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Preface

This book is the second in a series of four volumes devoted respectively to

(1) Nonrelativistic Quantum Mechanics

(2) Relativistic Quantum Field Theory

(3) Exercises and problems, with fully worked out solutions, on the subjects
treated in Volume 1.

(4) Exercises and problems, with fully worked out solutions, on the subjects
treated in Volume 2.

These volumes are self-contained in the sense that the only prerequisites are a
knowledge of partial differential equations and Maxwell’s theory of electromag-
netism. It is not necessary for the reader to have studied the special theory
of relativity, the relativistic reformulation of Maxwell’s equations, or to know
anything about unbounded operators on Hilbert space, for all these subjects are
developed in requisite detail at the various points where they are needed. On
the other hand, it is advisable for the student to have covered the material of
Volume 1 before starting on Volume 2.

Each chapter is complemented by ten problems, and the student is advised
to try them all by himself or herself before looking at our solutions in Volume 4.
It cannot be emphasized too strongly that the temptation for a student to look
immediately at the worked-out answers is self-defeating. Look at the answers,
certainly, but only after you have engaged in serious battle. Physics cannot be
learned just by reading or listening, but only by thinking, writing and worrying.

This second volume, being an introduction to quantum field theory, employs
canonical quantization methods exclusively, the path-integral formalism having
been avoided. We have not made any attempt to cover all subjects of physical
interest, but have made a choice appropriate for a course based on two hours of
lectures and two hours of problem sessions during one undergraduate semester.
The basic goal is the setting up of rules for drawing Feynman graphs and for
calculating amplitudes from them. This is done primarily in quantum electro-
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iv Preface

dynamics; but an appendix sketches the extension to the electroweak theory,
and some Feynman rules are given for this extended Lagrangian.

Despite the plethora of books of instruction on these subjects, we hope that
our work will fill a need, and we believe our approach to be pedagogically sound,
given its attention to mathematical detail combined with physics, which resulted
in the integration of the appropriate mathematical tools at the points in the
text where they are needed. The mathematics is at the same time explicit
but kept in check, so that the reader does not get bogged down in annoying
generalizations that might distract him or her from the physics. At a number
of points recourse is taken to the computer to solve transcendental equations;
in most cases a simple program is given in Mathematica (which is a trademark
of Wolfram Research Inc.), but for readers without access to this system, we
indicate where the numerical results can be checked by means of a scientific
calculator.

We wish to acknowledge the help we have had from reading the books on
quantum field theory that are listed in the bibliography; and in particular we
thank Dr. Mees de Roo, in Groningen, for a number of corrections.

The drawings on the covers of the volumes are ambiguous representations.

Volume 1: a duck, or is it a rabbit?

Volume 2: a vase, or are there two faces?

Volume 3: a young, or is it an old woman?

Volume 4: an American Indian, or is it an Eskimo?

The simultaneous existence of two pictures is perhaps the closest metaphor we
can find to the fundamental mystery of quantum mechanics, namely the linear
superposition of two aspects of reality, each of which separately can be pictured,
and whose combination can barely be comprehended by the eye of introspection,
but which can be apprehended by the power of mathematical language.

August 2002,

David Atkinson (The Netherlands)
Porter Wear Johnson (United States of America)
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Chapter 1

Ldeh i

Relativity and Quantization

1.1 Unbounded Operators on Hilbert Space

Quantum mechanics is plagued by infinities. Some of these infinities can be
removed in a mathematically responsible manner; but some have not yet been
handled in a way that satisfies the exigencies of mathematicians. In these two
preliminary sections, a number of mathematical methods for dealing with these
infinities will be sketched.

Many observables are represented by unbounded operators. For example, in
configuration space the position operator of a particle in one dimension satisfies
q¢(z) = z¢(z), and there are some square-integrable functions, 1(z), for which
r1p(z) is not square integrable. L2 is the Hilbert space of square-integrable
functions (Problem 1.5); but the norm of ¢ on £2 does not exist. The subspace
of £2 on which the norm does exist is called the domain, D, of g:

D@ ={v: verr, [ delow@P <oof

In configuration space, the momentum operator, p, satisfies pi(z) = —i¢'(x)
(here we have set h = 1). It is also unbounded, and its domain is

o) ={v: ve s [ ap@P <ol

The Hermitian conjugate (or adjoint) of p, written pf, is defined by the
relation, in Dirac’s notation,

(dlpy) = (p'¢ly) (1.1)

for all ¢ in the domain of p, and all ¢ in its range. The range of p, which is the
domain of pf, is the subspace spanned by |py) as [+) runs over the domain of p.

1



2 Relativity and Quantization

In configuration space, Eq.(1.1) reads
(@) = =i [ dog @) (@) = o).
On the other hand,
watv) = | 0; da [-id (@) w(z) =1 | Z dz 6" (@) (),

and therefore p is Hermitian, as we expect:

ot - oty =i [ " dz (¢ @@ =0, (1.2)

since the boundary terms vanish. A Hermitian operator, p, is said to be self-
adjoint if the domain of p and that of pt are the same, on condition that this
domain is dense in £2, i.e., on condition that, for any 9 € L2, there exists a
sequence, {¢n, n =1,2,...} € D(p), such that (Y —Y|tpp —¢¥) = 0 as n — .
It is the property of self-adjointness, rather than merely Hermiticity, that is
essential for proving the reality of the eigenvalues. If the particle is confined to
a finite part of the real line, say [—a < z < a], then the integral in Eq.(1.2), over
the finite interval, is

i[¢*(a)¥(a) — 4" (—a)¥(=a)],

and this can be made to vanish by restricting the dpmain of p to be a space of
periodic functions, expressible as a Fourier series:

¢(m)= Z zbneiwnw/a.

n=-—oo

This domain is dense in £2, and the range of p is precisely the same space, since
the derivative of the Fourier series is again a series of the same type, so p is
self-adjoint on this domain (Problem 1.5).

The mere fact that some operators are unbounded is not a problem, although
it does mean that some care is required. Some important operators must be
unbounded, for if ¢ and p were bounded operators, we could argue that

Tr([g,p]) = Tr(qp) — Tr(pq) =0,

and this is inconsistent with the basic commutation relation, [q,p] = i, from
which the Heisenberg uncertainty relation is derived. This argument is invalid
because, in the sum over the basis that is implied in the trace operation, some
of the terms are undefined (i.e., infinite).



Rigged Hilbert Space 3
1.2 Rigged Hilbert Space

A second place where the Dirac formulation of quantum mechanics runs into
difficulties is that, if we stick to Hilbert space, not all self-adjoint operators
have a complete set of eigenvectors, i.e., a set that spans the space. Indeed,
Hilbert space does not contain e?®, the configuration space eigenvector of the
momentum operator, because it is not square integrable. Nor does it contain the
distribution §(z — z¢), the eigenvector of the position operator in configuration
space. This problem has been resolved by Gel’fand and Vilenkin by extending
Hilbert space in such a way that it does indeed include such eigenfunctions.
Such an extension is called rigged Hilbert space, a picturesque way of indicating
a space that is equipped like a galleon to sail into battle.

The triplet Q < H < QF is called a rigged Hilbert space, where H is a Hilbert
space, consisting of all functions, 1, that are square integrable,

/oo dz |i(z)|> < 00.

 is a nuclear space, made up of all functions, ¢, that satisfy
> n
/ dz |¢(z)?(1 + |z|)" < o0,
— 00

for all finite n = 0,1,2,.... Clearly ) is a smaller space than H; in contrast its
complement, the extended space Q2*, is larger than 7. It contains all functions,
X, for which

/ " dox(2)4(a)

is finite for all ¢ € 2. This extended space contains the eigenfunctions of ¢
and p; and there exists a generalized spectral theorem, which states that if an
operator is self-adjoint in #, then a complete set of eigenvectors exists in (7.
Gel'fand and Vilenkin realized mathematically the insight of Dirac, namely
that observables should correspond to Hermitian operators, having real eigen-
values and a complete set of eigenvectors; but this was not the first attempt
to put quantum mechanics on a firm mathematical footing. In the 1930s, von
Neumann avoided delta functions with distaste, and with good reason, for they
had not yet been made mathematically respectable by the distribution theory
of Schwartz; and moreover he kept within the formalism of Hilbert space, thus
excluding eigenvectors like ’?®. By using projection operators on Hilbert space,
and with a generalized notion of the integral, he made quantum mechanics math-
ematically well-defined, but in a manner that departed somewhat from Dirac’s
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formalism. The method of the rigged Hilbert space may well be regarded as the
preferable option, since it is also mathematically sound, and it adheres closely
to Dirac’s notation, which is almost universally employed by working physicists.

One aspect of quantum mechanics that requires generalization is the concept
of a state. A pure state may be represented by a vector in Hilbert space; but a
more general state is represented by a normalized, self-adjoint, positive opera-
tor (i.e., one with non-negative eigenvalues). Such a state operator, or density
matrix, p, can always be written

p= Z Pr|dn)(@nl,

where {¢,} is a complete set of states. The expectation value of an observable
that is represented by a self-adjoint operator, 2, in a state represented by a state
operator, p, is defined to be Tr {pQ} In this operator language, a pure state is
represented by the simple expression

p =),

for some vector |1¢), and so the expectation value of the observable is

Tr {pQ} = Tr {|[¥)(¥|Q} = (¥|Qy),

and this agrees with the elementary form of an expectation value in a state
represented by one state vector.

In addition to the above matters, there are two other sources of infinities when
quantum mechanics is applied to field theories. One is that divergent integrals
are encountered in terms in the perturbation expansion of physical quantities
like scattering cross-sections. These integrals are rendered finite by a process
called regularization: the dimensional method of regularization is expounded in
Chapter 8. After this regularization has been performed, physical quantities like
masses and coupling constants are renormalized, after which the regularization is
removed. In this introductory treatment, the process of renormalization will not
be explained in detail. Lastly, the renormalized perturbation series is expected to
diverge, so that on adding more and more terms, the perturbation sum explodes.
The reason that the perturbation series is thought to diverge in QED is that the
term which describes the interaction is more singular in the ultraviolet than
the free Hamiltonian that is being perturbed. The situation is reminiscent of
the anharmonic oscillator, in which the harmonic Hamiltonian, 1(p? + ¢2), is
perturbed by the anharmonic term, A\g%. All is not lost, however, for the series
may be asymptotic, and it may be possible to resum it, for example by the use
of Padé approximants (see Problem 7.10 in Volume 1). A more thoroughgoing
solution is to replace the perturbation series by the Dyson-Schwinger equations,
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which is done in Chapter 9. These equations can be used to describe bound
states, and such other nonperturbative phenomena as the creation of masses
through chiral symmetry breaking (Sec. 9.4). Although the last two sources
of infinities are dealt with in a somewhat ad hoc manner that lacks adequate
mathematical justification, the methods do seem to work, as judged by the
empirical success of QED.

In Chapter 4 we shall introduce quantum fields, for example the quantized
version of the electromagnetic field, A#(z). Although it appears to be defined
at one point, ¥, this appearance is deceptive, for the field should rather be
understood as a distribution, defined on a suitable space of test functions, g(z).
Thus A*(z) does not have a definite value, whereas

4r[g] = / &z g(z) 4% (2)

is well-defined, but as a quartet of self-adjoint operators rather than simply as
numbers. Matrix elements of these operators, (A#[g]), are bona fide numbers
that are functions of g, rather than of z. The test function takes the place of
the space-time point, and as such it does justice to the empirical fact that fields
are never measured at precisely one point, but always as averages over a small
volume in space and a small interval in time. In the above sense, A*(z) is said
to be an operator-valued distribution.

After these introductory remarks on quantum mechanics and quantum field
theory, we shall devote the rest of this chapter to a résumé of special relativity,
and its application to the problem of setting up relativistic equations of motion
for particles that move with speeds which are comparable to that of light.

1.3 Special Theory of Relativity

Consider two inertial coordinate systems, S = (¢,z,y,2) and S' = (¢',2',y',2'),
such that the space axes of the two systems are coincident when both ¢ and
t' are zero, and parallel thereafter, and such that S’ has velocity v, along the
z-direction, with respect to S. The transformation between the two systems
must have the form

g=v(z—-vt) y =y 2=z, (1.3)

for this just expresses the fact that the origin of S’ corresponds to the point
z=vt,y=0,2=01in S, i.e., S’ does indeed have velocity v in the z-direction,
as seen from S. The classical assumption (Galileo, Newton) was that v = 1,
but if we only require that the origin of S’ have velocity v with respect to
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S, the above more general transformation is possible. What is 4?7 From the
uniformity of space, we see that v may not depend on the coordinates (in a non-
uniform gravitational field, for example near a star, the properties of space are
not uniform, i.e., translation-invariant, but that is the domain of general, not of
special relativity). In the absence of gravity, v is independent of ¢,z,y, 2, but
it may depend on v. Space is also invariant under rotations: a rotation by 180
degrees about the y-axis should have no measurable effect; but it changes the
sign of the z and the z coordinates, and also of the relative velocity of the primed
system. Rotational invariance therefore means that -y must be independent of
the sign of v, i.e., it is a function only of v2. The unprimed system has velocity
—v, with respect to the primed system, along the z-direction, so the inverse
relation between the two systems is

z=v(z' +vt") y=y 2=2", (1.4)

where 7 is the same as in Eq.(1.3), since it depends on v? only.

Note that we have not assumed that the time coordinate, t’, in S’ is the same
as t, the time coordinate in S. Such an assumption was made, quite explicitly,
by Newton, in his Principia: “Absolute, true, and mathematical time, of itself,
and from its own nature, flows equably without relation to anything external”.
If we set t' = ¢, with Newton, and do not enquire too closely what, if anything,
‘equable flow of time’ means, then Eq.(1.3) and Eq.(1.4) together imply v = 1.
Now if light is emitted at the origin of space-time and travels along the z-axis
with velocity ¢, then at time t it will have reached the point z = c¢t. From
Eq.(1.3), with v = 1 and t' = ¢, we see that ' = (¢ — v)t = (¢ — v)t’, which
means that the speed of light, as measured in S’ in the positive direction of z’,
would be ¢ — v.

The experimental fact that the measured speed of light is independent of the
motion of the source, and of the observer (Michelson-Morley experiment and
the tests of ‘aether-drag’ in the solar-system), forces the conclusions ¢’ # t and
v # 1. Since the speed of light in S’ is actually ¢, and not ¢ — v, it follows that
z = ct in S must correspond to z’ = ct’ in S’. Putting these values into Eq.(1.3)
and Eq.(1.4), we find

" = v(c—-v)t (1.5)
ct v(e+u)t';

and by multiplying these two equations together, we obtain

Y= (1—2—3)—% : (1.6)
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By eliminating z’ between Eq.(1.3) and Eq.(1.4), we see that

t' =1~ (t — cv—zx) : (1.7)
The mapping (¢, z,y,2z) — (t',2',y', 2"), given by Egs.(1.3), (1.6) and (1.7), is
called a Lorentz transformation.

Let us introduce the parametrization v/c = tanhu, so that v = coshu and
yv/c = sinhu. We shall also write z° = ct, 2! = z, 22 = y, 3 = 2. Then the
Lorentz transformation implies

0 1

2% = 2% coshu — ' sinhu "' = —2%sinhu + 2’ coshu .  (1.8)
This form looks very much like a rotation: if the space axes are rotated an angle
§ about the z!-axis, we have

' = 2% cosf + z3 sin '3 = —2?sinf + 23 cos b . (1.9)
There are some important differences between Eq.(1.8) and Eq.(1.9). In Eq.(1.8),
hyperbolic functions replace circular ones, and moreover the signs of the two hy-
perbolic sines are the same, whereas those of the two circular sines are different.
One can regard the Lorentz transformation as a ‘hyperbolic rotation’ between
the z2%-axis and the z'-axis. Note that

($10)2 _ (:L,Il)2 _ (m/2)2 _ (3313)2 — (xo)z _ (11:1)2 _ (122)2 _ ($3)2 ’

whether Eq.(1.8) holds (a ‘pure’ Lorentz transformation), or whether Eq.(1.9)
holds (a rotation), or indeed if Eq.(1.8) and Eq.(1.9) are both met.

Contravariant and Covariant Vectors
Consider a linear transformation from coordinates, z#, to a new set, z'#,

z'* = AP 1Y, (1.10)
where the matrix, A¥ , is constant (i.e., independent of z), and is such that
guumlpxly = gp,umua;y ) (111)

then the mapping is said to be a Lorentz transformation. Here the metric tensor,
uv,is +1lif p=0=v,or-1lif p=4i=v,fori =1,2,0r 3, and to be 0if p # v,
and where there is an implicit summation over the repeated indices. This will
be a general rule: if a Greek index occurs above (a contravariant index), and
below (a covariant index) in the same term, then a summation over the values
0,1,2,3 is implied.
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Since the matrix, A¥ | is independent of z, it follows, by differentiation of
Eq.(1.10), that

"
an =92 (1.12)
oY
Any quadruple of numbers, a#, together with the transformation,
ox'"
a'* = A4 a” = 527 a”, (1.13)

defines a contravariant Lorentz four-vector. It is important to understand that
Eq.(1.13) applies for all Lorentz transformations, z# — z'#, that respect Eq.(1.11).
In words, a vector that transforms in the same way as a coordinate is called a
contravariant vector.

Suppose now that & is a Lorentz invariant function of z (i.e., a function that
does not change when the coordinates, z#, undergo a Lorentz transformation).
Then, by the usual chain rule for partial derivatives,

0P oz¥ 0P

dz'" ~ 9z'* ozv (1.14)

Hence the partial differentiation operator does not have the same transformation
law as the contravariant vector in Eq.(1.13). Rather, it is an example of a
covariant vector, b, which transforms as follows:

oz?

blp, = mby (115)
Again, this applies for any Lorentz transformation. In words, a vector that
transforms in the same way as a space-time partial derivative is called a covariant
vector. The product of any contravariant vector, a*, and any covariant vector,

b,, which we often write simply as ab, is Lorentz invariant:
oz'" 0z°

a't' =a*b, = 57 (%ma"b,, = a’b, = ab. (1.16)

If a” is a contravariant vector, and we define
a, = gua’, (1.17)

then clearly

v
, Oz

a, = gl—wa’u = Guv ozP 9’ a,, (1'18)
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where g°?, the contravariant metric tensor, is equal to gps, the covariant metric
tensor, element by element. Note that

gp'rgpa = 5:’ (119)

where the Kronecker ¢ is equal to 1 if both indices are equal, and to 0 if they are
not. By applying the partial differential operator 8,8, to both sides of Eq.(1.11),
we obtain

oz' oz"
gpvg;; = gpr% . (1.20)
With use of Eq.(1.19), we have
oz 0z°

PO —
I pge d T Bzin

(1.21)

and by combining this result with Eq.(1.18), we see that

, 0z°

D= Ggmlo
which means that a, indeed transforms as a covariant vector. In a similar way,
if b, is a covariant vector, then

b = g"b,, (1.22)

can be shown to transform as a contravariant vector.

Mechanics of a Free Particle
The relativistically invariant interval, ds, between two infinitesimally separated
points is defined by

(ds)? = (dz°)? - (dz')? — (dz?)? - (dz®)? = gp,dztdz” . (1.23)

Consider a particle, and let 7 be its proper time, i.e., the time coordinate in
the particle’s rest system. Clearly ds = cdr. In order to guess the correct La-
grangian for a free particle in relativity theory, and hence to analyze relativistic
mechanics, we write the Hamilton variational principle, in an inertial frame, in
the form (cf., Eq. (1.17) of Volume 1)

b
S=/ dtL(z;, &;,t) . (1.24)

The integration is taken from a proper time point, a, to another one, b. The
problem is that we do not know what L should be. It depends asymmetrically
on space and time, and certainly is not a relativistic invariant. However, the
action only refers to the two proper times, a and b. This is true in all inertial
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frames, although of course the time and space coordinates of a and b do depend
on the frame that is chosen. The Hamilton variational principle simply says that
the physical trajectory between a and b is the one for which §S = 0. This is
a Lorentz invariant specification of the dynamics, and it is consistent with the
principle of relativity to require that the action be a Lorentz invariant. However,
the only invariants available, out of which the action of a free particle could be
made, are the mass, m, and the invariant interval, s, or equivalently the proper
time, 7. The action must be translationally invariant, so we cannot include 7
itself, but only the invariant measure, dr. Hence Eq.(1.24) becomes

b
S = n/ dr, (1.25)

where « is a function of the mass of the particle, m, only. Suppose now that we
transform from the rest-system to any other inertial frame. From Eq.(1.23),

(ds)? = (cdr)? = (dt)? (c® — &2 — &2 — &%) = (cdt)? (1 — v?/c?), (1.26)
so we have finally
dr = dt\/1-v%/c?. (1.27)

From Eq.(1.25) we see that

b
Szn/ dt\/1—v2/c?, ’ (1.28)
a
so we can read off the form of the Lagrangian in a general inertial frame:

L = k1 —0v2/c2. (1.29)

The constant, , can be identified by expanding this to first order in v?/c?:
L=k-L1kv?/c?+0(?/c*), (1.30)

and it follows that x = —mc?, so that L reduces in the low velocity limit to
the correct non-relativistic kinetic énergy, T = imw?, aside from —mc?, which,
being constant, does not appear in the Euler-Lagrange equation. So Eq.(1.29)
becomes

L=-mc*\/1-v2/c2, (1.31)

and we can then calculate the canonical momenta:




Special Theory of Relativity 11

The Hamiltonian is therefore

H = Z:i:jpj—L

S L — (1.33)

According to the discussion in Sec. 1.2 of Volume 1, if the Lagrangian does
not depend explicitly on time (and if the potential energy, if there is one, is
conservative, i.e., it does not depend on the velocities, i7), then H will be
time-independent and equal to the total energy, E. We assume this also to
be true relativistically. The energy is identified with the zeroth component of
momentum in relativity, and its value is not adjustable. The assumption has
far-reaching consequences, for we see that the energy of a free particle in its
rest-frame (v = 0), is not zero, but is equal rather to mc?.

The expression Eq.(1.33) is not yet in canonical form, i.e., it is not expressed

in terms of the coordinates and momenta. However, from Eq.(1.32),

3 2.i.1:
. m2zt 9 2
Ep’p’+mzc2 = E —— +m’c
i=1 i=11_vz/cz
2,2
mec
= — 1.34

which, with the help of Eq.(1.33), yields the canonical form:

.
3 3
H=c {Zpipi + mzcz} . (1.35)
=1
Note that, for 5> = Zle p'p* << m?c?,

-2 -4 —6
H=m02+—§a——p——+0<p ) (1.36)

8m3c? mdct

We recognize the second term as the nonrelativistic kinetic energy. The first
term, the rest-mass of the free particle, is the equivalent energy that is locked
up in a particle at rest, and which can be liberated on the annihilation of matter
and antimatter.
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Next we introduce the 4-velocity,

ut = o == (1.37)
which is manifestly a contravariant 4-vector. From Eq.(1.26), we see that
"
ut = \/ﬁ/_@ d::t (1.38)
so that
e’ = e = E/c (1.39)
Vi-v?/e
mut = \/1—-":2_/@(1;; = p. (1.40)
Hence
P =mut = (E/c,p) (1.41)
is a contravariant 4-vector. The invariant,
P'pu = E*[* — p?, (1.42)

has the same value in any inertial frame. In the rest-frame, § = 0, it is clearly
equal to m2c?, so in general

E? =52 + m?ct. - (1.43)

As a simple application of this last formula, consider the decay at rest of a
7+ meson, of mass m,, into a u* lepton, of mass m,, and a neutrino, assumed
to have mass zero. Since the 3-momentum is conserved, and it is zero before the
decay, the momenta of the u* and of the neutrino must be equal and opposite.
Suppose that the magnitude of the momentum of the u*, which can be measured,
is p. The zeroth component of the 4-momentum, the relativistic energy, is also
conserved. Before the decay, the energy of the 7% is just the pion mass times
c¢?; and after the decay, it is the sum of the the neutrino energy, which is equal
to pc(see Eq.(1.43) with m = 0], and the muon energy. That is,

mgc® = pc + \/_1o2c2 +m,2%ct. (1.44)

This equation can be solved to yield

p=_"r " Tu (1.45)
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Evidence has been found that the electron neutrino possesses a very small mass,
but in 2002 the Particle Data Group gave only the upper bound m, < 3 eV for
the electron neutrino’s mass. The corrected value for the muon momentum is

-m2)? —mi(2m2 +2m2 —m32).

1.4 Schrodinger and Klein-Gordon Equations

We recall from Sec. 1.9 of Volume 1, that g; and p;, respectively the i th and
j th Cartesian components of the position and momentum operators of a particle
in 3 dimensions, satisfy the quantization condition

(9, p;] = 1hdy; . (1.46)

Further the eigenvector | ) = |z1)|z2)|z3) of g;, corresponding to the eigenvalue
z;, satisfies

(E|7) = 6(z1 — 1)6(z2 — y2)0(z3 —y3) =6°(Z — 7). (1.47)

It follows in general that

Elpild) = |in- + 12)] £ - ), (1.48)

where f(Z) is a continuous function. For a free particle we use the phase
freedom, as in the one-dimensional case, to remove this function, leaving

(@) = ihg-8°(E - 7). (1.49)

For an arbitrary state vector |@) in the Hilbert space spanned by the eigen-
functions of ¢, we have

= [@unaie.
Hence
@ Ipe(®) = / d3y<f|piw><mw<t)>
o (@ (o)

—ihé-x—izp(t, z), (1.50)

Il
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where [¢(t)) is a state vector describing a physical system at time ¢. Accordingly,
we can say that, in the configuration representation, p; is represented by the
operator —z'ha%‘,:

7 — —ihV . (1.51)

In an isolated classical system, for which the Lagrangian is not an explicit
function of the time, the Hamiltonian is equal to the total energy of the system,
which is time-independent. In the nonrelativistic mechanics of a particle of mass
m, we have

2

P v
H—2m+V(x),

where p? = § - 7, and where V(&) is the (conservative) potential.

In making the transition to quantum mechanics, we replace the Hamiltonian,
the momentum and the position by the corresponding linear operators that have
these quantities as their eigenvalues:

2

A 7
H=2-+V(). (1.52)

Let a physical system be described by a state vector |1(¢)), which is an eigen-
vector of the Hamiltonian:

d
ih= () = HIp(t) = By(e) (1.53)
where E' is the total energy of the system. Hence
2
Ey(t,Z) = (F|H (D) = (] 2=+ V(@h(t). (1.54)
Now

(Z lpipil () = —R*V2(t,7),

where use has been made of Eq.(1.49)-(1.50). Since the eigenvalue of g; belonging
to (Z] is z;, the eigenvalue of V(§) is V(Z) (at any rate if the function V(Z)
has a Fourier transform). Hence from Eq.(1.54) we find

b 2
bt ) = BY(, ) = — V(6 8) + VEW®E),  (155)

the time-dependent Schrédinger equation.
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Since E is time-independent under the conditions stipulated above, we can
solve Eq.(1.53):

(0 = exp (5 ) 1W(O).
Hence
9(6,7) = @) = exp () w1,
where
P(Z) =$(0,%). (1.56)
Thus the time dependence can be factored out of Eq.(1.55), yielding
Ey(Z) = [—g‘%vz + V(i:‘)] P(Z), (1.57)

which is Schrédinger’s time-independent equation.
When the speed of the particle is not small compared to that of light, the
mechanics of special relativity must be used; and instead of Eq.(1.52) we have

H? = p?c® + m2ct. (1.58)

Here we treat a free particle exclusively, but we will later see how the electro-
magnetic 4-potential can be incorporated in a relativistically covariant manner.
In quantum mechanics, we again replace H and p by the corresponding opera-
tors. Sandwiching both sides of Eq.(1.58) between (Z| and |+4(t)) and putting
everything on the left, we find

(#|H? — p’c® — m’cHy(t)) = 0.

By using Eqgs.(1.49), (1.50) and (1.53), we deduce

2.2
(62 + ’—”7?‘3—) W(t, &) =0, (1.59)
where the d’Alembertian is defined by
1 82
0% = i V2. | (1.60)

This is the Klein-Gordon equation that generalizes the Schrédinger equation in
the relativistic domain.
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1.5 Dirac Equation

So far we have discussed the equation of motion of a spinless particle. For the
electron let us employ a state vector with two components, |1;(t)), ¢ = 1,2, in
order to account for the two possible eigenvalues of the third component of the
spin (+h/2). We require each component of ¥(t,Z) = (£|(t)) to satisfy the
Klein-Gordon equation, so that one of the requirements of relativity will be met.
However, we might expect the components to be connected in some way, and we
follow Dirac in looking for an equation of the form

[mﬂau - Th—c] W(t,7) =0. (1.61)

Here v*, p = 0,1, 2, 3 are four liearly independent constant matrices, the Dirac
matrices, that we will determine; and 9, is the relativistic, covariant derivative
operator, with components

_19 50 4508 5_09

c Ot Oz, Oz Oz
In Eq.(1.61) summation over the repeated index, p, is implicit, and v¥(t, ) is
a ‘matrix’ with one column that contains its two spin components. The Dirac
matrices multiply this column in the standard matrix fashion.

Dirac was motivated to contemplate an equation of the form of Eq.(1.61)
by the consideration that the classical Hamilton equations are linear in time
derivatives, and he wanted to incorporate this feature also into the quantum
theory. However, relativistic covariance should demand linearity also in the
spatial derivatives. Dirac’s motivation was not sound, since the Klein-Gordon
equation, in which the time derivative appears quadratically, does describe spin-
less particles. Moreover, the equations of motion for the components of the
quantized electromagnetic field are also quadratic in the time derivative. The
best that can be said at this stage is that Eq.(1.61) is a shot in the dark*. The
ultimate justification for the Dirac equation is experimental and a posteriori. A
theoretical framework arises in the group-theoretical treatment of the Lorentz
group: its covering group, SL(2,C), has spinor representations (Sec. 5.2).

The great game now is to choose the Dirac matrices in such a way that each
component of (¢, %) satisfies the Klein-Gordon equation, which we rewrite in
the form

Oo (1.62)

m2c2

(0.0, + 25 ) wis2) =0, (163

*See A. Koestler, ‘The Sleepwalkers’, Hutchinson (1959), for earlier examples in science of
genial shots in the dark!
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with summation over u and v, where g*¥ is the metric tensor, defined by

with all the nondiagonal terms vanishing. Multiply Eq.(1.61) from the left by
[(v*8, + mc/h] and write out the terms:

2.2
—wwmm—ﬂ%wm+ﬂ%wm—%§-m@m=u (1.64)
If the Dirac matrices satisfy
T+t =26, (1.65)

where it is understood that the right side multiplies a unit matrix, then the
following identity between differential operators holds:

Y0,0, = 3"y +9"+*10,.0,
= g‘wa/.l.au . (166)

Hence, if the Dirac matrices satisfy the anticommutation relations Eq.(1.65), the
individual Dirac spinor wave-functions each satisfy the Klein-Gordon equation.

What have we gained by playing with mathematical equations? First of all,
it is impossible to satisfy Eq.(1.65) with four 2 x 2 matrices!! The Pauli matrices,

(01 (0 i (1 0
=110 2=\ o0 =0 -1

0,0 +0;0; = 2513' ,

satisfy

for 7,7 = 1,2, 3, but there is no fourth matrix that anticommutes with the Pauli
matrices. A lesser sleepwalker than Dirac would have given up; but after much
worrying Dirac realized that his anticommutation relations could be realized by
4 x 4 matrices! This means that ¢ (t,Z) must be considered to be a column
with not two but four components. We expected two components to account for
the spin degree of freedom. What is the meaning of the extra two components?
Although this is far from obvious, they in fact correspond to the spin states of
the positron, the antiparticle of the electron, a particle with the same mass and
spin as the electron, but with a charge of the same magnitude but opposite sign.
Playing about with equations, Dirac opened up the world of antimatter!
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The standard (Dirac) representation of the y-matrices is

10 0 0
o (1 0Y_|l01 o0 o
7‘(0_1): 00 -1 0
00 0 -1
0 00 1
. (0 o \_| 0o 010
7‘<—alo)= 0 -1 0 0
~1 000
000 —i
2 [ 0 o 00 i 0
7‘(—azo)= 0 i 0 0
i 00 0
001 0
s [ 0 o3 000 -1
’7*<—a3 0)2 -1 00 O
010 0

We can write this compactly as follows:

* = (o)
7 = (—Oa ‘;) (1.67)

Here 0 and 1 are to be understood respectively as the null and the unit 2 x 2
matrices.

Note that 7° is Hermitian and that its square is the unit matrix. The spacelike
v’s, i.e., v}, v%, 73, are anti-Hermitian, but since they anticommute with ~9, it
is true that for all four Dirac matrices

Py = 4. (1.68)
The Dirac equation is often written in the super-compact form
[i9v0 — m]y¥(z) =0, (1.69)

where 0 simply means the relativistic invariant 49, and z stands for all four
dimensions of space-time. To make the equation more beautiful, units of velocity
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and action have been adjusted in such a way that ¢ = 1 and A = 1, so that these
extraneous factors can be omitted. This is common practice in high-energy
physics; but in this, and the following two chapters we will retain ¢ and h to
avoid potential confusion.

The Hermitian conjugate of Eq.(1.69) is ¢ (z)[—iy! § —m] = 0, where ¥ (z)
has been placed to the left: it is a matrix with one row. Multiply by —~0 from
the right and use Eq.(1.68):

() [ivd +m] =0, (1.70)

where 1(z) = ¥T(z)7°. This is called the conjugate Dirac equation.
It should be noted that Eq.(1.67) is only one possible representation of the
Dirac matrices. If we replace all gamma matrices v* by ¥* , where

A = My*MT, (1.71)

and the four-component wave-function ¥(z) by ¥(z) = Mv(z), where M is
any unitary 4 x 4 matrix, then all of the equations of this section retain their
form. The Dirac matrices are only defined up to a unitary transformation: the
important thing is that Eq.(1.65) must be satisfied.

1.6 Dirac’s Views

To round out this discussion of Dirac’s notation, and our introduction to the
Dirac equation, we cite his own words:

“In setting up this form of the equations, Hamilton was influenced only by
conditions of mathematical beauty. He might have said: ‘It is very nice to write
the equations in this way, but ... you could ... continue to use the equations in
the form they were originally given by Newton.” But Hamilton seemed to have
- some remarkable insight into what was important—one of the most remarkable
insights, I suppose, that a mathematician has ever had. He found a form of
writing the equations of mechanics whose importance would be realized only
after a hundred years.

Now, with quantum mechanics, we cannot exclude transitions from positive
energy states to negative energy states, and that means that we cannot exclude
the negative energy states from our theory. ... We can get a departure from
the vacuum in two ways: one way is to bring an electron into a positive energy
state; the other way is to have a ‘hole’ in the distribution of negative energy
states ... the ‘holes’ appear as a new kind of particle having a positive charge.
What is the mass of these new particles? Well, when I first thought of this
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idea, it occurred to me that the mass would have to be the same as that of
the electron because of the symmetry. But I did not dare to put forward that
idea, because it seemed to me that if this new kind of particle (having the same
mass as the electron and an opposite charge) existed, it would certainly have
been discovered by the experimenters. ... I think that Weyl was the first to
make the very definite statement that mathematical symmetry demanded that
these ‘holes’ should be particles with the same mass as the mass of the electron.
... and the question arises: ‘Why had experimenters never observed them?’ I
think the only answer to that question is that they were prejudiced against new
particles. It was assumed that there were only two basic particles in Nature:
the electron and the proton. ... They had never observed positrons, because
they really turned a blind eye to them when they had evidence for them.” [Dirac,
1978, pages 6-17]

“People have succeeded in setting up certain rules that enable one to discard
the infinities produced by the fluctuations in a self-consistent way and have thus
obtained a workable theory from which one can calculate results that can be
compared with experiment. Good agreement with experiment has been found,
showing that there is some validity in the rules. ... They should therefore not be
considered as a satisfactory solution of the difficulties.” [Dirac, 1958, page 309]

1.7 Exercises

Problem 1
Let b, be a covariant Lorentz vector, so it has the transformation rule
oz”
l —
b u= W.by .

In terms of this covariant vector, define b* = g#*b, where g* is the contravariant
metric tensor. Show that b* is a contravariant Lorentz vector, i.e., it has the
following transformation rule:

I
_oz'*

” —
b ozv

Problem 2

If £ is a Lorentz scalar, show that %f—u- is a contravariant Lorentz vector, and

’_aéicA., is a contravariant Lorentz tensor.
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Problem 3

Suppose that the speed of light from A to B is different from its speed from B to
A, but that the round-trip average speed is constant (i.e., the average speed is
the same for all points A and B, and is independent of which inertial system of
coordinates is used). Deduce the generalization of the Lorentz transformation
and discuss interesting particular cases.

Problem 4
Show that the four Dirac matrices (in the Dirac representation) do indeed anti-

commute with one another. Define v5 = i7%y*y%43®. Demonstrate

v = ®=1 7" + 75 =0, p=0,1,2,3.

Show that s anticommutes with v#, u = 0,1,2,3. Work out the explicit form
of 75 and of the spin matrix, § = -;-hfyyyof?, both in the usual representation.

Problem 5
Define a scalar product on the space, £2, of square-integrable functions, ¥(z),
—00 < £ < 00, and show that £2, equipped with this product, is a Hilbert space.
Consider the operator p = —ia—‘?z-, restricted to the line @ < z < b. Is this operator
Hermitian on its domain in £2? Is this domain dense in £2? Is p self-adjoint?
What are its self-adjoint extensions, if any? What are its eigenstates, and what
space do they span? Consider the cases

(1) a = —00, b = o0,

(2) a and b finite,

(3) a finite and b = oo.

Problem 6
The Majorana representation of the Dirac matrices is defined as follows:

’Yl\ljar = M'Yll;lrMT )

with M = 2293, (1 +12,). Show that M is unitary and Hermitian. Calculate

Ao v, YE., v, and 75, Which of the gamma matrices are Hermitian,
and which are unitary in the Majorana representation?

Problem 7
The chiral representation of the Dirac matrices is defined by

0 —_ — -
Yeni = ~ Y5 Dir Y chi = 7Y Dir -

What is 75 cn;? Find a matrix, M, that effects the transformation from the Dirac
to the chiral representation.
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Problem 8
Show that, under an infinitesimal Lorentz transformation,

' =zt 4wz,

a solution of the free Dirac equation becomes

i
P'(z) = |1 - ‘Z‘(Luv + Sp )| (),
where L, and S, are the orbital and spin operators. Give explicit expressions

for these operators.

Problem 9

Let gn(t), n = 1,2,3,... be a complete set of canonical coordinates of a given
dynamical quantum system. Let f,(£), n = 1,2,3,... be an orthonormal basis
of a Hilbert space, and define the quantum field

$(z) = Y an()fa(@).

From the Euler-Lagrange equation for the discrete variables g, (t), deduce the
Euler-Lagrange equation for the field ¢(z), regarded as a continuous canonical
quantum coordinate. What is the momentum conjugate to ¢(z)? Starting from
the canonical commutation relations for the discrete variables, deduce those for
the field variables.

Problem 10

“In fact, while all other quantities (especially those z, y, z closely connected

with ¢ by the Lorentz transformation) are represented by operators, there

corresponds to the time an ordinary number-parameter ¢, just as in classical

mechanics.” [Neumann 1932]
Is it true that space points are represented by operators in quantum mechanics,
while time is not quantized? Distinguish carefully between the position of a point
particle and (z,y, z), treated as a spatial coordinate, and similarly between the
reading of a clock and t, treated as a temporal coordinate, and thereby show that
there is in fact no special difficulty in treating space and time on an equal footing
in nonrelativistic quantum mechanics. What can one say about the matter in
relativistic quantum mechanics?



Chapter 2

Charged Particle in Electromagnetic
Field

2.1 Maxwell’s Equations

The Maxwell equations, in the presence of a charge-density, p(z), and a current-
density, 7(z), are

V.E=p, 21
V-B=0, (2.2)
- - 10E 7

_tox _ 2.
VAB cdt ¢’ (2:3)
- - 10B
VAE+-=-=0. (2.4)

Note that no polarization or magnetization has been included: these are the
equations in vacuo, except that charge distributions are taken into account. In a
polarlzable and magnemzable medium, one distinguishes between D and E, and
between B and H. When, however, one adopts the more fundamental view that
all the charges should be explicitly taken into account, this distinction need no
longer be made.

