Donaldson
theory, hopefully to illustrate some similarities and highlight the differences.

1.5.1 Spinc structures

As with Donaldson invariants, the SW invariants of a closed 4-manifold M are
defined from a moduli space of solutions to a nonlinear PDE onM . The equations
depend on a choice of Spinc structure, which we now define.

The group SO(n) has fundamental group Z/2 for n > 2, and therefore has a
connected 2-fold cover Spin(n)→ SO(n). When n = 2, SO(2) = U (1) and has a
2-fold self-cover U (1)→ U (1), z �→ z2. The group Spin(n)× U (1) thereby inher-
its a diagonal Z/2 action, and one defines the quotient group

Spinc(n) = (Spin(n)× U (1)
)
/Z/2.

The 2-fold covers give two Lie group homomorphisms

Spinc(n)→ SO(n), [s, u] �→ [s], and Spinc(n)→ U (1), [s, u] �→ u2.

(1.20)

An oriented n-manifoldM is a manifold whose tangent bundle admits transition
functions to SO(n). Thus we define a Spinc(n) structure to be (an equivalence
class) of lifts of these transition functions to Spinc(n) using the first projection of
Equation (1.20). Equivalently, a Spinc structure is a principal Spinc bundlePs → M
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which lifts the principal SO(n) frame bundle FM→ M ofM with respect the first
projection.

Dold and Whitney proved that all oriented 4-manifolds admit Spinc(4) structures
[4]. Because oriented 3-manifolds have trivial tangent bundles, they admit Spinc(3)
structures. We denote by S(M) the set of Spinc structures on M . Elementary
obstruction theory shows that S(M) is in (noncanonical) bijective correspondence
with H 2(M; Z).

Given a Spinc(n) structure s on an n-manifold, the first projection of Equation
(1.20) recovers the orientation ofM , and the second projection determines a U (1)
bundle over Ls → M . Denote by c1(s) ∈ H 2(M; Z) the first Chern class of the
U (1) bundle Ls . Another way to explain this is as follows. Let Ps denote the
corresponding principal Spinc(n) bundle, FM → M the SO(4) frame bundle M ,
and Ls the U (1) bundle. Then Ps fibers over FM and also over Ls , corresponding
to these two Lie group homomorphisms.

The representation theory of Spinc(n) is known, and has special properties which
allow the construction of a complex vector bundle S → M called the spinor bundle.
Moreover, given a connection A on the U (1) bundle Ls , one can construct a self-
adjoint operator DA : C∞(S)→ C∞(S) called the Dirac operator coupled to A.

1.5.2 Outline of the construction of SW invariants for closed 4-manifolds

On a 4-manifold M with Spinc(4) structure s ∈ S(M), the spinor bundle splits as
a sum of two bundles, S = S+ ⊕ S−, and the Dirac operator splits accordingly:
D±A : C∞(S±)→ C∞(S∓). Set A to be the product of C∞(S+) and the space C(P )
of U (1) connections on Ls ,

A = C∞(S+)× C(P ).

The group G = Maps(M,U (1)) acts on A. One thinks of G as the subgroup of
automorphisms of the principal Spinc(4) bundle Ps which cover the identity on the
frame bundle FM .

The SW equations on M associated to the Spinc(4) structure are defined for
(ψ,A) ∈ A by

DA(ψ) = 0,

F (A)+ ∗F (A) = q(ψ),

where F (A) ∈ 
2
M ⊗ C denotes the curvature of A, and q : C∞(S+)→ 
2

M ⊗ C

is a certain quadratic (and algebraic) function. In other words, (ψ,A) satisfies the
SW equations if it is sent to zero by the function

SW : C∞(S+)× C(P )→ C∞(S−)× (
2
M ⊗ C),

(ψ,A) �→ (DA(ψ), F (A)+ ∗F (A)− q(ψ)).
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The action of G preserves solutions, and so the Seiberg–Witten moduli space
associated to the structure s ∈ S(M) is defined to be

M(M, s) = SW−1(0, 0)/G.

The basic facts about M(M, s) are:

(i) M(M, s) is a closed manifold of dimension

d = (c1(s)2 − 2χ (M)− 3σ (M))/4

(for generic small perturbations of the SW equations, and if b+(M) > 1).
(ii) Orientations of H1(M; R) and a maximal positive definite subspace of H 2(M; R)

determine an orientation of the moduli space M(M, s).
(iii) There is a canonical element µ = c1(L) ∈ H 2(M(M, s); Z). Here L→M(M, s)

is the U (1) bundle corresponding to the basepoint fibration. That is, let G0 ⊂ G
denote the subgroup of Maps(M,U (1)) sending the basepoint to the identity. Then
L = SW−1(0)/G0.

Except for compactness of M(M, s), these facts follow much in the same way
they did in Donaldson’s theory. Compactness is a consequence of a-priori bounds
that are known to hold because of the special properties of Dirac operators, and
this is the main property that distinguishes SW from Donaldson theory.

One can now define the SW invariants of a closed 4-manifoldM , together with
a choice of Spinc(4) structure and an orientation of its homology, to be

SW (M, s) = µd/2([M(M, s)])

when d is even, and 0 otherwise. In other words, view µ as a 2-form on M(M, s),
and take the integral

SW (M, s) =
∫
M(M,s)

µ ∧ µ ∧ · · · ∧ µ.

The simplest case occurs when d = 0: SW (M, s) is then just a signed count of
a finite number of points. It is conjectured that if d > 0, then SW (M, s) = 0, in
other words, that one need only consider the 0-dimensional case.

Changing the orientation of the homology of M (item (ii) in the preceding list)
at most changes the sign of SW (M, s), and so SW is typically considered as a
function

SWM : S(M)→ Z.

In other words, the partition function for SW theory is defined on the category
of closed 4-manifolds with Spinc structure, and Spinc-preserving diffeomorphisms
preserve SW invariants.
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I will omit the discussion of how one constructs a TQFT, including the del-
icate issues of gluing formulae. Much deep work has been done by Taubes,
Mrowka, Kronheimer, Ozsváth, Szabó, Morgan, and many others. The book [27] by
Kronheimer and Mrowka treats the formal construction of a TQFT, taking the point
of view of Morse theory of the Chern–Simons–Dirac functional on a 3-manifold
defined by

S(ψ,A) = − 1
8

∫
	

(A− A0) ∧ (F (A)− F (A0))+ 1
2

∫
	

〈DA(ψ), ψ〉dvolM.

In this definition, a Spinc(3) structure s on a 3-manifold 	 is fixed. Then ψ is a
section of the corresponding spinor bundle S → 	, A a connection on the U (1)
bundle associated to s, and DA the corresponding Dirac operator.

This is used to construct chain complexes and abelian groups ĤM∗(	, s) and
ˇHM∗(	, s), called monopole Floer homology groups, for each 3-manifold 	 and

Spinc(3) structure s on	. Then 4-dimensional cobordisms induce homomorphisms
on the monopole Floer homology groups.

1.5.3 Some results obtained from Seiberg–Witten theory

Like Donaldson invariants, SW invariants vanish for connected sums. This gives
a method to show that certain manifolds are irreducible, i.e., not diffeomorphic
to connected sums, provided one can compute their SW invariants. For Kähler
surfaces this is straightforward, and led to much quicker proofs of irreducibility
of Kähler surfaces. But Taubes proved that closed simply connected symplectic
4-manifolds (M,ω) satisfy SW (M, sω) = ±1 [52]. Here sω is a Spinc structure
canonically associated to the symplectic form ω.

A symplectic manifold (M,ω) is a smooth manifold M of even dimension with a 2-form
ω ∈ 
2

M which is closed (dω = 0) and nondegenerate (ω(X, Y ) = 0 for all Y implies X =
0). Every Kähler manifold (and hence smooth projective complex variety) is symplectic.
But the notion is much less rigid than the Kähler condition. Small (closed) perturbations of
a symplectic form remain symplectic, because the nondegeneracy condition is open. This
permits one to make many cut-and-paste constructions of symplectic manifolds which have
no counterpart in Kähler geometry. See Gompf’s article [21].

In particular, one can now show that many 4-manifolds known to admit sym-
plectic structures cannot be diffeomorphic to connected sums, even though they
are homeomorphic to connected sums. This result, combined with the results of
[21], spurred an explosion in the study of symplectic 4-manifolds and their 3-
dimensional analogues, contact 3-manifolds. In another direction, one can use
Taubes’s result to prove that there exist many smooth manifolds homeomorphic
but not diffeomorphic to symplectic manifolds.
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Symplectic topology is interesting to geometric topologists because, on the
one hand, the existence of a symplectic (or tight contact) structure guarantees the
nontriviality of the SW invariants. On the other hand, these structures are much
more flexible than Riemannian, holomorphic, or algebraic structures, and thereby
amenable to cut-and-paste operations. Moreover, contact structures on 3-manifolds
have a close link to the theory of foliations of 3-manifolds, a subject extensively
studied by Thurston, Gabai, and others in the 1980s, and a continuation of the
classical 3-manifold theory of Dehn, Haken, Waldhausen, and others. Thus this
development has formed an important bridge between gauge theory and classical
3-manifold theory.

Another important set of problems that were attacked using SW theory are the
minimal-genus problems. In a 4-manifoldM every class α ∈ H2(M) is represented
by an embedded oriented surface F ⊂ M in the sense that a triangulation of F
represents the cycle α. The problem is to determine, for a given M and α, what
is the minimal genus smoothly embedded surface F representing α. The problem
manifests itself in many contexts, perhaps most notably knot theory.

For example, for CP 2, we have H2(CP 2) = Z, generated by a hyperplane
CP 1 ⊂ CP 2. It is known that any smooth algebraic curve in CP 2 described as
the zero locus of a degree n polynomial has genus 1

2 (n− 1)(n− 2) and represents
the class n ∈ H2(CP 2). The Thom conjecture asserts that this cannot be improved
by considering smooth surfaces rather than algebraic curves. More precisely, if
F ⊂ CP 2 is a smoothly embedded surface that represents n ∈ H2(CP 2), then the
genus ofF is at least 1

2 (n− 1)(n− 2). This was proven by Kronheimer and Mrowka
in [28]. (The Thom conjecture is false topologically, i.e., for continuously but not
smoothly embedded surfaces [29].)

A bit later Ozsváth and Szabó [35] vastly generalized this result by showing
that an embedded symplectic surface in a closed symplectic 4-manifold is genus
minimizing. In fact they proved an adjunction inequality for surfaces in manifolds
with simple type (a class of smooth 4-manifolds that includes all symplectic 4-
manifolds and is conjectured to include all smooth 4-manifolds). This inequality
says that if SW (M, s) �= 0 and α ∈ H2(M) is represented by a smoothly embedded
surface F ⊂ M , then

2 genus(F )− 2 ≥ α · α + |c1(s)(α)|.
These and many other theorems, including determining the effect of blowing

up (taking a connected sum with −CP 2) [12], or cutting and pasting along T 3

[33, 35, 50], on the SW invariants are obtained by proving delicate gluing the-
orems for solutions to the SW equations. This has led to new results about the
nonuniqueness of smooth structures on 4-manifolds. Fintushel and Stern’s knot
surgery method [13] shows that most smooth closed compact 4-manifolds admit
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infinitely many nondiffeomorphic smooth structures (given a knot K ∈ S3 and a
simply connected smooth 4-manifold M containing a suitable torus, they show
how to construct a smooth 4-manifoldMK whose SW invariants differ from those
of M by the Alexander polynomial of K .) Fintushel and Stern have conjectured
that every 4-manifold which admits one smooth structure admits infinitely many
nondiffeomorphic smooth structures.

Another important set of results concerns inequalities that the signature σ (M)
and Betti numbers bi(M) = rank(Hi(M)) of a smooth manifold must satisfy. Furuta
[17] proved that ifM is simply connected and admits a Spin(4) structure, then

b2(M) ≥ 5
4 |σ (M)| + 2.

(The 11/8 conjecture asserts that b2(M) ≥ 11
8 |σ (M)| for simply connected spin

4-manifolds.) Taubes proved that ifM admits a symplectic structure and is simply
connected, then 2χ (M)+ 3σ (M) ≥ 0.

These are strong restrictions, which fail for 4-manifolds which do not admit
smooth structures.

There are many more results, including the existence and nonexistence of com-
plex, or symplectic, or smooth structures on 4-manifolds, and further results in knot
theory. It is fair to say that SW theory has revealed that the study of 4-manifolds is
an extremely rich and (at least at the present) mysterious subject.

1.6 Heegaard–Floer homology

The final 3+ 1 TQFT I will describe is the Heegaard–Floer theory introduced
by Oszváth and Szabó in 2001 [36]. Since its introduction there has been an
explosion of results in all aspects of 3- and 4-dimensional topology. Most of the
theorems proven using Donaldson and SW theory have alternative proofs using
Heegaard–Floer theory. Many new results in knot theory and contact 3-manifold
theory have been obtained, and a robust bridge to classical 3-manifold theory has
been produced. Moreover, the TQFT philosophy is central in the construction of
Heegaard–Floer theory. Finally, although the construction of this machine requires
some of the hard analysis of moduli spaces, in a more recent development new
combinatorial methods have been discovered, i.e., constructions and calculations
of Heegaard–Floer invariants that do not require analytic methods at all. For “old-
school” topologists, this is a welcome development.

The survey articles [37,38] by Oszváth and Szabó outline the constructions and
some results, and our exposition draws from these articles.

1.6.1 Lagrangian Floer homology

To begin with, before Floer defined instanton homology, inspired by ideas of
Gromov, he defined a different homology, called Lagrangian Floer homology,
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Fig. 1.7. A J -holomorphic disk D from x to y

associated to a symplectic manifold (M,ω) and a pair of Lagrangian submanifolds
L0, L1 ⊂ M .

A Lagrangian submanifold L ⊂ M of a symplectic manifold is a submanifold of half
dimension, dim(L) = 1

2 dim(M), such thatω restricts to the zero form onL, i.e., ω(a, b) = 0
for all a, b ∈ T�L, for all � ∈ L.

Assuming L0 and L1 are transverse (and M,L0, L1 are compact), Floer con-
structed a chain complex with chain groups CF the free abelian groups generated
by the intersection points ofL0 andL1. The differentials are defined by the formula

∂x =
∑
y

[x, y]y,

where the integer index [x, y] is a signed count of the J holomorphic disks from x
to y.

If (M,ω) is a symplectic manifold, then there exists a bundle isomorphism J : T∗M → T∗M
such that J 2 = −Id and such that the inner product 〈x, y〉 := ω(x, Jy) is a Riemannian
metric onM . This is called a compatible almost complex structure. Each tangent space TmM
admits a complex structure such that multiplication by i is given by Jm : TmM → TmM .

WithD the unit disk in C, a J -holomorphic disk is a map f : D→ M such that df (iv) =
J (df (v)) for v ∈ T∗M . If L0, L1 are transverse submanifolds of M and x, y ∈ L0 ∩ L1,
then a J -holomorphic disk from x to y is a J -holomorphic disk f : D→ M such that

f (1) = x, f (−1) = y,
f (eit ) ∈ L0 if t ∈ [0, π ], and f (eit ) ∈ L1 if t ∈ [π, 2π ]

(see Figure 1.7).

Gromov showed that in such contexts the space of J -holomorphic disks (modulo
the R action of holomorphic reparameterizations of D fixing ±1) is typically a
finite-dimensional manifold, and in suitable contexts a compact oriented manifold.
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Thus one defines [x, y] to be the signed number of points in the space of J
holomorphic disks modulo parameterization whenever this number is finite, and
sets it equal to zero otherwise. Floer showed that in certain situations ∂2 = 0. In
fact, he also set up a corresponding Morse theory by studying a certain action
functional on the space of paths inM that start on L0 and end at L1, such that the
critical points are constant paths, i.e., intersections of L0 and L1, and gradient flow
lines correspond to J -holomorphic disks.

The resulting homology groupHF (M,L0, L1) contains information about how
the Lagrangian submanifolds are situated symplectically in M . For example, it is
unchanged by Lagrangian isotopies of L0 and L1.

Similar ideas and constructions occur in Gromov and Gromov–Witten the-
ory, quantum cohomology, and other tools used to study symplectic manifolds.
Ozsváth and Szabó had the insightful idea of applying this to a context arising
from a particular description of 3-manifolds, namely in terms of their Heegaard
splittings.

1.6.2 Heegaard splittings of 3-manifolds

Morse theory (again!) shows that every closed oriented 3-manifold 	 admits a
Morse function f : 	→ R with one minimum (i.e., Morse index 0) point m
satisfying f (m) = 0, with g Morse index 1 critical points pi satisfying f (pi) = 1,
with gMorse index 2 critical points qi satisfying f (qi) = 2, and with one maximum
n satisfying f (n) = 3 (this is called a self-indexing Morse function).

The closed, oriented 2-manifold F = f −1( 3
2 ) ⊂ 	 is called a Heegaard surface,

and splitsM into two manifolds

H1 = f −1([0, 3
2 ]), H2 = f −1([ 3

2 , 3]).

Thus 	 has a decomposition

	 = H1 ∪F H2.

The manifoldsH1 andH2 are simple 3-manifolds with boundary, called handle-
bodies of genus g. These manifolds are easily described as the solid bounded by
the standard embedding of a genus g surface in R3; see Figure 1.8.

One can find disjointly embedded curves α1, . . . , αg in F = ∂H1 that bound
disjoint disks D1, . . . , Dg in H1 in such a way that cutting H1 along these disks
yields a 3-ball D3 (see Figure 1.9). Similarly one can find disjointly embedded
curves β1, . . . , βg in F = ∂H2 that bound disjoint disksD1, . . . , Dg in H2 in such
a way that cutting H2 along these disks yields a 3-ball D3.
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Fig. 1.8. A solid genus 4 handlebody

α1

α2 α3

α4

Fig. 1.9. The α-curves

Consider the following data, called a Heegaard splitting of 	:

(i) a surface F of genus g,
(ii) g disjointly embedded curves α1, . . . , αg that cut F into a punctured 2-sphere (the

α-curves),
(iii) g disjointly embedded curves β1, . . . , βg that cut F into a punctured 2-sphere (the

β-curves).

It is not hard to show that this data determines the 3-manifold 	 up to diffeomor-
phism. However, 	 may have many different Heegaard splittings, just as it may
have many Morse functions.

1.6.3 Heegaard–Floer homology

Let Symg(F ) denote the g-fold symmetric product of the Heegaard surface F .
Officially,

Symg(F ) = F × F × · · · × F︸ ︷︷ ︸
g

/Sg,
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Fig. 1.10. A Heegaard splitting

where the symmetric group Sg acts onF × F × · · · × F by permuting coordinates.
More concretely, Symg(F ) is the set of unordered g-tuples of points on F , with
repetition allowed.

Because F is a 2-manifold, Symg(F ) is a smooth manifold of dimension 2g.
Moreover, a choice of complex structure on F induces a Kähler, and hence sym-
plectic, structure on Symg(F ).

We have a symplectic manifold, so we need a pair of Lagrangian submanifolds
to apply Floer’s construction. These are provided by the α and β curves as follows.
View each αi as a smooth embedding of a circle αi : S1 → F . The product map

α1 × · · · × αg : S1 × · · · × S1 → F × · · · × F

is an embedding. Moreover, because the αi have disjoint images, the composite

α1 × · · · × αg : S1 × · · · × S1 → F × · · · × F → Symg(F )

is also an embedding. Its image is a Lagrangian g-torus denoted Tα. Similarly the
βi define a Lagrangian submanifold Tβ ⊂ Symg(F ).

The intersection points of Tα and Tβ are transverse (because we assume the αi
and βi are transverse). One should think of each intersection point as an unordered
g tuple of intersections of the αi and βi . So for example, for the Heegaard splitting
of Figure 1.10 the set {x1, y1, z1, w1} denotes one intersection point of Tα and Tβ ,
and {x1, y1, z1, w2} denotes a different intersection point. For this example, Tα and
Tβ intersect in four points.

Ozsváth and Szabó’s idea is to take (a properly modified version of) the
Lagrangian Floer homology of the triple (Symg(F ), Tα, Tβ). The intersection points
of Tα and Tβ keep track of subtle information about the Heegaard splitting. More-
over, J -holomorphic disks D→ Symg(F ) contain information about the combi-
natorics of the complementary regions obtained by cutting F along the union of
the αi and βi , and how they fit together. Thus the idea of assigning the abelian
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groupHF (Symg(F ), Tα, Tβ) to the 3-manifold	 has potential for organizing and
providing deep information about 	.

This is indeed what is done to define Heegaard–Floer homology. Actually
Ozsváth and Szabó use more refined information to produce a more sophisti-
cated set of tools, by taking into account the homotopy class of the J -holomorphic
disks, a Spinc(3) structure on 	, and the Maslov index, a certain integer-valued
symplectic invariant of loops on Lagrangian submanifolds. The construction yields
the following.

Theorem 1.6.1
(i) To any closed 3-manifold 	 and Spinc structure s ∈ S(	) one can assign the graded

abelian groups ĤF ∗(	, s),HF+∗ (	, s),HF−∗ (	, s), andHF∞∗ (	, s). These are dif-
feomorphism invariants, in particular independent of the choice of Heegaard splitting
of 	.

(ii) (Duality) For ◦ = +,−, or∞, there is a natural bilinear pairing

HF ◦(	, s)⊗HF ◦(−	, s)→ Z.

(iii) These groups fit in long exact sequences; in particular,

· · · → ĤF ∗(	, s)→ HF+∗ (	, s)→ HF+∗ (	, s)→ · · ·
and

· · · → HF−∗ (	, s)→ HF∞∗ (	, s)→ HF+∗ (	, s)→ · · ·
are exact. These groups are graded by Q, although for each (	, s),HF ∗k (	, s) is
nonzero only for k ∈ Z+ q for some q ∈ Q (which depends on (	, s)).

(iv) (Cobordism property) Given any 4-manifold M with boundary −	1 �	2, and s a
Spinc(4) structure on M (restricting to s1 and s2 on 	1 and 	2), then M induces
a homomorphism F ◦M,s : HF ◦∗ (	1, s1)→ HF ◦∗ (	2, s2) (for ◦ = +,−, or∞) which
induces maps of the long exact sequences. The map FM,s shifts grading by (c1(s)2 −
2χ (M)− 3σ (M))/4.

(v) (Gluing) Given a cobordism (M1, s) from (	1, s1) to (	, s2) and a cobordism (M2, t)
from (	2, t2 = s2) to (	3, t3), letM = M1 ∪	2 M2. Then for ◦ = +,−, or∞,

F ◦M2,t
◦ F ◦M1,s

=
∑

{u∈S(M) | u|M1=s, u|M2=t}
FM,u.

The groups ĤF (	, s), HF±(	, s), HF∞(	, s) are conjectured to be equal to
their analogues in SW theory constructed by Kronheimer and Mrowka, and this
has been proved in many cases.

When M is a simply connected closed 4-manifold with b+(M) > 0, one can
remove two small 4-balls from M and consider the result X as a cobordism from
S3 to itself. The corresponding homomorphism FX,s : HF−(S3)→ HF−(S3),
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together with the known calculation HF−∗ (S3) = Z[U ] (polynomial ring), allows
one to interpret FX,s as a polynomial. Its coefficients then give integer invariants of
M [39]. These are conjectured to equal the SW invariants of M , and in fact agree
with them (suitably interpreted) in all known calculations.

Virtually all the main results of Donaldson–Floer and Seiberg–Witten theory
have corresponding proofs in Heegaard–Floer (HF) theory. Typically these proofs
are much simpler technically in HF theory. Moreover, the moduli space of J -
holomorphic disks can often be understood, at least well enough to compute some
of the differentials in the HF chain complex.

More interestingly, the technically simpler nature of HF theory allows other
constructions to be made, most notably of a functor HF for knots in 3-manifolds.
This has led to many new discoveries in knot theory, especially the minimal-genus
problem.

For example, through a remarkable chain of ideas and deep theorems of Ozsváth
and Szabó, Thurston and Eliashberg, Gabai, and others, it has been proved that the
genus of a knot [40] as well as whether a knot is fibered is determined by its HF
invariants [19,34]. Moreover, HF theory has been used to construct new invariants
that bound the 4-ball genus of knots [41].

The genus of a knotK ⊂ S3, g(K), is the minimal genus of any oriented surface embedded
in S3 with boundary the knot (such surfaces always exist and are called Seifert surfaces).
A knot is fibered if there is a (smooth) fiber bundle (S3 −K)→ S1. The 4-ball genus of
K , g4(K), is the minimal genus of a (properly embedded) surface in the 4-ball D4 whose
boundary is K . Because one can push a surface in S3 into D4, one has g(K) ≤ g4(K).

A recent development, following discoveries of Sarkar and Wang [45], is the real-
ization that many of the HF invariants can be computed (and in some cases defined)
combinatorially, i.e., without reference to or calculations of J -holomorphic disks.

1.7 TQFTs in dimension 2+1

As a last topic in our introduction to TQFTs in low-dimensional topology, we
consider aspects of the 2+1-dimensional TQFTs. In contrast to the 3+1 examples
previously discussed, there are “axiomatically complete” examples in this dimen-
sion. Briefly, the article [57] lists 10 (precise) axioms that a TQFT must satisfy. In
[55], Turaev shows how to any modular tensor category (essentially the category
of representations of some quantum group) one can construct a corresponding 2+1
TQFT. Using the Kauffmann bracket, he constructs infinitely many modular tensor
categories, and hence infinitely many 2+1 TQFTs.

What follows is a brief description of this subject, which has blossomed into a
huge mathematical enterprise spanning not just topology, but also representation
theory, operator theory, quantum physics, combinatorics, and many other areas.
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Many mathematicians have made important contributions to this topic, and should
be mentioned here. Instead I refer to the bibliography of Turaev’s book. In contrast
to the previous examples, I will be rather explicit (although there are some technical
categorical issues that I sweep under the rug).

1.7.1 Modular tensor categories

A modular tensor category is an abstract algebraic construct arrived at from several
directions by many authors, including Drinfeld, Reshetikhin and Turaev, Jimbo,
and others. The definition is technical, but ultimately useful and as concise as
necessary to relate topology and algebra. We follow Turaev’s book [55].

A tensor product in a category C is a covariant functor ⊗ : C × C → C. For
example, the category of representations of a fixed groupG has a tensor product. If
C contains an object 1 such that V ⊗ 1 = V = 1⊗ V , and if in addition the tensor
product is associative, then C is called a strict monoidal category.

The category V of vector spaces over C is a strict monoidal category, with
1 = C. In this category there is a canonical isomorphism V ⊗W with W ⊗ V .
This isomorphism has many nice properties, some of which (but not all) we would
like to axiomatize.

A braiding in a strict monoidal category C is a natural family {cV,W : V ⊗W →
W ⊗ V } of isomorphisms, one for each pair V,W ∈ C, compatible with the tensor
product in the sense that for U,V,W ∈ C,

U ⊗ V ⊗W V ⊗ U ⊗W

V ⊗W ⊗ U

�cU,V⊗IdW

�������
cU,V⊗W

�
IdV⊗cU,W

commutes, as well as a similar diagram for cU⊗V,W . Figure 1.11 provides both a
mnemonic device to remember cV,W and a description of a map F to be defined.
The left picture represents cV,W , and the right c−1

V,W .

V WVW

Fig. 1.11.
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Fig. 1.12.

Idc
V,U

c
U,V

Fig. 1.13. (cV,U )(cU,V ) �= Id
Figure 1.12 motivates, explains, and justifies the Yang–Baxter equation

(cV,W ⊗ IdU )(IdV ⊗ cU,W )(cU,V ⊗ IdW )

= (IdW ⊗ cU,V )(cU,W ⊗ IdV )(IdU ⊗ cV,W ).

A critical difference between the category of vector spaces and a general braided
monoidal category is that we do not want to assume that cU,V cV,U = IdV⊗U . To
require this ultimately would lead to trivial invariants of 3-manifolds. This is hinted
at by Figure 1.13: intuitively we see that if we were to require cU,V cV,U = IdV⊗U ,
then we could change crossings in any knot or link, a process which can be used to
trivialize any link.

But some constraints are needed to keep control. These are provided by a
twist. This is a natural family {θV : V → V } of isomorphisms for each V . See
Figure 1.14.

One requires that for any two objects V,W the diagram

V ⊗W V ⊗W W ⊗ V

V ⊗W

�����θV⊗W

�θV⊗θW �cV,W

����� cW,V
(1.21)
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Fig. 1.14. θV

Fig. 1.15. Commutativity of the diagram (1.21)

commute. This is explained in Figure 1.15, in which the dark strand on the left is
to be labeled V ⊗W and the two dark strands on the right are to be labeled V and
W .

Next, we need to axiomatize the concept of duality on the category of vector
spaces. To this end, we assume that to each object V ∈ V we can assign another
object V ∗, and two maps bV : 1→ V ⊗ V ∗ and dV : V ∗ ⊗ V → 1. These should
be such that

V = 1⊗ V bV⊗IdV−−−−→ V ⊗ V ∗ ⊗ V IdV⊗dV−−−−→ V ⊗ 1 = V (1.22)

equals IdV , and similarly for the other obvious composition. The motivating figures
for bV and dV are given in Figure 1.16. The reader should draw the picture that
corresponds to Equation (1.22).

Compatibility with cU,V and θV is required; this is expressed by insisting that
the equation

(θV ⊗ IdV ∗)bV = (IdV ⊗ θ∗V )bV

hold. (What is the picture?) It can be shown that (V ∗)∗ = V .
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Fig. 1.16. bV and dV

A monoidal category C with a braiding c∗,∗, twist θ∗, and compatible duality
(∗, b∗, d∗) is called a ribbon category. The definition is technical, but the mental
picture provided by braids, and more precisely ribbons, or framed braids, helps to
understand the axioms. The reader should think about Reidemeister moves (with
ribbons) and write down the corresponding equations.

We still have a little way to go to finish defining a modular tensor category. Next
we assume that C has the property that its morphism sets form abelian groups: for
each V,W ∈ C we require Hom(V,W ) to be an abelian group. One can show that
this implies Hom(1, 1) is a commutative ring, which we denote by KC . Moreover,
Hom(V,W ) becomes a left KC module for any objects V,W . Call an object V
simple if Hom(V, V ) is a free rank 1 KC module. (For example, in the category of
complex representations of a group G, 1 = C, KC = C, and a representation V is
simple if it is irreducible.)

One then defines a modular tensor category to be a pair (C, I ) where C is a
ribbon category whose morphism sets are abelian groups, and I = {V0, . . . , Vm} is
a finite set of simple objects in C such that V0 = 1 and which is closed under the
duality V �→ V ∗, such that the objects in I “generate” C in the sense that for each
object V the images of the compositions

Hom(V, Vi)⊗KC Hom(Vi, V )→ Hom(V, V )

generate Hom(V, V ) as an abelian group. (This is analogous to the idea in repre-
sentation theory that all representations are sums of irreducible representations).
There is one further nondegeneracy axiom required, which ensures that the set
I is as small as possible: the morphism Si,j := cVj ,Vi cVi,Vj ∈ Hom(Vi, Vi) = KC
determines a square matrix which is invertible over KC .

1.7.2 Construction of a TQFT from a modular tensor category

Recall from Section 1.1.4 that Kirby proved that every closed 3-manifold is obtained
by surgery on a framed link in S3. To put this in a setting convenient for our present
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Fig. 1.17. cVi ,Vj , θVi , bVi

purposes, define an n-component ribbon link to be an embedding of a disjoint
union

L : S1
1 × [0, ε] � · · · � S1

n × [0, ε] ⊂ R3 ⊂ S3.

It is clear how this uniquely determines a framed link.
Given a modular tensor category (C, I ), define a coloring of the ribbon link

to be an assignment of one of the simple objects Vi ∈ I to each link compo-
nent; thus if I has m objects and L has n components, there are mn colorings
of L.

Take a projection of L (its image under a projection to R2, with crossing data).
After a small isotopy if needed, one may find finitely many horizontal lines in R2

such that between any two, only one change occurs. It is harder to explain this
precisely than to understand it, but consideration of the the local pictures makes it
clear.

Consider Figure 1.17. In the left picture, if the dark strand from top left to
bottom right is colored Vi and the dark strand from the top right to bottom left
is colored Vj , assign the morphism · · · ⊗ cVi,Vj ⊗ · · · , where the “· · · ” refers to
strands not illustrated. In the middle picture, if the dark strand is colored Vi ,
assign · · · ⊗ θVi ⊗ · · · . In the right picture, if the dark strand is colored Vi , assign
· · · ⊗ bVi ⊗ · · · . Turning the right picture upside down yields a picture which is
assigned · · · ⊗ dVi ⊗ · · · .

One starts at the top of the projection of a colored ribbon link, and by these rules
one produces a morphism in C from 1 to 1. For example, for the framed link of
Figure 1.18, if the left component is colored V1 and the right V2, one obtains the
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Fig. 1.18.

composite (reading from top to bottom)

1
bV1−→ V1 ⊗ V ∗1

Id⊗bV2−−−−→ V1 ⊗ V ∗1 ⊗ V2 ⊗ V ∗2
Id⊗cV ∗1 ,V2

⊗Id
−−−−−−−−→ V1 ⊗ V2 ⊗ V ∗1 ⊗ V ∗2

θ−1
V1
⊗Id

−−−−→ V1 ⊗ V2 ⊗ V ∗1 ⊗ V2

Id⊗cV2,V
∗
1
⊗Id

−−−−−−−−→ V ∗1 ⊗ V2 ⊗ V ∗2
Id⊗dV ∗2−−−−→ V1 ⊗ V ∗1

dV ∗1−→ 1.

Note that we used the inverse of θV1, because the twist in the framing is opposite
to that in Figure 1.14.

It should be clear what to do in general: given a modular tensor category (C, I ),
this procedure assigns, to a projection of a colored framed linkL, an endomorphism
F (L) of 1, i.e., an element of KC .

What we want to do to get a topological invariant of a manifold M is sum
F (L, λ) over all colorings of a framed link L which yieldsM by surgery (this may
be thought of as analogous to integrating all fields in a path integral). This is almost
correct, but some slight modification, taking into account the need for a framing of
the 3-manifold, is required.

The dimension of V is defined to be dim(V ) = dV cV,V ∗(θV ⊗ IdV ∗)bV ,
e.g., dim(Vi) = F (L, λ) for (L, λ) the ribbon link in Figure 1.19 colored with Vi .

Before we can write down the formula for a closed 3-manifold invariant, we
must observe that because θVi ∈ Hom(Vi, Vi) and Hom(Vi, Vi) is free of rank 1
over KC for i ∈ I , we have θVi = viIdVi for some vi ∈ KC . Moreover, one needs
to assume that the modular tensor category C has the property that the element∑
i∈I (dim(Vi))2 has a square root D ∈ KC .
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Fig. 1.19. dim(V )

Definition. Given a generic projection of a framed (i.e., ribbon) link L in S3 of �
components and a modular tensor category (C, I ), let col(L) denote the set of all
colorings λ of L (a set of cardinality �|I |). Let σ (L) ∈ Z denote the signature of the
linking matrix of L. Let M denote the closed 3-manifold obtained by surgery on
the framed link L. Define

Z(M) =
(∑
i∈I
v−1
i (dim(Vi))

2

)σ (L)

D−σ (L)−�−1
∑

λ∈col(L)

(
m∏
n=1

dim(Vλ(n))

)
F (L, λ).

The following theorem is proved in [55].

Theorem 1.7.1 The invariantZ(M) ∈ KC is a well-defined diffeomorphism invari-
ant of M , i.e., independent of the choice of the framed link L presenting M and
of the projection of L to R2. Moreover, this invariant is the partition function of a
2+1-dimensional TQFT which satisfies 10 precisely stated axioms.

Defining the KC modules V (	) for a 2-manifold 	 takes more work. How-
ever, the reader should notice that the map F (L, λ) makes sense for any colored
ribbon tangle, that is, any union of ribbons (each homeomorphic to I × I or
S1 × I ) properly embedded in R2 × [0, 1] with its path components colored by I .
Then F (L, λ) is a homomorphism between a tensor product of the form Vi1 ⊗ Vi2
⊗ · · · ⊗ Vik corresponding to R2 × {0} and a similar tensor product corresponding
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to R2 × {1}. One sees that the cobordism property of TQFTs is built into the
construction. I refer the interested reader to [55, 57].

The important point is that in this situation a TQFT is precisely constructed. The
work of Walker addresses to what extent the axioms determine the theory.

Of course, we have said nothing about whether any modular tensor categories
exist. In fact they do, in abundance. There are two sources of examples: One is the
representation theory of quantum groups. These are certain Hopf algebras intro-
duced by physicists studying lattice models and statistical mechanics. The ideas
were picked up and formalized by Drinfel’d [9] and refined by Reshetikhin and
Turaev in a long series of joint and individual articles starting with [43]. In a certain
sense one can show that any modular tensor category arises as the representation
category of a quantum group. The other method of producing modular tensor cate-
gories is more geometric and is based on the skein theory of the Jones polynomial
[24] and its generalization, the Kauffman bracket [25].

Thus 2+1-dimensional TQFTs exist. These are combinatorial in the sense that
they begin with a projection of a framed link, and a modular tensor category, which
can be described ultimately in terms of an R-matrix which determines solutions to
the Yang–Baxter equations. No PDE need be solved, no Sobolev spaces introduced,
no holomorphic disks are used, and no path integration is invoked. The axioms are
precisely stated and satisfied. In this sense a 2+1-dimensional TQFT is a completely
satisfactory realization of the objective of constructing a rigorous mathematical
theory from the notions coming from quantum field theory and functional integral
methods.

Nevertheless, explicit computation is not practical in most cases. Despite its
depth and the many connections between 2+1-dimensional TQFTs and differ-
ent disciplines in mathematics (and in contrast to the Donaldson–Floer, Seiberg–
Witten, and Heegaard–Floer theories), from the perspective of this author few
problems of independent interest to geometric topologists (classification theorems
of manifolds and their submanifolds) have been solved by the 2+1-dimensional
theory. Its success stems more from its value as a source of rich and beautiful
mathematical ideas than from its use as a machine to solve old problems.
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2

Differential equations aspects of
quantum cohomology

martin a. guest∗

Abstract
The quantum differential equations can be regarded as examples of equations
with certain universal properties, which are of interest beyond quantum coho-
mology itself. We present this point of view as part of a framework which
accommodates the KdV equation and other well-known integrable systems.
In the case of quantum cohomology, the theory is remarkably effective in
packaging geometric information, as will be illustrated with reference to sim-
ple examples of Gromov–Witten invariants, variations of Hodge structure, the
Reconstruction Theorem and the Crepant Resolution Conjecture.

The concept of quantum cohomology arose in string theory around 20 years ago.
Its mathematical foundations were established around 10 years ago, based on the
theory of Gromov–Witten invariants. There are two approaches to Gromov–Witten
invariants, via symplectic geometry and via algebraic geometry. Both approaches
give the same results for the three-point Gromov–Witten invariants of familiar
manifoldsM like Grassmannians and flag manifolds, and these invariants may be
viewed as the structure constants of the quantum cohomology algebra QH ∗M , a
modification of the ordinary cohomology algebra H ∗M .

However, the name ‘quantum cohomology’ may be misleading. On the one
hand, the ‘quantum’ and ‘cohomology’ aspects are somewhat removed from the
standard ideas of quantum physics and cohomology theory. On the other hand,
there are strong relations between quantum cohomology and several other areas
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This research was supported by a grant from the JSPS.
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of mathematics: symplectic geometry and algebraic geometry, of course, but also
differential geometry, the theory of integrable systems (soliton equations) and even
number theory.

In this chapter we shall focus on the quantum differential equations as the
fundamental concept (due to Alexander Givental [13–15]), which encapsulates
many aspects of quantum cohomology. This is ‘more elementary’ than the definition
of Gromov–Witten invariants, in the same way that de Rham cohomology is ‘more
elementary’ than the definition of simplicial or singular cohomology. In addition,
it is essential for understanding the relation between quantum cohomology and
the theory of integrable systems, which is becoming increasingly important. The
language of D-module theory is convenient for this purpose. It provides a unified
way to think about (a) classical integrable systems, such as the KdV equation,
(b) integrable systems in differential geometry, such as harmonic maps and (c)
quantum cohomology.

The abstract theory of D-modules is well developed but not widely used by
nonspecialists. One goal of this chapter is to give some motivation for D-module
theory (Sections 2.1, 2.3), and to advertise some of its uses (Sections 2.2, 2.4). A
second goal is to explain in simple terms how quantum cohomology is related to
other parts of mathematics. These links have deep origins and are still evolving.
It can be difficult to grasp them from articles which use haphazardly technical
language from symplectic geometry, algebraic geometry and singularity theory,
especially when some of the links are conjectural.

The lecture series “From quantum cohomology to integrable systems” (based
on the book [19]) traced a path from ordinary cohomology theory to the quan-
tum differential equations and their role in the theory of integrable systems.
The introductory lectures on cohomology and quantum cohomology do not
appear here (they are the subject of an earlier survey article [18]). The differ-
ential equations aspects of the lectures have been expanded slightly, and the
applications have been gathered together in Section 2.4. The lectures contained
various concrete examples from [19], which have been omitted here to save
space.

2.1 Linear differential equations and D-modules

Consider the linear ordinary differential equation

(∂s+1 + as∂s + · · · + a1∂ + a0)y = 0

for y = y(z), where ∂ = ∂z = d
dz

and the coefficients a0, . . . , as are functions of
the complex variable z. We assume that a0, . . . , as belong to the ring H = Hz
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of holomorphic functions on an open disk N = Nz in C. We shall write T =
∂s+1 + as∂s + · · · + a1∂ + a0.

Almost all textbooks on differential equations contain a proof of the following
basic result:

Theorem 2.1.1 For any point z0 ∈ N and any values c0, . . . , cs ∈ C, there is a
unique solution y ∈ H of Ty = 0 which satisfies the initial conditions y(z0) =
c0, y

′(z0) = c1, . . . , y
(s)(z0) = cs .

Corollary 2.1.2 The set of all holomorphic solutions (on N ) of the o.d.e. Ty = 0
is a vector space of dimension s + 1.

Introducing new variables

y0 = y, y1 = ∂y = y ′, . . . , ys = ∂sy = y(s),

we may convert the preceding scalar equation of order s + 1 to an equivalent system
of s + 1 first-order equations of the form ∂Y = AY :

∂


y0
...
ys−1

ys

 =


0 1
. . . . . .

0 1
−a0 · · · −as−1 −as



y0
...
ys−1

ys

 .

Corollary 2.1.3 The set of all holomorphic solutions (on N ) of the system ∂Y =
AY is a vector space of dimension s + 1.

Let us choose a basis y(0), . . . , y(s) of solutions of the scalar equation. The
corresponding vector functions

Y(i) =


y(i)

∂y(i)
...

∂sy(i)

 , 0 ≤ i ≤ s,

constitute a basis of solutions of ∂Y = AY . The fundamental solution matrix

H =
 | |
Y(0) · · · Y(s)

| |


satisfies ∂H = AH , and it takes values in the group GLs+1(C) of invertible
(s + 1)× (s + 1) complex matrices. This ‘matrix o.d.e.’ is a third incarnation
of the original equation. Its solutions correspond to initial conditions H (z0) =
C ∈ GLs+1(C).
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The matrix A depends on the definition of y0, . . . , ys . Instead of using the
successive derivatives of y, let us set

y0 = P0y, y1 = P1y, . . . , ys = Psy,
where P0, . . . , Ps are differential operators. This leads to an equivalent system of
first-order equations if the equivalence classes [P0], . . . , [Ps] form a basis (over H)
of the D-module

M = D/(T ),

where D denotes the ring of differential operators (polynomials in ∂ with coeffi-
cients in H), and (T ) denotes the left ideal generated by T . The ring operations on
D are addition and composition of differential operators.

Each such choice of basis corresponds to a way of converting the scalar equa-
tion to a matrix equation ∂Y = AY ; the matrix A is given explicitly by1 ∂[Pj ] =
[∂Pj ] =

∑s
k=0Ajk[Pk]. It should be noted that M is an infinite-dimensional com-

plex vector space; indeed, it can be identified with the space Map(N,Cs+1) of
(holomorphic) maps from N to Cs+1.

This discussion can be generalized to partial differential equations. We shall
be concerned only with ‘overdetermined’ linear systems of p.d.e., which share
many common features with linear o.d.e., in particular finite-dimensionality of
the solution space. Let N = Nz1,...,zr be a fixed open polydisk in Cr . Writing
∂1 = ∂/∂z1, . . . , ∂r = ∂/∂zr, we consider a system of p.d.e.

T1y = 0, . . . , Tuy = 0

for a scalar function y(z1, . . . , zr ) on N . The Ti are differential operators, that is,
polynomials in ∂1, . . . , ∂r with coefficients in the ring H = Hz1,...,zr (functions of
z1, . . . , zr which are holomorphic in N ).

In contrast to the o.d.e. case, it is not at all clear whether the solution space is
finite-dimensional (or what the dimension is). The concept of D-module and the
closely related concept of flat connection are essential at this point. We shall just
give a brief discussion, referring to [27] for the general theory. Let D = Dz1,...,zr

be the ring of differential operators generated by ∂1, . . . , ∂r with coefficients in the
ring H of holomorphic functions on N . Let

M = D/(T1, . . . , Tu),

where (T1, . . . , Tu) means the left ideal generated by the differential operators
T1, . . . , Tu.

1 The notation ∂Pj here means composition of differential operators; this conflicts with our earlier usage of ∂f
to mean ∂f/∂z. We shall just rely on the context to distinguish these: ∂f means the function ∂f/∂z when used
in a differential equation, whereas in a D-module computation it is the same as the operator f ∂ + ∂f/∂z.
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Assumption: M is a free module of rank s + 1 over H.

This is a strong assumption, but the following proposition (whose proof consists
merely of unravelling the definitions) allows us to conclude that the solution space
of the original system has dimension s + 1:

Proposition 2.1.4 The map

θ : {y | Tiy = 0, 1 ≤ i ≤ u} → HomD(M,H),

y �→ ([X] �→ Xy)

is an isomorphism of complex vector spaces.

As in the o.d.e. case, the D-module point of view allows us to make clear the
relation between scalar and matrix equations, under the preceding assumption.
However, there is an important new ingredient, a certain flat connection, which
leads to the relation with integrable systems. We shall therefore review the whole
procedure carefully, taking the opportunity to introduce some further notation.

How to convert a scalar system to a matrix system. Let [P0], . . . , [Ps] be a basis
of M over H. We define (s + 1)× (s + 1) matrix functions 
1, . . . , 
r by

∂i[Pj ] = [∂iPj ] =
s∑
k=0

(
i)kj [Pk].

We set
 =∑r
i=1
idzi . Then∇ = d +
 defines a connection in the trivial vector

bundle N × Cs+1, whose space of sections is Map(N,Cs+1). Namely,

∇∂i (
∑s
j=0fj [Pj ]) =

s∑
j=0

∂fj/∂zi[Pj ]+
∑s
j=0fj∇∂i [Pj ]

=∑s
j=0∂fj/∂zi[Pj ]+

∑s
j,k=0fj (
i)kj [Pk].

Let us now recall a well-known fact about such connections (see Section 4.5 of
[19]).

Theorem 2.1.5 The following statements are equivalent:

(1) The connection d +
 is flat (i.e., has zero curvature).
(2) d
+
 ∧
 = 0.
(3) [∂i +
i, ∂j +
j ] = 0 for all i, j .
(4) 
 = L−1dL for someL : N → GLs+1C (for this it is essential thatN is simply

connected).

Using this we obtain:

Proposition 2.1.6 The connection ∇ = d +
 obtained from M is flat.



Differential equations aspects of quantum cohomology 59

Proof Because ∂i∂j = ∂j∂i , we have ∂i(∂j [P ]) = ∂j (∂i[P ]) for any [P ] ∈M;
hence (∂i +
i)(∂j +
j )f = (∂j +
j )(∂i +
i)f for any f , i.e. [∂i +
i, ∂j +

j ] = 0. �

The map Lt in Theorem 2.1.5(4) can be regarded as a fundamental solution
matrix for the system (∂i −
ti)Y = 0, 1 ≤ i ≤ r . If we introduce Ai = 
ti , we
obtain a matrix system

∂iY = AiY, 1 ≤ i ≤ r
of the required form. It should be noted that (∂i −
ti)Y = 0 is the equation for
parallel (covariant constant) sections with respect to the dual connection ∇∗ =
d −
t , rather than ∇ = d +
 itself. The identification of the solution space of
the system with Ker∇∗ may be regarded as a matrix version of Proposition 2.1.4.

To summarize, we can say that the choice of basis [P0], . . . , [Ps] produces a
matrix system from a scalar system in the following way:

Proposition 2.1.7 The map y �−→ Y = (P0y, . . . , Psy)t from the solution space

{y | Tjy = 0, 1 ≤ j ≤ u} ∼= HomD(M,H)

to the solution space

{Y | ∂iY = AiY, 1 ≤ i ≤ r} = Ker∇∗

is an isomorphism of (s + 1)-dimensional vector spaces.

The appearance of the dual connection ∇∗ and the dual D-module M∗ =
HomH(M,H) (of which HomD(M,H) is a subspace) is an important feature
of the construction. We shall make essential use of this in describing the reverse
construction, next.

How to convert a matrix system to a scalar system. Given a system

∂iY = AiY, 1 ≤ i ≤ r
of first-order matrix p.d.e. whose coefficients are holomorphic on N , it is possible
to construct a system of higher-order scalar p.d.e., provided the connection d − A
corresponding to the matrix system is flat.

Step 1: We begin with the D-module N = Map(N,Cs+1) = Hs+1, where the
action of ∂i is given by ∂i · Y = (∂i − Ai)Y . (This extends to an action of
D because the flatness condition – i.e., (3) of Theorem 2.1.5 – ensures that
∂i · (∂j · Y ) = ∂j · (∂i · Y ).)

Step 2: The dual D-module N ∗ is defined by N ∗ = HomH(N ,H) with action
of ∂i given by ∂i · p(Y ) = −p(∂i · Y )+ ∂p(Y )/∂zi .
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Step 3: Choose2 a cyclic element of N ∗, namely an element pcyclic such that
D · pcyclic = N ∗.

Step 4: It follows that N ∗ ∼= D/I , where I is the (left) ideal of operators which
annihilate pcyclic.

Step 5: Choose3 generators T1, . . . , Tu for the ideal I . Then a suitable scalar
system (not unique) is T1y = 0, . . . , Tuy = 0.

We illustrate the procedure with the following (artificial) example. In situations
which arise from geometry, cyclic elements (step 3) and generators for ideals
(step 5) often arise naturally.

Example 2.1.8 Consider the matrix system

∂

(
y0

y1

)
=
(

0 u

v 0

)(
y0

y1

)
,

where u, v are given functions of z, holomorphic on N . As a candidate for a cyclic
element of the dual D-module we try p0, defined by p0(Y ) = y0. Because

∂ · p0(Y ) = −p0(∂ · Y )+ p0(Y )′

= −p0

((
y0

y1

)′
−
(

0 u

v 0

)(
y0

y1

))
+ y ′0

= −(y ′0 − uy1)+ y ′0
= uy1

= up1(Y ),

we have ∂ · p0 = up1 (where p1 is defined by p1(Y ) = y1). If u is never zero on
N , then p0 and ∂ · p0 span the D-module over H, so p0 is a cyclic element. A
similar calculation gives ∂2 · p0 = uvp0 + u′p1 = uvp0 + (u′/u)∂ · p0. We obtain
(∂2 − (u′/u)∂ − uv) · p0 = 0, so the scalar o.d.e. is (∂2 − (u′/u)∂ − uv)y = 0.
(This computation amounts to ‘declaring that y = y0’ and computing the scalar
system for y from the matrix system for Y .) If 1/u does not belong to H, we must
either enlarge H or try another candidate for a cyclic element.

Although the D-module M = D/(T1, . . . , Tu) is the fundamental object, we can
regardHs+1 (with D-module structure given by d +
) as a concrete representation.

2 To guarantee the existence of a cyclic vector, it is necessary to enlarge H in step 1, for example, to the field of
meromorphic functions onN . A proof can be found in [29] (Proposition 2.9 and Lemma D.5). If the coefficients
are polynomial functions, it suffices to replace H by the algebra of polynomial functions (Theorem 8.18 and
Corollary 8.19 of [5]).

3 To guarantee thatD is Noetherian (so that a finite set of generators of I always exists), it is necessary to replace
H by, for example, the ring of holomorphic functions on a closed polydisk (Section 4 of [27]) or the ring of
polynomial functions (Section 3 of the Introduction of [5]).
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This representation is often useful for calculations. Moreover,H can be regarded as
a gauge transformation which converts d +
 to the trivial connection d. To express
these correspondences it is convenient to introduce the following J -function (a
name introduced by Givental in the context of quantum cohomology).

Notation 2.1.9 Let J = (y(0), . . . , y(s)), where y(0), . . . , y(s) is any basis of solu-
tions of the scalar system Tjy = 0, 1 ≤ j ≤ u.

We obtain a basis Y(0), . . . , Y(s) of solutions of the matrix system, whose funda-
mental solution matrix can be written

H =
 | |
Y(0) · · · Y(s)

| |

 =
— P0J —

...
— PsJ —

 .
It is usually possible to take P0 = 1, in which case the top row of the last matrix is
just J .

The identifications just described are as follows:

∂i ∂i +
i ∂i

M [P0],...,[Ps ]−−−−−−−→ Hs+1 H−−→ Hs+1

P =∑fiPi (f0, . . . , fs)t P J

.

In each column, the operator (top) acts on elements (bottom) of the D-module
(middle) in the natural way.

2.2 The quantum differential equations

We begin by summarizing briefly the notation from cohomology theory that we
shall use.

Let M be a connected simply connected compact Kähler manifold, of com-
plex dimension n. For simplicity we assume that the nonzero integral coho-
mology groups of M are even-dimensional and torsion-free. We generally use
lower-case letters a, b, c, . . . ∈ H ∗(M; Z) for cohomology classes, and upper-case
letters A = PD(a), B = PD(b), C = PD(c), · · · ∈ H∗(M; Z) for their Poincaré
dual homology classes. We often refer to A,B,C, . . . as though they were sub-
manifolds or subvarieties ofM (rather than equivalence classes of cycles). We often
regard a, b, c, . . . as differential forms onM .

Let 〈 , 〉 : H ∗(M; Z)×H∗(M; Z)→ Z denote the natural nondegenerate pair-
ing. In de Rham notation, 〈a, B〉 = ∫

B
a. The intersection pairing is defined by

( , ) : H ∗(M; Z)×H ∗(M; Z)→ Z, (a, b) = 〈ab,M〉 =
∫
M

a ∧ b.
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We have 〈ab,M〉 = 〈a, B〉 = 〈b,A〉. This is a nondegenerate symmetric bilinear
form.

We are interested primarily in the cup product operation on cohomology, and its
generalization to the quantum product. It is convenient for this purpose to specify
the cup product by giving its ‘structure constants’ with respect to a basis. We can
choose bases as follows:

H∗(M; Z) =
s⊕
i=0

ZAi, H ∗(M; Z) =
s⊕
i=0

Zai

and then define dual cohomology classes b0, . . . , bs by (ai, bj ) = δij . Then for any
i, j we have

aiaj =
∑
i,j,k

λijkbk,

where

λijk = 〈aiajak,M〉 =
∫
M

ai ∧ aj ∧ ak = # Ai ∩ Aj ∩ Ak.

Note that the intersection form itself can be specified in a similar way by the
integers

(ai, aj ) =
∫
M

ai ∧ aj = # Ai ∩ Aj .

It is modern practice to regard a cohomology theory as a functor from a cer-
tain category of topological spaces to the category of groups which satisfies the
Eilenberg–Steenrod axioms. However, from the point of view of quantum coho-
mology, which we shall consider next, it is preferable to regard the cohomology of
M as a collection of numbers

#Ai ∩ Aj, #Ai ∩ Aj ∩ Ak.
This primitive viewpoint is necessary because quantum cohomology does not (at
present) have a functorial characterization.

If we denote #Ai ∩ Aj ∩ Ak by 〈Ai |Aj |Ak〉0, the quantum product is obtained by
extending the mentioned collection of numbers to an infinite sequence of Gromov–
Witten invariants 〈Ai |Aj |Ak〉D for any D ∈ π2(M) ∼= H2(M; Z), as follows. Let
p, q, r be three distinct points in CP 1. Informally, the definition is

〈A|B|C〉D = # HolA,pD ∩ HolB,qD ∩ HolC,rD ,

where

HolA,pD = {holomorphic maps f : CP 1 → M | f (p) ∈ A and [f ] = D},
and [f ] is the homotopy class of f .
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As explained in [9] (for example), 〈A|B|C〉D can be defined rigorously under
very general conditions. The definition has the form

〈A|B|C〉D =
∫

[M(D)]virt
ev∗1a ∧ ev∗2b ∧ ev∗3c,

where M(D) is a certain moduli space of ‘curves’, M(D) is a compactification
of M(D), obtained by adding suitable ‘boundary components’, and [M(D)]virt

denotes the ‘virtual fundamental class’ over which integration is carried out. The
evaluation map evi : M(D)→ M assigns to a curve its value at a given ith base-
point (i = 1, 2, 3).

To define a ◦t b for a, b ∈ H ∗M and t ∈ H 2M , it suffices to define 〈a ◦t b, C〉
for all C ∈ H∗M . The definition is:

Definition 2.2.1 Assume that M is a Fano manifold. Then the quantum product
a ◦t b of two cohomology classes a, b ∈ H ∗M is defined by

〈a ◦t b, C〉 =
∑

D∈H2(M;Z)

〈A|B|C〉D e〈t,D〉.

The Fano condition ensures that the sum is finite, and in this case one has the
following nontrivial theorem (see Section 8.1 of [9]):

Theorem 2.2.2 For each t ∈ H 2M , ◦t is a commutative, associative product oper-
ation on H ∗M .

In general the quantum product is supercommutative, but it is commutative here,
as we are assuming that the odd-dimensional cohomology ofM is zero. We denote
the algebra (H ∗M, ◦t ) (more precisely, family of algebras) by QH ∗M , and refer
to it as the quantum cohomology algebra ofM .

Because the second cohomology group plays a prominent role in quantum
cohomology, we shall assume that the basis A0, . . . , As has been chosen so that
A1, . . . , Ar span H2M and b1, . . . , br span H 2M . A general element of H 2M

will be written t =∑r
1 tibi ∈ H 2M; the Poincaré dual homology class is then

T =∑r
1 tiAi . It is conventional to introduce the notation qi = eti . However, ∂i

always denotes the derivative with respect to ti ; thus ∂i = qi∂/∂qi .

Example 2.2.3 The standard basis of H ∗CPn is 1, b, b2, . . . , bn, where b is the
(Poincaré dual of the) hyperplane class. We take this basis as b0, . . . , bn. A well-
known calculation (see Section 8.1 of [9]) gives the quantum products

bi ◦t bj =
{
bi+j if 0 ≤ i + j ≤ n,
bi+j−(n+1)q if n+ 1 ≤ i + j ≤ 2n.
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In particular we obtain the presentationQH ∗CPn ∼= C[b, q]/(bn+1 − q), in which
q is regarded as a formal parameter, rather than the number et . In this article we
shall switch between these two versions of quantum cohomology without further
comment.

Example 2.2.4 LetM = Mk
N be a nonsingular complex hypersurface of degree k in

CPN−1. All such hypersurfaces have the same cohomology algebra. The Lefschetz
theorems show that HiMk

N
∼= HiCPN−1 for 0 ≤ i ≤ 2N − 4 except possibly for

the middle dimension i = N − 2, and that the subalgebra H�Mk
N generated by

H 2Mk
N has additive generators represented by cycles of the form Mk

N ∩ CP j . To
avoid odd-dimensional cohomology and make use of these cycles, we shall restrict
attention to the subalgebra H�Mk

N and its quantum versionQH�Mk
N .

Let us write b = b1 for the hyperplane class, i.e., the cohomology class Poincaré
dual toMk

N ∩ CPN−2. We have c1(TMk
N ) = (N − k)b. It follows thatMk

N is Fano
if and only if 1 ≤ k ≤ N − 1. The classes 1, b, . . . , bN−2 are an additive basis
(over C) forH�Mk

N = H�(Mk
N ; C), and the intersection form is given by (bi, bj ) =

kδi+j,N−2.
As a concrete example, we shall just give the quantum products for M3

5 . All
quantum products in this case follow from

b ◦t 1 = b,
b ◦t b = b2 + 6q,

b ◦t b2 = b3 + 15qb,

b ◦t b3 = 6qb2 + 36q2

(see [8,24]). In particular b ◦t b ◦t b = b3 + 21qb and b ◦t b ◦t b ◦t b = 27qb ◦t b.
We deduce thatQH�M3

5
∼= C[b, q]/(b4 − 27qb2).

As we have mentioned, the construction M �→ QH ∗M is, unfortunately, not
functorial. This is perhaps not surprising in view of the fact that the Gromov–Witten
invariants 〈A|B|C〉D contain much more information than the isomorphism class
of the algebra QH ∗M . Therefore we are led to consider other objects constructed
from the Gromov–Witten invariants, and the most prominent of these is the quantum
D-module M (see [13, 14]).

Let us consider the space of sections of the trivial vector bundle

H 2M ×H ∗M → H 2M

or, more generally, the space of sections over an open subset N of H 2M . This is
just the vector space consisting of all H ∗M-valued functions on N . The quantum
product ◦t onH ∗M gives a way of multiplying sections. Thus the space of sections
becomes an algebra over Ht .
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Next, we introduce the action of a ring of differential operators on sections,
i.e., a D-module structure. We do this by defining a connection ∇, called the
Dubrovin connection or Givental connection. The definition is: ∇∂i = ∂i + 1

h̄
bi◦t

for 1 ≤ i ≤ r , where h̄ is a parameter. If ωi is the matrix of quantum multiplication
by bi with respect to the basis b0, . . . , bs , then we can also write ∇∂i = ∂i + 1

h̄
ωi .

The D-module structure is specified by saying that ∂i acts as ∇∂i . This extends to
an action of the ring of all differential operators if the identity ∇∂i∇∂j = ∇∂j∇∂i
holds for all i, j , and this identity does hold because the connection is flat – a
consequence of the properties of the quantum product (see Section 8.5 of [9]).

It is convenient to incorporate the parameter h̄ into the ring of differential
operators. Thus, we shall take as ring of differential operators the ring Dh̄ which
is generated by h̄∂1, . . . , h̄∂r and whose elements have coefficients which are
holomorphic in t ∈ N and holomorphic in h̄ in a neighbourhood of h̄ = 0. This
acts on the enlarged space of sections, in which the sections are allowed also to
depend on h̄ (holomorphically, in a neighbourhood of h̄ = 0). The quantum D-
module M is defined to be this enlarged space of sections. (We use the generic
term ‘quantum D-module’, rather than ‘quantum Dh̄-module’, for simplicity, but
M is of course a module over the ring Dh̄.)

The most important property of the quantum D-module is its close relation with
the quantum cohomology algebra QH ∗M . We shall discuss the relation in this
section under the assumption that H 2M generates H ∗M as an algebra and M is
a Fano manifold. These hypotheses imply thatQH ∗M has a presentation

QH ∗M = C[b1, . . . , br , q1, . . . , qr ]/(R1, . . . ,Ru)

and H ∗M has a presentation

H ∗(M; C) = C[b1, . . . , br ]/(R1, . . . , Ru),

where Ri |q=0 = Ri . However, there is a more precise connection betweenQH ∗M
and H ∗M , which generalizes to a precise connection between M and QH ∗M , so
let us review this.

First, for any polynomial c in ‘abstract variables’ b1, . . . , br , q1, . . . , qr , let us
denote by [c] the corresponding element ofQH ∗M , and by [[c]] the corresponding
element of H ∗M ⊗ C[q1, . . . , qr ]. We claim that there exist suitable polynomials
c0, . . . , cs such that

[bi][cj ] =
s∑
k=0

(ωi)kj [ck],

[[bi]] ◦t [[cj |q=0]] =
s∑
k=0

(ωi)kj [[ck|q=0]]
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for 1 ≤ i ≤ r . In other words, if we identifyQH ∗M withH ∗M ⊗ C[q1, . . . , qr ] via
the bases given by c0, . . . , cs and c0|q=0, . . . , cs |q=0, then quantum multiplication
in H ∗M corresponds to the natural multiplication in QH ∗M . This follows from
the observation (Theorem 2.2 of [30]) that ‘any quantum polynomial may be
written as the same classical polynomial plus lower classical terms, and vice
versa’. Namely, if we regard bj as a polynomial (with respect to the cup product)
in b1, . . . , br , then the polynomial cj is obtained by expressing bj as a polynomial
with respect to the quantum product in b1, . . . , br . The polynomials cj satisfy
cj |q=0 = bj .

Exactly the same method gives the analogous result for M in the next theorem,
because any polynomial in the operators h̄∂1 + ω1, . . . , h̄∂r + ωr can be expressed
as the same polynomial in h̄∂1, . . . , h̄∂r plus terms of lower order. Moreover,
because the lower-order terms contain additional powers of h̄, if we replace h̄∂i
by bi (for each i) and then set h̄ equal to 0, these lower-order terms all vanish
and we are left with the original polynomial expressed in terms of the variables
b1, . . . , br .

Theorem 2.2.5 The quantum D-module is isomorphic to a D-module of the form
Dh̄/(D1, . . . , Du), where D1, . . . , Du are converted to R1, . . . ,Ru when h̄∂i is
replaced by bi (for each i) and then h̄ is set equal to 0. Furthermore, there exists
a basis [P0], . . . , [Ps] ofDh̄/(D1, . . . , Du), with respect to which the (connection)
matrix of h̄∂i is ωi . This basis is converted to [c0], . . . , [cs] when h̄∂i is replaced
by bi (for each i) and h̄ is then set equal to 0.

The basis [P0], . . . , [Ps] gives a correspondence between a scalar system and
a matrix system (cf. Section 2.1), both of which are referred to as the quantum
differential equations. A particular choice of J -function (see Section 5.2 of [19]
and the original paper [15]) has the remarkable property that it can be written
explicitly in terms of Gromov–Witten invariants.

Example 2.2.6 Let us continue Example 2.2.4 by finding a relationD1 and a basis
[P0], [P1], [P2], [P3] as predicted by the preceding theorem. (The computation of
D1 is analogous to steps 1–5 in Section 2.1; it would be possible to obtain a version
of Theorem 2.2.5 for more general modules over Dh̄ this way.) From the quantum
products, the D-module structure is given by

h̄∂ ·


f0

f1

f2

f3

 = (h̄∂ + ω)


f0

f1

f2

f3

 , ω =


6q 36q2

1 15q
1 6q

1

 .
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Writing e0, e1, e2, e3 for the standard basis of column vectors, repeated application
of h̄∂ gives

(h̄∂)1 · e0 = e1,

(h̄∂)2 · e0 = 6qe0 + e2,

(h̄∂)3 · e0 = 6h̄qe0 + 21qe1 + e3.

This shows that e0 is a cyclic element. Now we ‘solve’ for e0, e1, e2, e3, to obtain

e1 = h̄∂ · e0,

e2 =
(
(h̄∂)2 − 6q

) · e0,

e3 =
(
(h̄∂)3 − 21qh̄∂ − 6h̄q

) · e0.

It follows that the matrix of h̄∂ with respect to [1], [h̄∂], [(h̄∂)2 − 6q], [(h̄∂)3 −
21qh̄∂ − 6h̄q] is just the matrix ω, so this is the required basis.

To obtain a relation for the D-module, i.e., a differential operator, which annihi-
lates the cyclic element, we differentiate once more:

(h̄∂)4 · e0 = 162q2e0 + 27qe2 + 27h̄qe1 + 6h̄2qe0.

Substituting for e1, e2, e3, we obtain(
(h̄∂)4 − 27q(h̄∂)2 − 27h̄q(h̄∂)− 6h̄2q

) · e0 = 0.

We conclude that MM3
5 = Dh̄/ ((h̄∂)4 − 27q(h̄∂)2 − 27h̄q(h̄∂)− 6h̄2q

)
.

At the commutative level, i.e., in the quantum cohomology algebra, the analo-
gous calculation would give

b1 · 1 = b,
b2 · 1 = 6q + b2,

b3 · 1 = 21qb

(these were stated at the end of Example 2.2.4; the notation bi · here indicates the
i-fold iteration of b◦t ). Then

b1 = b · 1,
b2 = (b2 − 6q

) · 1,
b3 = (b3 − 21qb

) · 1.
Thus we obtain c0 = 1, c1 = b, c2 = b2 − 6q, c3 = b3 − 21qb. Applying b again
leads to the relation b4 − 27qb2, as expected.
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The replacement of QH ∗M by M is not unlike the process of quantization
in physics. In the preceding example the relation b4 − 27qb2 is ‘quantized’ to
the relation (h̄∂)4 − 27q(h̄∂)2 − 27h̄q(h̄∂)− 6h̄2q. For CPn the same argument
shows that the relation bn+1 − q is converted to the naive quantization (h̄∂)n+1 −
q. However, the naive quantization does not always work: there are examples
where the naive ‘quantization’ is not a quantization at all, because it gives a D-
module of the wrong rank. (For the preceding example, the naive quantization
(h̄∂)4 − 27q(h̄∂)2 gives the correct rank, but it gives the wrong quantum products.
We shall return to this point in Section 2.5.)

In general, the parameter h̄ keeps track of the difference between the commuta-
tive and noncommutative multiplications. The incompatibility of the commutative
and noncommutative situations reveals the key property of the quantum D-module.
Namely, the action of h̄∂i on the quantum D-module matches exactly the action
of bi on the quantum cohomology algebra – both are given by the same matrix.
However, to accomplish this, a careful choice of basis is necessary in each case,
and these bases (like the relations) do not match exactly, only ‘mod h̄’. If the bases
did match exactly (e.g., (h̄∂)i and bi), then the matrices of h̄∂i and bi would not in
general be the same.

In the preceding example, the basis [P0], [P1], [P2], [P3] was produced by mod-
ifying the monomial basis [1], [h̄∂], [(h̄∂)2], [h̄∂)3], and this involved solving a
system of linear equations – by Gaussian elimination. Gaussian elimination may
be described as the process of finding a lower-triangular–upper-triangular factor-
ization of matrices. It turns out that such a modification is always possible (under
our assumption that H 2M generates H ∗M and M is Fano), by using a suitable
factorization which takes account of the parameter h̄, known as the Birkhoff factor-
ization, from [28]. This says that “almost every” loop γ ∈ �GLs+1(C) (i.e., almost
every smooth map γ : S1 → GLs+1C) may be factorized in the form

γ (h̄) = (a0 + 1
h̄
a1 + 1

h̄2 a2 + · · · )︸ ︷︷ ︸
γ−(h̄)

(b0 + h̄b1 + h̄2b2 + · · · )︸ ︷︷ ︸
γ+(h̄)

.

The subgroup of �GLs+1(C) consisting of ‘negative’ (‘positive’) loops is denoted
�−GLs+1(C) (�+GLs+1(C)). The meaning of ‘almost every’ is that the product
set �−GLs+1(C)�+GLs+1(C) is open and dense in �GLs+1(C).

Theorem 2.2.7 Assume thatM is Fano, and thatH 2M generatesH ∗M . LetLm be
any solution of (Lm)−1dLm = 
m, where 
m

i is the matrix of h̄∂i with respect to a
monomial4 basis [Pm

0 ], . . . , [Pm
s ]. Let Lm = Lm

−L
m
+ be the5 Birkhoff factorization.

4 If dimH 2M = 1 and dimH ∗M = s + 1, a monomial basis is [1], [h̄∂], . . . , [(h̄∂)s ]. The meaning of monomial
basis in general is explained in Section 6.6 of [19].

5 It can be shown that this factorization is possible in a punctured neighbourhood of q = 0, if Lm− is allowed to
be multiple-valued. See Sections 5.3 and 5.4 of [19].



Differential equations aspects of quantum cohomology 69

Then the Dubrovin–Givental connection is given by 
 = L−1dL, where L = Lm
−.

A basis [P0], . . . , [Ps] of the type predicted in Theorem 2.2.5 is given by (Lm
+)−1 ·

Pm
0 , (L

m
+)−1 · Pm

1 , . . . , (L
m
+)−1 · Pm

s , where (Lm
+)−1 · Pm

i means
∑s
j=0(Lm

+)−1
j i P

m
j .

For this we refer to [17] and Section 6.6 of [19], where it is also shown that
Lm
+ is of the form Lm

+ = Q0(I + h̄Q1 + h̄2Q2 + · · · + h̄NQN ), i.e., a finite series
in h̄, and that the coefficient matrices Q0,Q1, . . . ,QN may be found by a simple
algorithm. The advantage of M over QH ∗M is that it contains all the Gromov–
Witten invariants, and this algorithm shows how to extract them.

Example 2.2.8 We examine the results of applying this algorithm to Example
2.2.6, i.e., QH�M3

5 . First, with respect to the basis [1], [h̄∂], [(h̄∂)2], [(h̄∂)3] the
connection matrix is


m = 1
h̄


6qh̄2

1 27qh̄
1 27q

1

 .
Then it turns out that Lm

+ = Q0(I + h̄Q1), with

Q0 =


1 6q

1 21q
1

1

 , Q1 =


6q
 .

Computing (Lm
+)−1 · (h̄∂)i gives the answer P0 = 1, P1 = h̄∂, P2 = (h̄∂)2 −

6q, P3 = (h̄∂)3 − 21qh̄∂ − 6h̄q that we obtained in Example 2.2.6.

2.3 A D-module construction of integrable systems

An integrable p.d.e. is a p.d.e. which can be written as a zero-curvature condition
d
+
 ∧
 = 0, where 
 is given in terms of some auxiliary function(s) u =
u(z1, . . . , zr ). This concept is somewhat related to the ‘explicit solvability’ of the
p.d.e., and closely related to the concept of ‘integrable system’. It is easy to write
down connection forms 
 which depend on auxiliary functions, and then compute
the condition d
+
 ∧
 = 0. However, it is not easy to produce nontrivial
examples this way. In terms of D-modules, a random choice of ideal I generally
leads to a D-module D/I of rank infinity or rank zero.

We have seen that quantum cohomology leads to D-modules of finite rank. It
is natural to ask whether the quantum cohomology of a particular space can be
regarded as a solution of an integrable p.d.e., and whether more general quantum-
cohomology-like finite-rank D-modules can be constructed. Let us begin with two
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simple examples. In this section,D denotesDz1,...,zr ; we omit z1, . . . , zr when there
is no danger of confusion.

Example 2.3.1 Let

T1 = ∂1 + f, T2 = ∂2 + g,
where f and g are functions of z1, z2. Clearly the rank of D/(T1, T2) is either 1 or
0, for we have [∂1] = −f [1], [∂2] = −g[1]. The only question is whether [1] = [0]
in the D-module, and this depends on f and g. Alternatively, the rank is 1 if and
only if the solution space of the linear system (∂1 + f )y = 0, (∂2 + g)y = 0 has
dimension 1. The condition for this is ∂f/∂z2 = ∂g/∂z1, which can be regarded as
a p.d.e. for the functions f, g.

Example 2.3.2 Let

T1 = ∂2
1 + u, T2 = ∂2 − ( 1

2uz1 − u∂1),

where u is a given function of z1, z2. It is clear that the rank ofD/(T1, T2) is at most
2, because ∂2 is expressed in terms of ∂1, and T1 is quadratic in ∂1. Whether the
rank is exactly 2 depends on whether [1] and [∂1] are independent, and this depends
on the nature of u. It can be shown that the rank is 2 if and only if u satisfies the
condition uz2 = 3uuz1 + 1

2uz1z1z1, which is the KdV equation.

Both of these examples arise in the following way: first, we fix a value of z2, and
consider the single variable D-moduleD/(T1), whose rank is obvious (the order of
T1); then, we attempt to ‘extend’ to a two-variable D-module of the same rank by
adding a relation of the form T2 = ∂2 − P .

Let us make this into a general procedure. We call the variables x and t , as the
procedure can be interpreted as producing a t-flow of the original D-module in x.
Thus, we start with a D-module Dx/(T ) of rank s + 1, where

T = ∂s+1
x + as(x)∂sx + · · · + a1(x)∂x + a0(x).

We wish to extend this to a D-moduleDx,t/(T1, T2) of rank s + 1 by extending T to
a t-family T1 (with T1|t=0 = T ) and adjoining a further partial differential operator
T2. If we take T2 of the form T2 = ∂t − P , where P does not involve ∂t , then it is
obvious that

rank Dx,t/(T1, T2) ≤ s + 1,

for T2 may be used to eliminate ∂t .

Proposition 2.3.3 Let T2 = ∂t − P . Then rankDx,t/(T1, T2) = s + 1 if and only if
any of the following equivalent conditions hold:



Differential equations aspects of quantum cohomology 71

(a) [T2, (T1)] ⊆ (T1),
(b) [T2, T1] ≡ 0 mod T1,

(c) (T1)t ≡ [P, T1] mod T1

(where (T1)t means the result of differentiating the coefficients of T1 with respect
to t).

Proof We just sketch the proof, which hinges on the construction of a certain
connection in the trivial bundle Nx,t × Cs+1. We shall define the connection form
with respect to the local basis [1], [∂x], . . . , [∂sx]. First of all, the t-family of D-
modules Dx/(T1) gives a connection ∇∂x in the x-direction, namely ∇∂x [∂ix] =
[∂i+1
x ]. Next we define ∇∂t by ∇∂t [∂ix] = [∂ixP ] for 0 ≤ i ≤ s. We claim that the

resulting connection∇ is flat if and only if condition (c) holds. Details can be found
in Section 4.4 of [19]. �

The proof suggests a useful computational method: first write down the con-
nection form 
 = 
1dx +
2dt with respect to [1], [∂x], . . . , [∂sx]; then calculate
d
+
 ∧
. Let us apply this to the two examples given earlier.

For Example 2.3.1 the connection form is just 
 = (−f )dz1 + (−g)dz2.
Because we are dealing with 1× 1 matrices, we have 
 ∧
 = 0, so the flat-
ness condition is d
 = 0, i.e., fz2 = gz1 . For Example 2.3.2, let us consider a more
general relation T2 = ∂t − P where P = f + g∂x (keeping T1 = ∂2

x + u). To find
the connection matrix of ∇∂x , we compute

∂x[1] = [∂x] = 0[1]+ 1[∂x],

∂x[∂x] = [∂2
x ] = [−u] = −u[1]+ 0[∂x],

so


1 =
(

0 −u
1 0

)
.

Similarly, from

∂t [1] = [∂t ] = [P ] = f [1]+ g[∂x],

∂t [∂x] = [∂xP ] = [∂x(f + g∂x)] = (fx − ug)[1]+ (f + gx)[∂x]
we obtain


2 =
(
f fx − ug
g f + gx

)
.

Now, the zero-curvature condition d
+
 ∧
 = 0 reduces to

−ut = fxx − uxg − 2ugx,

0 = 2fx + gxx ;
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hence

ut = 1
2gxxx + gux + 2gxu.

To obtain an evolution equation such as the KdV equation it is natural to take f
and g to be differential polynomials in u (it suffices to choose g, as without loss
of generality f = − 1

2gx). The choice g = −u (giving P = 1
2ux − u∂x) produces

the KdV equation of Example 2.3.2. There are many other choices, and the possi-
bilities multiply further when we start with a general operator T1 instead of T1 =
∂2
x + u. Thus our construction produces a vast number of examples of ‘integrable

p.d.e’.
It is necessary to make a remark here about the special role of the KdV equation,

which is more commonly viewed as the Lax eqation (T1)t = [P, T1] with P =
∂3
x + 3

2u∂x + 3
4ux . (In the D-module we have P ≡ − 1

4ux + 1
2u∂x , and the Lax

equation implies that (T1)t ≡ [− 1
4ux + 1

2u∂x, T1], so we obtain the same KdV
equation from this P .) The condition [∂t − P, T1] ≡ 0 mod T1 can be regarded as
the intrinsic scalar version of the matrix zero curvature condition d
+
 ∧
 = 0,
but, of course, it is weaker than the condition [∂t − P, T1] = 0, in general. The KdV
equation is very special, as in this case the scalar version can be written in the form
[∂t − P, T1] = 0.

The proof of Proposition 2.3.3 easily generalizes in one direction (see Section
4.4 of [19]):

Proposition 2.3.4 Let Ti be a t-family of differential operators in the variables
z1, . . . , zr such that the D-module M = Dz1,...,zr /(T1, . . . , Tu) has rank s + 1 for
each value of t . Let P be a t-family of differential operators in z1, . . . , zr such that
[∂t − P, I ] ⊆ I . Then the extended D-moduleDz1,...,zr ,t /(T1, . . . , Tu, ∂t − P ) also
has rank s + 1.

This can be used inductively to construct ‘hierarchies’ of integrable p.d.e., including
the well-known KdV hierarchy.

Our extension procedure appears to produce very special D-modules, but it is
in fact rather general. Namely, in a ‘generic’ D-module of rank s + 1 of the form
Dx,t/I , the elements

[1], ∂x[1], ∂2
x [1], . . . , ∂sx[1]

will be independent. They necessarily satisfy a relation of the form T = ∂s+1
x +

as∂
s
x + · · · + a0, i.e., T [1] = 0. The element [∂t ] can be expressed as a linear com-

bination of the preceding basis vectors, i.e., (∂t − P )[1] = 0 for some polynomial
P in ∂x . Hence the D-module is of the type constructed in this section.

We conclude with a brief comment on the ‘spectral parameter’. It is easy to write
down a connection matrix
with a sprinkling of λs, then obtain an ‘integrable p.d.e.
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with spectral parameter’ d
+
 ∧
 = 0, but, just as when λ is absent, it is not
easy to produce nontrivial examples. However, such a parameter appears naturally
in many integrable systems. For example, the Lax form of the KdV equation
is often written as [∂t − P, T1 − λ] = 0, rather than [∂t − P, T1] = 0. These are
equivalent, but the parameter λ (eigenfunction of the Schrödinger operator T1)
plays an important role in describing the solutions of the KdV equation. For the
quantum differential equations we have a natural parameter λ = h̄ from the start. In
such cases, the D-module treatment can be modified by incorporating the spectral
parameter into the ring of differential operators, although some care is needed, as
the nature of the λ-dependence of the operators plays a crucial role.

2.4 Applications

The main justification for the D-module language of Sections 2.1 and 2.3 is that it
provides a unified approach to various kinds of integrable systems with quite dif-
ferent geometrical interpretations. Superficially the geometry arises from flat con-
nections, but there are deeper undercurrents flowing between differential geometry,
symplectic geometry and algebraic geometry that produce these connections.

In the case of quantum cohomology, we have already seen (Theorem 2.2.7,
Example 2.2.8) how Gromov–Witten invariants are packaged efficiently by the
quantum D-module. It is natural to expect that properties of quantum cohomology
will correspond to properties of D-modules. We shall examine several examples in
this direction, all of which make contact with current research.

It is also natural to expect benefits from thinking of quantum cohomology in
terms of integrable systems, and, conversely, developing a theory of integrable
systems which resemble quantum cohomology in some way. Two key examples
are the direct relation between ‘higher-genus’ quantum cohomology and the KdV
hierarchy discovered by E. Witten and M. Kontsevich, and the classification of
certain integrable systems developed by B. Dubrovin and Y. Zhang. We do not
discuss these here, as they primarily involve infinite hierarchies and D-modules of
infinite rank.

2.4.1 The WDVV equation and reconstruction of big quantum cohomology

It is time to address the question: ‘Of which integrable system is the quantum
cohomology (of a given space) a solution?’ There are two main candidates, and
each of them involves a considerable digression.

The first candidate is the WDVV equation. This applies to big quantum coho-
mology rather than the small quantum cohomology that we have seen so far, but
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the former may be ‘reconstructed’ from the latter and this is where the D-module
extension procedure of Section 2.3 is relevant.

Let us briefly give the definition of big quantum cohomology and the WDVV
equation. First, the Gromov–Witten potential of a manifold M is the generating
function

FM (t) =
∑
l≥3,D

1
l!〈T | . . . |T︸ ︷︷ ︸

l

〉D

for the Gromov–Witten invariants. (We assume that this function converges for t
in some open subset of H ∗M , i.e., for T in some open subset of H∗M .) It follows
from this and the definition of the small quantum product that

∂i∂j ∂kFM |H 2M (t) = (bi ◦t bj , bk).
It is natural to define a new product, called the big quantum product, as follows:

Definition 2.4.1 For any t ∈ H ∗M such that FM (t) converges, we define ◦t on
H ∗M by (bi ◦t bj , bk) = ∂i∂j ∂kFM (t) for all i, j, k ∈ {0, . . . , s}.

It can be proved (see Section 8.2 of [9]) that this big quantum product is
commutative and associative, and has the same identity element 1 as the small
quantum product. The most difficult part of this is the associativity.

For any (smooth or analytic) C-valued function F on (an open subset of)H ∗M ,
we can define a product operation ∗t in the same way:

(bi ∗t bj , bk) = ∂i∂j ∂kF(t)
def= Fijk(t).

Whether this product is associative is a nontrivial condition on F . Commutativity
is obvious.

Definition 2.4.2 The WDVV equation is the system of third-order nonlinear partial
differential equations for F given by the associativity conditions (bi ∗t bj ) ∗t bk =
bi ∗t (bj ∗t bk).
In general, solutions of the WDVV equation correspond to Frobenius manifolds, a
generalization of quantum cohomology (see Section 8.4 of [9] and the references
there).

Let us see how this leads to an integrable p.d.e. which admits the big quan-
tum cohomology of CP 2 as a distinguished solution. Then we shall return to the
matter of reconstructing the big quantum cohomology from the small quantum
cohomology. This famous example is taken from [26].

We consider the product operation defined in this way by a function F
on the three-dimensional complex vector space H ∗CP 2 = C1⊕ Cb ⊕ Cb2. We
assume that 1 is the identity element; commutativity is automatic. It follows that
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b ∗t 1 = b = 1 ∗t b, b ∗t b = b2 + F111b + F1121, and b ∗t b2 = b2 ∗t b = F121b

+ F2221, b2 ∗t b2 = F221b + F2221. There is just one nontrivial associativity con-
dition in this example, namely (b ∗t b) ∗t b2 = b ∗t (b ∗t b2). In terms of F this
condition is F222 + F111F122 = F2

112, which is by definition the WDVV equation.
Now, it turns out that the associativity condition is equivalent to the flatness of

the connection d + 1
h̄
ω (this connection is defined in the same way as for small

quantum cohomology). From the mentioned products, we see that the connection
form is given explicitly by

ω =
1 0 0

0 1 0
0 0 1

 dt0 +
0 F112 F122

1 F111 F121

0 1 0

 dt1 +
0 F212 F222

0 F211 F221

1 0 0

 dt2.
This exhibits the WDVV equation as an integrable p.d.e. with spectral parameter
h̄ (cf. the end of Section 2.3) for the function F . The particular solution given by
the Gromov–Witten potential of CP 2 turns out to be

FCP 2
(t0, t1, t2) = 1

2 (t0t
2
1 + t20 t2)+

∑
d≥1

Nd e
dt1 t3d−1

2

(3d−1)! ,

where the Nd are determined recursively by N1 = 1 and

Nd =
∑
i+j=d

((3d−4
3i−2

)
i2j 2 − i3j(3d−4

3i−1

))
NiNj .

The positive integer Nd can be interpreted as the number of rational curves of
degree d in CP 2 which hit 3d − 1 generic points. As a function of the variables
t0, q1 = et1, t2 the series for FCP 2

converges in a neighbourhood of the point
(t0, q1, t2) = (0, 0, 0) (see Section 2 of [10]).

The Reconstruction Theorem of [26] says that all of this highly nontrivial infor-
mation may be ‘reconstructed’ from the (much simpler) small quantum cohomology
of CP 2. More precisely, any flat connection of the form

ω =
1 0 0

0 1 0
0 0 1

 dt0 +
0 ∗ ∗

1 ∗ ∗
0 1 0

 dt1 +
0 ∗ ∗

0 ∗ ∗
1 0 0

 dt2
which satisfies the initial condition

ω|t0=t2=0 =
1 0 0

0 1 0
0 0 1

 dt0 +
0 0 et1

1 0 0
0 1 0

 dt1 +
0 et1 0

0 0 et1

1 0 0

 dt2
must be of the previous form for some F , and, furthermore, F is essentially unique.
An elementary discussion of this can be found in [10]. More sophisticated and more
general versions of this argument have been given, starting with [21].
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In terms of our extension procedure, this example can be formulated as follows. If
the D-module basis giving rise to the connection d + 1

h̄
ω is [P0] = [1], [P1], [P2],

then the component 1
h̄
ω1dt1 shows that P1 ≡ h̄∂1 and P2 ≡ (h̄∂1)2 − F111h̄∂1 −

F112. Computing h̄∂1[P2] gives a third-order relation

T1 = (h̄∂1)3 − F111(h̄∂1)2 − (2F112 + h̄F1111)h̄∂1 − (F122 + h̄F1112).

Similarly, the component 1
h̄
ω2dt2 gives h̄∂2[P0] = [P2] = [(h̄∂1)2 − F111h̄∂1 −

F112]; hence

T2 = h̄∂2 − P, where P = (h̄∂1)2 − F111h̄∂1 − F112,

is also a relation. These two relations generate the ideal of relations of the D-module.
This is an example of the situation of Proposition 2.3.3.

2.4.2 Crepant resolutions

In [6], two examples were given to illustrate a general principle known as the
Crepant Resolution Conjecture. The simpler of the two relates the quantum coho-
mology of the Hirzebruch surface F2 = P(O(0)⊕O(−2)) (a CP 1-bundle over
CP 1; the fibrewise one-point compactification of TCP 1) to the quantum cohomol-
ogy of the weighted projective space P(1, 1, 2) (the one-point compactification of
TCP 1). The natural map F2 → P(1, 1, 2) is biholomorphic away from the singular
point [0, 0, 1] of P(1, 1, 2). It is a crepant resolution, and the crepant resolution
conjecture predicts that the (orbifold) quantum cohomology of P(1, 1, 2) can be
obtained by specializing the quantum parameters q1, q2 of F2 to certain values.
Coates et al. [6] confirm the conjecture in this case by comparing the D-modules of
each space and carefully matching up their J -functions after analytic continuation.
Such examples are valuable as a guide to finding the most appropriate formula-
tion of the crepant resolution conjecture, and more generally to understanding the
functorial properties of quantum cohomology under birational maps.

We shall explain this example very simply, using the method of Section 2.3. As
this does not involve direct geometric arguments, it suggests the possibility of a
purely D-module-theoretic formulation of the conjecture.

First, we express the quantum D-modules of each space, which are well-known.
Because F2 is a CP 1-bundle over CP 1, H 2F2 has two additive generators which
we call b1, b2. Geometrically their Poincaré duals may be represented by a fibre
and the infinity section of the bundle, respectively. With respect to this basis, it can
be shown (Section 5 of [17] or Chapter 11 of [9]) that

MF2 = Dh̄t1,t2/(F1, F2),
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where F1 = (h̄∂1)2 − q1q2, F2 = h̄∂2(h̄∂2 − 2h̄∂1)− q2(1− q1). This is a ‘quanti-
zation’ ofQH ∗F2 = C[b1, b2, q1, q2]/(b2

1 − q1q2, b2(b2 − 2b1)− q2(1− q1)).
For P(1, 1, 2), the (orbifold) quantum cohomology D-module was calculated in

[7]. The (orbifold) cohomology group H 2
orbiP(1, 1, 2) contains an obvious ‘hyper-

plane class’ b. With respect to this, one has

MP(1,1,2) = Dh̄t /(P ),

where P = (h̄∂)4 − 1
2h̄(h̄∂)3 − 1

4q.
Now, H 2

orbiP(1, 1, 2) has rank two; it has another additive generator called 1 1
2
,

which arises from the orbifold structure at the singular point [0, 0, 1]. The defini-
tions of orbifold cohomology and orbifold quantum cohomology are substantial
generalizations of the non-orbifold case, and we shall not discuss them here. How-
ever, the available evidence suggests that the orbifold quantum differential equa-
tions behave in a similar way to those in the non-orbifold case. In particular, the
orbifold Gromov–Witten invariants of weighted projective space may be extracted
by the method of Section 2.2 – see [20]. The canonical6 bases of the quantum
D-modules MF2 , MP(1,1,2), with their corresponding cohomology bases, are as
follows:

1 1 1 1
b1 h̄∂1 b h̄∂

b2 h̄∂2 b2 (h̄∂)2

b1b2 h̄∂1h̄∂2 − q1q2 1 1
2

2q−1/2(h̄∂)3.

Theorem 2.4.3 [6] The orbifold quantum D-module MP(1,1,2) is obtained from
the quantum D-module MF2 by setting (q1, q2) = (−1, iq1/2). This is a natural
identification in which the basis 1, b1, b2, b1b2 of H 2F2 corresponds to the basis
1, b − i1 1

2
, 2b, 2b2 of H 2P(1, 1, 2).

We can derive this easily (with hindsight) by expressing the D-module in the
form given at the end of Section 2.3. We begin by computing expressions for the
powers of h̄∂2 by differentiating the relations F1, F2:

(a) (h̄∂2)2 ≡ 2h̄∂1h̄∂2 + q2(1− q1),

(b) (h̄∂2)3 ≡ (3q1q2 + q2)h̄∂2 + 2q2(1− q1)h̄∂1 + h̄q2(1+ q1),

(c) (h̄∂2)4 ≡ 2q2(1+ q1)(h̄∂2)2 + h̄(h̄∂2)3 + h̄q2(1+ q1)h̄∂2 − q2
2 (1− q1)2.

From (a) and (b) we see that [1], [h̄∂2], [(h̄∂2)2], [(h̄∂2)3] are linearly independent;
they form a basis of MF2 . The fourth-order relation

T1 = (h̄∂2)4 − 2q2(1+ q1)(h̄∂2)2 − h̄(h̄∂2)3 − h̄q2(1+ q1)h̄∂2 + q2
2 (1− q1)2

6 Canonical basis means a basis constructed from a monomial basis by the canonical procedure of Theorem 2.2.7.
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is given by (c). From (b) we obtain

h̄∂1 ≡ 1

2q2(1− q1)

(
(h̄∂2)3 − (3q1q2 + q2)h̄∂2 − h̄q2(1+ q1)

) = P (say).

This gives a relation T2 = h̄∂1 − P . For dimensional reasons we must have

MF2 = Dh̄t1,t2/(F1, F2) = Dh̄t1,t2/(T1, T2).

Let us now put (q1, q2) = (−1, iq1/2). From q2 = iq1/2, we see that the operator
∂2 restricts to 2∂ , so the operator T1 restricts to

16
(
(h̄∂)4 − 1

2h̄(h̄∂)3 − 1
4q
)
,

which is the quantum differential operator of MP(1,1,2), up to a scalar multiple.
Thus, we have exhibited MF2 as a t1-extension of MP(1,1,2), in the manner of
Section 2.3.

It remains to extract the relation between the canonical bases from this descrip-
tion. Under the specialization of variables, we have already seen that h̄∂2 restricts
to 2h̄∂ . Next, formula (b) shows that the operator h̄∂1 restricts to

1

4iq1/2

(
(2h̄∂)3 + 4iq1/2h̄∂

) = −2iq−1/2(h̄∂)3 + h̄∂.

Finally, because (h̄∂2)2 restricts to 4(h̄∂)2, we see from the relation F2 that h̄∂1h̄∂2

restricts to 2(h̄∂)2 − iq1/2, and hence h̄∂1h̄∂2 − q1q2 restricts to 2(h̄∂)2. From the
preceding table, we read off that the basis elements 1, b1, b2, b1b2 correspond to
1, b − i1 1

2
, 2b, 2b2, as required.

The correspondence between the bases may be justified geometrically, by exam-
ining the map F2 → P(1, 1, 2), but it is remarkable that the quantum D-module
contains this information implicitly – along with all the Gromov–Witten invariants
of both spaces. For a recent update on the conjecture we refer to [23].

