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Chapter 1

Introduction and Survey of Results

Our original motivation for undertaking the work presented in this book* has been to
clarify the connections between the braid (group) statistics discovered in low-dimensional
quantum field theories and the associated unitary representations of the braid groups with
representations of the braid groups obtained from the representation theory of quantum
groups — such as U,(g), with deformation parameter ¢ = gy := exp(iw/N), for some N =
3,4,.... Among quantum field theories with braid statistics there are two-dimensional,
chiral conformal field theories and three-dimensional gauge theories with a Chern-Simons
term in their action functional. These field theories play an important role in string
theory, in the theory of critical phenomena in statistical mechanics, and in a variety of

systems of condensed matter physics, such as quantum Hall systems.

An example of a field theory with braid statistics is a chiral sector of the two-
dimensional Wess-Zumino-Novikov-Witten model with group SU(2) at level k¥ which is
closely related to the representation theory of 35u(2);-Kac-Moody algebra, with &k =
1,2,3,.... The braid statistics of chiral vertex operators in this theory can be understood
by analyzing the solutions of the Knizhnik-Zamolodchikov equations. Work of Drinfel’d
(4] has shown that, in the example of the SU(2)-WZNW model, there is a close connection

between solutions of the Knizhnik-Zamolodchikov equations and the representation theory

*This book is based on the Ph.D. thesis of T.K. and on results in [6, 11, 24, 28, 42, 61]



of Uy(sly) if the level k is related to the deformation parameter ¢ by the equation ¢ =
exp(in/(k + 2)), and k is not a rational number. For an extension of these results to the
negative rationals see [62]. Unfortunately, the SU(2)-WZNW model is a unitary quantum
field theory only for the values k£ = 1,2,3, - -, not covered by the results of Drinfel’d. Our
goal was to understand the connections between the field theory and the quantum group
for the physically interesting case of positive integer levels. (This motivates much of our

analysis in Chapters 2 through 7.)

The notion of symmetry adequate to describe the structure of superselection sectors
in quantum field theories with braid statistics turns out to be quite radically different
from the notion of symmetry that is used to describe the structure of superselection
sectors in higher dimensional quantum field theories with permutation (group) statistics,
(i.e., Fermi-Dirac or Bose-Einstein statistics). While in the latter case compact groups
and their representation theory provide the correct notion of symmetry, the situation
is less clear for quantum field theories with braid statistics. One conjecture has been
that quantum groups, i.e., quasi-triangular (quasi-)Hopf algebras, might provide a useful

notion of symmetry (or of “quantized symmetry”) describing the main structural features
q y y g

of quantum field theories with braid statistics. It became clear, fairly soon, that the
quantum groups which might appear in unitary quantum field theories have a deformation
parameter q equal to a root of unity and are therefore not semi-simple. This circumstance
is the source of a variety of mathematical difficulties which had to be overcome. Work
on these aspects started in 1989, and useful results, eventually leading to the material in
Chapters 4, 5 and 6, devoted to the representation theory of Uy(g), g a root of unity, and
to the so-called vertex-SOS transformation, were obtained in the diploma thesis of T.K.;
see [6]. Our idea was to combine such results with the general theory of braid statistics
in low-dimensional quantum field theories, in order to develop an adequate concept of

“quantized symmetries” in such theories; see Chapter 7, Sects. 7.1 and 7.2.

In the course of our work, we encountered a variety of mathematical subtleties and
difficulties which led us to study certain abstract algebraic structures — a class of (not

necessarily Tannakian) tensor categories — which we call quantum categories. Work of




Doplicher and Roberts [29] and of Deligne [56] and lectures at the 1991 Borel seminar in

Bern played an important role in guiding us towards the right concepts.

These concepts and the results on quantum categories presented in this volume,
see also [61], are of some intrinsic mathematical interest, independent of their origin in
problems of quantum field theory. Although problems in theoretical physics triggered our
investigations, and in spite of the fact that in Chapters 2, 3 and 7, Sects. 7.1 through 7.4
we often use a language coming from local quantum theory (in the algebraic formulation
of Haag and collaborators [17, 18, 19, 20}]), all results and proofs in this volume (after

Chapter 2) can be understood in a sense of pure mathematics: They can be read without

knowledge of local quantum theory going beyond some expressions introduced in Chapters

2 and 3, and they are mathematically rigorous.

In order to dispel possible hesitations and worries among readers, who are pure
mathematicians, we now sketch some of the physical background underlying our work,
thereby introducing some elements of the language of algebraic quantum theory in a

non-technical way. For additional details the reader may glance through Chapter 2.

For quantum field theories on a space-time of dimension four (or higher) the con-

cept of a global gauge group, or symmetry G is, roughly speaking, the following one: The

Hilbert space H of physical states of such a theory carries a (highly reducible) unitary
representation of the group G. Among the densely defined operators on H there are the
so-called local field operators which transform covariantly under the adjoint action of the
group G. The fixed point algebra, with respect to this group action in the total field alge-
bra, is the algebra of observables. This algebra, denoted by .4, is a C*-algebra obtained

as an inductive limit of a net of von Neumann algebras A(O) of observables localized in
bounded open regions O of space-time. The von Neumann algebras A(Q) are isomorphic
to the unique hyperfinite factor of type III;, in all examples of algebraic field theories that
one understands reasonably well. The Hilbert space H decomposes into a direct sum of

orthogonal subspaces, called superselection sectors, carrying inequivalent representations

of the observable algebra A. All these representations of A can be generated by composing

a standard representation, the so-called vacuum representation, with *endomorphisms of




A. Each superselection sector also carries a representation of the global gauge group G
which is equivalent to a mulitple of a distinct irreducible representation of G. As shown
by Doplicher, Haag and Roberts (DHR) [19], one can introduce a notion of tensor prod-
uct, or “composition”, of superselection sectors with properties analogous to those of the
tensor product of representations of a compact group. The composition of superselection
sectors can be defined even if one does not know the global gauge group G of the theory,
yet. From the properties of the composition of superselection sectors, in particular from
the fusion rules of this composition and from the statistics of superselection sectors, i.e.,
from certain representations of the permutation groups canonically associated with su-
perselection sectors, one can reconstruct important data of the global gauge group G. In
particular, one can find its character table and its 6-j symbols. As proven by Doplicher
and Roberts [29], those data are sufficient to reconstruct G. The representation category
of G turns out to reproduce all properties of the composition of superselection sectors,
and one is able to reconstruct the algebra of local field operators from these data. One

says that the group G is dual to the quantum theory described by A and H.

The results of Doplicher and Roberts can be viewed as the answer to a purely mathe-

matical duality problem (see also [56]): The fusion rules and the 6-j symbols obtained

from the composition of superselection sectors are nothing but the structure constants of
a symmetric tensor category with C* structure. The problem is how to reconstruct from
such an abstract category a compact group whose representation category is isomorphic
to the given tensor category. It is an old result of Tannaka and Krein that it is always
possible to reconstruct a compact group from a symmetric tensor category if the category
is Tannakian, i.e., if we know the dimensions of the representation spaces and the Clebsch-
Gordan matrices, or 3-j symbols, which form the basic morphism spaces. The results of
Doplicher and Roberts represent a vast generalization of the Tannaka-Krein results, since

the dimensions and Clebsch-Gordan matrices are not known a priori.

Another duality theorem related to the one of Doplicher and Roberts is due to
Deligne [56] which requires integrality of certain dimensions but no C* structure on the

symmetric tensor category. (It enables one to reconstruct algebraic groups from certain



symmetric tensor categories.) Disregarding some subtleties in the hypotheses of these
duality theorems, they teach us that it is equivalent to talk about compact groups or

certain symimetric tensor categories.

Quantum field theories in two and three space-time dimensions can also be formu-
lated within the formalism of algebraic quantum theory of DHR, involving an algebra A
of observables and superselection sectors carrying representations of .4 which are compo-
sitions of a standard representation with *endomorphisms of .A. This structure enables us
to extract an abstract tensor category described in terms of an algebra of fusion rules and
6-7 symbols. Contrary to the categories obtained from quantum field theories in four or
more space-time dimensions, the tensor categories associated with quantum field theories
in two and three space-time dimensions are, in general, not symmetric but only braided.

Therefore, they cannot be representation categories of cocommutative algebras, like group

algebras. In many physically interesting examples of field theories, these categories are

not even Tannakian and, therefore, cannot be identified, naively, with the representation
category of a Hopf algebra or a quantum group; see [61]. The.complications coming from

these features motivate many of our results in Chapters 6 through 8.

The following models of two- and three-dimensional quantum field theories yield

non-Tannakian categories:

(1) Minimal conformal models [7] and Wess-Zumino-Novikov-Witten models [8]

in two space-time dimensions .

The basic feature of these models is that they exhibit infinite-dimensional symme-
tries. The example of the SU(n)-WZW model can be understood as a Lagrangian
field theory with action functional given by

5(9) = & Jatr ((97'0u0)(97 0*9)) &'z
+ 367 Jos tr ((§71d9)™),
where, classically, a field configuration g is a map from the two-sphere S? to the

group G = SU(n), and § is an arbitrary extension of g from $§? = 8B? to the ball

B?; (such an extension always exists, since 7, of a group is trivial). The second term

5



in S(g) is the so-called Wess-Zumino term which is defined only mod kZ. Classi-
cally, the theory exhibits a symmetry which is the product of two loop groups, for
right- and left movers, respectively. For k = 1,2,3,..., the quantum theory associ-
ated with S(g) has conserved currents generating two commuting 5%(n)-Kac-Moody
algebras at level k, whose universal enveloping algebras contain Virasoro algebras;
(Sugawara construction). From the representation theory of the infinite-dimensional
Lie algebras of symmetry generators in these models, i.e., the representation the-
ory of Virasoro- or Kac-Moody algebras, one can construct algebras of so-called

chiral vertex operators which play the role of Clebsch-Gordan operators of (a semi-

simple quotient of) the representation category of the Virasoro- or Kac-Moody al-

gebra. Local conformally covariant field operators are then constructed by taking

linear combinations of products of two such chiral vertex operators, a holomorphic

one (left movers) and an anti-holomorphic one (right movers).

Of interest in relation to the main subject of our work is that the algebras of chiral
vertex operators, the holomorphic ones, say, appearing in these models provide
us with categorial data corresponding to non-Tannakian braided tensor categories.
(This can be understood by studying the multi-valuedness properties and operator
product expansions of chiral vertex operators. A very thorough analysis of the
SU(2)-WZW model can be found in the papers of Tsuchiya and Kanie and of
Kohno quoted in [9]; see also [8, 61].)

Zamolodchikov and others have studied “non-critical perturbations” of minimal con-
formal models which are integrable field theories {10]. Their results suggest that
there are plenty of massive quantum field theories in two space-time dimensions
with fields exhibiting non-abelian braid statistics, as originally described in [11].
(A perturbation of minimal conformal models giving rise to massive integrable field
theories is obtained from the ¢, 3)-field; a field with braid statistics is the field
obtained from a chiral factor of the ¢(3)-field, after the perturbation has been
turned on [12].) To such non-conformal field theories one can also associate certain
braided tensor categories. However, the general theory of superselection sectors in

two-dimensional, massive quantum field theories leads to algebraic structures more



(2)

general than braided tensor categories, including ones with non-abelian fusion rule
algebras. A general understanding of these structures has not been accomplished,

yet.

Three-dimensional Chern-Simons gauge theory, {13, 14, 15] .

Consider a gauge theory in three space-time dimensions with a simply connected,
compact gauge group G £ sy (n). Let A denote the gauge field (vector potential)
with values in ¢ = Lie(G), the Lie algebra of the gauge group G, and let ¢ be a
matter field, e.g. a two-component spinor field in the fundamental representation of
G. There may be further matter fields, such as Higgs fields. The action functional
of the theory is given by

S[A, %, 9] F ¢ [ir (F¥)d vol.
—Zftr(ANdA+3 ANANA) (1.1)
+ X[ P(Pa+m) pdvol. +---,

where g, A and m are positive constants, and ! is an integer.

This class of gauge theories has been studied in [13, 14, 15]. Although the results in
these papers are not mathematically rigorous, the main properties of these theories

are believed to be as follows:

The gluon is massive, and there is no confinement of colour. Interactions persist-
ing over arbitrarily large distances are purely topological and are, asymptotically,
described by a pure Chern-Simons theory. Thus the statistics of coloured particles
in Chern-Simons gauge theory is believed to be the same as the statistics of static
colour sources in a pure Chern-Simons theory which is known explicitly [16]. The
statistics of coloured asymptotic particles can be studied by analyzing the statis-
tics of fields creating coloured states from the vacuum sector. Such fields are the

Mandelstam string operators, 1,(". ), which are defined, heuristically, by

$al1e) = “3 Nibala)Plexp [ AUOE")acl" (12)

where a and f are group indices; v, is a path contained in a space-like surface,

starting at z and reaching out to infinity, N is some normal ordering prescription,

7



and P denotes path ordering. (Similarly, conjugate Mandelstam strings $,(7.) are
defined.)

For the field theories described in (1) and (2), one observes that when the group G is
SU(2) the combinatorial data of a braided tensor category, an algebra of fusion rules and
6-7 symbols (braid- and fusion matrices), can be reconstructed from these field theories
which is isomorphic to a braided tensor category that is obtained from the representation

theory of the quantum group U,(sl;), where
q:er‘:—:’ k=123,

(with k = I + const.). These categories are manifestly non-Tannakian. This is the reason
why it i8 not possible to reconstruct field operators transforming covariantly under some
representation of U,(sl;) on the Hilbert space of physical states of those theories. However,
passing to a quotient of the representation category of Uy(sly), ¢ = exp(ir/(k + 2)),
described in Chapters 6 and 7, we can construct a semi-simple, non-Tannakian, braided
tensor category describing the composition and braid statistics of superselection sectors
in these quantum field theories. In this sense, Uy(sl,) is the “quantized symmetry” dual

to the quantum field theories described above. (For precise details see Chapter 7.)

The strategy used to prove this duality is to compare the fusion rules and the 6-5
symbols of U,(sl;) with the corresponding data of the field theories found, e.g., in [9], and
to show that they coincide. More precisely, it is quite easy to show that the representations
of the braid groups associated with tensor products of the fundamental representation of
U,(sl) coincide with those associated with arbitrary compositions of the “fundamental
superselection sector” of the corresponding field theories. One implication of our work
is that, in fact, the entire braided tensor categories coincide. This result follows from a
much more general uniqueness theorem stating that whenever a braided tensor category

with C* structure is generated by arbitrary tensor products of a selfconjugate object, p,

whose tensor square decomposes into two irreducible objects, i.e.,

p®p = 109, (1.3)



(where 1 is the neutral object, corresponding to the trivial representation of U,(sl;), to
the vacuum sector of the field theory, respectively), and a certain invariant associated with
p, the so-called monodromy of p with itself, is non-scalar, then the category is isomorphic
to the semi-simple subquotient of the representation category of Uy(sl;), for ¢ = + eiﬁl",

k=1,23,...

The abstract nature of eq. (1.3) suggests that this result applies to a class of local
quantum field theories more general than the models described above. This observation
and the fact that those models are not rigorously understood in every respect led us to
work within the general framework of algebraic field theory. In this framework, p and ¥
can be interpreted as irreducible *endomorphisms of the observable algebra .4, with 1 the

identity endomorphisms of A, and eq. (1.3) for a selfconjugate object p of a braided tensor

category with C* structure is equivalent to some bounds on a scalar invariant associated

with p, its statistical dimension, d(p); namely (1.3) is equivalent to

1 < d(p) < 2. (1.4)

The main result of this book is a complete classification of braided tensor categories
with C*-structure that are generated by a not necessarily selfconjugate, irreducible object
p whose statistical dimension, d(p), satisfies (1.4). This is the solution to a very limited
generalization of the duality problem for groups. Our method of classification is unlikely to
be efﬁciént for much larger values of d(p) than those specified in eq. (1.4) — except, perhaps,
for certain families of examples connected with more general quantum groups. However,
our solution to the problem corresponding to the bounds on d{p) in eq. (1.4) might serve

as a guide for more general attempts. In particular, our notions of product category and

induced category might be useful in a general context.

The constructive part of our classification consists in the description of two families
of categories: First, we need to understand the representation theory and tensor-product
decompositions of U,(sl3), with ¢ a root of unity; (Chapters 4 and 5, and [6]). This will
permit us to construct a non-Tannakian, braided tensor category by passing to the semi-

simple quotient of the representation category of Uy(slz); (vertex-SOS transformation; see

9



Chapter 6 and [61]). The generating object p, of this category can always be multiplied
with the generator of a category whose fusion rules are described by the group algebra of
a cyclic group Z,, a = 2,3,..., without changing the statistical dimension. The second
task is thus to classify categories whose fusion rules are given by the group algebras of

abelian groups.

It turns out that, besides the operation of taking products of categories just alluded
to, we also need the notion of induced categories which are, in general, not quotients of

representation categories; (Chapter 8, Sect. 8.1).

For a selfconjugate, generating object p, with 1 < d(p) < 2, our proof of uniqueness
relies on an inductive procedure reminiscent of what is known as cabeling. In order to
extend our proof of uniqueness to categories generated by a non-selfconjugate, irreducible

object, we have to study the interplay between the group of “invertible objects” in a

category and gradings. This will permit us to separate the subcategories corresponding
to invertible objects from the entire category and to thereby reduce the classification

problem to that of categories with a selfconjugate generator whose statistical dimension

satisfies (1.4); (Chapter 8).

As a prerequisite to the classification of braided tensor categories with C* structure

satisfying (1.4), we present a classification of fusion rule algebras which have the same

properties as the object algebras of a tensor category; (Chapter 3 and Sect. 7.3). Our
classification is limited to fusion rule algebras generated by an irreducible object p of

statistical dimension d(p) satisfying

1<dlp) <2. (1.5)

We find that there are many more fusion rule algebras than there are object algebras

of braided tensor categories. Our classification relies on results of T.K. in [42].

When d(p) = 2 we essentially reproduce the fusion rules of the finite subgroups
of SU(2) which have been classified and described in terms of certain Coxeter graphs

by Mac Kay. In the sense that symmetric tensor categories are dual to groups and

10



braided tensor categories are a natural generalization of symmetric tensor categories, our
main result might be viewed as a natural generalization and completion of the Mac Kay

correspondence for d(p) = 2 to the entire range 1 < d(p) < 2.

One application of our classification theorems to conformal field theory, in partic-
ular to minimal conformal models and SU(2)-WZW theories, is that we can reproduce
the fusion rules, the braid- and the fusion matrices of these models from an algebraically
simpler object, a quantum group. This is one way of making “the quantum group struc-
ture” of conformal field theories precise. Our uniqueness theorems permit us, moreover, to
establish a precise connection between SU(2)-WZW theories at level k and SU(k)-WZW
theories at level 2 which is useful to understand the details of the conformal imbedding
of (3u(2)x x 3u(k);)-Kac-Moody algebra into §u(2k);-Kac-Moody algebra. For example,
we find that the braided tensor categories constructed from the representation theory of

3u(k);-Kac-Moody algebra, with k even, are non-trivially induced by those constructed

from 3u(2);-Kac-Moody algebra. This result is useful in the context of certain systems in

condensed matter physics.

We conclude this introduction with some additional comments on the contents of
the various chapters of this book and a summary of our main results, Theorem 3.4.11 and

Theorem 8.2.11.

Survey of Contents

In Chapter 2 we explain the appearance of certain braided tensor categories, called C*-
quantum categories, in local quantum theories in two and three space-time dimensions.
To this end, we use the formalism of algebraic field theory, which - following the arguments
of Section 2.1 and the introduction - is expected to describe two dimensional conformal
field theories and three dimensional topological field theories. In Section 2.2 we review the
C*-algebra approach to local quantum theories with braid statistics, in a form developed
in [15, 24] generalizing the algebraic field theory of [19] for quantum theories with (para-)

permutation statistics. In this framework the objects of the considered C*-quantum cat-

11



egory are a subset of the endomorphisms of the observable algebra 9 and the arrows
(or morphisms) are operators in 2 intertwining these endomorphisms. The quantitative
description of the structure of these categories in terms of R- and F- matrices is derived
in Section 2.3. In Section 2.4 we show how to extract unitary representations of the braid

groups equipped with Markov traces from a C*-quantum category.

The objects of a quantum category together with the operations of taking direct
sums and tensor products form a half algebra over the positive integers which we shall
call a fusion rule algebra. An axiomatic definition of fusion rule algebras which forgets

about their origin from quantum categories is given in Section 3.1. In Section 3.2 we

show that notions familiar in C*-categories can already be defined from the fusion rule
algebra itself, namely a unique positive dimension (the statistical or Perron-Frobenius
dimension) for rational fusionrules and a universal group of gradings. These concepts
are eventually combined in the construction of quotients of fusion rule algebras, so called
Perron-Frobenius algebras. In Section 3.3 we demonstrate how non trivially graded invert-
ible objects may be used in order to derive simplified descriptions of fusion rule algebras.
In particular, we derive for cyclic grading goups a general presentation of a fusion rule
algebra in terms of an accordingly smaller fusion rule algebra, whose invertible objects are
all trivially graded. We give several criteria implying that this fusion rule algebra is either
Z3-graded or ungraded. Among the categories that are constructed from Z;- or ungraded
algebras we find those which are generated by a single object p of dimension d(p) not
greater than two ( with the exception of two algebras at d(p) = 2 ). They are classified
in Section 3.4, using the methods developed in the previous section. More precisely, we
first determine the fusion rule algebras with a selfconjugate generator of dimension less
than or equal to two and we analyze the action of the respective groups of invertible
objects. Composing them with Z, -algebras and twisting them we obtain the complete

list of fusionrules given in Theorem 3.4.11.

In the following three chapters we construct the C*-quantum categories with A,-

fusionrules from the quantum group U,(sf;).

For this purpose, we review in Chapter 4 the general defintion of a quasitrian-

12



gular Hopf algebra, (3, 5], and the quantum groups U,(sf,), [2]. We introduce anti-
cohomomorphic *-operations on quasitriangular Hopf algebras and define the finite di-

mensional examples U;**(s¢,) for g a root of unity.

The representation theory of U,(s¢;) is treated in Chapter 5 following the remarks on
invariant forms, commutativity constraints and contragradient representations for general
quantum groups made in Section 5.1. In Section 5.2 we give a summary of the irreducible
and the unitary representations of U;“"(slg), and in Section 5.3 we study their tensor
product decompositions. The formula given in Theorem 5.3.1 involves projective repre-
sentations with vanishing q-dimensions, which naturally form a tensor ideal in the category
of representations of U,(sf;). The subquotient of the abstract representation ring by this

ideal is a fusion rule algebra in the sense of Chapter 3, as described in Section 5.4.

In order to obtain a semisimple category we need not only divide out the radical
of the objects, i.e., the representation ring, but perform a similar quotient for the entire
category including the morphisms, i.e., the intertwiners of representations. This procedure
i8 described in Section 6.1. We give the explicit definition of the structure matrices and
verify the polynomial equations for the quotient category in Section 6.2. In Section 6.3
we prove that this category is a C*-quantum category if ¢ = ea:p(:i:%). The connection
between balancing (or statistical) phases of a quantum category and the special element
of a ribbon-graph Hopf algebra and the relation between Markov traces and quantum

traces are explained in Section 6.4.

The first two sections of Chapter 7 are devoted to the mathematical interpretation
of the structure matrices found in Chapter 2 and the connection of duality theory for
abstract tensor categories and the notion of duality in terms of global gauge symmetries
for local quantum theories. We start with a summary of the ingredients entering the
definition of an abstract quantum category and show its equivalence to the systems of
R- and F- matrices we have used so far. Furthermore, we draw the connection to the
theory of inclusions and towers of algebras, see [41, 23], if the category is obtained from
a set of quasi-commuting endomorphisms on a hyperfinite von-Neumann algebras, e.g.,

a local subalgebra of the observable algebra of a local quantum theory. We review the
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known duality results, [29, 56], for abstract, symmetric categories and the existence of
field operators with global gauge group symmetry entailed by them. For braided, non-
Tannakian categories the notion of duality needs to be modified, involving semisimple
quotients of Tannakian categories arising from non-semisimple quantum groups. In this
setting, however, the analogous construction of fields which are gauge symmetric with
respect to the dual Hopf algebra does not yield an operator algebra with local braid

relations and a closing operatorproduct expasion. This is explained in Section 7.2.

The goal of Sections 7.3 and 7.4 is to select from the list of fusion rule algebras
given in Theorem 3.4.11 those which are actually realized as the object algebras of a
C*-quantum category and, furthermore, characterize them by the decomposition of the
tensor products p o p and p o p of the generator. The precise correspondence between
the dimension restriction 1 < d(p) < 2 and the structure of these fundamental products
is given in Proposition 7.3.1. This result is refined in Proposition 7.3.5, where we show
that the restriction 1 < d(p) < 2 is equivalent to a two channel decomposition of p o p
with one object being invertible so that the projections on the invertible object define a
Temperley-Lieb algebra in End( p®" ). In particular, the exclusion of the D,-type fusion
rule algebras is inferred from the general result in Proposition 7.3.4 asserting that if p o p
decomposes completely into M invertible objects, then M = 2" for some n € N. In
Section 7.4 we exploit the fact that the natural braid group representation in End( p®")
factors through a Temperley-Lieb algebra in order to compute the statistical phases for the
C*-quantum categories with fusionrules given in Theorem 3.4.11.i). We find consistency
requirements in this computation that allow us to discard the D- and E-type algebras and
certain twisted A-type algebras from the list of admissible object algebras. The remaining
algebras, listed in Proposition 7.4.11 together with their possible statistical phases, can all
be obtained from a direct product of an A,- algebra and the fusion rule algebra given by
the group Z,, for some r € N, either by inclusion or by quotienting with some irreducible,

graded fusion rule algebra epimorphism.

The results of Section 7.4 suggest that all relevant quantum categories can be

obtained from a product of a category with A,-fusionrules and a category with Z,-
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fusionrules. Having constructed categories with A,-fusionrules in Chapters 4,5 and 6
we are left with the characterization of the quantum categories for the Z,-case. More gen-
erally, we classify in Section 7.5 the quantum categories for which all objects are invertible
so that the fusionrules are given by a finitely generated, abelian group G. The set of in-
equivalent quantum categories for a fixed group G carries a natural group structure and
we show this group to be canonically isomorphic to the cohomology group H*(G,2;U(1)),
associated to Eilenberg-MacLane spaces. We discuss in some detail the Zj-obstruction
of these categories to be strict , i.e., their non trivial structure if viewed as monoidal
categories. In the concluding Proposition 7.5.4 we also give the structure matrices for a

convenient choice of morphisms.

It turns out that any fusion rule algebra and any choice of statistical phases for
the untwisted cases of Proposition 7.4.11 is realized by a subcategory of a C*quantum

category with A,-fusionrules and a Z,-category.

The aim of Chapter 8 is to prove the uniqueness of these categories and to con-
struct the categories with twisted fusionrules. The main tool in this is the notion of
induced categories developed in Proposition 8.1.4. We also define an action of the group
H*(Grad(Obj), 2; U(1)) on the set of quantum categories with fusion rule algebra Obj,
where Grad(Obj) is the corresponding universal grading group. In the second part of
Section 8.1 we find conditions that the orbit of a category with respect to this action
contains a category, which is induced by a smaller one. The obstructions here are found

to be elements of H*(Grad(Obj), 2; Z,), see Lemma 8.1.13.

In Lemma 8.2.4 of Section 8.2 we show that this obstruction is trivial in the case
of A-type algebras. Using the uniquenss of induced categories and the uniqueness of A;-
categories given in Proposition 8.2.6 we infer the uniqueness and thereby the classification
of the untwisted A-type (not necessarily C* ) quantum categories in Theorems 8.2.8 and
8.2.9 . The respective categories with twisted fusionrules are presented in Theorem 8.2.10
in terms of the untwisted categories they induce. Combining these results with Proposition
7.4.11 we arrive at the classification in Theorem 8.2.11 of C*-quantum categories with a

generator of dimension less than two.
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Chapter 2

Local Quantum Theory with Braid
Group Statistics

2.1 Some Aspects of Low-Dimensional, Local Quan-

tum Field Theory

As described in the introduction, it is the purpose of this work to elucidate properties of
superselection sectors of local quantum theories with braid (group) statistics. In partic-
ular, we are interested in understanding the laws by which two superselection sectors of
a local quantum theory with braid statistics can be composed. In more conventional field
theoretic jargon, we are interested in understanding the operator algebra and the operator
product expansions of analogues of charged fields in theories with braid statistics. This
involves, in particular, introducing appropriate algebras of fusion rules and attempting
to classify them. It involves, furthermore, to characterize and classify the statistics of su-
perselection sectors, or, in other words, the statistics of “charged fields”. More precisely,
we wish to describe, as completely as possible, those unitary representations of the braid
group, B, that describe the statistics of superselection sectors in local quantum theories
with braid statistics. It is well known [19, 20] that in quantum field theory in four- or

higher-dimensional space-time the statistics of superselection sectors, or, equivalently, of
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charged fields, is described by unitary representations of the permutation group, Se.. It
i8 quite a recent result, due to Doplicher and Roberts [29], that the representations of
the permutation group S,, and the composition laws of the superselection sectors (fusion
rules) of a local quantum field theory in four or more dimensions can be derived from
the representation theory of some compact group which, in fact, has the interpretation of

a global symmetry of the quantum field theory.

It is then natural to ask whether the fusion rules and the representations of B,
encountered in local quantum field theories with braid statistics can be derived from the
representation theory of a natural algebra which, moreover, can be interpreted as a gener-
alized global symmetry (“quantized symmetry”) of the quantum field theory? A conjecture
proposed frequently, but not really well understood (see, however, [30] for an example that
is understood in detail) is that quasi-triangular (quasi-) Hopf algebras, in particular quan-
tum groups, could play the role of algebras whose representation theory yields the fusion
rules and the braid group representations of local quantum theories with braid statistics

and that they can be interpreted as “global symmetries” of such theories {31, 28, 32].

One of our main goals in this book is to describe some classes of local quantum
theories for which the conjecture just described can actually be proven completely. The
quantum groups appearing in our examples are U,(sf,), and we shall prove that the defor-
mation parameter ¢ must have one of the values exp(in /N), N a positive integer (> n + 1).
Our results are complete for U,(sf;). (For some simpler examples, involving quasi-Hopf

algebras, see also [33].)

Next, we wish to recall some basic facts about braid statistics. In the context of
quantum mechanics of point particles in two-dimensional space, braid statistics was dis-
covered in [34, 35, 36]. However, a more precise analysis of braid statistics and a classifica-
tion of all possible braid statistics requires the principles of local quantum (field) theory.
Examples of local quantum field theories, more precisely Chern-Simons gauge theories,
in three space-time dimensions with braid statistics were described in [36, 37, 38] and
numerous further articles; see also [13, 14, 15]. It has been recognized in [15] that, apart

from permutation statistics, braid statistics is the most general statistics of superselection
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sectors and charged fields that can appear in local quantum theories in three space-time
dimensions; (see also [22] for related, partial results). Historically, braid statistics of fields
actually first appeared in quantum field models in two space-time dimensions with topo-
logical solitons; (see [11] and refs. given there). It should be emphasized, however, that the
theory of statistics of superselection sectors in general local quantum field theories in two
space-time dimensions is considerably more general than the theory of braid statistics.
But, for the chiral sectors of two-dimensional conformal field theories, the statistics of su-
perselection sectors and of the corresponding chiral vertex operators is always described

by representations of the braid group B, generated by certain Yang-Baxter matrices;

see [21, 9, 11, 26, 27, 28, 22]

Inspired by results in [16], it has been argued in [24] that the theory of the statistics
of sectors in general three-dimensional, local quantum theory is equivalent to the theory of
the statistics of chiral vertex operators in two-dimensional conformal field theory; (i.e., the
same braid statistics appear in both classes of theories). We may therefore focus our

attention on the analysis of statistics in three-dimensional local quantum theory.

Next, we review some characteristic features of local quantum theory in three space-

time dimensions.

(a) Spin in three space-time dimensions.
According to Wigner, a relativistic particle is described by a unitary, irreducible
representation of the quantum mechanical Poincaré group, 731, which is the universal

covering group of the Poincaré group, ’Pl. In three space-time dimensions,
Pl = 50(2,1) x R®.

The three-dimensional Lorentz group, SO(2,1), is homeomorphic to R? x S?, its
covering group is therefore homeomorphic to R3. If one imposes the relativistic
spectrum condition one concludes that those representations of the quantum me-
chanical Poincaré group associated with three-dimensional Minkowski space that
are relevant for the description of a relativistic particle are characterized by two real

parameters, the mass M > 0, and the “spin” s € R. In particular, spin need not be
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an integer or half-integer number.

(b) Localization properties of one-particle states.
Let us now consider a local, relativistic quantum theory in three space-time dimen-
sions describing a particle of mass M > 0 and spin s. As shown by Buchholz and
Fredenhagen [20], one can then in general construct a “string-like field”, 4, with
non-vanishing matrix elements between the physical vacuum, (2, of the theory and
one-particle states of mass M and spin s. This result follows from very general
principles of local quantum theory; (locality, relativistic spectrum condition, exis-
tence of massive, isolated (finitely degenerate) one-particle states). The field ¥ is,
in general, neither observable nor local. However, as shown in [20], it can always be
localized in a space-like cone, C, of arbitrarily small opening angle; (see Sect. 2.2 for
precise definitions and results). Physically, C can be interpreted as the location of
a fluctuating string of flux attached to a “charged particle”. Particles of this kind are

encountered in three-dimensional Chern-Simons gauge theories, [13, 14, 37, 38, 15].

It can happen that the field 4 is actually localizable in bounded regions of space-time.
(This would be the case in field theories without local gauge invariance.) Then a general
result, due to Doplicher, Haag and Roberts [19], proves that the spin of particles created
by applying ¥ to the vacuum { is necessarily integer or half-integer, the statistics of ¢
is permutation statistics, and the usual spin-statistics connection holds. It follows that if
the spin of a particle created by applying some field 9 to the vacuum {Q is neither integer
nor half-integer then the field ¥ cannot be localizable in bounded regions of space-time
— but 9 is still localizable in space-like cones. It has also been proven in [15] that if the
spin of the particle created by 1 is neither integer nor half-integer then 1 has necessarily
non-trivial braid statistics, and a fairly non-trivial spin-statistics connection holds. We
thus expect that particles with spin s ¢ 1Z can only be encountered in quantum field

theories with a manifest or hidden local gauge invariance.

Another general result of [15] is that, under a certain minimality assumption on the
structure of superselection sectors, non-trivial braid statistics can only appear in theories

in which the discrete symmetries of space reflections in lines and time reversal are broken.
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Thus the only realistic candidates of relativistic quantum field theories in three
space-time dimensions describing particles with spin s ¢ ;Z and with braid statistics,
called anyons [36], are Chern-Simons gauge theories described in [13, 14, 37, 38, 15], with
an action S given e.g. by (1.1), or non-linear 0(3)— o-models with Hopf terms equivalent to
abelian Chern-Simons theories. See also [14, 15] for a heuristic discussion of the properties

of these theories.

Since a mathematically rigorous analysis of the quantum field theories just referred
to would be difficult and has, in fact, not been carried out, so far, we shall, in this book,
follow an aziomatic approach. The formalism most convenient for our purposes turns out
to be algebraic quantum field theory, as originally proposed by Haag and Kastler [17].
Since algebraic quantum field theory does not appear to be terribly well known among
theoretical physicists or mathematicians, we shall now give heuristic motivations of some

of its main concepts which will then be reviewed more precisely in Sect. 2.2.

The local, gauge-invariant observables of a gauge theory are constructed

from real currents, J%(z), ¢ € M¢, a =1,2,3,..., which commute among each other at
space-like separated arguments, from Wilson loop operators, W(L), and Mandelstam
string operators, M(<y), where £ is an arbitrary smooth, bounded, space-like loop without
double points, and v is an- arbitrary smooth, bounded, space-like curve; etc.. In order
to obtain densely defined operators on the vacuum sector, H;, of the theory, one has to
smear out these currents, Wilson loops and Mandelstam strings: Let f be a real-valued

test function. We define

JUf) = / dz J°(z) f(z).

One may expect that J*(f) defines a selfadjoint operator on the vacuum sector Hj.
Moreover, all bounded functions, A, of J%(f) are localized on the support of f, (in the
sense that [A,J"(y)] = 0 whenever y is space-like separated from the support of f, for
all b).

Let 3 be a finite-dimensional parameter space equipped with a smooth measure, do,
and let {£(0): o € suppdo C T} be a family of smooth, space-like loops, free of selfin-

tersections, smoothly depending on ¢ € ¥ and contained in a space-time region O C M¢,
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Heuristically, we define an operator

Weo := / do W(L(o))
3

(where the integral is interpreted in the weak sense). One can imagine that Wy defines
a closed operator on H, all of whose bounded functions are localized in O. (Similar ideas

apply to the Mandelstam strings M(vy).)

We now define local observable algebras A(O), for O some bounded space-time re-
gion, as the von Neumann (weakly closed*) algebras [17] generated by all bounded functions

of the operators
{J“(f),suppfc(’), a=1,23,...; WO;MO}'

As explained above, one expects that if O, and O, are two space-like separated space-time

regions then locality of the theory implies that
[A,B]=0 forall AeA(O,), BeA(V,).

It is also clear that if O C O, then 2(0,) C A(0;). The general properties required of
the net {A(O)}ocme of local algebras are discussed in [17, 19] and will be briefly sketched
in Sect. 2.2.

Let U; denote the unitary representation of 'Isl describing the dynamics of the
gauge theory on its vacuum sector H;. Let A be an element of 731 projecting onto an
element (A,a) € P], (where A is a Lorentz transformation and a € R? is a space-time
translation). Then one expects that, for every observable A € A(O), U;(A) AU (A)* only
depends on (A, a) and is contained in the algebra A (O(A,a)), where

O(A,a) = {2 € M?: A—l(x —a)€ 0} .

Hence we have a representation, «, of ’Pl on the algebra of observables of the theory given
by

a(aa)(4) = Ur(A) AU, (A)",
with

ana)(A(0)) = A (O -
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We now suppose the theory has some non-trivial conserved charges giving rise to superse-
lection rules. Let H; be a Hilbert space of states of “charge j” orthogonal to the vacuum
sector H;; (the charge is here viewed as being “multiplicative”). It is customary to assume
that there exist a field 47 (7,) carrying “charge j” with non-vanishing matrix elements
between vectors in H; and vectors in H;. Here 7, is either a point z € M? (charged
local fields) or a space-like string starting at a point z € M? and extending to space-like
infinity (Mandelstam operators in gauge field theories without colour confinement, such
as three-dimensional Chern-Simons gauge theories). Let {y(c): o € 3.} be a smooth,
finite-dimensional family of space-like strings contained in a “space-like cone” C C M¢,

and let do be a smooth measure on }°. Heuristically, one defines
W (€)= [ dowi(a(a)).
2

One may imagine that 1?(C) defines a closed operator on the entire physical Hilbert space
of the theory. Then 97(C) has a polar decomposition

¥ (C) = Ui [p(C)

y

where [7(C)| is a positive, selfadjoint operator of charge 0, hence leaving all super-
selection sectors invariant, and Ug' is an operator carrying “charge j” and mapping the
orthogonal complement of the null space of |/7(C)| isometrically to (a subspace of) the
physical Hilbert space. Heuristically, the operators U and [¢7(C)| commute with all
observables localized in regions space-like separated from C. One can now extend Ul
to an isometric operator Vg , defined on the entire physical Hilbert space, which carries
the same charge as Ug and commutes with all observables localized in regions space-like

separated from C, for some cone C containing C.
For every bounded observable A of the theory, the operator
P = (V) av

is then expected to be again a bounded observable, and if A is localized in a space-time
region space-like separated from C then p{,(A) = A. The map p{, is therefore called an

endomorphism of the observable algebra localized in C.
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In the next section, we recall rigorous results, due to Buchholz and Fredenhagen [20],
asserting the existence of endomorphisms with the properties of pz- under very general,
physically plausible hypotheses on the theory. The Buchholz-Fredenhagen construction
of endomorphisms does not involve first constructing operators analogous to V‘,’ Rather
the existence of such operators ~ which are bounded versions of charged field operators -
is derived from the existence of localized endomorphisms. It is one of the major goals of
our work to construct operators analogous to the operators VL,J and discuss their algebraic
properties, in particular their statistics, for some class of field theories in three space-
time dimensions characterized in terms of nets of local observable algebras and families

of localized endomorphisms.

From now on, we shall work within the formalism of algebraic field theory {17, 18,
19, 20], motivated by the heuristic considerations sketched above, and our analysis will
be mathematically rigorous. We expect that the hypotheses on which our analysis is
based can be verified for some two-dimensional conformal field theories [30, 25] and some

three-dimensional Chern-Simons gauge theories [38].

It should be mentioned that, in Sects. 2.2-2.4 and in Chapter 6, the reader is expected

to be vaguely familiar with one of the references [11, 15, 22].

2.2 Generalities Concerning Algebraic Field Theory

The starting point of the algebraic formulation of local, relativistic quantum theory is
a net, {A(O)}, of von Neumann algebras of local observables indexed by bounded, open
regions, @, in Minkowski space M?. If § is an unbounded space-time region in M one

defines an algebra of observables localized in S by setting

ws)="U 20y, (2.1)

[+
© bounded
where the closure is taken in the operator norm. We define the algebra 2f of all quasi-local
observables as

A=AS =M. (2.2)
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The algebras A(S) and A are C*-algebras. The relative commutant, A°(S), of 2(S) in A
is defined by

A(S)={A€A:[A,B]=0, forall B e A(S)}. (2.3)

The causal complement, S', of a region S C M? is defined as
S={zeM:(z-y)* <0, forall ye€S}. (2.4)
Let Cp be a wedge in (d — 1)-dimensional space. The causal completion, C, of C, is defined

by
C=(C) (2.5)

and is called a simple domain. If the opening angle of Cp is less than 7 C is called

a space-like cone.

Locality and relativistic covariance of the theory are expressed in the following two
postulates on the structure of the net {2(O)}.
(1) Locality:
A(s") C A(S), (26)
for any open region S C M?.

(2) Poincaré covariance: There is a representation, a, of the Poincaré group, 'PJ_,

as a group of *automorphisms of 2 with the property that

a(Aﬂ)(Ql(S)) = Ql(‘S(A,a)) ) (27)

where
S(A,a) = {z € Md : A-l(:l: - a) € S} . (28)

The properties of a physical system described by {2, a} can be inferred from the repre-
sentation theory of {A,a}. We focus our attention on the analysis of physical systems
at zero temperature and density. Then it suffices to consider a restricted class of rep-
resentations of {2, o} which has been described in work of Borchers [18] and Buchholz
and Fredenhagen [20]. Buchholz and Fredenhagen start from the assumption that all
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representations describing a local, relativistic system at zero temperature and density can
be reconstructed from what they call massive, single-particle representations [20]. They
then prove that there exists at least one vacuum representation, 1, of A on a separable
Hilbert space, H,;, containing a unit ray, 2, the physical vacuum, which is cyclic for 2

and is space-time translation invariant, i.e.,
(2,1 (aa(4)) Q) = (Q, 1(4)), (2.9)

for all A € A and all a € M? here {a,, = a(l',,)} is a representation of space-time
translations of M?. [In the analysis of [20] full Poincaré covariance is not assumed; it
is sufficient to require locality and space-time translation covariance. In our analysis,
space-rotation covariance will be used at some point, but full Poincaré covariance is not
needed.] It follows from (2.9) that space-time translations are unitarily implemented on
H, by a group of operators Uy(a) = expi(a®H; — & - P,), a = (a° &) € MY, and it follows

from the starting point chosen in [20] that the relativistic spectrum condition,
spec (Hl,ﬁl) cv, (2.10)
holds.

In the following, we shall assume for simplicity that there is a unique vacuum rep-
resentation, (i.e., there is no vacuum degeneracy). This assumption must be given up in
the study of two-dimensional theories with topological solitons [11]. Our analysis can be
extended to certain theories with vacuum degeneracy without much difficulty, in particu-
lar to a class of two-dimensional theories with solitons. It can also be applied to studying
the chiral sectors of two-dimensional conformal field theories; see e.g. [23, 22, 25]. We
shall, however, focus our attention on three-dimensional theories, following [15, 24], since

these have been studied less intensely.

If the vacuum is unique, and under suitable physically plausible hypotheses described
in [20], all representations, p, of 2 encountered in the analysis of relativistic, local systems
at zero temperature and density have the property that, for an arbitrary space-like cone

C C MY, the restriction of p to A°(C) is unitarily equivalent to the restriction of the
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vacuum representation, 1, to A°(C), i.e.,

A representation of 2 with this property is said to be localizable in space-like cones
relative to the vacuum representation. In the framework of [20], only representations,
p, of 2 satisfying (2.11) are considered which are translation-covariant, i.e., for which
there exists a continuous, unitary representation, Up, of M? on the representation space

(superselection sector) H, corresponding to the representation p such that

P(aa(A)) = Up(a) p(A) Up(—a), (2.12)
where
Up(a) = expi (a°H, - 3- B,) , (2.13)
and
spec (H,,, }_’;) cv,. (2.14)

A fundamental assumption on the choice of the net {2A(O)} of local algebras is duality, (19,
20]: One assumes that the algebras () are chosen so large that

1(A(S)) = 1(A(S)) ", (2.15)

where ‘B’ denotes the commuting algebra of a subalgebra, B, of the algebra, B(H;), of all
bounded operators on H;, and B = (B')' denotes its weak closure. [Duality (2.15) can
be derived from a suitable set of postulates for local, relativistic quantum field theory, [39],

and expresses the property that states in 7, do not carry a non-abelian charge.]

Remark. The analysis presented in this chapter can be applied to the chiral sectors
of two-dimensional conformal field theory if Minkowski space is replaced by the circle S?,
a compactified “light-ray”, with a distinguished point P, the point at infinity, (correspond-
ing to the auxiliary cone, C,, introduced below), space-like cones, C, in M? are replaced
by intervals I C S?, and Poincaré covariance is replaced by covariance under PSL(2,R).
In this case, the spectrum condition becomes the requirement that the generator, Lg, of

rotations of S? is a positive operator with discrete spectrum.
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Next, we construct an extension of the algebra 2 which will be more convenient for
our analysis. First, we note that the vacuum representation 1 of A is faithful. In the
following, we shall identify 2 with the subalgebra 1(2) of B(H;). If B is a subalgebra
of 2 we denote by B the weak closure of 1(®B) in B(H;). Let C, be some auxiliary

space-like cone in M? of arbitrarily small opening angle, and set
Catz= {yeM":y—:cEC,}.

We define an enlarged algebra, B, containing 2:

B = |J ACatz) - (2.16)
zEM?

A fundamental result of Buchholz and Fredenhagen [20] is that every representation p of 2
localizable in space-like cones relative to 1 has a continuous extension to SB®«. Moreover,
given a space-like cone C in the causal complement of C, + z, for some z € M9, there

exists a *endomorphism, g%, of B¢« such that
pE(A) = A, for all AeA(C), (2.17)

and the representation 1(p&(-)) of B is unitarily equivalent to the representation p of

B¢, i.e., there exists a unitary operator V¢ from H, to H, such that

PB(4) = Ve p(AYVE . (2.18)

Next, let pc be a *endomorphism of B°* localized in a space-like cone C, in the sense
of equation (2.17), and let 5 be a *endomorphism of B* localized in a cone C, with
the property that g is unitarily equivalent to some subrepresentation of pc. Let S be
a simple domain in the causal complement of C, + z, for some z € M?, with the property
that C UC is contained in the interior of S. Then there exists a partial isometry I‘f b0
on M, called a “charge-transport operator”, such that

pc(A)T;. 5, = Lo 5Pe(A), (2.19)

c.he =1
for all A € 8. It follows from (2.17) and duality, see (2.15) and [19, 20], that

€ A(S)” c B (2.20)

Pc vﬁc

28



Let p and g be two representations localizable in space-like cones relative to 1, and let p*
and p? be two *endomorphisms of B localized in space-like cones, C, and C,, with the
properties that C, C C';,C, UC, C (C, + z)', for some z € M?, and p and q are unitarily
equivalent to p® and p9, respectively. We define p o g4 to be the unique equivalence class
of representations of *B®* unitarily equivalent to the representation p® o p? of B * on M.
It is easy to check that p o ¢ is again localizable in space-like cones relative to 1, that it
is translation-covariant (see (2.12)) and satisfies the relativistic spectrum condition (see
(2.14)), provided p and q are translation-covariant and satisfy the relativistic spectrum
condition. It is not hard to see [20] that if C, and C, are space-like separated (C, C C';)
then p? o p? = p% 0 p®. Hence
pog=gqop. (2.21)
Clearly
lop=pol=np. (2.22)

Fredenhagen [40] has isolated natural physical conditions which imply the following prop-

erties of representations of 2 localizable in space-like cones relative to 1; see also [20, 19].

Property P

(P1) Every representation p of 2 which is localizable in space-like cones relative to 1, and
which is space-time translation-covariant and satisfies the relativistic spectrum condition
can be decomposed into a direct sum of irreducible, translation-covariant representations
of A which satisfy the relativistic spectrum condition and are localizable in space-like
cones relative to 1.

(P2) Let p be an equivalence class of irreducible representations of 2 which are translation-
covariant, satisfy the relativistic spectrum condition and are localizable in space-like cones
relative to 1. Then there exists a unique equivalence class, p, of conjugate representa-
tions of A with the same properties as p such that p o p = 5 o p contains the vacuum

representation, 1, precisely once.

From now on, Property P is always assumed to hold; see also [23, 24].
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Definition 2.2.1 We denote by L = Lig( .y the complete list of all inequivalent, irre-
ducible, translation-covariant representations of A which satisfy the relativistic spectrum

condition and are localizable in space-like cones relative to 1.