Note that no factor of 47 appears on the right-hand sides of Eq.(2.1) and
Eq.(2.3), as it does in the Gaussian form of Maxwell’s equations. The factor is
removed by redefining the unit of electric charge, and Eqgs.(2.1)-(2.4) constitute
the electromagnetic equations in Heaviside-Lorentz units. These units turn out
to be convenient in quantum field theory, as we shall see. However, a price has to
be paid for getting rid of the factor 47 in the Maxwell equations, for it reappears
in the Coulomb law for the electric field of a point charge, e:

T CoaussT (2.5)
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Since B is divergence-free (there do not seem to be any magnetic monopoles),
it follows that there is a vector field, A, whose curl it is:

B=VAA (2.6)
Define the auxiliary vector field
- 5 104
C=-F-ta

F-104 -,
c Ot
which can be rewritten
10A
= - ——— 2.
E Vo -l (2.7)

Substituting Eqgs.(2.6)-(2.7) into Eqs.(2.1)-(2.3), we find
2
10°® 26 10 (1 od -»)

gor VetV A) TP
1 9%4 109 - o .
232 V2A+V<—‘5;+V A) = 7. (2.8)

The above equations can be cast into a more compact form by combining the
scalar and the vector potentials into one 4-potential:

At = (®,4). (2.9)

We shall show that this 4-potential transforms as a contravariant Lorentz vector.
In terms of the covariant derivative (1.62) and the d’Alembertian (1.60), we can
write Eq.(2.8) in the form

A% — 8y (8,A%) = »p,
FPA+V(9,4%) = jlc. (2.10)

These equations cry out to be combined into one covariant form, do they not?
However, there is an awkward sign difference in front of the second term on the
left. Electric charge is taken to be relativistically invariant, so that the charge,
e, of an electron is the same in any inertial system. Thus charge density is not
invariant, but the product, e = p(z)d®z, is indeed Lorentz invariant. Electric
current is caused by the flow of electrons: it is given by the sum of the electric



Mazwell’s Equations 25

charges multiplied by their velocities. The current density is accordingly the
product of the charge density and the velocity,

7 =7, (2.11)

so that if we define the 4-current density by

Qo pdzt
B2 = (p,ilc) (2.12)
then we find
edz* = pdztdiz = . 68 de’d®z = jHdz . (2.13)

Now since e and d*z are Lorentz invariants, and dz* is a contravariant 4-vector,
it follows that j# must also be a contravariant vector. We can rewrite Eq.(2.10)
in component form as follows:

82A° — 8y[8,4%] = j°
0’ A% + 5,[6,4Y] = jF. (2.14)

Now we can finally understand the apparently awkward sign difference, for the
derivative operator is covariant, and rewriting it in the unnatural, contravariant
form, [8° = 8y , 6% = —0%] , we pick up a minus sign! Hence Eq.(2.14) can be
thrown into the elegant form

8% A* — 9H[9, A" = j* (2.15)

Since j* is a contravariant vector, it follows that A* must also be a contravariant
vector. In fact, Eq.(2.15), which is merely a rewriting of Eq.(2.1)-(2.4), is in
relativistically covariant form. The equations knew more than did their creator,
Maxwell, when he invented them! To do Maxwell and Lorentz justice, they
were worried that the electromagnetic equations are not consistent with Galilean
covariance, and they did their best to understand this fact.

The 4-potential changes under a Lorentz transformation as follows:

3.'11’”

Oz?

that is, the transformed field, at the transformed point, is equal to the old field,
at the old point, multiplied by the Lorentz-transformation matrix. A covariant
version of the 4-potential can be defined:

Au(z) = 9, A% () ; (2.17)

A¥(z') =

AP(z) ; (2.16)
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and the transformation law for this is
oz’

A“'(a:') = WA,,(:B) . (2.18)
It is convenient to introduce the second-order tensor
F,, =0,A, —0,A,, (2.19)
with the transformation law
' 0x? 0xz°
Fu' (') = 55 gow Foe(2) - (2.20)

After these book-keeping preliminaries, we can write the Maxwell equations
(2.15) in the still more compact form

8 F™ = jv . (2.21)

The field tensor, which is manifestly antisymmetric, can be expressed directly in
terms of the electric field and the magnetic induction, for if 7, j, k are restricted
to the values 1, 2, 3, then

For, = 8gAr, — OrAo = —30Ak - 3kA0 = E} (2.22)
and |
ij = 6JAk - 6kA, = Ejlel . (2.23)

Thus the field tensor can be expressed wholly in terms of E and B, and vice-
versa.

Despite the fact that the 4-potential, A*, is not uniquely determined by the
field tensor, it is an extremely useful quantity. If it is subjected to a gauge
transformation, i.e.

AP — A = A 4 4G (2.24)

where G is any Lorentz scalar field, then clearly the field tensor is unchanged.
Such a gauge transformation has no physical consequences: any interactions
involving the electromagnetic 4-potential must respect this gauge invariance.
The restriction turns out to be very important, with ramifications far outside
the field of electromagnetism.

The Lorenz* condition is often imposed on the four-potential:

8, A* = 0. (2.25)

*The Danish physicist L. Lorenz introduced this condition in 1867, although it is almost
universally ascribed to H.A. Lorentz.



Mazwell’s Equations 27

By means of a gauge transformation, it is always possible to achieve the Lorenz
condition, without changing the physics. For under the gauge transformation
(2.24),

9. A" = §,A* + 8°G , (2.26)

and the right side can be made to vanish by choosing G such that 8°G = —§,A*.
When the Lorenz condition, (2.25), is satisfied, the Maxwell equations, (2.21),
become even simpler:

O?AY =47, (2.27)

Let us examine the free electromagnetic field. We shall see how the Maxwell
equation, (2.21), can be derived from a variational principle. In order to do this,
we regard the field, AY(¢,7), as a continuous set of generalized coordinates. For
a given time, t, the canonical variables are labeled by v, and the continuous
variable, ¥. Since the expression for the Lagrangian will inevitably involve a
summation over all space, it is convenient to introduce a Lagrangian density:

_ / B2L(z). (2.28)

The action can accordingly be written

ty tp b
S= [ dtL= / dt / dzL(z) = / d*zL(z). (2.29)
ta ta a
Since the action, S, is a Lorentz invariant, and d*z is an invariant measure, it
follows that the Lagrangian density, £ , is Lorentz-invariant.
Consider now a variation in the fields, A, such that the values stay fixed at
the spacelike hypersurfaces a and b. The resultant change in the action is

55 = /bd4z[-—a£5A,, (a?i 5(0,4.)

oL
= d4 ———]6A,. 2.
Since d A, is arbitrary in the interior, the Hamilton variational principle, 45 = 0,
implies

oL oL

aﬁa(auAu) ~ 54 =0 (2.31)

This expression is the Euler-Lagrange equation for the electromagnetic potential.
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We shall now show that the Lagrangian density,
L=—1F"F,, — Abj, = —1F"3,A, — A%j,, (2.32)

when inserted into Eq.(2.31), yields the Maxwell equation, (2.21). To do this,
we regard £ as a function of the 4 variables A”, and the 16 variables 6" A”:

___6_/:'__ = =1 {FM_BFL}
0(0,Ay) 2 0(0,A,)
= —1FPo[gheY — L8y = —F*
oc
a4, . -

Thus the Euler-Lagrange field equations do indeed yield the Maxwell equations.
The Lorentz force on a particle of charge ¢ and velocity ' in an electromag-
netic field is

F=qE+Z7AB, (2.33)

o

where E and B are the electric field strength and the magnetic induction,
respectively. This force law can be derived from the following Lagrangian:

L=-mc\[1- 5 - qA® + 254", (2.34)

where m is the mass of the particle. The canonical momentum and Hamiltonian
are defined as follows:

_9oL _ mi* -yt
Pi=%5 = 1-2/c2 ¢
i mc?
Hepii—-L = —C 1 q40. (2.35)

Evidently the influence of the electromagnetic interaction is summarized in the
following additions to the field-free quantities:

pi — pi + %Ai
H — H +¢A°. (2.36)



Covariant Derivative 29
2.2 Covariant Derivative

In order to find out what the configuration representation of Dirac’s Hamiltonian
is, we multiply Eq.(1.61) by hcy® from the left, remembering that (v°)° = 1:

z'h%—‘f = iheBpyp = —ihey’Y - Vo + me?y%y .

Now from the general definition, Eq.(1.53), we see that the Hamiltonian is
H =cy’y -5 + mc?y° (2.37)
where
7 = —ikV (2.38)

is the configuration-space representation of the momentum operator.

To make the transition from the free Dirac equation to one describing the
electromagnetic coupling of an electron, with charge, ¢ = —e, we replace H by
H—eA% and 7 by 5 — eA /c [cf., Eq.(2.36)]. We suppose that this rule remains
good in quantum mechanics, and we replace Eq.(2.37) by

H—eA® =cy°3 - (F —eA/c) + mc*y°. (2.39)
Allowing the operators to act on %, we find
{ihcBo — A}y = {—c'yof'y' . [zhﬁ + —z-f-l‘] + mczfyo} P (2.40)

At first sight, there appears to be a sign mistake; but when we remember that
0, = (8o, V) is a covariant vector but A* = (A%, A) is a contravariant one, we
see that we can write Eq.(2.40) in the form

(iv*Ds - -T%—c) $=0, (2.41)

where the covariant derivative is defined by

ie

D“=8“+hc

A, (2.42)

Since A, = g, A” = (4% —A), it is clear that Eq.(2.41) is indeed equivalent to
Eq.(2.40). In super-compact form,

(YD —m) =0, (2.43)

where once more ¢ and 7 have been set equal to unity.
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2.3 Pauli Equation

The Dirac equation can be written

{zh;% —eA’ - mc27°} Y =cyy -7y, (2.44)
where the modified momentum is
7= —ihv — 4.
c

We shall write the four-spinor 1 in the form

¢=(i), (2.45)

where ¢ and x are two-spinors; and we replace ih%% = Hvy by Et, and the
gamma matrices by their explicit representations:

{poet—me (o S)H(2)=e(% 70" ) (%) e

We split off the rest-energy of the electron, writing E = mc? + E, so that
Eq.(2.46) takes on the form

(E—eA%)¢p = ci-7x (2.47)
(E—-eA’+2mc?)xy = cd-7¢ (2.48)
which is still an exact consequence of the Dirac equation. The nonrelativistic

approximation consists in assuming that the energies E and eA° are very small
compared with the rest-energy mc?. Then Eq.(2.48) is approximated by

]‘ — —
X = -2-7-7—120 '7T¢, (249)

from which one sees that x is small compared with ¢ at nonrelativistic energies.
On substituting Eq.(2.49) into Eq.(2.47), we find

(E-eA = — (G- -7)¢
= — [r?+id (# AR)] 0. (2.50)

If you have difficulty getting the second from the first line, see the generalized
proof in the next section. Now
) h — — - —
ﬁAﬁ:i%(VAA+AAv),
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and
(VAA+AAV)ip = €;r(0;(A%¢) + A0, 9)
eiji[(8;A%) + A*8; + A70)]o
{V nd)}sg, (2.51)

I

where the parentheses indicate that the differential operator V works only on
A and not on ¢. We have then

VAA="B. (2.52)
Gathering these results together, we express Eq.(2.50) in the form

E¢ = _¥ v -z 2+eA°——eh—&’~§ ¢ (2.53)
N 2 he 2mece ) '

m

This nonrelativistic equation, including an effect of spin, is called the Pauli equa-
tion. It was invented a few years before the appearance of the Dirac equation.
With the gauge choice V - A = 0, we can write

. 2 . 9
o _tx) g (ve_2er. o _ & g
(v hcA) ¢>_<v = B hzczA)gb. (2.54)

Consider now the case in which the magnetic field is uniform (i.e., independent
of 7). A possible choice for the vector potential is

A =1BAT. (2.55)

Proof that Eq.(2.55) implies B =V A4 and V -4 =0 if B is uniform:

(6 A A’) .= %fijkekmnaijmn = %((Simajn - 6in5jm)Bm5jn
= 3$Bm(8imbj; — 0ij6jm) = 5Bm(38im — dim) = B;
V-A = jendiBjz* = jBjeikbin = 3Bjeiji = 0.

END OF PROOF

In terms of the orbital angular momentum, which has the following form (in the
configuration representation),

L =—ikf AV,



32 Charged Particle in Electromagnetic Field

we have (remembering that B is independent of 7),
A-V=YBAF)-V=LFAV)-B=—L B, (2.56)

which can be substituted into Eq.(2.54).
From Eq.(2.53), we now find
2
8mc?

2
E¢={—h—v2+eA°-i(E +h3)-B + (B /\F)2}¢>. (2.57)
2m 2mec

This is what the Pauli equation (and thus the Dirac equation), gives for the
Schrédinger equation of a nonrelativistic electron, in the presence of a scalar
potential and a constant magnetic induction.

The magnetic term has the form —Z - B, where i = e(L +gS)/(2me) is
a magnetic moment that couples to the induction. Here S = zhd is the spin
matrix of the electron. As we see from Eq.(2.57), the Dirac equation predicts
g = 2, which turns out to be very close to the value experimentally found for
this factor. An attempt to measure the g-factor was performed in 1915 by the
Dutchman W.J. de Haas, son-in-law of Lorentz, in wartime Berlin at the Kaiser-
Wilhelm-Institut fiir Physik, under the active stimulation of its newly-appointed
director, Professor Einstein! The so-called Einstein-de Haas experiment consists
in suspending a vertical iron rod on a fine glass thread, along the axis of a
solenoid. The rod twists back and forth, exchanging its angular energy with
torsional potential energy in the thread. When the rod is magnetized, some of
the electron spins line up parallel to the rotational axis of the rod and hence
the angular momentum changes. The change is VS, where N is the number of
electrons in the rod whose spin is so aligned, and S is the magnitude of the spin
of one electron (namely 1%). Let u be the magnetic moment of one electron.
Then the magnetic moment of the rod is Nu. The gyromagnetic ratio, i.e. the
ratio of the magnetic moment and the angular momentum, is thus the same for
the rod as for one electron. By estimating this quantity for the rod, which can
be done by macroscopic measurements, de Haas and Einstein found

B=95—75 (2.58)

with g = 1.02 and g = 1.45 in two separate runs. Since the classical expectation
was g = 1, Einstein and de Haas concluded ‘These preliminary results seemed
satisfactory to us, and one can easily understand that we were led to consider
the value 1.02 as the better one ...’ T Later, experimentalists, whom history has

tW. de Haas in Proceedings of the Third Solvay Conference, April 1921, page 206, Gautier-
Villars, Paris, 1923.
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forgotten — we still speak of the Einstein-de Haas effect — measured g = 2, to
within experimental errors! The modern value is used as a test of the limits of
validity of quantum electrodynamics (see Chapter 8).

In the next subsection, we will consider the largest relativistic corrections;
but before we do that, let us consider the Paschen-Back effect in hydrogen (i.e.,
the normal Zeeman effect), namely the splitting of spectral lines in a magnetic
field, as implied by Eq.(2.57). Choose the z-axis in the direction of the external,
constant magnetic field. We treat

e
H) = —5—(L; +255)B (2.59)

as an addition to the usual nonrelativistic Hamiltonian. This is a reasonable ap-
proximation if the external field is strong compared with the spin-orbit coupling
(the latter will be discussed in the next section). If [Ynm,m,) is an eigenstate of
the nonrelativistic Hamiltonian, and of L?, L3 and S3, then the energy shift is

[
AE’mems = -’é,’_n"c<¢nmzm,|(L3+2SS)B|¢nm¢m,)

= "5% (mg + 2m;) B. (2.60)
Note that nondiagonal matrix elements of H; vanish with these states. Since
2mg = +£1 it follows that a degenerate level is split by the magnetic field into a
number of equally spaced levels, the spacing being proportional to the applied
field. The ground state of the hydrogen atom is twofold degenerate, taking the
spin degree of freedom into account, and that is split into two levels. The n = 2
level is eightfold degenerate: £ =0, my=0and £ =1, m, = —1, 0, 1, and these
four states are doubled because of spin. The magnetic field splits this level into
five distinct levels, with equal spacing. The highest and lowest energy levels are
simple, while the others are doubly degenerate: for example, the unperturbed
level corresponds to a superposition of my =1, m; = —1 and my = -1, m, = %
states. Note that this normal Zeeman effect occurs when the relativistic fine-
structure can be neglected and the external field is large, but not so large as to

invalidate the approximation of working to leading order in the external fields.

2.4 Spin-Orbit Coupling

Let us return to Eq.(2.46), which we write

(ih% —eA® - mc2> p=co -TYx (2.61)
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(zh% — eA® + mc? )x=c&’ TP (2.62)
To improve on the approximation (2.49) we write
1 - 1 0 o
X=5 -0 g -7 (zhat eA® — ) X s (2.63)

which is exact, and then we insert the approximation (2.49) into the right side
of Eq.(2.63):

1 . . 1 ., 0 o 2\ = =
X~%—(—:a-7r¢> m(mhat—eA —mc)a T. (2.64)
When this approximate expression for x is used in Eq.(2.61), we obtain
ind _ed _ me? ¢ = —1-(&-7?)%— (2.65)
ot 2m )
1 ., /(.. 0 0 2\ = =
Y (zhat —eA” —mc ) o -To
Let us write
0 —
(zh-a—i—mc)¢=E¢=er¢+X+Y+Z. (2.66)
Here
X = = 7)%
 2m

I

{;‘;v +%(L +47) - }¢,»

in the presence of a weak constant magnetic field. This is the nonrelativistic
contribution that we studied in the previous section. In Eq.(2.66) we set

Y = ———1———(&' L 7)? (zh—aa—t —eA° —mcz) o,

4m?2c?

and

1 . 0
=21—Tnz—620' T [U (ZhE—CA()):I ¢

Now use Eq.(2.61) and replace x by the lowest approximation, (2.49):

Y = -—1—(5 7). (2.67)

8m3c?
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The leading contribution in this correction term is obtained by the replacement
(¢ 7)) — n? — p?,
so that we find

h4
Y v ———V*9p.
8m3¢? ¢
This may be called the Einstein term, a kinematical relativistic correction to the
nonrelativistic kinetic energy.

To evaluate Z, we observe that

o (og-ene - o920 (n-er)]

= ieh{ﬁAO %%’i}¢
= —iehE . (2.68)
Hence
Z=- 4m22(" #)@ - E)é.

To first order in the fields, we can replace @ here by P, and since

@ 5)G - E)=@ -E)+id-FAE), (2.69)
we have
eh?
Z=-pos {V - E+ic-(VAE)}e.

The first item in the parentheses is called the Darwin term, while the second is
the important Spin-Orbit term. To see why the latter has this name, consider
the case that the electric field is static and central (as in the H-atom), so that

2 _ g0 7oA
E=-Va=--2. (2.70)
Then
0
iRV AE = 15’/\7?19i
r Or
0
R (2.71)
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where we have used the fact that I, and r commute. The term takes on the form

eh 10A°
4m2c2 r Or 7

e 16A° S,' )
2m2¢2 r Or

v

¢

L¢,

Spin-Orbit Term =

from which the nomenclature is evident.

Proof of Eq.(2.69)
Since

{oi,0;} = 26;; and [0i,05] = 2i€;j,0% ,
it follows that
0i0; = 0;j + €50 .
Therefore

@ 5)G-E) = 0i0;piEj
= piE; +iejpiEjox
= (F-E)+id-(BANE).

END OF PROOF

The complete equation, with the extra terms, can now be written:

2
E¢ = -—2h—mV2¢ +eA% [Schrédinger]
e (= .2\ = ,
- (L + 25) B¢ [Pauli]
R, o
~ g V¢ [Einstein]
e 10A4°. - . :
52 7 O S-L¢ [Spin-Orbit]
eh2 - — .
iz’ E¢ [Darwin]

(2.72)

(2.73)

where we have written § = 376 . The effect of the spin-orbit term is to remove

some of the degeneracy of the energy levels. Since

- 2 -
P=(L+in3) =12 +06 - L + 382,

(2.74)
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it follows that the eigenvalue of the operator & - L (in the approximation in
which spin and orbital angular momentum are separately conserved), is simply
[j(j+1)—£(£+1)—2]h. For an Sz level, this is zero, but for P% it is —2% and for
P32 it is h. Hence the spin-orbit perturbation alone would lift the ¢-degeneracy
of the n = 2 level of the hydrogen atom. However, the combined effect of the
spin-orbit, the Einstein and the Darwin terms together is that finally the two
j =  states, S ? and Pz, are degenerate, but the P3% state is not (of course,
there is also the azimuthal degeneracy associated with the quantum number m,
which is only split by the magnetic Pauli term). We shall prove in the next
chapter that the ezact energy levels of the Dirac hydrogen atom depend on n
and j only, so that states with the same n and j but different ¢, like S% and P %,
are indeed degenerate.

Let us now consider the so-called anomalous Zeeman effect, in which the
splitting of the energy levels depends on £ (as well as m). We rewrite the Pauli
term in the form (cf., Eq.(2.59))

€
H1 = —%(Jé + S3)B .

For magnetic fields that are not strong compared with those existing in the
hydrogen atom itself, we consider a first-order perturbation

e
AEy,;, = _2_m("/)nj£mj|(~]3+S3)B|"/’njtm,-)

eh
= g — (mj +4,) B, (2.75)

where

0s = 3 (Vnjem,;|03|¥njem;) -

To calculate this matrix element, we use the Clebsch-Gordan expansion. In the

case j = £ + %, this reads

|¢nj£m3) = a'Yl,m,-—%X+ + by’f,mj—i-%x— ) (2'76)

_ £+mj+% _ E—m,-+%
o=\ e T (2.77)

Here Y is a spherical harmonic, being an orbital angular momentum eigenfunc-
tion, in configuration representation, while x is a spin factor, an eigenvector of

where
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the relevant Pauli matrix. In fact o3x+ = x4+, so

—1(g2_p?) = T
=3 -Y) =31
The other possibility is j = £ — 3, and then
|¢nj£mj> = bY}!,m,--%X-i— - aYZ,m5+%X— ) (2.78)
and so in this case
—1(p2 _ 42) = — m;
b =3 (" -a) =g 7
Hence for j = £ & 3, we find
em;h 1
= — 1+ — | B. 2.
ABem, 2mc ( 20+ 1) (2.79)

The order of magnitude of the spin-orbit coupling energy is 10~* eV for
the hydrogen atom, which we must multiply by Z2 for an atom with atomic
number Z. On the other hand, the Pauli term contributes about 0.6 x 10~* B
eV, with B expressed in Tesla (1 Tesla is 10* Gauss, which is a large, but
experimentally attainable field strength). When B is much less than a Tesla, the
spin-orbit coupling is the more important and we have to do with the anomalous
Zeeman formula Eq.(2.79). For a field strength of a Tesla or more, the spin-
orbit term can be treated as a perturbation of the nonrelativistic energy, in
which the orbital angular momentum is regarded in first approximation as a
good quantum number. This leads to the ‘normal Zeeman effect’ of Eq.(2.60).
For even stronger fields, one has the quadratic Zeeman effect that arises from
the A%-term in Eq.(2.54). In practice the complicated splitting that occurs gives
rise to an effective line-broadening that can be calculated.

2.5 Hyperfine Structure

The Einstein relativistic correction and the spin-orbit term together produce
what is called the fine splitting of the hydrogen energy levels. As we will see
explicitly in the next chapter, the excited levels, n = 2,3, ..., all exhibit this fine
structure, where the split levels can be labeled by j, the total angular momentum
quantum number.

In addition to the fine splitting, there is an even smaller hyperfine splitting,
caused by the coupling of the the magnetic moment of the electron to that of
the nucleus of the hydrogen atom, a proton. From Sec. 3.3 of Volume 1, we
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recall that the part of the magnetic moment that arises from the orbital motion
of the electron is

(A -
iy = —1L .
HL 2mece

The part of the magnetic moment that arises from the spin of the electron is

where, as we have seen, the Dirac equation gives 2 as the g-factor of the electron.
Like the electron, the proton has spin , and so it also has a magnetic moment,

fp = ——
P 2mye P’

where m, is the mass of the proton, about 2000 times that of the electron,
.S-"p being its spin. The g-factor of the proton is g,, and it is larger than 2, a
consequence of the fact that the proton is not elementary, but is a bound state
of three quarks. The experimentally measured value is g, = 5.56.

The source of the hyperfine splitting is the coupling of the magnetic moment
of the electron to the magnetic field created by the magnetic moment of the
proton. This magnetic field is proportional to the proton’s magnetic moment,
hence to its spin. In general the magnetic moment of the electron has an orbital
component, but we shall restrict our attention to S-states, i.e., £ = 0, for which
the electron’s magnetic moment comes purely from the spin, being proportional
to that spin. The energy of the hyperfine interaction is proportional to S . 5’;, ,
so we can write the part of the interaction Hamiltonian that is responsible for
the hyperfine splitting as

Hprnzj:S:‘S"p,

with a coefficient, F, that is independent of the electron and the proton spins.
The hyperfine shift is, in first order of perturbation theory, the expectation value
of this, in a definite S-wave state of the hydrogen atom, |n,£ =0,m =0, s, sp):

(n00ss,|F S - S,|n00ss,) = (n00|F|n00)(ss,|S - Splss,) -
Let us write the total angular momentum of the electron and the proton as
§=5+85,
This combines into a singlet, of arigulg,r m_(‘)m(intumdj = 0,_’a,nd_‘a triplet, of
angular momentum J = 1. Using S -S =85 - S +2S - Sp + Sp - Sp, we find
2ss,|S - Splssp) = [T(T+1) =G +1) - ¢ + )] = [J(T +1) — §]n%.
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The hyperfine shift is 142 (n00)|F|n00) for the triplet and — A% (n00)|F|n00) for
the singlet. The matrix element of the coefficient, F, can be calculated in terms
of the modulus of the S-state electron wave-function at the the origin, i.e., at
the location of the proton (Problem 2.7).

Hydrogen in our galaxy, far from any star, is in the ground state so far as
the electronic configuration is concerned, but is partially excited by collision, at
the ambient temperature of 3.5 degrees Kelvin, into the excited triplet state of
the spin-spin combination, from which it decays into the singlet ground state,
emitting a photon of frequency 1420 MegaHertz, or equivalently of wavelength
21.1 centimeters. This characteristic 21 cm. line in the spectrum of interstellar
hydrogen was discovered in 1951; and it is exceedingly sharp, because of the
long lifetime for spontaneous decay from the S = 1 to the § = 0 states, namely
about 11 million years. This decay is in fact called ‘forbidden’, because it does
not involve a change of orbital angular momentum, since £ = 0 in both states.
Because of the sharpness of the spectral line, small Doppler shifts, due to motion
of the emitting hydrogen, can be readily measured. It was in this way that it
was established that our galaxy is a rotating spiral of stars. The 21 cm. line
is also used in the hydrogen maser, yielding an atomic clock that is accurate to
better than one part in 104.

2.6 Exercises

Problem 1
Show the following:

— -

(1) If V - B = 0, then there exists a vector field, 4, such that B=V A A.

hesd

(2) If VAC = 0, then there exists a scalar field, ®, such that C=Vd.

Problem 2
The classical Lagrangian for a point charge in an electromagnetic field is

L =-mc\/1-giii/c? — qA® + qi*Al/c,
where m is the mass of the particle, ¢ is its electric charge, and A° and A
are respectively the scalar and vector potentials. Show that the Euler-Lagrange
equation leads to the Lorentz force

F=qE+Z%AB.

O IR

How can one demonstrate the Lorentz invariance of electric charge?



FEzercises ' 41

Problem 3

Show that any solution of the Dirac equation with minimal coupling,
my _ Comg TE) -
(i7+0 R A7 )¥ =0

also satisfies

e \2 e m2c?
9 = _ % _w _mc —
{("5 hcA) ohc” Twr T 3 } v=>0,

,7”]. Show further that this can be rewritten

, e \2 de o, = 2z = m32c _
{('L@—-—EA) —}L—c’)”}’ E+h—2£SB'— h2 }¢——0,

where o#¥

I
(eI
~
2

=

where § = 1Av57°7 is the spin matrix.

Problem 4
The Dirac equation with abnormal coupling is

(""Y“ﬁu - E) =0,
h

with the abnormal covariant derivative

ie

he

where F),, is the electromagnetic field tensor. Obtain the Pauli equation with
abnormal coupling and calculate the electric and magnetic moments.

Ay — ——Ky'F,,,

Du=0u+ 4mc?

Problem 5
The spin-orbit contribution to the relativistic hydrogen atom Hamiltonian is
e 104° . -
Hys = - S-L,
LS = 9m2c2 v or
where A® = —e/r is the Coulomb scalar potential (the Gaussian normalization

has been used). Show that the expectation value of this contribution in the
{n, j, £} state of the hydrogen atom is given by

atmc? j—4L
23 (j+35)(E+3)]

where a = e?/(kc) is the fine-structure constant.

(HLS)pje =
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Problem 6

Calculate the energy shift of the {n, £, my, s} level of the nonrelativistic hydrogen
atom, to first order in perturbation theory, due to the Einstein correction term
(ex p*). Calculate the shift due to the sum of the Einstein and the L-S coupling
term. Why does this sum depend only on n and j, and not on £ and s separately?

Problem 7
Calculate the expectation value of the coefficient, F, in the hyperfine interaction,

Hprn =f§'§P)
in the ground state of hydrogen.

Problem 8

The totally antisymmetric tensor, ¢#¥??, is defined to take the values +1 if
{uvpo} is a cyclic/anticyclic permutation of {0,1,2,3}, and zero if two or more
of the indices are equal. Show that this quantity indeed transforms as a fourth-
order Lorentz tensor. Show that the metric, g#¥, transforms as a second-order
Lorentz tensor. Compute the following scalar functions of the electromagnetic
field tensor: g,,9,,F*"F?? and €,,,, F**F*° . Show thereby that E . B and
E? — B? are Lorentz invariant.

Problem 9
The velocity operator for a free Dirac particle in the Heisenberg picture is given
by ¥ (t) = i[H,Z]/h.

(1) Show that the only eigenvalues of v;(t) are %c for all . How can this
result be justified by the Heisenberg uncertainty principle?

(2) Solve the Heisenberg equations of motion to obtain the position of the
particle in the form # (t) = £ (0) + 2ptH ! + = e?*Ht/?  and obtain an
expression for the operator =. What is the role of contributions from
negative energy states to the last term? What is the average value of
¥ (t) over a small interval of time?

(3) How do the Dirac y-matrices depend on time? Show that, at equal
times, their anticommutation relations remain valid.

Problem 10

Consider the relativistic corrections to the Schrédinger energy levels of the
electron-positron bound states. Compare the relative magnitudes of corrections
for positronium, as compared with those for the hydrogen atom. Examine the
changes due to the reduced mass, the Einstein term, the spin-orbit interaction,
and the hyperfine splitting.



Chapter 3

Dirac Hydrogen Atom

3.1 Scalar Central Potential

The nonrelativistic Schrodinger Hamiltonian, with a central potential, can be
written in operator form as follows:

P2 2

The orbital angular momentum,

L=qnp,
commutes with this Hamiltonian.
Proof that [L, H] = 0:
[Ll,Pz] = [gops — gsp2, P +P§]

= [g2,P3]ps — g3, P5]p2
= 2ihpep3 — 2ihpsps =0,

and similarly for the other components. A similar argument shows that the
angular momentum commutes with g. Induction can be used in the standard
way to show that the angular momentum therefore commutes with any positive
integral power of ¢?. It commutes also with cos(tg®), since the cosine can be
expanded in a convergent power series. Therefore it commutes with any Fourier
transformable V (¢?):

V(g®) = /Ooo dt v(t) cos(tg?) .

If v(t) oc 1/v/% then V(¢?) o 1/1/¢?2, i.e. V is the Coulomb potential.

43
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A consequence of the fact that the orbital angular momentum commutes
with the Hamiltonian is that this angular momentum is constant in time (in this
theory). Moreover, if 1) is an eigenvector of the Hamiltonian belonging to the
energy eigenvalue E, then

HL|y)=LHy)=EL[y).

Hence, if |1) is also an eigenvector of L?, then L.|i) is an eigenvector of the
Hamiltonian belonging to the same energy E (with the same quantum number,
¢, but with a different azimuthal quantum number, m,, not to be confused with
the mass, m). This means that the energy eigenvalues in the nonrelativistic
hydrogen atom cannot depend on my. According to the Schrodinger equation
for the hydrogen atom, the energy levels may be written

E(n) = ——z—ﬁmc (31)

where the fine structure constant is defined by

62

Q= —
he’

(see Chapters 5 and 9 of Volume 1). This formula is based on the use of the
Coulomb potential, V(r) = —e?/r, which means that Gaussian, rather than
Heaviside-Lorentz units were employed. We will retain this usage in the present
chapter, since it shortens many of the equations by removing a factor of 47 in
denominators; but in the next chapter, and for the rest of the book, we propose
to revert to the Heaviside-Lorentz convention. For a given value of the principal
quantum number n, the energy is indeed independent of the azimuthal quantum
number m,. In fact, it is independent of £ also, but this is an ‘accident’ of the
Coulomb potential. For a modified Coulomb potential, for example
O(r — 1) or O(ry —r) ,
r r

the energy eigenvalues have ¢-dependence, but no m,-dependence. The essential
point is that all the states with the same angular momentum, i.e., the same value
of £, must have the same energy if the potential is spherically symmetric. This
is physically reasonable: there is no preferred direction in space, so the choice
of the quantization axis around which the azimuthal degree of freedom operates
cannot have physical consequences; in particular it cannot affect the energy.

One reason for this lengthy review of the nonrelativistic case is to contrast
it with the Dirac equation in a central potential like that of the hydrogen atom.
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When there is no vector potential, and the scalar potential is central, the Dirac
Hamiltonian Eq.(2.39) reduces to

H =cy’y -7 +mc®y° + eA%(¢?). (3.2)

What is the commutator of the orbital angular momentum with this Hamil-
tonian? The only term in Eq.(3.2) that fails to commute is the first one, and

Y[L1,pi] = 7 {lge,pilps — (g3, pi]p2}
= ih(v*ps — 7’p2)
= k(Y AD),, (3-3)
and similarly for the other components. Hence
[L,H] =ihey*F AP (3.4)

so that in the Dirac theory the orbital angular momentum and the Hamiltonian
cannot be simultaneously diagonalized. Consequently, in an eigenstate of the
Hamiltonian, a component of the orbital angular momentum does not, in general,
have a well-defined value.

Consider now the following quantity:

g = %h’YS’YO;); )

where

Explicitly,
§=%h(% 09) (3.5)

Clearly S is the spin matrix that was introduced in the discussion of the Pauli
equation. The Pauli matrices have simply been replicated along the diagonal to
produce 4 x 4 matrices.

We are interested in the commutator of § with the Hamiltonian Eq.(3.2).
Clearly S commutes with +°, since that is diagonal, and with the scalar poten-
tial, since that is a multiple of the unit matrix. The only term in Eq.(3.2) that
fails to commute is the first one, and since

0 &
0= __
’r’r—(&. 0)’ (3.6)

we see that
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wm = wel(5 205 %))

0 [0’,‘,0'
= %hcpj( 0 3] )

[03,04]
. 0 Ok
= zhcpjeijk < or 0 )
= ihcpj€iry°Y; (3.7)
so we obtain
[S,H] = —ihey’7 AP . (3.8)

By a remarkable coincidence, this just cancels the right side of Eq.(3.4), and so
the operator

J=L+§ (3.9)

does commute with the Hamiltonian Eq.(3.2). We interpret J as the total
angular momentum operator. This is conserved, whereas the spin and orbital
angular momenta are separately not conserved—except in the nonrelativistic
limit.

Although we have used an explicit representation to prove Eq.(3.8) and other
relations involving y-matrices, by multiplying both sides from the left by a 4 x 4
unitary matrix, M, and from the right by its inverse, M, we have actually
effected a proof for an arbitrary representation 4#, cf. Eq.(1.71). An alternative
to the Dirac representation of Eq.(1.67) is the chiral representation:

0 -1
7ghi = (_1 )

- 0 ¢
Yeni = ( ((7)) . (3.10)

o

Q

3.2 Solution of Dirac Equation

The Dirac equation for the electron in a hydrogen atom is

Hy(z) = zh-aa—tzp(x) = {—ich‘yofy’ -V +mc*y0 — er_z} Y(z). (3.11)
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We shall solve for the eigenstates and eigenvalues without approximation. The
Hamiltonian appearing in Eq.(3.11) can be rewritten

- 2
H=c’y5a'r( r+%’y°w)+mc2fy°—67, (3.12)
where
ih,, w . (8 1
Dr = —;—(T-V +1)——zh(b—r-+;> (3.13)
28 -7 ar
Or = ﬁ r —< 0 ;,'r_.,:'> (314)
0 25 7
w = v 1+;L'§S'L . (3.15)
Proof of Eq.(3.12)
We know that
. 0 &V
05 v = =
i iV 0
0 1 §-vV 0
_ (10>( i 3_§>. (3.16)
Moreover 1
g-v = T—Q(" 7)(& -7)(@ - V)
1 - -
= 50 F){(F-V)+z&’ (F/\V)}
ol oy 1,
= (@ ) (T'V)—ﬁ -L . (3.17)
Thus, referring to the definitions (3.13)-(3.15)
. 0= _ - -
—ily'y -V = —ﬁvs(S-r){r-V—FS-L}

= 'ysar{—% (’F’ﬁ +1)

ih
= Y50, r+—;’yw .

+

R (14257}

END OF PROOF

We shall next prove that w commutes with the Hamiltonian, Eq.(3.12), and so
is a constant of motion.
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Proof that w commutes with H
We first establish two helpful lemmata:

Lemma 1
[ps, L;] = iheijrpr
Proof
[pi, Lj] = €jnk(Pi@nPr — qnPrPs)
= €jnk[Pi, qn]Pk
= —ihejixpr = 1he;jrpr -
Lemma 2
S; = %iheijk'yjfyk
Proof

0 o 0 o
1.2 _ 1 2
vy - ( —01 0 ) ( —02 0 )

_ —0107 0

- 0 —01,09

- 03 0

N 0 03 ’
and similarly for cyclic permutations of {1,2,3}, so we have

. 21
YAk = —%fijksi —djk,

where we have introduced the spin matrix

S’:%h(

o N
QL o
S~

From Eq.(3.22) we obtain

. % .
eyt = =3 €ijk ikl YA S

o
= -;}(53'151'1 — 0510i5)Si
43
-2s;.

END OF LEMMATA

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)
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Theorem
[H,w] =0. (3.25)
Proof
2 - -

[H)W]Z[H”YO]"—?{Ha’yOS L] (326)

Now 'J
[H] = °F-p7°—cy -7
= -—2cy 'ﬁ,

while

[H,7°S - L] = c]y°7 - 7,7°S - L], (3.27)

since v° commutes with § and I commutes with A°(¢?). Though v° commutes
with S it anticommutes with 4, so

H,°5 L] = -c{3-55-L+5-17 -5}
= —1chysy (v piL; + ¥ v Lipi)
= —3chys® {(V7 + v ) Lipi + v [pi, Lj] }
= —1chys7® {29Y Ljp: + iheiiy Y pe } (3.28)

where Lemma 1 has been used to get the last line. Now

Lip; = €;jxqipepi = 0; (3.29)
and so by Lemma 2,
[H, ,Yog‘ . I_:] = —2chysY°Skpk
= —ch® 7% 7’7 o
= ch*y 7. (3.30)
Hence
[H,w] = —2¢7 -§ + %crﬂy . =0. (3.31)

END OF PROOF
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Since H and w commute, we can diagonalize them simultaneously, obtaining
from the Hamiltonian (3.22) the equation
2

Ey = {nysar ( r + %*y%u) +mc?4° — e—} ¥, (3.32)

r

where H and w have been replaced by their eigenvalues, respectively E and w.
Using the fact that 42 = 1, we rewrite Eq.(3.32) as follows:

2
© om0 = —itico [ 24 L Y0
75(E+T mey )Y = zhcar(ar+r rv)tp. (3.33)
In terms of two-spinors,
: )
= ) 3.34
v=(? (334

this equation can be written

e (2 3)-me
0

—_— O
o |
[R—y
S8 ~
S
N
> ©
N——

Now

(3.36)

g -7 cosf sinfe* \
“ \ sinfe*® —cosfh ’

and so o, depends only on the angles and thus commutes with the differential
operator 8/0r. Moreover its square is the unit matrix. Hence

2 - —
e 0o T . 0 l1-w
(E+r+mc) —X = zhc(6r+ " >¢
e? 0 14+w\a-7
E + — — mc? = —i — . .
( + mc’)¢ zhc(ar+ - > —X (3.37)
Define
F=r¢ G=-id -Tx. (3.38)
The equations reduce to the following:
2
(E+< +md)G = —hc(ﬁ—E)F
T or r

2
(E + 67 —m)F = he (-‘9- + ’-‘”—) G. (3.39)
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We introduce the scaled radial variable,

p= %«/m%‘l-E?,

in terms of which we find
) e (e s)
— == JF+ (X +—=)G=0
(3/) p T
(—Q+E>G+(A_—2)F=0,
Op p p
N _1 mc2+ FE
oV meFE’

and where a is the fine-structure constant,

where

e 137
Insert the following expansions in Eq.(3.41):

— exp(-2)p* S aus’

v=0

G = exp(—— Z bup” .

v=0

By equating coefficients of the lowest power, we find

sag — wag + abg = 0

sbg + wby — aag =0,

which implies

so that
s=+vVw?—-a?.
For v > 0, we find the recursion relations

(v+s+1ay+1 — ay —wayy1 + Apb, +abyy =0
(v+s+1)byp1 — by +whbyyr + Aay —aay41 =0.