2.4.3 Harmonic maps and mirror symmetry

The second candidate for an integrable system whose solutions include quantum
cohomology is the harmonic (or pluriharmonic) map equation. Small quantum
cohomology is sufficient for this, but, as in the case of the WDVV equation, an
entirely new direction – this time toward mirror symmetry – is required. Further
details of the following discussion may be found in chapter 10 of [19].

The harmonic map equation. The equation for a harmonic map φ : R2 = C→
G, where G is a (compact or noncompact) Lie group, is

∂x(φ
−1∂xφ)+ ∂y(φ−1∂yφ) = 0.
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Writing z = x + iy and ∂ = ∂/∂z = 1
2 (∂/∂x − i∂/∂y), ∂̄ = ∂/∂z̄ = 1

2 (∂/∂x +
i∂/∂y), the equation becomes

∂(φ−1∂̄φ)+ ∂̄(φ−1∂φ) = 0.

This notation assumes that G is a matrix group. If GC is the complexification of
G, and C : GC → GC is the natural conjugation7 map, and c : gC → gC is the
induced conjugation map of Lie algebras, then φ−1∂̄φ, φ−1∂φ take values in gC

and satisfy c(φ−1∂φ) = φ−1∂̄φ.
The harmonic map equation can be represented as an integrable p.d.e. with

spectral parameter if we introduce the gC-valued 1-form

α = 1
2 (1− 1

λ
)(φ−1∂1φ)dz1 + 1

2 (1− λ)(φ−1∂2φ)dz2,

where λ is a complex parameter. Namely, the connection d + α is flat for every
(nonzero) value of λ if and only if φ satisfies the harmonic map equation. In fact, it
is wellknown and easy to prove (see Sections 4.3 and 7.3 of [19]) that the following
more general statement holds:

Proposition 2.4.4 Let α = 1
2 (1− 1

λ
)α1dz1 + 1

2 (1− λ)α2dz2 be a gC-valued 1-
form on C2 (or a simply connected open subset of C2). If d + α is flat for
every (nonzero) value of λ, then there exists a map φ : C2 → GC such that
α1 = φ−1∂1φ, α2 = φ−1∂2φ, and this map satisfies the equation

∂1(φ−1∂2φ)+ ∂2(φ−1∂1φ) = 0.

Conversely, let φ : C2 → GC be a map which satisfies the equation ∂1(φ−1∂2φ)+
∂2(φ−1∂1φ) = 0. Then α = 1

2 (1− 1
λ
)(φ−1∂1φ)dz1 + 1

2 (1− λ)(φ−1∂2φ)dz2 defines
a flat connection d + α.

This remains true when the reality conditions z1 = z, z2 = z̄, c(α1) = α2 are
imposed, giving the harmonic map equation (on C, or a simply connected open
subset of C).

The spectral parameter here plays a crucial role, because α may be regarded as
a 1-form taking values in the based loop algebra 
g, and the flatness condition
implies (Theorem 2.1.5) that α = �−1d� for some map � : N → 
G (on a
simply connected open subset N of C). This � is called an ‘extended solution’, or
‘extended harmonic map’. Moreover, the shape of α implies that� is holomorphic
with respect to the natural complex structure of the based loop group
G. Because
this complex structure may be obtained from an identification of 
G with an
open subset8 of �GC/�+GC, it follows that � = [L] for some holomorphic map

7 If G = Un, then GC = GLn(C), and C : GC → GC, c : gC → gC are given respectively by C(A) = A∗−1,
c(A) = −A∗.

8 See Section 8.8 of [19]. If G is compact, 
G may be identified with �GC/�+GC.
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L : N → �GC, i.e., L = �B for some (smooth) B : N → �+GC. This L is of
course not unique, but there is a canonical choice for it, obtained from the Birkhoff
factorization � = �−�+ and taking L = �−, B = �−1

+ . It can then be shown
(Section 7.3 of [19]) that L satisfies an equation of the form

L−1dL = 1
λ
ω

whereω is a holomorphic gC-valued 1-form onN . Conversely, ifω is any holomor-
phic gC-valued 1-form, then 1

λ
ω is of the formL−1dL (becauseω depends only on a

single variable z, and is therefore flat). From the Iwasawa factorizationL = LRL+,
it is easy to show that the map given by � = LR is an extended harmonic map.
This correspondence

φ←→ ω

between harmonic maps φ and ‘unrestricted holomorphic data’ ω is known as the
DPW correspondence, or generalized Weierstrass representation. Further details
can be found in Section 7.3 of [19] or the original paper [12].

The D-module. The harmonic map equation in the form L−1dL = 1
λ
ω can be

rewritten in an illuminating way if we make use of the Grassmannian model of

G. This is an identification


G ∼= Grg

of 
G with a certain infinite-dimensional Grassmannian manifold (Section 8.6 of
[28]). The holomorphic map � = [L] : N → 
G corresponds to a holomorphic
map W : N → Grg, and hence to a holomorphic vector bundle W ∗T where T is
the tautologous vector bundle on Grg. The harmonic map equation L−1dL = 1

λ
ω

can then be written as

λ∂z �W
∗T ⊆ �W ∗T ,

where � denotes the space of holomorphic sections. This says that �W ∗T has a
D-module structure: it is acted upon by the ringDλz of differential operators which
is generated by λ∂z and whose elements have coefficients which are holomorphic
in z ∈ N and holomorphic in λ in a neighbourhood of λ = 0. In the case G = Un
this is explained in detail in Section 8.2 of [19].

This D-module does not generally have a distinguished cyclic generator,
although some examples with distinguished cyclic generators can be found in
[16] (Proposition 2.3 and Theorem 2.4). We shall focus on one particular kind of
harmonic map which arises from quantum cohomology, where the D-module may
be identified with the quantum D-module.

Quantum cohomology as a (pluri)harmonic map. To explain the link with
quantum cohomology, two extensions are needed (Sections 7.4 and 7.5 of [19]).
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First, the theory applies also to pluriharmonic maps φ : Cr → G, whose equations
have a similar zero-curvature form. However, when r > 1, the holomorphic data
ω =∑r

i=1 ωidzi is no longer ‘unrestricted’; it is subject to the nontrivial flatness
condition dω = ω ∧ ω = 0. Second, the theory applies to harmonic (or plurihar-
monic) maps φ : C→ G/K whereG/K is a symmetric space. Here the 1-form α
looks simpler, as it can be written

α = (αk
1 + 1

λ
αm

1 )dz+ (αk
2 + λαm

2 )dz̄,

where αi = αk
i + αm

i denotes the eigenspace decomposition of the involution σ :
gC → gC which defines the symmetric space.

The first main observation is that the map L : N → GLs+1(C) of quantum
cohomology (whereN is an open subset ofH 2M ∼= Cr ) is exactly of the mentioned
form, that is, it satisfies L−1dL = 1

λ
ω where ω is given by the quantum products.

Moreover,ω takes values in mC, the (−1)-eigenspace of a certain natural involution
σ on gC = gls+1(C) (this fact corresponds to the Frobenius property of the quantum
product). By the preceding general theory, it follows that the quantum cohomology
of M defines a pluriharmonic map into a symmetric space G/K , where G is any
real form of GLs+1(C). One natural real form9 is GLs+1(R), corresponding to the
cohomology with real coefficients H ∗(M; R), and this gives the symmetric space
GLs+1(R)/Os+1.

The second main observation concerning quantum cohomology – and the link
with mirror symmetry – is that in certain situations this (pluri)harmonic map has
an independent geometrical interpretation, as the period map for a variation of
Hodge structure. The most famous example is the quintic threefold M in CP 4.
The harmonic map obtained from the quantum cohomology ofM can be described
simply as follows: For a certain holomorphic C4-valued function u, consider the
holomorphic map

U = Span{u} ⊆ Span{u, u′} ⊆ Span{u, u′, u′′} ⊆ C4

to the flag manifold SU4/S(U1 × U1 × U1 × U1). This flag manifold can be identi-
fied with the space of quadruples (L1, L2, L3, L4) of mutually orthogonal complex
lines in the Hermitian space C4, and it is well-known (cf. Example 8.16 of [19])
that the composition of any map U of the displayed form with the projection
map (L1, L2, L3, L4) �→ L1 ⊕ L3 is a harmonic map into the symmetric space
Gr2C

4 = SU4/S(U2 × U2). In terms of the general theory of Section 2.2, the map
u can be identified with the J -function, and the map U with L, if the flag manifold

9 In Chapter 10 of [19], an (indefinite) unitary group based on H ∗(M; R) was used. Any choice gives a pluri-
harmonic map, so the “best” choice depends on imposing further criteria. Further discussion of this point, in
particular the relation with [22], can be found in Section 6 of [11].
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is embedded suitably in the loop group 
SU4. (This is consistent with the above
choice of symmetric space GL4(R)/O4, because U actually takes values in the
smaller symmetric space Sp4(R)/U2, a symplectic Grassmannian.) Mirror symme-
try says that U can be identified with the period map

H 3,0 ⊆ H 3,0⊕H 2,1 ⊆ H 3,0⊕H 2,1⊕H 1,2 ⊆ H 3,0⊕H 2,1⊕H 1,2⊕H 0,3,

whereHi,j = Hi,j M̃ for a ‘mirror partner’ M̃ ofM . The domain of this map is (an
open subset of) the moduli space of complex structures of M̃ , as Hi,j M̃ depends
on the complex structure.

It is a special feature of Calabi–Yau manifolds (such as the quintic threefold)
that the harmonic map can be described in this way, in elementary terms, without
using loop group theory. However, for the quantum cohomology of Fano manifolds
(such as CPn), the mapL does not factor through a finite-dimensional submanifold
of the loop group. It does still have a variation of Hodge structure interpretation, in
a generalized sense (due to Barannikov [3,4] and Katzarkov et al. [25]), because of
the Grassmannian model of the loop group: instead of U , we use the holomorphic
mapW (associated to L) which was described above.

The correspondence

φ (variation of Hodge structure) ←→ ω (quantum cohomology)

between the pluriharmonic map φ and the holomorphic data ω can be regarded
as an expression of mirror symmetry. It is given explicitly by the Birkhoff and
Iwasawa loop factorizations:

Birkhoff−−−−→
� (or φ) L (or ω)

Iwasawa←−−−−
In this way, the quantum D-module contains not only the geometric information
consisting of the Gromov–Witten invariants, but also the much less visible geo-
metric information consisting of the variation of Hodge structure of the mirror
partner.

2.5 Conclusion

Much remains to be done to clarify the integrable systems aspects of quantum
cohomology, but an even more elusive goal is to characterize quantum cohomology
in purely differential-equation-theoretic terms. The quantum D-module will attain
the status of de Rham cohomology (for example) only if those D-modules which
occur as quantum D-modules can be described precisely. This goal is probably too
optimistic, but one can at least make a start by listing some conditions, such as:
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– quantization of a commutative algebra
– regular singular point of maximal unipotent monodromy at q = 0
– homogeneity
– self-adjointness.

In Section 2.2 we have focused on the first of these, so let us comment briefly on
the others, taking the case of M3

5 (Examples 2.2.4, 2.2.6 and 2.2.8) as a concrete
example. The quantum differential operator here is

(h̄∂)4 − 27q(h̄∂)2 − 27h̄q(h̄∂)− 6h̄2q.

The second condition has the usual meaning from o.d.e. theory. The third means
that the operator is weighted homogeneous, the weights of the symbols ∂, h̄, q
being 0, 2, 4, respectively. So far, any quantization of the quantum cohomology
relation b4 − 27qb2 of the form (h̄∂)4 − 27q(h̄∂)2 − αh̄q(h̄∂)− βh̄2q would have
all these properties, where α, β are constants. The fourth condition means that the
operator is formally self-adjoint with respect to the involution defined by ∂∗ = −∂ ,
h̄∗ = −h̄ (see Section 6.3 of [19]). This condition forces α to be 27. However, only
the value β = 6 gives the correct quantum products (or Gromov–Witten invariants),
and our conditions do not pin this down; we need more, and these are not going to
be straightforward.

One source of additional conditions is the global behaviour of the associated
(pluri)harmonic map, regarded as a generalized period map. There is a positivity
condition which generalizes the second Riemann–Hodge bilinear relation, and it
is natural to insist on this. Some ideas in this direction can be found in [22] (see
also [11] for a particular example). A related source is the arithmetic behaviour of
the differential equation. Even in the Calabi–Yau case where the second Riemann–
Hodge bilinear relation is known to hold, it is difficult to characterize differen-
tial equations whose solutions have the expected integrality properties (related to
the integrality or rationality of the Gromov–Witten invariants) — see, e.g., [1]
and [2].
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Index theory and groupoids

claire debord and jean-marie lescure∗

Abstract
This chapter is mainly devoted to a proof, using groupoids and KK-theory,
of Atiyah and Singer’s index theorem on compact smooth manifolds. We first
present an elementary introduction to groupoids, C∗-algebras, KK-theory and
pseudodifferential calculus on groupoids. We then show how the point of view
adopted here generalizes to the case of conical pseudomanifolds.

3.1 Introduction

This chapter is meant to give the tools involved in our approach to index the-
ory for singular spaces. The global framework adopted here is noncommuta-
tive geometry, with a particular focus on groupoids, C∗-algebras and bivariant
K-theory.

The idea of using C∗-algebras to study spaces may be understood with the
help of the Gelfand theorem, which asserts that Hausdorff locally compact spaces
are in one-to-one correspondence with commutative C∗-algebras. A starting point
in noncommutative geometry is then to think of noncommutative C∗-algebras as
corresponding to a wider class of spaces, more singular than Hausdorff locally
compact spaces. As a first consequence, given a geometrical or topological object
which is badly behaved with respect to classical tools, noncommutative geometry
suggests defining aC∗-algebra encoding relevant information carried by the original
object.

∗
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manuscript of one of his courses [48, 49]. We would like to warmly thank Jorge Plazas for having typewritten
a part of this chapter during the summer school, and Jérôme Chabert, who carefully read the chapter and
corrected several mistakes. We are grateful to all the organizers for their kind invitation to the extremely
stimulating summer school held at Villa de Leyva in July 2007, and we particularly thank Sylvie Paycha, both
as an organizer and for her valuable comments on this document.
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Refining this construction, one may try to define this C∗-algebra as the C∗-
algebra of a groupoid [46, 47]. That is, one can try to build a groupoid directly,
encoding the original object and regular enough to allow the construction of its
C∗-algebra. In the ideal case where the groupoid is smooth, one gets much more
than a C∗-algebra, which only reflects topological properties: the groupoid has a
geometrical and analytical flavor enabling many applications.

An illuminating example is the study of the space of leaves of a foliated
manifold (M,F) [10, 11, 14]. Although this space M/F is usually very sin-
gular, the holonomy groupoid of the foliation leads to a C∗-algebra C∗(M,F)
replacing with great success the algebra of continuous functions on the space
M/F . Moreover, the holonomy groupoid is smooth and characterizes the original
foliation.

Once a C∗-algebra is built for the study of a given problem, one can look for
invariants attached to it. For ordinary spaces, basic invariants live in the homology
or cohomology of the space. When dealing withC∗-algebras, the suitable homology
theory is K-theory, or better the KK-theory developed by G. Kasparov [30, 31, 49]
(when a smooth subalgebra of the C∗-algebra is specified, which for instance is the
case if a smooth groupoid is available, one may also consider cyclic (co)homology,
but this theory is beyond the scope of these notes).

There is a fundamental theory which links the previous ideas, namely index
theory. In the 1960s, Atiyah and Singer [6] proved their famous index theorem.
Roughly speaking, they showed that, given a closed manifold, one can associate
to any elliptic operator an integer called the index, which can be described in two
different ways: one purely analytic and the other purely topological. This result is
stated with the help of K-theory of spaces. Hence, using the Swan–Serre theorem,
it can be formulated with K-theory of (commutative) C∗-algebras. This point, and
the fact that the index theorem can be proved in many ways using K-theoretic
methods, leads to the attempt to generalize it to more singular situations where
appropriate C∗-algebras are available. Noncommutative geometry therefore offers
a general framework in which one can try to state and prove index theorems.
The case of foliations illustrates this perfectly again: elliptic operators along the
leaves, equivariant with respect to the holonomy groupoid, admit an analytical
index living in theK-theory of the C∗-algebra C∗(M,F). Moreover, this index can
also be described in a topological way, and this is the content of the index theorem
for foliations of Connes and Skandalis [14].

Connes [13] also observed the important role played by groupoids in the def-
inition of the index map: in both cases of closed manifolds and foliations, the
analytical index map can be described with the use of a groupoid, namely a defor-
mation groupoid. This approach has been extended by the authors and Nistor [20],
who showed that the topological index of Atiyah and Singer can also be described
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using deformation groupoids. This leads to a geometrical proof of the index the-
orem of Atiyah and Singer; moreover, this proof is easily applied to a class of
singular spaces (namely, pseudomanifolds with isolated singularities).

The content of this chapter is divided into three parts. Let us briefly describe
them:

Part I: Groupoids and their C∗-algebras. As mentioned earlier, the first problem in the
study of a singular geometrical situation is to associate to it a mathematical object
which carries the information one wants to study and which is regular enough to be
analyzed in a reasonable way. In noncommutative geometry, answering this question
amounts to looking for a good groupoid and constructing itsC∗-algebra. These points
will be the subject of Sections 3.2 and 3.4.

Part II: KK-theory. Once the situation is desingularized, say through the construction
of a groupoid and its C∗-algebra, one may look for invariants which capture the
basic properties. Roughly speaking, the KK-theory groups are convenient groups of
invariants for C∗-algebras, and KK-theory comes with powerful tools to carry out
computations. Kasparov’s bivariant K-theory will be the main topic of Sections 3.4
to 3.6.

Part III: Index theorems. We first briefly explain in Section 3.7 the pseudodifferential
calculus on groupoids. Then, in Section 3.8, we give a geometrical proof of the
Atiyah–Singer index theorem for closed manifolds, using the language of groupoids
andKK-theory. Finally we show in the last section how these results can be extended
to conical pseudomanifolds.

Prerequisites. The reader interested in this course should have background in
several domains. Familiarity with basic differential geometry (manifolds, tangent
spaces) is needed. The notions of fiber bundle and ofK-theory for locally compact
spaces should be known. Basic functional analysis, including the analysis of linear
operators on Hilbert spaces, should be familiar. The knowledge of pseudodifferen-
tial calculus (basic definitions, ellipticity) is necessary. Although it is not absolutely
necessary, some familiarity with C∗-algebras is preferable.

I. Groupoids and their C∗-Algebras

This first part will be devoted to the notion of groupoid, specifically that of dif-
ferentiable groupoid. We provide definitions and consider standard examples. The
interested reader may look for example at [12,35]. We then recall the definition of
C∗-algebras and see how one can associate a C∗-algebra to a groupoid. The theory
of C∗-algebras of groupoids was initiated by Jean Renault [46]. A good reference
for the construction of groupoid C∗-algebras is [32], by which the end of Section
3.3.2 is inspired.
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3.2 Groupoids

3.2.1 Definitions and basic examples of groupoids

Definition 3.2.1 Let G and G(0) be two sets. A groupoid structure on G over G(0)

is given by the following homomorphisms:

� An injective map u : G(0) → G. The map u is called the unit map. We often identifyG(0)

with its image in G. The set G(0) is called the set of units of the groupoid.
� Two surjective maps: r, s : G→ G(0), which are, respectively, the range and source

maps. They are equal to the identity on the space of units.
� An involution

i : G→ G,

γ �→ γ−1,

called the inverse map. It satisfies s ◦ i = r .
� A map

p : G(2) → G,

(γ1, γ2) �→ γ1 · γ2,

called the product, where the set

G(2) := {(γ1, γ2) ∈ G×G | s(γ1) = r(γ2)}
is the set of composable pairs. Moreover, for (γ1, γ2) ∈ G(2) we have r(γ1 · γ2) = r(γ1)
and s(γ1 · γ2) = s(γ2).

The following properties must be fulfilled:

� The product is associative: for any γ1, γ2, γ3 in G such that s(γ1) = r(γ2) and s(γ2) =
r(γ3) the following equality holds:

(γ1 · γ2) · γ3 = γ1 · (γ2 · γ3).

� For any γ in G, one has r(γ ) · γ = γ · s(γ ) = γ and γ · γ−1 = r(γ ).

A groupoid structure on G over G(0) is usually denoted by G⇒ G(0), where the
arrows stand for the source and target maps.

We will often use the following notation:

GA := s−1(A), GB = r−1(B) and GBA = GA ∩GB.
If x belongs toG(0), the s-fiber (r-fiber) ofG over x isGx = s−1(x) (Gx = r−1(x)).

The groupoid is topological when G and G(0) are topological spaces with G(0)

Hausdorff, the structural homomorphisms are continuous, and i is a homeomor-
phism. We will often require that our topological groupoids be locally compact.
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This means that G⇒ G(0) is a topological groupoid, such that G is second count-
able, each point γ inG has a compact (Hausdorff) neighborhood, and the map s is
open. In this situation the map r is open and the s-fibers of G are Hausdorff.

The groupoid is smooth whenG andG(0) are second-countable smooth manifolds
withG(0) Hausdorff, the structural homomorphisms are smooth, u is an embedding,
s is a submersion, and i is a diffeomorphism.

When G⇒ G(0) is at least topological, we say that G is s-connected when for
any x ∈ G(0) the s-fiber ofG over x is connected. The s-connected component of a
groupoidG is

⋃
x∈G(0) CGx , where CGx is the connected component of the s-fiber

Gx which contains the unit u(x).

Examples
1. A space X is a groupoid over itself with s = r = u = Id.
2. A group G⇒ {e} is a groupoid over its unit e, with the usual product and inverse map.
3. A group bundle : π : E→ X is a groupoid E ⇒ X with r = s = π and algebraic

operations given by the group structure of each fiber Ex , x ∈ X.
4. If R is an equivalence relation on a space X, then the graph of R,

GR := {(x, y) ∈ X ×X | xRy},

admits a structure of groupoid over X, which is given by

u(x) = (x, x), s(x, y) = y, r(x, y) = x,
(x, y)−1 = (y, x), (x, y) · (y, z) = (x, z)

for x, y, z in X. When xRy for any x, y in X, GR = X ×X ⇒ X is called the pair
groupoid.

5. IfG is a group acting on a space X, the groupoid of the action isG×X ⇒ X with the
following structural homomorphisms:

u(x) = (e, x), s(g, x) = x, r(g, x) = g · x,
(g, x)−1 = (g−1, g · x), (h, g · x) · (g, x) = (hg, x)

for x in X and g, h in G.
6. Let X be a topological space. The homotopy groupoid of X is

�(X) := {c̄ | c : [0, 1]→ X a continuous path}⇒ X,

where c̄ denotes the homotopy class (with fixed endpoints) of c. We let

u(x) = cx,

where cx is the constant path equal to x,

s(c) = c(0), r(c) = c(1), c−1 = c−1,
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where c−1(t) = c(1− t),
c1 · c2 = c1 · c2,

where c1 · c2(t) = c2(2t) for t ∈ [0, 1
2 ] and c1 · c2(t) = c1(2t − 1) for t ∈ [ 1

2 , 1]. When
X is a smooth manifold of dimension n, �(X) is naturally endowed with a smooth
structure (of dimension 2n). A neighborhood of c̄ is of the form {c̄1c̄c̄0 | c1(0) =
c(1), c(0) = c0(1), Im ci ⊂ Ui, i = 0, 1} where Ui is a given neighborhood of c(i)
in X.

3.2.2 Homomorphisms and Morita equivalences

3.2.2.1 Homomorphisms

Let G⇒ G(0) be a groupoid of source sG and range rG, and H ⇒ H (0) be a
groupoid of source sH and range rH . A groupoid homomorphism from G to H is
given by two maps:

f : G→ H and f (0) : G(0) → H (0)

such that

� rH ◦ f = f (0) ◦ rG,
� f (γ )−1 = f (γ−1) for any γ ∈ G,
� f (γ1 · γ2) = f (γ1) · f (γ2) for γ1, γ2 in G such that sG(γ1) = rG(γ2).

We say that f is a homomorphism over f (0). WhenG(0) = H (0) and f (0) = Id, we
say that f is a homomorphism over the identity.

The homomorphism f is an isomorphism when the maps f , f (0) are bijections
and f −1 : H → G is a homomorphism over (f (0))−1.

As usual, when dealing with topological groupoids we require that f be contin-
uous and, when dealing with smooth groupoids, that f be smooth.

3.2.2.2 Morita equivalence

In most situations, the right notion of isomorphism of locally compact groupoids
is the weaker notion of Morita equivalence.

Definition 3.2.2 Two locally compact groupoids G⇒ G(0) and H ⇒ H (0) are
Morita equivalent if there exists a locally compact groupoid P ⇒ G(0) �H (0) such
that

� the restrictions of P over G(0) and H (0) are, respectively, G and H :

PG
(0)

G(0) = G and PH
(0)

H (0) = H ;

� for any γ ∈ P there exists η in PH
(0)

G(0) ∪ PG(0)

H (0) such that (γ, η) is a composable pair (i.e.,
s(γ ) = r(η)).
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Examples
1. Let f : G→ H be an isomorphism of locally compact groupoid. Then the following

groupoid defines a Morita equivalence between H and G:

P = G � G̃ � G̃−1 �H ⇒ G(0) �H (0),

where with the obvious notation we have

G = G̃ = G̃−1,

sP =


sG on G,
sH ◦ f on G̃,
rG on G̃−1,

sH on H,

rP =

rG on G � G̃,
sH ◦ f on G̃−1,

rH on H,

uP =
{
uG on G(0),

uH on H (0),
iP (γ ) =


iG(γ ) on G,
iH (γ ) on H,
γ ∈ G̃−1 on G̃,
γ ∈ G̃ on G̃−1,

pP (γ1, γ2) =



pG(γ1, γ2) on G(2),

pH (γ1, γ2) on H (2),

pG(γ1, γ2) ∈ G̃ for γ1 ∈ G, γ2 ∈ G̃,
pG(γ1, f

−1(γ2)) ∈ G̃ for γ1 ∈ G̃, γ2 ∈ H,
pG(γ1, γ2) ∈ G for γ1 ∈ G̃, γ2 ∈ G̃−1,

f ◦ pG(γ1, γ2) ∈ H for γ1 ∈ G̃, γ2 ∈ G̃−1.

2. Suppose that G⇒ G(0) is a locally compact groupoid and ϕ : X→ G(0) is an open
surjective map, where X is a locally compact space. The pullback groupoid is the
groupoid

∗ϕ∗(G) ⇒ X,

where

∗ϕ∗(G) = {(x, γ, y) ∈ X ×G×X | ϕ(x) = r(γ ) and ϕ(y) = s(γ )}

with s(x, γ, y) = y, r(x, γ, y) = x, (x, γ1, y) · (y, γ2, z) = (x, γ1 · γ2, z) and
(x, γ, y)−1 = (y, γ−1, x). One can show that this endows ∗ϕ∗(G) with a locally
compact groupoid structure. Moreover, the groupoids G and ∗ϕ∗(G) are Morita
equivalent, but not isomorphic in general. To prove this last point, one can put
a locally compact groupoid structure on P = G �X ×r G �G×s X � ∗ϕ∗(G)
over X �G(0), where X ×r G = {(x, γ ) ∈ X ×G | ϕ(x) = r(γ )} and G×s X =
{(γ, x) ∈ G×X | ϕ(x) = s(γ )}.
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3.2.3 The orbits of a groupoid

Suppose that G⇒ G(0) is a groupoid of source s and range r .

Definition 3.2.3 The orbit of G passing trough x is the following subset of G(0):

Orx = r(Gx) = s(Gx).
We let G(0)/G or Or(G) be the space of orbits.

The isotropy group of G at x is Gxx , which is naturally endowed with a group
structure with x as unit. Notice that multiplication induces a free left (right) action
of Gxx on Gx (Gx). Moreover, the orbits space of this action is precisely Orx and
the restriction s : Gx → Orx is the quotient map.

Examples and remarks
1. In example 4 in Section 3.2.1, the orbits of GR correspond exactly to the orbits of the

equivalence relation R. In example 5, the orbits of the groupoid of the action are the
orbits of the action.

2. The second assertion in the definition of Morita equivalence precisely means that both
G(0) and H (0) meet all the orbits of P . Moreover, one can show that the map

Or(G)→ Or(H ),

Or(G)x �→ Or(P )x ∩H (0)

is a bijection. In other word, when two groupoids are Morita equivalent, they have the
same orbit space.

Groupoids are often used in noncommutative geometry for the study of singular
geometrical situations. In many geometrical situations, the topological space which
arises is strongly non-Hausdorff, and the standard tools do not apply. Nevertheless,
it is sometimes possible to associate to such a space X a relevant C∗-algebra as
a substitute for C0(X). Usually we first associate a groupoid G⇒ G(0) such that
its space of orbits G(0)/G is (equivalent to) X. If the groupoid is regular enough
(smooth, for example), then we can associate natural C∗-algebras to G. This point
will be discussed later. In other words, we desingularize a singular space by viewing
it as coming from the action of a nice groupoid on its space of units. To illustrate
this point let us consider two examples.

3.2.4 Groupoids associated to a foliation

LetM be a smooth manifold.

Definition 3.2.4 A (regular) smooth foliation F onM of dimension p is a partition
{Fi}I of M where each Fi is an immersed submanifold of dimension p called a
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Fig. 3.1.

leaf. Moreover, the manifoldM admits charts of the following type:

ϕ : U → Rp × Rq,

where U is open in M and such that for any connected component P of Fi ∩ U
where i ∈ I , there is a t ∈ Rq such that ϕ(P ) = Rp × {t}.

In this situation the tangent space to the foliation, TF :=⋃I T Fi , is a sub-
bundle of TM stable under Lie bracket.

The space of leaves M/F is the quotient of M by the equivalence relation of
being on the same leaf.

A typical example: Take M = P × T , where P and T are connected smooth
manifolds with the partition into leaves given by {P × {t}}t∈T . Every foliation is
locally of this type.

The space of leaves of a foliation is often difficult to study, as appears in the
following two examples:

Examples
1. Let F̃a be the foliation on the plane R2 by lines {y = ax + t}t∈R where a belongs to R.

Take the torus T = R2/Z2 to be the quotient of R2 by translations of Z2. We denote by
Fa the foliation induced by F̃a on T . When a is rational the space of leaves is a circle,
but when a is irrational it is topologically equivalent to a point (i.e., each point is in any
neighborhood of any other point).

2. Let C \ {(0)} be foliated by

{St }t∈]0,1] ∪ {Dt }t∈]0,2π ],

where St = {z ∈ C | |z| = t} is the circle of radius t , andDt = {z = ei(x+t)+x | x ∈ R+∗ }.
(See Figure 3.1.)
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Fig. 3.2.

A holonomy groupoid is a smooth groupoid which desingularizes the space of
leaves of a foliation. Precisely, if F is a smooth foliation on a manifold M , its
holonomy groupoid is the smallest s-connected smooth groupoid G⇒ M whose
orbits are precisely the leaves of the foliation. Here, smallest means that ifH ⇒ M

is another s-connected smooth groupoid whose orbits are the leaves of the foliation,
then there is a surjective groupoid homomorphism : H → G over identity.

The first naive attempt to define such a groupoid is to consider the graph of the
equivalence relation defined by being on the same leaf. This does not work: you get
a groupoid, but it may not be smooth. This fact can be observed in the preceding
example 2. Another idea consists in looking at the homotopy groupoid. Let �(F)
be the set of homotopy classes of smooth paths lying on leaves of the foliation. It
is naturally endowed with a groupoid structure similarly to the homotopy groupoid
of Section 3.2.1, example 6. Such a groupoid can be naturally equipped with a
smooth structure (of dimension 2p + q), and the holonomy groupoid is a quotient
of this homotopy groupoid. In particular, when the leaves have no homotopy, the
holonomy groupoid is the graph of the equivalence relation of being in the same leaf.

3.2.5 The noncommutative tangent space of a conical pseudomanifold

It may happen that the underlying topological space which is under study is a nice
compact space which is “almost” smooth. This is the case of pseudomanifolds
[24, 36, 53]; for a review on the subject see [9, 28]. In such a situation we can
desingularize the tangent space [18,19]. Let us see how this works in the case of a
conical pseudomanifold with one singularity.

Let M be an m-dimensional compact manifold with a compact boundary
L. We attach to L the cone cL = L× [0, 1]/L× {0}, using the obvious map
L× {1} → L ⊂ ∂M . The new space X = cL ∪M (see Figure 3.2) is a compact
pseudomanifold with a singularity [24]. In general, there is no manifold structure
around the vertex c of the cone.
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We will use the following notation:X◦ = X \ {c} is the regular part,X+ denotes
M \ L = X \ cL, X+ = M denotes its closure in X, and X− = L×]0, 1[. If y is
a point of the cylindrical part of X \ {c}, we write y = (yL, ky), where yL ∈ L
and ky ∈ ]0, 1] are the tangential and radial coordinates. The map y → ky is
extended into a smooth defining function for the boundary of M . In particular,
k−1(1) = L = ∂M and k(M) ⊂ [1,+∞[.

Let us consider TX+, the restriction toX+ of the tangent bundle ofX◦. As a C∞
vector bundle, it is a smooth groupoid with unit space X+. We define the groupoid
T SX as the disjoint union

T SX = X− ×X− ∪ TX+
s

⇒
r
X◦,

where X− ×X− ⇒ X− is the pair groupoid.
In order to endow T SX with a smooth structure, compatible with the usual

smooth structure on X− ×X− and on TX+, we have to take care of what happens
around points of TX+|∂X+ .

Let τ be a smooth positive function on R such that τ−1({0}) = [1,+∞[. We let
τ̃ be the smooth map from X◦ to R+ given by τ̃ (y) = τ ◦ k(y).

Let (U, φ) be a local chart for X◦ around z ∈ ∂X+. Setting U− = U ∩X− and
U+ = U ∩X+, we define a local chart of T SX by

φ̃ : U− × U− ∪ T U+ −→ Rm × Rm,

φ̃(x, y) =
(
φ(x),

φ(y)− φ(x)

τ̃ (x)

)
if (x, y) ∈ U− × U−, (3.1)

φ̃(x, V ) = (φ(x), (φ)∗(x, V )) elsewhere.

We define in this way a smooth groupoid structure on T SX. Note that at the
topological level, the space of orbits of T SX is equivalent toX: there is a canonical
isomorphism between the algebras C(X) and C(X◦/T SX).

The smooth groupoid T SX ⇒ X◦ is called the noncommutative tangent space
of X.

3.2.6 Lie theory for smooth groupoids

Let us go into the more specific world of smooth groupoids. Similarly to Lie groups
which admit Lie algebras, any smooth groupoid has a Lie algebroid [42, 43].

Definition 3.2.5 A Lie algebroid A = (p : A→ TM, [ , ]A) on a smooth mani-
foldM is a vector bundleA→ M equipped with a bracket [ , ]A : �(A)× �(A)→
�(A) on the module of sections of A together with a homomorphism of fiber
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bundle p : A→ TM from A to the tangent bundle TM of M called the anchor,
such that:

(i) the bracket [ , ]A is R-bilinear, is antisymmetric and satisfies the Jacobi identity,
(ii) [X, f Y ]A = f [X, Y ]A + p(X)(f )Y for all X, Y ∈ �(A) and f a smooth function

ofM ,
(iii) p([X, Y ]A) = [p(X), p(Y )] for all X, Y ∈ �(A).

Each Lie groupoid admits a Lie algebroid. Let us recall this construction.

Let G
s

⇒
r
G(0) be a Lie groupoid. We denote by T sG the subbundle of TG of

s-vertical tangent vectors. In other words, T sG is the kernel of the differential Ts
of s.

For any γ inG letRγ : Gr(γ ) → Gs(γ ) be the right multiplication by γ . A tangent
vector field Z on G is right invariant if it satisfies:

� Z is s-vertical: T s(Z) = 0.
� For all (γ1, γ2) in G(2), Z(γ1 · γ2) = T Rγ2 (Z(γ1)).

Note that ifZ is a right invariant vector field and ht its flow, then for any t , the local
diffeomorphism ht is a local left translation of G, that is, ht (γ1 · γ2) = ht (γ1) · γ2

when it makes sense.
The Lie algebroid AG of G is defined as follows:

� The fiber bundle AG→ G(0) is the restriction of T sG to G(0). In other words: AG =⋃
x∈G(0) TxGx is the union of the tangent spaces to the s-fiber at the corresponding unit.

� The anchor p : AG→ TG(0) is the restriction of the differential T r of r to AG.
� If Y : U → AG is a local section of AG, where U is an open subset of G(0), we define

the local right invariant vector field ZY associated with Y by

ZY (γ ) = T Rγ (Y (r(γ ))) for all γ ∈ GU.

The Lie bracket is then defined by

[ , ] : �(AG)× �(AG) −→ �(AG),

(Y1, Y2) �→ [ZY1 , ZY2 ]G(0),

where [ZY1 , ZY2 ] denotes the s-vertical vector field obtained with the usual bracket, and
[ZY1 , ZY2 ]G(0) is the restriction of [ZY1 , ZY2 ] to G(0).

Example If �(F) is the homotopy groupoid (or the holonomy groupoid) of a
smooth foliation, its Lie algebroid is the tangent space TF to the foliation. The
anchor is the inclusion. In particular, the Lie algebroid of the pair groupoidM ×M
on a smooth manifoldM is TM , the anchor being the identity map.
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Lie theory for groupoids is much trickier than for groups. For a long time
people thought that, as for Lie algebras, every Lie algebroid integrates into a Lie
groupoid [44]. In fact this assertion, named Lie’s third theorem for Lie algebroids,
is false. This was pointed out by a counterexample given by Almeida and Molino
in [1]. Since then, a lot of work has been done around this problem. A few years
ago Crainic and Fernandes [15] completely solved it by giving a necessary and
sufficient condition for the integrability of Lie algebroids.

3.2.7 Examples of groupoids involved in index theory

Index theory is a part of noncommutative geometry where groupoids may play a
crucial role. Index theory will be discussed later in this chapter, but we want to
present here some of the groupoids which will arise.

Definition 3.2.6 A smooth groupoid G is called a deformation groupoid if

G = G1 × {0} ∪G2×]0, 1] ⇒ G(0) = M × [0, 1],

whereG1 andG2 are smooth groupoids with unit spaceM . That is,G is obtained by
gluing G2×]0, 1] ⇒ M×]0, 1], which is the groupoid G2 parametrized by ]0, 1],
with the groupoid G1 × {0}⇒ M × {0}.

Example Let G be a smooth groupoid, and let AG be its Lie algebroid.
The adiabatic groupoid of G [13, 38, 39] is a deformation of G on its Lie
algebroid:

Gad = AG× {0} ∪G×]0, 1] ⇒ G(0) × [0, 1],

where one can put a natural smooth structure on Gad . Here, the vector bundle
π : AG→ G(0) is considered as a groupoid in the obvious way.

3.2.7.1 The tangent groupoid

A special example of adiabatic groupoid is the tangent groupoid of Connes [13].
Consider the pair groupoid M ×M on a smooth manifold M . We saw that its
Lie algebroid is TM . In this situation, the adiabatic groupoid is called the tangent
groupoid and is given by

G tM := TM × {0} �M ×M×]0, 1] ⇒ M × [0, 1].

The Lie algebroid is the bundleA(G tM ) := TM × [0, 1]→ M × [0, 1] with anchor
p : (x, V, t) ∈ TM × [0, 1] �→ (x, tV , t, 0) ∈ TM × T [0, 1].
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Choose a Riemannian metric onM . The smooth structure on G tM is such that the
map

U ⊂ TM × [0, 1]→ G tM,

(x, V, t) �→
{

(x, V, 0) if t = 0,
(x, expx(−tV ), t) elsewhere

is a smooth diffeomorphism on its range, where U is an open neighborhood of
TM × {0}.

The previous construction of the tangent groupoid of a compact manifold gen-
eralizes to the case of conical manifold. When X is a conical manifold, its tangent
groupoid is a deformation of the pair groupoid over X◦ into the groupoid T SX.
This deformation has a nice description at the level of Lie algebroids. Indeed,
with the notation of Definition 3.2.5, the Lie algebroid of G tX is the (unique) Lie
algebroid given by the fiber bundle AG tX = [0, 1]×A(T SX) = [0, 1]× TX◦ →
[0, 1]×X◦, with anchor map

pG tX : AG tX = [0, 1]× TX◦ −→ T ([0, 1]×X◦) = T [0, 1]× TX◦,
(λ, x, V ) �→ (λ, 0, x, (τ̃ (x)+ λ)V ).

Such a Lie algebroid is almost injective; thus it is integrable [15, 17]. Moreover, it
integrates into the tangent groupoid, which is defined by

G tX = X◦ ×X◦×]0, 1] ∪ T SX × {0}⇒ X◦ × [0, 1].

Once again one can equip such a groupoid with a smooth structure compatible with
the usual one on each piece: X◦ ×X◦×]0, 1] and T SX × {0} [19].

3.2.7.2 The Thom groupoid

Another important deformation groupoid for our purpose is the Thom groupoid
[20].

Let π : E→ X be a conical vector bundle. This means that X is a conical
manifold (or a smooth manifold without vertices) and we have a smooth vector
bundle π◦ : E◦ → X◦ whose restriction to X− = L×]0, 1[ is equal to EL×]0, 1[,
where EL→ L is a smooth vector bundle. If E+ → X+ denotes the bundle E◦

restricted to X+, then E is the conical manifold E = cEL ∪ E+.
When X is a smooth manifold (with no conical point), this boils down to the

usual notion of smooth vector bundle.
From the definition, π restricts to a smooth vector bundle map π◦ : E◦ → X◦.

We let π[0,1] = π◦ × Id : E◦ × [0, 1]→ X◦ × [0, 1].
We consider the tangent groupoids G tX ⇒ X◦ × [0, 1] for X and G tE ⇒ E◦ ×

[0, 1] for E, equipped with a smooth structure constructed using the same gluing
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function τ (in particular τ̃X ◦ π = τ̃E). We denote by ∗π∗[0,1](G tX) ⇒ E◦ × [0, 1]
the pullback of G tX by π[0,1].

We first associate to the conical vector bundle E a deformation groupoid T tE
from ∗π∗[0,1](G tX) to G tE . More precisely, we define

T tE := G tE × {0} � ∗π∗[0,1](G tX)×]0, 1] ⇒ E◦ × [0, 1]× [0, 1].

Once again, one can equip T tE with a smooth structure [20], and the restriction of
T tE to E◦ × {0} × [0, 1] leads to a smooth groupoid,

HE = T SE × {0} � ∗π∗(T SX)×]0, 1] ⇒ E◦ × [0, 1],

called a Thom groupoid associated to the conical vector bundle E over X.
The following example explains what these constructions become if there is no

singularity.

Example Suppose that p : E→ M is a smooth vector bundle over the smooth
manifold M . Then we have the usual tangent groupoids G tE = T E × {0} � E ×
E×]0, 1] ⇒ E × [0, 1] and G tM = TM × {0} �M ×M×]0, 1] ⇒ M × [0, 1]. In
this example the groupoid T tE will be given by

T tE = T E × {0} × {0} � ∗p∗(TM)× {0}×]0, 1] � E × E×]0, 1]× [0, 1]

⇒ E × [0, 1]× [0, 1]

and is smooth. Similarly, the Thom groupoid will be given by HE := T E × {0} �
∗p∗(TM)×]0, 1] ⇒ E × [0, 1].

3.2.8 Haar systems

A locally compact groupoidG⇒ G(0) can be viewed as a family of locally compact
spaces

Gx = {γ ∈ G | s(γ ) = x}
parametrized by x ∈ G(0). Moreover, right translations act on these spaces. Pre-
cisely, to any γ ∈ G one associates the homeomorphism

Rγ : Gy → Gx,

η �→ η · γ.
This picture enables us to define the right analogue of Haar measure on locally
compact groups to locally compact groupoids, namely Haar systems. The following
definition is due to Renault [46].
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Definition 3.2.7 A Haar system on G is a collection ν = {νx}x∈G(0) of positive
regular Borel measure on G satisfying the following conditions:

(i) Support: For every x ∈ G(0), the support of νx is contained in Gx .
(ii) Invariance: For any γ ∈ G, the right-translation operator Rγ : Gy → Gx is measure-

preserving. That is, for all f ∈ Cc(G),∫
f (η)dνy(η) =

∫
f (η · γ )dνx(η).

(iii) Continuity: For all f ∈ Cc(G), the map

G(0) → C,

x �→ ∫
f (γ )dνx(γ )

is continuous.

In contrast to the case of locally compact groups, Haar systems on groupoids may
not exist. Moreover, when such a Haar system exists, it may not be unique. In the
special case of a smooth groupoid, a Haar system always exists [40, 45], and any
two Haar systems {νx} and {µx} differ by a continuous and positive function f on
G(0): νx = f (x)µx for all x ∈ G(0).

Example When the source and range maps are local homeomorphisms, a possible
choice for νx is the counting measure on Gx .

3.3 C∗-algebras of groupoids

This second part starts with the definition of a C∗-algebra together with some
results. Then we construct the maximal and minimal C∗-algebras associated to a
groupoid and compute explicit examples.

3.3.1 C∗-algebras – Basic definitions

In this subsection we introduce the terminology and give some examples and
properties of C∗-algebras. We refer the reader to [3, 21, 41] for a more complete
overview on this subject.

Definition 3.3.1 A C∗-algebra A is a complex Banach algebra with an involution
x �→ x∗ such that:

(i) (λx + µy)∗ = λ̄x∗ + µ̄y∗ for λ, µ ∈ C and x, y ∈ A,
(ii) (xy)∗ = y∗x∗ for x, y ∈ A, and

(iii) ‖x∗x‖ = ‖x‖2 for x ∈ A.

Note that it follows from the definition that ∗ is isometric.
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The element x in A is self-adjoint if x∗ = x, and normal if xx∗ = x∗x. When 1
belongs to A, x is unitary if xx∗ = x∗x = 1.

Given two C∗-algebras A,B, a homomorphism respecting the involution is a
called a ∗-homomorphism.

Examples
1. Let H be a Hilbert space. The algebra L(H) of all continuous linear transformations of

H is a C∗-algebra. The involution of L(H) is given by the usual adjunction of bounded
linear operators.

2. Let K(H) be the norm closure of finite-rank operators on H. It is the C∗-algebra of
compact operators on H.

3. The algebra Mn(C) is a C∗-algebra. It is a special example of the previous kind, when
dim(H) = n.

4. LetX be a locally compact, Hausdorff, topological space. The algebra C0(X) of contin-
uous functions vanishing at∞, endowed with the supremum norm and the involution
f �→ f̄ , is a commutativeC∗-algebra. WhenX is compact, 1 belongs toC(X) = C0(X).

Conversely, Gelfand’s theorem asserts that every commutative C∗-algebra A is
isomorphic toC0(X) for some locally compact spaceX (and it is compact precisely
when A is unital). Precisely, a character X of A is a continuous homomorphism
of algebras X : A→ C. The set X of characters of A, called the spectrum of A,
can be endowed with a locally compact space topology. The Gelfand transform
F : A→ C0(X) given by F(x)(X ) = X (x) is the desired ∗-isomorphism.

Let A be a C∗-algebra and H a Hilbert space.

Definition 3.3.2 A ∗-representation of A in H is a ∗-homomorphism π : A→
L(H). The representation is faithful if π is injective.

Theorem 3.3.3 (Gelfand–Naimark) If A is a C∗-algebra, there exists a Hilbert
space H and a faithful representation π : A→ L(H).

In other words, any C∗-algebra is isomorphic to a norm-closed involutive sub-
algebra of L(H). Moreover, when A is separable, H can be taken to be the (unique
up to isometry) separable Hilbert space of infinite dimension.

3.3.1.1 Enveloping algebra

Given a Banach ∗-algebra A, consider the family πα of all continuous ∗-
representations for A. The Hausdorff completion of A for the seminorm ‖x‖ =
supα(‖πα(x)‖) is a C∗-algebra called the enveloping C∗-algebra of A.
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3.3.1.2 Units

A C∗-algebra may or may not have a unit, but it can always be embedded into a
unital C∗-algebra Ã:

Ã := {x + λ | x ∈ A, λ ∈ C}
with the obvious product and involution. The norm on Ã is given for all x ∈ Ã by
‖x‖∼ = sup{‖xy‖, y ∈ A; ‖y‖ = 1}. OnA we have ‖ · ‖ = ‖ · ‖∼. The algebraA
is a closed two-sided ideal in Ã and Ã/A = C.

3.3.1.3 Functional calculus

Let A be a C∗-algebra. If x belongs to A, the spectrum of x in A is the compact set

Sp(x) = {λ ∈ C | x − λ is not invertible in Ã}
The spectral radius of X is the number

ν(x) = sup{|λ|; λ ∈ Sp(x)}.
We have

Sp(x) ⊂ R when x is self-adjoint (x∗ = x),

Sp(x) ⊂ R+ when x is positive (x = y∗y with y ∈ A),

Sp(x) ⊂ U (1) when x is unitary (x∗x = xx∗ = 1).

When x is normal (x∗x = xx∗), these conditions on the spectrum are equivalent.
When x is normal, ν(x) = ‖x‖. From these, one infers that for any polyno-

mial P ∈ C[x] one has ‖P (x)‖ = sup{P (t) | t ∈ Sp(x)} (using that Sp(P (x)) =
P (Sp(x))). We can then define f (x) ∈ A for every continuous function f :
Sp(x)→ C. Precisely, according to Weierstrass’s theorem, there is a sequence
(Pn) of polynomials which converges uniformly to f on Sp(x). We simply define
f (x) = limPn(x).

3.3.2 The reduced and maximal C∗-algebras of a groupoid

We restrict our study to the case of Hausdorff locally compact groupoids. For the
non-Hausdorff case (which is also important and not exceptional), in particular
when dealing with foliations, we refer the reader to [11, 13, 32].

From now on,G⇒ G(0) is a locally compact Hausdorff groupoid equipped with
a fixed Haar system ν = {νx}x∈G(0) . We let Cc(G) be the space of complex-valued
functions with compact support on G. It is provided with a structure of involutive
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algebra as follows. If f and g belong to Cc(G), we define the involution by

for γ ∈ G, f ∗(γ ) = f (γ−1),

and the convolution product by

for γ ∈ G, f ∗ g(γ ) =
∫
η∈Gx

f (γ η−1)g(η)dνx(η),

where x = s(γ ). The 1-norm on Cc(G) is defined by

‖f ‖1 = sup
x∈G(0)

max

(∫
Gx

|f (γ )|dνx(γ ),
∫
Gx

|f (γ−1)|dνx(γ )

)
.

The groupoid full C∗-algebra C∗(G, ν) is defined to be the enveloping C∗-algebra

of the Banach ∗-algebra Cc(G)
‖·‖1 obtained by completion of Cc(G) with respect

to the norm ‖ · ‖1.
Given x in G(0), f in Cc(G), ξ in L2(Gx, νx), and γ in Gx , we set

πx(f )(ξ )(γ ) =
∫
η∈Gx

f (γ η−1)ξ (η)dνx(η).

One can show that πx defines a ∗-representation of Cc(G) on the Hilbert space
L2(Gx, νx). Moreover, for any f ∈ Cc(G), the inequality ‖πx(f )‖ ≤ ‖f ‖1 holds.
The reduced norm on Cc(G) is

‖f ‖r = sup
x∈G(0)

{‖πx(f )‖},

which defines a C∗-norm. The reduced C∗-algebra Cr (G, ν) is defined to be the
C∗-algebra obtained by completion of A with respect to ‖ · ‖r .

WhenG is smooth, the reduced and maximal C∗-algebras of the groupoidG do
not depend up to isomorphism on the choice of the Haar system ν. In the general
case they do not depend on ν up to Morita equivalence [46]. When there is no
ambiguity on the Haar system, we write C∗(G) and C∗r (G) for the maximal and
reduced C∗-algebras.

The identity map on Cc(G) induces a surjective homomorphism from C∗(G) to
C∗r (G). Thus C∗r (G) is a quotient of C∗(G).

For a quite large class of groupoids, amenable groupoids [2], the reduced and
maximal C∗-algebras are equal. This will be the case for all the groupoids we will
meet in the last part of this course devoted to index theory.

Examples
1. When X ⇒ X is a locally compact space, C∗(X) = C∗r (X) = C0(X).
2. When G⇒ e is a group and ν a Haar measure on G, we recover the usual notion of

reduced and maximal C∗-algebras of a group.
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3. LetM be a smooth manifold, and TM ⇒ M the tangent bundle. Let us equip the vector
bundle TM with a Euclidean structure. The Fourier transformation

f ∈ Cc(TM), (x,w) ∈ T ∗M, f̂ (x,w) = 1

(2π )n/2

∫
X∈TxM

e−iw(X)f (X)dX

gives rise to an isomorphism between C∗(TM) = C∗r (TM) and C0(T ∗M). Here, n
denotes the dimension ofM , and T ∗M the cotangent bundle ofM .

4. LetX be a locally compact space, withµ a measure onX, and consider the pair groupoid
X ×X ⇒ X. If f, g belongs to Cc(X ×X), the convolution product is given by

f ∗ g(x, y) =
∫
z∈X
f (x, z)g(z, y)dµ(z),

and a representation of Cc(X ×X) by

π : Cc(X ×X)→ L(L2(X,µ)); π (f )(ξ )(x) =
∫
z∈X
f (x, z)ξ (z)dµ(z)

when f ∈ Cc(X ×X), ξ ∈ L2(X,µ) and x ∈ X. It turns out that C∗(X ×X) =
C∗r (X ×X) � K(L2(X,µ)).

5. Let M be a compact smooth manifold, and G tM ⇒ M × [0, 1] its tangent groupoid. In
this situation C∗(G tM ) = C∗r (G tM ) is a continuous field (At )t∈[0,1] of C∗-algebras [21]
withA0 � C0(T ∗M) a commutative C∗-algebra, and for any t ∈]0, 1],At � K(L2(M))
[13].

In the sequel we will need the two following properties of C∗-algebras of
groupoids.

1. Let G1 and G2 be two locally compact groupoids equipped with Haar systems, and
suppose for instance that G1 is amenable. Then according to [2], C∗(G1) = C∗r (G1)
is nuclear – which implies that for any C∗-algebra B there is only one tensor product
C∗-algebra C∗(G1)⊗ B. The groupoid G1 ×G2 is locally compact, and

C∗(G1 ×G2) � C∗(G1)⊗ C∗(G2) and C∗r (G1 ×G2) � C∗(G1)⊗ C∗r (G2).

2. Let G⇒ G(0) be a locally compact groupoid with a Haar system ν. An open subset
U ⊂ G(0) is saturated ifU is a union of orbits ofG, in other words, ifU = s(r−1(U )) =
r(s−1(U )). The set F = G(0) \ U is then a closed saturated subset of G(0). The Haar
system ν can be restricted to the restrictions G|U := GUU and G|F := GFF , and we have
the following exact sequence of C∗-algebras [27, 45]:

0→ C∗(G|U )
i→ C∗(G)

r→ C∗(G|F )→ 0,

where i : Cc(G|U )→ Cc(G) is the extension of functions by 0, and r : Cc(G)→
Cc(G|F ) is the restriction of functions.
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II. KK-theory

This part onKK-theory starts with a historical introduction. In order to motivate our
purpose we list most of the properties of the KK-functor. Sections 3.5 and 3.6 are
devoted to a detailed description of the ingredients involved inKK-theory. In order
to write this review we have made intensive use of the references [26, 48, 49, 54].
Moreover, a significant part of this chapter was written by Jorge Plazas from the
lectures held in Villa de Leyva, and we would like to thank him for his great
help.

3.4 Introduction to KK-theory

3.4.1 Historical comments

The story begins with several studies by Atiyah [4, 5].
Firstly, recall that if X is a compact space, the K-theory of X is constructed in

the following way: let Ev be the set of isomorphism classes of continuous vector
bundles overX. Thanks to the direct sum of bundles, the set Ev is naturally endowed
with the structure of an abelian semigroup. One can then symmetrize Ev in order
to get a group; this gives the K-theory group of X:

K0(X) = {[E]− [F ]; [E], [F ] ∈ Ev}.
For example, the K-theory of a point is Z, for a vector bundle on a point is
just a vector space, and vector spaces are classified, up to isomorphism, by their
dimension.

A first step towards KK-theory is the discovery, made by Atiyah [4] and inde-
pendently by Jänich [29], that K-theory of a compact space X can be described
with Fredholm operators.

When H is an infinite-dimensional separable Hilbert space, the set F(H) of
Fredholm operators on H is the open subset of L(H) made of bounded operators
T on H such that the dimensions of the kernel and cokernel of T are finite. The set
F(H) is stable under composition. We set

[X,F(H)] = {homotopy classes of continuous maps: X→ F(H)}.
The set [X,F(H)] is naturally endowed with a semigroup structure. Atiyah and
Jänich showed that [X,F(H)] is actually (a group) isomorphic to K0(X) [4]. The
idea of the proof is the following. If f : X→ F(H) is a continuous map, one can
choose a subspace V of H of finite codimension such that

∀x ∈ X, V ∩ ker fx = {0} and
⋃
x∈X

H/fx(V ) is a vector bundle. (3.2)
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Denoting by H/f (V ) the vector bundle arising in (3.2) and by H/V the product
bundle X ×H/V , the Atiyah–Janich isomorphism is then given by

[X,F(H)]→ K0(X),
(3.3)

[f ] �→ [H/V ]− [H/f (V )].

Note that choosing V amounts to modifying f inside its homotopy class into f̃
(defined to be equal to f on V and to 0 on a supplement of V ) such that

Kerf̃ :=
⋃
x∈X

Ker(f̃x) and CoKerf̃ :=
⋃
x∈X

H/f̃x(H) (3.4)

are vector bundles over X. These constructions contain relevant information for
the sequel: the map f arises as a generalized Fredholm operator on the Hilbert
C(X)-module C(X,H).

Later, Atiyah tried to describe the dual functor K0(X), the K-homology of X,
with the help of Fredholm operators. This gave rise to Ell(X), whose cycles are
triples (H,π, F ) where:

� H = H0 ⊕H1 is a Z2 graded Hilbert space.
� π : C(X)→ L(H ) is a representation by operators of degree 0, which means that

π (f ) =
(
π0(f ) 0

0 π1(f )

)
.

� F belongs to L(H ), is of degree 1 and thus is of the form

F =
(

0 G

T 0

)
,

and satisfies

F 2 − 1 ∈ K(H ) and [π, F ] ∈ K(H )·
In particular, G is an inverse of T modulo compact operators.

Elliptic operators on closed manifolds produce natural examples of such cycles.
Moreover, there exists a natural pairing between Ell(X) and K0(X), justifying the
choice of Ell(X) as a candidate for the cycles of the K-homology of X:

K0(X)× Ell(X)→ Z,
(3.5)

([E], (H,π, F )) �→ Index(FE),

where Index(FE) = dim(Ker(FE))− dim(CoKer(FE)) is the index of a Fredholm
operator associated to a vector bundle E on X and a cycle (H,π, F ), as follows.
Let E′ be a vector bundle on X such that E ⊕ E′ � CN ×X, and let e be the
projection of CN ×X onto E. We can identify C(X,CN ) ⊗

C(X)
H with HN . Let ẽ
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be the image of e ⊗ 1 under this identification. We define FE := ẽFN |ẽ(HN ), where
FN is the diagonal operator with F in each diagonal entry. The operator FE is the
desired Fredholm operator on ẽ(HN ).

Now, we should recall that to any C∗-algebra A (actually, to any ring) is associ-
ated a group K0(A). When A is unital, it can be defined as follows:

K0(A) = {[E]− [F]; [E], [F] are isomorphism classes of

finitely generated projective A-modules}.
Recall that an A-module E is finitely generated and projective if there exists

another A-module G such that E ⊕ G � AN for some integer N .
The Swan–Serre theorem asserts that for any compact space X, the category of

(complex) vector bundles over X is equivalent to the category of finitely generated
projective modules overC(X); in particular,K0(X) � K0(C(X)). This fact and the
(C∗-)algebraic flavor of the preceding constructions lead to the natural attempt to
generalize them for noncommutative C∗-algebras.

During 1979 and the 1980s G. Kasparov defined with great success, for any
pair ofC∗-algebras, a bivariant theory, theKK-theory. This theory generalizes both
K-theory and K-homology and carries a product generalizing the pairing (3.5).
Moreover, in many cases KK(A,B) contains all the morphisms from K0(A) to
K0(B). To understand this bifunctor, we will study the notions of Hilbert modules,
of adjointable operators acting on them and of generalized Fredholm operators
which generalize to arbitrary C∗-algebras the notions already encountered for
C(X). Before going to this functional-analytic part, we end this introduction by
listing most of the properties of the bifunctor KK .

3.4.2 Abstract properties of KK(A,B)

Let A and B be two C∗-algebras. In order to simplify our presentation, we assume
that A and B are separable. Here is a list of the most important properties of the
KK functor:
KK(A,B) is an abelian group.
Functorial properties. The functorKK is covariant in B and contravariant in A:

if f : B → C and g : A→ D are two homomorphisms of C∗-algebras, there exist
two homomorphisms of groups,

f∗ : KK(A,B)→ KK(A,C) and g∗ : KK(D,B)→ KK(A,B).

In particular Id∗ = Id and Id∗ = Id.
Each ∗-morphism f : A→ B defines an element, denoted by [f ], in KK(A,B).

We set 1A := [IdA] ∈ KK(A,A).
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Homotopy invariance. KK(A,B) is homotopy invariant. Recall that the C∗-
algebras A and B are homotopic if there exist two ∗-morphisms f : A→ B and
g : B → A such that f ◦ g is homotopic to IdB and g ◦ f is homotopic to IdA. Two
homomorphisms F,G : A→ B are homotopic when there exists a ∗-morphism
H : A→ C([0, 1], B) such that H (a)(0) = F (a) and H (a)(1) = G(a) for any
a ∈ A.

Stability. If K is the algebra of compact operators on a Hilbert space, there are
isomorphisms

KK(A,B ⊗K) � KK(A⊗K, B) � KK(A,B).

More generally, the bifunctor KK is invariant under Morita equivalence.
Suspension. If E is a C∗-algebra, there exists a homomorphism

τE : KK(A,B)→ KK(A⊗ E,B ⊗ E)

which satisfies τE ◦ τD = τE⊗D for any C∗-algebra D.
Kasparov product. There is a well-defined bilinear coupling

KK(A,D)× KK(D,B)→ KK(A,B),

(x, y) �→ x ⊗ y,
called the Kasparov product. It is associative, covariant in B and contravariant in
A: if f : C → A and g : B → E are two homomorphisms of C∗-algebras, then

f ∗(x ⊗ y) = f ∗(x)⊗ y and g∗(x ⊗ y) = x ⊗ g∗(y).

If g : D→ C is another ∗-morphism, x ∈ KK(A,D) and z ∈ KK(C,B), then

h∗(x)⊗ z = x ⊗ h∗(z).
Moreover, the following equalities hold:

f ∗(x) = [f ]⊗ x, g∗(z) = z⊗ [g] and [f ◦ h] = [h]⊗ [f ].

In particular

x ⊗ 1D = 1A ⊗ x = x.
The Kasparov product behaves well with respect to suspensions. If E is a C∗-
algebra,

τE(x ⊗ y) = τE(x)⊗ τE(y).

This enables us to extend the Kasparov product:

⊗
D

: KK(A,B ⊗D)× KK(D ⊗ C,E)→ KK(A⊗ C,B ⊗ E),

(x, y) �→ x ⊗
D
y := τC(x)⊗ τB(y).

The Kasparov product ⊗
C

is commutative.
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Higher groups. For any n ∈ N, let

KKn(A,B) := KK(A,C0(Rn)⊗ B).

An alternative definition, leading to isomorphic groups, is

KKn(A,B) := KK(A,Cn ⊗ B),

where Cn is the Clifford algebra of Cn. This will be explained later. The functor
KK satisfies Bott periodicity: there is an isomorphism

KK2(A,B) � KK(A,B).

Exact sequences. Consider the following exact sequence of C∗-algebras:

0→ J
i→ A

p→ Q→ 0,

and let B be another C∗-algebra. Under a few more assumptions (e.g., all the
C∗-algebras are nuclear or K-nuclear, or the preceding exact sequence admits a
completely positive norm-decreasing cross section [50]), we have the following
two periodic exact sequences:

KK(B, J )
i∗−−−→ KK(B,A)

p∗−−−→ KK(B,Q)

δ

% 'δ
KK1(B,Q) ←−−−

p∗
KK1(B,A) ←−−−

i∗
KK1(B, J )

KK(Q,B)
p∗−−−→ KK(A,B)

i∗−−−→ KK(J, B)

δ

% 'δ
KK1(J, B) ←−−−

i∗
KK1(A,B) ←−−−

p∗
KK1(Q,B)

where the connecting homomorphisms δ are given by Kasparov products.
Final remarks. Let us go back to the end of the introduction in order to make it

more precise.
The usual K-theory groups appears as special cases of KK-groups:

KK(C, B) � K0(B),

and the K-homology of a C∗-algebra A is defined by

K0(A) = KK(A,C).

Any x ∈ KK(A,B) induces a homomorphism of groups:

KK(C, A) � K0(A)→ K0(B) � KK(C, B),

α �→ α ⊗ x.
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In most situations, the induced homomorphism

KK(A,B)→ Mor(K0(A),K0(B))

is surjective. Thus one can think of KK-elements as homomorphisms between
K-groups.

When X is a compact space, one hasK0(X) � K0(C(X)) � KK(C, C(X)) and,
as we will see shortly, K0(C(X)) = KK(C(X),C) is a quotient of the set Ell(X)
introduced by Atiyah. Moreover the pairing K0(X)× Ell(X)→ Z coincides with
the Kasparov product KK(C, C(X))× KK(C(X),C)→ KK(C,C) � Z.

3.5 Hilbert modules

We review the main properties of Hilbert modules over C∗-algebras, necessary for
a correct understanding of bivariant K-theory. We closely follow the presentation
given by Skandalis [48]. Most of the proofs are taken from his lectures on the
subject. We are indebted to him for allowing us to use his lecture notes. Some of
the following material can also be found in [54], where the reader will find a guide
to the literature and a more detailed presentation.

3.5.1 Basic definitions and examples

Let A be a C∗-algebra and E be a A-right module.
A sesquilinear form (·, ·) : E × E→ A is positive if for all x ∈ E one has

(x, x) ∈ A+. Here A+ denotes the set of positive elements in A. It is positive
definite if moreover (x, x) = 0 if and only if x = 0.

Let (·, ·) : E × E→ A be a positive sesquilinear form, and set Q(x) = (x, x).
By the polarization identity

∀x, y ∈ E, (x, y) = 1

4
(Q(x + y)− iQ(x + iy)−Q(x − y)+ iQ(x − iy)) ,

we get

∀x, y ∈ E, (x, y) = (y, x)∗.

Definition 3.5.1 A pre-Hilbert A-module is a right A-module E with a positive
definite sesquilinear map (·, ·) : E × E→ A such that y �→ (x, y) is A-linear.

Proposition 3.5.2 Let (E, (·, ·)) be a pre-Hilbert A-module. Then

∀x ∈ E, ‖x‖ =
√
‖(x, x)‖ (3.6)

defines a norm on E.

The only nontrivial fact is the triangle inequality, which results from
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Lemma 3.5.3 (Cauchy–Schwarz inequality)

∀x, y ∈ E, (x, y)∗(x, y) ≤ ‖x‖2(y, y).

In particular, ‖(x, y)‖ ≤ ‖x‖‖y‖.
Set a = (x, y). We have for all t ∈ R that (xa + ty, xa + ty) ≥ 0; thus

2ta∗a ≤ a∗(x, x)a + t2(y, y). (3.7)

Because (x, x) ≥ 0, we have a∗(x, x)a ≤ ‖x‖2a∗a (use the equivalence z∗z ≤ w∗w
if and only if ‖zx‖ ≤ ‖wx‖ for all x ∈ A), and choosing t = ‖x‖2 in (3.7) gives
the result.

Definition 3.5.4 A HilbertA-module is a pre-HilbertA-module which is complete
for the norm defined in (3.6).

A HilbertA-submodule of a HilbertA-module is a closedA-submodule provided
with the restriction of the A-valued scalar product.

When there is no ambiguity about the base C∗-algebra A, we simply say pre-
Hilbert module and Hilbert module.

Let (E, (·, ·)) be a pre-HilbertA-module. From the continuity of the sesquilinear
form (·, ·) : E × E→ A and of the right multiplication E→ E, x �→ xa for any
a ∈ A, we infer that the completion of E for the norm (3.6) is a HilbertA-module.

Remark 3.5.5 In the definition of a pre-Hilbert A-module, one can remove the
hypothesis that (·, ·) is definite. In that case, (3.6) defines a seminorm, and one
checks that the Hausdorff completion of a pre-Hilbert A-module, in this extended
sense, is a Hilbert A-module.

We continue this subsection with classical examples.

1. The algebra A is a Hilbert A-module with its obvious right A-module structure and

(a, b) := a∗b.
2. For any positive integer n, An is a Hilbert A-module with its obvious right A-module

structure and

((ai), (bi)) :=
n∑
i=1

a∗i bi ·

Observe that
∑n
i=1 a

∗
i ai is a sum of positive elements in A, which implies that

‖(ai)‖ =
√√√√∥∥∥∥ n∑

i=1

a∗i ai

∥∥∥∥ ≥ ‖ak‖



Index theory and groupoids 113

for all k. It follows that if (am1 , . . . , a
m
n )m is a Cauchy sequence in An and that the

sequences (amk )m are Cauchy in A and thus convergent, and we conclude that An is
complete.

3. Example 2 can be extended to the direct sum of n Hilbert A-modules E1, . . . , En with
the Hilbertian product:

((xi), (yi)) :=
n∑
i=1

(xi, yi)Ei .

4. If F is a closed A-submodule of a Hilbert A-module E, then F is a Hilbert A-module.
For instance, a closed right ideal in A is a Hilbert A-module.

5. The standard Hilbert A-module is defined by

HA =
{
x = (xk)k∈N ∈ AN |

∑
k∈N
x∗k xk converges

}
. (3.8)

The right A-module structure is given by (xk)a = (xka), and the Hilbertian A-valued
product is

((xk), (yk)) =
+∞∑
k=0

x∗k yk. (3.9)

This sum converges for elements of HA; indeed, for all q > p ∈ N we have∥∥∥∥ q∑
k=p
x∗k yk

∥∥∥∥ = ∥∥ ((xk)qp, (yk)qp)Aq−p ∥∥
≤ ∥∥(xk)

q
p

∥∥
Aq−p

∥∥(yk)
q
p

∥∥
Aq−p (Cauchy–Schwarz inequality in Aq−p)

=
√√√√∥∥∥∥ q∑

k=p
x∗k xk

∥∥∥∥
√√√√∥∥∥∥ q∑

k=p
y∗k yk

∥∥∥∥.
This implies that

∑
k≥0 x

∗
k yk satisfies the Cauchy criterion, and therefore converges, so

that (3.9) makes sense. Because for all (xk), (yk) in HA∑
k≥0

(xk + yk)∗(xk + yk) =
∑
k≥0

x∗k xk +
∑
k≥0

y∗k xk +
∑
k≥0

x∗k yk +
∑
k≥0

y∗k yk

is the sum of four convergent series, we find that (xk)+ (yk) = (xk + yk) is in HA. We
also have, as before, that for all a ∈ A and (xk) ∈ HA,∥∥∥∥ +∞∑

k=0

(xka)∗(xka)

∥∥∥∥ ≤ ‖a‖2

∥∥∥∥ +∞∑
k=0

x∗k xk

∥∥∥∥.
Hence, HA is a pre-Hilbert A-module, and we need to check that it is complete. Let
(un)n = ((uni ))n be a Cauchy sequence in HA. We get, as in example 2, that for all i ∈ N

the sequence (uni )n is Cauchy in A and thus converges to an element denoted vi . Let us
check that (vi) belongs to HA.
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Let ε > 0. Choose n0 such that

∀p > q ≥ n0, ‖uq − up‖HA
≤ ε/2.

Choose i0 such that

∀k > j ≥ i0,
∥∥∥∥ k∑
i=j
u
n0
i
∗un0
i

∥∥∥∥1/2

≤ ε/2.

Then thanks to the triangle inequality in Ak−j , we get for all p, q ≥ n0 and j, k ≥ i0∥∥∥∥ k∑
i=j
u
p

i
∗upi

∥∥∥∥1/2

≤
∥∥∥∥ k∑
i=j

(upi − un0
i )∗(upi − un0

i )

∥∥∥∥1/2

+
∥∥∥∥ k∑
i=j
u
n0
i
∗un0
i

∥∥∥∥1/2

≤ ε.

Taking the limit p→+∞, we get ‖∑k
i=j v

∗
i vi‖1/2 ≤ ε for all j, k ≥ i0, which implies

that (vi) ∈ HA. It remains to check that (un)n converges to v = (vi) in HA. With the
notation just defined,

∀p, q ≥ n0, ∀I ∈ N,

∥∥∥∥ I∑
i=0

(upi − uqi )∗(upi − uqi )
∥∥∥∥1/2

≤ ε.

Taking the limit p→+∞, we have

∀q ≥ n0, ∀I ∈ N,

∥∥∥∥ I∑
i=0

(vi − uqi )∗(vi − uqi )
∥∥∥∥1/2

≤ ε,

and taking the limit I →+∞,

∀q ≥ n0, ‖v − uq‖ ≤ ε,
which ends the proof.

The standard Hilbert module HA is maybe the most important Hilbert module.
Indeed, Kasparov proved:

Theorem 3.5.6 Let E be a countably generated Hilbert A-module. Then HA and
E ⊕HA are isomorphic.

The proof can be found in [54]. This means that there exists an A-linear unitary
map U : E ⊕HA→ HA. The notion of unitary uses the notion of adjoint, which
will be explained later.

Remark 3.5.7
1. The algebraic sum

⊕
N

A is dense in HA.

2. In HA we can replace the summand A by any sequence of Hilbert A-modules (Ei)i∈N,
and the Hilbertian A-valued product by

((xk), (yk)) =
+∞∑
k=0

(xk, yk)Ek .

If Ei = E for all i ∈ N, the resulting Hilbert A-module is denoted by l2(N, E).
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3. We can generalize the construction to any family (Ei)i∈I using summable families
instead of convergent series.

We end this subsection with two concrete examples.

a. LetX be a locally compact space andE a Hermitian vector bundle. The spaceC0(X,E)
of continuous sections of E vanishing at infinity is a Hilbert C0(X)-module with the
module structure given by

ξ · a(x) = ξ (x)a(x), ξ ∈ C0(X,E), a ∈ C0(X),

and the C0(X)-valued product given by

(ξ, η)(x) = (ξ (x), η(x))Ex .

b. Let G be a locally compact groupoid with a Haar system, λ, and E a Hermitian vector
bundle over G(0). Then

f, g ∈ Cc(G, r∗E), (f, g)(γ ) =
∫
Gs(γ )

(f (ηγ−1), g(η))Er(η)dλ
s(γ )(η) (3.10)

gives a positive definite sesquilinear Cc(G)-valued form which has the correct behavior
with respect to the right action of Cc(G) on Cc(G, r∗E). This leads to two norms
‖f ‖ = ‖(f, f )‖1/2

C∗(G) and ‖f ‖r = ‖(f, f )‖1/2
C∗r (G) and two completions of Cc(G, r∗E),

denoted C∗(G, r∗E) and C∗r (G, r∗E), which are Hilbert modules, respectively, over
C∗(G) and C∗r (G).

3.5.2 Homomorphisms of Hilbert A-modules

LetE,F be HilbertA-modules. We will need the orthogonality in Hilbert modules:

Lemma 3.5.8 Let S be a subset of E. The orthogonal of S,

S⊥ = {x ∈ E | ∀y ∈ S, (y, x) = 0},
is a Hilbert A-submodule of E.

3.5.2.1 Adjoints

Let T : E→ F be a map. T is adjointable if there exists a map S : F → E such
that

∀(x, y) ∈ E × F, (T x, y) = (x, Sy). (3.11)

Definition 3.5.9 Adjointable maps are called homomorphisms of Hilbert A-
modules. The set of adjointable maps from E to F is denoted by Mor(E,F ),
and Mor(E) = Mor(E,E). The space of linear continuous maps from E to F is
denoted by L(E,F ) and L(E) = L(E,E).
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The terminology will become clear after the next proposition.

Proposition 3.5.10 Let T ∈ Mor(E,F ).

(a) The operator satisfying (3.11) is unique. It is denoted by T ∗ and called the adjoint of
T . One has T ∗ ∈ Mor(F,E) and (T ∗)∗ = T .

(b) T is linear, A-linear and continuous.

(c) ‖T ‖ = ‖T ∗‖, ‖T ∗T ‖ = ‖T ‖2, and Mor(E,F ) is a closed subspace of L(E,F ). In
particular Mor(E) is a C∗-algebra.

(d) If S ∈ Mor(E,F ) and T ∈ Mor(F,G), then T S ∈ Mor(E,G) and (T S)∗ = S∗T ∗.

Proof (a) Let R, S be two maps satisfying (3.11) for T . Then

∀x ∈ E, y ∈ F, (x,Ry − Sy) = 0,

and taking x = Ry − Sy yields Ry − Sy = 0. The remaining part of the assertion
is obvious.

(b) ∀x, y ∈ E, z ∈ F, λ ∈ C,

(T (x + λy), z) = (x + λy, T ∗z) = (x, T ∗z)+ λ(y, T ∗z) = (T x, z)(λTy, z);

thus T (x + λy) = T x + λTy, and T is linear. Moreover,

∀x ∈ E, y ∈ F, a ∈ A, (T (xa), y) = (xa, T ∗y) = a∗(x, T ∗y) = ((T x)a, y),

which gives the A-linearity. Consider the set

S = {(−T ∗y, y) ∈ E × F |y ∈ F }.
Then

(x0, y0) ∈ S⊥ ⇔ ∀y ∈ F, (x0,−T ∗y)+ (y0, y) = 0

⇔ ∀y ∈ F, (y0 − T x0, y) = 0.

Thus G(T ) = {(x, y) ∈ E × F | y = T x} = S⊥ is closed, and the closed-graph
theorem implies that T is continuous.

(c) We have

‖T ‖2 = sup
‖x‖≤1

‖T x‖2 = sup
‖x‖≤1

(x, T ∗T x) ≤ ‖T ∗T ‖ ≤ ‖T ∗‖‖T ‖.

Thus ‖T ‖ ≤ ‖T ∗‖, and switching T and T ∗ gives the equality. We have also
proved

‖T ‖2 ≤ ‖T ∗T ‖ ≤ ‖T ∗‖‖T ‖ = ‖T ‖2;

thus ‖T ∗T ‖ = ‖T ‖2, and the norm of Mor(E) satisfies the C∗-algebraic equation.
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Let (Tn)n be a sequence in Mor(E,F ) which converges to T ∈ L(E,F ). Because
‖T ‖ = ‖T ∗‖ and because T → T ∗ is (anti)linear, the sequence (T ∗n )n is a Cauchy
sequence, and therefore converges to an operator S ∈ L(F,E). It then immediately
follows that S is the adjoint of T . This proves that Mor(E,F ) is closed; in particular,
Mor(E) is a C∗-algebra.

(d) Easy. �

Remark 3.5.11 There exist continuous linear and A-linear maps T : E→ F

which do not have an adjoint. For instance, take A = C([0, 1]), J = C0(]0, 1])
and T : J ↪→ A the inclusion. Assuming that T is adjointable, a one-line com-
putation proves that T ∗1 = 1. But 1 does not belong to J . Thus J ↪→ A has no
adjoint.

One can also take E = C([0, 1])⊕ C0(]0, 1]) and T : E→ E, x + y �→ y + 0
to produce an example of T ∈ L(E) and T �∈ Mor(E).

One can characterize self-adjoint and positive elements in the C∗-algebra
Mor(E) as follows.

Proposition 3.5.12 Let T ∈ Mor(E).

(a) T = T ∗ ⇔ ∀x ∈ E, (x, T x) = (x, T x)∗,

(b) T ≥ 0⇔ ∀x ∈ E, (x, T x) ≥ 0.

Proof (a) The implication⇒ is obvious. Conversely, set QT (x) = (x, T x). Using
the polarization identity

(x, T y) = 1

4
(QT (x + y)− iQT (x + iy)−QT (x − y)+ iQT (x − iy)) ,

one easily gets (x, T y) = (T x, y) for all x, y ∈ E; thus T is self-adjoint.
(b) If T is positive, there exists S ∈ Mor(E) such that T = S∗S. Then (x, T x) =

(Sx, Sx) is positive for all x. Conversely, if (x, T x) ≥ 0 for all x, then T is self-
adjoint by (a), and there exist positive elements T+, T− such that

T = T+ − T−, T+T− = T−T+ = 0.

It follows that

∀x ∈ E, (x, T+x) ≥ (x, T−x),

∀z ∈ E, (T−z, T+T−z) ≥ (T−z, T−T−z),

∀z ∈ E, (z, (T−)3z) ≤ 0.

Because T− is positive, T 3
− is also positive and the last inequality implies T 3

− = 0.
It follows that T− = 0 and then T = T+ ≥ 0. �
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3.5.2.2 Orthocompletion

Recall that for any subset S of E, S⊥ is a Hilbert submodule of E. It is also worth
noticing that any orthogonal submodules F ⊥ G of E are direct summands.

The following properties are left to check as an exercise:

Proposition 3.5.13 Let F,G be A-submodules of E.

� E⊥ = {0} and {0}⊥ = E.
� F ⊂ G⇒ G⊥ ⊂ F⊥.
� F ⊂ F⊥⊥.
� If F ⊥ G and F ⊕G = E, then F⊥ = G and G⊥ = F . In particular, F and G are

Hilbert submodules.

Definition 3.5.14 A HilbertA-submodule F ofE is said to be orthocomplemented
if F ⊕ F⊥ = E.

Remark 3.5.15 A Hilbert submodule is not necessarily orthocomplemented, even
if it can be topologically complemented. For instance, consider A = C([0, 1]) and
J = C0(]0, 1]) as a Hilbert A-submodule of A. One easily checks that J⊥ = {0};
thus J is not orthocomplemented. On the other hand, A = J ⊕ C.

Lemma 3.5.16 Let T ∈ Mor(E). Then

� ker T ∗ = (Im T )⊥,
� Im T ⊂ (ker T ∗)⊥.

The proof is obvious. Note the difference in the second point from the case
of bounded operators on Hilbert spaces (where equality always occurs). Thus, in
general, ker T ∗ ⊕ Im T is not the whole of E. Such a situation can occur when
Im T is not orthocomplemented.

Let us point out that we can have T ∗ injective without having Im T dense in E
(for instance, T : C[0, 1]→ C[0, 1], f �→ tf ). Nevertheless, we have:

Theorem 3.5.17 Let T ∈ Mor(E,F ). The following assertions are equivalent:

(i) Im T is closed,
(ii) Im T ∗ is closed,

(iii) 0 is isolated in spec(T ∗T ) (or 0 �∈ spec(T ∗T )),
(iv) 0 is isolated in spec(T T ∗) (or 0 �∈ spec(T T ∗)),

and in that case Im T , Im T ∗ are orthocomplemented.

Thus, under the assumption of the theorem ker T ∗ ⊕ Im T = F , ker T ⊕ Im T ∗ =
E. Before proving the theorem, we gather some technical preliminaries into a
lemma:
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Lemma 3.5.18 Let T ∈ Mor(E,F ). Then:

(i) T ∗T ≥ 0. We set |T | = √T ∗T .
(ii) Im T ∗ = Im |T | = Im T ∗T .

(iii) Assume that T (E1) ⊂ F1 for some Hilbert submodules E1, F1. Then T |E1 ∈
Mor(E1, F1).

(iv) If T is onto, then T T ∗ is invertible (in Mor(F )) and E = ker T ⊕ Im T ∗.

Proof Proof of the lemma: (i) is obvious.
(ii) One has T ∗T (E) ⊂ T ∗(F ). Conversely,

T ∗ = lim T ∗(1/n+ T T ∗)−1T T ∗.

This is a convergence in norm, because

‖T ∗(1/n+ T T ∗)−1T T ∗ − T ∗‖ =
∥∥∥∥1

n
T ∗
(

1

n
+ T T ∗

)−1 ∥∥∥∥ = O(1/
√
n).

It follows that T ∗(F ) ⊂ T ∗T (E) and thus Im T ∗ = Im T ∗T . Replacing T by |T |
yields the other equality.

(iii) Easy.
(iv) By the open-mapping theorem, there exists a positive real number k > 0

such that each y ∈ F has a preimage xy by T with ‖y‖ ≥ k‖xy‖. Using the Cauchy–
Schwarz inequality for T ∗y and xy , we get

‖T ∗y‖ ≥ k‖y‖ ∀y ∈ F. (∗)
Recall that in aC∗-algebra, the inequality a∗a ≤ b∗b is equivalent to ‖ax‖ ≤ ‖bx‖
for all x ∈ A. This can be adapted to Hilbert modules to show that (∗) implies
T T ∗ ≥ k2 in Mor(F ), so that T T ∗ is invertible. Then p = T ∗(T T ∗)−1T is an
idempotent and E = kerp ⊕ Imp. Moreover, (T T ∗)−1T is onto, from which it
follows that Imp = Im T ∗. On the other hand, T ∗(T T ∗)−1 is injective, so that
kerp = ker T . �

Proof Proof of the theorem: Let us start with the implication (i)⇒ (iv). By point
(iii) of the lemma, S := (T : E→ T E) ∈ Mor(E, T E), and by point (iv) of the
lemma SS∗ is invertible. Because the spectra of SS∗ and S∗S coincide outside 0
and because S∗S = T ∗T , we get (iii).

The implication (iv) ⇒ (i): Consider the functions f, g : R→ R defined by
f (0) = g(0) = 0, f (t) = 1, g(t) = 1/t for t �= 0. Thus f and g are continu-
ous on the spectrum of T T ∗. Using the equalities f (t)t = t and tg(t) = f (t),
we get f (T T ∗)T T ∗ = T T ∗ and T T ∗g(T T ∗) = f (T T ∗), from which we deduce
Im f (T T ∗) = Im T T ∗. But f (T T ∗) is a projector (self-adjoint idempotent); hence
Im T T ∗ is closed and orthocomplemented. Using point (ii) of the lemma and the
inclusion Im T T ∗ ⊂ Im T yields (i) (and also the orthocomplementability of Im T ).
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At this point we have the following equivalences: (i)⇔ (iii)⇔ (iv). Replacing
T by T ∗, we get (ii)⇔ (iii)⇔ (iv). �

Another result which deserves to be stated is:

Proposition 3.5.19 LetH be a Hilbert submodule ofE, and T : E→ F aA-linear
map.

� H is orthocomplemented if and only if i : H ↪→ E ∈ Mor(H,E).
� T ∈ Mor(E,F ) if and only if the graph of T ,

{(x, y) ∈ E × F |y = T x},
is orthocomplemented.

3.5.2.3 Partial isometries

The following easy result is left as an exercise:

Proposition 3.5.20 (and definition). Let u ∈ Mor(E,F ). The following assertions
are equivalent:

(i) u∗u is an idempotent,
(ii) uu∗ is an idempotent,

(iii) u∗ = u∗uu∗,
(iv) u = uu∗u.

u is then called a partial isometry, with initial support I = Im u∗ and final support
J = Im u.

Remark 3.5.21 If u is a partial isometry, then ker u = ker u∗u, ker u∗ = ker uu∗,
Im u = Im uu∗ and Im u∗ = Im u∗u. In particular, u has closed range, and E =
ker u⊕ Im u∗, F = ker u∗ ⊕ Im u, where the direct sums are orthogonal.

3.5.2.4 Polar decompositions

All homomorphisms do not admit a polar decomposition. For instance, con-
sider T ∈ Mor(C[−1, 1]) defined by Tf = t · f (here C[−1, 1] is regarded as
a Hilbert C[−1, 1]-module). T is self-adjoint, and |T | : f �→ |t | · f . The equa-
tion T = u|T |, u ∈ Mor(C[−1, 1]), leads to the constraint u(1)(t) = sign(t), so
u(1) �∈ C[−1, 1] and u does not exist.

The next result clarifies the requirements for a polar decomposition to exist:

Theorem 3.5.22 Let T ∈ Mor(E,F ) such that Im T and Im T ∗ are orthocom-
plemented. Then there exists a unique u ∈ Mor(E,F ), vanishing on ker T , such
that

T = u|T |.
Moreover, u is a partial isometry with initial support Im T ∗ and final support Im T .
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Proof We first assume that T and T ∗ have dense range. Setting un = T (1/n+
T ∗T )−1/2, we get a bounded sequence (‖un‖ ≤ 1) such that for all y ∈ F we
have un(T ∗y) = T (1/n+ T ∗T )−1/2T ∗y →√T T ∗(y). Thus, by density of Im T ∗,
un(x) converges for all x ∈ E. Let v(x) denotes the limit. Replacing T by T ∗,
we also have that u∗n(y) converges for all y ∈ F , which yields v ∈ Mor(E,F ).
A careful computation shows that un|T | − T goes to 0 in norm. Thus v|T | = T .
The homomorphism v is unique by density of Im |T |, and is unitary because
u∗nun(x)→ x for all x ∈ Im T ∗T ; this proves v∗v = 1, and similarly for vv∗.

Now consider the general case, and set E1 = Im T ∗, F1 = Im T . One applies
the first step to the restriction T1 ∈ Mor(E1, F1) of T , and we denote by v1 the
unitary homomorphism constructed. We set u(x) = v1(x) if x ∈ E1, and u(x) = 0
if x ∈ E⊥1 = ker T . This definition forces the uniqueness, and it is clear that u is a
partial isometry with the claimed initial and final supports. �

Remark 3.5.23 u is the strong limit of T (1/n+ T ∗T )−1/2.

3.5.2.5 Compact homomorphisms

Let x ∈ E, y ∈ F , and define θy,x ∈ Mor(E,F ) by

θy,x(z) = y · (x, z).
The adjoint is given by θ∗y,x = θx,y . Then

Definition 3.5.24 We define K(E,F ) to be the closure of the linear span of
{θy,x ; x ∈ E, y ∈ F } in Mor(E,F ).

One easily checks that

� ‖θy,x‖ ≤ ‖x‖‖y‖ and ‖θx,x‖ = ‖x‖2,
� T θy,x = θTy,x and θy,xS = θy,S∗x ,
� K(E) := K(E,E) is a closed two-sided ideal of Mor(E) (and hence a C∗-algebra).

We also prove:

Proposition 3.5.25

M(K(E)) � Mor(E),

where M(A) denotes the multiplier algebra of a C∗-algebra A.

Proof One can show that for all x ∈ E there is a unique y ∈ E such that x =
y · 〈y, y〉 (a technical exercise: show that the limit y = lim x · fn(

√
(x, x)) with

fn(t) = t1/3(1/n+ t)−1 exists and satisfies the desired assertion). Consequently,
E is a nondegenerate K(E)-module (i.e., K(E) · E = E); indeed, x = y · 〈y, y〉 =
θy,y(y). Using an approximate unit (uλ)� forK(E), we can extend theK(E)-module
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structure of E into an M(K(E))-module structure:

∀T ∈M(K(E)), x ∈ E, T · x = lim
�
T (uλ) · x.

The existence of the limit is a consequence of x = θy,y(y) and T (uλ) · θy,y =
T (uλθy,y)→ T (θy,y). The limit is T (θy,y) · y. By the uniqueness of y, this module
structure, extending that of K(E), is unique.

Hence each m ∈M(K(E)) gives rise to a mapM : E→ E. For any x, z in E,

(z,M · x) = (z, (mθy,y) · y) = ((mθy,y)
∗(z), y);

thus M has an adjoint: M ∈ Mor(E), and M∗ corresponds to m∗. The map ρ :
m→ M provides a ∗-homomorphism from M(K(E)) to Mor(E), which is the
identity on K(E). On the other hand, let π : Mor(E)→M(K(E) be the unique ∗-
homomorphism, equal to the identity on K(E), associated to the inclusion K(E) ⊂
Mor(E) as a closed ideal. We have π ◦ ρ = Id, and by uniqueness of theM(K(E))-
module structure of E, ρ ◦ π = Id. �

Let us give some generic examples:

(i) Consider A as a Hilbert A-module. We know that for any a ∈ A, there exists c ∈ A
such that a = cc∗c. It follows that the map γa : A→ A, b �→ ab is equal to θc,c∗c and
thus is compact. We get a ∗-homomorphism γ : A→ K(A), a �→ γa , which has dense
image (the linear span of the θs is dense in K(A)) and is clearly injective, because
yb = 0 for all b ∈ A implies y = 0. Thus γ is an isomorphism:

K(A) � A.
In particular, Mor(A) �M(A), and if 1 ∈ A, then A � Mor(A) = K(A).

(ii) For any n, one has in a similar way K(An) � Mn(A) and Mor(An) � Mn(M(A)). If
moreover 1 ∈ A, then

Mor(An) = K(An) � Mn(A). (i)

For any Hilbert A-module E, we also have K(En) � Mn(K(E)).

The relations (i) can be extended to arbitrary finitely generated Hilbert A-
modules:

Proposition 3.5.26 LetA be a unitalC∗-algebra, andE aA-Hilbert module. Then
the following are equivalent:

(i) E is finitely generated.
(ii) K(E) = Mor(E).

(iii) IdE is compact.

In that case, E is also projective (i.e., it is a direct summand of An for some n).
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For the proof we refer to [54].

3.5.3 Generalized Fredholm operators

Atkinson’s theorem claims that for any bounded linear operator on a Hilbert space
H , the assertion

kerF and kerF ∗ are finite dimensional

is equivalent to the following: There exists a linear bounded operator G such that
FG− Id,GF − Id are compact. This situation is a little more subtle on Hilbert
A-modules, in that firstly all the kernel of homomorphisms are A-modules which
are not necessarily free, and secondly, replacing the condition “finite dimensional”
by “finitely generated” is not enough to recover the previous equivalence. This
is why one uses the second assertion as a definition of Fredholm operator in the
context of Hilbert modules, and we will see how to adapt Atkinson’s classical result
to this new setup.

Definition 3.5.27 The homomorphism T ∈ Mor(E,F ) is a generalized Fredholm
operator if there exists G ∈ Mor(F,E) such that

GF − Id ∈ K(E) and FG− Id ∈ K(F ).

The following theorem is important to understand the next chapter on KK-theory.

Theorem 3.5.28 Let A be a unital C∗-algebra, E a countably generated Hilbert
A-module and F a generalized Fredholm operator on E .

(i) If ImF is closed, then kerF and kerF ∗ are finitely generated Hilbert modules.
(ii) There exists a compact perturbation G of F such that ImG is closed.

Proof (1) Because ImF is closed, so is ImF ∗, and both are orthocomplemented
by, respectively, kerF ∗ and kerF . Let P ∈ Mor(E) be the orthogonal projection
on kerF . Because F is a generalized Fredholm operator, there exists G ∈ Mor(E)
such thatQ = 1−GF is compact. In particular,Q is equal to Id on kerF , and

QP : E = kerF ⊕ ImF ∗ → E, x ⊕ y �→ x ⊕ 0.

Because QP is compact, its restriction QP |kerF : kerF → kerF is also com-
pact, butQP |kerF = idkerF ; hence Proposition 3.5.26 implies that kerF is finitely
generated. The same argument works for kerF ∗.

(2) Let us denote by π the projection homomorphism

π : Mor(E)→ C(E) := Mor(E)/K(E).
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Because π (F ) is invertible in C(E), it has a polar decomposition: π (F ) = ω ·
|π (F )|. Any unitary of C(E) can be lifted to a partial isometry of Mor(E) [54]. Let
U be such a lift of the unitary ω. Using |π (F )| = π (|F |), it follows that

F = U |F | mod K(E).