It follows from Property P that, for ¢ and j in L, the product representation, i o j,
can be decomposed as follows:

Nija
ioj= P ¥, with W~k (2.23)

kel p=1
for all g = 1,...,N;jx. The multiplicity, Nijx = Njix, of k in 105 is a non-negative
integer and, by Property (P2), can also be defined as the multiplicity of 1 in koio0j.
The integers (N;; ) are the fusion rules of the theory. By the definition of i 0 j, Nyjx can be
interpreted as the multiplicity of the representation k of A in the representation 1 (pé())
of 2, where gl is a *endomorphism of B°* localized in a space-like cone C C (C, + z),
for some z, with the property that j is unitarily equivalent to 1 (pé()) It is not hard to
derive from this that, given k, ¢ and j in L, there exists a complex Hilbert space V; (pé);,
of operators, V, from the representation space, H;, of k to the representation space, H;,

of ¢ such that
i(pH(A)V =VkA), foral AcH; (2.24)

the dimension of V, (p{-)i is given by Nj;, and the scalar product, (V, W), between two
elements V and W of V, (pé)‘ is defined by

VW = (V, W)y, - (2.25)

By (2.24), V°W intertwines the representation k of 2 with itself and hence, by Schur’s
lemma, must be a multiple of 1|#,, because k is irreducible. Intertwiner spaces

Vi(p" 0 --- 0 p'); are defined similarly, for arbitrary 1, J1,...,j and k in L.

Remark.

One purpose of Chapters 2 and 7 is to use the intertwiners in V;.(pé),-, 1,7,k in L, to
construct certain (bounded) operators on the total physical Hilbert space of the theory,
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called charged fields, which have non-zero matrix elements between different superselection
sectors, are localized in space-like cones and hence can be used to, for example, construct
Haag-Ruelle collision states [20]. Quantum groups will appear in the construction of such
fields in space-times of dimension d = 3 and for some class of theories, including conformal

field theories, in two space-time dimensions.

The first step in our construction of charged fields is to construct (“horizontal”) local
sections of orthonormal frames of intertwiners of a bundle, Z;;x, of intertwiners satisfying
(2.24), whose base space is a “manifold” of *endomorphisms, p?, of B* localized in space-
like cones contained in (C, + z)', for some z, with the property that 1(p(-)) is unitarily
equivalent to j, and whose fibres Vi(p’); are isomorphic to CMiir. Such local sections
of frames are constructed as follows: We choose a reference morphism, pj, localized in
a space-like cone Co C (C, + z)', for some z, and an orthonormal basis {V‘:" (pg,) }:,:1"
for the Hilbert space V; (p{;); consisting of partial isometries from H; to H; satisfying
(2.24). Given an arbitrary *endomorphism, p7, of B localized in a space-like cone
C C (C. + z)', for some z, and unitarily equivalent to pj, we choose a unitary charge
transport operator I“:i' 52 8€e (2.19), which belongs to an algebra B(S)" C B associated
with a simple domain S C (C, + z)’, containing Cy and C. A basis for V;(p’); is then given

by {Vi(p)} ¥, where

Vi) =i (T5,;) Vi (ph) - (2:26)
Note that, since I'S; ; € A(S)" C B, and i is a representation of B, i(I‘S. ) is
#.h .0}

a well-defined unitary operator on H;.

Bundles I;; . ; . and local sections of frames of intertwiners in Z;; ;. i are con-

structed similarly; see [24].

Remark.

Since, for j € L, ¢’ is an irreducible *endomorphism of B¢, the choice of I‘fi J is unique
P

up to a phase factor. This phase factor cannot be chosen continuously, even in ”small

neighbourhoods” of pJ. These technicalities are of no concern in this book, except in
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Theorem 2.3.1, below.

2.3 Statistics and Fusion of Intertwiners; Statistical

Dimensions

Let C be a space-like cone which is the causal completion of a wedge Cp in (d — 1)-
dimensional space. With C we associate a unit vector &€ € S%2? which specifies the
asymptotic direction of the central axis of Co; (for d = 3, € is the unit vector in R?
specifying the asymptotic direction of the half-line bisecting Cp). Using polar coordinates,
€ can be described by d — 2 angles; in particular, for d = 3, € is described by one angle
6 € (—=,x]. Our coordinates are chosen such that the unit vector € associated with C,
is given by (—1,0,...,0). If p is a *endomorphism of B°* localized in a cone C, the unit
vector € associated with C is called the asymptotic direction, as (p), of p. We may choose
the reference morphisms p), j € L, such that as (p{,) =(1,0,...,0). In d = 3 dimensions,

the asymptotic directions of the morphisms p inherit the ordering of the angles in (—, 7).

We say that two *endomorphisms, p; and p,, of $B%* are causally independent, de-

noted plx;)g, if they are localized in cones Cy and C, such that C; C Cj.

We now recall a basic result proven in [24].

Theorem 2.3.1 Forp and q in L, let g and p? be two *endomorphisms of B localized

in space-like cones contained in C. and unitarily equivalent to p and q, respectively. Let
. N; . Niq, .

the intertwiners {V;" (p’)}a:: and {Vﬁ"‘ (pq)}p=1~ be defined as in (2.26). Then there are

maitrices, called statistics-(or braid-) matrices,

(RGi,p, as (p%)q, as (p%), k)it)

such that

V@Y = 2 RGop, 58(7), 9,58 (00, B V() V), (227)
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provided p"xlﬂ. The statistics matrices are locally independent of the choice of the

auziliary cone C,. Moreover, the following properties hold.

(a) In d > 4 space-time dimensions, the matrices
R(j,p, as(p"), 9, as(p%), k) = R(J, P, 9, k) (2.28)
are independent of as (p*) and as (p9).
(b) For d =3,
R(j,p, as(p"),q, as (p%), k) = R*(4,p, 0, k), (2.29)

for as (p?) 2 as (p%). [The matrices R*(j,p, q,k) depend on pP and p? only through p
and q and the sign of as (p*) — as(p?).]

Remarks.

It is easy to see that
Y_R*(i,p,q, k)i R¥ (4,9, p, k)G = 676263 (2.30)
Luv

and that the matrices R%(j,p, q, k) satisfy the Yang-Bazter equations in SOS-form.

We now assume that the representations p € L are rotation-covariant. Thus if 0

denotes a space rotation then

p(ao(A)) = Up(0) p(A) Up(077), (2.31)

where U, is a unitary representation of the universal covering group of SO{d — 1) on the
representation space H, of p. Since p is irreducible and aq,, is the identity when 0, is

a rotation through an angle 27, it follows that

Up (02*) = ezﬁ"l

o (2.32)

where the real number s, is called the spin of representation p; (for d = 3, s, can, a priori,

be an arbitrary real number, while, for d > 4, s, € }Z).
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Theorem 2.3.2

R+ (j) p) q’ k)f = ezﬁ("‘-{'"‘-'j_'k)R— (j) p) q’ k)f * (2'33)

Remark.
The fact that in d > 4 space-time dimensions R* = R~ and Theorem 2.3.2 imply that
s, € %Z, for all p € L.

All the results reviewed above are proven in [24].

Next, we recall what is called fusion of intertwiners [24]. For p,q and r, let p?, p?
and p" be three *endomorphisms of B unitarily equivalent to p,q and r, respectively,

and localized in the interior of a simple domain § C C.. Then there exist Np,, partial

isometries,
TSr0p0,- (1) € A(S)” C B, (2.34)
#=1,...,Npgr, such that
pp (pq(A)) I‘fl’opq,p'(y') = I\‘:?op',p"(#) pf(A) . (235)
Let o,(r; p, q) be given by
u(r; 2,9) = (F (Trope,r (1) V70", VI(P) VE(6Y) - (2.36)

Note that Ny ; =1, so that there is a unique (up to a phase) isometric intertwiner of the

type of V™(p"), for all r € L.
Theorem 2.3.3

(a) There ezist matrices (I:"(j,p,q, k):;‘;) only depending on the representations
7,9, k,% and r, (but not on the specific choice of p?, p? and p”), such that

V() Vs (e") =

> F(,p, 0, k)50u(ri P 9) 5 (Toreper (1)) Vi*(67). (2.37)

Ty
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The matrices F' can be ezpressed in terms of the matrices R* and R~ as follows
ﬁ'(j,P, q, k)::; =

Z Ri(i) q, 7‘:7 1)2‘;} Ri(j) p, E) ﬁ):ﬁ: R:F(jy E; T 1)§g11 . (238)

~¥6

(b) There ezist matrices (17’(], 0,9, k)::s) only depending on the representations
7,4, k% and r, (but not on the specific choice of p?, p? and p"), such that

5 (TS ape (@) VE*(e) =
> F(3, 2,0, k) apoa(mip, @) VE(PP) V(7). (2.39)

The matrices F' can be ezpressed in terms of Rt and R~ by a formula analogous to

(2.36); (see Theorem 2.8.4, (1))

(c) The matrices F and F are related to each other by the following equations

Yo F(.p,a, k) s FGyp, 0, KD = 616363, (240)
v
and
PUM(5,p,q, k)% := 3" F(4,p,9, k)% F(4,p,9, k)2 (241)

are the matriz elements of orthogonal projections, P\"¥)(j,p, q, k), with

Z P(r’“)(j)p) q k) = 1|Vh(P’°P')J' ! (completeneSS) ' (2.42)

rp
Remarks.

(a) The consistency of the two equations (2.38) (+ < —) follows easily from Theorem
2.3.1. Theorem 2.3.3 is proven in [24].
(b) We recall that Vi (p?); is the Hilbert space of intertwiners V from H; to H; satisfying

7 (PP(A))V = VE(A), forall A€,
see (2.20). We define Vi (P 0 p%); to be the Hilbert space spanned by the intertwiners
{V&n(pp)ljﬂik(pq) 11 € L, a = 1"")NP.i-"’ ﬂ: 1,...,Nq;,k} .
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Then the matrices R*(j,p, q,k) define unitary maps from V; (p? o p); to Vi (p? 0 p?),,
provided pP and p? are causally independent (p’x#‘) , the matrices ¥' and F define
unitary endomorphisms of Vi (p” 0 p%);, and the matrices PU#)(4, p, q, k) define orthogonal
projections on Vi (p* 0 p7),.

(c) It is sometimes preferable to use
F(j,p,q,k)is =

Y R*(1,5,p,4)ha B*(p,5,9, K)ins R¥ (L4, k) F(L,p,9,7)}h (2.43)
ned
instead of (2.38), in order to compute the F' matrices from the R* matrices. It is useful

to express the matrices Rt, R, Fand F graphically as follows

q, 4 P,V

o R*(j,p,q, k) (2.44)
o R (5,p,9,k)%% (2.45)
J k o B, p.a, k)2 (2.46)
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r,v
j é% k o F (G py g, B (2.47)
i

p.a q,8
We also introduce the graphical notation
p,a p,B
i o #(1) =Ripil, @
P/ ag
)
1
1
and
)
Coa
j e |
i e F(5) =R @4)
p.a p,B

Identities between R*, R~ F and F can now conveniently be expressed graphically.

It is quite straightforward to prove the following theorem [24].
Theorem 2.3.4 The matrices RE, F' and F satisfy the equations

(a) r s

.
K S p (q
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z

etc.; (polynomial

(t)

> P

k...

r,a

—

[

S T

equations)

W

k q

= §26°

(2.50)

(c) There ezist numbers d, > 1, for all p € L, and unitary matrices,
Vo =V (p,q,7), such that

P,a

q,8

s r
P q
&, D r =1 (2.51)
P q
p.a q,8
d, k
= ; TV (2.52)
] |
ryy
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and

j i Z i A
. =Zy: TV (2.53)

p’a q’B pQQ q,B

For the proof of Theorem 2.3.4 see [24].

Remarks.

(2) Equation (2.38) for ' and a similar equation for F' follow from Theorem 2.3.4,(a).
(b) The number dy,p € L, is called the statistical dimension of representation p. If
RY = R™, i.e,, if the theory has permutation group statistics then d, € N, [19]. It is
shown in (19, 20, 23], that d, = d5. From Theorem 2.3.4, (b) and (c), it follows that d, is
the largest eigenvalue of the fusion rule matriz N,, defined by

(Np),'k = Njpk.

This can be shown by noticing the identities

dpd, = dyd, p (2.54)
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=y c@szg Gr =Y N d.. (255)

Identity (2.54) follows from Theorem 2.3.4,(b) and (c); [22]. Thus (d,),er is a Perron-
Frobenius eigenvector, corresponding to the eigenvalue d,, of the fusion matrix N,. Con-
nected to this result is the interpretation of d as a Jones indez, [23, 41]. See Chapter 3.
(c) As a special case of Theorem 2.3.4,(c) we note that

P p
(| e
P P

P

This identity is important in the construction of invariants of links and of ribbon graphs

from the matrices {R*, F, F}; see [43, 28, 44].

The main result of this section is the insight established in [15, 24, 22] that every
local, relativistic quantum theory, in the sense of Sects. 2.1, 2.2 in three or more space-
time dimensions [and the chiral sectors of every two dimensional conformal field theory]
provides us, in a canonical way, with certain combinatorial data, namely the fusion rules
(Np)peL, and the statistics-(or braid-) and fusion matrices, RE, F and F, respectively. In
d > 4 space-time dimensions, we have that Rt = R™, but in d = 2,3 dimensions Rt and
R~ are, in general, distinct; see Theorem 2.3.2. It is natural to ask, whether these data
might be dual to some simpler algebraic object, such as a group or a quantum group. In

a remarkable series of papers [29], Doplicher and Roberts have shown that if Rt = R~
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i.e., for permutation group statistics, the data {(Np)peL,R, P, F} are dual to a compact
group, i.e., L can be viewed as the set of finite-dimensional, irreducible representations
of a compact group, G, N ; is the multiplicity of representation j of G in the tensor
product representation p ® k, and R, I:‘, F are standard 6-index symbols associated with

the representation theory of G.

The point of this work is to show that if Rt # R, (frequently the case in d = 2, 3),
then the data {(Np)peL,Ri, F, I:"} are often dual to some quantum group, [1, 2, 3]. We
shall discuss in detail one example (see Sect. 6.3.) of a local relativistic quantum theory,
encountered in the study of three-dimensional Chern-Simons gauge theory with gauge
group SU(2),which leads to quantum SU(2), i.e., Uy(sfs), with ¢ a root of unity. The
same example appears in the study of two-dimensional Wess-Zumino-Novikov-Witten

models based on SU(2) current algebra and of minimal conformal model [9, 31].

In the next section, we study properties of the representations of the braid groups

determined by the statistics matrices R*.

2.4 Unitary Representations of the Braid Groups
Derived from Local Quantum Theory; Markov

Traces

We return to the study of a local quantum theory described by an algebra 2 ,a *auto-
morphism group, a, and a set, L, of representations localizable in space-like cones. We
show how, for d = 2 or 3 and assuming that Rt # R, the quantum theory determines
unitary representations of the braid groups, B,, on n strands, for arbitrary n, equipped

with a positive Markov trace 7ps. These results are discussed in more detail in [22, 24].

For every p € L and every n € N, we define a space Qg") of paths of length n, as

follows: Every element w € Qg,") is a sequence of symbols
w = (p101, 203, ..., fnty), with ui € L, (2.57)
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and a; = 1,...,Np,, iy 1 =1,...,n, with pyg =1. Two neighbors, u;_; and p;, are

constrained by the requirement that N, | .. # 0.

We fix a *endomorphism p? of B. With each path w € Q‘(,"), we associate an

intertwiner
V. = [Lv&-» (), (2.58)
=1

intertwining the representation 1((p?)"(-)) of 2 with the representation w, of 2, where

w; = p, is the endpoint of w. Here, (pP)" = pP o ... 0 p? (n-fold composition of p? with
itself). The space of these intertwiners carries a natural scalar product {,-), defined as in
(2.21), Sect. 2.1. In this scalar product, {V,,, Tw € Qg“),w+ = fc} is an orthonormal basis
for the space, Vi ((pP)"),, of intertwiners between representations 1 ((p?)*(-)) of 2 and k,
ie.,

(Vi Vi) = Bt (2.59)

We define a path algebra [45, 46], A (an)) , by setting
A(2) = DBV (2.60)
kel

where B (H) is the algebra of all linear endomorphisms of a Hilbert space H. It is easy
to see that [24]

A () > 1((P) @) - (2.61)
Next, we define a unitary representation of the braid group B, on n strands with val-

ues in A (Q;,")): Let of',..., 02!, be the usual generators of B,. We define a unitary

representation,’, of B, on Vi ((p*)"), by setting

(68'V), = X R (w,w)Ver, (2.62)
where
RE(w,0') = R* (ic, 5, P, i iiine (2.63)

ifw = (pey 0e)e,..n 30d ' = (B, @)pey,.. nr Where py = py for

L#14, ap=ay, for £ #1,3+ 1. For all other choices of ', given w, we set RE(w,w’) = 0.
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Let b =[1%_, o032 be an arbitrary element of B,; €4 = %1, ko € {1,...,n — 1}, for
a=1,...k. We define
k
R, := [[ Rz, (2.64)

a=1

with Rf as in (2.63). The representation " of B, on Vi((p?)"), is then completely

determined by setting
(bV), := Y Ry(w,w' )V, wy=uw)=k. (2.65)

It is not hard to show, see [22, 24], that “: b b is, in fact, a unitary representa-
tion of B, on Vi((p°)"),- This representation admits a unique, positive, normalized
Markov trace, 7}y, constructed as follows [24]: Given w = (p1,@1,. .., ln, ) € Qg"), we

set @ = (p1,..., n). We define

i=1 P

Fw,w) = [T # (""‘) " (2.66)

for @ = o', and ﬁ'(w,w') = 0, otherwise; the matrices ﬁ'(;l)aﬁ have been defined in (2.48),

Chapter 2.3. The matrix F'(w,w’) is defined similarly; see (2.49), Chapter 2.3. Then 75

is given by
5(B) := > > otr (I:"(wl,wg) Rb(wz,w3)1;’(w3,wl)) » (2.67)

The quantity 757 (51) =: ), is called statistics parameter [23, 22], and one can show [23,

22, 19] that the statistical dimension, d, is given by
&y = Irke (@)l (268)
The fusion rules (N,) ., and the values of the Markov traces 73,
{r2(b):be B,,pe L},

on B,, for all n =2,3,4,..., are intrinsically associated with the quantum theory de-
scribed by {9, a, L}. They do not depend on how the phases and normalizations of the
intertwiners V(p?) are chosen, in contrast to the data {R*, F', F'}.

*Clearly, 7§, can be extended to a state on A (Q,(,")) , for every n.
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We know from [43] that a quasi-triangular (quasi-) Hopf algebra K with universal
R-matrix R, and a list, £, of finite-dimensional, irreducible representations of positive
g-dimensions of K also give rise to representations of the braid groups B, equipped with
Markov traces 7y, p € L, for all n = 2, 3,4, .... From the results reviewed in this section
we know that only those quasi-triangular (quasi-) Hopf algebras, K, and families, £, of

representations of K can appear in local, relativistic quantum theory for which
(1) the associated representations of B, are unitarizable, for all n; and
(2) the Markov traces 7, p € L, are positive.

For K = U, (34441), this restricts the values of ¢ to ¢ = exp(in/N),
N=d+2,d+3,...,, What, as field theorists, we are longing for is a general theo-
rem which completely characterizes those fusion rules and positive Markov traces on By,
n = 2,3,4,..., which come from quasi-triangular (quasi-) Hopf algebras. We do not know
a general result of this type, yet. [In d > 4 space-time dimensions, the results of Doplicher
and Roberts [29] completely settle an analogous problem, with X the group algebra of

a compact group.]
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Chapter 3

Superselection Sectors and the

Structure of Fusion Rule Algebras

As proposed in [23], it is of interest to investigate the structure of the chain of algebras
C-1=p (EBC‘)’ N (%C‘) Cp oﬁ(‘BC')' N (‘Bc‘) Cpopop (%c.)’ N (‘Bc“) ..y (30)

where p is an irreducible *-endomorphism an p a conjugate endomorphism. The point of
studying algebra chains obtained by alternating compositions of the form (3.1) is that they
admit faithful traces which give rise to conditional expectations and thus to Temperley-
Lieb algebras [41] as subalgebras. This structure has been studied in rather much detail.
For _rational local quantum theories, i.e., theories with a finite number of superselec-
tion sectors, one finds that the chain (3.1) eventually leads to a tower in the sense of
Jones [41]. The factors in these algebras are distinguished by the inequivalent, irreducible
representations occuring in the compositions popo popo..., which makes it natural to
try to connect the inclusions of the algebras defining the tower to the fusion rules {Ny;x}
introduced in Sect. 2.2; see also [47, 41]. Assuming that every irreducible representation
of A is contained in some p™ 0 p™, we shall explain, in some detail, how fusion rules can

be recovered from (3.1) and from towers that are in some sense coupled or isomorphic

to (3.1).
Since most of the structural information can be obtained from the fusion rules alone,
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a larger part of this section is devoted to the study of fusion rule algebras, as introduced

in [47]. In view of a classification problem solved in Section 7.3, we give a formal treatment

of the action of the group of automorphisms in a fusion rule algebra.

On the level of algebra-chains, similar to (3.1), automorphisms give rise to concur-

rent Temperley-Lieb algebras which, for a special decomposition rule for p o p, lead to

a complete determination of the underlying theory, as we shall see at the end of this

section.

3.1 Definition of and General Relations in Fusion

Rule Algebras, and their Appearance in Local

Quantum Field Theories

A fusion rule algebra (superselection structure, ...) @ is a positive lattice (|‘I>| = N'Ll),

with a distributive and commutative multiplication
oxd— 9P, axb—oaob,
an involutive and additive conjugation, — ,

—:9 > &, a—@

with@ob=1aob, a unit 1 € & with
loa=a and I=1
and an additive evaluation ¢

e : - N such that

e(@) = eg(a), e(l)=1

and (a,b) := £(a 0 b) is the usual euclidian scalar product on NIF,

It follows, that the scalar product (, ) obeys

(a0z,y) = (z,a0y),
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so that we have, for the length ||a|| := \/(a,a) of a € &,
lell = liall, llacbll=llacdl, etc.. (3.3)

Minimal elements, ¢, in ®, i.e., vectors that cannot be written as the sum of two other

nonzero vectors, are characterized by

ligll =1. (3.4)

Every vector of ® can be written uniquely as a sum of the minimal elements ¢ € &, and
any additive bijection of ® onto itself corresponds to a permutation in

L = {¢ € ®|¢ minimal}. In particular, we have that 1 € L, that the conjugation is an
involution, $j — ¢, of L, and that

£ (¢i$,-) =6ij. (3.5)

A fusion rule subalgebra (sub-superselection structure) @’ is an invariant sublattice of &,

which contains 1, closes under multiplication and for which (3.4) holds, for all minimal

vectors.

Note that a fusion rule algebra is simple, in the sense that there do not exist proper

ideals, i.e., if ¢, is a sublattice of ® spanned by minimal vectors with
3,=9, and $,02C9,

it follows from (3.5) that 1 € ®, and hence ¢ = &,.

The multiplication in & is determined by the products of the minimal elements

$iodi =3 Nixde, (3.6)
kel

where the structure constants Nj;x € N are, what we previously referred to as fusion

rules.
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In terms of the fusion rules, the definition of the fusion rule algebra is given by:

a) commutativity Niyrx = Njix

b) associativity Y Nijx Nira = E Nit Njry
k 4

c) unit Na; = Ny =6; (3.7
d) inVolution Nij,k = Nﬁ,;
e) evaluation Nij:1 = &;.

A representation of a fusion rule algebra, 7, of & on a lattice 4 = N* is an assignment,

a — p(a), of elements, a, in ® to additive mappings of A to itself (i.e., p(a) is a nonnega-

tive, integer k X k matrix}, with

p(1) =1, p(a)o(b) = p(acb) and p(a) = p(a)’. (3.8)

The representation we are primarily interested in is given by (right) multiplication of ¢
on A= &, so that
p(4;) = N;, (3.9)

where (N;),, = N;;x are the matrices of fusion rules.

In fact, any lattice A that carries a representation of  and has an element w with

(w, p(a)w) = e(a) (3.10)

can be written as a sum A = &, ® ¢}, where ®,, ®;} are $-invariant, and ®, is equivalent
to the right representation. If a representation, p, satisfies ||p (¢;)|| = ||N;||, then we call p
dimension preserving. Eqgs. (3.8) yield:

NiNi =3~ NijaN (3.11)
3
Ny=1, Ny=N . (3.12)
Using (3.10), for w = 1, and (3.12), (3.7) we see that
NA=N1=g;, aswellas N;=CN_C, (3.13)
where (C);; = &;5.
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Moreover, commutativity of o implies
[N, N¢] = 0. (3.14)

Suppose we have a lattice ®, and nonnegative integer matrices N; acting on ®,, that obey

(3.12), (3.13) and (3.14), for a given involution C, then we find that

a) (LNN; 1) = &

b) (L, NiN;Ng 1) Nix (3.15)

c) (I,N;N,'NkN[ 1) = ZNij,a le,l

scL
By (3.14), these expressions are completely symmetric in the indices 1, j, k and £ and, by
(3.12), are invariant under conjugation (1,3, k, £) — (3,7, k, £), so that equations (3.7) are
easily verified. Hence any set of matrices obeying (3.12), (3.13) and (3.14) determines

a fusion rule algebra.

From the results reviewed in Sections 2.1-2.4 it is clear that every local quantum
theory satisfying properties (P1) and (P2) of Section 2.2 defines a fusion rule algebra, $.
Let

B =\ AL, ¥z)
zeM™
denote the auxiliary C* algebra, introduced in Sect. 2.2, containing the observable al-

gebra 2; (C, is the auxiliary space-like cone). We define & to be the fusion rule algebra
generated, through arbitrary compositions, by the family L of transportable, irreducible
*endomorphisms of B localizable in space-like cones. Let C be an arbitrary, non-empty
space-like cone space-like separated from C,. We define the von Neumann algebra 91 to
be the local algebra
M =MmC) :=AC) .
By Haag duality in the form considered in [20],
m' =A(C) ,

on the vacuum sector, H;, of the theory. Let U = U(C) denote the group of unitary

elements in M, i.e.,

U:={V€£UZ:V'=V‘1}.
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Since every endomorphism in L is transportable, and hence is unitarily equivalent to an
endomorphism localized in a space-like cone of arbitrarily small opening angle contained in
the cone C, we can choose a representative which is a *endomorphism of 91 acting trivially
on M in every equivalence class of unitarily equivalent *endomorphisms in L. By also
including arbitrary compositions of such endomorphisms we obtain a subset, End.(C),
of End(9M(C)) which is closed under composition and hence is a (sub-)semigroup. The
semigroup End;(C) contains the subgroup, Int(C), of inner *automorphisms of 9 given
by
Int(C) :={ov : 3V € U(C) s.t. oy(A)=VAV*' VAecM}.

The fusion rule algebra ¢ of the local quantum theory under consideration is then given
by

® = End.(C)/ Int(C). (3.16)
The cone C, although chosen arbitrarily, and the von Neumann algebras 9 = M(C) and
M’ can and will be kept fixed throughout this chapter.
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3.2 Structure Theory for Fusion Rule Algebras

We review several results on the structure of fusion rule algebras which are based on the
theory of non-negative matrices, in particular on connectedness arguments and Perron
Frobenius theory. We focus our attention on the description of the fusion rule subalgebra,
®,, generated by a distinguished minimal vector ¢, € ®, and comment on the gradation
induced by ®, on ® in terms of “Perron Frobenius algebras” defined over R*. The proofs

of the following statements as well as more general aspects of the structure theory will be

gwen elsewhere [{2].

The first observation about fusion rule matrices is that they have non-negative
entries, and, since N}, = N; is a fusion rule matrix, too, if N, is one, fusion rule matrices
are normal, i.e.,

NNt = NEN, . (3.17)

Note that (3.17) defines a symmetric, non-negative matrix with strictly positive diagonal
elements. Hence it can be decomposed into irreducible parts, each of which is primitive.
The following lemma holds for arbitrary non-negative matrices. From the superdiagonal
block form on every N,-invariant domain, &3 = @ &1, we see that the period a, is

i€Za,
identical with the Frobenius imprimitivity index.

Lemma 3.2.1 Let N be a normal n x n-matriz, with non-negative (integer) entries and

non-zero rows, or columns, and let
o= (RY)"  (or N7

be the cone (positive lattice) on which it is defined, with unit vectors ¢1,...,¢,. Then
there is a unique sequence of numbers, ay € N, with A ranging over some indez set A,

and @ unigue partition of {1,...,n}:{1,...,n}= U U C(rs), such that the subcones
AEA

ieZ.,‘
(sublattices) (a;) = <{¢i}jec(;,;)> with

R+(N)’
=00 D 2ny, (3.18)
AEA i€Za,
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obey

N(q)()",')) C Q(A,i+1)y
and (3.19)

N¢ (<I>(A,.-+1)) C Pn9,
and, moreover, N'N is primitive on each ®(»;), i.e., (N'N)™ [ ®(s) has strictly positive
matriz elements, for some m. Furthermore, if there ezists an involution, ™ € S,, such

that we have

CNC = N, (3.20)

with C¢; := ¢u(i), then there is an involution, A — X, on A, with a) = a5, and an enu-

meration of Z,, such that

C(2an) = 2p-9 (3.21)
or

C (q)(;,,')) = Q(A,l—i) for A= :\ . (322)

From the superdiagonal block form of N, on every N,-invariant domain, &1 = @ &4,
i’EZcA
we see that the period a, is identical to the Frobenius imprimitivity index . Also we have

that the restriction of the matrix N, to a domain ®, is irreducible and by standard Perron
Frobenius theory has an eigenvector in &, ( components taken in Rt ) with positive eigen-

value, which is unique up to positive scalars. It is called the Perron Frobenius eigenvector

of the matrix. Any eigenvector of N, on ® is thus a convex combination of eigenvectors
on components with the same eigenvalue. A more general version of this observation is

obtained by induction :

Lemma 3.2.2 1) Let S = {N,,...,N;} be a set of commauting n X n - matrices, which

closes under transposition, i.e., N: € S if N; € §. Define the set PF(S) as

PF(S)={d € (R**)" : I(x) € (R*)* with Nid = ad,Vi}, (3.23)

then there is a partition

{,....n} = U Uz (3.24)

a€A 7
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and Perron Frobenius eigenvectors dy 4 with eigenvalues a = («;) and support in
Claiy - (dajr $) # 0 iff i € C(a,;), such that there is an orthogonal decomposi-
tion

PF(S) = € PF(S)a, (3.25)

acAd

where PF(S), is the convez cone spanned by the set of extremal directions {Ja,j} i

it) Suppose S is the set of fusion rule matrices of e fusionrule algebra with a finite
number of irreducible (or minimal) objects. Then the partition in 1) is trivial, i.e.

there is a unique vector d € (R*)", with

&(d) = (¢1,d) = 1 (3.26)

and
PF(S) = R*d. (3.27)
The components are
d, = (d,
v (d, ¢y) (3.28)
= ay =|INy||,
and take values in the set
{2cos(57) s, U [2,00). (3.29)

Part i) of Lemma 3.2.2 relates to Lemma 3.2.1 as follows: For § = {N,,N!} to any
A € A labelling a minimal, invariant sublattice, there corresponds an extremal Perron
Frobenius eigenvector labelled by a pair (a,7). This description of smallest common
invariant domains in terms of extremal Perron Frobenius eigenvectors of course generalizes
to involutive sets, S, of matrices with more than two elements. In the proof of the second
assertion in this lemma we make essential use of equation (3.13), which shows immediately
that every irreducible object is in the invariant domain containing 1. Using the numbers

determined in {3.28) we define a positive function on & setting for an arbitrary object

z € §,givenby z = Y yep, Tydy
d(z) = Y zydy (3.30)
v
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We verify that it satisfies

d :®— R,
dlz+y) = d(z)+d(y), (3.31)
dzoy) = dz)dy).

We call a function with the properties (3.31) a Perron Frobenius dimension. From ii) of
Lemma 3.2.2 we conclude that for fusion rule algebras with a finite number of irreducible
objects this dimension exists and is unique. Also we have d(1) = 1 and d(zV) = d(z).
If we consider fusionrules with an infinite set of irreducible objects this dimension is in
general not unique as can be seen in the case of ordinary SU(2)-fusionrules. For these the
numbers, d(z) = (dim(z)),, ¢ € R*, provide a one parameter family of Perron Frobenius

dimensions.

In the following we define for a subset T' of ® its support in the irreducible objects
by
supp(T') := {¥ | (¢y,8) # 0, for some s € T'} (3.32)

The result of Lemma 3.2.2, i), can be applied to define a quotient algebra &/®, for a
fusion rule subalgebra ®, ¢ &, where two irreducible objects,; and 15, are equivalent iff
¥ = zovy, for some z € ¥,. We obtain a partition of ® by setting Cfy) := supp (¢y 0 ®,)
and &5 := <{¢¢}¢ec,>N» so that & = p?a &g and &, 0 &5 = &, where B is the set of equiv-
alence classes. The fusion rule matrices, Ny, of $ have a unique common Perron Frobenius
eigenvector deR*- ®, with E(J) = 1, and the components & e R+ ®g of d= % &P span

BeB
the cone of common Perron Frobenius eigenvectors of representations in C,

In order to state the next lemma, we define the positive numbers kg and —N:Pub: 8 by

setting
w = |#]/]#] (333)
and
N - dy
’°{¢1]"[¢m] N¢1h-ﬁ = 'ﬁ’%p d\bldih N""l"’:,\l’: ] (334)
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and the positive vectors

o= 1P (3.35)

e

Lemma 3.2.3
i) We have the following equations in RY - ®:
1 = 1
— gyo0b = — W (3.36
dy ¥ Kiy] )
and

Fof = &. (3.37)

ii) The numbers defined in (3.84) do not depend on v, and 3, ezplicitly, but only on
the classes [1] and [13], so that we may define

Nigiwaliwsl = N'givafis] - (3.38)

The numbers kg then form the common Perron Frobenius eigenvector, K, of the

matrices (w[%]hh]-[\l’a]) ,and kK, =1, kg = k3, and

> Nogqyhig = Kakg. (3.39)
~YEB

i1i) The numbers Nog., are the structure constants of the multiplication table of the 87,

i.e.,
8208 =Y Naugab', (3.40)
vyeB
and we have that
Wa&,o =1,

Remark. In all statements of Lemma 3.2.3 we understand the multiplication, o, defined
on the N-algebra & to be extended to the Rt-algebra R* - &. We easily verify, that the
structure constants, N,g,,, obey all constraints (3.7), necessary for fusion rule matrices
to define a fusion rule algebra, except that they are not necessarily integer-valued. This

motivates the following definition.
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Definition 3.2.4 For two fusion rule algebras ®, C ®, the Perron-Frobenius algebra

of ® over ®, is the cone freely generated by the indez set B, i.e., all combinations 3}, Aaq,
a€B
with A, > 0, equipped with the conjugation, a — &, and the Rt -bilinear multiplication, o,

defined by the structure constants, i.e., we have that

aofl = Zﬁaﬁn'y .
hl

This algebra is denoted by /®, and is often identified with a subalgebra of R - & through

the embedding a — 5. (If we set (a,B) := 6,,,9F-1—IT; this embedding is even seen to be

isometric.)

The use of Perron Frobenius algebras is motivated by the observation that

Nag,=0
iff there exist ¥, € C, and 9z € Cg such that

$ya © Py L By (3.41)

which is equivalent to

B 005 L D, . (3.42)

Thus the algebra /&, tells us which &,-invariant components, ¢., occur in the product
of two other components, &, and ®4. Definition 3.2.4 can of course also be applied
to Perron Frobenius algebras &, C @, instead of fusion rule algebras. We can therefore
iterate our construction and obtain familiar equations, like ®/®, = (®/®,,) /(®o/Po0),
for ¢, C &, C &.

We associate to any pair of sets T, S C {1,...,n}, the composition
ToS:= |J supp(dio¢;),
€T, jes
so that 7,5 — T o S is a commutative and associative operation. Further, we denote
by [T], T c [T] C {1,...,n}, the set generated by 7T, more precisely [T]:= |J T*o T
0

For any set T, the sublattice @) := NIT) c & is a fusion rule subalgebra of ®.
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In the simplest cases T = {p} and T = {p} o {5}, these subalgebras are related to

the presentation of the fusion rule matrix N, of Lemma 3.2.1 by

3, = &= D 20,

1€Z,,
and (3.43)

Pporl = 2(0.0);
where ), and the enumeration of Z,,  are chosen such that 1 € C(»,,); hence
C (20.4) = Fr-i-
The Perron Frobenius algebra ®/®[,5 can be described further by using Lemma 3.2.1.

Proposition 3.2.5 Suppose that for a representation p, the fusion rule matriz N, has

imprimitivity indices ay € N, X € A, and define a partition of {1,...,n} = Uy iEL'J Coniys

Za;,

according to Lemma 3.2.1, with A, as above, i.e., 1 € [po p] = C(a,0)- Then
i) The Perron Frobenius algebra, &/®|,0z, is given by vectors 509, A € A, i € Z,,
with supp (5"('\")) =Cpxi), ond 1 := 500,
i) The subalgebra 3,/ P, is generated by an automorphism a := §0e1) | with
a** =aoa=1
and is therefore isomorphic to R* ([Z,,]). We have that
o) = §xé+)  yaeA, i€z,

and (3.44)
ay divides a),, VA€A.

##i) There are constants NI} )i € A, depending on j only modulo the greatest com-
Aidz, Ay ) g€p g on ) 4

mon divisor of ay,, ay, and ay,, i.e., J € Z(a, a3, .3x,)s SUCh that

Frukdofubd = 33 NEIAT S, (3:45)
A3€A ks €Za)
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iv) The vectors, g", A € A, of the Perron Frobenius algebra ®/®, = (<I>/<I>[p°ﬁ])/ Do

D _ 1 2 28 . [32 A 7
6 = T ‘;6 = GA,6 LX) (3.46)

j arbitrary, and the structure constants are

_ [ax,ax0n 1 (o3 223.03,) G)
N = LR b Ny . 3.47
ALAz,As ax, (aA“ @ a'A;) Jzz:l A1Az,)s ( )

Roughly speaking, Proposition 3.2.5 shows that the action of &, on & is graded and

are given by

that the composition law of the invariant domains of ®[,.; has a periodicity specified
in part iii). In the following, we shall denote the fundamental imprimitivity of N,, a,,,

characterized in part ii), by a, for any label p of the fusion rule algebra and by C?, i € Z,,
the components C(y, ). Finally ®f := (I)[c.’] = Q,.0)-

We collect the consequences of Proposition 3.2.5 that are relevant for the later

considerations in the next corollary.

Corollary 3.2.6 For any label p of a fusion rule algebra, there is an integer, a,, the
imprimitivity of p, and a partition
W= U ¢
i€Za,

of the set [p] generated by p into a, subsets, C?, such that

1€C = [pop]; CP=C%

and (3.48)
Yolf = Ci;, forall + €C;.

If p is selfconjugate, it follows immediately that a, = 1 or @, = 2.

For the simplest nontrivial case of Z,-gradation, we describe the fusion rule algebra
more explicitly in terms of fusion rule-matrices. In general the fusion rule matrices of
a Zj-graded algebra defined on & = &, ® $; (& = N%Y1, &, = N%, i=12) and the

conjugation have the blockform

c

C,eC,, (C; involution on &,)
(3.49)
Ny = N3N}, for ypeC,
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0 C.AC
N, = w1 , for neC. (3.50)
A, 0

It is possible to give criteria which determine when matrices of this type define a fusion

rule algebra, in the sense of Section 3.1, namely that they obey equations (3.12) - (3.14).

Lemma 3.2.7 Let {N3}, be the fusion rule matrices of a fusion rule algebra ®, = N°
with conjugation C,. Suppose, further, there is a representation, x, of &, on a lattice
$; = N® with conjugation C1, so that Cim($)C1 = n(¢) = 7(¢)". Then the matrices N,
Ny and A,, where N}, := x(¢y), ¥ € Co, and

Ap:®, — @, is determined by A,dg = N‘1ﬁ¢,,,

define a fusion rule algebra ® = &, @ &, with fusion rule matrices given by (3.49) and
(8.50) iff
AL = AAG. (3.51)
Note that C,A,C, = Ay. So we have the equations

C1AALCy

Aottas (3.52)
CAIA,C, = AiA,

where A,, is the block matrix of N,, for 5 € C;.
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3.3 Grading Reduction with Automorphisms and

Normality Constraints in Fusion Rule Algebras

In this Chapter we show how any simply generated fusion rule algebra, with nontrivially
graded automorphisms, can be obtained from a smaller fusion rule algebra with Zy-grading.
We state the most general presentation of a fusion rule algebra, ®(,), in terms of an algebra,
in which all automorphisms lie in the trivially graded component. For this purpose, we
introduce two constructions that yield new fusion rule algebras, 75 (Q[p]) and Zn * i,
from a given one, ®,). We also discuss the crossed product, Z, x ®, for arbitrary fusion

rule algebras, and its use in the classification problem, for & = ®|,.

The restrictions, A;, of a fusion rule matriz N, to the components C obey constraints
that are due to the normality of N,. We use them to specify classes of A, such that any
fusion rule algebra, ®|,, compatible with one of these A, has an automorphism in C,
and can thus be obtained from a fusion rule algebra generated by a selfconjugate element
p=p.

Throughout this section, we assume that the fusion rule algebra ®, with label set C, is
Z,-graded (e.g., as in Corollary 3.2.6, for C = [p]). Thus we have a partition C = ‘,EL%“ C;

and a corresponding lattice decomposition, ® = @ ;.
i€Za

To any fusion rule algebra, ®, we can associate the set of invertible objects

Out(®) :={p€ @ | dogp=1}. (3.53)

It is immediate that Out(®) only consists of minimal vectors, and thus can be regarded
as a subset of C. Moreover, it defines a discrete, abelian group with multiplication o and
inversion ¢~! = §. Equivalently, Out(®) is characterized as the subgroup of permutations,
7 € Sic| of C such that II, given by II;; = ix(j), commutes with all fusion rule matrices
and hence II = N, ;). Referring to the fusion rule algebras (3.16) that emerge from the
superselection rules generated by transportable *-endomorphisms of a local quantum field
theory, the group Out(®) (and, in particular, the notation) has a natural interpretation.

If Aut(C) is the subgroup of Endy(C) consisting of *-automorphisms of 9 acting trivially
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on 9V then equation (3.16) yields the isomorphism
Out(®) = Aut(C)/Int(C) (3.54)

Automorphisms (or invertible objects) can be detected fairly easily from the vector, J:
of statistical dimensions or from a common Perron-Frobenius eigenvector, &, for finite

fusion rule algebras, ®, by
Out(@):{ie@|d§=mjndg}={ie¢>|d;=1}. (3.55)
i

Since d; > 1, V¢; € ®, the total number of irreducible representations in ¢; o ¢;, %: Nix, is
bounded above by 3° N;;xdx = d; - d;. Thus d, = ds = 1 implies that o o 7 is irreducible,
iie.goa=1. Hen::‘e o is a *automorphism, and N, is a permutation. (Note that, in
general, if a matrix, N,, with non-negative, integer entries and non-zero rows and columns
admits a positive eigenvector with eigenvalue 1 then N, is automatically a bijection.)
If the components C, and C; of a fusion rule matrix N, are finite then we find from
the unique Perron-Frobenius vector d = (cﬁ’,tﬁ) €C,DC of A=N,[(C,:C, — Cy, (e,
Ade = d,,ti“; Atdl = dpli:’) the automorphisms in C, and C; by (3.55). A similar result holds
for C* =C, @ ... ® Ci. Since, for o € Out(®), p o o is irreducible , the vertices associated
with automorphism in the graph to which N, is the incidence matrix have exactly one
incoming and one outgoing edge, (i.e., one undirected edge for p = p), joining ¢ to sites p'
for which d,» = d,. For general undirected graphs we only have the “minimum principle”,
i.e., that the edge degree of sites on which the Perron-Frobenius vector admits its absolute
minimum is strictly less than d,, and is equal to d, only if all vertices have edge degree d,
and the Perron Frobenius vector is constant. Hence we expect that, for d, > 2, non-trivial
constraints on the set of admissible fusion rule matrices can be found by considering the

position of automorphisms in the fusion rule algebra.

Clearly the restriction of the grading map, ® — Z, : §; — 1, to Out(®) is a group
homomorphism, and its kernel is given by the subgroup Out ($,) C Out(®), where &, C @
is the fusion rule subalgebra with trivial grading. Hence the grading gives rise to the
embedding

D(®) := Out(®)/Out (9,) & Z,. (3.56)
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It follows from (3.56) that there are integers r and a’ with a = r - @', such that D(®) = Z,
and a' is the smallest integer such that &, N Out(®) # 0.

These aspects of grading fit into a general context: Let us consider a general fusion
rule algebra ®. Clearly, ® contains a natural fusion rule subalgebra on which all gradings

are trivial, namely the subalgebra &, where

Co = LLEJC wupp (¢:08)|

Our notations are those introduced in Section 3.2. It is not hard to see that the Perron-

Frobenius algebra over &, i.e.,

Grad (@) := & /%,

is, in fact, an abelian group, or, in other words, that Nocs = 641, for arbitrary a and
v in Grad(®). This observation shows that an arbitrary grading on & is described by
a character of the group Grad(®). More precisely, if

0:% -G,
with G an abelian group, is a grading of 9, i.e.,
B(i)0(s) = O(k) i N;i#£0,

and

grad : & — Grad(®)

is the canonical projection from & onto the quotient space Grad(®) then there exists

a homomorphism of abelian groups,
0 : Grad(®) - G,

such that the diagram

® e Grad(®)

O\ 7 ©

commutes.
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We therefore call the map “grad” and its image, Grad(®), the universal grading

of ®. One sees without difficulty that

grad(y) = grad(y)™*, for all ¢y € &,
where 1 ~ 1 is the conjugation on &.

In general, the restriction of the map grad: ® — Grad(®) to the group of invertible
elements, Out(®), contained in @ is a group homomorphism. Its kernel consists of all

invertible elements of ®,, i.e.,
ker(grad [ Out(®)) = Out (%) .
From this remark we conclude that
D(®) := grad (Out(®)) = Out(d) /Out (o) ,
and D(9®) is a subgroup of Grad(®).
If Grad () = Z, the map “grad” gives rise to the embedding (3.56).

For any o € ®. N Out(®), we have the decomposition
r=1
Out(®) = P o’ o Out(d,),
=0
and a bijection

Ci=Cya:pood.

These facts imply that the multiplication law on the set C, U, ... UCar_1, together with
a specific automorphism o € C,, already determine the entire fusion rule algebra. In
fact, it is true that one can construct a fusion rule algebra ®' which is Z,-graded, with
D(%') =1, and from which ® can be reconstructed. The two operations on the class of

fusion rule algebras that are necessary for this description are defined next.

Definition 3.3.1 Let ® = N¢ be a fusion rule algebra with multiplication o and conjuga-

tion —. Further, let ® be Z,-graded, with ® = @ &;.
i€Za
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i) For any b € N, we define the fusion rule algebra Zy * ® as follows: The underlying
lattice is N(Z+X€) and is spanned by the minimal vectors (k,¢:), k€ Zy, i €C. The
conjugation is denoted by ¢ — ¢¢ and is given by

(_k_1)$)1 for ¢€‘I>.-, 7’740)

(k, ¢)° :=
(—=k,¢), for ¢€&,.

The multiplication is denoted by x and, for k; € Za;, ¢; € &, n; =0,..., a1,

j=1,...,m, is given by

(k1 #1) X (k2,82) X .. X (kmy @) :==(r+ k1 + ...+ km,$10...06¢m) ,

where r € N 1is given by the condition
ar <ny+...+n, <a(r+1).

it) For any § € Out(®,), we define the fusion rule algebra 75(®) as follows:

The lattice of 75(®) is the same as for &. The conjugation, ¢ — q_S’, is ezpressed in
terms of the conjugation of ® by

, §od, for ¢€d,;,, 1#0,
9, for ¢€@,.
The multiplication is denoted by o' and, for ¢; € ® andr € N as in part i), is defined
by
$10...0¢p:=80¢10...0¢n.

It is straightforward to show that the multiplications and conjugations introduced above
define fusion rule algebras, in the sense of Section 3.1. Since the trivially graded auto-

morphisms are not affected by these constructions, we naturally have that
Out (C,) = Out ((75(2®)),) = Out ((Z « @),) .

However, the situation for Out(®) is different: Out(Z; * $) contains the subgroup = Z,
generated by (1,1), so that

Out (Zy * 8) /Zp = Out(®), and D (Zp* )= Zoy.
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We can find a grading preserving isomorphism of Out (75(®)) onto Out(®) if § = o, for

some a € Qut (®,). For other choices of § this is in general not possible.

Furthermore, it follows immediately from Definition 3.3.1 that, for any a € Out(®),

the map
2y % 7a(®) — Tus (Zy * B) : (K, ) > (k, & 0 ¢) (3.57)

provides a fusion rule algebra isomorphism. Also, we have that
75, (75,(®)) = 75,06, (), (3.58)
by natural identification, and an isomorphism
Ly, % (Zy, * ) — Zyyp, * P : (kgy (kr, @) — (ks + by - k3, 8) (3.59)
where k, is chosen in {0,...,b; — 1}. We are now in a position to state the presentation

of all Z,-graded fusion rule algebras in terms of algebras, ®, with D(®) = 1.

a—1
Proposition 3.3.2 Suppose & is Z,-graded algebra, with label set C = |J C;, multiplica-
=0

tion o and conjugation ~, such that
where r > 1 i3 an integer dividing a, and a” := a/r.

Then there exists a Z,n-graded fusion rule algebra ®”, with corresponding constit-
a’—-1
uents (C" = U C",-,o",'"), an automorphism § € Out (®!) and a fusion rule algebra
=0
tsomorphism 3,

B:7s(Z, x®") S5 @, (3.60)

such that

i) B maps (0,8%) bijectively to ®;, for j =0,...,a' — 1, and f(1,1) € Out(d) N &".