51

(3.40)

(3.41)

(3.42)

(3.43)

(3.44)

(3.45)

(3.46)

(3.47)

(3.48)
(3.49)
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We can use Eq.(3.48)-(3.49) to determine a, and b, to each order n, in terms
of arbitrary ag and by, and since these zeroth order coefficients are related by
Eq.(3.46), it follows that only one arbitrary (normalization) constant remains.
The recursion relations may be decoupled by multiplying Eq.(3.49) by 2\, and
using the fact that Ay A_ = 1:

2/\+ (l/ +s+w+ 1)b,,+1 - /\+b,, + %a,, - 2a/\+a,,+1 =0. (350)
Add this to Eq.(3.48):
(l/ +s—w+ 1)a,,+1 + 2/\+ (I/ +s+w+ 1)by+1 - a(2/\+a,,+1 — b,,+1) =0. (351)

Replace v + 1 by v, obtaining

1 v+s+w+2ai_
2 _v+s—w—-2a0)t

a, =

b, (3.52)

and inject this into Eq.(3.49):

o lyt14stws a v+s+w+ 20i b
2 _v+s—w—2aA; vt
[v+s+w+2a/\_

v+s—w-—2a\;

+ 1] b,. (3.53)

Note that, for v = 0, Eq.(3.52) is consistent with Eq.(3.46). Relations (3.52)-
(3.53) constitute the decoupled recursion formulas. As in the nonrelativistic case,
one can show that, if the series does not terminate, it behaves like e?, which
means that F' and G behave like e#/2, up to powers of p, which is incompatible
with the probability interpretation. Hence the series must terminate.

There must therefore be an integer, v, positive or zero, such that

v+ s+ w4+ 2ai_
v+ s —w—2a\

+1=0,

for then b,41 and all the higher terms vanish, and, because of Eq.(3.52), the
same is true for the a,. This condition reduces to

V+s E

> =A+—)\_=m. (3.54)
Square this, solve for E2, and then take the square root of the answer:
a? mt
E=mc{1+ 5 , (3.55)
(v +Vw? — a?)

where Eq.(3.47) has been used to eliminate s.
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In order to relate the numbers v and w to known quantities, we expand Eq.(3.55)
to lowest order in the small quantity a?:

2.2
- 1 0(Y). (3.56)
2(v + |w|)

We recognize this as the nonrelativistic formula (3.1), on condition that

E —mc® =

n=v+wl (3.57)

is the principal quantum number. In the nonrelativistic theory, £ is a good
quantum number that has one of the values 0,1,2,...,n — 1. Since j = £+ 1,
unless £ = 0, in which case j = 3, it follows that j can take on the values
1,3, _—%, ..., — . Since J commutes with the Hamiltonian in the Dirac theory,
but L does not, it is in terms of n and j that we should seek to write the energy.

In fact, from the definition (3.15),

45 = 4z =\2
w2=1+ﬁ;s-L+¥(s-L) . (3.58)
Using an identity between the Pauli matrices,
@-LY&-L) = L-L+id-(LAL)
= L[-L+i¢-@nD)
= L*-h&-L, (3.59)
we find that
4 (5 =\2 o .z =
?(S-L) —12-25.L. (3.60)
We have
2 _ 45: » 1 12 g 7
W= 14 -L+h—2( —2S-L)
- ﬁ(L +3) Flo = 504 (3.61)

The eigenvalues of w are therefore given by
lw| =4/iG+D)+i=j+1. (3.62)
Together with Eq.(3.57), this shows that
v=n-—j-—3. (3.63)

With the identifications (3.62) and (3.63) of |w| and v, the solution of the bound-
state problem is complete.
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3.3 Bound State Formula

Label the energy level expression (3.55) with the quantum numbers n and j:

D=

'0(2

2
. . 2
n-i- e d - o)
where the identifications (3.62) and (3.63) have been used. The principal quan-

tum number, n, is a positive integer, and j can take on the values 3, 3,...,n— 3.
Since the fine-structure constant is so small,

, (3.64)

E(n,j) =mc® {1+

o= n L a? ~ 5.328 x 1075
" ke 137’ - ’
it makes sense to expand this exact result in a power series in a. The result is
E(n,7) a? ot ab
=l — - —(p—3) - — (p® 2 _6p+ 3
mc? 2n2  2n4 (P—3 8nb (0 +3p Pt 3)

where p = n/(j + %). To order a*, the first three energy levels of the hydrogen
atom, according to the Dirac equation, are as follows:

mc? 2 8
mc? 8 128
E(2,3 o2 ot
me . - 1TE T iE (365)

The fine-structure splitting between the second and third of these levels is
E(2,3)-E(2,% _ f_
mc? 32’
which agrees with experiment, to this level of accuracy.
When j = 1, the exact Dirac level can be written

E(n,3) n—14++v1-a?

5= = , (3.66)
me \ﬁ'z2—2n+2+2(n-—1)\/1——a2
and the ground-state energy, corresponding ton =1 and j = 1 is
E(1,1L
(L3) _ 1-oa2. (3.67)

mc?
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Clearly something strange would happen if the fine-structure constant were
greater than unity, for then the above j = ; energies would become complex!
This difficulty is not purely hypothetical, for in a hydrogen-like atom of atomic
number Z (i.e. there are Z protons in the nucleus but only one electron outside),
the Dirac formula would be expected to apply, but with o replaced by Za. So if
Z > 137, there would be problems. Admittedly this is still not very interesting,
for in the first place it would be difficult to ionize an atom of atomic number
greater than 137 down to just one electron, and in the second place the nucleus
of such an atom is wildly unstable by fission. Nevertheless the tantalizing ques-
tion arises: what if? Does the Dirac equation simply cease to be valid when the
effective fine-structure constant is strong (i.e. larger than unity)?

It is believed that the system protects itself from this disastrous ‘collapse into
the center’ by a phase-change: as one increases the value of a, the ground-state
energy decreases to zero at a@ = 1 (see Eq.(3.67)). This may be related to what
happens in the strong interactions of quarks, leading to their confinement.

The fact that the j = 1 S and P waves (i.e. £ =0 and £ = 1) are still degen-
erate in the Dirac theory is a consequence of the fact that the Dirac Hamiltonian
commutes with the total angular momentum operator. Experimentally there is
actually a tiny splitting of these levels: the famous Lamb shift. This is ex-
plained by quantum electrodynamics (QED): the theory of interacting electrons
and photons, both expressed as quantum fields. The Lamb shift energy has been
measured, in practice by detecting the radio photon that is emitted when the
electron shifts from the S to the slightly lower P state. The comparison with
the results of QED calculations of this frequency for hydrogen, deuterium and
singly ionized helium is as follows:

Experiment QED
H 1057.8 £ 0.1 | 1058.0+ 0.2
D 1059.0+0.1 | 1059.4 £ 0.2
He™ | 140405 14057 + 3

Lamb shift frequency 225 1 - ZZP% in MHz

3.4 Dirac Spinors

As we remarked in Sec. 1.5, the free Dirac equation can be written in the
compact form

[i70 — m]9(z) =0, (3.68)
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in which A = 1 = ¢, and the Lorentz indices, as well as the spinor multiplication,
are left implicit. We shall now show that this equation is already in a covariant
form, on condition that v transforms suitably. Under a Lorentz transformation,
t — z', it is supposed that v¥(z) — ¥’ (z'), and we wish the Dirac equation
(3.68) to become

[iv0" —m]y'(z') = 0. (3.69)

Note that we assume the v matrices do not change, although in principle we
could allow v — 4/, so long as the ' satisfy the same anticommutation relations.
However, we do not need to use this freedom: it is possible to choose a particular
representation for the v matrices and to keep this unchanged from one inertial
frame to another. However, the Dirac wave function, ¢, cannot be expected to
be a scalar. In general, we must write

¥'(z') = Sy(z), (3.70)

where S is a 4x4 matrix that depends on the Lbrentz transformation parameters,
and which has the effect of mixing up the four components of . Multiply
Eq.(3.69) from the left by S—! and use Eq.(3.70):

oz 0
ca-1.p
(’S VS 5 B
For this to be the same as Eq.(3.68), we need
oz Y

—1 .
STS o=

- m> Y(z) =0. (3.71)

or equivalently

oz'*
OxV
We propose to show now, by construction, that S exists, such that Eq.(3.72)
holds. This will define the correct way to transform a Dirac wave function
under a Lorentz transformation.

From the invariance of the speed of light, we have 22 = z'2, i.e.

S7iyhg = T A = AB 4 (3.72)

9po’z’ = g#,,:c'“:z:"" = guA¥ AV 227,
and hence
g‘,“,A“pA"‘7 = Gp0 - (3.73)
Consider an infinitesimal Lorentz transformation of the form

A#V = 55 + w#ua
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where w*, is infinitesimal. Substitute this into Eq.(3.73):
9po t Guv [&:wyp + 5;“’“0] = 9p0 »
to first order in w, or
Wps = —Wop
i.e. wy, is antisymmetric. Let us write
1
4

We have to evaluate the 4 x 4 matrices o#¥. To first order in w, the inverse of
S is

S=1-

o wyy

1

-1
=1
S +4

o,
SO

i Iny o

4 [0, Yol wuy = Wpa” -
Since this must hold for arbitrary antisymmetric w,s, it follows that

1)
[0, "] = 21 [v*g"" — 7" g**] .
This equation is solved by
py U T %
o - 'i [7 » Y ] )

as may be checked by substitution. We may write

S=1+ -;—['y“,fy”]w#u,
and the Hermitian conjugate of this is
St=1- %[’Y*“ﬂ*"]ww.
We know from Eq.(1.68) that °y#T7% = 4* and so
7’8t =1~ -;-[7“,7”100“” =571
We can use the above results to show that

i*(z) = P(z)71"(2) (3.74)
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is a conserved current density that transforms as a Lorentz contravariant vector:

0ui*(@) = [0uP(@1"d(x) + P(z)y*uib(z)
= P(@)livd +mlp(z) + P(2) [iv — m]Y(z) = 0.

Under the infinitesimal Lorentz transformation,

@) = ¢H(z)STYy*Sy(z)
= ¢l (@)y° STy Sy(z)
= A" 5(z).

It is left as an exercise to show that these two properties of the current density
remain valid when the coupling to the electromagnetic field is included.

We now define standard solutions of the free Dirac equation in momentum
space — these will shortly be used in setting up the second quantized fields.
There are two types of solution, of the forms u(p’) e™** and v(§) eP*, where
u and v are 1 x 4 column matrices called spinors, and where the mass-shell
condition is implicit, i.e.

P’ =wp, = /P2 +m?. (3.75)

On substituting these trial solutions into the free Dirac equation, we find that
the spinors must satisfy

(yp—m)u(®) = 0
(yp+mpv(F) = 0. (3.76)

The mass-shell condition (3.75) implies (yp)? = p?> = m2, so that solutions of
Eq.(3.76) may be written in the form

u(@) = (yp+m)z

(@) = (yp-m)y. (3.77)
where z and y are arbitrary 1 x 4 column matrices. In the rest frame of the
particle, § = 0, p® = m, Eqs.(3.76) reduce to

(°*-1)u@) = 0

(v +1)w(0) = o. (3.78)

Now we know that the matrix 4° has two independent eigenfunctions belonging
to the eigenvalue 1, and two belonging to —1. In the representation (1.67) of
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the y-matrices, we may define the following orthonormal set:
1 0

() ] (7))
0 0

\ 0 \ 0/
0 0

) (o) ()

v(0,1) = 0 v(0,2) = E (3.79)

\ 1/ \ 0/

We now choose the matrices z and y in Eq.(3.77) to be proportional to these

rest-frame quantities:

— m + f)/p ~
u(p,s) = 0,s
#9) 2m(m + wp) u(0,s)
v(F,s) = —meet2eu(0,5), (3.80)

2m(m + wp)

where s, the spin quantum number, can take the values 1 and 2. The constants
of proportionality in Eq.(3.79) have been chosen to ensure the normalizations

(P, s)u(p,t) = st = —0(D, s)v(F, 1) (3.81)

Note the negative sign in front of the v spinor — it arises from the eigenvalue
—1 of the matrix v°. The particle and antiparticle spinors are orthogonal:

v(P, s)u(p,t) = 0 =u(p, s)v(p,1t). (3.82)
Without the matrix 7°, the normalization reads
— — w - —
ul (7, s)u(F,t) = 7n£63t =v'(F,8)0(F,1). (3.83)

3.5 Particle and Spin Projection Operators

The particle and antiparticle projection operators may be defined by

2

2
A+(P) =) u(@, s)u(F, ) A—(@) == _v(@,5)0(F,s) -

s=1 s=1

The particle projection operators thus have the form

m + yp

A+ (P) = 2m(m + wp)

2
> u(@,s)u(d,5)(m +p), (3.84)
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and the sum over the rest-frame spinors is

1 0
2L 0 1
> u(@,5)u0,s) = o [(1 00 0)+] o [(0100)
s=1
0 0

= diag(1 1 0 0)

i.e., a diagonal matrix with the given elements on the diagonal. Compactly,

2
= =+ (10
Su@sa@s =g ¢ ),
s=1
where 1 and 0 stand for the unit and null matrices in two dimensions. Thus
2

(m +7p) > u(0,s)a(0,s)(m + vp)

s=1

_ m+tw, 0-p 10 m+w, &P
- —0 P m—uw,p 0 0 -G -p m—uwp
= ( (m + wp)? (m+wp)5°ﬁ)

—(m +wp)d - —(p)? '

On mass shell, (5')> = w2 — m?, and so the above matrix has precisely the form
(m + wp)(m + yp). We see then from Eq.(3.84) that

m +
Ap) = 2 (385)
2m
In a similar way,
2
N =TI 5 $\5(G _
A_(P) = 2m(m+%);v(O,S)v(O,S)(m p).- (3.86)
0 0
o 0 0
> v(0,s)5(0,s) = o |(0 00 1)+ (00 -1 0)
s=1
1 0

= diag(0 0 -1 -1),

which we may write in the compact form

S o, 95(0,5) = - ( 0 1)

s=1
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We find in this case

2
_ —(m - 'Yp) ZU(G)S)T)(O“) s)(m - ’YP)

s=1

_ (m—-wp —&'-ﬁ\(m-—wp —&’-ﬁ)

— - -

o-p m+tuwp ) G-p m+uwp
_ ( ~(F) —(m+w)F P
( .

m+wp)& - p (m + wp)?

On mass shell, (7)? = w2 — m?, and so the above matrix has precisely the form
(m + wp)(m — vp). It follows from Eq.(3.86) that

A@) =" 2:7:”’ . (3.87)

Now (yp)? = p?, and this is equal to m? on mass-shell, so
A(P)? = $(1 £ 2vp/m +1) = AL (F). (3.88)
Moreover

Ai(ﬁ)A=F(ﬁ) = 0
Ar(P)+A-(F) =

Thus A+ (p') are projection operators. The most general spinor may be written
w(p) = fru(@, 1) + fou(F, 2) + 019(P, 1) + &20(7F,2),
and clearly
AL (Plw(P) = bru(F,1) + B2u(F,2) A_(P)w(p) = é1v(F,1) + 62v(P, 2) .

In other words, A projects onto the particle spinor content, u(7, 1) and u(5, 2),
while A_ projects onto the antiparticle spinor content, v(7,1) and v(7,2).

We shall now construct the spin projection operator, ¥4(5), which does not
distinguish between particle and antiparticle, and which satisfies

Zs(ﬁ)u(ﬁasl) = dss’u(ﬁ>3)
23(5)”(,5731) = dss’v(ﬁas)-

In view of Eqgs.(3.81)-(3.82), this operator can be written

Es(ﬁ) = u(ﬁ; S)ﬂ(ﬁa 3) - v(ﬁa S)U(ﬁ) 3) ’
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and in the rest-frame we have

1 0
- 0 0
»0) = 0 (100 0)- 0 (000 -1)
0 1
= diag(1 0 0 1) (3.89)
0 0
- 1 0
(0) = 0 (01 00)-1 (00 -1 0)
0 0
= diag(0 1 1 0) (3.90)
These matrices can be subsumed in one formula:
2,(0) = 1[1+ (-1)*17°] - (3.91)

This is clear, since

To generalize this formula to an arbitrary Lorentz frame, and to an arbitrary
direction, 77, for the quantization of the spin, we define

Es(ﬁaﬁ) = %[1 - (_1)8757“”#)] . (393)
If n* is chosen to be a spacelike four-vector that reduces to
n* = (0,0,0,1)

in the rest-frame of the particle, then

Yn, = vPng = —*n® = -2,
and so Xs(7,7) reduces to X4(F) in the rest-frame. By generalizing suitably
the choice of n*, we obtain the spin projection operator for any direction of the
spin quantization axis.

The above analysis applies to massive Dirac particles, like the electron. A
different treatment is necessary for a massless particle (actually, it seems that the
electron neutrino has a nonvanishing, very small mass, but for most purposes it
can be treated as though it were strictly massless). For a particle solution of the
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massless Dirac equation, () e~%%, and for an antiparticle solution, v(§F) e®P®,
we find

Ypuu(@) = 0 = v puu(p) . (3.94)

Choose the z-axis as the direction of propagation of the particle or antiparticle,
and let p be its momentum, so p* = (p, 0,0, p), since the mass is zero. Hence

(Y’ = )u@) = 0 =p(?° - ¥*)u(5),
and so
u(®) = 7*7v*u(p) v(P) =77 (F) .
Since v5 = i7%y1y243, it follows that
Ysu(@) = iv'y’u(F) Y5v(P) = iy Y ().

Now in the standard representation of the Dirac matrices,
0 o 0 o3 )
1.2 _ 1 2
L (-01 0>(-02 0>
—0102 0
0 —0109

— g3 0 __%i_
= ’I,( 0 o3 ) = hS3, (395)

where the four-dimensional spin matrix was defined in Eq.(3.5). It follows that

shvsu(@) = Szu(p) Lhysu(P) = Ssv(7).

Thus Avys, which is called the chiral operator, has the same effect on a spinor
as does the helicity operator, which is defined to be the projection of the spin
operator in the direction of propagation of the particle or antiparticle. If u(g, s)
and v(p, s) are spinors of helicity h(—1)**!, s = 1,2, then clearly

ysu(@,s) = (=1)"u(7,s)

vsv£(@) = (=1) lu(7,s).

Right and left chiral projection operators are defined by

Pr=3(1+) Pp=3(1-1), (3.96)
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and we have proved that, for the massless spinors,

Pru(7,1) = u(7,1) Pru(p,2) = u(p,2)
Pro(F,1) = v(F,1) Pro(p,2) =v(7,2).

Thus positive helicity massless fermions are right-handed, while negative helicity
massless fermions are left-handed.

3.6 Exercises

Problem 1
Given the on-mass-shell definitions
— m + ﬁ)/p ~
u(p,s) = u(0,s
®,s) 2m(m + wp) (0,3)
TR u(@,9),
2m(m + wp)

I

v(P,s)
demonstrate the following:

1) (yp —m)u(@,s) =0="70(7,s)(yp +m)
(2) H(ﬁ) S)U(ﬁ, t) = 5st
(3) ﬁ(ﬁa S)'U(ﬁ, t) = -Jst
(4) 9(7,s)u(@,t) =0
(5) ul(@,s)v(-p,t) =0
(6) Ut(ﬁ, S)U(ﬁ, t) = %ést = 'Ut (ﬁa S)'U(ﬁ, t)
Problem 2
Let u(g, s) be a spinor satisfying
(yp — m)u(p,s) =0.
Investigate the the Lorentz transformation properties of the following quantities:
ﬂ(ﬁ7 S)U(ﬁ, 3) ﬂ(ﬁ, S)’Ys’ll:(ﬁ, 3)
(P, s)v*u(p, s) w(p, s)y*vysu(P, s)
(P, s)y* v u(P, )
Problem 3
Prove the Gordon identity, namely

2ma(p’, s )y u(p,s) = u(p’,s') [P* + ic" k) u(p, s)

where P* =p'* +p* and k¥ =p'* —p*.
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Problem 4

Solve the Dirac equation for an electron in the presence of a constant, uniform
magnetic induction. Obtain the general energy eigenstates, and show that the
energy eigenvalues are given by

E = \/ m2ct + c%p3 + 2nehcB
where n = 0,1, 2, ---. Determine all the constants of motion.

Problem 5
Let F be the column vector

s @(Py, s4)u(P1, s1)u(Ps3, s3)u (P2, 52)

v (P, 84) Y u(p1, 51)U(Ps, 83) Y u (P2, 52)
F=|t | =| 3Py sd)o" u(B1,s1)8(Ps,83)0,u(P2,s2) |,

a U(Pa, 84) 757 u(P1, 51)U(P3, 53) YuYsu (D2, 52)

p @(Py, S4)Ysu(P1, 51)U(Ps, 83)Y5u (D2, 52)

and let F' be the vector obtained from F' by means of the Fierz interchange
(91, 81) +— (P2, s2). Compute the Fierz matrix, M, that satisfies

F' = MF.
What is the transformation property of the combination v — a?

Problem 6
Calculate the Foldy-Wouthuysen unitary operator, U, such that

1
Hpw = UHpU' = 1°(p%c* + m?c*)?,

where Hp = 7°(7 - # + mc?) is the free Dirac Hamiltonian. Show that the large
and the small components of the Dirac wave function decouple. What can be
said when there is electromagnetic coupling?

Problem 7

Discuss how the number of nodes of the radial wave functions, F(r) and G(r),
in the solution of the Dirac equation in the presence of a Coulomb potential, are
related to quantum numbers (n, j,£). For what values of a, the fine-structure
constant, is the Hamiltonian self-adjoint? Discuss the cases

(1) a? < 3
2) ¢<a?<1
(3) a®>1.
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Problem 8
Consider a Dirac particle subject to a (three-dimensional) spherical well potential

Vo<0 for r<rg
V(r) =
0 for r>1rg

(1) Obtain the exact 4-component energy eigenfunctions for j = 3 bound
states, where the 2 upper components have even orbital parity.

(2) Obtain an equation for the energy eigenvalues.

(3) What happens if the strength of the potential is increased so that Vj
becomes comparable to or larger than 2mc??

Problem 9

Determine the bound state energies for a spinless particle, of mass m and charge
—e, that obeys the Klein-Gordon equation in the presence of the Coulomb field
a fixed particle of charge Ze. Determine the fine structure of the energy levels,
and consider the limit Ze?/(hc) — 1.

Problem 10

Show that the Dirac equation for a particle of mass m in the presence of the
scalar oscillator potential V(r) = 1mw?r? does not have energy eigenstates,
because one cannot keep all components of the wave function bounded as r — .
However, show that for the potential

V(ir) = —imw (¥ -7),

the Dirac equation has energy eigenstates, and determine them.



Chapter 4

Quantum Field Theory

In quantum field theory, a field, ¢(z) = @(t, &), is a generalized coordinate. A
particular way to achieve this is to imagine all of space, at a given time, ¢, to
be divided into a countably infinite set of cells. To each cell we assign a single
coordinate, namely the average value of ¢(¢,Z) over that cell at the given time.
A more sophisticated approach is to suppose that ¢(z) belongs to a separable
Hilbert space with an orthonormal basis, {f,(z)}, so that one can write

$(t, %) =) qu(t)fal&). (4.1)

The time-dependent coefficients, ¢, (t), are regarded as constituting a discrete set
of canonical quantum coordinates. Given a Lagrangian for the system, one writes
the Euler-Lagrange equation, defines the canonical momenta, p,(t), calculates
the Hamiltonian and writes down the standard commutation relations between
the coordinates and the momenta. The next step is to consider Eq.(4.1) as a
canonical transformation, with inverse

4n(t) = / Pz §(t, 7) fulE).

The Lagrangian is written

L(t) = /d% L(t,T),

where L(t,Z) = L(z) is the Lagrangian density. It is a straightforward matter
to show that the Euler-Lagrange equation, written in terms of the g,(t), leads

to the continuum version,
oL oL
O | =—=——=| - = =0, 4.2

|56.) % (42)

67
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where the Lagrangian density is considered, as far as the partial differentiations
are concerned, to be a function of ¢ and its partial derivatives. The momentum
conjugate to ¢(t, &) is

n(t,Z) = ¢(t, &),

and the standard commutation relations between the discrete variables g, and
pr, lead to the continuum analog (with h = 1)

[6(t,Z),n(t,7)] = i6°(Z —7)
[6(t,£),0(t,7)] = O
[7(t,Z),¢(t,7)] = 0,

which are called the equal-time commutators (Problem 1.9).

4.1 Scalar Field

Consider a spinless particle of mass m, the state of which is described by a vector
|¢(t)). The configuration space wave function is

o(t,Z) = (Z|(t)) -
In the absence of interactions, this satisfies the Klein-Gordon equation,
(02 +m?)¢p =0. (4.3)

The procedure that leads to this equation is sometimes called first quantization
(Sec. 1.4). It turns out that certain difficulties arise in treating it as a one-
particle equation — difficulties that are avoided by considering it in terms of
a many-particle field theory. This we do by regarding ¢(z) not as a c-number
quantity, but rather as a g-number (to use the language of Dirac), i.e., as an
operator on Fock space, a superposition of a creation and an annihilation part:
#(z) = a(z) + a’(z) . This reinterpretation of ¢ is called second quantization by
some people. The Lagrangian density

L=1:(0u8)(0"¢) ~m¢* :

gives rise to the Klein-Gordon equation (4.3) as the Euler-Lagrange equation.
Between the pair of colons in this equation (and elsewhere), all creation opera-
tors must be placed to the left of all annihilation operators — a procedure that
is called normal ordering. The canonical momentum is

w(w)=%§-=¢,
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and the canonical equal-time commutation relations are

[6(t,%),0t,7)] = O
[6(t,%),(t,5)] = O

[6(t,%),8(t,7)] = i6*(& - 7). (4.4)
Consider next the 3-dimensional Fourier transform
1 d®k

é(z) = [a(ic’ )e~ike 1 ot (k) ek]

mass—shell

(2m)% J 2wk

where ‘mass-shell’ means that k% = wy = V'k -k +m2. The equal-time com-
mutation relations Eq.(4.4) can be shown to lead to

[a(k),d'(®)] = &k - %)
)) = 0
la'(k),al(®)] = O. (4.5)

These equations are precisely the continuum analogs of the commutation rela-
tions between the ladder operators for a quantum mechanical simple harmonic
oscillator. We shall exploit this equivalence by interpreting a(lg ) not merely as
an operator that effects a step down the ladder of energy eigenstates, but as a
fully fledged annihilation operator that destroys one quantum of momentum k.
Its Hermitian conjugate, a*(l?), is a creation operator that calls the quantum
into existence. The Hamiltonian density is defined by

H(z) = :7(z)d(z): —L(z)
= 1:9*+(Ve) +mPe’: (4.6)

and from this one may evaluate the Hamiltonian itself,
H= /d3x’H(:v) = /dskwkaf(lg)a(l—c’). (4.7)

This formula is readily intelligible: af(E)a(E) is the number density operator
in momentum space, and wy is the energy associated with momentum k (recall
that A = 1). This Hamiltonian is a positive definite operator. To show that it
is, suppose that |®) is an arbitrary ket vector. Then

(B H|B) = / B wr (T (R)| T () >0,

where |¥(k)) = a(k)|®).
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As we will discover later, it is important to calculate the time-ordered product
of two fields, defined by

T(p(a), 6(1)] = H()PW)0(a" — 3°) + $u)$@)G° - 2°).
Differentiating once with respect to z°, we obtain

D STI6(@), 6(0)] = [6(2), b — 3°) + TIB(@),000)].  (48)
Now from Eq.(4.4), we have

[6(2), 60)16(2° — 3°) = [6(a°,2), 6(a”, DI — 1) =0,

i.e., the first term in Eq.(4.8) vanishes. On differentiating that equation once
more with respect to z°, we find

2
(325) 71600060 = 6, 6180 - ) + TI6(6), (0]
From Eq.(4.4), we have

[$(z), p®)]6(z° —1°) = [(z°, &), (2, 7)]6(z° — ¢°)
= —i*(& - 7)6(z° —¢°) = —id*(z —v).

Since spatial derivatives are indifferent to the time ordering, finally we have

(82 +m*)T(¢(2), o(y)] = —id*(z —y) + T8 +m?)¢(z), 6(y)]
= —id*(z-vy). (4.9)

Taking vacuum expectation values of both sides of this equation, we obtain

(02 +m?)(0IT[¢(2), d(®)]|0) = —id*(z —y),

for which a solution is given in terms of the following distribution:

(0|T[¢(z), 6()]|0) = iAr(z —v), (4.10)

where the Feynman Green’s function is

1 ., e tk(z-v)
Ar(z —y) = (27r)4/d kkz-—m2+z'e' (4.11)

The commutation relations Eq.(4.5) lead to the specification that the limit e — 0
should be taken through positive values (Problem 4.2).
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4.2 Electromagnetic Field

The electromagnetic Lagrangian density is
Lonotons = —1 : F#F,, - (4.12)
where the electromagnetic tensor is
F,, =0,A, -0,A,.

This gives rise to the Maxwell equation in vacuo as the Euler-Lagrange equation.
There are difficulties with this form in quantum theory, however, which have to
do with maintaining the gauge invariance of the Lagrangian. It is customary to
add a gauge fizing term:

Lot = —1:0,A8,A4" : =—-1:(8,4)":

The complete Lagrangian of the free electromagnetic field, in the Gupta-Bleuler
method, is written as

Lem = Lphotons + Lgfix - (4.13)
We find for the field derivatives |
The equation of motion, i.e., the Euler-Lagrange equation, is
O F* +0"0,A? =0, (4.14)
which can be rewritten
9?AY =0.

The momenta conjugate to the A, are

y OLem
= B804,

and the equal-time commutation relations are

— __FOV _gOVapAp;

™

[Au(@), ™ (Y)]ee = '55553 (Z - 9)
[AM (z), A¥ (y)]et = 0
ru@), ™ @l = 0. (4.15)

Note that the contravariant vector 7* is the canonical momentum corresponding
to the covariant A,.
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The timelike canonical momentum is
= -0 A" = - [A°+Y7 -Zf] :
while the spacelike momenta are
7=-A-VA,

and hence the equal-time commutation relations between the fields and their
time derivatives are

[o0(z), Ao(¥)]e = —i6*(Z —7)
[Ai(z), A;j(W)]ee = 16:;0°(F —7), (4.16)

with all other equal time commutators vanishing. Just as in the scalar case, let
us make a momentum space decomposition:

d3k ~ s Y
n = u —ikz pt ik ) 1
4 ( ) (2 ) /2“6' ¢ (k)e ta (k)e ]mass—shell (4 7)
The commutation relations between the creation and annihilation operators are
lao(k),a}@)] = -6k - 5)
[ai(F),al(7)] = 6;8(k - D), (4.18)

with other commutators vanishing. These commutation relations are equivalent
to Eq.(4.16), as for the scalar case. It should be noted that the right-hand sides
of the timelike relations (4.16), (4.18) have an unexpected minus sign. This is
potentially troublesome, for the Hamiltonian becomes

H = /dazz:?-{(a:)
- /d%wk[af(z)-a(ic')-a;;(ié)ao(k’)], (4.19)

which is not positive definite.
The trick of Gupta and Bleuler is to define a physical subspace of Fock space.
It is spanned by all the ket vectors, |®)pnys, that satisfy

kHa,, (k)| ®)phys = 0. (4.20)
From Eq.(4.17), we may write

At (z) = a¥(z) + a*!(z),
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where

1 [k o
@@ = oot /2|E|a (k)e

, (4.21)

mass—shell

so that
aﬂa”(x)lq))phys =0.

The matrix element pnys(®1|0,A*(z)|P2)pnys is always zero, since it may be
rewritten

phys(q)liaua”(x)"I)Z)phys + phys<¢2|aua”($)|<pl);hys =0,
i.e., the Lorentz condition (2.25) is valid on the physical subspace. Note that
phys{‘b1|apFW(-”3)|<I’2>phys = phys<‘1’1|32Ay($)|‘I>2)phys =0,

so that the modified equation of motion Eq.(4.14) is equivalent to the correct
free Maxwell equation, 8, F*¥(z) = 0, when the latter is restricted to the phys-
ical space. To understand how the introduction of the physical space resolves
the problem that the Hamiltonian is not positive definite, it is convenient to in-
troduce polarization vectors. These are defined in momentum space. For every
4-momentum, k*, on mass shell, choose coordinate axes such that k lies in the
positive z direction:

k* = (]k],0,0,|k]).
Introduce four orthonormal polarization vectors, s”(l—c' ,A), as follows:
e#(k,0) = (1,0,0,0)
e*(k,1) = (0,1,0,0)

e*(k,2) = (0,0,1,0)
e*(k,3) = (0,0,0,1). (4.22)

Define new annihilation operators in momentum space, a(l-s; ,A), by

3
at(k) = e*(k,Na(k, ). (4.23)
=0

Notice that e#(k,1) and e#(k,2) are orthogonal to k*, and that

kta,(k) = |k [a(E,O) - a(k’,:s)] .
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Hence Eq.(4.20) implies that, for all nonvanishing k¥,
a(k,0)|®)phys = a(k,3)|®) phys » (4.24)
so that |
ohys(®1]at (k£ ,0)a(k,0)|®2)pnys = phys(®1]a’ (k,3)a(k,3)|®2)phys -

Thus the matrix elements of the Hamiltonian, taken between physical states,
involve only the transverse polarization degrees of freedom:

phys(‘I’llHICI’Z)phys = /dsk‘*’k phy5<q’1|[at(k’,1)a(ﬁ,1) +aT(E’2)a(E,2)]|@2>phySa

i.e., the longitudinal and timelike (ghost) degrees of freedom cancel each other,
leaving only the physically expected transverse polarizations. In the restriction
to the physical subspace, the Hamiltonian is positive definite.

The derivation of the vacuum expectation value of the time-ordered product
of two fields proceeds in analogy to the scalar case, yielding

—ik(z—y)
O @4 @)I0) =~y [ @

It is sometimes useful to generalize this expression by introducing what is called
a gauge parameter, a, which involves changing the gauge fixing term to

Lgix = —— : 9,A*8,A” :

In this case one finds

(O|T[A* (z) A* ())]0) = / dtk D2 (k) e=H(==9) |

i
(2m)*
where the momentum-space representation of the Feynman propagator, in a

general gauge a, is

—g" + (1 -a) g
k2 + ie

Dy’ (k) =

The choice a = 1 is called the Feynman gauge, while a = 0 specifies the Landau
gauge, which is convenient for some purposes, since the photon propagator is
transverse to the momentum in the Landau gauge. That is,

kD’ (k) =

if a = 0, but not otherwise.
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4.3 Spinor Field

We may start with the Lagrangian density

L =:9(iv0 — m)y :

for which
oL —
o ~ ™
oL —
—Z = H.
50

This gives, as the Euler-Lagrange equation,

_ . =

1:b("")/ 0 +m) =0,
which is the adjoint of the Dirac equation,

(ty0 —m)y =0.

The momentum conjugate to v is

m =

T ot
5800) =iy = ', (4.25)

The momentum-space decomposition of the Dirac field is

2
wa) = =or 3 [ @[22 5, (5, )¢ +d 7,905,957
(27T) 2 s=1 Wp
(4.26)
where b is a particle annihilation operator and d! an antiparticle creation oper-
ator. The adjoint of this equation is

2
916 = g 3 [ @I 05,01 F0) 67+ dlp o 7o)
(4.27)

Since particles satisfying the Dirac equation (such as the electron) are fermions,
we require their creation and annihilation operators to satisfy anticommutation
relations — instead of commutation relations — to guarantee the antisymmetry
of two particle wave functions. Thus

{b(ﬁ’ 8), bT (d’) t)} 63t63 (ﬁ - (j')
{d(ﬁ) 3))dt(iat)} = 6st53(ﬁ - (i) )
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with all other anticommutators vanishing. These anticommutation relations are
equivalent to the following equal-time anticommutation relations between the
fields and their canonical momenta:

{'lpa (l‘), T3 (y)}et = i60,363 (f - g) :
From Eq.(4.25) we see that this implies

{$a(2), 95 )}, = 0056 = 7);

and all other equal-time anticommutators vanish; for example

{$a(2),¥5(¥)}ee = 0.

The Hamiltonian density is
H=m0: —L=—: 937V —m)p =1 : '8 :

the last formula following from the Dirac equation. The Hamiltonian itself may
be expressed as a momentum space integral:

2
H=[dat@) = 3 [dpw,:b(5,005,5) - dF,9d 7,5 :
s=1

2
= 3 [ ot 5,905, 5) + (7, 5)d(5,9)} (4.28)

s=1

To obtain the last line, we introduced the rule that the normal ordering of
fermion operators brings in a minus sign:

Zd(ﬁ,S)dt(ﬁ,S) = :df(ﬁa S)d(ﬁ,S) S —df(ﬁ,S)d(ﬁ, 3) .

The motivation for this minus sign is that the spinor operators satisfy anticom-
mutation — rather than commutation — relations. Normal ordering, with this
minus sign, therefore amounts to an infinite shift in the energies. Because of
this minus sign, the Hamiltonian is a positive definite operator; without it, that
would not be so. This is the essential reason that anticommutators must be used
for fields that satisfy the Dirac equation.

Consider next the current density Eq.(3.74), with normal ordering:

7 (x) = P(@)y*P(z) : (4.29)
This current can be readily shown to be conserved, that is,

8, A" =0.
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The conserved charge is

I pa—
2
= 3 [ {6,905, + 5, 5)d! 5 ,s) <}

2
= > [ 005,90 - 6,945, 9) . @30
s=1 .

Whereas the Hamiltonian (4.28) is the sum of the number density operators
bl (p,s)b(F,s) and di(F,s)d(P,s), weighted with the energy w,, the charge is
their difference, with energy-independent weight. This shows that the charge
of particle and antiparticle are equal in magnitude and opposite in sign. The
magnitude is here normalized to unity; but by multiplying the current density
Eq.(4.29) by —e, that can be adjusted.

The time-ordered product of two spinor fields is defined with an extra minus
sign for every interchange of order of two fields, much as in the case of normal-
ordered products. Thus, by definition,

T(va(2), v5(1)] = Ya(@)Ps®)0(z° - y°) = Y5 (y)¥a(2)8(y’ — 2°).
We find, for the vacuum expectation value of this time-ordered product,

(OIT o (z)% 5 (¥)I0) = iSpap(z — y) = (—2# / d*pSr ap(p) € Y)

where the Feynman propagator in momentum representation is

- +m
S = [vp — "l _JPTMm
r(p) = [yp — m + i€ e R S

4.4 Exercises

Problem 1

Show that the equal-time commutation relations of the scalar quantum field and
its conjugate momentum imply, and are implied by the commutation relations
between the creation and annihilation operators. Use arguments of Lorentz
invariance to show that the commutator of two fields at different points vanishes
if the separation between the points is spacelike. What can you say about the
relation of microcausality to macroscopic, or ordinary causality?
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Problem 2
Show that the equal-time commutation relations for the scalar field lead to the

following expression for the Feynman propagator:

o|T 0) = iA Y PP i
OIT[9(a), 6WI0) = iAr(@ ~1) = 57 [ Phr—mrre-
Problem 3

The Lagrangian density of two independent Hermitian fields, ¢; and ¢-, is

2
L(z) = %Z : Oupj(z)0* 9 () — m2¢?(m) :

with the canonical momenta 7;(z) = ¢;(z) , 5 =1,2. Define the nonHermitian
field ¢(z) = -\}—5 [#1(z) + i¢2(z)] , which has a Fourier decomposition

o(2) = 1 [ &k
2m% J 2w(k)

(1) Starting with the standard commutation relations between the creation
and annihilation operators a}t (k) and a;(7), deduce the commutation re-
lations between al(k), a(5), b1(§) and b(7). Next calculate the commu-
tation relations between ¢(z) and ¢(y), for arbitrary times, and thence
the equal-time commutation relations between ¢(z) and its canonical
conjugate momentum.