Because π (|F |) is also invertible, and positive, we can form log(π (|F |)) and choose
a self-adjoint H ∈ Mor(E) with π (H ) = log(π (|F |)). Then

π (UeH ) = ωπ (|F |) = π (F ),

i.e., UeH is a compact perturbation of F (and thus is a generalized Fredholm
operator). The operator U is a partial isometry and hence has a closed image; and
eH is invertible in Mor(E), whence UeH has a closed image, and the theorem is
proved. �

3.5.4 Tensor products

3.5.4.1 Inner tensor products

Let E be a Hilbert A-module, F a Hilbert B-module, and π : A→ Mor(F ) a
∗-homomorphism. We define a sesquilinear form on E ⊗A F by setting

∀x, x ′ ∈ E, y, y ′ ∈ F, (x ⊗ y, x ′ ⊗ y ′)E⊗F := (y, (x, x ′)E · y ′)F ,
where we have set a · y = π (a)(y) to lighten the formula. This sesquilinear form is
a B-valued scalar product: only the positivity axiom needs some explanation. Set

b =
(∑

i

xi ⊗ yi,
∑
i

xi ⊗ yi
)
=
∑
i,j

(yi, (xi, xj ) · yj ),

where π has been omitted. Let us set P = ((xi, xj ))i,j ∈ Mn(A). The matrix P
provides a (self-adjoint) compact homomorphism of An, which is positive because

∀a ∈ An, (a, Pa)An =
∑
i,j

a∗i (xi, xj )aj =
(∑

i

xiai,
∑
j

xjaj

)
≥ 0.

This means that P = Q∗Q for some Q ∈ Mn(A). On the other hand, one can
consider P as a homomorphism on Fn, and setting y = (y1, . . . , yn) ∈ Fn, we
have

b = (y, Py) = (Qy,Qy) ≥ 0.

Thus E ⊗A F is a pre-Hilbert module in the generalized sense (i.e., we do not
require the inner product to be definite), and the Hausdorff completion of E ⊗A F
is a Hilbert B-module denoted in the same way.
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Proposition 3.5.29 Let T ∈ Mor(E) and S ∈ Mor(F ).
� T ⊗ 1 : x ⊗ y �→ T x ⊗ y defines a homomorphism of E ⊗A F .
� If S commutes with π , then 1⊗ S : x ⊗ y �→ x ⊗ Sy is a homomorphism which com-

mutes with any T ⊗ 1.

Remark 3.5.30
1. Even if T is compact, T ⊗ 1 is not compact in general. The same is true for 1⊗ S when

defined.
2. In general 1⊗ S is not even defined.

3.5.4.2 Outer tensor products

Now forget the homomorphism π , and consider the tensor product over C of E
and F . We set

∀x, x ′ ∈ E, y, y ′ ∈ F, (x ⊗ y, x ′ ⊗ y ′)E⊗F := (x, x ′)E ⊗ (y, y ′)F ∈ A⊗ B.
This defines a pre-HilbertA⊗ B-module in the generalized sense (the proof of pos-
itivity uses similar arguments), whereA⊗ B denotes the spatial tensor product (as
it will in the following, when not otherwise specified). The Hausdorff completion
will be denoted E ⊗C F .

Example 3.5.31 Let H be a separable Hilbert space. Then

H ⊗C A � HA
3.5.4.3 Connections

We turn back to inner tensor products. We keep the notation of the Section 3.5.4.1.
Connes and Skandalis [14] introduced the notion of connection to bypass the
general nonexistence of 1⊗ S.

Definition 3.5.32 Consider twoC∗-algebrasA andB. LetE be a HilbertA-module
and F be a Hilbert B-module. Assume there is a ∗-morphism

π : A→ L(F ),

and take the inner tensor product E ⊗A F . Given x ∈ E, we define a homomor-
phism

Tx : E→ E ⊗A F,
y �→ x ⊗ y,

whose adjoint is given by

T ∗x : E ⊗A F → F,

z⊗ y �→ π ((x, z))y.
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If S ∈ L(F ), an S-connection on E ⊗A F is given by an element

G ∈ L(E ⊗A F )

such that for all x ∈ E,

TxS −GTx ∈ K(F,E ⊗A F ),

ST ∗x − T ∗x G ∈ K(E ⊗A F, F ).

Proposition 3.5.33
(1) If [π, S] ⊂ K(F ), then there are S-connections.
(2) IfGi , i = 1, 2, are Si-connections, thenG1 +G2 is an S1 + S2-connection andG1G2

is an S1S2-connection.
(3) For any S-connection G, [G,K(E)⊗ 1] ⊂ K(E ⊗A F ).
(4) The space of 0-connections is exactly

{G ∈ Mor(F,E ⊗A F ) | (K(E)⊗ 1)G and G(K(E)⊗ 1) are subsets of K(E ⊗A F )}.
All these assertions are important for the construction of the Kasparov product. For
the proof, see [14].

3.6 KK-theory

3.6.1 Kasparov modules and homotopies

Given two C∗-algebrasA and B, a KasparovA–B-module (abbreviated “Kasparov
module”) is given by a triple

x = (E, π, F ),

where E = E0 ⊕ E1 is a (Z/2Z)-graded countably generated Hilbert B-module,
π : A→ L(E) is a ∗-morphism of degree 0 with respect to the grading, and F ∈
L(E) is of degree 1. These data are required to satisfy the following properties:

π (a)(F 2 − 1) ∈ K(E) for all a ∈ A,
[π (a), F ] ∈ K(E) for all a ∈ A.

We denote the set of Kasparov A–B-modules by E(A,B).
Let us immediately define the equivalence relation leading to KK-groups. We

denote B([0, 1]) := C([0, 1] , B).

Definition 3.6.1 A homotopy between two KasparovA–B-modules x = (E, π, F )
and x ′ = (E ′, π ′, F ′) is a Kasparov A–B([0, 1])-module x̃ such that

(evt=0)∗(x̃) = x,
(3.12)

(evt=1)∗(x̃) = x ′.
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Here evt=· is the evaluation map at t = ·. Homotopy between Kasparov A–B-
modules is an equivalence relation. If there exists a homotopy between x and x ′,
we write x ∼h x ′.

The set of homotopy classes of Kasparov A–B-modules is denoted KK(A,B).

There is a natural sum onE(A,B): if x = (E, π, F ) and x ′ = (E ′, π ′, F ′) belong
to E(A,B), their sum x + x ′ ∈ E(A,B) is defined by

x + x ′ = (E ⊕ E ′, π ⊕ π ′, F ⊕ F ′).

A Kasparov A–B-module x = (E, π, F ) is called degenerate if for all a ∈ A
one has π (a)(F 2 − 1) = 0 and [π (a), F ] = 0. Then:

Proposition 3.6.2 Degenerate elements of E(A,B) are homotopic to (0, 0, 0).
The sum of Kasparov A–B-modules provides KK(A,B) with an abelian group

structure.

Proof Let x = (E, π, F ) ∈ E(A,B) be a degenerate element. Set x̃ = (Ẽ, π̃ , F̃ ) ∈
E(A,B([0, 1])) with

Ẽ = C0([0, 1[ , E),

π̃ (a)ξ (t) = π (a)ξ (t),

F̃ ξ (t) = Fξ (t).

Then x̃ is a homotopy between x and (0, 0, 0).
One can easily show that the sum of Kasparov modules makes sense at the

level of their homotopy classes. Thus KK(A,B) admits a commutative semigroup
structure with (0, 0, 0) as a neutral element. Finally, the opposite in KK(A,B) of
x = (E, π, F ) ∈ E(A,B) may be represented by

(Eop, π,−F ).

where Eop is E with the opposite graduation: (Eop)i = E1−i . Indeed, the module
(E, π, F )⊕ (Eop, π,−F ) is homotopically equivalent to the degenerate module(

E ⊕ Eop, π ⊕ π,
(

0 Id
Id 0

))
.

This can be realized with the homotopy

Gt = cos

(
πt

2

)(
F 0
0 −F

)
+ sin

(
πt

2

)(
0 Id
Id 0

)
. �
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3.6.2 Operations on Kasparov modules

Let us explain the functoriality of KK-groups with respect to its variables. The
following two operations on Kasparov modules make sense on KK-groups:

� Pushforward along∗-morphisms: covariance in the second variable. Let x = (E, π, F ) ∈
E(A,B), and let g : B → C be a ∗-morphism. We define an element g∗(x) ∈ E(A,C)
by

g∗(x) = (E ⊗g C, π ⊗ 1, F ⊗ Id),

where E ⊗g C is the inner tensor product of the Hilbert B-module E with the Hilbert
C-module C endowed with the left action of B given by g.

� Pullback along ∗-morphisms: contravariance in the first variable. Let x = (E, π, F ) ∈
E(A,B), and let f : C → A be a ∗-morphism. We define an element f ∗(x) ∈ E(C,B)
by

f ∗(x) = (E, π ◦ f, F ).

Provided with these operations, KK-theory is a bifunctor from the category (of
pairs) of C∗-algebras to the category of abelian groups.

We recall another useful operation in KK-theory:

� Suspension: Let x = (E, π, F ) ∈ E(A,B), and let D be a C∗-algebra. We define an
element τD(x) ∈ E(A⊗D,B ⊗D) by

τD(x) = (E ⊗C D,π ⊗ 1, F ⊗ Id).

Here we take the external tensor product E ⊗C D, which is a B ⊗D-Hilbert module.

3.6.3 Examples of Kasparov modules and of homotopies between them

3.6.3.1 Kasparov modules coming from homomorphisms between C∗-algebras

Let A,B be two C∗-algebras, and f : A→ B a ∗-homomorphism. Because
K(B) � B, the expression

[f ] := (B, f, 0)

defines a Kasparov A–B-module. If A and B are Z2-graded, f has to be a homo-
morphism of degree 0 (i.e., respecting the grading).

3.6.3.2 Atiyah’s Ell

LetX be a compact Hausdorff topological space. TakeA = C(X) to be the algebra
of continuous functions on X and let B = C. Then

E(A,B) = Ell(X),
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the ring of generalized elliptic operators on X as defined by Atiyah. We give two
concrete examples of such Kasparov modules:

� AssumeX is a compact smooth manifold, letA = C(X) as before, and let B = C. LetE
andE′ be two smooth vector bundles overX, and denote by π the action ofA = C(X) by
multiplication on L2(X,E)⊕ L2(X,E′). Given a zero-order elliptic pseudodifferential
operator

P : C∞(E)→ C∞(E′)

with parametrixQ : C∞(E′)→ C∞(E), the triple

xP =
(
L2(X,E)⊕ L2(X,E′), π,

(
0 Q

P 0

))
defines an element in E(A,B) = E(C(X),C).

� Let X be a compact spinc manifold of dimension 2n, let A = C(X) be as before, and let
B = C. Denote by S = S+ ⊕ S− the complex spin bundle over X, and let

D/ : L2(X, S)→ L2(X, S)

be the corresponding Dirac operator. Let π be the action of A = C(X) by multiplication
on L2(X, S). Then the triple

xD/ =
(
L2(X, S), π,

D/√
1+D/ 2

)
defines an element in E(A,B) = E(C(X),C).

3.6.3.3 Compact perturbations

Let x = (E, π, F ) ∈ E(A,B). Let P ∈ Mor(E) satisfy

∀a ∈ A, π (a) · P ∈ K(E) and P · π (a) ∈ K(E). (3.13)

Then

x ∼h (E, π, F + P ).

The homotopy is the obvious one: (E ⊗ C([0, 1]), π ⊗ Id, F + tP ). In particular,
whenB is unital, we can always choose a representative (E, π,G) with ImG closed
(cf. Theorem 3.5.28).

3.6.3.4 (Quasi) Self-adjoint representatives

There exists a representative (E, π,G) of x = (E, π, F ) ∈ E(A,B) satisfying

π (a)(G−G∗) ∈ K(E). (3.14)
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Just take (E ⊗ C([0, 1]), π ⊗ Id, Ft ) as a homotopy, where

Ft = (tF ∗F + 1)1/2F (tF ∗F + 1)−1/2.

Then G = F1 satisfies (3.14). Now, H = (G+G∗)/2 is self-adjoint, and P =
(G−G∗)/2 satisfies (3.13); thus (E, π,H ) is another representative of x.

Note that (3.14) is often useful in practice and is added as an axiom in many
definitions ofKK-theory, like the original one of Kasparov. It was observed in [49]
that it could be omitted.

3.6.3.5 Stabilization and unitarily equivalent modules

Any Kasparov module (E,π, F ) ∈ E(A,B) is homotopic to a Kasparov mod-
ule (ĤB, ρ,G), where ĤB = HB ⊕HB is the standard graded Hilbert B-module.
Indeed, add to (E,π, F ) the degenerate module (ĤB, 0, 0), and consider a grading-
preserving isometry u : E ⊕ ĤB → ĤB provided by Kasparov’s stabilization the-
orem. Then, set Ẽ = E ⊕ ĤB , F̃ = F ⊕ 0, π̃ = π ⊕ 0, ρ = uπ̃u∗, G = uF̃u∗,
and consider the homotopy(
Ẽ ⊕ ĤB, π̃ ⊕ ρ,

(
cos( tπ2 ) −u∗ sin( tπ2 )

u sin( tπ2 ) cos( tπ2 )

)(
F̃ 0
0 J

)(
cos( tπ2 ) u∗ sin( tπ2 )

−u sin( tπ2 ) cos( tπ2 )

))
(3.15)

between (E,π, F )⊕ (ĤB, 0, 0) = (Ẽ, π̃ , F̃ ) and (ĤB, ρ,G). Above, J denotes
the operator (

0 1
1 0

)
defined on ĤB .

One says that two Kasparov modules (Ei, πi, Fi) ∈ E(A,B), i = 1, 2, are uni-
tarily equivalent when there exists a grading-preserving isometry v : E1 → E2

such that

vF1v
∗ = F2 and ∀a ∈ A, vπ1(a)v∗ − π2(a) ∈ K(E2).

Unitarily equivalent Kasparov modules are homotopic. Indeed, one can replace
(Ei, πi, Fi), i = 1, 2, by homotopically, equivalent modules (ĤB, ρi,Gi), i = 1, 2.
It follows from the preceding construction that the new modules (ĤB, ρi,Gi)
remain unitarily equivalent, and one immediately adapts (3.15) to a homotopy
between then.

3.6.3.6 Relationship with ordinary K-theory

Let B be a unital C∗-algebra. A finitely generated (Z/2Z-graded) projective B-
module E is a submodule of someBN ⊕ BN and can then be endowed with a Hilbert
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B-module structure. On the other hand, IdE is a compact morphism (Proposition
3.5.26); thus

(E, ι, 0) ∈ E(C, B),

where ι is just multiplication by complex numbers. This provides a group homo-
morphism K0(B)→ KK(C, B).

Conversely, let (E, 1, F ) ∈ E(C, B) be any Kasparov module where we have
chosen F with closed range (see Theorem 3.5.28): kerF is then a finitely gener-
ated Z/2Z-graded projective B-module. Consider Ẽ = {ξ ∈ C([0, 1], E) | ξ (1) ∈
kerF } and F̃ (ξ ) : t �→ F (ξ (t)). The triple (Ẽ, 1, F̃ ) provides a homotopy between
(E, 1, F ) and (kerF, 1, 0). This also gives an inverse of the previous group homo-
morphism.

3.6.3.7 A nontrivial generator of KK(C,C)

In the special case B = C, we get KK(C,C) � K0(C) � Z, and under this isomor-
phism, the triple(

L2(R)2, 1,
1√

1+H

(
0 −∂x + x

∂x + x 0

))
, where H = −∂2

x + x2,

(3.16)

corresponds to +1. The reader can check as an exercise that ∂x + x and H are
essentially self-adjoint as unbounded operators on L2(R), that H has a com-
pact resolvent and that ∂x + x has a Fredholm index equal to +1. It follows
that the Kasparov module in (3.16) is well defined and satisfies the required
claim.

3.6.4 Ungraded Kasparov modules and KK1

Triples (E, π, F ) satisfying the properties (3.12) can arise with no natural grading
for E , and consequently with no diagonal–antidiagonal decompositions for π, F .
We refer to those as ungraded Kasparov A–B-modules, and the corresponding set
is denoted by E1(A,B). The direct sum is defined in the same way, as well as the
homotopy, which this time is an element of E1(A,B[0, 1]). The homotopy defines
an equivalence relation on E1(A,B), and the quotient inherits an abelian group
structure as before.

Let C1 be the complex Clifford algebra of the vector space C provided with the
obvious quadratic form [33]. It is the C∗-algebra C⊕ εC generated by ε satisfying
ε∗ = ε and ε2 = 1. Assigning to ε the degree 1 yields a Z/2Z-grading on C1. We
have:
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Proposition 3.6.3 The map

E1(A,B) −→ E(A,B ⊗ C1),
(3.17)

(E, π, F ) �−→ (E ⊗ C1, π ⊗ Id, F ⊗ ε)
induces an isomorphism between the quotient of E1(A,B) under homotopy and
KK1(A,B) = KK(A,B ⊗ C1).

Proof The grading of C1 gives the one of E ⊗ C1, and the map (3.17) easily gives
a homomorphism c from KK1(A,B) to KK(A,B ⊗ C1).

Now let y = (E, π, F ) ∈ E(A,B ⊗ C1). Multiplication by ε on the right of
E makes sense, even if B is not unital, and one has E1 = E0ε. It follows that
E = E0 ⊕ E1 � E0 ⊕ E0 and that any T ∈ Mor(E), thanks to the B ⊗ C1-linearity,
has the following expression:

T =
(
Q P

P Q

)
, P ,Q ∈ MorB(E0).

Thus F =
(

0 P

P 0

)
, π =

(
π0 0
0 π0

)
and c−1[y] = [E0, π0, P ]. �

Remark 3.6.4 The opposite of (E, π, F ) in KK1(A,B) is represented by
(E, π,−F ). One may wonder why we have to decide if a Kasparov module is
graded or not. Actually, if we forget the Z/2Z grading of a graded Kasparov A–
B-module x = (E, π, F ) and consider it as an ungraded module, then we get the
trivial class in KK1(A,B). Let us prove this claim.

The grading of x implies that E has a decomposition E = E0 ⊕ E1 for which F
has degree 1, that is,

F =
(

0 Q

P 0

)
.

Now

Gt = cos(tπ/2) F + sin(tπ/2)

(
1 0
0 −1

)
(3.18)

provides an homotopy in KK1 between x and(
E, π,

(
1 0
0 −1

))
.

Because the latter is degenerate, the claim is proved.

Example 3.6.5 Take again the example of the Dirac operator D/ introduced in
Section 3.6.3.2 on a spinc manifoldX whose dimension is odd. There is no natural
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Z/2Z grading for the spinor bundle. The previous triple xD/ provides this time an
interesting class in E1(C(X),C).

3.6.5 The Kasparov product

In this subsection we construct the product

KK(A,B)⊗ KK(B,C)→ KK(A,C).

It satisfies the properties given in Section 3.4. Actually:

Theorem 3.6.6 Let x = (E, π, F ) in E(A,B) and x = (E ′, π ′, F ′) in E(B,C) be
two Kasparov modules. Set

E ′′ = E ⊗B E ′

and

π ′′ = π ⊗ 1.

Then there exists a unique – up to homotopy – F ′-connection on E ′′ denoted by F ′′

such that

� (E ′′, π ′′, F ′′) ∈ E(A,C),
� π ′′(a)

[
F ′′, F ⊗ 1

]
π ′′(a) is nonnegative modulo K(E ′′) for all a ∈ A.

(E ′′, π ′′, F ′′) is the Kasparov product of x and x ′. It enjoys all the properties
described in Section 3.4.

Proof Idea of the proof: We only explain the construction of the operator F ′′.
For a complete proof, see for instance [14, 30]. A naive idea for F ′′ could be
F ⊗ 1+ 1⊗ F ′, but the trouble is that the operator 1⊗ F ′ is in general not well
defined. We can overcome this first difficulty by replacing the not well defined
1⊗ F ′ by any F ′-connection G on E ′′, and try F ⊗ 1+G. We then stumble on a
second problem, namely that the properties of Kasparov module are not satisfied in
general with this candidate forF ′′: for instance, (F 2 − 1)⊗ 1 ∈ K(E)⊗ 1 �⊂ K(E ′′)
as soon as E ′′ is not finitely generated.

The case of tensor products of elliptic self-adjoint differential operators on a
closed manifoldM gives us a hint towards the right way. IfD1 andD2 are two such
operators and H1, H2 the natural L2 spaces on which they act, then the bounded
operator on H1 ⊗H2 given by

D1√
1+D2

1

⊗ 1+ 1⊗ D2√
1+D2

2

(3.19)
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inherits the same problem as F ⊗ 1+G, but

D′′ := 1√
2+D2

1 ⊗ 1+ 1⊗D2
2

(D1 ⊗ 1+ 1⊗D2)

has better properties: D′′2 − 1 and [C(M),D′′] belong to K(H1 ⊗H2). Note that

D′′ =
√
M · D1√

1+D2
1

⊗ 1+
√
N · 1⊗ D2√

1+D2
2

with

M = 1+D2
1 ⊗ 1

2+D2
1 ⊗ 1+ 1⊗D2

2

and N = 1+ 1⊗D2
2

2+D2
1 ⊗ 1+ 1⊗D2

2

.

The operatorsM,N are bounded onH1 ⊗H2, are positive, and satisfyM +N = 1.
We thus see that in that case, the naive idea (3.19) can be corrected by combining
the operators involved with some adequate “partition of unity.”

Turning back to our problem, this calculation leads us to look for an adequate
operator F ′′ in the following form:

F ′′ =
√
M · F ⊗ 1+

√
NG.

We need to have that F ′′ is a F ′-connection, and satisfies a · (F ′′2 − 1) ∈ K(E′′)
and [a, F ′′] ∈ K(E′′) for all a ∈ A (by a we mean π ′′(a)). Using the previous form
for F ′′, a small computation shows that these assertions become true if all the
following conditions hold:

(ı) M is a 0-connection (equivalently, N is a 1-connection),
(ıı) [M,F ⊗ 1], N · [F ⊗ 1,G], [G,M], N (G2 − 1) belong to K(E′′),

(ııı) [a,M], N · [G, a] belong to K(E′′).

At this point there is a miracle:

Theorem 3.6.7 (Kasparov’s technical theorem) Let J be a C∗-algebra, and
denote by M(J ) its multiplier algebra. Assume there are two subalge-bras A1, A2

of M(J ) and a linear subspace # ⊂M(J ) such that

A1A2 ⊂ J,
[#, A1] ⊂ J.
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Then there exist two nonnegative elements M,N ∈M(J ) with M +N = 1 such
that

M A1 ⊂ J,
N A2 ⊂ J,

[M,#] ⊂ J.
For a proof, see [25].

Now, to get (ı), (ıı), (ııı), we apply this theorem with

A1 = C∗〈K(E)⊗ 1, K(E ′′)〉,
A2 = C∗〈G2 − 1, [G,F ⊗ 1] ,

[
G,π ′′

]〉,
# = V ect〈π ′′(A), G, F ⊗ 1〉.

This gives us the correct F ′′. �

3.6.6 Equivalence and duality in KK-theory

With the Kasparov product come the following notions:

Definition 3.6.8 Let A,B be two C∗-algebras.

� One says thatA andB are KK-equivalent if there exist α ∈ KK(A,B) and β ∈ KK(B,A)
such that

α ⊗ β = 1A ∈ KK(A,A) and β ⊗ α = 1B ∈ KK(B,B).

In that case, the pair (α, β) is called aKK-equivalence, and it gives rise to isomorphisms

KK(A⊗ C,D) � KK(B ⊗ C,D) and KK(C,A⊗D) � KK(C,B ⊗D)

given by Kasparov products for all C∗-algebras C,D.
� One says that A and B are KK-dual (or Poincaré dual) if there exist δ ∈ KK(A⊗ B,C)

and λ ∈ KK(C, A⊗ B) such that

λ⊗
B
δ = 1 ∈ KK(A,A) and λ⊗

A
δ = 1 ∈ KK(B,B).

In that case, the pair (λ, δ) is called a KK-duality, and it gives rise to isomorphisms

KK(A⊗ C,D) � KK(C,B ⊗D) and KK(C,A⊗D) � KK(B ⊗ C,B ⊗D)

given by Kasparov products for all C∗-algebras C,D.

We continue this subsection with classical computations illustrating these
notions.
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3.6.6.1 Bott periodicity

Let β ∈ KK(C, C0(R2)) be represented by the Kasparov module:

(E, π, C) =
(
C0(R2)⊕ C0(R2), 1,

1√
1+ c2

(
0 c−
c+ 0

))
,

where c+, c− are the operators given by pointwise multiplication by x − ıy and
x + ıy, respectively, and

c =
(

0 c−
c+ 0

)
.

Let α ∈ KK(C0(R2),C) be represented by the Kasparov module:

(H, π, F ) =
(
L2(R2)⊕ L2(R2), π,

1√
1+D2

(
0 D−
D+ 0

))
,

where π : C0(R2)→ L(L2(R2)⊕ L2(R2)) is the action given by multiplication of
functions, the operators D+ and D− are given by

D+ = ∂x + ı∂y,
D− = −∂x + ı∂y,

and D =
(

0 D−
D+ 0

)
.

Theorem 3.6.9 α and β provide a KK-equivalence between C0(R2) and C.

This is the Bott periodicity theorem in the bivariant K-theory framework.

Proof Let us begin with the computation of β ⊗ α ∈ KK(C,C). We have an iden-
tification

E ⊗
C0(R2)

H � H⊕H, (3.20)

where on the right, the first copy of H stands for

E0 ⊗
C0(R2)

H0 ⊕ E1 ⊗
C0(R2)

H1

and the second for

E0 ⊗
C0(R2)

H1 ⊕ E1 ⊗
C0(R2)

H0.
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One checks directly that under this identification the operator

G = 1√
1+D2


0 0 D− 0
0 0 0 −D+
D+ 0 0 0
0 −D− 0 0

 (3.21)

is an F -connection. On the other hand, under the identification (3.20), the operator
C ⊗ 1 gives

1√
1+ c2


0 0 0 c−
0 0 c+ 0
0 c− 0 0
c+ 0 0 0

 . (3.22)

It immediately follows that β ⊗ α is represented by

δ =
(
H⊕H, 1, 1√

1+ c2 +D2
D
)
, (3.23)

where

D =
(

0 D−
D+ 0

)
with

D+ =
(
D+ c−
c+ −D−

)
and D− = D∗+.

Observe that, denoting by ρ the rotation in R2 of angle π/4, we have(
ρ−1 0

0 ρ

)(
0 D−

D+ 0

)(
ρ 0
0 ρ−1

)
=
(

0 ρ−1D−ρ−1

ρD+ρ 0

)

=


0 0 ı(∂y − y) −∂x + x
0 0 ∂x + x −ı(∂y + y)

ı(∂y + y) −∂x + x 0 0
∂x + x ı(−∂y + y) 0 0


=
(

0 x − ∂x
x + ∂x 0

)
⊗ 1+ 1⊗

(
0 ı(∂y − y)

ı(∂y + y) 0

)
.

Of course,

δ ∼h
(
H⊕H, 1, 1√

1+ c2 +D2

(
0 ρ−1D−ρ−1

ρD+ρ 0

))
,
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and the preceding computation shows that δ coincides with the Kasparov product
u⊗ u with u ∈ KK(C,C) given by

u =
(
L2(R)2, 1,

1√
1+ x2 + ∂2

x

(
0 x − ∂x

x + ∂x 0

))
.

A simple exercise shows that ∂x + x : L2(R)→ L2(R) is essentially self-adjoint
with one-dimensional kernel and zero-dimensional cokernel; thus 1 = u = u⊗
u ∈ KK(C,C).

Let us turn to the computation of α ⊗ β ∈ KK(C0(R2), C0(R2)). It is a Kasparov
product over C, and thus it commutes:

α ⊗ β = τC0(R2)(β)⊗ τC0(R2)(α), (3.24)

but we must observe that the two copies of C0(R2) in τC0(R2)(β) and τC0(R2)(α) play
different roles: on should think of the first copy as functions of the variable u ∈ R2,
and of the second as functions of the variable v ∈ R2. It follows that one cannot
directly factorize τC0(R2) on the right-hand side of (3.24) in order to use the value of
β ⊗ α. This is where a classical argument, known as the rotation trick of Atiyah,
is necessary:

Lemma 3.6.10 Letφ : C0(R2)⊗ C0(R2)→ C0(R2)⊗ C0(R2) be the flip automor-
phism: φ(f )(u, v) = f (v, u). Then

[φ] = 1 ∈ KK(C0(R2)⊗ C0(R2), C0(R2)⊗ C0(R2)).

Proof Proof of the lemma: Let us denote by I2 the identity matrix of M2(R). Use
a continuous path of isometries of R4 connecting(

0 I2

I2 0

)
to

(
I2 0
0 I2

)
.

This gives a homotopy (C0(R2)⊗ C0(R2), φ, 0) ∼h (C0(R2)⊗ C0(R2), Id, 0). �

Now

α ⊗ β = τC0(R2)(β)⊗ τC0(R2)(α) = τC0(R2)(β)⊗ [φ]⊗ τC0(R2)(α)

= τC0(R2)(β ⊗ α) = τC0(R2)(1) = 1 ∈ KK(C0(R2), C0(R2)). (3.25)

�

3.6.6.2 Self-duality of C0(R)

With the same notation as before, we get:

Corollary 3.6.11 The algebra C0(R) is Poincaré dual to itself.
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Other examples of Poincaré-dual algebras will be given later.

Proof The automorphism ψ of C0(R)⊗
3

given by ψ(f )(x, y, z) = f (z, x, y) is
homotopic to the identity; thus

β ⊗
C0(R)

α = τC0(R)(β)⊗ τC0(R)(α) = τC0(R)(β)⊗ [ψ]⊗ τC0(R)(α)

= τC0(R)(β ⊗ α) = τC0(R)(1) = 1 ∈ KK(C0(R), C0(R)). (3.26)

�

Exercise 3.6.12 With C1 = C⊕ εC the Clifford algebra of C, consider

βc =
(
C0(R)⊗ C1, 1,

x√
x2 + 1

⊗ ε
)
∈ KK(C, C0(R)⊗ C1),

αc =
(
L2(R,�∗R), π,

1√
1+ (d + δ)

)
∈ KK(C0(R)⊗ C1,C),

where (d + δ)(a + bdx) = −b′ + a′dx,  = (d + δ)2, and π (f ⊗ ε) sends a +
bdx to f (b + adx). Show that βc, αc provide a KK-equivalence between C and
C0(R)⊗ C1. (Hints: compute directly βc ⊗ αc; then use the commutativity of the
Kasparov product over C and check that the flip of (C0(R)⊗ C1)⊗

2
is 1 to conclude

about the computation of αc ⊗ βc.)

3.6.6.3 A simple Morita equivalence

Let ın = (M1,n(C), 1, 0) ∈ E(C,Mn(C)), where the Mn(C)-module structure is
given by multiplication by matrices on the right. Note that [ın] is also the class
of the homomorphism C→ Mn(C) given by the upper left corner inclusion. Let
also n = (Mn,1(C),m, 0) ∈ E(Mn(C),C), where m is multiplication by matrices
on the left. It follows in a straightforward way that

ın ⊗ n ∼h (C, 1, 0) and n ⊗ ın ∼h (Mn(C), 1, 0);

thus C and Mn(C) are KK-equivalent, and this is an example of a Morita equiv-
alence. The map in K-theory associated with  : · ⊗ n : K0(Mn(C))→ Z is
just the trace homomorphism. Similarly, let us consider the Kasparov elements
ı ∈ E(C,K(H)) associated to the homomorphism ı : C→ K(H) given by the
choice of a rank one projection, and  = (H,m, 0) ∈ E(K(H),C), wherem is just
the action of compact operators on H: they provide a KK-equivalence between K
and C.

3.6.6.4 C0(R) and C1.

We leave the proof of the following result as an exercise:
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Proposition 3.6.13 The algebras C0(R) and C1 are KK-equivalent.

Proof Hint: Consider

α̃ =
(
L2(R,�∗R),m,

1√
1+ (d + δ)

)
∈ KK(C0(R), C1),

where d, δ, are defined in the previous exercise, m(f )(ξ ) = f ξ , and the C1-
right module structure of L2(R,�∗R) is given by (a + bdx) · ε = −ib + iadx.
Consider also

β̃ =
(
C0(R)2, ϕ,

x√
1+ x2

(
0 1
1 0

))
∈ KK(C1, C0(R)),

where ϕ(ε)(f, g) = (−ig, if ). Prove that they provide the desiredKK-equivalence.
�

Exercise 3.6.14
(i) Check that τC1 : KK(A,B)→ KK(A⊗ C1, B ⊗ C1) is an isomorphism.

(ii) Check that under τC1 and the Morita equivalence M2(C) ∼ C, the elements αc, βc of
the previous exercise coincide with α̃, β̃ and recover the KK-equivalence between C1

and C0(R).

Remark 3.6.15 At this point, one sees that KK1(A,B) = KK(A,B(R)) (B(R) :=
C0(R)⊗ B) can also be presented in the following different ways:

E1(A,B)/∼h� KK(A,B ⊗ C1) � KK(A⊗ C1, B) � KK(A(R), B).

3.6.7 Computing the Kasparov product without its definition

Computing the product of two Kasparov modules is in general quite hard, but we
are often in one of the following situations.

3.6.7.1 Use of the functorial properties

Thanks to the functorial properties listed in Section 3.4, many products can be
deduced from known, already computed ones. For instance, in the proof of Bott
periodicity (the KK-equivalence between C and C0(R2)) one had to compute two
products: the first one was directly computed; the second one was deduced from
the first using the properties of the Kasparov product and a simple geometric fact.
There are numerous examples of this kind.

3.6.7.2 Maps between K-theory groups

Let A,B be two unital (if not, add a unit) C∗-algebras, let x ∈ KK(A,B) be given
by a Kasparov module (E, π, F ) where F has a closed range, and assume that we
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are interested in the map φx : K0(A)→ K0(B) associated with x in the following
way:

y ∈ K0(A) � KK(C, A), φx(y) = y ⊗ x.
This product takes a particularly simple form when y is represented by (P, 1, 0)
with P a finitely generated projective A-module (see Section 3.6.3.6):

y ⊗ x =
(
P ⊗

A
E, 1⊗ π,G

)
= (ker(G), 1, 0),

where G is an arbitrary F -connection.

3.6.7.3 Kasparov elements constructed from homomorphisms

Sometimes, Kasparov classes y ∈ KK(B,C) can be explicitly represented as Kas-
parov products of classes of homomorphisms with inverses of such classes. Assume
for instance that y = [e0]−1 ⊗ [e1], where e0 : C → B, e1 : C → C are homomor-
phisms of C∗-algebras and e0 produces an invertible element in KK-theory (for
instance, ker e0 is K-contractible and B is nuclear or C, B K-nuclear; see [16,50]).
Then computing a Kasparov product x ⊗ y where x ∈ KK(A,B) amounts to lift-
ing x to KK(A, C) (that is, finding x ′ ∈ KK(A, C) such that (e0)∗(x ′) = x) and
restricting this lift to KK(A,C) (i.e., evaluating x ′′ = (e1)∗(x ′)). It follows from the
properties of the product that x ′′ = x ⊗ y.

Example 3.6.16 Consider the tangent groupoid GR of R, and let δ = [e0]−1 ⊗
[e1]⊗ µ be the associated deformation element: e0 : C∗(GR)→ C∗(TR) �
C0(R2) is evaluation at t = 0, e1 : C∗(GR)→ C∗(R× R) � K(L2(R)) � K is eval-
uation at t = 1, and µ = (L2(R),m, 0) ∈ KK(K,C) gives the Morita equivalence
K ∼ C.

Let β ∈ KK(C, C0(R2)) be the element used in Section 3.6.6.1. Then β ⊗ δ ∈
KK(C,C) is easy to compute. The lift β ′ ∈ KK(C, C∗(GR)) is produced using the
pseudodifferential calculus for groupoids (see Section 3.7) and can be presented as
a family β ′ = (βt ) with

β0 = β, t > 0,

βt =
(
C∗
(

R× R,
dx

t

)
, 1,

1√
1+ x2 + t2∂2

x

(
0 x − t∂x

x + t∂x 0

))
.

After restricting at t = 1 and applying the Morita equivalence, only the index of the
Fredholm operator appearing in β1 remains – i.e.,+1 – and this proves β ⊗ δ = 1.

Observe that by uniqueness of the inverse, we can conclude that δ = α in
KK(C0(R2),C).
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Example 3.6.17 (Boundary homomorphisms in long exact sequences.) Let

0→ I →
i
A→

p
B → 0

be a short exact sequence of C∗-algebras. We assume that either it admits a com-
pletely positive, norm-decreasing linear section or I, A,B are K-nuclear [50]. Let
Cp = {(a, ϕ) ∈ A⊕ C0([0, 1[, B) |p(a) = ϕ(0)} be the cone of the homomorphism
p : A→ B, and denote by d the homomorphism C0(]0, 1[, B) ↪→ Cp given by
d(ϕ) = (0, ϕ), and by e the homomorphism I → Cp given by e(a) = (a, 0). Thanks
to the hypotheses, [e] is invertible in KK-theory. One can set δ = [d]⊗ [e]−1 ∈
KK(C0(R)⊗ B, I ) and use the Bott periodicity C0(R2) ∼

KK
C in order to identify

KK2(C,D) = KK(C0(R2)⊗ C,D) � KK(C,D).

Then the connecting maps in the long exact sequences

· · · → KK1(I,D)→ KK(B,D)

i∗→ KK(A,D)
p∗→ KK(I,D)→ KK1(B,D)→ · · · ,

· · · → KK1(C,B)→ KK(C, I )

i∗→ KK(C,A)
p∗→ KK(C,B)→ KK1(C, I )→ · · ·

are given by the appropriate Kasparov products with δ.

III. Index Theorems

3.7 Introduction to pseudodifferential operators on groupoids

The historical motivation for developing pseudodifferential calculus on groupoids
comes from Connes, who implicitly introduced this notion for foliations. Later on,
this calculus was axiomatized and studied on general groupoids by several authors
[38, 39, 52].

The following example illustrates how pseudodifferential calculus on groupoids
arises in our approach to index theory. If P is a partial differential operator on Rn,

P (x,D) =
∑
|α|≤d

cα(x)Dαx ,

we may associate to it the asymptotic operator

P (x, tD) =
∑
|α|≤d

cα(x)(tDx)
α
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by introducing a parameter t ∈ ]0, 1] in front of each ∂xj . Here we use the usual
convention: Dαx = (−i∂x1 )

α1 · · · (−i∂xn)αn . We would like to give an (interesting)
meaning to the limit t → 0. Of course we would not be happy with tD→ 0.

To investigate this question, let us look at P (x, tD) as a left multiplier on
C∞(Rn × Rn×]0, 1]) rather as a linear operator on C∞(Rn):

P (x, tDx)u(x, y, t) =
∫
e(x−z)·ξP (x, tξ )u(z, y, t)dzdξ

=
∫
e
x−z
t
·ξP (x, ξ )u(z, y, t)

dzdξ

tn

=
∫
e(X−Z).ξP (x, ξ )u(x − t(X − Z), x − tX, t)dZdξ.

In the last line we introduced the notation X = x−y
t

and performed the change of
variables Z = z−y

t
.

At this point, assume that u has the following behavior near t = 0:

u(x, y, t) = ũ
(
y,
x − y
t
, t

)
, where ũ ∈ C∞(R2n × [0, 1]).

It follows that

P (x, tDx)u(x, x − tX, t) =
∫
e(X−Z)·ξP (x, ξ )̃u(x − tX,Z, t)dZdξ

t→0−→
∫
e(X−Z)·ξP (x, ξ )̃u(x, Z, 0)dZdξ

= P (x,DX )̃u(x,X, 0).

Some observations:

� P (x,DX) is a partial differential operator in the variable X with constant coefficients,
depending smoothly on a parameter x and with symbol coinciding with that of P (x,Dx),
in the sense that σ (P (x,DX)(x,X, ξ ) = P (x, ξ ). In particular, P (x,DX) is invariant
under the translationX �→ X +X0. Of course, P (x,DX) is nothing else, up to a Fourier
transformation in X, than the symbol P (x, ξ ) of P (x,Dx). In other words, denoting by
SX(TRn) the space of smooth functions f (x,X) rapidly decreasing in X and by FX the
Fourier transform with respect to the variable X, we have a commutative diagram

SX(TRn)
P (x,DX)

FX

SX(TRn)

FX

Sξ (T ∗Rn)
P (x,ξ )

Sξ (T ∗Rn),
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whereP (x,DX) acts as a left multiplier on the convolution algebra SX(TRn), andP (x, ξ )
acts as a left multiplier on the function algebra Sξ (T ∗Rn) (equipped with the pointwise
multiplication of functions).

� u and ũ are related by the bijection

φ : R2n × [0, 1] −→ GRn ,

(x,X, t) �−→ (x − tX, x, t) if t > 0,

(x,X, 0) �−→ (x,X, 0)

(φ−1(x, y, t) = (y, (x − y)/t, t), φ−1(x,X, 0) = (x,X, 0)). In fact, the smooth structure
of the tangent groupoid GRn of the manifold Rn (see Section 3.2.7) is defined by requiring
that φ be a diffeomorphism. Thus ũ ∈ C∞(R2n × [0, 1]) means u ∈ C∞(GRn).

Thus P (x,DX) is another way to look at, and even another way to define, the
symbol of P (x,Dx). What is important for us is that it arises as a limit of a family
Pt constructed with P , and the pseudodifferential calculus on the tangent groupoid
of Rn will enable us to give a rigorous meaning to this limit and perform interesting
computations.

The following material is taken from [38,39,52]. LetG be a Lie groupoid, with
unit space G(0) = V and with a smooth (right) Haar system dλ. We assume that
V is a compact manifold and that the s-fibers Gx , x ∈ V , have no boundary. We
denote by Uγ the map induced on functions by right multiplication by γ , that is,

Uγ : C∞(Gs(γ )) −→ C∞(Gr(γ )); Uγf (γ ′) = f (γ ′γ ).

Definition 3.7.1 A G-operator is a continuous linear map P : C∞c (G)→ C∞(G)
such that

(i) P is given by a family (Px)x∈V of linear operators Px : C∞c (Gx)→ C∞(Gx), and

∀f ∈ C∞c (G), P (f )(γ ) = Ps(γ )fs(γ )(γ ),

where fx stands for the restriction f |Gx .
(ii) The following invariance property holds

UγPs(γ ) = Pr(γ )Uγ .

Let P be aG-operator, and denote by kx ∈ C−∞(Gx ×Gx) the Schwartz kernel
of Px , for each x ∈ V , as obtained from the Schwartz kernel theorem applied to
the manifold Gx provided with the measure dλx .

Thus, using property (i) in the definition,

∀γ ∈ G, f ∈ C∞(G), Pf (γ ) =
∫
Gx

kx(γ, γ
′)f (γ ′)dλx(γ ′) (x = s(γ )).
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Next,

UγPf (γ ′) = Pf (γ ′γ ) =
∫
Gx

kx(γ
′γ, γ ′′)f (γ ′′)dλx(γ ′′) (x = s(γ )),

and

P (Uγf )(γ ′) =
∫
Gy

ky(γ
′, γ ′′)f (γ ′′γ )dλy(γ

′′), (y = r(γ ))

η=γ ′′γ=
∫
Gx

ky(γ
′, ηγ−1)f (η)dλx(η), (x = s(γ )),

where the last line uses the invariance property of Haar systems. Property (ii) is
equivalent to the following equalities of distributions on Gx ×Gx , for all x ∈ V :

∀γ ∈ G, kx(γ
′γ, γ ′′) = ky(γ ′, γ ′′γ−1) (x = s(γ ), y = r(γ )).

Setting kP (γ ) := ks(γ )(γ, s(γ )), we get kx(γ, γ ′) = kP (γ γ ′−1), and the linear oper-
ator P : C∞c (G)→ C∞(G) is given by

P (f )(γ ) =
∫
Gx

kP (γ γ ′−1)dλx(γ
′) (x = s(γ )).

We may consider kP as a single distribution on G acting on smooth functions on
G by convolution. With a slight abuse of terminology, we will refer to kP as the
Schwartz (or convolution) kernel of P .

We say that P is smoothing if kP lies in C∞(G), and is compactly supported or
uniformly supported if kP is compactly supported (which implies that each Px is
properly supported).

Let us develop some examples of G-operators.

Examples 3.7.2
(i) If G = G(0) = V is just a set, then Gx = {x} for all x ∈ V . Then in Definition 3.7.1,

property (i) is empty, and property (ii) implies that aG-operator is given by pointwise
multiplication by a smooth function P ∈ C∞(V ): Pf (x) = P (x) · f (x).

(ii) LetG = V × V , the pair groupoid, and let the Haar system dλ be given in the obvious
way by a single measure dy on V :

dλx(y) = dy under the identification Gx = V × {x} � V.
It follows that for any G-operator P ,

Pg(z, x) =
∫
V×{x}

kP (z, y)g(y, x)dλx(y, x) =
∫
V

kP (z, y)g(y, x)dy,

which immediately proves that Px = Py as linear operators on C∞(V ) under the
obvious identifications V � V × {x} � V × {y}.
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(iii) Let p : X→ Z be a submersion, andG = X ×
Z
X = {(x, y) ∈ X ×X |p(x) = p(y)}

the associated subgroupoid of the pair groupoid X ×X. The manifold Gx can be
identified with the fiber p−1(p(x)). Property (ii) implies that for any G-operator P ,
we have Px = Py as linear operators on p−1(p(x)) as soon as y ∈ p−1(p(x)). Thus,
P is actually given by a family P̃z, z ∈ Z, of operators on p−1(z), with the relation
Px = P̃p(x).

(iv) Let G = E be the total space of a (Euclidean, Hermitian) vector bundle p : E→ V ,
with r = s = p. The Haar system dxw, x ∈ V , is given by the metric structure on the
fibers of E. We have here

Pf (v) =
∫
Ex

kP (v − w)f (w)dxw (x = p(v)).

Thus, for all x ∈ V , Px is a convolution operator on the linear space Ex .
(v) Let G = GV = T V × {0} � V × V× ]0, 1] be the tangent groupoid of V . It can be

viewed as a family of groupoids Gt parametrized by [0, 1], where G0 = T V and
Gt = V × V for t > 0. A GV -operator is given by a family Pt of Gt -operators, and
(Pt )t>0 is a family of operators on C∞c (V ) parametrized by t , whereas P0 is a family
of translation-invariant operators on TxV parametrized by x ∈ V . The GV -operators
are thus a blend of examples (ii) and (iv).

We now turn to the definition of pseudodifferential operators on a Lie groupoid
G.

Definition 3.7.3 A G-operator P is a G-pseudodifferential operator of order m if:

(i) The Schwartz kernel kP is smooth outside G(0).
(ii) For every distinguished chart ψ : U ⊂ G→ 
× s(U ) ⊂ Rn−p × Rp of G,

U
ψ

s


× s(U )

p2

s(U )

the operator (ψ−1)∗Pψ∗ : C∞c (
× s(U ))→ C∞c (
× s(U )) is a smooth family
parametrized by s(U ) of pseudodifferential operators of order m on 
.

We will use few properties of this calculus and only provide some examples and a
list of properties. The reader can find a complete presentation in [37–39, 51, 52].

Examples 3.7.4 In the previous five examples (Examples 3.7.3), a G-
pseudodifferential operator is:

(i) an operator given by pointwise multiplication by a smooth function on V ;
(ii) a single pseudodifferential operator on V ;
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(iii) a smooth family parametrized by Z of pseudodifferential operators in the fibers (this
coincides with the notion of [7]);

(iv) a family parametrized by x ∈ V of convolution operators in Ex such that the under-
lying distribution kP identifies with the Fourier transform of a symbol on E (that is,
a smooth function on E satisfying the standard decay conditions with respect to its
variable in the fibers);

(v) the data provided by an asymptotic pseudodifferential operator on V together with its
complete symbol, the choice of it depending on the gluing in GV (this is quite close
to the notions studied in [8, 22, 23]).

It turns out that the space "∗c (G) of compactly supported G-pseudodifferential
operators is an involutive algebra.

The principal symbol of aG-pseudodifferential operator P of orderm is defined
as a function σm(P ) on A∗(G) \G(0) by

σm(P )(x, ξ ) = σpr (Px)(x, ξ ),

where σpr (Px) is the principal symbol of the pseudodifferential operator Px on the
manifold Gx . Conversely, suppose we are given a symbol f of order m on A∗(G)
together with the following data:

(i) a smooth embedding θ : U → AG, where U is a open set in G containing G(0), such
that θ (G(0)) = G(0), (dθ )|G0 = Id, and θ (γ ) ∈ As(γ )G for all γ ∈ U ;

(ii) a smooth, compactly supported map φ : G→ R+ such that φ−1(1) = G(0).

Then we get aG-pseudodifferential operator Pf,θ,φ with the formula (u ∈ C∞c (G))

Pf,θ,φu(γ ) =
∫
γ ′∈Gs(γ ),

ξ∈A∗
r(γ )(G)

e−iθ(γ ′γ−1)·ξf (r(γ ), ξ )φ(γ ′γ−1)u(γ ′)dλs(γ )(γ
′).

The principal symbol of Pf,θ,φ is just the leading part of f .
The principal symbol map respects pointwise product, whereas the product law

for total symbols is much more involved. An operator is elliptic when its principal
symbol never vanishes, and in that case, as in the classical situation, it has a
parametrix inverting it modulo "−∞c (G) = C∞c (G).

Operators of negative order in"∗c (G) are actually in C∗(G), whereas zero-order
operators are in the multiplier algebra M(C∗(G)).

All these definitions and properties immediately extend to the case of operators
acting between sections of bundles onG(0) pulled back toG with the range map r .
The space of compactly supported pseudodifferential operators onG acting on sec-
tions of r∗E and taking values in sections of r∗F will be denoted by"∗c (G,E,F ).
If F = E, we get an algebra denoted by "∗c (G,E).
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Examples 3.7.5
(i) The family given by Pt = P (x, tDx) for t > 0 and P0 = P (x,DX) described in the

introduction of this section is a G-pseudodifferential operator with G the tangent
groupoid of Rn.

(ii) More generally, let V be a closed manifold endowed with a Riemannian metric. We
denote by exp the exponential map associated with the metric. Let f be a symbol on
V . We get a GV -pseudodifferential operator P by setting

(t > 0) Ptu(x, y, t) =
∫
z∈V,ξ∈T ∗x V

e
exp−1
x (z)
t
·ξ f (x, ξ )u(z, y)

dzdξ

tn
,

P0u(x,X, 0) =
∫
Z∈TxV,ξ∈T ∗x V

e(X−Z)·ξ f (x, ξ )u(x,Z)dZdξ.

Moreover, P1 is a pseudodifferential operator on the manifold V , which admits f as a
complete symbol.

3.8 Index theorem for smooth manifolds

The purpose of this section is to present a proof of the Atiyah–Singer index
theorem using deformation groupoids and show how it generalizes to conical
pseudomanifolds. The results presented here come from recent works of the authors
together with a joint work with V. Nistor [18–20]; we refer to [19,20] for the proofs.

3.8.1 The KK-element associated to a deformation groupoid

Before going to the description of the index maps, let us describe a useful and
classical construction [13, 27].

Let G be a smooth deformation groupoid (Definition 3.2.6):

G = G1 × {0} ∪G2×]0, 1] ⇒ G(0) = M × [0, 1].

One can consider the saturated open subset M×]0, 1] of G(0). Using the iso-
morphisms C∗(G|M×]0,1]) � C∗(G2)⊗ C0(]0, 1]) and C∗(G|M×{0}) � C∗(G1), we
obtain the following exact sequence of C∗-algebras:

0 −−−→ C∗(G2)⊗ C0(]0, 1])
iM×]0,1]−−−→ C∗(G)

ev0−−−→ C∗(G1) −−−→ 0,

where iM×]0,1] is the inclusion map and ev0 is the evaluation map at 0, that is, ev0 is
the map coming from the restriction of functions to G|M×{0}. We assume now that
C∗(G1) is nuclear. Because theC∗-algebraC∗(G2)⊗ C0(]0, 1]) is contractible, the
long exact sequence in KK-theory shows that the group homomorphism

(ev0)∗ = ·⊗[ev0] : KK(A,C∗(G))→ KK(A,C∗(G1))
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is an isomorphism for eachC∗-algebraA. In particular, withA = C∗(G) we get that
[ev0] is invertible in KK-theory: there is an element [ev0]−1 in KK(C∗(G1),
C∗(G)) such that [ev0]⊗[ev0]−1 = 1C∗(G) and [ev0]−1⊗[ev0] = 1C∗(G1).

Let ev1 : C∗(G)→ C∗(G2) be the evaluation map at 1, and [ev1] the correspond-
ing element of KK(C∗(G), C∗(G2)). The KK-element associated to the deformation
groupoid G is defined by

δ = [ev0]−1⊗[ev1] ∈ KK(C∗(G1), C∗(G2)).

We will meet several examples of this construction in the sequel.

3.8.2 The analytical index

LetM be a closed manifold, and consider its tangent groupoid:

G tM := TM × {0} ∪M ×M × [0, 1] ⇒ M × [0, 1].

It is a deformation groupoid, and the preceding construction provides us a KK-
element:

∂M = (eM1 )∗ ◦ (eM0 )−1
∗ ∈ KK(C0(T ∗M),K) � KK(C0(T ∗M),C),

where eMi : C∗(G tM )→ C∗(G tM )|t=i are evaluation homomorphisms.
The analytical index is then [13]

IndaM := (eM1 )∗ ◦ (eM0 )−1
∗ : KK(C, C0(T ∗M))→ KK(C,K(L2(M))

� K0(C0(T ∗M)) � Z

or, in terms of the Kasparov product,

IndaM = · ⊗ ∂M.
Using the notion of pseudodifferential calculus forG tM , it is easy to conclude that this
map is the usual analytical index map. Indeed, let f (x, ξ ) be an elliptic zero-order
symbol, and consider the G tM -pseudodifferential operator, Pf = (Pt )0≤t≤1, defined
as in Examples 3.7.5. Then f provides a K-theory class [f ] ∈ K0(C∗(TM)) �
K0(C0(T ∗M)), whereas P provides a K-theory class [P ] ∈ K0(C∗(G tM )), and

(eM0 )∗([P ]) = [f ] ∈ K0(C∗(TM)).

Thus

[f ]⊗ [eM0 ]−1 ⊗ [eM1 ] = [P1] ∈ K0(K),

and [P1] coincides with Ind(P1) under K0(K) � Z.



150 Claire Debord and Jean-Marie Lescure

Because P1 has principal symbol equal to the leading part of f , and because
every class inK0(C0(T ∗M)) can be obtained from a zero-order elliptic symbol, the
claim is justified.

To be complete, let us explain that the analytical index map is the Poincaré dual
of the homomorphism inK-homology associated with the obvious map:M → {·}.
Indeed, thanks to the obvious homomorphism " : C∗(TM)⊗ C(M)→ C∗(TM)
given by multiplication, ∂M can be lifted into an element DM = "∗(∂M ) ∈
KK(C∗(TM)⊗ C(M),C) = K0(C∗(TM)⊗ C(M)), called the Dirac element.
This Dirac element yields the well-known Poincaré duality between C0(T ∗M)
and C(M) [14, 19, 31], and in particular it gives an isomorphism

· ⊗
C∗(TM)

DM : K0(C∗(TM))
�−→ K0(C(M)),

whose inverse is induced by the principal symbol map.
One can then easily show the following proposition:

Proposition 3.8.1 Let q: M → · be the projection onto a point. The following
diagram commutes:

K0(T ∗M)
PD−−−→ K0(M)

Inda
' 'q∗
Z

=−−−→ Z

3.8.3 The topological index

Take an embedding M → Rn, and let p : N → M be the normal bundle of this
embedding. The vector bundle TN → TM admits a complex structure; thus we
have a Thom isomorphism

T : K0(C∗(TM))
�−→ K0(C∗(TN))

given by a KK-equivalence

T ∈ KK(C∗(TM), C∗(TN)).

T is called the Thom element [30].
The bundle N identifies with an open neighborhood of M into Rn, so we have

the excision map

j : C∗(TN)→ C∗(TRn).

Consider also B : K0(C∗(TRn))→ Z given by the isomorphism C∗(TRn) �
C0(R2n) together with Bott periodicity.
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The topological index map Indt is the composition

K(C∗(TM))
T−→K(C∗(TN))

j∗−→ K(C∗(TRn))
B−→� Z.

This classical construction can be reformulated with groupoids.
First, let us give a description of T , or rather of its inverse, in terms of groupoids.

Recall the construction of the Thom groupoid. We begin by pulling back TM over
N in the groupoid sense. Let

∗p∗(TM) = N ×
M
TM ×

M
N ⇒ N

and

TN = TN × {0} � ∗p∗(TM)×]0, 1] ⇒ N × [0, 1].

This Thom groupoid and the Morita equivalence between ∗p∗(TM) and TM pro-
vide the KK-element

τN ∈ KK(C∗(TN), C∗(TM)).

This element is defined exactly as ∂M is. Precisely, the evaluation map at 0, namely
ẽ0 : C∗(TN )→ C∗(TN), defines an invertible KK-element. We let ẽ1 : C∗(TN )→
C∗(∗p∗(TM)) be the evaluation map at 1. The Morita equivalence between the
groupoidsTM and ∗p∗(TM) leads to a Morita equivalence between the correspond-
ing C∗-algebra and thus to a KK-equivalence M ∈ KK(C∗(∗p∗(TM)), C∗(TM)).
Then

τN := [ẽ0]−1 ⊗ [ẽ1]⊗M.

We have the following:

Proposition 3.8.2 [20] If T is theKK-equivalence giving the Thom isomorphism,
then

τN = T −1.

This proposition also applies to interpret the isomorphism B : K0(C∗(TRn))→
Z. Indeed, consider the embedding · ↪→ Rn. The normal bundle is just Rn→ ·,
and we get as before

τRn ∈ KK(C∗(TRn),C).

Using the previous proposition, we get B = · ⊗ τRn .
Remark also that TRn = GRn , so that τRn = [eR

n

0 ]−1 ⊗ [eR
n

1 ].
Finally, the topological index

Indt = τRn ◦ j∗ ◦ τ−1
N

is entirely described using (deformation) groupoids.
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3.8.4 The equality of the indices

A last groupoid is necessary in order to prove the equality of index maps. Namely,
this groupoid is obtained by recasting the construction of the Thom groupoid at the
level of tangent groupoids:

T̃N = GN × {0} � ∗(p ⊗ Id[0,1])
∗(GM )×]0, 1]. (3.27)

As before, this yields a class

τ̃N ∈ KK(C∗(GN ), C∗(GM )).

All maps in the diagram

Z Z Z

eM1

% eN1

% eR
n

1

%
K0(C∗(GM ))

⊗τ̃N←−−− K0(C∗(GN ))
j̃∗−−−→ K0(C∗(GRn))

eM0

'� eN0

'� eR
n

0

'�
K0(C∗(TM))

⊗τN←−−−� K0(C∗(TN))
j∗−−−→ K0(C∗(TRn))

(3.28)

are given by Kasparov products with

(i) classes of homomorphisms coming from restrictions or inclusions between groupoids,
(ii) inverses of such classes,

(iii) explicit Morita equivalences.

This easily yields the commutativity of the diagram (3.28). Having in mind the
previous description of index maps using groupoids, this commutativity property
just implies

Inda = Indt .

3.9 The case of pseudomanifolds with isolated singularities

As we explained earlier, the proof of the K-theoretical form of the Atiyah–Singer
index theorem presented in this chapter easily extends to the case of pseudoman-
ifolds with isolated singularities. This is achieved provided one uses the correct
notion of tangent space of the pseudomanifold; for a pseudomanifold X with
one conical point (the case of several isolated singularities is similar), this is the
noncommutative tangent space defined in Section 3.2.5:

T SX = X− ×X− ∪ TX+ ⇒ X◦.
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In the sequel, it will replace the ordinary tangent space of a smooth manifold.
Moreover, it gives rise to another deformation groupoid, which will replace the
ordinary tangent groupoid of a smooth manifold:

G tX = T SX × {0} ∪X◦ ×X◦×]0, 1] ⇒ X◦ × [0, 1].

We call G tX the tangent groupoid of X. It can be provided with a smooth structure
such that T SX is a smooth subgroupoid. Moreover, both are amenable, so their
reduced and maximal C∗-algebras coincide and are nuclear.

With these choices of T SX as a tangent space for X and of G tX as a tangent
groupoid, one can follow step by step all the constructions made in the previous
section.

3.9.1 The analytical index

Using the partition X◦ × [0, 1] = X◦ × {0} ∪X◦×]0, 1] into saturated open and
closed subsets of the units space of the tangent groupoid, we define theKK-element
associated to the tangent groupoid of X:

∂X := [e0]−1 ⊗ [e1] ∈ KK(C∗(T SX),K) � KK(C∗(T SX),C),

where e0 : C∗(G tX)→ C∗(G tX|X◦×{0}) � C∗(T SX) is the evaluation at 0, and e1 :
C∗(G tX)→ C∗(G tX|X◦×{1}) � K(L2(X)) is the evaluation at 1.

Now we can define the analytical index exactly as we did for closed smooth
manifolds. Precisely, the analytical index for X is set to be the map

IndXa = · ⊗ ∂X : KK(C, C∗(T SX))→ KK(C,K(L2(X◦))) � Z.

The interpretation of this map as the Fredholm index of an appropriate class of
elliptic operators is possible and carried out in [34].

3.9.2 The Poincaré duality

Pursuing the analogy with smooth manifolds, we explain in this subsection that
the analytical index map for X is Poincaré dual to the index map in K-homology
associated to the obvious map : X→ {.}.

The algebras C(X) and C•(X) := {f ∈ C(X) | f is constant on cL} are homo-
topic. If g belongs toC•(X) and f toCc(T SX), let g · f be the element ofCc(T SX)
defined by g · f (γ ) = g(r(γ ))f (γ ). This induces a ∗-morphism

" : C(X)⊗ C∗(T SX)→ C∗(T SX).

The Dirac element is defined to be

DX := ["]⊗ ∂X ∈ KK(C(X)⊗ C∗(T SX),C).

We recall
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Theorem 3.9.1 [19] There exists a (dual-Dirac) element λX ∈ KK(C, C(X)⊗
C∗(T SX)) such that

λX ⊗
C(X)

DX = 1C∗(T SX) ∈ KK(C∗(T SX), C∗(T SX)),

λX ⊗
C∗(T SX)

DX = 1C(X) ∈ KK(C(X), C(X)).

This means that C(X) and C∗(T SX) are Poincaré dual.

Remark 3.9.2 The explicit construction of λX, which is heavy going and technical,
can be avoided. In fact, the definitions ofT SX,G tX and thus ofDX can be extended in
a natural way to the case of an arbitrary pseudomanifold, and the proof of Poincaré
duality can be done using a recursive argument on the depth of the stratification,
starting with the case depth= 0, that is, with the case of smooth closed manifolds.
This is the subject of [18].

The theorem implies that

KK(C, C∗(T SX)) � K0(C∗(T SX))→ K(C(X),C) � K0(C(X)),

x �→ x ⊗
C∗(T SX)

DX

is an isomorphism. In [34], it is explained how to interpret its inverse as a principal
symbol map, and one also get the analogue of Proposition 3.8.1:

Proposition 3.9.3 Let q : X→ · be the projection onto a point. The following
diagram commutes:

K0(C∗(T SX))
PD−−−→ K0(X)

IndXa

' 'q∗
Z

=−−−→ Z

3.9.3 The topological index

3.9.3.1 Thom isomorphism

Take an embedding X ↪→ cRn = Rn × [0,+∞[/Rn × {0}. This means that we
have a map which restricts to an embeddingX◦ → Rn×]0,+∞[ in the usual sense
and which sends c to the image of Rn × {0} in cRn. Moreover, we require the
embedding on X− = L×]0, 1[ to be of the form j × Id where j is an embedding
of L in Rn.

Such an embedding provides a conical normal bundle. Precisely, let p : N◦ →
X◦ be the normal bundle associated with X◦ ↪→ Rn×]0,+∞[. We can identify



Index theory and groupoids 155

N◦|X− � N◦|L×]0, 1[, and set

N = c̄N◦|L ∪N◦|X+ .
Thus N is the pseudomanifold with an isolated singularity obtained by gluing the
closed cone c̄N◦|L := N◦|L × [0, 1]/N◦|L × {0} with N◦|X+ along their common
boundaryN◦|L × {1} = N◦|∂X+ . Moreover, p : N → X is a conical vector bundle.

The Thom groupoid is then

TN = T SN × {0} � ∗p∗(T SX)×]0, 1].

It is a deformation groupoid. The corresponding KK-element gives the inverse
Thom element:

τN ∈ KK(C∗(T SN ), C∗(T SX)).

Proposition 3.9.4 [20] The following map is an isomorphism:

K(C∗(T SN ))
·⊗τN−→ K(C∗(T SX)).

Roughly speaking, the inverse of · ⊗ τN is the Thom isomorphism for the “vector
bundle” T SN “over” T SX. One can show that it really restricts to usual Thom
homomorphism on regular parts.

3.9.3.2 Excision

The groupoid T SN is identified with an open subgroupoid of T ScRn, and we have
an excision map

j : C∗(T SN )→ C∗(T SRn).

3.9.3.3 Bott element

Consider c ↪→ cRn. The (conical) normal bundle is cRn itself. Remark that G t
cRn
=

TcRn . Then

τcRn ∈ KK(C∗(T ScRn),C)

gives an isomorphism

B = (· ⊗ τcRn) : K0(C∗(T ScRn))→ Z.

Definition 3.9.5 The topological index is the morphism

IndXt = B ◦ j∗ ◦ τ−1
N : K0(C∗(T SX))→ Z.

The following index theorem can be proved along the same lines as in the smooth
case:

Theorem 3.9.6 The following equality holds:

IndXa = IndXt .
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L’Enseignement Mathématique, vol. 36. L’Enseignement Mathématique, Geneva,
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267:21–23, 1968.

[45] B. Ramazan. Deformation, quantization of Lie–Poisson manifolds. PhD thesis,
Université d’Orléans, 1998.
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4

Renormalization Hopf algebras and
combinatorial groups

alessandra frabetti∗

Abstract

These are the contents of five lectures given at the Summer School “Geometric
and Topological Methods for Quantum Field Theory,” held in Villa de Leyva
(Colombia), July 2–20, 2007. The lectures are meant for graduate or advanced
undergraduate students in physics or mathematics. They include references,
many examples and some exercises.

Part I is a short introduction to algebraic and proalgebraic groups, based
on some examples of groups of matrices and groups of formal series, and their
Hopf algebras of coordinate functions.

Part II presents a greatly condensed review of classical and quantum field
theory, from the Lagrangian formalism to the Euler–Lagrange equation and
the Dyson–Schwinger equation for Green functions. It poses the main problem
of solving some nonlinear differential equations for interacting fields.

In Part III we study the perturbative solution of the previous equations,
expanded in Feynman graphs, in the simplest case of the scalar φ3 theory.

Part IV introduces the problem of divergent integrals appearing in quantum
field theory, the renormalization procedure for the graphs, and how the renor-
malization affects the Lagrangian and the Green functions given as perturbative
series.

Part V presents the Connes–Kreimer Hopf algebra of renormalization for
the scalar theory and its associated proalgebraic group of formal series.

I. Groups and Hopf algebras

In this part we review the classical duality between groups and Hopf algebras of
certain types. Details can be found, for instance, in [16].

∗
These lectures are based on a course for Ph.D. students in mathematics, held at Université Lyon 1 in spring
2006, by Alessandra Frabetti and Denis Perrot. Thanks, Denis!

During the summer school “Geometric and Topological Methods for Quantum Field Theory,” many students
provided interesting questions and comments, which greatly helped the writing of these notes. Thanks to all of
them!
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4.1 Algebras of representative functions

Let G be a group, for instance, a group of real or complex matrices, a topological
group or a Lie group. Let

F (G) = {f : G −→ C (or R)}
denote the set of functions onG, possibly continuous or differentiable. Then F (G)
has a lot of algebraic structures, which I describe in detail.

4.1.1 Product

The natural vector space F (G) is a unital associative and commutative algebra
over C, with product (fg)(x) = f (x)g(x), where f, g ∈ F (G) and x ∈ G, and unit
given by the constant function 1(x) = 1.

4.1.2 Coproduct

For any f ∈ F (G), the group law G×G ·−→ G induces an element  f ∈
F (G×G) defined by  f (x, y) = f (x · y). Can we characterize the algebra
F (G×G) = {f : G×G −→ C} starting from F (G)?

Of course, we can consider the tensor product

F (G)⊗ F (G) =
{∑

finite

fi ⊗ gi, fi, gi ∈ F (G)

}
,

with componentwise product (f1 ⊗ g1)(f2 ⊗ g2) = f1g1 ⊗ f2g2, but in general
this algebra is a strict subalgebra of F (G×G) = {∑infinite fi ⊗ gi} (it is equal
to F (G×G) for finite groups). For example, f (x, y) = exp(x + y) ∈ F (G)⊗
F (G), but f (x, y) = exp(xy) /∈ F (G)⊗ F (G). Similarly, if δ(x, y) is the function
equal to 1 when x = y and equal to 0 when x �= y, then δ /∈ F (G)⊗ F (G). To
avoid this problem we could use the completed or topological tensor product ⊗̂
such that F (G) ⊗̂F (G) = F (G×G). However, this tensor product is difficult
to handle, and for our purpose we want to avoid it. As an alternative, we can
consider the subalgebras R(G) of F (G) such that R(G)⊗ R(G) = R(G×G).
Such algebras are of course much easier to describe then a completed tensor product.
For our purpose, we are interested in the case when one of these subalgebras is
big enough to describe the group completely. That is, it does not lose too much
information about the group with respect to F (G). This condition will be specified
later on.

Let us therefore assume that there exists a subalgebra R(G) ⊂ F (G) such
that R(G)⊗ R(G) = R(G×G). Then, the group law G×G ·−→ G induces a
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coproduct  : R(G) −→ R(G)⊗ R(G) defined by  f (x, y) = f (x · y). We
denote it by  f =∑finite f(1) ⊗ f(2). The coproduct has two main properties:

(i)  is a homomorphism of algebras; in fact,

 (fg)(x, y) = (fg)(x · y) = f (x · y)g(x · y) =  f (x, y) g(x, y),

that is,  (fg) =  (f ) (g). This can also be expressed as∑
(fg)1 ⊗ (fg)2 =

∑
f1g1 ⊗ f2g2.

(ii)  is coassociative, that is, ( ⊗ Id) = (Id⊗ ) , because of the associativity
(x · y) · z = x · (y · z) of the group law in G.

4.1.3 Counit

The neutral element e of the groupG induces a counit ε : R(G) −→ C defined by
ε(f ) = f (e). The counit has two main properties:

(i) ε is a homomorphism of algebras; in fact,

ε(fg) = (fg)(e) = f (e)g(e) = ε(f )ε(g).

(ii) ε satisfies the equality
∑
f(1)ε(f(2)) =

∑
ε(f(1))f(2), induced by the equality x · e =

x = e · x in G.

4.1.4 Antipode

The inversion operation inG, that is, x → x−1, induces the antipode S : R(G) −→
R(G) defined by S(f )(x) = f (x−1). The counit has four main properties:

(i) S is a homomorphism of algebras; in fact,

S(fg)(x) = (fg)(x−1) = f (x−1)g(x−1) = S(f )(x)S(g)(x).

(ii) S satisfies the five-term equality

m(S ⊗ Id) = uε = m(Id⊗ S) ,

wherem : R(G)⊗ R(G) −→ R(G) denotes the product and u : C −→ R(G) denotes
the unit. This is induced by the equality x · x−1 = e = x−1 · x in G.

(iii) S is anti-comultiplicative, that is, ◦ S = (S ⊗ S) ◦ τ ◦ , where τ (f ⊗ g) = g ⊗ f
is the twist operator. This property is induced by the equality (x · y)−1 = y−1 · x−1 in
G.

(iv) S is nilpotent, that is, S ◦ S = Id, because of the identity (x−1)−1 = x in G.
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4.1.5 Abelian groups

Finally,G is abelian (that is, x · y = y · x for all x, y ∈ G) if and only if the coprod-
uct is cocommutative, that is,  =  ◦ τ , that is,

∑
f(1) ⊗ f(2) =

∑
f(2) ⊗ f(1).

4.1.6 Hopf algebras

A unital, associative and commutative algebra H endowed with a coproduct  ,
a counit ε and an antipode S, satisfying all the properties listed in the preceding
subsections, is called a commutative Hopf algebra.

In conclusion, we have shown that if G is a (topological) group, and R(G) is a
subalgebra of (continuous) functions on G such that R(G)⊗ R(G) = R(G×G),
and sufficiently big to contain the image of and of S, thenR(G) is a commutative
Hopf algebra. Moreover, R(G) is cocommutative if and only if G is abelian.

4.1.7 Representative functions

We now turn to the existence of such a Hopf algebra R(G). If G is a finite group,
then the largest such algebra is simply the linear dual R(G) = F (G) = (CG)∗ of
the group algebra.

If G is a topological group, then the condition R(G)⊗ R(G) = R(G×G),
roughly speaking, forces R(G) to be a polynomial algebra, or a quotient of it. The
generators are the coordinate functions on the group, but we do not always know
how to find them.

For compact Lie groups, R(G) always exists, and we can be more precise. We
say that a function f : G −→ C is representative if there exist a finite number of
functions f1, . . . , fk such that any translation of f is a linear combination of them.
If we denote by (Lxf )(y) = f (x · y) the left translation of f by x ∈ G, this means
that Lxf =

∑
li(x)fi . Denote by R(G) the set of all representative functions on

G. Then, using representation theory, and, in particular, the Peter–Weyl theorem,
one can show the following facts:

(i) R(G)⊗ R(G) = R(G×G);
(ii) R(G) is dense in the set of continuous functions;

(iii) as an algebra, R(G) is generated by the matrix elements of all the representations of
G of finite dimension;

(iv) R(G) is also generated by the matrix elements of one faithful representation of G,
and therefore it is finitely generated.

Moreover, for compact Lie groups, the algebra R(G) has two additional structures:

(i) because the group G is a real manifold and the functions have complex values, R(G)
has an involution, that is, a map ∗ : R(G) −→ R(G) such that (f ∗)∗ = f and (fg)∗ =
g∗f ∗;
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(ii) becauseG is compact,R(G) has a Haar measure, that is, a linear mapµ : R(G) −→ R

such that µ(aa∗) > 0 for all a �= 0.

Similar results hold in general for groups of matrices, even if they are complex
manifolds, and even if they are not compact. In particular, the algebra generated
by the matrix elements of one faithful representation of G satisfies the required
properties.

For other groups than those of matrices, a suitable algebra R(G) can exist, but
there is no general procedure to find it. The best hint is to look for a faithful
representation, possibly with infinite dimension. This may work also for groups
which are not locally compact, as shown in the examples in Sections 4.2.8 and
4.2.9, but in general not for groups of diffeomorphisms on a manifold.

4.2 Examples

4.2.1 Complex affine plane

Let G = (Cn,+) be the additive group of the complex affine plane. A complex
group is assumed to be a holomorphic manifold. The functions are also assumed
to be holomorphic, that is, they do not depend on the complex conjugate of the
variables. The map

ρ : (Cn,+) −→ GLn+1(C) = Aut(Cn+1),

(t1, . . . , tn) �→


1 t1 · · · tn

0 1 · · · 0
...

...
...

0 0 . . . 1


is a faithful representation, in fact

ρ
(
(t1, . . . , tn)+ (s1, . . . , sn)

) =


1 t1 + s1 · · · tn + sn
0 1 · · · 0
...

...
...

0 0 · · · 1



=


1 t1 · · · tn

0 1 · · · 0
...

...
...

0 0 · · · 1




1 s1 · · · sn

0 1 · · · 0
...

...
...

0 0 · · · 1


= ρ(t1, . . . , tn)ρ(s1, . . . , sn).



164 Alessandra Frabetti

Therefore, there are n local coordinates xi(t1, . . . , tn) = ti , for i = 1, . . . , n, which
are free of mutual relations. Hence the algebra of local coordinates on the affine
line is the polynomial ring R(Cn,+) = C[x1, . . . , xn]. The Hopf-structure is the
following:

� Coproduct:  xi = xi ⊗ 1+ 1⊗ xi and  1 = 1⊗ 1. The group is abelian, and the
coproduct is indeed cocommutative.

� Counit: ε(xi) = x(0) = 0 and ε(1) = 1.
� Antipode: Sxi = −xi and S1 = 1.

This Hopf algebra is usually called the unshuffle Hopf algebra, because the coprod-
uct on a generic monomial

 (xi1 · · · xil ) =
∑
p+q=l

∑
σ∈	p,q

xσ (i1) · · · xσ (ip) ⊗ xσ (ip+1) · · · xσ (ip+q )

makes use of the shuffle permutations σ ∈ 	p,q , that is, the permutations of 	p+q
such that σ (i1) < · · · < σ (ip) and σ (ip+1) < · · · < σ (ip+q).

4.2.2 Real affine plane

Let G = (Rn,+) be the additive group of the real affine plane. A real group is
assumed to be a differentiable manifold. The functions with values in C are the
complexification of the functions with values in R, that is, RC(G) = RR(G)⊗ C.
In principle, then, the functions depend also on the complex conjugates, but the
generators must be real: we expect that the algebra RC(G) has an involution ∗. In
fact, we have the following results:

� Real functions: The map

ρ : (Rn,+) −→ GLn+1(R) = Aut(Rn+1),

(t1, . . . , tn) �→


1 t1 · · · tn

0 1 · · · 0
...

...
...

0 0 . . . 1


is a faithful representation. The local coordinates are xi(t1, . . . , tn) = ti , for i =
1, . . . , n, and the algebra of real local coordinates is the polynomial ring RR(Rn,+) =
R[x1, . . . , xn]. The Hopf structure is exactly as in the previous example.

� Complex functions: Complex faithful representation as before, but local coordinates
xi(t1, . . . , tn) = ti subject to an involution defined by x∗i (t1, . . . , tn) = ti and such that
x∗i = xi . Then the algebra of complex local coordinates is the quotient

RC(Rn,+) = C[x1, x
∗
1 , . . . , xn, x

∗
n]

〈x∗i − xi, i = 1, . . . , n〉 ,
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which is isomorphic to C[x1, . . . , xn] as an algebra, but not as an algebra with involution.
Of course, the Hopf structure is always the same.

4.2.3 Complex simple linear group

The group

SL(2,C) =
{
M =

(
m11 m12

m21 m22

)
∈ M2(C), detM = 1

}
has a lot of finite-dimensional representations, and the smallest faithful one is the
identity:

ρ = Id : SL(2,C) −→ GL2(C),

M �→
(
m11 = a(M) m12 = b(M)
m21 = c(M) m22 = d(M)

)
.

Therefore there are four local coordinates a, b, c, d : SL(2,C) −→ C, given by
a(M) = m11, etc., related by detM = 1. Hence the algebra of local coordinates of
SL(2,C) is the quotient

R(SL(2,C)) = C[a, b, c, d]

〈ad − bc − 1〉 .

The Hopf structure is the following:

� Coproduct:  f (M,N ) = f (MN ); therefore

 a = a ⊗ a + b ⊗ c,  b = a ⊗ b + b ⊗ d,
 c = c ⊗ a + d ⊗ c,  d = c ⊗ b + d ⊗ d.

To shorten the notation, we can write

 

(
a b

c d

)
=
(
a b

c d

)
⊗
(
a b

c d

)
.

� Counit: ε(f ) = f (1); hence ε

(
a b

c d

)
=
(

1 0
0 1

)
.

� Antipode: Sf (M) = f (M−1); therefore S

(
a b

c d

)
=
(
d −b
−c a

)
.

4.2.4 Complex general linear group

For the group

GL(2,C) = {M ∈ M2(C), detM �= 0} ,
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the identity GL(2,C) −→ GL(2,C) ≡ Aut(C2) is of course a faithful represen-
tation. We then have four local coordinates, as for SL(2,C). However, this time
they satisfy the condition detM �= 0, which is not closed. To express this relation
we use a trick: Because detM �= 0 if and only if there exists the inverse of detM ,
we add a variable t(M) = (detM)−1. Therefore the algebra of local coordinates of
GL(2,C) is the quotient

R(GL(2,C)) = C[a, b, c, d, t]

〈(ad − bc)t − 1〉 .

The Hopf structure is the same as that ofSL(2,C) on the local coordinates a, b, c, d ,
and on the new variable t is as follows:

� Coproduct:  t = t ⊗ t ; in fact,

 t(M,N ) = t(MN ) = (det (MN ))−1 = (detM)−1(detN )−1

= t(M)t(N ).

� Counit: ε(t) = t(1) = 1.
� Antipode: St = ad − bc, because

St(M) = t(M−1) = (det (M−1))−1 = detM.

4.2.5 Simple unitary group

The group

SU (2) =
{
M ∈ M2(C), detM = 1, M−1 = Mt

}
is a real group; in fact, it is one real form of SL(2,C), the other one being SL(2,R),
and it is also the maximal compact subgroup of SL(2,C). As a real manifold, SU (2)
is isomorphic to the three-dimensional sphere S3; in fact,

M =
(
a b

c d

)
∈ SU (2) ⇐⇒ ad − bc = 1, a = d , b = c

⇐⇒ M =
(
a b

−b a

)
with aa + bb = 1.

If we set a = x + iy and b = u+ iv, with x, y, u, v ∈ R, we then have

aa + bb = 1 ⇐⇒ x2 + y2 + u2 + v2 = 1 in R4

⇐⇒ (x, y, u, v) ∈ S3.
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We then expect that the algebra of complex functions on SU (2) has an involution:

R(SU (2)) = C[a, b, c, d, a∗, b∗, c∗, d∗]
〈a∗ − d, b∗ + c, ad − bc − 1〉

∼= C[a, b, a∗, b∗]
〈aa∗ + bb∗ − 1〉 .

The Hopf structure is the same as that of SL(2,C), but expressed in terms of the
proper coordinate functions of SU (2), that is:

� Coproduct:  

(
a b

−b∗ a∗

)
=
(
a b

−b∗ a∗

)
⊗
(
a b

−b∗ a∗

)
.

� Counit: ε

(
a b

−b∗ a∗

)
=
(

1 0
0 1

)
.

� Antipode: S

(
a b

−b∗ a∗

)
=
(
a∗ −b
b∗ a

)
.

4.2.6 Exercise: Heisenberg group

The Heisenberg groupH3 is the group of complex 3× 3 (upper) triangular matrices
with all the diagonal elements equal to 1, that is,

H3 =

1 a b

0 1 c

0 0 1

 ∈ GL(3,C)

 .
Describe the Hopf algebra of complex representative (algebraic) functions on H3.

4.2.7 Exercise: Euclidean group

The group of rotations on the plane R2 is the special orthogonal group

SO(2,R) = {A ∈ GL(2,R), detA = 1, A−1 = At} .
The group of rotations acts on the group of translations T2 = (R2,+) as a product
Av of a matrix A ∈ SO(2,R) by a vector v ∈ R2.

The Euclidean group is the semidirect productE2 = T2 � SO(2,R). That is,E2

is the set of all the couples (v,A) ∈ T2 × SO(2,R), with the group law

(v,A) · (u,B) := (v + Au,AB).

(i) Describe the Hopf algebra of real representative functions on SO(2,R).
(ii) Find a real faithful representation of T2 of dimension 3.

(iii) Describe the Hopf algebra of real representative functions on E2.
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4.2.8 Group of invertible formal series

The set

Ginv(C) =
{
f (z) =

∞∑
n=0

fn z
n, fn ∈ C, f0 = 1

}

of formal series in one variable, with constant term equal to 1, is an Abelian group
with

� product: (fg)(z) = f (z)g(z) =
∞∑
n=0

( ∑
p+q=n

fp gq

)
zn;

� unit: 1(z) = 1;
� inverse: by recursion; in fact,

(ff −1)(z) =
∞∑
n=0

( ∑
p+q=n

fp (f −1)q

)
zn = 1

if and only if for n = 0 we have

f0(f −1)0 = 1 ⇔ (f −1)0 = 1 ⇔ f −1 ∈ Ginv(C),

and for n ≥ 1 we have

n∑
p=0

fp (f −1)n−p = f0(f −1)n + f1(f −1)n−p + · · · + fn(f −1)0 = 0,

that is, (f −1)1 = −f1, (f −1)2 = f 2
1 − f2, etc.

This group has many finite-dimensional representations, of the form

ρ : Ginv(C) −→ GLn(C),

f (z) =
∞∑
n=0

fn z
n �→


1 f1 f2 f3 · · · fn−1

0 1 f1 f2 · · · fn−2

0 0 1 f1 · · · fn−3
...

...
. . .

...
0 0 · · · 1

 ,



Renormalization Hopf algebras and combinatorial groups 169

but they are never faithful! To have a faithful representation, we need to consider
the map

ρ : Ginv(C) −→ GL∞(C) = lim← GLn(C),

f (z) �→


1 f1 f2 f3 · · ·
0 1 f1 f2 · · ·
0 0 1 f1 · · ·
...

...
. . .

0 0 · · ·

 ,
where lim← GLn(C) is the projective limit of the groups (GLn(C))n, that is, the limit

of the groups such that each GLn(C) is identified with the quotient of GLn+1(C)
by its last column and row. Because lim← GLn(C) is not a group, it is necessary to

restrict the image of the map ρ to the triangular matrices Tn(C), whose projective
limit lim← Tn(C) indeed forms a group.1

Therefore there are infinitely many local coordinates xn : Ginv(C) −→ C,
given by xn(f ) = fn, which are free from each other. Hence the algebra of local
coordinates of Ginv(C) is the polynomial ring

R(Ginv(C)) = C[x1, x2, . . . , xn, . . .].

The Hopf structure is the following (with x0 = 1):

� Coproduct:  xn =
∑n
k=0 xk ⊗ xn−k .

� Counit: ε(xn) = δ(n, 0).
� Antipode: recursively, from the five-term identity. In fact, for any n > 0 we have

ε(xn)1 = 0 =
n∑
k=0

S(xk)xn−k

= S(1)xn + S(x1)xn−1 + S(x2)xn−2 + · · · + S(xn)1,

and because S(1) = 1, we obtain S(xn) = −xn −
∑n−1
k=1 S(xk)xn−k .

This Hopf algebra is isomorphic to the so-called algebra of symmetric functions;
cf. [19].

4.2.9 Group of formal diffeomorphisms

The set

Gdif(C) =
{
f (z) =

∞∑
n=0

fn z
n+1, fn ∈ C, f0 = 1

}
1 Thanks to B. Richter and R. Holtkamp for pointing this cut to me.
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of formal series in one variable, with zero constant term and linear term equal to
1, is a (non-abelian) group with

� product given by the composition (or substitution)

(f ◦ g)(z) = f (g(z)) =
∞∑
n=0

fn g(z)n

= z+ (f1 + g1) z2 + (f2 + 2f1g1 + g2) z3

+ (f3 + 3f2g1 + 2f1g2 + f1g
2
1 + g3) z4 + O(z5);

� unit id(z) = z;
� inverse given by the reciprocal series f −1 such that f ◦ f −1 = id = f −1 ◦ f , which can

be found recursively, using for instance the Lagrange formula; cf. [22].

This group also has many finite-dimensional representations, which are not
faithful, and a faithful representation of infinite dimension:

ρ : Gdif(C) −→ T∞(C) = lim← Tn(C) ⊂ GL∞(C),

f (z) �→



1 f1 f2 f3 f4 · · ·
0 1 2f1 2f2 + f 2

1 2f3 + 2f1f2 · · ·
0 0 1 3f1 3f2 + 3f 2

1 · · ·
0 0 0 1 4f1 · · ·
...

...
...

. . .
0 0 0 · · ·


.

Therefore there are infinitely many local coordinates xn : Gdif(C) −→ C, given
by xn(f ) = fn, which are free one from another. As in the previous example, the
algebra of local coordinates of Gdif(C) is then the polynomial ring

R(Gdif(C)) = C[x1, x2, . . .].

The Hopf structure is the following (with x0 = 1):

� Coproduct:  xn(f, g) = xn(f ◦ g); hence

 xn = xn ⊗ 1+ 1⊗ xn +
n−1∑
m=1

xm ⊗
∑

p0+p1+···+pm=n−m
p0,...,pm≥0

xp0xp1 · · · xpm.

� Counit: ε(xn) = δ(n, 0).
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� Antipode: recursively, using

S(xn) = −xn −
n−1∑
m=1

S(xm)
∑

p0+p1+···+pm=n−m
p0,...,pm≥0

xp0xp1 · · · xpm.

This Hopf algebra is the so-called Faà di Bruno Hopf algebra, because the com-
putation of the coefficients of the Taylor expansion of the composition of two
functions was first carried out by F. Faà di Bruno [12] (in 1855!).

4.3 Groups of characters and duality

Let H be a commutative Hopf algebra over C, with product m, unit u, coproduct
 , counit ε, antipode S and possibly an involution ∗.

4.3.1 Group of characters

We define a character of the Hopf algebra H as a linear map α : H −→ C such
that

(i) α is a homomorphism of algebras, that is, α(ab) = α(a)α(b);
(ii) α is unital, that is, α(1) = 1.

Denote by GH = HomAlg(H,C) the set of characters of H. Given two characters
α, β ∈ GH, we define the convolution of α and β as the linear map α # β : H −→ C

defined by α # β = mC ◦ (α ⊗ β) ◦ , that is, α # β(a) =∑α(a(1))β(a(2)) for any
a ∈ H. Applying the definitions, it is easy to prove the following properties:

(i) For any α, β ∈ GH, the convolution α # β is a unital algebra homomorphism, that is
α # β ∈ GH.

(ii) The convolution product GH ⊗GH −→ GH is associative.
(iii) The counit ε : H −→ C is the unit of the convolution.
(iv) For any α ∈ GH, the homomorphism α−1 = α ◦ S is the inverse of α.
(v) The convolution product is commutative if and only if the coproduct is cocommutative.

In other words, the set of charactersGH forms a group with the convolution product.

4.3.2 Real subgroups

If H is a commutative Hopf algebra endowed with an involution ∗ : H −→ H

compatible with the Hopf structure, in the sense that

(ab)∗ = b∗a∗, 1∗ = 1,

 (a∗) = ( a)∗, ε(a∗) = ε(a), S(a∗) = (Sa)∗,
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then the subset

G∗
H
= Hom∗Alg(H,C) =

{
α ∈ GH, α(a∗) = α(a)

}
is a (real) subgroup of GH.

4.3.3 Compact subgroups

If, furthermore, H is a commutative *Hopf algebra, finitely generated and endowed
with a Haar measure compatible with the Hopf structure, that is, a linear map
µ : H −→ R such that

(µ⊗ Id) = (Id⊗ µ) = u ◦ µ,
µ(aa∗) > 0 for all a �= 0,

then G∗
H

is a compact Lie group.

4.3.4 Comparison of SL(2,C), SL(2,R) and SU (2)

Consider the commutative algebra

H = C[a, b, c, d]

〈ad − bc − 1〉 .

If on H we consider the Hopf structure

 

(
a b

c d

)
=
(
a b

c d

)
⊗
(
a b

c d

)
,

ε

(
a b

c d

)
=
(

1 0
0 1

)
,

S

(
a b

c d

)
=
(
d −b
−c a

)
,

then GH = SL(2,C). If in addition we consider the involution(
a b

c d

)∗
=
(
a b

c d

)
,

then G∗
H
= SL(2,R). If, instead, we consider the involution(

a b

c d

)∗
=
(
d −c
−b a

)
,

then G∗
H
= SU (2).
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4.3.5 Duality

We have seen first how to associate a Hopf algebra to a group, through a functor
R, and then how to associate a group to a Hopf algebra, through a functor G. In
general, these two functors are adjoint to each other, that is,

HomGroups(G,GH) ∼= HomAlg(H, R(G)).

Sometimes, these two functors are dual to each other. In particular, we have the
following results:

� Given a complex group G and its Hopf algebra R(G) of representative functions, the
map

� : G −→ GR(G) = HomAlg(R(G),C),

x �→ �x : R(G)→ C,�x(f ) = f (x)

defines an isomorphism of groups to the characters group of R(G). This result must be
refined to the group G∗R(G) if G is real. It is known as Tannaka duality for compact Lie
groups.

� Vice versa, given a commutative Hopf algebra over C, the complex group G can be
defined as the group of characters of H, that is, by stating that its coordinate functions
are given by H. If the Hopf algebra H has an involution and a Haar measure, and it is
finitely generated, then the map

" : H −→ R(G∗(H)),

a �→ "a : Hom∗Alg(H,C)→ C, "a(α) = α(a)

defines an isomorphism of Hopf algebras. The underlying group is compact, and this
result is known as the Krein duality.

4.3.6 Algebraic and proalgebraic groups

As we saw in most of the examples, the group structure of many groups does not
depend on the field where the coefficients take value. This is the case for matrix
groups, but also for the groups of formal series. Apart from the coefficients, such
groups have in common the form of their coordinate ring, that is, the Hopf algebra
H. They are better described as follows.

Given a commutative Hopf algebra H which is finitely generated, we define the
algebraic group associated to H as the functor

GH : {Commutative, associative algebras} −→ {Groups},
A �→ GH(A) = HomAlg(H, A),
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whereGH(A) is a group with the convolution product. If H is not finitely generated,
we call the same functor the proalgebraic group.

In particular, all the matrix groups SLn, GLn, etc., can have matrix coeffi-
cients in any commutative algebra A, not only C or R, and therefore are algebraic
groups. Similarly, the groups of formal series Ginv, Gdif , with coefficients in any
commutative algebra A, are proalgebraic groups.

II. Review of field theory

4.4 Review of classical field theory

In this section we briefly review the standard Lagrangian tools applied to fields,
and the main examples of solutions of the Euler–Lagrange equations.

4.4.1 Space-time

The space-time coordinates are points in the Minkowski space R1,3, that is, the space
endowed with the flat diagonal metric g = (1,−1,−1,−1). A transformation,
called Wick’s rotation, allows us to reformulate the problems on the Euclidean space
R4. For more generality, we then consider an Euclidean space RD of dimensionD,
and we denote the space-time coordinates by x = (xµ), with µ = 0, 1, . . . , D − 1.

4.4.2 Classical fields

A field is a section of a bundle on a base space. If the base space is flat, as in the
case we consider here, a field is just a vector-valued function. By classical field, we
mean a real function φ : RD −→ R of class C∞, with compact support and rapidly
decreasing. To be precise, we can take the function φ in the Schwartz space S(RD),
that is, φ is a C∞ function such that all its derivatives ∂nµφ converge rapidly to zero
for |x| → ∞.

The observables of the system described by a field φ, that is, the observable
quantities, are real functionals F of the field φ, and what can be measured of these
observables are the values F (φ) ∈ R. To determine all the observables it is enough
to know the field itself.

When the field φ : RD −→ C has complex (nonreal) values, it is called a wave
function. In this case, what can be measured is not the value φ(x) itself, for any
x ∈ RD, but rather the real value |φ(x)|2, which describes the probability of finding
the particle at the position x.

4.4.3 Euler–Lagrange equation

A classical field is determined as the solution of a partial differential equation,
called the field equation, which encodes its evolution. To any system is associated a
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Lagrangian density, that is, a real function L : RD −→ R, x �→ L(x, φ(x), ∂φ(x)),
where ∂φ denotes the gradient of φ. By Noether’s theorem, the dynamics of the
field φ is such that the symmetries of the field (i.e., the transformations that leave
the Lagrangian invariant) are conserved. The conservation conditions are turned
into a field equation by means of the action of the field φ: it is the functional S of
φ given by

φ �→ S[φ] =
∫

RD

dDx L(x, φ(x), ∂φ(x)).