In particular, B is grading preserving.
it) D(®") =1, i.e., we have
Out(®") = Out (®2) = Out (3,) -
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By part i) of Proposition 3.3.2 the lattice isomorphism obeys
B'($ 0" ¥) = B(4) 0 "(¥), (3.:61)
for ¢ € C;, ¥ €Cj, 1,7 2 0, provided the condition
i+j<a” (3.62)

holds. This shows that the restriction 8" : ®) — &, is a fusion rule algebra isomorphism.
Also, for a" > 2, the restriction of the fusion rule matrix of some element p € C; to C,

Temains unchanged. More precisely, for A2 := N} | &, — &,, we have that
(BA28" = A2
with p” = (8")1(p) € C{. The proof of Proposition 3.3.2 can be found in [42].

For certain special cases there exist a natural procedure to relate Z,-graded fusion
rule algebras among themselves, with the help of automorphisms. It involves the crossed
product, ®; x ®; of two fusion rule algebras, &;, i = 1,2, with lattice &; ® &, = N€:%¢3),

multiplication (¢ ® ¢2) 0 (¥1 ® ¥2) = (¢1 0 ¥1) ® ($2 © ¥2), and conjugation (¢, ® ¢2) =
$1® ¢2. By Z, we denote the fusion rule algebra with C =7, and ¢;0¢; = disj,

$i = ¢_s.
Lemma 3.3.3

1) Suppose ®' is a Z,-graded fusion rule algebra and r € N is prime to o', then & =
Z, x ' is Zy-graded, with a = a' - and Bi0ryjr = {¢:} Q@ &

a’-1
i1) Assume that ® is a Z,-graded algebra, and a =r-a’'. Then ' = Jg__:o $,.,C® s

a Z,-graded fusion rule subalgebra. If, in addition, there ezists an automorphism «,
a € @, NO0ut(®), with o =1,
and o is prime to r, then
Z x® >d:¢,0¢% s a0y
is a fusion rule algebra isomorphism.
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Note that if & = @[, is generated by an element p € C;, then also &' = P, is gen-
erated by af o p € C’, where t is determined by the equation ¢-a’ = —1 mod r. We will
be interested mainly in the case where r = 2 and o’ is odd for which Lemma 3.3.3 shows
that it is sufficient to consider even graded fusion rule algebras. This is because any odd
graded ¥’ will appear, as Z; x &/, in the list of evenly graded fusion rule algebras which,

in addition, contain an automorphism a ¢ Out (®,), with o® = 1.

Returning to Proposition 3.3.2, we note that if & = &, is generated by a single
element p € C;, then the algebra ¢” in the presentation (3.60) is generated by the corre-
sponding p" = (8")7*(p) € C"1, i.e., " = | m, if it is nontrivially graded. In the follow-
ing, we shall characterize a class of fusion rule algebras ®|,) with generating element p,

with the property that there is a presentation (3.60) where p"” is selfconjugate.

Lemma 3.3.4 Suppose that & = @y, is a Z,-graded fusion rule algebra, with a > 2 and

generator p. Then there is a presentation

ﬁll

d 75(Z, »®"), §€0ut(®), reN,

where the corresponding generator p" = (8")"(p) € C"y is selfconjugate in ", if and

only if there is an element a € ®, such that
aop=p. (3.63)

If ® is ungraded then there ezists some a € &, with (8.63), if and only if we have a pre-
sentation

ﬁll
Zyxd® = 149",
where the respective element p” = (") (¢_1 ® p) generates " and is selfconjugate.

In any case a is an automorphism and ®” is either Zy-graded or ungraded. Hence

r=%orr=a,anda€C; ora€l,.

If we introduce the restrictions
A.' = th [c‘.: Q,’ — ¢i+1 ) (364)
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which we regard as |C;| X |C;;1|-matrices with non-negative integer matrix elements, then
condition (3.63) can be reformulated as follows: There exists a ¢, € @2, ||¢al| =1, such
that

Ag,=A1= @, (3.65)
It follows then that the restrictions T; = Nt [¢: &; — ®,,; are bijections, i.e.,
TET = Tig TE, = L, (3.66)

and

Al iy =T Al = Ayyq (3.67)

From the fact that N, is normal we obtain the following constraints on the matrices A;:
A: A,' = A,'_l A:—l =: M,’ . (368)

We immediately see that any set of matrices obeying (3.67), with arbitrary bijections T;,
solve the constraint (3.68). Moreover, it follows from (3.68) that

A= Nl (3.69)

independently of i. The purpose of the next two combinatorial results is to infer equa-
tion (3.65) from the knowledge of A, or M; = A,A and from condition (3.68), for i = 1
(i.e., Ml = AiAl)

It i1s standard to define an undirected graph, G,, from a symmetric nonnegative
integer matrix A € Mat,(N) by joining two vertices, labelled 7 and j, by exactly (A);;
edges and attaching (A);; loops to every vertex j. Conversely, to any undirected graph G,

there corresponds a unique symmetric matrix A, the incidence matrix, such that G = G,,

t
and, moreover, for an arbitrary n by m-matrix A, A := ( R 1(\) defines the respective

bicolored, undirected graph. For convenience, we will often use this (equivalent) graph

theoretical language throughout the following statements and, later on, in Section 3.4.

The first result only assumes local constraints on M, yielding a finite list of possi-

bilities all of which imply (3.65).
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Lemma 3.3.5 Let A be any n by m nonnegative integer matriz, and let the n by n

symmetric, nonnegative integer matriz M be defined by
M=AA.

Suppose that ¢, is a unit vector in N® such that the vicinity of the vertez, v, corresponding
to ¢, in Gy, i.e., the number of its neighbors, the number of edges joining v with each of

its neighbors, and the number of loops at v, is given by on of the following subgraphs,

¢,o 4}) .- 470

(1,2,3,5,6,7,10,11,14,15,19,23) (3,4,7,8,13,16) O

(3,7) (4.8) - (4,8)
Figure 8.1 R \

then there ezists a unit vector ¢, € N™ such that
A po=¢,.

Our second result characterizes a class of matrices, A, by global constraints with the

property that, for two matrices A and A in this class,

M:=AA=A'A
implies that A and A are equivalent, i.e., the exists a bijection T', with A = TA.

In the application to fusion rule algebras, we will encounter the case where both
matrices, A = Ay and A = A? defined in (3.64), belong to this class, so that (3.68) implies
the existence of T': ®, — ®,, with TA! = A, hence A, = A{T. Thus ¢, := T'1 is a solu-

tion of (3.65), and we can choose T' = T,. The situation is summarized in the following

commutative diagram:
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Lemma 3.3.6

1) Suppose a bicolorable, connected graph G with incidence matriz A has no cycles of
length two (multiple edge), four or siz. Then a component A of G2, with incidence
matriz A'A, has the following properties:

a) Ezcept for loops, A contains only simple edges.

b) If two complete subgraphs of A have a common edge, they are contained in

a common, complete subgraph of A.

¢) If U(v) C A is the subgraph of A consisting of all nezt neighbors v € A, v it-
self ezcluded, then the number, L,, of loops at v ezceeds the number, E,, of

connected components of U(v) We put P, = L, — E,.

it) If A is a graph with properties a) and b) then A can be uniquely written as a union,
A =U; Q: of maximal, complete subgraphs Q; of A such that every edge of A is
contained in ezactly one Q;. Moreover, any two @Q;’s can intersect in at most one

vertez, and among three distinct Q;’s at least two are disjoint.

i) For a graph A satisfying a)-c) we define a bicolored graph G 4 as follows: The vertices
of one coloration are identified with the vertices of A. The vertices, p;, with edge
degree greater than one and coloration opposite to those in A are identified with
the Q;’s and joined by simple edges, (p;,v), to the vertices v € Q; C A. Additional

vertices, pj, of opposite coloration and edge degree one are joined to each v € A by
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simple edges, (p%,v), j=1,...,P,. It follows that G4 has no cycles of lengths two,
30 )

four or siz and that A is a component of G¥.

1) G4 is unique, t.e., if G is a graph without cycles of lengths two, four or siz and A

is a component of G, then G4 = G.

For proof of these facts we refer to [42]. From iv) we infer the following Corollary:

Corollary 3.3.7 If for two bicolored graphs, G and G', without cycles shorter than eight,
the components of one coloration of G* and G'* are isomorphic then G and G' are isomor-

phic.

Although the assumptions in Lemnma 3.3.6 are global and very strong, it turns out to be
the fitting criteria in the classification problem of Section 3.4., where we impose bounds on
the norm of N,, thus by (2.23) also on the norm of A;. In addition we have a prescription
of how to comstruct solutions from M which allows for any easy characterization of a few

exponential cases.
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3.4 Fusionrules with a Generator of Dimension not

Greater than Two

The purpose of this section is to characterize the formal object (half-) algebras of the
braided tensor categories to be classified in chapter 8. Not assuming any further structure,
this means e classification of fusion rule algebras, in the sense introduced in Chapter §.
In fact we will find fusion rules that do not belong to any braided category. We restrict
the classification to fusionrules which are generated by a single, irreducible object, whose

Perron Frobenius dimension does not exceed two. Detailed proofs will be given in a separate
paper,[{2].

The first basic ingredient in the classification of fusion rule algebras is the classi-
fication of bicolorable graphs with norm not greater than two. The set of vertices of a
bicolorable graph I' can be divided into two subsets, W and B, such that no two vertices
in W and no two vertices in B are joined by an edge. The graph is characterized by a
matrix, A : N¥ — NP whose entries \;; € N are the number of edges joining the vertex

1 € W with the vertex j € B. The incidence matrix is then

Nr = ( 0 A ) (3.70)
A O

and the norm of the graph is defined by
ITl = [INc]l- (3.71)

The proof of the following theorem can be found in, e.g., [45] and references therein. The
graphs referred to here are depicted in Appendix A together with their norms and Perron

Frobenius eigenvectors.

Theorem 3.4.1

i) The finite, connected, bicolorable graphs with norm less than two are the following :

A1), Di(i>4), E(l=6,7,8) (3.72)
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1) The finite, connected, bicolorable graphs with norm equal to two are the following :

AN >2), DM (1> 4), EM1=6,7,8). (3.73)

Suppose that p is a selfconjugate, irreducible object with non-trivial grading in a
Z,- graded fusion rule algebra. Then by equation (3.12) the fusion rule matrix, N,, has
to be symmetric and if we use that the grading prescribes an off diagonal block form then
we obtain the presentation (3.70) for N,, so that we can associate to it a bicolored graph
T,. If we assume, further, that the fusion rule algebra is generated by p then this graph
is connected. Since the Perron Frobenius dimension of p is equal to the norm of ', we
can use Theorem 3.4.1 to establish an apriori list of possible fusion rule matrices labeled
by the respective Coxeter graphs if we require d, not to be greater than two. The next
lemma is concerned with the question which of these matrices are actually fusion rule

matrices of a fusion rule algebra.

Lemma 3.4.2 Suppose ® = &, is a Z,-graded fusion rule algebra, with selfconjugate
generator, p, of dimension

d, <2.
Then the fusion rule matriz, N,, of p is the incidence matriz of one of the bicolored graphs
Ayn,n>2, Dy,yn>2, EgorkEs. (3.74)

Furthermore, there is ezactly one fusion rule algebra for each of the graphs in (8.74) such
that N, is its incidence matriz. We will thus name these fusion rule algebras by their

respective graphs. They have the following properties:

i) The A,-algebra has trivial conjugation, C = 1, and Out (4,) = {1, a} = Z,, where

a is even-graded, for odd n, and odd-graded, for even n.

If we denote the basis vectors by p;, 7=0,...,n—1, with p,:=1, py :=p and
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PO p; = pj-1+ pjs1, then the structure constants of p; 0 p; = Y. Nijipr are given by
E
L i fi—l <k < minli+5,2(n — 1) — (i + 1)
Nije = and k=1+jmod2 (3.75)
0, else.

For the statistical dimension we obtain

T
d, = 2cos (n+ 1) = (2),,

with g = e'mT,

11) The D,,-algebra has trivial conjugation, for odd n, and, for even n, the representa-
tions corresponding to the vertices of edge degree one at the short legs in the Dy,-
graph are conjugate to each other, while all other representations ere selfconjugate.
For n > 2, the group of automorphisms of D, ts trivial, and, for n = 2, we have

that Out (Dy) = Z3. The statistical dimension of the generator of Dap is given by

T
n—2

d, = 2cos (4 ) = (2)q, with g = e®53 .

#1i) The E¢- and the Eg-algebra have trivial conjugation; Out (Eg) = Out ((Ee),) = Z;
and Out (Es) = 1. For Eg, the statistical dimension of the generator is given by
d,=2cos (&) = (V3 +1) = (2), with g = €33, and, for Eg, we have that d, = 2
cos (%) =1 [\/5(\/§+ 1)+ v2y5 - \/5. = (2)q, with g = €.

From this result and Lemma 3.3.4 we immediately obtain the list of Z,-graded fusion rule

algebras with non-selfconjugate generator and the list of ungraded fusion rule algebras.
Corollary 3.4.3

1) The Zy-graded fusion rule algebras with non-selfconjugate generator, p # p, of sta-

tisticel dimension d, < 2 are given by
Ta (A2n+1) ) n Z 2 ) and Ta (EG) ) (376)
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where a is the non-trivial, evenly graded automorphism of Azn,1, Ee, resp. The
evenly graded representations thus remain selfconjugate, and the conjugation, re-
stricted to the oddly graded representations, corresponds to the reflection of the
Dynkin-diagram.

i) An ungraded fusion rule algebra with generator, p, of statistical dimension d, < 2 1is
given by the fusion rule subalgebra of Aj,, for some n > 2, consisting of the evenly
graded representations, so that, in the notation of Lemma 9.4.2, i), the generator is
given by p = pan_3. In particular, we have that p = p, and the conjugation is trivial
for all of these fusion rule algebras. The fusion rule matriz, N,, of the generator
is the incidence matriz of the graph, A,. Thus, denoting the fusion rule algebra by
this graph, we have that

A, C Az,. (3.77)

The statistical dimension of p is given by d, = 2cos (#;—1) = (2),, with ¢ = eIt
(This also includes the trivial fusion rule algebra A; = {1}, which is obtained from
Ay =7,).

The complete list of Z;- or ungraded fusion rule algebras with generator, p, of statistical

dimension d, < 2 is thus given by

An; D2n)E6)E8)Zn:Ta (A2n+1):Tm (EG) . (378)

A comparison of (3.75) with (6.43) and {7, 8] shows that the fusion rule algebra A, is
realized as the tensor product decomposition rule of U, (sf3), ¢ = ev‘%, and in the formal

operator product expansion of 3%u(2),_;-symmetric WZNW-conformal models.

An independent way of realizing the structure constants of (3.74) as those of a ring

over Z is given as follows:

Consider the sequence of Chebychev polynomials, Pr(X) € Z[X], defined by

P(X) =1,
P(X) =X (3.79)
and XPu(X) = Pe-r(X) + Pepa(X).
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Let C, be the ring of dimension n over Z, given by
C, := Z[X]/ Pa(X) - Z[X]. (3.80)

Then the images of the Chebychev-polynomial in this quotient, Py := [Pi(X)] € C,,,
k=0,1,...,n—1, for a Z-basis of C,, and the multiplication in C, is given by

P:-P; =Y NP, (3.81)
k

where the N;; are precisely the structure constants (3.75) of an An-fusion rule algebra.

In order to provide means by which also the D- and E-algebras can be computed, we
discuss fusion rule algebra homomorphisms between different algebras, as well as fusion

rule algebra automorphisms.
Lemma 3.4.4

i) For the Z;- or ungraded fusion rule algebras with a generator, p, of statistical di-
mension d, < 2, all fusion rule algebra automorphisms are involutive, and there is
at most one non-trivial automorphism for every fusion rule algebra. If the fusion
rule algebra has a non-trivial conjugation then the automorphism coincides with the
conjugation. For the fusion rule algebras with trivial conjugation the automorphisms

are given as follows:

a) Azny1, Es: The involution v,, yg, resp., is identical to the conjugation of

Ta (Azns1), Ta (Es)-

b) Dinya: The involution =, ., ezchanges the representations that correspond to

the vertices of edge degree one at the short legs of the graph Dyn 2.

it) The non-trivial fusion rule algebra homomorphisms from one of the fusion rule al-

gebras in (8.78) into the algebras A, or A, are given by

A2n+1 42-) A2n+1 y n Z 1 N (382)
Z; A, = Out(d,) > 4., n>2, (3.83)
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i)

1)

and

Tn

4, S A 3 4., n>1. (3.84)

Here 1 is the inclusion (3.77), and the homomorphism G, is defined by its graph,
depicted in (B1) of the Appendiz. The composition T, 01 in (8.88) is the identity
on A,. Among the fusion rule algebras with generator of statistical dimension 2, D3
(to be defined below) is the only one for which there ezists a homomorphism to an
A-algebra:

Dy —  As. (3.85)

The inclusion is defined by noticing that the subalgebra of 0-graded sectors in As is

isomorphic to Dj.

For every n > 2, there are ezactly two fusion rule algebra homomorphisms o2, 62,
of one of the algebras listed in (3.78) into D,,. They are defined on Ay,_3 and on
Ta (Agn-3), respectively, and given by the graphs in (B2) of the Appendiz. They are

related to the automorphisms by the following commutative diagram:

7 Dan
A
4n-3 1)/" (3.86)
72 n-ZI D D2y
=t
A4n—3 n

The map (8.84) can thus be eztended to D,, the image of D3 in D, being the evenly
graded subalgebra isomorphic to Zs.

The only homomorphisms of one of the fusion rule algebras in (3.78) into Eg are de-
fined on A3 D A; and Ayy. The only possible one on Az maps the generator p of sta-

tistical dimension d, = (2),, = V2, @1 = et , to the representation corresponding to
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ones,

the endpoint of the shortest leg in the Eg-diagram, with dimension d, = (4)q, — (2)q,,
g2 = el , and the non-trivial automorphism of Az to the non-trivial automorphism
in Eg, thus providing an inclusion of A; into Eg as a fusion rule subalgebra. The
two possible homomorphisms of Ay, to E¢ differ from each other by multiplication
of the automorphism on Es, described in part i), and one, o™, is given by the graph

depicted in (BS) of the Appendiz. The following diagram commutes:

o Ee
Es(@-— A

3.87
Zp = A2C—>A3\ i)’E oE6 $)’| (3.87)
Es A

Analogous statements hold for the homomorphisms

éE
Ag — A3 O To (Es) «_5 Ta (An) . (388)

On each of the fusion rule algebras A;, Ay, Dis and Ajq there ezists ezactly one
homomorphism into Eg, and there is none for all other fusion rule algebras listed
in (8.78). The homomorphism of A; to Es maps the representation of statistical
dimension d, = (2), = }(1 +V5), @1 = e, to the representation corresponding to
the endpoint of the leg of length two in the Eg-diagram, with statistical dimension
d=Ng—8)a =31+V5), @2 = 5, and it therefore provides an inclusion, i, of
A, into Eg as a fusion rule subalgebra. The homomorphism of A, to Eg is then
given by the composition i 0 73, G, being defined in (9.84) and (B1). In (B{) the
homomorphism, 0P of D¢ to Eg is given by its graph. The homomorphism of Aze
to Eg is the composition oPF o oD, where o0 is defined in (5.86) and (B2).

With the help of the homomorphisms described in Lemma 3.4.4, it is possible to rederive
the explicit fusion rules, e.g., in the form of the structure constants (4.6), of the D-

and E-fusion rule algebras from those of the A-algebra; see (3.75). Except for the trivial

Ay »1< ®and & & ®, Lemma 3.4.4 describes the entire set of homomorphisms
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among the fusion rule algebras in (3.78). The situation described in Lemma 3.4.4v) can

be summarized in the following commutative diagram :

/ 7
ED (3.89)

g € >Ds
g
‘\Ea ‘\2
(——)A
|oO"2

Next we present the complete list of fusion rule algebras with generators of statistical
dimension equal to two. Our presentation is organized in a way similar to the one above,
for d, < 2, except that the detailed discussion of homomorphisms is replaced by a study
of the realizations of these fusion rule algebras by discrete subgroups of SU(2).

Lemma 3.4.5 Suppose & = @, 1s a Z;-graded fusion rule algebra, with selfconjugate

generator, p, of dimension

d, =2.

Then the fusion rule matriz, N,, of p is the incidence matrizc of one of the following

bicolored graphs
A, Do, D, p>2, EV, EM, EM. (3.90)

There ezists one fusion rule algebra for each of the graphs in (8.90), such that N, is its
incidence matriz, ezcept for Dg?, , where we have ezactly two inequivalent such algebras

for each p > 2.

They have the following properties:
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i)

ii)

The A -algebra has trivial conjugation, C =1, and only trivial automorphisms,
Out (A) = 1. We enumerate its basis by p;, 7 =0,1,..., such that p, :=1, py:=p
and po p; = pj_y + pj;1. Moreover, d,, = j 4+ 1. The structure constants, Ni;z, of

pi© p; =X N;jrpr are given by the Clebsch-Gordan rule, i.e.
k

1 fli—J|<k<i4+jand k=147 mod?2
N.-,~,;.={ fli —3| <k<i+j j (3.01)

0, else.

The Dy, -algebra has trivial conjugation, C = 1, and Out (D) = stab(p) = {1,a} =
Z;. If we set w, :=1+ a, wy := p and define basis vectors w;, 7 2> 2, by wy ow; =

wj-1 + wjt1 then d,,; = 2, for ail 3, and

Wy O Wi = W|j-k| T Witk . (392)

The automorphism group ofDﬁ,lJr),-algebra has order 4,i.e., Out (D‘(,i),) ={1,a,z,y},
with stab(p) = {1,a} =X Z,, for p > 2, and aoz =y. The two possible fusion rule
algebras associated to D&), are distinguished by their automorphisms, for which we
have either Qut (Dz(,i), X 73 X Zy, withz? =y* =1 and C = 1; or Out (Dﬁ},) £
Zy, so that zy = 1, the conjugation is the inversion on Out (D1(,1+)2) and all nonauto-
morphic representations are selfconjugate. Defining the basis vectors, w;, j =1,...
..-,p—1, as in the case of D, and withw, :=1+ a, w, = z +y, we have d,; =2
and

W;j O Wi = W]j—k| + Wenin(2p—(5+k).+k) - (3.93)

The automorphisms = and y are evenly graded for even p, and odd-graded for odd p.
Thus, for odd p, we have that Out(7,(®)) = Z,, for Out(®) = Z, x Z;, whereas
Out (7a(®)) = Out(®), for even p.

For the Egl)-algebm we have that Out (Egl)) = {1,a,a7'} = Z,, and there are three
representations of dimension two, namely p, a o p and a™! o p, so that the conjuga-

1

tion, given by setting @ = o™ and p = p, exchanges the two legs in the Egl) diagram

opposite to 1. For the one remaining representation, ¥, of dimension three we have

Ypoypy=l+a+al+2y. (3.94)
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Furthermore, a cyclic permutation of the set {p,ax 0 p,a™! o p} provides the isomor-
phism T, (E,(Sl)) = Eél). For the E-(,l)-algebra, we see that Out (E-sl)) ={1,a} = Z,,
where a is evenly graded and N, is the reflection of the diagram. Moreover, the

conjugation on E;l) is trivial, and all representations have integer dimension.

Finally, Egl) has trivial conjugation, Out (E,(,l)) =1, and all representations have

integer dimension.

The fusion rule algebras with non-selfconjugate generator, as well as the ungraded fusion

rule algebras, are obtained in a similar way as in Corollary 3.4.3.

Corollary 3.4.6

i)

The Z3-graded fusion rule algebras with non-selfconjugate generator, p # p, of di-

mension two are given by
EY 7 (B} and 7. (DY),,), 522 (3.95)

In the case of Eé,‘), the generator p is replaced by the representation aop (or by
a~! o p) which is a generator of Eél) with dimension two as well. For 74 (E-(,l)),
the conjugation is trivial on the evenly graded representations and reflects the oddly
graded ones. In (8.95), both possibilities for Dg?, are meant to be included, and we
have that 7. (Dg:) +2) =7, (DgB +2) .

The ungraded fusion rule algebras with generators of dimension two are given by the
evenly graded subalgebras of (DS} +3), p' > 1, so that the generator, p’, is selfcon-
jugate and given by p' = poz = poy. The fusion rule matriz N, is the incidence
matriz of the graph D, see (A22). Thus, denoting the fusion rule algebra by this
graph, we have that

Dypya C DYss (3.96)

D42 has trivial conjugation, and Out (D_pq_,) = stab(p') = {1,a} = Z,.
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The complete list of Z,- or ungraded fusion rule algebras with a generator of dimension

two is given by

Am, Doo ) D}(,:_l*_)z (Out = Z4 or Zg X Zg) sy P Z 2, Tz (D§;2+2)
(3.97)

Dyya, p' 21, BN, EY, 7 (ESY) | E(Y.
In order to study homomorphisms between those algebras in (3.97) which have a selfconju-
gate generator, it is useful to find their fusion rule algebra monomorphisms, i.e., inclusions
of one of the algebras in (3.97) into another one, and fusion rule algebra endomorphisms
which map the generator to an irreducible object . The latter requirement will also be
present in our description of general homomorphisms and, further, the object to which
the generator is mapped has to have dimension two. One consequence of the following
lemma is that object 8 of dimension two which generate the entire fusion rule algebra can

be mapped to the canonical generator by a fusion rule algebra automorphism.
Lemma 3.4.7

i) The fusion rule algebra A, contains no fusion rule subalgebras from (3.97) other
than Ao, and the only fusion rule algebra endomorphism is the identity.

it) The endomorphisms of the D, -algebra are given by the inclusions I; : Doy — Do,
k=1,2,..., determined by Ii(a) := a and I (w;) = wy.;, in the basis of (3.92) in
Lemma 3.4.5 i). All subalgebras of D, from (3.97) are isomorphic to Doy and are
gwen by [we] =im (i), k=1,2,.... We have that I o I; = I;,.

#1) There are no fusion rule subalgebras of EM from (8.97), ezcept E) itself, and
g 6 6
the only non-triviel endomorphism ", for which the generator is mapped to an

srreducible object is identical with the conjugation.

1) The only fusion rule algebras from (9.97) that can be included into E.(,l) in a non-
trivial way are D3 and Egl) itself. The subalgebra Dj is generated by the only
evenly graded object of dimension two in Egl) and contains, besides the unit and
the generator, only the non-trivial automorphism of E-(,l). The fusion rule algebra

generated by the second oddly graded object of dimension two is isomorphic to E;l).
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The inclusion of E-(,l) into itself is given by the fusion rule algebra automorphism,
7°, which ezchanges the two oddly graded object s of statistical dimension 2 and is
the identity on all other object s. The only further E;l)-endomorphism, 791, can be
described by the unique homomorphism E;l) —» D:(,l), which maps the generator to
the generator, (see below); 9* is then obtained by composing this homomorphism

with the inclusion. Thus we have the following commutative diagram:

) ol 1 o
eY e ©7 (3.98)

-
J id\h J
D3

Dy ——>

70

The endomorphism 5! is an idempotent on whose image 0@ acts trivially.

v) The only fusion rule algebra from (8.97) which is contained in Egl) is Egl) itself. The
only non-trivial endomorphism is the involutive automorphism, v/, which ezchanges
the two object s with dimension 2 and the two object s with dimension 8 and is the

identity on all other object s.

vi) The fusion rule subalgebras from (8.97) of D,(,I_e, are given by

w) = DY), (3.99)
if p = 7(a,2p), (3.100)
and
[w) 2 Deya (3.101)
if 2 = (2t+1)(q,2p), (3.102)

whereq=1,...,p— 1.
Here the structure of the group of automorphisms in DS_),_, from (8.99) (Out (Dl(,}l,)

either = Zy x Z, or Z,) is the same as the one assumed for Dg),. The cases (3.100)
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and (8.102) are distinguished according to whether (—q?%— is even or odd. The subal-

gebras of Dy, are given by

Dyya, (3.103)

R

[we

where  (2t'+1)(q,2t+1)

2t + 1 (3.104)

There is ezactly one involutive automorphism, afv # 1, on every Dg_), mapping the
generator to itself and given by ol (z) =y and o2, (w;) = w;, and there is none for
every Dyyz. For every two-dimensional object , w;, in D&), and D3, there ezists

precisely one endomorphism for the cases (8.101) and (3.108), and there are two
D

zy)

endomorphisms for the case (9.99), differing from each other by o, which map the

generator wy to wj. This ezhausts the entire set of endomorphisms.

If a homomorphism, o, defined on one of the algebras, &, from (3.97) does not map the
generator p to an irreducible object it follows from a comparison of statistical dimensions
from (3.55) that o(p) is the sum of two automorphisms. Since automorphisms close under

multiplication, and since o(p) is a generator of the image of o, it follows that
G, := Out(c(®)) = supp(o(®)),

i.e., o is a homomorphism o : & — N|G]. For all fusion rule algebras with only inte-
ger dimensions, in particular, for those listed in (3.97), one homomorphism with these
properties is given by 0 : & — Ny, ¢ — dg, (i.e.,, G = {1}), and, furthermore, if o(®) is
a subalgebra of one of those corresponding to (3.97) we have that |G| < 4. In the context
of group-duality, homomorphisms to fusion rule algebras consisting entirely of automor-
phisms correspond to the abelian subgroups of that compact group, whose representation
theory reproduces the fusion rules given by ®. Here, however, we wish to focus our at-
tention on non-abelian subgroups, i.e., we restrict our attention to cases, where o(p) is
irreducible and hence has the same dimension as p. For a homomorphism o : &; — &,
with this property, between fusion rule algebras corresponding to (3.97), o (®;) is a fusion
rule subalgebra of &, generated by an endomorphism of dimension two. It is therefore

isomorphic to some @' in (3.97). Thus the homomorphism ¢ is described by a surjective
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homomorphism o’ : &, - &', with & = [¢(p)], and one of the inclusions of fusion rule
subalgebras, i : ® < ®,, given in Lemma 3.4.7. Hence 0 =i00’. For a complete dis-
cussion of fusion rule algebra homomorphisms it therefore suffices to consider surjective

ones, 0 : & — [o(p))]-

In the classification of Lemma 3.4.5 we have always fixed a distinct generator, p,
of statistical dimension two. So we are, in fact, considering pairs (p, ®), where p is
the canonical generator, with [p] = ®. From Lemma 3.4.5 and Corollary 3.4.3 we see
that non-isomorphic fusion rule matrices of the selfconjugate generators also lead to non-
isomorphic fusion rule algebras (which is seen, e.g., by comparing the number of objects
for each dimension). Hence [p'] = [p] implies that there exists a bijection T', T* = T'1,
with T1 =1, Tp = ', and TN,T* = N},. By the remark in Section 3.1 following (3.15),
the matrices N, = TN,;T* define a fusion rule algebra, with conjugation C’' = TCT" and
lattice [p"], which is isomorphic to [p], and for which N, = N/,. Lemma 3.4.5 shows,
furthermore, that a given N,/ uniquely determines the composition rules, once the group
of automorphisms is known. (This is, in fact, only needed in the case of D‘(,l+)2). In
particular, this can be used in the case [p'] = [p] to conclude that T extends to a fusion

rule algebra isomorphism mapping p to p'.

In summary, we have that if
p=p, p'=F, dy=dy<2 and [p] =[]

then
CAVEXCATY) (3.105)

holds. A consequence of (3.105) is that, for two selfconjugate generators p,p’, with
d, = dy < 2, of the same fusion rule algebra ® = [p] = [p'], there exists a fusion rule

algebra automorphism v,
7:9 - &, with  y{p)=p'. (3.106)

This can also be verified directly from Lemma 3.4.7, where all automorphisms satisfying

(3.106) are listed.
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For a surjective homomorphism o : ; — ®;, between two fusion rule algebras, $,,
®,, this means that there always exists an automorphism on ®; mapping o (p;) to pa,
so that ¢ := v 0 o is a homomorphism & : (p;, $1) — (P2, ®3), with & (p1) = p;. It follows
that all homomorphisms can be obtained from those which map canonical generator to
canonical generator, by composing them with an appropriate automorphism, followed by
an inclusion. The classification of homomorphisms, o, with o (p;) = p3, is given in the

next lemma.

Lemma 3.4.8 All fusion rule algebra homomorphisms between the algebras with self-
conjugate generator of statistical dimension two (as listed in Lemma 8.4.5 and Corol-
lary 8.4.6, 1)) which map canonical generators to canonical generators are given by the

following ones:

i) For every algebra ® among the ones specified above, there is a unique homomorphism
0% : Ay — ®, with the required properties. For every p > 2 and t > 1, there ezist

unique homomorphisms from D, to D,z and to Dg_),.

i) There ezists ezactly one homomorphism between the fusion rule algebras

a) Dyyz = Dyga, ifft' =t + s+ 2ts, for some s > 1;
b) D‘(,l+)2 —» Diya, iff p=m(2t + 1), for some m > 1 and Out (D(i),) > Za X Zg;

P

c) D;(u}lz - D£1+):- iff p=cp', and

R

either c is even, and Out (Dt(,}l,)

ZQXZQ,

IR

or ¢ 15 odd, and Out (Dgl,) Out (D‘(,1+)2) ,

and only in the last case we have to account for a non-trivial fusion rule algebra

automorphism which is the identity on the canonical generator.

i) The only homomorphisms between the E-algebras are one, 097, from E?’ to Eél),
and one, 0’7, from E§‘) to Egl). There are no homomorphisms from D-algebras
to E-algebras, and the only homomorphisms from Egl) to a D-algebra are given

by a unique homomorphism oy : Eél) — Dgl), for each structure of Dgl). This
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also yields the entire set of homomorphisms from E-algebras to Dgl) , by setting

o J o

- 7.
o (=000 2°

T and o] := 03°07T. There exists a homomorphism o : E-(,l) — Dgl),
and a homomorphism o : E-Sl) - DQ), for each of the two structures of the D-
algebras. If we consider the case Out (Dgl)) ™ Zj X Z; we obtain, by composing
o with the homomorphism from Dgl) to D; given in partii)b) (p=3, m=1t=1),
a homomorphism 73 : Egl) — Dj. Furthermore, there ezist unique homomorphisms
ol : Ef," — D-(,l) and o : Egl) - Dgl), for any one of the possible structures of the
D-algebras. Eztensions, o : Egl) — Dy and of : Egl) — Dj, are found from o] and

o with Out (Dgl)) = Qut (Dgl)) & Zy X Z,, in the same way as for 5.

We give a survey of the fusion rule algebra homomorphisms involving the E-algebras in the
commutative diagram on the next page. Here < is the automorphism of Dgl) exchanging
the two oddly graded objects of dimension two, (compare to (3.99), (3.100), with ¢ = 3,
p =p' = 4, and (3.105)). The unspecified arrow, Dgl) — Dy, D(71) —» D, and Dgl) — Dgl),
are the homomorphisms given in Lemma 3.4.8 ii}, and Dt(-,l) - D§‘) is defined by the ad-
joining commutative triangle. In this diagram, we always assume Out (D§,1+)2) > Za X Z,

and omit most arrows from A,, to the D-algebras.

A large class of fusion rule algebras with generators of dimension two can be obtained
from the tensor-product decomposition rules for a compact group, G, which has a unitary
fundamental (in particular faithful) representation p of dimension two. By identifying G
with p(G) we can assume that

GCUQ). (3.107)

For dimension two, the requirement that p be irreducible is the same as saying that G
is non-abelian. The fusion rule algebras we have classified, so far, in Lemma 3.4.5 and
Corollary 3.4.6 ii), are all those algebras that have a selfconjugate generator. Therefore,
we restrict our attention to those subgroups G of U(2) for which the fundamental repre-
sentation is selfconjugate. They are given by those compact groups, G, with the property

that
either G C 0(2), or GCSU(2). (3.108)
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The E-Algebra Homomorphisms:
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Since G is assumed to be non-abelian, it cannot be isomorphic to subgroups con-
tained in O(2) N SU(2). The compact non-abelian subgroups of SU(2) all contain -1.
Thus two different subgroups of SU(2) will yield different subgroups in SO; = SU(2)/ + 1.
The corresponding SO;-subgroups have half the order, and, except for the smallest
dihedral-group, D;, which is obtained from {+1, +10;},_; ;3 C SU(2), they are also non-
abelian. The non-abelian compact subgroups of SU(2) are thus given by the pre-images

of the polyhedral subgroups of SO;. They are also called binary polyhedral groups.

They are: the dihedral-groups,, Dn, n =3,...,00, (Do D U(1)) of order 4n (of
order 2n as SOs-subgroups), the tetrahedron-group, 7, of order 24 (12 in SOs), the
octahedron-, cube- or hexahedron-group, O, of order 48 (24 in SO;) and the icosahedron-
or dodecahedron-group, J, of order 120 (60 in SO;). The subgroups of O(2), R,, n > 3,
have rotations characterized by R, N SO(3) = Z,, and, for them to be non-abelian, they
must contain a reflection. As abstract groups, we have that R, = Z; x Z,, where the
adjoint action of Z; on Z, is just the inversion on Z,, and |R,| = 2n. (Let us stress again
that the R, are not isomorphic to any of the binary dihedral groups, since for the latter
we have that 2 = 1 which implies that z is central. This is clzarly not true for R,.. Yet,
the image of D, in SOj is isomorphic tor R,).

For fusion rule algebras, ®¢, obtained from a compact group, G, there is a nat-
ural way to induce a fusion rule algebra homomorphism, o, from a group homomor-
phism . If #: G — H is a group homomorphism of compact groups G and H, and
p: H — U(n) is an irreducible, unitary representation of H (seen as a group homomor-
phism with p(H) NU(n) = U(1)1), we can define a pull back 7 % p:= pox: G — U(n),
which is a unitary representation, irreducible only if p(x(G))' N U(n) = U(1)1. For the
action oy of U(n) on the space of representations of H, given by inner conjugation,
(oup)(g9) = Up(g)U*, we have that oy on* ==n*ooy. Thus, 7* is a map on equiva-
lence classes of unitary representations, and we have well-defined multiplicities (ox),,,
of an irreducible representation, v, of G in the representation 7*p, where p is an irre-
ducible representation of H. From 7*(p1 ® p2) = 7*p; ® 7*p2 we easily derive that the

matrix o, consisting of these multiplicities, represents a fusion rule algebra homomor-
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phism, o, : &g — ®5. Clearly, o, is an inclusion of fusion rule algebras whenever = is

surjective. If G C H, and = is the inclusion then it follows from the existence of in-

duced representations, p, of H, for unitary, continuous representations p of G, that

Oy : &y — B¢ is a surjection. In this case, the matrix elements of o, are identical with

the branching-rules of H | G. In the following lemma we relate the subgroups of (3.108)

to the fusion rule algebras from Lemma 3.4.5 and Corollary 3.4.6 ii), and we explain the

possible fusion rule algebra homomorphisms in terms of group homomorphisms.

Lemma 3.4.9

1) The tensor-product decomposition rules of the non-abelian compact groups with a

self-conjugate fundamental representation of dimension two are given in the follow-

ing equations:

R

®su(2) A

R

®p ®0(3) = Do

®p, = DY, foroddp>3and Out(D();) = Z,

for even p > 2 and Out (Dg),) > Zy X Z,

IR

¥, = DU, forp>2and Out(D{))=2,x2,

QR:,.H, = —D—p+2 ] farp Z 1

&; = EY
3o = EM

&; = EJ

(3.109)

(3.110)

(3.111)

(3.112)

(3.113)
(3.114)

(3.115)

1) The automorphisms of the fusion rule algebras in part i) are obtained from the

following group-automorphisms:
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a) The finite groups, with D-type fusion rule algebras, contain mazimal cyclic
subgroups, Zs, C D, and Z, C R,, and reflections, Q € D, and S € R,, with
Q@ =—1 and 5% =1, such that D, = Z,,UQ - Zy,, and R, = Z,US - Z,. For
every k # 1, with (k,2p) =1, (k,q) = 1, resp., an outer automorphism m; on
D,, R,, resp., is defined by taking the k-th power of every element in the
cyclic subgroup and mapping the reflection to itself. The derived fusion rule
algebra automorphism, o,,, obeys the equation oy, (w1) = wi. Hence, every
automorphism of a D-fusion rule algebra can be written as a product of oy,
and an automorphism, o', with ¢'(w,) = wi. D, and Ry, admit an outer
automorphism, 1), which is the identity on the cyclic subgroup and 7(Q)Q7?,
rep. 7(S)S™}, is a generating element thereof. o, is the only non-trivial auto-
morphism on the D-algebras mapping the canonical generator to itself. (It

ezchanges the one-dimensional representations, z and y ).

b) An outer automorphism on the tetrahedron group, T/{£1} =T C SO;, is
given by conjugating its elements with the §-rotation, mapping the standard
tetrahedron to its dual tetrahedron (the azis of rotation runs through the mid-
points of two opposite edges) and so defines (uniquely, up to inner conjugation)

the outer automorphism, 57 on T. We have that v5 = g, on Egl).

c) From a bicoloration of the centered cube, we obtain a signature representa-
tion, ¢ : O — Z,, by assigning c = 1 to every element in Of/{£1} = O C SO,
that matches the bicoloration, and c = —1 whenever it matches opposite col-
orations. If we identify c € Z; with an element of the center of SU(2), then
n0(9) := ¢(g)g defines an outer automorphism on O, where Out(0) = Z;. We

have that a,, = v0.

d) The icosahedron-group, I/{+1} =T C SO3, admits an outer automorphism
which is (contrary to the T-case) not given by an SOj-conjugation. It defines
an outer automorphism nz on I C SU(2), where Out(I) = Z,. We have that

One =V1-

i1i) The injections of the fusion rule subalgebras, see Lemma 8.4.7, are obtained from
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the following projections onto quotients of the dual groups:

a) Do, has normal subgroups Zy, A U(1) < Do, so that, for ji : Do —» Doo/ Zi =
Doo, we have that 0j, = Iy : Do — Do

b) The (binary) octahedron group has normal subgroup D, A O (similarly for the
SO;-subgroups D, 4 O), with O] D, = 5/ Dy = Ry = Sy. From the projec-

tion of O onto R3 we obtain the inclusion D3 — E;l).

¢) The normal subgroups of R, and D,, with non-abelian quotients are Zy <1 Z,
Rq, for ¢'lg, and Zy < Zy, 4 D,, for £2p. We have the following correspon-

dences between group epimorphisms and fusion rule algebra inclusions:

Dy —+ Dpf Ly, = R(E)' with k|p, yields
Diaymy C DY), with Out (DS);) = Zy, for odd p

or with Out (D‘(,?,) =1Z; X L, foreven p and ¥ odd,

and D%)“ c DY, with Out (DY

wt3

) = 0ut (DY) = 2, x Z,,

for even p and even ¥.

Dp hd Dp/ sz+1 = D(ﬁz}—f)' with (2k + l)lp, yzelds
1 . 1
D%} . < DY)y, with Out (D)) = Out (D‘,_}#,) =24, foroddp,

and QOut (D&),) = QOut (D(_lz_“> =2 X Ly, forevenp.

3h+1

Re—» R/ Zy = R(ﬂ)' with k|q, yields
D(E:E)'“ - D§+2, with Out (D(z_:’._)+2) = Out (Dg:,)g) =73 X Z

Jor even q and even 1,

E% - D§+z, with Out (D(l) ) =Z3 X Z,

=+2
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for even q and odd §,

ﬁ,%:_u C ﬁ_u;_:, for odd q and odd { .

1) The surjective fusion rule algebra homomorphisms mapping canonical generator to

canonical generator arise from the following group-inclusions:

a) The inclusion G C SU(2) yields, for all fusion rule algebras ®° of binary poly-

hedral groups, a homomorphism
A — 3°.
The inclusions R, C O(2) and D, C Dy, yield the homomorphisms
Dy —» D,(,1+), , Do, —» Dya,
for all possible structures.

b) The non-abelian subgroups of D, are Dy with p'|p and of Ra, Ry, with n'|n.
D, C D, yields

D§,1+)2 —» DZS_)'_, for all p'|p with the respective groups Out.

Ry C R, yields
D(l,)+ for even p and even p’,
D(:) —~ Dy for even p and odd p’,
2
Dpss —» Dyys  for odd p and odd p'.
2

c¢) The surjective fusion rule algebra homomorphisms involving E-algebras which
are collected in the commutative diagram following Lemma 3.4.8, are realized by
inclusions of SU(2)-subgroups. These in turn are obtained from the respective

embeddings of polyhedra.

93



From the form of the Perron Frobenius eigenvectors for graphs with norm equal
to four it follows that the statistical dimensions, dy, of elements 3 € ®[, of a simply
generated fusion rule algebra, whose generator p has dimension d, = 2, are always integer-
valued, i.e., dy € N. It is therefore possible that a fusion rule algebra from this class can
be derived from some semisimple Hopf-algebra, A, with a two-dimensional fundamental
representation p : A — Mat,(C), with the property that n ker (p®" ® p®™) = {0}. In
Lemma 3.4.9, the fusion rule algebras with selfconjugate g'enera.tor p = p of dimension
d, = 2 have been associated to the non-abelian, compact subgroups, G, of SU(2) and
0(2) (i.e. A=T[G]), with n > 2 and Out (Dgt)) = Zs, for which there do not exist any
dual compact groups. Moreover, we managed to relate all fusion rule algebra homomor-
phisms to group homomorphisms. In particular, all inclusions of one group into another

one correspond to fusion rule algebra epimorphisms.

The question remains in which sense this result can be extended to fusion rule
algebras with a self-conjugate generator p of dimension d, < 2. More specifically, we
should ask whether there exists a Hopf-subalgebra A of e.g., U, (sf2), with ¢ = €37, such
that the branched tensor product decomposition determined by the representation theory
of A yields Eg-fusion rules? We shall see, however, that such an algebra can not be
quasitriangular. We note that the non-abelian, compact subgroups of U(2) reproduce all
those fusion rule algebras that are generated by a single element p, with d, = 2, and are
dual to some compact group. For all these fusion rule algebras, p ® p contains a one-
dimensional subrepresentation «, namely the one corresponding to the representation
a(g) := det(p(g)) of the dual group. Hence the element a of the fusion rule algebra &,
corresponding to this one-dimensional representation of the dual group belongs to Out(®).
We are therefore in the situation of Lemma 3.3.4 and conclude that any fusion rule
algebra ® = &5 dual to some compact group G with a two-dimensional fundamental
representation, is of the form

®=1,(2,%%),

where @' is one of the Z,-graded or ungraded algebras given in (3.97), and n is determined
by the cardinality of a(G) C U(1). A class of fusion rule algebras for which there is no

automorphism a € p o p (and which are therefore not dual to a compact group) consists of
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the algebras @ for which D(®) = 1 and with grading greater than two. For these algebras,
the restrictions Ag := N, [ Cy — C; of the fusion rule matrices N, are determined in the
proof of Proposition 7.3.1: They correspond to the graphs D{ and E{" (see (7.48)) and
to Aﬁ‘), A&". A detailed description of the corresponding fusion rule algebras appears in

the next lemma.

Lemma 3.4.10 Suppose that ® is a fusion rule algebra with generator p of dimension

d, =2, that ® i3 Z,-graded, for some

and that
D(®) = 1.

Then ® is one of the following algebras:

i) For Ag =~ Dﬁl), the algebra ®, denoted by & = Dﬁl) (Aﬁ‘)) (a—2)’ has a basis
{11 01,02,03, T1, T2y .- )Ta—l} ’
with p = 71, and the decomposition of ®, as a lattice,
=@ ¢;,
JEZg
has the following presentation:

¢0=(1)01)52$03)N; Q.‘I‘:NTJ" J#O

The elements {1,01,03,03} = Out(®) form a group: Out ($o) = Z,, or Out ($o) =
Zy X Zy. Their products with other elements of ® are given by

gioT; =14, fori=1,23, j=1,...,a—-1.

The multiplication table of the 7’s is given by

T;0Tk = 2‘7’,'.”,, j;é—k,
3
and ioT; = 14+ o;.
=1

The conjugation on @ is thus given by



it) For Ay = E,(sl), one algebra ®, denoted by ® = Eél) (Ag”)(’"), has the following
structure: It has @ basis {1,a,a7, ¥, Xj, @0 Xj, a7 o x5}y .y With p=1X,

such that
Qo = <1)a;a_17¢>N

¢, = (x,v,aoxj, a'lox,~>N, ji=1,...,a—1,

form the graded sublattices. The elements {1,a,a '} = Out (o) = Out(®) for

a group isomorphic to Z3, and ¢ = a o = a~! o4. These relations together with
Yoyp=1l+a+al+29
determine the subalgebra ®y. The multiplication of the elements in ®; with « is
given in the obvious way; (Out (o) acts transitively and freely on &;). Moreover,
Yox;=xjt+aox;+alox;.
The multiplication table of the x’s is given by
XiOXk = aoxuk+a loxik, forj# -k,
and xjox-; = 1+49.

These relations and associativity determine the entire multiplication table, includ-
ing products of the form (af o x;) o (a" ) Xk); g, ' =—1,0,1. It follows that the

conjugation is given by

*ov. = a-* .
atox;=a " O0x_;.

The remaining fusion rule algebras with Ay = E,(;l) and Z,-grading are then given by
r ( Eél) ( Agl))(n—n)) and 7., ( Eél) ( Ag))(a-z)).

The direct graphs determining the fusion rule matrix N, for the fusion rule algebras
DO (AD) ™ and B (AP)*™™ are depicted in Figures (A24) and (A25) of the Ap-
pendix. So far, we have found all fusion rule algebras ® with a generator p of dimension
d, < 2 and with the property that

D(®)=1. (3.116)
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With the help of Proposition 3.3.2 and identities (3.57) - (3.59) we shall arrive at the

following general classification theorem for fusion rule algebras not necessarily satisfying

condition (3.116).

(The algebras will be distinguished according to whether the statistical dimension d,

of their generator p satisfies d, < 2 or d, = 2, and according to numbers a, a” and 7,
with a = ra”, which are defined by: ®/®, = Z, (i.e., ® is Z,-graded), Z, = D(®), and
Zgn = 8" /®,, where " is defined through the presentation (3.60), and D($") = 1. Fur-

thermore, we make use of Out (®,) to discriminate between different algebras; Out(®)

will be determined.)