(2) Calculate the Hamiltonian in terms of ¢(z), and then in terms of the a
and b number operators.

(3) Define the current

[a(E )e~ ke 4 bt (E) eikw]

mass—shell

I =iz (0449 — (6*9)s'

Show that the charge, namely the space integral of J(z), is constant in
time, and express it in terms of the number operators.

Problem 4
Consider the Lagrangian density for a massive vector field,

1 , m? 1 2
L= ~1 : F FH +—§- t A AR ~5a : (BMA“) :

where F,,, = 0,A, —0,A, . Calculate the Feynman propagator and consider the
massless limit, m — 0.
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Problem 5
The Becchi-Rouet-Stora (BRS) Lagrangian for QED is

L=-3:F"F, :+:6G:,
where ¢ signifies an infinitesimal BRS transformation, and
G ={8,4" + 1aB},

B being an auxiliary scalar field and ¢ a ghost field. The BRS transformation
of the fields is specified by

§A, = i[QPRS A,] = 8uc
5B = i[QBFS,B] =
se = i{QPR%,c} =0
se = i{Q®R5,¢} =B,
where ¢ is another ghost field, and where QBRS is called the generator of the BRS
transformation. Show that & is nilpotent, i.e., §2, working on any field, yields
zero. Work out the equations of motion for the various fields. Obtain an integral

representation for the generator, QBRS. Show that the Maxwell equations are
valid in a subspace of Fock space defined by the requirement

QBRSI‘b)phys =0.

Show that QBRS is nilpotent and that it commutes with the Hamiltonian.

Problem 6

Show that the equal-time anticommutation relations of the spinor quantum field
and its conjugate momentum imply, and are implied by the anticommutation
relations between the creation and annihilation operators. Use arguments of
Lorentz covariance to show that the anticommutator of two fields at different
points vanishes if the separation between the points is spacelike.

Problem 7
Calculate the Hamiltonian in configuration and in momentum space for

(1) A neutral scalar field,

(2) The electromagnetic field with a general gauge parameter, a,
(3) A spinor field.
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Problem 8
Show that the free Dirac Hamiltonian,

is equivalent to the free Dirac Hamiltonian in second quantization, in the sense
that both satisfy Hy = i-(%qb, where 1 is to be understood as a Dirac wave
function in the first case, and as a spinor field in the second case.

Problem 9
Consider the alternative Hermitian Lagrangian for the free spinor field,

— 1. 9
L=:9¢(3iyd —m)y:
o - —
where §=0 — 9.
(1) Deduce the Euler-Lagrange equations for ¢ and for .
(2) Does this Lagrangian lead to any new physical features, as compared to
the standard non-Hermitian Lagrangian?

Problem 10

Two photons fly apart from one another, and are in oppositely oriented circularly
polarized states. One strikes a polaroid film with axis parallel to the unit vector
d, the other a polaroid with axis parallel to the unit vector b. Let P,.(a, b) be
the joint probability that both photons are transmitted through their respective
polaroids. Similarly P__(a@,b ) is the probability that both photons are absorbed
by the polaroids, Py_ (@, b ) is the probability that the photon at the @ polaroid is
transmitted, while the other is absorbed, and finally P_(d, b) is the probability
that the photon at the @ polaroid is absorbed, while the other is transmitted.
The correlation coefficient is defined by

C(@,8) = Pr+(8,b) + P-_(d@,5) - P+—(&,b) - P-+(a@,b).
Show that quantum electrodynamics predicts

C(@,b) = cos2(6, — 65) .



Chapter 5

Group Theory and the Noether
Theorem

We propose to consider symmetries of a quantum field theory that form a group.
A set of such operations, {g;}, together with an operation of composition, X, is
called a group, G, if the following conditions are satisfied:

(1) The composition of two symmetry operations in G, g; and g;, written
gi X gj, is an element of G.

(2) This composition is associative, i.e., g; X [g; X gk] = [9i X g;] X gk -

(3) There is an element, e, in G, such that g x e = g, for every element g.

(4) Every element, g, has an inverse, g~%, in G, such that g x g~ ! =e.

The composition rule need not be commutative, but if g; x g; = g; x g; holds
for all elements, the group is called Abelian, otherwise it is non-Abelian. As an
example of a simple symmetry, the complex scalar field Lagrangian,

£ =: (8,6 (8"9) - m?ts
is invariant under multiplication of the field ¢ by a phaée faétor,
é—e .

The symmetry group is U(1), the Abelian group of unitary one-dimensional
matrices. A gauged version of this U (1) symmetry is none other than quantum
electrodynamics with minimal coupling. The operation of ‘gauging’ a global
symmetry, in which a parameter, for example a here, is no longer held fixed, but
is allowed to depend upon space-time, has proved very fruitful in high-energy
physics. The symmetry can only be maintained by postulating the existence of
a gauge field, in this case the photon, with a specified symmetry transformation.

81
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5.1 Rotation Group and SU(2)

Consider the set of all rotations in two dimensions, described by orthogonal
matrices of the form,

cosf —siné?] . (5.1)

sinf cos@

U®) = [

These matrices obey the (matrix multiplication) composition law
U(91) X U(92) = U(01 + 92) = U(02) X U(91) s

and thus form an Abelian group, SO(2). We can use the infinitesimal rotation

SU(60) =1 —iLé0 where L= [ (Z’ ‘0’ ] =0y, (5.2)

to construct the finite rotation,
U@) = lim [fU@/N)]N = lim [1—iL8/N]N = exp[—iL6]. (5.3)
N—oo N-oo
From the properties L2V =1, [2N+! = [ for N =1,2,---, we find
U(#) = exp[—iLf] = cos§ — iLsin@

The matrix L is called the generator of two-dimensional rotations.

In examining the symmetry of physical theories, we are primarily interested
in finding and categorizing all irreducible representations of the symmetries. A
representation of a group is a set of matrices that has the same multiplication
table as the group elements themselves; and an irreducible representation is
one that cannot be reduced by a transformation, MUM ~!, into block diagonal
form. Note that the same M must be used for each each U. The defining
representation, Eq.(5.1), is two dimensional, but SO(2) has only one-dimensional
irreducible representations. Indeed, consider

_ ].Z : -1 _ 1 1 “i

for which the matrix MU(6)M ~! has the reduced form:

€

MU@)M™ = D(§) = [ ;a e_(_’w ] .

Thus the matrices of the irreducible representations are e and e~*. The
irreducible representations of all Abelian groups are one dimensional.
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The group SO(3) of rotations in three dimensions is not Abelian. Let R(7,8)
be a rotation by an angle § about an axis 7. Note that R(R,0) = R(—n, —6).
Let us first consider a rotation in the z,—z, plane (that is, about the z3 axis),
and proceed in analogy with Eq.(5.2) to define the generator Lj:

0 - 0
5U(3,503) = 1 —iL3 (593 where L3 = l' ) 0 0 } .
0 0O

Similarly, we may define rotations about the z; and z, axes:

0 0 07
§U(1,861) = 1-iL166, where Ly=|0 0 —i

L 0 7 0

[ 0 0 4]
5U(2,592) = 1- ’iLz 502 where Lz = 0 0 O

| -2 0 0 ]

These matrices obey the familiar commutation relations
[Li,Lj] = ieijkLk . (5.4)

We construct the infinitesimal rotation matrix for an arbitrary axis, specified by
a unit vector, n:

6U(7,80) =1 —i(L -7) 86,

and then compute the finite rotational matrix

U(#,0) = exp[—i(L -A) 6]. (5.5)
One may establish the relations

(L AN+t = [.a

(L -a)2N+2 = (L -7)?,
for N =1,2,3,---, and thereby express this rotational matrix in the form

U(#,6) = exp[—i(L -7) 8] =1 —i(L -7) sin@ + (L -A)? (cosf — 1) .

The three matrices L; constitute the defining representation of the generators of
SO(3). They generate, via Eq.(5.5), all elements of the group; and they satisfy
the algebra (5.4). The matrices L; are unitarily equivalent to the matrices
discussed in Chapter 5 of Volume 1 (see Problem 5.9 of Volume 1, as well as
Problem 5.1 of the present volume). Any representation of SO(3), which may
contain matrices of dimension other than 3, has the property that it is isomorphic
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to the defining representation, i.e., the matrices have the same multiplication
table as in that representation.

All representations of SO(3) lead to representations of the algebra (5.4), but
not all representations of the algebra generate representations of SO(3). To
see this, we recall from Chapter 3 of Volume 1 that if the J; satisfy the same
algebra (5.4) as the L;, then the only possible eigenvalues of J? are j(j + 1),
with j =0, 3,1,%,---. Moreover, for a given j, the possible eigenvalues of J3 are
m= —j,—j+1,---j (in Volume 1 we had not set h = 1, as we have done here).
The elements, |jm), of a multiplet of vectors satisfy

Jxlim) = VEFm)GEm+1) |jm=1),
Jsljm) = m|jm),

(see Eq.(3.14) of Volume 1). The spin-j representation of the rotation group is
defined by

D3, (#,6) = (jm'| exp[—i(J - &) 6]|jm) (5.6)

For j = 0, D°(7,6) = 1 for every rotation (every group possesses this “trivial
representation”). For j = 1 we use the Pauli spin matrices:

— 1
J’l,—‘z'o-z

It follows from the relation (& - 7)? = 1 that

=

D2 = cosf/2—id -7 sinf/2

cos#/2 —in3 sinf/2 (—iny —ny) sinf/2 (5.7)
(—in; +ng) sinf/2 cosf/2 +ing sinf/2 '
The matrices D% (R, 0) are unitary, and they have determinant +1. Indeed, the
set of all such matrices, for 8 € [0,4n) and all real unit vectors, fi, constitutes
the group of special (determinant 1) unitary matrices in two dimensions, written
SU(2) for short. Since the elements of SU(2) corresponding to 6 and 6 + 2, for
a given 7, are not identical (they differ by a sign), the defining representation
of SU(2) is not a representation of SO(3). On the other hand, the defining
representation of SO(3) is a representation of SU(2), although it is not a faithful
one. A faithful representation is one in which there is a 1 : 1 correspondence:
here the correspondenceis 1 : 2. SU(2) is said to be the covering group of SO(3);
all representations of the algebra (5.4) generate representations of SU(2), but
not all such representations generate those of SO(3).
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5.2 Poincaré Group and SL(2,C)

Consider the homogeneous Lorentz group, i.e., all linear transformations of a
four-vector field V# = (V°,V) that preserve the invariant length:

Vi (V02 -V .V. (5.8)
For a given vector field we define the 2-dimensional Hermitian matrix

Vo4 ve vi_gv?

prod H© =
vEVILE L vipae voovs |

where o, = (1,5 ). If we make the transformation
v — v = AvAl, (5.9)

where A is a 2-dimensional matrix with determinant +1, then the matrix v’ is
also Hermitian, and

detv = (V92 =V .V =deto' .

Thus every transform Eq.(5.9) preserves the invariant length Eq.(5.8), and so it
is a homogeneous Lorentz transform of the vector field V#:

AVEg, At = [A*(A)V] o, .

Furthermore, the product of two such matrices, A and B, of determinant +1, is
also a matrix of determinant +1, and

ABV*0,(AB)" = A[A%(B)V” 0,]A! = AR(A)AS(B)VY 0,

Thus the homogeneous Lorentz group A(A) is locally isomorphic to the group
SL(2,C), the elements of which are all the 2-dimensional complex matrices A
of determinant +1.

Using the Polar Decomposition Theorem (Problem 5.4), we shall express any
element of SL(2,C) uniquely in the form

A=UP,

where U is a unitary matrix of determinant +1, and P is a positive definite
(Hermitian) matrix of determinant +1. In terms of Pauli matrices, we thus
write

A7, 0;m, ) = exp[—i(F - 1) §/2] exp|[(—37 - ) r/2] (5.10)

where the 6 parameters (7, 0;77,7) may be chosen independently.
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Consider the case that A is unitary, when the Lorentz transformation reduces
to a rotation. For the particular choice

—i6/2
AR, 81, 1) = [ € 0 ] ,

0 e'116’/2
the SL(2,C) matrix is

g VeHVE et iV
ef(V!+iV2)  VO-V3 ’

which gives the transformation

1 0 0 0

0 cosf —sinf O
A4) = 0 sinf cosf O |’

0 O 0 1

a rotation by an angle 6 about the z3 axis.
If, on the other hand, the matrix A is Hermitian, the transformation is a
true Lorentz transformation, often called a Lorentz boost. For the choice

e~™2 0
A= [ o } ,
the SL(2,C) matrix is

g | €TV Vv
Tl visar o e (ve-ve) |0

which gives the transformation

coshr 0 0 -—sinhr
0 1 0 0
A(4) = 0o 01 0 ’
—sinhr 0 0 coshr

a Lorentz boost with velocity v = tanhr in the z3-direction.

A Lorentz transformation can be expressed as the composition of a rotation of
angle # about axis 7, and a boost of rapidity r in the direction mm, corresponding
to the general SL(2,C) matrix (5.10). Since the matrices (A, —A) correspond
to the same homogeneous Lorentz transformation, this correspondence is 2 : 1.
All representations of the Lorentz group are representations of SL(2,C), but
not the other way around. SL(2,C) is the covering group of the Lorentz group,
much as SU(2) is the covering group of the rotation group in three dimensions.
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For a general infinitesimal transform we have

A(7,00;m,6r) =1 —i(d - 1)d6/2 + (& - m)dr/2.

A(7,60;m,6r) =
0 O 0 0 0 my mo mg3
_ 0 0 —n3 Nno m 0 0 0
1 0 ns 0 —n; %9 + mo 0 0 0 or.
0 —TN2 n; 0 msa 0 0 0
We can read off the generators of the Lorentz group,
0 0 0 0 T 0 -1 0 07
.| 0 0 0 O -1 0 00
=g 0 0 KBre=119 0 00
| 0 01 0 | | 0 0 0 0]
0 0 0 07 [0 0 -1 07
0 0 01 0 0 0 O
=g 0 0 0 Ka=1 10 0 o
0 -1 0 0 . 0 0 0 0]
0 0 0 07 [0 0 0 -—-17
.0 0 -1 0 0 00 O
=1 0 o Ka=110 00 o0
| 0 0 0 O | -1 0 0 0 |
The commutator algebra is
i, Jj] = teijrdi [Ji, Kj] = ieijn Ky
[Ki, K] = —ieijud (5.11)
We may transform these generators to a new basis by defining
M;=J,+1K; N; = J; —iK; .
The commutator algebra in this new basis is
[Mi,MJ’] = 'I:EijkMk [N.,;,Nj] = ’I:G,;jka
[M;,N;] = 0. (5.12)

Thus the Lorentz group is locally isomorphic to the group SU(2)y ® SU(2)n,
with independent generators (M ,NN). There are two Casimir operators (i.e.,
operators that commute with all the generators), namely M? = M2 + M2 + M3
and N2> = N? + N2 + N2.
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The representations of the Lorentz group may be labelled by (jam,jn), quantum
numbers that take on integer or half-integer values. The simplest nontrivial
representations, (3,0) and (0, 1), are 2-dimensional. The Weyl representation
(1,0) is given by Eq.(5.10) for the Lorentz transformation (7,6, m,r), and the
(inequivalent!) representation (0, 1) is given by making the replacement r — —r
in that relation. All finite dimensional representations of the Lorentz group
can be generated by taking direct products of the fundamental representations,
(0,1) and (,0). For example, four-vector transformation formulae, involving
A%, correspond to the (1, 1) representation (see Problem 5.6).

Next we consider the Poincaré group, namely Lorentz transformations ex-

tended by translations in space-time,
V' =ad* + AJVY,
the composition rule for transformations (a,A) and (b, ¥) being
(a,A) x (b,X) = (a+ Ab,AY).

The generators of the Poincaré transformation are the four-momentum, P¥, and
the generators J and K of the Lorentz transformation. The commutator algebra
of the Poincaré group consists of Eq.(5.11), as well as

[P*,P"] = 0
[PO, Ji] = 0
[Pi, J;] = ieijpPe
[P, K;] = i6;P°
[P°, K] = iP;.
An infinitesimal Poincaré transformation may be written
U(n, 86;mh, 6r;0%,6t) = 1 —i(J -7)60 — (K -mh)ér —iP -6z —iPydt. (5.13)
In terms of the covariant, antisymmetric tensor,
0 Ki K, Kj
7o = -K; 0 =J3 Jy
Bl Ky Js 0o -J |’
-K; —-J» N 0
we may express the commutation relations in covariant form:
[JuvsJool = H(Gupdov = Gupdop + GupJue — GvoJup)
[PuaJpv] = 1(gupFo — g Fp) [Pu:PV] =0.
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The full Poincaré Group has two Casimir operators, P2 = (P°)2 — P . P, and
the square of the “covariant spin operator” or Pauli-Lubanski vector,

WH = 2et"*? J, P, ,
the Poincaré invariant being
W? =WHEW, .
One may show by direct computation that
We=(J-P,KE xP-PJ),

and thus one can calculate W2 in the rest frame of a particle of mass m, obtaining
—m2J2. The spin, as well as the mass, are thus Poincaré invariant. Massless
particles may be described by their three-momentum, P, and the component of
spin along the momentum vector, their “helicity” (Problem 5.7).

5.3 Noether Theorem

For every continuous symmetry of the Lagrangian density, there is a conserved
physical quantity. We shall illustrate this theorem by considering the invariance
of the free electromagnetic Lagrangian density, £, under time translations, space
translations, and Lorentz transformations. These invariances lead respectively
to the conservation of energy, momentum, and angular momentum.

Under a transformation of the space-time points z — z', and of the fields,
A*(z) — A'"(z'), the Lagrangian density is unchanged, i.e.,

LO™A" (') = L(O*A¥(z)) - (5.14)
Define the infinitesimal quantities
SA¥(z) = A (z) — A (),
and
§L(z) = L(B*A” (z)) — L(B*A¥(z)). (5.15)

Note that A*(z) and 8* A" (z) occur in these definitions, and not A’#(z') and
9" A" (z') . We find therefore that

oL oL
= 22 5(AF) + ———_§(0* A
(A% + (8 AY), (5.16)

oc 5(FHAY)
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where the space-time argument, z, has been suppressed. Now

oL oL oL
17 v — v 17 v
9 [a(aﬂAV)M ) o [a(auAV)]JA c’)(aﬂAV)a (647,
_ oL ., oL 4 v
= —8A#5A + 3(6#Av)5(3 AY),

where the Euler-Lagrange equation has been used to obtain the last relation.
On comparing this with Eq.(5.16), we see that

oL
5(9-AY)

which is the general form of the Noether equation.

To evaluate 6L(z) in detail, we replace z' in Eq.(5.14) by z, which means
that we must replace z by Z, where the transformation z — Z is the inverse of
z — z'. So in place of Eq.(5.14), we have

L(O* A" (z)) = LB A¥(T)).

5L = o] §A], (5.17)

Thus Eq.(5.15) can be written

6L(x) = LB AY(Z)) - L(8*AY(z))
= L(T) - L(z)
= (T-12)°9,L(z) +O((Z —x)?) . (5.18)

Under space-time translations, z# — z'* = z# + a*, the transformed field at the
transformed point is just the original field at the original point, that is to say,
A'"(z') = A¥(z), so that A’V (z) = A*(Z), where T* = z* — a* . Thus

A (z) = A¥(z - a) = A*(z) - 0”8, A (z) + O(a?). (5.19)
Hence, for infinitesimal a*,

0A*(z) = —a”0,A*(x),

0L(z) = —a”0,L(x).
The Noether equation, Eq.(5.17), takes the form

oL
3(0,4,)

Since this equation must hold for arbitrary a” , it follows that

0’8,L = 0", [ 8, A,).

8,T" =0, (5.20)
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where the energy-momentum tensor is defined to be

. ac
9(8,4,)

From the explicit form (4.12), we obtain
TH = —FHPO" A, + 19" F\pe FP7

TH 8YA, — g™ L.

(the normal ordering being implicit). The four-momentum of the electromag-
netic field is defined by

PY = / 3z T%,
so that, by using Eq.(5.20), we find
PV = /d3:z: 9T = — /dSwBiTi” =0,

on condition that the fields vanish at spatial infinity. The four quantities, P,
are the conserved quantities of the Noether theorem.
The zeroth component is just the Hamiltonian, since

P? = /d3:z: T% = /d3x [-F%8°4, + LF,, F*]| = /d3zH = H.
The space components of the field four-momentum are
P P )
- - / Pa[p0 AT — 87 A°)5' 4.
However, the vector product of the electric field and the magnetic induction is
[EAB); = [EAVAA); =E;[0;47 — 8;A%]

= [BoA;j — 0;A0)[0;A7 — &7 A,
= —[0°47 — A A; — 0 {[B0A; — DAl A} . (5.21)

where we have used the free Maxwell equation to obtain the last line. Hence
P= / d*zE A B, | (5.22)

where P = (P!, P2, P3). Note that the integral of the last term in Eq.(5.21),
a perfect differential, has been omitted, since it vanishes when sampled by test
functions of compact support. The integrand of the above equation, the field
momentum density, is the Poynting vector.
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The Lagrangian density is invariant under under a Lorentz transformation;
but the four potential is not, since it is a four vector. If we write

wlll — Apl.lmu ,
then
A" (z') = A* A (z) .

In order to obtain §A4, we need to calculate A'*(z) rather than A'*(z'). This is
done by replacing z' by z, which means that z must be replaced by T = A~z :

A'(z) = A* A¥ ().
We consider an infinitesimal Lorentz transformation, and its inverse,

AL =68 el | (AP =58 —¢f

Hence
A'¥(z) = (65 +€f)[1 - 5,27 0,]A" (z),

so that

dA¥ =¢eh AY —ef 2°0,A". (5.23)
Since the Lagrangian density is Lorentz invariant, we find from Eq.(5.18) that

0L(z) = —€f,2°0,L(x) . (5.24)
By inserting Eq.(5.23) and Eq.(5.24) into Eq.(5.17), we obtain
oL oL

oo — p Tap
€po’ O°L = €550, 6(8”A,,)A + 6(8,LA,,)$ 0°A,| .

Since €,, is antisymmetric, but otherwise arbitrary, it follows that the odd part
of its coefficient in the above equation must vanish. Thus

0,J"P° =0, (5.25)
where
oL oL
wpo p THPA — g*PyO [ —
J 8(6“A,)A + 6(6“A,,)x 0PA, — gz’ L — [p ¢ 0]

= [HPT 4 GHPO
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in which the extrinsic (or orbital) angular momentum density is

oL
upo  __ o 0 pp
L = I a(a )6 A - L —[pHa]

= THPg? —THgF|
and the intrinsic (or spin) angular momentum density is

oL
ppo p_
S 33, la)A (p o)
= FHPA° — FrIAP.

We define the angular momentum tensor by

7 = /d3mJ°”".

7 = /d3$30J0pU = —/d3x6iJ""" =0,

In view of Eq.(5.25),

so the components of the angular momentum tensor are time independent (they
are the Noether currents that correspond to the invariance of the Lagrangian
density under Lorentz transformation). Consider

L21 =/d3$L021 =/d3$[$1T02—.’L‘2T01] )

Since T°¢ are the momentum densities, we see that L?! is the third component
of the orbital angular momentum, which we often write L3. Then S% = §2!
is the third component of the intrinsic, or spin angular momentum. We write
J2! = J3 = L3 + S3. In a similar way, by permuting 1,2, 3 cyclically, we define
the other components: J! = L! + S! and J2 = L? + S2 .

5.4 Parity, Time Reversal and Charge Conjugation

So far in this chapter, we have looked at symmetries of the Lagrangian that
depend continuously on a parameter; but we turn now to discrete symmetries.
Consider first the inversion of the position vector, ¥ — —7', applied to the
infinitesimal Poincaré transformation (5.13). Under this operation the energy,
P° and the angular momentum, J, remain unchanged, but the momentum,
P and the Lorentz boost, K change sign. The angular momentum should
mdeed generate spatial rotations in a direction that is unchanged under space
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inversion, but the direction of an infinitesimal boost should be reversed, so the
parity operator on Fock space must satisfy

PPOP~t = P°

PIPt = J
PPPt = - P
PEP! = -K. (5.26)

The four-momentum of one-particle states obeys (p°,7) = (p°, —p). To explore
the effect of space inversion on internal degrees of freedom, consider an irre-
ducible basis set of states |jar, jams;jnm, Ja3), that transform according to the
( jm,jnm ) irreducible representation of the Lorentz group. It follows from the
Lorentz group algebra and (5.26) that

’PIjM)jM3;jM’j;M3> = 77P|jM$jM3;jM7j;\43> ’
where np = %1 is the intrinsic parity for the basis set. Dirac spinors, which

transform according to the (3, 1) representation of the Lorentz group, fall into

this category. However, an irreducible basis set for the representation (jas, jn),
with M # N, is mapped into a different irreducible representation of the Lorentz
group, in fact

Plim,ims; iN, IN3) = |IN, IN3; M, TM3)
These states are therefore not eigenstates of the parity operator. Left- and right-
handed Weyl spinors, which transform according to (0, ) and (3, 0), respectively,
are of this type (Problem 5.6).

The effect of the parity transformation on the second-quantized free Dirac
field, ¥ (t, £ ), is realized by

Py(t, )P~ = +%(t, %) .
For spinors, we see from the explicit representation (3.80) that
7’u(P, s) = u(-F,s) 1’u(F,s) = ~v(-P,s).
From Eq.(4.26) we find therefore that
Pb(p,s) P! = b(-p,s)
Pd@,s)P~! = —d(-F,s),

so the annihilation (and creation) operators for spin-half particles and antipar-
ticles have opposite intrinsic parity.



Parity, Time Reversal and Charge Conjugation 95

Time Reversal

Next we consider the operation of time reversal, ¢ — t' = —t. Unlike space
inversion, time reversal cannot properly be described by a unitary operator, 7.
The reason is that, if 7 were a linear, unitary operator on Fock space, then the
Hamilton-Heisenberg equation for a scalar field,

d

—_— T) =1 t. T

Z0(t,8) = ilH,¢(t,2)],
would give the desirable Hamilton-Heisenberg equation

d
(', &) = i[H,¢(t', 7)),

only on condition that TTHT = —H, which would lead to negative energies
in a time-reversed state. To avoid this undesirable consequence, we make 7
anti-linear, i.e., it is required to satisfy

Tlg1) +1¢2)] = Tlo1) + Tlg2)
but Tlelg)l = c* Tlg),

where ¢ is a complex number. In particular, T[ﬂcp)] = —iT|¢). Instead of
TYHT = —H, we have TViHT = —iT'HT and so T'HT = H. The operator
T is also antiunitary, meaning that

(T T¢) = (¥ld)” .

To see why this is necessary, let |@#) be a one-particle state of definite momentum,
D, so that the configuration wave function is

(z|¢) = exp[i(F- 7 — wpt)].

If 7 were unitary, we would obtain the following time-reversed wave function:
(z[T¢) = (Tz|g) = exp[i(F- 7+ wypt )],
again with unacceptable negative energy. With an antiunitary 7, we find
(@|T¢) = (TTz|Te) = (Tz|g)" = exp[—i(p'- 7+ wpt )],

which has the same energy as the original state and a momentum that is reversed,
as should be the case.
Like unitary operators, antiunitary operators also satisfy the requirement

(TYITH)® = [(l)*

and are suitable for describing symmetry operations. Because of the factor i in
the terms involving P° P and J in the infinitesimal Poincaré transformation
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(5.13), the transformations of these generators acquire an extra minus sign, so
we obtain the relations

TPO 7'— 1 PO

TIT™! = - J
TPT-! - P
TET™! = K (5.27)

Consider the spin multiplets of a particle of mass m and spin s at rest,
|6, s,m,). According to these relations, the operator 7 has the effect of reversing
the three-component of spin:

TJ2|0,s ms) = s(s+1)T|0,s, m)
TJ3 |6, s, ms) = —msT |6, s, Ms)

In other words, the effect of time reversal on these states is equivalent to a
rotation by R(2, ). Since

R(iﬂ-)l(j) S, ms) = (_1)s+m, |67 S, —'m3> )
we take
T |0, s, ms) = (=1)*T™nr |0, 5, —ms)

where nr = %1 is the intrinsic time-parity. Let us apply a Lorentz boost A(p)
to this state to obtain

Iﬁas) ms) = U[A(ﬁ)] IG’S, ms) :
Note that T U[A(P)] T = U[A(-P)], so that
T Iﬁ,S, mS> = (—1)s+m"77T| —ﬁ)s) _’ms) .

For massless particles we can specify only the momentum and helicity (the com-
ponent of spin along the momentum) (Problem 5.7). For the eigenstate of three-
momentum F and helicity o, |§,0), the operator 7 changes the direction of
momentum p and spin J , but not of the helicity o. In other words, we may take

T|6,0)=e"" | -p,0).

For a free Dirac state, with or without mass, (¢, ¥ ), the time-reversal operator
can be realized by

Ty, )T =y ¢(-t,Z).



Parity, Time Reversal and Charge Conjugation 97

Since [73')/1]_1 = —v3y! = 4148, and further

A3yla0qly3 = 40 Pylylylyd = -4t
Yy vyt =42 Y Pyt = -2,
it follows that
Yyt (@,1) = u(-7,2)
e @,2) = -u(-F,1)
Yy (@,1) = -v(-F,2)
Py @,2) = vu(-p,1).
Correspondingly, for the creation and annihilation operators,
To(F, )T =b(-7,2) Tb(F,2)T 1= -b(-p,1)
Td(p,1)T ! = -d(-7,2) Td(F,2)T ! =d(-p,1).

Hence the time-reversal operator reverses the three momentum of particles and
antiparticles, and it flips the spin, i.e., the spin direction is also reversed, as
should be the case. Note that particles and antiparticles are not interchanged by
the time-reversal operator alone. To do that, one needs the charge-conjugation
operator.

Charge Conjugation
The charge-conjugation operator, C, converts particle states into antiparticle
states, and we require

I

Cb(p,s)C™? (=1)**1d(7, s)
Cd(ﬁ’s)c—l = (-l)s-Hb(ﬁ’S)’

in words, the annihilation (and creation) operators for spin-half particles are
transformed into those for the antiparticles, and vice versa, without change of
momentum or spin.

We see from the explicit representation (3.80) that

iu(p,s) = (-1)**v* (7, 5) (@, s) = (-1)* (7, s),
and this leads to
Cy(z)C™ = —ifpt (@?]T = —i[Blan®r?]",

whre the superscript, T, here indicates the transpose of the spinor matrices in
question. Since the transpose of ¢! is a spinor field, rather than the transpose
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of a spinor field, we see that C, unlike 7, is a linear operator. The free Dirac
Hamiltonian is invariant under charge conjugation, whereas the charge operator
(4.30) changes sign.

Finally, consider the following types of factors involving Dirac fields, which
may be present in a theory

M(z) = :¢l(@)my): mass

S(z) () () : scalar
VH(x) () v () - vector
TH () s Y(z)o* () : tensor
AF(z) = (@)Y yHe(T) pseudovector

P(z) = :i(z)y*y(z): pseudoscalar

Here is a table indicating the transformation of these factors under the discrete
symmetries P, C, T, and PCT ; note that £ = (z°, —F):

M@) | S@) | Vi@ | T#(z) | A*@z) | P)
P | M@ | S@G) | VeE) | TeE) | -A*@E) | -P@&)
¢ | M) | S@) | -Vk(@) | -T*(z) | A*@) | P()
T | M(=%) | S(-%) | VE(-&) | -T»(-3) | A¥(-%) | —P(-%)
PCT | M(-z) | S(~z) | =V¥(~g) | TH(-z) | —AH(-z) | P(-z)

The operator PCT leaves the Lagrangian invariant for any Poincaré invariant
local quantum field theory involving scalar, vector, and spinor fields. This result,
known as the Pauli-Villars theorem, remains valid when appropriate forms of
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higher spin fields are introduced. The effect of PCT on the Lagrangian density
L(z) amounts to the following:

(1) On all space-time arguments, make the replacement z# — —z*.

(2) For consistency with (1), all derivatives must change sign: o* — —9*.

(3) A vector field transforms like the gradient of a scalar field: V# — —VH,

(4) A bilinear form with 1 - - - 1 changes sign by (—1)°, where s is the number
of v-matrices that lie between the spinor fields. ”

(5) All constants are complex-conjugated: g — g*.

The theorem is a consequence of this algorithm. However, one should be aware
that the relevance of the PC7T theorem is predicated upon the assumption that
physics is described by a Poincaré invariant, local quantum field theory.

5.5 Exercises
Problem 1
Show that the defining representation, R, of SO(3),
U(#,0) = exp[—i(L -7) 0] =1~ i(L -7) sind + (L -7)? (cosd — 1),

0 0 O 0 0 . 0 —¢ O
Liy=10 0 —i Ly=|1 0 0 0 Ly=\|1% 0 0|,
0 «+ O -1 0 0 0 0 O

is equivalent to the representation, R, obtained by the replacement L; — J;,
where

J__l_[i’ : ?} J__l_[? o 0} J-{é 0 0 ]
1——‘/5010 2_-\/50710 3_00—1.
That is, find a unitary matrix, M, independent of § and 7, that transforms one
form into the other:

M U(#,0) Mt =U(#,9) .
Use these results to show that

exp[—i(L -7) 0] =1—4(L -A) sinf + (L - 7)? (cosd —1).
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Problem 2 . .

Show that the direct product D2 (R)®D?z (R) is unitarily equivalent to the direct
sum D°(R) ® D'(R). That is, find the (rotation-independent) Clebsch-Gordan
matrix M such that

M D%*(R)® D% (R) = D°(R) ® D*(R) M .

Remark: The standard form for these irreducible representations [Condon-Shortley
phase convention] is

D} (#1,8) = (jm/| exp[—i(J - R) 6]|jm)
In particular, with the Condon-Shortley phase convention,

cosf/2 —ing sinf/2 —in_ sinf/2 J

1 ey _
D2 = cos§/2-i(3 #)sin6/2 = [ —ing4 sind/2 cos8/2 +ing sinf/2

Problem 3
Show that the composition of two rotations R(my,¢1) X R(mg,ds) yields a
1

rotation R(7,0), using the spin-; representations D2 to show that

cosf/2 = cos¢1/2 cospa/2 — 1y -y sin @y /2 sin gy /2
nsin@/2 = —mysing;/2 cosds/2 — 1o sing2/2 cos ¢y /2
+(M1 A ) sin ¢ /2 sin ¢y /2

Note that the angle of rotation 8 is symmetric under the interchange of order of
rotations, whereas the axis 71 is not, in general.

Problem 4

Show that any finite-dimensional, nonsingular square matrix, A, may be ex-
pressed uniquely as the product of a unitary matrix U and a positive definite
matrix P,

A=UP.

Problem 5
Consider the composition of Lorentz boosts in different directions:

L(G)O;ml)rl) X L(O.,O;’ﬁlg,’l'z) = L(ﬁ"eamar) .
Using the Weyl representation,
A(n,8;m,1) = exp[—i(d - 1) /2] exp[—(& - ™) r/2]

express the composite transformation in terms of the parameters (72, 8; 1, 7).
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Problem 6 .
The representation D30 (f,8;m,r), of the Lorentz group is
exp[—i(F - 1) 0/2] exp[(—& - ) /2] ;

1
whereas the representation D(O’i)(ﬁ,,é);ﬁz,r), is obtained from that expression
by making the replacement r — —r. Show that the direct product representation

D=DpGEY g pO:3)
is isomorphic to the transformation matrix A for a four-vector:
V'* = AL(A,0;1h,r)VY .

Problem 7
The Pauli-Lubanski vector is defined as

Wh = Le#P? J,, P, = (WO, W ).

Show that W2 = WH#W, and P? = P*P, commute with all the generators of
the Poincaré group.

(1) Show that, in the rest frame of a particle of mass m, W2 = —m?2J2, so
that the mass and spin are good quantum numbers.

(2) For a massless particle, restrict consideration to eigenstates of P, =
(po,0,0,po). With this restriction show that the following relations are

satisfied.
we = w?
[Wl, Wz] =0
[WS, Wl] = z'pOW2
[W37 Wz] = —ipoWI .

Show that W /po satisfies the same algebra as does the two-dimensional
Euclidean group that has the generators P, P>, J3. For this Euclidean
group, there is a set of eigenstates |0, s), for which

P |0,S) = 0
P2 |0,3) = 0
J310,s) = s]0,s).

Show that
wH lpo,O, S) = spP# |p070a S> :
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Problem 8
(1) Show that the Lagrangian density
L =: ¢(z) (70 — m)y(z) :
is invariant under the global U(1) transformation
' (z) = e ().

Show that the conserved Noether current is j#(z) = e : P (z)y*(z) :

(2) Compute the total charge and write it in terms of creation and annihi-
lation operators.

(3) In the case that 6 does depend on space and time, the transformation
is said to be a local, or gauge transformation. Show how the minimal
substitution restores the invariance of the Lagrangian density in this
case.

(4) What is now the Noether current, and is it conserved?

Problem 9
Suppose that an electromagnetic radiation field is specified by
Al = Acosk(z® — 2®), A% = Asink(z° - 23), A =0= A3,

and that this radiation falls upon and is absorbed by a surface orthogonal to
the 2% axis. Calculate the transfer to the surface, per unit area per unit time, of
energy, momentum, orbital angular momentum and intrinsic angular momentum
(spin). What can you conclude about the properties of the photon?

Problem 10
Assume these transformation properties of the electron and positron annihilation
operators under parity inversion, charge conjugation and time reversal:

Pb(p,s)P~H = b(-F,s)

Pd(p,s) P~ = —d(-7,s)
Ch(p,1)C™r = d(@,1)
Ch(p,2)C™t = —d(7,2)
To(@, )Tt = b(-7p,2)
TdE, )Tt = —-d(-p,2).

Calculate the transformed fields, Py (z) P~1, Cy(z)C~! and Ty(z) T-!. How
do the Hamiltonian and the charge operators transform? Show that applying
time reversal twice to 1(z) produces —¢(z).



Chapter 6

Scattering Theory and Feynman Graphs

A theory of noninteracting electrons and photons is described by the sum of the
Dirac and the electromagnetic Lagrangians. An interacting theory for the two
is obtained through the minimal coupling prescription,

L =:9@Ey*D, — m)p — LF*F,,
where the covariant derivative is defined as
D, =0, +ied,, (6.1)

see Sec. 2.2, but recall that here ¢ = 1 = h. This Lagrangian density is invariant
under the gauge transformation

A, — A, +08,G P — e~Cy,

where G(z) is an arbitrary scalar field. The idea of inducing interactions from
the requirement of gauge invariance has proved to be very fruitful — this is the
simplest (Abelian) example of the principle.

To implement the quantization of the electromagnetic field, we introduced
also a gauge-breaking term, which does not respect the gauge invariance of the
rest of the Lagrangian, yielding

. } 1
L=:9(v"D, —m)yp — 1FFE,, — %(@,A“)2 :

Gauge invariance is not valid on the whole of Fock space; but it does hold on
the physical subspace.