The action S is stationary in φ ∈ S(RD) if for any other function δφ ∈ S(RD)
we have d

dt
S[φ + tδφ]|t=0 = 0. Then, Hamilton’s principle of least (or stationary)

action states that a field φ satisfies the field equation if and only if the action S is
stationary in φ. In terms of the Lagrangian, the field equation results in the so-called
Euler–Lagrange equation[

∂L
∂φ
−
∑
µ

∂µ

(
∂L
∂(∂µφ)

)]
(x, φ(x)) = 0. (4.1)

This is the equation that we need to solve to find the classical field φ. In general,
it is a nonhomogeneous and nonlinear partial differential equation, where the
nonhomogeneous terms appear if the system is not isolated, and the nonlinear
terms appear if the field is self-interacting.

For example, a field with Lagrangian density

L(x, φ, ∂φ) = 1

2

(|∂µφ(x)|2 +m2φ(x)2
)− J (x)φ(x)− λ

3!
φ(x)3 − µ

4!
φ(x)4

(4.2)

is subject to the Euler–Lagrange equation

(− +m2)φ(x) = J (x)+ λ
2
φ(x)2 + µ

3!
φ(x)3, (4.3)

where we denote  φ(x) =∑µ ∂µ(∂µφ(x)). This equation is called the Klein–
Gordon equation, because the operator − +m2 is called the Klein–Gordon
operator.

4.4.4 Free and interacting Lagrangian

A generic relativistic particle with mass m, described by a field φ, can have a
Lagrangian density of the form

L(x, φ, ∂φ) = 1

2
φt (x)Aφ(x)− J (x)φ(x)− λ

3!
φ(x)3 − µ

4!
φ(x)4, (4.4)
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where A is a differential operator such as the Dirac operator or the Laplacian,
typically added to the operator of multiplication by the mass or its square. The term
1
2φ
tAφ (quadratic in φ) is the kinetic term. It is also called the free Lagrangian

density and denoted by L0.
The field J is an external field, which may represent a source for the field φ. If

J = 0, the system described by φ is isolated, that is, it is placed in the vacuum. The
term of the Lagrangian containing J (linear in φ) is the same for any field theory.

The parameters λ, µ are called coupling constants, because they express the
self-interactions of the field. They are usually measurable parameters such as the
electric charge or the flavor, but can also be unphysical parameters added for
convenience. The sum of the terms which are nonquadratic in φ (and nonlinear) is
called interacting Lagrangian density and denoted by Lint.

4.4.5 Free fields

A free field, which we shall denote by φ0, has the dynamics of a free Lagrangian
L(φ0) = 1

2φ
t
0Aφ0 − Jφ0. The Euler–Lagrange equation is easily written in the

form

Aφ0(x) = J (x). (4.5)

The general solution of this equation is well known to be the sum φg0 + φp0 of the
general solution of the homogeneous equationAφg0 (x) = 0 and a particular solution
φ
p

0 (x) of the nonhomogeneous one. In the Minkowski space-time the function φg0
is a wave (superposition of plane waves); in the Euclidean space-time the formal
solution φg0 is not a Schwartz function, and we do not consider it. Therefore the
function φ0 is the convolution

φ0(x) =
∫
dDy G0(x − y) J (y),

where G0(x) is the Green function of the operator A, that is, the distribution such
that AG0(x) = δ(x). The physical interpretation of the convolution is that from
each point y of its support, the source J affects the field φ at the position x through
the action of G0(x − y), which is then regarded as the field propagator.

For instance, ifA = − +m2 is the Klein–Gordon operator, the Green function
G0 is the distribution defined by the Fourier transformation

G0(x − y) =
∫

RD

dDp

(2π )D
1

p2 +m2
e−ip·(x−y). (4.6)



Renormalization Hopf algebras and combinatorial groups 177

4.4.6 Self-interacting fields

A field φ with Lagrangian density of the form (4.4) satisfies the Euler–Lagrange
equation

Aφ(x) = J (x)+ λ
2
φ(x)2 + µ

3!
φ(x)3.

This differential equation is nonlinear, and in general cannot be solved exactly. If
the coupling constants λ and µ are suitably small, we solve it perturbatively, that
is, we regard the interacting terms as perturbations of the free ones. In fact, the
Euler–Lagrange equation can be expressed as a recursive equation

φ(x) =
∫

RD

dDy G0(x − y)

[
J (y)+ λ

2
φ(y)2 + µ

3!
φ(y)3

]
,

whereG0 is the Green function of A. This equation can then be solved as a formal
series in the powers of λ and µ.

For instance, let us consider the simplest Lagrangian (4.4) with µ = 0, whose
Euler–Lagrange equation is

φ(x) =
∫

RD

dDy G0(x − y)

[
J (y)+ λ

2
φ(y)2

]
. (4.7)

If on the right-hand side of Equation (4.7) we replace φ(y) by its value, and we
repeat the substitutions recursively, we obtain the following perturbative solution:

φ(x) =
∫
dDy G0(x − y) J (y)

+ λ
2

∫
dDy dDz dDu G0(x − y) G0(y − z) G0(y − u) J (z) J (u)

+ 2λ2

4

∫
dDy dDz dDu dDv dDw G0(x − y) G0(y − z)

×G0(y − u) G0(z− v) G0(z− w) J (z) J (u) J (v) J (w)

+ λ
3

8

∫
dDy dDz dDu dDv dDw dDs dDt G0(x − y) G0(y − z)

×G0(y − u) G0(z− v) G0(z− w) G0(u− s) G0(u− t)
× J (z) J (u) J (v) J (w) J (s) J (t) + O(λ4), (4.8)

which describes the self-interacting field in presence of an external field J .
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4.4.7 Conclusion

To summarize, a typical classical field φ with Lagrangian density of the form

L(φ) = 1

2
φtAφ − J (x) φ(x)− λ

3!
φ(x)3

can be described perturbatively as a formal series

φ(x) =
∞∑
n=0

λn φn(x)

in the powers of the coupling constant λ. Each coefficient φn(x) is a finite sum
of integrals involving only the field propagator and the source. I describe these
coefficients in Part III, using Feynman graphs.

4.5 Review of quantum field theory

In this section we briefly review the standard tools to describe quantum fields.

4.5.1 Minkowski versus Euclidean approach

In the Minkowski space-time coordinates, the quantization procedure is the so-
called canonical quantization, based on the principle that the observables of a
quantum system are self-adjoint operators acting on a Hilbert space whose ele-
ments are the states in which the system can be found. The probability that the
measurement of an observable F yields the value carried by a state v is given by
the expectation value 〈v|F |v〉 ∈ R. In this procedure, the quantum fields are field
operators, which must be defined together with the Hilbert space of states on which
they act.

A standard way to deal with quantum fields is to Wick-rotate the time, through
the transformation t �→ −it , and thereby transform the Minkowski space-time into
a Euclidean space. The quantum fields are then treated as statistical fields, that is,
classical fields or wave functions φ which fluctuate around their expectation values.
The result is equivalent to that of the Minkowski approach, and this quantization
procedure is the so-called path integral quantization.

4.5.2 Green functions through path integrals

The first interesting expectation value is the mean value 〈φ(x)〉 of the field φ at the
point x. More generally, we wish to compute the Green functions 〈φ(x1) · · ·φ(xk)〉,
which represent the probability that the quantum field φ moves from the point xk
to xk−1, and so on, and reaches x1.
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A quantum field does not properly satisfy the principle of stationary action,
but can be interpreted as a fluctuation around the classical solution of the Euler–
Lagrange equation. On the Euclidean space, the probability of observing the quan-

tum field at the value φ is proportional to exp
(
−S[φ]

h̄

)
,2 where h̄ = h

2π is the

reduced Planck’s constant. When h̄→ 0 (classical limit), we recover a maximal
probability to find the field φ at the minimum of the action, that is, to recover the
classical solution of the Euler–Lagrange equation. The Green functions can then
be computed as the path integrals

〈φ(x1) · · ·φ(xk)〉 =
∫
dφ φ(x1) · · ·φ(xk) e−S[φ]/h̄|J=0∫

dφ e−S[φ]/h̄|J=0
.

This approach presents a major problem: on the infinite-dimensional set of
classical fields, which we may fix as the Schwartz space S(RD), for D > 1 there
is no measure dφ suitable for giving a meaning to such an integral. (For D = 1
the problem is solved on continuous functions by the Wiener measure.) However,
assuming that we can give a meaning to the path integrals, this formulation allows
us to recover the classical values, for instance 〈φ(x)〉 ∼ φ(x), when h̄→ 0.

4.5.3 Free fields

The quantization of a classical free field φ0 is easy. In fact, the action S0[φ0] =
1
2

∫
dDx φ0(x)Aφ0(x) is quadratic in φ0 and gives rise to a Gaussian measure,

exp (−S[φ0]/h̄)dφ0. If the field is isolated, the Green functions are then easily
computed:

� the mean value 〈φ0(x)〉 is zero;
� the two-point Green function 〈φ0(x)φ0(y)〉 coincides with the Green functionG0(x − y);
� all the Green functions on an odd number of points are zero;
� the Green functions on an even number of points are products of Green functions

exhausting all the points.

If the field is not isolated, or if it is self-interacting, the computation of the Green
functions is more involved.

4.5.4 Dyson–Schwinger equation

In general, the Green functions satisfy an integrodifferential equation which gen-
eralizes the Euler–Lagrange equation, written in the form ∂S[φ]

∂φ(x) = 0. To obtain
this equation, in analogy with the analysis that one would perform on a finite-
dimensional set of paths, one can proceed by introducing a generating functional

2 On the Minkowski space this value is exp
(
i
S[φ]
h̄

)
.
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for Green functions. The consistency of the results is considered sufficient for
accepting the meaningless intermediate steps.

To do it, let us regard the action as a function also of the classical source field
J , that is, S[φ] = S[φ, J ]. Then we define the partition function

Z[J ] =
∫
dφ e−S[φ]/h̄,

and impose the normalization condition Z[J ]|J=0 = 1. It is then easy to verify that
the Green functions can be derived from the partition function, as

〈φ(x1) · · ·φ(xk)〉 = h̄k

Z[J ]

δkZ[J ]

δJ (x1) · · · δJ (xk)

∣∣∣∣
J=0

,

where δ
δJ (x) is the functional derivative. The Dyson–Schwinger equation for Green

functions, then, can be deduced from a functional equation which constrains the
partition function:

δS

δφ(x)

[
h̄
δ

δJ

]
Z[J ] = 0.

The notation used on the left-hand side means that in the functional δS
δφ(x) of φ, we

replace the variable φ with the operator h̄ δ
δJ

. Because S[φ] is a polynomial, we
obtain an operator which contains higher derivatives with respect to J , and which
can then act on Z[J ].

4.5.5 Connected Green functions

If, starting from the partition function, we define the free energy

W [J ] = h̄ logZ[J ], that is, Z[J ] = eW [J ]/h̄,

with normalization condition W [J ]|J=0 = 0, we see that the Green functions are
sums of recursive terms (products of Green functions on a smaller number of
points) and additional terms which involve the derivatives of the free energy:

〈φ(x)〉 = h̄

Z[J ]

δZ[J ]

δJ (x)

∣∣∣∣J=0 = δW [J ]

δJ (x)

∣∣∣∣
J=0

,

〈φ(x)φ(y)〉 = 〈φ(x)〉 〈φ(y)〉 + h̄ δ2W [J ]

δJ (x)δJ (y)

∣∣∣∣
J=0

, . . . .

These additional terms

G(x1, . . . , xk) = δkW [J ]

δJ (x1) · · · δJ (xk)

∣∣∣∣
J=0
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are called connected Green functions, for reasons which will be clear after we
introduce the Feynman diagrams. Of course, knowing the connected Green func-
tionsG(x1, . . . , xk) is enough to recover the full Green functions 〈φ(x1) · · ·φ(xk)〉,
through the relations

〈φ(x)〉 = G(x),

〈φ(x)φ(y)〉 = G(x) G(y)+ h̄ G(x, y),

〈φ(x)φ(y)φ(z)〉 = G(x) G(y) G(z)

+ h̄ [G(x) G(y, z)+G(y) G(x, z)+G(z) G(x, y)]

+ h̄2 G(x, y, z), (4.9)

〈φ(x)φ(y)φ(z)φ(u)〉 = G(x) G(y) G(z) G(u)

+ h̄ [G(x) G(y) G(z, u)+ terms]

+ h̄2 [G(x, y) G(z, u)+G(x) G(y, z, u)+ terms]

+ h̄3 G(x, y, z, u),

and so on, where by “terms” we mean the same products evaluated on suitable
permutations of the points (x, y, z, u).

4.5.6 Self-interacting fields

The Dyson–Schwinger equation can be expressed in terms of the connected Green
functions. To be precise, we consider the typical quantum field with classical action

S[φ] = 1

2
φtAφ − J tφ − λ

3!

∫
dDx φ(x)3,

and we denote by G0 = A−1 the resolvent of the operator A. Then, the Dyson–
Schwinger equation for the one-point Green function of a field in an external field
J is

〈φ(x)〉J =
δW [J ]

δJ (x)
=
∫
dDu G0(x − u)

[
J (u)+ λ

2

[(
δW [J ]

δJ (u)

)2

+ h̄ δ
2W [J ]

δJ (u)2

]]
.

(4.10)

If we evaluate Equation (4.10) at J = 0, we obtain the Dyson–Schwinger
equation for the one-point Green function of an isolated field:

〈φ(x)〉 = G(x) = λ
2

∫
dDu G0(x − u)

[
G(u)2 + h̄ G(u, u)

]
. (4.11)
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If we differentiate Equation (4.10) by δ
δJ (y) , and evaluate the result at J = 0, we

obtain the Dyson–Schwinger equation for the two-point connected Green function:

G(x, y) = G0(x − y)+ λ
2

∫
dDu G0(x − u) [2 G(u) G(u, y)+ h̄ G(u, u, y)] ,

(4.12)

which involves the three-point Green function. Repeating the differentiation, we
get the Dyson–Schwinger equation for the n-point connected Green function.

As for classical interacting fields, these equations can be solved perturbatively.
For instance, the solution of Equation (4.10), which is the mean value of a field φ
in an external field J , is

〈φ(x)〉J =
∫
dDu G0(x − u)J (u)

+ λ
2

∫
dDy dDz dDu G0(x − y) G0(y − z) G0(y − u) J (z) J (u)

+ 2λ2

4

∫
dDy dDz dDu dDv dDw G0(x − y) G0(y − z)

×G0(y − u) G0(z− v) G0(z− w) J (z) J (u) J (v) J (w)

+ h̄λ
2

∫
dDy G0(x − y) G0(y − y)

+ h̄λ
2

2

∫
dDy dDz dDu G0(x − y) G0(y − z)2 G0(z− u) J (u))

+ O(λ3). (4.13)

Of course, the mean value of the isolated field, which is the solution of Equa-
tion (4.11), is then obtained by setting J = 0:

G(x) = h̄λ
2

∫
dDy G0(x − y) G0(y − y)+ O(λ3). (4.14)

4.5.7 Exercise: two-point connected Green function

Compute the first perturbative terms of the solution of Equation (4.12), which
represents the Green function G(x, y) for an isolated field (J = 0).

4.5.8 Conclusion

For a typical quantum field φ with classical Lagrangian density of the form

L(φ) = 1

2
φtAφ − λ

3!
φ(x)3,
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� the full k-point Green function 〈φ(x1) · · ·φ(xk)〉 is the sum of the products of the con-
nected Green functions exhausting the k external points;

� the connected k-point Green function can be described perturbatively as a power series

G(x1, . . . , xk) =
∞∑
n=0

λn Gn(x1, . . . , xk)

in the powers of the coupling constant λ;
� the constant coefficient G0(x1, . . . , xk) is the Green function of the free field;
� each higher-order coefficient Gn(x1, . . . , xk) is a finite sum of integrals involving only

the free propagator.

I describe the sums appearing in Gn(x1, . . . , xk) in Part III using Feynman graphs.

III. Formal series expanded over Feynman graphs

In this part we consider a quantum field φ with classical Lagrangian density of the
form

L(φ) = 1

2
φtAφ − J (x) φ(x)− λ

3!
φ(x)3,

where A is a differential operator, typically the Klein–Gordon operator. We denote
by G0 the Green function of A. We saw in Section 4.5 that the Green functions
of this field are completely determined by the connected Green functions, and
that these can only be described as formal series in the powers of the coupling
constant,

G(x1, . . . , xk) =
∞∑
n=0

λn Gn(x1, . . . , xk).

In the next section I describe the coefficients Gn(x1, . . . , xk) using Feynman
diagrams. I begin by describing the coefficients of the perturbative solution
φ(x) =∑ λn φn(x) for the classical field.

4.6 Interacting classical fields

4.6.1 Feynman notation

We adopt the following Feynman notation for the field φ:

� field φ(x) = �x ;
� source J (y) = � y;
� propagator G0(x − y) = �x y.
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For each graphical object resulting this notation, we call its analytical value its
amplitude.

4.6.2 Euler–Lagrange equation

The Euler–Lagrange equation (4.7) is represented by the following diagrammatic
equation: �x = �x y + λ

2 �x y . (4.15)

4.6.3 Perturbative expansion on trees

Inserting the value of �y on the right hand-side of Equation (4.15), and repeat-
ing the insertion until all the black boxes there have disappeared, we obtain a
perturbative solution given by a formal series expanded on trees, which are graphs
without loops in the space:�x = �x + λ

2 	x + λ
2

2 
x
+ λ

3

8 �x + · · · . (4.16)

The coefficient of each tree t contains a factor λV (t), where V (t) is the number of
internal vertices of the tree, and in its denominator the symmetry factor Sym(t) of
the tree, that is, the number of permutations of the external crosses (the sources)
which leave the tree invariant.

If we compare the diagrammatic solution (4.16) with the explicit solution (4.8),
we can write explicitly the value φt (x) of each tree t , for instance,

t = � =⇒ φt (x) =
∫
dDy G0(x − y) J (y),

t = Æ =⇒ φt (x) =
∫
dDy dDz dDu G0(x − y) G0(y − z)

×G0(y − u) J (z) J (u).

Finally note that the valence of the internal vertices of the trees depends directly
on the interacting term of the Lagrangian. In the preceding example this term
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was − λ
3!φ

3. If the Lagrangian contains the interacting term − µ4!φ
4, the internal

vertices of the trees turn out to have valence 4, that is, the trees are of the form
µ

3! 
x .

4.6.4 Feynman rules

We can therefore conclude that the field φ(x) =∑n λ
n φn(x) has perturbative

coefficients φn(x) given by the finite sum of the amplitudes φt (x) of all the trees t
with n internal vertices, constructed according to the following Feynman rules:

� consider all the trees with internal vertices of valence 3, and external vertices of valence
1;

� fix one external vertex called the root (therefore the trees are called rooted), and call the
other external vertices the leaves;

� label the root by x;
� label the internal vertices and the leaves by free variables y, z, u, v, . . .;
� assign a weight G0(y − z) to each edge joining the vertices y and z;
� assign a weight λ to each internal vertex � ;
� assign a weight J (y) to each leaf;
� to obtain φt (x) for a given tree t , multiply all the weights and integrate over the free

variables;
� divide by the symmetry factor Sym(t) of the tree.

4.6.5 Conclusion

A typical classical field φ with Lagrangian density of the form

L(φ) = 1

2
φtAφ − J (x) φ(x)− λ

3!
φ(x)3

can be described as a formal series in the coupling constant λ,

φ(x) =
∞∑
n=0

λn φn(x),

where each coefficient φn(x) is a finite sum

φn(x) =
∑
V (t)=n

1

Sym(t)
φt (x)

of amplitudes 1
Sym(t) φt (x) associated to each tree t with n internal vertices of

valence 3. Note that, in this chapter, the amplitude of a tree is considered up to the
factor 1

Sym(t) .
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4.7 Interacting quantum fields

4.7.1 Feynman notation

We adopt the following Feynman notation:

� k-point full Green’s function 〈φ(x1) · · ·φ(xk)〉 = �
x2

x1

xk

;

� k-point connected Green function G(x1, . . . , xk) = �
x2

x1

xk

;
� source J (y) =� y ;
� propagator G0(x − y) = �x y .

4.7.2 Exercise: Diagrammatic expression of the full Green functions

Using the equations (4.9), draw the diagrammatic expression of the full Green
functions in terms of the connected ones.

4.7.3 Dyson–Schwinger equations

The Dyson–Schwinger equation for the one-point connected Green function
of a field in the presence of an external field J (cf. Equation (4.10)) is the
following: �x = �x + λ

2 �x + h̄ λ
2 �x . (4.17)

Note that in the limit h̄→ 0, we recover the Euler–Lagrange equation (4.15) for
the field.

The Dyson–Schwinger equation for the one-point connected Green function of
an isolated field (cf. Eq. (4.11)) is the following:�x = λ

2 �x + h̄ λ
2 �x . (4.18)

For the two-point connected Green function, the Dyson–Schwinger equation is
(cf. Equation (4.12))�x y = �x y+ λ �x y+ h̄ λ

2 �x y .

(4.19)
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For the three-point Green function,

�x y

z
= λ �x y

z

+ λ  x y

z
+ h̄ λ

2 !x y

z
.

(4.20)

4.7.4 Perturbative expansion on graphs

Then the perturbative solution of the Dyson–Schwinger equation is given by a
formal series expanded in Feynman diagrams, which are graphs in the space. For
the one-point Green function, the solution of (4.17) is (J �= 0)" = # + λ

2 $ + h̄ λ
2 %

+ λ
2

2 & + h̄ λ
2

2 ' + h̄ λ
2

2 (
+ λ

3

8 ) + λ
3

2 * + h̄ λ
3

2 +
+ h̄ λ

3

4 , + h̄ λ
3

4 - + h̄ λ
3

2 .
+ h̄ λ

3

2 / + h̄2 λ
3

4 0 + h̄ λ
3

4 1
+ h̄2 λ

3

4 2 + O(λ4). (4.21)

The coefficient of each graph � contains a factor λV (�), where V (�) is the number
of internal vertices of the graph, and in the denominator the symmetry factor
Sym(�) of the graph, that is, the number of permutations of the external crosses
(the sources) and of the internal edges (joined to the same internal vertices) which
leave the graph invariant, multiplied by a factor 2 for each bubble (an internal edge
connected to a single vertex).
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Of course, the solution of Equation (4.18) is (J = 0)3 = h̄ λ
2 4 + h̄2 λ

3

4 5 + h̄2 λ
3

4 6 + O(λ4).

(4.22)

For the two-point Green function, the solution of Equation (4.19) is

7 = 8 + h̄ λ
2

2 9 + h̄ λ
2

2 :
+ h̄2 λ

4

4 ; + h̄2 λ
4

2 <
+ h̄2 λ

4

2 = + h̄2 λ
4

4 >
+ h̄2 λ

4

4 ? + h̄2 λ
4

4 @
+ h̄2 λ

4

4 A + h̄2 λ
4

4 B + h̄2 λ
4

4 C
+ h̄2 λ

4

4 D + O(λ6). (4.23)

Note that the graphs appearing in Equations (4.21), (4.22), and (4.23) are con-
nected. This motivates the name connected Green functions.

4.7.5 Exercise: Three-point connected Green function

Write the diagrammatic expansion of the three-point connected Green function,
that is, the solution of Equation (4.20).

4.7.6 Feynman rules

We can therefore conclude that each connected Green’s function G(x1, . . . , xk) =∑
n λ

n Gn(x1, . . . , xk) has perturbative coefficients Gn(x1, . . . , xk) given by the
finite sum of the amplitudes A(�; x1, . . . , xk) of all the Feynman graphs with n
internal vertices, constructed according to the following Feynman rules (valid for
J = 0):
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� consider all the graphs with internal vertices of valence 3, and k external vertices of
valence 1;

� label the external vertices by x1, . . . , xk;
� label the internal vertices by free variables y, z, u, v, . . .;
� assign a weight G0(y − z) to each edge joining the vertices y and z;
� assign a weight λ to each internal vertex E ;
� assign a weight h̄ to each loop F ;
� to obtain A(�; x1, . . . xk) for a given graph �, multiply all the weights and integrate over

the free variables;
� divide by the symmetry factor Sym(�) of the graph.

4.7.7 Exercise: Feynman rules in the presence of an external source

Modify the preceding Feynman rules so that they are valid when J �= 0.

4.7.8 Exercise: Compute some amplitudes

Compute the amplitudes of the first Feynman graphs appearing in the expansions of
the two-point Green function (4.23), using the Feynman rules, and compare them
with the results of the exercise in Section 4.5.7.

4.7.9 Conclusion

For a typical quantum field φ with Lagrangian density of the form

L(φ) = 1

2
φtAφ − J (x) φ(x)− λ

3!
φ(x)3,

the connected k-point Green function can be described as a formal series

G(x1, . . . , xk) =
∞∑
n=0

λnGn(x1, . . . , xk),

where each coefficient Gn(x1, . . . , xk) is a finite sum

Gn(x1, . . . , xk) =
∑
V (�)=n

h̄L(�)

Sym(�)
A(�; x1, . . . , xk)

of amplitudes A(�; x1, . . . , xk) associated to each connected Feynman diagram �
with n internal vertices of valence 3. Note that, in this chapter, the amplitude of a
graph is considered up to the factor h̄L(�)/Sym(�).
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4.8 Field theory on the momentum space

4.8.1 Momentum coordinates

In relativistic quantum mechanics, the four-momentum p, which we call simply
the momentum here, is the conjugate variable of the four-position x, seen as an
operator of multiplication on the wave function. Therefore the momentum is the
Fourier transform of the operator of derivation by the position, and belongs to the
Fourier space R̂D.

To express the field theory in momentum variables, we Fourier transform all the
components of the equation of motion:

φ̂(p) =
∫

RD

dDx φ(x) eip·x,

Ĵ (p) =
∫

RD

dDx J (x) eip·x,

Ĝ0(p) =
∫

RD

dDx G0(x − y) eip·(x−y);

for instance, for the Klein–Gordon field, Ĝ0(p) = 1/(p2 +m2) is the Fourier trans-
form of the free propagator (4.6). The classical Euler–Lagrange equation (4.7) is
then transformed into

φ̂(p) = Ĝ0(p) Ĵ (p)+ λ
2
Ĝ0(p)

∫
dDq

(2π )D
φ̂(q) φ̂(p − q).

The Fourier transform of the Green functions is

Ĝ(k)(p1, . . . , pk) =
∫

(RD)k
dDx1 . . . d

Dxk G(x1, . . . , xk) e
ip1·(x1−xk) · · · eipk ·(xk−1−xk),

where the translation invariance of G(x1, . . . , xk) implies that
∑
i=1,...,k pi = 0,

and the Dyson–Schwinger equations (4.11), (4.12), etc., can easily be expressed in
terms of external momenta:

Ĝ(1)(0) = λ
2
Ĝ0(0)

∫
dDq

(2π )D
Ĝ(1)(q)Ĝ(1)(−q)+ h̄λ

2
Ĝ0(0)

∫
dDq

(2π )D
Ĝ(2)(q),

Ĝ(2)(p) = Ĝ0(p)+ λ Ĝ0(p) Ĝ(1)(0) Ĝ(2)(p)

+ h̄ λ
2
Ĝ0(p)

∫
dDq

(2π )D
Ĝ(3)(q, p − q,−p),

and so on.



Renormalization Hopf algebras and combinatorial groups 191

4.8.2 Feynman graphs on the momentum space

The Feynman graphs in momentum variables look exactly like those in space-
time coordinates, except that the external legs are not fixed in the dotted positions
x1, . . . , xk, but have oriented edges, and in particular oriented external legs labeled
by momenta p1, . . . , pk, where the arrows give the direction of the propagation.
The Feynman notation is as follows:

� field φ̂(p) =G
p

,

or k-point connected Green’s function Ĝ(k)(p1, . . . , pk) = Hp2
p1

pk

;
� propagator Ĝ0(p) =I

p
;

� source Ĵ (p) =Jp (short leg labeled byp), such that Ĝ0(p)Ĵ (p) has the same dimension
as φ̂(p).

The Feynman graphs with short external legs are sometimes called truncated or
amputated. Except for these few differences, the Euler–Lagrange equation, the
Dyson–Schwinger equations, and their perturbative solutions are the same as those
already given on the space-time coordinates.

To simplify the notation, from now on we denote by G0(p) the free propagator
also in the momentum space, instead of Ĝ0(p), and in general we omit the hat
symbol. Similarly, we omit the orientation of the propagators unless it is necessary.

4.8.3 One-particle irreducible graphs

The Feynman rules, which allow us to write the amplitude of a Feynman graph,
implicitly state that the amplitude of a nonconnected graph is the product of the
amplitudes of all its connected components (cf. the equations (4.9) and Section
4.7.2). If we work in the momentum space, then from the Feynman rules it also
follows that if a graph � is the junction of two subgraphs �1 and �2 through a
simple edge, that is,

� =Kp p p
�1 �2 ,

then the amplitude of � is the product of the amplitudes of the single graphs, that
is,

A(�;p) = G0(p) A(�1;p) G0(p) A(�2;p) G0(p),

where �1 and �2 are truncated on both sides. (Note that the internal edge must have
momentum p because of the conservation of total momentum at each vertex.)
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We say that a connected Feynman graph � is one-particle irreducible, for short
1PI, if it remains connected when we cut one of its edges. In particular, the free
propagatorL is not 1PI; therefore the 1PI graphs in the momentum space are
truncated. For instance, the graphsM , N
are 1PI, whereas the graphs

O , P , Q , R
are not 1PI. If we denote the junction of graphs through one of their external legs
by concatenation – for instance,

Sp1

p3

p2

=Tp1

p3

p2 Up2 Vp2 p2

– then any connected graph can then be seen as the concatenation of its 1PI
components and the free propagators necessary to join them. To avoid these free
propagators popping out at any cut, we can consider graphs which are truncated
only on some of their external legs, and allow joining truncated legs with full ones,
for instance,

Wp1

p3

p2

= Xp1

p3

p2 Yp2 p2
.

With this trick, any connected graph � can be seen as the junction � = �1 · · ·�s
of its 1PI components (modulo some free propagators).

4.8.4 Proper or 1PI Green functions

The fact that any connected Feynman graph can be reconstructed from its 1PI
components implies that the connected Green function

G(k)(p1, . . . , pk) =
∑
E(�)=k

λV (�) h̄
L(�)

Sym(�)
A(�;p1, . . . , pk),
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where the sum is over all connected graphs with k external legs, can be reconstructed
from the set of proper, or 1PI, Green functions

G
(k)
1PI(p1, . . . , pk) =

∑
E(�)=k

1PI �

λV (�) h̄
L(�)

Sym(�)
A(�;p1, . . . , pk),

where the sum is now over 1PI graphs suitably truncated. The precise relation
between connected and proper Green functions can be given easily only for the
two-point Green functions: in this case we have

G(2)(p) = G0(p)
[
1−G(2)

1PI(p) G0(p)
]−1
.

The general case is much more involved, and was treated recently using algebraic
tools by Mestre and Oeckl in [20].

4.8.5 Conclusion

In summary, for a typical quantum field φ with Lagrangian density of the form

L(φ) = 1

2
φtAφ − J (x) φ(x)− λ

3!
φ(x)3,

the connected k-point Green function on the momentum space can be described as
a formal series

G(p1, . . . , pk) =
∞∑
n=0

λnGn(p1, . . . , pk),

where each coefficient Gn(p1, . . . , pk) is a finite sum of amplitudes associated to
each (partially amputated) connected Feynman diagram with n internal vertices of
valence 3, and the amplitude of each graph � is the product of the amplitudes of
its 1PI components �i , that is,

Gn(p1, . . . , pk) =
∑
V (�)=n

h̄L(�)

Sym(�)
A(�;p1, . . . , pk)

=
∑
V (�)=n

∏
�=�1···�s

h̄L(�i )

Sym(�i)
A(�i ;p

(i)
1 , . . . , p

(i)
ki

).

IV. Renormalization

In Part II we computed the first terms of the perturbative solution of the classical and
the quantum interacting fields. As we saw in Part III, these terms can be regarded
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as the amplitudes of some useful combinatorial objects: the rooted trees and the
Feynman graphs. These analytic expressions, the amplitudes, are constructed as
repeated integrals of products of the field propagator G0 and possibly an external
field J . The field propagatorG0(x) is a distribution of the point x, and it is singular
in x = 0 if n > 1. Then, the square G0(x)2 is a continuous function for x �= 0, but
it is not defined at x = 0. On the momentum space, this problem is translated into
the divergence of the integral containing powers of the free propagator.

The powers of a free propagator never occur in the amplitude of the trees labeling
the perturbative expansion of classical fields; see Equation (4.8). Similarly, they do
not occur in the classical part of the perturbative expansion of Green functions for
a quantum field (that is, in those terms which do not contain factors of h̄). Instead,
such terms occur in the quantum corrections, that is, the terms which contain factors
of h̄. For instance, the last two terms in Equation (4.13) containG0(y − y) = G0(0)
and the square G0(y − z)2, which is meaningless for y = z.

In this part I explain some tools developed to give a meaning to the ill-defined
terms appearing in the perturbative expansions of the Green functions. This tech-
nique is known as the theory of renormalization.

4.9 Renormalization of Feynman amplitudes

The renormalization of the ill-defined amplitudes can be done for graphs on the
momentum variables as well as on the space-time variables. On the space-time
variables, the renormalization program has been described by Epstein and Glaser
in [11], in the context of the causal perturbation theory. However, to describe
renormalization it is convenient to work on the momentum space and to consider
1PI graphs.

4.9.1 Problem of divergent integrals: ultraviolet and infrared divergences

In dimension D = 1, all the integrals appearing in the perturbative expansion of
the Green functions are convergent. For example, if we consider the Klein–Gordon
field φ, the free propagator

G0(x − y) =
∫

R

dp

2π

e−ip(x−y)

p2 +m2

is a continuous function. Therefore all the products of propagators are also contin-
uous functions, and the integrals are well defined.

In dimensionD > 1, the free propagatorG0(x − y) is a singular distribution on
the diagonal x = y, and the product with other distributions which are singular at
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the same points, such as its powers G0(x − y)m, makes no sense. For the Klein–
Gordon field, for example, this already happens in the simple loop case

� = Zx y,

whose amplitude

A(�; x, y) =
∫
dDu dDv G0(x − u) G0(u− v)2 G0(v − z)

contains the square G0(u− v)2. To understand how the integral is affected by the
singularity, we better write the simple loop on the momentum space. The Fourier
transform of � gives the (truncated) simple loop[p p

.

To compute its amplitude, we write the integrated momentum q in spherical coor-
dinates, with |q| denoting the module. Then we see that for |q| → ∞ the integral∫

dDq

(2π )D
1

q2 +m2

1

(p − q)2 +m2

behaves roughly like∫ ∞
|q|min

d|q|D 1

|q|4 �
∫ ∞
|q|min

d|q| 1

|q|4−(D−1)
.

This integral converges if and only if 4− (D − 1) > 1, that is, D < 4. Therefore
A(�; x, y) diverges when the dimension of the base space is D ≥ 4.

The divergence of an amplitude A(�;p) which occurs when an integrated vari-
able q has modulus |q| → ∞ is called ultraviolet. The divergence which occurs
when |q| → |q|min is called infrared. The infrared divergences typically appear
when the mass m is zero and |q|min = 0 (for instance, for photons). In this lecture
we only deal with ultraviolet divergences.

To simplify notation, if� is a graph with k external legs, we denote its amplitudes
A(�; x1, . . . , xk) or A(�;p1, . . . , pk) simply by A(�) when the dependence on the
external parameters x1, . . . , xk or p1, . . . , pk is not relevant.

4.9.2 Renormalized amplitudes, normalization conditions and
renormalizable theories

There is a general procedure to estimate which integrals are divergent, and then to
extract from each infinite value a finite contribution which has a physical meaning.
This program is called the renormalization of the amplitude of Feynman graphs.
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Given a graph � with divergent amplitude A(�), the aim of the renormalization
program is to find a finite contribution Aren(�), called the renormalized ampli-
tude, which satisfies some physical requirements. In contrast to the renormalized
amplitude, the original divergent amplitude is often called bare or nude.

The physical conditions required, called normalization conditions, are those
which guarantee that the connected Green function and its derivatives have a
precise value at a given point. The theory is called renormalizable if the number
of conditions that we have to impose to determine the amplitude of all Feynman
graphs is finite. For instance, the φ3 theory is renormalizable in dimensionD ≤ 6.

4.9.3 Power counting: classification of one loop divergences

The superficial degree of divergence of a 1PI graph � measures the degree of
singularity ω(�) of the integral in A(�) with respect to the integrated variables
q1, q2, . . .. By definition, ω(�) is the integer such that, under the transformation of
momentum qi → tqi , with t ∈ R, the amplitude is transformed as

A(�) −→ tω(�) A(�).

The superficial degree of divergence detects the real divergence only for diagrams
with one single loop: in this case A(�) converges if and only if ω(�) is negative.
The divergences for single-loop graphs are then classified according to ω(�):

� A graph � has a logarithmic divergence if ω(�) = 0.
� It has a polynomial divergence of degree ω(�) if ω(�) > 0. In particular, the divergence

is linear if ω(�) = 1, it is quadratic if ω(�) = 2, and so on.

If instead the graph contains many loops, it can have a negative value of ω(�)
and at the same time contain some divergent subgraphs. Therefore ω(�) cannot be
used to estimate the real (not superficial) divergence of a graph � with many loops.
In this case, we first need to compute ω(γ ) for each single 1PI subgraph γ of �,
starting from the subgraphs with a simple loop and proceeding by enlarging the
subgraphs until we reach � itself. This recursive procedure on the subgraphs will
be discussed in detail for the renormalization of a graph with many loops.

The superficial degree of divergence can easily be computed knowing only the
combinatorial data of each graph. If we denote by

� I the number of internal edges of a given graph,
� E the number of external edges,
� V the number of vertices, and
� L the number of loops (L = I − V + 1 because of conservation of momentum at each

vertex),
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then for the Klein–Gordon field we have

ω(�) = D L− 2 I = D + (D − 2) I −D V, (4.24)

where D is the dimension of the base space. In fact, the transformation q → tq

gives

dD q

(2π )D
−→ tD

dD q

(2π )D
,

1

q2 +m2
−→ t−2 1

q2 +m2
;

therefore, to compute ω(�) we have to add a term D for each loop, and a term −2
for each internal edge.

In particular, for the φ3 theory (the field φ with interacting Lagrangian propor-
tional to φ3), we have an additional relation 3V = E + 2I , and therefore

ω(�) = D + D − 6

2
V − D − 2

2
E.

4.9.4 Regularization: yes or no?

Let � be a divergent graph, that is, assume that the amplitude A(�) presents an
ultraviolet divergence. In order to extract the renormalized amplitude Aren(�), we
cannot work directly with A(�), which is infinite. Instead, there are the following
two main possibilities.

4.9.4.1 Regularization

We can modify A(�) to a new integral Aρ(�), called the regularized amplitude, by
introducing a regularization parameter ρ such that

� Aρ(�) converges,
� Aρ(�) reproduces the divergence of A(�) in a certain limit ρ → ρ0.

The regularized amplitude Aρ(�) is then a well-defined function of the external
momenta with values which depend on the parameter ρ. Let us denote by Rρ the
ring of such values. Then we can modify the function Aρ(�) to a new function
Aren
ρ (�) such that the limit

Aren(�) = lim
ρ→ρ0

Aren
ρ (�)

is finite and compatible with the normalization conditions.
Because we are dealing here with ultraviolet divergences, it suffices to choose

as regularization parameter a cutoff � ∈ R+ which bounds the integrated variables
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by above. If we denote by I (�; q1, . . . , q�) the integrand of A(�), that is

A(�) =
∫
dD q1

(2π )D
· · · d

D q�

(2π )D
I (�; q1, . . . , q�),

the regularized amplitude can be chosen as

A�(�) =
∫
|qi |≤�

dD q1

(2π )D
· · · d

D q�

(2π )D
I (�; q1, . . . , q�),

which reproduces the divergence of A(�) for �→∞. Alternatively, the regular-
ized amplitude A�(�) can also be described as

A�(�) =
∫
dD q1

(2π )D
· · · d

D q�

(2π )D
χ�(|q1|, . . . , |q�|) I (�; q1, . . . , q�),

where χ�(|q1|, . . . , |q�|) is the step function with value 1 for |q1|, . . . , |q�| ≤ �
and value 0 for |q1|, . . . , |q�| > �.

Besides the cutoff, there exist other possible regularizations. One of the most
frequently used is the dimensional regularization, which modifies the real dimen-
sion D by a complex parameter ε such that Aε(�) reproduces the divergence of
A(�) for ε→ 0. Because this regularization demands many explanations, and we
are not going to use it here, I omit the details, which can be found in [23] or [18].

4.9.4.2 Integrand functions

The integrand I (�; q1, . . . , q�) of A(�) is a well-defined (rational) function of the
variables q1, . . . , q�. Therefore we can work directly with the integrand in order to
modify it into a new function Iren(�; q1, . . . , q�), called the renormalized integrand,
such that

Aren(�) =
∫
dD q1

(2π )D
· · · d

D q�

(2π )D
Iren(�; q1, . . . , q�)

is finite. This method was used by Bogoliubov in his first formulation of the
renormalization, and by Zimmermann in the final proof of the so-called BPHZ
formula (cf. Section 4.9.9). Its main advantage is that it is independent of the
choice of a regularization. For these reasons we adopt it here.

4.9.5 Renormalization of a simple loop: Bogoliubov’s subtraction scheme

Let � be a 1PI graph with one loop and superficial degree of divergence ω(�) ≥ 0.
We assume that � has k external legs with external momentum p = (p1, . . . , pk);
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then the bare amplitude of the graph is

A(�; p) =
∫
dD q

(2π )D
I (�; p; q).

Let T ω(�) denote the operator which computes the Taylor expansion in the external
momentum variables p around the point p = 0, up to the degree ω(�). Then
Bogoliubov and Parasiuk proved in [1, 21] (see also [2]) that the integral

Aren(�; p) =
∫
dD q

(2π )D
(
I (�; p; q)− T ω(�)[I (�; p; q)]

)
is finite. Changing the value p = 0 to another value p = p0 amounts to changing
Aren(�) by a finite amount. Possibly, the parameter p0 can then be chosen according
to the normalization conditions.

4.9.6 Local counterterms

If we fix some regularizationρ, the renormalized (finite) amplitude can be expressed
as a sum

Aren
ρ (�; p) = Aρ(�; p)− T ω(�)

[
Aρ(�; p)

]
, (4.25)

where the removed divergence is contained in a polynomial of the external momenta
p,

−T ω(�)
[
Aρ(�; p)

] = − ∫ dDq

(2π )D
Iρ(�)

∣∣∣
p=0
−
∑
i,µ

p
µ

i

∫
dDq

(2π )D
∂Iρ(�)

∂p
µ

i

∣∣∣
p=0

− 1

2

∑
i,j

µ,ν

p
µ

i p
ν
j

∫
dDq

(2π )D
∂2Iρ(�)

∂p
µ

i ∂p
ν
j

∣∣∣
p=0
− · · · .

In matrix notation, with p = (p1, . . . , pk), we can write

−T ω(�)
[
Aρ(�; p)

] = Cρ0 (�)+ Cρ1 (�) p+ · · · + Cρω(�)(�) pω(�),

where the coefficients

Cρr (�) = − 1

r!

∫
dDq

(2π )D
∂rpIρ(�)

∣∣∣
p=0

(4.26)

are called the counterterms of the graph �. If ω(�) = 0, we denote by C(�) the
unique counterterm in degree 0.

The counterterms are usually directly related to the normalization conditions;
therefore, having a finite number of counterterms is equivalent to the renormaliz-
ability of the theory.
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From now on, any time we mention the counterterms, we assume that a regular-
ization has been fixed a priori, and we omit the regularization parameter ρ in the
notation.

4.9.7 Examples: renormalization of a simple loop

4.9.7.1

Let us consider the graph� = \p p
, in dimensionD = 4. Its amplitude (which

we assume regularized) is

A(�;p) =
∫

d4q

(2π )4

1

q2 +m2

1

(p − q)2 +m2
.

BecauseE = 2 andV = 2, we haveω(�) = 0; therefore the graph� has a logarith-
mic divergence. According to the subtraction scheme, its renormalized amplitude
is Aren(�;p) = A(�;p)+ C(�), where the counterterm is

C(�) = −
∫

d4q

(2π )4
I (�)

∣∣∣
p=0
= −

∫
d4q

(2π )4

1

(q2 +m2)2
.

The integral Aren(�;p) is indeed finite, because

I (�)− I (�)
∣∣∣
p=0
= 1

(q2 +m2)2

2pq − p2

(p − q)2 +m2

behaves like 1/|q|5 for |q| → ∞, and therefore Aren(�;p) = ∫ (d4q/(2π )4)
(I (�)− I (�)|p=0) behaves like∫ ∞

|q|min

d4|q|
|q|5 �

∫ ∞
|q|min

d|q|
|q|5−3

=
[
− 1

|q|
]∞
|q|min

= 1

|q|min
.

4.9.7.2

Let us consider the same graph � = ]p p
, but in dimension D = 6. Its ampli-

tude is

A(�;p) =
∫

d6q

(2π )6

1

q2 +m2

1

(p − q)2 +m2
.

BecauseE = 2 andV = 2, we haveω(�) = 2; therefore the graph� has a quadratic
divergence. Then Aren(�;p) = A(�;p)− T 2

[
A(�;p)

]
with

−T 2
[
A(�;p)

] = C0(�)+ p C1(�)+ p2 C2(�),



Renormalization Hopf algebras and combinatorial groups 201

and the local counterterms of � are

C0(�) = −
∫

d6q

(2π )6

1

(q2 +m2)2
,

C1(�) = −
∫

d6q

(2π )6

2q

(q2 +m2)3
= 0 (because the integrand is odd),

C2(�) = −
∫

d6q

(2π )6

3q2 −m2

(q2 +m2)4
.

Because the function

I (�)− T 2[I (�)] = 4p3q3 − 3p4q2 − 4m2p3q +m2p4

(q2 +m2)4[(p − q)2 +m2]

has leading term of order |q|3/|q|10 = 1/|q|7 for |q| → ∞, its integral Aren(�;p)
behaves like ∫ ∞

|q|min

d6|q|
|q|7 �

∫ ∞
|q|min

d|q|
|q|7−5

=
[
− 1

|q|
]∞
|q|min

= 1

|q|min
,

and therefore it converges.

Exercise Check that the counterterm C0(�) alone is not sufficient to make the
amplitude converge.

4.9.7.3

Let us consider the graph � = ^p1

p2

p1 − p2

in dimensionD = 6. Its amplitude is

A(�;p1, p2) =
∫

d6q

(2π )6

1

q2 +m2

1

(q + p2)2 +m2

1

(q − p1)2 +m2
.

Because E = 3 and V = 3, we have ω(�) = 0; therefore, � has a logarithmic
divergence. Then the renormalized amplitude is Aren(�;p1, p2) = A(�;p1, p2)+
C(�), where the counterterm is

C(�) = −
∫

d6q

(2π )6
I (�;p1, p2; q)

∣∣∣
pi=0
= −

∫
d6q

(2π )6

1

(q2 +m2)3
.
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In fact, the function

I (�)− I (�)
∣∣∣
pi=0
= 1

q2+m2

(
1

[(q−p1)2+m2] [(q+p2)2+m2]
− 1

(q2+m2)2

)
= 2(p1 − p2)q3 + · · ·

(q2 +m2)3 [(q − p1)2 +m2] [(q + p2)2 +m2]

has leading term |q|3/|q|10 = 1/|q|7, and therefore its integral in dimension 6
converges, as in the preceding example.

4.9.8 Divergent subgraphs

The subtraction scheme employed for graphs with one loop does not work for
graphs with many loops, because of the possible presence of divergent subgraphs.

For instance, consider the graph

� =_
in dimensionD = 4. BecauseE = 2 and V = 6, the graph has negative superficial
degree of divergence, ω(�) = −4. According to the subtraction scheme, it should
therefore have a zero counterterm C(�). However, the graph � contains the 1PI
subgraph γ =` , which has ω(γ ) = 0 in dimension D = 4 (as we computed
in the first example of Section 4.9.7). Because γ diverges, the graph � diverges
too, even if ω(�) is strictly negative.

4.9.9 Renormalization of many loops: BPHZ algorithm

Let � be a 1PI graph with many loops and superficial degree of divergence ω(�) ≥
0, and/or containing some divergent subgraphs. LetA(�) be its amplitude (we omit
the external momenta p), and I (�) or I (�; q) its integrand, where q = (q1, . . . , q�)
are the integrated momenta and � is the number of loops of �.

Then, the BPHZ formula states that the renormalized (that is, finite) amplitude
of � is given by

Aren(�) =
∫
dD q1

(2π )D
· · · d

D q�

(2π )D

(
Iprep(�; q)− T ω(�)

[
Iprep(�; q)

])
, (4.27)

where Iprep(�) denotes a prepared term where all the divergent subgraphs have
been renormalized. The prepared term is defined recursively on the 1PI divergent
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subgraphs of � by the formula

Iprep(�; q) = I (�; q)+
∑
γi

∏
i

(
−T ω(γi )

[
Iprep(γi ; qi)

]) I (�; q)∏
i I (γi ; qi)

,

where the sum is over all 1PI divergent proper subgraphs γi of � (that is, the
subgraphs different from � itself) such that γi ∩ γj = ∅ (that is, they are dis-
joint). The proof was first partially given by Bogoliubov and Parasiuk in 1957 [1],
then improved by Hepp in 1966 [15], and finally established in 1969 by Zimmer-
mann [26], who gave a nonrecursive formulation in terms of forests of divergent
subgraphs.

The formula (4.27) is usually expressed in a more uniform way. Assume
that in the quotient I (�; q)/

∏
i I (γi ; qi) there remain the first �′ momenta q′ =

(q1, . . . , q�′) appearing explicitly. If we set

I (�/{γi}; q′) := I (�; q)/
∏
i

I (γi ; qi)

and we integrate over the momenta q′, we define a new graph �/{γi} through its
amplitude

A(�/{γi}) =
∫
dD q1

(2π )D
· · · d

D q�′

(2π )D
I (�/{γi}; q′).

This graph can be defined graphically by squeezing each vertex subgraph γi of � to
the corresponding usual vertex point, and each propagator subgraph γj (with two
external legs) to a new kind of vertex pointa
which separates two distinguished free propagators (and therefore it is not consid-
ered to be 1PI). Then the prepared term can be written

Iprep(�; q) = I (�; q)+
∑
γi

∏
i

(
−T ω(γi )

[
Iprep(γi ; qi)

])
I (�/{γi}; q′), (4.28)

and the integrand of the renormalized amplitude can be given in a recursive manner,

Iren(�) = I (�)+
∑
γi

{∏
i

(
−T ω(γi )

[
Iprep(γi)

])
I (�/{γi})

}
− T ω(�)

[
Iprep(�)

]
.

(4.29)
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4.9.10 Recursive definition of the counterterms

The definition of the counterterms given for one-loop graphs by (4.26) can then be
naturally extended to graphs with many loops by applying the Taylor expansion
to the prepared integrand Iprep(�) instead of the bare integrand I (�), that is, by
considering

−T ω(�)

[∫
dD q
(2π )D

Iprep(�; q)

]
= C0(�)+ C1(�) p+ · · · + Cω(�)(�) pω(�),

where we symbolically denote by dD q/(2π )D the full expression

dD q1

(2π )D
· · · d

Dq�
(2π )D

.

To express the counterterms Cr (�) in a recursive way, we must separate the
integrals of each component appearing in the prepared term Iprep(�). Consider the
complete integral∫

dD q
(2π )D

Iprep(�; q) =
∫
dD q
(2π )D

I (�; q)

+
∑
γi

∏
i

∫
dD q′

(2π )D

∫
dD qi
(2π )D

(
−T ω(γi )

[
Iprep(γi ; qi)

])
I (�/{γi}; q′).

If we denote by pi the external momenta of the subgraph γi , we have∫
dD qi
(2π )D

(
−T ω(γi )

[
Iprep(γi ; qi)

])
= C0(γi)+ C1(γi) pi + · · · + Cω(γi )(γi) pω(γi )

i .

Of course the momenta pi are integrated over q′, because they are internal in �.
To separate the integrals, it suffices to modify the amplitude of the graph �/{γi}
by multiplying it by each remaining momentum pri . In practice, it suffices to
label each new crossed vertex obtained by squeezing γi with a label (r), with
r = 0, 1, . . . , ω(γi), and to define its amplitude by

A(�/{γi (r)}) =
∫
dD q′

(2π )D
∏
i

pri I (�/{γi}; q′). (4.30)

Finally, if we label each scratched subgraph γi with the same label (r) used in
its associated crossed vertex, and we define its counterterm by

C(γi (r)) = Cr (γi), (4.31)
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we can describe the counterterms in a recursive way as

C(�(r)) = − 1

r!
∂rp

∣∣∣
p=0

A(�; p)+
∑
γi

∏
i

ω(γi )∑
ri=0

C(γi (ri )) A(�/{γi (ri )}; p)

 .
(4.32)

The labels (r) are useful only for graphs with positive superficial degree of diver-
gence. If ω(�) = 0, the subscript (0) is systematically omitted.

As a consequence, the extension of (4.25) to graphs with many loops is given by

Aren(�; p) = A(�; p)+
∑
γi

∏
i

ω(γi )∑
ri=0

C(γi (ri )) A(�/{γi (ri )}; p)

+ C(�(0))+ · · · + pω(�) C(�(ω(�))). (4.33)

4.9.11 Examples: renormalization of many loops

4.9.11.1

Let us consider the graph � = bq1
q2

p1

p2

p1 − p2

in dimension D = 6. Its
amplitude is

A(�;p1, p2) =
∫
d6q1

(2π )6

d6q2

(2π )6

1

q2
1 +m2

1

(p1 − q1)2 +m2

1

(q1 − q2)2 +m2

× 1

q2
2 +m2

1

(p1 − q2)2 +m2

1

(q2 − p2)2 +m2
.

Because E = 3 and V = 5, we have ω(�) = 0; therefore the graph � has a loga-
rithmic superficial divergence. Besides this, the graph � has two 1PI subgraphs:

� the graph γ = cp1
q2 has a logarithmic divergence;

� the graph γ ′ = d p2q1
has E = 4 and V = 4, and therefore ω(γ ′) = −2: it

converges.

In conclusion, � has one divergent 1PI subgraph, γ . According to the BPHZ
formula (4.28), the prepared amplitude of � is

Iprep(�;p1, p2; q1, q2) = I (�)− T 0[I (γ )] I (�/γ ),
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where for the graph γ we have

−T 0[I (γ )] = −I (γ ;p1, q2; q1)
∣∣∣
p1,q2=0

= − 1

(q2
1 +m2)3

,

and for the graph �/γ = eq2
p1

p2 we have

I (�/γ ;p1, p2; q2) = 1

q2
2 +m2

1

(p1 − q2)2 +m2

1

(q2 − p2)2 +m2
.

Therefore

Aprep(�;p1, p2) =
∫
d6 q1

(2π )6

d6 q2

(2π )6

(
I (�)− I (γ )

∣∣∣
p1,q2=0

I (�/γ )

)
,

and the overall counterterm C(�) = −T 0
[
Aprep(�;p1, p2)

]
of � is then

C(�) = −
∫
d6 q1

(2π )6

d6 q2

(2π )6

(
1

(q2
1 +m2)2

1

(q1 − q2)2 +m2

1

(q2
2 +m2)3

− 1

(q2
1 +m2)3

1

(q2
2 +m2)3

)
.

4.9.11.2

Let us consider the graph � = f pp in dimensionD = 6. The integrand
of its amplitude is

I (�;p; q1, q2, q3) = 1

(q2
1 +m2)2

1

q2
2 +m2

1

(q1 − q2)2 +m2

× 1(
(p − q1)2 +m2

)2 1

q2
3 +m2

1

(p − q1 − q3)2 +m2
.

BecauseE = 2 andV = 6, we haveω(�) = 2; therefore the graph� has a quadratic
superficial divergence. Moreover, the graph � has two 1PI subgraphs, γ1 = γ2 =g , which have a quadratic divergence. Let us compute the counterterms of �
using the BPHZ formula. We have

Iprep(�) = I (�)−T 2
[
I (γ1)I (�/γ1)+I (γ2)I (�/γ2)+I (γ1)I (γ2)I (�/γ1γ2)

]
,

where

�/γ1 =h , �/γ2 =i , and �/γ1γ2 =j .
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Because the graphs γ1 and γ2 give the same contribution when integrated, we can
call them both γ and sum them. The countertermsC(�(r)) = − 1

r!∂
r
p

∣∣
p=0

[
Aprep(�)

]
,

for r = 0, 2, are then given explicitly as follows:

C(�(r)) = − 1

r!
∂rp

∣∣∣
p=0

[
A(�)+ 2C(γ(0)) A(�/γ(0))+ 2C(γ(2)) A(�/γ(2))

+C(γ(0))
2 A(�/(γ(0))

2)+ 2C(γ(0)) C(γ(2)) A(�/γ(0)γ(2))

+C(γ(2))
2 A(�/(γ(2))

2)
]
.

4.10 Dyson’s renormalization formulas for Green functions

As I mentioned in Section 4.5, the aim of quantum field theory is to compute the full
Green functions 〈φ(x1) · · ·φ(xk)〉. To do this, we need to compute the connected
Green functions G(x1, . . . , xk), which can only be found perturbatively, as formal
series in the powers of the coupling constant λ. In Part III, I showed that the
coefficients of these series can be labeled by suitable Feynman graphs. Therefore
the connected Green functions can be written as

G(x1, . . . , xk) =
∞∑
n=0

λn
∑
V (�)=n

h̄L(�)

Sym(�)
A(�; x1, . . . , xk),

where the sum is over all the connected Feynman graphs with k external legs. In
Section 4.9, then, I pointed out the problem of divergences, which affects some
graphs with loops, and showed how to extract a finite contribution for each graph,
the renormalized amplitude. Summing all the renormalized amplitudes, we obtain
the renormalized connected Green functions

Gren(x1, . . . , xk) =
∞∑
n=0

λn
∑
V (�)=n

h̄L(�)

Sym(�)
Aren(�; x1, . . . , xk),

and finally the searched renormalized full Green functions 〈φ(x1) · · ·φ(xk)〉ren.
In this section, we discuss the direct way from the bare Green functions

G(x1, . . . , xk) to the renormalized ones, Gren(x1, . . . , xk), without making use of
Feynman graphs.

4.10.1 Bare and renormalized Lagrangian

From the BPHZ formula (4.33), it is clear that the passage from the bare to
the renormalized amplitudes amounts to adding many terms which contain the
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counterterms of the divergent subgraphs,

Aren(�) = A(�)+ terms.

Inserting these terms in the connected Green functions, then, amounts to adding a
series in λ,

Gren(x1, . . . , xk; λ) = G(x1, . . . , xk; λ)+ series(λ).

Because the connected Green functions are completely determined from the
Lagrangian L(φ) as we saw in Section 4.5, the new terms added toG(x1, . . . , xk; λ)
must correspond to new terms added to L(φ):

Lren(φ, λ) = L(φ, λ)+ L(φ, λ).

This Lagrangian is called renormalized, in contrast with the original Lagrangian
L(φ, λ), called bare.

Let us stress that, besides its name, the renormalized Lagrangian has no par-
ticular physical meaning: it is only a formal Lagrangian which gives rise to the
renormalized (hence physically meaningful) Green functions, through the standard
procedure described in Section 4.5.

The number of terms appearing in L(φ) tells us if the theory is renormalizable
or not: the theory is not renormalizable if the number of terms to be added is
infinite.

4.10.2 Renormalization factors

If the theory is renormalizable, then L(φ) contains exactly one term proportional
to each term of L(φ). The factors appearing in each term of the renormalized
Lagrangian are called renormalization factors.

To be precise, let us consider again the interacting Klein–Gordon Lagrangian

L(φ,m, λ) = 1

2
|∂µφ(x)|2 + m

2

2
φ(x)2 − λ

3!
φ(x)3,

as a function of the field φ and of the physical parameters m (the mass) and λ (the
coupling constant). Then the terms added by the renormalization can be organized
as follows:

 L(φ,m, λ) = 1

2
 k(λ)|∂µφ(x)|2 + m

2

2
 m(λ)φ(x)2 − λ

3!
 λ(λ)φ(x)3,
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where  k,  m and  λ are series in λ containing the counterterms of all Feynman
graphs. Hence the renormalized Lagrangian is of the form

Lren = L+ L = 1

2
|∂µφ(x)|2 + m

2

2
φ(x)2 − λ

3!
φ(x)3

+ k(λ)
1

2
|∂µφ(x)|2 + m(λ)

m2

2
φ(x)2 − λ(λ)

λ

3!
φ(x)3

= 1

2
Z3(λ) |∂µφ(x)|2 + m

2

2
Zm(λ) φ(x)2 − λ

3!
Z1(λ) φ(x)3,

where Z3(λ) = 1+ k(λ), Zm(λ) = 1+ m(λ) and Z1(λ) = 1+ λ(λ) are the
renormalization factors.

The renormalization factors are completely determined by the counterterms of
the divergent graphs. For the φ3 theory in dimension D = 6, for instance, a graph
� with E = 2 is quadratically divergent (as we saw in the example of Section
4.9.7.2), and its counterterms are of the form C0(�)+ p2 C2(�). According to
our previous notation, and up to the scalar factor m2, this can also be written as
m2 C(�(0))+ p2C(�(2)). Instead, a graph�withE = 3 is logarithmically divergent
(as we saw in the example of Section 4.9.7.3) and has a single counterterm C(�).
It turns out that in this case the renormalization factors are organized as follows:

Z3(λ) = 1−
∑
E(�)=2

C(�(2))

Sym(�)
λV (�),

Zm(λ) = 1−
∑
E(�)=2

C(�(0))

Sym(�)
λV (�), (4.34)

λ Z1(λ) = λ+
∑
E(�)=3

C(�)

Sym(�)
λV (�).

4.10.3 Bare and effective parameters

If we define φb = Z3(λ)
1
2φ, then we have

Lren(φ,m, λ) = 1

2
|∂µφb(x)|2 + m

2

2
Zm(λ) Z3(λ)−1φb(x)2

− λ
3!
Z1(λ) Z(λ)−

3
2φb(x)3,
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and if we set also

mb = m Zm(λ)
1
2Z3(λ)−

1
2 , (4.35)

λb = λ Z1(λ) Z3(λ)−
3
2 , (4.36)

we finally obtain

Lren(φ,m, λ) = 1

2
|∂µφb(x)|2 + 1

2
m2
b φb(x)2 − λb

3!
φb(x)3 = L(φb,mb, λb).

(4.37)

In other words, the formal Lagrangian in φ,m, λwhich produces the “real” (renor-
malized) Green functions, is exactly the original Lagrangian, but on “unreal” values
of the field (φb), of the mass (mb), and of the coupling constant (λb). By definition,
the parameters φb,mb, λb are formal series in λ with coefficients given by the
counterterms of the graphs. The are called bare, in contrast with the physical ones,
φ,m, λ, which are called effective because they are the measured ones.

4.10.4 Dyson’s formulas

According to Equation (4.37), the renormalized Lagrangian in the effective param-
eters, Lren(φ,m, λ), is equal to the bare Lagrangian in the bare parameters,
L(φb,mb, λb). Therefore, the renormalized Green functions in the effective param-
eters, Gren(x1, . . . , xk;m, λ), must be related to the bare Green functions in the bare
parameters,G(x1, . . . , xk;mb, λb). This relation is given by the following formula:

Gren(p1, . . . , pk;m, λ) = Z−
k
2

3 (λ) G(p1, . . . , pk;mb, λb), (4.38)

where mb = mb(m, λ) and λb = λb(λ) are the formal series in the powers of λ
given by Equations (4.35) and (4.36).

In this part of the chapter, this equality is called Dyson’s formula, because it was
firstly introduced by F. Dyson for quantum electrodynamics in 1949 [9].

4.10.5 Renormalization and semidirect product of series

Dyson’s formula (4.38), together with the formulas (4.35) and (4.36), answers the
question posed at the beginning of this section. Combining all of them, in fact,
we get the explicit expression of the renormalized Green functions from the bare
ones, by means of a product and a substitution of suitable formal series in λ. The
transformation from bare to renormalized Green functions is a semidirect product
law.
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To show this, let us rewrite Dyson’s formula by expressing only the dependence
of the formal series on the parameters m and λ:

Gren(m, λ) = Z−
k
2

3 (λ) G(mb(m, λ), λb(λ)). (4.39)

In this formula, the quantities

Gren(m, λ) = G0 + O(λ),

G(mb, λb) = G0 + O(λb),

Z
− k2
3 (λ) = (1+ O(λ))−

k
2 = 1+ O(λ)

are invertible series in λ (with respect to the multiplication; cf. Section 4.2.8), and
the two bare parameters

mb = m+ O(λ),

λb = λ+ O(λ2)

are formal diffeomorphisms in λ (with respect to the substitution or composition;
cf. Section 4.2.9). Therefore Equation (4.39) tells us that the renormalized Green
function can be found as a semidirect product of suitable series in λ.

The relationship between the renormalization of the Green functions and the
renormalization of each single graph appearing in the perturbative expansions is
the main topic of these lectures. It is described in detail in the next section.

V. Hopf algebra of Feynman graphs and combinatorial
groups of renormalization

In Part I, I described the Hopf algebra canonically associated to an algebraic or
to a proalgebraic group, and gave some examples, for the most common groups.
In this part, we start from a Hopf algebra on graphs related to the renormalization,
and discuss the physical meaning of its associated proalgebraic group.

4.11 Connes–Kreimer Hopf algebra of Feynman graphs
and diffeographisms

In the context of renormalization, a Hopf algebra is suitable to describe the
combinatorics of the BPHZ formula, and can be given for any quantum field theory
which is renormalizable by local counterterms. Its aim is precisely to describe the
recursive definition of the counterterms.

Following the works [7, 8] of Connes and Kreimer, we choose as a toy model
the φ3 theory in dimensionD = 6, for a scalar field φ. In this theory the superficial
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divergent graphs are those with a number of exterior legs E ≤ 3. Among these, the
tadpole graphs, which have E = 1, are not considered, because we assume that the
one-point Green function 〈φ(x)〉 vanishes.

4.11.1 Graded algebra of Feynman graphs

Let HCK be the polynomial algebra over C generated by the Feynman graphs
which describe the local counterterms of the φ3 theory. These are the 1PI graphs
with two or three external legs, constructed on three types of vertices:k , l (0)

, m (2)
.

The free commutative multiplication between graphs is denoted by the concatena-
tion, and the formal unit is denoted by 1.

On the algebra HCK we consider the grading induced by the number L of loops
of the Feynman graphs: the degree of a monomial �1 · · ·�s in HCK is given by
L(�1)+ · · · + L(�s). Then in degree 0 we have only the scalars (multiples of the
unit 1), and therefore HCK is a connected graded algebra. In degree 1 we have
only linear combinations of the one-loop graphsn ando , possibly
containing some crossed vertices. In degree 2 we have linear combinations of
products of two one-loop graphs and graphs with two loops, and so on for all higher
degrees.

The number of non-crossed vertices V of Feynman graphs can be used as an
alternative grading of HCK. Note, however, that it is not equivalent to the grading
by L. In fact, according to Section 4.9.3, if E is the number of external legs of a
φ3 graph in D = 6, then the number of its vertices is V = 2L+ E − 2. Then, at
a given degree L by loops, the degree by vertices is V = 2L for graphs with two
external legs, and V = 2L+ 1 for graphs with three external legs. Therefore the
grading induced by V is finer then that induced by L.

4.11.2 Hopf algebra of Feynman graphs

On the graded algebra HCK we consider the coproduct  : HCK −→ HCK ⊗HCK

defined as the multiplicative and unital map given on a generator � by

 (�) = � ⊗ 1+ 1⊗ � +
∑
γi ,ri

�/{γi (ri )} ⊗
∏
i

γi (ri ) (4.40)

where the sum is over every possible choice of 1PI proper and disjoint divergent
subgraphs γi of �, and ri = 0, . . . , ω(γi). The notation used here was fixed in
Section 4.9:
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� The term �/{γi (ri )} is the graph obtained from � by replacing each subgraph γi having

two external legs with a labeled crossed vertexp (ri)
, and each subgraph γj

having three external legs with a vertex graphs q .
� Each graph γi (ri ) means in fact the graph γi with a prescribed counterterm map given as

the partial derivative of order ri (evaluated at zero external momenta).
� The term

∏
i γi (ri ) is a monomial in HCK, that is, a free product of graphs.

On HCK we also consider the counit ε : HCK −→ C defined as the multiplicative
and unital map which annihilates the generators, that is, such that ε(1) = 1 and
ε(�) = 0.

The coproduct and the counit so defined are graded algebra maps. Because the
algebra HCK is connected, we can use the five-term equality of Section 4.1.4 to
recursively define the antipodeS : HCK −→ HCK. Explicitly, it is the multiplicative
and unital map defined on the generators as

S(�) = −� −
∑
γi ,ri

�/{γi (ri )}
∏
i

S(γi (ri )).

In [7], Connes and Kreimer showed that HCK is a commutative and connected
graded Hopf algebra, that is, the coproduct, the counit and the antipode satisfy all
the compatibility properties listed in Section 4.1.

4.11.3 Group of diffeographisms and renormalization

The Hopf algebra HCK is commutative, but of course it is not finitely generated.
Then, according to Section 4.3.6, HCK defines a proalgebraic group: for any asso-
ciative and commutative algebraA, the setGCK(A) ofA-valued characters on HCK

is a group with the convolution product α # β = mA ◦ (α ⊗ β) ◦ .
Connes and Kreimer showed in [7] that if Aρ is the algebra of regularized

amplitudes for the φ3 theory in dimension D = 6, then the BPHZ renormalization
recursion takes place in the so-called diffeographisms group

GCK(Aρ) = HomAlg(HCK,Aρ). (4.41)

More precisely, this means that the bare amplitude mapA, the regularized amplitude
map Aren and the counterterm map C are characters HCK −→ Aρ , and moreover
that the BPHZ renormalization formula (4.33) is equivalent to

Aren = A # C. (4.42)
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In fact, for a given 1PI φ3 graph �, Equation (4.42) means that

(A # C)(�) = A(�)C(1)+ A(1)C(�)+
∑
γi ,ri

A(�/{γi (ri )})
∏
i

C(γi (ri ))

= Aren(�).

Then, comparing the BPHZ formula (4.33) with the expression (4.40) for the
coproduct in HCK, we see that Equation (4.42) is trivially verified provided
that the counterterm map C is indeed an algebra homomorphism, and therefore
C(γ1 · · · γs) = C(γ1) · · ·C(γs). This fact is due to a peculiar property of the trun-
cated Taylor operator T ω(�) which appears in the counterterm of any graph �.
Namely, if we denote by T the truncated Taylor expansion, then for any functions
f and g of the external momenta we have

T [fg]+ T [f ]T [g] = T [T [f ]g + f T [g]
]
.

An operator having this property is called a Rota–Baxter operator. The relationship
between Rota–Baxter operators and renormalization has been extensively investi-
gated by K. Ebrahimi-Fard and L. Guo; see for instance [10].

4.11.4 Diffeographisms and diffeomorphisms

In [8], Connes and Kreimer showed that the renormalization of the coupling
constant – that is, the formula (4.36),

λb(λ) = λ Z1(λ) Z3(λ)−
3
2

– defines an inclusion of the coordinate ring of the group of formal diffeomorphisms
into the Hopf algebra HCK.

Let us denote by Hdif the complex coordinate ring of the proalgebraic groupGdif

of formal diffeomorphisms in one variable, as illustrated in Section 4.2.9. Recall
that Hdif = C[x1, x2, . . .] is an infinitely generated commutative Hopf algebra with
coproduct

 xn = xn ⊗ 1+ 1⊗ xn +
n−1∑
m=1

xm ⊗
∑

p0+p1+···+pm=n−m
p0,...,pm≥0

xp0xp1 · · · xpm

and counit ε(xn) = 0. Then, the inclusion Hdif ↪→ HCK is defined as follows:
consider the expansion (4.34) of the renormalization factors in terms of the
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counterterms of the divergent graphs, namely

Z1(λ) = 1+
∑
E(�)=3

C(�(0))

Sym(�)
λV (�),

Z3(λ) = 1−
∑
E(�)=2

C(�(2))

Sym(�)
λV (�),

and assign to a generator xn of Hdif the combination of Feynman graphs appearing
in the coefficient of λn+1 in the series λb = λ Z1(λ) Z3(λ)−

3
2 . In [8], Connes

and Kreimer proved that this map preserves the coproduct, and therefore it is a
morphism of Hopf algebras.

4.11.5 Diffeographisms as generalized series

Connes and Kreimer’s result summarized in the preceding subsection means in
particular that the group of diffeographisms GCK(Aρ) is projected onto the group
of formal diffeomorphismsGdif(Aρ) in one variable, with coefficients in the algebra
of regularized amplitudes. In this context, formal diffeomorphisms are formal series
in the powers of the coupling constant λ, that is, series of the form

f (λ) =
∞∑
n=0

fn λ
n+1,

endowed with the composition law.
A useful way to understand the map GCK(Aρ) −→ Gdif(Aρ) is to represent the

diffeographisms as a generalization of usual series of the form

f (λ) =
∑
�

f� λ
�, (4.43)

where the sum is over suitable Feynman diagrams �, the coefficients f� are taken
in the algebra Aρ , and the powers λ� are not monomials in a possibly complex
variable λ, but just formal symbols. The projection π : GCK(Aρ) −→ Gdif(Aρ) is
simply the dual map of the inclusion Hdif −→ HCK, and sends a diffeographism
of the form (4.43) into the formal diffeomorphism

π (f )(λ) =
∞∑
n=0

 ∑
V (�)=n+1

f�

 λn+1. (4.44)

In other words, the projection is induced on the series by the map which sends a
graph � to the number V (�) of its internal vertices.
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Series of the form (4.43) are unreal, and of course have no physical meaning.
Instead, their images (4.44) are usual series, and have a physical meaning in the
context of perturbative quantum field theory: the coupling constants are exactly
series of this form, summed over suitable sets of Feynman diagrams. Moreover,
the Green functions and the renormalization factors are series of this form up to
a constant term which makes them invertible series instead of formal diffeomor-
phisms. In conclusion, the meaning of Connes and Kreimer’s results is that the
renormalization procedure takes place in the group GCK(Aρ), even if the physical
results are read in the group Gdif(Aρ).

4.11.6 Diffeographisms and Dyson’s formulas

According to Section 4.10, the result of renormalization is described by Dyson’s
formulas (4.38) directly on usual series in the powers of the coupling constant λ.
As we noted, this happens in the semidirect product Gdif(Aρ) �Ginv(Aρ) of the
groups of formal diffeomorphisms with that of invertible series.

However, these formulas require knowledge of the renormalization factors.
According to (4.34), these are known through the computations of the counterterms
of all Feynman graphs. In other words, the physical results given by Dyson’s for-
mulas seem to be the projection of computations which take place in the semidirect
productGCK(Aρ) �Ginv

graphs(Aρ), whereGCK(Aρ) is the diffeographism group dual
to the Connes–Kreimer Hopf algebra, and Ginv

graphs(Aρ) is a suitable lifting of the
group of invertible series whose coordinate ring is spanned by Feynman graphs.

This conjecture has been proved for quantum electrodynamics in the series of
works [4], [5] and [6]. In those works, the Green functions are expanded over
planar binary trees, that is, planar trees with internal vertices of valence 3, which
were used by Brouder in [3] as intermediate summation terms between integer
numbers and Feynman graphs. It has also been proved by van Suijlekom in [25]
for any gauge theory. For the φ3 theory the work is in progress.

4.11.7 Groups of combinatorial series

If the diffeographisms are represented as generalized series of the form (4.43),
the group law dual to the coproduct in HCK should be represented as a com-
position. This operation was abstractly defined by van der Laan in [24], using
operads. An operad is the set of all possible operations of a given type that one
can do on any algebra of that type. A particular algebra is then a representation
of the corresponding operad. For instance, there exist the operad of associative
algebras, that of Lie algebras, and many other examples of operads giving rise
to corresponding types of algebras. By assumption, operads are endowed with an
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intrinsic operadic composition which allows one to perform the operations one
after another in the corresponding algebras, and still get the result of an opera-
tion. The group Gdif of formal diffeomorphisms is deeply related to the operad
As of associative algebras, and in particular the composition of formal series in
one variable can be directly related to the operadic composition in As. Based
on this observation, Van der Laan had the idea to realize the composition among
diffeographisms as the operadic composition of a suitable operad constructed on
Feynman graphs. In [24], he indeed defined an operad of all Feynman graphs,
but did not explicitly describe how to restrict the general construction to the
particular case of Feynman graphs for a given theory. In particular, the explicit
form of the group GCK(Aρ) related to the renormalization of the φ3 theory is not
achieved.

A complete description of the generalized series and their composition law is
given in [13] for the renormalization of quantum electrodynamics, on the interme-
diate coordinate rings spanned by planar binary trees. However, trees are combina-
torial objects much simpler to handle then Feynman graphs, and the generalization
of this construction to diffeographisms is still incomplete.

Groups of series expanded over other combinatorial objects, such as rooted
(nonplanar) trees, also appear in the context of renormalization. Such trees, in
fact, can be used to describe the perturbative expansion of Green functions, and
were used by Kreimer in [17] to describe the first Hopf algebra of renormalization
appearing in the literature. The dual group of tree-expanded series was then used
by Girelli, Krajewski and Martinetti in [14], in their study of Wilson’s continuous
renormalization group.

Furthermore, the series expanded over various combinatorial objects make sense
not only in the context of the renormalization of a quantum field theory, but
already for classical interacting fields. In fact, as I pointed out in Section 4.6,
these fields are described perturbatively as series expanded over trees. Then,
any result on usual series which has a physical meaning should be the projec-
tion of computations which take place in the corresponding set of combinatorial
series.

Finally, all the Hopf algebras constructed on combinatorial objects which appear
in physics share some properties which are investigated in various branches of
mathematics. On one side, as I already mentioned, these Hopf algebras seem to
be deeply related to operads or to some generalization of them; see for instance
the works by Loday and Ronco [27–29]. On the other side they turn out to be
related to the various generalizations of the algebras of symmetric functions (see
for instance the several works by J. Y. Thibon and colleagues [30, 31], or those by
M. Aguiar and F. Sottile [32], and seem related to the so-called combinatorial Hopf
algebras.
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Poincaré Phys. Theor. A 19 (1973), 211.
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BRS invariance for massive boson fields

josé m. gracia-bondía∗

Abstract
This chapter corresponds to lectures given at the Villa de Leyva Summer School
in Colombia (July 2007). The main purpose in this short treatment of BRS
invariance of gauge theories is to illuminate corners of the theory left in the
shade by standard treatments. The plan is as follows. First, a review is given
of Utiyama’s general gauge theory. Immediately we find a counterexample to
it in the shape of the massive spin-1 Stückelberg gauge field. This is not fancy,
as the massive case is the most natural one to introduce BRS invariance in
the context of free quantum fields. Mathematically speaking, the first part of
the chapter uses Utiyama’s notation, and thus has the flavour and nonintrinsic
notation of standard physics textbooks. Next we deal with boson fields on Fock
space and BRS invariance in connection with the existence of Krein operators;
the attending rigour points are then addressed.

5.1 Utiyama’s method in classical gauge theory

5.1.1 A historical note

Ryoyu Utiyama developed non-abelian gauge theory early in 1954 in Japan, almost
at the same time that Yang and Mills [1] did at the Institute for Advanced Study
(IAS) in Princeton, which Utiyama was to visit later in the year. Unfortunately,
Utiyama chose not to publish immediately, and upon his arrival at IAS in
September of that year, he was greatly discouraged to find he had apparently just
been ‘scooped’.

∗
I acknowledge partial support from CICyT, Spain, through the grant FIS2005-02309. This work was mostly
done at the Departamento de Fı́sica Teórica I of the Universidad Complutense, to which I remain gratefully
indebted.

220



BRS invariance for massive boson fields 221

In fact, he had not, or not entirely. He writes [2, p. 209]:

[In March 1955], I decided to return to the general gauge theory, and took a closer look
at Yang’s paper, which had been published in 1954. At this moment I realized for the
first time that there was a significant difference between Yang’s theory and mine. The
difference was that Yang had merely found an example of non-abelian gauge theory whereas
I had developed a general idea of gauge theory that would contain gravity as well as
electromagnetic theory. Then I decided to publish my work by translating it into English, and
adding an extra section where Yang’s theory is discussed as an example of my general theory.

Utiyama’s article appeared on the March 1, 1956 issue of the Physical Review [3],
and is also is reprinted in the book by the late Lochlainn O’Raifeartaigh [2], where
the foregoing (and other) interesting historical remarks are made.

As Utiyama himself did in the statement quoted, most people who read his
paper focused on the kinship there shown between gravity and gauge theory. This
is in some sense a pity, because in contrast with textbook treatments of Yang–Mills
theories – see [4] for just one example – which manage to leave, despite disguises of
sophisticated language, a strong impression of arbitrariness, Utiyama strenuously
tried to derive gauge theory from first principles. The most important trait of [3]
is that he asks the right questions from the outset, as to what happens when a
Lagrangian invariant with respect to a global Lie group G is required to become
invariant with respect to the local groupG(x). What kind of new (gauge) fields need
be introduced to maintain the symmetry? What is the form of the new Lagrangian,
including the interaction? His answer is that the gauge field must be a spacetime
vector field on whichG(x) acts by the adjoint representation, transforming in such
a way that a covariant derivative exists. To our knowledge, Utiyama’s argument is
reproduced only in a couple of modern texts; such are [5] and [6]. I have profited
from the excellent notes [7] as well.

One can speculate that, if the sequence of events had been slightly different,
more attention would have been devoted to the theoretical underpinnings of the
accepted dogma. It is revealing, and another pity, that Utiyama’s later book in
Japanese on the general gauge theory has never been translated.

5.1.2 Utiyama’s analysis, first part

The starting point for Utiyama’s analysis is a Lagrangian

L(ϕk, ∂µϕk),

depending on a multiplet of fields ϕk and their first derivatives, globally invariant
under a group G (of gauge transformations of the first class) with n independent
parameters θa . The group is supposed to be compact. We denote by f abc the
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structure constants of its Lie algebra g; that is, g possesses generators T a with
commutation relations

[T a, T b] = f abcT c, with f abc = −f bca,
and the Jacobi identity

f abdf dce + f bcdf dae + f cadf dbe = 0 (5.1)

holds. We assume that the T a can be chosen in such a way that f abc is antisymmetric
in all the three indices. This means that the adjoint representation of g is semisimple,
that is, g is reductive [8, Chapter 15]. Close to the identity, an element g ∈ G is of
the form exp(T aθa).

The invariance is to be extended to a group G(x) – of gauge transformations
of the second class – depending on local parameters θa(x), in such a way that a
new Lagrangian L(ϕk, ∂µϕk, A) invariant under the wider class of transformations
is uniquely determined. Utiyama’s questions are

� What new field A(x) needs to be introduced?
� How does A(x) transform under G(x)?
� What are the form of the interaction and the new Lagrangian?
� What are the allowed field equations for A(x)?

The global invariance is given to us under the form δϕk(x) = T aklϕl(x)θa;
now we want to consider

δϕk(x) = T aklϕl(x)θa(x), (5.2)

for 1 ≤ a ≤ n. This last transformation in general does not leave L invariant. Let us
first learn about the constraints imposed on the Lagrangian density by the assumed
global invariance. One has

0 = δL = ∂L
∂ϕk

δϕk + ∂L
∂(∂µϕk)

δ ∂µϕk, (5.3)

where now

δ ∂µϕk = ∂µ δϕk = T akl∂µϕl(x)θa(x)+ T aklϕl(x)∂µθ
a(x). (5.4)

With a glance at (5.3) and (5.4), we see that

δL = ∂L
∂(∂µϕk)

T aklϕl(x)∂µθ
a(x) �= 0. (5.5)

Then it is necessary to add new fields A′p, p = 1, . . . ,M , in the Lagrangian, a
process which we write as

L(ϕk, ∂µϕk) −→ L′(ϕk, ∂µϕk, A′p).
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The question is, how do the new fields transform? We assume not only a term of
the form (5.4), but also a derivative term in θa(x) – indeed, the latter will be needed
to compensate the right-hand side of (5.5):

δA′p = UapqA′qθa + Caµp ∂µθa. (5.6)

HereCaµp and theUapq are constant matrices, for the moment unknown. The require-
ment is

0 = δL′ = ∂L
′

∂ϕk
δϕk + ∂L′

∂(∂µϕk)
∂µδϕk + ∂L

′

∂A′p
δA′p,

boiling down to

δL′ =
[
∂L′
∂ϕk
T aklϕl +

∂L′
∂(∂µϕk)

T akl∂µϕl +
∂L′
∂A′p

UapqA
′
q

]
θa

+
[
∂L′

∂(∂µϕk)
T aklϕl +

∂L′
∂A′p

Caµp

]
∂µθ

a = 0. (5.7)

The coefficients must vanish separately, as the θa and their derivatives are arbitrary.
The coefficient of ∂µθa gives 4n equations involving A′p, and hence to determine
the A′ dependence uniquely one needs M = 4n components. Furthermore, the
matrix Caµp must be nonsingular. We have then an inverse:

Caµp C
−1a
µq = δpq, C−1a

µpC
bν
p = δνµδab.

Define the gauge (potential) field

Aaµ =
1

g
C−1a

µp A
′
p, with inverse A′p = gCaµp Aaµ. (5.8)

Before proceeding, note that (5.6) and (5.8) together imply

δAaµ =
(
C−1a

µpU
c
pqC

bν
q

)
Abνθ

c + ∂µθ
a

g
=: (Saµ)cbνAbνθ

c + ∂µθ
a

g
.

Clearly, from (5.7) we have

∂L′
∂(∂µϕk)

T aklϕl +
1

g

∂L′
∂Aaµ

= 0.

Hence only the combination (called the ‘covariant derivative’)

Dµϕk := ∂µϕk − gT aklϕlAaµ
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occurs in L′(ϕk, ∂µϕk, A′p), and we rewrite:

L′(ϕk, ∂µϕk, A′p) −→ L′′(ϕk,Dµϕk).

Moreover, it follows that

∂L′
∂ϕk
= ∂L

′′

∂ϕk
− g ∂L′′

∂(Dµϕl)
T alkA

a
µ,

∂L′
∂(∂µϕk)

= ∂L′′
∂(Dµϕk)

,

∂L′
∂A′p

= − ∂L′′
∂(Dµϕk)

T aklϕlC
−1a
µp.

Now we look at the vanishing coefficient of θa occurring in δL′ in (5.7). By use
of the last set of equations, we have

0 = ∂L
′′

∂ϕk
T aklϕl − g

∂L′′
∂(Dµϕm)

T bmkT
a
klA

b
µϕl

+ ∂L′′
∂Dµϕk

T akl∂µϕl − g
∂L′′

∂(Dµϕm)
T cmlϕlC

−1c
µpU

a
pqC

bν
q A

b
ν

= ∂L
′′

∂ϕk
T aklϕl +

∂L′′
∂Dµϕk

T aklDµϕl

− g ∂L′′
∂(Dµϕm)

[
T bmkT

a
klA

b
µϕl − T amkT bklAbµϕl + T cml(Scµ)abνAbνϕl

]
. (5.9)

We have come thus to the crucial (and delicate) point. Remarkably, it seems
that the two first terms in (5.9) cancel each other by global invariance if we
identify

L′′(ϕk,Dµϕk) = L(ϕk,Dµϕk).

Utiyama [3] writes here: ‘This particular choice of L′′ is due to the requirement
that when the field A is assumed to vanish, we must have the original Lagrangian’.
It seems to me, however, that covariance ofDµϕk is implicitly required. The whole
procedure is at least consistent: The vanishing of the last term in (5.9) allows us to
identify

(Scµ)abν = f abcδνµ.
This implies in the end

δAaµ = f cbaAbµθc +
∂µθ

a

g
. (5.10)
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As a consequence we obtain that Dµϕk indeed is a covariant quantity, in the sense
of (5.4):

δ(Dµϕk) = δ(∂µϕk − gT aklAaµϕl) = ∂µ(T aklθ
aϕl)− gf cbaT akmAbµθcϕm

− T akl∂µθaϕl − gT bklT clmAbµθcϕm = T aklθa∂µϕl − gT cklT blmAbµθcϕm
= T aklθa(Dµϕl).

(In summary, Utiyama’s argument here looks a bit circular; but all is well in the end.)

5.1.3 Final touches to the Lagrangian

The local Lagrangian of the matter fields contains in the bargain the interaction
Lagrangian between matter and gauge fields. The missing piece is the Lagrangian
for the ‘free’ A-field. Next we investigate its possible type. Call the sought for
Lagrangian L0(Aaν, ∂µA

a
ν). The postulate of invariance (under the local group of

internal symmetry), together with (5.10), says in detail

0 =
[
∂L0

∂Aaν
f cbaAbν +

∂L0

∂(∂µAaν)
f cba∂µA

b
ν

]
θc

+
[
∂L0

∂(∂µAaν)
f cbaAbν +

1

g

∂L0

∂Acµ

]
∂µθ

c

+ 1

g

∂L0

∂(∂µAcν)
∂µνθ

c.

As the θc are arbitrary again, one concludes that

∂L0

∂Aaν
f cbaAbν +

∂L0

∂(∂µAaν)
f cba∂µA

b
ν = 0, (5.11)

∂L0

∂(∂µAaν)
f cbaAbν +

1

g

∂L0

∂Acµ
= 0, (5.12)

∂L0

∂(∂µAaν)
+ ∂L0

∂(∂νAaµ)
= 0. (5.13)

Introduce provisionally

Aaµν := ∂µAaν − ∂νAaµ.
Then (5.12) is rewritten

∂L0

∂Acµ
+ 2g

∂L
∂(Aaµν)

f cbaAbν = 0.
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It ensues that the only combination occurring in the Lagrangian is

Fcµν := Acµν − 1
2gf

abc(AaµA
b
ν − AaνAbµ). (5.14)

One may write then

L0(Aaν, ∂µA
a
ν) = L′0(Faµν).

Parenthetically we note

Faµν + Faνµ = 0.

Now,

∂L0

∂(∂µAaν)
= 2

∂L′0
∂F aµν

,
∂L0

∂Abµ
= 2

∂L′0
∂F cµν

f abcAaν.

Thus, by use of (5.1), Equation (5.11) yields

∂L′0
∂F cµν

f abcF aµν = 0, (5.15)

for 1 ≤ b ≤ n. This is left as an exercise. Also, by use of the identity of Jacobi
again, one obtains

δF cµν = f abcF bµνθa. (5.16)

This is a covariance equation similar to (5.4); its proof is an exercise as well.
Equation (5.15) is as far as we can go with the general argument. The simplest

Lagrangian satisfying this condition is the one quadratic in Faµν :

LYM := − 1
4F

a
µνF

a µν, implying Faµν = −
∂LYM

∂(∂µAaν)
. (5.17)

The last equation is consistent with (5.13). Note that δLYM = 0 is obvious
from (5.16).

If now we define

J cµ = gf abc ∂LYM

∂(∂µAaν)
Abν, (5.18)

then from (5.11) again,

∂µJ
aµ = 0, (5.19)

and from (5.12),

∂νF aµν = J aµ, (5.20)

by use of the equations of motion in both cases.
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Let us take stock of what we have obtained.

� Equation (5.18) tells us that (in this non-abelian case) a self-interaction current Jµ exists,
and gives us an explicit expression for it.

� Equation (5.19) furthermore shows that the current is conserved. Such a conservation
equation, involving ordinary derivatives instead of covariant ones, does not look natural,
perhaps, and is not so easy to prove directly – see the discussion in [9, Section 12.1.2].
This is the content of Noether’s second theorem as applied in the present context.

� We observe that (5.20) is the field equation in the absence of matter fields.

The full Lagrangian is L(ϕk,Dµϕk)+ L′YM. One can proceed now to verify
its invariance under the local transformation group and study the corresponding
conserved currents. It should be clear that the conserved currents arising from local
gauge invariance are exactly those following from global gauge invariance. The
proof is left as an exercise.

5.1.4 The electromagnetic field

We illustrate only with the simplest example, as our main purpose is to produce a
‘counterexample’ pretty soon. Let a Dirac spinor field of massM be given:

L = i
2 [ψγµ∂µψ − ∂µψ γ µψ]− ψMψ.

(Borrowing the frequent notation A
←→
∂α B = A∂αB − (∂αA)B, one can write this

as

i
2ψ
←→
∂µ γ

µψ − ψMψ
as well.) This is invariant under the global abelian group of phase transformations

ψ(x) �→ eiθψ(x), ψ(x) �→ e−iθψ(x),

or, infinitesimally,

δψ = iψθ, δψ = −iψθ.
This leads to the covariant derivatives

Dµψ = ∂µψ − igAµψ, Dµψ = ∂µψ + igAµψ.
In conclusion, the original Lagrangian receives an interaction piece −gψγ µAµψ ,
with invariance of the new Lagrangian thanks to δAµ = ∂µθ/g. The full locally
invariant Lagrangian is

i
2 [ψγµ∂µψ − ∂µψγ µψ]− gψγ µAµψ − ψMψ − 1

4FµνF
µν.
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One can find now the associated electromagnetic current. This is the last exercise
of this section.

5.1.5 The original Yang–Mills field

Consider an isospin doublet of spinor fields:

ψ = (ψk) =
(
ψ1

ψ2

)
,

with free Lagrangian

i
2 [ψkγ

µ∂µψk − ∂µψkγ µψk]− ψkMψk.
This is invariant under the global SU (2) group, with σa denoting as usual the Pauli
matrices:

ψk �→ e−igθ
aσ a/2

∣∣
kl
ψl, ψk �→ ψl e

igθaσ a/2
∣∣
lk
.

Infinitesimally,

δψk = T aklψlθa, with T akl = −
ig

2
σakl.

We have f abc = gεabc for this group. The Lagrangian becomes gauge invariant
through the replacement

∂µψk �→ Dµψk = ∂µψk + ig
2
σaklψlA

a
µ;

that is, the triplet of vector fields is the gauge (potential) field, the number of gauge
field components being equal to the number of symmetry generators. Note the
slight difference in the introduction of the coupling constant of the gauge field with
the spinor field and with itself.

The full locally invariant Lagrangian is

i
2 [ψkγ

µ∂µψk − ∂µψkγ µψk]− ψkMψk − 1
4F

a
µνF

a µν − g
2
ψkγ

µσaklψlA
a
µ,

with Faµν given by (5.14). The current

J aµ = −
g

2
ψkγ

µσaklψl − gεabcAcν
[
∂µA

b
ν − ∂νAbµ −

g

2
εbde(AdµA

e
ν − AdνAeµ)

]
= −g

2
ψkγ

µσaklψl − gεabcAcν
(
∂µA

b
ν − ∂νAbµ)+ g2(Aaµ(AA)+ AcµAcνAaν),

with AA := Acν Acν , is conserved.
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5.2 Massive vector fields

5.2.1 What is wrong with the Proca field?

The starting point in relativistic quantum physics is Wigner’s theory of particles
as positive-energy irreps of the Poincaré group with finite spin (helicity) [10].
The transition to local free fields is made through intertwiners between the Wigner
representation matrices and the matrices of covariant Lorentz group representations.
Therefore, following standard notation [11], the general form of a quantum field is

ϕl(x) = ϕ(−)
l (x)+ ϕ(+)

l (x)

with

ϕ
(−)
l (x) = (2π )−3/2

∑
σ,n

∫
dµm(k) ul(k, σ, n)e−ikxa(k, σ, n),

ϕ
(+)
l (x) = (2π )−3/2

∑
σ,n

∫
dµm(k) vl(k, σ, n)eikxa†(k, σ, n),

where dµm(k) is the usual Lorentz-invariant measure on the mass m hyperboloid
in momentum space, and n stands for particle species. Leaving the latter aside, the
other labels are of representation-theoretic nature. Operator solutions to the wave
equations carry the following labels, in all: the Poincaré representation (m, s) gives
the the mass shell condition and the spin s; the (k, σ ), with the range ofσ determined
by s, label the momentum basis states; the (u, v) are Lorentz representation labels,
usually appearing as a superscript indicating the tensorial or spinorial character of
the solution. The c-number functions ul, vl in the plane-wave expansion formulae
are the coefficient functions or intertwiners, connecting the set of creation or
absorption operators a#(k, σ ), transforming as the irreducible representation (m, s)
of the Poincaré group, to the set of field operators ϕl(x), transforming as a certain
finite-dimensional – and thus nonunitary – irrep of the Lorentz group. We have
thus in the vector field case

ϕ(−)µ(x) = (2π )−3/2
∑
σ

∫
dµm(k) uµ(k, σ )e−ikxa(k, σ ),

ϕ(+)µ(x) = (2π )−3/2
∑
σ

∫
dµm(k) vµ(k, σ )eikxa†(k, σ ).