Theorem 3.4.11 Let ® be a fusion rule algebra generated by an element p of dimen-

sion d, not exceeding two. Then ® is one of the algebras described below.

i) Ford, < 2, one finds the following list of algebras:

(a) Ifa" =1 then Out (9y) = {1}, and

$ =2 +4,, forsomen>1, and Oul(®)=Z,.

(b) Let a” = 2. If Out (Py) = {1} then

o Zr*D2n; "23,

R

or

and Out{P) X Z,;

¢ = Z.xEy, and Oul(®)Z,.

IfOut(®) 2 Zy = {1,a} then & is one of the following algebras:

For r even: Z, % Agy, n>2, with
Ta (Zr * AZn—l) , Z 2, with
Z. x Bg, with

Ta(Zy % Es) , with

For r odd: ZpxAgpey, 022, wilh
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Out(P) ¥ Z, x Z,;
Out(®) & Zy,;
Out(®) = Zy x Z,;
Out(P) =2 Z,, .

O\lt(‘l’) = Z2 X Z, = Zz,- .

(3.117)

(3.118)

(3.119)

(3.120)
(3.121)
(3.122)
(3.123)

(3.124)



Z, x 7o (Azno1) 2 7o (Z, * Agn-y) with Out(®) = Zy,;
Z,. % g s with Out((b) = 7y X Z,. =7, s
Ly % To (B6) = Ta (Z, » Eg) , with Out(®) = Z,, .

(3.125)
(3.126)
(3.127)

If Out (®0) 2 Z3 = {1,,a™'} then ® is one of the following algebras: For (3,r) =1:

ZyxDy 27y (Zp* D)2 2 %7,(Dy), with Out(®) = Z3 x Z, X Zs, .

Forr =3r: Z,x Dy, with Out(®) =2 Z; x Z,;
Ta (Zy % Dy) = 74-1 (Z, * Dy}, with Out(®) = Zy, .

it) Ford, =2, & is one of the algebras described in the following list:

(a) If " =1 then
Out (‘I’o) =~ Zz = {1,&}

and one finds the following algebras:
Forr even: Z, x D, n >3, withOut ($) ¥ Z, xZ,;
Ta (Z, *D_,,) ,n>3, with  Out () = Za, .
Forr odd: Z, x D,, & 1, (Z,. * -D:) ,n>3, with Out(®) X Z,,.
(b) If a" =2 then ® is one of the following algebras: For Out($o) X 1,

Z, x Ao, with Out(®) = Z,;
Z, x B, with Out(®)7Z, .

For Qut ($o) = Z, = {1, a}, then

if ris even: Z, % Doy, with Oul(®) = Z,; x Z,;
Ta(Z, % Doo) , with Oul(d) X Z,, ;

Z, x B, with Oul(®)2Z, x Z, ;
Ta (Z, * E$") , with Oui(®) = Zy, ;
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(3.128)

(3.129)
(3.130)

(3.131)
(3.132)

(3.133)

(3.134)
(3.135)

(3136
(3.137
(3.138

L D

(3.139



ifrisodd: Z, x Doy 2 74 (2, x Do), with Oul(®) = Z,,;
Z,x B, with Out(®) X Z, x T, = Ly, ;
Ta (Zo  BO) 2 Z, w7 (D) | with Out(®) = Z,, .
For Out (®¢) = Z3 = {1,a,a™}, then
if (r3)=1:2, » E 2 r (2, BY) =z, ar (E),
with Out((I’) = Z3 XZ,. = Zg,‘ ’
ifr=3r": Z,» B, withOu(®) =Z3x7Z,;
Ta (Zo % BY) 2 7pms (Z, x BY) | withOut(®) = 2, .
For Out (90) X Z, ® Zy = {1,0, €, 0 £}, a € stab(p), then

ifrisodd: Z, * DEB{.:) = (Z,. * D&lz)) , with Out(P) = Z, x Zy,;

7¢ (Ze % Dighs)) = Taot (Ze % DY)5y) , with Oub(®) & Zy, x Zy;
ifriseven: Z, % D&lz)r p=>2, with Out(P) =7, xZ, x Z,;

Ta (Zox D), P22, with Oub(®) = Zp X Zo;

T¢ (Zr * Dg,i.g)) = Taot (Zr * Dé;-)id)) ) with Out(tI>) = Zg X Zz,. .

For Out (®¢) = Zy = {1,£,6%, 83}, then

IR

ifris odd: Z, * Dg,) =g (Z, * D&lz)) ,with. Out(P) Zy, ;

+2)
e (Z, * D&l—z)) > 7 (Z,. * Dg:-)n)) ywith OQut(P) = Zy,;

ifr=2mod4: Z, + DV n>2

(pt+2) )

with Out(®) X Z, X Zy =Ty, xZy;
7e (Zo x D),)) 2 2, w7 (D)) with Oui(®) 2y, xiZs;

re (2. % DPyy) e (Zo# DB,) with Out(®) 21z,

ifr=ar': Z,+D{,, p>2,with Ou(®) =Z, xZ;

1 (ZxD5),) P2 2,with Oui(®) 27y, xZp;
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(3.140)
(3.141)
(3.142)

(3.143)

(3.144)
(3.145)

(3.146)

(3.147)

(3.148)
(3.149)

(3.150)

(3.151)

(3.152)

(3.153)
(3.154)

(3.155)

(3.156)

(3.157)



7¢ (%o % D) = 7 (T % D{J)yy) s with Out(@) = Zy,

(c) Ifa” > 3 then & is one of the following fusion rule algebras:
For Out (9) 2 Z3 = {1, a,a !}, then

(a"-2)

if (r,3) =1: Z, B (4Y) with Out(®) = Zy, ;
Zp * Totr (Eél) (A(sl)) e _2)) , with Out(®) = Z,, ;

(a"-2)

ifr=3r": Z, % Eél) (AQ)) with OQut(®) ¥ Z3 x Z, ;
Tatt (Z, * B (Agﬂ)“‘”‘”) , with Out(®) = Z, .
For Out (®g) & Zy X Zy = {1,a,&,a 0 £}, then
ifr is odd: Zox DY (AN | with Out(¥) = Z, x Za,;
ifr is even : Z, * D,(,l) (Aﬁ‘))(“"'z) , with Qut(®) X Z, x Zy X Z,;

7 (Z, « DY (AM)E ”’) o1, with Oul(®)XZy X Zs, .

For Out ($0) 2 Zy = {1,&{2:53}: then
if v is odd:

at—2 a—2
2o« DY (A =y (2,40 (a)77)
j=0,1,2,3, with Out (Z, « DY (M) "”) =7,

if r = 2 mod 4:

1R

7+ DY (A) = g (2.0 D) (40)77)

with Out (‘pq) Z X Zg,- N

7 (Z, « DY (AM) (“"“2)) & s (Z, « DYV (Aﬁ‘))(""'z)) ,

with Out (‘I’o)

1R

Z,g;
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(3.158)

(3.159)

(3.160)

(3.161)

(3.162)

(3.163)

(3.164)

(3.165)

(3.166)

(3.167)

(3.168)



ifr =4r';

Z, « D (A with Out (@0) 2 Z4 x 7, ; (3.169)

T (Z, « D (A ‘2’) . with Out (@)X Zy X Zay ; (3.170)
7 (Z, « D (A ‘”) SR (Z, « DY () "2)) :

with (86) = Zar. (3.171)
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Chapter 4

Hopf Algebras and Quantum
Groups at Roots of Unity

We review the basic theory of Hopf algebras, including the Drinfel’d [8] definitions of qua-
sitriangularity, and of the double construction and present, as an ezample, the algebra
Uqg (8ay1) first defined by Jimbo [2]. We use results, due to Rosso [{8], to define a quo-
tient, Uz (slay1), of the topologically free algebra, U, (slay,), over C([logq]), which is
quasitriangular and specializes q to a root of unity. Besides the known Carten involution,
we introduce an antilinear *-involution and determine its relations with the R-matriz and
the coproduct. For U;‘d (sf3), the R-matriz is determined, and the center is presented as

a C?-variety.

Quantum groups, as defined in [2], are special types of Hopf algebras, obtained as one-
parameter deformations of universal enveloping algebras of classical Lie algebras. We
begin our discussion of their general properties with a brief review of quasi-triangular

Hopf algebras.

Hopf algebras are associative algebras, carrying a comultiplicative structure, which
is given by a homomorphism,

A:K-K®K,

called comultiplication. The algebra is said to be cocommutative, if A = oA, where
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g:K®K — K @K is the transposition o(a ® b) = b ® a. This is the case for the univer-
sal enveloping algebras of classical Lie algebras. In order to describe braid statistics, we
perturb cocommutativity by an invertible element R € K ® K, called universal R-matrix,
satisfying
RA(a) = cA(a)R (4.1)
for all @ € K. For Hopf algebras we require coassociativity
(1®A)A=(A®1)A. (4.2)
Since the second comultiplication
A'=cA (4.3)
is coassociative too, there is a compatibility condition on R:
ROARNR=(1OR)(1QA)R. (4.9)

In an attempt to describe Knizhnik-Zamolodchikov systems Drinfeld [4] has proposed to
perturb coassociativity by an invertible element ¢ € X ® K ® K such that

(1® A)A(a) = ¢(A ® 1)A(a)g™, Vae K (4.5)

leading to quasi-Hopf algebras. The element ¢ has to satisfy certain relations that are

due to pentagon cycles.

The unit element of the coalgebra (counit) is a homomorphism, E : K — C, satis-
fying
(E®1)A(a)=(1® E)A(a)=a. (4.6)

The “inverse” on a Hopf algebra is given by an antihomomorphism, §: X — X, called

the antipode, which is characterized by the property that
where my3(a ® b) = ab.

This enables us to define adjoint representations

adf(z) = (L® R)(18 S5)A(z)
(4.8)
adg(z) = (L®R)(1®S)A(z),
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with L and R being the right and left multiplication on K. For quantum groups the

subalgebra on which adf acts trivially coincides with the center of K.

We summarize these notions in the following definition.

Definition 4.1 [3] A quasitriangular Hopf algebra K is a coassociative Hopf algebra with

comultiplication A, counit E, antipode S and an invertible universal R-matriz, R €

K @ K, which intertwines A with A’ and satisfies

(1®A)R = R13R12

(4.9)
(A®1R = RiaRy.*)
From (4.1), (4.7) and (4.9) we can deduce further identities, e.g.
(1®E)R = (EQL)R=1 (4.10)
1®S™MR = (S®1)R=R! (4.11)
and the Yang-Baxter-equation
R23R13R12 = R12R13R23 %) (4.12)

As an example we consider the quantum groups U, (sfy;1). The dependence on the
“deformation”-parameter ¢ = €' is expressed by the fact that the algebra is an E-algebra,
where E is the ring of meromorphic functions, f, for which sinh(f)™f(t) is analytic,
for some m € N. The algebra U,(sfsy1) is a topologically free algebra with genera-
tors 1, e, fi, ki, 1 =1,...,d, meaning that every element can be expressed as a series

t" sinh(¢) ™py,, ., where the p,,, are ordered polynomials in the generators.

0<m<M, n>0
Further, we impose the following relations on the generators:

[hires] = aize;
(Bi, fi] = —ai;f; (4.13)
e, f;] = 5;,"%’_:12»

*The subscripts label the positions of R in £ ® K ® K, i.e. R;; is the image of R in X®" under the

embeddinga® b — 1---®a®1---Q;b®1---®1.

104



and
eie; = eje;, fifi=fifi, forli—j| > 2,
2 -1 2
€;€i+1 — (q + g )eieiniei + ee; = 0,

and  f2fis1 —(q+q Vfifirnfi+ finrfl = 0,
where a;; = 2, @ig1i = —1, and ¢;; =0, for [i -7 |> 2.

Depending on whether we choose the functions in E to be complex or real, we
thus have defined the associative algebras U, (s441)g (over Eg) and U, (sfq441) (over Ec).
Clearly, U, (sfa4+1) is also an Eg-module, and, since Eg C Ec, we have that U, (say1)g C
U, (slay1), as Eg-algebras. Also U, (sfy41) can be seen as a C- or R-module, i.e., a C- or

. g 1
R-algebra with additional central generators ¢t and =)

Other prominent subalgebras are defined as in the classical case: Uy(b*) are the
Borel algebras generated by the elements e; and h;, resp. f; and h;, and Ug(n*) the sub
algebras generated only by the e;’s, resp. f;’s.

The comultiplication is then the Ec-linear homomorphism A : K — K ®g K, given

on the generators by

A(k) = R®1+1Qh,,
Ale)) = e;®q_%i+qﬁ=i®e.-, (4.14)

L L
Alfi) = fi®qg 7 +47 0 fi.
The Ec-linear counit E : K — Ec is zero on the generators and E(1) = 1. By (4.7), the

Ec-linear antipode must be given by

S(e) = —q7le
S(f) = —afi (4.15)
S(k) = —h;.

Note that its square is an inner automorphism, since
S*a) = ¢ ¥ag®, (4.16)
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with 5 = —Eha'

Here the h, are defined, for every positive root «, as the same combinations of h; = h,,,

o; primitive, as in the classical sfg;;-case.

The Hopf algebra defined above is quasitriangular only for generic specializations of
q = €, but not for the entire ring E. We will use computations, already performed in [48],

to define a quasitriangular version of a quantum group at a root of unity.

In a quantum double construction of a Hopf algebra A over a ring E, the space, A*,

of E-linear forms

{: A E
is considered. It is equipped with a multiplication, by setting
Lk, Az)) = (L k,=z), (4.17)
so that (1,.) = E, an (opposite) comultiplication
(A(f), z@y) = {4,y - =), (4.18)
so that E*(£) = ({,1), and an antipode by
(5(0),8(X)) = (¢, X), (4.19)

for z,y € A and £,k € A*. This obviously defines an associative Hopf algebra over E
which we denote \A°. The “double-constructed” algebra, D(A), then consists of the space
A ®g A°, together with an E-linear map

m:A°® A— AQg A°, (4.20)
such that D(A), with multiplication

(z®1)-(y®1) =zy®1,

(10k) (18l =10k,

(z®1)- (198 =z8¢,
and (10k)-(y®1) :=m(key),,
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and the resulting extensions of coproduct and antipode, define a Hopf algebra over E.
A formula for m has been given in [48], with the property that D(.A) is quasitriangu-
lar, where R € (A®1) ® (1 ® A°) C D(A) ® D(A) is precisely the canonical element in
A® A°.

If we extend the ring over which U, (sls4,) is defined to meromorphic functions, f,
such that sinh(n;t)™ -....sinh(ngt)™ f(t) is analytic, for some n;,m; € N, i.e., for
generic specialization of ¢, it is well known, see e.g. [4, 48], that for A = U, (b%), we
obtain D(A) = U, (slay1) ® U(f), where U(f) is a second copy of the Cartan subalgebra,
commuting with U, (sf441). For non-generic specializations of ¢, the algebra dual to
U, (b*) will be different from U, (b~). However, it is possible to take a quotient of U, (%)
such that its dual is a similar quotient of U, (7).

The algebra U, (b*) over E¢ has been studied thoroughly in [48]. For the statement

of the results, we use the generators E; := e‘-qﬁzi, so that
A(E)=E;®1+¢“®E:;; S(E)=—-q¢™E (4.21)
and
[k, B = ai;E;; ad (E:)'™* (E;)=0, fori#j. (4.22)
It is then possible to define, for each positive root, a; ;, of sfayq, with
o = o+ oy + ..+ o
for 1 €1 < j <d+1, an element, E,, by the recursion

Ea; = 0d* (E) (Buy,,;) , with Eo,,, = E;, (4.23)

i it1
and compute g-analogue commutation relations.

From these it follows that every element of U, (b*) can be written as a combination

of the expressions
iy By b b (4.24)
where (1) < ... < B(n),n = ﬂ%), are all positive roots, with total ordering o;; < ay

iff i <i'ori=1"and j < j', and m;,¢; € N. It is shown in [48] that the monomials (4.24)
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form indeed a basis of U, (b*) over Ec. The subalgebra U, (b~) of U, (b*)° is introduced
as follows : It is generated by elements F;, «;, defined by the equations

1 1

q_l— ) and <7i)h|') =

(FyEi) = —— p o (4.25)

and =zero on all other monomials. We immediately obtain the coalgebra relations
A(%) = %®1+1Q7%, S(w)=-m, and, withh; :=— Za.-j'yj, (4.26)
i
A(F) = 18F+F:od%, S(F)=-Fq*. (4.27)
Furthermore, one finds the algebraic relations

[, F5] = 6,;F;;  ad™ (F,)'™ (F}) =0, fori#j. (4.28)

Defining elements F, in U, (b~), for every positive root, a, of sf4,1, by the recursion

Fo; =ad™ (F)(Fa,,;), fori<j-1 andF,,,, =F, (4.29)

i1

it is possible to write every element as an Ec¢-combination of monomials in F, and
%, similar to (4.24). The contraction (.,.): Uy () ® U, (b%) — Ec has been computed
in [48] as

<Fg(';) FR A E/;';;)...E;;,h;x...h;*>=

_ n ( —1! ( —1)[(5(1))”‘: r,l
H ( mjm (fw (mJ) H ( rery ) t%) )

j=1

(4.30)

where 8(1) < ... < B(n),n = ﬂdzil, are the ordered positive roots, £(8(7)) their lengths,
i.e., £(a;;) = j —1, for 1 < j, and the g-analogue numbers are

q" —q¢™" _ sinh(nt)
(n)q := g—gq~!  sioh(t)’

and (n)! i= (n)g(n —1)q...(1)g.

To describe specialization to the case where q is a root of unity, we use, for N > 3 and

for ¢ = ¢t,
(4.31)

(n, N) = 1, the ring-homomorphism % : E¢ — C, which assigns to any f : t — f(t) in Ec
the value $2(f) = ( }:,'), % is well defined since %2(sinh(t)) = isin (IN’A) #0.
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Then

(e ¢ Ug(b*) @ U, (b7) = C,
(4.32)

(2w = og0(,),
defines a contraction of U, (b-) and U, (b*), seen as C-algebras. The nullspaces, I Izv =
{z €U, (6%) | (k,z)sp =0, Vk € T, (b7)}, and, similarly, I, then form C-Hopf ideals, by
equations (4.17)-(4.19). So we can define the following C-Hopf algebras:

U (6) = U, (b%) / 1E, Uz (57) = T, (6)/ I3, (4.33)
which, by the properties of (.,.),,, are related as C-algebras as follows.
0 () = (07 ()" (30

Using the intrinsic formula for m given in [48] and identifying h; with ki, this formally

defines a quasitriangular quantum group, U™ (ss1), at a root of unity, ¢ = &'%.

For a more explicit description we remark that the Borel algebras Uz (b*) are
generated by the elements [E;] and [k;], resp. [F}] and [I-z.,-], where [ ] : U, (b%) — U (b*)
denotes the complex-linear homomorphism onto UZ* (b%), and further that ¢ (and ﬁm)

can be omitted from the set of generators by setting

) =£ (i 3) ). (2.35)

From (4.35) we also infer that the generators obey the Hopf algebra relations (4.21)-(4.22)
and (4.26)-(4.28), where, e.g., E; is replaced by [E;] and the expressions in ¢ = €' € E¢
are replaced by the specialized ones in ¢ = ¥ € C. In the same way we can obtain the
elements [E,)] and [F,] from the specialized versions of the recursions (4.23) and (4.29) and,
further, they obey corresponding commutation relations. Hence every element in U7 (b*)
can be written as a linear combination of the respective classes of the monomials in (4.24).
Since, by a5 o (a,b) = ([a], [8]).p, the diagonal form of (.,.) in (4.30) with respect to the
monomials (4.24) is inherited by (.,.)
with

+»» We have that the set of monomials in U™ (b+),

[Egey- - Eogy BT . B3] #0, (4.36)
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is a basis, by the nondegeneracy of (., .},,, and similarly for U;"’ (67). From

(m)!=0 iff m>N, for g=¢e¥, (4.37)
we find, that the expressions in (4.36) are characterized by
0<m;<N, i=1,...,n, (4.38)

and the monomials [Ef ] vanish.

The formula for the multiplication m (see (4.20)) given in [48] shows that z; :=
h; — h; are central elements, and it yields, after quotienting by the Hopf-ideal generated
by the z’s, the commutator

[E;, F5) = &5 (hs), - (4.39)

We collect these observations, based on computations in [48], in the following proposition.

Proposition 4.2 In the following statements all equations to which we refer should be

understood as specialized, 1.e., we have

g=¢%, with N>3 and(n,N)=1.

i) The complez, associative algebra, U (b%), defined by generators E;, hi, 1 and
relations ({.22), together with

EYN =0, foralla>0, (4.40)

[-3

where the E, are defined by ({.23), has a PBW-Basis given by the monomials
(4.24), restricted by ({.88). It has a Hopf algebra structure defined by the comulti-
plication and antipode in (4.21).

#) The dual algebra (U4 (5%))°, with opposite comultiplication, denoted by Uz (57),
is generated by the elements F}, h; given in (4.25). It is equally described in terms
of relations ({.28) and

F¥ =0, forala>0, (4.41)

and co-relations (4.26) and (4.27), and admits a PBW-Basis analogous to the one
of Uzd(b+). The contraction (.,.),, : U™ (b7) @ U (b*) — C is given by (4.50)
and (4.32).
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#i) The algebra, U™ (sfy,1), which is obtained from Ued(bt) v Uzrd (b) by dividing
out the relations (4.89) and h; = ki, has ¢ PBW-Basis

{Egsy- - Eggy by .. B3 Fityy . Fiob, (4.42)
with 0 <m; < N; 0 < 4 < N, and s quasitriangular with R-matriz

R = exp(z) ()P Bar) © Fa) -~ exp(gy ((~0) ™D By ® Fam) 7.
(4.43)
Here we use the notations
N-1 m
- _mmoy) o _ym X
wp(p)(X) = = (1)

and

t.= E (anl)jk hj ® hy ,

ik
with the inverse, a~!, of the Cartan matriz a, i.e., a® 8-t = (o, B). The algebra
U4 (s€y41) is identical to D (U;"ed (b+)) quotiented by the central subalgebra U(h)
generated by z; = h; — h;.

There are, of course, further possibilities of defining a quasitriangular quantum group at
a root of unity. For example, if we insisted on having the entire Borel algebra, U, (b%),
without the relations (4.40), the dual algebra U; = (U, (¢*))° would contain U™ (b7) as

a subalgebra, but, in addition, it would contain elements F¥, defined by
(FY, EY) =1, (4.44)

and =zero on all other monomials. It follows that U, is just the Borel algebra of the
quantum group at a root of unity, Uy, defined in [49]. To be precise, we also would have
to replace the generators h; by generators K; := ¢™ and impose the relation K2V = 1.
The algebra U;‘d (s€441), with these modifications in the Cartan generators, is still qua-
sitriangular, but, in addition, it is a finite-dimensional subalgebra of U,. It is possible to
show that the R-matrix of U7* (sf44,) is also an admissible R-matrix of Uy, so that U,

is quasitriangular, although it is not double-constructed. Here we call a quasitriangular
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Hopf algebra double-constructed if, for the map

TR K* > K, m(f)=({,.)01)R
and hence
T2(8) = (1 ® ()R, (4.45)
we have that
K=immg Vimnk.
In general, we have for a quasitriangular Hopf algebra
R €imng, ®im 7z, (4.46)
so that 7x is well defined on (im 7%)’. Using equations (4.9) we find that
R (im 7r;¢)‘ — im 7Tr
is an algebra isomorphism, which is anticohomomorphic. Therefore
(im w;z) ‘~imwg. (4.47)

Thus in the case of a double-constructed algebra, X, and by the uniqueness of the multi-

plication (4.20), (see [3]), we infer that K is a quotient of D (im 7).

In the following we shall consider only the double-constructed examples Uz (s441),
seen either as a C- or R-algebra, and U§* (s{44; ), which is the quantum group over the ex-
tended ring, E®*® of meromorphic functions, f, such that sinh (n;¢)™ ...sinh (n.t)™* f(t)
is analytic for some n;,m; € N. The automorphisms of the Borel algebras can be easily

described.
Lemma 4.3

i) For every Hopf automorphism, a, of Ut (b*) (Uq‘“‘(b"‘)), there are invertible ele-
ments, 7;, 1 = 1,...,d in C(E®™®) and an involution, 7, of the Ay-Dynkin diagram,

ie,r=1idorw(j) =d+1—j, such that
[ (hJ) = h.,r(j) (4.48)
and a (EJ) = ‘I]J'E.,(J') . (4.49)
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ii)

i)

Moreover, we have that a can be chosen either complez-linear or complez-antilinear
for Us=(b*) with ring E5® and specializations q € R and for U™ (b*) for real
specializations t € R, so that
ag(t) =t (4.50)
in both cases. a is complez-linear for non-real specializations and U (b%).

Conversely, every map, a, defined on the generators by (4.48), (4.49) and (4.50)

eztends uniguely to an automorphism on Urd/s= (bt).

Similarly the set of anticohomomorphic automorphisms, &, of Uy (b%) is character-

1zed by
a(h;) = hg) (4.51)
&(E;) = miExig ™0 (4.52)
and ae(t) = —t (4.53)

Thus anticohomomorphic automorphisms only ezist for purely imaginary specializa-

tions, i.e., t € iR or |g| = 1, and for U*? (b*), where they have to be antilinear.

The description of antithomomorphisms can be obtained from the above by composi-

tions with the antipode.

For specialized parameters t, the scalings E; — n;E; can be obtained by conjugating
elements of the Cartan torus so that the group of outer automorphisms is isomorphic
to Z,;. In particuler, every cohomomorphic or anticohomomorphic automorphism

maps U, (nt) to itself and is an involution on f.

Furthermore, the automorphisms specified in i) and i) have unique eztensions to

U, (slas1), given for the generators by

1
a(F;) = — Fxj) (4.54)
1j
and a(F) = iqhme,(,-). (4.55)
2

These eztensions are also cohomomorphic, resp. anticohomomorphic.
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1) If we denote by C the ectension of the anticohomomorphic automorphism with
n; = 1, ® = 1id, then we have the relations

c* =1 (4.56)

(4.57)

i
3

and CRCR

C will thus be called the conjugation of U, (sy41).

The symmetry in the sets of generators and relations of U, (b%) and U, (b™) enables us
to define involutions on U, (s€441), which are important in the study of highest-weight

representations. In general for a quasitriangular, double-constructed Hopf algebra, X, we

call an R-linear, antihomomorphic involution, §, on K, a _Cartan involutionif 8 satisfies

6 : immg — im7h
(4.58)
thus 0 : imx}, — imwg
and
QR =0R. (4.59)

Similarly a *- involution is a R-linear, antihomomorphic involution which also maps im m¢

to im 7% but instead of (4.59) obeys

*@*xR =0R'. (4.60)

Lemma 4.4

i) Assume, that 8 is @ Cartan involution and * a *-involution on a double-constructed

Hopf algebra K. Then we have
®00A = Ao, foS=S"08 (4.61)
and *@*0A = oclAox, *0S5 =So0x. (4.62)
ii) For the isomorphism 7x, it follows that
mpf =0y and Sxwh =wgxS*. (4.63)
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Thus, if we define nondegenerate, R-bilinear forms on im n% by
(a,b)o:= (x7%6(a),b)  and  (a,b). := (75" % (a),b),
it follows that (a,b)s is symmetric and obeys
(A(a),b® c)s = (a,cb)s and (S(a),b)s = (a, S(b))s

and further that
(a,b)s = (S(b),a)s,

so that
(A(a),b®c). = (a,bc)s; (b®c,A(a)). = (cb,a).

and (S(a), S(b))s = (a,b)..

iii) Suppose o is an automorphism of im 7%, so that for J = im 7§ Nim 7g

Q(J)=J and (aoO)’ r_7=1:d]

and
(a(a), b)s = (a,a(d))s, resp. (afa),d). = (a,a(b))..

Then there ezists a unique eztension, &, to K, such that

0 =aol, Tesp. * =aox

(4.64)

(4.65)

(4.66)

(4.67)

(4.68)

(4.69)

(4.70)

is ¢ Cartan-(resp. x-) involution. Moreover, given some involutions 0 and x, then

all other involutions are given by (4.70) for some o with ({.68) and (4.69), and the

eztension, &, is always cohomomorphic, thus a Hopf-automorphism.

This, together with the characterization of automorphisms of the Borel algebra and the

conjugation, C, in Lemma 4.3, put us in a position to find all Cartan- and *-involutions

of U,(s€4s1). They are given as follows:
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Lemma 4.5 i) There ezists a Cartan involution, 8, on U, (sl441) which is given on

the generators by

0(E;) = ¢"F; (4.71)
6(F;) = Eq™ (4.72)
8(kh;) = h; (4.73)
fe(t) = t. (4.74)

It can be chosen antilinear only if E = E# or if t is specialized to real values. In all
other cases, § has to be complez-linear. 6 is determined uniquely by (4.71)-(4.74)
and the sign 0(3i) = +u.

1i) The Hopf automorphisms, a, of Lemma {.8 i), which give rise to all other Cartan
involutions by ({.70), are those with
N5 = x(3) - (4.75)
#1i) The antihomomorphism
x:=Cob=60C, (4.76)

where C s given in Lemma 4.3 iv), is a x-involution, for all versions of U, (slz;1),

where C is defined. It is given on the generators

x(h;) = h; (4.77)
«(E;) = Fj (4.78)
«(F}) = E; (4.79)
w(t) = —t. (4.80)

1v) Egquation ({.80) holds for all x-involutions ', so that *' is defined on a quantum
group whenever * is defined. All possible *' are given by (4.70) where the automor-

phisms a, specified in Lemma 4.8 i), are constrained by
*E (1) = (i) - (4.81)
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One way to verify formulae (4.59), (4.60) and (4.57) is to directly apply the involutions,
resp. their compositions with the antipode, to the expression of the R-matrix. Also
we can use the fact that these formulae are equivalent to the symmetry relations of
the forms (4.64) and similar constructions. Following this strategy it is useful to know
that any bilinear form on U, (b*) for which the comultiplication is the transpose of the
multiplication (compare (4.67)) is uniquely determined by the scalar products of the
generator E; and h;. For convenience we give the general forms of the involutions in

terms of the original definitions (4.13), using the identification

Fi=q ;. (4.82)
They are
0(e;) = njyfetid *(&5) = et
6(fi) = mesi) (4.83) *(f;) = Mmnexi) (4.84)
6(hj) = hui); *(hj) = hats);
and
CE;=e¢;, CFj=f;, CHj=h;. (4.85)

As an example, let us have a more detailed look at Ur*d(sf;), for q = €%, where we

assume (n,N) =1, N > 3. The relations defining U*¥(s£;) are

[hye] = 2e
(A, f] = —2f (4.86)
h_ -h
[e)f] = g—q_l_
9—9q
and
eN = =0
The universal R-matrix is given by
N-1 . _ pd3)n n n
R= 3 g bongt (=0 oo g2 pm. (4.87)

n=0 (n)q!
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Here we use the gq-numbers, defined by

N i B
O e (4.88)

They arise in the calculation of the commutators
[e, /7]

[f,e"] = e n)y(—h—n+1),.

i

P (n)o(h —n+1),
(4.89)

For the classification of the irreducible representations of U*%(sf;), we next describe the

generators of the center:

2
Q = fe+ (")
q
(4.90)
_ -1}
= ef—{-( 2 )q
and P = e*h.
They satisfy the relations
(P3 - p-3)? "‘1( ( 1 ’)
Popal (oo (54+))
(g~ g 1)V ] ,‘I=Io Q- 2/q
or equivalently (4.91)
P3 + P-3) N1 ,
R = — Q —\J 3 .
[(g— g~ 1)V ,I;Io( 29

Relations (4.91) define a variety U in C?, on which the Casimir values of (Q, P) have to
lie. The real part of this variety, Y,ea1, is the intersection of U with

RxS'={(QP)|Q€eR,|P|=1},

describing representations, that admit sesquilinear forms. A more detailed description

of U will be given in Section 5.2.
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Chapter 5

Representation Theory of UZ*d(sty)

5.1 Highest Weight Representations of U;ed(sﬂdH)

We show that the trreducible representations of U, (slay1), for ¢ a root of unity, have
a mazimal dimension and can be obtained from Verma modules by quotienting by the
nullspaces of hermitian and bilinear forms. The contragradient of a representation is

defined, and categorical aspects are discussed.

The finite dimensional, irreducible representations of Uy(sf441) and Ur*¥(sfayy) are rep-
resentations of highest weight, because the generators h; of the Cartan subalgebras are
bounded operators. In the generic case of U,(sfy11), ¢° # root of unity, it is known [50]
that the highest weights, characterizing the representations, are (up to irrational shifts
A= X+ 7, where ¢ = e’Tﬁ) all integral, and the associated representations can be seen
as deformations of irreducible representations of the corresponding classical Lie algebras.
In the rational case, (i.e., g a root of unity) we see from (4.22) that the subalgebra Uy(n™)
is finite dimensional. Therefore, any highest weight will lead to a finite dimensional, irre-
ducible representation, the dimension of which is bounded by dim U,(n~)+1. For U,(sf,),
with q* = e™ ¥, this bound is equal to N.

A useful tool to determine irreducible representations from their highest weights

is the study of real linear forms, (.,.) and (.,.), that are invariant with respect to the
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antiinvolutions * and 8, introduced in (4.23) and (4.24).
The proof of the following lemma uses the direct sum decomposition
Ug(slay1) =
C([A]) © C([h]) - Ug(n*) ® Up(n™) - C([Ri]) (5.1)
@ Ug(n™) - C([Ai]) - Ug(n¥).

and follows from a standard reconstruction argument.
Lemma 5.1.1

a) On any pair of highest weight representations Wy., Vi,(Wjr, Vi, respectively) of

U,(slay1), with A* = Ao a (AT = Ao a), there exist invariant, real linear forms

(o) : Wae ® i —  R([#]),

(L) : War ® i - R({]),

with the properties
(viaw) = (x(a)v,v),
(5.2)
(vyaw) = (8(a)v,w),
for all a € Uy(slyyr), and

(f(t)v,g(t)w) f(=t)g(t)(v,w),

(f(t)v, g(t)w)

f@)g(t)(v,w), for f,g€R([t]),

which upon specializing to t € iR (i.e. |g| = 1) become sesquilinear, resp. bilinear,

forms.

b) The invariant forms (.,.) and (.,.) are uniquely determined by (vx.,vx) ((var,va)),
where v, are the highest-weight vectors. In particular, if (vys, va) = 0 ((var,va) = 0)

then (.,.) =0((,,.)=0).
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¢) If N\ and M. are defined by
M = {z|{y2) =0, VyeWxr},
and (5.3)
My = {ylly,z) =0, VzeW},
the quotients Vi/Na and Wy./ M+ are ezactly the irreducible representations of
highest weights A and A*. The irreducible representations can be obtained from (.,.)

and @ in the same way.

In the statements made above, we may as well replace highest weights by lowest weights.
By unitary representations we henceforth mean highest weight representations, for which
(.,.) is positive-definite on V3 /Nj, so that the representation space admits a Hilbert-space

structure.

In analogy to the classical case, tensor products of representations are defined by
the comultiplication. The trivial representation is the counit, which by (4.6) can also be
characterized as the only representation such that V3 = V; @ Vj, for all A. Furthermore,
for any representation p on V, we can define a representation, pV, on the dual space, V*,
(VY as a module) by

p'=ptoS (5.4)
called the representation conjugate to p. We have that p¥¥ = p and that p¥ is uniquely
determined by the requirement that the trivial representation is a subrepresentation of
V ® VV. The latter can be seen by replacing the action of K on V @ WV, by the adjoint
representation on Hom(V, W). A trivial subrepresentation of Hom(V, W) consists of an
intertwiner from V to W, so that V' and W have to be isomorphic. Finally commutativity,

pi @ pj =~ p; @ pi, is guaranteed by the invertible intertwiner
Ri; = Pijp; ® piR, (5.5)
where R is the universal R-matrix in X®K, and P;; : V;@V; — V;®V; is the transposition.

For later applications we want to introduce an antilinear mapping xa : VA — V)%,

replacing the Clebsch-Gordan matrix Py a.v, intertwining VA ® V)% with V;:
{v) = (x5'4v) = PLav(v®Y). (5.6)
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It is related to the antihomomorphisms S and * by

xaea(a)x3' = paev (S7(a) (5.7)

and, having (4.11) for the square of the antipode, can be normalized to

xavxa = g% .

5.2 The Irreducible and Unitary Representations of
U;ed(8e2)

The irreducible representations of Uq"d(slg) are classified and given in a highest-weight
basis. We use the surjective parameterization by highest weights to discuss the topological
structure of the center-variety. We show that representations over non-singular points and
with a diagonal Cartan element, k, are completely reducible. We determine the ranges
of highest weights for which the irreducible representations are unitarizable with respect

to *.

In this section we describe the irreducible and unitary representations of U;‘d(sig), for
¢* = e®™'¥ a root of unity. The irreducible representations have been determined in [51]
for the algebra without relations (4.22) and generators e, f, k? = ¢", so that e and f could
still be invertible. For U:‘d(.slg), however, we have only highest-weight representations,
and any A € C appears as a weight. In the next proposition, which summarizes these
observations, we will see that integrality of A is only necessary to obtain representations

with dimension less than N (rather than oo, in the generic case).
Proposition 5.2.1

a) For U:‘d(slz), with ¢ = e*™N, any highest weight A € C corresponds to an irre-

ducible representation which is given, in the standard basis {vi},_, o, _, for highest
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weight representations, by

h‘U[ = (A - 2[)‘0[
foe = v (5.8)
evy = (O (A+1—0gqve1,

where the dimension py,1 < p\ < N, is N if n) is non-integral and is determined

bynpa=n(A+1)mod N if X € 1Z.

b) The trivial representation is identified with A = 0, and the highest weight, )V, of the

conjugate representation pY = pyv is given by
A =2(pr—-1) - . (5.9)

A sesquilinear form on V) ezists only for A € R. Moreover, there is an algebra

automorphism, T, with

N

n
such that there is an invertible mapping Fy : Vs — V, ., with

Prrat(a)Fa = Fapa(T(a)).

To prove a), we only need the commutators (4.89), and the fact that (z), = 0 whenever

z € %Z. The irreducible representations are then obtained in the usual way. a

From the automorphism T, defined in (5.10), we can find all irreducible and unitary
representations, by only looking at those with A € [0,2%{-). On the center 3,T(C)=C
and T(P) = ™% P, so that T™ | = id. Hence the representations belonging to A and
A+ 2N, yield the same values of Casimirs in . More precisely, we have the following

result:
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Proposition 5.2.2

a) Let 0 be the variety described in ({.91). Then the mapping C — BV C C?, assigning
to each highest weight the corresponding Casimir values

A= (P,Q) = (e"*, (’\—;-L—l>2) (5.11)

q

is surjective, and can be defined on C/2NZ.
b) C/2NZ — U identifies ezactly n(N — 1) pairs of points, Ay ~ A_, given by

Ar+1 =:ta+lbmod2N,
n (5.12)

a=1...(N-1), 5=0...n-1,
and 1is injective for all other values of A, so that V is an infinitely long tube with

n(N — 1) singular points.

¢) The subvariety describing representations which admit sesquilinear forms is de-

scribed by R/2NZ — U,cn. Thus V... can be identified with the lattice edges of

171 1 1/71 1
<§(;’ﬁ)’§(;"ﬁ)>zm°”"z

on the upper half of the torus T? = R?/Z x Z.

The crucial point of Proposition 5.2.2 is that irreducible representations cannot be dis-
tinguished completely by their Casimir values. A point in 0 only determines the set of
representations that appear as quotients, e.g. in Jordan-Holder series, of indecomposable
representations. Note that, for the dimensions, we have px, + pa_ = N, and the successor,
(A+2), of a highest weight A is also the lowest weight of an irreducible representation, with
the same values of Casimirs. For non-singular values of Casimirs, the picture becomes

much simpler.

Lemma 5.2.3 Suppose W is a representation space of Uy(sf;) on which h is diagonal,

and (P, Q) has only non-singular eigenvalues in W, i.e., all highest weights X occuring in

W are in (C\;‘;Z) U (%Z - 1). Then W 1is completely reducible.
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To show this, we restrict our attention to a single Casimir value, (P,Q), such that the
set of highest weights is in {A + 2kN}iez, for some A. If hv = Av, for some v, then v is
a highest-weight vector. Otherwise, we could find some s, 1 < s < N — 1, with e*v being
a non-zero highest weight vector. Since its weight (A + 2s) is not contained in the above
set; this is impossible. With a similar statement for lowest-weight vectors, and since h is

diagonal, W decomposes into

W= "Wiiamn- (5.13)
The invariant subspaces are
N-1
Wi =) ®ker(h— () — 2k)), (5.14)
k=0
for which we have
ker f | Wy =ker(h — (A —2(N —1))) and kere | W, =ker(h—A). (5.15)
Thus all weight spaces in W), have the same dimension, so that, for some basis {vy,...,v,}

r ®
of ker(h — ), we have the direct sum decomposition Wy = Y= V;, V; being the irreducible
=1

representation <‘v¢, N L ‘1v¢>. o

Next we state a result on unitarity.
Proposition 5.2.4

a) If the representation on V) is unitary, then A € R, and the representation on V, 42

13 also unitarizable.
b) For A = Mtt=n itk 5 € [~ N, N), V4 is unitarizable iff

either s€[-1,1], or s=n, or s=(-1)n¢—ngr),

(5.16)

T=1,...,p[+2, l:—l,...,f—l,

where ny and p, are defined by the Euclidian algorithm:
N=pn+n;n=pmn +n,..., %1 = Pes1Tk + Nit1,- ., Ng1 = Prnig + 1,

‘Withnk >nk+1,N=n_1,n=no.
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c) There ezist unitary representations for all singular points in U, i.e., all dimensions

pa=1,...,N, only if n = 1. In this case V) is unitarizable for

Ae{0,1,...,N—2}U(N —2,N] (mod2N).

The proof is elementary, although somewhat tedious, and will not be reproduced here,

see [6].

In the case of unitarity, we define an orthonormal basis {££,} with p = p,, and
m=—j,—-7+1,...,7, with 2§ + 1 = p,, which is obtained from (5.2) by setting
» 1

j—‘=(7).-'\/-(77), L.

The representation then has the form

(r-m) e = 2ma,
n

efh = \/(J —m)(F+m+1), &, (5.17)

f& = \/(j+m)q(j_m+1)q m—1)

where we have set kx = (A +1—pa) € Z.

5.3 Decomposition of Tensor Product Representa-

tions

We present a basic result on the tensor product decomposition of two irreducible, integral
highest-weight representations of U;ed (s£3), for q a root of unity, using non-degenerate
bilinear forms. We discuss the structure of the indecomposable representations arising
in this procedure and state the fusion rules for irreducible representations with non-zero

g-dimensions.

In this section, we investigate the decomposition of a tensor product of irreducible repre-

sentations into its indecomposable parts. If, for two highest weights A and p, A + p & 27,
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then, using the Casimir P from (4.90), with A(P) = P ® P, we deduce from Lemma 5.2.3
complete reducibility, so that

min(pa,py)
VA ® Vp = E@ I/A+u—2n . (518)
n=0
In the case where A, u ¢ 2Z, but A+ p € iZ, the decomposition of V3 ® V, is similar to
the one where the highest weights belong to 1Z. The interesting case is the one where
A, 1 € 2Z. We use the basis (5.17), regardless of unitarity, with ky = 2(A +1—ps) = 0.

1
All other decompositions can be generated from the automorphisms TZ(e) = =ie;
L L
Ti(f) = &if; TE(h)=h+ &
Our main result is that the $i,-fusion rules of rational conformal field theory and

of 5U;-Chern-Simons gauge theory can be recovered from the representation theory of

Uzed(sty), in the following algebraic sense.

Theorem 5.3.1 The tensor product of two irreducible representation-spaces V,, and V),
with heighest weights )\; = 2j; = p; — 1, 1 < p; < N — 1, and with the action of U;‘d(s&)

defined in terms of the comultiplication, has a decomposition into invariant subspaces

given by
min(p; +pa~1,2N-1—(p1+p2)) N
V,, ®Vp, = e Ve S° W (5.19)
i=lpy—pal+1 i=2N+1-(p1+pz2)
i=p1+p3+1mod2 i=p) +pa+1lmod2

The spaces W; are indecomposable subspaces, with Wy = Viy anddim W; = 2N, fori < N,
on which [Q - (%):r, but not [Q - (%):], vanishes.

In the proof of Theorem 5.3.1, we make strong use of the fact that the bilinear form
(-,.), introduced in Lemma 5.1.1, naturally extends to tensor products, because § com-
mutes with A, (Lemma 4.4), and is non-degenerate. The derivation of the decomposition
amounts to an explicit construction of the representation spaces W; in a natural basis.
The first step is the computation of all highest weight vectors and of their squares with
respect to (.,.).
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Lemma 5.3.2

a) For everyi,i=2j+1, with

|pr—p2 | +1 <i<p1 +p2—1,

(5.20)
1=p;+p2+1mod?2
there ezists ezactly one vector, {; , of highest weight in V, ® V,,, i.e,
e = (i - 1), and e =0. (5.21)

The f; form a basis of kere.
b) The squares ( ;,{;) vanish iff

IN+1—(p+p)<i<N-1.

In order to determine the vectors f;, we express them in the basis (2! ® €52, with coeffi-

. " .
clents aj,: o
. ntR-i
t __ $ ¢P1 P2
G= X bin®iim

n=0

From A(e)fgi = 0 we find the recursion

0 = g o, /(n+1)(251 —n), 522)
5.22

+aifGa+ 1 =5 —n)(1+Ja+7 — jr +7n)g.

Solving this in terms of o; = af ¢#(7+1) (’“;;’l +j) , we find for the highest weight vector
q

b o B i gt | @ =+ =)
7 (n)g!(41 + 72 — 7 — m)q! (5.23)

n=0
;"11-" ® E:":jx +n
with j; = P—‘;—l
This recursion can only be solved for ¢ in the range given in (5.20), so that we have

found all vectors of highest weight.
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The expression for the square ( ;'-, f;) is obtained by use of the g-analogue binomial

identity
a+pBy & i(mk_("_k))(cu) ( B )
( n )q—kgq 8 t) \al q, (5.24)
with
a) _(a),...(a—n+1),
(n)q— (n)g...(1)y for a,f€R,neN. (5.25)

It is given by

G

a?q(ﬁ(h-i-l)"jx(j1+1)‘5(j+1))(j1 —ja+ j)q!(jz -1 +7)

(5.26)

(jl +72+3+ 1)
h+ia—7J a
To show Lemma 5.3.2 b) it is now sufficient to find the zeros of the ¢g-analogue binomial

coefficients.

The non-degeneracy of the bilinear form (.,.) now enables us, to assign to each
vector ¢} with (¢},¢:) =0 an indecomposable subspace W; within which it is contained.
In contrast to the classical case, the ¢} are no longer cyclic with respect to W;. However,

a candidate for a cyclic vector of W; is given in the next lemma.
Lemma 5.3.3
a) The square, with respect to (.,.), of a vector of highest weight, &, in V,, ® Vj, is
zero, iff there ezists a vector E-; € Vo ® V;,, such that
K = (-1

and ' ~ (5.27)
£ feg;.

b) f; and {-; can be chosen uniquely, up to a sign, by imposing the normalization con-
ditions

;75; = 1,
and ( ) (5.28)

(6.6) = (6,8) =0.
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c) The subspace W;, generated by f.; , also contains €3V 1' . and is the desired component

of Vo, ® Vp, in Theorem 5.8.1.
Proof.

a) One easily derives from the invariance of the bilinear form (.,.), that if (5.27) holds

for some vectors E; and {;, the square of f; is zero:

(€.6) = (&, fefl) = (et efl) = 0.

To prove the converse, we can assume, for ¢ with (¢4, £) = 0, that by Lemma 5.3.2
? J 3?2

b)2N +1—(py+p;) <i <N -1

Since (.,.) is non-degenerate, and since both h and Q are symmetric and commute,
there has to be a vector E-; that belongs to the same generalized eigenspaces of h

and Q as ¢}, but has nonvanishing scalar-product with ¢}, i.e.,

(Q - (5))6

for a sufficiently large, and (f;, E;) # 0.

(i-1)é&

(fe) &, (5.29)

In the following line of arguments, we will see, that any such f; has the desired

property (5.27).

From the relationship of Casimir values with highest weights, as computed in Propo-
sition 5.2.2 b), and from the bounds on the weights in (5.20), we see that the only
highest weight vector, having the same Casimir values as E; and £, is ey ;'_1 Since
we have N +1 < 2N — i < p; + p3 — 1, this vector has non-zero square. As e'f-;:
has to be a non-zero highest weight vector, for some 1 < s < N, we immediately

conclude from the previous observations, that

eV = a5, (5.30)
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for some a # 0. The case s = 0 is excluded, because f-;, having, by (5.29), a non-
zero scalar product with ¢}, cannot be proportional to ¢}. Applying @ — ()2 to the
vector f}f:'_l = ie"“ .;, we find eN“‘fef; =0.