We may write the Lagrangian as the sum of a part that is quadratic in the
fields, say L, which leads to a linear (free) contribution to the equations of
motion, and the remainder, say £;, which is of higher order in the fields, leading
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to a nonlinear (interaction) contribution. Thus
Ly =B B — mth — }F# Fyy — o= (,A)?
and
Li=—e: Py Aut: (6.2)
In the Feynman gauge, a = 1, the corresponding Euler-Lagrange equations are

(170 — m]Y = ex* Auib,

9% A* = eyt

This distinction between the quadratic part of the Lagrangian and the remainder
is of paramount importance for the development of perturbation theory. In the
modern theories with non-Abelian gauge structure for the weak, electromagnetic
and strong interactions, this basic distinction between a quadratic part, which
can be treated exactly, and a cubic and quartic part, which has to be treated
perturbatively, remains operative. For the rest of this chapter, we shall treat a
simpler, scalar interacting theory. This will serve as an introduction to the more
interesting gauge theories like quantum electrodynamics.

6.1 Asymptotic Fields

For simplicity we will introduce the general formalism of scattering for a neutral
scalar theory. An example is that of neutral m-mesons, or pions, interacting
with one another by a contact interaction (this is a so-called effective theory,
approximately valid only at low energies — at a deeper level, it is replaced by
QCD, in which the pion is a bound state of a quark and an antiquark, interacting
by exchange of gluons).

The effective theory can be written

L=L;+L; (6.3)
with
Ly=13:0,00"¢—mge”:
and

£i=—>\1¢4:
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which describes a pion-pion self-interaction term. Here mg is called the bare
mass — as we shall see, it is not equal to the physically measured pion mass.

A scattering process is ideally described as follows: at time ¢ = —oo, there
were only stable particles, far apart from one another, so that their mutual
interactions can be ignored. As time goes on, the particles can come together
and interact; but at ¢ = oo, all unstable particles have decayed, and there will
be only stable particles far apart again, with negligible mutual interaction. The
“in" states describe the situation at ¢ = —o0, before the experiment, and the
“out” states describe the situation after the scattering, at t = co. We want
to calculate the probability amplitudes between the in and out states (the so-
called scattering, or S-matrix), in order to be able to predict observables like
the cross-section for scattering.

The supposed state of the system at t = —oo involves no interactions between
different particles, because they are far apart from one another. However, these
particles of the in state are not the particles of the free theory that would be
described by the Lagrangian L alone, for they have self-interactions caused by
L;. An isolated physical particle can emit and reabsorb virtual particles, as we
shall see later in detail. The effect of this cloud of virtual particles is one of
inertia: the effective mass of the physical particles is not the bare mass, mo;
rather there is a shift to, say, m?> = m2 + dm?, the square of the physically
measurable mass.

At t = —oo, we define a free field, ¢;,, that satisfies a free Klein-Gordon
equation

(8% + m?)¢in = 0.

This can be Fourier-analyzed in the usual way, in terms of annihilation and
creation operators, ai,(k) and a?n(k). In a similar way, at t = oo, we define a
free field, ¢out, that satisfies

(82 + mz)d)out =0.

A Fock space can be built up from the vacuum state, the one-particle states
obtained by allowing the operator aitn (E ) to act on the vacuum, for any value of
the momentum k , the corresponding two-particle states, three-particle states,
and so on indefinitely. Similarly, a Fock space can be built up by using the out
instead of the in operators: it is a fundamental assumption that these two Fock
spaces are identical. It is assumed further that the vacuum and the one-particle
states are stable, in the sense that

|0;in) = |0; out) = |0) |k;in) = |k;out) = |k). (6.4)
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However,
|E1)E2;in) # |E1)E2;OUt) )

because of the possibility of scattering. Indeed, the two-particle sector of the
S-matrix is defined by

IEl,Eg;in)ZSIEl,Ez;OUt), (65)
and more generally, the n-particle sector yields
|E1,...kpn;in) = S|k1, ..k n;o0ut) . (6.6)

Thus S maps any out vector on to the corresponding in vector, with the same
momenta. More succinctly, we may write

| in) = S|a;out), (6.7)

where o represents any state.
We take the in and out states to be orthonormal,

(a;in|B;in) = d4p = (a;out|B;out),

which of course is shorthand for a continuum normalization in terms of Dirac
distributions. It is assumed that the in and out Fock spaces are identical, being
spanned both by the in and by the out state vectors:

> lasin)(asin| =1 =" |a; out)(a; out] .
a 03

From this it follows that S is unitary:

S'S = > |a;out)(a; out|StS|B; out)(B; out|

a,B
= D_lasout)(a;in|B;in){8; out]
o,
= Zla;out)(a;ouﬂ:l.
«
Thus
Sta;in) = STS|a;out) = |a;out)

(a;in]S = (a;out| (6.8)
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and hence

S8t = > Jain){e;in|SSt|B;in)(B;in]
a,B

= ) loyin){o;out|B; out)(B;in|
a,B
= Z la;in){a;in| = 1.
(s
Clearly S must also relate ¢, and ¢ou. Since

(a; out|¢inS|B; out) = (c; out|din|B;in),

and ¢iy|B;in) is an in state that is equal to S operating on the corresponding out
. state, i.e.

$in|B;in) = Sgout|B; out)
it follows that
(a; out|@inS|B; out) = (a; out|Seout|B; out) .
From the completeness of the out states, we obtain
$inS = Sout

¢in - S¢out51.
bt = STonS.

The aim of scattering theory is to calculate cross-sections and other observables.
The probability amplitude for a state o at ¢t = —oo scattering into a state 8 at
t=o001s

(B; out|a;in) = (B;in|S|a;in),

[cf., Eq.(6.8)]. We need then to calculate the S-matrix elements with respect to
the in representation.

While ¢, and ¢, satisfy linear equations of motion, the general field ¢
satisfies the nonlinear equation

(0 +md)p = —4A: ¢°: (6.9)
Naively, we might hope that a unitary evolution operator, U(t), exists, such that

o(t, &) = Ul(t)gn(t,Z)U(2)
7t &) = Ul@®)mat,Z2)U(). (6.10)
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We might expect that U(—oo) = 1, so that ¢(t,Z) goes over into ¢in(¢, %) at
t = —o0, and U(oo) = S, but this turns out to be untrue. It is only in a
weak sense that the limit exists, and then only if we introduce a regularization
procedure. The difficulty arises from the highly singular nature of the product of
different fields at the same space-time point. We proceed nevertheless formally;
we will later learn how to handle these divergent integrals.

In order to calculate the evolution operator, we need to apply the dynamics
of the field. In quantum theory, the field version of the Hamilton equations is

o9 _ .
'5; - Z[H)(ﬁ]’
%% = i[H,x]. (6.11)

In classical mechanics, any quantity that has vanishing Poisson brackets with all
the coordinates and with all the canonical momenta is not a dynamical variable.
The quantum mechanical version of this statement is that any quantity that
commutes with all the coordinates and with all the canonical momenta is also
not a dynamical variable: it is a c-number and not an operator. Here it is
crucial that we have to do with a complete set of dynamical variables and their
canonical momenta; in our case they are respectively ¢(¢t,Z) and = (¢,Z) for all
Z at a given t. Our strategy in determining the evolution operator will be to
prove that a certain function of it indeed commutes with ¢ and 7, and therefore
that it must be a c-number. We cannot compute this c-number; but fortunately
it cancels out of the final expression for the S-matrix.
The Hamiltonian corresponding to the Lagrangian density Eq.(6.3) is

Hom) = [ do[ts(6.m) + Hi9)], (6.12)
where
He(p,m) = L:in®+ ﬁd).ﬁqb-{—mgqbz :
Hi(p) = X:¢*:

The field ¢;, and its momentum 7, are however governed by the Hamiltonian

Hin(diny min) = / B Hin (G, Tin) (6.13)
where

Hin(¢i"’7rin) = % : 7ri2n + 6d’ir\-‘_? Gin + m2¢i2n :



Asymptotic Fields 109

Note that Hi, differs from Hy in two respects: it is a function of ¢, and i,
instead of ¢ and =, and it contains the physical mass, m, in place of the bare
mass, mg. Recall that m? = m2 + dm?.

It is convenient to rewrite Eq.(6.12) as follows:

H /df‘z:{%[w2+6¢-€7¢+m2¢2-5m2¢2]+,\¢4}:

= Hin(¢a ’IT) + HI(¢) )

where
Hi(¢) = / &3z : {,\¢4 - %5m2¢2} : (6.14)
The dynamical equations (6.11) can be written
%fté = i[Hin(¢,7) + Hi(9), 9],
O = ilHa(g,m) + Hr($),7]. (6.15)
The analogous equations for the in fields are
8;5;,, = i[Hin(¢in, Tin), $in] »
8;;,. = i[Hin(Sins Tin), Tin] , (6.16)

where the dependence of H;, on ¢;, and 7, has been indicated explicitly.
We wish to compute now the evolution operator, U(t). Since U'U = 1, it
follows that UtU + UtU =0, or Ut = —~UTUUt. Now ¢y, = UgUT, so we have

i _ et 2 28t Tt
5% - UoU +U6tU + UpU

= UUUQUT + iU[Hn(o,7) + Hi(9), oUT = UgUUUT
= [UUY, gl + ilHin(Bin, W), bial + il H1 (i), ]

From Eq.(6.16), we see that the commutator involving Hi, cancels the left-hand
side, and we are left with

[OU* +iH1(¢in), ¢in] = 0.
The same technique suffices to show that also

[UUY + iH[($in), Tin] = 0.
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At a given time, ¢, the quantity UU! + iHj(¢n) commutes with ¢i,(t, %) and
min(t, T ) for every value of £. It must then be a c-number, say

UUT +iHi(¢in) = —1E(2),

where E(t) may depend on time, but commutes with all operators of the theory.
From the preceding equation, we have

U(t) = —iH; (U (1),
where we have set
H}(t) = Hj(t; (]3;") + E(t) .

We want to solve this differential equation, subject to the condition U(—o0) = 1.
This is done by iteration (Problem 6.1):

Ult) = 1-i / dt, H(8)U (81)
_ (—i)" / dt, / "ty / T B0 HY () . HL(t) + ..
= Z( Z)n/ dt1/ dtz / dtnT[HI(tl)HI(t2) HI(tn)]

n=0

= TZ —Z/ dt]_HI tl)] -—Texp —1/ dtlHI(tl)]

n—O

In the third line, a time ordering has been introduced, and simultaneously all
integrations have been taken up to t, and this has been compensated by 1/n!, a
weight factor. One can show that the third line follows from the second by an
inductive argument. However, it is easier to show directly that the expression
in the third line does indeed satisfy the differential equation. The exponential
is purely formal: the meaning of the time-ordered exponential is precisely the
time-ordered power series expansion that precedes it.
The S-operator can now be identified with U(oo) (in the weak sense):

S = U(oco)=Texp [_i /_O; dtlH}(tl)]

—00

exp [—i /_ Z dtlE(tl)] T exp [——z’ / ” dtlHI(tl)J 6

The phase factor involving E has been removed from the time ordering, since it
commutes with everything.



LSZ Reduction 111
6.2 LSZ Reduction

Let us consider the scattering of two spinless particles, with momenta p; and
p2 before, and momenta p3 and ps after the scattering process. The required
S-matrix element is

(ps, pa; out|py, pa;in) = (ps, pa;in|S|p1, p2;in) . (6.18)
We shall extract the particle of momentum p; from the initial state, obtaining

(P3,P4; OUtlaaTn (p1)|p2) - (6.19)

The label in has been dropped for the one-particle state |p2) [see Eq.(6.4)).
The creation and annihilation operators are the Fourier transforms of ¢;,:

bin(@1) = / Ay [ain (1) Fn (31) + ol (1) £, (21)]
where

foi(z1) = (271')_%(21)(1’)—% e~ 121

P(13=w1

1
2

with wy = (p% + m?)2. The inverse is

ain(p1) = i/d3$1f;1($1) B10 bin(z1)
ohor) = =i [ it (@) Bio nlar), (6.20)

s
where a 910 b = adb/8z? — 8a/0xb.
At first sight, one might think that the creation and annihilation operators
could depend on the time, z?. However, this is not so, because

0 in ; * 2 2
aagfgl) _ z/d?’a:lfpl(ml)[afo ——8120]¢in(a:1)

= i [@ag 0] 91 - 9, ontan)
= i/d3:c1 61 .[f;‘l(zl) Vi ¢§n(:v1)] =0.

In going from the first line to the second, we have used the fact that both ¢i, (1)
and f; (z1) are annihilated by the Klein-Gordon operator (8% + m?). The last
result follows because the space integral of a spatial derivative yields fields at
spatial infinity, and these, evaluated on a space of test functions of compact
support, vanish.



112 Scattering Theory and Feynman Graphs

Since ain(p1) is independent of 2, we can substitute Eq.(6.20) into Eq.(6.19)
and freely take the limit 29 — —oo, obtaining

4
—1 olim (pg,p4;out|/d?’:clfp1 (z1) B10 Pin(z1)|P2) - (6.21)
z{——o0 ’

Now as 9 — —00, @in(z1) describes a free field of mass m, and hence its matrix
elements, for spatially localized states, are equal to those of ¢(z;) itself, at least
up to a normalization. Thus we replace Eq.(6.21) by

~iZ7%  Him (Ps,p4;out|/d3‘”1fm($1) 10 $(z1)Ip2) , (6.22)

z{——o00

where Z is called a renormalization constant. In general Z # 1.
Let us return to Eq.(6.18), writing the matrix element artificially as

(D3, pa; in|S|p1,pa; in) = (p3, pa; out|py, pa; out) + (p3, pa; outlal (p1) —al, (1) |p2) -

The first term on the right is trivial, consisting of 4-momentum delta functions,
corresponding to particles that go through without scattering. In the second
term, we repeat the manipulations that we applied to a?n (p1), but now with
alut(pl), except that we take the limit 9 — oo instead of 9 — —o0, assuming
that matrix elements of ¢, agree with those of ¢ in this limit, up to the same
renormalization. Thus

(p3,P4;in|S|p1, p2;in) — (p3, pa; out|py, pa;out) (6.23)
1 . . H
=z’Z"7{ lim — lim }(ps,p4;0Ut|/d3$1fp1 (z1) 010 d(z1)|P2) -

2900 zl-00

Since any differentiable function satisfies the identity

lim — lim }F(z;)= dmo-—a——F(-’Bl),
16290
)

z?—00 z9—-—o00

we can write the term on the right of Eq.(6.23) in the form
-1 4 o
tZ~2(ps,ps;out| [ d $1310{fp1 (z1) 010 ¢($1)}|P2)
2
= iZ7¥(ps, py; 0ut| /d4f'31{fp1 (21) B10 ¢($1)}IP2)
= iz“%(Pa,P4;0ut|/d4$1{fp1 (21)0%00(21) — [(V] = m*) fp, (371)]¢($1)}|P2)

= ’iZ—%<p3,p4;0Ut|/d4$1fp1($1)(a%+m2)¢($1)|p2).
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In going from the second to the third lines, we have used the fact that fp, (z1) is
annihilated by the differential operator 82 + m?2, while the last line was obtained
by two partial integrations, which transfer the action of V2 from f,, (z;) to ¢(z;).
Note that ¢(z;) is not annihilated by 82 + m?, for we can rewrite Eq.(6.9) in
the form
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(8} + m®)p(z1) = —4X : ¢3(z1) : +0m2p(zy) .
Next we shall extract the particle of momentum p3 in the final state:

(p3,p4;in|S|p1, p2;in) — (p3, ps; out|p;, pa;out) (6.24)
= iz-% / 421 fpy (21)[02 + m?] (Pa]tous (ps) $(1) p2) -

Now it can be shown that

/ 4421 fp, (1) [02 + m?) (pal$(z1)in (p3) p2) = 0,
(Problem 6.3), so that

(p3,p4;in|S|p1, p2;in) — (p3, ps; out|py, p2; out)
- iZ‘%/d‘*mlfj,,]l (z1) (62 + m®)a(z1), (6.25)

where

o(z1) = (palacu(ps)d(z1) — (21)ain(p3)|p2)
= i(P4|/d3$3f;3 (z3) B30 [pout(z3)d(21) — ¢(z1)Pin(x3)]

= iZ_%(p4l{ . lim /d3x3f;3($3) 330 ¢(z3)p(1)

30 —00

—  lim d3m3f;3 (z3) 330 ¢($1)¢(~’C3)}IP2)

T30—>—00

= iZ‘%(p4|/d4m3f;3(z3)(8§ +m?)T [¢(z1)d(z3)]|p2) -
(Note the time ordering.) We then have

(P31P4; in|5|p1,p2; 'n) - (P3,P4; ouﬂplvp2; OUt> =
27 [ [dtadasy @5, @) (6.26)
(8 + m?) (82 + m?)(pa| T [¢(z1)$(3)] |p2) -
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The extraction of the remaining two particles in an analogous manner is left as
an exercise (Problem 6.4). The final result is

(03, 4;in|S|p1, pa;in) — (P3, pa; Out|p1, pa;out) =
/ / / / 310 02 d T3 d T oy (1) fo (22) £ (@) [, (2a)  (6.27)
(82 + m?) (02 + m?) (82 + m?) (8] + m®)7(z1, 22,23, %4)
where the 7-function is
(21,22, 73,24) = (0|T[p(z1)d(z2)$(z3)¢(z4)]]0) . (6.28)

Similar expressions are obtained with any number of particles in the initial or
final states. Thus the problem of calculating the scattering matrix elements
has been reduced to that of computing the vacuum expectation values of time-
ordered products of fields. These 7-functions are also called the Green’s functions
of the theory.

6.3 Wick’s Theorem

Now we insert the evolution operator into Eq.(6.28), using Eq.(6.10), to obtain
the following expression for 7(z;,z2, T3, Z4):

OIT [UT (23) $in (z1)U (22) U (€3) pin (22) - - - U (25) U (25) bin (24)U ()] 10) -
We introduce a reference time, ¢, and use the fact that
Ut@U(t) =1=Ut(-t)U(-1)
to obtain
OIT [UT(R)U (2, 23) in (21)U (23, 23) bin (z2) - - - U (23, 29) din (24)U (23, —t)U (~1)] |0)

where we have defined
t1
Ults 1) = Uen)0' () = Texp | i [ ayPH30°)]
to

If we choose t such that ¢t > max {z1,2,3,74} and —t < min {1, Z2, 3,4},
then we can pull the factor U (t) out of the time ordering to the left, and U (—t)
to the right. The vacuum is stable, so U(—t)|0) is equal to the vacuum state,
perhaps up to a renormalization constant, and similarly for (0|UT(t). Hence

(1,22, T3, T4) = c(t)(0T [U(t, —t)in(z1)din (z2) din (£3) in (x4)]0) ,
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where
U(t) _t) = U(t7 :II?)U(.’E(I),.’L'g)U(II?g, :Ug)U(IL'g, :EE)U(IIIE, _t)
t
= Texp [—z/ dy’Hy(y%)] .
—t
In the above, c(t) is a possibly time-dependent renormalization constant; it

can be evaluated by repeating the above manipulations for a Green’s function
involving no in fields:

1 = (0]0) = c(t)(O|T [U(t, —)]|0) .

Inserting the resultant expression for ¢(t) and letting the reference time, ¢, tend
to infinity, we obtain

(OIT [U (00, —00) ¢in (21) $in (%2) bin (3) din (€4)] [0}
(0T [U (00, —00)] [0) '

7(T1,T2,%3,24) = (6.29)

In the weak sense, U (oo, —o0) = U(00) = S, which was calculated in Eq.(6.17):

U (00, —00) = exp [—i /

—00

th(t)] T exp [—i/d‘ly?-t,r((b;n;y)] , (6.30)
with [cf., Eq.(6.14)]

Hi(ginsy) = X:din(y): —30m® : 4 (y) - (6.31)

Finally, we substitute Eq.(6.30) into Eq.(6.29), noting that the phase factor
involving E(t) cancels between the numerator and the denominator:

<O|T{ exp ["7: fd4yHI(¢in; y)] Gin (1) Bin (T2) Bin (T3) Bin (2:4)}'0)
(O|T{ exp [—i [ d*yH1(din;¥)] }10)

’T(l’l y L2,ZT3, 1,'4) =

(6.32)
The Green’s function, 7, is hereby expressed as the quotient of two vacuum
expectation values of time-ordered products of fields in the in representation.
To proceed further, we expand the exponentials in numerator and denominator
of Eq.(6.32). The numerator becomes

S EE [t [ a0 [n(an) - dnleHo) - Haw)]0).

p=0 p!
(6.33)
On insertion of Eq.(6.31) into this expression, we reduce the problem to the
evaluation of the vacuum expectation values of time-ordered products of in fields.
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Two incoming fields:
Consider first the vacuum expectation value of the time-ordered product of two
in fields. We define the positive and negative frequency parts of the in fields:

¢|-:(1’.1) = /d3pla'in(p1)fpl (1"1)’

which is an annihilation operator, and

$n(en) = [ Epialp0) 55, (@)
which is a creation operator, so that
$in(z1) = ik (z1) + @57 (21) -
Since the normal-ordered product of two fields is
: Gin (1) din (22) 1 = Gif (21)5F (22) + b, (21) 65 (22) + 85, (22) 65 (21) + &5 (1) 5 (22)

and this differs only by the third term from the ordinary product of the two
fields, we find

Gin(21)Bin (T2) = : Bin(T1)Pin(z2) : = [BF (z1), &7 (22)] -
This commutator can be readily calculated:
[ it(w1),¢i: (332)] = //d3p1 d3py fpl(xl)f;;(zg)[a;n(pl),a;'n(pg)]

pY=w:

Consider now the difference between the time-ordered and the normal-ordered
products of the two fields:

T[¢in(331)¢in($2)]" : in(71)@in (22)

(a3 — 23) ¢ (@1), 67 (22)] + 003 — 29) 6 (22), 67 (21)]
1 d3p

@m3 /] 2°

= iAF(:L'l - .’122) y (6.34)

[e—ip(zx—zz)g(mtl) — mg) + eip(zl—zz)g(mg - 17(1))]
pO=w

where the Feynman propagator is defined in configuration space by

i 6.35
P T m2 v (6.35)

Ar(z) =

1
(2m)*
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The last step in Eq.(6.34) is justified by treating the p°-integration as a contour
integral in the complex p®-plane and using Cauchy’s theorem (Problem 4.2).
Since the normal-ordered product contains all annihilation operators written to
the right, it is clear that

(0] : @in(z1)@in(z2) : [0) = 0.

Hence the required vacuum expectation value of the time-ordered product of two
in fields has the form

(O|T [@in (1) din(22)]10) = iAF(z1 — z2) . (6.36)

Three incoming fields:
For brevity we set

Pk = din(zk) Tix = [ (z;), ¢, (zk)] -
Note that I'j; is not an operator, but a c-number distribution. Now
P1P2P3— : Pr1d23: = ¢ (¢2¢3— D P23 !) + [¢IL,: P23 3] ;
and we have already seen that
P23 — : Pagp3 i= I'a3,
and we may write
(67, 0205 | = [oF.0707] + [oF.05] 6% + [0t 07 0%

= T[o¢3 + 3¢5 + P12¢;- + F13¢;
= Ii3¢o +T12¢3.

Hence the product of three fields can be written

Gr1P203 = : p1dad3 1 + a3 + Ci3¢2 + Ti2¢3.

Now we are really interested in a time-ordered product of the three fields,
T[¢1¢p203), which means that, for example, I';5 should be replaced by

0(13(1) - :Eg)rlz + 9(:17(2) - $?)F21 = iAF(:cl — .’132) y
and similarly for I';3 and I'y3. We have then finally
T[¢1¢2¢3] =: 10203 : +i{Ap(z2 —3)¢1 + Ap(z3 — Z1)P2 + Ap(z1 — T2)P3} -

Since (OI¢1|0) = 0, etc., it follows that <0|T[¢1¢2¢3]|0) =0.
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Four incoming fields:
It is easy to see that

P1P2P3Ps — : Pr1d2P3Ba := b1 (P2d30s — : Padsdbs 1 ) + [¢F,: P23y : |,

and from this one can check that

G1P2030s = : P120304 :
4012 ¢3ds : +T13 1 Pas : +T14 : Paps : +D23 : h164 :
+I190034 + T'13log +T'14l23 .

The time-ordered form may now be written down by inspection, as in the case
of three fields:

T[p1d2¢3ds] = :Pr1d2¢3ds:
+i{Ar(z1 — T2) : ¢3¢4 : +permutations}
—{Ar(z1 — 22)Ap(z3 — T4) + permutations} .

All terms involving the vacuum expectation value of normal-ordered products
of fields vanish, so the vacuum expectation value of the time-ordered product of
four fields can be written

(O|T [¢1020304]10) = —{Ap(z1 — z2) Ap(z3 — z4) + permutations} .

/

The vacuum expectation of the time-ordered product of three fields vanishes, as
does that of any odd number of fields. The vacuum expectation of the time-
ordered product of 2n fields can be written, by an extension of the procedure,
in the following form, due to Wick (Problem 6.10):

(O|T [p162 ... ¢24]10) = i"{AFp(z1 —22)AF(z3 — T4)...Ap(Tan—1 — T2n)
+permutations} . (6.37)

Thus we can in principle calculate any term in the expansion (the perturbation
series) of the numerator or the denominator of Eq.(6.32), since it involves nothing
but the vacuum expectation value of the time-ordered product of in fields.
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6.4 Diagrams in Momentum Space

For the sake of illustration, we shall consider the contribution of the term p = 3
in the sum (6.33) to the numerator of Eq.(6.32):

.—‘ 3
(32!) (OIT{¢an(fE1)"'¢in(w4) ///d4y1d4y2d4y37-11(y1)7-11(yz)HI(ys)}|0),

(6.38)
where the argument ¢, in 7 has been suppressed. Because there are two terms
in Eq.(6.31), there will be eight terms in the above third-order contribution. For
definiteness, let us look at the contribution that comes from the A term in H(y;)
and Hj(yz), but the dm? term in H;(y3), namely

_q5\3 )\2(5’"’&2
_( ;') > / / / d*y1d*ysdiys (6.39)

(0|T{¢in($1)¢in($2)¢in($3)¢in($4) L B (Y1) 1 Din(y2) 1 Bha(ys) : }IO)-

We consider this term in isolation purely for the sake of clarity: eventually we
must include the other seven terms too. For the moment, we ignore the normal
ordering inside the above time-ordered product; but we shall come back to this
matter. With this simplification, the vacuum expectation value in Eq.(6.39) can
be written, thanks to Wick’s formula (6.37), as

i7{AF(931 —y1)Ar(2s — 9) [AF@ — 92)) " AF(y2 — ¥3)AF (ys — 23)Ap(y2 — 74)

+ permutations} .

The permutations include every possible combination of the fourteen arguments,
taken two at a time (y; and y» are each counted four times, yz twice). We
introduce a convenient diagrammatic way of representing the term that has

been written explicitly, namely
T2 T4

Figure 6.1

Configuration space diagram " Ys

Y3
T T3

This is called a Feynman diagram in configuration space. The open points in the
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diagram represent the four external variables on which the T-function depends.
The internal variables, y;, y2 and y3, are to be integrated out in Eq.(6.39).
The black points represent the action of the A coupling term, while the mass
counter term is represented by the cross. The lines in the diagram represent %
times the Feynman propagator, i Ar. Some of the other terms included in the
‘permutations’ are depicted as follows:

Figure 6.2
Other third-order terms ‘ : : :
Here y3 is always represented by a cross. There are precisely as many terms as
there are ways of connecting the z and the y, such that

(1) one line is connected to each z,
(2) four lines are connected to y; and four to y2,
(3) two lines are connected to ys.

The diagrammatic method is a useful book-keeping device.
If there were no normal ordering, : ¢4 : and : ¢Z : in Eq.(6.39), we would
have to include diagrams of the sort

Figure 6.3
Tadpoles and butterflies

In terms involving @i, (y1) with ¢in(z), where z is some other argument, the
normal ordering in : ¢ : has no effect, since the time ordering specifies the order
in which the creation and annihilation operators are to be written. However, in
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a term involving @i, (y1) twice, we do not obtain i Ap(y; — y1), but rather

OIT{ : #n(y)m(y1) : }10).

Here it is the time ordering that has no effect, and the normal ordering ensures
that the vacuum expectation value is zero. Hence we do not need to draw any
diagram that has a line which doubles back upon itself, that is, a line that starts
and ends at the same space-time point.

There are many different diagrams, and therefore terms in the expansion,
that give precisely the same contribution to the 7-function. For example, there
is a term represented by the diagram given in Figure 6.1, but with y; and y»
interchanged. Considering all eight terms in Eq.(6.38), corresponding to the two
terms in Eq.(6.31), there will be in all 3! equivalent diagrams, differing only in
the labeling of y;, y2 and y3. More generally, in the contribution of the pth term
in Eq.(6.33), for any diagram there are p! equivalent diagrams that have the
same topology and differ only in the permutation of the internal labels, y; - - - yp.
We agree to cancel the denominator p! in Eq.(6.33), and not to permute the y; in
future. We only consider one labeling of the internal points for each topologically
distinct diagram.

There remains a less obvious source of equivalence. Even if we agree not to
permute the y;, there is still the possibility of permuting the lines leading to the
same y;. To make the point clear, suppose for a moment that we assign four
different colors to the four fields, so that the interaction term in the Hamiltonian
density is A : /%9 (y1) """ (y1) ¢ (y1) "¢ (y1) : By Wick’s theorem, we would
obtain a different term for each of the 4! possible ways of assigning colors to the
four lines emanating from y;. The interaction is color blind, and so, for every
diagram that involves the )\ interaction vertex, we should include a factor 4!
Similarly, every mass counter term should be accompanied by a factor 2!

The denominator in the expression (6.32) can be expanded into a series,
leading to terms that can be represented by Feynman diagrams, just as was
done for the numerator. The only difference is that that there are no external
fields, ¢in(z). A third-order contribution to the denominator, corresponding to
the action of the X term at y; and ys, and the mass counter term dm? at ys, is
depicted in Figure 6.4.

Figure 6.4
Vacuum part
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It is a so-called vacuum part, i.e., it represents virtual fluctuations of the vacuum.
Although we have eliminated lines that start and end at the same space-time
point, the full third-order contribution to the numerator includes the vacuum
part depicted in Figure 6.4, with external lines joining z; and x5 directly to z3
and 4. In higher orders, one can have less trivial diagrams of this disconnected
sort. For example, at sixth order, the numerator contains the term shown in
Figure 6.5,

To Ty

Figure 6.5
Disconnected diagram

which is precisely the diagram of Figure 6.1 and the vacuum part of Figure 6.4.
In general, we may divide any diagram corresponding to a term in the numerator
into a connected part, containing all the z;, and a vacuum part that contains
the remaining y; that are wholly disconnected from the z;.

We propose to show now that the vacuum part of the numerator precisely
cancels the denominator in Eq.(6.32). The numerator may be written as in
Eq.(6.33), where the factor p! had not yet been cancelled, so all permutations
of the y; must be included. One set of diagrams at order p will have the form
shown in Figure 6.6

Figure 6.6 Y1---Ys : Ys+1---Yp
Diagrams of order p : :

The internal points, y; - - - ys are connected, directly or indirectly, to the z;, and
the remainder of the y; are disconnected. To a typical diagram of this kind
would correspond a term

i {AF(T1 — Ya)AF(Z2 — Yb) - - AF(Ym — Yn) H{AF(Wa — ys) - Ar(yu — 1) } -
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The terms in the first parentheses belong to the connected part, those in the
second parentheses to the vacuum part. For any given term in the connected
part, for example the one written above, there will be diagrams corresponding
to any possible ordering and interconnection of the ys4;---y, in the second
parenthesis. Such a sum of terms (with the appropriate power of 7), is precisely

<0|T[H1(ys+1) .. .’Hf(yp)] |0)

which therefore multiplies each term of the connected part. Hence, for a given
separation of y; - - - yp into y; - - - ys connected and ys41 - - - yp disconnected inter-
nal vertices, the vacuum expectation value in Eq.(6.33) can be rewritten

(OIT [¢in(21) - - - Pin(za)H1(y1) - - - H1(Ys)][0)e(OIT [Hr(yst1) - - - Hi(yp)][0),

where (). indicates that only connected parts are included. We may have any
set containing s of the y; in the connected part and the remaining p — s in the
disconnected part, and s may be anything from 0 to p, we should multiply by
the the appropriate combinatorial factor and sum over s, so (6.33) becomes

S e ] "43”’2 s'(p— )
(0|T[¢;,.(:c1) - - Pin (564)7'11(1/1) M1 (Ys)]10)O|T [Hr(yss1) - - - Hr(yp)]10) -

We interchange the order of the summations, at the same time setting r = p—s
and introducing the relabeling z; = ys41, 22 = yYs42, -+, 2r = Yp- This yields

p—O

/ dyy ... / s (1T [$a(21) - . din () Hr (1) - - Hi(ys)] [0

3—0
’)r dyr .. [ dyn(OIT Hi(z1) .. Hr(z)]10)
r—O / / y [ 1\z1 I\z ]
The second term here is
O { exp [~ / d*zH:(2)] }10)

which cancels the denominator in Eq.(6.32). The 7-function is therefore

(OlT{exp {—i/d4yHI(¢in;y)] ¢in($1)¢in(wz)¢in($3)¢in(w4)}|0)c, (6.40)

so we need henceforth only consider connected parts.
We shall now calculate a particular graph in detail, and for simplicity we
take the second-order graph shown in Figure 6.7
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T2 T4

Figure 6.7
Second-order graph 11 Y2

I z3

which has a ) interaction at y; and y, and no dm? interaction. The contribution
to the 7-function is

°X? / / d*y1d Y A (Y1 —21) AR (11— 22) [AF (y2—91) ] *AF (23 —12) Ap (za—32) -

This is sometimes called an amputated diagram, because the external legs are
missing. The legs are grafted on by the action of the Klein-Gordon operators in
the LSZ expression for the S-matrix element [Eq.(6.27)]. From the expression
(6.35) for the Feynman propagator, we see that

(8% + m?)Ap(z) = — / dipe=i® = _6%(z). (6.41)

1
(2m)*
The contribution of the above graph is thus

A 2
_ [2] // d4y1d4y2/.../d4x1.--d41134fp1(xl)fp2($2)f;3($3)f;4($4)

84 (y1 — 71)8%(y — 22) [Ar(y2 — 11)] 6% (23 — 92)8% (24 — y2) , (6.42)

where for brevity the unscattered wave has been omitted. The z-integrations
can be performed trivially, and with use of Eq.(6.35) for the remaining Feynman
propagators, we obtain

2
- [-%] (2m)~°(16 w1w2w3w4)"% (6.43)

/ / d*yrd*ys exp[~ip1y1 — ipay1 + ipsya + ipaya]| o,

(27T)_8/d4 exp[ zkl(:gz _yl)] /d4 exp[—2k2(z2 _yl)]
m? + i€ m? + i€

)

where the exponential functions, f,(z), have been written out explicitly. Since
y1 and y2 occur only in exponential functions, these integrals can be performed
trivially, and we obtain a factor 6*(p1 + ps — k1 — k2) 6*(ps + ps — k1 — k2),
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which can be replaced by 6(p; + p2 — k1 — k2) 6*(p1 + p2 — p3s — ps). The first
d-distribution factors out of the integral and simply expresses the conservation
of four-momentum. This momentum conserving §-distribution is a common
feature of any Feynman diagram, and it is usual to factor it out from the start
by defining the T-matrix element in terms of the S-matrix element:

(p3, p4;in|S|p1, p2;in) = (p3, pg; out|p1, p2; out) +
i6*(p1 + p2 — p3 — pa){(p3, pa;in|T|p1, p2;in).  (6.44)

The contribution of the second-order diagram of Figure 6.7 to the 7-matrix
element is

i .’\_J2(27r)“6(wwww )‘%/ d*ky
4 | Z 1atsni [k2 — m2? +i€][(p1 + p2 — k1)? — m? +i¢]’

where the factor 6*(p; + ps — k1 — k2) has been used to get rid of the k»-integral.
The calculation of this term has thus been reduced to that of computing one
four-dimensional integral. A similar transformation to momentum space may be
made for any Feynman graph.

Normally one draws Feynman graphs directly in momentum space, including
the external legs. The above expression would then be drawn as in Figure 6.8.

b2 D4
\\ ’
\ Pitp—k
\ - - ,
. N7 SO
Figure 6.8 /< PR
s N ~ - \
Momentum space graph / -—- N
,/ k1 \
/7 \
b1 p3

The four-momenta of the initial, intermediate and final particles are shown.
Because of the d-distributions, four-momentum is conserved at each vertex of a
Feynman graph in momentum space. On the other hand, since the intermediate
energy, k2, is integrated over all values from —oo to oo, the intermediate particles
are not on mass shell. The external particles, being physical, are on mass-shell.
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A set of rules for writing down the mathematical expression that corresponds to
any Feynman diagram in the scalar theory can be formulated:

(1) Insert all momenta, with conservation at each vertex,

(2) a factor (2wZ )% for each external particle,

(3) a factor i[k? — m? + i¢]~! for each propagator,

(4) a factor A for each vertex at which four propagators meet,

(5) a factor —1ém? for each vertex at which two propagators meet,

(6) and for each internal loop momentum, an integration, (27)~* [ d*k.

In the center of momentum frame, each particle, incoming or outgoing, has the
same energy, say Ecm, and the differential cross-section in this frame is

do _ 1
dQ  256m2E2,
where M = (ps,p4;in|T|p1,p2;in). The relation (6.45) is the relativistic ana-

log of the nonrelativistic expression to be found in Eq.(8.19) of Volume 1 (the
derivation has been relegated to Problem 6.7).

IM|?, (6.45)

6.5 Exercises

Problem 1
Show that
t t1 tn—1
/ dtl / dtz s / dtn¢(tl)¢(t2) s ¢(tn)
1 [t t t
= /_ dt; / dts ... / dtnT[p(t1)9(t2) - - - $(tn)]
Problem 2

What is wrong with the following argument?

(OIT [(z1)$(22)]10) = (OIT[U(2})¢in (1)U (22)U" (23) ¢in(z2)U (22)]10)
(OIT[UM (@)U (23)U (23)U (25) din (1) $in(22)] |0)
= (0|T [#in(z1)din(22)]]0)
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Problem 3
Show that, in the neutral scalar quantum field theory with self-interaction,

[ 1570 (0) 0% + )l )i (05 pa) = 0.

Problem 4
Complete the LSZ reduction by showing that
(pa|T [¢(z1)p(x3)]Ip2) = —-Z7* //d4$zd4$4fp2 (z2) fp, (z4)
(82 + m?) (87 + m?)(0|T [¢(z1)(z2) p(x3)p(x4)] |0)
Problem 5

Consider two scalar fields, A and B, with the interaction Hamiltonian density
Hi(z) = X\ : A% (z)B%(z) :

(a) Deduce the LSZ reduction formula appropriate to the scattering matrix
for A+ B— A+ B.

(b) Give the contribution to order A in the above formula.

(c) Reduce this to an expression involving only vacuum expectation values
of time-ordered products of pairs of quantum fields.

Problem 6

For scalar field theory, in the in representation, Fock space is spanned by the
vacuum state, |0), one-particle states, |p;in) = a;'n(p)IO), two-particle states,
|p1, po;in) = a?n(pl)a?n(p2)|0), and so on. Show that

Q= :exp {— /dska;'n(k)ain(k)}: = 10)(0] .

Problem 7
If a scattering matrix element is written

(0;in|S|B;in) = dap + i(e; in|T’|B;in) = dap + i54(pa —pg)M,

show that, in the case of the elastic scattering of two scalar particles, the differ-
ential cross-section is given in the center of momentum by

do _ 1
dQ ~ 256m2E2,

What is the correct formula for the elastic scattering of spin-half particles?

M.
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Problem 8
Deduce an explicit form for the commutator

[¢in (:U)’ ¢in (y)] = ZA(:B - Y m)

in configuration space. Show that it vanishes if the separation, z —y, is spacelike,
the condition of microcausality. Does the Feynman propagator, Ar(z — y),
vanish under the same circumstances?

Problem 9
Prove that a Lorentz scalar field satisfies

$(z) = eF7g(0)e™*"7,

where P* is the generator of space-time translations, i.e., the inhomogeneous
part of the Poincaré transformation. Consider the vacuum expectation value of
the commutator of two fields at different space-time points, and insert a complete
set, of in states between the fields. From the weak asymptotic condition,

lim (¢(z)) = VZ{dn(z)),

To—>—00

demonstrate the Kallen-Lehmann representation,
co
O1[6(), 6w 110) = iZA(z = y,m) +i | dmp(m?)A(z - y,m),
m

and prove that p(m'2) is a positive spectral function. Here iA(z — y,m') is the
free commutator corresponding to mass m’ (Problem 6.8). Deduce 0 < Z < 1
from the equal-time commutation relations.