For the time being we ignore in the notation any colour quantum number.
For the spin of the particle described by the vector field, both values j = 0

and j = 1 are possible. In the first case, at %k = 0 only u0, v0 are nonzero, and,
dropping the label σ , we have by Lorentz invariance

uµ(k) ∝ ikµ, vµ(k) ∝ −ikµ,
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and therefore ϕµ(x) = ∂µϕ(x) for some scalar field ϕ. In the second case, only the
space components uj , vj are nonvanishing at %k = 0, and we are led to

ϕ(−)µ(x) = ϕ(+)µ†(x) = (2π )−3/2
3∑
σ=1

∫
dµm(k) εµ(k, σ )e−ikxa(k, σ ), (5.21)

with εµ suitable (spacelike, normalized, orthogonal to kµ, also real) polarization
vectors, so that

3∑
σ=1

εµ(k, σ )εν(k, σ ) = −gµν + kµkν
m2

. (5.22)

On the right-hand side we have the projection matrix on the space orthogonal to
the four-vector kµ. This may be rewritten

σ=3∑
σ=0

gσσ εµ(k, σ )εν(k, σ ) = gµν,

with the definition εµ(k, 0) = kµ/m. With this treatment, we have the equations

(�+m2)ϕµ(x) = 0, ∂µϕ
µ(x) = 0.

The last one ensures that one of the four degrees of freedom in ϕµ is eliminated.
However, eventually (5.22) leads to the commutation relations for the Proca field
of the form

[ϕµ(x), ϕν(y)] = i
(
gµν + ∂

µ∂ν

m2

)
D(x − y).

In momentum space this is constant as |k| ↑ ∞, which bodes badly for renormal-
izability. The Feynman propagator is proportional to

gµν − kµkν/m2

k2 −m2
;

there is moreover a troublesome extra term, which we leave aside.
The argument for nonrenormalizability is as follows. Suppose that, as in the

examples of the previous section, the vector field is coupled with a conserved
current made out of spinor fields. Consider an arbitrary Feynman graph with EF
external fermion lines, IF internal ones, and respective boson lines EB, IB . The
assumption says two fermion lines and one boson line meet at each vertex. The
number of vertices is thus

V = 2IB + EB = 1
2 (2IF + EF ).

There is a delta function for each vertex, one of them corresponding to overall
momentum conservation, and each internal line has an integration over its moment.
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Thus, by eliminating IF , IB the superficial degree of divergence is found to be

D = −4(V − 1)+ 3IF + 4IB = 4+ V − 3EF/2− 2EB.

This shows that, no matter how many external lines there are, the degree of diver-
gence can be made arbitrarily large.

The difficulty is with the intertwiners, whose dimension does not allow the
usual renormalizability condition. The idea is then to cure this by a cohomological
extension of the Wigner representation space for massive spin-1 particles. This
involves both the Stückelberg field and the ghost fields, already at the level of the
description of free fields. The nilpotency condition s2 = 0 for the BRS operator s
will yield a cohomological representation for the physical Hilbert space ker s/ ran s,
which, as we shall see later, is the (closure of) the space of transverse vector wave
functions. On that extended Hilbert space the renormalizability problem fades
away. This goes hand in hand with a philosophy of primacy of a quantum character
for the gauge principle, which should be read backwards into classical field theory;
fibre bundle theory is no doubt elegant, but not intrinsic from this viewpoint. (For
massless particles, the situation is worse in that problematic aspects of the use of
vector potentials in the local description of spin-1 particles show up already in the
covariance properties of photons and gluons.)

5.2.2 What escaped through the net

Another unsung hero of quantum field theory is the Swiss physicist Ernst Carl Ger-
lach Stückelberg, baron von Breidenbach. He found himself among the pioneers of
the ‘new’ quantum mechanics; at the end of the 1920s, while working in Princeton
with Morse, he was the first to explain the continuous spectrum of molecular hydro-
gen. On his return to Europe in 1933, he met Wentzel and Pauli for the first time.
Stückelberg stayed in Zurich for two years before accepting a position at Geneva. He
turned to particle physics, where he would among other things contribute, accord-
ing to his obituary [12], the meson hypothesis (unpublished at the time because
of Pauli’s criticism, and usually associated with Yukawa), the causal propagator
(better known as the Feynman propagator) and the renormalization group [13,14].
Also due to Stückelberg (not emphasized in [12]) are the first formulation of baryon
number conservation; the first sketch of what is called nowadays ‘Epstein–Glaser
renormalization’ [15] (towards which, according to the account in [16], Pauli was
better disposed) and the Stückelberg field [17], which concerns us here.

We have seen the extreme care that Utiyama exercised in deriving the precise
form of gauge theory as a theorem. However, already at the moment that he
published it, his result was known to be false. The thing that escapes through
Utiyama’s net is Stückelberg’s gauge theory for massive spin-1 particles.
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In the old paper [18], Pauli had given rather dismissively a short account of
that fact before plunging into the Proca field – although anyone who has tried
to work with the latter rapidly realizes it is good for nothing. There are several
natural ways to discover the Stückelberg gauge field, even after one has been
miseducated by textbooks – like [11] – into learning exclusively about the Proca
field. A principled quantum approach is contained in embryo in the paper [19],
where the starting point is Wigner’s picture of the unitary irreps of the Poincaré
group. In the book by Itzykson and Zuber, the Stückelberg method is used time
and again [9, pp. 136, 172, 610] to smooth the m ↓ 0 limit and exorcise infrared
troubles. A useful reference for the Stückelberg field is the review [20]. I have been
inspired also by [21].

5.2.3 The Stückelberg field and Utiyama’s test

Actually, there is no logical fault in the Lagrangian approach by Utiyama. Where he
goes astray is only in the ‘initial condition’ (5.2). We next try to find the Stückelberg
field by the Utiyama path; that is, to see whether we actually could have derived
the existence of the field B using the arguments of Section 5.1.2. We do this for
an abelian theory. Assume that a globally G ≡ U (1)-invariant model of a Dirac
fermion of massM and a real vector field of mass m are given:

L0 = i
2

(ψγµ∂µψ − ∂µψ γ µψ)− ψMψ + 1
2m

2AµA
µ + Lkin(∂νAµ)

=: L0,f + L0,phmass + Lkin,

with obvious notation. This is obviously a model for (noninteracting) massive
photon electrodynamics. Here Lkin is the kinetic energy term for the photon, of the
form (5.17). This Lagrangian is invariant under the global gauge transformations:

Aµ(x) �→ Aµ(x), ψ(x) �→ eiθψ(x), ψ(x) �→ e−iθψ(x),

or, infinitesimally,

δAµ = 0, δψ = iψθ, δψ = −iψθ.
Now the Utiyama questions come in: what new (gauge) fields need be intro-

duced? How do they transform under G(x)? What is the form of the interaction,
and what is the new Lagrangian? To save space and time, we restart from

i
2 [ψγµ∂µψ − ∂µψγ µψ]− ψγµAµψ − ψMψ + 1

2m
2AµA

µ

− 1
4 (∂µAν − ∂νAµ)(∂µAν − ∂νAµ) =: Lf + L0,phmass + Lkin.
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The multiplet of fields includes now

ϕ =
 ψψ
Aµ

 transforming as δϕ =
 iψθ(x)
−iψθ (x)
∂µθ (x)

 , (5.23)

where of course we required a variation of the QED type for theAµ. For simplicity
we have put g = 1. However, still

δL0 = ∂L0,phmass

∂Aµ
δAµ = m∂µθ �= 0.

It seems that, when vector fields are conjured ab initio, further infinitesimal
gauge transformations of the form

δϕk = Akcθc + Bνkc∂νθc (5.24)

need to be considered. Here we have a particular case, with a trivial colour index c,
with ϕk → Aµ, Aµ vanishing, and Bνµ = δνµ.

There is no need to involve other parts of the Lagrangian than L0,phmass in the
remaining calculation. We need an extra vector field. It is natural to propose that it
be fabricated from the derivatives of a scalar B, and we write

L0,phmass(Aµ) −→ L′(Aµ, ∂µB).

It is immediate to note that if we assume the new field transforms like δB = mθ ,
then the requirement of local gauge invariance is

δL′ =
[
∂L′
∂Aµ

+m ∂L′
∂(∂µB)

]
∂µθ = 0.

It follows that

m
∂L′
∂(∂µB)

= − ∂L
′

∂Aµ
.

Consequently, only the combination

Aµ − ∂µB/m
occurs in L′(Aµ, ∂µB). Thus we rewrite:

L′(Aµ, ∂µB) −→ L0,phmass(Aµ − ∂µB/m).

The bosonic part of the Lagrangian is in fine

Lb = Lkin + m
2

2

(
Aµ − ∂µB

m

)2

;
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note that, with Vµ = (Aµ − ∂µB/m), one has Lkin(Aµ) = Lkin(Vµ). The total
Lagrangian L = Lf + Lb has what we want. With the multiplet of fields

ϕ =


ψ

ψ

Aµ

B

 transforming as δϕ =


iψθ(x)
−iψθ (x)
∂µθ (x)
mθ (x)

 ,
we plainly obtain local gauge invariance of Lf,Lb and L. Note the Euler–Lagrange
equation

∂µ
∂L
∂µB

= ∂L
∂B

yielding �B = m∂A.

Note as well that one can fix the gauge so B vanishes; this does not mean the gauge
symmetry is trivial.

Maybe Utiyama missed this because [22] he only takes into account, for the
original variables, infinitesimal gauge transformations typical of matter fields, of
the form (5.2); he did not consider the possibility (5.23) – that is, (5.10) – for the
vector fields acting as sources of gauge fields.

We finish this subsection by noting that Lb may also be written

Lb = (∂µ − igAµ)� (∂µ + igAµ)�∗, with � = m√
2g

exp(igB/m);

that is, an abelian Higgs model without self-interaction. Verification is straightfor-
ward.

5.2.4 The Stückelberg formalism for non-abelian Yang–Mills fields

The sophisticated method for this was established by Kunimasa and Goto [23]; we
follow in the main [24]. For apparent simplicity, consider an isovector field Aaµ
interacting with an isospinor spinor field ψ , as in Section 5.1.5. Let us choose the
notation

Aµ = 1
2σ
aAaµ, Fµν = ∂µAν − ∂νAµ + ig(AµAν − AνAµ).

Indeed, i4σ
aσ b = − 1

2ε
abcσ c, in consonance with (5.14). The Lagrangian density

is written

− 1
2 tr(FµνF

µν)+ i
2ψ
←→
∂µ γ

µψ − ψMψ − gψγ µAµψ.
This is invariant under

ψ →W−1ψ, Aµ→W−1AµW− i
g

W−1∂µW
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for W ∈ SU (2), which is nothing but (5.10) with

W = exp(T aθa(x)).

To make the mass term

m2 tr(AµAµ) = 1
2m

2AaµA
aµ

gauge invariant, it is enough to introduce a 2× 2 matrix ωµ of auxiliary vector
fields, so that

m2 tr(Aµ − ωµ/g)

is invariant under gauge transformations if

ωµ→W−1ωµW− iW−1∂µW. (5.25)

Indeed, let C ∈ SU (2) transform as C → CW. Then

ωµ := −iC−1∂µC

satisfies (5.25):

−iW−1C−1∂µCW =W−1ωµW− iW−1∂µW.

With C = exp(BaT a/m), we can think of the Ba as the auxiliary fields.
We may note, however, that the introduction of scalar Stückelberg partners for

the Aaµ by the substitution Aµ→ Aµ − ∂µB, with B = BaT a , seems to work as
well. In gauge theory, the elegant non-infinitesimal notation is a bit dangerous, in
that it tends to obscure the fact that the transformation of the gauge fields (5.10) is
independent of the considered representation of the gauge group.

5.2.5 Gauge-fixing and the Stückelberg Lagrangian

We begin to face quantization now. For that, we need to fix a gauge. Otherwise,
we cannot even derive a propagator from the Lagrangian. Let us briefly recall the
standard argument:

LQED = − 1
4FµνF

µν = 1
2A

µDµνAν,

with

Dµν(x) = −gµν←−∂σ→∂σ +←−∂ν→∂µ or Dµν(k) = −gµνk2 + kµkν,
in momentum space. The matrix Dµν has null determinant and thus is not invert-
ible; so one cannot define a Feynman propagator. This is precisely due to gauge
invariance. The problem for QED was cured by Fermi long ago [25] by introduction
of the piece −1

2α (∂νAν)2. Here we proceed similarly, and the gauge-fixing term we
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take is of the ’t Hooft type:

Lgf = −1

2α
(∂νAν + αmB)2. (5.26)

We denote

LS = L+ Lgf,

the Stückelberg Lagrangian. The gauge-fixing amounts to saying that now the
gauge variation θ must satisfy the Klein–Gordon (KG) equation with mass m

√
α:

(�+ αm2)θ = 0,

just as in the old trick by Fermi in electrodynamics, where the new Lagrangian is
still gauge-invariant provided we assume �θ = 0 for the gauge variations. Now,
instead the Euler–Lagrange equation,

∂µ
∂LS
∂(∂µB)

= ∂LS
∂B

yields (�+ αm2)B = 0.

Hence the gauge-fixing implies B itself now is a free field with mass m
√
α.

Another good reason for the gauge-fixing is to keep Aν as an honest spin-1 field
in the interaction. Recall that in a quantum vector field spins 0 and 1 are possible.
The scalar B extracts the spin-0 part, so the remaining part is transverse. In fact
∂µ(Aµ − ∂µB/m) = ∂A+ αmB if the equation of motion is taken into account;
and this gauge-fixing term is destined to vanish in an appropriate sense on the
physical state space.

A word is needed on the Noether theorem now. There is now an extra term
in ∂µ ∂L

∂(∂µAν )
, of the form − gµν

α
(∂A+ αmB). This gives rise to the Euler–Lagrange

equation:

�Aµ +
( 1

α
− 1
)
∂µ(∂A)+m2Aµ = gψγµψ, (5.27)

where we have reestablished temporarily the coupling constant. As a consequence
of (5.27) we have

� ∂A+ αm2∂A = 0.

The simplest option now is to take α = 1 (so the masses of Aν and B coincide),
as then the Aν obey the KG equation at zeroth order in g. This could be termed
the ‘Feynman gauge’. But in some contexts it is important to keep the freedom of
different mass values for the vector and the scalar bosons. (We have for the fermion
the Dirac equation

iγ µ∂µψ = (gγ µAµ +M)ψ

and its conjugate. Nothing new here.)
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A comment on renormalizability is in order at this point. The choice α ↓ 0
is the Landau gauge, in which renormalizability is almost explicit. On the other
hand, it is clear that B = 0 (the original Proca model), where the theory is non-
renormalizable by power counting, can be recovered as a sort of ‘unitary gauge’.
If we can prove gauge covariance of the theory, all these versions will be phys-
ically equivalent. An extra advantage of the Stückelberg field in renormalization
is that, because it cures the limit m ↓ 0, it allows the use of masses as infrared
regulators.

To finish, I again call attention to the similarities of the model with the abelian
Higgs model. Upon renormalization, a Higgs-potential–like term pops up in the
Lagrangian. However, the vacuum expected value of the Stückelberg field is still
zero. For non-abelian theories, the situation remains murky even now.

5.2.6 The ghosts we summoned up?

For completeness, I provide next a conventional discussion of BRS invariance for
the Lagrangian obtained in the previous subsection. (This is not intended to be
discussed in the exercises, and both the cognoscenti and the noncognoscenti may
skip it in first reading.)

Nowadays BRS invariance of the (final) Lagrangian is an integral part of the
quantization process. Among other things, it helps to establish gauge covariance,
that is, independence of the chosen gauge for physical quantities; in turn this helps
with renormalizability proofs. We approach the quantum context by introducing
two fermionic ghosts ω, ω̃ plus an auxiliary (Nakanishi–Lautrup) field h that we
add to the collection ϕ. From the infinitesimal gauge transformations we read off
the BRS transformation:

sϕ = s



ψ

ψ

Aµ

B

ω

ω̃

h


=



iωψ

−iωψ
∂µω

mω

0
h

0


.

It is clear that s increases the ghost number by one. Extend s as an antiderivation;
from the fact that ω, ω̃ are anticommuting we obtain (even off-shell) nilpotency of
order two for the BRS transformation: s2 = 0 (we will always understand ‘nilpotent
of order two’ for ‘nilpotent’ in this work). Now, in the BRS approach, one takes
the action to be a local action functional of matter, gauge, ghost and h-fields with
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ghost number zero and invariant under s. This is provided by the new form

Lgf = s[F(ψ,ψ,Aµ,B)ω̃ + 1
2αhω̃]

for the gauge-fixing term of the Lagrangian. Here F is the gauge-fixing functional,
like (∂µAµ + αmB) in the preceding subsection. Invariance comes from sLgf = 0
on account of nilpotency, of course. We can rewrite

Lgf = −ω̃sF + hF + 1
2αh

2 = −ω̃sF + 1
2

( F√
α
+ h√α

)2
− F2

2α
.

One can eliminate h using its equation of motion

0 = ∂Lgf

∂h
= F + hα, so that Lgf = −ω̃sF − F2

2α
,

and also sω̃ = −F/α: the BRS transformation then maps the antighosts or dual
ghosts into the gauge-fixing terms (the price to pay is that s will be nilpotent off-
shell only when acting on functionals independent of ω̃). In our case (5.26), we
have

sF = s(∂µAµ + αmB) = (�+ αm2)ω.

Thus the contribution of the fermionic ghosts in this abelian model to Lgf is

−ω̃sF = −ω̃(�+ αm2)ω;

also ∂µω̃∂µω − ω̃αm2ω would do; the ghosts turn out to be free fields with the
same mass as Stückelberg’s B-field. Notice that the ghost term decouples in the
final effective Lagrangian. (According to [26], adding to the action a term invariant
under the BRS transformation amounts to a redefinition of the fields coupled to the
source in the generating functional; this has no influence on the S-matrix.)

I have followed [8] and mainly [27] in this subsection.
At the end of the day, the Lagrangian for massive electrodynamics is of the

form

Lf + Lkin + Lb + Lgf = i
2 [ψγµ∂µψ − ∂µψγ µψ]− ψγµAµψ − ψMψ

− 1
4 (FF )+ m

2

2
(A− ∂B/m)2

− 1

2α
(∂A+ αmB)2 − ω̃(�+ αm2)ω

= Lf + Lkin + m
2A2

2
− 1

2α
(∂A)2 + 1

2 (∂B)2

− αm
2

2
B2 −m∂µ(BAµ)− ω̃(�+ αm2)ω.
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Highlights:

� The gauge-fixing has been chosen independently of the matter field.
� The gauge sector contains first a massive vector field, with three physical components

of mass m (one longitudinal and two transverse) and an unphysical spin-zero piece of
mass

√
αm.

� The cross term between Aµ and B has disappeared.
� The gauge sector also contains a (commuting) Stückelberg B-field with mass

√
αm and

a pair of (anticommuting) ghost–antighost scalars, with mass
√
αm as well.

� For computing S-matrix elements, the ghosts can be integrated out, for they are decoupled
and do not appear in asymptotic states. But we cannot integrate out the B-field, because,
as discussed in Section 5.3, it plays a role in the definition of the physical states – and
moreover it undergoes a nontrivial renormalization.

� The only interacting piece is the ψAψ term in the fermionic part of the Lagrangian.
� The model is renormalizable.

5.3 Quantization of massive spin-1 fields

5.3.1 On the need for BRS invariance

It is impossible for us, within the narrow limits of this short chapter, to follow
in any meaningful detail the tortuous chronological path to the discovery of BRS
invariance in relation with gauge invariance. The story in outline is well known.
By fixing the gauge, Feynman was able to generate Feynman diagrams [28] for
non-abelian gauge theories; but unitarity of the S-matrix was lost unless additional
‘probability-eating’ quantum fields were introduced. The auxiliary ghost fields
appeared clearly in the work by Faddeev and Popov, which uses the functional
integral. In the seventies it was discovered that the resulting effective Lagrangian
still supports a global invariance of a new kind, the nilpotent BRS transformation,
which allows one to recover unitarity, ensures gauge independence of the quantum
observables and powerfully contributes to the proofs of renormalizability.

We approached quantization in Section 5.2.1 through the canonical method. So
we motivate the introduction of the ghosts and the BRS symmetry and operator
in our previous considerations. Now that hopefully we have broken the mental
association between ‘gauge principle’ and ‘masslessness’, we can proceed to a
simple and general version of gauge theory with BRS invariance. The quantization
of massive vector fields is interesting in that it is conceptually simpler, although
analytically more complicated, than that of massless ones. (It is true that in theories
with massive gauge bosons, the masses are generated by the ‘Higgs mechanism’;
but this is just a poetic description that cannot be verified or falsified at present.) In
the context, concretely we need the ghosts as ‘renormalization catalysers’. In fact,
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it has been shown in [19] that for interacting massive vector field models the renor-
malizability condition fixes the theory completely, including the cohomological
extension of the Wigner representation theory by the ghosts, and the Stückelberg
field in the abelian case – even if you had never heard of that in a semiclassical
study of Lagrangians, like the one performed in Section 5.2 – as well as a
Higgs-like field for flavourdynamics; we shall touch upon this in the last section.

The crucial problem, illustrated by our discussion in Section 5.2.1, is to eliminate
the unphysical degrees of freedom in the quantization of free vector fields in a
subtler way than Proca’s, particularly without giving up commutators of the form

[Aµ(x), Aν(y)] = igµνD(x − y), A+µ = Aµ. (5.28)

Also we ask for the KG equations (�+m2)Aµ = 0 to hold (in the Feynman gauge).
It is impossible to realize (5.28) on Hilbert space. Let us sketch the solution in
this subsection. It goes through the introduction of a distinguished symmetry η
(that is, an operator both self-adjoint and unitary), called the ‘Krein operator’,
on the Hilbert–Fock space H . Whenever such a Krein operator is considered, the
η-adjoint O+ of an operator O is defined:

O+ = ηO†η.

Let (·, ·) denote the positive definite scalar product in H . Then

〈·, ·〉 := (·, η·)
gives an indefinite scalar product, and the definition of O+ is just that of the
adjoint with respect to 〈·, ·〉. The algebraic properties are like those in the usual
adjunction †, but O+O is not positive in general.

The pair (H, η), whereH is the original Hilbert–Fock space, including ghosts, is
called a ‘Krein space’. The undesired contributions from the A-space will be can-
celled by the unphysical statistics of the ghosts. The BRS operator is an (unbounded)
nilpotent η-self-adjoint operator Q on H . That is, Q2 = 0,Q = Q+. By means
ofQ one shows that H (or a suitable dense domain of it) splits into the direct sum
of three pairwise orthogonal subspaces (quite analogous to the Hodge–de Rham
decomposition in the differential geometry of manifolds):

H = ranQ⊕ ranQ† ⊕ (kerQ ∩ kerQ†).

In addition we assume

η
∣∣
kerQ∩kerQ† = 1.

That is, 〈·, ·〉 is positive definite on

Hphys := kerQ ∩ kerQ†,
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which is called the physical subspace. An alternative definition for Hphys is the
cohomological one:

Hphys = kerQ/ ranQ.

Nilpotency of Q is the reason to introduce the anticommuting pair of ghost fields.
In interaction, the S-matrix must be physically consistent:

[Q, S]+ = 0, or at least [Q, S]+
∣∣
kerQ = 0.

In the following subsections we flesh out the details of all this.

5.3.2 Ghosts as free quantum fields

A first step in a rigorous construction of ghosts is their understanding as quantum
fields, together with the issue of the ‘failure’ of the spin–statistics theorem for
them. We look for two operator-valued distributions u, ũ, acting on a Hilbert–Fock
space Hgh and satisfying KG equations:

(�+m2)u = (�+m2)ũ = 0, (5.29)

and the following commutation relations, in the sense of tempered distributions:

[ua(x), ũb(y)]+ = −iδabD(x − y), [ua(x)ub(y)]+ = [ũa(x), ũb(y)]+ = 0.

Here D = D+ +D− is the Jordan–Pauli function. The fields live in the adjoint
representation of a gauge group G (like the gauge fields themselves); the colour
indices a, b most often can be omitted. The components of Hgh of degree n are
skew-symmetric square-summable functions (with the Lorentz-invariant measure
dµm(p)) of nmomenta on the mass hyperboloid Hm, with their colour indices and
ghost indices, where the first, say a, can run from 1 to dimG, and we let the second,
say i, take the values ±1. (The reader is warned that the notation for the ghost
fields in this section, and a few other notational conventions, are different from the
ones we found convenient in the sections dealing with the semiclassical aspects.)

We proceed to the construction. Consider the dense domain D ⊂ Hgh of vectors
with finitely many nonvanishing components which are Schwartz functions of their
arguments. Then there exist annihilation (unbounded) operator functions ca,i(p)
of D into itself, given by

[ca,i(p)�](n)
a1,...,an;i1,...,in(p1, . . . , pn) =

√
n+ 1�(n+1)

a,a1,...,an;i,i1,...,in(p, p1, . . . , pn).

Integrating this with a Schwartz function on the mass hyperboloid gives a bounded
operator. The adjoint of ca,i(p) is defined as a sesquilinear form on D ⊗D, and we
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have the usual ‘commutation relations’ among them:

[ca,i(p), c†b,j (p
′)]+ = δabδij δ(p − p′),

the other anticommutators being zero. Notice that δ(p − p′) is shorthand for the
Lorentz-invariant Dirac distribution 2Eδ( %p − %p′) corresponding to dµm(p).

We are set now to define the distributional ghost field operators in coordinate
space in terms of the ca,i, c

†
b,j . The construction is diagonal in the G-index, so it

will be omitted. The general ansatz is

ui(x) =
∫
dµm(p)

[
Aijcj (p)e−ipx + Bijc†j (p)e+ipx

]
.

Here

A =
(
A11 A1−1

A−11 A−1−1

)
, B =

(
B11 B1−1

B−11 B−1−1

)
.

Because p is on the mass hyperboloid, the KG equations (5.29) hold. The anticom-
mutators are

[ui(x), uj (y)]+ = −i
[
AikBjkD

+(x − y)− BikAjkD−(x − y)
]
.

The only combinations with causal support are multiples ofD+ +D−. As we want
to keep causality, it must be that ABt + BAt = 0, so we obtain

[ui(x), uj (y)]+ = −iCijD(x − y),

withC := ABt skew-symmetric. There are of course many possible choices ofA,B
with this constraint. We pick

C =
(

1
−1

)
.

This finally gives

u(x) = u1(x) =
∫
dµm(p)

(
c1(p)e−ipx + c†−1(p)eipx

)
,

ũ(x) = u−1(x) =
∫
dµm(p)

(
c−1(p)e−ipx − c†1(p)eipx

)
.

We remark that [ũ(x), u(y)]+ = iD(x − y) = −iD(y − x) = [u(y), ũ(x)]+.
The representation of the Poincaré group is the same as for 2dimG independent

scalar fields; we do not bother to write it. As we have chosen A,B invertible, the
creation and annihilation operators can be expressed in terms of the ghost fields
and their adjoints. Then the vacuum is cyclic with respect to these.

Defining the adjoint fields, one sees that the anticommutators of the ghost fields
with their adjoints are not causal. This, according to [29,30], allows one to escape
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the spin–statistics theorem. Indeed, a version of the last says that no nonvanishing
scalar fields can exist satisfying

[ua(x), ub(y)]+ = 0, [ua(x), u†b(y)]+ = 0

for spacelike separations. Because the second anticommutator is not causal, the
last condition is not violated. (There are other explanations in the literature for the
same conundrum, though.)

5.3.3 Mathematical structure of BRS theories

There are several questions regarding the scheme proposed in Section 5.3.1 that
we address systematically now:

(i) What is the algebraic framework?
(ii) In which mathematical sense is BRS invariance a symmetry?

(iii) When is there a BRS charge associated to a BRS symmetry?
(iv) What are the continuity properties of the generatorQ?
(v) How does the Hodge–de Rham decomposition of the Hilbert space take place?

(vi) How are the physical states characterized?

The famous paper on the quark confinement problem by Kugo and Ojima [31]
was the first to tackle these questions, although their answers were not quite correct.
A good treatment, which we follow for the most part, was given by Horuzhy and
Voronin [32].

(i) Consider a ‘general BRS theory’ on a Krein space (H, η). On a suitable common
invariant dense domain D ⊂ H there is defined a system of physical quantum fields
and ghost fields (the physical fields could be matter fields, Yang–Mills fields or,
say, the coordinates of a first-quantized string), forming a polynomial algebra A; the
operator id ∈ A on H we denote by 1. A Krein operator has the eigenvalues ±1, so
η = P η+ − P η− with an obvious notation. We assume moreover dimP η±H = ∞. ByO◦

we shall mean the restriction of O+ to D. We say O is η-self-adjoint when O = O◦;
η-unitary when O−1 = O◦. The field algebra has a cyclic vector, or vacuum, |0〉, that
is, A|0〉 is dense in D.

(ii) Mathematically speaking, a BRS (infinitesimal) transformation is a skew-adjoint,
nilpotent superderivation s acting on the field algebra ofH . Let εO := (−)Ngh(O), with
Ngh(O) the number of ghost fields in the monomial O. Typically s changes the ghost
number by one. Then s is a linear map of A into A such that

s(OB) = s(O)B + εOOs(B), s2 = 0, εs(O) = −εO, s(O)◦ = −εOs(O◦).

The key point for BRS invariance is obviously the nilpotency equation s2 = 0.
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(iii) An important question is whether the BRS transformation s possesses a generator or
BRS chargeQ, that is, takes the form

s(O) = [Q,O]±, where [Q,O]± := QO − εOOQ. (5.30)

Indeed, we may try to equivalently write (5.30) as

QO|0〉 = s(O)|0〉.
This equation will serve as definition ofQ, at least on a dense subset of D, provided

O|0〉 = 0 implies s(O)|0〉 = 0.

Note that Q|0〉 = 0 because s(1) = 0. Thus (5.30) is consistent. Nilpotency of Q
follows:

Q2O|0〉 = Qs(Q)|0〉 = 0.

One expects Q as defined to be η-self-adjoint. But this is not completely automatic.
We have 〈

QO|0〉, B|0〉〉 = 〈s(O)|0〉, B|0〉〉 = 〈B◦s(O)|0〉, |0〉〉
= εB◦

〈(
s(B◦O)− s(B◦)O)|0〉, |0〉〉

= εO〈s(O◦B)〉 + 〈O|0〉, s(B)|0〉〉. (5.31)

This will be equal to 〈O|0〉,QB|0〉〉 if in general we have

〈s(O)〉 = 0 for all O ∈ A.

In this case, we have η-symmetry. For passing to η-self-adjointness, consult [33].
Reciprocally, if Q is η-self-adjoint with Q|0〉 = 0, is nilpotent, and generates s

by (5.30), then, rather trivially,

〈s(O)〉 = 〈[Q,O]±〉 =
〈
Q|0〉,O|0〉〉 = 0.

Moreover, for s so defined,

s(O)◦ = (QO − εOOQ)◦ = O◦Q− εOQO◦ = −εO(QO◦ − εOO◦Q)

= −εOs(O◦).
We finally verify nilpotency of s:

s2(O) := [Q, [Q,O]±]± = Q(QO − εOOQ)+ εO(QO − εOOQ)Q = 0.

(iv) In physics Q is often treated as a bounded operator. But there are large classes of
nilpotent, η-self-adjoint unbounded operators. Let for instance H = H1 ⊕H2 and

η =
(

1 0
0 −1

)
with Q =

(
0 A

0 0

)
,
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with A unbounded and skew-adjoint. Then Q is nilpotent, η-self-adjoint and
unbounded. For another example, take H = H1 ⊗H2, where H1 is an infinite-
dimensional Hilbert space, H2 is a Krein space, and Q = O ⊗ B, with O = O†

unbounded and B nilpotent and η-self-adjoint. Typically BRS operators are sums of
such operators.

Given an arbitrary nilpotent operator Q, such that domQ2 is dense, the following
holds: eitherQ is bounded, with 0 as unique point in its spectrum, orQ is unbounded
and its spectrum is all of the complex plane.

Proof Assume specQ �= C. Let λ belong to the resolvent of Q. Then Q is closed,
as Q− λ is. (We recall that a Hilbert space operator is by definition closed when its
graph is closed. Also by definition, Q− λ is a one-to-one map from domQ onto H
with bounded inverse, so it is closed.) Now (Q− λ)−1H ⊂ domQ. Therefore

(Q− λ)
(
Q+ λQ(Q− λ)−1)

makes sense and is equal to Q2. Now Q is closed and λQ(Q− λ)−1 is bounded;
therefore Q+ λQ(Q− λ)−1 is closed; then Q2 is closed. Therefore its domain is
all of H , so Q is bounded (by the closed-graph theorem). Then it is well known
that specQ = { 0 }. �

(v) Consider the subspaces kerQ,η kerQ, ranQ,η ranQ. Due toQ2 = 0, we can assume
ranQ ⊂ domQ; otherwise we extend Q to the whole ranQ by zero. Because of η-
self-adjointness, kerQ is closed; also, η ranQ = η ran ηQ†η = ranQ† and η kerQ =
ker ηQη = kerQ†. In view of nilpotency, it is immediate that

ranQ ⊥ ranQ†,

where ⊥ indicates perpendicularity in the Hilbert space sense. We have

(ranQ⊕ ranQ†)⊥ = kerQ† ∩ kerQ.

Indeed, the domain of Q† is dense in H , and thus (x,Q†y) = 0 for all y ∈ domQ†

impliesQx = 0. Similarly for (ranQ)⊥ = kerQ†. Denoting by [⊥] perpendicularity
in the Krein space sense, it also clear that

(kerQ† ∩ kerQ)⊥ = (kerQ† ∩ kerQ)[⊥]

In summary,

H = ranQ† ⊕ kerQ = ranQ⊕ kerQ† = ranQ⊕ ranQ†

⊕ (kerQ† ∩ kerQ) = ranQ⊕ ranQ† [+] (kerQ† ∩ kerQ), (5.32)

where the last symbol means the η-orthogonal sum. This is the Hodge–de Rham
decomposition of H .

(vi) Assume moreover

η
∣∣
kerQ∩kerQ† = 1.
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Then we baptize

Hphys := kerQ ∩ kerQ†,

the physical subspace, on which 〈·, ·〉 is positive. Alternative characterizations are

Hphys = kerQ/ranQ,

in view of (5.32), and

Hphys = ker[Q,Q†]+.

Indeed [Q,Q†]+ x = 0 iffQx = Q†x = 0.

5.3.4 BRS theory for massive spin-one fields

We finally turn to our physical case. When dealing with the massive vector field,
instead of eliminating ab initio the longitudinal component as in (5.21), we keep
the a(k, 0) and their adjoints, and proceed as follows. We recognize Krein spaces as
appropriate tools to study (quantum) gauge theories. In our present case η := (−)Nl ,
where Nl is the particle number operator for the longitudinal modes. Now

Aµ(x) = (2π )−3/2
3∑
σ=0

∫
dµm(k)

(
εµ(k, σ )e−ikxa(k, σ )+ εµ(k, σ )eikxa+(k, σ )

)
.

Clearly

a+(k, 0) = −η2a†(k, 0) = −a†(k, 0);

however, by definition Aµ(x) is η-self-conjugate.
I hasten to indicate the main difference from the massless case. Note that a

unitary representation of the Poincaré group on the original space is given by

U (a,�)Aµ(x)U−1(a,�) = �µν Aν(�x + a) = U−1+(a,�)Aµ(x)U+(a,�).

This implies

[U+(a,�)U (a,�), Aµ(x)] = 0;

therefore U is η-unitary. As Nl , and thus η, commutes with U – basically because
the longitudinal polarization transforms into itself under a Lorentz transformation

�νµε
µ(k, 0) = (�k)ν

m
= εν(�k, 0)

– the representation U is also unitary. This cannot be obtained in the massless
case.
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The commutation relations for A-field are of the form

[Aµ(x), Aν(y)] = igµνD(x − y),

as we wished for. We now employ a nilpotent gauge charge Q to characterize
the physical state subspace and eliminate the unphysical longitudinal mode. For
photons, the definition ofQ is known to be

Q =
∫
x0=const

d3x (∂ · A)
←→
∂0 u. (5.33)

Let us accept that this is a conserved quantity, associated to the current

jµ = (∂ · A)
←→
∂µ u.

Obviously [Q,u] = 0. By use of the algebraic identity

[AB,C]+ = A[B,C]+ − [A,C]B,

nilpotency then is checked as follows:

2Q2 = [Q,Q]+ = −
∫
x0=const

d3x [(∂ · A),Q]
←→
∂0 u = i

∫
x0=const

d3x�u←→∂0 u = 0,

because the ghost is a free massless quantum field, that is, satisfies the wave
equation.

The form (5.33) will not do for the massive case, as now, with ghost fields of
the same mass as Aµ, after a relatively long calculation involving the solution of
the Cauchy problem for u, we would obtain

2Q2 = i
∫
x0=const

d3x�u←→∂0 u = −im2
∫
x0=const

d3x u
←→
∂0 u �= 0,

A suitable form ofQ is reached by introducing a (Bose) scalar field with the same
mass, satisfying

(�+m2)B = 0, [B(x), B(y)] = −iD(x − y),

and then

Q =
∫
x0=const

d3x (∂ · A+mB)
←→
∂0 u. (5.34)

I leave it to the reader to check this is a conserved quantity. Now we obtain

2Q2 = i
∫
x0=const

d3x�u←→∂0 u+ im2
∫
x0=const

d3x u
←→
∂0 u = 0.

In this way we have recovered the Stückelberg field!
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In summary, the gauge variations are

sAµ(x) = [Q,Aµ(x)]± = i∂µu(x),

sB(x) = [Q,B(x)]± = imu(x),

su(x) = [Q,u(x)]± = 0,

sũ(x) = [Q, ũ(x)]± = −i
(
∂µAµ(x)+mB(x)

)
. (5.35)

With respect to the semiclassical analysis in Section 5.2 there is a slight change of
notation; the present one is more advantageous when dealing with quantum fields.
As expected, the BRS variation of the gauge field corresponds to substituting the
ghost field for the infinitesimal parameter of the gauge transformation.

I finish with a little collection of remarks.

� The ghost number ofQ is precisely 1.
� In view of nilpotency ofQ, finite gauge variations are easily computed. We have

A′µ(x) = e−iλQAµ(x)eiλQ = Aµ(x)− iλ[Q,Aµ(x)]− 1
2λ

2[Q, [Q,Aµ]].

Note that the last term is not zero. But certainly there are no higher-order terms.
� Only unphysical fields appear in the formula (5.34) forQ.
� A stronger BRS theory includes the anti-BRS symmetry s̄, with the complete nilpotency

conditions s2 = s̄2 = ss̄ + s̄s = 0 [34]. The main role of s̄ is to ensure the closure of
the classical algebra, at the level of Lagrangians. This is more or less unnecessary in
Yang–Mils theories, but useful for instance in supersymmetric theories.

� It would seem that the foregoing analysis applies only to abelian fields. The cognoscenti
would in general expect in (5.35) extra terms in the first equality (covariant derivative
rather than the ordinary one) and in the third one (a ghost term involving the structure
constants). That is,

sAaµ(x) = [Q,Aaµ(x)] = iDµua(x),
(5.36)

sua(x) = [Q,ua(x)]+ = − i2gf abcub(x)uc(x).

However, it ain’t necessarily so. By just adding the colour index, one can think of (5.35)
as a first step, one in which self-interaction is neglected, for a non-abelian theory. In the
causal approach to QFT [30], one approaches interacting fields by means of free fields,
and then the two methods differ.

5.3.5 The ghostly Krein operator

For completeness, I include here a discussion on the charge algebra for ghosts. Let
fr denote an orthonormal basis of L2(Hm, dµm(p)). Consider the charge operators

Q(A) :=
∑
r,b,i

c
†
b,i(fr )aij cb,j (fr ) =

∑
b,i

∫
dµm(p) c†b,i(p)aij cb,j (p),
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for A = (aij ) a 2 × 2 matrix. This is defined on a common dense domain of Hgh,
bigger than D, which is mapped by the charge operators into itself. This map
represents gl(2,C), as

Q(AB − BA) = Q(A)Q(B)−Q(B)Q(A); also Q(A†) = Q†(A).

(By the way, by Q†(A) we mean its restriction to D.) Taking for A the unit
matrix and the Pauli matrix σ3, we respectively obtain the ghost number Ngh and
ghost charge Qgh operators. The other two Pauli matrices yield ghost–antighost
exchanging operators, respectively called here �,
. Their commutators with the
local fields u, ũ are

[Ngh, u] = −ũ†, [Ngh, ũ] = u†;
[Qgh, u] = −u, [Qgh, ũ] = ũ;

[�, u] = ũ, [�, ũ] = u;

[
, u] = −iũ, [
, ũ] = iu.
The verification of this is an exercise. The generator of Ngh, which constitutes the
centre of the charge algebra, gives by commutation with u, ũ fields that are not
relatively local. We write down the following currents:

jNgh (x) := i:u†(x)
←→
∂µ u(x):, jgh(x) := i:ũ(x)

←→
∂µ u(x):,

ju(x) := i:u(x)
←→
∂µ u(x):, jũ(x) := i:ũ(x)

←→
∂µ ũ(x):.

Again, jNgh is not a relatively local quantum field. They are related to the corre-
sponding charges in the usual way; one has, moreover,

� = 1
2 (Qu −Qũ), 
 = i

2 (Qu +Qũ).
We can consider as well operators T

(
eiA
)

:= exp(iQ(A)). They give a representa-
tion of the general linear group. It is T (B†) = T (B)†. Also,

T (B)Q(A)T −1(B) = Q(BAB−1).

The theory with ghosts has to be constructed by using only the fields u, ũ, while
their adjoints do not appear at all; in this way the troubles with locality are avoided.
In massless Yang–Mills theories, say, one considers the interaction

T1(x) = i
2f

abc
(
:AaµA

b
νF

cµν :(x)+ :Aaµu
b∂µũc:

)
(x). (5.37)

This is invariant under gauge transformations generated by the differential opera-
tor (5.33). The u†, ũ† do not appear here. But then it is right to worry about unitarity.
The solution in gauge theories is as follows: η-unitarity of S together with gauge
invariance will imply unitarity of the S-matrix on the physical subspace.
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For the theory defined by (5.37), we have

η = ηA ⊗ ηgh on H = HA ⊗Hgh.

We recall ηA is given by

ηA =
dimG∏
a=1

(−)N0a ,

where N0a is the number operator for gauge particles of G-colour a. The gauge
potentialsAaµ are η-Hermitian. Grosso modo: we expect the η-adjoint fields u+, ũ+

to enter T1, in order to have ηgh-Hermitian quantities. The key is causality: the
latter Krein operator must be defined in such a way that u+, ũ+ are relatively local
to u, ũ; we know u†, ũ† do not have this property. With all this in mind, we search
for the good ηgh. Clearly, it cannot be relatively local itself, which is tantamount to
involving Ngh. A natural guess would be to take the (already much used) operator

E := exp(iπNgh).

However, consider the ghost and antighost number operators:

Nj := 1
2 (Ngh + jQgh)

for j = 1,−1. They also have integer spectrum. Moreover,

E = (−)N1+N−1 = (−)N1−N−1 = (−)Qgh,

so E cannot be the right choice. We consider instead

I := (−)N−1 = e i2π(N−Qgh) = T (σ3).

This is indeed a symmetry. We do have Icj (p)I = jcj (p), and it is then quickly
seen that

Iu†I = ũ, I ũ†I = u;

so we have locality.
Though this is a perfectly sensible solution to the problem, T1 andQ are not I -

Hermitian. One could write different, equivalent expressions for the terms involving
ghosts in the Lagrangian (see the discussion in the next paragraph); but first we
submit to convention. Consider then

S = T (U ) := T (i(σ1 + σ3)/
√

2
) = T (eiπ(σ1+σ3)/2

√
2
)

and

ηgh := SIS−1 = T (σ1) = iN−�.
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Now we get

ηghcj (p)ηgh = c−j (p)

and

u+ := ηghu
†ηgh = u, ũ+ := ηghũ

†ηgh = −ũ,
together with

T +1 = T1, Q+ = Q.
An alternative definition for the ghost contribution in T1 would be given by

1
2f

abc:Aaµu
b←→∂µ ũc:(x) instead of f abc:Aaµu

b∂µũc:(x).

The two forms differ by a pure divergence term plus a Qgh-coboundary, that is, a
term of the form [Qgh,K]+. Therefore the first one remains gauge invariant. The
choice of it would allow the use of I as Krein operator, preserving all the good
properties. The second one is employed partly for historical reasons.

To conclude, let me comment again on the different behaviour of the Poincaré
group representation in the massive and the massless case. For the former, the rep-
resentation is always unitary, and commutes with all chargesQ(A) and transforma-
tions T (B). Therefore it is η-unitary as well. However, for the gauge potentials in
the massless case the representation is not unitary, and ηA is introduced for reasons
of covariance.
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[22] José M. Gracia-Bondı́a, ‘Remarks on Noether’s and Utiyama’s paradigms’, in

Fundamental Physics Meeting: Alberto Galindo, R. F. Alvarez-Estrada, A. Dobado,
L. A. Fernández, M. A. Martı́n Delgado and A. Muñoz Sudupe (eds.), Fundación
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6

Large-N field theories and geometry

david berenstein∗

Abstract
This is a short introduction to the ideas of the AdS/CFT correspondence. In
order to be self-contained, the chapter includes an introduction to the study of
strings as geometric objects moving in spacetime and in particular their solv-
ability in flat space. I also mention why strings give rise to a theory of gravity.
D-branes are introduced as a collection of geometric objects where strings can
end. The low-energy dynamics of a collection of D-branes is explored in two
different ways, and this serves as a basis for a formulation of the AdS/CFT
correspondence: an equivalence between a gravitational formulation of the
dynamics and a gauge theory description. The problem of how to compare
observables between the two formulations is presented, and some basic aspects
of the representation theory of the superconformal group are explored, so that
one can have tests of the AdS/CFT proposal.

6.1 Introduction

Roughly ten years ago, the AdS/CFT correspondence was formulated by Maldacena
[20]. In its simplest example, the AdS/CFT correspondence states that a certain
four-dimensional quantum field theory that is made from gauge fields and some
matter content – a theory similar to the theory of strong, weak or electromagnetic
interactions – is equivalent as quantum theory to type IIB string theory (as a theory
of quantum gravity) on spacetimes that are asymptotic to a particular classical
solution of type IIB string theory, namely AdS5 × S5.

This correspondence has not been proved. This is in great part because we do
not know what quantum gravity is. We believe that whatever it is, it will resemble
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semiclassical gravity in the regimes where one is close to a classical solution with
large radius of curvature. By comparison with these semiclassical calculations,
there is overwhelming circumstantial evidence that the AdS/CFT correspondence
conjecture is correct.

The purpose of this chapter is to give a basic introduction to the ideas of the
AdS/CFT and to how one accumulates evidence in favor of such a strong conjecture.
Obviously, if one learned how to cross systematically between the field theory and
the quantum gravity side, many problems related to quantum gravity might find a
solution in the dual field theory. Similarly, hard problems in quantum field theory
might find a simple solution if studied gravitationally.

Finding a way of comparing sides – finding the AdS/CFT dictionary, so to speak –
is a topic of research that has produced thousands of scientific papers and is an
active area of current research in quantum field theory and string theory. Here
we will just explore a tiny fraction of what is known. Unfortunately, there is no
modern comprehensive review of the status of the field. An aggregate of most of
the early evidence and literature of this correspondence can be found in [1]. A
recent introductory set of notes is also available in [23].

The reader is expected to know some quantum field theory (at the very least
the reader should be familiar with Feynman graphs and with elementary aspects of
gauge theories) and some basic ideas of gravity: some knowledge of what a metric
tensor is, and some basic aspects of coordinate changes and differential geometry.
Although it will be easier to read this review if one already knows string theory,
that is not required, and the basic ideas will also be introduced for completeness,
to motivate the constructions of the AdS/CFT.

6.2 Strings: a geometric dynamical object

To understand the ideas of the AdS/CFT correspondence, it is important to under-
stand first the notion of string theory as a theory of one-dimensional objects prop-
agating on a fixed spacetime. The main idea is to introduce the smallest number of
ingredients to obtain some sensible physical results and situations.

When we think of a string evolving in time, we imagine that we start with a
configuration of some (oriented) loop in space, with some initial velocities, after
which the loop will undergo motion given by some equations of motion. Usu-
ally in physical situations the equations of motion are derived from a least action
principle. That is, the equations of motion are derived by performing a calcu-
lus of variations on a functional of the trajectory of the string. These trajectories
describe a tubelike surface in spacetime. We call any such trajectory the world-
sheet of the string. The allowed trajectories are those that extremize the action
functional.
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We want to have a theory with relativistic invariance, as this is a symmetry
that we observe in nature. Thus spacetime should be endowed with a metric. For
simplicity we will take this metric to be flat, but this is not required. Thus, at our
disposal we have a metric tensor gµν that describes how we measure distance and
time intervals. This will be fixed to a flat metric with a naturally adapted coordinate
system (t, %x),

gµν = −dt2 +
∑
i

(dxi)2. (6.1)

With this information alone, we want to build the action functional describing
the motion of the string in spacetime. We want this action to use only the preceding
information: the trajectory that the string describes in spacetime (from some initial
to some final configuration) and the metric tensor g. We also want the simplest
possible action that we can write. In order to have dynamics depend on initial con-
ditions alone, the action should have the property that it is local in time, described
by some Lagrangian:

S =
∫
dtL, (6.2)

where L depends on finitely many time derivatives.
Because it is local in time, the fact that Lorentz rotations mix time t and positions

x indicates that the action should also be local in positions and therefore should be
described by an integral over the worldsheet. Namely, we should have that

S =
∫
d2σL, (6.3)

where L is some Lagrangian density, and the coordinates σ (there are two of them,
σ 1,2) are any convenient parametrization of the worldsheet of the string.

At this point, we are introducing a new ingredient. We are describing the world-
sheet by some particular coordinate choice on its worldvolume, and from what we
have written so far, this choice of coordinate frame might play an important role in
the description of the motion of the string. The assumption that is made in string
theory is that this coordinate choice is not physical, but just a mathematical device
to label the points on the worldsheet.

Thus, the Lagrangian density L cannot depend on this choice, except as required
so that the full action is independent of this coordinate choice. From this idea, it
follows that L should be a density on the worldvolume built from the trajectory that
the string describes, and it should depend only on gµν and the trajectory. This is
because we do not want to introduce any additional structure unless it is absolutely
necessary.
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The tensor gµν is a tensor in spacetime, not on the worldsheet. We would like to
build out of gµν a tensor field on the worldsheet itself. The natural way to do this is to
use the induced metric tensor on the worldsheet, which we will denote by gind ∼ g∗.

The simplest possible choice for the action is the volume of the worldsheet
calculated in the metric g∗. This volume form is given by

L ∼ −T
√
−det g∗. (6.4)

We have introduced a numerical constant to restore proper units of action (energy
times time). The number T is called the string tension. For convenience, we choose
units where we set T to one. In principle, we could also consider other scalar
tensors built out of g multiplied by the volume density. For example, the Ricci
scalar would work. However, all of these are more complicated: one requires many
more computational resources to calculate the Lagrangian density itself. It is also
important to note that we have a minus sign in the definition of the square root.
This follows from the fact that the metric that is induced on the worldsheet should
be Lorentzian at every point of the worldsheet (the string evolves toward the future
in all coordinate frames). Thus, the determinant that calculates the square of the
volume form is negative. To have a real action, we need to take a square root of
something positive. This condition encapsulates the idea that the string propagates
to the future in all reference frames. Thus the total action is described by

S ∼ −
∫
d2σ

√
−det g∗, (6.5)

which is the Lorentzian area of the worldsheet. This action is called the Nambu–
Goto action. The equations of motion that follow from it are very nonlinear. So
far, the fact that g is flat has not been important. However, if we want to solve the
equations of motion of the string, we need to make a choice ofg, and this is where the
simplest choice that we can make matters. From the physical standpoint, having flat
space is a good approximation to the typical situations associated with accelerator
experiments; thus studying strings in flat space is useful for that situation.

This is the starting point for the study of the bosonic string. All we have to do
now is solve the dynamics and quantize the system.

Looking at the Nambu–Goto action, the presence of a square root complicates
the analysis and makes the equations of motion very nonlinear. It also makes the
process of quantization more difficult. It was found that quantization could be
carried in the light-cone gauge, but manifest Lorentz invariance is lost. As a matter
of fact, the quantum bosonic string theory can only be made to be Lorentz invariant
if the spacetime dimension is equal to 26. This calculation is beyond the scope of
the present review. The details can be found in standard textbooks on string theory
[13, 26].
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6.2.1 The Polyakov string: more is the same

Given some of the conceptual difficulties in dealing with the Nambu–Goto string,
it is interesting to ask if there is a better formulation of the Nambu–Goto string
that makes quantization more straightforward and Lorentz covariant. Such a for-
mulation is due to Polyakov. The main idea is to introduce an intrinsic metric on
the worldsheet itself, which is independent of the induced metric g∗. We will call
this metric hαβ . It is added to what we already have. In the spirit that we have been
working in, we are adding information that was not there before, so we are adding
complications to the description of the string.

Given h and g∗, we can build a simple action for the embedding:

S = −
∫ √−det h hαβgαβ∗ ∼

∫ √−det h Tr(h−1g∗). (6.6)

If we want to be more explicit, we expand g∗ in terms of the embedding functions,
and we find that

S =
∫ √−det h hαβ∂αX

µ∂βX
νgµν(X) ∼

∫ √−det hhαβ∂αX
µ∂βX

µ, (6.7)

where for the right-hand side we are using the simplifying assumption that the
metric of the space in which the string is moving is flat.

This action is called the Polyakov action for the string. What we see is that
in this more elaborate version of the string, the embedding functions X appear
quadratically in the action. So if h is fixed, we have a quadratic action for scalar
fields on the worldsheet (the coordinates X are just functions on the worldsheet
and not tensors). A quadratic action for scalar fields is what we call a free field.
Free fields are well understood, and it is easy to quantize them. So the advantage
of the Polyakov action is that the process of quantization is much more transparent
[27].

However, we have added the intrinsic metric h. If h is fixed a priori, the action we
have is called a nonlinear σ -model (for g arbitrary). The idea of the Polyakov action
is that h should be treated as just another dynamical variable. Having h dynamical
means that we have to think of h as dynamical gravity in two dimensions. We could
also add an Einstein–Hilbert term for the action in two dimensions. This would be
an integral of the form

κ

∫ √−det h Rh, (6.8)

where Rh is the Ricci scalar associated to the metric h, and κ would play the
role of Newton’s constant. In two dimensions this integral is a topological quan-
tity: it is the Euler number density. It can always be written locally as a total
derivative, so the local variation of it with respect to h vanishes. Given a topology
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for a Riemann surface, the integral of
√−det h R gives the genus of the surface

times a normalization factor that depends on conventions for calculating the Ricci
scalar.

Thus, when we apply a variational principle to the Polyakov action, we can
ignore this term and focus on the Polyakov action (6.7). A quick calculation shows
that the equations of motion of h state that up to a scalar factor, the worldsheet
metric is proportional to the induced metric

hαβ = λ(σ )gαβ∗, (6.9)

where λ is undetermined. This might spell a problem, as we seem to have a degree
of freedom that cannot be fixed by the equations of motion.

The crucial observation for the resolution of this puzzle is that the action (6.7)
has more symmetry than just diffeomorphism invariance on the worldsheet. This
insight is due to Polyakov.

If we take a metric h and consider the action for the metric h̃ = exp(A(σ ))h
instead of h, we notice that√

−det (h̃) = exp(A(σ ))
√
−det (h), (6.10)

whereas for the inverse metric h̃−1 we have that

h̃−1 = h̃αβ = exp(−A(σ ))hαβ. (6.11)

So when we consider the combination
√−det h h−1, we have that(√

−det (h̃)

)
h̃αβ =

(√
−det (h)

)
hαβ. (6.12)

That is, the action and the dynamics are completely independent of these rescalings.
This should be interpreted as an internal symmetry of the system. These rescalings
of the metric are called Weyl rescalings. The Weyl invariance of the Polyakov
action suggests that we have a redundancy of the description: we have functions
that are undetermined by the equations of motion. This is a familiar property of
gauge theories. The Weyl rescaling should be treated as a gauge symmetry and not
a global symmetry of the system. What this means is that we are allowed to choose
A to be whatever is most convenient.

For simplicity, from the solution of (6.9), we can rescale h so that it is exactly
equal to the induced metric h = g∗. Because we solved for h algebraically, we can
substitute it in the action and this process does not modify the equations of motion
associated to the embedding itself. If we substitute this value of h in the action
(6.7), we recover the action (6.5), so at the level of classical physics we find that
the Polyakov action, with the gauged Weyl invariance, is completely equivalent as
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a dynamical system to the Nambu–Goto string. That is, the set of solutions of the
equations of motion (the critical points of the action) of the two systems coincide
exactly and describe the same object tracing the same trajectories in spacetime.

This process of adding fields to a theory without affecting the dynamics is called
adding auxiliary fields. It is a trick commonly used in supersymmetric theories as
well (see [30, 31] for example), where the main role auxiliary fields play is that
they simplify the analysis if they are included.

6.3 Solving the Polyakov string

What we want to do now is solve the equations of motion for the string in flat space.
This will also help us quantize the string. There are some tricky aspects to how to
do this. One is that the metric h is Lorentzian, whereas for a random embedding
the signature of g∗ might be zero or two, depending on whether the worldsheet
is embedded in spacetime along a proper timelike direction, or is embedded in a
spacelike manner. This problem tells us that we cannot vary over all embeddings,
but only those that satisfy the right conditions. Given a fixed worldsheet, this is
easy to determine, but one might worry that some small variations of the fields are
not allowed because they would violate this condition.

The other complication that we might worry about is that Lorentzian two-
dimensional objects are more complicated than the Euclidean two-dimensional
objects, which are just Riemann surfaces and are well understood.

Because Euclidean surfaces are simpler than their Lorentzian counterparts, we
would like to analyze the same Polyakov action for Euclidean metrics and embed-
dings into an Euclidean space, as opposed to a Lorentzian space. The idea of why
this might work is that as far as the variational equations of motion are concerned,
these details do not affect the form of the resulting equations substantially (except
for the obvious minus signs that have to be omitted).

The theory of two-dimensional metric surfaces up to conformal rescaling is
mathematically well understood: it is characterized by Riemann surfaces and the
theory of complex structures on them. The appearance of complex variables will
also tell us that the problem we are studying is solved by analytic functions of
complex variables, and these are also well understood and simple.

This procedure of going to the Euclidean setup is a kind of analytic continuation,
similar to the familiar Wick rotation in quantum field theory that is used in the eval-
uation of Feynman diagrams. Unfortunately, it is not the case that any Lorentzian
metric, can be analytically continued to a Riemannian metric, and we need to be
careful about the way we do this. Because of the Weyl invariance this can be done
locally, and to the extent that the solutions of the equations of motions are written
in terms of analytic functions, the corresponding changes are reasonably easy to
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make. This process is sufficiently well understood that I can skip many details and
just give the final answers.

I will, however, describe how to solve the problem, so that the reader can get
acquainted with these techniques for use elsewhere.

6.3.1 The Euclidean setup

The idea is to analyze the Euclidean version of the Polyakov action.1 This is given
by

S ∼
∫
d2σ

√
det (h)hαβgαβ∗. (6.13)

We understand this as an action for the embedding of the string worldsheet into a
space that depends on some additional classical metric on the worldsheet. Because
we care about classical solutions at this point, once we decide that we are looking
at one solution in particular, we can make advantageous choices on that solution.

The main idea is to exploit the uniformization theorem for surfaces: any metric
on a Riemann surface is (locally) conformally equivalent to a flat metric. Given a
flat metric, with specially adapted coordinates σ 1, σ 2, we have

ds2 = (dσ 1)2 + (dσ 2), (6.14)

and we can consider the complex coordinate

z = σ
1 + iσ 2

√
2

(6.15)

plus its complex conjugate z̄. This is a choice of gauge. Recasting the metric in
such special coordinates can always be done locally. Globally one can show that
the Riemann surface is endowed with a global complex structure in this way; thus
one can talk about global holomorphic objects. We call such a local choice of
coordinates and Weyl factor the conformal gauge.

In these complex coordinates, the metric takes the form

ds2 = 2dzdz̄. (6.16)

Thus we find that in this coordinate system the Polyakov action is given by

S ∼
∫
d2z ∂zX

µ∂z̄X
µ. (6.17)

The equations of motion for Xµ, having fixed η, are simple. We have that

∂z∂z̄X
µ = 0. (6.18)

1 One should also consider that classical Euclidean solutions for field theories also describe tunneling processes
in the WKB approximation in quantum mechanics, so one should take these continuations seriously.
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We will simplify notation by using ∂ ∼ ∂z and ∂̄ = ∂z̄. Thus the equation (6.18)
reads ∂∂̄Xµ = 0. The equation of motion forX is that the Laplacian ofX vanishes.
Thus X is locally a harmonic function. For closed Riemann surfaces this would
indicate that X is constant. However, in string theory we have to imagine that the
Riemann surfaces we have correspond to setups for initial conditions. Thus the
global Riemann surfaces will end on corresponding “initial” data and “final” data
circles, and the functions X can be nontrivial.

If we have such a solution for X near a smooth point in the surface, then we can
decompose X as

Xµ(z, z̄) ∼ XµL(z)+XµR(z̄). (6.19)

These two pieces will be called the left and right movers of Xµ. These should be
locally (anti)holomorphic in their domain of definition.2 Also, ifX is single valued,
then so are ∂X and ∂̄X. So the derivatives ofX are globally (anti)holomorphic one-
forms.

Because we made a choice of gauge for h that eliminated it completely from
the Lagrangian in (6.17), we have assumed all along that we have a solution to the
equations of motion for h; but we still need to verify it after solving the equations of
motion forX. The consistency conditions for this to happen are called the Virasoro
constraints. They tell us that given a harmonic set of functions Xµ, the following
two equations must be satisfied:

Tzz = ∂Xµ∂Xµ = 0, (6.20)

Tz̄z̄ = ∂̄Xµ∂̄Xµ = 0. (6.21)

These just state that the two components gzz∗ and gz̄z̄∗ vanish, so that we indeed
have a solution as described by Equation (6.9). The tensor T is also the stress–
energy tensor of the fieldsX coupled to gravity. Here we find that two components
of T need to vanish to have a solution of the equations of motion.

Thus, solving the equations is technically easy, but we have to verify that a given
solution satisfies the constraints at the end.

6.3.2 Going back to real time: Fourier series and quantization

We now want to consider now how this solution of the string looks in a particular
coordinate system. To describe an initial and a final shape for a string, we need a
surface with two ends: a cylinder. We can imagine extending the cylinder infinitely
far towards the future and the past in a real time situation, so the cylinder is
represented by the complex plane z with identifications z ≡ z+ 2π . Here it is

2 The functions Xµ can be individually multivalued, so long as their sum is single valued on the worldsheet.
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convenient to choose another coordinate w on C∗, where w = exp(iz). In terms of
w, we have that

∂wX
µ (6.22)

is holomorphic and single valued everywhere in the complex plane (except perhaps
at the origin). Thus we can write ∂w in terms of a Laurent series,

∂wX
µ =

∞∑
n=−∞

αnw
n, (6.23)

and similarly for the right movers. We can integrate these and put the left and right
movers together (after transforming to the z variable) to find that

Xµ(z, z̄) = aµz+ bµ + ãµz̄+
∑
n�=0

(
α
µ
n

n
exp(inz)+ α̃

µ
n

n
exp(inz̄)

)
. (6.24)

The requirement for X to be single valued forces us to have a = −ã.
Now, let us split z into a real and an imaginary part, z = σ + iT . We will call T

the Euclidean time. The metric (up to a rescaling factor) for the cylinder is given
by dT 2 + dσ 2.

We notice that in this metric we can do an analytic continuation T = iτ , and it
becomes

dT 2 + dσ 2 →−dτ 2 + dσ 2. (6.25)

This analytic continuation takes z→ σ− = σ − τ and z̄→ σ+ = σ + τ . In these
equations the complex conjugate variables z, z̄ become two independent real vari-
ables σ±. We also carry out this continuation in the solution to the equations of
motion and then impose that the X are real coordinates. This should be done after
the analytic continuation.

The solution for the Lorentzian problem can be written in the form

Xµ(σ, τ ) = pµτ + bµ +
∑
n�=0

(
α
µ
n

n
exp(in(σ − τ ))+ α̃

µ
n

n
exp(in(σ + τ ))

)
,

(6.26)

which we interpret by saying that we have waves moving to the left and to the right
on the worldsheet, whose mode amplitudes are the αµn . We have also relabeled the
coefficient aµ ∼ −ãµ as an equivalent variable pµ. To this formal solution, we still
need to add the Virasoro constraints, which tell us what solutions are acceptable.
These end up ensuring that the string propagates forward in time in all possible
coordinate systems.

This represents the complete solution of the bosonic string in flat space.
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Now, the numbers pµ denote the velocity of the string center of mass on all
coordinates with respect to the parameter τ . One can show that the total momen-
tum of the string is proportional to pµ, so pµ can be interpreted as the total
momentum carried by the string.

If we integrate the Virasoro constraint on a slice of the string, we find that
(schematically)∫

T++ =
∫
∂+Xµ∂+Xµ ∼

∑
pµpµ +

∑
n�=0

gµνα
µ
n α

ν
−n = 0. (6.27)

The quantity pµpµ = −m2 is the relativistic mass of a particle. We see that the
mass is determined by the amplitudes of oscillation of the different modes; indeed,
the sum in (6.27) is the energy stored in the oscillators (remember that T is the
stress energy tensor on the worldsheet, so the integral of T is the total energy).
A similar statement holds for the left movers: T−− = 0 implies the same type of
constraint for α ↔ α̃.

When we quantize the string, the coefficients of the general time-dependent
solution are interpreted as quantum operators. Because solving the string is equiv-
alent to solving a wave equation, the amplitudes of the modes of the wave end up
giving us an infinite set of harmonic oscillators. This is the standard quantization
of a free field on a circle. The coefficients of positive-frequency solutions are rais-
ing operators, and the coefficients for negative-frequency solutions are lowering
operators. We can also read the energy of each oscillator from its frequency. The
energy is given by an integer n times some standard frequency.

That means that once we take into account quantum corrections, the spectrum of
values of

∑
n�=0 gµνα

µ
n α

ν
−n consists basically of the set of integers, and the possible

masses of strings are quantized (I will explain this in some more detail in the next
subsection). In this way the string produces an infinite tower of unitary representa-
tions of the Lorentz group labeled by an integer N (the mass squared of the asso-
ciated one-particle state). We call this integer number the level of the string state.

6.3.3 Massless particles and superstrings

The spectrum of the string is formally calculated by Equation (6.27). However,
the infinite sum over n has operator ordering ambiguities (these are standard), and
although the difference in energy between different levels is well defined, we still
need to know the energy of the ground state. A derivation of the correct value of
the energy for the ground state is beyond the scope of this paper. It is a standard
calculation in string theory textbooks [13, 26]. For us, the important thing is that
up to normalization constants

m2 ∼ (N − 1). (6.28)
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The units of mass are determined by the string tension T and h̄; the exact numbers
depend on conventions. Here we are ignoring these and setting various coefficients
to one.

The ground state is characterized by no oscillator excitations, N = 0. The mass
squared of the associated particle is negative. Such a particle with negative
mass squared is called a tachyon. In relativistic quantum field theories a tachyon
signals an instability of the vacuum, not the presence of particles traveling faster
than light. This means that the bosonic string is being expanded around an unstable
vacuum and should not be used to describe nature, but instead as a model for strings
in a slightly unphysical situation.

The next set of states correspond toN = 1. These are characterized by massless
representations of the Lorentz group. Massless representations of a given spin
have generally fewer polarizations than their massive counterparts. The missing
polarizations usually signal some additional gauge symmetry of the system.

For the case at hand, the spectrum of massless particles gives rise to tensors with
two indices that are transverse (more details can be found in [13, 26]) and a scalar
field. These can be associated to spacetime tensors that describe the quantum fields
that such particles generate. These are three different quantum fields

hµν, Bµν, φ, (6.29)

a symmetric traceless two-tensor, an antisymmetric two-tensor potential and a
scalar field. The field φ is called the dilaton, and its vacuum value describes the
strength of the string interactions, gs ∼ exp(−φ). The antisymmetric potential Bµν
is a generalized Maxwell field, with a gauge invariance of the type B → B + d�,
where � is a one form. The charged objects under B are the fundamental strings
themselves. Finally, we have a symmetric traceless two-tensor, with a linearized
gauge symmetry. This massless particle is of spin two. It is generally understood
that consistent interactions of a massless spin two particle to matter require a
conserved tensor to couple to. The symmetry requirements for such a consistent
coupling lead to a generally covariant theory, and one then finds that the excitations
associated to hµν are gravitational waves. A good discussion of these issues and
their history can be found in [29]. In the case of string theory we obtain quanta of
gravity in the flat background.

Standard calculations in string theory show that the conditions that make the
string theory consistent quantum mechanically lead to Einstein’s equations coupled
to matter (represented by the dilaton and the antisymmetric tensor). In this way we
find that the interacting quantum bosonic string requires (predicts) gravity. Beyond
this analysis, for N > 1, we have a lot of different massive particles.

We are interested in what follows in understanding the low-energy limit of
the string theory. This limit is characterized by only keeping the light particles
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(the massless particles in this case, as we have no other parameters that make
some particles light compared to the others) and studying scattering process where
the center-of-mass energy of the scattering problem is much smaller than the
masses of the states that we are ignoring. This requirement guarantees that heavy
particles cannot appear in the final products of the scattering process, as there
is not enough energy to produce them. We therefore have to worry about a few
states, and their interactions. These states, being massless, will not decay further
once they are produced. This limit is a simplification that is justified by the fact
that the scale characterizing fundamental string energies is high: we have not seen
the characteristic spectrum of a string theory for fundamental particles in particle
accelerators; thus in practice this is an experimental constraint.

The main technical problems with the bosonic string are two: first, we have the
tachyon state, and this presents problems in that it is interpreted as an expansion
around an unstable vacuum configuration that is largely irrelevant for physics.
The second problem is with our understanding of the phenomenology of particle
species. In nature it has been noted that particles can arise both in tensor (boson
particles) and in spin representations of the Lorentz group (fermions). However, in
the spectrum of the bosonic string there are no fermions. Thus the bosonic string
fails to explain why an electron is both light and a fermion. In string theory at weak
coupling the lightest particles that are not massless are string excitations.

A way to solve this problem of particle species was found by enlarging the
symmetry group of the string worldsheet and requiring that it have supersymmetry.
One could then also consistently remove the tachyon from the physical spectrum.
The final result is a theory in ten spacetime dimensions (the extra symmetries of
the string change the number from twenty-six to ten), and it has massless particles
of spin 2 and massless particles of spin 3/2. Their consistent coupling gives rise to
a supergravity theory.

Beyond this, there are four closed supersymmetric string theories in ten dimen-
sions, depending on various choices. We will be interested in the type II theories.
These have two supersymmetries in ten dimensions (a total of 32 supercharges,
transforming as two spinor representations of SO(9, 1)). Because supersymmetries
in ten dimensions can be Majorana–Weyl, the supersymmetries carry a handed-
ness (chirality). This has two possible values. The type IIA string theory has two
supersymmetries of opposite chiralities, so it is not chiral. Its effective action is
the dimensional reduction of eleven-dimensional supergravity on a circle. The type
IIB string theory has two supersymmetries of the same chirality. The theory at low
energies is given by type IIB supergravity.

Apart from the dilaton, the graviton and the antisymmetric Bµν tensor potential,
the type II theories also contain other generalized antisymmetric tensor potentials
Aµν.... These depend on the chirality of the string. For type IIA strings we get odd
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forms, and for type IIB string theory we get even forms:

Type IIA: Aµ,Aµνρ, Aµνρστ , . . . , (6.30)

Type IIB: A,Aµν,Aµνρσ , . . . . (6.31)

These are also called Ramond–Ramond (RR) fields. The symmetry that these
higher form fields have is similar to that of electromagnetism. Here, configurations
where A→ A+ d� (in form notation) are to be considered equivalent by a gauge
transformation.

Having these potentials suggests that there could be charged extended objects
under their gauge symmetries. For such an extended object, their action would have
a coupling of the form ∫

M

A∗. (6.32)

This generalizes an electric coupling of a particle of charge e to a potential
Sem ∼ e

∫
A ∼ e ∫ Aµdxµ, where the integral is over the worldline trajectory of

the particle: this is the pullback of the one-form A to the worldline of the particle.
The generalization has us integrate the pullback of A to the worldvolume of the
corresponding charged extended object. These possible extended objects are not the
fundamental string and should be considered as nonperturbative excitations. More-
over, there is a self-duality constraint, so that the field strength of degree p is dual
to the field strength of degree 10− p. Thus Fp = dAp−1 ∼∗F10−p =∗dA10−p−1.
This is a situation where the objects charged under Ap−1 are the electromagnetic
duals of objects charged under A10−p−1. For the special case p = 4, we have a
self-dual field configuration.

One of the most important realizations of string theory is that such objects are
tractable and can be studied in great detail [25]. They correspond to a very special
class of defects called D-branes. We will now explore these objects.

6.4 Open strings and a stack of branes: setting up
the AdS/CFT conjecture

The first thing we need to do is describe what a D-brane is. Technically, we think of
a D-brane as a defect in spacetime. A D-brane modifies the dynamics of strings by
allowing strings to end on it. Thus a D-brane begins its life as an abstract object that
is described by the geometric locus where strings are allowed to end. At this level,
it seems that we are adding these objects by hand to the theory of closed strings.
We can add more than one D-brane to a given spacetime. Strings are allowed to
have ends on different D-branes. The strings that have ends on a D-brane are called
open strings. In order to have a simple setup, we require that the D-branes extend
infinitely in time and that they do not move, and we also require that they be
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embedded as flat sheets in space (they are defined by hyperplanes containing time).
This restriction is the same type of simplification associated to choosing flat space
as the first place to start understanding strings. If we have more than one brane, we
also require that they be parallel (and not moving with respect to each other).

Similarly to the case of closed strings, we can try to solve for the spectrum of
the open strings, by using the same variational principle (the Polyakov action).
This has to be supplemented with restricted variations at the boundary, so that the
ends of the strings are located on the D-brane. The equations of motion of the
string in the bulk are the same as before and can be solved similarly to those of the
closed string. Our task is to find the relations between the coefficients of the formal
solutions.

If a string has end points, we can choose these to be located at fixed values of the
worldsheet coordinate σ that we introduced to find a mode expansion in Equation
(6.26). The variation of the action given in the conformal gauge (Equation (6.17))
for a coordinate Xµ gives

δS ∼
∫
R

∇Xµ∇δXµ (6.33)

and needs to be integrated by parts in order to get unrestricted variations without
derivatives. We then find that the variation to the action,

δS ∼
∫
R

(−∇2Xµ)δXµ +
∫
∂R

δXµ · ∇Xµ, (6.34)

has two contributions. The first one gives rise to the equations of motion. The second
comes from the boundary of a region where we are doing the variation. We have
two options to make the full variation of S vanish and to obtain a good variational
principle. We can restrict ∇Xµ so that it vanishes, and therefore be allowed to
treat δXµ on the boundary as a free variation. This type of boundary condition for
the preceding partial differential equation is a Neumann boundary condition. The
other option is to restrict δXµ so that it vanishes. This second boundary condition
is a Dirichlet boundary condition. For the problem of the branes as described,
we realize that the variations for the coordinates that lie along the branes have
Neumann boundary conditions, whereas for those directions that are orthogonal to
the brane we get Dirichlet boundary conditions (the end coordinates are fixed on the
corresponding hyperplanes, so the corresponding δX⊥ have to vanish; otherwise
the end of the string would be separated from the brane). It is only when the branes
correspond to flat hyperplanes that the boundary conditions are so simple.

Given these boundary conditions, it is straightforward to quantize the open string,
and one finds a similar solution to the closed-string spectrum: In the open string
the boundary conditions relate the coefficients αµn and α̃µn . If a string is suspended
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between two different branes at positions a, b, then the left value of a coordinate
Xα = a is different from the value on the right end of the string, Xα = b. This
means that in the classical vacuum of the string there is a gradient, and this gives an
additional contribution to the mass squared of the ground state that is proportional
to |a − b|2, namely

m2 ∼ 1

2
(N − 1)+ β|a − b|2. (6.35)

The factor of 1/2 in that equation is to indicate that the numbers one obtains for
m2 are half integers between the squared masses of the closed strings (these are
integers in the convention of Equation (6.28)). The quantity β can be calculated
precisely; we do not need the exact details.

Again, we notice that if the branes coincide, namely a = b, we have a tachyon
state for N = 0. For N = 1 we now get a massless spin one particle Aµ. Just as
the number of polarizations of a massless spin two tensor particle is smaller than
for massive representations, so also for vector particles. These massless spin one
particles must have a symmetry that removes the unphysical polarizations. This
symmetry is the symmetry of a gauge theory. Thus the vector particle degrees of
freedom should be interpreted as a connection on a principal bundle. The gauge
theory for N D-branes is usually U (N). The strings have labels that remind us
on which D-branes they begin and end, and if we have N objects, the degrees of
freedom can be accommodated in an N ×N matrix.

Open strings interact by joining at their ends or by splitting at the D-brane.
It is easy to show that the scattering amplitudes that one constructs for massless
spin one particles coincide with those of the Yang–Mills perturbation theory in the
low-energy limit (one only scatters massless particles with a small center-of-mass
energy). Thus the effective action of the massless particles at low energies is iden-
tical to the Yang–Mills theory. The Yang–Mills theory is part of the fundamental
structure of the standard model of particle physics. We see here that the D-branes,
which are described as geometric objects, carry information about ordinary quan-
tum field theories that we are interested in for describing physical phenomena that
we observe in nature. Thus the D-brane setup geometrizes quantum field theories.

For example, we see that the D-brane positions must correspond to quantum
fields. This is shown as follows: A D-brane in some location spontaneously breaks
translation invariance in 26 dimensions. When one breaks a global symmetry,
there is always an associated massless particle. Such particles are called Goldstone
bosons. There is one such massless degree of freedom for each brane we have,
because in perturbation theory the D-branes are treated as independent objects
whose intrinsic degrees of freedom (strings with both ends on a given D-brane) are
independent of the presence of the other D-branes.
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When two D-branes coincide, we get extra massless particles, and they appear so
that we get a 2× 2 matrix of massless particles. However, from Equation (6.35) we
notice that the vector particles become massive when the D-branes are separated.
For this to happen, the vector particles need to acquire an extra polarization. This is
provided by “eating” the Goldstone boson degrees of freedom for the off-diagonal
entries of the matrix. This phenomenon is the standard description of spontaneous
symmetry breaking in gauge theories: the Higgs mechanism. What we see from
this example is that the Higgs mechanism can be understood geometrically, and
that the masses of the associatedW bosons (the massive off-diagonal vectors) can
be computed by geometric manipulations.

Again, the presence of open string tachyons complicates the analysis, making
the configuration around which we are expanding slightly unphysical. For the same
reason as given previously, the analysis improves if we consider superstrings. For
type IIA string theory, we find that the spectrum on a flat D-brane has no tachyons
if the D-brane is a flat D0, D2, D4, D6 or D8 brane. A Dp-brane is a D-brane whose
worldvolume has p spatial directions and one time direction. For the type IIB
theory theory, the flat D-branes are tachyon free if we have D1, D3, D5, D7 or D9
branes. A pointlike D-instanton is also supersymmetric in type IIB string theory.

Indeed, the spectrum of particles on these special Dp-branes preserves half of the
supersymmetries of the ten-dimensional type II theories in the absence of branes.
Which half of the supersymmetries are preserved depends on the orientation of
the brane. A brane with the opposite orientation will break the opposite half of
the supersymmetries (we will call these antibranes). If we put a brane and an
antibrane on top of each other, then there is a tachyon for the open strings stretching
between them. If we put two D-branes of the same dimension on top of each other,
we get no tachyon, and supersymmetry is preserved. Indeed, one can show that
even if we separate a pair of parallel branes, they still preserve supersymmetry:
the off-diagonal strings stretching between them also come in multiplets of the
supersymmetry, as well as the interactions.

Thus, at the price of introducing supersymmetry, we can have a physical D-brane
configuration that is stable and serves as a geometric toy model for a quantum field
theory of particle physics. Complicating these configurations by using various
branes, many people have tried to construct D-brane realizations of the standard
model of particle physics (a recent review can be found in [10]).

6.4.1 The low-energy limit

Now, we want to take the low-energy limit of a collection of D3-branes in type
IIB string theory stacked very near each other or on top of each other. We
choose to work with D3-branes because those correspond to a field theory in four
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spacetime dimensions. This is the closest setup to physical reality in this simplified
scenario.

We want to choose an energy scale E with respect to which we will measure
all other energies. In natural units, this also corresponds to a unit of length 1/E.
We also have the string scale, which is characterized by the string tension T or
the string scale �s , with T ∼ �−2

s . To take a low-energy limit, we want to consider
processes at a center-of-mass energy of order E, and we want this to be small
compared to the string scale. Namely, E�s = ε * 1. In the end we want to take
the limit where ε → 0, if this is possible.

If the typical separation between the collection of branes is  x, then the mass
of the lowest-lying string modes between the branes is of order

m ∼ | x|
�2
s

. (6.36)

We want this quantity to be of the same order of magnitude as E. Thus, we should
have that | x| ∼ E�2

s ∼ ε�s , so when we take ε → 0 we want to take the limit in
such a way that the D-branes are very close to each other.

The other string states stretching between branes will have energies of order �−1
s ,

so they can be safely ignored, because they will not appear in the end products of
any scattering process involving energies of order E.

We want to keep all of the open string states whose energy is allowed. This set
includes only the lowest-lying states of the open strings – the massive W bosons,
for example. We have a U (N) Yang–Mills theory, and we have 16 supersymme-
tries (this corresponds to having four distinct spinor supersymmetries, also called
N = 4 supersymmetry in four dimensions). This tells us that the low-energy theory
of open strings is characterized by the N = 4 supersymmetric Yang–Mills theory,
plus stringy corrections. These corrections have to be in the form of polynomials
in powers of the energy, divided by the masses of the string particles. That is, the
corrections are of order

∑
k>0 ak(E�s)

k. Because we are taking ε to zero, in the low-
energy limit the string corrections vanish, and the problem reduces to ordinary quan-
tum field theory in four dimensions, with the requisite amounts of supersymmetry.

We now need to worry about the closed string states, because these also have
massless particles (for example, the graviton). The closed string emission is also
suppressed by powers of E�s = ε. This is typical of gravitational interactions,
which are proportional to the energies of the objects that interact. So in the limit
we are taking, the closed string degrees of freedom do not contribute, because it is
extremely hard to produce them. When we take ε → 0, the production of closed
strings goes to zero. We call such a type of limit a decoupling limit. We find in this
way that the only degrees of freedom that survive are those of the ordinary N = 4
SYM theory, with ordinary quantum field theory interactions.
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The N = 4 SYM theory is essentially unique [30]; thus, given the gauge group,
the Lagrangian of the theory is characterized by a unique parameter: the coupling
constant of the theory, gYM . This is closely related to the open string coupling
constant gYM ∼ gopen. The closed string coupling constant gs is of order g2

open.
TheN = 4 SYM theory is very special. It is superconformal [30] for any value of

the coupling constant. This means that many quantities do not receive quantum field
theory renormalizations, and the coupling constant of the theory does not run. This
is often stated by saying that the beta function for the coupling constant vanishes
(β(gYM ) = 0), or that the theory is at a fixed point of the renormalization group. If
the distance between the branes is zero, then all the W bosons are massless, and
the theory is nontrivial (the interaction strength does not vanish at small energies).
This special vacuum has no scale associated with it, and corresponds to an exact
superconformal vacuum. If the branes are separated, then there is a natural mass
scale in the problem: the mass associated to theW bosons (the separation between
the branes). The mass scale implies that superconformal invariance has been broken
spontaneously.

6.4.2 A different point of view: gravity

We now want to think about this same system of D3-branes from a different point of
view. We want to analyze it from the gravitational point of view. As we previously
discussed, the D3-branes are defects in a theory of gravity. The fact that they are
defects means that they should have a mass, or tension (energy per unit volume).
The tension of the D3-branes is of order 1/gs in string units [12, 25]. Thus the
D3-branes weigh, and they bend spacetime. Because we know that we can put the
D3-branes at finite distance from each other and that we preserve supersymmetry,
this means that the D3-branes can stay at fixed distance from each other. In order
to do this, the D3-branes must interact with other fields than just gravity (gravity is
universally attractive), and the interactions must be carried by massless particles,
because otherwise gravity would win at long distances. The other massless degrees
of freedom are members of the supergravity theory, and the only option is the
fields Aµνρ.... These are generalized electromagnetic fields. For parallel branes,
these interactions must be repulsive, and they must balance gravity exactly. Thus,
the branes are charged under these generalized potentials, and their charge must be
related to their tension for this balance of forces to take place. If Q is the charge
density and T the tension, we must have that

Q � T . (6.37)

Equalities between tension and charge of objects like these are usually a con-
sequence of supersymmetry, and in this case they saturate an inequality of the
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form

T ≥ Q. (6.38)

These inequalities appear in two ways. In one form, they are a consequence
of unitarity of the corresponding quantum mechanical theory in the presence of
supersymmetry. The other way in which they appear is in the study of charged
black holes that carry the corresponding charges. The inequality is then related to
the absence of naked singularities in the gravitational theory.

Given that the D3-branes are massive, they deform the geometry of spacetime
around them. This is because string theory is a theory of gravity, and massive
objects necessarily distort the geometry of spacetime, as described by Einstein’s
equations for the corresponding theory.

Indeed, we can solve for the metric of the full ten-dimensional spacetime metric
in the presence of the branes. This was first done in [17]. To understand the
metric, we notice that we have rotational invariance in the directions transverse
to the D-brane. Moreover, we have Lorentz invariance in the directions parallel to
the D-brane. We can choose a coordinate system in spherical coordinates in the
transverse directions, and a flat system of coordinates along the D-brane, so that
everything can be written in terms of a radial variable alone. We define the radial
variable so that the radial plus angular coordinates appear in the metric in the form
g(r)(dr2 + r2d
2

5). Such a coordinate choice is always possible. The full solution
for all the branes on top of each other is

ds2 ∼ f −1/2dx2
|| + f 1/2(dr2 + r2d
2

5), (6.39)

where

f = 1+ 4π (N/gs)g2
s

r4
∼ 1+ 4πNgs

r4
. (6.40)

The object f carries the information of the tension of the brane in its asymptotic
form for r →∞. The mass density is of order N/gs , whereas the gravitational
constant is of order of the closed string coupling constant squared, g2

s . Thus, Ngs
is the gravitational constant times the mass density of the D-branes.

The solution is characterized by a constant dilaton field (the strength of the
string interactions does not depend on the location in the full spacetime). Thus,
even near the brane, where spacetime is substantially curved, closed strings are
weakly coupled in the full geometry.

The solution written down in [17] is similar to a black hole, but there is no
horizon. It appears as an extremal limit of charged-brane black hole solutions.
Also, the apparent singularity at r = 0 turns out to be a coordinate singularity and
not a metric singularity.
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We can actually see from the metric that the locus r = 0 is at infinite distance
(we count this distance at constant-time slices in x||). Thus the length of a curve
starting at r and going to zero is given by

lim
a→0

∫ r

a

f 1/4(r)dr ∼ lim
a→0

∫
a

dr

r
∼ lim
a→0

log(a) = ∞. (6.41)

We also have a similar property to a horizon: In the region near r = 0 one can
have arbitrarily large red shifts: we compare how proper time ticks at r with how it
ticks at infinity. This is done by examining the ratio of g1/2

t t between r and infinity,
which when r is small scales as

R(r) = f 1/4(r)

f 1/4(∞)
∼ 1

r
. (6.42)

This is the amount of time that one second of proper time at r corresponds to in
global time (the proper time at infinity). Thus, near the brane, time slows down
arbitrarily, just as in the region near event horizons for a Schwarzschild black hole.

Because of large red shifts, placing a massive particle of mass m at rest near
r = 0 will add a total amount of energy to the gravitational system of order
m/R(r). Thus, even for very massive states – let us say, heavy closed strings – if
we place them sufficiently close to the horizon, the amount of energy that we have
added to the system can be made arbitrarily small. Moreover, these particles cannot
escape to infinity, as at infinity their energy would be of orderm. We find that heavy
massive particles very near the branes are bound to them and carry little energy. As
a matter of fact, we can place the massive strings at sufficiently small values of r
so that the energy of the massive string is less than E, as described in the previous
subsection.

Thus, from the gravitational point of view we have a way to get a low-energy
limit of physics near the stack of branes that looks completely different than the
low-energy limit of the open strings.

We can expand the metric near r = 0, by noticing that in the function f , the
term 1 becomes irrelevant. Thus, near r ∼ 0, we can replace f by 4πNgs/r4. With
this substitution the metric becomes

ds2 ∼ R2

(
r2

R4
dx2
|| +

dr2

r2
+ d
2

5

)
, (6.43)

where R is given by
√

4πgsN . If we introduce the variable y = R2/r , we find that
the metric takes the form

ds2 = R2

(
dx2
|| + dy2

y2
+ d
2

5

)
, (6.44)

where R measures the radius of the metric in string units. The end metric is
simple, and it is the product of a five-sphere of constant size and a homogeneous
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space, which is called five-dimensional anti-de Sitter space, AdS5, in the physics
literature. It is the analytic continuation of the homogeneous hyperbolic space of
five dimensions to Lorentzian signature. The near-horizon metric of the D-brane
system is thus AdS5 × S5.

So far we have described the low-energy physics of the branes in two different
ways: massless open strings stretching between the branes, and closed strings in
the near-horizon geometry. The AdS/CFT conjecture [20] is that these two points
of view on what constitutes the low-energy physics of the branes are completely
equivalent to each other as quantum systems. When the conjecture was formulated,
the evidence presented in favor of it was mainly the fact that one could calculate the
absorption of massless closed strings on the D-branes by studying the production of
open string states, and that this computation gave the same answer as the absorption
of massless closed strings by the deformed geometry [14, 19].

Moreover, in [20] it was shown that both systems, the near-horizon geometry
and the field theory, have the same symmetries: the isometries of the metric are
identical to the global symmetries of the field theory. This is a requirement for the
equivalence to be able to hold. I will explain this in more detail later on.

We now want to understand when to expect the gravity approximation to be
good. This requires that strings interact weakly, so that the closed string coupling
is tiny (gs * 1). We also want the radius of curvature of the metric to be large in
string units. Thus R should be large. Because R ∼ √4πgsN , we need gsN to be
large. Because gs ∼ g2

YM , in the field theory this requires that the quantity gYM be
small, but that the quantity λ ∼ g2

YMN be very large. Thus, N should be taken to
be very large for gravitational physics to dominate the physics.

We see the appearance of a large number N of colors, and of the quantity
λ ∼ g2

YMN , also called the ’t Hooft coupling constant [28], which needs to be
large. The expansion aroundN = ∞ was introduced by ’t Hooft by noting that the
Feynman diagrams of all these theories are similar. He found that, if one carefully
kept track of how they differ, the perturbation series for particles physics amplitudes
looked like

A ∼
∑
an,g(g

2
YMN )n(N−2g), (6.45)

where each graph could be interpreted as a skeleton of a Riemann surface. The
quantity 2g is the genus of the corresponding surface, and n roughly counts the
number of vertices in the diagram. For n large, we get fine meshings of a Riemann
surface, and this suggests that if we can perform the sum over n exactly, at strong
coupling the theory is dominated by infinite n. That is, the skeleton can be expected
to form a continuous mesh on the Riemann surface. This is similar to how one would
imagine a string theory to look, where the string coupling constant is roughly
g ∼ 1/N2.
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The strings of ’t Hooft in the AdS/CFT proposal are supposed to be exactly the
fundamental type IIB string in higher dimensions. The AdS/CFT setup was the first
case where a precise string theory dual to a four-dimensional gauge theory was
found, in the sense of ’t Hooft. This knowledge makes the proposal more plausible.

6.5 Making sense of it all: observables in CFT and gravity

Now that we understand the basic premise of the AdS/CFT correspondence con-
jecture, we would like to make calculations both in field theory and in the string
theory and to set up a comparison between them so that we can verify the conjec-
ture. We need to ask about the nature of physical observables on both sides of the
correspondence.

Let us begin with the field theory. The typical calculation that one does in field
theory is to describe a scattering process. This is usually done by calculating the
S-matrix of the theory: the probability amplitude for an initial state of m particles
that are far apart from each other in the infinite past to evolve to a configuration of
n particles that are far apart from each other in the infinite future.

However, this object does not exist in an interacting conformal field theory. The
reason is that conformal field theories are theories of massless matter. In essence,
one can radiate ultra-small amounts of energy on a single particle, and this would
escape our detection in the laboratory. Such processes lead to infrared divergences
from soft gluon and collinear amplitudes.

It is convenient to formulate the problem of observables in the conformal field
theory in a different way. The idea is first to do a Wick rotation on a Euclidean
field theory, after which we would analyze this theory by studying the Green’s
functions of allowed operators.

The simplest such operators are local gauge-invariant operators O(x). Thus, one
would want to compute general quantum averages

〈O1(x1) · · ·On(xn)〉, (6.46)

where the averages are analyzed on the vacuum state. The infrared divergences are
eliminated because the operators are at finite distance from each other.

One would want to have a complete set of such Green’s functions define the
theory. One usually expresses this collection of numbers via a generating functional
for Green’s functions,

Z[α] ∼
∑ 1

a1!

(∫
α1(x)O1(x)

)a1

· · · 1

ak!

(∫
Ok(xk)

)ak
(6.47)

= exp

(∑
k

∫
αkOk(x)

)
. (6.48)
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This is to be interpreted as a formal series. The correlations are recovered by
differentiation ofZ with respect to α. The α variables are sources for the operators,
and they can be thought of as generating infinitesimal deformations of the theory
by the operators O. Most of these cannot be integrated to a function.

In the gravitational theory, we have a different problem. The theory of gravity is
invariant under general changes of coordinates. If we have a quantum state where
many geometries are superposed, there is no invariant meaning of a position: there
is no unique way to compare coordinates between different geometries. Thus, we
require that the observables be diffeomorphism invariant.

Diffeomorphism-invariant observables are typically nonlocal – for example,
integrals of densities over the whole space and time. These numbers can be com-
pared between different geometries with ease.