The argument used above now shows that e’ f ef-;'- is a non-zero highest-weight vector,
iff s=0 and fef-; # 0. Finally we show that fefj- # 0, which, for some suitable
rescaling, implies ¢ = fefl # 0. Assuming the opposite, ef} should be a lowest-
weight vector which has, by calculations similar to the ones at the beginning of the
proof, vanishing square with respect to (.,.). From Lemma 5.1.1 for lowest-weight
representations, we conclude that (.,.) vanishes identically on the sub-representation

generated by the lowest weight vector ef}. This contradicts, with (5.28) and
a’( ?Vli;il , fvli;il) - (eN—i ;:,eN—ie;) —0,
the fact, that ¢V ;‘_1 has non zero square.

b) We suppose that there are two vectors obeying (5.27). Then their difference, §,
has to be a multiple of {; Otherwise, we have from feé = 0, that e is a non-zero
lowest-weight vector with zero square. By the same reasoning as for ef.;'- in part a)
this is impossible. The proof of statement b) concerning the uniqueness is now just

a matter of scaling and adding.

c) So far, we have constructed a direct sum of cyclic subspaces in V,, ® V},, generated
by vectors f;, for |pr—p2 | +1 < i< min(p1 +p2—1,2N —1—(p1 +p3)),0ri= N,

a.ndbyf;-,for2N+1—(pl+p,)5i5N—1, (i=p1+p2+1mod 2).
In both cases it can be verified, that f7¢; is in the kernel of e, by using the commu-
tators (4.89). For 1 < N — 1, its weight is —2(j + 1); but by Lemma 5.3.2 a), there

do not exist highest-weight vectors with weights below | p; — p; |, so that we have

fiE€=0. (5.31)

Hence if ( ;,f;) # 0, i.e., 4 satisfies the restriction in the first summand of (5.19),
f; generates an irreducible subspace V; = Uq“d(slg)f;, on which the bilinear form
(-,.) is non-degenerate. We therefore have V; N V;1 = 0 and can complement V; by

Viie,V,, @V, =V, V-t
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This yields a decomposition

min(p; +pa—1,2N~1—(p1+p2)) N
1
Vo, ® Vp, = ® Ve ), ® W, (532
i=lpy —pg |41 i=2N+1-(p; +Pp3)
i=p1 +p3+1mod2 IZpy+pa+lmed2

where the W/ have the same Casimir values as the subspaces W; generated by the
E.; In order to prove c), without constructing W; explicitly, we want to show that
W/ /W; does not contain any vectors of highest weight, and therefore has to be zero.

Suppose [£,] is of highest weight in W//W;, with weight
Moe{-2N+i-1,—(i+1),i—1,2N —i—1}.

A representative {, in W/, with the same weight, cannot be of highest weight itself,
because all highest weight vectors are already contained in W;, so that again e*¢, is

of highest weight for some 1 < s < N — 1. The only combinations left are:

e':

&  with A =—(i+1) (5.33)
or
N = N with A =i-1. (5.34)
In the second case (5.34), we have eV —* (f,. - };E;) = 0, so that, by a similar reason-
ing, & — if; is of highest weight. We then have §, = if; + ,B{;, which is impossible,
since [¢,] # 0.

In order to exclude the second case, we first note that
ef'f; = fled; = f(fe)dj = fE =€, (5.35)

for some v # 0. Since f'{; =0, f’_, is the lowest-weight vector of the subrepresen-
tation generated by ¢}. Furthermore we have that =1¢! ; = ¢}, so that, by (5.33),

we have that e'~! (f‘_j — 'yef,) = 0. Thus ‘_’- = vef,. By (5.35), this implies that

e (725, - f‘f-;) =0, and again, with Lemma 5.3.2 a), v%¢, = f&. This shows that
(&) = 0, completing the proof. =

We complete our analysis on the decomposition of tensor products with an explicit de-
scription of the representation spaces W;, equipped with natural bases determined by {;

and E; in Lemma 5.3.3, with normalization (5.28).

132



The space W; is spanned by 2N vectors

fn) .:n’ m = ])(J_l)_])
A gN m = j,G'-1)...—5

with j = % and j' = —N“;‘l.
The representation is given by

hE, = 2mé,,  hE, =2mf,,

how = (N +2m)er;

f&,

\/(.7 +m)(j —m+1), &1.—1 )

fé:n = \/(j+m)q(j—m+1)q :;s—l’ m2>—(j—1);

feE = JG+m)( —m+ 1) ey, m2-('-1);

e&:n = \/(.7 +m+ l)q(j _m)q €§n+1 )

efl, = \/(J +m+1)(j —m) &n+1

1 . .
+ : - E:n-}-l) mS(J“l);
\/(J +m+1)g(j —m)q
epit = —JTIMI G — ) e, m< (G 1)
and
ff'_, = 0, fE‘—J = ()0;7)
e{; = 0) eé; = ‘pi—t":
epit = 0, fety = 0.
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The representation W; is visualized in Figure 5.1. Each dot marks a basis vector, its
height in the diagram indicating its weight. The arrows in upward- or downward direction

stand for non-zero matrix elements of the step operators e, f, respectively.

For a better understanding, we introduce the Casimir element

D,-=[Q—(%):] = fe—( +]+1) (i-13),
ef - ( +J)q(j+1—§)q

By construction, we have that {; =f ef-; = D,-f.;-. So if we inductively define E‘ by (5.37)
the action of f on ¢, is determined by ¢, = D;f-fn. Having f" .= ef{_,, the @i, " can be

(5.40)

consistently defined by equation (5.39). Notice that the ¢i, are the basis of an irreducible
subrepresentation and that D is zero on ¢, and go:E-,. This is now used for an inductive
definition of ¥} as in (5.38) and ¢i7 as in (5.37) By comparison with the proof of Lemma

5.3.3, we see that, e.g., <pJ, is proportional to N 1oy
In this basis the form (.,.) has the values
( :IHE-:'I) = 1’ (sam 7(pm)—( l)Jlim

(5.41)

E8) = 3w,

and on all other pairs (.,.) vanishes.

5.4 Fusion Rules, and g-Dimensions: Selecting a

List of Physical Representations

In order to show that the tensor product decomposition of U;‘d (s¢3) defines a fusion-rule
algebra, in the sense of Section 2.5.1, we need to verify associativity, i.e., we have to show
that the ezcluded representations are an ideal under forming tensor products. This is done
using a condition introduced by Pasquier and Saleur [52] which characterizes saturated

representations of the Borel algebras of U, (sl;). It is shown that this criterion entails
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the vanishing of q-dimensions of representations for which it holds. Our criterion and
the vanishing of q-dimensions are, in fact, equivalent for indecomposable representations.
The group-like elements of U;‘d (s€;) are used to define characters which diagonalize the
fusion rules, and the so-called S-matriz is ezpressed in terms of q-numbers. We define

a subset of representations which will be used in our duality theory.

It was already pointed out in [52] that the representation spaces W; have the property
that kere = imeV~?, which we will abbreviate in the following by (E). It is concluded
from a simple calculation for V; @ W and an iteration of tensorproducts, that if (E) holds

on some space W, it is also true for V, @ W.
Lemma 5.4.1

i) If (E) holds on some module W and W = A ® B, then (E) holds on A and B.
i) (E) holds on V, only if p= N.

i) If (E) holds on W then it also holds on V,@ W, p=1,...,N.

Part i) is a trivial consequence of the definition of direct sums of modules, and ii) is
immediately checked for the representations given in Proposition 5.2.1. We show iii)
first for p=2. Let v = {; Qwy + €%, @w_ be in kere, with hwy = (2m F 1)wy, so
that A(h)v = 2mv. Then 0 = A(e)v =, qéf':; Q ewy + q_('"+%)f; Qw_ + q‘ﬂi; ® ew_
implies ew_ = 0 and ew, = q~(™+y_. By hypothesis w_ = g - eN-1y, so that v :=
Ae)V-1 (63% ®y) = {'t; Q@ wh + ff;_ ® w_ for some w/, where we use that the (0,n)-
graded summand of A(e)" is ¢* % ® e*. Hence it is sufficient to show, that v’ € ime, with
v =v—-bv= f; ® (w+ - w'+), i.e., we can assume w_ = 0. In this case we have from
A(e)v = 0 that ewy = 0, thus wy = g~ "7 eV !z and w = A(e)¥-? (f% ® z). In order to
show iii) for general p, we use the fact, that V, ® W occurs in VZ®(P D QW as a direct

summand and apply i).

This statement only depends on the representations of the Borel-algebra generated
by e and k. For these, however, the tensor product decomposition is solved by a simple

basis transformation, showing immediately the invariance of “saturated” representations,
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as proposed in iii). This, together with the fact that if a direct sum satisfies (E) then
all the summands do, makes the convenience of working with this property evident. All
of this can be understood from a more general representation-theoretical point of view in

a very natural way [6].

In the decomposition given in (5.19), (E) is true on the right summands and false

on the left ones, so that we are led to the definition of the fusion rules

1 if [pr—pa|+1 < 4
< min(p, +p;—1,2N —1—(p, +p2))

(5.42)
1 = pp+pa+1mod?2

Nmm.i =

0, else.
The fusion matrix N; is then defined in the usual way, i.e., (N;)i := Nijx.

These fusion rules show that the list of algebraic objects producing the combina-
torics of the An_; series, beginning with §%;-symmetric models in rational conformal
field theory, and continuing with SU,-Chern-Simons-gauge-theory and towers of algebras

arising in local quantum theory, can be completed with the quantum group U,(sé,), with
g = exp(ir /N).

In order to compute the eigenvalues of N;, we introduce quantum group characters.

Lemma 5.4.2 If we define the r-th g-dimension of a representation space V,d},, as the

character
&, =try (¢") (5.43)

then

a) for the irreducible representations V,, with highest weight A = p — 1 € Z, these

characters have the values

= (p)s
&= (5.44)

b) d) = (p); is positive, for all p=1...N — 1, if and only if n =1, as for unitary

representations.
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In the next lemma we draw the connection of vanishing ¢g-dimensions and property (E).

Lemma 5.4.3 Ifkere = imeN~?, i.c., if (E) holds on some representation space V, and

if I intertwines V with itself, then

trv(q"'I)=0, for r=1,..., N—-1.

Proof. We derive from (E) by induction, that V; = ker ¢! = ime¥~ for all £, with
0=V, CcW...CW,CVy=V.

Because of (q"‘I ) (Vi) C Vi, the trace can now be rewritten as a sum over characters on

the successive quotients:

N-
try (¢"1) = lz_::trvm ACEIE (5.45)

Obviously, e maps Vi, onto Vi, with e™}(V,_;) = V;. We therefore have an isomorphism

e*, with

e Vi [Ve = Vi Vi (5.46)
with
[h,e']=2r  and (I,e*]=0.
Hence
rv . vi (q"‘I) = q'z'trvl/y‘_l (q"'I) s
leading to

trv (1) = (Nil q*") trvyv, (77°1) = 0.

=0
0
With these tools in our hands, we are now in a position to compute the eigenvalues of the
fusion matrix and to show that the fusion rules are well defined, in the sense that we have
associativity , i.e., N;N; = N;N;. As the fusion rules themselves (with the representation-
labeling introduced in Section 5.3) do not depend on n, we will restrict our analysis to

the cases n = %1; (| n [> 1 will just permute eigenvectors and eigenvalues).
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Proposition 5.4.4 For ¢ = et % let Njx = (N;)i € {0,1}, be the multiplicity of Vi in
VioV;.

Then the eigenvalues of N; are ezactly &}, r =1...(N — 1), and we have that
IN;[| = d - (5.47)
Proof. Taking traces of ¢" on both sides of the decomposition, we arrive at the familiar
equation
&;-di =) Nijudy, (5.48)
or in terms of the eigenvectors
& = (d'x-» cy drN—l)

Nj¢ = d;qr .

(5.49)

In the special case of ¢ = e* ¥, the vectors g, v =1,...,N —1, are linearly independent,
and ¢; has positive components. Note that Ny =1 and N,_; = 1. Forevenj < N — 1, we
can infer the ergodicity of N; from the fact that any unitary representation is contained
in a tensor product of V;. By a Perron-Frobenius argument, we conclude that ¢; is the
unique vector with Njq; = ||N;||g:. Similarly, we find that, for odd values of j, N; has
two ergodic invariant subspaces, one spanned by even-dimensional representations, one by
the odd-dimensional ones. ||N;|| is now doubly degenerate, with Perron-Frobenius vectors

q1 £ gN-1.
With these results, it is not hard to see that the converse holds, too.

The multiplicity matrices obey ||N;}| =d}, for j=1,...,N -1, only ifg = et¥.

Since the matrices N; are all diagonalized by the same matrix,
Yii = di(5)e = (i7)e, (5.50)
they evidently commute. In terms of representation spaces, this can also be inferred

from the associativity of the comultiplication (4.2) and the invariance of (E) under tensor

products.
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The first g-dimensions, d} = ||N;||, can be interpreted as the quantum dimensions of
the V;'s. For the fundamental representation V;, for which N; is indecomposable, this is

the well known formula

x
= —. 51
[INg|| = 2cos N (5.51)

We conclude this section with a summary of those conditions imposed on a quantum-group
and a list of those representations of the quantum group that appear in applications to
local relativistic quantum theory. The rational fusion rules are only reproduced by the
subset of representations with A € iZ; (i.e. P¥ =1). If we denote the representation Vj

in {5.3) by [pa, k.] then we have that

N 3 k3][p2 k2], [pt kL =1’
(3R] [P3.43]. (P4 K5 ] (5.52)

for k} =k3+k3 and Np)apxz o =1

and zero otherwise. The smallest subset of representations, invariant under fusion, is
therefore obtained by setting ky = 0. From Proposition 5.2.1 we see that it contains the

trivial representation and closes under conjugation.

By Proposition 5.2.4, these representations are unitarizable only if n =1 or

n=N-1.
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Chapter 6

Path Representations of the Braid
Groups for Quantum Groups at

Roots of Unity

6.1 Quotients of Representation Categories :
The Vertex-SOS Transformation for

Non-Semisimple Quantumgroups

We develop an intertwiner calculus for non-semisimple Hopf algebras in which the notion
of irreducibility 1s replaced by indecomposability, so that Schur’s Lemma is not applicable.
We use this to generalize the “vertez-SOS-transformation” which is defined as a map from
an intertwinerspace, e.g., a space of intertwiners between tensor product representiations,
to linear maps on quotients of intertwiner spaces. This yields a rigorous procedure to
obtain braid group representations of rational local field theories and Boltzmann weights
of the restricted RSOS-models from quantum groups at roots of unity. (In this contezt,
we shall speak of a “rational”, or “restricted” vertez-SOS-transformation.) The ideal

property of the ezcluded representations is used to show that the resulting SOS-forms
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of the intertwiners can be written as linear maps on path spaces. A trace formula for
the rational vertez-SOS-transformation is given. A more compact presentation of this

construction may be found in [61]

From the universal element R € X ® K of a quasitriangular Hopf-algebra X one can derive

representations RY of the braid groups B, on an n-fold tensor product

V= Z$ ‘/j'(l) ®...®V,"(n)

wESn

of representation spaces Vj; of the algebra X, by setting
RV(0)=1®.. R\ ®...01
for the generator o; of B,,. Here the matrix
Riiv1: Vi ® Viay = Viegany @ Vi
is given by
Riiy1 = P (Pj,(,-) X Pj'(‘-“)) R,

and commutes with the action of K. If the representations of X are completely reducible

it is well known [53, 43) how to construct representations, RF, of B, on the path space
Here the path space P(ilj1,...,7a|7) is defined to be the linear span of paths
w = (e, p20y, . .., hny), With pn = j, p, = i, and V2* is an irreducible subrepre-

sentation of V,,, | ® Vj,, where o =1,..., N, _ ;. u. labels the multiplicity.

By

The construction of R” (Vertex-SOS-transformation) uses the fact that the compo-

sitions of Clebsch-Gordan matrices
P = (P (@) ® .. @ 1,) ... (Puy_iuun (@) ® 1, ... ® 1;,)

see (P»n—zjn-x .n»—l(an—l) ® ljn) (Pun-ljmj(an))

(6.1)

and
Piw(it) = Pipin-yin(tn) (Pun-x,un-:jn—x (en-1) ® lju) aE

(Pansssin(@) ® . ®1,) . (Pusi(en) ® ... ® 1)

(6.2)
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are a basis of intertwiners between the spaces V; and V;® V;, ... ®V;,, and can be

normalized such that
Pj'.w’(j.')P w(zi)d = Sww 5.1'1" . (6'3)

The matrix elements of

RP(8) : P(iljn, - ., 3nld) = PGlisqa)s - - -2 Jomyld) s

where o is the image of b under the natural projection of B, onto S,, are given by
v
R (b)Pugsi); = 2 R ()urw Pur(iogep)i - (6.4)
W €P(ilJo(1)+Ta(n) )
Let us note, at this point, that the path spaces carry a multiplicative structure by simple

composition
Oy /i1 s s : s .
2 P (il 50l5) X P (Gliers - - Gnlk) = P (ilis, -, dnlk) (6.5)
k]

giving rise to a path algebra.

In the absence of complete reducibility, e.g. when K = U,(sfa11) with ¢ = €%, the
Vertex-SOS transformation has to be modified. For this purpose, let us introduce linear
spaces of intertwiners between an irreducible representation space V and an arbitrary

representation space W.

In order to describe the set of irreducible subrepresentations of W isomorphic to V,
we shall make use of their embeddings. Therefore, let us introduce the linear space of
intertwiners,

Int(W,V):={I: VoW, Ia=0al, Va€cK}. (6.6)

By Int(V,W) we denote the space of intertwiners in reverse direction*®. It identifies
subrepresentations, V¢ = ker I, with the property that W/V¢ ~ V. As an example, let
us consider K = U,(sf;), with ¢ = e¥ and W = V-1 @ Va® V; and V = Vy_;. Since the
number of highest- and lowest-weight vectors for a given weight is the same as in the

generic case, the dimension of Int(W, V) is unchanged.

*We prefer the more suggestive notation Int{W, V) to Homg(V, W).
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Since intertwiners P,;; can be defined for all 4,7,k < N obeying the fusion rules of

ordinary SU(2), see (5.20), a basis of Int(W, V) is given by

Pocyypan-1y = (P(N-1)2,N-z ® 12) Pinv_a),(n-1)
and (6.7)
P(}Lv—l)zz,(N-l) = (P(N-x)z,N ® 12) Prnan-1y-

As in the generic case, we have a natural map from the space
Int(W;,W1)={R: W, > W,;, Ra=aR, VacKk}
into Hom (Int(Wh, V), Int(W;,V)) by left multiplication, denoted by

P :Int(W,, W1) — Hom (Int(Wy,V), Int(W,,V))
R - 7P(R).

(6.8)

To recover the path structure for the rational case, we have to divide out subspaces of

intertwiners. For this purpose let
Int,(Wh, W;) = {I € Int(Wy,W2) | tr(glJ) =0, VYJ € Int(Wy, W)}, (6.9)

where g implements the square of the antipode; e.g., for U,(sl,) it is given by ¢ = ¢’.
If one of the representations W; = V is an irreducible representation with non vanishing
g-dimension we see that Int,(W;, W;) can be given as the subspaces of intertwinwers

without left or right inverse. More precisely, we have
Int, (W, V)= {I e Int(W, V) | JT=0, VJ € nt(V,W)}
and (6.9")
Int,(V,W) = {I € Int(V,W) | IJ = 0, VJ € Int(W, V)}

If we assume V only to be indecomposable rather than irreducible, “JI = 0” and “IJ = 0”
in (6.9°) have to be replaced by “JI and IJ nilpotent, VJ”. These sets are linear spaces,
and yield common invariant subspaces of the generic Vertex-SOS-transformation, in the
sense, that

P(R) : Int,(W;, V) — Int,(W,, V), (6.10)
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for all R € Int(W;, W;). The complemented irreducible representations in W isomorphic
to V are identified with points in

Int(W, V)/Into(W, V).

In our example Int,(Vv-1 ® V3 ® V4, Vn_,) is spanned by PJV—I)M,N—l' This can be seen

from the explicit form of the intertwiner

P(;f—l)ﬂ,(N—l) fle—l =

m-N N-2 N _ N-1 2 2

q z\/(—2 +m)q(2 m)q m-1 & E;@f%

+ 4 () & e e (6.11)
9 2 2

+ g5 (¥ +m) N e ged,
9 2 2

et ) (), e 0 €08,

In this case

Phmum-nfi = 2 (82 eded),

and

Pl 1y v-nfs Vit Az(e)( f{v’iz_ ®fi§ ®fi§) )
where A? = (A®1)A. A left inverse intertwiner Py_y) (v_1y33 t0 P(j_1yaz,(n—1) therefore
has to be ill defined on fN ® f’ ®f
Na=f (P(;r-l),(zv-l)zzflzg_:zl L ® fi) € imf
2 2 2 2
is not possible for highest-weight vectors of irreducible representations. A similar result
was first obtained in [30].

As in the case of the tensor product decomposition, we can find a vector -l e

2
Vn_1 ® V3 ® Vj, given by
260 = Jeddeded+oT e, o

(6.12)
+q fn_, ®£’ ®£’1 ,
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which satisfies (5.25) and (5.26) of Lemma 5.3.3, and therefore yields a subrepresentation
Wn_1 of Vn_1 ® V3 @ V3. In fact, it can be shown that all tensor products decompose

into three sets of subrepresentations:

a) irreducible representations with highest weights A € {0,..., N — 2}
b) irreducible representations of dimension N and weights A € NZ — 1

¢) 2N-dimensional, indecomposable representations, whose structure differs from the

one given for the W; in Section 5.8 only by shifts, « - a + N, in the weights.

In order to define the rational Vertex-SOS-transformation, we put
P(W,V) = Int(W,V)/Int (W, V). (6.13)
For any linear map T : Int(W;, V) — Int(W,, V), that maps
Int,(W1,V) into Int,(W;,V),
we have a well defined map T : P(W;, V) — P(W,, V), given by the condition, that the

diagram

Int,(W1,V) < Int(W;,V) —» P(W,V)
IT IT \ T
Int,,(Wg, V) —r IDt(Wz, V) — P(Wg, V)

Figure 6.1:

commutes. Stated differently, if [T'I]; = 0 whenever [I]; = 0, then T is defined by T[I]; =
[T 1], from the set of equivalence classes of Int(W;, V)/Int,(W;, V) into the quotient space
Int(W3, V)/Int(Wa, V).

As mentioned in (6.10) this is the case for T = P(R), for any R € Int(W;, W;), so
that we have the following definition:
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Definition 6.1.1 The rational Vertez-SOS-transformation is the map

Int(Ws, Wi) — Hom (P(Wi,V), P(Wa,V))

(6.14)
R — P™(R),

where P™(R) is the extension of P(R) given by P™(R) := ’P—(-R)
For 1y ;@ R€Int(Vy_1 @ V2@ V3, Vv_1 @ V3@ V3), with R = A\, P, + AP, P; being the

projections onto the respective subrepresentations of V; ® V3, the ordinary Vertex-SOS-

transform is given in the form

Al i(Ao—A1)
P(R) = vV (6.15)
0 X

where the invariant subspace of P(R), spanned by the vector ((1)), is identified with
Int,(Vn-1 @ V2@ V3, Vo) = <P(';,_1m,N_1>. Taking quotients for the rational case we
arrive at the one dimensional space P(Vy_1 ® V2 @ V3, V1), on which P™(R) acts as
multiplication by A,.

Clearly this map factors through the composition of intertwiners
Int(Wg, Wg) X Int(Wz, W1) -— Int(W;;, Wl) . (616)

Next, we use the results of the tensor product decomposition (Section 5.3) of U,(sé;) to
identify P(V; Q@ V;, ® ... ® V;,, V;) with the restricted path space, Preat(t | J1,---,7n | 7)-
The latter space is defined in the same way as in the case of complete reducibility, with the
restriction, that N,,_ ; .. #0 and u; € L, for all k. For any restricted path, the inter-
twiners P,(;,),; and Pj.(j;) given in (6.1) and (6.2) are well defined and can be normalized

as in (6.3).
Lemma 6.1.2

a) Iffor I e Int(V; @ V;, ® ... ® V;,,, V3), Piuio)d = 0, for every restricted path w, then
ITent,(V;@V;, ®...0V,,,V;).
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b) The images of intertwiners P,;,); in the quotient P(V;QV;, ® ...® V;,,V;) form
abasisin P(V;®V;, ®...0V;,,V;).

The corresponding statements are true, if we pick a different ordering of the intertwiners

in (6.1) and (6.2) and, moreover, if we ezchange left with right intertwiners.

Proof.

We first show, that if V; C V,, , ® V;, ®...®Vj, is complemented, i.e., its injection
has a left inverse I : V,,_ Q@ V,, ®...® V;, — V;, then there exists some ps, for which
Ny _iiow # 0, so that V% = (Pm..m._xj:. ®L,, .-® l_,-") (V;) is non-zero and comple-
mented in V,,, @ Vj,,, ® ... ® Vj,. Statement a) then follows by induction.

Suppose that, for any uy, VJ‘:" is either zero or not complemented. This means that

I (Pm._xip..m. ®L,---® l_,-") (VJ:"') =0, for all ui. Hence IPx(V;) = 0, where

P = E Pl‘h—ljlullk Pl-th,l-lh—dk ® 1ju+1 ...®1;,

BuiNp, o dnpe#0

is the projector on the first summand of the decomposition

Ve, @V ®...0V;, =

(6.17)
>° V@V @0V |0 (S°Wie Vi, .. 0%,) .

Bhi
P17 nky#0

Z

Therefore V; = (1 — P)(V;) # 0 can be complemented and is contained in the second
summand of (6.17). However, we know that property (E), introduced in Section 5.4,
extends to tensor products and direct summands. As (E) is satisfied for all W;, it also
has to hold on VJ For j < #, this leads to a contradiction. The second statement is

an immediate consequence of a), since for any I € Int (V;® V;; @ ... ® V;,, V;)
I_Ec“P“(ji)-j € IntO(Vi ®V.'i1 ®®VJMVJ) '

with 1c, = P;u(;)I, (by the normalization chosen in (6.3)). From Lemma 6.1.2, a) we
find that the rational Vertex-SOS-transformation preserves the multiplicative structure

of the path spaces, as explained in the following remarks.
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Under the natural composition, the spaces Int,(W, V') have the ideal property

It (;® Vi ®...0 Vi, V) x Int, (V; @V, ®...0V;, Vi) (6.18)

C It (Vi®Vi®...8V;, Vi),

as well as

Int,(;®V; ®...9V;,V;) x Int(V; @V, ®...0V,,V) (6.9
6.19
C Int,(Vi®@V;,; ®...0V;,, V).
With the identifications made above, we can view the rational Vertex-S0OS-transforma-
tion, in the case of U,(s¢;), as the map

Int(V,,®...® Var Vi ®...9 Vu) — Hom (’P("Lﬁ -d1li)s ’P("|'1---lh|j)) (6 20)

R — 'Pf;t(R) .

By (6.18), (6.19) and (6.10), this map is evidently compatible with the multiplicative
structure defined in (6.5), in the sense that for

A e IV, ...V, V;, ®...0V,,)

and

B e It(Ve,, .. ®Vory Vints ® -+ 8 Vi) »
P (A®B) maps P(ilf1, - - -, Jn|P) X P(Plint1, - - -, Jn+ml7) into the product of path spaces
P(ils1,-. ., k|P) X P(plsks1,- - -, sk+eli) by PR A) @ Pr(B), for all p € L.

The kernel of the rational Vertex-SOS-transformation is given by

N K(Vu®...0V,, V;8...0V,;, | V), (6.21)
T.Nir,j¢°

where K(W,, W, | V) is the subspace of intertwiners in Int(W,, W;), which map all
intertwiners Int(W;, V) to Int, (W2, V).

A more efficient way of characterizing K(W,, W1 | V) can be given with the help
of Lemma 5.4.3. From the proof of Lemma 6.1.2, one can see that the common kernel
Wiy = nker P; () 1s the maximal subspace in W :=V;, ® ... ® V], satisfying (E). We
a.ssociate":o it the projection P, = 1 — jz‘:uP‘,(j_.)'ij,w(j‘.), and, as P, € Int(W, W), W'(fi.') is

seen to be a subrepresentation of W.
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Lemma 6.1.3 If C € Int(W,W), where W is an n-fold tensor product of irreducible
representations with dimensions less than N, and a € Uy(st;), then the following trace

formula holds

tr(aC [ W) =

N1 (6.22)
Sotr(a [ V) tr ('P"'(C) [ P(W, V,)) +ir (GCo I W(‘;',-)) )

=0

where C, = P,CP,.

Proof.

The second term on the r.h.s of (6.22) can be identified with the second term on ther.h.s
of tr(aC) = tr((1 — P,)aC(1 - P,)) + tr(P,aCP,).

In order to evaluate the first term, we note that

tr (PuioiPiai)aC Puriio) it P (i)
= Gijtr (aPjunC Purtingt Piwiio P w03
= Subiy Str(alV;),
where ol = Piu(inC Purio)g

are the matrix elements of P*(C) on P(W, V;). a

Next, we choose functions {f,}pe, .1, such that tr(fo(¢") | Vi) = &, and
ir (fp(q") [W) = 0, if W has property (F). With the help of Lemma 5.4.3 we see
that any function with f,(1) = &1, fo(—1) = —pn-1, fo(q) = 3 (6prs1 — Epr1),
r=1,...,N—1and fp(q") = fo(¢7"), is a candidate. This defines an inner product of

A € Int(W,, W;) with B € Int(W;, W,), by
(A,B), = tr(f,(¢")AB | W;)

tr (P™(A) P=Y(B) [ P (W3, Vp)) -

(6.23)

Il
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Since the map P™ : Int(W;, W;) — End(P(W;,V,)) is surjective, we have from (6.23)
that

K(Wa, Wi |V,)={A|(A,B), =0, VBelnt(W;,Ws)}. (6.24)

Let us conclude our discussion of the rational Vertex-SOS-transformation, with some
comments on the structural properties that are present in the vertex picture, but not
observed in the SOS-picture. First, it is essential to restrict 7 < #, since every subrep-
resentation isomorphic to Vg’i is, by Lemma 5.2.3, complemented, i.e., Int, (W, V# ) =
0, and since the dimension of the highest weight spaces is larger than in the generic
case, P (VV, V@) is described by unbounded paths. An explicit example is given by
W=V, ®V,and V=V, with N;,;,; =0, j # % From the decomposition of tensor
products, discussed in Section 5.3, we see that Int, (W, V;) is given by the embedding of
V; into Wj, (mapping &, — ¢7), and Int,(V;, W) by D, (mapping £ o ¢ rest — 0),
where D is defined in (5.38).
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6.2 Braid Group Representations and Fusion Equa-

tions.

With the help of the rational Vertex-SOS-transformation, as defined above, we obtain
a faithful representation of the braid group on n-strings, B,, on the space of restricted

paths
Peaat (i1 (G} 13) = 30 ° Preat (i 1)y 13wty 1) - (6.25)

xESH
By compatibility with the multiplicative structure of the path algebra, if is sufficient to

give the generators in Hom(P(k | p,q | <),P(k | ¢,p | 7)), by

(1 ® RE) (Pipi(B) ® 1,) Pigi(a) = ?:Pi(k, 4,:)755 (Pegt(v) ® 1) P (1) (6.25)

mod Int, (Vi@ V,® V,, Vi) .

Here we put R, = (R%) -

Since by the arguments of Section 5.4, for all d € N and ¢ a root of unity, we
can find a family of indecomposable representations, with nonzero g-dimensions, and
fusion rules for U,(sfay1), such that P (V; @ V;, ®...® V;,, Vi) admits a path basis in
the above sense, we explicitly include the multiplicities in the following formulas. It is
convenient to use the following graphical notation for products of intertwiners. A tensor
product V;, ®...®Vj, is represented by n-ordered strings with colours 7;,..., ., and an
intertwiner I : V;,; ®...QV;, » V;, ®...®V,_ by a “deformation” of the strings j1,..., ja

into 4y,...,%y,. Schematically, this is shown in Figure 6.2:
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i im

Figure 6.2

The generators of these “deformations” shall consist of the intertwiners P;ji(a),

Pi.;;(B) and RE, which we represent, graphically, by braids

43

j i ] i

V «— R, \\/ — Ry = (Rz)™
AN /

i j i j

Figure 6.3

and forks Figure 6.4

— Pix(p), > Prii(n)-
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The normalization (6.3) is then represented by

Figure 6.5

and equation (6.26) by

=Y p*(k,q,p0)i0%
p

Figure 6.6

The proof of Lemma 6.1.2 shows that a choice of basis in P(V;® V;;®...®Vj,, V) can
be given for any ordering of the Clebsch-Gordan matrices. In fact, a change of basis
by reordering can be entirely expressed in terms of the SOS-weights (p*(k, q,p,1)
The following fusion identities mainly rely on the duality relations (4.9) which can be

reexpressed in terms of intertwiners by

= 5k.l 8#.:4’

(1. ®R}) (RE®1;) (1.8 Pim(a)) = (Pym(a) ® L) RE,
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and is represented, graphically, as follows

Figure 6.7

3

Analogous equations hold, for the reflected version of Figure 6.7; see also [43, 44]. Note

also, that the labels in (6.27) do not have to correspond to irreducible representations.

Let us assume that we have chosen a basis of intertwiners such that
(lp ® A)Ppl.r: = (A ® lp)Plp.p =2 (v0) 1,, (6'28)

for all A € V}*, with v, independent of p. Then we have
Lemma 6.2.1

a) The images of {(1; ® Pjtm(a)) (Pimr(B)} 0 i P(Vi ® V; ® Vi, Vi) form a second

basis.

b) The coefficients, § , ezpressing the change of basis

(L ® Pigm(a)) Pimx(B) =
(6.29)
603,58, k):",;ﬂ (Pijr(p) ® 14) Pogi(v) mod Int, (V; ® V; ® Vi, i)
and
(Pijr(p) @ 1¢) Pogp(v) =
(6.30)

3 30,5, 4 k)5 (Li @ Pigm(@)) Pamk(8) mod Int, (Vi ® V; @ Vi, Vi)
laf
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can be computed from p-matrices:

()0(1'1.7)! k maﬂ =

. (6.31)
Y AT, m, i ke oG5 R)TET PR (14,5,
and
()b(i)j) l: k):r':‘,‘:ﬁ =
(6.32)

> pF (L4 m, B oG, 45 k), o2 (1, 5,4, 7).
L3

The proof of Lemma 6.2.1 is purely computational. For convenience, we understand
the following equations modulo Int,(W, V), without further mentioning. Since A® 1 :
Vi ® W — W is an intertwiner, for any A € V}*, we obtain from (6.26), for k =1,

Ry Pogi(@) = 3 p*(L, 0, 24505 Papilh).- (6.33)
M
Applying R{, ® 1, to (6.26) and making use of (6.27), we have that

(1 ® Pyp,5(B)) Ri Pjgi(a) =

\ . (6.34)
E P (k) qrp)"')z,y: (ququ,l(V) ® lp) P[p,i(l-") .
Lv,p
We now use (6.11) on both sides of (6.12) and invert p*(1, 5, q,i)?:ll: by using
> p (L, a5, i) p* (1,4, 4,4)30n = Eun- (6.35)

This yields the desired expansion of the basis {(1, ® Pip,;(8)) Peji(n7)}, 4, in terms of

38m
the path basis, with coefficients ¢(gq, k, p, 1)1?"‘7 given by (6.31).

The expression for ¢(p, k, q, 1,)12? are obtained by applying the product of R-matrices
(pr ® 1,) . (lk ® Rg;) to (6.26) and proceeding in the same way as above. |
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Expression (6.29) is expressed, graphically, as follows

W,

q m = E 95(1’).7) l) k):',l:ﬁ r
TV

k k
Figure 6.8

To demonstrate the convenience of the graphical notation, we repeat the proof of equation

(6.31):
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&

- . . a - . -\g,la
=Zp (I’J’q)"’);:;n =§:P (17.7)q11' ;,11;

&

o]
x
©

=Y p(1,4,0,9) 00 p*(k,q,p,3)i5n \

avpl

- . . a -\3,8a k,1v
= Y o (L4, 0900 ot (k,q,p,9)750 p¥ (1,0, K, )51
avulf l

Figure 6.9 i
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In the same way we obtain

i ) l i J l
M a
= X o(i,d 4,
r E‘P( J ) B m
k k
Figure 6.10

Since the P,jx(a) form a basis of left invertible intertwiners in Int(V; ® V;, Vi), we

find a dual basis Pi;;(8) in Int(Vi, V; ® V;), with
Prij(B) Pija(a) = bap - (6.36)
The path expansions of these intertwiners are evidently given by

(Le @ Pora(v)) (Perm(§) ® 1) Prmai(7) =

Zw(l 7,8,1)ps? Ppi() mod Int, (V. ® V;, Vi) .

With these orthogonahty relations, we obtain the fusion equations in SOS-form, by

(6.37)

expanding both sides of a version of (6.27):
By = (Pru(9)©1y) (L@ RY) (Br®L.) (1,© Prug(8)
Together with the reflected version, this yields

6‘14 665’p (k q:p)"')lup

2 ¢(jsr)3x7')gn&£: i(k T P:m)m’e’ (6.38)
el
pE(m', s, p, 1)2"17;' o(k,r, s, l);"';f’””

and

6qq’ 560 Pi(k:P: q, 7')5:;‘; =

> cﬁ(k,r,s,l)fnff'f pE(m,p, s, z)""',,‘,‘, (6.39)
mmin

{3534

i(k)prrrm):,.ﬂa 90(1»7‘ s 1’)q6a ‘
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6.3 Unitarity of Braid Group Representations Ob-

tained from U,(sf4;1)

If it is possible to generate all representations in L out of a set of fundamental represen-
tations F := {fi,..., fr} by taking tensorproducts and decomposing, then, by equations
(6.38) and (6.39), all SOS-weights can be obtained from the weights p*(k,f;,f_,-,i);-;;‘;
and g (k,r, f;, O

1 4
miy*

Comparing the complex conjugate of (6.38) to (6.39), we arrive at

the following expression of unitarity:

Lemma 6.3.1 For a given choice of basis {P;x{a)}, the representations of B, on the
path sapce P(i | {j1,.--,3n} | 7), as defined in (6.25), are unitary iff the representations
of B, are unitary on P (3 | {fe,,..-, fan} | 7), for arbitrary fo, €e F, £ =1,...,n, and if

7 g ,5!’ o ™m,Q,
‘P("')J: fr;l)m,ap = ‘P("')]t fnt)q,évﬁ . (640)

As an example we may apply this result to U,(sé;), where F = {V;}.

Since all the multiplicities are unity, we can set P, jx = P} ;. In this case

@(k,2,p,i)% = ¢(k,2,p,3)7, (6.41)

and it is sufficient to check, that the expressions

(K, 2,2, 8); = G(k, 2,8, 8)m Bk, 2,2 0)7 (6:42)
which are invariant under scalings of P;;, are positive.

Their values can be expressed in terms of g-numbers:

. l S s s l .
— (do + 3 +dc = x) (3r = o + 3+ 52),
12 5 4 JR41 (2Jp+1)q(2]k+1)q

(6.43)
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and

N e it
(do+x +3i+3) (Go + 5 +5c — 55),
(2, + 1), (24k + 1), ’

¥k, 2,p,i)kE = 1 — 7P¥Y(k, 2,p,i)FE] =

(6.44)
where 25, +1 = k.
The computation of the braid matrices, for p = ¢ = 2, gives
Pi(k +29,2,2, k):i:’ = qq:§ 6na bn
for n,0,0' = 41, and
gt —g** V(k+1)y(k—1)
pE(k,2,2,k) = (6.45)

B | e k1), o

These representations are therefore unitarizable, iff all g-numbers (n),, with 0 <n < N,

are positive; or, stated differently, iff ¢ = e**%. We will see in Section 7.3 how this is
related to the result obtained in [54] for Hecke-algebras. It is possible to rewrite the
expressions (6.43) and (6.44) in the form

1 A i A
+1 k4 k(p+1),i N2p,p+1
P (ky 2)p11)k+n = (p)qlz A(k_'_n)p,‘- Ak 2kt ) (646)

with

\ (G +3p +3: + 1) Up + 3k — 5i)g! Up + i — Jx) 1 (20 + 1), (6.47)
kpi = —— : :
? (x = Jp + 30! (27% + 1),

where k = 25, + 1 and 5 = +1.

This enables us to set ¢(k,2,p,i)ﬁ;' = ﬁ, for all k,p,i and 75, in a normalization,

where PL; Pip; = Akpi. The recursions given in (6.38), and (6.39) then take the form

pE(k,p g+ 1,3)i= 3 pE(k+0,p,0,4) 54, pE(k,2, 2,5 + 0);t" (6.48)
a=%1
and
pE(k,a+ 1,p,3); = 3 p(k,2,p,7 + M)iye pE(k +0,9,p,1)]", (6.49)
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»”

where the subscript “o” refers to our new normalization in which PL ; Pipi = Aip, With

Akp;; as in (6.47). These expressions and the equations
Pf(k + 217) 2)21 k):i:' = ‘I;%&w 6110" ’ for n= +1 ’

£ | —¢t*  (k+1), (6.50)

pE(k,2,2,k) = (%;)—
(k- l)q q;k

show that the p¥-braid matrices can be identified with those found in [9, 55], with the

indices in reversed order; (one must compare the recursions given there with (6.49)).

In the following, we show how to construct an inner product on the representation
spaces of on the braid group representations derived from U,(sf44,), in order to isolate
requirements for the spins in the spectrum of the monodromy matrix and investigate
unitarizability of these representations. We conclude this section with a more systematic
proof of the above result on unitarizability for U,(sf;). We start by taking the star-

conjugate of (6.26) and insert the transposition
Py : V0V -5 Vi@V, : vQu — w®uv.

Using
RE" = Py, RY, Py, (6.51)

see formula (4.24), we find the following equation for RY.

Pigia) (14 ® Pjpu(B )) (R;:q ® 1") =

_— _ (6.52)
> pE(k,a,2,8)i0% Pipe(n) (1, ® Prae(v)) , mod Int,(V;, %, ®V, 8 W),
Lvp
where we have set
P;gi(a) = Pigi(a)* Pyj. (6.53)

If we represent P; g (a) by
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—  Pigj(a)

g j
Figure 6.12

then, in addition to Figure 6.6, we obtain the graphical expansion (see(6.45)):

= Z Pi(ky q9,p, 1');:5:

Lyv,p

Figure 6.13
Applying
(e R) (701 (nom)
to (6.52), and making use of (6.27) and of the Yang-Baxter equation (4.12), (6.52) takes
the form
Pigi(a) RY, (Pin(B)RE, ®1,) (Lt ® RE) =

Z pi(k)q,p)i){fz Pi,pl(/“') Rlp (-Pl,qk(") qu ® lp) ) mod Into (‘/u I/Ic ® Vq ® ‘/p) .
Lvu
(6.54)
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From the SOS-form of (6.54) we find the following factorized relation for the SOS-

weights:

Epi(k, %P»‘)Zf& ( kql)u'v (N;;f)“’“ =
» » (6.55)
(W)™ W)™ e ema it

Here the sesquilinear forms Ajf , on CNsat| the spaces of multiplicities, are defined by

(NMte)™" = Pralv) RE, Pugt = Pras”(v') RPugu(v),
and v — (6.56)
(Mad)™” = Prglv') R Puga(v) = Prgt"(v') 0R ™ Pagy(v),
with
Ned =N (6.57)

Using the graphical expression for (6.56)

Figure 6.13

and with the help of Figure 6.12, (6.55) can also be derived from the diagram in
Figure 6.14, by either expanding the first braid from above, according to Figure 6.12, or
the first braid from below, according to Figure 6.6.
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Figure 6.14

The symmetry properties of these forms can be expressed by the monodromy matrix
M=0RR, (6.58)

which has matrix elements u(1, k, q,l)’,::}:,, defined by
MPigi(v) = ; w1, k, 4, 51 Pega(v'), mod Into (Vi ® V;, Vi) - (6.59)

If we set
w’
(@ Vige = 22 (Nk;,c) Y (6.60)
for z,y € CNret, we compute from (6.56) - (6.59) that
(zxy);q,l = (yx “(11 k; Q)z)z>k_q,t ‘ (661)

Identifying P(ilj1,...,nlk) = E?”} CNirwm ® .., ® CNem-sinen the inner product (.,.)
defined in (6.60) extends naturally to the pathspace P(i|[{s:}|k), so that by (6.61)

Whw)- = (w,p')- for w,w’ € P(i| {5} | k), (6.62)
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where u acts on CNiiim @ ... @ CNu-tinbn by u(1,4,71, 1) ® - . - @ (1, Bn—1,Jn, ¥n). With
the help of (.,.)—, (6.55) can be reexpressed by

<RP(T,)UJ RP(T,)w> (W', w)_ (6.63)

and
<RP (‘r'-' ) , uRY ( ) wo w) (W' w)_. (6.64)
Since by the definition of the intertwiners { Py ()}, the form (.,.)_ is nondegenerate, we
conclude from (6.64), that u commutes with RF (b) for all b € B,, and equations (6.61)

and (6.64) simplify to
(RP (b, RP(b)w) = (w',w)_ (6.65)

and furthermore
(', po) - = (W', w)- . (6.66)
If we assume certain weak indecomposability conditions on R”, we can deduce from

uE (RP(B,.))I, that p is diagonal, i.e.
(1, k, g, D510 = 6,0 €87 et (6.67)
and proportional to unity on P(: | {j;} | k), which implies
e i+ =S8L,+8,; modl, (6.68)
whenever all indices obey fusion rules. A solution of (6.68) has the form
Ska; = Sk + Sq — 85 + mygs mod 1, (6.69)
with s; = 0, Si = S and my,; is totally symmetric,
Megj = —Mig
and (6.70)
Mips + Mjgs = Mgl + Mypr -

For highest weight representations, it follows, by application of x, see (5.6), to (6.59)
that
;:q,[ = Sii,l_

166



and eventually

Mgy = 0 and S], = SE .

Hence p is given by
B(Lk,q, 810 = 6, 2 ntSem0), (6.71)

Since p(1, k, q,£) and p(1, g, k, £) are equivalent matrices (by conjugation with a p-matrix)
and, further, are unity if either k =1 or ¢ = 1, we find with (6.71) that

Sk = Sk - (672)

The spins of the monodromy-spectrum can be deduced more directly if we assume that

K is a ribbon-graph Hopf-algebra (Section 6.4 or [43, 44]), i.e.
M=vQuvA (v‘l) and v centralin K,

so that (6.59) reads

Pr(v) ® pg(v) Pagu(v) =
(6.73)
3 B(L,k, ¢, 00510 Piga(v') pe(v) mod Int, (Vi ® V3, Vi)
v
For an indecomposable representation V, we have
pe(v) = €71 mod Into(V;,V;),
so that again
(L k, g, 500 = 6,0 e¥mrtSem2) (6.74)

with s, =0, s, = 35, by E(v) =1 and S(v)=V.

For U, (sf3;1) the spins are determined for highest-weight representations, with

highest-weight ), by the classical Casimir values
Cr= (A7 A) + 2(P, A) ) (675)
so that

pa(v) = ¥ = g% (6.76)
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The original computation [43] used the fact that U (sf44,) is a one parameter-deformation
of U(sf441) and proceeded by analytically continuing the spectrum of M in q. A more

explicit way to find these values is given by computing the ribbon-graph-algebra element

v=L®R(eR™) (¢), (6.77)

with L ® R(a ® b)(z) = azb, from known ((4.87), [48]) formulae. If one applies the ex-
(5 permenn)

pression (6.77) to highest-weight-vectors vy, only the term g \=>? vy will survive,

yielding the above expression for py(v). For U (sf;) we obtain

1/
Cr =3 (*-1), (6.78)
so that for ¢ = &%
2
p'—1
S = N (6.79)

Continuing our discussion
m = e?mlntr ey 2o, with s € R/Z,
so that for any choice of s; € R/2Z the form
(2 Y)Ege = (z,)Fq e*™Fra70) (6.80)
is symmetric and hence admits an orthogonal basis {e,} of CVse¢ with
(evseu) = (—1)%ee 6. (6.81)
Inserting (6.81) into (6.55) we see by
pE (k0,807 (150t = (=15t % (k, p, ,3) 550 (6.82)

that for this choice of basis R” represents B, in some U(N, M). If we assume unitarity,
the numbers nj,, € Z; will satisfy constraints similar to the ones imposed on 5%, in

(6.68), so that they can also be presented as
NG =ni+n;—ng mod 2

and thus correspond just to a redefinition of the spins. We summarize these arguments

in the following Lemma.
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Lemma 6.3.2 The representations RY of the braid group, defined by a quasi-triangular
ribbon-graph Hopf-algebra with x-involution are unitarizable iff there ezists a choice of
spins

8; € R/2Z

such that all the forms (.,.)} , defined in (6.60) and (6.56) are positive definite.
As an application of Lemma 6.3.2 we shall show unitarizability of RY for K = Uy(sf;)
with ¢? a primitive root of unity.

For p,pa=1,...,N—1, ¢ #0, we define the continuously g-dependent matrices
e(q) and f(q) in Mat(V;), V, being the inner product space V, = <£‘:,;,, .. .,fg;>, by

2
the normalized representation (5.17), so that
e(g) =e(q™’) and  e(q)" = f(9). (6.83)
In the domain Dy ={t € C|t#0; t¥ #1j=1,...,N — 1} the map
Dy — Mat(V, ®Y,)

t — R(t)

is by (4.87), with t = g3 , well defined, continuous and obeys by (4.23), (4.24) and
(6.83)
RE)=R(t?) and  R(t) =oR(). (6.84)

The spins s, € R/2Z are determined by
e = 15 (6.85)
From (5.23) we have highest weight vectors ¢ in V},, ® V,,, with
REW) = (- DEER)  and  Pupnf(t) = £(7), (6.56)

fori=|p1 — pa|,--.,p1 + P2 — 2,71 + p2. We now consider the expression

N i(t) = (£(2), R(t)E (D)) ¢-5(1He-741) (6.87)

PLP2,%
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for which we find by (6.84), (6.85) and (6.86)

rorna®) = (€1(2), S(RORE) REE@) - (1 ¢] )32 (6.88)
Here (.,.) denotes the canonical inner product on the tensor product space V,, ® V,,.

If we restrict the values of t € Dy, by |t| = 1, (6.88) implies

(t) eR. (6.89)

PlPl 3

Comparing (6.87) to (6.56) we see that N2  .(t) is the square of a multiplicity vector

Pipag

with respect to the form defined in (6.80), and is therefore nonzero for
dim Py (V,, ® Vp,, Vi) = 1. (6.90)

If for fixed ¢,p;,pa (6.90) is true for t = ™3, (n, N) = 1, then we find from the fusion
rules (5.19), that it also holds for t = e"*i"l%, (n',N') =1 with N’ > N or for generic t.