Problem 10
Prove Wick’s theorem in the form

3]
A .. A, = Z Z(p contracted pairs) x : (n — 2p)A’s :
=0

Here [2] means the integral part of %, i.e. 2 for even n and 3% for odd n.

A contracted pair is by definition the vacuum expectation value of the product
of two fields, of the form (0|4;A,|0). The unspecified sum indicates that all
possible combinations of p contracted pairs are to be taken, each combination
being multiplied by the normal ordered product of the remaining A;, where 1
runs over all the values that are not involved in these contracted pairs.



Chapter 7

Quantum Electrodynamics

7.1 LSZ Formalism for QED

In this chapter, we shall extend the results that we have just obtained, so that
we can write down at sight the contribution that any Feynman graph in QED
makes to the scattering matrix.

We begin with the momentum-space decomposition of the electromagnetic
field operator on mass shell, Eq.(4.17), which we may rewrite with use of the
polarization vectors (4.22)-(4.23). In the Gupta-Bleuler approach, the photon
field has four degrees of freedom, but we only need the transverse field operator,

T () = 1 d’k - . ai(k —ikz oz ikz
M) = s /2IEIA=IE“U€’A)[ w(F e ™ 4l (B )], ()

for application to physical in states. We restrict our considerations to the
Feynman gauge, for which the free-field operator satisfies the wave equation
02 Ainy, = 0. The inverse of the Fourier transform (7.1) is

- 3 - X —
g (B ) 1 / Bz et (® N e 5 AT (z),  (7.2)
|

@ o

and its Hermitian conjugate. The operator a(k, ) is time-independent for free
fields (Problem 7.2), in particular for those of the in and out representations.

Consider an S-matrix element between an ‘in’ photon state of momentum k
and polarization A, and other incoming particles, labeled generically o, and ‘out’
states, labeled S,

(B;out| (k, ), a;in) = (B;out|al (K, N)|a;in).

129
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We shall subtract from this
(ﬂ; °Ut|azut(’; ) A)IO‘; m) )

which is either zero, in the case that {(8;out| contains no photon states, or is
a disconnected term, involving a delta function, which indicates that a photon
goes through without scattering, much as in the scalar case [see the unnumbered
equation between Eq.(6.22) and Eq.(6.23)]. We may write then

(B;out| (k,A),q; m) — disconnected part

- /fmwM%Awmamwu.ﬁﬁmmm
(2m)% 21|
1 1
VZ; (27)% 20|
In the last equation we have inserted the asymptotic limits (weak, and applicable
only when applied to physical states),

A#(:L‘) - \/Z mu(x) t— —00 (1") - \/2_3. outu(x) t = +o0,

where Z3 is the photon renormalization constant. We now integrate by parts,
using the Feynman gauge wave equation, in analogy with the scalar case:

\/—(27r /\/glk_

where we have written |a) as a shorthand notation for |a;in), and (8| for (3; out|,
a practice that we shall repeat.
For a photon in the final state, we obtain from Eq.(7.2),

= 4 /d“m(ﬂ;outl 8o [e* (K, \) e = 30 Af:(w)] |c; in).

(Bl al, (B, N)la) — e~ 52 (Ble (K, )) Au(@)]a),

(B; out|aoye(k , ) |a; in) — (Ble* (K, \) Au(z)|a) 32 ik

— /
VZs(2m)3 \/2lk |

These expressions are used to reduce a given matrix element until all photons
are removed from the in and out states. The operators are normal-ordered, i.e.,

creation operators are placed to the left of annihilation operators; but we need
them in time-ordered form. Setting

Ainu(2) = A, (2) + 4;,0) , {4h,@) =4,,@),
we obtain, in analogy with Eq.(6.34),
T[Au@1)Au(®2)] = : Ainy(31) Ainu(w2) : =
02 — 9) [4F, (21), A7, (22)] + 63 — 2) [ AT, (22), 47, (20)]
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In analogy with the discussion in Chapter 6 for the scalar field, we can calculate
the vacuum expectation value of this time-ordered product. In the Feynman
gauge, the result is (Problem 7.3)

<0|T [Ainu(-’lh)Ainu(ZBz)] |0) _ —19uv / d4p : e—ip(xl—zz) )
(2m)* | p? —m? +ie

The treatment of three, four or more photon fields in a given matrix element is
a simple extension of that presented in Chapter 6 for the scalar field, involving
the Wick theorem, and we need not repeat the details.

Let us next consider the reduction of a Dirac field. We invert the momentum-
space decomposition of the Dirac field operator, Eq.(4.26), and its adjoint,
Eq.(4.27), to obtain the Dirac annihilation operators

bu(ys) = (ZW)Q\/_ / Bz ul (7, 5) €7 in(2)

dn(F,s) = (2702\/; / Pz vl (@) (B, 5) €P° . (7.3)

The annihilation and creation operators bi,, din, bm, dfn are all time independent
for free fields (Problem 7.4).

Consider an S-matrix element with, among other things, an in Dirac particle
of momentum § and spin s. We separate a disconnected term in the usual way,
and obtain

(ﬂ;out|bi’r (ﬁ,s)la'in) — disconnected part

= 3z ol (z w3 —ipz
(27r)2\/ /d (Bl [ (z) — Yl ()] lo)u(F,s) e
/1 —1ipT

In the last equation we employed the (weak) asymptotic limits

Y(@) = VZ2 Yin(a) (t = —00),  Y(z) = VZ2 Your(2) (t = 00),

where Z5 is the renormalization constant for the Dirac field. The function
u(p, s) e7"P* satisfies the free Dirac equation, so

Y08 u(F,s) €% = (=7 -V —im) u(F,s) e™** ;

and thus we can integrate (7.4) by parts to yield

(Blehle) » ——— [ a*s(piF(@)a)(-iv b —m)f u(F, ) e~

\/'ZZ(z )2
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One may proceed in an analogous fashion to remove a Dirac antiparticle from
the in state:

dfa—-%————i—————/d‘la:‘/ﬁﬁ",se‘i”wi g—mﬂ z)|a).
Here use has been made of the adjoint Dirac equation,
. R —
8 v1(B,s) e 7" 1° =01 (F,5) eP* (=7 V +im).

To remove a Dirac particle from the out state we have

\;Ziz (27%? / d4x\/§ﬂ(ﬁ, 5) €% (iy § —m) (Bl ()a) ,

and to remove a Dirac antiparticle from the out state,

(Blbout|a) —

(Bldauel) / @*2(B15(x) o) (=iv § ~m), [ Z0(F, ) =

)
VZ3(2m)3
We use these expressions to remove all Dirac particles from the in and out states.
Again we must re-express the normal-ordered product as a time-ordered one; to
do this we write : ¥in(z1)¥;,(z2) : as

Uik (21)%in (22) + U (20)8in (22) = B (22)%57 (1) + %7 (1) (22), (7.5)

where 9 (z;) is an annihilation operator for particles, and 9, (z1) a creation
operator for antiparticles. The adjoint, ¥y, (z2) = ¥ 1.(1132)")’0, is a creation
operator for particles, and 'l_p-i:(l‘z) = wi;f(m),yo, is an annihilation operator for
antiparticles. The order of factors in the third term of Eq.(7.5), and its sign,
have been switched, in keeping with the requirement for normal ordering of
anticommuting fermion field operators. When the times for these events satisfy
T10 > T20, the time ordering differs from the normal ordering only in the third
term; but for £19 < z3¢ the time-ordered product differs from the normal-ordered
term only in the second factor. In general,

T[wi“(zl):‘/jin(m?)]'— : Yin (331);5',,,(:1:2) T =
@10 ~220) {14} (22), B (52) ) = B(zz0 = 0) {3} (22), B (1)}

Eqs.(4.26)-(4.27) are used to calculate the vacuum expectation value of this
time-ordered product (Problem 7.5), yielding

Yo +m

P e—ip(zl_m2) .
p? —m? + ie

(O Tlin(@1) (@] 0) = 57 [ '
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The application of Wick’s theorem to simplify matrix elements follows the lines
described in Sect. 6.3 for the scalar field, except that the permutation terms
in the fermion analog of Eq.(6.37) each carry a factor (—1)™, where m is the
total number of interchanges of fermion fields that must be made, in order to
bring the original ordering of these fields into the order corresponding to the
term in question. Aside from this point, the reduction of anticommuting Dirac
field operators is a direct extension of the method used for scalar and for vector
fields.

The interaction Hamiltonian density in QED is H; = e : EZ%AM/; : but
we should rather write e, the bare charge, in place of the physical e, which
is related to it through multiplication by a suitable renormalization constant.
Since the free part of the Dirac Lagrangian density contains the bare mass, my,
there will have to be a mass-shift term, as in the scalar case, so that the effective
interaction Hamiltonian density, including the mass shift, is

Hi(Win, AL y) = €0 : YinVutbin ALl 1 — 6m 2 i thin -

where dm = m — mg. This density plays the same role as did Eq.(6.31) in the
scalar theory.

By way of illustration, let us consider how the LSZ formula, Eq.(6.27), is
generalized in the case of Compton scattering, which describes the collision of
a photon and an electron. Suppose that the electron has momentum p before,
and p' after the collision, with spin respectively s and s’. The incident photon
has momentum and polarization ¢ and )\, the emergent photon ¢’ and A’. The
disconnected term, corresponding to no scattering, is

533’6AA’ 63 (ﬁ - 51)53 ((j - 6,) .

The four integrals of Eq.(6.27) will be present; but the renormalization factor,
Z~2 is replaced by (Z2Z3)~!. The exponential functions are ei(Ps+pe=p1—p2)
multiplied by the normalization factor

m
2\/wpwpr |7 119"

Instead of the Klein-Gordon operators, we have

(2m)~°

- = & —
u(@’, s')(iy B —m)e” (¢, X') 63 T(21,%2,3,24) 85 (g, N) 4y O +m)u(F,s).

The cancellation of the vacuum parts occurs as in the scalar case, and we may
write the 7-function as the connected part

(21,72, 23, %4) = (O|T [P(23) Ay (z4) (1) Au(22)][0)c -
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The evolution operator is introduced as before, in order to reduce the 7-function
to vacuum expectation values of a time-ordered products of in fields; and then
Wick’s theorem is invoked to reduce terms in the perturbation series to products
of propagators.

Care is needed if there are closed loops of fermion propagators. Consider, for
example, a term that arises in the calculation of the vacuum polarization:

(OIT [ : Pin (1) %in (y1)Pia (y2)in (y2) : ]10)
= —(0IT : ¥g,in(¥2)Pa, in(¥1)¥a,in(¥1)¥5,in(y2)  ]10)

= —Tr{(OIT [ (02 0100 (1) in32) : 1100}
= ~Tr{ 0T [ (v2)Pia (0)110) (OIT in (31)Fin w2110V} -

Here the minus sign arises because of the odd number of interchanges of fermion
operators, and summation is implicit over the spinor indices, o and 3, leading
to the trace operation. This procedure can immediately be generalized to any
closed loop of fermions: the last 1;, operator is moved to the front, passing over
an odd number of fermion fields in the process, and this generates a minus sign
and a trace of the whole product of fields.

Lastly, transformation to momentum space yields the Feynman rules for
quantum electrodynamics:

(1) A factor w_fn el pi(Z%T-')ie for each electron propagator.

(2) A factor —fgﬁ—e for each photon propagator.

(3) A factor —iey, for each electron-photon vertex.

(4) For each external photon, multiply by (2|E|)‘%(2w)‘%s“(k,k), where
only the physical values of the polarization, A = 1, 2, are allowed.

(5) For each incoming electron multiply by (m/w)™2 (27r)‘gu(p, s), and for
each outgoing positron by (m/w)~%(2r)~%v(p,s), the spinors being
written on the right; for an outgoing electron by (m/w)~% (27)~3u(p, s),
and for an incoming positron by (m/w)~3(27)~37(p, s), these spinors
being written on the left.

(6) For each closed fermion loop, take the trace and include a minus sign.

(7) For each internal loop momentum, perform an integration, (2r)~* [ d4q.

7.2 Compton Scattering

The rules suffice for a basic understanding of Feynman graphs. We begin with
the Compton effect, which has already been mentioned, namely the process
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in which light can be scattered from electrons with, in general, a change of
frequency. We shall use the physical m and e, rather than the bare mo and ey,
which is conventional in low-order perturbation calculations. It is only when one
considers higher-order graphs that one has to worry about the mass shift and
the charge renormalization. One of the lowest order diagrams we may draw for
photon-electron scattering is as shown.

q q

Figure 7.1

+
Compton scattering pTa

D p

An electron of four-momentum p and spin s absorbs a photon of four-momentum
q and polarization A. The intermediate electron propagator has four-momentum
p + q, because of momentum conservation, so there is no internal momentum
left to be integrated. The final state consists of an electron of momentum p’ and
spin s’ and a photon of momentum ¢’ and polarization \'. Overall momentum
conservation implies that p+q =p' + ¢'. ‘

According to the Feynman rules, the contribution to the scattering matrix
will be

i
P +Yq — m + i€

[-—’ie'yl,e"(q, A)]'U,(p, 3) )

(7.6)
where wp, = /P2 +m2, w, = |¢|, and similarly for the primed quantities. This
may be written

1 m?2
\/ u(p', s')[~ievuet (g, A)]

(2m)8 \| dwpwp wewyr

ie? m

"~ (2n)8 2, W Welly!

a(p',s")Ru(p,s) ,
where

R = [ve(q', X)][vp + vg + m][ve(g, M)]/[2pq] -

To obtain this last result, use has been made of the mass-shell conditions

p? =m? = p? P =0=gq
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so that
(p+9)* —m” = 2pg.
We have dropped the ie in Eq.(7.6) because
bg = Mg,

in the rest frame of the incoming electron, and is always positive, so the pole
does not lie in the physical scattering region.
There is another graph in second order, as shown.

q p

Figure 7.2 p—¢q
Crossed diagram

p q

This contribution may be obtained from the contribution (7.6) by means of the
interchanges ¢ +— —¢' and A «— MX'. It is important to include both terms to
order e?; and it is only the sum that is invariant under the crossing interchange.
The sum of the two graphs leads to very good agreement with the measured
cross-section for Compton scattering. If the spin of the initial electron is not
measured, one must average over the two possible values of s; and if the spin of
the final electron is not measured, one must sum over the two possible values of
s'. Similarly, if no polarizations of the photons are measured, one must average
over initial polarization A and sum over final polarization \’'.
We may mention another aspect of crossing. Pair annihilation,

et +em — v+ v,
Or pair creation,
y+y—et+e,

is described in second order by the same two graphs, except that p’ is now the
four momentum of an incoming positron, and ¢ that of an outgoing photon.

To improve the accuracy of the agreement with experiment we include also
the contribution of the fourth order box diagram depicted. There is also a similar
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graph obtained by the crossing interchange, and this must be included in the
calculation. According to the Feynman rules, the graph gives the contribution

1 m2 d‘k _, ., . . i[y(p' + k) + m]
(2m)8 \/4wpwp/wqwq: (2m)4 up, )l =tev] (p' + k)2 —m? +ie

] y(p+qg+k)+m
(p+qg+k)2—m?+ie

[—iev.e” (¢, \) [—iev,e°(q, A)).

Figure 7.3

Fourth-order contribution

b p'

Momentum conservation at the four vertices leaves one four momentum free,
which we have taken to be that of the photon, k. This must be integrated,
which means that the internal, virtual particles can have any values for their
four momenta, in particular off mass shell values. The order of the spinors and
the gamma matrices is important: if one writes from left to right, one should
begin with an outgoing fermion (or an incoming antifermion), and then follow
the fermion line in the direction opposed to the arrow, until one arrives at
the incoming fermion (or outgoing antifermion). In this way the order of the
spinors, the fermion propagators, and the vertices, is correct. The positions of
the polarization vectors for external photon lines, and of photon propagators, is
immaterial, but the Lorentz index of a polarization vector must be contracted
with that of the gamma matrix that belongs to the vertex to which the photon
line is connected in the Feynman graph. Similarly, the Lorentz indices of the
metric tensor in the photon propagator must be contracted with those of the |,
gamma matrices that belong to the vertices at the extremities of the propagator.
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The expression Eq.(7.7) may be simplified by using the Dirac equation and
the mass shell conditions; note that the denominator behaves like k8 as k —
oo, while the numerator behaves like k3. Thus the four dimensional integral
converges, so that its numerical value can be computed. The crossing symmetric
contribution, obtained by means of the interchange (¢, A ¢ —¢’,\’), must then
be added, and finally the resultant fourth order expression is added to the second
order S-matrix that we obtained above. The agreement with experiment is
thereby improved.

7.3 Mpgller Scattering

We turn now to Mgller scattering, which is electron-electron scattering, mediated
by photons. The T matrix is defined in general by

(fISli) = b7: + i(2m)*6* (P — Pi)(f|TId)

where P;, Py are the momenta of the initial and final states 7, f. For an incident
state that consists of two identical Dirac fermions of mass m in states (pi,s1)
and (p2, s2), this expression leads to the differential cross-section

m2

B \/(P1P2)2 —m4

for an arbitrary final state f (Problem 8). There are two diagrams in second
order:

do

2(277)4 8*(Ps — p1 — p2) {fIT|p1, 815 P2, 82) 17,
f

p2 _ Ps D2 Y4
Figure 7.4
Mgller scattering P — Dy P1 — Py
p1 o) P 23

Here the final state consists of the same two Dirac fermions in states (p}, s7) and
(ph, s5), and the differential cross-section may be written

m? d3p, m d3p, m i ,
V(pip2)2 —mt ) (2m)? (U_II/ — (2m)* 6%(py + Py — p1 — p2) IM|*,

do =
7 (2m)® o)
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where M = (p!, s1; 5, s5|T|p1, 1; D2, 82) . We may integrate over the two-body
phase space in order to determine the differential cross-section per unit solid
angle of the outgoing particle of momentum p}. In the center of momentum
frame, in which the incident particles each have energy F, we obtain

do m* 1

—_— T — — 2
a = a8z @ M (7.8)

The Feynman rules yield, for the first graph (the direct term),

iezD — ! —
(p1 — p})? where D = [a(py, s1)7v"u(p1, 51)] [@(p3, 82)1uu(p2, 52)],  (7.9)
1

and for the second graph (the exchange term),
i€

(p1 — p3)?
The contributions Eq.(7.9) and Eq.(7.10) must be subtracted from one another,
since the relative ordering of the fermion operators is odd.

This is the final answer to this order, in the case that the initial and final
spins are held fixed. If spins are not measured, as is often the case, then we
can simplify the numerators after averaging over the initial spin configurations
and summing over the final spins. This involves the insertion of the summation
rO I 2,5, » and we shall show how these sums can be evaluated. Consider

where & = [t(p3, s5)v*u(p1, 51)] [ﬂ(pll’sll)’)'#u(p?’s?] . (7.10)

j : 2 __ z : —1 s — — v, ! — !
|D| - ula’yaﬁulﬁu27f}lﬂ’)’5u25ulef),enulnu20'7110'wu2w )
$1,52,81,5% 81,582,581 ,8)

where for brevity we have introduced the notation u; for u(p;,s:), and @} for
u(pi,s}), and similarly with index 2. Here a, 8,--- are the explicit spinor
indices. This product of numbers may be reordered and then rewritten as a
product of traces of matrices:

2 . ] i — 7 - —
E : IDI* = E UinU1aYapgU18U1eVenUow Uoy YuyéU26U20 Trow
31,32,33)3'2 31,32,811,312
1 —1 —_— v 1 —1 —
= E Tr [T Y*u1Ty”] Tr [ugToyuueBayy] - (7.11)
51,52,87,55

Referring to the particle projection operator, Eq.(3.84)-(3.85), we see that

m+yp ,mt;,
2m 7 2m i

Z Tr [ui @Y u1T17”)

'
81,8,

™|

1 1 4
= 3l [Y* 777 ¥ Pl ,pre + MEyHy"] .
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Here we have used the fact that the trace of a product of three gamma matrices
vanishes. This may be simply proved by using the properties of vs:

Tr [y*7*9°) = Tt [v239*9*9°] = Tr [vsv* 777 v5] = =T [vs7*¥* 77 5] -

The third expression follows from the second by cyclicity of the trace, and the
fourth expression follows from the second by anticommuting s through the
product of the three gamma matrices. The trace is equal to minus itself and is
therefore zero.

To complete the calculation, we need the traces of products of two and of
four gamma matrices. Since the trace is cyclic, it follows that

Yy + VAt = 2" = Tr[yHy"] = 49", (7.12)
because Tr 1 = 4. It follows easily from the above that
PYAY + YT =207 = 26M " + 29709

The traces of the two terms on the left are equal, and so we find, on using the
result we have just proved for the trace of two gamma matrices, that

Tr[y*y*y7y"] = 4g™9°" — 977 9" + 9" 9*°]. (7.13)
From the above formulae, we find
— — v 4 v 14
> T Ty my] = —{p'p] + P} + 9 [m* - (pip1)]} -
sl,s’l

The second factor in Eq.(7.11) can similarly be calculated, with p; and pj in
place of p; and pj. The product of the two factors yields

6= Z ID|? = ‘nf:z{(Plpz)z + (p1py)* + 2m?[(p1p3) — (P1p2)] } (7.14)

81,52,81,59

where we have used the identities

(p1p2) = (P1P3)  (Mip2) = (m1py)  (myp1) = (P2p2) ,

which follow from 4-momentum conservation and the mass-shell conditions, to
eliminate p}. By similar manipulations, we find

e= 3 16 = o {@ip) + Gap)? + 207 (manh) — (map)] | (7.15)

51,52 1811 ’312
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and, for the cross-term in Eq.(7.17),

y= Y DE+DE = %{(mzoz)2 - 2m2(p1pz)} (7.16)

51,82 13'1 )312

On insertion of the contributions (7.14)-(7.16) into Eq.(7.8), we finally obtain
the differential cross-section for Mgller scattering to order e?,

do a? ) _ y e
0 ~ 4E? [[<p1—pa>212 <p1—pa>2(p1-pg>2*[(pl—p;mz]’ (7.17)

where o = €2 /(4r), the fine-structure constant. An important feature of Mgller
scattering is a strong peaking of the differential cross-section in the forward and
backward directions. This is a direct consequence of the photon propagators,
for we may set, in the center of mass system of the electrons,

p1 = (E,p) p2 = (E,-p)
P = (E,p") Py = (E,~p")
5| =p=1|p"| P -7 =p’cosb
E = VpP+m?. (7.18)

The propagator in Eq.(7.9) is

1 1 1 1

(;n—p)?  (F1-P1)?  2p*(1—cos)  4p?sin® 8’

and this explains the forward peak (at # = 0). The crossed graph contains
1 1 1 1

(p—p5)2 B +py)?2  2p2(1+cosf)

4p? cos? -g- ’

so this term produces the backward peak (at 8 = 7). Eq.(7.17) becomes

do o [2EB2-m?)*| 4 3 L[ -m? 2 . (7.19)
dQ)  4E? | E2 — m? sin*f sin%6 2E2 — m? sin’ @ .
In the relativistic limit, £ — oo, we obtain

do o 4 2 1
dQ ~ 4E? [sin49 " sin2 4 * Z] (7:20)

At low energies, E — m ~ p?/(2m) < m, and we obtain

do m?a? | 4 3
— = - . 7.21
aQ  4pt [Sin"‘ 6 sin? 9] (7:21)
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It is of interest to compare these results with the Born approximation to
nonrelativistic scattering in a Coulomb potential. On page 136 of Volume 1 the
cross-section in this approximation was given, namely

do et

dQ ~ 16E?sin® £ (7.22)

Do D2 D

D2
\P1+P2—Q/ \P1+P2—<1/
- >

P1—q gq—p’l P1—4q

AN TN

Figure 7.5 Fourth-order diagrams

avavavaV

However, unlike the E in Eq.(7.19), E in Eq.(7.22) is the nonrelativistic energy,
which we can write p?/(2m.eq), p being, as in the relativistic calculation, the
center of mass three-momentum of one of the electrons. The reduced mass in a
two-electron system is m,eq = 3m, and we employ units such that A =1=c. In
the nonrelativistic Born approximation calculation, the Coulomb potential was
—e?/r, which means that Gaussian, rather than Heaviside-Lorentz units were
being used for the charge. With Gaussian units, the fine-structure constant is
a = e%/(hc) = €2, so finally we can write the cross-section in nonrelativistic
Born approximation as

do m2a?

dQ  16p*sin® & (7.23)
To compare this with the first-order relativistic formula Eq.(7.17), we retain
only the direct term involving |D|?, and we take only the lowest order in small
p. In lowest order, the relativistic energy, E, is just m, and D = 8. This yields
precisely the same result, Eq.(7.23), if we recall that the Feynman rules where
set up with an electromagnetic interaction in which the rationalized, Heaviside-
Lorentz units were used for the charge. With these units, the fine-structure
constant is o = €2/(4n). The simple nonrelativistic calculation with Coulomb
potential and Born approximation did not take cognizance of the exchange term.
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Such an exchange term can always be put in by hand in the nonrelativistic
calculation, much as we did in the calculation of the exchange effects in the
helium atom. The relativistic calculation, it should be noted, automatically
takes care of all exchange contributions, thanks to the crossing symmetry of the
S matrix.

We may increase the accuracy by adding the contribution from the fourth
order graphs shown in Figure 7.5, but we must also add the two extra fourth
order graphs of Figure 7.6:

p2 %) D2 p
n pa D p’2
Figure 7.6 Crossed diagrams

7.4 Photon-Photon Scattering

In QED it is possible to describe the scattering of light by light. This amounts
to a definite violation of the classical Maxwell theory, in which linearity in the
field strengths precludes such an effect. The lowest-order diagrams involve a
closed electron box, with a photon attached to each vertex. The fourth-order
contribution to the T-matrix can be written

1 et Y -
(27!')10 4\/m€”(k1”\1)6 (k23A2)6 (k37/\3)€p(k4aA4)Mu,Vpd(kl1k29k3ak4)y

where the tensor M,,,, is the sum of the contributions of six diagrams, of
which we show one in Figure 7.7. The other five are obtained by permuting k&,
ks and k4, and the corresponding Lorentz indices, where for convenience we have
defined the four k; as if they were all incoming. In fact three of the diagrams are
mathematically equivalent to the other three, since they only differ by the sense



144 Quantum Electrodynamics

in which the k; follow one another around the box, and this is inconsequential.

ko ky

Figure 7.7 p—k1 — ks
Photon-photon scattering

Accordingly, we may write
Movpo (K1, k2, k3, ks) =
2[Nouvpo (K1, k2, ks, ka) + Nouvop (K, k2, ks, k3) + Nppuo (K1, k3, ko, ka)]
where k1 + ko + k3 + k4 = 0, and
Nuvpo (k1 k2, k3, k) =

—(2;)4Tr / d*p Sp(p — k1) vuSF ()7 SF(p + k2)ve Sr(p — k1 — k3)v, .

Since Sr(p) behaves like p~! for large p, this integral is logarithmically divergent
in the ultraviolet, i.e., if we insert a cut-off at p? = A2, after rotation to Euclidean
space, the integral diverges like log A as A — oo. Gauge invariance of the
physical process implies that, if the gauge parameter, a, is changed, the tensor
Mo (K1, k2, k3, ks) should be invariant, which is guaranteed if

kY Mpypo (K1, ko, ks, ka) =0,

and similarly for the other vertices. Despite the divergence, this condition is
satisfied automatically if one uses the method of dimensional regularization, to
which we turn in the next chapter (see also Problem 8.8).
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7.5 Exercises

Problem 1
Consider the free photon field operator,
1 Bk S . . . . . .
A,(z) = S eu(k,Na(k,\) e *® 4 e, (k,Nal(k,\) e**| .
) = Gt | iy 2 ewB Vel w(F,Nal (8, ) €]

Obtain expressions for the creation and annihilation operators, aT(E ,A) and
a(k,A) . Show that they are time-independent.

Problem 2
Show that, in Feynman gauge, the vacuum expectation value of the time-ordered
product of two free electromagnetic fields, at different space-time points, is

(0] T[4%(z), 4" (v)] |0) = iD¥' (z ~ ) = (2‘; / S

Evaluate this integral explicitly as a distribution in the variable z2.

Problem 3
Consider the Dirac free-field operator

2
(2;)-3- > / d’p \/;ﬁ: [b(B, s)u(F, s) ™% + dt (7, s)v(F, 5) 7] .

Using this expression and its adjoint, obtain expressions for the momentum
creation and annihilation operators, b(7, s), d(7, s), b’ (7, 5) and d (¢, s). Show
that they are time-independent.

¥(z) =

Problem 4
Show that the vacuum expectation value of the time-ordered product of two
spinor fields, at different space-time points, is

(O] T[¥(z),¥(y)] 10) = iSp(z —y) =

Problem 5
Show that the QED Lagrangian density, projected on to the physical subspace,
is invariant under the complete gauge transformation

/ o TPE M —ip(a-y)

i
(2m)4 p? —m? + i€

A, — A, +0,G P —> e7 Gy

where G(z) is an arbitrary scalar field.
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Problem 6

The Gupta-Bleuler condition does not define a unique physical state, but rather
a subspace of states. Construct the mapping from one physical state to another,
and show that this mapping is precisely a gauge transformation.

Problem 7

Show that any Feynman diagram containing a closed electron loop, to which
is attached an an odd number of photon propagators, is cancelled by another
diagram, and hence may always be omitted.

Problem 8
Consider the elastic scattering of a positron and a muon.

(1) Write down the complete contribution to the 7' matrix to order e?, in
the centre of mass system.

(2) Is the cross-section finite or infinite in the forward and in the backward
directions?

(3) Calculate the differential scattering cross-section, after averaging over
initial and summing over final spins.

Problem 9
Consider the elastic scattering of polarized electrons and polarized positrons
(Bhabha scattering).

(1) Write down the mathematical expression for the T-matrix to order e?.
(2) Calculate the differential scattering cross-section, after summing over
the final spins only.

Problem 10

By first considering the annihilation of an electron and a positron into two
photons, estimate the lifetime of parapositronium (in which e~e* is in a singlet
spin state). Estimate also the lifetime of orthopositronium, in which e~e* is in
a triplet spin state.



Chapter 8

Dimensional Regularization

8.1 Rationale for the Method

As we saw in the previous chapter, some of the integrals involved in calculating
Feynman diagrams diverge in the ultraviolet, i.e., toward infinite momentum.
To cope with this problem, a method has been invented that consists in three
steps: first the integral is regularized, which amounts to a change of definition,
such that the new integral is finite (an ultraviolet cut-off is a crude example
of this technique); second, the integral is written as the sum of a momentum-
independent part and a more highly convergent integral that does depend on
the external momenta; third, the regularizing prescription is removed, leaving a
convergent integral and a formally divergent constant, which in principle has to
be absorbed in an experimentally measured constant quantity.

It must be stressed that the method, whose full implementation is called
renormalization theory, does not meet the highest standards of mathematical
rigor. Dirac himself, although no connoisseur of the more abstract aspects
of mathematical quantum theory, unequivocally rejected the renormalization
method*, and even Feynman, its foremost inventor, expressed dissatisfaction
and disappointment. It must be admitted that the method is unsatisfactory, for
some ‘divergent constants’ are supposed to represent measurable quantities that
are finite. For many other measurable quantities, as Dirac admitted, “Good
agreement with experiment has been found, showing that there is some validity
in the rules.” An impressive example is the electron’s g-factor [see Eq.(2.58)].
In 2002 the Particle Data Group quoted an experimental value with a standard
deviation of only 4 x 107!2.f The most accurate QED calculation, dating from

*see the last quotation on page 16

thttp://pdg.1bl.gov
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1981, was done by Kinoshita et al.}. Their result is also quoted with an error,
2 x 10710, partly due to uncertainty in the precise value of the fine-structure
constant, and partly due to the estimated effect of higher order terms. In the
table below the results are displayed, and the agreement, to 1 part in 1079, is
very impressive, and it is believed that the anomaly (the disagreement between
the calculation and experiment) is due to the fact that the quantum electro-
dynamics of the electron-photon interaction is not a complete physical theory.
Indeed, effects due to the embedding of QED in the electroweak theory make
themselves felt at the the level of the anomaly.

Value of g Error
Experiment | 2.002319304374 | 0.000000 000008
Theory | 2.0023193049 0.000 000000 4

Electron g-factor

The mathematical reason for the divergence of some integrals in quantum field
theory can be traced back to the singular nature of the interaction between
the spinor (electron) and the vector (photon) quantum fields. This interaction
involves the product of distribution-valued operators at the same space-time
point, and it lacks a precise mathematical sense. The adoption of a particular
regularization procedure is tantamount to changing the nature of the interaction,
and as a result making the momentum-dependent integrals finite. The theory,
in effect, is specified both by the Lagrangian and the regularization procedure
that is adopted. The price we have to pay is that the choice of regularization
is painfully ad hoc, and moreover some physical constants cannot be calculated
(they are the subtraction constants).

To illustrate the above ideas, let us consider part of a Feynman diagram
made up of a loop involving two different scalar particles, of masses m; and ma:

p
// ) \‘\
Figure 8.1 k —->-'\ > k
Scalar loop S !
p—k

YT Kinoshita and W.B. Lindquist, Phys. Rev. Lett. 47 (1981) 1573.
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The contribution of the loop to the expression for the complete Feynman graph
of which this loop is a part is

ig? d*k
(27’(’)4 / [(p + k)z _ m% + ze][kz _ m% + 116] ) (81)

where g is the coupling constant in the theory. This integral is logarithmically
divergent, and the divergence is typical of the ill that is palliated by the method
of regularization. We shall explain the prescription of dimensional regularization,
as it applies to this loop in a scalar theory, extending the method to QED in the
next two sections.

In dimensional regularization the number of space-time dimensions is changed
from 4 to n, and n is regarded as being variable. Let us suppress the coupling,
g, and write Eq.(8.1) in n dimensions as

2 2 oy _ 1 d"k
16 smtmd) = s [ W -ml ik —m v &P

where it is supposed that there is one time dimension and n—1 space dimensions.
The integral (8.2) is convergent for n = 1,2 or 3, but not for n = 4. The first
step in the evaluation consists in using the Feynman formula,

RNy —
AB  J, [Az+B(1 -2)¥’

(8.3)

with the substitutions
A= (p—k)®-—m?+ie, B =k?> —m2 +ie,

and in changing the integration variable from k* to g* = k* + zp*. This gives

. 1
2.2 92y_ 0 1
I(p*;mi,m3) = _—(27r)"/0 dz/d”q i (8.4)

in terms of the g-independent constant

C=miz+mi(l-2)-p’z(1-2). (8.5)

To calculate Eq.(8.4), we think of the ¢°-integral domain as a contour along the
real axis in the complex ¢°-plane, and we rotate this contour anticlockwise from
the real to the imaginary axis (this is called the Wick rotation). Because of the
i€ prescription in Eq.(8.4), no poles are crossed by the rotating contour; and, for
n < 3, the contributions from the arcs at infinity are zero. If we now substitute
go = i¢n, then g, is real, and we obtain

1 [t 1
2.2 2\ _ _ n
I(p®;mi,m3) = (27T)"/o dz/d q[q2 ok (8.6)
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where the integral and the square, g%, are now Euclidean. Let us initially limit
our attention to ReC' > 0, and write

m / dx = exp[—z(q® + C)]. (8.7)

On integrating this with respect to g, under the z-integral, we find

1 [e) n oo
d"q —— / dr z e~ ¢ / dg; exp[—zq?
/ q [q2 + C]z o le—Il oo J [ J]

I
\
8
&
8
o
8
Q
\_/

= 7r2I‘(2———)C' : (8.8)

where the so-called Gamma function is defined by

T(a) = / dzz*te ?,
0

for Rea > 0 and by analytic continuation in a for Rea < 0. Note that, for
any complex a, al'(a) = I'(a + 1), and for n a positive integer, I'(n) = (n — 1)!
(Problem 8.1). The formula (8.8), initially calculated in the half-plane Re C > 0,
may be continued analytically into the C-plane, with the negative real axis
excised. The integral Eq.(8.6) becomes

I(p*;mi,m3) = (8.9)

n

—(47")__11 (2 - 5) /01 dz [m%z + m%(l - 2) —pzz(l - z)] 7

The expression is well defined if n = 1,2 or 3, and if p? is anywhere in the
complex p?-plane, except possibly on the positive real axis, 0 < p? < co. In fact,
it is well defined also for non-integral, and even for complex values of n. The only
points in the complex n-plane where it diverges, because of the occurrence of
poles of the [-function, are n = 4,6,8, . ... The ad hoc nature of the dimensional
prescription is very clear in the adoption of the formula (8.9) for any value of n:
it amounts in fact to a definition. Let us next differentiate Eq.(8.9) with respect
to p?: :

0 2,02 . 02) _ -2 n '
WI(p,ml,mg = —(4m) F<3—§)/o dzz(1 — z)

n—6

[m2z + mi(1~z) - p?z(1 - 2)] 2
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Whereas Eq.(8.9) does not have a finite limit n — 4, we see that

0 2,2 2 1 ' m} m3 2 -
li, o 1075 md) = =5 [ de |72+ S -p]
Change the integration variable from z to
m?  m2
s = 1 _lz + ";2- y (8.10)

which is equivalent to

ml + m2 + {[s— (m1 + mz)z][s - (my — m2)2]}'§'
23 ’

z=2z4(8) = (8.11)

the plus sign being correct for z greater than Hﬂz?n'? the minus sign for z less
than this value. Hence

lim _6_I(p cm?,m3) = __}__/°° ds {dz+(s)_dz_(s)}
(

1672 J(m,+mq)2 P — 8 ds ds

1 [o e}
= _ETE/(m,-l-mz)? (% — 5)? {24(s) —2-(s)} ,

where we have used a partial integration to obtain the second line. Since

P’ P
I@md md) = 10mbm) + [ o 5 1o md),
we may write

tim [1(p2m3, m3) — 1(0; m?, m3)]

1 A A F e [CHOESRE)

167‘(’2 (m1+m3)? D

On substituting for z4+(s) from Eq.(8.11), we write the result in the form

I(p*;m},m}) = I(0;m},mj) (8.12)
[ e ds  {[s = (mq +m2)?][s — (my — my)?]}3
1671'2 (m1+m2)2 p2 — 8 82 ’

where the divergence has been absorbed into the subtraction constant, I(0;m%,m3),
leaving behind a finite, momentum-independent integral. In the following sec-
tions, we will show how this trickery can be extended to QED.
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8.2 Fermion Self-Energy

The method of Feynman graphs can be applied just as well to propagators as to
complete scattering amplitudes. To order e?, the full electron propagator, Sk,
can be depicted as follows:

p—k
Figure 8.2 Electron propagator

and we can express this in the form

S%(p) = Sr(p) + Sr(p)Z(p)Sr(p),

where Sr(p) = ( p—m+ ze) is the bare electron propagator, and where

X(p) = (2 7 /d4k7uSF(p+ k)v [ g +(1-a)> ku] o i = (8.13)
is called the electron self-energy. By rationalizing Eq.(8.13), we find
2
S(p) = (T;? / e -Aﬁ;’ -Iz)ie][kz T’ (8.14)
where
AP, k) = vu[Y(p+ k) + m] 7, [ ¢+ (1—a) B (8.15)

Like the scalar loop integral of the previous section, the integral in Eq.(8.14)
diverges. We shall adopt the method of dimensional regularization, replacing
(2m)~*d*k by (2m) " "d k.