In the classical limit, we would want to analyze semiclassical solutions to the
gravity equations of motion against the AdS5 × S5 background. Because we want
to compare with the Euclidean quantum theory, we would need to solve the super-
gravity equation for the Euclidean signature. Thus, the AdS space becomes a global
hyperbolic space (this can be represented as the Poincaré disk or the upper half
plane in higher dimensions). Generally, one solves some elliptic differential equa-
tion problem on the space. If one insists that variations vanish at the boundary of the
disk (that the solution is normalizable), one finds that there are no such solutions.
Thus one needs to relax the requirement that the field variations in gravity vanish
at the boundary of the disk. This can also be interpreted as having sources for
gravitational fields on the boundary.

Indeed, the boundary is infinitely far away from any point of the interior. To
bring infinity to finite distance, we need to perform a conformal rescaling of the
metric. If we do this with the five-sphere as well, we find that the S5 will shrink to
zero size at the boundary. Thus the conformal boundary of Euclidean AdS5 × S5

is a four-sphere (or R4). This is the same topological space as the space where we
insert sources in the field theory.

Also, it is known that to leading order the closed strings couple to the field
theory (open string) degrees of freedom via a disk diagram. This is approximately
described by a local operator insertion at the position where the closed string is
located. Thus, it seems natural to identify the sources in the field theory partition
function with the boundary conditions of the gravity.

The proposed dictionary between the field theory and the gravitational dual is
that [15, 32]

Z[α] = Z[g]|δg(∞)∼α. (6.49)

The left-hand side is the generating functional of correlators in the field theory. The
right-hand side is the partition function of gravity subject to the modified boundary



Large-N field theories and geometry 277

conditions. This second formulation is similar to an S-matrix: at infinity all points
are at infinite distance from one another, so boundary conditions at different points
in the boundary are essentially decoupled: they do not interact with each other. We
still need to set up a precise dictionary between the boundary conditions and the
sources if we want to compare the two sides.

This is what we hope to match precisely between the conformal field theory side
and the gravitational side. Notice that the gravitational side is an on-shell descrip-
tion: we only allow configurations that satisfy the (possibly quantum-corrected)
equations of motion of gravity.

6.6 The operator state correspondence, the superconformal group
and unitary representations

So far I have described the observables in the conformal field theory in a very
abstract form. If one is to have a quantum mechanical equivalence between gravity
and the conformal field theory, one should also have an equivalence of the Hilbert
space of states between the two formulations. Such Hilbert spaces are characterized
by the unitary representations of the symmetry algebra. In essence, to test the cor-
respondence we would need to show that the representations of the superconformal
algebra are in one-to-one correspondence between the gravity side and the field
theory side.

However, we have set up the problem in the conformal field theory in terms
of operator insertions, a very algebraic point of view, rather than in terms of the
Hilbert space of states of the conformal field theory. Fortunately, these two points
of view are equivalent.

The main idea is that an operator insertion at the origin O(0) at the classical
level acts as a source for the fields. That is, solutions of the field equations will
have characteristic singularities as they approach the origin.

We can choose a radial coordinate system centered at x = 0. In such a coordinate
system we have that

ds2 = dr2 + r2d
2
3 = r2

(
dr2

r2
+ d
2

3

)
, (6.50)

where d
3 represents the full set of angular variables in four dimensions. Notice
that the metric on flat space minus the origin is related by a rescaling to the
metric on S3 × R, if we define the Euclidean time τ = log(r). The rescaled
metric is

dτ 2 + d
2
3. (6.51)
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Because we have a conformal field theory, the theory should only depend on the
conformal class of the metric. When making a Weyl rescaling, we should be able
to relate the theory on a background determined by some metric and its rescaled
counterpart.

In doing this, the singularity of the solution of the equations of motion at
the origin gets sent to a singularity of the solution of the equations of motion
at τ →−∞. This is, we have a boundary condition in the “infinite Euclidean
past.” In the realm of Euclidean field theories, this is just the definition of a
quantum state of the system: a set of initial conditions. We can regulate this
by describing the fields at finite τ and evolving the equations of motion from
then on.

It is convenient to perform an analytic continuation τ = it . In this situation, we
have the Lorentzian metric

ds2 = −dt2 + d
2
3. (6.52)

In this case, evolution in t is ordinary time evolution in quantum mechanics, and
specifying the fields at some time t0 is the classical description of a quantum state:
a configuration of initial conditions. This isomorphism, which lets us think of local
operator insertions as a set of initial conditions (that is, as a quantum state), is
called the operator–state correspondence.

Also, if we consider the time evolution generated by ∂t , this is related to the
evolution according to the vector field r∂r . That is, the geometric interpretation of
time evolution in t is the same as the evolution of an operator under rescalings
of r . The problem we are interested in is how operator insertions behave under
scale transformations.

Requiring these two evolutions to be related means that at the level of evolution
equations

∂t |s〉 = H |s〉 = Es |s〉, (6.53)

r∂rOs = [ ,Os] = δsOs (6.54)

(that is, for evolution according to the Schrödinger equation), where we have
states that are eigenvectors of the Hamiltonian with energy eigenvalues Es , the
latter need to be identified with the eigenvalues of the Heisenberg evolution of
the corresponding operator under rescalings. Thus the dimension of the operator is
identified with the energy of the state.

For this problem, it is convenient to give a description of the superconformal
algebra for N = 4 supersymmetries. We will classify the generators according to
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how they scale. The generators are given by the following diamond:

Kµ

Sα S̄α̇

 Mij Rab

Qα Q̄α̇

Pµ

(6.55)

Here  is the generator of dilatations. P is the generator of translations in flat
R4. The K are called special conformal generators. The Q, Q̄ are the gener-
ators of supersymmetry, and the S, S̄ are the special supersymmetry genera-
tors. They can be obtained from commutators of K with Q. Finally, Mij are
the rotations of the sphere, S3. The generators R are global symmetries of the
theory. They are usually called the R-charge of the theory. They generate an
SO(6) ∼ SU (4) Lie algebra, and they correspond to a global symmetry of the field
theory.

The commutator [ ,X] = αX determines the weight of X, α. This is usually
called either the scaling dimension or the conformal weight of X. In the preceding
paragraph, P has conformal weight 1 (scaling dimension 1), and Q, Q̄ have con-
formal weight 1/2, and  ,MijRij have conformal weight 0. In the field theory,
 generates time translations and is therefore identified with the Hamiltonian for
the theory on S3 × R. It is a Hermitian operator. Taking complex conjugates, it is
easy to see that P † should have the opposite weight to P . There are two cases to
consider.

If α is real, P † has weight −1. Therefore, we have to make the following
identifications in order to have a unitary representation of the algebra: we need that
K ∼ P † and thatQ† ∼ S, Q̄† ∼ S̄.

If instead we take the algebra on R3,1, then we take K,P, to be Hermitian,
and α is imaginary. P † ends up having weight −ᾱ = α. In this caseQ† ∼ Q̄.

In the first case P,Q, Q̄ act as some form of raising operator, and K, S, S̄ act
as lowering operators with respect to the Hamiltonian. If we have a well-defined
ground state, it usually has minimal energy. Thus, the representation theory of the
symmetry algebra will require that all states have positive energy.

Taking any allowed state and acting on it with lowering operators eventually
gives us a lowest weight state that is annihilated by S, S̄,K . Such states are called
primary states. The full set of unitary representations are characterized by the
primary states.

The Hilbert space is an infinite sum of these representations. If we want to
match the field theory and the gravity theory, it is enough to show that we get the
same primary states. Now, we need to find the corresponding Hilbert space on the
gravitational side.
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On that side we are not going to work on Euclidean space anymore. The correct
coordinate system for the gravitational setup corresponds to global AdS coordi-
nates. The Euclidean time is analytically continued to global time. The metric of
AdS5 in global coordinates is given by

ds2 = − cosh2(ρ)dt2 + dρ2 + sinh2(ρ)d
2
3. (6.56)

We see that as we take ρ →∞, we can rescale the metric by exp(−2ρ), and in
the boundary we get the metric of S3 × R. The t variable in gravity corresponds to
global time, and it is identified with the same t that we have in the conformal field
theory description.

One should notice that it takes a finite amount of time for a light ray to go to the
boundary and back. Thus anti-de Sitter space requires adding boundary conditions
for the fields at infinity. This is the Lorentzian version of the problem in Euclidean
gravity where we have to fix boundary conditions to describe the gravitational
partition function.

Once we work in this Lorenzian setup, Einstein’s equations are of a wave
equation type. As opposed to the Euclidean setup, we can now have normalizable
gravitational wave solutions of Einstein’s equation propagating onAdS5 × S5. This
does not require singularities in the infinite past or infinite future, so long as we
choose solutions with finite energy. The classification of linearized perturbations
was done in [16, 18].

We can now at least attempt to match some representations between the gravity
side of the correspondence and the quantum field theory. This will be the subject
of the next section.

6.7 Matching of BPS representations

So far we have seen that both sides of the correspondence are characterized by a
list of representations of the symmetry algebra. Unfortunately, the standard calcu-
lational tools of perturbation theory do not usually extrapolate from weak to strong
coupling.

There are special classes of states where this extrapolation is more likely to be
successful, and they are the cases where corrections vanish. In the case of supersym-
metric theories, there are special collections of states where vanishing theorems
prevent corrections from happening. The states that are protected by supersym-
metry are characterized by saturating some inequality between various quantum
numbers. This inequality is usually called the BPS inequality, after Bogomol’nyi,
Prasad and Sommerfield. Such inequalities involve the energy and some conserved
charge.
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For the case that we are interested in, we want to find the states that preserve
some large fraction of the supersymmetries. In particular, we want to study super-
symmetric primary states as already defined, and match them. The primaries are
characterized by being annihilated by S,K (the lowering operators cannot find a
state of lower energy).

However, we also have to consider theQ, Q̄ operators. If half of these annihilate
a state, it is called a 1/2 BPS state. Such states are the ones that we want to consider.

The BPS inequality will be obtained by requiring thatQ|s〉 have positive norm.
If it has zero norm, then it is annihilated by the correspondingQ operator. Because
S is the adjoint ofQ, we can use the commutation relations of the symmetry group
to find that

 ≥ J, (6.57)

where J is an SO(2) generator of SO(6) which leaves an unbroken SO(4)
symmetry.

So far, we have dealt with this problem abstractly. Now, we need to finally write
down the degrees of freedom of N = 4 SYM theory, so that we can understand
what this means.

The field theory consists of gauge fields Aµ and their supersymmetric partners.
These are four Weyl fermionsψ , and six real scalar fieldsφ. The fermions transform
as a spinor representation of SO(6), and the scalars transform as the defining
representation of SO(6), a vector.

In free field theory the scalar fields and the vector potential have dimension
1, whereas the fermions have dimension 3/2. Because we will be analyzing the
field theory in the free field limit, we will need to make use of this information to
understand what is going on.

Finally, we need to put the field theory on an S3 × R geometry, as we have
described. The action of the field theory in flat space (for the scalars φ) will be
given by

S ∼ 1

2

∫
d4x∂νφ

i∂µφ
iηµν + interactions. (6.58)

When we do conformal transformations of the metric η, so that we have the metric
on S3 × R, we should generalize ηµν to a general metric, so that we have

S ∼ 1

2

∫
d4x
√−g∂νφi∂µφigµν + interactions. (6.59)

However, under a Weyl rescaling of the metric g→ exp(2σ (x))g we find that in
order for the action to be invariant, φ must transform as φ(x)→ exp(−σ (x))φ(x).
From here, it follows that after this is done there are derivatives of σ appearing in
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the Lagrangian, and the action is not conformally invariant. It needs a correction
to absorb these derivatives of σ . The correction is of the form

a

∫ √−gR(φi)2, (6.60)

where R is the Ricci scalar curvature of the background metric. The particular
value of a that one computes is a nonminimal coupling to a metric, which is called
a conformally coupled scalar.

If we choose a sphere S3 of radius one, we find that the full quadratic term in
the action is

S = 1

2

∫
S3
dt[(φ̇i)2 − (∇φi)2 − (φi)2]. (6.61)

This free field action is straightforward to quantize. We decompose the field φ
into eigenvalues of the Laplacian of the three-sphere. For each such spherical
harmonic one has an associated quantum oscillator. The energy of a quantum of
each such oscillator will be equal to the frequency. All quantum states in the field
theory can be represented by occupying finitely many oscillators. This is a Fock
space.

The lowest-lying mode has a constant profile on the sphere. That mode has
energy one. The higher spherical harmonics will end up having energy n+ 1,
where n is a nonzero integer.

With respect to the SO(2) ⊂ SO(6) charge, four of the scalars are neutral, and
two complex combinations Z = φ1 + iφ2, Z̄ = φ1 − iφ2 have charge+1 and−1,
respectively.

We can do the same with the spinors and the gauge fields. The energies of the
spinors will be n+ 3/2, and those of the gauge fields we be 2+ n, where n is a
nonnegative integer.

If we want to saturate the inequality that the energy is equal to the R-charge,
then the only degrees of freedom that have that property are the oscillators for the
field Z, and not for Z̄. These oscillators are matrix valued, because Z is an N ×N
matrix. We will call the corresponding raising operator a†Z ∼ (a†)ij .

We are still left with the problem of gauge invariance. In particular, we need to
guarantee that the states are neutral with respect to gauge transformations. That is,
we need to satisfy Gauss’s law for the SU (N) charges.

A generic state built by applying k oscillators (a†)ij will transform into some
complicated representation of SU (N) with k upper indices and k lower indices.
In order to build a gauge invariant, we need to contract these objects with some
invariant tensor of SU (N). There are only two algebraically independent such
tensors: δij and εa1...aN . The first one tells us that upper indices and lower indices
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transform as opposite representations. The ε tensor follows because the Lie algebra
of SU (N) preserves a complexified volume form (a holomorphic (n,0)-form).

If we have two ε tensors, one with upper and one with lower indices, they can be
written in terms of δij , so all gauge-invariant states must follow from contractions
between upper and lower indices. These can always be written as products of traces,
by noticing that contractions between an upper index on one a† and a lower index
on another a† can be written naturally in terms of matrix multiplication. Thus, the
complete list of such states is

|s1, . . . sk〉 = Tr(a†)s1 . . .Tr((a†)k)sk |0〉. (6.62)

Their energies are s1 + 2s2 + · · · + ksk. This counting of energies looks the same
as the energies one would have in a system with many quantum oscillators, of
energies 1, 2, . . . , k and occupation numbers s1, s2, . . . , sk.

One can check that this is approximately correct. Indeed, as long as we keep
the total energy finite, and we take N large, toward infinity, the spectrum of states
becomes an approximate Fock space where each trace is an independent oscillator.
This means that the states with different occupation numbers become orthogonal
in the limit when N →∞ (this has been discussed in some detail in [4]). The
main tool one uses is the ’t Hooft planar diagram counting [28]: one finds that the
overlaps are suppressed by powers of 1/N , but they depend also on the energies
of the oscillators, so the approximation to a Fock space is worse as we take
k large.

Indeed, if k is larger than N , we find that Tr(Zk) can be written as linear
combinations of traces of powers of Z that are less than or equal to N , so one even
fails to create new states by considering more complicated traces. However, one
can find a complete set of orthogonal states [11].

All of these states that preserve this number of supersymmetries (half of them)
are protected (preserved) in the passage from weak to strong coupling. This means
that the counting of states and their energies will not change when we introduce
interactions. This is a property of the half BPS unitary representations of the super-
symmetry group: that they cannot combine with other unitary representations to
form a generic non-supersymmetric representation. If one preserves fewer super-
symmetries in the free field limit, this is not true any longer once one turns on the
interactions.

On the gravity side, we can consider the spectrum of single-particle excitations
that have E = J . The energy of the state is related to the time evolution in global
coordinates. The J charge is related to motion on the sphere, as the SO(6) symmetry
group is the set of isometries of the five-sphere.

Here we find that for the BPS particles, their energy in AdS5 is equal to their
momentum on the S5 sphere. In the limit where these particles are pointlike, we can
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interpret them in terms of geodesic motion on the full geometry. We find that for
these particles the energy is equal to the momentum, so they are massless particles
in ten dimensions and they must follow null geodesics.

In the type IIB gravity theory, all of the massless particles belong to the gravity
multiplet. Moreover, all null geodesics on AdS5 × S5 are conjugate to each other.
What we have to show is that we can reproduce the integer label k. Semiclas-
sically, the point particles will be moving on a great circle in S5. This orbit is
periodic, and therefore one should have some semiclassical quantization condition
for quantization of angular momentum. This is roughly stated by saying that the
phase change of the one-particle wave function on going around the sphere is a
multiple of 2π . This restriction implies that the momentum is classified by an
integer.

Thus, for each integer k, there is one such type of particles, and because these
particles are bosons in gravity, we obtain a harmonic oscillator for each integer k.
If we are careful with the spin of the particles, we end up with an exact match of the
approximate Fock space of the field theory when the occupation numbers are small
[32]. The 1/N corrections are interpreted as gravitational corrections in the ten-
dimensional geometry, and it results that these gravitons interact with each other.

In essence, one can prove that this is enough to reproduce the spectrum of
linearized fluctuations of supergravity on AdS5 × S5 as computed in [16, 18].

6.8 Recent developments

Since the review [1] was written, the AdS/CFT ideas have developed much further,
particularly in applying gravitational techniques to the study of various physical
questions of field theories at strong coupling. These developments are too numerous
to describe in detail. I will instead just describe some of the recent progress towards
understanding the quantum field theory dynamics at strong coupling.

The first development for a truly stringy test of the AdS/CFT correspondence
beyond supergravity arose in the work [8], where it was shown how to recover the
spectrum of strings in a particular limit. Geometrically, the limit that one considers
is that of a short string that is moving with high angular momentum on S5. This
particular class of string states stay close to a null geodesic, so one can expand the
geometry around this null geodesic in a systematic way. This expansion leads to
a plane wave background [9], and it was shown in [21] that the spectrum of the
string on the maximally supersymmetric plane wave background can be solved for
exactly. The work [8] showed how to recover the spectra of these strings in the
field theory dual and gave a precise map for building the different string states. The
field theory showed that the string was discretized to some type of space lattice,
whereas the time was kept continuous.
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This was further generalized in [22], where it was shown that the energies
of single trace states for a particular scalar sector could be interpreted in terms
of a spin chain model, and that moreover this model was integrable to one-loop
order on the worldsheet. On the other hand, an integrable structure was also found
when one studied classical string motion in AdS5 × S5, in the work [3]. It was
later shown that the full one-loop spectrum of planar energies was integrable [2].
Having integrability at weak and strong coupling was completely unexpected, and
it is currently believed that one can extrapolate from weak to strong coupling
by a one-parameter family of quantum integrable models. A review of some the
literature on this subject can be found in [24]. This is now a rapidly advancing
field, and the results that are being found look promising and have provided highly
nontrivial tests that seem to indicate that this integrability property is true. The
integrability property permits us in principle to give exact answers for the spectra
of strings as a function of the coupling constant. Unfortunately, this only seems to
work for the strings on AdS5 × S5.

A different development has been realized in the work [5]. It has been shown
there that if one tries to do an expansion at strong coupling of the field theory
dynamics, then one can start by reconstructing the geometry of the S5 in the field
theory, and one has a way to calculate the emergence of geometry and strings
from a very different point of view than the one that is suggested by integrabil-
ity. Moreover, these techniques generalize to many other gauge–gravity dualities
[6, 7] and seem to provide a handle on the strong coupling expansion of many
different field theories with a unified framework. These works are giving powerful
tests of the AdS/CFT correspondence and are complementary to the integrability
program.
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7

Functional renormalization group equations, asymptotic
safety, and quantum Einstein gravity

martin reuter and frank saueressig∗

Abstract
This chapter provides a pedagogical introduction to a specific continuum imple-
mentation of the Wilsonian renormalization group, the effective average action.
Its general properties and, in particular, its functional renormalization group
equation are explained in a simple scalar setting. The approach is then applied
to quantum Einstein gravity. The possibility of constructing a fundamental the-
ory of quantum gravity in the framework of asymptotic safety is discussed, and
the supporting evidence is summarized.

7.1 Introduction

After the introduction of a functional renormalization group equation for grav-
ity [1], detailed investigations of the nonperturbative renormalization group (RG)
behavior of quantum Einstein gravity (QEG) have become possible [1–16]. The
exact RG equation underlying this approach defines a Wilsonian RG flow on a
theory space which consists of all diffeomorphism-invariant functionals of the
metric gµν . The approach turned out to be ideal for investigating the asymptotic
safety scenario in gravity [17–19], and, in fact, substantial evidence was found
for the nonperturbative renormalizability of QEG. The theory emerging from this
construction is not a quantization of classical general relativity. Instead, its bare
action corresponds to a nontrivial fixed point of the RG flow and is a predic-
tion therefore. Independent support for the asymptotic safety conjecture comes
from a two-dimensional symmetry reduction of the gravitational path integral
[20].

The approach of [1] employs the effective average action [21–24], which has
crucial advantages over other continuum implementations of the Wilsonian RG

∗
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flow [25]. In particular, it is closely related to the standard effective action and
defines a family of effective field theories {�k[gµν], 0 ≤ k <∞} labeled by the
coarse-graining scale k. The latter property opens the door to a rather direct extrac-
tion of physical information from the RG flow, at least in single-scale cases:
If the physical process under consideration involves a single typical momentum
scale p0 only, it can be described by a tree-level evaluation of �k[gµν], with
k = p0.1

The effective field theory techniques proved useful for an understanding of
the scale-dependent geometry of the effective QEG spacetimes [26–28]. In par-
ticular it has been shown [3, 5, 28] that these spacetimes have fractal prop-
erties, with a fractal dimension of 2 at small, and 4 at large distances. The
same dynamical dimensional reduction was also observed in numerical studies
of Lorentzian dynamical triangulations [29–31]; in [32] Connes et al. specu-
lated about its possible relevance to the noncommutative geometry of the standard
model.

As for possible physics implications of the RG flow predicted by QEG, ideas
from particle physics, in particular the RG improvement, have been employed in
order to study the leading quantum gravity effects in black hole and cosmological
spacetimes [33–43]. Among other results, it was found [33] that the quantum effects
tend to decrease the Hawking temperature of black holes, and that their evaporation
presumably stops completely once the black hole’s mass is of the order of the Planck
mass.

These notes are intended to provide the background necessary for understand-
ing these developments. In the next section we introduce the general idea of the
effective average action and its associated functional renormalization group equa-
tion (FRGE) by means of a simple scalar example [21, 23], before reviewing the
corresponding construction for gravity [1] in Section 3. In all practical calculations
based upon this approach which have been performed to date, the truncation of the-
ory space has been used as a nonperturbative approximation scheme. In Section 3
we explain the general ideas and problems behind this method, and in Section 4 we
illustrate it explicitly in a simple context, the so-called Einstein–Hilbert truncation.
Section 5 introduces the concept of asymptotic safety, and Section 6 contains a
summary of the results obtained using truncated flow equations, with an emphasis
on the question whether there exists a nontrivial fixed point for the average action’s
RG flow. If so, QEG could be established as a fundamental theory of quantum
gravity which is nonperturbatively renormalizable and asymptotically safe from
unphysical divergences.

1 The precision which can be achieved by this effective field theory description depends on the size of the
fluctuations relative to mean values. If they turn out large, or if more than one scale is involved, it might be
necessary to go beyond the tree-level analysis.
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7.2 Introducing the effective average action

In this section we introduce the concept of the effective average action [21–24]
in the simplest context: scalar field theory on flat d-dimensional Euclidean
space Rd .

7.2.1 The basic construction for scalar fields

We start by considering a single-component real scalar field χ : Rd → R whose
dynamics is governed by the bare action S[χ ]. Typically the functional S has
the structure S[χ ] = ∫ ddx { 1

2 (∂µχ )2 + 1
2m

2χ2 + interactions
}
, but we shall not

need to assume any specific form of S in the following. After coupling χ (x)
to a source J (x) we can write down an a-priori formal path integral represen-
tation for the generating functional of the connected Green functions: W [J ] =
ln
∫
Dχ exp{−S[χ ]+ ∫ ddx χ (x)J (x)}. By definition, the (conventional) effective

action �[φ] is the Legendre transform ofW [J ]. It depends on the field expectation
value φ ≡ 〈χ〉 = δW [J ]/δJ and generates all one-particle irreducible Green func-
tions of the theory by multiple functional differentiation with respect to φ(x)
and setting φ = φ[J = 0] thereafter. In order to make the functional integral
well defined, a UV cutoff is needed; for example, one could replace Rd by a d-
dimensional lattice Zd . The functional integral Dχ would then read

∏
x∈Zd dχ (x).

In the following we implicitly assume such a UV regularization, but leave the
details unspecified and use continuum notation for the fields and their Fourier
transforms.

The construction of the effective average action [21] starts out from a modified
form, Wk[J ], of the functional W [J ] which depends on a variable mass scale k.
This scale is used to separate the Fourier modes of χ into short wavelength and long
wavelength, depending on whether or not their momentum squared, p2 ≡ pµpµ,
is larger or smaller than k2. By construction, the modes with p2 > k2 contribute
without any suppression to the functional integral defining Wk[J ], whereas those
with p2 < k2 contribute only with a reduced weight or are suppressed altogether,
depending on which variant of the formalism is used. The new functionalWk[J ] is
obtained from the conventional one by adding a cutoff action  kS[χ ] to the bare
action S[χ ]:

exp{Wk[J ]} =
∫
Dχ exp

{
− S[χ ]− kS[χ ]+

∫
ddx χ (x)J (x)

}
. (7.1)

The factor exp{− kS[χ ]} serves the purpose of suppressing the IR modes having
p2 < k2. In momentum space the cutoff action is taken to be of the form

 kS[χ ] ≡ 1

2

∫
ddp

(2π )d
Rk(p

2) |χ̂ (p)|2 , (7.2)
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where χ̂ (p) = ∫ ddx χ (x) exp(−ipx) is the Fourier transform of χ (x). The precise
shape of the function Rk(p2) is arbitrary to some extent; what matters is its limiting
behavior for p2 , k2 and p2 * k2 only. In the simplest case2 we require that

Rk(p
2) ≈

{
k2 for p2 * k2 ,

0 for p2 , k2 .
(7.3)

The first condition leads to a suppression of the small-momentum modes by a soft
masslike IR cutoff; the second guarantees that the large-momentum modes are
integrated out in the usual way. Adding  kS to the bare action S[χ ] leads to

S + kS = 1

2

∫
ddp

(2π )d

[
p2 +m2 +Rk(p

2)
]
|χ̂ (p)|2 + interactions. (7.4)

Obviously the cutoff function Rk(p2) has the interpretation of a momentum-
dependent mass squared which vanishes for p2 , k2 and assumes the constant
value k2 for p2 * k2. How Rk(p2) is assumed to interpolate between these two
regimes is a matter of calculational convenience. In practical calculations one
often uses the exponential cutoff Rk(p2) = p2[exp(p2/k2)− 1]−1, but many other
choices are possible [23, 44]. One could also think of suppressing the p2 < k2

modes completely. This could be achieved by allowing Rk(p2) to diverge for
p2 * k2 so that exp{− kS[χ ]} → 0 for modes with p2 * k2. Although this
behavior of Rk(p2) seems most natural from the viewpoint of a Kadanoff–Wilson-
type coarse graining, its singular behavior makes the resulting generating func-
tional problematic to deal with technically. For this reason, and because it still
allows for the derivation of an exact RG equation, one usually prefers to work with
a smooth cutoff satisfying (7.3). At the nonperturbative path integral level it sup-
presses the long-wavelength modes by a factor exp{− 1

2k
2
∫ |χ̂ |2}. In perturbation

theory, according to Equation (7.4), the kS term leads to the modified propagator
[p2 +m2 +Rk(p2)]−1, which equals [p2 +m2 + k2]−1 for p2 * k2. Thus, when
computing loops with this propagator, k2 acts indeed as a conventional IR cutoff
if m2 * k2. (It plays no role in the opposite limit m2 , k2, in which the physical
particle mass cuts off the p-integration.) We note that by replacing p2 with −∂2

in the argument of Rk(p2) the cutoff action can be written in a way that makes no
reference to the Fourier decomposition of χ :

 kS[χ ] = 1

2

∫
ddx χ (x)Rk(−∂2)χ (x) . (7.5)

The next steps toward the definition of the effective average action are simi-
lar to the usual procedure. One defines the (now k-dependent) field expectation
value φ(x) ≡ 〈χ (x)〉 = δWk[J ]/δJ (x), assumes that the functional relationship

2 We shall discuss a slight generalization of these conditions at the end of this section.
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φ = φ[J ] can be inverted to yield J = J [φ], and introduces the Legendre trans-
form ofWk,

�̃k[φ] ≡
∫
ddx J (x)φ(x)−Wk[J ] , (7.6)

where J = J [φ]. The actual effective average action, denoted by�k[φ], is obtained
from �̃k by subtracting  kS[φ]:

�k[φ] ≡ �̃k[φ]− 1

2

∫
dx φ(x)Rk(−∂2)φ(x) . (7.7)

The rationale for this definition becomes clear when we look at the list of properties
enjoyed by the functional �k:

7.2.1.1

The scale dependence of �k is governed by the FRGE

k
∂

∂k
�k[φ] = 1

2
Tr
[
k
∂

∂k
Rk

(
�

(2)
k [φ]+Rk

)−1]
. (7.8)

Here the RHS uses a compact matrix notation. In a position space representation
�

(2)
k has the matrix elements �(2)

k (x, y) ≡ δ2�k/δφ(x)δφ(y), i.e., it is the Hessian
of the average action, Rk(x, y) ≡ Rk(−∂2

x )δ(x − y), and the trace Tr corresponds
to an integral

∫
ddx. In (7.8) the implicit UV cutoff can be removed trivially. This

is most easily seen in the momentum representation, where k ∂
∂k
Rk(p2), considered

as a function of p2, is significantly different from zero only in the region around
p2 = k2. Hence the trace receives contributions from a thin shell of momenta
p2 ≈ k2 only and is therefore well convergent both in the UV and in the IR.

The RHS of (7.8) can be rewritten in a style reminiscent of a one-loop expression:

k
∂

∂k
�k[φ] = 1

2

D

D ln k
Tr ln

(
�

(2)
k [φ]+Rk

)
. (7.9)

Here the scale derivative D/D ln k acts only on the k-dependence of Rk, not on
�

(2)
k . The expression Tr ln(· · · ) = ln det (· · · ) in (7.9) differs from a standard one-

loop determinant in two ways: it contains the Hessian of the actual effective action
rather than that of the bare action S, and it has a built-in IR regulator Rk. These
modifications make (7.9) an exact equation. In a sense, solving it amounts to solving
the complete theory.

The derivation of (7.8) proceeds as follows [21]. Taking the k-derivative of (7.6)
with (7.1) and (7.5) inserted, one finds

k
∂

∂k
�̃k[φ] = 1

2

∫
ddxddy 〈χ (x)χ (y)〉 k ∂

∂k
Rk(x, y) , (7.10)
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with 〈A〉 ≡ e−Wk ∫Dχ A exp{−S − kS −
∫
Jφ} defining the J - and k-dependent

expectation values. Next it is convenient to introduce the connected two-point func-
tion Gxy ≡ G(x, y) ≡ δ2Wk[J ]/δJ (x)δJ (y) and the Hessian of �̃k: (�̃(2)

k )xy ≡
δ2�̃k[J ]/δφ(x)δφ(y). Because Wk and �̃k are related by a Legendre transforma-
tion, one shows in the usual way that G and �̃(2) are mutually inverse matri-
ces: G�̃(2) = 1. Furthermore, taking two J -derivatives of (7.1), one obtains
〈χ (x)χ (y)〉 = G(x, y)+ φ(x)φ(y). Substituting this expression for the two-point
function into (7.10), we arrive at

∂t �̃k[φ] = 1

2
Tr[∂tRkG]+ 1

2

∫
ddx φ(x) ∂tRk(−∂2)φ(x) , (7.11)

where t ≡ ln(k/k0). In terms of�k, the effective average action proper, this becomes
∂t�k[φ] = 1

2 Tr[∂tRkG]. The cancellation of the 1
2

∫
φRkφ term is a first motivation

for the definition (7.7), where this term is subtracted from the Legendre transform
�̃k. The derivation is completed by noting that G = [�̃(2)]−1 = (�(2)

k +Rk)−1,
where the second equality follows by differentiating (7.7): �(2)

k = �̃(2)
k −Rk.

7.2.1.2

The effective average action satisfies the following integrodifferential equation:

exp{−�k[φ]} =
∫
Dχ exp

{
− S[χ ]+

∫
ddx (χ − φ)

δ�k[φ]

δφ

}
× exp

{
−
∫
ddx (χ − φ)Rk(−∂2)(χ − φ)

}
. (7.12)

This equation is easily derived by combining Equations (7.1), (7.6), and (7.7),
and by using the effective field equation δ�̃k/δφ = J , which is dual to δWk/δJ =
φ. (Note that it is �̃k which appears here, not �k.)

7.2.1.3

For k→ 0 the effective average action approaches the ordinary effective action
(limk→0 �k = �), and for k→∞ the bare action (�k→∞ = S). The k→ 0 limit is
a consequence of (7.3);Rk(p2) vanishes for allp2 > 0 when k→ 0. The derivation
of the k→∞ limit makes use of the integrodifferential equation (7.12). A formal
version the argument is as follows. Because Rk(p2) approaches k2 for k→∞,
the second exponential on the RHS of (7.12) becomes exp{−k2

∫
dx(χ − φ)2},

which, up to a normalization factor, approaches a delta functional δ[χ − φ]. The χ
integration can be performed trivially then, and one ends up with limk→∞ �k[φ] =
S[φ]. In a more careful treatment [21] one shows that the saddle point approximation
of the functional integral in (7.12) about the point χ = φ becomes exact in the limit
k→∞. As a result, limk→∞ �k and S differ at most by the infinite-mass limit of
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β

ΓΓ Γ Γ=
k

0

A[ ]

 
=S

bare action
effective action

Theory Space

Fig. 7.1. The points of theory space are the action functionals A[ · ]. The RG
equation defines a vector field %β on this space; its integral curves are the RG
trajectories k �→ �k . They start at the bare action S and end at the standard
effective action �.

a one-loop determinant, which we suppress here because it plays no role in typical
applications (see [45] for a more detailed discussion).

7.2.1.4

The FRGE (7.8) is independent of the bare action S, which enters only via the initial
condition�∞ = S. In the FRGE approach the calculation of the path integral forWk
is replaced by integrating the RG equation from k = ∞, where the initial condition
�∞ = S is imposed, down to k = 0, where the effective average action equals the
ordinary effective action �, the object which we actually would like to know.

7.2.2 Theory space

The arena in which the Wilsonian RG dynamics takes place is the theory space.
Albeit a somewhat formal notion, it helps in visualizing various concepts related
to functional renormalization group equations; see Figure 7.1. To describe it, we
shall be slightly more general than in the previous subsection and consider an
arbitrary set of fields φ(x). Then the corresponding theory space consists of all
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(action) functionalsA : φ �→ A[φ] depending on this set, possibly subject to certain
symmetry requirements (a Z2-symmetry for a single scalar, or diffeomorphism
invariance if φ denotes the spacetime metric, for instance). So the theory space
{A[ · ]} is fixed once the field content and the symmetries are fixed. Let us assume
we can find a set of basis functionals {Pα[ · ]} such that every point of theory space
has an expansion of the form [18]

A[φ] =
∞∑
α=1

ūα Pα[φ]. (7.13)

The basis {Pα[ · ]} will include both local field monomials and nonlocal invariants,
and we may use the generalized couplings {ūα, α = 1, 2, . . .} as local coordi-
nates. More precisely, the theory space is coordinatized by the subset of essential
couplings, i.e., those coordinates which cannot be absorbed by a field reparameter-
ization.

Geometrically speaking, the FRGE for the effective average action, Equation
(7.8) or its generalization for an arbitrary set of fields, defines a vector field %β on
theory space. The integral curves along this vector field are the RG trajectories
k �→ �k parameterized by the scale k. They start, for k→∞, at the bare action S
(up to the correction term mentioned earlier) and terminate at the ordinary effective
action at k = 0. The natural orientation of the trajectories is from higher to lower
scales k, the direction of increasing coarse graining. Expanding �k as in (7.13),

�k[φ] =
∞∑
α=1

ūα(k)Pα[φ] , (7.14)

the trajectory is described by infinitely many running couplings ūα(k). Inserting
(7.14) into the FRGE, we obtain a system of infinitely many coupled differential
equations for the ūαs:

k∂k ūα(k) = βα(ū1, ū2, . . . ; k) , α = 1, 2, . . . . (7.15)

Here the beta functions βα arise by expanding the trace on the RHS of the FRGE in
terms of {Pα[ · ]}, i.e., 1

2 Tr [· · · ] =∑∞α=1 βα(ū1, ū2, . . . ; k)Pα[φ]. The expansion
coefficients βα have the interpretation of beta functions similar to those of per-
turbation theory, but not restricted to relevant couplings. In standard field theory
jargon one would refer to ūα(k = ∞) as the “bare” parameters and to ūα(k = 0) as
the “renormalized” or “dressed” parameters.

The notation with the bar on ūα and βα is to indicate that we are still dealing with
dimensionful couplings. Usually the flow equation is reexpressed in terms of the
dimensionless couplings uα ≡ k−dα ūα, where dα is the canonical mass dimension
of ūα. Correspondingly the essential uα’s are used as coordinates of theory space.
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The resulting RG equations

k∂kuα(k) = βα(u1, u2, . . .) (7.16)

are a coupled system of autonomous differential equations. The βαs have no
explicit k-dependence and define a time-independent vector field on theory
space.

Figure 7.1 gives a schematic summary of the theory space and its structures. It
should be kept in mind, though, that only the essential couplings are coordinates
on theory space, and that �∞ and S might differ by a simple, explicitly known
functional.

7.2.3 Nonperturbative approximations through truncations

Up to this point our discussion has not involved any approximation. In practice,
however, it is usually impossible to find exact solutions to the flow equation. As
a way out, one could evaluate the trace on the RHS of the FRGE by expanding
it with respect to some small coupling constant, for instance, thus recovering the
familiar perturbative beta functions. A more interesting option, which gives rise
to nonperturbative approximate solutions, is to truncate the theory space {A[ · ]}.
The basic idea is to project the RG flow onto a finite-dimensional subspace of
theory space. The subspace should be chosen in such a way that the projected
flow encapsulates the essential physical features of the exact flow on the full
space.

Concretely the projection onto a truncation subspace is performed as fol-
lows. One makes an ansatz of the form �k[φ] =∑N

i=1 ūi(k)Pi[φ] , where the
k-independent functionals {Pi[ · ], i = 1, . . . , N} form a basis on the subspace
selected. For a scalar field, say, examples include pure potential terms

∫
ddxφm(x),∫

ddxφn(x) lnφ2(x), . . . , a standard kinetic term
∫
ddx(∂φ)2, higher-order deriva-

tive terms
∫
ddx φ

(
∂2
)n
φ,
∫
ddx f (φ)

(
∂2
)n
φ
(
∂2
)m
φ, . . . , and nonlocal terms

like
∫
ddx φ ln(−∂2)φ, . . . . Even if S = �∞ is simple – a standard φ4 action,

say – the evolution from k = ∞ downwards will generate such terms, a pri-
ori constrained only by symmetry requirements. The difficult task in practical
RG applications consists in selecting a set of Pis on the one hand is generic
enough to allow for a sufficiently precise description of the physics one is
interested in, and on the other hand is small enough to be computationally
manageable.

The projected RG flow is described by a set of ordinary (if N <∞) differential
equations for the couplings ūi(k). They arise as follows. Let us assume we expand
the φ-dependence of 1

2 Tr[· · · ] (with the ansatz for�k[φ] inserted) in a basis {Pα[ · ]}
of the full theory space which contains the Pis spanning the truncated space as a
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subset:

1

2
Tr[· · · ] =

∞∑
α=1

βα(ū1, . . . , ūN ; k)Pα[φ] =
N∑
i=1

βi(ū1, . . . , ūN ; k)Pi[φ]+ rest .

(7.17)
Here the “rest” contains all terms outside the truncated theory space; the approx-
imation consists in neglecting precisely those terms. Thus, on equating (7.17) to
the LHS of the flow equation, ∂t�k =

∑N
i=1 ∂t ūi(k)Pi , the linear independence of

the Pis implies the coupled system of ordinary differential equations

∂t ūi(k) = βi(ū1, . . . , ūN ; k) , i = 1, . . . , N . (7.18)

Solving (7.18), one obtains an approximation to the exact RG trajectory projected
onto the chosen subspace. Note that this approximate trajectory does not, in general,
coincide with the projection of the exact trajectory, but if the subspace is well
chosen, it will not be very different from it. In fact, the most nontrivial problem in
using truncated flow equations is to find and justify a truncation subspace which
should be as low-dimensional as possible to make the calculations feasible, but at
the same time large enough to describe at least qualitatively the essential physics.
We shall return to the issue of testing the quality of a given truncation later on.

As a simple example of a truncation we mention the local potential approxima-
tion [23]. The corresponding subspace consists of functionals containing a standard
kinetic term plus arbitrary nonderivative terms:

�k[φ] ≡
∫
ddx

{1

2
(∂φ(x))2 + Uk(φ(x))

}
. (7.19)

In this case N is infinite, the coordinates ūi on truncated theory space being
the infinitely many parameters characterizing an arbitrary potential function
φ �→ U (φ). The infinitely many component equations (7.18) amount to a partial dif-
ferential equation for the running potential Uk(φ). It is obtained by inserting (7.19)
into the FRGE and projecting the trace onto functionals of the form (7.19). This
is most easily done by inserting a constant field φ = ϕ = const into both sides of
the equation, for this gives a nonvanishing value precisely to the nonderivative Pis.
Because �(2)

k = −∂2 + U ′′k (ϕ) withU ′′ ≡ d2Uk/dφ
2 has no explicit x-dependence,

the trace is easily evaluated in momentum space. This leads to the following partial
differential equation:

k∂kUk(ϕ) = 1

2

∫
ddp

(2π )d
k∂kRk(p2)

p2 +Rk(p2)+ U ′′k (ϕ)
. (7.20)

It describes how the classical (or microscopic) potential U∞ = Vclass evolves into
the standard effective potentialU0 = Veff . Remarkably, the limit limk→0Uk is auto-
matically a convex function of ϕ, and there is no need to perform the Maxwell
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construction “by hand,” in the case of spontaneous symmetry breaking. For a
detailed discussion of this point we refer to [23].

One can continue the truncation process and make a specific ansatz for the ϕ-
dependence of the running potential, Uk(ϕ) = 1

2m(k)2ϕ2 + 1
12λ(k)ϕ4, say. Then,

upon inserting U ′′k (ϕ) = m(k)2 + λ(k)ϕ2 into the RHS of (7.19) and expanding to
O(ϕ4), one can equate the coefficients of ϕ2 and ϕ4 to obtain the flow equations on
a two-dimensional subspace: k∂km

2 = βm2 , k∂kλ = βλ.
If one wants to go beyond the local potential approximation (7.19), the first step is

to allow for a (φ-independent in the simplest case) wave function renormalization,
i.e., a running prefactor of the kinetic term: �k =

∫
ddx { 1

2Zk(∂φ)2 + Uk}. Using
truncations of this type, one should employ a slightly different normalization of
Rk(p2), namely,Rk(p2) ≈ Zkk2 for p2 * k2. ThenRk combines with�(2)

k to form
the inverse propagator �(2)

k +Rk = Zk(p2 + k2)+ · · · , as is necessary if the IR
cutoff is to give rise to a mass squared of size k2 rather than k2/Zk. In particular, in
more complicated theories with more than one field, it is important that all fields
be cut off at precisely the same k2. This is achieved by a cutoff function of the form

Rk(p
2) = Zk k2 R(0)(p2/k2) , (7.21)

where R(0) is normalized so that R(0)(0) = 1 and R(0)(∞) = 0. In general the
factor Zk is a matrix in field space. In the sector of modes with inverse propagator
Z

(i)
k p

2 + · · · , this matrix is chosen diagonal with entries Zk = Z(i)
k .

7.3 The effective average action for gravity

We saw that the FRGE of the effective average action does not depend on the bare
action S. Given a theory space, the form of the FRGE and, as a result, the vector
field %β are completely fixed. To define a theory space {A[ · ]} one has to specify
on which types of fields the functionals A are supposed to depend, and what their
symmetries are. This is the only input data needed for finding the RG flow.

In the case of QEG the theory space consists, by definition, of functionalsA[gµν]
depending on a symmetric tensor field, the metric, in a diffeomorphism-invariant
way. Unfortunately, it is not possible to straightforwardly apply the constructions
of the previous section to this theory space. Diffeomorphism invariance leads to
two types of complications one has to deal with [1].

The first one is not specific to the RG approach. It occurs already in the stan-
dard functional integral quantization of gauge or gravity theories, and is familiar
from Yang–Mills theories. If one gauge-fixes the functional integral with an ordi-
nary (covariant) gauge-fixing condition like ∂µAaµ = 0, couples the (non-abelian)
gauge field Aaµ to a source, and constructs the ordinary effective action, the result-
ing functional �[Aaµ] is not invariant under the gauge transformations of Aaµ,
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Aaµ �→ Aaµ +Dabµ (A)ωb. Only at the level of physical quantities constructed from
�[Aaµ] – S-matrix elements, for instance – is gauge invariance recovered.

The second problem is related to the fact that in a gauge theory a coarse graining
based on a naive Fourier decomposition of Aaµ(x) is not gauge covariant and
hence not physical. In fact, if one were to gauge-transform a slowly varying Aaµ(x)
using a parameter function ωa(x) with a fast x-variation, a gauge field with a fast
x-variation would arise – which, however, still describes the same physics. In a
nongauge theory the coarse graining is performed by expanding the field in terms of
eigenfunctions of the (positive) operator−∂2 and declaring its eigenmodes to be of
long or short wavelength depending on whether the corresponding eigenvalue p2 is
smaller or larger than a given k2. In a gauge theory the best one can do in installing
this procedure is to expand with respect to the covariant Laplacian or a similar
operator, and then organize the modes according to the size of their eigenvalues.
Though gauge covariant, this approach sacrifices to some extent the intuition of a
Fourier coarse graining in terms of slow and fast modes. Analogous remarks apply
to theories of gravity covariant under general coordinate transformations.

The key idea which led to a solution of both problems was the use of the
background field method. In fact, it is well known [46, 47] that the background
gauge-fixing method leads to an effective action which depends on its arguments
in a gauge-invariant way. As it turned out [1, 22], this technique also lends itself
to implementing a covariant IR cutoff, and it is at the core of the effective average
action for Yang–Mills theories [22, 24] and for gravity [1]. In the following we
briefly review the effective average action for gravity, which was introduced in [1].

The ultimate goal is to give meaning to an integral over “all” metrics γµν of the
form

∫
Dγµν exp{−S[γµν]+ source terms} whose bare action S[γµν] is invariant

under general coordinate transformations,

δγµν = Lvγµν ≡ vρ∂ργµν + ∂µvργρν + ∂νvργρµ , (7.22)

where Lv is the Lie derivative with respect to the vector field vµ∂µ. To start with,
we consider γµν to be a Riemannian metric and assume that S[γµν] is positive
definite. Heading towards the background field formalism, the first step consists
in decomposing the variable of integration according to γµν = ḡµν + hµν , where
ḡµν is a fixed background metric. Note that we are not implying a perturbative
expansion here; hµν is not supposed to be small in any sense. After the background
split, the measure Dγµν becomes Dhµν and the gauge transformations which we
have to gauge-fix read

δhµν = Lvγµν = Lv(ḡµν + hµν) , δḡµν = 0 . (7.23)

Picking an a priori arbitrary gauge-fixing condition Fµ(h; ḡ) = 0, the Faddeev–
Popov trick can be applied straightforwardly [46]. Upon including an IR cutoff as
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in the scalar case, we are led to the following k-dependent generating functional
Wk for the connected Green functions:

exp
{
Wk[t

µν, σµ, σ̄µ; ḡµν]
} = ∫ DhµνDCµDC̄µ exp

{
− S[ḡ + h]− Sgf[h; ḡ]

−Sgh[h,C, C̄; ḡ]− kS[h,C, C̄; ḡ]− Ssource

}
.

(7.24)

Here Sgf denotes the gauge-fixing term

Sgf[h; ḡ] = 1

2α

∫
ddx
√
ḡ ḡµνFµFν, (7.25)

and Sgh is the action for the corresponding Faddeev–Popov ghosts Cµ and C̄µ:

Sgh[h,C, C̄; ḡ] = −κ−1
∫
ddx C̄µ ḡ

µν ∂Fν

∂hαβ
LC
(
ḡαβ + hαβ

)
. (7.26)

The Faddeev–Popov action Sgh is obtained along the same lines as in Yang–
Mills theory: one applies a gauge transformation (7.23) to Fµ and replaces the
parameters vµ by the ghost field Cµ. The integral over Cµ and C̄µ exponentiates
the Faddeev–Popov determinant det [δFµ/δvν]. In (7.24) we coupled hµν, Cµ,
and C̄µ to sources tµν, σ̄µ, and σµ, respectively: Ssource = −

∫
ddx
√
ḡ{tµνhµν +

σ̄µC
µ + σµC̄µ} . The k- and source-dependent expectation values of hµν, Cµ, and

C̄µ are then given by

h̄µν = 1√
ḡ

δWk

δtµν
, ξµ = 1√

ḡ

δWk

δσ̄µ
, ξ̄µ = 1√

ḡ

δWk

δσµ
. (7.27)

As usual, we assume that one can invert the relations (7.27) and solve for the
sources (tµν, σµ, σ̄µ) as functionals of (h̄µν, ξµ, ξ̄µ) and, parametrically, of ḡµν .
The Legendre transform �̃k ofWk reads

�̃k[h̄, ξ, ξ̄ ; ḡ] =
∫
ddx

√
ḡ
{
tµνh̄µν + σ̄µξµ + σµξ̄µ

}−Wk[t, σ, σ̄ ; ḡ] . (7.28)

This functional inherits a parametric ḡµν-dependence fromWk.
As mentioned earlier for a generic gauge-fixing condition the Legendre trans-

form (7.28) is not a diffeomorphism-invariant functional of its arguments, because
the gauge breaking under the functional integral is communicated to �̃k via the
sources. Although �̃k does indeed describe the correct on-shell physics satisfying
all constraints coming from BRST invariance, it is not invariant off shell [46, 47].
The situation is different for the class of gauge-fixing conditions of the background
type. Although – as any gauge-fixing condition must – they break the invariance
under (7.23), they are chosen to be invariant under the so-called background gauge
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transformations

δhµν = Lvhµν , δḡµν = Lvḡµν . (7.29)

The complete metric γµν = gµν + hµν transforms as δγµν = Lvγµν both under
(7.29) and under (7.23). The crucial difference is that the (quantum) gauge trans-
formations (7.23) keep ḡµν unchanged, so that the entire change of γµν is ascribed
to hµν . This is the point of view one adopts in a standard perturbative calculation
around flat space, where one fixes ḡµν = ηµν and allows for no variation of the
background. In the present construction, instead, we leave ḡµν unspecified but insist
on covariance under (7.29). This will lead to a completely background-covariant
formulation.

Clearly there exist many possible gauge-fixing terms Sgf[h; ḡ] of the form (7.25)
which break (7.23) and are invariant under (7.29). A convenient choice which has
been employed in practical calculations is the background version of the harmonic
coordinate condition [46]:

Fµ =
√

2κ
[
δβµḡ

αγ D̄γ − 1

2
ḡαβD̄µ

]
hαβ . (7.30)

The covariant derivative D̄µ involves the Christoffel symbols �̄ρµν of the background
metric. Note that (7.30) is linear in the quantum field hαβ . On a flat background with
ḡµν = ηµν the conditionFµ = 0 reduces to the familiar harmonic coordinate condi-
tion, ∂µhµν = 1

2∂νh
µ
µ . In Equations (7.30) and (7.26) κ is an arbitrary constant with

the dimension of a mass. We shall set κ ≡ (32πḠ)−1/2 with Ḡ a constant reference
value of Newton’s constant. The ghost action for the gauge condition (7.30) reads

Sgh[h,C, C̄; ḡ] = −
√

2
∫
ddx

√
ḡ C̄µM[g, ḡ]µνC

ν (7.31)

with the Faddeev–Popov operator

M[g, ḡ]µν = ḡµρḡσλD̄λ(gρνDσ + gσνDρ)− ḡρσ ḡµλD̄λgσνDρ . (7.32)

It will prove crucial that for every background-type choice of Fµ, Sgh is invariant
under (7.29) together with

δCµ = LvCµ , δC̄µ = LvC̄µ . (7.33)

The essential piece in Equation (7.24) is the IR cutoff for the gravitational field
hµν and for the ghosts. It is taken to be of the form

 kS = κ
2

2

∫
ddx

√
ḡ hµνRgrav

k [ḡ]µνρσhρσ +
√

2
∫
ddx

√
ḡ C̄µRgh

k [ḡ]Cµ .

(7.34)
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The cutoff operators Rgrav
k and Rgh

k serve the purpose of discriminating between
high-momentum and low-momentum modes. Eigenmodes of −D̄2 with eigenval-
ues p2 , k2 are integrated out without any suppression, whereas modes with small
eigenvaluesp2 * k2 are suppressed. The operatorsRgrav

k andRgh
k have the structure

Rk[ḡ] = Zkk2R(0)(−D̄2/k2) , where the dimensionless function R(0) interpolates
betweenR(0)(0) = 1 andR(0)(∞) = 0. A convenient choice is, e.g., the exponential
cutoffR(0)(w) = w[exp(w)− 1]−1, wherew = p2/k2. The factorsZk are different
for the graviton and the ghost cutoff. For the ghost Zk ≡ Zgh

k is a pure number,
whereas for the metric fluctuation Zk ≡ Zgrav

k is a tensor, constructed only from
the background metric ḡµν , which must be fixed along the lines described at the
end of Section 7.2.

A feature of  kS which is essential from a practical point of view is that the
modes of hµν and the ghosts are organized according to their eigenvalues with
respect to the background Laplace operator D̄2 = ḡµνD̄µD̄ν rather than D2 =
gµνDµDν , which would pertain to the full quantum metric ḡµν + hµν . Using D̄2,
the functional  kS is quadratic in the quantum field hµν , whereas it becomes
extremely complicated if D2 is used instead. The virtue of a quadratic  kS is that
it gives rise to a flow equation which contains second functional derivatives of �k
but no higher ones. The flow equations resulting from the cutoff operator D2 are
prohibitively complicated and can hardly be used for practical computations. A
second property of  kS, which is crucial for our purposes, is that it is invariant
under the background gauge transformations (7.29) with (7.34).

Having specified all the ingredients which enter the functional integral (7.24) for
the generating functionalWk, we can write down the final definition of the effective
average action �k. It is obtained from the Legendre transform �̃k by subtracting
the cutoff action  kS with the classical fields inserted:

�k[h̄, ξ, ξ̄ ; ḡ] = �̃k[h̄, ξ, ξ̄ ; ḡ]− kS[h̄, ξ, ξ̄ ; ḡ] . (7.35)

It is convenient to define the expectation value of the quantum metric γµν ,

gµν(x) ≡ ḡµν(x)+ h̄µν(x) , (7.36)

and consider �k as a functional of gµν rather than h̄µν :

�k[gµν, ḡµν, ξ
µ, ξ̄µ] ≡ �k[gµν − ḡµν, ξµ, ξ̄µ; ḡµν] . (7.37)

So, what did we gain going through this seemingly complicated background field
construction, eventually ending up with an action functional which depends on two
metrics even? The main advantage of this setting is that the corresponding function-
als �̃k, and as a result �k, are invariant under general coordinate transformations
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where all its arguments transform as tensors of the corresponding rank:

�k[�+ Lv�] = �k[�], � ≡ {gµν, ḡµν, ξµ, ξ̄µ} . (7.38)

Note that in (7.38), contrary to the quantum gauge transformation (7.23), also the
background metric transforms as an ordinary tensor field: δḡµν = Lvḡµν . Equa-
tion (7.38) is a consequence of

Wk [J + LvJ ] = Wk [J ] , J ≡ {tµν, σµ, σ̄µ; ḡµν
}
. (7.39)

This invariance property follows from (7.24) if one performs a compensating
transformation (7.29), (7.34) on the integration variables hµν , Cµ, and C̄µ and uses
the invariance of S[ḡ + h], Sgf, Sgh, and  kS. At this point we assume that the
functional measure in (7.24) is diffeomorphism invariant.

Because theRks vanish for k = 0, the limit k→ 0 of�k[gµν, ḡµν, ξµ, ξ̄µ] brings
us back to the standard effective action functional, which still depends on two
metrics, though. The ordinary effective action �[gµν] with one metric argument
is obtained from this functional by setting ḡµν = gµν , or equivalently h̄µν = 0
[46, 47]:

�[g] ≡ lim
k→0

�k[g, ḡ = g, ξ = 0, ξ̄ = 0] = lim
k→0

�k[h̄ = 0, ξ = 0, ξ̄ = 0; g = ḡ].

(7.40)

This equation brings about the magic property of the background field formalism:
a priori the 1PI n-point functions of the metric are obtained by an n-fold functional
differentiation of �0[h̄, 0, 0; ḡµν] with respect to h̄µν . Thereby ḡµν is kept fixed;
it acts simply as an externally prescribed function which specifies the form of the
gauge-fixing condition. Hence the functional �0 and the resulting off-shell Green
functions do depend on ḡµν , but the on-shell Green functions, related to observable
scattering amplitudes, do not depend on ḡµν . In this respect ḡµν plays a role similar
to the gauge parameter α in the standard approach. Remarkably, the same on-shell
Green functions can be obtained by differentiating the functional �[gµν] of (7.40)
with respect to gµν , or equivalently �0[h̄ = 0, ξ = 0, ξ̄ = 0; ḡ = g], with respect
to its ḡ argument. In this context, “on-shell” means that the metric satisfies the
effective field equation δ�0[g]/δgµν = 0.

With (7.40) and its k-dependent counterpart

�̄k[gµν] ≡ �k[gµν, gµν, 0, 0] , (7.41)

we succeeded in constructing a diffeomorphism-invariant generating functional
for gravity: thanks to (7.38), �[gµν] and �̄k[gµν] are invariant under general co-
ordinate transformations δgµν = Lvgµν . However, there is a price to be paid for their
invariance: the simplified functional �̄k[gµν] does not satisfy an exact RG equation,
basically because it contains insufficient information. The actual RG evolution
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has to be performed at the level of the functional �k[g, ḡ, ξ, ξ̄ ]. Only after the
evolution may one set ḡ = g, ξ = 0, ξ̄ = 0. As a result, the actual theory space of
QEG, {A[g, ḡ, ξ, ξ̄ ]}, consists of functionals of all four variables, gµν, ḡµν, ξµ, ξ̄µ,
subject to the invariance condition (7.38).

The derivation of the FRGE for �k is analogous to the scalar case. Following
exactly the same steps, one arrives at

∂t�k[h̄, ξ, ξ̄ ; ḡ] =1

2
Tr

[(
�

(2)
k + R̂k

)−1

h̄h̄

(
∂tR̂k

)
h̄h̄

]
− 1

2
Tr

[{(
�

(2)
k + R̂k

)−1

ξ̄ ξ
−
(
�

(2)
k + R̂k

)−1

ξ ξ̄

} (
∂tR̂k

)
ξ̄ ξ

]
.

(7.42)

Here �(2)
k denotes the Hessian of �k with respect to the dynamical fields h̄, ξ, ξ̄ at

fixed ḡ. It is a block matrix labeled by the fields ϕi ≡ {h̄µν, ξµ, ξ̄µ}:

�
(2) ij
k (x, y) ≡ 1√

ḡ(x)ḡ(y)

δ2�k

δϕi(x)δϕj (y)
. (7.43)

(In the ghost sector the derivatives are understood as left derivatives.) Like-
wise, R̂k is a block-diagonal matrix with entries (R̂k)

µνρσ

h̄h̄
≡ κ2(Rgrav

k [ḡ])µνρσ and

R̂ξ̄ ξ =
√

2Rgh
k [ḡ]. Evaluating the trace in the position representation includes an

integration
∫
ddx
√
ḡ(x) involving the background volume element. For any cutoff

which is qualitatively similar to the exponential cutoff, the traces on the RHS of
Equation (7.42) are well convergent, in both the IR and the UV. By virtue of the
factor ∂tR̂k, the dominant contributions come from a narrow band of generalized
momenta centered around k. Large momenta are exponentially suppressed.

Besides the FRGE, the effective average action also satisfies an exact integro-
differential equation similar to (7.12) in the scalar case. By the same argument as
there, it can be used to find the k→∞ limit of the average action:

�k→∞[h̄, ξ, ξ̄ ; ḡ] = S[ḡ + h̄]+ Sgf[h̄; ḡ]+ Sgh[h̄, ξ, ξ̄ ; ḡ] . (7.44)

Note that the initial value �k→∞ includes the gauge-fixing and ghost actions. At
the level of the functional �̄k[g], Equation (7.44) boils down to �̄k→∞[g] = S[g].
However, as �(2)

k involves derivatives with respect to h̄µν (or equivalently gµν) at
fixed ḡµν , it is clear that the evolution cannot be formulated entirely in terms of �̄k
alone.

The background gauge invariance of �k, expressed in Equation (7.38), is of
enormous practical importance. It implies that if the initial functional does not
contain non-invariant terms, the flow will not generate such terms. Very often this
reduces the number of terms to be retained in a reliable truncation ansatz quite
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considerably. Nevertheless, even if the initial action is simple, the RG flow will
generate all sorts of local and nonlocal terms in �k which are consistent with the
symmetries.

Let us close this section by remarking that, at least formally, the construction
of the effective average action can be repeated for Lorentzian signature metrics. In
this case one deals with oscillating exponentials eiS , and for arguments like the one
leading to (7.44) one has to employ the Riemann–Lebesgue lemma. Apart from the
obvious substitutions �k →−i�k, Rk →−iRk, the evolution equation remains
unaltered.

7.4 Truncated flow equations

Solving the FRGE (7.42) subject to the initial condition (7.44) is equivalent to (and
in practice as difficult as) calculating the original functional integral over γµν . It is
therefore important to devise efficient approximation methods. The truncation of
theory space is the one which makes maximum use of the FRGE reformulation of
the quantum field theory problem at hand.

As for the flow on the theory space {A[g, ḡ, ξ, ξ̄ ]}, a still very general truncation
consists in neglecting the evolution of the ghost action by making the ansatz

�k[g, ḡ, ξ, ξ̄ ] = �̄k[g]+ �̂k[g, ḡ]+ Sgf[g − ḡ; ḡ]+ Sgh[g − ḡ, ξ, ξ̄ ; ḡ] , (7.45)

where we have extracted the classical Sgf and Sgh from�k. The remaining functional
depends on both gµν and ḡµν . It is further decomposed as �̄k + �̂k where �̄k is
defined as in (7.41) and �̂k contains the deviations for ḡ �= g. Hence, by definition,
�̂k[g, g] = 0, and �̂k contains in particular quantum corrections to the gauge fixing
term which vanishes for ḡ = g, too. This ansatz satisfies the initial condition (7.44)
if

�̄k→∞ = S and �̂k→∞ = 0 . (7.46)

Inserting (7.45) into the exact FRGE (7.42), one obtains an evolution equation on
the truncated space {A[g, ḡ]}:

∂t�k[g, ḡ] = 1

2
Tr

[(
κ−2�

(2)
k [g, ḡ]+Rgrav

k [ḡ]
)−1

∂tRgrav
k [ḡ]

]
− Tr

[(
−M[g, ḡ]+Rgh

k [ḡ]
)−1

∂tRgh
k [ḡ]

]
. (7.47)

This equation evolves the functional

�k[g, ḡ] ≡ �̄k[g]+ Sgf[g − ḡ; ḡ]+ �̂k[g, ḡ] . (7.48)

Here �(2)
k denotes the Hessian of �k[g, ḡ] with respect to gµν at fixed ḡµν .
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The truncation ansatz (7.45) is still too general for practical calculations to
be easily possible. The first truncation for which the RG flow has been found
[1] is the Einstein–Hilbert truncation, which retains in �̄k[g] only the terms∫
ddx
√
g and

∫
ddx
√
gR, already present in the in the classical action, with k-

dependent coupling constants, and includes only the wave function renormalization
in �̂k:

�k[g, ḡ] = 2κ2ZNk

∫
ddx
√
g
{−R(g)+ 2λ̄k

}+ ZNk
2α

∫
ddx

√
ḡ ḡµνFµFν .

(7.49)
In this case the truncation subspace is two-dimensional. The ansatz (7.49) contains
two free functions of the scale, the running cosmological constant λ̄k, and ZNk or,
equivalently, the running Newton constantGk ≡ Ḡ/ZNk. Here Ḡ is a fixed constant,
and κ ≡ (32πḠ)−1/2. As for the gauge-fixing term, Fµ is given by Equation (7.30)
with h̄µν ≡ gµν − ḡµν replacing hµν ; it vanishes for g = ḡ. The ansatz (7.49)
has the general structure of (7.45) with �̂k = (ZNk − 1)Sgf. Within the Einstein–
Hilbert approximation the gauge-fixing parameter α is kept constant. Here we shall
set α = 1 and comment on generalizations later on.

Upon inserting the ansatz (7.49) into the flow equation (7.47), it boils down to
a system of two ordinary differential equations for ZNk and λ̄k. Their derivation is
rather technical, so we shall focus on the conceptual aspects here. In order to find
∂tZNk and ∂t λ̄k it is sufficient to consider (7.47) for gµν = ḡµν . In this case the LHS
of the flow equation becomes 2κ2

∫
ddx
√
g[−R(g)∂tZNk + 2∂t (ZNkλ̄k)]. The RHS

is assumed to admit an expansion in terms of invariants Pi[gµν]. In the Einstein–
Hilbert truncation only two of them,

∫
ddx
√
g and

∫
ddx
√
gR, need to be retained.

They can be extracted from the traces in (7.47) by standard derivative expansion
techniques. On equating the result to the LHS and comparing the coefficients of∫
ddx
√
g and

∫
ddx
√
gR, a pair of coupled differential equations for ZNk and λ̄k

arises. It is important to note that, on the RHS, we may set gµν = ḡµν only after
the functional derivatives of �(2)

k have been obtained, for they must be taken at
fixed ḡµν .

In principle this calculation can be performed without ever considering any
specific metric gµν = ḡµν . This reflects the fact that the approach is background
covariant. The RG flow is universal in the sense that it does not depend on any
specific metric. In this respect gravity is not different from the more traditional
applications of the renormalization group: the RG flow in the Ising universality
class, say, has nothing to do with any specific spin configuration; it rather reflects
the statistical properties of many such configurations.

Although there is no conceptual necessity to fix the background metric, it nev-
ertheless is sometimes advantageous from a computational point of view to pick
a specific class of backgrounds. Leaving ḡµν completely general, the calculation
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of the functional traces is usually hard work. In principle there exist well-known
derivative expansion and heat kernel techniques, which could be used for this
purpose, but their application is usually an extremely lengthy and tedious task.
Moreover, typically the operators �(2)

k and Rk are of a complicated nonstandard
type, so that no efficient use of the tabulated Seeley coefficients can be made.
However, often calculations of this type simplify if one can assume that gµν = ḡµν
has specific properties. Because the beta functions are background independent,
we may therefore restrict ḡµν to lie in a conveniently chosen class of geometries
which is still general enough to disentangle the invariants retained and at the same
time simplifies the calculation.

For the Einstein–Hilbert truncation the most efficient choice is a family of d-
spheres Sd(r), labeled by their radius r . For those geometries, DαRµνρσ = 0, so
they give a vanishing value to all invariants constructed from g = ḡ containing
covariant derivatives acting on curvature tensors. What remains (among the local
invariants) are terms of the form

∫√
gP (R), where P is a polynomial in the Rie-

mann tensor with arbitrary index contractions. To linear order in the (contractions
of the) Riemann tensor the two invariants relevant for the Einstein–Hilbert trun-
cation are discriminated by the Sd metrics as the latter scale differently with the
radius of the sphere:

∫√
g ∼ rd , ∫√gR ∼ rd−2. Thus, in order to compute the

beta functions of λ̄k and ZNk it is sufficient to insert an Sd metric with arbi-
trary r and to compare the coefficients of rd and rd−2. If one wants to do better
and include the three quadratic invariants

∫
RµνρσR

µνρσ ,
∫
RµνR

µν , and
∫
R2, the

family Sd(r) is not general enough to separate them; all scale like rd−4 with the
radius.

Under the trace we need the operator �(2)
k [h̄; ḡ]. It is most easily calculated

by Taylor expanding the truncation ansatz, �k[ḡ + h̄, ḡ] = �k[ḡ, ḡ]+O(h̄)+
�

quad
k [h̄; ḡ]+O(h̄3), and stripping off the two h̄s from the quadratic term,
�

quad
k = 1

2

∫
h̄�

(2)
k h̄. For ḡµν the metric on Sd(r) one obtains

�
quad
k [h̄; ḡ] = 1

2
ZNkκ

2
∫
ddx

{
ĥµν

[−D̄2 − 2λ̄k + CT R̄
]
ĥµν

−
(
d − 2

2d

)
φ
[−D̄2 − 2λ̄k + CSR̄

]
φ

}
, (7.50)

with CT ≡ (d(d − 3)+ 4)/(d(d − 1)), CS ≡ (d − 4)/d. In order to partially diag-
onalize this quadratic form, h̄µν has been decomposed into a traceless part ĥµν
and the trace part proportional to φ: h̄µν = ĥµν + d−1ḡµνφ, ḡµνĥµν = 0. Further,
D̄2 = ḡµνD̄µD̄ν is the covariant Laplace operator corresponding to the background
geometry, and R̄ = d(d − 1)/r2 is the numerical value of the curvature scalar on
Sd(r).
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At this point we can fix the constants Zk which appear in the cutoff operators
Rgrav
k and Rgh

k of (7.34). They should be adjusted in such a way that for every
low-momentum mode the cutoff combines with the kinetic term of this mode to
form −D̄2 + k2 times a constant. Looking at (7.50), we see that the respective
kinetic terms for ĥµν and φ differ by a factor of −(d − 2)/2d. This suggests the
following choice:(

Zgrav
k

)µνρσ = [(1 − Pφ)µνρσ − d − 2

2d
P
µνρσ
φ

]
ZNk . (7.51)

Here (Pφ)µνρσ = d−1ḡµνḡ
ρσ is the projector on the trace part of the metric. For the

traceless tensor, (7.51) gives Zgrav
k = ZNk1, and for φ the different relative nor-

malization is taken into account. (See [1] for a detailed discussion of the subtleties
related to this choice.) Thus we obtain in the ĥ and the φ sector, respectively,(

κ−2�
(2)
k [g, g]+Rgrav

k

)
ĥĥ
= ZNk

[−D2 + k2R(0)(−D2/k2)− 2λ̄k + CTR
]
,(

κ−2�
(2)
k [g, g]+Rgrav

k

)
φφ

(7.52)

= −d − 2

2d
ZNk

[−D2 + k2R(0)(−D2/k2) − 2λ̄k + CSR
]
.

From now on we may set ḡ = g, and for simplicity we have omitted the bars
from the metric and the curvature. Inasmuch as we did not take into account any
renormalization effects in the ghost action, we set Zgh

k ≡ 1 in Rgh
k and obtain

−M+Rgh
k = −D2 + k2R(0)(−D2/k2)+ CVR , (7.53)

with CV ≡ −1/d . At this point the operator under the first trace on the RHS of
(7.47) has become block diagonal, with the ĥĥ and φφ blocks given by (7.52).
Both block operators are expressible in terms of the Laplacian D2, in the former
case acting on traceless symmetric tensor fields, in the latter on scalars. The second
trace in (7.47) stems from the ghosts; it contains (7.53) with D2 acting on vector
fields.

It is now a matter of straightforward algebra to compute the first two terms
in the derivative expansion of those traces, proportional to

∫
ddx
√
g ∼ rd and∫

ddx
√
gR ∼ rd−2. Considering the trace of an arbitrary function of the Laplacian,

W (−D2), the expansion up to second derivatives of the metric is given by

Tr[W (−D2)] = (4π )−d/2tr(I )

{
Qd/2[W ]

∫
ddx
√
g

+ 1

6
Qd/2−1[W ]

∫
ddx
√
gR +O(R2)

}
. (7.54)
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TheQn’s are defined as

Qn[W ] = 1

�(n)

∫ ∞
0
dz zn−1W (z) (7.55)

for n > 0, and Q0[W ] = W (0) for n = 0. The trace tr(I ) counts the number of
independent field components. It equals 1, d, and (d − 1)(d + 2)/2 for scalars,
vectors, and symmetric traceless tensors, respectively. The expansion (7.54)
is easily derived using standard heat kernel and Mellin transform techniques
[1].

Using (7.54) it is easy to calculate the traces in (7.47) and to obtain the RG
equations in the form ∂tZNk = · · · and ∂t (ZNkλ̄k) = · · · . We shall not display them
here, because it is more convenient to rewrite them in terms of the dimensionless
running cosmological constant and Newton constant, respectively:

λk ≡ k−2λ̄k , gk ≡ kd−2Gk ≡ kd−2Z−1
NkḠ . (7.56)

Recall that the dimensionful running Newton constant is given byGk = Z−1
NkḠ. In

terms of the dimensionless couplings g and λ the RG equations become a system
of autonomous differential equations:

∂tgk =
[
d − 2+ ηN (gk, λk)

]
gk ≡ βg(gk, λk) ,

∂tλk =βλ(gk, λk) .
(7.57)

Here ηN ≡ −∂t lnZNk is the anomalous dimension of the operator
√
gR,

ηN (gk, λk) = gk B1(λk)

1− gk B2(λk)
, (7.58)

with the following functions of λk:

B1(λk) ≡ 1

3
(4π )1−d/2

[
d(d + 1)�1

d/2−1(−2λk)− 6d(d − 1)�2
d/2(−2λk),

−4d�1
d/2−1(0)− 24�2

d/2(0)

]
, (7.59)

B2(λk) ≡ −1

6
(4π )1−d/2 [d(d + 1)�̃1

d/2−1(−2λk)− 6d(d − 1)�̃2
d/2(−2λk)

]
.

The beta function for λ is given by a similar expression:

βλ(gk, λk) = −(2− ηN )λk + 1

2
gk(4π )1−d/2

[
2d(d + 1)�1

d/2(−2λk)

− 8d�1
d/2(0)− d(d + 1)ηN�̃

1
d/2(−2λk)

]
. (7.60)
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The threshold functions� and �̃ appearing in (7.59) and (7.60) are certain integrals
involving the normalized cutoff function R(0):

�pn (w) ≡ 1

�(n)

∫ ∞
0
dz zn−1 R

(0)(z)− zR(0) ′(z)
[z+ R(0)(z)+ w]p

,

(7.61)
�̃pn (w) ≡ 1

�(n)

∫ ∞
0
dz zn−1 R(0)(z)

[z+ R(0)(z)+ w]p
.

They are defined for positive integers p, and n > 0.
With the derivation of the system (7.57) we managed to find an approximation

to a two-dimensional projection of the RG flow. Its properties, and in particular the
domain of applicability and reliability of the Einstein–Hilbert truncation, will be
discussed in the following section.

Although there are (a few) aspects of the truncated RG flow which are indepen-
dent of the cutoff scheme, i.e., independent of the functionR(0), the explicit solution
of the flow equation requires a specific choice of this function. As we discussed
already, the normalized cutoff function R(0)(w), w = p2/k2, describes the shape
of Rk(p2) in the transition region, where it interpolates between the prescribed
behavior for p2 * k2 and p2 , k2, respectively, and is therefore referred to as
the shape function. In the literature various forms of R(0)’s have been employed.
Easy to handle, but disadvantageous for high-precision calculations, is the sharp
cutoff [4] defined by Rk(p2) = limR̂→∞ R̂ θ (1− p2/k2), where the limit is to be
taken after the p2 integration. This cutoff allows for an evaluation of the � and �̃
integrals in closed form. Taking d = 4 as an example, the equations (7.57) boil
down to the following simple system of equations:3

∂tλk = −(2− ηN )λk − gk
π

[
5 ln(1− 2λk)− 2ζ (3)+ 5

2
ηN

]
, (7.62a)

∂tgk = (2+ ηN ) gk, (7.62b)

ηN = − 2 gk
6π + 5 gk

[ 18

1− 2λk
+ 5 ln(1− 2λk)− ζ (2)+ 6

]
. (7.62c)

Also, the optimized cutoff [44] withR(0)(w) = (1− w)θ (1− w) allows for an ana-
lytic evaluation of the integrals [14]. In order to check the scheme (in)dependence
of the results it is desirable to perform the calculation for a whole class ofR(0)s. For
this purpose the following one-parameter family of exponential cutoffs has been
used [3, 5, 8]:

R(0)(w; s) = sw

esw − 1
. (7.63)

3 To be precise, (7.62c) corresponds to the sharp cutoff with s = 1; see [4].
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The precise form of the cutoff is controlled by the shape parameter s. For s = 1,
(7.63) coincides with the standard exponential cutoff. The exponential cutoffs are
suitable for precision calculations, but the price to be paid is that their � and �̃
integrals can be evaluated only numerically. The same is true for a one-parameter
family of shape functions with compact support, which was used in [3, 5].

We have illustrated the general ideas and constructions underlying gravitational
RG flows by means of the simplest example, the Einstein–Hilbert truncation. In the
literature various extensions have been investigated. The derivation and analysis of
these more general flow equations, corresponding to higher-dimensional truncation
subspaces, is an extremely complex and calculationally demanding problem in
general. For this reason we cannot go into the technical details here and just
mention some further developments.

7.4.1

The natural next step beyond the Einstein–Hilbert truncation consists in gener-
alizing the functional �̄k[g], while keeping the gauge fixing and ghost sector
classical, as in (7.45). During the RG evolution the flow generates all possible
diffeomorphism-invariant terms in �̄k[g] which one can construct from gµν . Both
local and nonlocal terms are induced. The local invariants contain strings of cur-
vature tensors and covariant derivatives acting upon them, with any number of
tensors and derivatives, and of all possible index structures. The first trunca-
tion of this class which has been worked out completely [5, 6] is the R2 trun-
cation defined by (7.45) with the same �̂k as before, and the curvature-squared
action

�̄k[g] =
∫
ddx
√
g
{

(16πGk)
−1[−R(g)+ 2λ̄k]+ β̄kR2(g)

}
. (7.64)

In this case the truncated theory space is three-dimensional. Its natural (dimen-
sionless) coordinates are (g, λ, β), where βk ≡ k4−d β̄k, and g and λ are defined in
(7.56). Even though (7.64) contains only one additional invariant, the derivation
of the corresponding RG equations is far more complicated than in the Einstein–
Hilbert case. We shall summarize the results obtained with (7.64) [5, 6] in Section
7.6.

7.4.2

As for generalizing the ghost sector of the truncation beyond (7.45), no results are
available yet, but there is a partial result concerning the gauge-fixing term. Even
if one makes the ansatz (7.49) for �k[g, ḡ] in which the gauge-fixing term has the
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classical (or, more appropriately, bare) structure, one should treat its prefactor as
a running coupling: α = αk. The beta function of α has not been determined yet
from the FRGE, but there is a simple argument which allows us to bypass this
calculation.

In nonperturbative Yang–Mills theory and in perturbative quantum gravity,
α = αk = 0 is known to be a fixed point for the α evolution. The following rea-
soning suggests that the same is true within the nonperturbative FRGE approach
to gravity. In the standard functional integral the limit α→ 0 corresponds to a
sharp implementation of the gauge-fixing condition, i.e., exp(−Sgf) becomes pro-
portional to δ[Fµ]. The domain of the

∫
Dhµν integration consists of those hµνs

which satisfy the gauge-fixing condition exactly, Fµ = 0. Adding the IR cutoff at
k amounts to suppressing some of the hµν modes while retaining the others. But
because all of them satisfy Fµ = 0, a variation of k cannot change the domain of
the hµν integration. The delta functional δ[Fµ] continues to be present for any value
of k if it was there originally. As a consequence, α vanishes for all k, i.e., α = 0 is
a fixed point of the α evolution [48].

Thus we can mimic the dynamical treatment of a running α by setting the
gauge-fixing parameter to the constant value α = 0. The calculation for α = 0 is
more complicated than at α = 1, but for the Einstein–Hilbert truncation the α-
dependence of βg and βλ, for arbitrary constant α, has been found in [3, 49]. The
R2 truncations could be analyzed only in the simple α = 1 gauge, but the results
from the Einstein–Hilbert truncation suggest the UV quantities of interest do not
change much between α = 0 and α = 1 [3, 5].

7.4.3

Up to now we have considered pure gravity. For the general formalism, the inclusion
of matter fields is straightforward. The structure of the flow equation remains unal-
tered, except that now �(2)

k and Rk are operators on the larger Hilbert space of both
gravity and matter fluctuations. In practice, however, the derivation of the projected
RG equations can be quite a formidable task, the difficult part being the decou-
pling of the various modes (diagonalization of �(2)

k ), which in most calculational
schemes is necessary for the computation of the functional traces. Various mat-
ter systems, both interacting and noninteracting (apart from their interaction with
gravity) have been studied in the literature [2, 50, 51]. A rather detailed analysis
has been performed by Percacci et al. In [2, 12] arbitrary multiplets of free (mass-
less) fields with spin 0, 1/2, 1, and 3/2 were included. In [12] an interacting scalar
theory coupled to gravity in the Einstein–Hilbert approximation was analyzed, and
a possible solution to the triviality and the hierarchy problem [16] was proposed in
this context.
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7.4.4

Finally we mention another generalization of the simplest case that we have
reviewed, which is of a more technical nature [3]. In order to facilitate the
calculation of the functional traces it is helpful to employ a transverse trace-
less (TT) decomposition of the metric: hµν = hTµν + D̄µVν + D̄νVµ + D̄µD̄νσ −
d−1ḡµνD̄

2σ + d−1ḡµνφ. Here hTµν is a transverse traceless tensor, Vµ a trans-
verse vector, and σ and φ are scalars. In this framework it is natural to formu-
late the cutoff in terms of the component fields appearing in the TT decompo-
sition:  kS ∼

∫
hTµνRkh

T µν + ∫ VµRkV
µ + · · · . This cutoff is referred to as a

cutoff of type B, in contradistinction to the type A cutoff described in Section
7.3:  kS ∼

∫
hµνRkh

µν . Because covariant derivatives do not commute, the two
cutoffs are not exactly equal even if they contain the same shape function. Thus,
comparing type A and type B cutoffs is an additional possibility for checking
scheme (in)dependence [3, 5].

7.5 Asymptotic Safety

In intuitive terms, the basic idea of asymptotic safety can be understood as fol-
lows. The boundary of theory space depicted in Figure 7.1 is meant to sepa-
rate points with coordinates {uα, α = 1, 2, . . .} with all the essential couplings
uα well defined, from points with undefined, divergent couplings. The basic task
of renormalization theory consists in constructing an infinitely long RG trajec-
tory which lies entirely within this theory space, i.e., a trajectory which does not
leave theory space (that is, develops divergences) either in the UV limit k→∞
or in the IR limit k→ 0. Every such trajectory defines one possible quantum
theory.

The idea of asymptotic safety is to perform the UV limit k→∞ at a fixed point
{u∗α, α = 1, 2, . . .} ≡ u∗ of the RG flow. The fixed point is a zero of the vector field
%β ≡ (βα), i.e., βα(u∗) = 0 for all α = 1, 2, . . . . The RG trajectories, solutions of
k∂kuα(k) = βα(u(k)), have a low “velocity” near or a fixed point because the βαs
are small there and directly at the fixed point the running stops completely. As a
result, one can “use up” an infinite amount of RG time near or at the fixed point if
one bases the quantum theory on a trajectory which runs into such a fixed point for
k→∞. This is the key idea of asymptotic safety: If in the UV limit the trajectory
ends at a fixed point, an inner point of theory space giving rise to a well-behaved
action functional, we can be sure that, for k→∞, the trajectory does not escape
from theory space, i.e., does not develop pathological properties such as divergent
couplings. For k→∞ the resulting quantum theory is asymptotically safe from
unphysical divergences. In the context of gravity, Weinberg [17] proposed to use a
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non-Gaussian fixed point (NGFP) for letting k→∞. By definition, not all of its
coordinates u∗α vanish.4

Recall from Section 2.2 that the coordinates uα are the dimensionless essential
couplings related to the dimensionful ones ūα by uα ≡ k−dα ūα. Hence the running
of the ū’s is given by

ūα(k) = kdα uα(k) . (7.65)

Therefore, even directly at a NGFP where uα(k) ≡ u∗α, the dimensionful couplings
keep running according to a power law involving their canonical dimensions dα:

ūα(k) = u∗α kdα . (7.66)

Furthermore, nonessential dimensionless couplings are not required to attain fixed-
point values.

Given a NGFP, an important concept is its UV critical hypersurface SUV, or
synonymously, its unstable manifold. By definition, it consists of all points of theory
space which are pulled into the NGFP by the inverse RG flow, i.e., for increasing
k. Its dimensionality dim (SUV) ≡  UV is given by the number of attractive (for
increasing cutoff k) directions in the space of couplings.

Writing the RG equations as k ∂kuα = βα(u1, u2, . . .), the linearized flow near
the fixed point is governed by the Jacobi matrix B = (Bαγ ), Bαγ ≡ ∂γ βα(u∗):

k ∂k uα(k) =
∑
γ

Bαγ
(
uγ (k)− u∗γ

)
. (7.67)

The general solution to this equation reads

uα(k) = u∗α +
∑
I

CI V
I
α

(
k0

k

)θI
, (7.68)

where the V I s are the right eigenvectors of B with eigenvalues −θI , i.e.,∑
γ Bαγ V

I
γ = −θI V Iα . Inasmuch as B is not symmetric in general, the θI ’s are

not guaranteed to be real. We assume that the eigenvectors form a complete sys-
tem, though. Furthermore, k0 is a fixed reference scale, and the CI ’s are constants
of integration.

If uα(k) is to describe a trajectory in SUV, then uα(k) must approach u∗α in the
limit k→∞, and therefore we must set CI = 0 for all I with Re θI < 0. Hence
the dimensionality  UV equals the number of B-eigenvalues with a negative real
part, i.e., the number of θI s with Re θI > 0. The corresponding eigenvectors span
the tangent space to SUV at the NGFP.

4 In contrast, u∗α = 0∀α = 1, 2, . . . is a so-called Gaussian fixed point (GFP). In a sense, standard perturbation
theory takes the k→∞ limit at the GFP; see [18] for a detailed discussion.
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NGFP

SUV

Fig. 7.2. Schematic picture of the UV critical hypersurface SUV of the NGFP. It
is spanned by RG trajectories emanating from the NGFP as the RG scale k is
lowered. Trajectories not in the surface are attracted towards SUV as k decreases.
(The arrows point in the direction of decreasing k, from the UV to the IR.)

If uα(k) describes a generic trajectory with all CI nonzero and we lower the
cutoff, only UV relevant parameters corresponding to the eigendirections tangent
to SUV grow (Re θI > 0), while the remaining irrelevant couplings pertaining to
the eigendirections normal to SUV decrease (Re θI < 0). Thus near the NGFP a
generic trajectory is attracted towards SUV; see Figure 7.2.

Coming back to the asymptotic safety construction, let us now use this fixed point
in order to take the limit k→∞. The trajectories which define an infinite-cutoff
limit for QEG are special in that all irrelevant couplings are set to zero: CI = 0 if
Re θI < 0. These conditions place the trajectory exactly on SUV. There is a  UV-
parameter family of such trajectories, and the experiment must decide which one
is realized in nature. Therefore the predictive power of the theory increases with
decreasing dimensionality of SUV, i.e., number of UV attractive eigendirections
of the NGFP. (If  UV <∞, the quantum field theory thus constructed is com-
parable to and as predictive as a perturbatively renormalizable model with  UV

renormalizable couplings, i.e., couplings relevant at the GFP.)
The quantities θI are referred to as critical exponents, because when the renor-

malization group is applied to critical phenomena (second-order phase transitions)
the traditionally defined critical exponents are related to the θI s in a simple way
[23]. In fact, one of the early successes of the RG ideas was an explanation of
the universality properties of critical phenomena, i.e., the fact that systems at the
critical point seem to “forget” the precise form of their microdynamics and just
depend on the universality class, characterized by a set of critical exponents, they
belong to.

In the present context, “universality” means that certain very special quantities
related to the RG flow are independent of the precise form of the cutoff and, in
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particular, its shape function R(0). Universal quantities are potentially measurable
or at least closely related to observables. The θI s are examples of universal quan-
tities; the coordinates of the fixed point, u∗α, are not, even in an exact calculation.
Quantities independently known to be universal provide an important tool for test-
ing the reliability or accuracy of approximate RG calculations and of truncations
in particular. Because they are known to be R(0) independent in an exact treatment,
we can determine the degree of theirR(0) dependence within the truncation and use
it as a measure for the quality of the truncated calculation.

For a more detailed and formal discussion of asymptotic safety and, in particular,
its relation to perturbation theory we refer to the review [18].

7.6 Average Action approach to Asymptotic Safety

Our discussion of the asymptotic safety construction in the previous section was at
the level of the exact (untruncated) RG flow. In this section we are going to imple-
ment these ideas in the context of explicitly computable approximate RG flows
on truncated theory spaces. We shall mostly concentrate on the Einstein–Hilbert
(R) truncation and the R2 truncation of pure gravity in d = 4. The corresponding
d-dimensional flow equations were derived in [1] and [5], respectively.

7.6.1 The phase portrait of the Einstein–Hilbert truncation

In [4] the RG equations (7.57) implied by the Einstein–Hilbert truncation were
analyzed in detail, using both analytical and numerical methods. In particular,
all RG trajectories of this system were classified, and examples were computed
numerically. The most important classes of trajectories in the phase portrait on the
g–λ plane are shown in Figure 7.3. The trajectories were obtained by numerically
solving the system (7.62) for a sharp cutoff; using a smooth one, all qualitative
features remain unchanged. The RG flow is found to be dominated by two fixed
points (g∗, λ∗): the GFP at g∗ = λ∗ = 0, and a NGFP with g∗ > 0 and λ∗ > 0.
There are three classes of trajectories emanating from the NGFP: trajectories
of types Ia and IIIa run toward negative and positive cosmological constants,
respectively, and the single trajectory of type IIa (separatrix) hits the GFP for
k→ 0. The high-momentum properties of QEG are governed by the NGFP;
for k→∞, in Figure 7.3 all RG trajectories on the half plane g > 0 run into
this point. Note that near the NGFP the dimensionful Newton constant vanishes
for k→∞ according to Gk ≡ gk/k2 ≈ g∗/k2 → 0, whereas the cosmological
constant diverges: λ̄k ≡ λkk2 ≈ λ∗k2 →∞.

So, the Einstein–Hilbert truncation does indeed predict the existence of a NGFP
with exactly the properties needed for the asymptotic safety construction. Clearly
the crucial question to be analyzed now is whether the NGFP found is the projection
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Fig. 7.3. RG flow in the g–λ plane. The arrows point in the direction of increasing
coarse graining, i.e., of decreasing k. (From [4].)

of a fixed point in the exact theory on the untruncated theory space or whether it is
merely the artifact of an insufficient approximation.

7.6.2 Testing the Einstein–Hilbert truncation

We mentioned already that the residual R(0) dependence of universal quantities is a
measure for the quality of a truncation. This test has been applied to the Einstein–
Hilbert truncation in [3, 8]. We shall display the results in the next subsection. In
accordance with the general theory, the coordinates of the fixed point (g∗, λ∗) are
not universal. However, it can be argued that they should give rise to a universal
combination, the product g∗λ∗, which can be measured in principle [3]. Although
k and, at a fixed value of k, Gk and λ̄k cannot be measured separately, we may
invert the function k �→ Gk and insert the result k = k(G) into λ̄k. This leads to
an in principle experimentally testable relationship λ̄ = λ̄(G) between Newton’s
constant and the cosmological constant. Here λ̄ and G should be determined in
experiments involving similar scales. In the fixed-point regime this relationship
reads λ̄(G) = g∗λ∗/G. So, even if this is quite difficult in practice, one can deter-
mine the product g∗λ∗ experimentally. As a consequence, in any reliable calculation
g∗λ∗ should be approximately R(0) independent.
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The ultimate justification of a given truncation consists in checking that if
one adds further terms to it, its physical predictions remain robust. The first step
towards testing the robustness of the Einstein–Hilbert truncation near the NGFP
against the inclusion of other invariants has been taken in [5, 6], where the R2

truncation of Equation (7.64) has been analyzed. The corresponding beta functions
for the three generalized couplings g, λ, and β have been derived, but they are too
complicated to be reproduced here. Suffice it to say that on the three-dimensional
(g, λ, β) space, too, a NGFP has been found which generalizes the one from the
pure R calculation. This allows for a comparison of the fixed-point results for
the R2 and the Einstein–Hilbert truncation, and for a check of the approximate
R(0) independence of universal quantities in the three-dimensional setting. For the
Einstein–Hilbert truncation the universality analysis has been performed for an
arbitrary constant gauge parameter α, including the “physical” value α = 0 [3].
Because of its algebraic complexity, the R2 analysis [5] was carried out in the
simpler α = 1 gauge.

7.6.3 Evidence for Asymptotic Safety

We now summarize the results concerning the NGFP which were obtained with
the R (Sections 7.6.3.1–7.6.3.5) and R2 truncations (Sections 7.3.1.6–7.3.1.9),
respectively [3–6]. All properties mentioned in the following are independent
pieces of evidence pointing in the direction that QEG is indeed asymptotically safe
in four dimensions. Except for Section 7.6.3.5, all results refer to d = 4.

7.6.3.1 Universal existence

Both for type A and for type B cutoffs, the non-Gaussian fixed point exists for all
shape functions R(0). (This generalizes earlier results in [8].) It seems impossible
to find an admissible cutoff that destroys the fixed point in d = 4. This result is
highly nontrivial in that in higher dimensions (d � 5) the existence of the NGFP
depends on the cutoff chosen [4].

7.6.3.2 Positive Newton constant

Although the position of the fixed point is scheme dependent, all cutoffs yield
positive values of g∗ and λ∗. A negative g∗ might have been problematic for
stability reasons, but there is no mechanism in the flow equation which would
exclude it on general grounds.

7.6.3.3 Stability

For any cutoff employed, the NGFP is found to be UV attractive in both directions
of the λ–g plane. Linearizing the flow equation according to Equation (7.67), we
obtain a pair of complex conjugate critical exponents θ1 = θ∗2 with positive real
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part θ ′ and imaginary parts ±θ ′′. In terms of t = ln(k/k0) the general solution to
the linearized flow equations reads

(λk, gk)
T = (λ∗, g∗)T + 2

{[
ReC cos

(
θ ′′ t
)+ ImC sin

(
θ ′′ t
)]

ReV

+ [ReC sin
(
θ ′′ t
)− ImC cos

(
θ ′′ t
)]

ImV

}
e−θ

′t

(7.69)

with C ≡ C1 = (C2)∗ an arbitrary complex number and V ≡ V 1 = (V 2)∗ the right
eigenvector of B with eigenvalue −θ1 = −θ∗2 . Equation (7.67) implies that, due to
the positivity of θ ′, all trajectories hit the fixed point as t is sent to infinity. The
nonvanishing imaginary part θ ′′ has no effect on the stability. However, it influences
the shape of the trajectories that spiral into the fixed point for k→∞. Thus, the
fixed point has the stability properties needed in the asymptotic safety scenario.

Solving the full, nonlinear flow equations [4] shows that the asymptotic scaling
region where the linearization (7.69) is valid extends from k = ∞ down to about
k ≈ mPl with the Planck mass defined asmPl ≡ G−1/2

0 . HeremPl plays a role similar
to �QCD in QCD: it marks the lower boundary of the asymptotic scaling region.
We set k0 ≡ mPl so that the asymptotic scaling regime extends from about t = 0 to
t = ∞.