Hence if, for ¢ = e3¥, Np,pi =1, then we have

Npm) 0 for  arg(t) < 5 (6.91)
From
N a(1) = (£(1), £(1)) > 0 (6.92)
we obtain
Nopit) >0 for  t=e'wN, (6.93)

Combining (6.93) with Lemma 6.3.2 we find the following lemma.

Lemma 6.3.3 For Uy(sf,), witht = €'V, the braid matrices

pE(i,p,q, k)]

define unitarizable representations of the braid group.
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6.4 Markov Traces

The definition of q-dimensions is generalized, using the observation of Drinfel’d [5], that
the square of the antipode of a guasi-triangular Hopf algebra is an inner automorphism
. We eztend the selection criteria already encountered in Section 5.4 to the general case,
i.e., we show that the set of indecomposable representations with zero-q-dimensions is
an ideal under forming tensor products. This completes the rigorous construction of
brai group representations on path spaces from quasi-triangular Hopf algebras in the case
where semisimplicity is not assured. We define ¢ Markov trace on these representations
and identify spin, statistics parameter and statistical dimension with central elements of

a ribbon-graph Hopf algebra, as defined by Reshetikhin and Turaev [{4].

The discussion of Markov traces and their role in the vertex-SOS-correspondence re-
quires certain restrictions on the Hopf algebra X and its representations. The first is the
restriction to quasitriangular ribbon-graph Hopf algebras, introduced in [44], that contain

a central element v with
v? = uS(u); Sw)=v, E(w)=1 (6.94)

and

M=v@uA(W™?), (6.95)

where u = m(1® S~!)oR. Suppose that K admits a star involution satisfying (4.24). In
this case u is unitary, so that we have p? = 1, for p = vv*. On unitary representations we
therefore have, from p;(p) > 0, that v is unitary. Its eigenvalue on V; is thus identified

with the phase factor e?***i and we have s; = s;.

The element ¢ = uv~! satisfies

S*a) = gag?'! Va€ek
and (6.96)
Alg) = 9@y

and gives rise to a general definition of the g-dimension, d,, of an indecomposable repre-

sentation V,:
dy = tr(g | V). (6.97)
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In the following we shall consider a set £ of indecomposable representations that closes

under taking tensor products, i.e.,
Wa® W =3 ° W, @ CNesr, (6.98)
Yy

and conjugation, i.e., for each a € C*, there is some a¥ € Lf, with p,v(a) = p%(S(a)).
The fusion rules {N,g,} again commute and are symmetric in the first two indices. We

have the following result.

Lemma 6.4.1 For a system L' of indecomposable representations of a ribbon-graph Hopf

algebra, closed under taking tensor products and conjugation, we have

Negvi=1 iff a=f and ds#0.

This follows from the fact that we have the identifications
Int (W, ® Wpv,1) = Int (Wp, W,) = Int (1, W, ® Wev)

given by

i {€®z, Pugva(I)) = £(Iz) (6.99)
Ppv(It®z = {I'gz)

for I,I' € Int(W,, Ws), z € Wg, £ € W_.

The composition is given by

Pl,aBV(I) PaﬁV.I(I’) = t’f‘(gII, r Wa)
d (6.100)
o !
———(dim W) tr(I1' | Wa).
In the last identity we used the fact that the W, is indecomposable, i.e.
Int (Wa, Wa) = C- 1@ Inte (Wa, Wa) , (6.101)

where Int, (W, Wa) only consists of nilpotent mappings. The expression (6.100) is non-
zero iff d, # 0 and II’ is invertible. Since Wj is also indecomposable, by assumption, the

latter implies W, = Wp. =
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From the commutativity and associativity of the tensor product we infer, that
Naﬁ"rl = Naﬂn‘vv N'Vv'le

is completely symmetric in all representation labels. If £* is generated from some fun-
damental set F with F¥ = F and F N L, =0, where L, is the set of indecomposable
representations with vanishing q-dimension, then £, := £, N £L* is a maximal conjugation

invariant subset that obeys

£'eL, C L,
and (6.102)

FNnL, = 0.

Hence, defining £ = L*\L,, we have the following decomposition laws

‘," ® ‘/J = ZQ ‘lk ® CNij,h @ Z@ Wa ® CN.'J-..
kel a€lo
VigWa = 3 ° Wy @Cles (6.103)
BeL,
Wa®Wﬁ = Ze W.Y®CN¢5-1_
v€L,

Generalizing Lemma 6.1.3 by using (6.101), this allows us to identify the quotient space
P(Vi®V;, ®...Q V., Vi) with the path spaces P (i|j1,...,Jnlk) constructed from the
fusion rules {N;;, i} for ,7,,k € L.

Figure 6.15
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Consequently, it is always possible to assign to a pair (K, F) a path representation
of the braid group in a unique way. For any path representation of the braid group B,
with fusion matrices {F'} (resp. {¢}), we can define Markov trace as in (2.67). If we take
the SOS expansion of the operator depicted in Figure 6.15 and use (6.99) we obtain the

following expression in the vertex picture.

Lemma 6.4.2 For any pair (K, F) with F¥ = F and F N L, = 0, and for the definition

of the path representation of B, given as above, the Markov trace is determined by

7B (b) = dl—,. tr (45" RP(b) [ V") . (6.104)

P

O

This trace has an obvious generalization to different colorations (i.e., different represen-

tations involved) if we restrict b to the appropriate subgroup of B,.

By Lemma 6.1.3 we have that

T2(b) = kzj g% tr (RP(b) | P (V2 &) - (6.105)

This show that 7} is positive for all n iff d, > 0 for all p € L.

We can easily compute the statistical parameter of a representation from the diagram

Pv = (1, ® Pigpv) (Rop © 1pv) (1, ® Prpv,1) (6.106)
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From a @ 1,v Pppv1 =1, ® S(a)Pppv1, Va € K, u =m(1® S~ !)oR and (6.100), we have

1 _ Po (v—l) _ 8—211'0,

Ap = =

TRV & 4
The analogue of Theorem 2.4.c) can be shown by inserting the projection Fp, =
Y Ppgr(v) P pg(v) into (6.105) and making use of

tr (B [ P (V, ® Vi, V7)) = Npgsbisr -
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Chapter 7

Duality Theory for Local Quantum
Theories, Dimensions and Balancing

in Quantum Categories

7.1 General Definitions, Towers of Algebras

In this section we give the complete definition of a quantum category. We show that a
quantum category can equivalently be described by a system of structure constants, namely
fusionrules, and R- and F- matrices. We also introduce C*-structures and discuss their
consequences for the ezistence of balancing phases, positive traces and dimensions. We
ezplain the result of Doplicher and Roberts on the duality of compact groups and propose a
generalized notion of duality. Finally, we show how gquantum categories arise in algebraic

field theory and relate them to the theory a subfactors and towers developed by Jones.

The structural data of local quantum theories, in terms of fusionrules and R- and F-
matrices, which we investigated in chapter 2, and the data obtained from the intertwiner
calculus for quasitriangular Hopf algebras explained in chapter 6 fullfill the same types
of equations, which were, in our language, interpreted in the graphical Yang-Baxter-

and Polynomial Equations. In fact, in the construction of charged field operators with
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permutation statistics and gauge group symmetry, as proposed in [19] it is needed that
these two sets of structure matrices are equal. In order to organize our language, it is
helpful to observe that fusionrules, R- and F- matrices are precisely the structure constants
needed to determine (up to equivalence) a certain type of braided tensor categories. We

review the notions entering their definition :

i) We start with a semisimple, abelian, finite, reduced category over C. It consists of a
set, Obj, called the objects. To any pair of objects X,Y € Obj is associated a vec-
torspace, denoted Mor(X,Y') or Int(Y, X), over C, called the (space of) morphisms

from X to Y. We have distributive, associative composition
Mor(Y,Z)® Mor(X,Y) — Mor(X, Z)

so that, in particular, End(X) := Mor(X,X) is an associative C- algebra with
unit. Semisimplicity of the category means that End(X) is semisimple and that

the pairing Mor(X,Y)® Mor(Y, X) — End(Y) is non-degenerate. In this case the

category is abelian if it has subobjects and direct sums. The subobject requirement
is that to any projector I € End(X) there exists an object U and morphisms
Iy € Mor(U,X) and Py € Mor(X,V), such that Pyly = 1 and Il = Iy Py. If we
consider also the object V and morphisms Py and Iy associated to the projector
1 — II we obtain what is called a biproduct, X = U @ V. The axiom of direct
sums states that to any pair of objects, U and V, there exists an object X with
a biproduct, X = U ® V. We call a category reduced if equivalent objects are
equal, i.e., if for two objects X and Y there are morphisms f € Mor(X,Y) and
g € Mor(Y,X), with fg =1 and ¢gf = 1, then X = Y. With these assumptions
any object, X, with dim(End(X)) < oo can be decomposed into a finite direct sum

of irreducible objects,

X = @ NX,jj)
jeL

where j € L iff End(j) = C. The category is said to be finite if &im(End(X)) < oo
for all objects X € Obj and rational if || < co. Thus, the objects are naturally
identified with N,

177



ii) A tensorproduct on such a category consists of a binary operation, o : Obj x Obj —

Obj : (X,Y) > X oY, together with a bilinear product of morphisms
o : Mor(X,X')Y® Mor(Y,Y') » Mor(X oY, X' 0Y'): I®J > IoJ.
This product shall be compatible with composition, in the sense that
{ToJ)I'oJ)y=(UIIYo(JJ),

whenever defined, which makes o into a distributive operation on N. Thus, the
tensorproduct on Obj is completely determined by the fusionrules :
ioj = ZNij.kk .
kel

withi,7 € L.

ili) A category is called a tensor category or monoidal category if there is an isomor-

phism, a(X,Y,Z) € Mor(X o(Y 0Z),(X oY )o Z), which satisfies the pentagonal

equation

a(WoX,Y,Z)a(W,X,YoZ) = (a(W,X,Y)o1z)a(W,XoY,Z) (1w o a(X,Y, Z))
and the isotropy equation
(X', Y, ZYTo(JoK)) = ((I0J)o K)a(X,Y,2)

for all possible objects. This makes (b3, o) into an associative algebra. Moreover,
we may define F- matrices by the commutative diagram of isomorphisms :

@rec Mor(l,jok)® Mor(t,iol) T4 @, . Mor(l,i o) ® Mor(t,io k)

lg lg

Mor(t,io(j o k) i) Mor(t,(i05) o k),
(1.1)

with 7, 7, k,t € L. Here the vertical arrows are given by the compositions I @ J —
(1oI)J,and I® J — (I o1)J, and the lower horizontal arrow is defined by left
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multiplication of a. The F-matrices obey an analogous pentagonal equation,

(@, F(,j k,s) ®1wn,,) (D, v, @ F(i,3,1,1)) (D, F(j,k,1,5) ® 1n,,)

= (®l ]'Nij,- ® F(S,k, l)t)) Tu (el ]-NM,. ® F("’)J) sat));
(7.2)

and any such system of F-matrices defines a unique associativity constraint a. The

category is called strict if a = 1 € End(X oY o Z).

iv) A temsor category is called braided if there exists for any pair of objects X,Y €

Obj an isomorphism &(X,Y) € Mor(X oY,Y o X), which satisfies the hexagonal

equations:
a(Z,X,Y)et(XoY,2)a(X,Y,Z) = (e(X,2)* oly)a(X, 2,Y)(1x 0 e*(Y, Z)),
where e = ¢% and €7 (X,Y) = £(¥, X)™? ,and the isotropy equation
e(X'\YNY(IoJ) = (JoI)e(X,Y).
We define structure matrices,
r(i,5,k) : Mor(k,ioj) — Mor(k,j o)
by left multiplication with e%(3, j). They fullfill the respective hexagonal equation,

(@l Ti(i,k,l) ®1N;,',.) F(i7k)j) t) (@l Ti(j,k,l) ® lNu,c)

(7.3)
= F(kyi:j)t) (@l lN.',-.; ® Ti(l)k7t)) F(i,j,k,t),

and a system of r-matrices obeying (7.3) defines a unique commutativity constraint

. Frequently, we shall use the R-matrices,

R*(i,5,k,t) : @ Mor(l,ioj)® Mor(t,lok)— @ Mor(l,i0k)® Mor(t,l0j),
lec lel
defined by

RE(i,5,k,t) = F(i,k,5,8)(@D r(3, k. s)* ® 1)F (3, 5,k,8) 7 (7.4)

A braided tensor category is called symmetric if et = ¢~.
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v) The category is rigid if to any object X € Obj one can associate a conjugate object

XV and morphisms ¥x € Mor(1l,X" o X) and "’I{ € Mor(X o XV,1), such that

(19}01x)a(X,XV,X) (IX O‘l’x) = ]-X

and (Lxv o8k ) (XY, X, X¥) 1 (35 0 1xv) = 1xv.
(7.5)

If these objects and morphisms exist then they are unique up to isomorphisms
starting in XV. Also the equations (X®Y)¥ = XV@Y" and (XoY)¥ = YVo XV

hold true in a reduced category. A choice of conjugates yields a transposition
¢ Mor(X,Y) = Mor(YY,XV)
and more generally an isomorphism
Mor(X,Y 0 Z) & Mor(X 0 2V)Y),

which for the symmetric, bilinear form (X,Y) = dim(Mor(X,Y)) provides equa-
tion (3.2). The conjugation defines an involution on the set of irreducible objects
L, and we can verify the axioms of a fusion rule algebra given in chapter 3.2 for the

algebra (Obj, o).

In the following we shall call an abelian, semisimple, finite, rigid, braided tensor

category a quantum category. As opposed to symmetric categories the equation

(lxv o T(X))‘l’x = [L(XV,X)‘JX ) (76)
with p(X,Y) := £(Y,X)e(X,Y), defines set of non-trivial automorphisms 7(X) €
End(X).

Lemma 7.1.1 The automorphisms defined in (7.6) have the following properties:

a) 7(X) is independent of the choice of conjugates (Xv,ﬂj;,'z’x)
b) 7(Y) = I7(X) for all I € Mor(X,Y)
c) 7(XV) =7(X)
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d) 1(X)or(Y)=pu(X,Y)r(X oY)

Considering equation d) of Lemma 7.1.1, it is reasonable to introduce a notion of a square

root of 7(X). Also we wish to introduce categories with a *-structure :

vi) A quantum category is balanced if there exist automorphisms o(X) € End(X)
such that

a) o(X)?* =7(X)
b) o(Y)M = Io(X)forall I € Mor{X,Y)
c) o(XV)=o(X)

d) o(X)oo(Y)=u(X,Y)o(X oY)

It is evident that any balancing {o(X)}x can be multiplied by a Z;-grading of the
category, in order to obtain a new balancing structure and that any two balancings
differ by a Z,-grading. From b) we have that a balancing is uniquely determined by
the numbers o(j) € C.

vii) A C* category is an abelian category if the morphisms form Banach spaces with
an antilinear involution * : Mor(X,Y) — Mor(Y, X) such that ||[TJ|| < [T/},
17*l = I, II°I]| = ||Z||* and (IJ)* = J*I*. It is clear that any C*-category
is semisimple and that it is, up to *-isomorphism, uniquely determined by the set

L of irreducible objects. A C*-quantum category is 2 quantum category with a

C*-structure such that (I o J)* = I* o J* and a and ¢ are unitary. The spaces
Mor(k,i o ) thus admit an inner product and the R- and F- matrices are unitary
with repect to this product. Conversely, any unitary set of such structural data

uniquely defines a C'*-quantum category.

A peculiar feature of C*-quantum categories is that they are always balanced.

Lemma 7.1.2 In a C*-quantum category let Ax € End(X) be defined by
(e(X¥, X)9x)" = 9k (hx 01) (7.7)
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We have that Ax is normal and that its unitary part o, € U(X) in a polar decomposition
Ax = 0,(X) ' Px, withPx > 0, is a balancing structure of the category.

A final important structural ingredient in the study of C*-quantum categories are
traces. In order for a trace on the endomorphism spaces to factorize with respect to the

tensorproduct, we have to use the balancing structure in its definition:

Lemma 7.1.3 For e balanced quantum category we define a set of linear functionals,

trx € (End(X))", by
trx(I) = SL(Io(X)™) 0 De*(XY, X)dx (7.8)

It has the following properties:

a) try is independent of the choice of conjugates.

b) try(1J) = trx(JI) for all I € Mor(X,Y) and J € Mor(Y, X).
c) trixoy)(I 0 J) = trx(I)try(J) for all I € End(X), J € End(Y).
d) trx(I) = trxv(I*) for all I € End(X).

e) If we have a C*-quantum category and trx is defined with respect to the canonical
balancing {o,(X)}x given in Lemma 7.1.2 then it is a positive state on the C*-

algebra End(X).
From Lemma 7.1.3 it follows that

d(X) = try(lx) (7.9)

is a dimension and, for C*-quantum categories, it is positive for the balancing {o,(X)}x.
Hence, in the latter case it coincides, for rational categories, with the unique Perron

Frobenius dimension given in (3.30).

The best known example of a C*-quantum category is the representation category,

Rep(G), of a compact group G. Its obejects are the inequivalent, finite dimensional,
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unitary representations of G and the morphisms are the intertwiners, Homg(V,W) =
Int(W,V) = Mor(V,W), between these representations. The conjugation is given by
passing to the contragredient representations, and the commutativity constraint is given
by the transposition e(V,W)(v® w) = w®v of factorsin VoW =V @ W. Thisis a
strict, symmetric C*-quantum category, with g,(X) = 1, for all X € Obj.

More generally, we can consider the representation category Rep(K) of a quasi-
triangular quasi Hopf algebra K. The antipode, the R-matrix and the ¢-matrix yield
the conjugate objects, the commutativity constraint and the associativity constraint, re-
spectively, using formulae (5.4) and (5.5). A balancing structure is implemented for a
ribbon-graph Hopf algebra by the special, central element v from (6.94) and(6.95). This
category is semisimple - and hence a quantum category - if K is semisimple. However, in
the case of primary interest to us K is not semisimple and we have to divide out the ideal
of intertwiners discussed in Chapter 6.1. Using the trace introduced above we can give a

more general and concise definition of the Int,-spaces, namely
Int,(V,W) := {I € Int(V,W): tre\(1J) =0, VJ € Int(W,V)}.
We denote this quotient category by Rep(K). Here, the trace tr(V'), defined on Endc(V) =
End((V)) in Lemma 7.1.3, is related to the canonical trace try on Endc(V) by
trV)(I) = trv(gl),

where g is as in (6.96).

Two quantum categories are equivalent if there exists an invertible, compatible ten-
sor functor between them. On the level of structural data, equivalence is expressed as
follows: Suppose we have two quantum categories, one characterized by the set of struc-

tural data {C, Nx, F(3,7,k,t), R(3,7,k,t)}, the other one by the respective set of data
{£, Nijx, é(2,7,k,t), p(3,7,k,t)}. Then the two categories are equivalent iff

a) There is a bijection
"L L 1A (7.10)

such that



b) There is a set of isomorphisms
Tk : Mor(k,ioj) — Mor(k',i' o j')
such that

$(,5,kt) (@ T @ TY) = (& T; ® Ti) F(i,5,k,t)

(7.11)
p(i, 3, k,t) (@ T; ® Tf) (@ Th ® Tjj) R(3, 3, k,t)

Note that it is sufficient to specialize to i = 1, i.e., to the (3, 7, k) -matrices, in the
second equation of b). In the case of C*-categories the isomorphisms T,’; are assumed to
be unitary. We next quote the famous result of Doplicher and Roberts on the duality of

compact groups.

Theorem 7.1.4 [29] Suppose C is a strict, symmetric C*-quantum category with o,(X) =
1, for all X € Obj. Then there exists a unique compact group G such that C is equivalent
to Rep(G).

In Jocal quantum field theories in the formulation of [19], as described in Chapter 2,
C*-quantum categories arise in a natural way. The fusion rule algebra was already derived
at the end of Chapter 3.1, using *-endomorphisms of the local algebra 9% localized in a
given spacelike cone. More generally we consider these endomorphisms to be the objects
of a category where the tensorproduct is given by the composition of endomorphisms.

The morphisms are the intertwiners
Mor(py, p2) := {I € M : Ip;(A) = pa(A)I, VA € M}
and the tensorproduct is given by
IoJ = Id'(J) = o(J)I, for all I € Mor(d',0),J € Mor(p', p).

The category is strict and the commutativity constraint is obtained from the charge
transport operators. The structural data of this category are disussed in Chapter 2. In
four and more dimensions, this category is also symmetric and the natural balancing is

trivial, so that we can apply Theorem 7.1.4. We say that the local quantum theory is dual
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to the group G associated with the category where the commutativity constraint (%, 5)

is multiplied with a - sign if 7 and j obey para-Fermi statistics [19].

The main purpose of finding a dual group is to consiruct field operators with a
group symmetry. To this end we use the intertwiners between the representations of the
local algebra rather than the intertwiners between the endomorphisms. They are related
to each other by (2.18). We define the physical Hilbert space of the theory as

Hebys, := D Vy @ H;, (7.12)

j€L
where H; is the representation space of representation j € L of 2, and Vj, is the represen-
tation space of the corresponding representation ;' of G. Let {e,\};l(':'1 be an orthonormal

basis in Vj». We define a linear map Py;:(a;ey) from Vs to Vir by the equation
(v, Py (a; e,\)w) = (P“Ijl’kl(a)'u, w® e,\) , (713)
for arbitrary v € Vir and w € V.

If the local quantum theory under consideration is dual to the group G, in the
sense of the definition given above, we can introduce charged “field operators”, gbf\(p’ )
by setting

W) = X P (a500) 8 V(Y (1.14)

ika
where the two intertwiners are related to each other by the isomorphisms T;’; It is easy

to check that these fields obey ordinary Bose- or Fermi local commutation relations: If p7

and p* are localized in space-like separated space-like cones then

¥ (¢F) oL (o) = £9} (o) 5 (#) , (7.15)

where the minus sign is chosen if 7 and k obey para-Fermi statistics, and the plus sign is

chosen otherwise.

Let x and x’ denote the representations of 2 and G, respectively, on My, Then

we have from (2.20) and (7.14) that

(A} () =vi () = (F(4) , (7.16)
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for all A € A, and
()95 () 7 (7)) = X 7@ ¥l () (7.17)
A'
where {7'(g)ax } are the matrix elements of j'(g) in the basis {es} of Vj,.

In low dimensional quantum theories with braid statistics our notion of duality
must be modified. We say that a local theory is dual to a quasitriangular Hopf algebra
K iff its category of superselection sectors is equivalent to the quotient category Rep(K).
Contrary to the case of semisimple groups or Hopf algebras, this causes difficulties in
the construction of field operators with an explicit Hopf-algebra symmetry, since Rep(K)
is in general non-Tannakian for non-semisimple K, i.e., it is not realizable in terms of
vectorspaces and linear maps between them. The extent to which analogous field operators

obey local braid relations is discussed in Chapter 7.2.

An important consequence of properties (P1) and (P2) of Chapter 2 - in particular

of the rigidity assumption - is that the index of an irreducible sector is finite, i.e.,
Ind(p) = [p(901) : M] < o0, (7.18)

where the index, [N : M], of the embedding of a von Neumann algebra N in M is defined
in [41]). It has been shown in [23] that (7.18) is equivalent to (P1) and (P2). Also it is
proven in [23] that the dimension given in (7.9) is related to the index by

Ind(p) = d(p)*. (7.19)

For an irreducible endomorphism p, we have by rigidity isometries I'po51 € Mor(1,p o p)

and [po,1 € Mor(l,p o p), with

P (I‘;oml) Tpopa = £d(p)™" and (F;Oi.l) Tpopa = £d(p) ™", (7.20)

where the sign is always + if p £Zp and an invariant with respect to normalization if p
is selfconjugate. In this case, if the 4 sign appears we call p real and pseudoreal if the

- sign appears.

Finally, we present some elements in the categorial description of local theories that

are related to the theory of subfactors. Assume that 91 C 9 is an inclusion of type I1];
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von Neumann algebras (with the same units). Let L?(90) be the Hilbertspace obtained
from M and from a state on 9, and let Joy denote the modular conjugation with

respect to a cyclic, separating vector € L*(91). We then define the modular extension

My C B(LA(9M)) of M over N as

It is shown in [23] that the modular extension of p(91) by p o 5(9M) is isomorphic to M.
The action of M on L*(p(M1)) 1s given by

M.p(A) := £d(p)p(Ts0p1)" p 0 B(Mp(A)T 05,1)
where A, M € 9 and the sign is as in (7.20). For the projection

€y = I‘poﬁ'lI‘;oi,l € mt,

we then check that
eo-p(A) = eo(A), for A e M
where
€ : p(M) — p o p(MN)
p(A) = po p(T5ez1P(A) pop1)

is a conditional expectation

indexconditional expectation, i.e., a positive, linear map £ : 9 — 91 between included

von Neumann algebras such that
e(mn)=¢(m)n, if neN.

It is a known fact that this projector together with the extended algebra generates the
extension :

{p(9), e0) = M. (7.21)

Inductively, we thus have a tunnel (tower) of successive modular extensions

...C popop(MM)C po (M) C p(IM) C M. (7.22)
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Furthermore, from the series of isometries

Lany = (pop)*(Tpopa), 7.23
Lans1) = (po )" 0 p(Tpopa) - ( )

we obtain the conditional expectations
en(4) = po p(T(w"Al(w)- (7:24)

They correspond to the sequence of projectors
en 1= I‘(,,)I‘Z") , (7.25)

which obey the relations of the so called Temperley-Lieb algebra:

ﬁenen:tl €n = €n,
and ’ (7.26)

€nem = emen if |n—m|>2.

Here
B, = Ind(p).
As an alternative to the chain in (7.22) we can consider the sequence of inclusions
.CM. CMapaC..., (7.27)

where

Mﬁn

(pop" ()Nt = End((pop)"),
(7.28)
Many1 = (pop)top(MMYNIM = End((pop)"op).
The advantage of confining ourselves to the commutants M, is that they are all type I or

II, von Neumann algebras and that they are purely categorial. We also have conditional

expectations E} ., : My, — M, by setting
Ef(a) :=T{al(n), a € Moy, (7.29)

However, (7.27) is in generalnot a sequence of modular extensions (tower), i.e., the
modular extension of M, over M, _; is contained in, but not equal to M, ;. Still, if the
theory or category is rational then the sequence (7.27) becomes a tower for n > |L£]|.More

precisely, we have
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Lemma 7.1.5
Let My C ... C M1 C M, C ... be the chain of algebras defined in (7.27), and let Cg'),
#=0,1, be given by CV = {j|j€(pop)"} and CV ={k|ke(pop) op}. Then

My, 4 has a decomposition into simple factors

- k
Mup= @ M,
kec&")

where My, 4 acts faithfully on Mor(k, ((p og)*o p#), by left multiplication, i.e.,
M:n+# = End(Mor (k) ((P o ﬁ)n ° P#)))

The inclusion matriz, AC™#), of My, 4 1 C Manry is equal to the restrictions of the

fusion rule matriz N, N6 i C™, for # =0, and N; : C{M — ™, for #=1.

The sequence ... C C;: ) ¢ C,(; o c Cy 1s strictly monotonously increasing, or

(,’5,") =Cy, where Cy are the minimal invariant sets of N)N, given in Chapter 3.2.

A very important ingredient in the study of inclusions of von Neumann algebras are
Markov traces. On the algebra My, =M, a Markov trace, 7a, is characterized by the

properties that it is a positive trace and that
Tm(ae,) = B ry(a) forall a€ M,y .
It is easily shown that the functional given by the formula
i = d(p)"(?nt#) tr(popmopt (a), for a € Manyy,

where ir is as in Lemma 7.1.3, is well defined on M,, and is 2 Markov trace. It also

satisfies

™(E8(a)) = tm(a), for a€ M,

so that
Tm(a) = Ef...E?(a), for a€ M,.

This trace is in fact the only possible normalized Markov trace on M.
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7.2 Quantum Group Symmetries of Charged Fields

We start from a physical Hilbert space which carries unitary representations of an observ-
able algebra over M2 and a Hopf algebra, K, and define, in analogy to the case where K is a
group algebra, spaces of field operators that transform covariantly (contravariantly) under
the adjoint action of K. We ezplain how this notion of symmetry eztends to conjugates
and compositions of field operators and derive the resulting commutation relations and op-
erator product ezpansions, in case K is semisimple. We show that commautation relations
and operator product ezpansions hold for non-semisimple algebras K only in a weak sense,
i.e., the respective equations have to be contracted with K-tensors with non-zero quotients
in the intertwiner calculus of Section 6.1. For U,(sf;), we show that if the total order
of the monomials does not ezceed the level these contractions can be omitted. It would be
interesting to see how these subtleties have to be treated in conformal theories [9] , where
we have a similar construction of primary fields in which the quantum group is replaced

by a current algebra.

In general, there is no procedure to construct a field algebra, F(C), generated by charged
fields, ¥(p®), where p? is a morphism of the observable algebra A localized in a cone C,
which has a quasi-triangular Hopf algebra K as a symmetry algebra and closes under the

commutation relations determined by the universal R-matrix of K.
In our context, charged fields with X symmetry are defined as follows.

The “fieldspace” F7°(C), with elements (o), p® being localized in C, is a subspace

of B (Hphys.). The Hilbert space Hpyy,. carries unitary representation s, denoted =, of K
and A, with

Kc, (7.30)

and contains the vacuum sector, H;, which is determined by

Hy = {v € Hphye. | 7(a)vy = E(a)v;Va €K}
(7.31)
and 2 € M,

where §) denotes the vacuum vector.
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The space F;°'(C) is defined as the span of finite dimensional Banach spaces,

F,» C B (Hghys.), that are characterized, for any *endomorphism p? localized in C, by

Foo = {$(¢") € 777(C) | $(p°)n(4) =7 (p°(4)) ¥(s"), VAE U} . (7.32)

K symmetry is expressed by the fact, that F5°(C) is invariant under the action of X on

B (Hphys.)given by the adjoint representation ady defined in (4.8).

It is not hard to see that the finite dimensional spaces F» are also invariant under K,
and if p* and p? are equivalent as representations of 2 on H;, then F,» and Fj are

equivalent as X modules.

We now assume that F,» is irreducible as a K representation, and
w(Qi)}-fo"(C)Q = thyl. . (733)
Fs is identified with an irreducible K-representation V, by
IIP—PFP:ZI—’I/)(Z,/T?),
with
adi(a) (¥ (z, ) = ¥ (az, p?) . (7.34)
For the charge transport operator I'zs . € B, see (2.19), with
T p20P(A) = 77(A) Tpopo
we have
‘K(Fﬁ'.P’) ,‘p(z,pi) =¢(R(?)f)z»ﬁ§) = r(ﬁi)pi) "/’(z)ﬁﬁ) ’ (7'35)
where we use that I'zs ,» € B and hence R (3?, p°) commutes with the action of K.

From (7.31)-(7.35) it follows that H,u,,. is described by

thyl. = Z ‘/p ® Hp (736)
peL
and the fields are given by
¥(2,0%) = 2(L:® (z,.)) Ppi(v) ® V7 () (7.37)

v
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for some set of intertwiners Py ;(v) € Int (V; ® V3, Vj).

From now on we assume that the K-representations associated to different sectors
are inequivalent and that the intertwiner Py ;(v) are a basis of P (V; ® V%, V;). With the
conventions (5.6) and (6.51) we can compute the *-conjugate of (7.37):

¥ (=,6")" = ¥' (xz,P") (7.38)

where

¥ (2,0 = 3 (Pii(v)(= ©1,)) @V, (")

with
Vs (p%) = VI ()" -

The relations of these fields with K and 2 are given by

ad;(a) 'Sb* (z,7%) = ¢i (az, p*) (7.39)
and
#(4) ¥ (=, 77) = ¥ (2 7) 7 (P2(A)) . (7.40)

The total covariant (contravariant) field-algebra F<°*(C) (F<**(C)) is the algebra gener-
ated by elements in F{°¥(C). Note that F{°™(C) = F°¥(C)". The transformation laws of
the monomials in F<°¥(C) (F**(C)) are

ad(a) (¥ (21,6™) ... ¥ (2, P7)) =

(Aa) 21 ® ... @ 2, P (7). % (%))
(7.41)

adf(a) (¥ (21,p") ... ¥' (s p™)) =
(ArDa) 21 ® ... @ Tny Y1 (7). 9! (4 P7))
withz; ®...82,€V,,®...0V

Pn°

Let us assume that K is dual to 2, in the sense explained in Chapter 7.1, so that the

identifications of K-representations with superselection sectors coincides with (7.10). If
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K is semisimple, this implies commutation relations for the fields, that close in F°°V (2)

and are given by the universal R-matrix of K:
¥ (2, £7) ¥ (g, p%) =
= (2 ® v, R ¥ (69 ¥ (7)) (742)

= <PP‘7 R;qu Zp ®‘.¢/p,'l/l(-, Pq) Y (,pﬁ)>

and

¥ (¥, 07) ¥ (25, 07) =
= (RE 4, ® 75, 91 (%) ¥ (. p9) (7.43)

= <‘!Jq ® Tp» Pﬁ Rq:'tipﬁ '/’f ('7 Pp) ¢f (':Pq)> )
where p? and p?, resp. pP and p7, are spacelike separated, P, is the transposition of
tensorfactors, and z, € V,, y, € V;. Moreover, with the relation (7.11), we have the

operator product expansions:

Y (2p,0°) ¥ (¥, %) =

B (7.44)
= fz: a'u(F; P, ‘i) F(l,}—), q, f);:‘l‘nll Fp’Op'.p"(l‘) (zP ® Yq, Piii(") Y ('1 Pr))
and
¥ (25, 7) ¥ (¥py p7) =
(7.45)

=Y 0u(ri0,0) F(1L,0,2,7)7 ¥ (Prog(v) (25 @ ¥4) ") Toropr,or (1)

TV

If we turn to the case in which X is no longer semisimple equations (7.42)-(7.45) no longer
hold, since the intertwiner spaces Int, (V; ® V; ® V5, Vi) and Int, (Vi,V,® V, ® Vi) are
nontrivial. There is, however, a way of understanding commutation relations if we consider
the subspace of B (H,y,.), spanned by the monomials ¢ (., p?)... % (., pP) “smeared out”
only over a certain subspace of V,, ® ...® V,.. To be precise, we define the subspaces

FX (ppys- - -» Ppn) a8 the restriction of ¥ (., p#) ... ¥ (., p7) to

YV, @Mt (Ve @8 V3,

pEL
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seen as a subspace of V, 1 ®...®V,,, ie, Fin(p™,...,pP) is the linear span of all
fields
(:B Ii.m Pn ¢(’pil)¢()p§")) ’

with z€V, and Ijp 5. €It (Vs V56 ®...0V5,).

Similarly we define F=2% (p™, ..., pP") by restriction to the subspace

Yot (v, 8.0V, V)0V,

peL

of Vo, ®...8®V,,, i.e., the span of all

(Tovepms® W1 ()Wt (7))

Note that the spaces Feo/ <™ (g7, ..., pP~) are invariant under the adjoint action of K and
coincide, for semisimple K, with the total space of monomials. However, the collection of

these subspaces does not form an algebra.

From the definition of the vertex-SOS transformation and assuming that we have
duality in the sense of the equivalence (7.11) , we see that we have to reinterpret the
commutation relations (7.42) and (7.43) as being valid only inside of the contractions

restricting them to F25%.

They can be expressed in coordinates if we fix a basis eo, in V,, and a dual basis £

in V5.

If we denote the matrix elements of Iz .5, € Int (V5, V5, ®...Q V;.), L pap €

Int(V;, ®...®V,,,V,) and RE by
(e Topr..onl™ ® ... QL") = (Ipp.pn)g ™"
(£ ®...08 I pupes) = (ppnalsg ™"
and  (0'®F, REeg®e.) = (R*)ﬂa
and the field components
Ya (F) 1= ¥ (ea; 1) ;9L (¢7) 1= ¥' (€as pP)
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we obtain in place of (7.42) and (7.43):
{Z} (Isgr5a)g """ You (P7) -+ - Yan (PP") o
= Y Unss)i " (RE, )™ty (07)... (7.46)

A p10p
{ad v +

Pns (PP1) oy (67) -+ P (P7) w0

and
{E (Ipx-.-pu.p);lma" "Abll (). 1/11;,, (P) vo
a;}
o1..0n ThTh—
=) (pipmalg' (R;E._m_)az k() (7.47)
{es} -

W) W (7). 8L () v
for any 8, Ipp,.5n € It (V5, V5, ® ... @ V3.) , Lpypup EInt (V}, @ ... 0 V,,, V}), vo € Hy
and pP*+1 and pP*, resp. pP*-t and pP*, spacelike separated. The expressions from (7.46)
and (7.47) are contained in (eg) ® H,, e € V,, and vanish if we insert ;5. 5. €
Int, (Vp, Ve, ® ... ® V), tesp.  Ip pp € Into (Vi ® ... ® V;., V), 50 that the “internal
states” on which X acts are actually described by the path spaces P (V;,V;, ®...Q Vj,)
and P(V,, ®...0V,,V,).

In the same way we find operator product expansions in constructions generalizing
(7.44) and (7.45), relating the restricted monomial spaces by e.g.
Feat (PP Py Com(A) 3 Fk (P, 0P8, 08, 070 o)
PeEL

so that, eventually,

Frat (PP Py Cn() 3o F (o)

peEL

The necessity of contracting the fields is in fact not surprising, since we cannot expect to
recover the entire R-matrix, R;j, if V; ® V; contains representations of zero g-dimension,

from the information (the braid matrices) given by the statistics of superselection sectors.
We conclude our discussion of the field construction with a remark on U,(sf;).

If we put ¢ = eiﬁ*, we see from the tensor-product decomposition (5.19), that any

monomial expression ¥ (., p#*)...9 (., p™) can be reproduced from the contracted prod-
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ucts, i.e., we have
Yoy (7). Van (07) € it (P71, ™)

for all {&;}, whenever i pi —(n —1) < N, where the labels p; are the dimensions of the
=1
quantum group representations. Thus, with these bounds on the dimensions, (7.46) and

(7.47) hold even when the tensors Iyp,. 5, and I, . 5, p are omitted.
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7.3 The Index and Fundamental Decompositions

In this section we investigate, for C*-quantum categories, the connection between the
structure of the tensorproducts pop and po p of an irreducible object p and its sta-
tistical dimension d(p). In particular, we find criteria in terms of these fundamental
decompositions which are equivalent to the statements d(p) < 2 and d(p) < 2. We also
prove that if the fundamental decompositions contain only invertible objects then the ele-
ments in p o p form a group isomorphic to (Z3)™. The proofs are given in the formalism
of C*-quantum categories as arising in local quantum theories (see Chapters 2 and 7.1).

They can be translated into the language of abstract tensor categories without difficulty.

The classification of fusion rule algebras presented in Section 3.4 was based on the ADE
classification of graphs with norms not larger than two and is therefore associated to
local quantum theories that are generated by a single localized *-endomorphism, p, with
Ind(p) < 4. In general, the computation of the index, Ind(p) = [p(IM) : M, is rather
difficult, so one is interested in replacing the index by other more computable quantities,

which involve the use of locality and braid group statistics.

From the obvious inequalities for statistical dimensions,
dy 21, and d:=ZNp°p.¢d¢2#{¢:¢€P°P};
¥

it is clear that if Ind(p) < 4, pop, as well as po p, cannot contain more than four
irreducible subrepresentations. Also, it has been observed in {23] that, for selfconjugate
sectors p with two-channel decompositions, p o p = 1 @ 7, the existence of a unitary braid
group representation enforces that Ind(p) < 4. Below, we extend this result and list five
classes of endomorphisms, characterized by the decomposition of p o p and p o 7, for which
Ind(p) < 4 follows. The purpose of Proposition 7.3.1 is to show that it is possible to find
constraints on the decompositions of po p (resp. p o p) equivalent to the index restric-
tion. More precisely, we prove that, for any endomorphism p which does not belong to
one of the five classes, Ind(p) > 4. In the description of these decompositions we not only
count the total number of irreducible subrepresentations, but also the number of automor-

phisms in p o p (p o p, resp.). We shall see that the representation o in the decomposition
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pop~ c®y is found to be an automorphism if and only if the corresponding projection
es(p, p) € P* (M)’ N M satisfies a Temperley-Lieb relation. The group of automorphisms
in pop,ie.,
stab(p) :={o | g0 p = p}

— which is important in cases ii) and iii) of Proposition 7.3.1 — is studied in generality, in
the course of the proof. During the proof, we shall have to make a small detour, in order
to rederive the braid-statistics formulation in terms of statistics operators from the theory
developed in Section 2.2. The possible forms of the fusion rule matrix, N,, restricted to the
0-graded sectors, will be given in terms of graphs, for each case separately, and knowing
that the index of p is given by the square-norm of these graphs we can find the possible
values of Ind(p) : Ind(p) € {4 cos® % Ne3co" In the more complicated cases, ii) (¢ # o)
iii) and iv), of Proposition 7.3.1, we shall reach the accumulation point, 4, of this set,
and it turns out that, for p = p, the fusion rules are dual, in the classical sense of [29], to
the dihedral-(ii) and iii}) and the tetrahedron-group (iv)), regarded as discrete subgroups
of SU(2).

Proposition 7.3.1 Suppose that p is a localized irreducible *-endomorphism of a local

quantum theory with braid group statistics. Then
Ind(p) < 4

if and only if the composition of p with itself has one of the following decompositions into

irreducible endomorphisms:

0) p is an automorphism
i) pop = oB®Y;
i) pop = 0, Do, DY, or equivalently pop=1DodY';
) pop = 1@ o ® o Dos;
i) pop = 1@y, with Yop=p®Dpoos ®pooy;
where o, 0;, 1 =1,2,3 are localized *-automorphisms, i.e., 0;00; = 5;00; = id, and
¥, Y' are irreducible localized *-endomorphisms. Under these assumptions p generates

a Z- or Z,-graded superselection structure in which all sectors have finite indez, and the
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restriction of the fusion rule matriz to fusion between 0- and 1-graded sectors is given by

the incidence matriz of one of the following bicolorable graphs:
0) Ajz;
i) An>a,Da>s, Bors(Ind(p) < 4);  Aw , B o(Ind(p) = 4);
i) Dy($=03,Ind(p) <4); Ds,De (¥ #03,Ind(p) = 4) ;
i) DY,
) EM.

(For the definition of these graphs see Appendiz A.)

Proof. We first assume that Ind(p) <4 and show that o) - iv) are the only possible
inclusion graphs. We consider the superselection structure, ®, generated by p. Since
Ind (p1 0 p2) = [p1 0 p2(M) : M] < [p1 0 p2(M) : p2(M)] [p2(M) : M| = Ind (p1)Ind (p2),
[23], we have that Ind (p;) < oo, for any sector p; € ®, and can thus assume properties (P1)
and (P2) of Chapter 2 to hold on &. It follows that the fusion rule matrix, N,, is well de-
fined on & and has only finitely many entries in each column and row. Moreover, we can as-
sign to the sectors p; € & the statistical dimensions, d; = Ind (p;)% < o0, which form a pos-
itive eigenvector of N, according to (2.54), with eigenvalue d, = ,3,% = Ind(p)?. Further, it
follows from (P1) and (P2) that, in sequences .. .Cg‘) C Cg'“) C...,# =0,1, each of the
subsets Csr) of , as defined in Lemma 7.1.5, is finite. We denote by C3® = UC;(;) C & the
(possibly infinite) union of these sets, whose elements are the “#-graded se:tors”. We use
the inclusion matrices, A(™, of the commutant algebras M,,_; C M., which are, by Propo-
sition 3.2.11), just the restrictions A®®) := N, | ¢{*-1) — C§"), AGrH) = Nt 1M — an),
C;(;' ) labelling the factors of Mj,, 4, in order to define matrices A, : C° — C{°, with only
finitely many non-zero entries, by setting
A (@) on (W)
Asn(A2nyr) :=

0, elsewhere.

For these matrices, A,y1 — A, has non-negative entries, which are zero at positions

where entries of A, are non-zero. Thus, for the graphs, Iy, = (Ag,,,CS"),an_l)), Tony1 =
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(Ag,.+1,C‘(,"),C§")), we have that T', is a subgraph of [, (i.e., it is obtained from
I'nt1 by amputating only the edges that are joined to vertices in |Tpy1|\|[Tn|). These
graphs therefore inductively define T'oy, = (Acs,C3°,C5°), with Ao = N, [C° : C° — Cf°,
A, =N, [C° :C° — C°. Asin iv) of Proposition 3.2.1, we have Perron-Frobenius vec-
tors (n™,4™) € C° x C{®, with finitely many non-zero components, such that A,n™ = ﬂé A
and Afy" = ﬂ,;: 7™, and, for the vectors formed from the statistical dimensions d¥ € C3,
we have that A, d° = ﬂ,;;_di and Af d' = ﬂ,;;-d". Since A, — A,, has non-negative entries, it
follows from 0 < (&%, (A — Aal7") + (7", A — A &*) = (BF = BE) (@, 17) + (&,27)]
that B, < B,. Thus, as the $, are monotone increasing, 8, ~» supf, < f,. (In order
to show that 8, = sup 8, for the general infinite case, one has t: go back to the defi-
nition of the index [;3], since, for general infinite N,, there corresponds to any eigen-
value /B’ > _ [sup B, a sequence of numbers, d!, which form an eigenvector of N,). For
Ind(p) £ 4, it foﬁows that any subgraph I', C T' has norm ||T'n|| = ||An|| £ 2. The finite,
bicolorable graphs with norm not larger than two have been classified in Theorem 3.4.1
and are given by A, A,n 'v1» Dy D), Eg 74, E,(S_l%s, from which we also find the non-
bicolorable graphs 4, Ag‘), (1) and A,. (These graphs are given in Appendix A.) It
follows from A,1 = ¢,, that each of the indecomposable graphs, IT',,, has at least one ver-
tex, 1, with edge degree one, which excludes AEI) from the above list of bicolorable graphs.
It is easily verified that the only infinite series of graphs I, ;C¢ | g ..., which can be
constructed from the above list are A, C Any1 C ... and D, C D,yy C ..., where the
common vertex, 1, is given by an endpoint of A, in the first series, and the endpoint of
the short leg of D,,, in the second series. Besides the infinite graphs A, and D, we are
left with the finite graphs An, Dn, D, Ee7s, ES7s, which are listed in o) - iv). In any
case, we haye that 8, — B,, since B, = 4 cos? vy ( 4 cos? ————-) tends to 4, as A, T A
(Dn 1 Do), and we have that 8, = 8, for n > diam (T, ), when the graph T, is finite.
The sites in Ty, at which we have automorphisms, i.e., the sites corresponding to the
smallest component of the Perron-Frobenius vector of the incidence matrix of I'y,, have

been indicated by (%) in the graphs of the Appendix.

We are now in a position to derive the decompositions of po p and po g, stated

in Proposition 7.3.1, from the list of possible inclusions by considering the normality
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constraint (3.68) imposed on A!, := Nt [ Cf° : Cf° — C5°, i.e., by determining the solutions
of AwAl, = AAt,. We first note that, since 2 > ||Anf| = ||A°°Af,°||% = "]\m", the graph
associated to A, has to appear in the classification of graphs with norms not larger than
two, given in Theorem 3.4.1 . Since any cycle (subgraph isomorphic to A{") has norm
equal to two, the only graphs in this set with cycles of length two, four or six, are Agl),
A;(,l) and Agl). All other graphs, in particular those listed in o) - iv) of Proposition 7.3.1,
fulfill the prerequisites of Corollary 3.3.7. Thus if there is some Ay, [[Acol| < 2, for which
there exists a non-isomorphic solution, A/_, of the normality constraint, AL, has to be of
type, Ag‘)“, n=0,1,2. Since A, :C> — C;° has no cycles of length two, four or six,
we have, by Lemma 3.3.6, that the component A :=(I3)) = (I‘::,)c of the twice iterate
of one coloration obeys a) - c¢) of Lemma 3.3.6, so, by iv) of the same lemma, ' = G4.
For Ag), we see that A; := (Agl)z): contains a double edge and is therefore excluded
as a candidate for I'_, but, for A, := (A&‘)’)c and A4; := (Agl)’)c statements a) - c) are
easily verified. We therefore obtain the only 'y, = (A, C,C5°) with non-isomorphic I',
by going through the construction of G4 given in Lemma 3.3.6. We conclude that
Ga = DY,
and (7.48)
Ga = ENM.

It follows from (7.48) and the positions of (*) in (A10) in Appendix A, that, for real-
izations of D{") in a fusion rule algebra, we have that Out (C®) = C® = {1, 01,032,031},
(thus 2 Z; x Z; or Zs), and decomposition iii) follows. Similarly, we have for ES, that
Out (C®) = {1, 01,03, } (hence & Z, and 0y = 03*), and therefore C{° = {p, 01 0 p, 72 0 p}.
If we define y €C® by pop =189, (i.e,, C® = {1,01,02,9}), decomposition iv) fol-
lows, since 4 is a neighbor of every element in C;° in the graph Egl). For all other
graphs, listed in o) - ii), we have by Corollary 3.3.7, a bijection, X : CZ° — C3°, such that
AwZ = Aw. If we apply ¥ to the C®-part, d°, of the Perron-Frobenius eigenvector of N,
d=(d°,d",...)ECCDCP ... (if C° = C® put d° = d'), obtained from the statistical
dimensions, d,, which is the Perron-Frobenius eigenvector of Ay, in the finite case, then

we find that
Td° = d;1TAL d' = 41 (A, D7) d! = d;t = d; 1AL d! = &P
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By (3.55) the equation dy(;) = d; implies that T (Out (C®)) = Out (C°). Hence there is

at least one automorphism in (C$°), namely o, := £1. More generally, the set

stab(p) :={o | 00 p = p}

is a subgroup of Out (C°), since 1 = dT':ﬂ = d, and because of grading considerations.
Hence, using stab(p) — Aut (T ) : 0 — N, [ C°, stab(p) is also a subgroup of the graph
automorphisms of 'y, that fix the vertex associated to p. It consists of the verticesin ',
of edge degree one that are joined to p and is given, in the case where ||[I'w || < 2, by Z4
or Zq X Zg, for D&l), Z3 for Dy, Z; for D, Ds.lz)s and Aj, and is trivial for all other cases.