It should be noted that, while the basic anticommutator

{v*, v} = 29" (8.16)

is retained unchanged in n dimensions, we have

9w Y = 39 {7} =8 =n. (8.17)
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As a consequence of this, we find
AP, k) =(n-3+a)yp+(n—-1+a)m—(n—1-a)yk+2(1- a) 7k (8.18)
We may write the n-dimensional version of Eq.(8.14) in the form
T(p) = 62{ [(n—3+a)yp— (n—1+a)m]M(p?)
+(n ~ 1= a)7,M*(p) + 2(1 - )P M* (p)},  (8.19)

where the scalar, vector and tensor integrals are

1 1
M@ = 2m)" /dnk[(p+ k)2 — mZ + €] [k2 + ie]
ME(p) = — / ik i
(2m)n [(p+ k)2 — m2 + i€][k? + ie]
i ke k”
M*(p) = @ / d”k[ TR e Tl i (8.20)

It can be readily seen from Eq.(8.2) that M(p?) is precisely I(p?;m?,0). From
Lorentz covariance, M#(p) = p* N (p?), where N(p?) is some scalar field, and
20°N(p*) = 2p.M*(p)
i /dnk[(p+k)2—m2]—p2+m2—k2
(27" [(p + k)2 — m2? + i€][k2 + ie]
22 2y n 1 1
=~ -mI)M () (2m)™ /d k{(p+k)2 —m? + i€ k2+ie}
= —(p® - m*)M(p*) — m*M(0). (8.21)

The last line here was obtained by shifting the integration variable in the first
denominator (k — ¢ = p + k), and then by combining both terms together.

M*(p) = ~[(p* - m*) M (p*) + m* M (0)]p*(2p*) . (8.22)

Now set g#* = p* + k* in the second of the Eqs.(8.20), so that

L (g —p)*
M (p) = @ﬂn/d%mz—m2+wmq-m2+ur (8.23)

Differentiating this with respect to momentum, we find
2(g—p)* (¢—p)”
O MHp) = / a o - 2acEier
o, T o) V@ -m ridlla-p? +id
= —g""M(p?) +2M*""(p), (8.24)
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where we obtain the second line by switching back from g to k again. So
M*(p) = g*[(@ +m’)M(p*) - m*M(0)][4p*] "
Y d
- pp’ [P’ (0* - m2)a;2'M(P2)
+ m2M (p?) — m2M(0)][2p*] ! (8.25)

Hence we have expressed the vector M*(p) and the tensor M*¥(p) in terms of
the scalar M (p?), for which we have, in the limit n — 4,

2 [oe} 2
2y 2. 2 _ p ds s—m
M@?) = I(p%m?*,0) = M(0) + 7= /m2 e (8.26)

where M (0) is a ‘divergent constant’, formally the meaningless limit

M(0) = lim — —

lim s 7~ (8.27)

We obtain M* from Eq.(8.22). To evaluate M*¥ from Eq.(8.25), we need

d -1 [ ds s-—m?
— M(p?) = ____/
dp? (P 1672 /.2 (P2 —3s)? s
1 ® ds m?
T 1672 /mz p?—s 82’ (8.28)

where a partial integration has been performed. Substituting all these results
into Eq.(8.19), we find

o ds vp 1(s) + Qa2(s)
S(p) = A 2 .
(p)=A+Byp+p /m o p— , (8.29)
where
2
A = —(3+a)me*M(0) - (3—a) szz , (8.30)
2
B = ae®M(0)-(1- “)G_Zﬁ’ (8.31)
ae? s —m?
2 o2
Qo(s) = ———@B+aymi— " (8.33)

1672
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8.3 Vacuum Polarization

To order e2, the full photon propagator, D}ff", can be depicted as follows:

p+k
k AN + & k
p
Figure 8.3 Photon propagator

and we can express this in the form
DY (k) = DR (k) + DX (k)1 (k) DE’ (K),
where the bare propagator is

—g"* + (1 — a)k*k” [ k>
k2 + i€ ’

Dy’ (k) =

and where the polarization tensor is given by

7 2
() = gos [ EoT{rSep+ DS} (834

We have immediately written this integral in n dimensions, in anticipation of
the dimensional regularization that will be performed. Note that

I () = [ o+ B) = m ikl - m+ i
v (27.‘.)7,, P YLYP m €| “YK|YP 2€

ie?

- @or /dnp T’-‘{”Y“[v(p + k) —m+ i

Y@+ k) =m— (yp—m)][yp—m + ié]‘l}

ie?

(2m)" /dinr{'yﬂ (0 -m+ie)™ = (v(p+ k) = m +ie) | }.

The dimensional regularization recipe permits a shift of the integration variable
in the second term in this integrand, p+ k — p, so one concludes that the right-
hand side here is zero, since the two parts of the integrand cancel one another.
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The justification is that the integrals are interpreted in the manner of Egs.(8.7)-
(8.9), i.e., the denominators are to be replaced by a Gaussian integral over
a variable z, and the n-dimensional momentum integrals are to be performed
under this Gaussian integral. Shifts of momentum integration variables are now
allowed, because of the Gaussian convergence factors. The original interchange
of order of the momentum integration variable and the Gaussian integration
variable z cannot be performed in general without change in the value of the
integral, but the point of dimensional regularization is that the regularized value
of the integral is defined to be given by placing the momentum integrals under the
Gaussian z-integral. This guarantees that identities between integrands remain
valid between the regularized integrals. That the perturbation series which is
produced by this method makes physical sense is not guaranteed a priori: it is
strictly an a posteriori matter that the results obtained appear to agree very
well with experiment. We conclude then that

k, JI# (k) = 0 = TI* (k)k, , (8.35)

under dimensional regularization, the second identity being obtained from the
first by symmetry (a consequence of the cyclicity of the trace operation). Hence
it must be possible to write the polarization tensor in the form

k*EY
k2

I (k) = [¢" — 5| T,

and therefore

Kk,
k2

9, % (k) = [5;; ]I‘I(k2) = (n — 1)II(K?).

The scalar vacuum polarization is defined to be

S (k
(k?) = 9“—n_¥ (8.36)
ie2 Tr

n—1(2m)"

/d"p'r“['r(p +k) —m+ie] Tyulyp —m +ig 7.
On rationalization of the integrand, we obtain

e 1 Bp.b
I(k?) = n—1(2mr)" /d"p[(p + k)2 — m2 + i€e][p? — m? + i¢]’ (8.37)

where

B(p,k) = Tr {v*[v(p + k) + m]yu[vp + m]} . (8.38)
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In n dimensions, the Dirac anticommutation relations,

{*,v"} = 2¢"",

can be realized by [Z]-dimensional matrices. For example, for n = 2, 7° = ¢3,

4! = o'¢® do the job, and for n = 3, one adds ¥% = 0202, where & are the 2 x 2
Pauli matrices. For n = 4, one has the familiar Dirac matrices, while for n = 5,
one adds —iys = 7v%y!y%43, and so on. However, although it would be important
if one were interested in genuinely setting up a field theory in n dimensions, for
the purpose of simply splitting off infinities in four-dimensional field theories, it
is actually not necessary to generalize the dimension of the y-matrices. Thus we

may retain the trace formulas,
Tr(1) =4  Tr(v*) =0  Tr(yv*4") = 4¢g*".

In some versions of dimensional regularization, the factors of 4 are replaced by
f(n), where f is an analytic function such that f(4) = 4, such as 2%. However,
all discussions of renormalization can be carried out at the level where subsets
of graphs with the same number of closed fermion loops are treated together.
Then all factors of f(n) occur with the same power, and they may simply be
replaced by 4, which is what we propose to do. However, one place in which n
occurs in a nontrivial manner in the y-algebra is in the formula y#v, = n, as
was noted in Eq.(8.17). We find then, from Eq.(8.38),

B(p, k) = 4[(2 — n)(»* + pk) + nm?] . (8.39)

We may therefore write

(k%) = n4f21 {m*nP(k*) + (2 - n)k,PA(k) + 2 - n)Q(K")}  (8.40)
where

5 = 1 [ !

PE) = G | TG =
o = _1_ n P

PO = G | G
i n P’

W) = oo | T AT

We recognize P(k?) as I(k?;m2?,m?). Further, by Lorentz covariance,

PH(k) = k*R(k?),



158 Dimensional Regularization

and so, by contraction with the vector 2k,

2k*R(k?) = 2k, P*(k) (8.41)
i /d" [(p+ k)2 — m?] — p? — k? + m?
(2m)? [(p + k)2 —m? +ie][p? — m® + ie]

= —kP(k®) +

/d"{ 1 B 1 }
(2 ) P p2—m2+ie (p+k)2—m2+iel’

The two terms under the integral cancel one another out, as we see by shifting
the integration variable in the second term, p + k — p (the justification being
in terms of dimensional regularization, as in the analogous case of the electron
self-energy term). We find

PH(k) = —1k*P(k?) = —1k*I(k*;m? m?)

A = Gy / TP R -+ idlp — e T id
= m?P(k*) +

1
(2w )"/dn p?2 —m? + i€
= m2I(k*;m? m?) + (4n)" =T (2 _ ”) m" 2,

2

where the last term has been calculated by means of manipulations similar to
those of Eq.(8.8). When these results are injected into Eq.(8.40), we find

2
nk? = n4i ] {[2 2+ n—2—gk2] I(k?*;m?,m?)

—(4r)"3(n - 2)T (1 - g) m"-2} . (8.42)

From Eq.(8.9), one sees that I(0;m?,m?) = —(4n)"2T (2 — in) m™™*, so

-5 n=2 ) _ 2 _ _ _ 7_7’ —
I(0) = (47r 3m { or (2 2) (n—2)T (1 2)} 0. (8.43)
This corresponds to the requirement that the mass of the photon should not be
shifted by the interaction. The dimensional regularization has in fact preserved
the gauge invariance of the theory. In the limit n — 4, Eq.(8.42) takes the form

(k) = fl-—z {M(O)+ — 2(k2+2m2)/ 2 s(kzs—s) 4’"2} . (8.44)

where M (0) is the divergent constant (8.27). It is straightforward to derive the
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infrared behavior,

(k) 4e? 1
e 3 MO - el

so evidently there is no infrared divergence. The ultraviolet behavior also follows
from Eq.(8.44) without difficulty:

ME) | @ g B
k2 3 82

(8.45)

8.4 Cutkosky Rule

In Sec. 8.1 we made sense of the divergent integral Eq.(8.1) by the method of
dimensional regularization. The final result [see Eq.(8.13)] may be expressed

; d*k
(02 m2.m2) = v /
PHmms) = Gy | o B —m + il — md i
2 0o d
= I(O;m%,m§)+p—/ — B(ﬂ, (8.46)
T J(mitmg)2 P =S §

where the dot on = is to remind us that the sign is no simple equality, and where

{[s = (ma +m2)]ls — (my —ma)’}?
S

p(s) = (8.47)
The second line of Eq.(8.46) is called a once-subtracted dispersion relation, p(s)
is called a spectral function, and I(0;m?,m3) is a subtraction constant. Since
the integral over s is absolutely convergent when p? is complex or real and less
than the threshold value of (m; +m2)?, it follows that I(p?; m2, m3), considered
as a function of the complex variable p?, is an analytic function in the plane cut
along the interval (m; +m2)? < p? < co. Consider calculating I(p? +ie; m2, m2),
with p? on the cut and e very small and positive. The integration contour can
be deformed as shown in Figure 8.4, and then the integral comprises two parts
in the limit ¢ — 0, namely the Cauchy Principal Value, i.e.,

2 o d 2 pz—e o o] d
P_p/ _ds pl) _py, 2 / +/ &5 _pls).
™ (m1+m2)2? pc—s S e—0 T (1 +ma)? p2+te p°—s 8

and the contribution of the small semicircle centered at s = p?>. On this circle
we can write s = p% + €€, so that ds/(p? — s) = —id#.
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4

| ' ] | U
Figure 8.4 Contours in the s-plane

The semicircle is described from 7 to 27, so the contribution is

'l: 27 .
—— | dip(»®) = —ip(p?).

T Jr

The calculation of I(p? — ie;m?,m32), differs only in that the integration around
the point s = p? proceeds from 7 to 0, so in this case

i [0
-= / df p(p®) = +ip(p”) .

The Principal Value part is of course as before. The discontinuity of the function
across the cut, i.e., the difference between the value of the function evaluated at
a point just above and just below the cut, is therefore given by

I(p* + ie;mi, m3) — I(p? — ie;m}, m3) = —2ip(p?), (8.48)

for real p? greater than (m; + m3)2. These results can be summarized by

1 P,
pz—siie—pz—s¥m5(p =)

Consider next the integral
D) = [ dollp+ k)2 - ek - md) (8.49

which is similar to Eq.(8.46), except that instead of propagators there are delta
distributions. If p* is a timelike vector, we can find a Lorentz system in which
the spatial components of p vanish, so p* = (pg,0,0,0). In this frame,

o0 oo
D(p?) = 2« / dkq /0 dk® V2 8(p2 + 2poko + m2 — m2)8(k? — k2 + m3)

o
= o / dko [k2 — m2]} 6(K2 — m2)5(2poko + pi + m2 — m?)
— 00

1 1

2 3 2 3
RS
Do 2po 2 2po 2
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We can now replace p3 by p?, to which it is equal in the special Lorentz system
in which we have performed the calculation. Since the expression is now in
invariant form, it is also valid in any Lorentz system. It can be rewritten

1

= [0 - (m3 +m3)?] [p° — (md - m3)?] } 70 [p* — (m} +m3)?] .

D(p?) = 32

From Eqgs.(8.47)-(8.48), we see that D(p?) is 472 times the discontinuity of
I(p?;m2,m3) across its cut, i.e.,

10 +ieymd, md) = 10 —iegmd,md) = = [ dkal(p—k)? ~mdlo(k? - m?).

Thus the discontinuity of I(p?;m2,m2) across its cut is obtained by replacing
each propagator in Eq.(8.46) by —27¢ times a delta function:

(p+ k)2 —m?+ig™!t = —2mis[(p+k)*—m3]
(k2 —mZ +ie)"! - -2mid(k>-m3). (8.50)

This recipe for obtaining the discontinuity of a Feynman integral is called the
Cutkosky rule (see Problems 8.6 and 8.7).

We illustrate the use of the Cutkosky rule by reconsidering the polarization
integral Eq.(8.37). The discontinuity of IT(k?) across the cut is

ie?

TI(k% + ie) — TI(k? — i) = 3@y

[ BRI+ B? - e - m?),
which we have immediately written in four dimensions, and where
B(p, k) = 4[4m? — 2pk — 2p?],
this being simply Eq.(8.39) in the case n = 4. We find
(k% + i€) — TI(k?® — de)
4ie? = 2 [T a2 2 2 2
= -2 ——5 dpo [ dp®/p?d(ky + 2poko)é(p” — pg + m”)
3(271’) —00 0
x (4m? — 2kopo — 2p% + 2p?)
2ie?

L / dpo(p§ — m?) % 0(pf — m*) 5(k§ + 2poko) (2m* — 2poko)
— 00

k% — 4m? 1

= —ﬁ(k2 + 2m?) { ]2 0(kZ — 4m?)
6m 0 k2 0 '
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The invariant form is obtained by replacing k3 by k2, and the spectral function
by substituting s for k%, and dividing by —2i [cf., Eq.(8.48)]:

2 273
_ e oy | S —4m 42
p(s) = 12m (s +2m*) [—_—s ] 6(s —4m?).

A once-subtracted dispersion relation would diverge, since p(s) ~ s as s — 00,
but if we write

4213
pl6) = 5= [ls = 1) + 7+ 2} [<= 2] (s = 4

then we can throw the dispersion relation into the form

(k%) = A + k? {B+ e 2(k2+2m2)/ (k;—s) [s—ij]f} , (8.51)

where a divergent constant, coming from (s — k?), has been replaced by a second
subtraction constant, B. Note that the integral part of this expression agrees
with Eq.(8.44), that we obtained by dimensional regularization. The fact that
A here should vanish is not indicated by use of the Cutkosky rule, whereas in
the dimensional method II(0) = 0 is automatic.

8.5 Magnetic Moment and g-Factor of Electron

In this section we shall use the foregoing methods to calculate the anomalous
magnetic moment of the electron to order a. In Sec. 2.3 we saw that the Dirac
equation predicts the g-factor of the electron to be exactly 2, but we noted in
Sec. 8.1 that that the experimental value of g differs from the Dirac prediction
by about one part in a thousand.

The conserved electromagnetic current density of the electron is

(@) =  P(z)y*(z) :

a normal-ordered operator on Fock space. For free fields, we can calculate

(', sli*(@)lpys) = (0b(@', 5)5* ()b (p, 5)[0)

1 m

(2m)3 \/mﬂ(ﬂ’s) Yu(p,s)e

where k = p’ — p, this form being obtained from the Fourier tranforms of the
quantum fields, 1 and 1, with use of the anticommutation relations between the

ke (8.52)
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creation and annihilation operators. The electric charge operator is
Q= e/dSij(:v) = e/d3a: Yt (@) (z)
and the Gordon identity (Problem 3.3), namely

1 .
w(p', s)y"u(p, s) = 5—u(p,s) [P + ia" k] u(p, 5), (8.53)

where P = p' + p, and o#” = 1i[y*,~"], leads to
,slQlp,s) = e - F), (8.54)

which is the correct continuum normalization. For a normalized state,

f) = / p F(0)Ip),

this corresponds to (f|Q|f) = e. For interacting fields, Eq.(8.52) is replaced by

1 m ikz

(o', sli*(z)lp,s) = OOE \/m'ﬂ(p’,S)l‘“(p’,p)U(p,S)e , (8.55)

where I'*(p', p) is called the vertex function. Since J,j# = 0, it follows that
a(p', s)k, (', p)ulp,s) = 0. (8.56)
In general the vertex function may be written
T, )T, p)u(p, 8) = 7w, 8) [P + 5 -G PHulp, ), (857)

where F and G are called form factors. A form factor multiplying k* is excluded
by Eq.(8.56). With use of the Gordon identity (8.53), we may rewrite this

u(p', s)T* (0, p)ulp,s) = (8.58)
oeu(p), ){[F() + GR)|P +iF ()7 K, Yulp,s)
The expectation value of the electric charge operator is
Wosilps) = e [ &t sli@in
= 5, T® ) {FK?) + GENP +iF (o ks }u(p, )8 (7" = 7)
= e[F(0) + G(0))6* (7" - 7). (8.59)
On comparing this with the free field case Eq.(8.54), we see that
F(0)+G(0) =1, (8.60)
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in order that e be identified with the physical charge of the electron. The
interaction Hamiltonian of quantum electrodynamics is

H; = e/dsm cAu(z)jh(z) : = e/d3:c p(z) A (z)y () -

Consider the matrix element

/ . — €

/ &z T, 5) A ()T (0, p)u(p, s) 6™

wwp

(8.61)

273 2 ,__w;)wp /d3:1:ﬁ(p',3)
< {[F(k2) + G(k?)) Au(z)P* +iF(k2)o™ A, (2)k, u(p, s) €= .

An integration by parts yields
/d%z’a“"Au(w)ku ethr = _ /d3a: e* T ok 5, A, ()
= 1 /dsm e gV F,, (z),

where F),, (z) is the electromagnetic field tensor. In terms of the electric field,
E, and magnetic induction, B, we have

10" Fu(2) = "7 - B (2) - 2§ - B(a),
where § = 14577, the four-dimensional spin matrix. Let us concentrate our
attention on the part of the right-hand side of Eq.(8.61) that involves B. It is

e

SE WF(kz) / d*zu(p',s) S - B(z) u(p, s) e™= . (8.62)

If the magnetic induction is uniform, i.e., B is independent of z, then we may
write Eq.(8.62) as

L PO, 5 - Bulp, )G - 7).
p

This is the magnetic part of the matrix element of the interaction Hamiltonian.
The magnetic moment of the electron is therefore

= —F (0)@(p, 8)Su(p,s), (8.63)

Wp

and in the electron’s rest system we have w, = m, so in this system the magnetic
moment has the magnitude

p=5—F(0) = 5=[1-G(0)],
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where the normalization condition Eq.(8.60) has been used. We recall that the
Dirac equation yields the value

eh _ ge h

k= ome  2me 2’

where the g-factor is precisely g = 2. Since we set A = 1 = ¢ in this chapter, we
find the improved value to be

g=2[1-G(0)].

To calculate G(0) to order a, we consider the Feynman diagram shown in
Figure 8.5:

D

p+gq

q k
Figure 8.5

Vertex Part p+yq

p
To order o, we can write the vertex function as
ie? diq
T(p',p) = v, — *S(p' LS .
(®',p) =Y @) / 2t SE + S+ 9,

Sandwiched between spinors, this gives

y 52

o bip! ) — vt Ly _ et ¢(r',p,q)
a0 {60 = v}t s) = =g | i

where the ‘t€’ prescription is implicit, and
o(p',p,q) = 4(p', 8) [Fy* + G*]u(p,s),
with

F=P?—k?+4Pq+2¢%, G* = 4[mg" — vqP* — vqq"].
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We are interested in the form-factor G(k?), so we ignore the term F, since this
multiplies v#, and thus contributes only to F'(k?). Accordingly,

7 2 U ’, Ho_ P* — m ,
5,0 Pulp,) = — 1y [ T s T - ],Zﬁqu) o

where the dots indicate the omitted contributions. We may write this

a(p', s)T* (9, p)u(p, s) = —4e*u(p', s)[mKH — PP, K” — 7, K*]u(p,s)+- - (8.64)

where
Ko o _____Z q”’
Kw.r) = Gy / d4q[(p’ +9)? - m?)[(p + 9)* — m?]¢

ww (g BN 9“q”
K*w.p) = (2w>4/ T —mlp+ ) — A

We are interested in the limits p’* — p*, and p* — m?, and we may write

i 0 H
08 = Gy | Mgy~ A7

K*(p,p) = ; = B@) '’ + Cp?) g™

I

i 0 [ q“q”
@niom? | * p+a)? -mq

where A, B and C are scalar functions of p?, which can be calculated, either by
the Cutkosky method, or by dimensional regularization (Problem 8.9). C(p?) is
not relevant to the calculation of G(0), since it contributes to the term propor-
tional to v* between the spinors; and we have, in the limit p?> — m?2,

1 1

2y ___ - N ——— .
AmY) =~ Torzm? Bm’) = o2 (8.65)
The right-hand side of Eq.(8.64) can be written
~4e%u(p', 5) [mA(m?)p* — A(m®)Pyp — B(m*)p"yp]u(p,s) + -
= 2e¢?m[A(m?) + B(m?)|P* +---. (8.66)

From Eq.(8.57) and the calculated values (8.65), we obtain finally

e? a

G(O) — __462m2 [A(mQ) + B(mz)] — ._.é? = —5; ~ —0.001162,

which yields the value g = 2.002324. This result agrees with the experimental
value of 2.002319... up to the fifth decimal. To obtain better agreement, one
has to extend the calculation to higher orders of the fine-structure constant, as
we noted in Sec. 8.1. This involves many Feynman diagrams and is a massive
undertaking.
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8.6 Exercises

Problem 1
Show that the Gamma function, defined by

[eo]
I'(a) = / dzz*"le %,
0

for Rea > 0, and by analytic continuation in a for Rea < 0, has the following
properties:

(1) for n a positive integer, I'(n) = (n — 1)!

(2) for all real or complex a, al'(a) = T'(a + 1).

(3) I'(a) is a meromorphic function of a, i.e., it is analytic, except for the
occurrence of poles.

(4) Locate the poles of I'(a) and calculate their residues.

Problem 2

Show that any Lorentz vector field, V#(k), that is a function only of the Lorentz
vector k*, can be written V#(k) = V (k?)k* . Show that any second-order Lorentz
tensor field, T#¥(k), that is a function only of the Lorentz vector k#, can be writ-
ten in the form T#" (k) = II(k?)P*" + A(k?)R* , where the projection operators

are defined by

Kk o _ RR

P = gt — = =5

Problem 3
Prove the formulae

RE (-
AB ~  J, [Az+B(1-1x)]?

1
ABC / ””/ [Ay + B(z — y) T CA-2)
Generalize these formulae to the case (A1 4z --- An) L.

Problem 4
Write the electron self-energy formally to order e? as an unsubtracted dispersion
integral in W = /s:
1 [ QW)
YX(p)=X 1+ — aw :
(p) =Zo +p 1+7r/ po— 7

— 00

Evaluate Q(W) explicitly.
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Problem 5
Compare the cutoff, the Pauli-Villars, the Cutkosky rule and the dimensional
methods for regularizing the vacuum polarization. In which cases is it true that

(1) the tensor polarization is transverse,
(2) the scalar polarization vanishes at k% = 0?

Problem 6
Consider the integral

I175mi,mo) = Gy / (0 + k)2 —m? +ie][k2 —mZ +i¢]
Show that, as p? — (m; + ms)?, poles of the integrand pinch the integration

contour; but as p> — (m; — ms)?, pinching does not take place. What can you
conclude about the analytic properties of I(p?)?

Problem 7
Derive the Cutkosky rule, [k* — m? + ie]™! — —27ié[k®> — m?], and use it to
calculate the electron self-energy to order e2.

Problem 8
Using dimensional regularization, calculate the scattering tensor, M,, ., for

Y+ v = v+, in the limit of vanishing photon momenta. Show that the
condition of gauge invariance,

kapupa(kla k2a k3, k4) =0,

is automatically satisfied.

Problem 9

Work out @(p', s)I',(p',p)u(p, s) to order «, using dimensional regularization.
Obtain expressions for F'(0) and G(0), the form factors in the static limit, show-
ing that the former is divergent in the physical limit n — 4, but that G(0) is
finite. Deduce the g-factor for the electron to order .. Show that G(0) can also
be obtained directly in four dimensions by the Cutkosky method.

Problem 10
Draw a parallel between the dimensional regularization method and distribution
theory. In each case integrals which are initially undefined are assigned a well-
defined value.



Chapter 9

Dyson-Schwinger Equations

In this chapter we shall set up the Dyson-Schwinger equations for the exact
propagators and vertex function of QED. They form an alternative to the method
of the Feynman perturbation series; and for some purposes they are superior, in
particular for the study of relativistic bound states.

The Lagrangian of QED, with gauge parameter a, is

_ 1 _
L =:9(vy0 —mo)yY — sF*EF,, — ﬁ(aﬁ,A‘“)2 — epyA : (9.1)

where mg and ep are respectively the bare mass and bare charge of the electron.
The Euler-Lagrange equations derived from this Lagrangian are

1;%”3" A = eopr™y (9.2)

[0 -moly = eovAY. 9.3)

[g;w32 +

The propagators of the full theory are defined by

D¥¥(z~y) = —i(0|T{A"(z)A"(y)}/0) (9.4)
Sr(z—y) = —i0|IT{y(z)%(y)}0), (9-5)

where the primes have been inserted, as in Chapter 8, to distinguish these quan-
tities from the corresponding free-field propagators. The propagators satisfy

1—-a
a

g8 + = 29H0¥ | D, (z) = 6484 (x) — ieolOIT {P()7"(2)A,(0)}]0)
[iv0 — mo] Sp(z) = &8*(x) — ieo(O|T{vA(z)%(2)¥(0)}/0) .
In deriving these equations, we have made use of the equations of motion,

169
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Eqs.(9.2)-(9.3). In momentum space, they can be written
DE(K) = D) - ieoDf () [ diac™ OIT {B@)(z)4* O)H0)
Sh) = Se() —ieoSr(p) [ d'ae” O (A@UEFOI0, (96

where Dr and S are the bare propagators, namely

v —g" + (1 — a)kMEY [ k>
D" (k) k2 + ie 6.7

Sr(p) = (yp—mo+ie)™ . (9.8)

9.1 Vertex Function

We shall define the proper vertex function, I',, by the relation

(0|T{¢($)E(y)z4"(z )}H0) = (9.9)
/ / d*p'd*pSy(p')Tu(p', p)Sp(p) DI (p' — p)e~ ¥ = Fipy=ilp=r)z,

27r)8

The normalization has been chosen in such a way that T, (p',p) = v, + O(ed).
The matrix element occurring in the first of the equations (9.6) is accordingly

~ (OIT (oo (@) (@) 4° (0)}10) = (910
//d4 /d4pTr{’YpSF(p )Fu(p p)SF(p }DIIJV p)ei(p_p,)m,

€o
(2m)®
where the sign change occurs because the fermion fields 9, and 13 have been
interchanged. The suffices a, 8 are spinor indices, and Tr refers to the operation

of taking the trace of the 4 x 4 matrix in question. Substitute Eq.(9.10) into the
first of the equations (9.6), do the z- and p'-integrations, and find

DY (k) = DY’ (k) — D (k)1 (k) D" (k), (9.11)
where the vacuum polarization tensor is
ie?
(2m)*

We may similarly substitute Eq.(9.9), with the appropriate arguments, into the
second of the equations (9.6). Performing the z- and p-integrations, we find

Sk (p) = Sr(p) + Sr(p)Z(p)SF(p) (9.13)

0, (k) = / dpTr{y,Sk (k + p)To (k + p,0)S(0)} 9.12)
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where the electron self-energy term is

2
20) = 57 [PPSO G DE R-7). (914

The current coupled to the photon field, i.e., the right-hand side of Eq.(9.2), is
conserved. This is easily proved:

—_ — — — —
10,97 Y = Y(iv § +iyd)Y = Y{—mo — egyYA + mo + eoyA Y =0, (9.15)
where use has been made of Eq.(9.3) and of its adjoint. Now it is clear that
k?k, D4’ (k) = —ak”. (9.16)

So if we contract the first of the equations (9.6) with k,, we find
k?k,DE” (k) = —ak” + iaeok? / d*ze™*® (0|T {4y (z)7,¥(z)A” (0)}|0). (9.17)

The quantity ik?e**® is just 6”e**®, and the differential operator, 8”, may be
transferred from e*** to the matrix element by a partial integration. Moreover,

O°T{P(2) 1,9 (2) A”(0)} = T{0°%(2)7,%(z) A (0)} + [P(2)v°¥(x), A" (0)]6(zo).

The first term on the right vanishes by current conservation, Eq.(9.15); and the
equal-time commutator vanishes, by assumption. Thus we have proved that

k?k,DE" (k) = —ak”. (9.18)
By contracting both sides of Eq.(9.11) with k2k,k,, we find
kPTL,, (k) =0, (9.19)

where use has been made of Eq.(9.16) and Eq.(9.18). Whereas a general second
order tensor could be a linear superposition of the tensors g,, — kyko/ k? and
koks/ k2, it is clear from Eq.(9.19) that the second cannot contribute to II,,-.
Accordingly, we have proved that

,, (k) = [gpa - 1“—2’-2“1} I(k2), (9.20)

where the scalar polarization, II, is a function only of k2.
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9.2 Dyson-Schwinger Equations

Consider the electron propagator equation, (9.13). By multiplication from the
left by Sz' and from the right by Sy ', we find

Sy (p) = S¢'(p) — =(p).- (9.21)
With the help of Eq.(9.8) and Eq.(9.14), we can write this

: 2
Sy ') =vp—mo - (;:))4 / d*p' v, SE@ )T (0, p) Dy (p—p').  (9.22)

This is the Dyson-Schwinger equation for the electron propagator. The ‘i€’
prescription has been left implicit; in fact Eq.(9.22) defines a function analytic
in a cut plane of the variable p?. The physical region of this complex plane is
the boundary on the upper lip of the cut, m? < p? < oo, m being the physical
mass (not the bare mass).

To obtain the Dyson-Schwinger equation for the photon propagator, we define
first the inverse tensors, Dz' and D7 !, by

D" (k)Dpy,(k) = 64 = D ** (k) D, , (k). (9.23)
Thus Eq.(9.11) is equivalent to
D" (k) = D™ (k) + I*" (k) , (9.24)

the inverse of the bare propagator being

1 L kR 1kPE
D7 (k;):—kz{[g“ -0 ]+E = } (9.25)

From the relation (9.12), the photon propagator satisfies

D (k) =D;1“"<k>+(;e°)4 / d*pTr{y* S (k+p)T” (k+p,p)Sk (p)} , (9.26)
which is the Dyson-Schwinger equation. From Eq.(9.20),

WL, (B) = | 6% — "5 ey = s

9" My (k) = |65 — —5—| T(*7) = 3ML(k7), (9.27)

so the scalar polarization is

M) = 718 [ En{rs,+p0 (4 pPSEE) . (029
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Introduce a form factor, F(k?), defined by

kM kY v
v _ _gI-W + k2 2 k*k
D" (k) = —z. —F(K) +a Rk (9.29)
From Eq.(9.24) we see that
k2
2y _
F) =5 + II(k2)

Let us calculate Mgller scattering with exchange of the full photon propagator
instead of the bare one. We will obtain the same result as in Sec. 7.3, except
that €2, in Eq.(7.9) and Eq.(7.10), will be replaced by e2F(k?). In the present
treatment only the photon corrections are taken into account, and we identify
the physical coupling as a = ag F(0), so we see that the photon form factor
accounts for (part of) the renormalization of charge. We identify a running
coupling by

(8%
1+ (k%) k2

a(k?) = gp(k2) ~

Replacing the full electron propagators in Eq.(9.28) by their bare values, we
obtain the approximate result (8.44). The asymptotic behavior of II(k?) was
given in Eq.(8.45), and this yields

Qo

1- % log (—47)

a(k?) ~ (9.30)
for large k2, where M is an undetermined constant. When k is spacelike, the
denominator in Eq.(9.30) is real, and a(—M?2) = ap. Because of the minus sign in
front of §2, it follows that, as —k? becomes larger than M2, so the denominator
becomes smaller, and the running coupling becomes larger. This has a physical
interpretation: as the spacelike energy of the virtual photon probe increases, so
the effective charge that is felt is less screened, and it is therefore larger than
the low-energy value, which is the usual fine structure constant, namely i%

There is a problem with Eq.(9.30), namely that the denominator has a zero
for very large values of k?/M? — this phenomenon is called the Landau ghost,
which, if it were taken seriously, would correspond to a tachyon, a particle with
imaginary mass. However, it is not expected that the approximations we used
to obtain Eq.(9.30) are valid at such enormous k2, so it is not sure that QED
really does possess a Landau ghost. If it does, one would have to conclude that
electromagnetic forces, taken by themselves in isolation from the other forces,
do not lead to a consistent quantum field theory.
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9.3 Ward-Takahashi Identity

An important relation between the propagators and the vertex function can be
obtained by considering the matrix element

WH(z,y,2) = (01T {(2)d ()" (2)}0) , (9.31)

where the conserved current density,

7*(2) = (2)v"(2) (9.32)
is coupled to the photon field [Eq.(9.2)]. Since
T{e@BsWi* @)} = T{a(@Ts®} (80 ~ )00 — )
+9a (2)5%(2)¥ 5 (y)0(z0 — 20)8(20 — Yo)

—13(y)5°(2)%a(z)8(20 — 0)8(yo — 20) (9.33)
+3°(2)T {a (2)P5 () }6(20 — 20)8(20 — Yo),

one can evaluate the derivative of this time-ordered product with respect to z°.
After some careful algebra, one finds

%T{‘f’a(x)%(y)jo(zn = T{¢a(2)Ps(y)05°(2)} + (9.34)
%) Wa(x),5°(2)10(y0 — Zo) — [Ya(z), % (2)1Ps(¥)0(zo — Y0)}d(z0 — 20) +
{[s(®),°(2)Ya(x)8(yo — To) — Ya(z)[W5(y),5°(2)]0(z0 — Y0)}d(y0 — 20)-

Now one can prove easily from the equal-time anticommutators that

[Ya(2),1°(2))0(z0 — 20) = a(z)d(z - 2),
[Ws(1),i%(2)] 6o — 20) = —¥s(y)6*(y — 2). (9.35)

Moreover, since spatial differentiations do not affect the time-ordering operation,

T ()} = T{a@)Ts®)2" () (9.36)
HI(y - 2) — (@ - T Wal@Ba )}

The first term on the right vanishes by current conservation (Eq.(9.15)), and so
the vacuum expectation value of Eq.(9.36) is

o WH(@,y,9) = iy = 2) ~ 6z~ 2Spa —y),  (937)



Ward-Takahashi Identity 175

where we have used the definition (9.5). From the equation of motion Eq.(9.2),
we know that Eq.(9.31) can be rewritten

Wh@y,2) = —(OIT(H@TW)e" 0 + 0014, ()H0)  (9.38)

1
) [9“"33 +

€o

af;a:} OIT{$@)B(w) A ()}0),

where the second line follows from the first, because A, and A, are assumed to
commute at equal times with ¢ and 1. With the help of Eq.(9.9), we find

W@ = o [ [ 7S, 0. S @D e 1) (939)

1- . L,
[Q‘W(P -p)’+ "'—a—(P -p')*(p - P’)V] e~ tipy=ilp=p)z
On differentiating with respect to z, we obtain

W@ = s [ [ EPESEEI00 PSP (0~ )

Lo P (p— e P IO (9.40)

i ) vt e tiny—i(p—)z
e | | AP DSE @I PISE ) p - e

where we have used Eq.(9.18) to obtain the second line.
The two expressions (9.37) and (9.40) must be equal to one another, and if
we set z = 0 and take Fourier transforms, we find

SF@ )T, p)Sr@)(p-p) = / dizdiye’® =Y [§4(y) — 6*(z)] Sk(z — v)
Sr(®') — Skr(p), (9.41)

or equivalently,

(p' — p)*Tu(p’,p) = S5 (0') — S5 (p). (9.42)

This relation, which connects the longitudinal part of the vertex function to the
electron propagator, is called the Ward-Takahashi identity. Now let p' = p + k,
with k infinitesimal and independent of p. Then we see from Eq.(9.42) that

f

KT, (p+ k,p) [ i S;1<p+k>] +O(?)

Ok+ k=0

]

pl| 9 a1 2
[ 5 Sp (p+ k)] - + O(k?). (9.43)
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Thus

KT, (p,p) = k%s'—l(p) L o), (0.44)

and since k is independent of p, one must have

Cu(p,p) = 2S5 (0), (9.45)

which is called Ward’s identity. This can also be written

Se @)L (0,2)Sp(e) = 5 5S¢ ). (9.46)

where the identity
O A=-A9,4A HA

has been used.
The full electron propagator can be expressed as a subtracted dispersion
relation. Leaving the subtraction implicit, we write

(o]
Se0) = | = bma(a) + ()] (9.47)
which is called the Lehmann representation. The support of the integrand is
[m?2,00), and there may be a delta distribution at s = m?, depending on the
value of the gauge parameter, a (see below). The spectral functions, p; and
p2, were calculated to order a in Eq.(8.29), but here we envisage going beyond
perturbation theory.
It is convenient to write Eq.(9.47) in the form

Se@) = [ W o) [rp =W +ieW)] 7, (9.48)

where s = W2, ¢(W) = %e¢, and
p(W) = £[Wp1(W?) + p2(W?)],

the plus sign applying to W > 0, and the minus sign to W < 0. The Ansatz
of Delbourgo and Salam consists in guessing a dispersion relation for the full
vertex function, with the fermionic legs attached:

o0

Sp(@)Tu(®,p)Sp(p) = / dW p(W)[yp' = W] ufp - W], (9.49)

— 00
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where the ‘te(W)’ prescription has been left implicit. This form satisfies the
Ward-Takahashi identity for any spectral function, p, for

(' = 9)* Sk )Tu®',p)Sr (p)
= /_ aw o(W) [ = W] {{w' - W)= [yp - W1} e - W]

_ /_Z aw p(W){[p - W]~ = [ -w] 7"}
= Sp(p) — Sp(p').

The Ansatz (9.49) is not the only form that guarantees satisfaction of the Ward-
Takahashi identity, for one can add any longitudinal term, F'f}"g (»', p), such that
(p' - p)“I"ﬁ"g(p’ ,p) = 0; but it is hoped that the Delbourgo-Salam Ansatz is
good at low energies.

By multiplying both sides of the Dyson-Schwinger equation (9.22) from the
right by S (p), one obtains

(79— m0)Sp(p) = 1+ / d4p', S (BT, (7', p) Sp (D) D (' —p) . (9.50)

(2 )4
On substituting the Lehmann representation, Eq.(9.48), into the left-hand side
of this equation, and the Delbourgo-Salam Ansatz, Eq.(9.49), into the right-hand
side, one obtains a linear equation for the spectral function, p.