7.6.3.4 Scheme and gauge dependence

Analyzing the cutoff scheme dependence of θ ′, θ ′′, and g∗λ∗ as a measure for the
reliability of the truncation, the critical exponents were found to be reasonably
constant, within about a factor of 2. For α = 1 and α = 0, for instance, they
assume values in the ranges (1.4 � θ ′ � 1.8, 2.3 � θ ′′ � 4) and (1.7 � θ ′ � 2.1,
2.5 � θ ′′ � 5), respectively. The universality properties of the product g∗λ∗ are
even more impressive. Despite the rather strong scheme dependence of g∗ and
λ∗ separately, their product has almost no visible s-dependence for not too small
values of s. Its value is

g∗λ∗ ≈
{

0.12 for α = 1,
0.14 for α = 0.

(7.70)

The differences between the “physical” (fixed-point) value of the gauge parameter,
α = 0, and the technically more convenient α = 1 are at the level of about 10 to
20 percent.

7.6.3.5 Higher and lower dimensions

The beta functions implied by the FRGE are continuous functions of the spacetime
dimensionality, and it is instructive to analyze them for d �= 4. In [1] it has been
shown that for d = 2+ ε, |ε| * 1, the FRGE reproduces Weinberg’s [17] fixed
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Fig. 7.4. Comparison of λ∗, g∗, θ ′, and θ ′′ for different cutoff functions in depen-
dence on the dimension d . Two versions of the sharp cutoff (sc) and the exponen-
tial cutoff with s = 1 (Exp) have been employed. The upper line shows that for
2+ ε ≤ d ≤ 4 the cutoff scheme dependence of the results is rather small. The
lower diagram shows that increasing d beyond about 5 leads to a significant dif-
ference in the results for θ ′, θ ′′ obtained with the different cutoff schemes. (From
[4].)

point for Newton’s constant, g∗ = 3
38ε, and also supplies a corresponding fixed-

point value for the cosmological constant, λ∗ = − 3
38�

1
1(0)ε, with the threshold

function given in (7.61). For arbitrary d and a generic cutoff the RG flow is
quantitatively similar to the four-dimensional one for all d smaller than a certain
critical dimension dcrit, above which the existence or nonexistence of the NGFP
becomes cutoff dependent. The critical dimension is scheme dependent, but for
any admissible cutoff it lies well above d = 4. As d approaches dcrit from below,
the scheme dependence of the universal quantities increases drastically, indicating
that the R truncation becomes insufficient near dcrit.

In Figure 7.4 we show the d-dependence of g∗, λ∗, θ ′, and θ ′′ for two versions of
the sharp cutoff (with s = 1 and s = 30, respectively) and for the exponential cutoff
with s = 1. For 2+ ε ≤ d ≤ 4 the scheme dependence of the critical exponents is
rather weak; it becomes appreciable only near d ≈ 6 [4]. Figure 7.4 suggests that
the Einstein–Hilbert truncation at d = 4 performs almost as well as near d = 2. Its
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(a) (b)

Fig. 7.5. (a) g∗, λ∗, and g∗λ∗ as functions of s for 1 ≤ s ≤ 5, and (b) β∗ as a
function of s for 1 ≤ s ≤ 30, using the family of exponential shape functions
(7.63). (From [6].)

validity can be extended toward larger dimensionalities by optimizing the shape
function [14].

7.6.3.6 Position of the fixed point (R2)

Also with the generalized truncation the NGFP is found to exist for all admissi-
ble cutoffs. Figure 7.5 shows its coordinates (λ∗, g∗, β∗) for the family of shape
functions (7.63) and the type B cutoff. For every shape parameter s, the values of
λ∗ and g∗ are almost the same as those obtained with the Einstein–Hilbert trun-
cation. In particular, the product g∗λ∗ is constant with high accuracy. For s = 1,
for instance, one obtains (λ∗, g∗) = (0.348, 0.272) from the Einstein–Hilbert trun-
cation and (λ∗, g∗, β∗) = (0.330, 0.292, 0.005) from the generalized truncation. It
is quite remarkable that β∗ is always significantly smaller than λ∗ and g∗. Within
the limited precision of our calculation this means that in the three-dimensional
parameter space the fixed point practically lies on the λ–g plane with β = 0, i.e.,
in the parameter space of the pure Einstein–Hilbert truncation.

7.6.3.7 Eigenvalues and -vectors (R2)

The NGFP of the R2 truncation proves to be UV attractive in each of the three
directions of the (λ, g, β) space for all cutoffs used. The linearized flow in its
vicinity is always governed by a pair of complex conjugate critical exponents
θ1 = θ ′ + iθ ′′ = θ∗2 with θ ′ > 0 and a single real, positive critical exponent θ3 > 0.
It may be expressed as

(λk, gk, βk)
T = (λ∗, g∗, β∗)T + 2

{ [
ReC cos

(
θ ′′ t
)+ ImC sin

(
θ ′′ t
)]

ReV

+ [ReC sin
(
θ ′′ t
)− ImC cos

(
θ ′′ t
)]

ImV

}
e−θ

′t + C3V
3 e−θ3t

(7.71)



322 Martin Reuter and Frank Saueressig

with arbitrary complex C ≡ C1 = (C2)∗ and real C3, and with V ≡ V 1 = (V 2)∗

and V 3 the right eigenvectors of the stability matrix (Bij )i,j∈{λ,g,β} with eigen-
values −θ1 = −θ∗2 and −θ3, respectively. Clearly the conditions for UV stability
are θ ′ > 0 and θ3 > 0. They are indeed satisfied for all cutoffs. For the exponen-
tial shape function with s = 1, for instance, we find θ ′ = 2.15, θ ′′ = 3.79, θ3 =
28.8, and ReV = (−0.164, 0.753,−0.008)T, ImV = (0.64, 0,−0.01)T, V 3 =
−(0.92, 0.39, 0.04)T. (The vectors are normalized so that ‖V ‖ = ‖V 3‖ = 1.) The
trajectories (7.71) comprise three independent normal modes with amplitudes pro-
portional to ReC, ImC, and C3, respectively. The first two are again of the spiral
type; the third is a straight line.

For any cutoff, the numerical results have several quite remarkable properties.
They all indicate that, close to the NGFP, the RG flow is rather well approximated
by the pure Einstein–Hilbert truncation.

(a) The β-components of ReV and ImV are tiny. Hence these two vectors span a plane
which virtually coincides with the g–λ subspace at β = 0, i.e., with the parameter
space of the Einstein–Hilbert truncation. As a consequence, the ReC and ImC normal
modes are essentially the same trajectories as the old normal modes already found
without the R2 term. Also, the corresponding θ ′ and θ ′′ values coincide within the
scheme dependence.

(b) The new eigenvalue θ3 introduced by the R2 term is significantly larger than θ ′.
When a trajectory approaches the fixed point from below (t →∞), the old normal
modes ∝ ReC, ImC are proportional to exp(−θ ′t), but the new one is proportional to
exp(−θ3t), so that it decays much quicker. For every trajectory running into the fixed
point, i.e., for every set of constants (ReC, ImC,C3), we find therefore that once t is
sufficiently large, the trajectory lies entirely in the ReV –ImV subspace – for practical
purposes, the β = 0 plane. Due to the large value of θ3, the new scaling field is very
relevant. However, when we start at the fixed point (t = ∞) and lower t , it is only at
the low energy scale k ≈ mPl (t ≈ 0) that exp(−θ3t) reaches unity, and only there, i.e.,
far away from the fixed point, does the new scaling field start growing rapidly.

(c) Inasmuch as the matrix B is not symmetric, its eigenvectors have no reason to be
orthogonal. In fact, one finds that V 3 lies almost in the ReV –ImV plane. For the angles
between the eigenvectors given, we obtain �(ReV, ImV ) = 102.3◦, �(ReV, V 3) =
100.7◦, �(ImV, V 3) = 156.7◦. Their sum is 359.7◦, which confirms that ReV , ImV ,
and V 3 are almost coplanar. This implies that when we lower t and move away from
the fixed point so that the V 3 scaling field starts growing, it is again predominantly the∫
ddx
√
g and

∫
ddx
√
gR invariants which get excited, but not

∫
ddx
√
gR2 in the first

place.

Summarizing the preceding three points, we can say that close to the fixed point
the RG flow seems to be essentially two-dimensional, and that this two-dimensional
flow is well approximated by the RG equations of the Einstein–Hilbert truncation.
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(a) (b)

Fig. 7.6. Trajectory of the linearized flow equation obtained from theR2 truncation
for 1 ≤ t = ln(k/k0) <∞. In (b) we depict the eigendirections and the “box” to
which the trajectory is confined. (From [6].)

In Figure 7.6 we show a typical trajectory, which has all three normal modes
excited with equal strength (ReC = ImC = 1/

√
2, C3 = 1). All the way down

from k = ∞ to about k = mPl it is confined to a thin box surrounding the β = 0
plane.

7.6.3.8 Scheme dependence (R2)

The scheme dependence of the critical exponents and of the product g∗λ∗ turns
out to be of the same order of magnitude as in the case of the Einstein–Hilbert
truncation. Figure 7.7 shows the cutoff dependence of the critical exponents, using
the family of shape functions (7.63). For the cutoffs employed, θ ′ and θ ′′ assume
values in the ranges 2.1 � θ ′ � 3.4 and 3.1 � θ ′′ � 4.3, respectively. Whereas
the scheme dependence of θ ′′ is weaker than in the case of the Einstein–Hilbert
truncation, one finds that that of θ ′ it is slightly stronger. The exponent θ3 suffers
from relatively strong variations as the cutoff is changed (8.4 � θ3 � 28.8), but it
is always significantly larger than θ ′. The product g∗λ∗ again exhibits an extremely
weak scheme dependence. Figure 7.5(a) displays g∗λ∗ as a function of s. It is
impressive to see how the cutoff dependences of g∗ and λ∗ cancel almost perfectly.
Figure 7.5(a) suggests the universal value g∗λ∗ ≈ 0.14. Comparing this value with
those obtained from the Einstein–Hilbert truncation, we find that it differs slightly
from the one based upon the same gauge α = 1. The deviation is of the same size
as the difference between the α = 0 and the α = 1 results of the Einstein–Hilbert
truncation.

As for the universality of the critical exponents, we emphasize that the qualitative
properties just listed (θ ′, θ3 > 0, θ3 , θ ′, etc.) are obtained for all cutoffs. The
θ ’s have a much stronger scheme dependence than g∗λ∗, however. This is most
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(a) (b)

Fig. 7.7. (a) θ ′ = Re θ1 and θ ′′ = Im θ1, and (b) θ3 as functions of s, using the
family of exponential shape functions (7.63). (From [5].)

probably due to neglecting further relevant operators in the truncation, so that the
B-matrix we are diagonalizing is still too small.

7.6.3.9 Dimensionality of SUV

According to the canonical dimensional analysis, the (curvature)n invariants in four
dimensions are classically marginal for n = 2 and irrelevant for n > 2. The results
for θ3 indicate that there are large nonclassical contributions, so that there might
be relevant operators perhaps even beyond n = 2. With the present approach it
is clearly not possible to determine their number  UV. However, as it is hardly
conceivable that the quantum effects change the signs of arbitrarily large (negative)
classical scaling dimensions,  UV should be finite [17].

A first confirmation of this picture comes from the R2 calculation, which has
also been performed at d = 2+ ε, where, at least canonically, the dimensional
count is shifted by two units. In this case we find indeed that the third scaling
field is irrelevant: θ3 < 0. Therefore the dimensionality of SUV could be as small
as UV = 2 (but this is not a proof, of course). If so, the quantum theory would be
characterized by only two free parameters: the renormalized Newton constant and
the cosmological constant.

7.7 Discussion and conclusion

On the basis of the preceding results we believe that the non-Gaussian fixed point
occurring in the Einstein–Hilbert truncation is not a truncation artifact, but rather
the projection of a fixed point in the exact theory space. The fixed point and all its
qualitative properties are stable against variations of the cutoff and the inclusion
of a further invariant in the truncation. It is particularly remarkable that within
the scheme dependence the additional R2 term has essentially no impact on the
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fixed point. We interpret the results and their mutual consistency as quite nontrivial
indications supporting the conjecture that four-dimensional QEG indeed possesses
a RG fixed point with precisely the properties needed for its nonperturbative renor-
malizability and asymptotic safety.

Recently this picture has been beautifully confirmed by Codello, Percacci, and
Rahmede [52], who, for d = 4, considered truncations of the form

�̄k[g] =
∫
d4x
√
g

N∑
n=0

ūn(k)R
n . (7.72)

In the most advanced case the highest power of the curvature scalar was as large as
N = 7. An important result obtained with these truncations is that, going beyond
the R2 truncation, the new eigendirections at the NGFP are all UV repulsive
(Re θI < 0), indicating that  UV is indeed likely to be a small finite number. On
increasing the order N of the curvature polynomial, the values of the universal
quantities show a certain degree of convergence; in particular, g∗λ∗ agrees with the
Einstein–Hilbert result (7.70) to within 10 or 20 percent for any N = 2, . . . , 7. It
is amazing how well the RG flow near the NGFP is approximated by the Einstein–
Hilbert truncation; the reason for this is not yet fully understood.

In this chapter we have focused on the average action approach to QEG.
For a detailed discussion, including evidence for asymptotic safety from other
approaches, we refer to [18].

Before closing, some further comments might be helpful here.

(1) The construction of an effective average action for gravity as introduced in [1] rep-
resents a background-independent approach to quantum gravity. Somewhat paradox-
ically, this background independence is achieved by means of the background field
formalism: One fixes an arbitrary background, quantizes the fluctuation field in this
background, and afterwards adjusts ḡµν in such a way that the expectation value of the
fluctuation vanishes: h̄µν = 0. In this way the background gets fixed dynamically.

(2) The combination of the effective average action with the background field method
has been successfully tested within conventional field theory. In QED and Yang–
Mills type gauge theories it reproduces the known results and extends them into the
nonperturbative domain [22, 24].

(3) The coexistence of asymptotic safety and perturbative nonrenormalizability is well
understood. In particular, upon fixing ḡµν = ηµν and expanding the trace on its RHS
in powers ofG, the FRGE reproduces the divergences of perturbation theory; see [18]
for a detailed discussion of this point.

(4) It is to be emphasized that in the average action framework the RG flow, i.e., the vector
field %β, is completely determined once a theory space is fixed. As a consequence, the
choice of theory space determines the set of fixed points �∗ at which asymptotically
safe theories can be defined. Therefore, in the asymptotic safety scenario the bare
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action S = �∗ is a prediction of the theory, rather than an ad hoc postulate as usual in
quantum field theory. (Ambiguities could arise only if there is more than one suitable
NGFP.)

(5) According to the results available to date, the Einstein–Hilbert action of classical
general relativity seems not to play any distinguished role in the asymptotic safety
context, at least not at the conceptual level. The only known NGFP on the theory space
of QEG has the structure�∗ = (Einstein–Hilbert action)+more, where “more” stands
for both local and nonlocal corrections. So it seems that the Einstein–Hilbert action is
only an approximation to the true fixed-point action, albeit an approximation that was
found to be rather reliable for many purposes.

(6) Any quantum theory of gravity must reproduce the successes of classical general
relativity. As for QEG, it cannot be expected that this will happen for all RG trajectories
in SUV, but it should happen for some or at least one of them. Within the Einstein–
Hilbert truncation it has been shown [41] that there actually do exist trajectories (of type
IIIa) which have an extended classical regime and are consistent with all observations.

(7) In the classical regime mentioned, the spacetime geometry is nondynamical to a good
approximation. In this regime the familiar methods of quantum field theory in curved
classical spacetimes apply, and it is clear therefore that effects such as Hawking
radiation or cosmological particle production are reproduced by the general framework
of QEG with matter.

(8) On coupling free massless matter fields to gravity, it turned out [12] that the fixed
point continues to exist under weak conditions concerning the number of various types
of matter fields (scalars, fermions, etc.). No fine tuning with respect to the matter
multiplets is necessary. In particular, asymptotic safety does not seem to require any
special constraints or symmetries among the matter fields such as supersymmetry, for
instance.

(9) Because the NGFP seems to exist already in pure gravity, it is likely that a widespread
prejudice about gravity may be incorrect: its quantization seems not to require any
kind of unification with the other fundamental interactions.

Given that by now the asymptotic safety of QEG hardly can be questioned,
future work will have to focus on its physics implications. The effective average
action is an ideal framework for investigations of this sort in that, contrary to other
exact RG schemes, it provides a family of scale-dependent effective (rather than
bare) actions, {�k[ · ], 0 ≤ k <∞}. Dealing with phenomena involving typical
scales k, a tree-level evaluation of �k is sufficient for finding the leading quantum
gravity effects. The investigations already performed in this direction employed
the following methods:

(a) RG improvement: In [33] and [35], respectively, a first study of the asymptotic safety-
based phenomenology of black hole and cosmological spacetimes has been carried
out by RG-improving the classical field equations or their solutions. Thereby k is
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identified with a fixed, geometrically motivated scale. Using the same method, modified
dispersion relations of point particles were discussed in [42].

(b) Scale-dependent geometry: In the spirit of the gravitational average action, a spacetime
manifold can be visualized as a fixed differentiable manifold equipped with infinitely
many metric structures {〈gµν〉k, 0 ≤ k <∞} where 〈gµν〉k is a solution to the effec-
tive field equation implied by �k . Comparably to the situation in fractal geometry,
the metric, and therefore all distances, depend on the resolution of the experiment by
means of which spacetime is probed. A general discussion of the geometrical issues
involved (scale-dependent diffeomorphisms, symmetries, causal structures, etc.) was
given in [27], and in [26] these ideas were applied to show that QEG can generate a
minimum length dynamically. In [3,5] it has been pointed out that the QEG spacetimes
should have fractal properties, with a fractal dimension equal to 4 on macroscopic
and 2 on microscopic scales. This picture was confirmed by the computation of their
spectral dimension in [28]. Quite remarkably, the same dynamical dimensional reduc-
tion from 4 to 2 has also been observed in Monte Carlo simulations using the causal
triangulation approach [29–31]. It is therefore intriguing to speculate that this discrete
approach and the gravitational average action actually describe the same underlying
theory.

Bibliography

[1] M. Reuter, Phys. Rev. D 57 (1998) 971, hep-th/9605030.
[2] D. Dou and R. Percacci, Class. Quant. Grav. 15 (1998) 3449.
[3] O. Lauscher and M. Reuter, Phys. Rev. D 65 (2002) 025013, hep-th/0108040.
[4] M. Reuter and F. Saueressig, Phys. Rev. D 65 (2002) 065016, hep-th/0110054.
[5] O. Lauscher and M. Reuter, Phys. Rev. D 66 (2002) 025026, hep-th/0205062.
[6] O. Lauscher and M. Reuter, Class. Quant. Grav. 19 (2002) 483, hep-th/0110021.
[7] O. Lauscher and M. Reuter, Int. J. Mod. Phys. A 17 (2002) 993, hep-th/0112089.
[8] W. Souma, Prog. Theor. Phys. 102 (1999) 181.
[9] M. Reuter and F. Saueressig, Phys. Rev. D 66 (2002) 125001, hep-th/0206145;

Fortschr. Phys. 52 (2004) 650, hep-th/0311056.
[10] A. Bonanno and M. Reuter, JHEP 02 (2005) 035, hep-th/0410191.
[11] For a review see O. Lauscher and M. Reuter, in Quantum Gravity, B. Fauser,

J. Tolksdorf, and E. Zeidler (Eds.), Birkhäuser, Basel, 2007, hep-th/0511260.
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When is a differentiable manifold the boundary
of an orbifold?

andrés angel∗

Abstract
The aim of this short chapter is to review some classical results on cobordism of
manifolds and discuss recent extensions of this theory to orbifolds. In particular,
I present an answer to the question “When is a differentiable manifold the
boundary of an orbifold?” in the oriented case and in the unoriented case
when we restrict to isotropy groups of odd order.

Introduction

When is a differentiable manifold the boundary of another differentiable manifold?
This question was answered by Thom [14] in the 1950s; the necessary and sufficient
condition is the vanishing of certain characteristic numbers, invariants defined by
evaluating characteristic classes of the tangent bundle on the fundamental class of
the manifold. His proof is one of the cornerstones of algebraic topology [2] and
shows the powerful tools that homotopy theory gives to the study of the geometry
of manifolds.

Orbifolds, originally introduced as V -manifolds by Satake [12], and so named
by Thurston [15], are useful generalizations of manifolds: locally they look like
the quotient of Euclidean space by the action of a finite group. Their study lies
at the intersection of many different areas of mathematics, and they appear natu-
rally in many situations such as moduli problems, noncommutative geometry and

∗
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foliation theory. The local character of the definition of orbifolds allows many
constructions that can be applied to manifolds to be extended to orbifolds, and
it is natural to ask, When is an orbifold the boundary of another orbifold? Key
ingredients of Thom’s proof do not seem to extend naturally to orbifolds, and
the interplay between geometry and homotopy theory, in this case, is still not
understood.

A complete answer to this question is still open, but some partial results are
known. In the oriented case Druschel [8] defines generalized Pontrjagin numbers
that determine when a multiple of an oriented orbifold is a boundary. In [4] the
author provides similar characteristic numbers that determine when an orbifold
with isotropy groups of odd order is a boundary.

The purpose of this short chapter is to present an answer to the more restricted
question, When is a differentiable manifold the boundary of an orbifold? In this
case the constructions in [8] and [4] take a simpler form, and the following answer
can be given:

An oriented manifold is the boundary of an oriented orbifold precisely when all
Pontrjagin numbers vanish.

A differentiable manifold is the boundary of an orbifold with only odd singu-
larities precisely when all Stiefel–Whitney numbers vanish.

This paper is expository and is organized as follows. In Section 1, I review
some of the classical theory for manifolds, and state the results of Thom [14] and
Wall [16] on the cobordism rings. In Section 2, I discuss the necessary background
on orbifolds. Section 3 is the main part of this chapter; it gives a proof that if
an oriented differentiable manifold is the boundary of an oriented orbifold, then
some multiple of the manifold bounds. This easily follows from the existence of a
rational fundamental class for oriented orbifolds and the fact that Pontrjagin classes
determine the cobordism class of a manifold up to torsion.

Also I present a proof that if a manifold is the boundary of an orbifold with only
odd singularities, then it is actually the boundary of a manifold. This also follows
from the existence of Z2-fundamental classes for this type of orbifolds, but instead
I present a direct geometric proof that constructs the bounding manifold out of the
orbifold.

Throughout this chapter manifold will mean compact differentiable manifold.

8.1 Cobordism of manifolds

In this section I present the basic results on the classical theory of cobordism
of manifolds. I give the definitions of the cobordism groups and characteristic
numbers and state the main results of Thom and Wall that led to a description of
the cobordism ring of manifolds. They provide a complete answer to the question:
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When is a manifold the boundary of another manifold? The main references for
this section are [13], [10] and [16].

8.1.1 Unoriented cobordism

We say that two closed n-dimensional manifolds Mn
1 ,M

n
2 are cobordant if there

exists an n+ 1-dimensional manifold with boundaryWn+1 such that the boundary
is the disjoint union ofMn

1 andMn
2 :

∂Wn+1 = Mn
1 �Mn

2 .

The cobordism relation is an equivalence relation on the class of differentiable
manifolds. We denote by [M] the corresponding equivalence class, and denote
by Nn the set of equivalence classes of n-dimensional manifolds. This set can
be endowed with a group operation given by disjoint union and the empty set as
identity. We call Nn the cobordism group of n-dimensional manifolds. This is the
central object of our study, and for its determination more structure on these groups
turns out to be of utmost importance.

The Cartesian product of manifolds induces a ring structure on the graded vector
space

N∗ =
⊕
n

Nn.

Observe that N∗ is a Z2-algebra, i.e., every element has order two, because two
copies of a manifoldM are the boundary of the manifoldM × I .

Remark 8.1.1 We have translated the question “When is a manifoldM the bound-
ary of another manifold?” into the algebraic task “Determine when the class [M]
is zero in the cobordism ring N∗.”

In [14] Thom completely determined this algebra: N∗ is the polynomial algebra
over Z2 generated by elements in dimensions not of the form 2j − 1. He provided
complete invariants that determine when two manifolds are cobordant.

8.1.2 Characteristic numbers

I will now introduce invariants of the cobordism class of a manifold. These invari-
ants are defined in terms of the differentiable structure of the manifold. Given an
n-dimensional differentiable manifoldM , the tangent bundle TM → M is a rank
n real vector bundle overM . To such a vector bundle you can assign certain coho-
mology classes ωi(TM) ∈ Hi(M; Z2), called Stiefel–Whitney classes [10]. Here
Hi(M; Z2) denotes the singular cohomology ofM with Z2 coefficients.
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Recall that any closed n-dimensional manifold has a Z2-fundamental class, i.e.,
a top homology class that restricts at any point x ∈ M to the nonzero class of

Hn(M,M − {x}; Z2) ∼= Z2.

Now, given any partition I = (i1, . . . , im) of n, the cup product

ωI (TM) = ωi1 (TM) ∪ · · · ∪ ωim(TM)

is a top cohomology class. By evaluating on the fundamental class of M , we
obtain elements of Z2 that are called the Stiefel–Whitney numbers associated to the
partition I ,

〈ωI (TM), [M]〉 ∈ Z2.

Here [M] denotes the fundamental class, and 〈 , 〉 is the Kronecker pairing between
singular cohomology and homology. These numbers turn out to be invariants of
the cobordism class. To see this, it is enough to prove that ifM is the boundary of
W , then all its Stiefel–Whitney numbers are zero. Suppose thatMn = ∂Wn+1, and
let I = (i1, . . . , im) be a partition of n. Denote by ι : M → W the inclusion of M
intoW as the boundary. By the collaring theorem there is a neighborhood ofM in
W that is diffeomorphic toM × [0, 1). Therefore ι∗(TW ) = TM ⊕ R, the sum of
the tangent bundle with a trivial one, and we have

〈ωI (TM), [M]〉 = 〈ωI (TM ⊕ R), [M]〉 by stability
= 〈ωI (ι∗(TW )), [M]〉 by the preceding remark
= 〈ι∗ωI (TW ), [M]〉 by naturality
= 〈ωI (TW ), ι∗[M]〉 by functoriality of the pairing.

Now, in the long exact sequence, on homology with Z2-coefficients, of the pair
(W,M),

· · · → Hn+1(M)
ι∗→ Hn+1(W )→ Hn+1(W,M)

∂→ Hn(M)
ι∗→ Hn(W )→ · · · ,

we have that ι∗∂ = 0; but W is a manifold with boundary, and it has a fundamen-
tal class [W ] ∈ Hn+1(W,M) such that ∂[W ] = [M]; therefore ι∗([M]) = 0. This
shows that the Stiefel–Whitney numbers are zero.

Example 8.1.2 For real projective spaces (see [10])

ωI (TRPn) =
(
n+ 1

i1

)
· · ·
(
n+ 1

ik

)
mod 2,

and in particular for the trivial partition of n = 2k, I = (2k), we have

ω(2k)(TRP2k) �= 0,

i.e., RP2k is not the boundary of another manifold.
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Thom’s proof starts by realizing that the cobordism groups are the stable homotopy
groups of a spectrum, now called a Thom spectrum and denoted byMO. Thus the
problem of determining when a manifold is the boundary of another manifold has
been translated into a homotopy theory problem: determine when a map from a
sphere into the spectrumMO is null-homotopic.

The calculation of the stable homotopy groups of MO is still not trivial and
was accomplished by Thom in [14]. A corollary of his work is that unorientably,
a manifold bounds if and only if all its Stiefel–Whitney numbers are zero. His
proof also determines completely the cobordism ring: it is the polynomial algebra
N∗ ∼= Z2[xi | i �= 2j − 1]. On even dimensions, the generators can be taken to be
the real projective spaces; odd-dimensional generators were given by Dold [6] soon
after Thom’s paper.

8.1.3 Oriented cobordism

Observe that an orientation of a manifold with boundary induces an orientation
of the boundary on choosing a normal unit vector field on the boundary. By
always considering the outward normal vector, one makes the boundary of an
oriented manifold also an oriented manifold; therefore it is possible to talk also
about cobordism of such objects. We say closed oriented n-dimensional manifolds
Mn

1 ,M
n
2 are cobordant if there exists an n+ 1-dimensional oriented manifold with

boundaryWn+1 whose boundary is the disjoint union ofMn
1 and −Mn

2 :

∂Wn+1 = Mn
1 ∪ −Mn

2 ,

where −Mn
2 is justMn

2 with the reverse orientation.
Just as before, cobordism is an equivalence relation on the class of n-dimensional

oriented manifolds; the set of equivalence classes is denoted by 
n, and is a group
under disjoint union. The graded vector space


∗ =
⊕
n


n

is a graded commutative ring, the oriented cobordism ring. Given an oriented
manifold, we will use the linear structure on the tangent bundle to define invari-
ants that determine the oriented cobordism class, at least up to torsion. They are
defined in similar way to the Stiefel–Whitney numbers, but now the homology and
cohomology are with integer coefficients.

Recall that an oriented closed n-dimensional manifold has a fundamental class
[M] ∈ Hn(M; Z), that is, a top homology class that restricts at each point to the
class

Hn(M,M − {x}; Z) ∼= Z

given by the orientation.
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To the tangent bundle TM → M , we can associate certain characteristic classes
pi(TM) ∈ H 4i(M; Z) called Pontrjagin classes; see [11] and [10]. To define in-
variants of the cobordism class we evaluate these classes at the fundamental
class.

Given any partition I = (i1, . . . , im) of n, the cup product pI (TM) = pi1 ∪
· · · ∪ pim(TM) is an n-dimensional cohomology class that, when we evaluate on
the fundamental class

〈pI (TM), [M]〉,
gives an integer. The same proof as with Stiefel–Whitney classes shows that these
are also cobordism invariants. Note that for dimensional reasons these numbers are
always zero unless n is divisible by four.

Example 8.1.3 For even complex projective spaces (see [10])

pI (TCP2n) =
(

2n+ 1

i1

)
· · ·
(

2n+ 1

ik

)
if i1 + · · · ik = n, and zero otherwise. In particular, they are not the boundary of an
oriented manifold.

In the same manner, we can identify the oriented cobordism ring with the
stable homotopy groups of another spectrum, now denotedMSO. In this case the
homotopy problem turns out to be even harder, but Thom managed to calculate
the stable homotopy groups of MSO after tensoring with the rationals, thereby
giving a complete description of the ring 
∗ ⊗Q. It is a polynomial algebra over
the rationals generated by classes on dimensions that are multiples of 4. Generators
can be taken to be the complex projective spaces on even dimensions,

Q[CP2,CP4, . . .].

Thom’s proof shows also that Pontrjagin numbers completely determine an element
of
∗ ⊗Q. Therefore a multiple of a manifold bounds if and only if all its Pontrjagin
numbers vanish.

Later work of Milnor [10] and Wall [16] settled the complete calculation of the
torsion, and gave an algebraic description of the oriented cobordism ring. The main
results contained in those papers can be summarized as follows:

� 
∗ has no odd torsion.
� 
∗ has no element of order 4.
� The torsion-free part of 
∗ is a polynomial ring.
� Two oriented manifolds are cobordant if and only if their Pontrjagin and Stiefel–Whitney

numbers are the same.
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Therefore,
An oriented manifold is the boundary of an oriented manifold precisely when

all Pontrjagin and Stiefel–Whitney numbers vanish.

8.2 Orbifolds

Orbifolds were first introduced by Satake [12] in the fifties as generalizations of
smooth manifolds that allow mild singularities. Since then, orbifolds have became
a subject of study of their own (see [1], for example), and their use has tran-
scended mathematics: nowadays orbifolds are used in string theory and crys-
tallography. In this section we follow the classical perspective on orbifolds by
defining orbifold charts and atlases akin to the way manifolds are defined. We
define the analogs of vector bundles and fiber bundles, and discuss orientations
and fundamental classes. The main references for this section are [12], [1], and
[9].

8.2.1 Charts

LetX be a paracompact Hausdorff topological space. Now we introduce the analog
of charts for manifolds: an n-dimensional orbifold chart onX is a triple (U,G,U )
whereU is a connected manifold,G is a finite group acting onU , andU is an open
subset of X, homeomorphic to U/G.

To be able to glue charts, we need to specify when two charts are compa-
tible. First, an embedding of charts (U,G,U ) ↪→ (V ,H, V ) is a differentiable
embedding U ↪→ V that is equivariant with respect to a monomorphism G ↪→
H that preserves the kernel of the actions. Two charts (U,G,U ) ↪→ (V ,H, V )
are compatible if for every point in U ∩ V , there exists a chart (W,K,W ) with
embeddings of charts:

(U,G,U ) (V ,H, V )

(W,K,W )

As with manifolds, an orbifold atlas on X is a family of charts (Uα,Gα,Uα)
that is compatible and covers X. An orbifold structure on X is just an equivalence
class of orbifold atlases, where two atlases are equivalent if there is a zigzag of
common refinements. We will denote an orbifold structure on X by calligraphic
letters, like X , and the topological spaceX will be called the underlying space and
will be denoted by |X |.
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Example 8.2.1 A manifold M with an action of a finite group G gives rise to an
orbifold structure that we will denote by [M/G]. It has an atlas with only one chart.
In a more general vein, if a compact Lie group acts differentiably on a manifold with
finite stabilizers, then the quotient space can be endowed with an orbifold structure.
Charts can be constructed with the slice theorem for differentiable actions.

Example 8.2.2 For a finite group G, the orbifold [∗/G] is a zero-dimensional
orbifold. The underlying space has only one point.

Given a point x ∈ X, take a chart (U,G,U) around x, and let x ∈ U be a lift of
x. Then we define the isotropy group of x to be

Gx = {g ∈ G | gx = x}.
This group is well defined up to isomorphism, and the restriction of the action of

the isotropy group on any chart gives a well-defined representation of the isotropy
group that we call the local representation at x. A point is called nonsingular ifGx
is trivial, and singular otherwise. The set 	X = {x ∈ X | Gx �= {1}} is called the
singular locus of X. In general the singular locus is not an orbifold.

Remark 8.2.3 The isotropies give a stratification of |X |.
Example 8.2.4 Consider the action of S1 on C2 − {0} given by λ(z1, z2) =
(λ2z, λz). It is a an action with finite stabilizers, and therefore the underlying
space, which topologically is just a sphere, has an orbifold structure coming from
this action. It has one singular point with isotropy group Z2, but it can be seen that
is not the quotient of a manifold by a finite group (even though it is a quotient by a
compact Lie group).

We say that an orbifold is effective if we can find an atlas for which all the local
groups act effectively. On the other side, we say that an orbifold is purely ineffective
if all the local groups act trivially.

Remark 8.2.5 Extra care should be taken when working with orbifolds that are not
effective; for these our definition is not the best one, and the language of groupoids
provides a much better one. See [1] and [9].

8.2.2 Orbibundles

A vector orbibundle V over an orbifold Q is an orbifold V that has an atlas of the
form (Uα × Rn,Gα), where (Uα,Gα) is an atlas for Q, all the actions are linear
on the second component, and we require also the embeddings between the charts
to be linear on the second component.
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We have an induced map on the underlying spaces p : |W| → |Q|, which in
general is not a vector bundle. The fibers of a point are topological spaces homeo-
morphic to Rn/Gx .

Example 8.2.6 If G is a finite group, and M is a manifold with an action of
G, then a G-bundle E gives an orbivector bundle [E/G] over [M/G]. In par-
ticular, for a representation V of G, we have an orbivector bundle [V/G] over
[∗/G].

In general, given a manifold F and a group acting effectively on F , we define a
fiber orbibundle with structure groupG in a similar way, by requiring an atlas of the
form (Uα × F,Gα), where the actions and embeddings on the second component
are through elements of G. For example, given an orbivector bundle V , we can
form the projectivization RP(V), and the charts are of the form (Uα × RPn−1,Gα).
Note that the projectivization can have more singularities coming from elements
fixing setwise (and not necessarily pointwise) a line.

Example 8.2.7 Let ρ be the representation of Z2 on R2 given by multiplying by
−1. The linear orbifold [R2/Z2] has only one singular point. The projectivization
RP(ρ ⊕ R) is the orbifold [RP2/Z2]. Its singular locus consists of one point and
a copy of S1. The local representation at the isolated point is ρ, and the local
representation at points on S1 is given by complex conjugation.

A local orientation of an orbifold is a choice of an orientation at each point
that makes the action of Gx orientation preserving; this induces orientations on
all smaller charts. This is equivalent to identifying Gx with a subgroup of SO(n).
As with manifolds, an orientation of an orbifold is just a choice of local ori-
entations such that the transition functions are orientation preserving. We say
that an orbifold is locally orientable if all the local groups act preserving the
orientation.

Locally orientable orbifolds share many of the properties that manifolds have.
In particular, a locally orientable n-dimensional orbifold is a rational homology
manifold, i.e., for every x ∈ |X |,

Hn(|X |, |X | − {x}; Q) = Q.

Therefore a closed oriented orbifold of dimension n has a fundamental class in
Hn(|X |; Q). This is not true when working with integer coefficients and not even
with Z2 coefficients; the order of the groups and the local actions can introduce
torsion in Hn(|X |, |X | − {x}; Z).

To an orbifold X we can associate a topological space BX called the classifying
space of the orbifold; see [1, 9]. For example, for a global quotient X = [M/G]
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with G a finite group acting on M , BX is homotopy equivalent to the homo-
topy orbit space EG×G M . A key feature of this classifying space construc-
tion is that if V is an orbibundle on X , then BV → BX is an honest vector
bundle, and therefore we can talk about characteristic classes, now elements of
H ∗(BX ).

To an orbifold X we have associated two topological spaces, the underlying
space |X | and the classifying space BX ; there is a map BX → |X |, but in general
this map is far from being a homotopy equivalence.

Example 8.2.8 For a finite group G, B[∗/G] is homotopy equivalent to BG, the
classifying space for principal G-bundles [10], but |[∗/G]| is just a point.

Over the rationals these spaces are the same, at least homologically, i.e.,

H∗(|X |; Q) ∼= H∗(BX ; Q).

Remark 8.2.9 Therefore for an oriented orbifold we can talk at the same time
about a fundamental class and characteristic classes, at least rationally.

8.3 Cobordism of orbifolds

In her thesis, Druschel [7] started the study of orbifold cobordism by introducing a
complete set of invariants that determine the oriented cobordism class up to torsion.
To study the torsion, Druschel [7] considers cobordism with restrictions on the set
of local groups and how they fit into a commutative diagram to show that every
two- and three-dimensional effective oriented orbifold bounds.

By restricting the type of singularities that we allow, we get different cobordism
groups, and the study of how these groups relate when we allow more singularities
is the main theme of [7] and [5], where the interplay between different cobordism
groups is codified algebraically by a commutative diagram and a spectral sequence,
respectively. Druschel’s result on two- and three-dimensional orbifolds is explained
in [5] as the collapse of this spectral sequence.

Generalizing classical constructions from equivariant cobordism, such as fam-
ilies of subgroups and fixed point homomorphisms, in [4] a framework to study
cobordism groups with restricted singularities is introduced. For example, restrict-
ing the isotropy to groups of odd order, we get a nontrivial cobordism ring Nodd

∗,orb,
for which a complete description in terms of bordism theory is given.

In this section I present a complete answer to the question “When is a diffe-
rentiable manifold the boundary of an orbifold?” for orbifolds with isotropy groups
of odd order and oriented orbifolds. The proofs are self-contained and are adapta-
tions of the main techniques of [8] and [4].
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8.3.1 Orbifolds with boundary

As with manifolds, we can talk about orbifolds with boundary. Now the charts
correspond to open sets in Rn−1 × [0,∞) with a finite group acting linearly on
them. An orbifold has a well-defined boundary, found just by taking the restriction
of the action to the boundary on each chart. But some care should be taken: being
a point on the boundary is not a condition that can be checked topologically on the
underlying space. For manifolds the boundary was just the set of points for which

Hn(M,M − {x}) = 0.

Example 8.3.1 Consider the interval I = [−1, 1] with the action of Z2 taken as
multiplication by−1. The quotient [I/Z2] is an orbifold with boundary; the under-
lying space is an interval, but the boundary is just one point.

Example 8.3.2 Consider S1 the complex numbers of norm 1, and the Z2 action
given by complex conjugation. The quotient [S1/Z2] is an orbifold without bound-
ary, but the underlying space is homeomorphic to a closed interval.

The assiduous reader will realize that in both examples the action is non-
orientable and has codimension-one fixed points. As before, we can say that two
orbifolds Q1,Q2 are cobordant if there exists an n+ 1-dimensional orbifold with
boundary Wn+1 such that

∂Wn+1 = Q1 �Q2.

Without restricting the types of orbifolds that we allow, this definition is vacuous:
every orbifold is the boundary of another orbifold. The boundary of the orbifold
[I/Z2] is only one point. From this easy observation it follows that all orbifolds
are boundaries.

Remark 8.3.3 Q× [I/Z2] is an orbifold with boundary precisely Q.

Because any manifold is naturally an orbifold, we have a well-defined map N∗ →
Nodd
∗,orb and 
∗ → 
∗,orb, and the question “When is a differentiable manifold the

boundary of an orbifold?” can be recast algebraically.

Remark 8.3.4 Determine the kernels of the map N∗ → Nodd
∗,orb and 
∗ → 
∗,orb.

8.3.2 The unoriented case

As we have seen before, if we impose no restriction on the type of orbifolds
that we allow, any orbifold is the boundary of another orbifold: simply consider
X × [I/Z2]. A good class of orbifolds for which the theory is not trivial is the
class of orbifolds with only odd singularities. For this class of orbifolds, in [4] it
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is shown that the long exact sequences that appear when we increase the allowed
singularities split. The splitting has a clear geometric construction: it is the blowup
along the singular set.

Let us see now that if a manifold is the boundary of an orbifold with only odd
singularities, then it is actually the boundary of a manifold. The proof will give a
way to construct the bounding manifold out of the orbifold.

Suppose thatM is an n-dimensional manifold that is the boundary of an n+ 1-
dimensional orbifold W with isotropies of odd order only. Inasmuch as W is
compact, let H be a group with isotropy of maximal order. The points of W that
have isotropy H form a suborbifold, called the H -singular set:

WH = {x ∈ |W| | Gx ∼= H }.
WH is a purely ineffective orbifold; on each connected component the action of
H on a local chart is a fixed representation of H . Because WH is a suborbifold
of W , there is a normal orbibundle ν →WH . For orbifolds the tubular neighbor-
hood theorem also holds, and therefore we can identify a tubular neighborhood
with the total space of the normal orbibundle.

Consider RP(ν ⊕ R), the projectivization of the orbibundle ν ⊕ R. This also can
be thought of as the orbibundle that one gets by identifying antipodal points on the
disk orbibundle of ν ⊕ R.

Because we are assuming that all groups are of odd order, an element fixes a
line setwise if and only if it fixes the line pointwise. Therefore RP(ν ⊕ R) has the
same isotropy as W .

The singular sets of RP(ν ⊕ R) and W can be identified, as well as their respec-
tive tubular neighborhoods. We can take the connected sum of W and RP(ν ⊕ R)
along WH ; the resulting orbifold has strictly less isotropy groups. Because the
boundary of W is a manifold and RP(ν ⊕ R) has no boundary, this process does
not alter the boundary. We can iterate this construction, and because in each step
we are reducing the number of singularities, this process is finite. At the end we
have a manifold whose boundary is preciselyM . Therefore

Theorem 8.3.5 The kernel of the map N∗ → Nodd
∗,orb is zero.

8.3.3 The oriented case

As with manifolds, we can also talk about cobordism between oriented orbi-
folds. The cobordism ring of oriented orbifolds, 
∗,orb, was studied in [8], where

∗,orb ⊗Q was determined.

Let us proceed now and see that if an oriented manifold bounds an oriented
orbifold, then actually some multiple of it bounds a manifold (i.e., is a torsion
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element of
∗). This now easily follows from the existence of fundamental classes
for oriented orbifolds (over the rationals) and Pontrjagin classes for orbibundles.

SupposeMn is an oriented manifold that is the boundary of an oriented orbifold
W . We want to see that the Pontrjagin numbers ofM are zero, which shows thatM
is a torsion class of 
n. The proof is a slight modification of the one given before
for the vanishing of the Stiefel–Whitney numbers.

Denote by ι : M →W the inclusion. This map induces a map between the
classifying spaces Bι : BM → BW . Because M is a manifold, the projection
BM → M is a homotopy equivalence that has the property that p∗(TM) ∼= BTM .
Denote by [BM] = p−1

∗ ([M]) the preimage of the fundamental class ofM .
Also, W is an orbifold and therefore has a tangent orbibundle TW . This is not

a vector bundle, but BTW → BW is an honest vector bundle, and even more,
Bι∗(BTW) = BTM ⊕ R. We have

〈pI (TM), [M]〉 = 〈pI (TM), p∗[BM]〉
= 〈p∗pI (TM), [BM]〉 by functoriality
= 〈pI (p∗TM), [BM]〉 by naturality
= 〈pI (BTM), [BM]〉
= 〈pI (BTM ⊕ R), [BM]〉 by stability
= 〈pI (Bι∗(BTW)), [BM]〉 by the preceding remark
= 〈Bι∗pI (TW ), [BM]〉 by naturality
= 〈pI (TW ), Bι∗[BM]〉 by functoriality.

As before, by looking at the long exact sequence of the pair (BW, BM) we see
that Bι∗[BM] = 0. Therefore all the Pontrjagin numbers ofM are zero, i.e.,M is
a torsion element of 
∗.

In [3], Anderson showed that torsion elements of
∗ may be represented as sums
of classes of manifolds of the form

V n = RP(λ⊕ R2k+1),

the projectivization of the direct sum of a line bundle λ and a trivial (2k + 1)-
bundle. These manifolds have orientation-reversing involutions coming from the
bundle involution on λ.

Remark 8.3.6 If an orbifold X admits an orientation-reversing involution (actu-
ally, any orientation-reversing periodic map), then it is the boundary of an ori-
ented orbifold. Just consider the orbifold [X × I ]/Z2, where Z2 acts on X by the
orientation-reversing involution, and on I = [−1, 1] by multiplying by −1.

By the preceding remark and Anderson’s result, all the torsion elements of 
∗
are the boundaries of oriented orbifolds.

Theorem 8.3.7 The kernel of the map 
∗ → 
∗,orb is precisely the torsion of 
∗
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The idea of using orientation-reversing involutions to construct bounding orbi-
folds is the key geometric argument used in [7] and [5], where it is used to show
that all two- and three-dimensional oriented orbifolds bound.
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Canonical group quantization, rotation generators, and
quantum indistinguishability

carlos benavides and andrés reyes-lega∗

Abstract
Using the method of canonical group quantization, we construct the angular
momentum operators associated to configuration spaces with the topology of
(i) a sphere and (ii) a projective plane. In the first case, the angular momentum
operators derived this way are the quantum version of Poincaré’s vector, i.e.,
the physically correct angular momentum operators for an electron coupled to
the field of a magnetic monopole. In the second case, the operators one obtains
represent the angular momentum operators of a system of two indistinguishable
spin zero quantum particles in three spatial dimensions. The relevance of the
proposed formalism for the progress in our understanding of the spin–statistics
connection in nonrelativistic quantum mechanics is discussed.

9.1 Introduction

The connection between the spin of quantum particles and the statistics they obey
is a remarkable example of a simply stated physical fact without the recognition
of which many physical phenomena (ranging from the stability of matter and
the electronic configuration of atoms to Bose–Einstein condensation and super-
conductivity) would not have an explanation. Nevertheless, the simplicity of the
assertion “integer spin particles obey Bose statistics, and half-integer spin parti-
cles obey Fermi statistics” stands in bold contrast to its intricate physical origin.
Indeed, Pauli’s proof of the spin–statistics theorem [Pau40] (improving on ear-
lier work by Fierz [Fie39]), showed that the spin–statistics connection was deeply
rooted in relativistic quantum field theory. The path to a rigorous proof of this
theorem (from the mathematical point of view) was a long one and involved the
efforts of many people (see, e.g., the book by Duck and Sudarshan [DS98b]). The

∗
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modern proof of the theorem, in the framework of the general theory of quantum
fields, is described in the book by Streater and Wightman [SW00], where many
references to original sources are given. There are also treatments of the theo-
rem within the algebraic approach to quantum field theory [Haa96]. An approach
within Lagrangian field theory (based on earlier work by Schwinger), which makes
use of Lorentz invariance, but in a restricted sense, was pioneered by Sudar-
shan [Sud75, DS98a]. Nowadays, the spin–statistics theorem stands as a well-
established result of theoretical physics.

In spite of all of these triumphs, many authors have been of the opinion that there
might be alternative ways to prove the spin–statistics theorem, in a way that does
not use the whole machinery of relativistic quantum field theory. This “belief” in
a nonrelativistic proof of the theorem has its origin (presumably) in the realization
that the topology of the underlying structures of a quantum theory (symmetry
groups, configuration spaces, gauge potentials, etc.) may lead to the explanation
and clarification of many features of the theory. For instance, from the work of
Schulman [Sch68] it became clear that the path integral approach to quantization
had to be modified if it was to be applied to a multiply connected configuration
space.

This led Laidlaw and DeWitt [LD71] to study the path integral quantization
of the configuration space of N indistinguishable (spinless) particles in R3. They
arrived at the conclusion that there were exactly two inequivalent quantizations of
such a system, one leading to Fermi statistics, the other leading to Bose statistics.
The lesson was: If the indistinguishability of particles is taken into account before
quantizing, then the Fermi–Bose alternative emerges (in three spatial dimensions)
as a consequence of the nontrivial topology of the configuration space. In this sense,
one can dispense with the symmetrization postulate, if quantum indistinguishability
is taken into account right from the beginning.

Parallel to these developments was the work on quantization of nonlinear field
configurations by Finkelstein and Rubinstein [FR68], where a general relation
between kink exchange and rotations was established, using homotopy arguments,
that resembled the connection between spin and statistics (exchange of particles
produces a phase (−1)2S in the wave function, the same effect that a rotation
through 2π has on the wave function of a single particle of spin S).

Leinaas and Myrheim [LM77] reformulated the problem studied by Laidlaw
and DeWitt in a language close to that of fiber bundles, obtaining the same results
for three spatial dimensions (the Fermi–Bose alternative). In addition, they found
that in two spatial dimensions, the possible statistics were given not by a sign, but
by a phase factor (the so-called anyon statistics [Wil82]).

Since then, a considerable amount of work has been devoted to attempts at
alternative, nonrelativistic proofs of the spin–statistics theorem. An approach where
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pair creation and annihilation are incorporated indirectly in the topology of the
configuration space was proposed in [BDG+90].

Perhaps one of the most interesting and influential proposals that have been
put forward in recent times is that of Berry and Robbins [BR97]. It is based on
a generalization of Leinaas and Myrheim’s work in which the spin degrees of
freedom are included in the treatment of two indistinguishable quantum particles.
Although it does not lead to a new proof of the theorem [BR00], it has inspired
new developments, both in mathematics and in physics. For instance, the recent
work of Atiyah and coworkers on configuration spaces [Ati0l, AS02, AB02] was
motivated by the technical difficulties that appear when one tries to generalize
the Berry–Robbins construction to the N -particle case. Of more relevance for
physics, their work seems to have given new impetus to the nonrelativistic spin–
statistics issue (see, for example, [Ana02, Pes03b, AM03, Pes03a, SD03, Kuc04,
CJ04]). It has also led to several questions that, in the opinion of the authors, deserve
attention.

So, in order to advance in our understanding of the problem, it is necessary to first
settle those issues. One of them – a crucial aspect of the Berry–Robbins approach –
is the imposition of single-valuedness on the wave function. This condition has
been studied in detail by the second-named author and collaborators [PPRS04],
arriving at the conclusion that the single-valuedness condition is inconsistent with
the assumption that the wave function is a section of a vector bundle over the
physical configuration space. The global approach proposed in [PPRS04] also
allows one to explain why the proof presented in [Pes03b] fails [RL].

Another point, which will be the topic of this paper, has to do with the rotational
properties of a quantum system of indistinguishable particles. Recent work by
Kuckert shows that it is possible to characterize the connection between spin and
statistics in terms of a unitary equivalence between the angular momentum operator
of a single-particle system and the angular momentum operator of a two-particle
system, both operators being restricted to suitable domains [Kuc04]. We believe that
a detailed analysis of that equivalence, which takes fully into account the topology
of the problem, could lead to interesting results. For this reason, in this paper we will
construct the angular momentum operators for a system of two indistinguishable
particles of spin zero, using Isham’s canonical group quantization [Ish84]. We
shall see how, using Isham’s method, we obtain structures (SU (2) equivariance)
that are already present in the Berry–Robbins construction, though not explicitly.
This is interesting, because one of the advantages of the spin basis of Berry and
Robbins (Schwinger construction) is that it allows for explicit computations. Thus,
we expect that the Berry–Robbins construction, suitably reinterpreted (as proposed
in [PPRS04]), may in fact lead to an advance in our understanding of the spin–
statistics connection.
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Let us finish this introduction with a description of the contents of this chapter.
In Section 9.2 we briefly review Isham’s canonical group quantization method. In
Section 9.3 – as an example illustrating the dependence of quantum observables on
the topology of the configuration space – we then construct, using Isham’s method,
the angular momentum operators for an electron coupled to the field of a magnetic
monopole. In Section 9.4 we consider a system of two indistinguishable, spin zero
particles. Again using Isham’s method, we construct the corresponding angular
momentum operators. The chapter finishes with some remarks and conclusions on
Section 9.5.

9.2 Canonical group quantization

Quantization of a classical system described by means of a symplectic manifold
(M,ω) involves the construction of a Hilbert space H and of a quantization map
“ ˆ ” allowing one to replace classical observables f (that is, smooth, real-valued
functions on M) by self-adjoint operators f̂ acting on H. The quantization map
is required to be real, linear and injective, and should map constant functions
to multiples of the identity operator. Additionally, the Poisson bracket of two
classical observables must be mapped to the commutator of the corresponding
quantum observables (Dirac’s quantization conditions). It is well known that such
a full quantization (which includes an additional irreducibility requirement) is, in
general, not implementable (Van Hove’s theorem). Nevertheless, there are several
quantization methods that allow one to pick a subalgebra of the Poisson algebra
(C∞(M), { , }) and to map it homomorphically to an algebra of operators, satisfying
physically and mathematically reasonable conditions. One of them, widely known,
is geometric quantization [Woo80]. In this section we will briefly review a scheme
developed by Isham [Ish84], the method of canonical group quantization. It has
some similarities with geometric quantization and also uses some of the techniques
developed by Mackey [Mac68] and Kirillov [Kir76].

The starting point of Isham’s approach is the observation that, behind the usual
quantum theory of a scalar particle on Rn, where the canonical commutation
relations (CCR) [

q̂ i , p̂j
] = ih̄δij , [

q̂ i , q̂j
] = 0 = [p̂i, p̂j ] (9.1)

are satisfied, there is a group acting on the classical phase space of the theory by
symplectic, transitive and effective transformations. In fact, regarding Rn × Rn as
an additive group, we see that the action defined by

(Rn × Rn)× T ∗Rn −→ T ∗Rn, (9.2)
( (a, b), (q, p) ) �−→ (q − a, p + b)
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has the properties mentioned. That (9.1) and (9.2) have something in common can
be seen if one considers the exponentiated (Weyl) form of the CCR. In fact, defining
unitary operators U (a) and V (b) by

U (a) := e−iap̂, V (b) := e−ibq̂ , (9.3)

one easily checks that the position and momentum operators transform according
to

U (a)q̂U (a)−1 = q̂ − h̄a,
(9.4)

V (b)p̂V (b)−1 = p̂ + h̄b.
On a general configuration space Q, there are no a-priori given position and

momentum operators. For example, the natural choice for the position operator on
Q = S1 is the angle variable, which, as is well known, cannot be used as the basis
for a quantum theory on S1 [Kas06]. In such cases, a good starting point is the
consideration of the symmetry groups of the classical configuration space. Once
the appropriate group, the canonical group C, has been identified, the construction
of the corresponding quantum theory proceeds by studying the unitary, irreducible
representations of the group. One then sees that in the particular case of Q = Rn

the CCR (9.1) arise as the unique (by virtue of the Stone–von Neumann theorem)
solution of a purely geometric problem: the operators (12.3) provide an irreducible
unitary representation of the unique simply connected Lie group the Lie algebra
of which is a central extension of the Lie algebra of the group G = (Rn × Rn, + ).
So, in this special case, the canonical group C turns out to be the Heisenberg
group.

Keeping these preliminary remarks in mind, let us proceed to describe the general
scheme. It is based on a careful analysis of the following diagram:

0 R C∞(M,R)


HamVF(M) 0.

L(G)

γ

P

(9.5)

The meaning of the different terms appearing in (9.5) is the following:

� M is a symplectic manifold. We are mainly interested in the case where it is a phase
space, of the formM = T ∗Q, with Q a homogeneous space.

�  is the map that assigns to each function f on phase space (the negative of) its Hamil-
tonian vector field. Following the notation in [Ish84], we shall write  (f ) = −ξf . The
kernel of  is the set of constant functions on phase space, thus making the first row of
the diagram a short exact sequence.



Quantization, rotation generators, and quantum indistinguishability 349

� G is a Lie group, acting by symplectic transformations onM . The Lie algebra of G will
be denoted L(G).

� The map γ : L(G)→ HamVF(M) is the Lie algebra homomorphism induced by the
G-action.

� Once the appropriate G-action has been found (certain requirements must be met), one
looks for a linear map P : L(G)→ C∞(M,R) that is also a Lie algebra homomorphism.

The idea of the quantization scheme is the following. Let us assume that P
maps L(G) isomorphically onto some Lie subalgebra of (C∞(M,R), { , }). In this
case one can define a quantization map by fixing a representation U of the group
and assigning to each function lying in the image of P the self-adjoint generator
obtained from U by means of P−1. The existence of a map P with the desired
properties is not something obvious. There are obstructions coming from the fact
that the map P determines a class in the second cohomology group of L(G)
(with values in R). Of course, there might be many G-actions on M that could
be considered. But the restriction will be imposed that the diagram (9.5) must
be commutative. The reason for the imposition of this restriction is that, given a
(finite-dimensional) Lie subalgebra h of C∞(M,R), the Hamiltonian vector field
that a function f ∈ h generates, ξf , gives place to a one-parameter group, acting by
symplectic transformations onM . If all these vector fields are complete, their one-
parameter groups will generate a group G of symplectic transformations, and, if the
mapping sending h into the set of Hamiltonian vector fields is injective, we obtain a
Lie algebra isomorphism h ∼= L(G). On the other hand, given a symplectic action of
a Lie group G onM , there is a naturally induced map γ : L(G)→ X(M). It is only
if γ (A) is a Hamiltonian vector field that we can assign a function on phase space
to the Lie algebra element A. For this reason, the requirement that the image of γ
lie in HamVF(M) must be imposed.1 The idea is, therefore, to try to reverse this
procedure: starting with a group G of symplectic transformations, we seek a kind
of inverse to the map  . More precisely, we look for a Lie algebra homomorphism
P such that  ◦P = γ . In other words, P must be a linear map satisfying

{P (A), P (B)} = P ([A,B]) (9.6)

and

γ (A) = −ξP (A) (9.7)

for all A and B in L(G).
Because every exact sequence of vector spaces splits, there is no difficulty in

finding a linear map P such that the diagram commutes. The problem lies in (9.6).
The condition (9.7) fixes P (A) only up to a constant (because ker  = R), and in

1 This is automatically satisfied if H 1(M; R) = 0 or if G is semisimple.
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some cases it is possible to adjust these constants so as to satisfy (9.6). But this is
only possible if the cocycle defined by

z(A,B) := {P (A), P (B)} − P ([A,B]) (9.8)

is also a coboundary. We thus see how the obstruction is measured by the second
cohomology group of L(G). In case the cocycle cannot be made to vanish by a
redefinition of P , a central extension of L(G) by R can be used to construct the
desired map. As mentioned, this is precisely the way in which the Heisenberg group
(and with it the CCR) arises from the action (9.2).

Once the appropriate canonical group C has been found,2 a quantization map can
be defined by assigning to each elementP (A) ∈ ImP ⊆ C∞(M,R) the self-adjoint
generator corresponding toA induced by a unitary, irreducible representation of the
canonical group. Because there may be inequivalent representations of the canon-
ical group, we may also obtain different, inequivalent quantizations of the same
classical system. The general scheme can thus be divided in two main steps:

(i) Find the canonical group C.
(ii) Study the irreducible, unitary representations of the canonical group.

In the particular case where M = T ∗Q, there is a natural place to start the
search for the canonical group, and it turns out that the representations can be
constructed using Mackey’s theory of induced representations. When M is the
cotangent bundle of some configuration space Q, then every diffeomorphism on
it induces a symplectic transformation, given by the pullback operation on the
bundle. Additionally, the exterior differential of any smooth function on T ∗Q
induces a canonical transformation, by translations along the fibers. Because none
of these actions is transitive, it is necessary to consider both of them. The natural
combination of these operations can be regarded as coming from the group action
ρ defined by ([h] ∈ C∞(Q,R)/R, φ ∈ DiffQ and l ∈ T ∗q Q):

ρ([h],φ)(l) := φ−1∗(l)− (dh)φ(q), (9.9)

provided the set C∞(Q,R)/R× DiffQ is endowed with the structure of a semidi-
rect product. That is, C∞(Q,R)/R � DiffQ is the group with elements of the form
([h], φ) ∈ C∞(Q,R)/R× DiffQ and with product

([h2], φ2) · ([h1], φ1) = ([h2]+ [h1◦φ−1
2 ], φ2◦φ1). (9.10)

Thus, for M = T ∗Q, step (i) reduces to the problem of finding a suitable finite-
dimensional subspace W of C∞(Q,R)/R and a suitable finite-dimensional sub-
groupG of DiffQ. The group G of the diagram (9.5) will then be given byW �G.

2 In some cases it is given by G; in others, it will be a Lie group whose Lie algebra is the central extension of
L(G).
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At this point, we refer the reader to Isham’s article [Ish84] for a thorough
discussion of the method. For the applications that will be presented in the next
two sections, it will be enough to briefly comment on how the vector spaceW and
the group G make their appearance in the still more special case in which Q is a
homogeneous space. A brief discussion of the way in which the representations are
constructed in this case will also be presented at the end of this section.

Assume thatR : G→ GL(W ) is a representation of a Lie group on a real, finite-
dimensional vector spaceW . Then, a contragredient representation R∗ is naturally
induced onW ∗, by duality. It is defined as follows (g ∈ G, u ∈ W and ϕ ∈ W ∗):(

R∗(g)ϕ
)

(u) := ϕ (R(g)u) . (9.11)

Regarding W as a configuration space, we have T ∗W ∼= W ×W ∗. Using the rep-
resentation R∗, one can construct the semidirect productW ∗ �G in the usual way.
It is then possible to define a left action of G := W ∗ �G on T ∗W , by setting

l(ϕ′,g)(u, ϕ) := (R(g)u,R∗(g−1)ϕ − ϕ′) . (9.12)

An element ϕ of the dual space W ∗ can be naturally regarded as a function f ϕ ∈
C∞(W,R) by setting f ϕ(u) := ϕ(u). The map P is then naturally given by (Ã ≡
(ϕ,A))

P : L(W ∗ �G) −→ C∞(T ∗W,R),
(9.13)

Ã �−→ P (Ã) : (u,ψ) �→ ψ (R(A)u)+ ϕ(u).

As explained in detail in [Ish84], all properties that the diagram (9.5) must satisfy
are fulfilled in this case, with the exception that the G-action is not transitive. This
problem can be solved by restricting the action to aG-orbit ofW , say Ov, for some
v ∈ W . This leads us directly to configuration spaces of the form Q = G/H (if
Q = Ov, then H is the little group of v). The action (9.12), as well as the map
(9.13), can then be restricted to G/H ∼= Ov ⊆ W , and one can show that (9.12) is
exactly of the form (9.9).

Thus, starting with a homogeneous space of the form G/H , one has to find a
vector space W on which G acts, and such that G/H is a G-orbit. In this case,
the canonical group can be chosen as C ≡ G := W ∗ �G. The unitary irreducible
representations of this group can be constructed using Mackey’s theory of induced
representations. Generally, the resulting representation space will be the space of
square-integrable sections of a vector bundle E over Q′ = G/H , constructed as an
associated bundle to the principal bundle G→ G/H , by means of an irreducible
unitary representation of H . Here, the subgroup H is regarded as the isotropy
group of a previously chosen element in the character group of W ∗, Char(W ∗).3

3 Hence, Q′ is aG-orbit in Char(W ∗). In the examples we are interested in, these orbits coincide with theG-orbits
inW ∗ and we can identify them, i.e., Q′ ∼= Q.
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Integration of sections is carried out using the Hermitian structure of the vector
bundle and a G-quasi-invariant measure µ on configuration space. The operators
giving the representation of the subgroup G of C are constructed using a lift l↑

of the G-action l on Q′ to the corresponding vector bundle. This lift is naturally
induced by the right action of G on the principal bundle. We are thus naturally led
to consider G-vector bundles over Q′. Recall that a G-vector bundle is a vector
bundle (with total spaceE) over aG-spaceQ, together with a lift l↑, i.e., aG-action
on E which is linear on the fibers and such that the following diagram commutes
(g ∈ G):

E
l
↑
g−−−→ E

π

' π

'
Q′

lg−−−→ Q′.

(9.14)

If " is a section of the bundle (i.e., a wave function), then the unitary operator
U (g) acts on it as follows:

(U (g)")(x) :=
√
dµg

dµ
(x) l↑g"(g−1 · x), (9.15)

where dµg/dµ is the Radon–Nikodym derivative of µg with respect to µ. This
G-representation can be extended to the whole group C as follows (recall that x is
an element in a G-orbit of Char(W ∗)):

(V (ϕ)")(x) := x(ϕ)"(x). (9.16)

The infinitesimal version of these relations gives place to the corresponding self-
adjoint generators, of which the angular momentum operators of a particle whose
configuration space is a sphere are one example, to which we now turn our attention.

9.3 Magnetic monopole

9.3.1 The classical problem

In this section, we explore a simple but fundamental example: the problem of a
point electric charge coupled to the the (external) magnetic field of a fixed magnetic
monopole. As is well known, the importance of this problem lies in the fact that, in
order for the quantum problem to be consistent, the electric charge of the particle
must be quantized [Dir31].

Classically, the dynamics of a particle of mass m and charge e coupled to the
field produced by a magnetic monopole of strength g can be described by the
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Lagrangian

L(q, q̇) = 1

2
mq̇2 + e

c
q̇ · A(q), (9.17)

where q = (q1, q2, q3) denotes the position of the particle. The vector potential A
must be chosen in such a way that its curl gives a radial field. If g denotes the
magnetic “charge,” then (using the notation r = ‖q‖ and r̂ = q/r) we require

B := ∇ × A != g r̂
r2
. (9.18)

This condition cannot be satisfied using a global gauge potential A. Thus, the
Lagrangian (9.17) is only locally defined. It is possible to give a global description of
this problem, in the Lagrangian setting, but the introduction of additional structures
is necessary [ZSN+83]. For our purposes, the local description will be sufficient.
We therefore introduce the following local expressions for the gauge potential:

AN (q) := g

r(r + q3)
(−q2, q1, 0),

(9.19)
AS(q) := g

r(r − q3)
(q2,−q1, 0).

Using the general form of Noether’s theorem,4 one can show that there are three
conserved quantities, related to the action of the rotation group on the configuration
space. Because the Lagrangian is only locally defined, one has to compute the
conserved quantities using the two expressions for the gauge potential,AN andAS .
The conserved quantities obtained using AN and AS turn out to be the same, up to
an irrelevant constant term. They can be combined into a single vector

J = mq × q̇ − eg
c
r̂, (9.20)

which is to be interpreted as the angular momentum vector of the particle. In fact,
working in the Hamiltonian formalism (still in local coordinates), one obtains the
following expression for J :

J = q ×
(
p − e

c
AN
)
− eg
c
r̂ = L− eg

c
KN, (9.21)

where

L := q × p,
(9.22)

KN := 1

g
(q × AN )+ r̂ = q − rẑ

r − z .

4 The general form of the theorem guarantees the existence of a conserved quantity whenever the Lagrangian is
invariant under a one-parameter group of transformations up to a gauge transformation.
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Equation (12.13) can be used in order to compute the Poisson brackets of the
components of J . The result is {Ji, Jj } = −εijkJk. Thus, the components of J
satisfy angular momentum commutation relations and are to be regarded as giving
the correct expression for the angular momentum of the particle:

J = L− eg
c
K. (9.23)

In spite of the fact that the description of this system can only be given in local
terms, the angular momentum is a well-defined, global function. But, as is well
known, the situation changes drastically when we consider the quantum version of
the problem. There are different ways to analyze it, all yielding the same result:
the wave function for an electron coupled to the field of a magnetic monopole is a
section of a line bundle over the configuration space. The topology of this bundle
is characterized by an integer number n that relates magnetic and electric charge,
giving rise to Dirac’s famous result:

eg/c = n
2
h̄. (9.24)

Because the wave function is a section in some bundle, the corresponding angular
momentum operators must be maps from the space of sections to itself. A physi-
cally motivated and detailed analysis of this problem, involving the construction of
the angular momentum operators, can be found in [BL81]. There, the form
of the angular momentum operators is guessed from the classical expression,
leading to an operator of the form L− µK , where µ = eg/h̄c. The quantiza-
tion condition (9.24) arises from a consistency requirement on the theory.5 In the
next section we will arrive at the same result by applying the canonical group
quantization method to the magnetic monopole problem.

9.3.2 The quantum problem

The configuration space for the monopole problem is given by R3 \ {0}. Because the
monopole field is spherically symmetric and we are only interested in the rotational
properties of the system, we can regard the sphere S2 as the configuration space on
which the magnetic monopole problem is defined. Moreover, because the sphere is
a deformation retract of R3 \ {0}, the topological effects produced by both spaces
in the quantum theory are the same.

In order to quantize, we want to think of the configuration space as a homoge-
neous space. We choose the description of the sphere as the quotient SU (2)/U (1).

5 This comes from the fact that the wave functions, as well as the angular momentum operators, are defined only
locally. The consistency requirement imposed is that expectation values of the quantum operators, computed
using the different local expressions, must coincide in the overlap regions.
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In this case, the canonical group is given by C = (R3)∗ � SU (2). Because we are
only interested in obtaining the angular momentum operators, we only need to con-
struct the U operators, as defined in (9.15). The Jacobian factor dµg/dµ is equal
to one in this case, because the measure is SU (2)-invariant. Hence, all we have to
do is to choose an irreducible unitary representation of U (1) in order to construct a
vector bundle associated to the principal bundle SU (2)→ SU (2)/U (1). The lift l↑

is naturally induced by the group product in SU (2), as explained in the following.
Let

Un : U (1) −→ Gl(C),
(9.25)

eiφ �−→ Un(eiφ) := einφ

denote one of the unitary representations of U (1) on C, labeled by an integer n.
The elements of the associated bundle Ln := SU (2)×Un C are equivalence classes
of the form [(p, v)], with p ∈ SU (2) and v ∈ C. The equivalence relation is

(p, v) ∼ (p · λ,Un(λ−1)v). (9.26)

Here,U (1) is regarded as the subgroup of SU (2) consisting of all diagonal matrices
of the form diag(λ, λ̄), with ‖λ‖ = 1. If we adopt the convention of denoting the
elements of SU (2) by tuples (z0, z1) that represent matrices of the form(

z0 z̄1

−z1 z̄0

)
, (9.27)

then the right action of U (1) on SU (2), which is given by(
z0 z̄1

−z1 z̄0

)
�−→

(
z0 z̄1

−z1 z̄0

)(
λ 0
0 λ̄

)
=
(
λz0 (λz1)
−(λz1) (λz0)

)
, (9.28)

can be equivalently expressed as

(z0, z1) �−→ (z0, z1) · λ = (λz0, λz1). (9.29)

We will use these conventions in order to identify the bundle SU (2)→
SU (2)/U (1) with the Hopf fibration S3 → S2, when appropriate. If in addi-
tion we consider the equivalence of S2 with CP 1, we can regard the projection
π : SU (2)→ SU (2)/U (1) as the map π ((z0, z1)) = [z0 : z1]. Thus, the left action
of SU (2) on S2 ∼= CP 1 takes the following form (g = (α, β)):

l : SU (2)× CP 1 −→ CP 1,
(9.30)

(g, [z0 : z1]) �−→ lg([z0 : z1]) = [αz0 − β̄z1 : βz0 + ᾱz1
]
.

The left action of SU (2) on itself given by the group product allows one
to lift the action l to the bundle Ln. It is given by the following expression
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(g, p ∈ SU (2), v ∈ C):

l↑g ([(p, v)]) := [(gp, v)] . (9.31)

The action of the angular momentum operators on wave functions can then be
obtained from the infinitesimal version of (9.15).

Given that these operators act on the space of global sections of the bundle, it
is necessary, in order to be able to compare with the expressions known from the
physics literature, to obtain local expressions. Therefore, we will construct local
trivializations for the bundleLn and will then compute the action of the infinitesimal
generators, using local sections.

9.3.3 Local description of Ln
The total space of the line bundle Ln = SU (2)×Un C consists of equivalence
classes of the form [((z0, z1), v)], with (z0, z1) ∈ SU (2) and v ∈ C. The projection
is the map πn : Ln→ S2 ∼= CP 1 given by πn([((z0, z1), v)]) := [z0 : z1]. In order
to construct local trivializations for this bundle, we start by defining local charts,
as follows.

Set

UN = S2 \ {N} (sphere with north pole removed),

US = S2 \ {S} (sphere with south pole removed).

We define local charts using stereographic projections onto the complex plane. Let
us denote the local coordinates as follows:

z : UN −→ C,
(9.32)

x �−→ z(x)

(stereographic projection from the north pole) and

ζ : US −→ C,
(9.33)

x �−→ ζ (x)

(stereographic projection from the south pole). Notice that if on CP 1 we set
U0 := {[z0 : z1] | z1 �= 0} and U1 := {[z0 : z1] | z0 �= 0}, then we can define local
charts that coincide with z and ζ through the equivalence S2 ∼= CP 1, as follows:

U0 −→ C,
(9.34)

[z0 : z1] �−→ z := z0

z1

and

U1 −→ C,
(9.35)

[z0 : z1] �−→ ζ := z1

z0
.
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Hence, U0 can be identified with UN , and U1 with US . It will be convenient to keep
in mind that if x is a point in the sphere with polar coordinates (θ, ϕ), then

z(x) = eiϕ sin θ

1− cos θ
and ζ (x) = e

−iϕ sin θ

1+ cos θ
. (9.36)

Local trivializations for the bundle Ln can be defined in the following way.
Using the notation g ≡ (z0, z1) ∈ SU (2), set

ϕN : π−1
n (UN ) −→ UN × C,

(9.37)

[(g, v)] �−→
(

[z0 : z1],

(
z1

|z1|
)n
v

)
and

ϕS : π−1
n (US) → US × C,

(9.38)

[(g, v)] �−→
(

[z0 : z1],

(
z0

|z0|
)n
v

)
.

As can be easily checked, these maps are well defined, and provide local homeo-
morphisms. From these local trivializations we obtain, for the transition function
gSN ,

(ϕS ◦ ϕ−1
N )([z0 : z1] , w) =

(
[z0 : z1] ,

(
z

|z|
)n
w

)
, (9.39)

that is, gSN ([z0 : z1]) = (z/|z|)n. From this we see that the first Chern number of
Ln is n. This means that an integer number that at first was chosen to (partially)
label a representation of the canonical group also determines the topology of the
bundle where the space of physical states is defined.

9.3.4 Construction of the angular momentum operators

Recall that the lifting l↑ of the SU (2) action on the sphere to Ln is induced by the
corresponding lifting on the principal bundle. Therefore, Ln has the structure of a
homogeneous SU (2) bundle:

SU (2)×Un C
l
↑
g−−−→ SU (2)×Un C

πn

' πn

'
S2 lg−−−→ S2,

(9.40)

where lg[g′] := [gg′] and l↑g ([g′, v]) = [gg′, v].
What we want to do now is to use the local trivializations ϕN and ϕS to obtain a

local version of (9.40). Using the map ϕN , we can obtain a local expression for l↑g .
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The corresponding map will be denoted σg:

(9.41)SU (2)×Un C
l
↑
g

πn

ϕN

SU (2)×Un C

πn

ϕN

UN ⊂ S2
lg

UN ⊂ S2

UN × C
σg

UN × C.

According to the diagram, we have σg = ϕN ◦ l↑g ◦ ϕ−1
N . Off course, this map is

well defined only for elements g ∈ SU (2) such that lg(UN ) ⊂ UN . Because we
are interested in the infinitesimal generators of the group action, we will only
consider group elements near the identity, so that this condition will always be
satisfied.

Thus, for g = (α, β) ∈ SU (2) and ([z0 : z1], w) ∈ UN × C we obtain

σg (([z0 : z1], w)) = (ϕN ◦ l↑g ◦ ϕ−1
N )([z0 : z1], w)

(9.37)= (ϕN ◦ l↑g )
([(

(z0, z1), (z1/|z1|)−n w
)])

(9.31)= ϕN
([(

(α, β) · (z0, z1), (z1/|z1|)−n w
)])

(9.37),(9.30)=
(

[z′0 : z′1],

(
βz+ ᾱ
|βz+ ᾱ|

)n
w

)
, (9.42)

where z′0 = αz0 − β̄z1 and z′1 = βz0 + ᾱz1. Let s : S2 → Ln be a section of the
bundle Ln. Using the local trivializations, we get local sections (γ = N, S)

sγ : Uγ −→ Uγ × C,
(9.43)

x �−→ ϕγ ◦s.

These are necessarily of the form sγ (x) = (x, |ψγ (x)〉), with x �→ |ψγ (x)〉 a
complex-valued function defined on Uγ . The local version of (9.15) is, for γ = N
and g = (α, β),

(Uloc(g)sN )(x) = σg
(
sN (g−1 · x)

) = σg ((g−1 · x, |ψN (g−1 · x)〉))
=
(
x,

(
βz(x)+ ᾱ
|βz(x)+ ᾱ|

)n ∣∣ψN (g−1 · x)
〉)

=:
(
x, ω(x, g)

∣∣ψN (g−1 · x)
〉)
, (9.44)
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with ω(x, g) defined through the last equality. In order to find local expressions
for the infinitesimal generators, we introduce, for each generator, an appropriate
parametrization t �→ g(t). The corresponding generators are then defined by their
action on local sections (sN �→ J sN ) in the following way:

(J sN )(x) := i d
dt

∣∣∣
t=0

(Uloc(g(t))sN )(x). (9.45)

The general form of the generator will be J = L̃+ ω̃, where ω̃ is an x-dependent
factor and L̃ a differential operator. This can be seen from

i
d

dt

∣∣∣
t=0

(
ω(x, g(t))

∣∣ψN (g(t)−1 · x)
〉)

=
(
i
d

dt

∣∣∣
t=0
ω(x, g(t))

)
︸ ︷︷ ︸

=ω̃(x)

|ψN (x)〉 + i d
dt

∣∣∣
t=0

∣∣ψN (g(t)−1 · x)
〉

︸ ︷︷ ︸
=L̃|ψN (x)〉

. (9.46)

The generator for rotations around the z axis is obtained by putting g(t) =
(α(t), β(t)) = (eit/2, 0). In this case. L̃ = L̂z, the third component of the usual
(orbital) angular momentum operator. For ω̃ we obtain

ω̃z(x) = i dω
dt

∣∣∣
t=0
= n

2
.

Thus,

Ĵ Nz = L̂z +
n

2
.

For rotation around the y axis we put α(t) = cos(t/2) and β(t) = sin(t/2). This
leads to

ω̃y(x) = i dω(x, g(t))

dt

∣∣∣
t=0
= i d
dt

∣∣∣
t=0

(
cos t/2+ sin t/2 z(x)

cos t/2+ sin t/2 z(x)

)n/2
= −n

4

(
z(x)− z(x)

) = n
2

sin θ sinϕ

1− cos θ
. (9.47)

Here again we have L̃ = L̂y , with L̂y the second component of the usual (orbital)
angular momentum operator. It follows that

JNy = Ly −
n

2

y

1− z . (9.48)

Using the commutation relations, we obtain, for the remaining generator,

JNx = Lx −
n

2

x

1− z . (9.49)
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Writing JN = (JNx , J
N
y , J

N
z ), we can express the result of the previous computa-

tions as follows:

JN = L− n
2
KN. (9.50)

Here, L represents the usual orbital angular momentum operator, and KN is given
by (9.22) (here it is regarded as a multiplication operator). The result for the local
operator J S is obtained in the same way.

Comparing with the classical expression (9.23), we see that the condition µ =
n/2 must be imposed in order to obtain a consistent quantum theory. This is,
in fact, an expression of the quantization of the electric charge, obtained by the
canonical group quantization method. Notice that here we are only considering
the kinematical part of the problem.

9.4 Rotation generators for indistinguishable particles

9.4.1 Configuration space

The configuration space for a system ofN indistinguishable, noncolliding particles
in R3 is defined as

QN = Q̃N/SN, (9.51)

where

Q̃N =
{
(r1, . . . , rN ) ∈ R3N | ri �= rj whenever i �= j} , (9.52)

with SN denoting the permutation group. We are interested in the case N = 2, for
which we have the following homeomorphism:

Q2
∼= R3 × R+ × RP 2. (9.53)

Here, the projective space RP 2 is obtained, through identification of exchanged
configurations, from the sphere consisting of all normalized relative position vec-
tors. Because we are only interested in topological effects, we regard RP 2 as the
configuration space for this problem.

It is well known that the quotient map S2 → RP 2 gives rise to a Z2-bundle
structure and also that there are two inequivalent (scalar) quantizations on RP 2,
determined by the characters of the fundamental group π1(RP 2) ∼= Z2. Because
our aim is to construct the infinitesimal generators of rotations for this problem, it
will be convenient to describe the configuration space both as the quotient S2/Z2

and as a homogeneous space, of the form SU (2)/H . Setting

H :=
{(
λ 0
0 λ̄

)
,

(
0 λ̄

−λ 0

)
| |λ|2 = 1

}
, (9.54)
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one can show that the space of right orbits of H on SU (2) is homeomorphic to
RP 2. We will denote the orbits of this action as [[z0 : z1]], where

[z0 : z1] ∈ CP 1 ∼= S2.

9.4.2 Construction of the angular momentum operators

The construction is similar to the one presented in the previous section. Because
the configuration space is of the form SU (2)/H , we start by considering unitary
representations of the group H . In one complex dimension, we only have two
possibilities, given by the trivial representation (boson statistics) and by

κ : H −→ Gl(C),(
λ 0
0 λ̄

)
�−→ 1, (9.55)(

0 λ̄

−λ 0

)
�−→ −1.

From now on, we will only consider this representation, which is the
one giving rise to Fermi statistics (i.e., wave functions for scalar particles
violating the spin–statistics connection). The total space of the line bundle
SU (2)×κ C associated to the principal bundle SU (2)→ SU (2)/H is the space
{[(g, v)] | g ∈ SU (2) and v ∈ C} of equivalence classes defined by the equivalence
relation (g, v) ∼ (gh, κ(h−1)v). The projection is given by

πκ ([(z0, z1), v]) = [[z0 : z1]]. (9.56)

The action of the rotation group SU (2) on the configuration space is the one
naturally induced by the action on the sphere. That is, for g = (α, β) ∈ SU (2) and
p = [[z0 : z1]] ∈ SU (2)/H , we have

lg(p) = [[αz0 − β̄z1 : βz0 + ᾱz1]]. (9.57)

As in the previous section, the action can be lifted to the total space of the bundle,
by setting

l↑g ([(z0, z1), v]) = [(g(z0, z1), v)] . (9.58)

In the example of the magnetic monopole we had to introduce local trivializations
in order to obtain the known expressions for the angular momentum operators. For
the case of indistinguishable particles that we are considering in this section, our
purpose is to establish a bridge between our formalism and the one presented in
[BR97]. The latter does not make explicit use of vector bundles. Instead, it uses
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a position-dependent spin basis. The spin basis vectors are actually sections of
a trivial bundle on the sphere, but their transformation properties allow one to
regard wave functions constructed from them as sections on a bundle over the
physical configuration space.6 So, in order to establish this connection between
the two formalisms, we will construct an explicit isomorphism between the bundle
SU (2)×κ C and a line subbundle L− of the trivial bundle RP 2 × C3 → RP 2, as
follows.

Let us regard the projective plane as the quotient S2/Z2. Then, points on it are
equivalence classes of the form [x] = {x,−x}, where x = (x1, x2, x3) ∈ S2. With
this, the following open cover can be defined (α = 1, 2, 3):

Uα = {[x] ∈ RP 2 | xα �= 0}. (9.59)

Let us now define a line bundle L− (a subbundle of the trivial bundle RP 2 × C3)
as follows. The total space of the bundle is given by the following set:{

([x] , λ |φ(x)〉) ∈ RP 2 × C3 | λ ∈ C and x ∈ [x]
}
, (9.60)

where

|φ(−)〉 : S2 −→ C3,
(9.61)

x �−→ |φ(x)〉

is any map from S2 to C3 satisfying the following conditions:

(i) It is smooth.
(ii) |φ(x)〉 �= 0 for all x ∈ S2.

(iii) |φ(−x)〉 = −|φ(x)〉 for all x ∈ S2.

The bundle projection is defined through π (([x], λ |φ(x)〉)) = [x]. According to
(9.60), an element in the total space of L− is given by a tuple of the form
([x], λ|φ(x)〉). Notice that there is some ambiguity in this expression, for a repre-
sentative x is being explicitly used. However, there is no problem if one realizes
that a choice of representative x ∈ [x] uniquely fixes the value of λ. Assuming that
the representative x has been chosen, and that to it corresponds the scalar λ, then
from property (iii) it follows that the other choice of representative,−x, forces the
value of the scalar to be −λ. An alternative way to define the bundle is by saying
that the fiber over the point [x] is the subset {[x]} × V[x] of RP 2 × C3, where V[x]

is the vector space generated by the vector |φ(x)〉 ∈ C3. Local trivializations for

6 There are certain subtleties involved in this identification, which have been discussed in [Rey06].
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L− are given by (α = 1, 2, 3)

ϕα : π−1(Uα) −→ Uα × C,
(9.62)

([x], λ |φ(x)〉) �−→ ([x], sign(xα)λ) .

They give rise to the following transition functions:

gαβ : Uα ∩ Uα −→ Z2 � U (1),
(9.63)

[ x] �−→ gαβ([x]) = sign(xαxβ).

Yet another point of view is provided by the Serre–Swan equivalence of bundles
and modules: Given a (normalized) map |φ(−)〉 satisfying properties (i)–(iii), it
can be shown that the projector p : [x] �→ |φ(x)〉〈φ(x)| gives place to a finitely
generated projective module p(A3

+) over the algebra A+ of complex, continuous
even functions over the sphere [Pas01,PPRS04]. This module is isomorphic to the
module of sections on the bundle L−.

If g = (z0, z1) ∈ SU (2) and v ∈ C, then πκ ([(g, v)]) = [[z0 : z1]] is a point in
SU (2)/H . Let x(g) denote the point in S2 obtained from g through the quotient map
SU (2)→ SU (2)/U (1), and let [x(g)] denote the corresponding equivalence class,
with respect to the quotient map S2 → S2/Z2. Then it is clear that πκ ([(g, v)]) =
[x(g)], independently of the chosen g. This fact allows us to construct the following
map between the total spaces of SU (2)×κ C and L−:

� : SU (2)×κ C −→ L−,
(9.64)

[(g, v)] �−→ ([x(g)] , v |φ(x(g))〉) .

It is easy to check that this map is well defined and that, in fact, it provides a
bundle isomorphism. Thus, we obtain an induced lift on the bundle L−, as indicated
in the following diagram:

L−
τg

�−1

L−

SU (2)×Un C
l
↑
g

πκ

SU (2)×Un C

�

πκ

RP 2
lg

RP 2.

(9.65)
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From τg = � ◦ l↑g ◦�−1 we get, for g = (α, β),

τg ([x], λ |φ(x)〉) = (� ◦ l↑g ◦�−1) ([x], λ |φ(x)〉)
= (� ◦ l↑g ) [((z0, z1), λ)]

= � [((α, β) · (z0, z1), λ)]

= ([x(z′0, z
′
1)
]
, λ
∣∣φ(x(z′0, z

′
1))
〉)
, (9.66)

where, as in the previous section, z′0 = αz0 − β̄z1 and z′1 = βz0 + ᾱz1. Here,
(z0, z1) is chosen in such a way that x ≡ x(z0, z1) = [[z0 : z1]].

Now, notice that a smooth section on L− can always be written in the form
"([x]) = ([x], a(x) |φ(x)〉), with a : S2 → C a smooth antisymmetric function.
Such a section transforms under the action of SU (2) in the following way:

(U (g)")([x]) := τg("(g−1 · [x])) = τg([g−1 · x], a(g−1 · x)|φ(g−1 · x)〉)
= ([x] , a(g−1 · x) |φ(x)〉) . (9.67)

From this we immediately see that the infinitesimal generators Ji are given by

(Ji")([x]) = ([x] , (Lia)(x) |φ(x)〉) , (9.68)

where Li is the usual (orbital) angular momentum operator.

9.5 Conclusions

The generally accepted (relativistic) quantum field theory proof of the spin–
statistics theorem is perhaps one of the most interesting results of the general
theory of quantum fields, and there might be no apparent reason for trying to look
for a different proof. But, as a brief look at the current literature on the subject will
show, the interest in the problem of the spin–statistics connection in nonrelativistic
quantum mechanics has increased in the last years.

One reason might be that there is the opinion that nonrelativistic quantum
mechanics describes, without relativity, an astonishing number of physical phe-
nomena. As it is a theory that stands on a firm mathematical foundation, one
would like to be able to obtain the physically correct spin–statistics connection
without having to draw a theorem from another theory (which, anyway, is more
fundamental).

Another motivation might be the study of the spin–statistics connection in differ-
ent contexts: quantum gravity, quantum field theory on noncommutative spaces, etc.
In any case, in contrast to the opinion of many authors, our interest is not so much
to find a simple proof of the theorem, or even one which does not use relativistic
invariance, but rather to understand the connection from a different point of view.
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Just the fact that the Fermi–Bose alternative can be obtained as a consequence of the
topology of the configuration space is a quite remarkable result. But if, in the end,
it turns out that the connection has something to do with topology or geometry, one
should not expect to obtain an understanding of it without using the tools of those
disciplines. The approach that we are presenting here, which in some aspects is
a continuation of [PPRS04], has the purpose of establishing a bridge between
the proposed mathematical–physical framework and the current literature on
the subject. We believe that a clear formulation of the problem in mathematical
terms might help in providing a firm foundation to many works where interesting
physical ideas have been put forward and in establishing a link between them.

The main result of the present paper is the construction of the angular momen-
tum operators for a system of two indistinguishable particles obeying fermionic
statistics. Taking into account the equivalence �(L−) ∼= A− [Pas01, Rey06], we
see from (9.68) not only that sections on L− can be isomorphically mapped to
antisymmetric functions over S2, but also that the generators of rotations, obtained
here by means of a well-defined quantization map, correspond to the usual angular
momentum operators. Thus, whereas it is true that by taking seriously into account
the indistinguishability of quantum particles we are forced to consider nontrivial
geometric–topological structures, at the end we see that all these structures can
be mapped isomorphically to the ones that we are familiar with. One could argue
that this only means we have not won anything. On the contrary, we believe that
taking these structures into account could eventually lead to an advance in our
understanding of the subject. In particular, we believe that it would be a fruitful
idea to obtain a global version of the theorem proven in [Kuc04], using the tools
discussed in the present paper.
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Conserved currents in Kähler manifolds

jaime r. camacaro and juan carlos moreno

Abstract
We revisit some properties of Lie algebroids, Lie bialgebroids and bidifferential
calculi, in order to stress the relation of the Lie algebroid structure with the
constructions of hierarchies of conserved currents and show the existence of
a particular class of conserved currents. We give some examples related to
Kähler and generalized Kähler structures.

10.1 Introduction

In a recent paper [1] Dimakis and Müller-Hoissen showed how to generate con-
servations laws in completely integrable systems by making use of a bidifferential
calculus. More recently, Crampin et al. proved that the approach of Dimakis and
Müller-Hoissen was related to the standard approach using bi-Hamiltonian struc-
tures of the Poisson–Nijenhuis type [2]. These results were extended in [3], where
the Poisson–Nijenhuis case was discussed in a detailed way. Some interesting
remarks on the so-called gauged bidifferential calculus by Dimakis and Müller-
Hoissen were also given. A detailed description of geometrical properties and a
generalization to Lie algebroids were given respectively in [4, 5]. Apart from the
previous citations, one can find of interest the relation of the bidifferential cal-
culi and the non-Noether symmetries (see, e.g., [6, 7]), and the application of the
bidifferential calculi and Lie algebroids to specific integrable systems (see, e.g.,
[8, 9]).

As was pointed out in [10], the concepts of recursion operator and hierarchies
of conservation laws are related to the Lenard chains, and also the algebraic action
of the Nijenhuis operator is related to the Poisson–Nijenhuis structure. Here we
will use the relation between the Dimakis and Müller-Hoissen constructions and
the Lie algebroid and bialgebroid structures established by means of the recursion
operators and their differential action, studied in [5], to show the role played by the

368
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Lie algebroids as a bridge between the algebraic action and the differential action
of the recursion operator. Finally, we show the existence of a new subsequence of
conserved currents in the construction of Crampin et al., generated by means of the
hierarchies of symplectic forms.

10.2 Lie algebroids

In this section we recall some facts about Lie algebroids and their representation
as an exterior differential algebra.

Definition 10.2.1 A Lie algebroid is a vector bundle τ : A→ M together with:

� a Lie bracket [·, ·]A on the space �(A) of sections of A,
� a vector bundle map ρ : A→ TM over the identity, called the anchor, such that the

induced map ρ : �(A)→ �(TM) is a Lie algebra morphism,
� the identity [X, f Y ]A = f [X, Y ]A + (ρ(X)f )Y holding for each pairX, Y ∈ �(A) and
f ∈ C∞(M).

If we consider coordinates (x1, . . . , xn) on a local chart U ⊂ M and a basis
{eα |α = 1, . . . , r} of local sections of τ : A

∣∣
U
→ U , then the expressions for the

Lie bracket and the anchor are

[eα, eβ]A =
r∑
γ=1

C
γ

αβ (x)eγ , α, β = 1, . . . r , (10.1)

and

ρ(eα) =
n∑
i=1

aiα(x)
∂

∂xi
, α = 1, . . . r , (10.2)

respectively, where C γ

αβ (x) and aiα(x) are the structural functions of the Lie
algebroid.

Examples of Lie algebroids are the following:

(i) Every finite-dimensional Lie algebra g, regarded as a vector bundle over a single point.
Sections are elements of g, the Lie bracket is that of g, and the anchor map is identically
zero.

(ii) The tangent bundle τM : TM → M with the usual bracket on vector fields and with
anchor the identity map ITM on TM .

We define the graded exterior algebra of a Lie algebroid (A, ρ, [·, ·]A) via
the exterior vector bundle

∧•A. The members of �(
∧•A) are called A-vector

fields. Sections of the dual bundle A∗ are called A− 1-forms. Similarly, sections
�(
∧•A∗) of

∧•A∗ are calledA-forms. The bundleA∗ is endowed with a nilpotent
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differential operator dA of degree 1, dA : �(
∧k A∗)→ �(

∧k+1 A∗), given by

dAϑ(X1, . . . , Xi, . . . , Xk+1) =
∑
i

(−1)i+1ρ(Xi)ϑ(X1, . . . , X̂i, . . . , Xk+1)

+
∑
i<j

(−1)i+jϑ([Xi,Xj ]A, X1, . . . , X̂i, . . . , X̂j , . . . , Xk+1).