If ¥:C2 — €3, as defined above, exists it follows, that X(c) o p = p for any T :=
B(stab(£)) C {p o p}. Also, T comsists of automorphisms and, as A := £-1%’ is an auto-
morphism of T's, fixing p, for any T’ : C2° — C° with AwZ’ = Ay, we have that A maps
stab(p) to itself. Thus 7 is independent of £. Conversely, if, for « € C{°, a0 5 = p holds
we have, from Lemma 3.3.4, that a € {p o p} N Out(C5*). For any such automorphism,
we can define T, := N, [CP : C® — C5°, with ApZa = Aw, s0 that a=3,1€Z. In
conclusion

T = Za(stab(p)) ={a €€ :ao0p=p} ={pop}nOut(Cy),
and (7.49)
IZ| = |stab(p)], for Out(C;°)#0, and I=0, for Out(CF)=0.
We now can assign to the remaining inclusions the decompositions o) - ii) by comparing
the isomorphic inclusions ', and I and their automorphisms. Since, in these cases, the
number, v,, of representations in p o j is less than four, we have that v, =([po||* =
llo o pli* is equal to the number of representations in po p; (here ||(.)|| is the euclidean
norm of eq. (3.3)). Since v, <3 and |stab(p)| > 1, the number 7, = v, — |stab(p)| of
non-automorphic representations in p o p obeys 7, < 2 and 7, =2 only for v, = 3 and
lstab(p)| = 1. However, the only cases with v, = 3 are DS‘IZ)S, D, and D, for which
stab(p) =Z; or Zs, so that there is at most one non-automorphic representation in p o p.
This completes the first part of the proof, showing that Ind(p) < 4 leads to the decompo-

sitions listed in o) - iv).
It remains to prove the converse implication, i.e., to derive Ind(p) < 4 from the given
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decompositions.

We first note that if o, € p o p, which means that there exists an isometry
0 #Tpops, €EInt(pop,01), and o, is a localized automorphisms, then we have, for the
*.endomorphisms 5 :=07'0p = pooy? (“=", for UIX/)), that g o p(A)sop1 = Trop1 4,
for all A € 8%, where T'5p1 := 07 (Tpope, )- Similarly, we find an operator T'yo51, with
p 0 (A pop1 = TpopaA, VA € B, such that there always exists a conjugate sector. It
follows from the result in [23], that Ind(p) < oo, for all cases. Hence Ind(y) < oo, V3) € @,
® being the sectors generated by p. Moreover, we find from i) that

poﬁ:lﬂ)'x,b' (7.50)

and from ii) that
pop=10cay (7.51)

where ¥’ := o7 09, and 0 := 0] 0 0,.

The assertion follows for cases o), iii) and iv) from the basic properties of sta-
tistical dimensions, namely: d, o, = d,, - dpy, dpi@p; = 5, + dp, and d, =1 iff 0 is an
automorphism. For o), we have d, = 1, for iii) d} = d; + d,, + d,, + d,, = 4, and for iv),
d3 =14dy, dyd, =d, + d,, d, + d,,d, = 3d,, hence d;, = 3 and d, = 2. The proofs of i)
and ii) require some additional knowledge on connections of automorphisms to conditional

expectations and Temperley-Lieb algebras.

We first consider two irreducible *-endomorphisms, p; and p,, which are arbitrarily
localized and have finite index, and assume that there exists a localized automorphisms, o’,
with

0" € P10p3. (7.52)

From an isometry, I, 0,0/, intertwining o' with a subrepresentation of p; o ps, we find
an isometry (0') ' (Tpomer) Which intertwines the vacuum representation with the
*_endomorphism ((cr’)'1 o pl) 0 p3, s0 that 7, = (o) ™" o p; by property (P1) and T, o/
is unique up to a phase factor. It follows that N, ,, . =1 and d,, = d,,. In particular,

for some choice of p,, there exist a localized unitary operator, 'ysop5, ,,, and an isometry,
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T50p5,1, such that
Loopae’ = Taioz o o' (Taroma1) - (7.53)
These properties imply that the projections e, (p1, £2) := ['p 0p0,6'T'5, 0ps,0+ ar€ unique and
obey
eo' (p1,P2) = oo, 0 0" (€1(P2,2)) Totoaon » (7.54)
where e,, = e;(p3, p2) is just the Temperley-Lieb projection introduced in Section 2.5.
Moreover, we have that e, (p1,p2) = €, (p3,p1). Let us assume there exist an endo-

morphism, p;, and an autornorphism, o”, with o” € p3 0 p3. We immediately find that

paoo" = py, d, =d,, =d,, that the isometry, Iy, 0,4 0, i8 unique up to a phase and can

be expressed,similarly to (7.53), by

Lpiops,on = pa (F;;,orr",p;) Tpropant s (7'55)

where I's, 00, is unitary, and T'p,05,1 is normalized, relative to I'sop,1, such that
(7.20) holds. The identity following from (7.55) for the (unique) projection e, (p2, p3) =

L props,0" L py0py 0 18 €xpressed by

eon (p2,£3) = P2 (Thro0m,5y) €1(P2,73) P2 (Traoutes) - (7.56)

It is straightforward to derive the generalized Temperley-Lieb relation

Bp1 (e (P2, p3)) € (P1,P3) p1(esn (pa, p3)) = p1(ean (P2, p3)) (7.57)

from the previous equations and from relation (7.27), i.e.,

Bpa(e1(p3,P2)) €1(p2,p2) Pa(er(p2,p2)) = p2(e1(p2, 52)) »

and, similarly

Best (p1,p2) p1(ean (pa, p3)) ear (p1,p2) = €ot (p1,p2) - (7.58)

From (7.57) and (7.58) we can infer that Ind(p) < 4, in case i), by using the statis-
tics operator which is fundamental to previous approaches [19] to braid statistics and
whose definition requires the explicit use of charge-transport operators and reference-
(spectator-)endomorphisms. We therefore briefly rederive its properties from those of the

statistics-matrices discussed in Theorem 2.3.1.
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For this purpose we consider three irreducible, arbitrarily localized *-endomor-
phisms, p;, + = 1,2,3, which are equivalent to causally independent endomorphisms, 3;,
with as (p;) > as(42) > as(pa). Then there exist charge transport operators I';, ,, € B¢°
obeying (2.19). We choose the frames, {V‘f" (p,-)}, {Va”‘ (,6,)}, of different fibres V,(p;),,
Ve(pi)x = Tip: x, related by (2.26). This yields a relation between the natural frames,
{chf‘ (p1)...Vin—re (pn)}, of Ve(pro...0pn) — Tip,. ook Even by the equations

VE (b1) Vi (62) = 1 (Tan p1 (D)) V¥ (p1) Vi (p2) (7.59)
and

Vak(B1) V3 (6a) Vim (ba) =

(7.60)
1(Ta1.001 (Paea) P10 2 (T ) Vi (1) V3 (p2) V™ (pa) -
The statistics operator €% (py, pa) is given by
€ (p1,p2) = pa (sz.m) L%, 02 Tover P1 (Thaen) - (7.61)

Clearly, it is a unitary operator in B¢* intertwining p; o p; with p; 0 p; and, a priori, it
might also depend on p; and p;. The connection to the statistics matrices is obtained if
we combine eqs. (7.59), (7.61) with (2.27), using that ﬁlx;?,, and as(p;) > as(p;). We
find that

i(e* (o1, 02)) Vi (pr) VE(p2) = 3 RY (5, p1, o, 55" V¥ (p2) VE (1) . (762)

klalﬁl

Since €% (p1,p2) : Int (p2 0 p1, p1 © p2) = Hom (Vi(p1 0 p2)i, Vi (p2 © p1);) is an isomor-
phism, we infer from the properties of statistics matrices (see Theorem 2.3.1) that
€% (p1,p2) only depends on the asymptotic direction of p; and p, , and we will write

€~ (p1, p2) if as(p1) < as (p2). Obviously we have that

-1
e (pr,p2) = (¥ (pr 1))~ - (7.63)
Equations (7.60) and (7.62) also imply the identity
i(p1 (% (p2,£3))) Vi* (p1) V3*(p2) VI (ps) =
(7.64)

> R*(k,pa,pa,m)efy” Vit (p1) Va¥ (ps) V™ (pa) -
‘Iﬁl.yl
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This identity, eq. (7.62), the Yang-Baxter equations for the statistics matrices, and the
injectivity of Int (g3 0 p2 0 p1,p10 p30 p3) = Hom (Vi(p1 0 p2 0 p3),,,, Vi(pa 0 p20p1),,)

yield the Yang-Bazter equations for the statistics operators, i.e.,

et (p2; p3) P2 (5i (p1,p3)) et (p1,p2) =
(7.65)

pa (€% (p1,p2)) €t (p1,p3) p1 (€% (p2,p3)) -
For detailed calculations see [24]. If we specialize (7.62) to : =1, k = [p;], and use the
normalization V¥ (p,) VIl (p,) =T, . e(a) V¥ (p‘)for the isometries, T, ,,, (@),
we obtain the following presentation
ei (Pl,ﬂz) = Z Ri (1) P1; ert)z:::I Pmopx.ﬁl(al) I‘;lop,,p‘(a) ’ (766)
laa!
In the case of interest we have that p, = p, = p, and the summation in (7.66) ranges over

ple{o ¥}, v Fo,a=a =1,so that

5+(P)p) =2 ((qp + 1) ec(Prp) - 1) » (767)

where

R(}-: P»P;" ﬁﬁ 11
=B e 4y g = —R(1,p,p,9)L.
R(l,p, P,’l/’ :}i 7é 73 ( PP "/’)pll

The consequence of having a two-channel decomposition is that the braid group rep-

9% =

resentation given by the generators 7, := ip" (et (p, p)), With ThTpi17n = Tn41TnTnt1, 1S
contained in the set of representations of the Hecke algebra, H,, o, since we also have that
72 = (gp — 1) 7Ta + g, i.e., the ideal ] C C[B,], with C[B]/ I = Hy, ., is annihilated by
our representation of By,. As remarked in [22], one can then utilize the classification of
21

unitary representations of H,,, as given in [54], to find the possible values of gq;: ¢, = e*'¥,

N =4,5,...,00.

For the associated projections e, = :—;:—'ﬁ = p™ (es(p, p)), we find the usual Temper-
ley-Lieb relations (7.27), with 8 = d2, provided o is an automorphism and using (7.57)
and (7.58), with p = p;, 1= 1,2,3, and 0 = ¢’ = o”. In this case, one finds, by inserting

(7.67) into the Yang-Baxter equation, the compatibility condition

B=q+q"+2. (7.68)

206



More precisely, for H, o = C [B.,,]/I::, Ap o = C[By)/ I, we have that Ig C I ie,
Ag, 18 a quotient of H,, o, if and only if (7.68) holds. From this we obtain the possible
values of d,:

d, = 2cos -1% , (7.69)

which, in particular, shows that Ind(p) < 4.

We remark here that, for the situation where pop = o @ ¢, the Temperley-Lieb
relations for the projections e, := p" (e,(p, p)) imply that o is an automorphism. This is
most easily verified by computing e* (o, o) from e*(p, p) with the help of the polynomial

equations and the cabelling procedure. It turns out that
et(o,0)=2}¢q,1. (7.70)

However, a result in {19] tells us that if e¥(o, o) is proportional to the identity o is an

autormnorphism.

Finally, for case ii) we only assume that po 5 = 1@ o @ ¢ and show that Ind(p) = 4
follows. The peculiarity we exploit here is that the decomposition of po p yields an
automorphism &, with o 0 p & p, which, in the language used above, means that the
subgroup stab(p) C Out(®) is nontrivial (= Z,;). At the level of a local algebra, a stabi-
lizer subgroup of Aut(C) can be defined similarly, by stab(2) := {0 € Aut(C) : 0(A) = 4,
VA € A}, where A C M. If we restrict the projection n’' of Aut(C) onto the quotient
Aut(C)/ Int(C) = Out(®), as discussed in Section 2.5.3, to stab(p(9MN)) it is clear that its

image lies in stab(p), i.e., we have a group homorphism 7 given by

7 : stab(p(PM)) — stab(p)
! l
Aut(C) —» Out(®).
For a representative o’ € Aut(C) of [o'] € stab(p), there exists a unitary operator
Lotop,p € U(C), with ¢’ 0 p(A) gr0p,p = T'aropep(A). Thus o = ors,. . © o' is an element
in stab(p(1)) with [o] = [0], showing that = is surjective. Since p is irreducible, it also

follows from p(9t)’ N U(C) = C1 that = is injective. Hence
stab(p(M1)) = stab(p). (7.711)
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In particular, this implies that stab(p(01)) is an abelian group, although its elements are

in general not causally independent, and the group extension
0 - Int(C) — G — stab(p) — 0

splits. Here, G C Aut(C) is the respective preimage of stab(p) .

The one-dimensional space Int(c o p,poo)=Int(p,po o), is spanned by either
Ut(o):=e*(p,0) or U (0) :=e(p,0), so U*t(o) = e*?U~(o) and by the definition

of the statistics operator, we have that
p(Toty) =Tos, UX(a), (7.72)

where U*Xp and as (ot) 2 as(p).

Since p o o = oys(s) © p, we find that ¢ -» U *(0) defines two projective representa-

tions of stab(p) in U(C). Thus there are 2-cocycles y* € B?(stab(p)), with

U*(0) U*(k) = v¥(o,#) UH(a 0 1), (7.73)
where ’y+ ~qT by 'Y- = ,Y+ . § (621“'19)

If we let Toiort oo = pF (Tot o) [ t,, be the charge transport operator for the
composed automorphism o o u = o0 o € stab(p(MN)), we can relate these cocycles to the

charge transporters, by inserting (7.72) in (7.73). This yields

p(lozs) = 7*(0’, 1) lot s (7.74)

Applying u to (7.72), it follows that
u (U%(0)) = 4%(o, ) U*(o). (7.75)

From (7.73) and (7.75) it follows immediately that y*(o, 4) is a homomorphism in both
arguments separately, and, by (7.61), we have that e*(o, u) = 7v*(o, #)1. Since U*(0)
is proportional to U~(z), we conclude from (7.75) that v*(o, ) =y~ (o, ). In other
words, the sectors in stab(p(91)) obey ordinary Fermi-Bose statistics among themselves,

ie., et(o, p) = (o, 1) =: v(o, p). Moreover, it follows that § (e"‘") = 1, so the value of
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the monodromy m(p,0) = e¥(0, p)et(p,0) = U~ (0)*U* (o) = e¥™? defines a character

on stab(p).

We can define a second operator U(c), which is different from U% (o), for p # 5, by
setting

U(0) :=dy 500 (Tpops) Taopas (7.76)

so that U(o) € Int(p 0 g, p). Also, since oo p = p and by (7.76), we have that U(c) €
pop(M) NN, and
U—(”) Tpop1 = Lgop1 - (7'77)

From the irreducibility of 5 and 5 o o and from (7.76) it follows that U(c) is unitary. Thus
Of(s) © p = p 0 0. This shows that o — U(o) is a unitary representation of stab(p), since,
by (7.77), no 2-cocycles (as in (7.73)) can arise. Therefore we can write U(c) in the form

Npop,u

U(o)= 3_ (h(0))5 Tropn(@) T3o,u(B), (7.78)

ka=1

where h; : stab(p) — End (CNP°P-"), o +— h(o), is a unitary representation of stab(p) on
CNeeer and hy(o) = 1.

The left inverse, ¢, of 5, defined by
wp(A) =Te51p(A) o, A€M, (7.79)
maps Int(p o o, p) to Int(a,1). It therefore follows from Schur’s Lemma that
s (U(cr)) =0, for o#1. (7.80)
Note that, by the “generalized” Temperley-Lieb-relations (7.57), we also have that
ps(es(pop)) =87, (7.81)
for all o € stab(p).

In the case of interest, pop=1@ o @, (7.78) specializes (with T'zopyl50,4 =
1 —ei(p, p) — €5(P, p)) to

U(0) = hy(a) + (1 = hy(0)) e(B, ) + (ho(0) — hy(2)) €s(B, p). (7.82)
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If we apply the left inverse to (7.82) and use (7.80) and (7.81) this yields the following

equation for §:

_lth(o)

B=2 (7.83)
hy(e)
Here h, (o) and hy(c) are characters of stab(p) and, because of the equation
B=d,=d+d, +dy =2+dy,
they are constrained to satisfy —IZ—:‘(’SH =dy>1. If ¢ is an automorphism stab(p)

is of order three, thus isomorphic to Zs, and therefore 4 = 3. Also, we have that

ho(c) = (hy(7))™" is a third root of unity, and it follows that

B=3.

For a ¢ which is not an automorphism, we show that stab(p) = Z,, so that h,(o),
hy(c) € {1,—1}. The only solution of (7.83) with 8 > 3 is therefore hy(c) = —1, h,(0) =
1, and we obtain that

B=4.

This completes the proof of Proposition 7.3.1. o

The statement of next lemma can also be expressed as the fact that all sectors in stab(p)
are either fermionic or bosonic and obey trivial statistics relations among each other.
The superselection structure of stab(p) may be realized by any finite, abelian group.
This changes if we assume that the automorphisms stabilizing p constitute the entire
decomposition of p o p, i.e., if we assume supp(p o 5) = stab(p) and p o p contains at least
one invertible element. Still there exist fusion rule algebras for any abelian group G such
that G = stab(p), but if we require this fusion rule algebra to describe a quantum category
(resp. a local quantum field theory) these automorphisms are given by the representations
of a finite, abelian reflection group, i.e., stab(p) = (Z,)" for some N. The best known
examples are those for N =1 which arises in the quantum category constructed from
U;‘d (sl2), g = e'.T', with Ajz-fusion rules, realized by the .@(2),‘:2 WZNW-model ( or any
other ¢ = 3-RCFT ) or the critical Ising model, and for N = 2 where the category is
obtained from the dihedral group, D, C SU(2), with D{"-fusion rules, and realized by
the SU(2)/D;-orbifold model at ¢ = 1 or a 4-state Potts model.
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For the proof of these assertions the following presentation of skew-bihomomorphic

forms on abelian groups will be useful.

Lemma 7.3.2 Let G be a finite abelian group and
f:GxG—-U(1)

a nondegenerate bihomomorphic form.

1) If f has trivial diagonadl, i.e., f(a,a) =1, Va € G, then
§ = (T % Bor) X (Buy X Ty} X+ (B X Bar) (7.84)

where the orders divide each other as vy | vy | ... | v and “x” means orthogonal
n

with respect to f. On each factor G; = Z,, x Z,; with generators { and 7, f is

determined by

f&m) = e . (7.85)

) If f is only skew symmetric, i.c., f(a,B) = f(B,a), Vo, B € G, and f(a,a) = £1,
then either
a) f has trivial diagonal; or

b) G =12y xG, with f(1,7) = —1 for the generator T of the Z,-part, and f is
1

nondegenerate and has trivial diagonal on G, or

c) there is some (unique) m > 1, such that G = (Zym X Zym) X G, where f is given

on the generators § and 1 of the (Zym X Zym) part by

ki)

fEem) =€, f(6,¢)=1 but f(n,1)=-1. (7.86)
PFurthermore, f is nondegenerate with trivial diagonal on G.
We shall not give a detailed proof of this fact here but satisfy the reader’s curiosity with

a few remarks. The first part is a standard exercise in normal forms, using the invariant-

divisor form G = Z,, x --+ X Z,_, v; | ¥;41, of the group and the nondegeneracy of f. If f
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is only skew, then a — f(a, @) is a homomorphism G — Z;, so there is some 7 € G, with
f(r,a) = f(e, @), Va € G and 72 = 1. In case a) we have 7 = 1, in case b) 7 # 1, with
f(r,7) = —1, and G is simply given by G = 7*. The complications arise when 7 1 and

f(r,7) = 1. Then 7 is contained in some maximal Z;» with generator £, so 7 = ¢&¥™™",

The relevance of studying nondegenerate, bihomomorphic forms becomes clear in

the next lemma.

Lemma 7.3.3 Suppose that, for an irreducible object p, of a C*-quantum category,
supp(p o p) = stab(p). Then

i) the multiplicity of o € po j is one, for all o € stab(p), and &2 = |stab(p)|.

i) Let f(a,B) := R*(p,a,B,p)? for all o, € stab(p). Then f is bihomomorphic and
skewsymmetric, and

fla,a) = ™= ¢ 7,. (7.87)
All selfconjugate elements a € stab(p), i.c., a® =1, are real.

i11) f is nondegenerate.
Proof:

i) We first repeat an argument given in the proof of Proposition 7.3.1. We have that
oo p = p is irreducible. Thus 1 = N,op, = Ny pos. From popg= Y o we have
UGlta.b(p)
that

dpodp= Y 1 =|stab(p)],

a€stab(p)

asd, =1.

ii) The number  f(a,B)é,8,, := R*(p,a,B,p)f € U(1) is well defined because
dim (Int (p 0 @ 0 B, p)) = 1. The claim of Lemma 7.3.3 is that the sectors in stab(p)
obey trivial statistics, so m(a,8) = ¢(8,a)e(a,8) = 1, which on the level of R-
matrices means R*(p, 0, q,p)5R*(p,a,B,p)5 = 1. But this is just expressed by
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the skew symmetry, f(a,8)= f(8,a). The polynomial equations on the one-

dimensional intertwiner spaces, Int (po a; o--- 0 a3, p), are given by

F(p,a,B,p)ons RE(p, a0 B,7,0)2 = RE(p,a,7,0)2 R*(p,B,7,0)2 F(p,,8,0)o0p

etc., which imply that f is homomorphic in every component, after cancelling the

F-matrices.

It is clear that we always have a normalization of intertwiners such that
P;a,l a (F&a.l) =a (F;a,l) Fa&,l =1 (7.88)

for all a € stab(p), with a # & However, for a® = 1 this can a priori still vary by a sign
(pseudoreality). To exclude this possibility note that in general

£(a,a) = ™% Taa1 Tha, - (7.89)

For o? =1 this specializes to £(a, a) = €?™%= and hence f(a,a) = ™% ¢ Z,. The sta-
tistical parameter is then ), =« (F;a,l) e(a,a)a(Taea) = €= but also A, :=
e?™%T% & (Taa,1). With e*™= = 1 this implies reality for a and (7.88) holds for any e,
i.e., by unitarity we have I'aoa;1 = @ (Ts0a,1). For the unitary intertwiners, I'yoq,, we have

an F-matrix identity
Lpoa,p L'posp = a p (Fao&.l)

for some ¢,. We obtain
FP"E.P = Pa P;oa,p P(Paoa,l) = Pa F;oa,p poa (I‘&Oﬁ.l) =@a p (F5°a.1) P;oa,p )
which yields, after multiplication of I'joq,, from the right, o = ps. Hence

P (6 (as C—!)) Fpoa.p Fpoa.p = @Pa g*miba 4 (F&Da,l)

2x30o
€ Lpoa,p Tpoae

and therefore f(a,a) = €*™% | for general a.
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iii) First let us record a simple consequence of the equation

B3,k )it = 30 RE(Li,n 0n5 R¥( ki, 0028 BF(Lj,5, )58 (7:90)
ﬁlul
(compare (2.38)) for the matrices, ¢, defined by

7 (Tpiopr (@) Tpiogrt(B) = D 8is 3, k, )7 T piopi,pr () Totopn,pe() -
apv
If (7.90) is specialized to j = £ = s = r = pand k = a, i = ( € stab(p), then we find

‘p(ﬁ:pr a, P)ﬁ = Ri(pi a,B, P)z

and therefore
B (Troap) Toope = f(e,8) Tgopp Tpoase - (7.91)

We introduce an orthonormal basis, {Ia},cuan() o0 the |stab(p)|-dimensional In-

tertwiner space Int (p o p o p,p) by

I, =T, a(Tpops1) Taopp (7.92)

aop,p

and consider the action of the complete set of orthogonal projectors, {Eg}semb( o)

given by

Es = p (Toops Tops) = (7 (Toass) Tona Tiopa £ (Tpess) (7.93)

on Int (p o pop,p), with respect to the basis (7.92). A matrix element of Es is
given by

I3 EsIn = Ty, B(Toups) Toons (7 (Thes) Trora Thapa A (Tpess)) Thons
& (Tpoz1) o
= T3opy B(Trop1) B0 (5 (Tres,) Trorn) Thons Taapp @0 p (Tiop)
P (Tposo) @(Toop1) Taopr
= Thopy B(Thes0) B (Tooss #(Ta06)) Topp Taopp @ (2 (Thopa) Toorn)
& (T pos,0) Taopp
1

- l-sta.—b(;—)_| I‘Bop,p B (F;oﬁ,p) I‘ﬁ°P-P I‘:'zop,p a(FP"5,P) I‘G"P.P
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where we use the basic commutation relations and (7.20). If we insert (7.91) we

obtain

1 —

L EI, = el (FG.B) Thos,p Tiops) Thopo (£(8,2) Taopp Tooss)

1 _
= 0 f(8a0B), (7.94)
hence
Es I, : Y f(68) Les. (7.95)

- |stab(p)| BEstablp)

For any character o € G of a finite abelian group G, we know that I%I' Y o(g) = b1
geG

So if N C stab(p) is the degenerate subgroup of a bihomomorphic form f, i.e.,

N ={a| f(a,8) = 1Vp € stab(p)}, then this means

forae N
]staltw Xﬂ: fle,B) = { ' € (7.96)

else.

With this formula we find from (7.95)
SN EsI,= ) Loy - (7.97)
é ~eN
However, by completeness, > Es = 1, this implies ' = {1}, i.e., f is non degener-
§
ate. With this knowledge the orthogonality relations E,Eg = €,8E, can be easily

verified. o

The remarks made in Lemma 7.3.3 will now serve as an important tool to prove the

following assertions on the situation where p o p decomposes entirely into invertible ele-

ments. Proposition 7.3.4 classifies the possible groups, stab(p), to be of the type (Z,)”

and gives the general spectra of the statistics operators e(a, 8), €(p, p), in a suitable choice

of generators of stab(p).

Proposition 7.3.4 Suppose p is an irreducible object of a quantum category and assume

that p o p decomposes into invertible elements. Then

i) supp(p o p) = stab(p), and for any o, € pop we have pop= Y o10a.

a€stab(p)
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it) All elements in stab(p) are selfconjugate, i.c., there is some M € N, such that
stab(s) = (Zo)* ,
so, in particular, |d,| = 2(¥).
i11) For any given o1 € po p, let g : stab(p) — U(1) and A € U(1) be defined by

e(p,p)=Ae™ ™% 3 g() encalp,p) (7.98)
a€stab(p)

and g(1) = 1. Then we have that the bihomomorphism f defined in Lemma 7.5.8

is a 2-coboundary given by

f = éq. (7.99)
We have
g(a)? = e*o | (7.100)
and further
¢=1, =1
The constant A? is given by
A? = 37i(460-001) (7.101)

If o, is replaced by o] = B o o1, B € stab(p), then the quantities A’ and ¢’ associated

to o] are given by
A'=4q(B)A, and ¢'(a)=f(B,a)q(a). (7.102)

w) There is a choice of o1 and a system of generators of stab(p) such that the quadratic

function q : stab(p) — Z, is as in one of the following cases:

a) stab(p) = G = (Z, x Zg)N with generators &, m;,1=1,..., N, and

q (ﬁ & n:-"') = (—1)-'=E*"6", for g;, 6 € {0,1}. (7.103)

=1
In this case A = 1 according to whether p is real or pseudoreal (if selfconju-
gate) and

0, =46, mod 1, Va€E€pop. (7.104)
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b) stab(p) = Z, x G, with G as in a), and an additional generator 7 of Z,, so
that

Q(T‘g) =1 9(9)) fore € {01 1}

and g € G, q(g9) € Z; as in a). Furthermore, A = :!:eiT', and
1
6. = 1= 46, mod 1, (7.105)

where + applies fora € 0,0 G, and — fora € To0;0G.

c) stab(p) = (Z3 X Z;) x G, with additional generators T and b, so that
g (rb'g) = (-1)¥# g(g), (7.106)
with €,6 € {0,1} and g € G, q(g) € Z; as in a). We have A= +1, and

0, = 40, modl, foraec G,

R

(7.107)

[y

0o + 40, mod 1, fora€bo@,

2
where G' = {1,7} x G.

Proof:

1) These are simple consequences of the fact that o1 € pop and o7 057 = 1 implies

ﬁ:alop.

ii) For some oy, let A and g be defined by equations (7.98). We first show (7.99), using
the fact that g(a) can be interpreted as the ratio of two particular intertwiners. To

see this let Ry, Lo € Int (p o p, 01 0 a) be given by
Ra =T}y p(Tsoap) and La:=Ti, . p(e*(c,0)) Tooap- (7.108)
First, it follows from
Ae™™ g(a) Ry = Ra€¥(p,p) =Ty P (Tooan) €7(p,p) =

F;“P.a; 5+(P, P) P (5+(a) P)) Ppoa,p

= Ae ™% P (E+(a) P)) Ppoa.p =Ae™% L,

1l
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that
R, =q(a)™! L,. (7.109)

This implies
Toopoe #(Tooap Toogs) = () To gy p(€4(2,0)) Tpomo £(Tos.s)
9(2)™ Tpope, £ (6¥(,p) @ (Tpos)) Troap
= (@) Thope, £ (p (£7(8,@)) Toops €°(2,0)) Troas
= g(a) o1 (¢7(8,a)) Re p(e7(2,0)) Tooan
= g(a)™ 9(8) 01 (¢7(8,2)) Thope, #(67(8,P)) Tooss £ (6¥(e,0)) Toons
= g(@)™ 4(B) T,y £ (o (¢7(B,2)) €¥(8,0) B (e*(,))) Tropis Looau
= g(@)™ 4(B) Ty, £ (e4(a,p) @ (£4(8,£)) £7(B,@)) Tropp Tpoar

9(@)™ ¢(B)™ R (. 8,0, )% Thop, £ (7 (2,0) @ (£¥(8,£))) Tsoao Toopir-

For fixed a, 8 € stab(p) there is a unitary, I'aog,as, With p (I‘;oﬂ'“ﬂ) T poc,p Lposo =

Ppoaﬁ,p and P (P;oﬂ,aﬁ) £+(a) P) a (E+(ﬂ) P)) = E+(a.3) P) I‘GOﬁ,aﬂ‘ Hence multiplying
both sides of the above equation with oy (P;oﬂ,aﬁ) from the right we obtain

Rag = g(a)™ ¢(B)™" f(B,a) Lag. (7.110)

But by (7.109) this implies (7.99). This, however, implies that f is symmetric as
well as skew symmetric, hence f € Z; C U(1) and f* =1. Now we use the non-
degeneracy of f on stab(p) x stab(p) and the normal form of Lemma 7.3.2 to see
that all »; = 2 in (7.85), i.e., the claim of ii), stab(p) = (Z,)M, is true. If we
specialize

f(e,8) = q(a) g(B) g(ao B)™ (7.111)
to @ = B and use o? = 1, we find g(a)? = f(a, a), which together with (7.87) gives
(7.100). Finally g(a)* = f(a,a)? =1, so g : stab(p) — Z4 C U(1).

The formulae (7.102), expressing the dependence of A and g on oy, follow directly from
the defining equations (7.98).
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The equation (7.101) follows from the monodromy spectrum m(p, p) = e(p, p)? =
3(305=00,00) €s,0a(p, p) and relation (7.118) of Lemma 7.4.1, below. If we attempt

a€stab(p)
to compute the statistical parameter of, p, we find from

A 1= di,e_w’ = # (L) (0,0)  (Thozs) »

and the generalized Temperley-Lieb relation (7.57), that

=g T ga), (7.112)

P agstab(p)

where d, = im, the sign depending on the reality of p. In order to obtain the

more detailed information on the braid matrices, given in part iv), we have to use the
presentation of stab(p) and f in Lemma 7.3.2. We shall restrict our attention first to
case a), where f has trivial diagonal or, equivalently, all sectors in stab(p) are bosonic.
This implies that ¢* = 1. G has the decomposition G = (Z; x Zy) i( e T (Z; x Z,), with
generators 7 , §; in each factor, and f(n;,7;) = f(&,&;) = 1 and f (n;,&;) = (—=1)%3. Thus
from (7.111) the value of g on a general element in G can be computed from g (7;) and
q(&) € {+1,-1} as

N
q (H & nf‘)

=1

N N
I a (65 %) = TI-1)%% a (&%) a (nF)

=1 =1

(7.113)

Yaa N
(0= Ta(6) el

To prove (7.103) we have to show that oy can be chosen such that ¢ (&) = q(m) = 1.
Clearly any map q from the generators of stab(p) to Z; extends uniquely to a homomor-
phism § : stab(p) —» Z,, such that §(£) = ¢(£), 4(m) = a(n), (but in general § # q).
Since f is nondegenerate there exists some a, € stab(p) with f(a,,g) = §(g). If we now
set 0] = @, 00, we find from (7.102) that ¢'(&) = f(aq, &) q(é&) = §(&)g(&) =1 and
also ¢'(7;) = 1. Thus, for a given choice of generators ¢; and 7; of stab(p), o, is in fact
uniquely determined by ¢ (§) = q(n;) = 1.

Using
i 8

E(‘l)"‘z“ =2Y,  &,6€{0,1}
{e.8}
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and |stab(p)| = 4¥ we find from (7.112) that A = +1. Inserting this into (7.101) and

using 0, ,0a = 05, + 04 = 0, mod 1 in the bosonic case we arrive at (7.104).

For the cases b) and c) we can repeat the above procedure on the G-parts. Again
from orthogonality, 71 = G, we have in case b) ¢(7°g) = ¢(7)° ¢(g), that £ € {0,1}, and,
since g{r)? = f(r,7) = —1 and because of the freedom to change the sign of ¢(7) by
replacing o, by 7 0 0y we can choose 0y such that ¢(7) = —i, and ¢(g) as in (7.103) on G.
From the equation Y g(a)= ¥ (—i)%q(g) = (1 —1)2%, and |stab(p)| = 20N+))

aEstab(p) €=0,1,g€C

we find the value of A. This yields ( with (7.101) ) 46, = ; + 0,,, and since 8,eog00, =
01“09 + 00-1 = % + agl’ we find (7.105).

Similarly we can choose oy in case ¢} (with m = 1) such that ¢(7) =1, ¢(b) =7 and

gon G = (Z; xZ;)Y asina). Wethenfind ¥ g(a) = 20+ and |stab(p)| = 47, so
a€stab(p)

that A = +1. Similarly as in b), this, together with 6,.35, = £mod 1, g € G, implies

formulae (7.107). a

We can now use this result and the previous ones on fusion rule algebras, in order to obtain
a sharper version of Proposition 7.3.1 in the case where d(p) < 2. This restriction on the
dimension eliminates the possibilities iii) and iv) of Proposition 7.3.1. The decomposition
under 1i) belongs to only one inclusion, namely D,. The associated fusion rule algebras
given in (3.128),(3.129) and (3.130) of Theorem 3.4.11, with stab(p) = Z;, we can be
excluded, by Proposition 7.3.4, to be associated to any C*-quantum category. If we also
require d(p) > 1 the only remaining case is the two channel decomposition in i). The
ratio of the two eigenvalue of the monodromy m(p, p) = €(p, p)? is ¢?, related to the index
by (7.68). Thus, we can exclude the d(p) = 2 cases in i) if we require the monodromy to

be nonscalar. To summarize, we have:

Proposition 7.3.5 Suppose that p is an irreducible object of a C*-quantum category.

Then the following are equivalent:
i)
1<dp) <2
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i) We have a decomposition
pop=o0c+y,

where Y ts an irreducible and o an invertible object, and the monodromy of p is

nonscalar, i.e.,

m(p,p) = €(p,p)*¢ Clyop -

11t} The 0- and 1- graded part of the fusion rule algebra are finite and the restriction of

the fusion rule matriz N, corresponds to one of the following bicolorable graphs:

A(1>3), Dy(l>3), Es, Es . (7.114)

The results proven above also lead to the exclusion of various fusion rule algebras at
d, = 2. For instance, if we consider the series of fusion rule algebras obtained from Dg:) 2
p' € N, (see Lemma 3.4.5 ii) (3.93)) by the procedure given in Proposition 3.3.2, we find
for the element f:=(0,wy), that fo f= aze:cgl oa if grad(f)=1 and fo f= azéca
if grad(f) = 0, where G = Out (®;) = stab(f). In the list of possible fusion rule alge-
bras, Theorem 3.4.11 ii), the cases G = Z; x Z3, (3.146)-(3.150), for any p, and G = Z,,
(3.151)-(3.158), are both represented. For p = 2p, the existence of the sub-quantum cat-
egory with generator f and Proposition 7.3.4 imply that only the fusion rule algebras
with G = Z; x Z, are admissible. Comparing this to Lemma 3.4.9, (3.111) and (3.112),
we then find as a result that all fusion rule algebras with selfconjugate generator, p, of
dimension d, = 2 which describe a quantum-category are in fact realized by a compact
subgroup of SU(2) or O(2). At the d, = 2-threshold we also encounter the first two ex-
amples of fusion rule algebras, specified in Lemma 3.4.10, which cannot be deduced from
a selfconjugate version. However if, as in the case of Dg” (AS‘)) (a_z), e>3,pop=2r,
then the monodromy ¢(p, p)?, clearly has to be scalar, so either £(p, p) = e2™(%=30)1 o
e(p,p) = ei(0e—3e-) (el(p, p) — €2(p, p)). For these two possibilities,the statistics parame-
ter A, :=p (F;.,p.l) €(p, p) p(Tpos1) is either a phase, i.e., [A,| = 1, or A, = 0, both contra-
dictory |A,| = ];—'[ = 1. A similar argument applies to exclude the algebras Eg (A;(,l)) (e-2)
and descendents, (3.159)-(3.162), from those consistent with a quantum category.
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7.4 Balancing Phases

In this section we compute the possible balancing or statistical phases for the fusionrules
determined in Theorem $.4.11, assuming that they are associated to some C*-quantum
category. This computation, based on the situation described in Proposition 7.5.5, imposes
consistency conditions by which the E- and D- algebras and certain twisted A- algebras
can be ezcluded. It will be seen in Chapter 8§ that the remaining fusionrules are in fact all
realized as object algebras of a C*-quanium category. In the derivation of these results we
again use the language of local quantum theories which can be easily translated into the

general categorial formulation.

As we have seen in Lemma 7.1.2, any C*-quantum category admits a natural bal-
ancing. The balancing endomorphisms, in this case, are all unitary and are determined

by their values on the irreducible objects. We thus have phases 8, € R/Z, defined by
o.(p) = £R(1,p,5,1)01 =: €% = ¥ (7.115)

where the sign is as in (7.20). These phases will be called spins or statistical phases,

in reference to the spin-statistics theorem for relativistic local quantum field theories.
For some simple quantum categories, the spins can be computed directly from the fusion
rules, without any further knowledge of the category beyond its existence. In doing so,
we encounter consistency relations by which most of the exceptional fusion rule algebras

from Theorem 3.4.11 can be excluded as building blocks for quantum categories.

One of the main tools used to determine spins comes from the analysis of the braiding
relations involving invertible objects o, i.e., 0 € Out(®). Since, for any o € Out(®) and

irreducible ¢ € ®, o o ¢ is irreducible, too, we find that
(o, ¢) o e(p,0) =: m(o,¢) = m(¢,0) = U ON (7.116)

with
0,(4) = 04+ 8, — f04 mod 1. (7.117)

The properties of the phases ©,(¢) that can be obtained from the polynomial equations

have already been mentioned at the end of Section 3.3. We give a more complete summary
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in the following lemma.

Lemma 7.4.1 Suppose ® is the fusion rule algebra of a C*-quantum category, and let

0.(¢) € R/Z, e, o € Out(®)

be defined as in (7.117). Then the following statements hold.

i) For any o € Out(®), the map
O,:® - R/Z
18 a grading, i.e., there ezists a character,
0, : Grad(®) —» R/Z,

such that
©, =0, ograd.

i) The assignment

@' : Out(®) — Grad(d)

o — O

ts a group homomorphism.

(7.118)

i) Ifi*: Gra’.d\(Q) — D’(E) is the pull back of the inclusion D(®) C Grad(®) then

@' : Out (®,) — keri® = (Grad(®)/ D(3)).

Thus there exists a homomorphism

0":D(®) — D(®)

9;’, (91)
such that i*0@, = Og.()-

‘U)‘lth @”1 ( g2 )

g
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Proof. If 13 € 11 0 93, i.e., there exists an isometry 'y, oy, vy # 0, it follows from

e3(@s(¥1)+0,(¥3)) Ly, o¢a.9s

Y1 (e (¥2,0)) € (¥1,0) £(a,9%1) ¥1(e(0,%2)) Tyrovan
Y1 (e (¥3,0)) £($1,0) 0 (Tyopus) £(0,%3)

= Tyiovaws €(¥3,0) = Ty opny, €27070),

I

(7.121)

I

that ©, (¥3) = O, (1) + O, (¥2) mod 1, i.e. O, is a grading. Here we use the notation
(1), as in the frame work of local field theories, instead of the more conventional notation
1,01, for an object ¢ and an arrow I. Similarly, we have that O, o0,(¥) = ©,,(¥) +
O,,(¥) mod 1, using the fact, that oy (£(02,%)) €(01,¥) is equivalent to £ (o1 0 02,%).

This shows that O, is a grading, and hence, by the considerations of Section 3.3, can

l
o)

be expressed by the homomorphism ©
we have that ©,, (7;) = O, (0;), which implies (:):,,1 (grad (o3)) = (:);2 (grad (o1)), and

and ¢ — @ is also a homomorphism. Clearly

therefore, since grad (o) = 1, Vo € Out (®,), statement iii) of Lemnma 7.4.1 follows. O
In the Z,-graded case, the most general expression for ©,(¢) can be found without diffi-

culty:

Lemma 7.4.2 Assume & is the fusion rule algebra of a C*-quantum category and
Grad(®) = Z,. Let r be given by D(®) = Z, and the inclusion D(®) C Grad(®) by

a"Z, C Z,, where a = r-a". Then there is a homomorphism
7: Out(Po) — Za»

and, for any fized oy € Out(®) with grad (0,) = a", a number h,, € Z,, with

ke, =n(0o]) mod a", (7.122)
such that
@,{.oﬁ(tﬁ) = (k ﬁ;—‘ + %ﬁl) grad(¢) mod 1, (7.123)

for all B € Out (), 4 € ® and k € Z.

Proof. Clearly every © € GI;E(Q) = 7, is determined by some number kg € Z,, so that

O(grad(¢)) = -hfl grad(é) mod 1.
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A character O is in ker1* iff it annihilates a"Z, C Z,, i.e., iff hg is a multiple of . Hence

keri® = {o 30 € Zun : O(grad(4)) = 12 grad() mod 1}

The homomorphism ©’ : Out (®,) — ker:* from Lemma 7.4.1 iii), is then determined by
the homomorphism 5 : Out (®o) — Zan, with Og(1) = Z5*. Furthermore, by Lemma 7.4.1
ii), h: Out (%) — Z, with ©,(1) =22 isa homomorphlsm. Therefore, for some fixed
o1 € Out(®) with grad oy = a”,

Olpea(1) = k0L, (1) + @(1) = k 22t 1 1),

So far this is the general form of a character on Z x Out(®,). However, in order to be
a character on Out(®), we have to make sure that it vanishes on the kernel of the pro-
jection o x B — o% o B, which is generated by o7 x o;". The latter yields the condition
ko, =n(07) mod 1. Together with Lemma 7.4.1 i) we obtain the assertion for ©,4,5(¢)
from the formula for 9:,;0,3( 1). O

It is clear that the above result gives an exhaustive description of the homomorphisms,
o — 0, since Z x Out ($o) — Out(®) : k x B — oF o B is surjective for any o; € Out(P)

with grad (¢1) = a”. The choice of h,, depends on o} as
ho,o — he, = ™(B) mod a. (7.124)

In the case where oy = (1,1) is the canonical automorphism of the presentation & =
Ta (Z, * ®"), with Grad(®") = Z,», then h,, is constrained by h,, =n(a)mod a”, as
o] = a. The relevance of Lemma 7.4.2 can be understood if we rewrite equation (7.123)

in terms of the spins:
0,‘ - 0¢r°ﬂ°¢ = (k TI(IB)) grad(¢) - 0,{-05 mod 1. (7.125)

Suppose we know the spins of elements in Out(®). Then (7.125) gives the change of the
spin-value of an arbitrary representation under the multiplicative action of Out(®) on $.

The determination of the values §,, ¢ € Out(®) is the content of the next result.
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Lemma 7.4.3 Suppose ® is a Z,-graded fusion rule algebra of a C*-quantum category,

and let a"” and r be as above. Then there are homomorphisms

7:0ut(®p) — Zg»
and §:0ut(®) — Z,

and, further, for any fized oy € Out(®) with grad (o1) = a", constants
hql € Zgu and Eqy € Zz ,

constrained by

n(0]) = heo, moda” (7.126)
and §(0f) = r(es + hs) mod2,
such that
s k?
Oshop = —(—2ﬁ—) ~ 5 (hg, + T€4,) mod 1, (7.127)

for all B € Out(®o) and k € Z, and equation (7.125) holds for any ¢ € ®.

Proof. If we insert ¢ = o¥ o §' into (7.125) and use grad (a{" 0,3’) = a" - k' we obtain
that

ho
9,{.05 + 0,:.’051 = evf'“'loﬁoﬁ’ + Tl' k. k’ mod 1. (7128)

In particular, we find, for k = k' = 0, that Out () —» R/Z : 8 — 0 is a homomorphism.
Since for spins we have g = 05 = 6g-» = —0g mod 1 the range of this map is in %Z/Z,
i.e. 205 =0 mod 1, VB € Out (P,). The spins on Out (Py) are therefore given by

65 = % §(8) mod 1 (7.129)

where § : Out (o) — Z3 is a homomorphism. Setting 8’ =1 and k = 0 we obtain the de-
composition f,x.8 = pi + 36(B). The numbers px € R/Z, k € Z, are defined by px := 0.
and satisfy po = 0, pr = p and, by (7.128), px + Per = Prsk’ + h—:’- kk' mod 1. The most
general solution of these equations is given by p, = —5:72 , where gq € Z,, obeys
g = ks, mod r. The latter constraint is solved if we pick some h,, € Z;, such that its

image under the projection Zy, — Zj./ aZ; = Z, is the original h,,, and set
q=hg +1-€5, mod(2r)
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with &, € Z,. (If a” is even this is also well defined for the original k,, € Z,). Finally we
have to make sure that 0,508 a8 given in terms of the above decomposition, is well defined,

i.e., we have to impose the condition }§(0]) = p, = —F = —§(hs, + 7€, ) mod 1,

which is just condition (7.126). This, together with Lemma 7.4.2, proves the claim of
Lemma 7.4.3. O

For convenience and later applications we give a more detailed description in special cases:
Corollary 7.4.4 Let ® be as in Lemma 7.4.2

i) If a" = 1 then there is some h € Zy, such that for

o h
by =04+ % grad(¢)(a + grad(¢)) ,
we have
0;+6; =04, Vo € Out(®), ¢€@. (7.130)

In particular, 0 — 6 is a homomorphism of Out(®) to Z; whose kernel contains
all a®, a € Out(®), and stab(4) for any ¢ € ®. If it also contains Out (), i.e.,
62 =0, Vo € Out (), then h can be chosen such that 6 vanishes for all invertible

elements.

it) If a" =2, and, for oy € Out(®) with grad(o,) =2, there is some p € & with

010 p = p and grad(p) = 1, then there is some h,, € Zy, and homomorphisms

7,86 : Out(®) —» Z,

obeying
7(07) = hs, mod 2 and 6 (o]) = rh,, mod 2
such that
§(B) kh,
0,{.05 = —2—- - 71— mod 1 (7131)
and
ho §
b —Ooropoy = E“— k(k + grad(¢)) + ————(26) + ﬂ_(f) grad(¢) mod 1. (7.132)
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If h,, is even, i.e., there is some v,, € Z, with h, = 2v,,, then

by := 84+ 14‘;—‘ grad(¢)® mod 1

is well defined and there ezists a homomorphism 7 : Out(®) — Z; with 7j(01) =0
such that

(o)
2

and 0 — 07 is a homomorphism Out(®) — }Z/Z, with 83, = 0. In particular, we

6+ 65 ~05,4=

grad(¢) (7.133)

have

Ooros =0y, forall €. (7.134)
If hy, is odd, then we have o] # 1. If Out(®o) = {1,07}, with 0] #1, and 7 :
Out(®) — Z,, is the canonical isomorphism, with n (0,) = 1, then

ha,
04 ~ Ooop = - (n(0) + grad(¢)), (7.135)

for any o € Out(®) and ¢ € d.

Thus for odd h,,, o] € stab(@) implies grad(¢) = r mod 2.
Proof.

1) Clearly, for a” =1,  does not appear in the formula and h = h,, is independent
of 01. The equation (7.130) then follows immediately from Lemma 7.4.3 and implies

the remaining remarks in i).

i) From (7.125) and Lemma 7.4.3 we obtain, for the case a” =2 and 0, 0 p = p with
grad(p) = 1, that

he
0 = 05— 0,=0;—0c0; = — grad(p) — s, =
a
h, 1 Eo
= —-a—‘+;(h,1+re,1)=—21, 80 &5, =0.

The first part of Corollary 7.4.4 ii) is obtained simply by specializing Lemma 7.4.3
to a”" =0 and inserting £,, = 0. The following statements are again immediate

consequences of (7.132). a
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In the proof of Proposition 7.3.1 the unitary representations of the braid groups and the
Temperley-Lieb algebra, that arise in local quantum field theories have been considered.
It follows by straightforward translation that all of the statements made there also hold for
a general C*-quantum category. In particular, we have Temperley-Lieb projectors e,{p, p),
for any invertible ¢ € p o p, which satisfy the generalized Temperley-Lieb equations (7.57)
and (7.58), and, for a two-channel-situation po p = o @ 1, the decomposition (7.67) of

the statistics operator.