To proceed further, we would need the full photon propagator, since this
occurs in Eq.(9.50). The simplest option is just to replace it by its bare form,
Eq.(9.7). The bare charge, eg, is similarly replaced by the physical charge, e.
After performing the four-dimensional integral in Eq.(9.50), under the dispersion
integral (9.49), we find

oW, W)

W —mypw) = [~ aw ooy ),

(9.51)
QW,W') = 2o (W2 -W?2)(W? - W"?)[a(W"? +W?) - B+a)W'W]/(4nW?),
where the necessary subtractions have been left implicit. It is left as an exercise
(Problem 9.6) to show that the integral equation (9.51) has a solution, and that
this leads to the infrared behavior (p? — m?),

Sr(p) ~ (yp — m)~1ex(a=9)

Evidently the naively expected pole behavior at p? = m? is only true if a = 3

(the Yennie gauge). In the Feynman gauge (a = 1), and the Landau gauge
(a = 0), the branch point at yp = m is more singular than a pole.
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9.4 Chiral Symmetry Breaking in Strong QED

Is it possible that the electron’s mass is purely of electromagnetic origin? A
way to investigate this idea is to consider the Dyson-Schwinger equation for
the electron propagator, Eq.(9.22), in which the bare mass is set equal to zero.
The free Dirac equation for the electron has thus no mass term, and so the
field possesses chiral invariance [see Eq.(3.94) et seq.]; but this does not imply
that the full electron propagator, obtained as a solution of the Dyson-Schwinger
equation, corresponds to zero physical mass. If this mass is nonzero, we speak of
dynamical chiral symmetry breaking and of the generation of an electron mass.
We shall show that the nonlinear form of the Dyson-Schwinger equation
allows for such a dynamical generation, but that it occurs only for large values
of the coupling, a = g ~ 1, and not for the physical value, o ~ . The
conclusion is that the mass of the electron cannot be purely of electromagnetic
origin. Nevertheless, the result of the analysis is not wholly negative, for it serves
as a model for a similar treatment of the quark Dyson-Schwinger equations of
quantum chromodynamics. In this theory, which is beyond the scope of this
book, the equivalent strong interaction coupling, as, is of order unity at low
energies, so that the dynamical generation of quark masses is indeed possible.
We propose to make some cavalier approximations which, while they are
not expected to have small numerical consequences, do not destroy the crucial
nonlinearity of the Dyson-Schwinger equation for the electron propagator. The
purpose is to show how the phenomenon of dynamical chiral symmetry break-
ing can occur. We shall approximate the vertex function by its bare value,
T#(p',p) = v*, the bare charge, eg, by the physical charge, e, and the photon
propagator by its bare form, which we choose to write in the Landau gauge,

—g" + kY K?

D (k) D () = =L

With these approximations, the Dyson-Schwinger equation for the propagator
of the electron reads

— e / 1 (ot v /
SEU0) == oyt [ APWSE@IWDE 0 -F).  (052)

Now S}_l (p) can be regarded as a function of the matrix yp, so we can write it
Sg () = 27 (=p°) [yp — m(-p%)],

where the wave-function renormalization, Z(—p?), and the mass function, m(—p?),
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are to be determined. Since the matrices v* are traceless, it follows that
Tr S5 ' (p) = —4Z7 1 (-p*)m(—p?) Tryp Sy (p) = 4p°Z 7 (—p%);

hence by taking traces of the right-hand side of Eq.(9.52), we can obtain coupled
scalar integral equations for Z=! and Z " 'm:

_ ie? , v ,
Z7Y(-p)m(-p?) = —4(%)41‘1‘ / d*p'y,Se (") DY (p — P) (9.53)
-1 2 ie? p 4,1 1t pv '
Z7(-p°) = 1- ———4p2(27r)4’1‘r'y pp/d P'YuSr(@) 7D (p—p').

After computing the traces of the integrands, and then making the Wick rotation
to Euclidean space, so that —p?,, — p%,., and finally performing the angular
integrations, we find (Problem 9.3) that Z(p%) = 1 and

00 dp12 p12 m (p/z)
max (p?,p?) p? +m?(p2)’

9y _ 3C
m(p®) = . A (9.54)
where a = %f; is the fine-structure constant.

It is clear that m(p?) = 0 is always a solution of the nonlinear equation
(9.54), in which case S5 !(p) = 7p, corresponding to a massless Dirac particle
without interaction. The interesting question is whether the equation can have
a nontrivial solution too, which would correspond to the dynamical generation
of mass. The Dyson-Schwinger equations must however be regularized. This
can be done by the dimensional method (Problem 9.4); but here it will prove
adequate, for the approximate equation (9.54), simply to insert a cut-off, A2:

3a [N dt tm(t)
4r Jo max(s,t) t+m2(t)’

m(s) = (9.55)

where s = p? and t = p'2. We shall now show that Eq.(9.55) has no nontrivial
solution if o < %. First note that, for any real m(t),

tm(t) | t |m(t)|
t+m2(t)'_ t+m2(t),/t+m2(t)\/zs‘/i'

From Eq.(9.55) it follows that, for 0 < s < A2,

s A2
|m(s)|§i—j:—{[) dt-‘§+/ %}:%{A-;ﬁ%%"%, (9.56)

so m(s) is necessarily a bounded function, although the bound does explode as
A — .
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Since any function that satisfies Eq.(9.55) is bounded, as we have just proved,
it must have a finite norm of the following kind:

imil = sup {V&lm(s)l}- (957)

0<s<A?

Of course, sup |m(s)| also exists, but Eq.(9.57) is the most useful norm, since
from Eq.(9.55),

s A?
Im(s)] < 231%{'13'/ dtt™% + dtt-%}umu
0 s

3ag 4 2 3a
- Z;{%—X}umu < sl

Therefore
3a
< — .
Jlml] < =2{jml|

If m(s) is not identically zero, ||m|| # 0, and so we conclude

251, (9.58)
i3
as a necessary condition that Eq.(9.55) have a nontrivial solution. It is significant
that the inequality (9.58) does not contain the cut-off, A. For the proof to work,
there must be a finite cut-off (more generally, a regularization), but it may be
as large as we please.

Although the above analysis was based upon an approximate form of the
Dyson-Schwinger equation, it is generally felt that the idea of creating an electron
mass by breaking chiral symmetry in QED, and the electroweak theory that is
its generalization (see the Appendix), is doomed to failure, since the physical
value of « is two orders of magnitude too low to satisfy Eq.(9.58). Nevertheless,
we shall proceed with this ‘Strong QED’ model, in which a > %, in order to
introduce a method that is of wider use. '

A general technique for the analysis of nonlinear equations like Eq.(9.55) is
bifurcation analysis. We have remarked that this equation always has the trivial
solution. The question to be answered is whether, as the coupling is increased
from zero, there occurs a critical value, at which a nontrivial solution splits
off, or bifurcates from the trivial one. In an infinitesimal neighborhood of such
a bifurcation point, one may evaluate the derivative of the right-hand side of
the equation with respect to m, at the point m = 0. If the resultant linear
equation has a solution, the nonlinear equation has indeed a bifurcation point,
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the solution of the linear equation providing the starting point. To see how this
works for Eq.(9.55), consider

0 tm |t 2m?t
Om \t+m2 ) t+m?2 (t+m2)?’

which reduces to 1 at the point m = 0. The bifurcation equation appertaining
to Eq.(9.55) is therefore

A M g
) = - ——— dm(t 9.
me)=7 [, i ™o, (9.59)
where dm is an infinitesimal, where we have introduced an infrared cut-off for
technical reasons, and where we have set A = 3a/7 for convenience.
By judicious differentiation, we find that any solution of Eq.(9.59) must also
satisfy the differential equation

s26m" (s) + sém'(s) + 1Adm(s) = 0,
which has solutions for any A, indeed the most general solution is
om(s) = Ays®t + A_s%,

where ay = —3 * V1 — A. This general solution of the differential equation
does not satisfy the integral equation (9.59), because of infrared and ultraviolet
boundary conditions, at s = €2 and at s = A2, respectively. These conditions
can be simultaneously satisfied only if

(é) B BV Y
€ C1+V/IoX

For 0 < X < 1, the left-hand side is greater than 1, while the right-hand side
is less than 1, which means that the integral equation has no solution for A in
this range. When A > 1, there are solutions, because then /1 — A is imaginary.
The smallest value of the coupling for which the bifurcation equation (9.59) has
a solution is
2
Ar 1+ 4L2A ,
log® <

which tends to unity from above as A — oo and/or € — 0. The details of the
above calculation have been relegated to Problem 9.5.



182 Dyson-Schwinger Equations

9.5 Exercises

Problem 1
Derive the Euler-Lagrange equations for QED and fill in all the details in the
derivation of the following exact integrals for the propagators:

DI¥(k) = DX(k)—ieoD" (k) / d*ze™ (01T (B(z)y, (2) A" (0)}]0)
Se(p) = Se(p) —icoSr(p) / d42e* (0T {yA(z) b (z)B(0)]0)

Problem 2
Demonstrate the equality
s T (a5 @)1°()} = T{a(zFs )061°(2)} +
{85 )a(2),3° (2)18(y0 — o) — [a(2), ()T ¥)8(z0 — ¥0)}6(z0 — 20) +
{¥ (1), 7°(2)]¥a(2)8(yo — zo) — Ya(@)[Bs(y), i°(2)10(z0 — y0) }d(yo — 20).
Problem 3
If the electron propagator satisfies
Sg'e) = Z7(=p*) [yp—m(-p")]

i62 l; ! i v !
= gp-— (27T)4/d4p7u5'p(p )fYVD% (p—p)a

where D%’ is the bare photon propagator, obtain coupled integral equations for
Z(-p?) and m(—p?). Show that Z(—p?) = 1 in Landau gauge, and write down
the resulting integral equation for m(—p?).

Problem 4

Repeat the calculation of the previous question in m dimensions. Show that
dimensional regularization leads to Z(—p?) = 1 in Landau gauge, independently
of the value of n.

Problem 5
Find the smallest value of )\ for which
AN dt
) = — —_— t
m(s) 4 /.. max(s,t) om(t),

has a nontrivial solution. Show that this eigenvalue tends to unity as ¢ — 0 or
A — .
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Problem 6

Show that the Delbourgo-Salam Ansatz for the vertex function in QED leads to
an integral equation, for the spectral function of the electron propagator, of the
following kind:

Q(w,w’)

W —mypw) = [ aw o))

Calculate Q(W, W'), and investigate the infrared behavior of the propagator.

Problem 7
Calculate the inverse of the electron propagator,

Spi(p) = a(—p2)7p+ﬁ( p?)

= & E / d*k D’ (k)1uSr (P + K)o

where DF is a regularized photon propagator,

k“k:" 1 —A2
k2 — p2 k2 — A2°

D) = |-+ (1- )%

Here p is a fictitious photon mass that serves as an infrared regulator, and A is
a Pauli-Villars ultraviolet regulator. Derive coupled integral equations for a and
B. Consider the limits in which the regulators are removed, p — 0 and A — oo.
Under what conditions is 3(p?) = 1 in the Landau gauge?

Problem 8
Consider the approximate Dyson-Schwinger equation for the electron’s mass-
function in Landau gauge,

m(s) = m(0) + 2 /os dt (.Z - 1) m(t)

t+m2(t)’
where A = 3a/7 > 1, and where m(0) is assumed to be nonzero.

(1) In the integral equation, replace the kernel, (- - 1) by its average, —3,
and show that the solutions of the approximate equation have complex
singularities on the first Riemann sheet of the variable s.

(2) Suggest a method to locate the singularities of m(s), without the above
averaging of the kernel.

(3) What is the objection to having complex singularities? What is their
origin? How may they be removed?
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Problem 9

Derive the Dyson-Schwinger equation for the electron mass function, m(p?),
in massless QED(3) (i.e., quantum electrodynamics in two space and one time
dimension, with zero bare electron mass). In the approximation of taking a free
vertex and a free photon propagator, show that this equation reduces, after Wick
rotation to Euclidean momenta, to

m(pZ) — 2¢” d3q m(qz) .
2m)2 J (g-p)* m*(¢®) +¢?
Approximate this equation further by making the replacement m?(¢?) — m3 in
the denominator of the integrand, with the subsidiary requirement,

lim m(p?) = my.
p2—0

Solve this equation and show that chiral symmetry is dynamically broken down

for arbitarily small coupling in this model. Does this result change after inclusion
of the contribution of an electron loop to the vacuum polarization?

Problem 10

In QCD, the non-Abelian gauge theory of the strong interaction, the running
mass-function of a quark is believed to be well described by the approximate
Dyson-Schwinger equation, in the Landau gauge,

dt tm(t)
T(s,t) t+m2(t)’

A
m(s) = mo(A) + a/o

where 7(s,t) = max (s,t) log [1 + max (s, t)]. The logarithm factor accounts for
asymptotic freedom, i.e., the fact that the interaction between quarks vanishes
in the extreme ultraviolet; and o has been calculated in perturbation theory,

with the result o = 12

2, given that there are six quarks with three colors. A is an
ultraviolet cut-off, and mg(A) is the bare mass of the quark, which is allowed to
depend upon the cut-off.

(1) Show that the general solution has the ultraviolet behavior
m(s) ~ —élog—l‘“’ s+ Blog™’s.

(2) Prove that there is no solution for m(s) if A = oo and mg(o0) # 0.
(3) Why does the ultraviolet boundary condition not determine a unique
solution, up to normalization?



Appendix A

Electroweak Interactions

We shall consider the first generation of leptons, the electron and its neutrino.
Both particles interact weakly, and the electron interacts electromagnetically
because of its charge. The electron has mass, whereas the electron-neutrino
mass is extremely small; indeed for a long time the neutrino was thought to be
massless. We shall present the electroweak theory as if the neutrino were exactly
massless. Inclusion of a mass term can be implemented by the method given in
Sec. A.3, the details being relegated to Problem A.8.
The electron has both left-handed and right-handed chiral components

¢e:PL¢e+PR¢ea

whereas the neutrino was thought to have only a left-handed chiral component,

Y, = P, .
As in Eq.(3.96), the right and left chiral projection operators are
Pgp = 3(1+7s) Pp=3501-1). (A1)

As we showed at the end of Chapter 3, chirality and helicity coincide for a
massless particle, and for this and other reasons the electroweak theory is set
up in the first place for massless particles. This allows the Lagrangian to have a
high degree of local symmetry, but at the expense of neglecting all masses. By
the magic of spontaneous symmetry breaking, it will be shown how an effective
mass term can be generated for the electron, and, optionally, for the neutrino.
The left chiral parts of the electron and the neutrino fields are put into a doublet,
while the remaining right chiral part of the electron is put into a singlet:

_( Puibw _
L= ( iy ) R. = Pry.. (A.2)
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The Lagrangian density for a free, massless theory with a left-handed doublet
and a right-handed singlet is

L=1:Ley"8)Le:+i: Ry, R, :
The terms are invariant under independent, global U(2) transformations,
U(8,0) = exp[—ib] exp|—if - 6] . (A.3)

The first factor is a phase that corresponds to the Abelian group, U(1), while
the second factor constitutes a nontrivial SU(2) mixing of the components, ¢
being the generator with the appropriate dimensionality. For the right-handed
singlet, this dimensionality is 1, and ¢ = 0 in this case; but for the left-handed
doublet, the dimensionality is 2, and t is represented by the Pauli matrices,
which we write 7 rather than &, to avoid confusion with spin. The degree of
freedom generated by # is called (weak) isospin. For the right-handed singlet,

R, — UR.U'=ugR.

ur = exp[—ibg],
whereas, for the left-handed doublet,

L. — ULU'=urL,

ur = exp[—ifL] exp[—if - 7].

In general the U(1) phases, 0, and 0r, may be different. It is convenient to
replace these phases by 6 = Y70 and 0r = Ygrf. The general U(2) matrix can
now be written

u = exp[—iY§] exp[—if - T ],

where Y is the generator of U(1), taking the values Y7, and Yg for the doublet
and the singlet, respectively. Y is called the (weak) hypercharge, and it proves
useful to restrict it by requiring

where @ is the electric charge and T3 is the third component of the isospin, this
being 0 for egr = Pr1). and 3 for v, = Pgrt, and e, = Pgri), respectively. The
hypercharge can then be calculated from Eq.(A.4). The following table shows
the values of the electroweak quantum numbers:
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T| T35 Q| Y
vy | % 3 0| -1
er 15 —-;— -1 -1
er | O 0| -1|-2

Following Yang and Mills, we now extend the global symmetry to a local one,
ie., we allow 8 and g to depend on space and time. This local symmetry
is called gauge symmetry, on the analogy of the electromagnetic case, and it
requires the existence of vector gauge fields, like the photon. For the right-
handed singlet, we introduce the isospin scalar field B,, which changes under
the gauge transformation Eq.(A.3) as follows:

B, B, =B, %a,,é . (A.5)

Next we define the covariant derivative operator
D,=0,—-19YB,, (A.6)

so that the term Re'y"'DpRe is invariant under this transformation, the term
arising from differentiating R, being canceled by the change in B,.

The case of the left-handed doublet is more complicated, because of its more
intricate transformation properties in the original global theory. We proceed by
analogy with the singlet case by extending the covariant differentiation Eq.(A.6)
to include isospin:

D,=08,—igt-A,—igYB,. (A7)

We have defined the coupling, g, to an isospin vector field A 0y With g # §. In
order that the term L.y?D,L. be invariant under the gauge transformation, the
vector field must undergo the transformation

—

T A, >uL ['F -/f,,] uzl - g(a,,uL)ugl

With 6 infinitesimal, ur, 1 — if - 7, and one obtains (Problem A.1)

App = Apy = App — gapeb + €bedbcApd - (A.8)

We are thus led to consider the following Lagrangian:
Lo =: Len?[id, + g7 - A, — §B,)Le + Rev?[id, — 2GB,)R. : (A.9)
where Y has been replaced by its eigenvalues (Y = —1 for the doublet and

Yr = —2 for the singlet). The Lagrangian density (A.9) is invariant under
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the gauge group U(2) = SU(2)iso X U(1)nyp. The isoscalar Abelian gauge field
B, propagates just like the photon in QED; that is, the Lagrangian density is
—1B,;B*? , where B,, = 0,B, — 0,B,. For the isovector (non-Abelian) gauge
field, the Lagrangian density is —1A,;3A}°, with summation over the SU(2)
index, b =1,2,3. Here

Apor = 3,,Aab — aaApb + g€pcaApcAcd (A.10)

and the inclusion of the last term in this expression is essential in maintaining
gauge invariance (Problem A.2). It produces cubic and quartic self-interaction
terms in the Lagrangian density.

Now we introduce scalar fields that constitute the ‘Higgs sector’ of the elec-
troweak theory, which will induce spontaneous symmetry breaking. In the
Weinberg-Salam theory, the complex SU(2)1 doublet of complex scalar fields,

¢=[¢+]_ 1 {¢T+i¢§f],

¢° | V2l & +id
is defined. The complex field ¢t annihilates charge +1 states, the field ¢° charge
0 states. Since the isospin components are T3 = +1 for ¢ and T3 = —3 for ¢°,

the weak hypercharge, Y = 2(Q — T3), is +1 for ¢+ as well as ¢°, i.e., for the
Higgs doublet. The scalar Lagrangian density is defined by

Ls=: (D) (Do) — A('p — )? : (A-11)

where couplings of the scalar field to the isovector field ffp and the isoscalar
field B, occur, thanks to the covariant derivative terms,

D,¢ = (8, —ig7 - A, —i3B,)¢, (A.12)

where the eigenvalue Y; = 1 has been inserted. The above equations specify the
couplings in the theory, and they reflect the underlying group structure.

A.1 Spontaneous Symmetry Breaking

By way of orientation, we first set every field except ¢ to zero, and consider the
pure scalar Lagrangian density

Ls=:(0,0)1(87¢) — Mg~ n)*:

Classically, the state of minimum energy, the vacuum, is obtained by minimizing
the corresponding Hamiltonian, as a function of the scalar field, ¢. If u > 0, the
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minimum energy is reached when the scalar field is constant and such that
p=o'o=F{I1611 + 631" + (A + [63)°}.
We implement this relation by the choice
¢ =0 =¢3=0 =2

Now imagine that the fields depart just a little from the above values, and for
convenience replace the four fields ¢7, ¢5, #?, ¢3 by four new ones, an isoscalar
field ¢ and an isovector field ®, according to the parametrization

0
1 [ of +igd 1 o
=2 % .2]=——M(<I>)[ }
V2 ¢?+z¢g V2 B¢ + /20

where M is the two dimensional matrix

M(3) = exp [72:_21-*-6] .

The vacuum corresponds to the vanishing of the fields ®, and 3.

We will express the scalar Lagrangian density in terms of these fields, after
making a gauge transformation. Under such a transformation the lepton fields
undergo the change

Le — ULeU_l = uLLe
R. — UR.U!'=ugR..

We make the special choice

up, = M™Y®)

uR=1.

The isoscalar field B, remains unchanged, and the isovector field A, undergoes
the change

T -/fp -7 ~AT;, = ur[T -ff,,]uzl - %(BpuL)uzl.

Under this transformation the field ¢ becomes

-1 0
¢—’"L¢_\/§[<I>o+\/2—ﬁ]’ (A.13)

and the fields & have disappeared completely in this, the ’t Hooft gauge.
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After these preliminaries, we return to the scalar Lagrangian density (A.11), now
with the gauge fields ffp and B, restored, but after the gauge transformation
that left the scalar field, ¢, in the simple form (A.13). As we noted, the gauge
field B, is unchanged, but /fp is changed into Zf;,. We agree to drop the prime
on /f;,, on the understanding that the Lagrangian density is to be written in the
new gauge. Since the Lagrangian density is gauge invariant, it is not altered by
making a gauge transformation on the fields it contains.

On writing Eq.(A.11) explicitly, in terms of the fields ffp, B, and ®, we find
terms which are quadratic, cubic and quartic in the fields, considered together.
The quadratic terms belong to the ‘free’ part of the Lagrangian, the cubic and
quartic terms to the ‘interaction’ part, according to the standard nomenclature of
perturbation theory. It turns out that there are, in the quadratic part, besides
terms of the sort B’B, and A5A,3, also crossed terms of the sort A§B,. To
remove these undesirable terms, we introduce the linear combinations of fields,

A, = Ay3cosfw + B,sinfw
Z, = B,cosfw — Ap3sinfw , (A.14)

where the Weinberg angle, 8y, is defined by

2
tan Oy = _g'
9

There are no crossed quadratic terms for these new fields, nor for the fields A,;
and Aj;, and we use these to define complex fields:

1 : 1 .
W, = 7§[Ap1 + 1A ] W)= —\/E[Ap1 —iAL]. (A.15)
After all these manipulations, we discover, after some calculation, that the scalar

Lagrangian density can be written (Problem A.3)

Z,2°
cos? Oy
5 IR = AVERS + 397(83 + VB WP + ot 7, 2°]

Ls = §:(0,80)(8°B0) — 4Au®] : + Lug® : WIW? + (A.16)

There are no quadratic cross-terms between the fields W and Z, so that these
are indeed physical mass eigenstates. The quadratic terms &3, WJW” and Z,2°
have just the right form to make the Higgs, the W and the Z particles massive,
whereas the photon fortunately remains massless, since there is no term A,A”.
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A.2 Leptonic Sector

As we see from Eq.(A.9), the lepton fields couple to the gauge fields ffp and B,.
This Lagrangian density can be rewritten in terms of the physical fields, A,, W,
and Z, as follows (Problem A.4):

Loe=1:0,7 00 +i:1, ¥*O,Pripy, : —e: Jo A,

[
JEW, + JEWI] . (A7)

L T
sin20y,  Jrene it

e . [
V2sin 0y
where the SU(2) coupling constant, g, has been removed in favor of

e = gsinfwy ,

so that the coupling of the photon field to the electromagnetic current,

Tom = DY by, : (A.18)
is —e. In Eq.(A.17), the charged weak current is
& =07 Py, : (A.19)
which has a purely V — A form, and the neutral weak current is
St = 2sin’ 0w JE, — ¥,y Pripe - + Y, Y Pry,
= 1%, Y Priy, : — [0y — Car’lipe : (A.20)

where the vector and axial vector coupling factors are respectively given by
Cy = 1 —2sin* Oy and C4 = L. The charged fields W, and W} create vector
particles that are carriers of the weak force, and they couple to left-handed
charged currents only. The field Z, creates vector particles that are also carriers
of the weak force, and they couple to neutral weak currents.

So far the electron has remained massless, but a mass term can be produced
by adding the following gauge-invariant coupling of the original scalar field ¢
and the electron field:

~gi: [RI¢'Le + LIgR,] :
where g; is a real. For the gauge choice Eq.(A.13), this becomes (Problem A.5),
—9i CPete t — = 1 YePePo i .
g \/p‘ "»b "/) \/§ ¢ "/’e 0

We thereby obtain an electron mass m, = g;,/& and an electron-positron-Higgs
vertex interaction term.
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In terms of the physical field tensors,
Ay = 0,A; — 0, A, Wye = 0p,Ws — 0, W, Zpoe = 0pZs —0s2,,
we can write the gauge part of the Lagrangian density as
—1B,o B — 1A, AL = —3A,0 AP — 1 Z,, 2P — LW WP + -

the omitted terms being cubic and quartic in the gauge fields. They represent
three-gauge and four-gauge interaction vertices. This gauge part contains no
mass terms, but, together with the relevant terms from the scalar Lagrangian
density (A.17), we can write the terms quadratic in the gauge fields in the form

DA AP 1 =1 Z,,72°7 c +imY  Z,72° -1 WJUW”" L+myy c W,WP

1
4
where the masses, mz and mw, can be identified by reference to Eq.(A.17).
After spontaneous symmetry breaking and the gauge transformation, the photon

and the neutrino remain massless, and the other particles acquire masses as
shown in the table:

particle electron | charged vector | neutral vector | Higgs scalar
mass Me mw mz LD
equivalence | gi\/1 g/ /2 myy sec Ow 2V Ap

In this model of the electroweak interaction, gauge invariance was maintained.
We have three kinds of fields: leptons, gauge bosons, and a Higgs scalar. There
are five parameters in the theory, the gauge couplings, g and g, and the Higgs-
sector parameters A, u and g;. Equivalently, the five parameters can be taken to
be the charge and mass of the electron, as well as the masses of the the W-boson,
the Z-boson and the Higgs particle.

There is a second generation of leptons, namely the muon and its neutrino.
The whole SU(2);, x U(1) theory is simply repeated for a left-handed doublet
and a right-handed singlet of muonic leptons. The gauge bosons, v, W and Z,
are the same as those in the electronic sector, and it is via these gauge particles
that muons and electrons, and their neutrinos, interact with each other. The
Higgs sector is also the same, except that ®, has a stronger coupling to the
muon than it does to the electron, say m, = g;,/t. Muon and electron numbers
are separately conserved. A third generation of leptons, the 7 and its neutrino,
have been discovered, and, by measuring the decay width of the Z gauge boson,
it has been determined that there are no more generations (at least, so long as
the neutrinos are approximately massless).
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A.3 Quark Sector

Next we incorporate the electroweak interactions of quarks into the formalism.
We limit our presentation to the four lightest quarks: up, down, strange, and
charmed, with respective electric charges 2, —%, —3 and % times the proton

charge. We introduce a linear combination of the down and strange quark fields,

Yae = cosOc Yq + sinbc ¥s , (A.21)

where the Cabibbo angle, 8¢, is determined experimentally to be about 13°. We
put the left chiral projections of the up quark field, 1., and the Cabibbo-rotated
down field, ¥4, into an electroweak SU(2)r doublet:

_ PL¢u
fu= [ Priq. ] '

The superposition orthogonal to Eq.(A.21),
Yse = —sinbc g + cosbc Y5 (A.22)

along with the charmed quark field v, comprises a second left-handed doublet:

_ PL")bc
Lc— [ PL"J"sc ] .

The right-handed projections of all four quark fields are put into SU(2) 1, singlets.
We may write the quark Lagrangian in the form

L, = i:Lyy"DyLly:+i:Ley?DyLe:+i:Ryy’DyRy: +

where R, = Pr., and so on. Note that, for the right-handed singlets, rotational
symmetry implies _Rdcfy”Ddec + Rsc'y"DpRsc = Rdfy”Dde + ﬁs'y"DpRs, SO
the Cabibbo rotation has been undone for the singlets. The general form of
the covariant derivative, given in Eq.(A.12), provides kinetic energy terms and
ensures couplings to the electroweak fields. For the doublets, L, and L., the
isospin generator ¢ is 7, whereas ¢ = 0 for the right-handed singlets.

We now consider the Higgs-quark coupling, which will produce quark mass
terms after spontaneous symmetry breaking. Since there are two left-handed
doublets and four right-handed singlets of quark fields, as wellasa Y = 1 doublet
of Higgs scalar fields, we have the following invariant Lagrangian density:

Lo = "Glfuﬁde - G2Zu¢Rs - G3—L—C¢Rd - G4Zc¢Rs +h.c.,
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where ‘h.c.’” means ‘Hermitian conjugate’. This is not the most general invariant
form possible, since the transformed scalar field, ¢ = 2im¢*, is independent of
¢ and has hypercharge —1 (Problem A.7). So we may add also

L:b = "“GSTJué;Ru - GG—L—u‘JSRc - G7EC$RU - GSZcJ&Rc + h.c.

The charge and weak isospin of the various fields are known, and the weak
hypercharge is calculated from Y = 2(Q —T3). As we have already noted, Y =1
for ¢ and Y = —1 for ¢, and the values for the quark fields are

Quark | T | T; Q Y
uee | 3| 3| 3| %
dic, SLe 3|3 _% %
UR, CR 0 0 -g- g—
dgr, Sr 0 0 —% —%

Note that ¥ = 0 for all terms in £,, £, and L, as is required by the gauge
invariance of the Lagrangian under the group U(1)ny,. Also, all terms are isospin
singlets, as required by invariance under the group SU(2)s.

After the gauge transformation, the scalar fields reduce to the form Eq.(A.13),
and the vacuum point is given by

wmilt] . aesll]

This leads to quadratic mass contributions in £, and £, and in general there
will be unwanted cross-terms between different quark fields. These cross-terms
are eliminated by choosing the couplings to satisfy the relations

cosf. —siné, G1 G, _ mg O
‘/ﬁ[ sinf, cosé, ] [ Gs Gy ] - [ 0 mg ]

cosf, —siné, Gs Gg _ m, O
\/ﬁ[ sinf, cosf, ] [ Gr Gs ] - { 0 me ]

so that the quark mass terms are diagonal:

Lo+ Lo=—mMuy: Bythu: ~Ma: Pga : —Me : Yoo : —My : Pothy : + -
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where the omitted terms are interactions between the quarks and the Higgs
particle. With the same omission, we find (Problem A.7)

—_ é
Lo+ Lp+Ly = : 10 — P J W+JPW1 :
b q ; ’ﬁq(z’)’ Mq)Yq /2 sin O [ p]
e
+§i—r-1_29—— JneutZ e JO Ay i+ (A.24)

The quark sum, g, extends over u, d, ¢, s, and physical gauge fields have been
introduced through Eqgs.(A.14)—(A.15). The (vector) electromagnetic current is

ng = %zb—ufyp@bu - %Ed’yp")bd + %zb-c'yp"»bc - ';1:;'@_37”"/}3 (A25)
The charged weak current (V—A as expected) is
Jh = = Py Pp1hq cos B¢ + s sin Oc] + 1, v° Pr[—asinOc + s cosbc] . (A.26)

The weak neutral current has the form

Jneut = - Sin2 OWJem + ;/}-uVPPL@bu - "_p_d’YpPL"pu + ’Q_P.C’YPPL‘IPC - -"7)_37PPL¢3
= D7 (Cv —1°Ca)tu — 7" (Cv — ¥ Ca)a +
D7 (Cv — ¥ Ca)ve — ¥,7°(Cv — v°C a)¥s (A.27)
where
Cvz-%—-g-sinzew —C—V=§—§sin20w CA=-;-=—C'-A.

The full interaction between the fermions and the gauge particles can be
expressed by adding electronic, muonic, and quark contributions. A compact
expression is obtained by introducing left-handed weak-isospin currents, namely

Jz,k = 2{ Ze’ykaLe + -Ep,’ykaLp, + Zu’)’kaLu + fc7kaLc} ’
for k = 1,2,3. The full charged weak current is
I =3J14 =3{ L1 +iJL s}
The full electromagnetic current is

ng = Z QJ Ei'ypd)i )
J

where the index j runs over all the particles, e, u, u, d, s, ¢, and where @; is
the electric charge of the particle in units of |e|. The neutral weak current has
the elegant form
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A.4 Experimental Tests

Let us first consider O(e?) Feynman diagrams for electron-electron, and for
electron-neutrino scattering:

e+e—>e+te e+v—>e+v.

Instead of giving the momenta of the lines, as we did in Chapter 7, we indicate
here only the species of particle in question:

Figure A.1 B4 44

The first diagram is driven by the electromagnetic part of the interaction, the
coupling between the photon field and the electromagnetic current being —e.
The contribution of the left-hand diagram can be written

eZJé’m {:kg;—a} Jon s

k being the momentum of the virtual photon that is exchanged between the
electron lines. The photon propagator has been given in the Feynman gauge,
a = 1, and the currents are to be understood in momentum space, which means
that they reduce simply to Dirac y matrices, enclosed by the appropriate spinors.
The corresponding expression for electron-neutrino scattering is

62 Jp "'gpa Jfa
2sin® Gy " | k2 —m3, [ T

where the charged weak current was given in configuration space in Eq.(A.19).
In momentum space it is

Y Pr = 37v°(1 = 7s),

sandwiched again by spinors. The propagator of the W boson has been written
in the Feynman gauge, mw being the mass that was engendered by sponta-
neous symmetry breaking. For values of k% much smaller than m#%;,, this reduces
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effectively to the current-current iteraction

62

A (A.28)

2m3, sin’ O
The old Fermi interaction, in the form due to Feynman and Gell-Mann, was

%Enpu ) e B (L = 15) (A.29)

where G is the low-energy, or Fermi weak interaction coupling constant, which
is known experimentally. On comparing this with Eq.(A.28), we find

~ e 38GeV
T 923G singyy  sinfw

mw

The weak interaction is so much feebler at low energies than the electromagnetic
interaction because the W boson mass is so great.

Two points should be made in connection with the above discussion. In
Mgller scattering, there are actually two diagrams of the form shown at the left
of Figure A.1, corresponding to the exchange of the external electron lines, as
we saw in Sec. 7.3. In electron-neutrino scattering, one can also exchange the
final particles, but one must then replace the virtual W boson by a virtual Z
particle, as shown below

v v
Figure A.2
Neutral current contribution A
to electron-neutrino scattering
e e

The contribution of this diagram can be written

e? -
L g {—-——9”" } Jie .
sin2 20y neut | 12 _ mzz neu

In the low energy limit, recalling that mz = mw sec 8w, we find

62

T e T (A.30)
w
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With the help of Eq.(A.20), we can write this more explicitly as

——\%Eﬂ” (1= 75)% %7 (Cv — Carys)¥e (A.31)
where we have included only the cross-terms, since the others do not contribute
to the reaction depicted in Figure A.2. This neutral current term must be added
to the charged current term, and we can do that most expeditiously by recalling
the Fierz transformation (Problem 3.7) and applying it to Eq.(A.29), thereby
casting the charged current term into the equivalent neutral current form,

ZSHP L= BT (= ). (A.32)
The sum of the Z term (A.31) and the W term (A.32) is
Z5PP (=608 v~ Carele (A.33)
where
Cy =1-Cy =1+ 2sin* Oy Ca=1-Cy=1.

The amplitude (A.33) can be used to calculate the scattering cross-section for
electron-neutrino scattering. Note that, if the old Fermi-Feynman-Gell-Mann
theory had been correct, or if only the W boson existed, then we would have
had Cyv =1 = C 4. Thus the above expressions constitute a definite prediction
of the electroweak theory, which has been tested with success by analyzing the
results of electron-neutrino scattering.

An even more striking success of the electroweak theory is its application
to the scattering of electrons by muon neutrinos. The latter are produced in
the decay of pions (7t — p* +v,). To order e?, the scattering is wholly due
to exchange of the neutral boson, Z, for the right-hand part of Figure A.1 is
now forbidden, due to the separate conservation of electron and muon number.
Hence the occurrence of this scattering process, at the calculated rate, is a very
clean test of the standard model, which, as we have seen, requires the existence
of the neutral gauge boson. Experimentally, it is found that the scattering
does take place as predicted. A comparison of muon and electron neutrino and
antineutrino scattering on electrons leads to estimates of the Weinberg angle,
6w, and hence, from the measured value of the Fermi constant, G , of the masses
mw and mz. This work was done in the 1970’s, and the values obtained were
0.23 for the Weinberg angle, and for the masses, mw = 79 + 8 GeV/c? and
mz =90+ 9 GeV/c?.
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On 20 January 1983, it was reported at CERN that W bosons had been
created as resonances in proton-antiproton scattering; and on 1 June of the
same year, it was announced that the Z boson had been found. The values
quoted by the Particle Data Group in 2002 were

sin?@y = 0.2315 =+ 0.0002
mw = 80.420.06GeV/c?
mz = 91.188+0.002GeV/c?.

In the original form of the quark sector of the theory, only three quarks, u, d
and s were taken into account, and the theory predicted that the neutral gauge
boson, Z, should couple to strangeness changing currents of the form

thange = Edfyp(éV - 'YSCV'A)'Q/)S +h.c.,

as well as strangeness conserving currents (Problem A.9). However, this implied
the possible decay, to lowest order in the weak coupling, of strange particles
into particles without strangeness, for example, the neutral kaon was predicted
to decay into a muon pair. This decay mode, and other reactions involving a
strangeness-changing neutral weak current, were not observed experimentally.
In 1970, Glashow, Iliopolous and Maiani took the bold and brilliant step of
postulating the existence of a fourth, then unsuspected fourth quark, c, with
a new quantum number, charm. Because of the symmetry of the right-handed
chiral part of £, under the Cabibbo rotation, Eq.(A.23), there are no crossed
terms like that in Eq.(A.34), the unwanted term being suppressed in a natural
and elegant manner.

The hypothesized new quark was introduced to solve a problem, so it cannot
be claimed that the absence of strangeness-changing, neutral weak interactions
verifies the existence of the charmed quark. However, its postulated existence
implies the existence of new physical particles, namely bound states including
charmed quarks. The first such state was observed in 1974, the ground state of
charmonium, a bound state of ¢ and its antiparticle, ¢, analogous to positronium.
This state, and many others that have been found since 1974, in particular bound
states ¢, cd and ¢S, as well as charmed baryonic states, constitute indeed a
genuine verification of the four-quark theory of Glashow, Iliopolous and Maiani.

The major lacuna in the experimental verification of the electroweak theory
is that the predicted Higgs scalar had not been observed, as of 2002. Many hope
that it will be detected by what may prove to be the ultimate particle accelerator,
LHC at CERN, before the end of the first decade of the 21st century.
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A.5 Exercises

Problem 1
Given that

. L
- ! -1 —1
7-A,=uL T-AP—E’U,L (Bpur)| ur

where uy, = exp[—i7 - § ], show that

1
A:)b = Ay — Eapeb + €pedbcApa + 0(02) :

Problem 2
Given that

Apcrb = apAO‘b - aa'Apb + gebchpcAad
show that A, AL’ is gauge invariant.

Problem 3
Express the scalar Lagrangian,

Ls=:(Dpd) (D) — A(¢'d — p)* :
in terms of the physical fields W*, Z? and ®,. Obtain expressions for the masses
associated with these fields.
Problem 4
Express the leptonic Lagrangian,
Lo=1:LN0, —igT - A, +i§B,)L, : + i : Rey?[0, + 2i§B,]R. :
in terms of the physical fields and currents.
Problem 5
Express the interaction Lagrangian,
Li=—gi:[Re¢'Lo + LR, :
in terms of the physical fields 1. and ®,.
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Problem 6
Express the gauge boson Lagrangian,

— _1 po _ 1 po
Ly = 4BIMB 4APUbAb

in terms of the physical fields A?, W*, Z#. Calculate the three-gauge and four-
gauge interaction terms explicitly. What extra terms are needed to generate
masses for the W and Z fields? "

Problem 7

Given that 1) is an electroweak isospinor, show that ¥ = iTe1)* is an independent
electroweak isospinor. Express the sum of the quark-gauge-vector and Higgs-
quark Lagrangians in terms of physical fields.

Problem 8
Set up the SUL(2)®U (1) electronic part of the electroweak Lagrangian, allowing
for the fact that the electron neutrino has a small mass.

Problem 9
Show that, in the absence of the charmed quark, strangeness-changing neutral
weak currents must occur in lowest order.

Problem 10

Generalize the electroweak theory by assuming that there are right-handed, as
well as left-handed weak currents, and that the Lagrangian is invariant under
parity reversal. Take as the gauge group SU(2) ® SU(2)r ® U(1), and explain
how spontaneous symmetry breaking can give rise to parity breakdown in this
theory. How might one test this theory experimentally?
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