This exterior differential algebra is specially interesting in that it is equivalent
to the Lie algebroid structure in A, with the structural maps ρ and [·, ·]A defined
as follows:

ρ(X)f = 〈dAf,X〉,
〈θ, [X, Y ]〉 = ρ(X)(〈θ, Y 〉)− ρ(Y )(〈θ,X〉)− dAθ (X, Y )

for X, Y ∈ �(A), f ∈ C∞(M) and θ ∈ �(A∗).
Another important fact about Lie algebroids is the one–one correspondence

between a Lie algebroid structure in a vector bundle A and a Poisson structure in
the dual bundle A∗ whose linear functions form a Lie subalgebra (see, e.g., [3]).

Moreover, associated to a Lie algebroid structure there is also a graded Lie
bracket

[·, ·](A) : �(
∧•A)× �(

∧•A)→ �(
∧•A),

which constitutes, together with the exterior product, the well-known Gerstenhaber
algebra of the Lie algebroid, also called an odd Poisson bracket or Schouten
bracket (see, e.g., [3]). If the Gerstenhaber bracket is generated by a linear operator
∂ : �(

∧•A)→ �(
∧•A) of degree −1 such that ∂2 = 0, and

[X, Y ](A) = (−1)k
(
∂(X ∧ Y )− ∂X ∧ Y − (−1)kX ∧ ∂Y )

for every X ∈ �(
∧k A), Y ∈ �(

∧•A), then we have an Batalin–Vilkovisky (BV)
algebra (see, e.g., [12]).

In general, it is possible to define a mapping dX : �(
∧pA∗)→ �(

∧p+1 A∗)
for each X ∈ �(

∧k A) by

dXϑ = iXdϑ + (−1)|k|diXϑ,

where iX is the inner contraction with X.
A type of Lie algebroids, remarkable because of its relations with integrable

systems, are the Lie bialgebroids, introduced by Kossmann–Schwarzbach in [14]:

Definition 10.2.2 A Lie bialgebroid is a pair ((A, ρ, [·, ·]A), (A∗, ρ∗, [·, ·]A∗)) of
Lie algebroids, where A∗ is the dual bundle of A, such that the differential dA is a
derivation of the Gerstenhaber algebra (�(

∧•A∗),∧, [·, ·]A∗), and the differential
dA∗ is a derivation of the Gerstenhaber algebra (�(

∧•A),∧, [·, ·]A).
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The bialgebroid structure is specially interesting because of its relation with
the bi-Hamiltonian structure, via the well-known relation with Poisson–Nijenhuis
(PN) structures [5, 14].

10.3 Bidifferential calculi, PN structures and Lie algebroids

We begin this section using the theory of contraction of a Lie algebroid structure via
a Nijenhuis tensor (see, e.g., [15,19]) in order to reproduce the bidifferential calculi
developed by Dimakis and Müller-Hoissen and the bi-Hamiltonian structures of
Crampin et al.

Consider a manifold M endowed with a (1, 1) tensor field N . We say that N is
a Nijenhuis tensor if the corresponding Nijenhuis torsion T (N) defined by

T (N)(X, Y ) = [N(X), N(Y )]−N ([N(X), Y ]+ [X,N(Y )])+N2([X, Y ])

for every X, Y ∈ �(TM) vanishes. By means of N , it’s possible to define on TM
an alternative Lie algebroid structure (see [15, 16]) with bracket

[·, ·]N = [N(·), ·]+ [·, N(·)]−N ([·, ·]) (10.3)

such that for every X, Y ∈ �(M) and θ ∈ �(T ∗M),

〈θ, [X, Y ]N 〉 = N(X)〈θ, Y 〉 −N (Y )〈θ,X〉 +X〈θ,NY 〉 − Y 〈θ,NX〉
− 〈θ,N ([X, Y ])〉 − dθ (NX, Y )− dθ (X,NY ).

The corresponding anchor is ρ = N̂ : TM → TM , defined by contraction of N
with vector fields. Using the graded commutator [·, ·]D on Der�(

∧•
T ∗M) =⊕

k Derk�(
∧•
T ∗M) of all graded derivations, we write the corresponding differ-

ential operator on the new Lie algebroid structure (TM,N, [·, ·]N ) by

dN = [iN , d]D, (10.4)

where d is the de Rham differential and iN is a derivation of degree 0, defined by

iN ϑ (X1, . . . , Xp) =
n∑
i=1

ϑ(X1, . . . , N (Xi), . . . , Xp),

for any differential form ϑ ∈ � (∧p
T ∗M

)
.

It’s straightforward to check that the two exterior differential operators d and
dN acting over �(

∧•
T ∗M), satisfy

d2 = d2
N = 0

and

[d, dN ]D = 0.
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Then the relations between d and dN correspond to the classical theory of bidiffer-
ential calculi of Frölicher and Nijenhuis. Notice, the condition d2

N = 0 is equivalent
to the analogous condition for dA, i.e., the differential operator dN defines a Lie
algebroid structure with bracket and anchor defined by

〈θ, [X, Y ]N 〉 = N (X)(〈θ, Y 〉)−N (Y )(〈θ,X〉)− dNθ (X, Y ),

N (X)f = 〈dNf,X〉
for every X, Y ∈ � (TM) and f ∈ C∞(M). Moreover, we have the following
identity:

d2
Nθ (X, Y ) = N (X)〈dNθ, Y 〉 −N(Y )〈dNθ,X〉 − 〈dNθ, [X, Y ]N 〉

= N (X)〈θ,N(Y )〉 −N (Y )〈θ,N(X)〉 − 〈θ,N ([X, Y ]N )〉
= 〈θ, [N(X), N(Y )]−N ([X, Y ]N )〉 = 0,

and therefore

N ([X, Y ]N ) = [N(X), N(Y )]

if and only if T (N)(X, Y ) = 0. So dN defines an alternative Lie algebroid structure
corresponding to the contraction by N of the original Lie algebroid structure.

The action of dN on f ∈ C∞(M) and ϑ ∈ � (∧• T ∗M) is given by

dN f = N∗df,
dN ϑ = iN (dϑ)− d(iNϑ),

dN (df ) = d(N∗df ).

The structure obtained in this way is the action of the Nijenhuis tensorN on forms,
as was defined in [10].

Proposition 10.3.1 LetM be a differentiable manifold. Given a (1, 1) tensor field
N , the triple (�(

∧•
T ∗M), d, dN ) is a bidifferential calculus of Frölicher and

Nijenhuis if and only if the triple (TM, N̂, [·, ·]N ) defines a Lie algebroid structure
onM .

Continuing with the construction of the hierarchy of conserved currents, we find
that the construction of Dimakis and Müller-Hoissen can be applied: starting under
the original but more restrictive condition dNχ (0) = 0 or with the less restrictive
and more familiar condition ddNχ (0) = −dNdχ (0) = 0 for χ (0) ∈ �(

∧s−1
T ∗B),

s ≥ 1 [1, 2], it is possible to construct inductively a sequence of forms χ (m), with
m = 0, 1, 2, . . . , satisfying

dχ (m+1) = dNχ (m).
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Here the Lie algebroid structure is acting as a bridge between the algebraic
structure of the Nijenhuis tensor and its differential part, by means of a contraction
of the Lie algebroid bracket and the operator dN . As we will see, the Lie algebroid
and bialgebroid structures are a fundamental link between the algebraic action
by contractions and the action on differential forms of the Nijenhuis tensor, in
addition to the relation of these two actions with the Lenard chains (for details see
e.g., [10, 11, 17]).

Now consider a Poisson–Nijenhuis manifold (M,P,N), that is, a Poisson man-
ifold (M,P ) endowed with a Nijenhuis tensor which satisfies the compatibility
condition

[NP,NP ]S = [P,NP ]S = 0,

where [·, ·]S is the Schouten bracket. So the linear combination of this Poisson
structures is again a Poisson structure, defining in this way a bi-Hamiltonian system.

It is well known that (M,P,N ) being a Poisson–Nijenhuis manifold is equiva-
lent to the pair (TM, T ∗M) being a Lie bialgebroid [14].

The Poisson bivector P defines a map P̂ : T ∗M → TM by contraction with
covectors. So, we can endow the vector bundle πM : T ∗M → M with a Lie alge-
broid structure defined by the anchor map ρ = P̂ and Lie bracket on 1-forms
given by

[θ, η]P = LP̂ (θ )η − LP̂ (η)θ − d(P (θ, η)),

where LX denotes the Lie derivative. The exterior differential in this case is
the Lichnerowicz–Poisson differential dP = [P, ·]S . As we already pointed out,
a Nijenhuis structure gives a new Lie algebroid structure on TM by means of the
Lie bracket (10.3), the anchor map ρ = N̂ , and the exterior differential operator
dN . Using both structures, we find again the bidifferential calculus defined by the
operators d and dN , which now can be endowed with a bi-Hamiltonian system
related to the Poisson–Nijenhuis structure of the base manifold.

If we assume a nondegenerate Poisson structure onM – i.e., there is a symplectic
structure ω0 which satisfies

ω0(N(X), Y ) = ω0(X,N(Y )) for all X, Y ∈ � (∧ TM)
– then there is a 2-form ω1 defined by ω1 = ω0(N(X), Y ). Moreover, if dω1 = 0,
we can define a new Poisson structure P1. In this way, as was stated in [2, 3], the
sequence of currents obtained by the bidifferential construction are in involution
with respect to both Poisson structures. So we recover all the elements of Cramping
et al. and of Dimakis and Müller-Hoissen in the context of contracted Lie algebroids
(Frölicher–Nijenhuis calculus), Notice that the bidifferential structure is in one-to-
one correspondence with the Nijenhuis tensor.
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All the preceding construction is made possible by the property

ω0(N(X), Y ) = ω0(X,N(Y )).

Now let us consider the case where the compatibility condition between the sym-
plectic form and the Nijenhuis tensor is

ω0(N(X), Y ) = −ω0(X,N(Y )),

which is a kind of Kähler relation between the Nijenhuis operator and the symplectic
form.

There is an alternative construction to generate a sequence of conserved currents
in involution. This construction is based on the powers of the Nijenhuis tensor N ,
i.e., Nk with k an integer. Recall that if N is a Nijenhuis tensor, then Nk is again
a Nijenhuis tensor. This kind of structures is specially interesting in that it defines
the so-called hierarchies of 2-forms, by (see, e.g., [17])

ωk(X, Y ) = ω0(X,Nk(Y )).

Theorem 10.3.2 Let (M,ω) be a simply connected manifold endowed with a non-
degenerate symplectic structure, P be the Poisson bivector field associated to ω,
and N be a Nijenhuis tensor satisfying

ω(NX, Y ) = −ω(X,NY ) f orevery X, Y ∈ � (∧ TM).
Then, given χ0 ∈ C∞(M) satisfying ddNχ

(0) = dNdχ (0) = 0, there exists a
sequence {χ (k) ∈ C∞(M)}∞k=0 such that

P (dχ (m), dχ (n)) = 0

for every m, n ∈ N satisfying m− n = 2k, with k = 0, 1, 2, 3, . . ..

Proof For χ (0) ∈ C∞(M) we consider

j (1) = dNχ (0) ∈ � (∧ T ∗M), (10.5)

which satisfies

dj (1) = ddNχ (0) = −dNdχ (0) = 0

as a consequence of dNdχ (0) = 0. Then, from the Poincaré lemma, there exists
χ (1) ∈ C∞(M) such that

j (1) = dχ (1). (10.6)

Now, applying iN
∣∣
�(∧1T ∗M) : �

(∧•
T ∗M

)→ �
(∧•

T ∗M
)

and equation (10.6),

we define

j̃ (1) = iNj (1) = dNχ (1) ∈ �(∧ T ∗M).
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Because iN ◦ iN = iN2 on �
(∧
T ∗M

)
, it follows from (10.5) that

j̃ (1) = iNj (1) = iNdNχ (0) = dN2χ (0).

Then, using dN = iN ◦ d − d ◦ iN and d2
N = d2 = 0, we immediately find

d(j̃ (1)) = −dNj (1) + iNdj (1) = −d2
Nχ

(0) = 0,

that is, the 1-form j̃ (1) is d-closed. In general, given a nonzero χ (m−1) ∈ C∞(M),
we define j (m) ∈ � (∧ T ∗M) satisfying

dj (m) = 0, j (m) = dNχ (m−1),

and consider j̃ (m) = iNj (m) = dN2χ (m−1) ∈ � (∧ T ∗M). Because dj (m) = 0, then
by the Poincaré lemma there exists χ (m) ∈ C∞(M) for which j (m) = dχ (m) and
iNj

(m) = dNχ (m). Therefore, using again the identities dN = iN ◦ d − d ◦ iN
and d2

N = d2 = 0, it follows that

d(j̃ (1)) = −dNj (m) + iNdj (m) = −d2
Nχ

(m−1) + iN (d2χ (m)) = 0.

So j (m+1) = dNχ (m) and j̃ (m+1) = iNj (m+1) = dN2χ (m+1) are 1-forms satisfying

dj (m+1) = ddNχ (m) = −dNdχ (m) = −dNj (m) = −d2
Nχ

(m−1) = 0,

and therefore

d(iNj
(m+1)) = −dNj (m+1) + iN (djm+1) = −d2

Nχ
(m) = 0.

In this way we obtain sequences of d-closed forms
{
j (k) ∈ � (∧ T ∗M)}∞

k=1 ,{
j̃ (k) ∈ � (∧ T ∗M)}∞

k=1 satisfying

j (k+1) = dχ (k+1) = dNχ (k), j̃ (k+1) = dNχ (k+1) = dN2χ (k). (10.7)

Finally,

dχ (k+2) = dN2χ (k).
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From the preceding construction it is straightforward that, for k ≥ 0,

P (dχ (m), dχ (n)) = P (dχ (n+2k), dχ (n))

= P (dN2χ (n+2k−2), dχ (n))

= P (dχ (n+2k−2), dN2χ (n))

= P (dχ (n+2k−2), dχ (n+2))

...

= P (dN2χ (n+2k−2k), dχ (n+2(k−1)))

= P (dχ (n+2k−2k), dN2χ (n+2(k−1)))

= P (dχ (n+2k−2k), dχ (n+2(k−1)+2))

= P (dχ (n), χ (m)).

In view of the skew symmetry of P ,

P (dχ (m), dχ (n)) = 0. �

So even in the case where the condition

ω(NX, Y ) = −ω(X,NY ),

is satisfied, one can generate a sequence of conserved currents in involution. The
relation that plays the principal role in this construction is

ω(N2(X), Y ) = ω(X, N2(Y )),

in view of which it is straightforward to notice that there is a bi-Hamiltonian
structure associated to this construction, related to the preceding hierarchy of
symplectic forms. In particular, for the element with k = 2 we have

ω2(X, Y ) = ω0(X,N2(Y )).

Moreover, we can build a new sequence of conserved currents on the bidif-
ferential (�(

∧•
T ∗M), d, dN2 ), using the original sequence generated by χ (0) on

(�(
∧•
T ∗M), d, dN ). It is worthy of notice that this new sequence it is not in a

direct relation with the original one, because of the Kähler-like relation betweenN
and ω.

Thinking in terms of the Lie algebroid structures, we obtain a second contraction
of the original structure on TM . Notice thatN2 is again a Nijenhuis tensor, because
d2
N2 = 0, so there is a third Lie algebroid structure on TM . There is no reason to

stop the number contractions at k = 2, so one can think of a hierarchy of contracted
Lie algebroids with the same characteristics of the hierarchies of N .
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10.4 Examples

Example 10.4.1 A Kähler manifold is the simplest case in which a subsequence
of conserved currents can be expected [20].

Let M be a be a real manifold of dimension 2n, endowed with a complex
structure, namely, a (1, 1) tensor field J with vanishing Nijenhuis torsion and
satisfying J 2 = −ITM . Assuming thatM admits an Hermitian structure for which
the fundamental 2-form

ω(X, Y ) = g(J (X), Y ) for all X, Y ∈ �(TM)

is closed , we obtain a Kähler manifold. In this manifold we have for each pair
X, Y ∈ �(TM) the following relation between J and ω:

ω(J (X), Y ) = −ω(X, J (Y )).

Now, given χ (0) ∈ C∞(M) with ddJχ (0) = 0, we can build, by Theorem 10.3.2, a
sequence {χ (k) ∈ C∞(M)}∞k=0 where

dχ (k+2) = −dχ (k).

Then, we find a trivial sequence of function in involution with the Poisson structure
defined by the 2-closed form ω.

Example 10.4.2 For a manifoldM of dimension 2n, a generalized Kähler structure
on it is a triple (g, J+, J−) consisting of a Riemannian metric and two g-compatible
complex structures J± such that J+J− = J−J+, and the fundamental 2-forms

ω±(X, Y ) = g(J±(X), Y ) for all X, Y ∈ � (TM)

satisfy the following integrability relations:

dJ+ω+ + dJ−ω− = 0, ddJ±ω± = 0

(see, e.g., [21]). It is possible to consider the case where J− = ±J and J+ = J , but,
following the construction in [21], we will consider only the case where J+ �= ±J−.
In this case we see that for each X, Y ∈ � (TM),

ω±(J∓(X), Y ) = −ω±(X, J∓(Y )).

Associated to the generalized Kähler structure there are two alternative Lie alge-
broids, which are determined by the bidifferential calculi (�(

∧•
T ∗M), d, dJ±).

Moreover, starting from the 2-forms χ (0)
± = ω± ∈ �(

∧2
T ∗M) and following

the original construction in [1], we find the sequences {χ (k)
+ ∈ �(T ∗M)}∞k=0 and

{χ (k)
− ∈ �(T ∗M)}∞k=0 such that

dχ
(k+1)
+ = dJ+χ (k)

+ , dχ
(k+1)
− = dJ−χ (k)

− .
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Example 10.4.3 Continuing with the generalized complex structure, we restrict to
the submanifold B where the fundamental 2-forms are closed. Then, the complex
structures J+ and J− are parallel with the Levi–Civita connections determined by
g, namely, .+ and .−, respectively:

.±J± = 0.

So we see that for every X, Y ∈ �(T B),

J+([X, Y ]J−)+ J−([X, Y ]J+) = [J+(X), J−(Y )]+ [J−(X), J+(Y )];

therefore, T (J+ + J−)(X, Y ) = 0 (see, e.g., [23]). Moreover, considering that
J+J− = J−J+, we have the following relation between the 2-forms ω± and the
Nijenhuis operator J+ + J−:

ω± ((J+ + J−)(X), Y ) = −ω± (X, (J+ + J−)(Y )),

Then J+ + J− is a Nijenhuis operator satisfying a Kähler-like condition. Now,
instead of taking the same steps as in the previous examples, we will take advantage
of the fact that

(J+ + J−)2 = 2J+J− − 2IT B.

By Theorem 10.3.2, we find that, given χ (0) ∈ C∞(B) satisfying

dJ++J−dχ
(0) = −ddJ++J−χ (0) = 0,

there exists a sequence {χ (k) ∈ C∞(B)}∞k=0 such that, if P± denote the Poisson
bivectors corresponding to ω±, then

P±(dχ (m), dχ (n)) = 0

if m− n is even.

10.5 Final Comments

Further research is necessary to gain a better understanding of the meaning and
applications of this construction. For example, would be enlightening to consider
different useful variations of the bidifferential calculi and their applications to
integrable systems, as well as possible applications in sigma models, where it
becomes an important task to consider Kähler manifolds, hyper-Kähler manifolds
and N = 1, 2 manifolds [18].

The construction carried out in this chapter could be extended to generalized
structures. For a first look at the algebraic construction see [19]. For applications see
[21] and [22]; as they show, the contraction of a Courant algebroid by a Nijenhuis
tensor is possible under some conditions, which include generalized structures. We
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are looking forward to generalizations of the bidifferential calculi having in this
case the backing of the bialgebroids and Courant algebroids.
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A symmetrized canonical determinant on odd-class
pseudodifferential operators

marie-françoise ouedraogo∗

Abstract
Inspired by Braverman’s symmetrized determinant, I introduce a symmetrized
logarithm logsym for certain elliptic pseudodifferential operators. The sym-
metrized logarithm of an operator lies in the odd class whenever the operator
does. Using the canonical trace extended to log-polyhomogeneous pseudodif-
ferential operators, I define an associated canonical symmetrized determinant
DETsym on odd-class classical elliptic operators in odd dimensions: DETsym =
exp ◦ TR ◦ logsym,which provides a canonical description of Braverman’s sym-
metrized determinant. Using the cyclicity of the canonical trace on odd-class
operators, one then easily infers multiplicative properties of this canonical
symmetrized determinant.

Introduction

The ordinary determinant on matrices, det = exp ◦ tr ◦ log, extends to certain ellip-
tic pseudodifferential operators (ψDOs) via the ζ -determinant detζ , which is used
in physics to compute partition functions. But detζ is not multiplicative in general,
i.e., detζ (AB) �= detζ (A)detζ (B). The multiplicativity of the ordinary determinant
on matrices follows from the cyclicity of the trace combined with a Campbell–
Hausdorff formula: det(AB) = exp tr(log(AB)) = exp(tr(log A)+ tr(log B)) =
det(A)det(B).Our aim is to mimic this construction using an extension of the canon-
ical trace TR introduced by Kontsevich and Vishik [KV] (defined on noninteger-
order ψDOs) to an appropriate class of elliptic ψDOs, stable under logarithms,
on which TR is cyclic. A natural class is that of odd-class ψDOs [Gr, KV] in odd
dimensions. However, it is not stable under logarithms; nevertheless, logarithms
of even-order odd-class elliptic ψDOs lie in the odd class. Inspired by Braverman

∗
I am grateful to Maxim Braverman for his helpful comments on a preliminary version of this article.
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[B], we introduce a symmetrized logarithm:

logsym
θ A = 1

2

(
logθ A+ logθ−aπ A

)
,

which lies in the odd class wheneverA does, independently of the order (Proposition
11.3.1). Here θ and θ − aπ are both Agmon angles of A, and a is its order. It is
therefore natural to define (Definition 11.5.1)

DETsym
θ A = exp

(
TR logsym

θ A
)

on a set of odd-class elliptic ψDOs in odd dimensions, provided TR extends to
symmetrized logarithms of odd-class elliptic ψDOs in odd dimensions. This holds
because logsym

θ A lies in the odd class according to results in [PS], where it was
shown that TR extends to the algebra of odd-class log-polyhomogeneous operators
in odd dimensions. Here we moreover observe that all operators in this algebra are
of the type

A =
∑
Al
(
logsym

α Q
)l
,

where Al is an odd-class classical ψDO and Q is an odd-class admissible ψDO
with positive order and Agmon angle α (Proposition 11.3.3).

The symmetrized canonical determinant DETsym coincides with the symmetrized
determinant defined by Braverman [B], and it coincides with DET = exp ◦ TR ◦
log, which arises in [PS] (Theorem 2.11) in the case of an even-order odd-class
operator in odd dimensions, which in turn coincides with the ζ -determinant. Just
like the ζ -determinant, the symmetrized canonical determinant depends on the
spectral cut, but, as already observed by Braverman, this dependence is weaker than
for the ζ -determinant (Proposition 11.5.5). The fact that DETsym is multiplicative on
commuting operators is an easy consequence of the Campbell–Hausdorff formula
(see Proposition 11.5.6). As already observed by Braverman [B], the multiplicative
property actually holds for noncommuting operators under some natural restrictions
on the spectral cuts; here this multiplicative property arises as a straightforward
consequence of the traciality of the canonical trace on odd-class operators in odd
dimensions (see Proposition 11.5.8).

This chapter offers a summary of some results of my PhD thesis [Ou] in
preparation.

11.1 Log-polyhomogeneous operators

Let us first recall some basic concepts related to pseudodifferential operators and
their symbols. Let U be an open subset of Rn. Given m ∈ C, the space of symbols
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Sm(U ) consists of functions σ (x, ξ ) inC∞(U × Rn) such that for any compact sub-
set K of U and any two multiindices α = (α1, . . . , αn) ∈ Nn, β = (β1, . . . , βn) ∈
Nn there exists a constant CKαβ satisfying, for all (x, ξ ) ∈ K × Rn,

|∂αx ∂βξ σ (x, ξ )| ≤ CKαβ(1+ |ξ |)Re(m)−|β|, (11.1)

where Re(m) is the real part of m, and |β| = β1 + · · · + βn.
We denote by S(U ) := 〈⋃m∈C S

m(U )〉 the algebra generated by all symbols on
U for the star product defined as follows: if σ1 ∈ Sm1 (U ) and σ2 ∈ Sm2 (U ),

σ1 # σ2(x, ξ ) ∼
∑
α∈Nn

(−i)|α|
α!

∂αξ σ1(x, ξ )∂αx σ2(x, ξ ),

i.e., for any integer N ≥ 1 we have

σ1 # σ2(x, ξ )−
∑
|α|<N

(−i)|α|
α!

∂αξ σ1(x, ξ )∂αx σ2(x, ξ ) ∈ Sm1+m2−N (U ).

A symbol σ ∈ Sm(U ) is classical of order m if there is an asymptotic expansion

σ (x, ξ ) ∼
∞∑
j=0

ψ(ξ ) σm−j (x, ξ ),

where σm−j (x, ξ ) is a positively homogeneous function on C∞(U × (Rn − {0}))
of degree m− j , i.e., σm−j (x, tξ ) = tm−jσm−j (x, ξ ) for all t ∈ R+. Here ψ ∈
C∞(Rn) is any cut-off function which vanishes for |ξ | ≤ 1

2 and such that ψ(ξ ) = 1
for |ξ | ≥ 1.

LetCSm(U ) denote the subset of classical symbols of orderm, and letCS(U ) =
〈⋃m∈C CS

m(U )〉 denote the algebra generated by all classical symbols on U .
A symbol σ ∈ Sm+ε(U ) for any ε > 0 is log-polyhomogeneous of order m and

log degree k (see [L]) if its has an asymptotic expansion of the form

σ (x, ξ ) ∼
∞∑
j=0

k∑
l=0

ψ(ξ ) σm−j,l(x, ξ ) logl |ξ |, (x, ξ ) ∈ T #U, m ∈ C,

(11.2)

where k is a nonnegative integer and every σm−j,l, l = 0, . . . , k, is positively homo-
geneous of degree m− j. We denote the set of log-polyhomogeneous symbols of
order m and log degree k by CSm,k(U ), and we set

CS#,k(U ) =
⋃
m∈C

CSm,k(U ), CS#,#(U ) =
〈⋃
k≥0

CS#,k(U )

〉
.



384 Marie-Françoise Ouedraogo

Note that CS#,0(U ) = CS(U ). For a vector space V , we set

CSm(U,V ) = CSm(U )⊗ End(V ), CS#,k(U,V ) = CS#,k(U )⊗ End(V ).

Let π : E→ M be a finite-rank Hermitian vector bundle over a smooth closed
Riemannian manifoldM of dimension n.AψDOA acting on the spaceC∞(M,E)
of smooth sections of E is classical of order a [is log-polyhomogeneous of order a
and log degree k] if in any local trivialization E|U � U × V , its symbol σ (A)U is
classical of order a, i.e., σ (A)U ∈ CSa(U,V ) [respectively, log-polyhomogeneous
of order a and log degree k, i.e., σ (A)U ∈ CSa,k(U,V )]. We denote the set of
classical operators of order a [log-polyhomogeneous operators of order a and log
degree k] by C�a(M,E) [C�a,k(M,E)], and we set

C�(M,E) =
〈⋃
a∈C

C�a(M,E)

〉
, C�#,k(M,E) =

⋃
a∈C

C�a,k(M,E),

C�#,#(M,E) =
〈⋃
k≥0

C�#,k(M,E)

〉
,

where, as before, 〈S〉 stands for the algebra generated by the set S. Here the product
is the ordinary composition. Note that C�a(M,E) = C�a,0(M,E).

Let us finally recall the notion of odd-class symbols and operators.

Definition 11.1.1 [PS] A log-polyhomogeneous symbol (11.2) with integer order
m is of odd class if for each j ≥ 0, for l = 0, . . . , k,

σm−j,l(x,−ξ ) = (−1)m−jσm−j,l(x, ξ ) for |ξ | ≥ 1. (11.3)

A log-polyhomogeneous operator A will be said to be of odd class if in any local
trivialization it is of odd class. We denote by C�a,k(−1)(M,E) the set of odd-class
log-polyhomogeneous operators of order a and log degree k, and by C�#,#(−1)(M,E)
the set of odd-class log-polyhomogeneous operators.

Example 11.1.2
(i) All differential operators and their parametrices belong to C�#,#(−1)(M,E).

(ii) The operator (1+ )−1, where  is the Laplacian, is of odd class.

Proposition 11.1.3 [PS] (See also [Ou].) C�#,#(−1)(M,E) is an algebra.

11.2 Holomorphic families of log-polyhomogeneous operators

Let us recall the notion of holomorphic family of symbols and operators first intro-
duced in the classical case by Guillemin [G] under the name of gauged symbols,
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later popularized by Kontsevich and Vishik [KV] and generalized in [PS] to the
log-polyhomogeneous case.

Definition 11.2.1 Let k be a nonnegative integer, and 
 a domain of C. A family
(σ (z))z∈
 ⊂ CSα(z),k(U ) of log-polyhomogeneous symbols is holomorphic if:

(i) The order α(z) of σ (z) is holomorphic on 
.
(ii) For (x, ξ ) ∈ U × Rn, the function z→ σ (z)(x, ξ ) is holomorphic as a function in

C∞(
× U × Rn), and for each z in 
,

σ (z)(x, ξ ) ∼
∞∑
j=0

χ (ξ )σα(z)−j (z)(x, ξ )

lies in CSα(z),k(U ) for some cut-off function χ.
(iii) For any integer, N ≥ 1, the remainder

σN (z)(x, ξ ) := σ (z)(x, ξ )−
N−1∑
j=0

χ (ξ )σα(z)−j (z)(x, ξ )

is holomorphic in z ∈ 
 as an element of C∞(
× U × Rn), and its lth derivative
σ

(l)
N (z)(x, ξ ) := ∂lz (σN (z)(x, ξ )) lies inSRe(α(z))−N+ε(U ) for all ε > 0 locally uniformly

on 
, i.e., the lth derivative ∂kz σ(N)(z) satisfies a uniform estimate (11.1) with respect
to z on compact subsets in 
.

Proposition 11.2.2 [PS] Let k be a nonnegative integer, and let 
 be a domain of
C. If σ (z) ∈ CSα(z),k(U ) is a holomorphic family, then so is each derivative

σ (l)(z)(x, ξ ) := ∂lz(σ (z)(x, ξ )) ∈ CSα(z),k+l(U ).

Precisely, σ (l)(z)(x, ξ ) has an asymptotic expansion

σ (l)(z)(x, ξ ) ∼
∑
j≥0

σ (l)(z)α(z)−j (x, ξ ).

Now we recall the notion of holomorphic log-polyhomogeneous operators.

Definition 11.2.3 A family (A(z))z∈
 of log-polyhomogeneous operators on
C∞(M,E) with distribution kernels (x, y) �→ KA(z)(x, y) is holomorphic if:

(i) The order α(z) of A(z) is holomorphic in z.
(ii) In any local trivialization of E, we can write A(z) in the form A(z) = Op(σ (z))+

R(z), for some holomorphic family of symbols (σ (z))z∈
 and some holomorphic
family (R(z))z∈
 of smoothing operators, i.e., given by a holomorphic family of
smooth Schwartz kernels.

(iii) The (smooth) restrictions of the distribution kernels KA(z) to the complement of the
diagonal ⊂ M ×M form a holomorphic family with respect to the topology given
by the uniform convergence in all derivatives on compact subsets ofM ×M − .
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Let us recall the construction of complex powers of elliptic operators, which
provide classical examples of holomorphic families of operators. An angle θ is
called a principal angle of aψDO A ∈ C�(M,E) if for every (x, ξ ) ∈ T ∗M − {0},
the leading symbol σL(A)(x, ξ ) of A has no eigenvalues on the ray Lθ = {reiθ ,
r ≥ 0}; in that case A is elliptic and its spectrum is discrete. We call a ψDO
A ∈ C�(M,E) admissible with spectral cut (or Agmon angle) θ if A has principal
angle θ and the spectrum ofA does not meetLθ . In that case,A is invertible elliptic.
Let A ∈ C�(M,E) be admissible with spectral cut θ and nonnegative order a. For
Re(z) < 0, the complex power Azθ is defined by the Cauchy integral [Se]:

Azθ =
i

2π

∫
�r,θ

λzθ (A− λ)−1 dλ,

where λzθ = |λ|zeiz(argλ) with θ ≤ argλ < θ + 2π . Here �r,θ = �1
r,θ ∪ �2

r,θ ∪ �3
r,θ ,

where �1
r,θ = {ρeiθ ,∞ > ρ ≥ r}, �2

r,θ = {ρei(θ−2π),∞ > ρ ≥ r}, and �3
r,θ =

{reit , θ − 2π ≤ t < θ}, is a contour along the ray Lθ around the spectrum of A;
and r is any small positive real number such that �r,θ ∩ Sp(A) = ∅. The operator
Azθ is classical of order az; the homogeneous components of its symbol are

σaz−j (Azθ )(x, ξ ) = i

2π

∫
�θ

λzθ q−a−j (x, ξ, λ) dλ

with q−a−j the homogeneous components of the resolvent (A− λI )−1. The defi-
nition of complex powers can be extended to the whole complex plane by setting
Azθ := AkAz−kθ for k ∈ N and Re(z) < k; this definition is independent of the choice
of k and preserves the usual properties: Az1

θ A
z2
θ = Az1+z2

θ , Akθ = Ak for k ∈ Z.

The family (Azθ )z∈C is a holomorphic family of ψDOs, and the logarithm of A
is defined in terms of the derivative at z = 0 of this complex power [Se]:

logθ (A) = ∂zAzθ |z=0.

In some local chart [Se], the symbol of logθ (A) admits an asymptotic expansion:

σ (logθ (A))(x, ξ ) ∼ a log |ξ |I +
∞∑
j=0

σ−j (logθ (A))(x, ξ ),

where a denotes the order of A. Then logθ (A) is a log-polyhomogeneous operator.

11.3 Symmetrized logarithms

Inspired by Braverman [B], we introduce the symmetrized logarithm of an odd-class
admissible ψDO. Let C�a(−1)(M,E) denote the set of odd-class classical operators
of order a, and let A ∈ C�a(−1)(M,E) be an admissible ψDO which admits Agmon
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angles θ and θ − aπ. The symmetrized logarithm of A is defined by

logsym
θ A := 1

2

(
logθ A+ logθ−aπ A

)
. (11.4)

As already pointed out by Braverman (see [B], Corollary 2.14), symmetrized
logarithms of odd-class operators lie in the odd class.

Proposition 11.3.1 The symmetrized logarithm of A ∈ C�a(−1)(M,E) with Agmon
angles θ and θ − aπ is an odd-class log-polyhomogeneous operator.

Proof The proof is the same as in [B] (see also [P]). �

This confirms known results in the case of even-order operators [D].

Corollary 11.3.2 If A ∈ C�a(−1)(M,E) admits an Agmon angle θ and if a is even,
then logθ (A) is an odd-class polyhomogeneous operator.

Let us now observe that all (odd-class) log-polyhomogeneous operators can be
written as finite linear combinations of products of (odd-class) classical operators
and symmetrized logarithms.

Proposition 11.3.3 Let Q ∈ C�(−1)(M,E) be any admissible odd-class classical
ψDO with positive order q and Agmon angle α, α − qπ. Then

(i) Cl#,k(M,E) =
k⊕
l=0

C�(M,E) (logsym
α Q)l = (logsym

α Q)l
k⊕
l=0

C�(M,E),

(ii) C�#,k(−1)(M,E) = (logsym
α Q)l

k⊕
l=0

C�(−1)(M,E) =
k⊕
l=0

C�(−1)(M,E) (logsym
α Q)l .

Remark 11.3.4 logsym
α Q can be replaced by logα Q in (i), as already observed in

[D]. For the proof, see [Ou].

11.4 The canonical trace extended to odd-class operators in odd dimension

An operatorA ∈ C�(M,E) of order< −n is trace-class. In this case, the trace ofA,
which is finite, is given by tr(A) := ∫

M
dx
∫
T ∗x M

trx (σA(x, ξ )) d̄ξ, where trx is the

fibrewise trace and where d̄ξ := 1
(2π)n d ξ with dξ the ordinary Lebesgue measure

on T ∗x M � Rn. Kontsevich and Vishik [KV] introduced the canonical trace TR for
a noninteger-order classical ψDO A:

TR(A) :=
∫
M

TRx(A) dx =
∫
M

(
−
∫
T ∗x M

trx (σA(x, ξ )) d̄ξ

)
dx,
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where −∫
T ∗x M

trx (σA(x, ξ )) d̄ξ := fpR→∞
∫
Bx (0,R) trx (σA(x, ξ )) d̄ξ. Here Bx(0, R)

is a ball of radius R. It further extends to noninteger-order log-polyhomogeneous
operators using the same formula [L]. In contrast, the noncommutative residue of
a classical ψDO A is defined by [G, W] (see also [K])

res(A) :=
∫
M

(∫
S∗xM

trx ((σ−n(A)(x, ξ ))) d̄ξ

)
dx.

From this formula, it is easy to see that the noncommutative residue vanishes on
ψDOs of order strictly less than −n and also on ψDOs of noninteger order.

Let A ∈ C�#,k(M,E) be a log-polyhomogeneous operator with the asymptotic
expansion (11.2) in local coordinates. We set, by extension, for any x ∈ M (see
[PS]),

resx,l(A) :=
∫
S∗xM

trx
((
σ−n,l(A)(x, ξ )

))
d̄ξ for l ≤ k.

Proposition 11.4.1 Assume that M is an odd-dimensional manifold. Let A ∈
C�#,k(−1)(M,E). Then resx,l(A) vanishes for l = 0, . . . , k; hence

resl(A) :=
∫
M

resx,l(A)(x, ξ ) dx = 0

and

res(A) =
∫
M

(∫
S∗xM

trx ((σ−n(A)(x, ξ ))) d̄ξ

)
dx = res0(A) = 0.

Proof Let A ∈ C�#,k(−1)(M,E) be an odd-class operator, so its symbol verifies
σ−n,l(A)(x,−ξ ) = (−1)nσ−n,l(A)(x, ξ ). The dimension of M is odd, and we
integrate over the unit sphere S∗xM the odd function σ−n,l(A)(x, ξ ). The results
follow. �

Given an admissible operatorQ ∈ C�(M,E) with positive order q and spectral
cut α, and given A ∈ C�(M,E), the map z �→ TR

(
AQ−zα

)
is meromorphic with

simple poles, and theQ-weighted trace of A is defined by

trQα (A) := fpz=0TR
(
AQ−zα

)
,

where fpz=0 denotes the constant term in the Laurent expansion. This definition
of Q-weighted trace is extended in [D] to logarithms of elliptic admissible ψDOs
by picking out the constant term of the meromorphic map z �→ TR(logθ AQ

−z)
(which can have double poles).

Let us recall a result which extends results of [PS] to the log-polyhomogeneous
case (this is unpublished work by the authors of [PS], which can be found in [P]).
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Theorem 11.4.2 Let A(z) ∈ C�α(z),k(M,E) be a holomorphic family of log-
polyhomogeneous operators parametrized by z ∈ 
, a domain of C. Then for
any z0 ∈ 
 such that α′(z0) �= 0 we have

fpz=z0
TR(A(z)) =

∫
M

dx

(
TRx(A(z0))+

k∑
l=0

(−1)l+1

(α′(z0))l+1
resx,l(A

(l+1)(z0))

)
.

Applying this theorem to A(z) = AQ−zα , where A ∈ C�#,#(M,E), Q is admis-
sible with Agmon angle α, z = 0, and A(0) = A, we obtain the following formula
for the weighted trace of a log-polyhomogeneous operator [PS]:

trQα (A) =
∫
M

dx

(
TRx(A)+

k∑
l=0

1

(−q)l+1
resx,l

(
A(logα Q)l+1

))
. (11.5)

Remark 11.4.3 If A is a classical pseudodifferential operator, (11.5) gives back
the formula

trQα (A) =
∫
M

dx

(
TRx(A)− 1

q
resx(A logα Q)

)
.

Kontsevich and Vishik observed in [KV] that in odd dimensions, the weighted
trace trQ(A) is independent of the choice of the even-order odd-class weight Q
whenever A lies in the odd-class. Alternatively, on the basis of defect formulae in
[PS] one can show that the canonical trace TR extends to odd-class operators in
odd dimensions ([PS, Corollary 2.7]; see also [P]); it was actually shown in [MSS]
that it is the unique extension to odd-class operators of the ordinary L2 trace. The
following theorem extends some of these facts to log-polyhomogeneous operators.

Theorem 11.4.4 Assume that the dimension ofM is odd. LetA(z) ∈ C�α(z),k(M,E)
be a holomorphic family of log-polyhomogeneous operators with α′(0) �= 0 such
that A(0) = A and ∀j ≥ 0, A(j )(0) lies in the odd class. Then:

(i) TRx(A)dx =
(
−∫
T ∗x M

trx (σ (A)(x, ξ )) d̄ξ
)
dx defines a global density on M , so that

TR(A) = ∫
M

TRx(A)dx is well defined.
(ii) fpz=0TR(A(z)) = limz→0 TR(A(z)) = TR(A).

Proof Following the line of proof of Theorem 3 of [P], let us assume that A(z) ∈
C�α(z),k(M,E). We know that ∀j ≥ 0, A(j )(0) lie in the odd class. Thus, using
Proposition 11.4.1, we get resx,l

(
A(j )(0)

) = 0. Hence, applying Theorem 11.4.2,
TRx(A)dx = (−∫

T ∗x M
trx (σ (A)(x, ξ )) d̄ξ

)
dx defines a global density onM , so that

TR(A) = ∫
M

TRx(A)dx is well defined, and the rest follows. �
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Example 11.4.5 Let A,Q ∈ C�(M,E) be odd-class operators such that Q is
admissible with positive order q and Agmon angles α and α − qπ. The holo-
morphic family

A(z) = AQ
z
α +Qzα−qπ

2

verifyA(0) = A, and for l > 1 we haveA(l)(0) = A(logsym
α Q)l . In odd dimension,

A(z) fulfills the theorem, so

fpz=0TR

(
A
Qzα +Qzα−qπ

2

)
= TR(A).

We recover the known fact [PS] that TR is cyclic on the algebra of odd-class
log-polyhomogeneous operators.

Corollary 11.4.6 Assume that the dimension ofM is odd. For any odd-class oper-
ators A,B ∈ C�#,#(−1)(M,E),

TR[A,B] = 0.

Proof This follows from applying Theorem 11.4.4 to the family A(z) =
[AQzθ , BQ

z
θ ] with Q an odd-class admissible operator with even order q and

Agmon angle θ. �

11.5 The symmetrized canonical determinant

Inspired by Braverman [B], who introduced a symmetrized determinant using sym-
metrized regularized traces, we define a symmetrized determinant which involves
the canonical trace and symmetrized logarithms.

Definition 11.5.1 Suppose that M is an odd-dimensional manifold. Let A be an
odd-class admissible operator with nonnegative order a which admits Agmon
angles θ and θ − aπ. A determinant associated to TR is defined by setting

DETsym
θ (A) := exp

(
TR(logsym

θ A)
)
. (11.6)

Remark 11.5.2 If A has even order, then DETsym
θ coincides with the determinant

defined in [PS], which in turn coincides with the ζ -determinant:

log DETsym
θ (A) = log detζ,θ (A) = TR(logθ A).

Indeed, logsym
θ A = logθ A− ikπI.Using Corollary 11.3.2 and Proposition 11.4.1,

we get trAθ (logsym
θ A) = trAθ (logθ A).The result follows on applying Theorem 11.4.4.

Proposition 11.5.3 Under the assumptions of Definition 11.5.1, DETsym
θ (A) coin-

cides with the symmetrized determinant introduced in [B]:

Detsym
θ A := exp

(
1

2
Trsym

(
logθ A+ logθ−aπ A

)) = exp
(
Trsym

(
logsym

θ A
))
,
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where TrsymA := TrQ,sym
α A = 1

2

(
trQα A+ trQα−qπA

)
.HereQ is any odd-class admis-

sible operator with positive order q and Agmon angles α, α − qπ.
Proof It is easy to see that TR(logsym

θ A) = Trsym(logsym
θ A) by applying Theorem

11.4.4 to the family A(z) = 1
2 (logsym

θ A)(Azθ + Azθ−aπ ). �

Remark 11.5.4 It is well known that the ζ -determinant generally depends on the
choice of spectral cut. However, it is invariant under mild changes of spectral cut
in the following sense: if 0 ≤ θ < φ < 2π are two Agmon angles for A and if the
cone �θ,φ := {ρ eit , ∞ > ρ ≥ r, θ < t < φ} contains only a finite number of
eigenvalues of A, then detζ,θ (A) = detζ,φ(A). If the order of A is even, then by
Remark 11.5.2, DETsym

θ (A) = detζ,θ (A), and hence the same property holds for the
symmetrized determinant. As already remarked by Braverman, if the order of A is
odd, that is no longer the case, for it might happen that there are infinitely many
eigenvalues of A in the cone �θ−aπ,φ−aπ . Nevertheless, we have the following
proposition, proved in [B]:

Proposition 11.5.5 LetM be an odd-dimensional manifold, and let A be an odd-
class admissible operator with odd positive order a which admits Agmon angles
θ, θ − π and φ, φ − π. Suppose that 0 ≤ φ − θ < π. In the cases

(i) only a finite number of eigenvalues of A lie in �θ,φ ∪�θ−π,φ−π ,
(ii) all but finitely many eigenvalues of A lie in �θ,φ ∪�θ−π,φ−π ,
we have

DETsym
θ (A) = ±DETsym

φ (A).

From the traciality of TR on odd-class operator in odd dimensions, we infer the
following multiplicative property.

Proposition 11.5.6 Suppose that M is an odd-dimensional manifold. Let A be
an odd-class admissible operator with positive order a and Agmon angles θ and
θ − aπ , and let B be an odd-class admissible operator with positive order b and
Agmon angles φ and φ − bπ such that AB is also admissible with Agmon angles
ψ and ψ − (a + b)π. If [A,B] = 0 then

DETsym
ψ (AB) = DETsym

θ (A) DETsym
φ (B).

This result generalizes to noncommuting operators, as was shown by Braverman
[B] using, under suitable assumptions, the formula for the multiplicative anomaly
established by Okikiolu [O]. For this, we first recall the following definition taken
from [B].

Definition 11.5.7 Let θ be a principal angle for an operatorA ∈ C�a(−1)(M,E).An
Agmon angle φ ≥ θ is sufficiently close to θ if there are no eigenvalues of A in
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the cones �(θ,φ] and �(θ−aπ,φ−aπ].We shall denote by logθ̃ A, logsym
θ̃
A, DETsym

θ̃
A

the corresponding numbers obtained using an Agmon angle sufficiently close to θ.
Clearly, those numbers are independent of the choice of θ̃ .

Here, I give an alternative short proof of the multiplicativity of DETsym using
the cyclicity of the canonical trace on odd-class operators in odd dimensions.

Proposition 11.5.8 Let M be an odd-dimensional manifold. Suppose that A is
an odd-class admissible operator with positive order a and Agmon angles θ and
θ − aπ , and that B is an odd-class admissible operator with positive order b
and Agmon angles φ and φ − bπ. Let us assume that for each t ∈ [0, 1], AtθB has
principal angle ψ(t), where t → ψ(t) is continuous. Set ψ(0) = φ and ψ(1) = ψ.
Then for ψ̃ an angle sufficiently close to ψ,

DETsym
ψ̃

(AB) = DETsym
θ (A) DETsym

φ (B).

Proof For a fixed t, the operator AtθB is classical with order at + b, and it is easy
to prove that logsym

ψ(t)(A
t
θB) is an odd-class operator. Let us set logMsym(Atθ , B) :=

log DETsym
ψ(t)(A

t
θB)− log DETsym

θ (Atθ )− log DETsym
φ (B). Following arguments sim-

ilar to Okiliolu’s (see [O]), we build a finite partition
⋃K
k=1 Jk of [0, 1] in such a

way that we can choose on each of the intervals Jk a common fixed Agmon angle
ψ̃k of AtθB sufficiently close to ψ(t) when t varies in Jk, and we set m = at + b.
We want to show that for all t ∈ [0, 1], d

dt

(
logMsym(Atθ , B)

) = 0, i.e., for all
τ ∈ [0, 1],

d
dt

∣∣
t=0

(
logMsym(At+τθ , B)

) = 0.

Let us start by proving the result at τ = 0. In practice we work on each of the
Jk with the Agmon angle ψ̃k; to simplify notation, we just write ψ̃ instead of ψ̃k.
We have

d
dt

∣∣
t=0

(
logMsym(Atθ , B)

)
= d

dt

∣∣
t=0TR

(
logsym

ψ̃
(AtθB)− logsym

θ (Atθ )− logsym
φ (B)

)
= 1

2 TR
[
( ˙
AtθB)ψ̃ (AtθB)−1

ψ̃
+ ( ˙
Atθ−aπB)ψ̃−mπ (Atθ−aπB)−1

ψ̃

]
|t=0

− 1
2 TR

[
(Ȧtθ )θ (A

t
θ )
−1
θ + ( ˙

Atθ−aπ )θ−aπ (Atθ−aπ )−1
θ−aπ

]
|t=0
= 0,

where we have used the formula d
dt

logCt =
∫ 1

0 (Ct )−1−λ(Ċt )(Ct )λ dλ combined
with the traciality of TR in the second identity.1 Now, replacing B by AτθB

1 Interchanging the trace TR and the differentiation is justified in [Ou].
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yields d
dt

∣∣
t=0

(
logMsym(Atθ , A

τ
θB)
) = 0. An easy computation shows that

logMsym(At+τθ , B)− logMsym(Atθ , A
τ
θB)

= TR
(
− logsym

θ (Aτθ )− logsym
ψ̃
B − logsym

ψ̃
(AτθB)

)
.

Because the r.h.s. of the previous equation in independent of t, it follows that for
all τ ∈ [0, 1], d

dt

∣∣
t=0

(
logMsym(At+τθ , B)

) = 0. �
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Some remarks about cosymplectic metrics
on maximal flag manifolds

marlio paredes and sofia pinzón∗

Abstract
In this chapter we provide some differential-type conditions for the Borel met-
rics on a maximal flag manifold to be cosymplectic. These conditions are
obtained using the formula to calculate the codifferential of the Kähler form
on a maximal flag manifold derived by the authors in a yet unpublished paper.

12.1 Introduction

This work deals with the maximal complex flag manifold

F(n) = U (n)

U (1)× · · · × U (1)
.

The geometry of this manifold has been studied in several papers. Burstall and
Salamon [5] showed the existence of a bijective relation between almost complex
structures on F(n) and tournaments with n vertices. Mo and Negreiros [16], by
using moving frames and tournaments, showed explicitly the existence of an n-
dimensional family of invariant (1, 2)-symplectic metrics on F(n). In [19], the first
author proved the existence of several families of (1, 2)-symplectic metrics on F(n);
see too [18] and [20].

The main motivation to study (1, 2)-symplectic and cosymplectic metrics is the
construction of harmonic maps using a known result due to Lichnerowicz [13]: let
(M,g, J1) and (N, h, J2) be almost Hermitian manifolds withM cosymplectic and
N (1, 2)-symplectic; then any ±-holomorphic map φ : (M,g, J1)→ (N, h, J2) is
harmonic.

∗
We would like to thank Professor David Colón Arroyo for his help reviewing the English language in this
work.
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Cohen, Negreiros and San Martin in [9] proved that F(n) admits a (1, 2)-
symplectic invariant metric if and only if the tournament associated to the almost
complex structure is cone-free. This result was improved in [10] using local tran-
sitivity of the associated tournament.

Mo and Negreiros [16], using the moving frames technique, found a formula
to calculate the differential of the Kähler form. In [21], the authors used a similar
method to obtain a formula to calculate the codifferential of the Kähler form.

In the present work, we use the formula for the codifferential of the Kähler form
to show that the Borel metrics (see [1–3]) on flag manifolds are cosymplectic if
and only if they satisfy a system of partial differential equations.

12.2 Maximal flag manifolds

The classical maximal flag manifold is defined by

F(n) = {(L1, . . . , Ln) : Li is a subspace of Cn, dimCLi = 1, Li ⊥ Lj }. (12.1)

The unitary group U (n) acts transitively on F(n), turning this manifold into the
homogeneous space

F(n) = U (n)

U (1)× U (1)× · · · × U (1)
= U (n)

T
, (12.2)

where T = U (1)× U (1)× · · · × U (1) is any maximal torus of U (n).
Let p be the tangent space of F(n) at the point (T ). It is known that u(n), the Lie

algebra of skew-Hermitian matrices, decomposes as

u(n) = p⊕ u(1)⊕ · · · ⊕ u(1) ,

where p ⊂ u(n) is the subspace of zero-diagonal matrices.
In order to define any tensor on F(n) it is sufficient to give it on p, because the

action of U (n) on F(n) is transitive. An invariant almost complex structure on F(n)
is determined by a linear map J : p→ p such that J 2 = −I , and commutes with
the adjoint representation of the torus T on p.

For each almost complex structure we assign a directed graph. A tournament,
or n-tournament, T consists of a finite set T = {p1, . . . , pn} of n players together
with a dominance relation,→, which assigns to every pair of players a winner, that
is, pi → pj or pj → pi . A tournament T can be represented by a directed graph in
which T is the set of vertices and any two vertices are joined by an oriented edge.
If the dominance relation is transitive, then the tournament is called transitive. For
a complete reference on tournaments see [15].



396 Marlio Paredes and Sofia Pinzón

Given an invariant complex structure J , we define the associated tournament
T (J ) in the following way: if J (aij ) = (a′ij ), then T (J ) is such that for i < j(

i → j ⇔ a′ij =
√−1 aij

)
or

(
i ← j ⇔ a′ij = −

√−1 aij
)

;

see [16].
We consider Cn equipped with the standard Hermitian inner product, that is, for

V = (v1, . . . , vn) and W = (w1, . . . , wn) in Cn, we have 〈V,W 〉 =∑n
i=1 viwi .

We use the convention vı̄ = vi and fı̄j = fi̄ .
A frame consists of an ordered set of n vectors (Z1, . . . , Zn), such that

Z1 ∧ · · · ∧ Zn �= 0, and it is called unitary if
〈
Zi, Zj

〉 = δi̄ . The set of unitary
frames can be identified with the unitary group U (n).

If we write dZi =
∑
j ωi̄Zj , the coefficients ωi̄ are the Maurer–Cartan forms

of the unitary group U (n). They are skew-Hermitian, that is, ωi̄ + ω̄i = 0. For
more details see [7].

We may define all left-invariant metrics on (F(n), J ) by (see [1] or [17])

ds2
� =

∑
i,j

λijωi̄ ⊗ ωı̄j , (12.3)

where � = (λij ) is a symmetric real matrix such that{
λij > 0 if i �= j,
λij = 0 if i = j, (12.4)

and the Maurer–Cartan forms ωi̄ are such that

ωi̄ ∈ C1,0 (forms of type (1,0)) ⇐⇒ i
T (J )−→ j. (12.5)

The metrics (12.3) are called Borel type, and they are almost Hermitian for
every invariant almost complex structure J , that is, ds2

�(JX, JY ) = ds2
�(X, Y )

for all tangent vectors X, Y . When J is integrable, ds2
� is said to be Hermitian.

Let J be an invariant almost complex structure on F(n), T (J ) the associated
tournament, and ds2

� an invariant metric. The Kähler form with respect to J and
ds2
� is defined by


(X, Y ) = ds2
�(X, JY ), (12.6)

for any tangent vectors X, Y . For each permutation σ of n elements, the Kähler
form can be written as follows (see [16]):


 = −2
√−1

∑
i<j

µσ (i)σ (j )ωσ (i)σ (j ) ∧ ωσ (i)σ (j ), (12.7)
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where µσ (i)σ (j ) = εσ (i)σ (j )λσ (i)σ (j ) and

εij =


1 if σ (i)→ σ (j ),
−1 if σ (j )→ σ (i),

0 if σ (i) = σ (j ).

F(n) is said to be almost Kähler if and only if 
 is closed, that is, d
 = 0. If J
is integrable and 
 is closed, then F(n) is said to be a Kähler manifold.

Mo and Negreiros proved in [16] that

d
 = 4
∑
i<j<k

Cσ (i)σ (j )σ (k)"σ (i)σ (j )σ (k), (12.8)

where

Cijk = µij − µik + µjk (12.9)

and

"ijk = Im(ωi̄ ∧ ωı̄k ∧ ωjk̄). (12.10)

We denote by Cp,q the space of forms of type (p, q) on F(n). Then, for any i, j, k,
we have either"ijk ∈ C0,3 ⊕ C3,0 or "ijk ∈ C1,2 ⊕ C2,1. An invariant almost Her-
mitian metric ds2

� is said to be (1, 2)-symplectic if and only if (d
)1,2 = 0. If
δ
 = 0 (the codifferential of the Kähler form is zero), then the metric is said to be
cosymplectic.

Given a tournament T , we define a winner in T as the unique vertex that wins
against all the other vertices, and a loser in T as the unique vertex that loses to all
the other vertices. Not every tournament has a winner or a loser; however, when a
winner or a loser exists, it is not part of any cycle.

Up to isomorphism, there are four distinct 4-tournaments. The two that contain
a single 3-cycle are called coned 3-cycles. Each of them contains a cycle and a
winner or a loser. An n-tournament T is called cone-free if each 4-subtournament
of T is not a coned 3-cycle.

The following theorem, due to Cohen, Negreiros and San Martin [9], classifies
the (1, 2)-symplectic metrics on F(n).

Theorem 12.2.1 Let (F(n), J, ds2
�) be the maximal flag manifold. The metric ds2

�

is (1, 2)-symplectic if and only if the associated tournament T (J ) is cone-free.

Another way to see the cone-free tournaments is their local transitivity. Given a
tournament T and a vertex v ∈ T , we define the following subtournaments:

T −(v) = {x ∈ T : x → v} and T +(v) = {x ∈ T : v→ x}, (12.11)



398 Marlio Paredes and Sofia Pinzón

which are called the in-neighbor and the out-neighbor of v, respectively. T is called
locally transitive if and only if the subtournaments T −(v) and T +(v) are transitive
for each vertex v (see [4]). The following proposition was proved in [10].

Proposition 12.2.2 A tournamentT is cone-free if and only if it is locally transitive.

This proposition implies the following theorem, which is equivalent to
Theorem 12.2.1.

Theorem 12.2.3 Let (F(n), J, ds2
�) be the maximal flag manifold. The metric ds2

� is
(1, 2)-symplectic if and only if the associated tournament T (J ) is locally transitive.

The proof of this theorem is more direct than that of the last one (Theorem
12.2.1), because the local transitivity concept is more natural than the cone-free
concept. In addition, the local transitivity concept can be generalized to directed
graphs associated to f -structures (see [22,24]). In [8], Theorem 12.2.3 was gener-
alized to f -structures using local transitivity. References [6] and [14] are important
for future developments on the subject of this chapter.

12.3 Cosymplectic metrics on F(n)

We are interested in studying cosymplectic metrics on F(n). San Martin and
Negreiros [23, Proposition 7.3] proved that the metrics ds2

� in the last theorem
are also cosymplectic. In fact, they proved that every invariant metric ds2

� on F(n)
is cosymplectic.

The condition for ds2
� to be cosymplectic is that the codifferential of the

Kähler form δ
 is zero. However, San Martin and Negreiros did not calculate
this codifferential, because they used another equivalent condition due to Gray and
Hervella [11]. Here we use an explicit formula to calculate this codifferential; see
Theorem 12.3.1.

Remember that, up to isomorphisms, the Kähler form can be written in the
following way:


 = −2
√−1

∑
i<j

µijωij ∧ ωij ,

where µij = εijλij and

εij =


1 if i → j ,

−1 if j → i ,

0 if i = j .
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Following the book by Griffiths and Harris [12], because ωij ∈ C1,0 we can
write

ωij =
∑
k

f
ij

k dzk , (12.12)

where f ijk are complex functions. Then, applying conjugation, we have

ωij = ωij =
∑
k

f
ij

k dzk

and

ωij ∧ ωij =
∑
k,l

f
ij

k f
ij

l dzk ∧ dzl .

So the Kähler form can be written in the following way:


 = −2
√−1

∑
i<j

µij

(∑
k,l

f
ij

k f
ij

l dzk ∧ dzl

)
. (12.13)

Using the definition of the codifferential and the definition of the Hodge star
operator in [12], we can prove the following result:

Theorem 12.3.1 The codifferential of the Kähler form is given by

δ
 = −22+2N
√−1

∑
i<j

µij


∑
k,l

∂
(
f
ij

k f
ij

l

)
∂zl

dzk −
∂
(
f
ij

k f
ij

l

)
∂zk

dzl

 . (12.14)

The proof of this theorem is included in the unpublished paper cited in the
introduction. This theorem provides us the following result

Proposition 12.3.2 A metric on (F(n), J ) is cosymplectic if and only if the functions
f
ij

k in the Kähler form satisfy the equation

∑
i<j

µij


∑
k,l

∂
(
f
ij

k f
ij

l

)
∂zl

dzk −
∂
(
f
ij

k f
ij

l

)
∂zk

dzl

 = 0. (12.15)
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Expanding the sums over k and l in (12.14) and reordering, we obtain

δ
 = −22+2N
√−1

∑
i<j

µij


∑
k,l

∂

(
f
ij

k f
ij

l

)
∂zl

dzk −
∂

(
f
ij

k f
ij

l

)
∂zk

dzl


= −22+2N

√−1

∑
i<j

µij


 ∂

(
f
ij

1 f
ij

1

)
∂z1

+ · · · +
∂

(
f
ij

1 f
ij

N

)
∂zN

 dz1

+
 ∂

(
f
ij
2 f

ij
1

)
∂z1

+ · · · +
∂

(
f
ij
2 f

ij
N

)
∂zN

 dz2 + · · ·

+

 ∂
(
f
ij

N f
ij

1

)
∂z1

+ · · · +
∂

(
f
ij

N f
ij

N

)
∂zN

 dzN


−
∑
i<j

µij


 ∂

(
f
ij

1 f
ij

1

)
∂z1

+ · · · +
∂

(
f
ij

1 f
ij

N

)
∂zN

 dz1

+
 ∂

(
f
ij
2 f

ij
1

)
∂z1

+ · · · +
∂

(
f
ij
2 f

ij
N

)
∂zN

 dz2 + · · ·

+

 ∂
(
f
ij

N f
ij

1

)
∂z1

+ · · · +
∂

(
f
ij

N f
ij

N

)
∂zN

 dzN


 .

Then a metric on (F(n), J ) is cosymplectic if and only if the functions f ijk in the
Kähler form satisfy the following system of partial differential equations:

∑
i<j

µij

∂
(
f
ij

k f
ij

1

)
∂z1

+ · · · +
∂
(
f
ij

k f
ij

N

)
∂zN

 = 0, k = 1, . . . , N, (12.16)

∑
i<j

µij

∂
(
f
ij

1 f
ij

1

)
∂z1

+ · · · +
∂
(
f
ij

1 f
ij

N

)
∂zN

 = 0, k = 1, . . . , N. (12.17)

Actually, the equation (12.17) is the conjugate of the equation (12.16); thus we
have the following result.

Proposition 12.3.3 A metric on (F(n), J ) is cosymplectic if and only if the
functions f ijk in the Kähler form satisfy the system of partial differential
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equations

∑
i<j

µij

∂
(
f
ij

k f
ij

1

)
∂z1

+ · · · +
∂
(
f
ij

k f
ij

N

)
∂zN

 = 0, k = 1, . . . , N. (12.18)

Now, we can write the equation (12.14) in the following way:

δ
 = −22+2N
√−1

∑
i<j

µij


N∑
k=1

∂
(
f
ij

k f
ij

1

)
∂z1

+ · · · +
∂
(
f
ij

k f
ij

N

)
∂zN

 dzk

−
N∑
k=1

∂
(
f
ij

1 f
ij

1

)
∂z1

+ · · · +
∂
(
f
ij

1 f
ij

N

)
∂zN

 dzk


= −22+2N

√−1
∑
i<j

µij

N∑
k=1

{(
N∑
l=1

∂

∂zl

(
f
ij

k f
ij

l

))
dzk −

(
N∑
l=1

∂

∂zl

(
f
ij

k f
ij

l

)
dzk

)}
.

Because z− z = 2
√−1 Imz for every complex number z, then

δ
 = −22+2N
√−1

∑
i<j

µij

N∑
k=1

{
2
√−1 Im

(
N∑
l=1

∂

∂zl

(
f
ij

k f
ij

l

)
dzk

)}

= 23+2N
∑
i<j

µij

{
N∑
k,l=1

Im

(
∂

∂zl

(
f
ij

k f
ij

l

)
dzk

)}

= 23+2N Im

∑
i<j

µij

(
N∑
k,l=1

(
∂

∂zl

(
f
ij

k f
ij

l

)
dzk

)) .
Then, we have the following proposition, equivalent to Propositions 12.3.2 and

12.3.3.

Proposition 12.3.4 A metric on (F(n), J ) is cosymplectic if and only if the functions
f
ij

k in the Kähler form satisfy the equation

Im

∑
i<j

µij

(
N∑
k,l=1

(
∂

∂zl

(
f
ij

k f
ij

l

)
dzk

)) = 0. (12.19)

We can write this equation in real coordinates using the complex operators

∂

∂zi
= 1

2

(
∂

∂xi
−√−1

∂

∂yi

)
,

∂

∂zi
= 1

2

(
∂

∂xi
+√−1

∂

∂yi

)
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and the complex differential forms

dzi = dxi +
√−1 dyi, dzi = dxi −

√−1 dyi.

We have

∂

(
f
ij

k f
ij

l

)
∂zl

dzk −
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(
f
ij

k f
ij

l

)
∂zk

dzl

= 1
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dxl +
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∂
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 .

Thus a metric on (F(n), J ) is cosymplectic if and only if the functions f ijk in the
Kähler form satisfy the following equations:

∑
i<j

µij


∑
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k f
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)
∂yk
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(12.20)

∑
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 = 0.

(12.21)

These sums are calculated over all k and l; therefore the left side of the equation
(12.20) vanishes. So, we have the following result.
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Proposition 12.3.5 A metric on (F(n), J ) is cosymplectic if and only if the functions
f
ij

k in the Kähler form satisfy the following equation:

∑
i<j

µij


∑
k,l

 ∂
(
f
ij
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ij
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)
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ij
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)
∂yk

dxl

+
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(
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ij
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ij
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)
∂xk
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(
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ij
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)
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dxk
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 = 0.
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Heisenberg modules over real multiplication
noncommutative tori and related algebraic structures

jorge plazas∗

Abstract
I review some aspects of the theory of noncommutative two-tori with real mul-
tiplication, focusing on the role played by Heisenberg groups in the definition
of algebraic structures associated to these noncommutative spaces.

13.1 Introduction

Noncommutative tori have played a central role in noncommutative geometry
since the early stages of the theory. They arise naturally in various contexts and
have provided a good testing ground for many of the techniques from which
noncommutative geometry has developed [1,14]. Noncommutative tori are defined
in terms of their algebras of functions. The study of projective modules over these
algebras and the corresponding theory of Morita equivalences leads to the existence
of a class of noncommutative tori related to real quadratic extensions of Q. These
real multiplication noncommutative tori are conjectured to provide the correct
geometric setting under which to attack the explicit class field theory problem
for real quadratic fields [7]. The right understanding of the algebraic structures
underlying these spaces is important for these applications.

The study of connections on vector bundles over noncommutative tori gives
rise to a rich theory, which has been recast recently in the context of complex
algebraic geometry [1, 3, 5, 11, 12, 16]. The study of categories of holomorphic
bundles has thrown light on some algebraic structures related to real multiplication
noncommutative tori [9, 10, 18]. Some of these results arise in a natural way from
the interplay between Heisenberg groups and noncommutative tori.

∗
I want to thank the organizers of the 2007 summer school “Geometric and topological methods for quantum
field theory” and I.H.E.S. for their support and hospitality. This work was supported in part by ANR-Galois
grant NT05-2 44266.
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13.2 Noncommutative tori and their morphisms

In many situations arising in various geometric settings it is possible to character-
ize spaces and some of their structural properties in terms of appropriate rings of
functions. One instance of this duality is provided by Gelfand’s theorem, which
identifies the category of locally compact Hausdorff topological spaces with the cat-
egory commutativeC∗-algebras. This correspondence assigns to a spaceX the com-
mutative algebra C0(X) consisting of complex-valued continuous functions on X
vanishing at infinity. Topological invariants of the space X can be obtained by the
corresponding invariants of C0(X) defined in the context of C∗-algebras. If X is a
smooth manifold, the smooth structure on X singles out the ∗-subalgebra C∞0 (X)
consisting of smooth elements ofC0(X). Considering the spaceX in the framework
of differential topology leads to structures defined in terms of the algebra C∞0 (X).

Various geometric notions which can be defined in terms of rings of functions on
a space do not depend on the fact that the rings under consideration are commuta-
tive, and can therefore be extended in order to consider noncommutative rings and
algebras. In noncommutative geometry, spaces are defined in terms of their rings of
functions, which are noncommutative analogs of commutative rings of functions.
This passage is far from being just a translation of classical ideas to a noncommuta-
tive setting. Many extremely rich new phenomena arise in this context (see [2]). The
noncommutative setting also enriches the classical picture in that noncommutative
rings may arise in a natural way from classical geometric considerations.

We will be considering noncommutative analogs of the two-torus T2 = S1 ×
S1. The reader may consult [1, 2, 4, 6, 7, 14, 15] for the proofs of the results on
noncommutative tori mentioned in this section.

13.2.1 The C∗-algebra Aθ

Under the Gelfand correspondence, compact spaces correspond to commutative
unitalC∗-algebras and T2 is dual toC(T2). At a topological level a noncommutative
two-torus is defined in terms of a unital noncommutative C∗-algebra, which plays
the role of its algebra of continuous functions.

Given θ ∈ R, let Aθ be the universal C∗-algebra generated by two unitaries U
and V subject to the relation

UV = e2πıθV U.

Then:

(i) If θ ∈ Z, the algebra Aθ is isomorphic to C(T2).
(ii) If θ ∈ Q, the algebra Aθ is isomorphic to the algebra of global sections of the endo-

morphism bundle of a complex vector bundle over T2.
(iii) If θ ∈ R \Q, the algebra Aθ is a simple C∗-algebra.
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For irrational values of θ we will refer toAθ as the algebra of continuous functions
on the noncommutative torus T2

θ . Thus, as a topological space the noncommutative
torus T2

θ is defined as the dual object of C(T2
θ ) := Aθ .

There is a natural continuous action of the compact group T2 on the algebra Aθ .
This action can be given in terms of the generators U and V by

αϕ(U ) = e2πıϕ1U,

αϕ(V ) = e2πıϕ2V,

where ϕ = (ϕ1, ϕ2) ∈ T2.
One of the main structural properties of the algebra Aθ is the existence of a

canonical trace whose value at each element is given by the average over T2 of that
action.

Theorem 13.2.1 Let θ be an irrational number. Then there exist a unique normal-
ized trace

χ : Aθ → C

invariant under the action of T2.

For the remaining part of the chapter θ will denote an irrational number. Also,
for any complex number z ∈ C we will use the notation

e(z) = exp(2πız), ē(z) = exp(−2πız).

13.2.2 Smooth elements

The action of T2 on Aθ induces a smooth structure on the noncommutative torus
T2
θ . An element a ∈ Aθ is called smooth if the map

T2 −→ Aθ,

ϕ �−→ αϕ(a)

is smooth. The set of smooth elements of Aθ is a dense ∗-subalgebra, which we
denote byAθ . Elements in this subalgebra should be thought of as smooth functions
on the noncommutative torus T2

θ ; thus we take C∞(T2
θ ) := Aθ . The algebra Aθ can

be characterized in the following way:

Aθ =
{ ∑
n,m∈Z

an,mU
nV m ∈ Aθ | {an,m} ∈ S(Z2)

}
,
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where S(Z2) denotes the space of sequences of rapid decay in Z2. In the algebra
Aθ the trace χ is given by

χ
(∑

an,mU
nV m

)
= a0,0.

The Lie algebra L = R2 of T2 acts on Aθ by derivations. A basis for this action
is given by the derivations

δ1(U ) = 2πıU, δ1(V ) = 0,

δ2(U ) = 0, δ2(V ) = 2πıV .

A complex parameter τ ∈ C \ R induces a complex structure on L = R2 given
by the isomorphism

R2 −→ C,

x = (x1, x2) �−→ x̃ = τx1 + x2.

The corresponding complex structure on Aθ is given by the derivation

δτ = τδ1 + δ2.

13.2.3 Vector bundles and K-theory

IfX is a smooth compact manifold, the space of smooth sections of a vector bundle
over X is a finite-type projective module over C∞(X), and any such module arises
in this way. In our setting, finite-type projective right Aθ -modules will play the role
of vector bundles over the noncommutative torus T2

θ .
As before, we denote by L = R2 the Lie algebra of T2 acting as an algebra of

derivations on Aθ . If P is a finite-type projective right Aθ -module, a connection
on P is given by an operator

∇ : P → P ⊗ L∗

such that

∇X(ξa) = ∇X(ξ ) a + ξδXa
for all X ∈ L, ξ ∈ P and a ∈ Aθ . The connection ∇ is determined the operators

∇i : P → P, i = 1, 2,

giving its values on the basis elements δ1, δ2 of L.
The K0 group of Aθ is by definition the enveloping group of the abelian semi-

group given by isomorphism classes of finite-type projective right Aθ -modules
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together with the direct sum. The trace χ extends to an injective morphism

rk : K0(Aθ )→ R

whose image is

�θ = Z⊕ θZ.

13.2.4 Morphisms of noncommutative tori

Because noncommutative tori are defined in terms of their function algebras, one
should expect a morphism T2

θ → T2
θ ′ between two noncommutative tori T2

θ and T2
θ ′

to be given by a morphism Aθ ′ → Aθ of the corresponding algebras of functions.
It turns out that algebra morphisms are in general insufficient to describe the type
of situations arising in noncommutative geometry. The right notion of morphisms
in our setting is given by Morita equivalences. A Morita equivalence between Aθ ′
and Aθ is given by the isomorphism class of an Aθ ′–Aθ bimodule E which is
projective and of finite type both as a left Aθ ′-module and as a right Aθ -module.
If such bimodule exists, we say that Aθ ′ and Aθ are Morita equivalent. We can
consider a Morita equivalence between Aθ ′ and Aθ as a morphism between Aθ ′
and Aθ inducing a morphism between T2

θ and T2
θ ′ . Composition of morphisms is

provided by the tensor product of modules.
Let SL2(Z) act on R \Q by fractional linear transformations, i.e., given

g =
(
a b

c d

)
∈ SL2(Z), θ ∈ R \Q,

we take

gθ = aθ + b
cθ + d .

Morita equivalences between noncommutative tori are characterized by the fol-
lowing result:

Theorem 13.2.2 (Rieffel [13]) Let θ ′, θ ∈ R \Q. Then the algebras Aθ ′ and Aθ
are Morita equivalent if and only if there exists a matrix g ∈ SL2(Z) such that
θ ′ = gθ .

In Section 13.4 we will construct explicit bimodules realizing this equivalences.
In what follows, whenever we refer to a right Aθ -module (left Aθ ′-module, Aθ ′–Aθ
bimodule), we mean a projective and finite-type right Aθ -module (left Aθ ′-module,
Aθ ′–Aθ bimodule)

Given a irrational number θ , an Aθ–Aθ bimodule E induces Morita
self-equivalences of Aθ . We denote by EndMorita(Aθ ) the group of Morita self-
equivalences of Aθ . For example, given any positive integer n, the free bimodule
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Anθ induces a Morita self-equivalence of Aθ . A Morita self-equivalence defined via
a free module is called a trivial Morita self-equivalence.

A Morita self-equivalence of Aθ given by an Aθ–Aθ bimodule E defines an
endomorphism of K0(Aθ ) via

φE : [P ] �→ [P ⊗Aθ
E]

for P a right projective finite-rank Aθ module and [P ] ∈ K0(Aθ ) its K-theory
class.

Via the map rk, the endomorphism φM becomes multiplication by a real number.
Thus we get a map

φ : EndMorita(Aθ )→ {α ∈ R |α�θ ⊂ �θ }.
This map turns out to be surjective.

We can summarize the situation as follows (see [7]):

Theorem 13.2.3 Let θ ∈ R be irrational. The following conditions are equivalent:

� Aθ has nontrivial Morita autoequivalences.
� φ(EndMorita(Aθ )) �= Z.
� There exists a matrix g ∈ SL2(Z) such that

θ = gθ.
� θ is a real quadratic irrationality:

[Q(θ ) : Q] = 2.

If any of these equivalent conditions holds, we say that the noncommutative torus
T2
θ with algebra of smooth functions Aθ is a real multiplication noncommutative

torus. If T2
θ is a real multiplication noncommutative torus, then

φ(EndMor(Aθ )) = {α ∈ R |α�θ ⊂ �θ }
= Z+ fOk,

where f ≥ 1 is an integer and Ok is the ring of integers of the real quadratic field
k = Q(θ ).

These results should be compared with the analogous results for elliptic curves
leading to the theory of complex multiplication. The strong analogy suggests that
noncommutative tori may play a role in number theory similar to the role played
by elliptic curves. In particular, noncommutative tori with real multiplication could
give the right geometric framework to attack the explicit class field theory problem
for real quadratic fields (see [7]).
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Let τ ∈ C \ R. Consider the lattice �τ = Z⊕ τZ and the elliptic curve

Xτ = C/�τ .

The following conditions are equivalent:

� End(Xτ ) �= Z.
� τ generates a quadratic extension:

[Q(τ ) : Q] = 2.

In this case we have

End(Xτ ) = {α ∈ C |α�τ ⊂ �τ }
= Z+ fOk,

where f ≥ 1 is an integer and Ok is the ring of integers of the imaginary quadratic
field k = Q(τ ).

13.3 Heisenberg groups and their representations

Various aspects of the theory of representations of Heisenberg groups arise naturally
when considering geometric constructions associated to noncommutative tori. This
fact gives relations between noncommutative tori and elliptic curves through theta
functions and plays a useful role in the study of the arithmetic nature of related
algebraic structures. In this section I sketch the parts of the theory of Heisenberg
groups that are relevant in order to describe these results. I follow Mumford’s Tata
lectures [8], which I also recommend as a reference for the material in this section.

Let G be a locally compact group lying in a central extension:

1 → C∗1 → G→K → 0,

where C∗1 is the group of complex numbers of modulus 1, andK is a locally compact
abelian group. Assume that the exact sequence splits, so as a setG = C∗1 ×K and
the group structure is given by

(λ, x)(µ, y) = (λµψ(x, y), x + y),

where ψ : K ×K → C∗1 is a two-cocycle in K with values in C∗1. The cocycle ψ
induces a skew multiplicative pairing

e : K ×K −→ C∗1,

(x, y) �−→ ψ(x, y)

ψ(y, x)
.
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This pairing defines a group morphism ϕ : K → K̂ from K to its Pontrjagin dual
given by φ(x)(y) = e(x, y).

Definition 13.3.1 If ϕ is a isomorphism, we say that G is a Heisenberg group.

For a Heisenberg group G lying in a central extension we use the notation
G = Heis(K). The main theorem about the representation of Heisenberg groups
states that groups of this kind admit a unique normalized irreducible representation
which can be realized in terms of a maximal isotropic subgroup of K. A subgroup
H of K is called isotropic if e|H×H ≡ 1; this is equivalent to the existence of a
section of G over H :

σ : K −→ G,

x �−→ (α(x), x).

We say that a subgroup H of K is maximal isotropic if it is maximal with this
property. A subgroup H of K is maximal isotropic if and only if H = H⊥, where
for S ⊂ H we have

S⊥ = {x ∈ K | e(x, y) = 1 for all y ∈ S}.
Theorem 13.3.2 (Stone, von Neumann, Mackey) Let G be a Heisenberg group.
Then:
� G has a unique irreducible unitary representation in which C∗1 acts by multiples of the

identity.
� Given a maximal isotropic subgroup H ⊂ K and a splitting σ as described in the

preceding, let H = HH be the space of measurable functions f : K → C satisfying

(i) f (x + h) = α(h)ψ(h, x)−1f (x) for all h ∈ H ,

(ii)
∫
K/H
|f (x)|2dx < ∞.

Then G acts on H by

U(λ,y)f (x) = λψ(x, y)f (x + y),

and H is an irreducible unitary representation of G.

We call such representation a Heisenberg representation of G. The following
theorem will be useful later:

Theorem 13.3.3 Given two Heisenberg groups

1 → C∗1 → Gi→Ki → 0, i = 1, 2,

with Heisenberg representations H1 and H2, then

1 → C∗1 → G1 ×G2/{(λ, λ−1)|λ ∈ C∗1}→K1 ×K2 → 0

is a Heisenberg group, and its Heisenberg representation is H1 ⊗̂ H2.
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13.3.1 Real Heisenberg groups

Let K = R2, and let ε be a positive real number. We endowG = K × C∗1 with the
structure of a Heisenberg group defined by the cocycle ψ and the pairing e given
by

ψ(x, y) = e

(
1

ε

(x1y2 − y1x2)

2

)
,

e(x, y) = e

(
1

ε
(x1y2 − y1x2)

)
,

where x = (x1, x2), y = (y1, y2) ∈ K .
If we choose as maximal isotropic subgroup H = {x = (x1, x2) ∈ K | x2 = 0},

then the values of the functions in the corresponding Heisenberg representation
(Theorem 13.3.2) are determined by their values on {x = (x1, x2) ∈ K | x1 = 0},
and we may identify the space HH with L2(R). The action of G is given by

U(λ,y)f (x) = λe

(
1

ε

(
xy2 + y1y2

2

))
f (x + y1)

for (λ, y) = (λ, (y1, y2)) ∈ G and f ∈ L2(R). In particular we have

U(1,(y1,0))f (x) = f (x + y1),

U(1,(0,y2))f (x) = e

(
1

ε
xy2

)
f (x).

We will denote this Heisenberg representation by Hε.
For anyX ∈ Lie(G) and any Heisenberg representation H there is a dense subset

of elements f ∈ H for which the limit

δUX(f ) = lim
t→0

Uexp(tX)f − f
t

exists. This formula for δUX defines an unbounded operator on that set. An element
f ∈ H is a smooth element for the representation H of G if

δUX1δUX2 · · · δUXn(f )

is well defined for any n and any X1, X2, . . . , Xn ∈ Lie(G). The set of smooth
elements of H is denoted by H∞. We may realize Lie(G) as an algebra of operators
on H∞. If choose a basis {A,B,C} for the Lie algebra Lie(G) such that

exp(tA) = (1, (t, 0)), exp(tB) = (1, (0, t)), exp(tC) = (e(t), (0, 0)),
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then a complex number τ ∈ C with nonzero imaginary part gives a decomposition
of Lie(G)⊗ C into conjugate abelian complex subalgebras:

Wτ = 〈δUA − τδUB〉,
Wτ̄ = 〈δUA − τ̄ δUB〉.

Theorem 13.3.4 Fix τ ∈ C with Im(τ ) > 0. Then in any Heisenberg representation
ofG there exists an element fτ , unique up to a scalar, such that δUX(fτ ) is defined
and equal to 0 for all X ∈ Wτ .

In the Heisenberg representation Hε we have

δUAf (x) = d

dx
f (x),

δUBf (x) = 2πıx

ε
f (x),

δUCf (x) = 2πı f (x),

and Hε,∞ is the Schwartz space S(R). The element fτ in Theorem 13.3.4 is given
by

fτ = e

(
1

2ε
τx2

)
.

The complex parameter τ induces a complex structure on R2 given by the
isomorphism

R2 −→ C,

x = (x1, x2) �−→ x̃ = τx1 + x2.

We can realize a representation of G which is canonically dual to the Heisenberg
representation H1 in terms of this complex structure.

Theorem 13.3.5 Let τ ∈ C with Im(τ ) > 0, and let Hτ be the Hilbert space of
holomorphic functions h on C with∫

C

|h(x̃)|2e−2πIm(τ )x2
dx1dx2 <∞.

Then

U(λ,y)h(x̃) = λ−1e

(
1

ε

(
y1x̃ + y1ỹ

2

))
h(x̃ + ỹ)

defines an irreducible unitary representation of G.

We call this representation the Fock representation of G.
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13.3.2 Heis((Z/cZ)2)

Let c be a positive integer, and letK = (Z/cZ)2. We endowG = K × C∗1 with the
structure of a Heisenberg group defined by the cocycle ψ and the pairing e given
by

ψ(([n1], [n2]), ([m1], [m2])) = e

(
1

2c
(n1m2 −m1n2)

)
,

e(([n1], [n2]), ([m1], [m2])) = e

(
1

c
(n1m2 −m1n2)

)
,

where ([n1], [n2]), ([m1], [m2]) ∈ K .
If we choose as maximal isotropic subgroupH = {([n1], [n2]) ∈ K | [n2] = 0},

we may realize the Heisenberg representation as the action ofG on C(Z/cZ) given
by

U(λ,([m1],[m2]))φ([n]) = λe

(
1

c

(
nm2 + m1m2

2

))
φ([n+m1])

for (λ, ([m1], [m2])) ∈ G and φ ∈ C(Z/cZ). In particular we have

U(1,([m1],0))φ([n]) = φ([n+m2]),

U(1,(0,[m2]))φ([n]) = e

(
1

c
nm2

)
f ([n]).

Remark 13.3.6 This type of Heisenberg groups is related to algebraic Heisenberg
groups or, more generally, Heisenberg group schemes. These are given by central
extensions of the form

1 → Gm → G→K → 0,

where K is a finite abelian group scheme aver a base field k. These groups arise in
a natural way on considering ample line bundles on abelian varieties over the base
field k. The corresponding Heisenberg representations can be realized as canonical
actions of G on the spaces of sections of these bundles. The action of Gal(k̄/k)
on the geometric points of G implies important algebraicity results about these
representations. The abelian varieties that play a role in the constructions that
follow are the elliptic curves whose period lattice is spanned by the parameter τ
which defines the complex structure on the noncommutative torus.

The relevant finite groups that arise in this context are given by the automor-
phisms of the induced by a translation on the elliptic curve, and the space of sections
on which the Heisenberg group scheme is represented is given by the elements in
the Fock representation which are invariant under the action of the lattice.
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13.4 Heisenberg modules over noncommutative tori
with real multiplication

Let θ ∈ R be a quadratic irrationality, and let

g =
(
a b

c d

)
∈ SL2(Z)

be a matrix fixing θ . In this section I describe the construction of aAθ–Aθ bimodule
Eg whose isomorphism class gives a Morita self-equivalence ofAθ . In what follows
we assume that c and cθ + d are positive. Let

ε = cθ + d
c

,

and consider the following operators on the Schwartz space S(R):

(Ǔf )(x) = f (x − ε),
(V̌ f )(x) = e(x)f (x),

(Ûf )(x) = f
(
x − 1

c

)
,

(V̂ f )(x) = e
( x
cε

)
f (x).

Note that each pair of operators corresponds to the Heisenberg group action of two
generators of R2, where, as before, we identify the Schwartz space S(R) with the
set of smooth elements of the Heisenberg representation Hε of Heis(R2).

We consider also the following operators on C(Z/cZ):

(ǔφ)([n]) = φ([n− 1]),

(v̌φ)([n]) = ē

(
dn

c

)
φ([n]),

(ûφ)([n]) = φ([n− a]),

(v̂φ)([n]) = ē
(n
c

)
φ([n]).

Because both a and d are prime relative to c, each pair of operators corresponds
to the Heisenberg group action of two generators of (Z/cZ)2 on the Heisenberg
representation C(Z/cZ) of Heis((Z/cZ)2).

Taking into account the commutation relations satisfied between each of the
preceding pairs of operators and the fact that gθ = θ , we see that the space

Eg = S(R)⊗ C(Z/cZ)
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becomes an Aθ–Aθ bimodule on defining

(f ⊗ φ)U = (Ǔ ⊗ ǔ)(f ⊗ φ),

(f ⊗ φ)V = (V̌ ⊗ v̌)(f ⊗ φ),

U (f ⊗ φ) = (Û ⊗ û)(f ⊗ φ),

V (f ⊗ φ) = (V̂ ⊗ v̂)(f ⊗ φ),

where f ∈ S(R) and φ ∈ C(Z/cZ).

Theorem 13.4.1 (Connes [1]) With the preceding bimodule structure, Eg is finite-
type and projective both as a rightAθ -module and as a leftAθ -module. Considering
it as a right module, we have rk(Eg) = cθ + d. The left action of Aθ gives an
identification

EndAθ
(Eg) � Aθ .

We refer to this kind of modules as Heisenberg modules.

Taking into account the Aθ–Aθ bimodule structure of Eg, we may consider
the tensor product Eg ⊗Aθ

Eg. This is one of the main consequences of the real
multiplication condition. There is a natural identification (see [5, 12]):

Eg ⊗Aθ
Eg � Eg2 .

To see this consider first the completed tensor product over C of the space Eg
with itself:

Eg⊗̂Eg = [S(R)⊗ C(Z/cZ)] ⊗̂ [S(R)⊗ C(Z/cZ)]

= [S(R) ⊗̂ S(R)
]⊗ [C(Z/cZ)⊗ C(Z/cZ)]

= [S(R× R)]⊗ [C(Z/cZ× Z/cZ)] .

The space S(R× R) is the space of smooth elements of the Heisenberg rep-
resentation of Heis(R4) obtained as a product of the Heisenberg representa-
tions of Heis(R2). Likewise, C(Z/cZ× Z/cZ) is the Heisenberg representation
of Heis((Z/cZ)4) obtained as a product of the Heisenberg representations of
Heis((Z/cZ)2).

To pass fromEg ⊗̂ Eg toEg ⊗Aθ
Eg we have to quotientEg ⊗̂ Eg by the space

spanned by the relations

[(f ⊗ φ)U ] ⊗̂ [g ⊗ ω] , = [f ⊗ φ] ⊗̂ [U (g ⊗ ω)] ,

[(f ⊗ φ)V ] ⊗̂ [g ⊗ ω] = [f ⊗ φ] ⊗̂ [V (g ⊗ ω)] ,

where f, g ∈ S(R) and φ, ω ∈ C(Z/cZ). At the level of the Heisenberg repre-
sentations involved, this amounts to restricting to the subspaces of S(R× R) and
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C(Z/cZ× Z/cZ) which are invariant under the action of the subgroups of Heis(R4)
and Heis((Z/cZ)4) generated by the elements giving these relations.

The corresponding space of invariant elements in S(R× R) is canonically iso-
morphic to the space S(R) of smooth elements of the Heisenberg representation
of Heis(R2) with cε2/(a + d) playing the role of ε. In C((Z/cZ)× (Z/cZ)) the
corresponding invariant subspace is canonically isomorphic to the Heisenberg rep-
resentation C(Z/c(a + d)Z) of Heis((Z/c(a + d)Z)2). Thus we get

Eg ⊗Aθ
Eg � S(R)⊗ C(Z/c(a + d)Z)

= Eg2 .

The compatibility of the module structures in this isomorphism is implied by the
the compatibility of the Heisenberg representations involved.

In a similar manner one may obtain isomorphisms

Eg ⊗Aθ
· · · ⊗Aθ

Eg︸ ︷︷ ︸
n

� Egn.

13.5 Some rings associated to noncommutative tori
with real multiplication

Noncommutative tori may be considered as noncommutative projective varieties.
In noncommutative algebraic geometry, varieties are defined in terms of categories,
which play the role of appropriate categories of sheaves on them (see [17]). In [10]
Polishchuk analyzed real multiplication noncommutative tori from this point of
view. Given a real quadratic irrationality θ and a complex structure δτ on Aθ ,
Polishchuk constructed a homogeneous coordinate ring associated with T2

θ and δτ .
During the rest of this section g will denote a matrix in SL2(Z) fixing a quadratic

irrationality θ . We will denote the elements of the powers of this matrix by

gn =
(
an bn

cn dn

)
, n > 0.

Given a Heisenberg Aθ–Aθ bimodule Eg, we use the complex structure δτ on Aθ
to single out a finite-dimensional subspace in each of the graded pieces of

Eg =
⊕
n≥0

Eg ⊗Aθ
· · · ⊗Aθ

Eg︸ ︷︷ ︸
n

=
⊕
n≥0

Egn.

This should be done in a way compatible with the product structure of Eg.
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Given a Heisenberg Aθ–Aθ bimoduleEg, we may define a connection on Eg by

(∇1f ⊗ φ)(x, [n]) = 2πı
(x
ε

)
(f ⊗ φ)(x, [n]),

(∇2f ⊗ φ)(x, [n]) = d

dx
(f ⊗ φ)(x, [n]).

Connections of this kind were studied in [3] in the context of Yang–Mills theory for
noncommutative tori. Note that this connection corresponds to the action of the Lie
algebra of Heis(R2) on the left factor of S(R)⊗ C(Z/cZ) given by the derivations
δUA and δUB . Once we choose a complex parameter τ ∈ C \ R giving a complex
structure on Aθ , the corresponding decomposition of the complexified Lie algebra
singles out the element fτ (Theorem 13.3.4). Thus it is natural to consider the
spaces

Rg = {fτ ⊗ φ ∈ Eg |φ ∈ C(Z/cZ)}

=
{

e

(
1

2ε
τx2

)
⊗ φ ∈ Eg |φ ∈ C(Z/cZ)

}
.

These are the the spaces of the holomorphic vectors considered in [5, 10, 12, 16].
We denote by fτ,n the corresponding element on the left factor of Egn , and let

Rgn =
{
fτ,n ⊗ φ ∈ Egn |φ ∈ C(Z/cnZ)

}
.

Following [10], we define the homogeneous coordinate ring for the noncommuta-
tive torus T2

θ with complex structure δτ by

Bg(θ, τ ) =
⊕
n≥0

Rgn.

The following result characterizes some structural properties ofBg(θ, τ ) in terms
of the matrix elements of g:

Theorem 13.5.1 [10, Theorem 3.5] Assume g ∈ SL2(Z) has positive real eigen-
values.

(i) If c ≥ a + d then Bg(θ, τ ) is generated over C by Rg .
(ii) If c ≥ a + d + 1 then Bg(θ, τ ) is a quadratic algebra.

(iii) If c ≥ a + d + 2 then Bg(θ, τ ) is a Koszul algebra.

Let Xτ be the elliptic curve with complex points C/(Z⊕ τZ). Taking into
account the remarks at the end of Section 13.3, it is possible to realize each space
Rgn as the space of sections of a line bundle overXτ . For this we consider the matrix
coefficients obtained by pairing fτ,n with functionals in the distribution completion
of the Heisenberg representation which are invariant under the action of elements in
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Heis(R2) corresponding to a lattice in R2 associated to gn. This matrix coefficients
correspond to theta functions with rational characteristics which form a basis for
the space of sections of the corresponding line bundle over Xτ . In these bases the
structure constants for the product of Bg(θ, τ ) have the form

ϑr (lτ ),

where � ∈ Z, and ϑr (lτ ) is the theta constant with rational characteristic r ∈ Q

defined by the series

ϑr (lτ ) =
∑
n∈Z

exp[πı(n+ r)2lτ ].

This fact has the following consequence:

Theorem 13.5.2 [9] Let θ ∈ R be a quadratic irrationality fixed by a matrix g ∈
SL2(Z), and assume c ≥ a + d + 2. Let k be the minimal field of definition of the
elliptic curve Xτ . Then the algebra Bg(θ, τ ) admits a rational presentation over a
finite algebraic extension of k.

Remark 13.5.3 Analogous results hold for the rings of quantum theta functions
considered in [18]. These rings correspond to Segre squares of the homogeneous
coordinate rings Bg(θ, τ ) and can be analyzed in terms of the Heisenberg modules
involved in their construction.

Bibliography
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