The restriction of the possible values of g, to g, = e*aﬁi, where N is the Coxeter num-
ber of the inclusion graph of the tower discussed in Section 3.4, evidently has to imply cer-
tain restrictions on the possible values of spins. These are given in the next lemma. Here
we also distinguish the situations corresponding to the two signs in I'},_ ;0 (Tpop1) = :*:%P,
d, > 0, for p selfconjugate. If the positive sign holds p will be called real, for negative
sign p is called pseudoreal.

Lemma 7.4.5 Suppose that for an object p € ® of a C*-quantum category

pop=a1+y,

with o1 € Out(®) and ¢ irreducible, and assume, further, that its monodromy, m(p, p) =
e{p, p)?, is not a multiple of the identity. Let a be given by Z; = Grad (Q[pj), soa"=1
or 2. Then there ezists some t € Zy,, some N € N and a sign such that

t

+60, = -modl
[
and 3 ; (7.136)
:I:O,, = Zﬁ + E mod 1.

Here N is the Cozeter number of the inclusion N,, i.e., |N,|| = |d,| =2cos (%), and,

comparing with Corollary 7.4.4 we have

t = 42k moda, for a"=1,

(7.137)
t = +h,, moda, for a"=2.
For the representation ' := &, o, with ' € po p, we have
2
+ 0,1,1 = —mod 1 , (7138)

N
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independent of t. In the selfconjugate case, i.e., if o, =1, we find t = ba, with § € Z,

(7.139)

and
6 even, for p pseudoreal

6 odd, for p real.

Proof. With the decomposition (7.67) of the statistics operator, we can compute the

statistical parameter:
M1 o= p(Teps) €4(p,0) (Tposa)
2 [(4+1) p(Thopa) €o(prp) p(Tpopa) — 1]

2, [———q" ﬂt 1_ 1]

by the generalized Temperley-Lieb equation (7.57). Using (7.68) we obtain
z

Ap=——F 7.140

(4 1 + s ( )

as in the self-conjugate case of [23]. Comparing with the expression in [15]

1 ) )
2 __ —4mib, _ -1 —4wib,
Ay = e =B e
P

we find
™% — o 2.
Further, the monodromy m{p, p) satisfies

m(p, P) Tpopr = z: q: T pope »

which has to coincide with a similar equation, where the eigenvalue is expressed in terms

of spins, i.e.,
2,2 _ ezn'(za,,—o,l)_

% 49

Combining these equations we have
(7.141)

e?n‘i(q,BP—B,l) = q: .

With g, = e’ equations (7.136) follow from (7.141). In terms of ¢ and N we also find

Z = et(dtt) (7.142)
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In the selfconjugate case we can use the polynomial equation

P (Tsepa) €*(p,0) £ (e¥(p,0)) =T

to obtain

. - 1 5 -
Al’ = Fpop,l P (E (p) p) FP°P.1) =€ d_p zpl 9, ! (7143)
with € = 1 for real p and ¢ = —1 for pseudoreal p, and d, = 2 cos §.. Together with (7.140)
this yields

2___ :‘:w
2, = —€e€

The statement on reality and pseudoreality of p now follows by comparison with (7.142).
For 0,, defined in Corollary 7.4.4, we have 0=0;—63=40,,,,—0;=26; , hence
6,, = —22 mod 1. Equations (7.137) are thus found by inserting the expressions of Corol-
lary 7.4.4. It follows from (7.67) that q: is the ratio of the eigenvalues of the monodromy
m(p, p). In terms of the spins, this ratio is expressed as 3 i(8y=6e1) — e e, (¢') =
e*™®' since ¢’ is trivially graded. Thus equation (7.138) follows from a comparison of

these phases. u

The special situation in which the generating object p has a two-channel decomposition,
pop=o0;+1, allows us to determine the spin for each object by an inductive procedure.
Although the following arguments and computations apply to the general framework of
a quantum category with arbitrary, compatible fusion rules, they are closely related to
the analysis of exchange algebras in conformal field theories presented in [55]. First, we
shall give a formula relating the matrices R*(k,p, q,£) and R™(k, p, q,£) which is derived
in [15] for general local quantum field theories, using the spatial rotation group in M? and
the actual spins. However, the proof given below only uses elementary identities of the

categories under consideration, so that only statistical phases appear in the statement.

Lemma 7.4.6 For any C*-quantum category let the unitary maps
RE(k,p,q,8) : 35 CViri @ CNint — 57 CMuei @ Climt
i i
with R~(k,q,p,2) = (R*(k,p,q,£))”" be defined as usual. Then the following equation for
the matriz elements holds
R+(k,p,q,l)j"’”l = 2i6i+6;=6:-64) R“(k,p,q,l)jvl"' , (7.144)

wp wy
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for any orthonormal basis of arrows or intertwiners.

Proof. Fixing an orthonormal basis, T'oq:(v), ¥ = 1,.. ., Nkps, We consider the composi-
tion

I:=e*(q,k)e*(k,q) k (£¥(P,9)) Thops(¥) Tiogue(h)-
The definition of the R-matrices yields

I = Y R*(k,p,q,0)%" e*(q,k) €¥(k, q) Thogi(v") Tope(n')

'
= 3 Ot Bt (k,p, 4, Y Thogs(v') Tiopa(i')
'y
using the fact that the I'xoq;’s diagonalize the monodromy m(k,q). Alternatively, we
evaluate I using the polynomial identity for Top:(¥):

I

£7(9, k) ¢ (Tropi(¥)) €7(1,9) Tioge(p)
28 +04=00) e+ (g k) g (Thopi(¥)) € (5, 9) Tiog,e(1)
e Ci+8a=00) e+ (g k) e~ (k, q) k (€7 (P, 9)) Thops(¥) Tioge(1)
2 i+0a-6) 5™ B (k,p,q, )1 Trogs(v') Tiopu('),
it
where e~ (p, q) = (e*(q,p))™*. The identity (7.144) is now obtained by comparing the

coeflicients of the two expressions given for I. t

Note that (7.144) is not a proportionality relation among R-matrices, but it is a relation
of R-matrices and diagonal maps on the path space, similar to the ones used in (7.60).
In special cases, however, where we can show that the R-matrix is in some sense block-
diagonal, (7.144) implies strong restrictions on the values of spins and the possible form

of the F-matrix isomorphisms. The precise statement is given in the next corollary.

Corollary 7.4.7 Suppose we have irreducible objects k, ¢, p, so that the statistics operator
is block-diagonal on Int(k o p o p,£), in the sense that

2

Ri(k’p’ p,l) € E® End (CN"’J ® CN""") C End (Ze CMrvei @ (CNip.t)
J -
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(or, more specifically, R*(k, p, p, )%, =0, for i # 7). Then for any £ € supp(p o

[T

p) Nsupp(£ o k) the spins obey
O+ 0, — 20, =0 —20, mod 1, (7.145)
whenever the corresponding block of the F-matriz
F(k,p,p,0)% : CNows @ CNint — CNutit @ CNort

15 MOT Zero.

If, for irreducible objects, k, £ and p, we have that there is a single object, j, with

supp(p o k) Nsupp(p o £) = {j}

then the equation (7.145) holds, without any assumption on the R- and F-matrices, and
8¢ 1s independent of £ for all ¢ € supp(p o p) N supp(£ o k).

Proof. Assume R*(k,p,p,£) has the proposed form and consider the block-matrices
R*(k,p, p,£)}, € U (C¥wi @ CVint), with R (k, p, p, £} = (R* (k,p,p,£)1) . 1f we spe-
cialize (7.144) to p = ¢ = p and ¢ = j we find the equation

R¥(k, p, p, L)} = €% ~0c=0) R=(k, p, p, L)}
thus

M(k,p, P, Z)J = 5]’:’ 2i(26;~0c~0x) l(CNkp’j Nit (7146)

where M(3,7,k,1) := R*(3,k,5,)R¥ (2,7, k,1).
As remarked earlier, the isomorphism F(k, Py 0, £) : TSOCNRei @CNirt — FOCNket @ CNose,
j 4

diagonalizes the monodromy matrix, M(z,7, k,1) , in the sense that, for
Mk, p,p,2) = F(k, p,p,£) M(k, p,p,£) F(k, p,p,8)™* € End (Z%Nw ® (cNmf) ,
3

we have

Mk, p, p, £ = Seer €@ C00) 1y o, (7.147)

It follows, that (7.146) is equivalent to
F(k, 2, p’g)g e21n'(29p—9€) = ﬁ’(k, 2y P, g)f o2mi(26;—6,~6x) :

7

233



for all ¢ € supp(p o p) Nsupp(£o k) and j € supp(k o p) N supp(g o £), which implies the

assertion.

If supp(k o p) N supp(p o £) consists only of one object, j, then the prerequisite on the
block-form of the R-matrix is void. Moreover, in this case the F-matrix provides an
isomorphism of CNsti @ CNiet =2 37 CNuet @ CNert, 50 none of the different blocks can
be zero, if ¢ € supp(p o p) Nsupp(£o k). Hence equation (7.145) holds without further

assumptions. m]
If d, < 2 it is possible to find situations in which Corollary 7.4.7 is applicable:

Corollary 7.4.8 Suppose for p and ¢ irreducible and 0y € Out(®) we have pop = o1+

and let the spins be given by the ezpressions in Lemma 7.4.5.

1) If, for irreducible k,£ € ¥,
Lepopok and L#0,0k

then
1

Y
holds for all j € supp(k o p) N supp(£ o p).

B + 0, — 26, = + ( ;—a) mod 1 (7.148)

it) If for an irreducible object k € ® also j := ko p is irreducible then their spins are
related by
t 3
+2(0; - 6) = % (1 + 2 grad(k)) + N mod 1. (7.149)

Proof.

i) In the two-channel case, the F-matrix diagonalizes R*(k,p,p,£) in the same way it
diagonalizes the monodromy, using the fact that the multiplicities in the decompo-
sition are at most one. If, in addition, we choose k and £ such that £ # o, 0 k we

have an isomorphism

F(k,p,p,0): Ze CVrei @ CNivt — CNivt
]
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as le,,,l =0 and NPP.'ﬁ =1.

Clearly the action of the statistics operator £*(p,p) on the intertwiner space
= CNwwt @ CNeew i given by R(k, p, p,£) = —2,1, so that also R¥(k, p, p, £) is a mul-
tiple of identity and, in particular, block-diagonal. Furthermore, since F are isomor-
phisms, F((k, p, p,l)}-" # 0, for all j € supp(k o p) N supp(£ o p), and thus, by Corol-
lary 7.4.7, 0,4+ 0 — 20; = 04 — 20, = 6,, + 0y — 26, mod 1. Inserting here the ex-
pressions from Lemma 7.4.5 gives {7.148).

ii) The final statement of Corollary 7.4.7 applies to this situation if we set £ := 0y 0k,
sothat ol =pooy0k=pok=j. Clearlyo; € Lok =0y 0 kok, so that (7.145)

holds for § = &, and can be written as
2(9.1' - ok) = 20# - eﬂx(k) )

where O,, is the gradation given in (7.123). From ©,,(7) =6,, we find that
Og, (k) = Figrad(k), and (7.149) is obtained from the values given in Lemma 7.4.5.
a

The relation (7.148) among the spin values can be used as a recursion formula for the
spins of certain sequences of objects. For any maximal sequence of this type we then
find from (7.149) that its length has to be a multiple of the Coxeter number N. This
observation excludes most of the exceptional fusion rule algebras. The solution to the

recursion and the precise termination-condition are given in the next lemma:

Lemma 7.4.9 Assume p,% € ® are irreducible and g, € Out(®) withpop = oy + . Let
&,7=1,...,L, be a sequence of objects satisfying

=1 —
G=1, = (7.150)
and {5 €poaj1, 241 € pobaj,
such that
Ej-—l # £j+1 fO’f‘ all] = 1,...,L. (7151)
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i) Ift and N are as in Lemma 7.4.5, then the spins are given by

2
74 -1 t
t6; = v T grad (§;) mod 1. (7.152)

Here we have that grad (¢;) = 0, for j odd, and grad ({;) =1, for j even.
11) Suppose the sequence cannot be continued after L steps, i.e.,

pofr = € if L is even

poby, = &1 if L is odd.

Then L+ 1 is a multiple of the Cozeter number N.

Proof.

i) To compute the spins of the sequence ¢; it is convenient to use another sequence, v;,
of objects given by ~z(;41) := olo &(j41) and Yaj41 1= olo &j41, 7 =1,...,L. For
these we have, with 4; = 1, the simpler recursion relations «;4; € p o y; and 7,41 #
gy 0 Yj-1-

Equation (7.148) of Corollary 7.4.8 is now applicable to the triple k = v;_1, 7 = 75,

£ = 441, for any j, i.e., we have

1t
Brgan +0ryy — 20y, =+ (5 +5-) mod 1.

2N " 2a
With the initial data, £6,, =0 and +6,, = % + £ mod 1 this can be easily inte-
grated to

_ -

- 1y2
+ 0, = L e 4:) t modl. (7.153)

From Corollary 7.4.4 we see that, for any o; with o, 0 g = p, where grad(p) = 1, the

following relation holds for any ¢:
04 = bopop — 85, n(grad(g) +n). (7.154)

This allows us to compute the spins 8¢, from the spins 8,; given in (7.153). Inserting
the value of §,, given in Lemma 7.4.5 we obtain equation (7.152). Finally (7.154)
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can also be used to find the spins of all compositions o] o ¢; which can be expressed
as follows:
-1

t 2
nap = T — . . 1
% 0,70, N + ™ (grad (&;) + 2n) (7.155)

Note that, by identification of the 1 in grad (§;) € {0,1} as the conventional gener-
ator of Zy,, the above equation is meaningful, however the squared term in (7.155)

cannot be substituted by grad (o7 o §;) € Z,.

it} It is again convenient to work with the sequence v; for which the termination con-
dition is poyg = yL—1 0r po L = 0y 0 y;.;. We can now use the formulae from the

proof of part i) to compute

+2 (0010‘71.—1 - a'YL) = +2 (e‘n—x - 0‘11,) * 29’1(L - 1)

(L-1) 3 t
S S T A R 2¢grad dl
N T oyt g (1+28rad(y)) mo
where grad (y;,) = L — 1. If we compare this to (7.149) in Corollary 7.4.8, with
j =0109c-1 and k = 7L, we find as a condition on L: LJN'—I = 0 mod 1. This is just

the assertion. O

Note that not all fusion rule algebras with a generator of dimension d, < 2 have a two-
channel decomposition to which the above analysis applies, namely those obtained from
the D,-algebra. For these, however, we have that po p and p o p decompose entirely into
invertible objects, i.e., supp(p o p) = stab(p). In order to discuss the possibility of finding
spins and eventually quantum categories for fusion rule algebras of this kind, we first
elaborate on the observation, already made in the proof of Proposition 7.3.1 that the

objects in stab(p) := {o : 0 0 p = p} C Out(®) have half integer spin.

Lemma 7.4.10 Let & be a Z,-graded fusion rule algebra of a C*-quantum category, and

a", v as in Lemma 7.4.2.

Then we find for any p € ®, with grad(p) = 1, that

0s=0, VB estab(p), ifa" is odd,
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and, for a" even, we have a homomorphism
6 :stab(p) > Zy: 8 — 5.
The gradation Og for elements B € stab(p) is given by

Os(¢) = g grad(¢) mod L.

Proof. For any p and B € stab(p), we clearly have that ©g(p) = 05. Since f — Og €
Grad(®) is a homomorphism, 8 — 6 is one, too. Since stab(p) = stab(5), we find from the
gradation of ©g that 0 = Og(p) + Og(p) = 205 mod 1, so that s € }Z/Z. Assume now
that p has grad(p) = 1 in a Z,-graded fusion rule algebra. Then we find from Lemma 7.4.2
that ©g(p) = %), and therefore a”g = 0 mod 1. This shows that 8 = 0, for odd a”. The

general form of ©4 follows from the same lemma. a

The formulae and constraints obtained in the previous lemmas, especially in Lemma 7.4.9,
allow us to discard from the list of fusion rule algebras in Theorem 3.4.11 those which are
not realized as object algebras of a C*-quantum category. Together with Proposition 7.3.5

we can sumimarize the results of Sections 7.3 and 7.4 in the following proposition.
Proposition 7.4.11 Suppose p is an irreducible object of a C*-quantum category. Then

i) The statistical dimension of p obeys d, < 2 if and only if we have that

pop=0dY,
where o is invertible and y irreducible, and, furthermore, m(p, p) = €(p, p)? is non-

scalar.

i) If i) holds for p, and p generates the fusion rule algebra, ®, of the C*-quantum
category (or if we restrict our consideration to the subcategory associated to the
fusion rule subalgebra generated by p) then ® and the statistical phases are restricted
to the following possibilities:

a) & is a fusion rule subalgebra of some A, X Z, (the crossed product being the
same as in Lemma 3.3.3), namely (8.117) or (8.120) of Theorem 3.4.11. The
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inclusion, 1, of & is given as follows:

for & = Z’l*Zf) n>1,

(7.156)
1:9 «— A x7Z,

is the inclusion (8.77) from Corollary 8.4.8, multiplied with the identity on
the Z,-factor; for ® = Az, 1 ¥ Z,, n > 2, we have

1:9 o A?n—l X Zg,.

(6, k) — ¢®aFdbr) (7.157)

where £ € Ay, grad(§) € {0,1}, and a generates Z,,.

b) The fusion rule algebra is given by either (8.121), with n odd, or (8.125), with

n even, t.e.,
= T (Agn_l * Z,-) )
withn > 3, and
r=n-+1mod2. (7.158)

iii) Let p;, 7 =0,...,n—1 denote the irreducible elements of the A,- fusion rule algebra
as defined in Lemma 8.4.2 1) with fusionrules (8.75). The possible statistical phases

can be given in terms of the standard spins of A,-fusion rules,

st (]+1)2_1
Ci=—— ——mod
5T fm1) oo

and the set of possible statistical phases, {07}, of the fusion rules corresponding to

Z, are labelled by T € Z,,, with 7r = 0 mod 2, and are determined by

2
07, = s mod 1, (7.159)
2r

where a is the generator of Z,.

a) If ® is a fusion rule subalgebra of A, X Z, and 1 : ® — A, x Z, then every

choice of statistical phases is given by

i9k=§,’(k) modl, kEQ,
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where §: A, x Z, — R/Z is given by
fegat = 63 + 6. mod 1, (7.160)

for some T as above.

b) For ® = 7, (Azm-1 % Z,) the possible phases are given by
80 = 650 + 2—7-8-:—1 (grad (p;) + 2k)* mod 1 , (7.161)

fork=0,...,r—1, and some 7 € Z,.

Proof. First we shall use the previous results to exclude all fusion rule algebras not listed
in Proposition 7.4.11 from those realized in a C*-quantum category. The most important
tool here is Lemma 7.4.9 ii). It states that if A is the matrix-block of N, restricted to ®°,
and we consider the bicolored graph associated to it, every path in this graph starting at 1
for which two succeeding vertices of one coloration are distinct and which terminates at
a point of edge degree one (i.e., an end point of an “external” leg) has to have a length L
with the property that N divides (L + 1). Since all bicolored graphs with norm less than
two are trees, any such path is without self intersection, thus reresents an Az-subgraph
with Coxeter number L + 1. By monotonicity of the norm with respect to subgraphs it

follows that L + 1 < N, and therefore by Lemma 7.4.9 ii)
N=L+1.

Again, monotonicity implies that the Az-graph is already the entire graph.

This fact can also be verified by finding paths in the E- and D-graphs violating the
condition N/(L +1). For d, < 2 and a” = 2 in Theorem 3.4.11, this excludes the algebras
(3.118), (3.119), (3.122), (3.123) and (3.127) with two-channel decompositions of p o p.
The only admissible algebra with a” = 2 is the one in (3.117), since the bicolored graph
associated to A is the Coxeter graph As;,. From Proposition 7.3.4 ii) and the following
remarks we learned that the D,-algebras (3.128), (3.129) and (3.130) are not admissible
either. The additional constraint (7.158) will be obtained in the following calculation of
the spins.
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From Lemma 7.4.3, (7.120), we find the form (7.159) by specializing to Out(®,) = 1
and a” = 1, so that both % and § are trivial. Setting 7 = — (hq, + r€,, ), the constraint
7r = 0 mod 1 is equivalent to (7.119). In order to treat the case = 4, x Z,, with a" = 1,
we use Corollary 7.4.4,1). As Out ($;) = 1, we have 8% = 0, so that formula {7.123) yields

Be.oi = B¢ + 675, (7.162)

for ¢ € o, (i.e. grad(¢) = 0 and 69 =0;), where a is the generator of Z,, with grad(a)=1,
and 7 = h(a + 1) mod 2a; (this form is equivalent to 7a = 0 mod 2).

As suggested above, in the computation of the A,-spins, we mainly make use of
Lemma 7.4.9 i). For the selfconjugate case, po p = 1 4 ¢, this has to be specialized to
t = 8a, with § € Z, as described in Lemma 7.4.5 and we obtain using that jgrad (¢;) =
~3(*-1)mod 1.

g
+ 0, = ng (Ni - 5) mod 1. (7.163)

Let us choose a basis of the A,-fusion rule algebra : {p1 =1, 93 =p,...,pn}. Then N,
is given by
powi = pia+wiqr ,ori=2,...,n—-1,
and poYn = @nt@n1.
The only path, {£;}, in the A,-graph, which satisfies the prerequisites of Lemma 7.4.9 is
the following

i = Wi fori=1,...,n,

b= ' (7.164)
and & = Quaag)— fori=(n+1),...,2n,

so that

Nex. =L+1=2n+41.

Evidently we have the consistency requirement that 8 =6, . ,¥j=1,...,L, which
turns out to be equivalent to § = —N¢,.. mod 4. We find

-2
1°—-1 .
, odd
j2 -1 1 4NCox. I
+ afi = 4 (N - NCox.) = 2 (7165)
cox (Woor =i =1 .
4NCox. '

using that Ne.y. is odd.
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Comparing (7.165) to the explicit formula for the inclusion
i(p;) = pj-1, jodd,
i(gs) = pw_ja, jeven,

we can summarize (7.165) in the formula
+6,=6%, Vo€ (7.166)

This proves the assertion of Proposition 7.4.11, ii) a): & = 4, x Z,.

For the cases = A;,,_; *Z, and ® = 7, (A3.-1 * Z, ), the path we have to consider
is clearly ¢; = (pj-1,0). Here the relevant formula to find the possible values of spins is
given by (7.150). H ® = A3, 1 * Z, we have that o] =1, so 3,;,,6,. = b;, which is the same

as requiring ¢t to be even. With ¢ = 27 and a = 2r we obtain
+ 00,0 = 00 + ZT? (grad (p;, k))* mod 1, (7.167)

and this expression is now well defined for grad (p;, k) € Z,,. The second term in (7.167)
has precisely the form (7.159) for the spins of & = Z,,, the contraint (2r)r = 0 mod 2
being automatically fulfilled.

Finally we consider (7.150) for ® = 74 (A2n-1%Z,). Since bprop; = Gppn_sop; =

0,x_;_a We obtain additional contraints on ¢, r and N, which are given by:

t = 1mod2 (7.168)
r+ 1mod 2 (7.169)

and n

I

To show this we use (7.155) and we replace @ = 2r and ¢t = 27 + 1 to find (7.161). Propo-
sition 7.4.11 is thereby proven. O

Let us add a few remarks concerning the reality of selfconjugate objects, p, with pop =
1 + 9. From Lemma 7.4.5, (7.132), we see that the value of §, already determines whether
p is a real or a pseudoreal object. For instance, for p € 4, it follows from § = —N mod 4
and N = 1 mod 2 that pisreal. This is what we expect, since the reality property provides
a Zj-grading, Grad (Z,,) = 1. However, if p € Ay_; has the standard spin, 85, as for the
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fundamental representation of U, (sf3), it is pseudoreal. The remaining possible values of

spin for a selfconjugate p can be derived from Proposition 7.4.11 as follows:

The possible spins of A;,_; are found from the inclusion ¢ : Az,_1 > Azn_1 X Z;.
For a given 7 € Z,, as in (7.159), this yields the general expression of Lemma 3.4.10 for
the selfconjugate case with

§=71mod 4. (7.170)

The remaining fusion rule algebra with selfconjugate generator is Az,, n > 1. It appears

in the classification as A, X Z;, where the isomorphism is given by

. jFemod?2

p; @a® — pi 1% (7.171)
pN-; J =emod?2

where a is the generator of Z, £ € {0,1}, 7 = 1,...,n. Following Proposition 7.4.11, ii)

we can for A, x Z,, we can determine the spins for some choice of T € Z4. This induces

spins on Aj,, reproducing the formula in Lemma 7.4.5 with
§=N+7mod4. (7.172)

The observation made in this discussion is that a selfconjugate sector p, with pop =
1 + 4, can be changed from real to pseudoreal and vice versa by tensoring it with a semion,

whereas its reality properties are unchanged if it is tensored with a boson or a fermion.

We note that all the fusion rule algebras with selfconjugate-generator are contained
in part a) of Proposition 7.4.11 ii), i.e., they do not involve any 7,-operation. We also
notice that the only enclosing algebras Ay_; X Z, listed in part a) are those with r even.

However, for odd r, i.e., r = 2r' 4+ 1, we have, by virtue of Lemma 3.3.3, an isomorphism

= AN—IXZ" — AN~1*Zr

E@a — (& L+ - grad(f)).

td

The canonical generator of gradation is therefore p = p; ® a'*"" and the parameter ¢ from

Lemma 7.4.9, (7.147) is related to 7 in (7.159) by

t=47(r'+ 1)’ mod 8r. (7.173)
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It is not hard to show that the list of fusion rule algebras in Proposition 7.4.11 is not
redundant, i.e., no two fusion rule algebras are isomorphic to each other. The transfor-
mation of spins under fusion rule algebraautomorphisms are given by automorphisms of
Z,,, changing the constant 7. The sign ambiguity in the determination of the spins reflects
the fact that we can obtain from any braided category a second, in general inequivalent,

one by replacing the statistics operator £ by e~! everywhere.
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7.5 Theta - Categories

In this section we present a complete analysis of categories for which all irreducible objects
are invertible. In reference to what is known as 8 - (or abelian) statistics in quantum field
theory we call these categories 8 — categories. The fusion rule algebra, @, associated to a
0 - category is thus entirely described by an abelian group, G, namely & = N | where the
composition law on ® is induced by that on G. The classification of 8 - categories can be
reduced entirely to a problem in group cohomology. The relevant classifying constructions
are obtained from are the Eilenberg - MacLane spaces, H(G,n), which are the homology
groups of complezes denoted by A(G,n).

In the following discussion we shall not consider the most general aspects of this
construction, but rather exemplify it for the complex A(G, 2) which is obtained by start-
ing from the ordinary inhomogeneous chain complex over G, here denoted by A(G,1). We
provide the basic tools, e.g., a chain equivalence for cyclic groups, the Kiinneth formula
and the universal coefficient theorem, allowing us to compute the homology- and coho-
mology groups of A(G, 1) and A(G,2) in low dimensions. (For details, generalizations and
proofs we refer the reader to the textbooks [59]). To begin with, we review the definition

of the complex A(G,1):

This complex has a grading, A(G,1) = @ A.(G,1), where each A,(G,1) is a free
Z-module, and a canonical Z-basis is given g?rocells, cn=[g1].--19a, G €EG, g Fe,
where e is the unit element in G. We use the convention that ¢, = 0 if g; = e, for some
i=1,...,n. The boundary, 8 € End(A(G, 1)), is 2 map of degree —1, with * =0, and

has the form

8 [g]...1gn]=
[ga | .- 1 ga] + ZI0(=1¥ [on | -+ | g5 Gjta | - 1G] + (=1 g1 | - | gna] -
(7.174)
The resulting sequence of maps of the chain complex is commonly summarized in a dia-
gram
0—2Z 22 A(G1) = zZ[G)/1-Z & A(G1) & .. (7.175)
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We use the notation By(G,1) :=im8ky; = im8 N Ax(G, 1), for the boundaries, for the
cycles we write Zx(G,1) := kerd N Ax(G,1), and the homology groups are denoted by
Hi(G,1) := Z(G,1) /Bx(G, 1). For small k and abelian G, the homologies can be readily
computed. Of course, we have

Ho(G,1) =Z. (7.176)
Since Z,(G,1) = Ay(G,1), and 9(g | k] = [g] + [k] — [gh], Hi(G,1) is the abelian group
with generators [g] and relations [g] + [k] = [gh], s0

g — ld
18 an epimorphisms, and, for abelian groups G, an isomorphism. For finite cyclic groups,
G = Z,, all homology groups are known,
Hym (Z,,1) = 0,
and (7.178)
Hymi1(Zg,1) = Z,.

This result is obtained from a simpler chain complex, M(a, 1), which is homologically iso-
morphic to A(Z,,1). It is a free Z-module with grading, M(a,1) = @ M,(a,1), and
each M,(a,1) is one-dimensional. Hence there are generators v, axﬁowm such that
M (a,1) = Zv,, m =1,2,..., and Mypny4(a,1) = Zw,,, m = 0,1,.... The boundary, 0,
is given by

Ov,, = awpn_1, and w,, =0. (7.179)

Clearly this is the simplest chain complex producing the homology groups (7.178). In
order to define a chain equivalence, we introduce, for some fixed generator 1 € Z,, the

cochain § € Hom (4, (Z,,1),Z), given by
BG)=i, for 0<i<a, (7.180)
and the cocycle ¥ € Hom (A3 (Z,,1),2Z), (with §(y) =709 =0) by

. 1 a<14+3<2, 0<i,j<a
‘7(’»])={ (7.181)

0 0<Li+j<a.
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We note that
53 = ay. (7.182)

The two complexes are related by chain transformations I: M(a,1) — A(Zs,1) and
P:A(Z,,1) - M(a,l), i.e., I and P have degree zero and intertwine the boundary by

The explicit formulae for P and I read

Pam(fit 171 | .. |im | 3m]) = (ﬁv(i.,j.)) o
- (7.184)
Pams (B it 171 |- Lim | Gm]) = (ﬂ(k) I_Ilv(i.,j.)) i
Iano) = X Gal1]linl1)
erim e (7.185)
Limta (wm) = ZZ[1|i1|...|i,,,|1]

from which (7.183) can be verified easily. Here 1 is a fixed generator of Z,. The situation

is summarized in the diagram (the maps @ are defined below):

0 — Z <& A4,(z.1) ‘—% Az (Za,1) —_:_, As(Za)1) =

H P1”11 P,”I, PMI_,, ... (7.186)

0 — Z Zwqg - Zv, < Zun ——

for which (7.183) expresses the fact that each square involving either P or I commutes.
Equation (7.183) also implies that P and I map boundaries and cycles onto one an-
other. Hence they induce maps of the homology groups H(P): H (Z,) — H(M(a,1)),
and H(I): H(M(a,1)) — H(Z,,1). 1t is shown in [57] that there exists a homotopy
®: A(Za,1) » A(Zg4,1) for IP = 1, which proves I and P to be the injection and the

projection of a contraction, respectively, i.e., we have that

PI = 1, 0% +8) = 1-1IP,
8] = 0, P® = 0.

(7.187)
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From this one sees that H(P) and H(I) are isomorphisms of the homology groups,
with H(P) = H(I)™!. A popular strategy to compute the homologies for an arbitrary
abelian group consists of the repeated application of the Kiinneth formula which expresses
Hi (G, ® Gy,1) in terms of H,(G,) and H,(G,), r,s < k, starting from the results on
cyclic groups. We carry out this exercise for the group H3(G,1). We consider the cycles
[z | y] — [v] 2] € Z3(G, 1) and their classes in H3(G, 1),

{9k} =I[g|h]—[h]g]. (7.188)
Using the relations in H3(G, 1) given by the boundaries,
Olg | h| Kkl =[h|k]~[gh|K]+[g|hk]—[g|h], (7.189)
we show that {g | A} is bilinear which means that we have a homomorphism

i2: A’G - H,(G,1)

(7.190)
gAh — {g]|h}.
The Kiinneth theorem for H3(G,1) asserts that the map
c : Hg (Gl, 1) (5] Hg (Gg, 1) D G1 ® Gg — Hg (G1 D Gz, 1) (7191)

is an isomorphism, since Tor (Z, G;) = 0 and by (7.177), where ( is induced on H, (Gy,1)
simply by the inclusion of cycles and, on G, ® G, we define { by

((01®92) ={g1 | g2} . (7.192)

Having a natural decomposition of A?(G, @ G;) with mixed term G; ® G,, we obtain the

commuting diagram:

NG, @ A'G2© G1 © G - A(G1 0 Gy)
lin,al ® 13,6, @ idg, gc, Jiz,(GLG)G:) (7.193)
¢
H;(G1,1)® Hy(Ga,1) 9 G, ® G, - H; (G, ® Gy, 1) .

It demonstrates that if i, ¢, and 1, ¢, are isomorphisms then the same is true for i35, ¢c,-
Since, by (7.178), we have that A’Z, = H;(Z,,1) = 0, we conclude that (7.190) yields an

isomorphism for an arbitrary abelian group G.
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Similarly, A*G appears as a subgroup of H3(G, 1), with inclusion
g1AgaAgs— Y sgn(r) [gr(l) | 9x(2) | 91(3)] , (7.194)
%x€Sy
but, due to non-trivial torsion, Tor (G1, G;), present in the Kiinneth formula, and because

H;(Z,,1) # 0, this is obviously not an isomorphism.

As originally intended, we shall now proceed with the construction of the complex
A(G, 2), for an abelian group G. To begin with, it is essential to remark that A(G, 2) can
be equipped with the structure of a differential, graded, augmented (DGA-)algebra. This
structure manifests itself in the existence of an associative, graded product, *, defined on

pairs of cells, which obeys the Leibnitz-rule, i.e.,

deg(ci *c;) = deg(cy) + deg(ca)

(7.195)
and 8(c,*xc;) = (8c;)*cy+ (—1)%8) ¢ % (Bcy) -
On A(G,1), x is given by
lor |- 19l * [gp4a | .- | Gpial = z sgn () [gr(l) [ 91(p+q)] (7.196)

®ESp,q

where Sp ; C Sp4q is the subgroup of all permutations, called (p, g)-shuffles, with

7(i) < 7(3), for 1<i1<j5<p (7.197)
and for p+1<i1<j<p+gq.
For cells of dimension less than two (7.196) yields
[g] ¥ [A] = [g | A] - [~ | ] = —[h] * ], (7.198)
and
hlk] = h|kl—[A kKl +[h|k
(ol * (41K = [o bk ~[hlg K +[hlk]g (1199)

[h | k] *[g],

for any g,h,k € G.

The first step in the construction of A(G,2) is the definition of a doubly graded,
free Z-module, A(G,2) = @ A(nm)(G,2).
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A Z-basis of A(,m)(G,2) is given by elements [c; | ... | ¢}, where ¢, € A(G, 1) are
cells with Y deg(cx) = n. The total degree of a cell in A(G,2) is then
k=1
deg([er | ... | em)) =m+ ) deg(ck) - (7.200)
k=1
Since A(G,2) has a differential and a multiplicative structure, there are two possible

boundary operators: One is defined similarly to the boundary (7.174) on A(G, 1), namely

o A(,,,,,.)(G, 2) — A(,,,m_l)(G, 2)

el o lem)) = P (-1)s@@btD o | eiuen] . [en].
7=1
The other one is obtained by extending @ on A(G,2) to a derivation,
0" Anm)(G,2) — Apm-1m)(G,2)
(7.202)

(ler ] ... [eml) = S(=1)kdsnd (o ]3] ... | cn] .

7=1
Besides the conditions (8')* = (8")* = 0, one can also prove from (7.195) and (7.201) that
99" +8"9 =0. (7.203)

Thus (A(G,2),8,8") is a double complez, and we can define A(G,2) to be the corre-
sponding condensed complex, where the grading, A(G,2) = @ A.(G,2), is given by
n>0

A,,(G, 2) = @ A(n—j,j)(G) 2) )
=0
and the boundary, 3: 4,(G,2) — A._1(G,2), by
0=0'+d". (7.204)

(In the generalized form of this construction, one can also obtain A(G,1) systematically
from the complex A(G,0): 0 — Z[G] & 0 «— 0. .., and define complexes A(G,n) induc-

tively, for arbitrary n.)

We remark that

5:A(G,1) — ;4](G, 2) (7.205)
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for any cell ¢, is a chain transformation, i.e., 3§ = S0, of degree one. The induced homo-
morphism S, : H(G,1) — H(G,?2) of the homology groups of degree one is called the sus-
pension. In order to describe the cells of A(G,2), we adopt the convention to replace dou-

ble brackets by double bars, e.g. {{g1|galgs] | [g4] | [95196]] = [91192193]|g4llgs]56] € Ag(G,2).
A Z-basis of A(G,2) is given, up to dimension five, by

A(G,2) = Z,
A(G,2) = 0,
A(G,2) = Z[G] = S(A(G,1)),
A3(G,2) = S§(A(G,1)) (7.206)
A(G,2) = S(4(G,1))o D ZlgllH],
gheG
A5(G,2) = S(A(G1)® D Zslhlkle D Ziglhik]
g.hkeG a.hkeG

where G := G\{e}.

Obviously the homology groups of dimension not greater than two remain unchang-
ed, i.e., we have

Hy(G,2) =12, H,(G,2) =0, (7.207)

and

S.01;: G — Hy(G,2) (7.208)

is an isomorphism, where %, is as in (7.177) and S, is the suspension. Also the cycles

Z5(G,2) = S(Z,(G,1)) are the same, so S, is onto, but we have to add the boundaries

9lg|l] = [glh] - [Alg] (7.209)

to S (B3(G, 1)), in order to obtain B3(G,2). From (7.209) it follows that {g|h} € ker S,,

and, by (7.190), S, 013 = 0. Since the latter map is surjective, we conclude
Hy(G,2)=0. (7.210)
The equations (7.189) and

0(91192193194] = l92193194) — [9192193194) + [9119293]94] — [91192|9394] + [g1192193] (7.211)
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hold also for cells in A(G,2), because S is a chain transformation. The remaining

generators of By(G,2) are given by

dlglhllk) = —((glh]* K]+ [Olglh] | [K]] (7.212)
= —[g|hlk] + [g|k|R] — [k|g|h] + [R||k] — (g - hIK] + [g]l%]
and
Olgllalk] = [lg]* [klk]] - [lg] | B[h|k]] (7.213)

i

lglh|k] — [Rlglk] + [h|k|g] + [gli~] — [gllh - k] + [g]|%].

From (7.209) we see that [g||g] and [g]|A] + [R]|g] are cycles. Using the relations (7.212)
and (7.213), we find that they are not independent in Hy(G,2):

{glr} := I[gllA] +[Rllg]
= lg-hllg- h]—[gllg] - [AllA]-

Further manipulations with (7.212) and (7.213) prove that {g||h} is bilinear which, by

(7.214)

(7.214), is the same as saying that [g||g] is quadratic. To be more precise, we introduce

the abelian group I'y(G), with generators {g}, g € G, and relations

{9-h-k}—{g-k}—{h-k} —{g-k}+ {9} + {r} + {k} =0

(7.215)
and  {g}={g7’}.
Then the previous observations imply that there exists a homomorphism
’74 M P4(G) — H4(G, 2)
(7.216)

with 1({g}) = [dllg].

For cyclic groups G = Z,, the chain contraction {7.187) to the complex M(a,1) can be
used to prove that <, is an isomorphism. This depends crucially on the existence of

a multiplication on M(a,1) for which P and I are homomorphisms. Then the maps

P¥((a]...lem) == [P(a)] ... | P(cm)] and T#([c1 | ... | cm]) i= [T (1) |-+ | T (cm)]
define a contraction of A(G,2) to the complex M(a,2) which is constructed similarly.
The homology groups in M(a,2) can be computed easily, and we find that

F4 (ZG) = H4 (Zc)2) = Z(2,n)a (7217)

252



where [1]]1] = T ([wo|wo]) is a generator if 1 € Z, is a generator. The proof that v,
in (7.216) is an isomorphism, for general, abelian groups G, now follows the same lines
as the one for i3 in (7.190). Using that H,(G,2) = G and H1(G,2) = H3(G,2) = 0, the
Kiinneth formula yields an tsomorphism

C : Hy (G1,2) ® H, (Gz, 2) G, G, - H, (G1 (&5} Gz, 2) (7218)

which, on Hy (G;,2), is given by the inclusion of cycles and, on G; ® G, is given by

({01 ® 92) = [31]l92] + [9a]l91] = {gnllg2} - (7.219)

Notice that, besides T'y(Gi) with inclusion i :T4(Gi) 2 T4(G1® @), k=12,

I',(G1 ® G,) also contains a crossed term given by the image of

TG I (Ci18G:): 9199 — {9192} — {¢1} — {a2} - (7.220)

If we compare formulae (7.214), (7.219) and (7.220) we obtain the following commutative

diagram
T4 (G1) ® T4 (G2) ® G1 ® G T;T—» T4 (G: ® Ga)
lﬁ,cl ® 14,6: @ 1dc, 06, J‘u(cleac:) (7.221)
H,(G1,2) ® Hy(G2,2) ® G1 @ Gs ——?——» Hy(G1®Gs,2) .

Thus, with (7.217), this implies, that 74, is an isomorphism , for arbitrary G. We note
here that the suspension

S, : Hy(G,1) — Hy(G,2) (7.222)
vanishes on A®G C H3(G, 1), generated by the expressions in (7.194), by the symmetry
of (7.212) in g and k. Moreover, I'y(G) is closely related to the symmetric part of G® G

by homomorphisms
D:TyG) - G®G:{g} — g®g and
Q:G®G — Ty(G):9®hk — {g-h}-{g}—{h}.
The maps D and Q satisfy QD =2, and 2— DQ =1 —T, with T(¢® k) = h ® g. From
im (D) = ker(1 — T) and D(im Q) = im (1 + T) we obtain a map

(7.223)

D:Ty(G)/imQ —» ker(l1 - T) /im(1+ T) = G/2G, (7.224)
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where the isomorphism on the right hand side is induced by G - G ® G /im(1 + T) :

g — g®g. The group on the left hand side is given in terms of generators {g}, g € G,
and relations, {g -k} = {g} + {h} and 2{g} = 0, and hence is equal to G/2G. Since D
is onto this yields ker D Cim @, and, by DQ =14 T, we have ker D = Q(ker(1 + T)).
Also, we have ker @ = im(1 — T') C ker(1 + T'), so that

Q :2G Zker(1+T)/im(1-T) > ker D (7.225)
is an isomorphism.

In particular, we find that
Do~;'0S, =0, (7.226)

where we use that D o ;! is the restriction of 5 : Ax/Bx — G ® G, with 1y ([g“h] =gQ®h
and 7([g]k|h]) = 0, to H,.

Let M be any abelian coefficient group. The cochains (A*(G,n; M),§), n = 1,2,
with A*(G,n; M) = Hom (Ai(G,n), M) and § = 8*, define cohomology groups which we
denote by H*(G,n; M). We write

B*(G,n; M) C Z¥(G,n; M) C A¥(G,n; M),

for coboundaries and cocycles. The main link between the homology groups determined
above and cohomology groups is provided by the universal coefficient theorem which

asserts that, forn = 1,2,
0 — Ext (Hi_1(G,n), M) < H*(G,n; M) > Hom (Hi(G,n), M) — 0 (7.227)

is exact and splits. Here the epimorphism, e, is naturally induced by Z*¥(G,n; M) =
Hom (Ax(G,n) /Bx(G,n) ; M) 5 Hom (Hi(G,n); M). The left term in (7.227) arises
from the identity

Ext (Hi(G,n), M) = Hom (Bx(G,n), M) /Hom (Zi(G,n), M) ,

and § is induced by 8* : Hom (Bi_,(G, n), M) — Z¥(G,n; M). If G is torsion-free, or if
M is a Q-module, e.g., M = R,Q,R/Z. .., then Ext(G,n) = 0, and a is an isomorphism.
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Note that the map from (7.205) also induces a suspension
§*: HYG,1; M) - H**'(G,2; M),
for cohomology. Among the immediate consequences of (7.227) are
H(G,1;M) = H%G,2;M)=Hom(Z,M)=M
HY(G,,;M) = 0 (7.228)
HYG,%M) % HYG,;M) > Hom(G,M).
With the homologies (7.177), (7.190) and (7.210) at our disposal, we can readily compute
the cohomology groups for the next higher dimensions:
HG, ;M) ——— Ext(G,M)® Hom (A’G, M), (7.229)
(605) ™ @izoa
and

H¥G,2; M) Ext(G,M). (7.230)

(8% o0b0iz)™"

Thus §°*: H3(G,2; M) — H?*(G,1; M) is just the inclusion of Ext(G, M).

The cocycle condition, p € Z*(G,1; M) forsome pu: G x G - M : (g, k) — p([g|h]),
can be derived explicitly from (7.189) as

0 = (8u)(g, h, k) = u(h, k) — p(gh, k) + p(g, hk) — u(g, h), (7.231)

and the additional condition for x to be in S*(2*(G,2; M)) C Z*G,1; M) takes the
form
1 (g, k) == p(h,g) = p(g, k), (7.232)

by (7.209). Here we denote u(g,k) = u([g | A]).
The coboundaries are given, for any A : G — M, by
(62)(g,h) = Mg) + A(h) — Mg - h). (7.233)

Thus, in a fashion more accessible to calculations, the formal identities (7.229) and (7.230)
can be restated as follows: The map & which assigns toeach p : G x G — M, with (7.231),
a skew-bilinear form in Hom(A?G, M), by

a(p) =p—p', (7.234)
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is surjective and vanishes on boundaries. For any symmetric cocycle, u, there exists an
abelian group E D M, with E/M = G, and a section ¢ : G — E, with = 0 ¢ = idg, such
that u(g,h) =¥(g-h)—¥(9) —¥(h)e M. If Ext(G,M) =0, then we have 9¥(g) =
g+ Mg) € GO M = E; hence p = 6], for any p € ker&. In the last considerations we
made use of the well-known one-to-one correspondence between Ext(G, M) and the in-

equivalent, abelian extensions of M over G.

There is another interpretation for H*(G,1; M) in terms of central eztensions of M
over G. The aim of our discussion is now to find interpretations for H3(G,1; M) and
H*(G,?2; M), at least when M = R/Z, and investigate how they are related by the sus-
pension. Contrary to the previous example, S* is going to be very different from a mere

injection. From (7.227), (7.216), (7.210) and (7.190) we find

HYG,1;M) ————  Ext(A’G,M) & Hom(Hs(G,1); M) (7.235)

ij06 "l da

and
HYG,5M) ————  Hom(T4(G),M). (7.236)
v, oax

For later applications, we give a more detailed description of the relations (7.235) and
(7.236) and the associated complexes. The elements of A3(G,1; M) can be given as
functions, f: G x G x G — M : [g|h|k] — F(g,h, k), (G = G\{e}), and the cocycle con-
dition, f € Z23(G,1; M), becomes, with (7.211),

0 = (5f) (91,92,93,94)

f(92,93,94) — f(9192,93,94) + f (91,9293, 94) — f (91,92,9394) + f (91,92,93) ,
(7.237)

and the coboundaries are as in (7.231). Denote by [A] the generators of A3(G,2; M),
where A : G x G — M and §*([)]) = ) € A*(G, 1; M). The elements of A%(G,2; M) can
then be given as pairs [f,7], with f:G x G x G—o M and r:GxG— M, so that
Uf,rl((g|h|k]) = f(g,h, k) and [f,7]([g||k]) = r(g, k). The suspension is induced by the

ormission

S (i) =1, (7.238)
and we find from (7.209) that

A= [0, -], (7.239)
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for the coboundaries in B*(G, 2; M).

Since, by (7.238) and S*§ = §S*, we have that

(5[f,f])([91|92|g3|g4]) = (6f) (91,92:93,94) )

the cocycle condition, [f,r] € Z*(G,2; M), is given by f € Z3(G,1; M) and we obtain the

two equations

0 = (3Lf,m))([glhlIkD)

(7.240)
—f(g,h, k) + f(9,k,h) — f(k,q,h) +r(h, k) —r(g - h, k) + (g, k)

and

=3
I

(8(f, r)((gliR|k])
flg, h, k) — f(h,g,k) + f(h,k,g) + (g, k) — (g, B - k) + (g, k).
The definition of T'4(G) in terms of the relations (7.215) allows us to identify the space

Hom (T'«(G), M) in (7.236) with the set of M-valued quadratic functions, 8, i.e., with all
functions 8 : ['y(G) — M, with

(7.241)

6(ghk) — 6(gh) — 6(gk) — B(hE) + 6(g) + 6(k) + 6(k) = 0

(7.242)
and  (g)=0(s7").
The isomorphism of (7.236) is then given by
0(g) :==v;0a([fir]) =7(9,9)- (7.243)

In particular, (7.236) implies that a cocycle [f;r] is a coboundary iff the diagonal of r

is zero, and, conversely, to any quadratic function 6, there corresponds a cocycle with

(7.243). We now claim that

0 — Hom (A’G, M) & Hom(G ® G, M) 2 Hom (Ty(G), M) ) g3 1. )
(7.244)
is exact, where = is the projection onto A%G, and D is given in (7.223). The definition of D
implies exactness at Hom(G ® G, M), and the composition of maps at Hom (I'y(G), M) is
zero by (7.226). Suppose now that 8 € ker (S‘ o ('74' 1).), for some quadratic function 4.
Then there is a representing cocycle [f; r] with (7.243), and S*([f,7]) = 61 € B3(G,1; M),
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so f =6X. The function 8 is then also represented by the cocycle [f,r] — §{A] = {0, p],
p =1 — (X =X%). The cocycle conditions (7.240) and (7.241) show that p is bilinear and
therefore extends to G ® G. For § € ker (S‘ o (74' 1) ‘), we find

0(g9) = p(g ® g) = D*(p)(g), for some p € Hom(G ® G, M), (7.245)

which proves exactness of (7.244).

In order to extend results on the cohomology of cyclic groups to arbitrary abelian

groups, we consider the dual version of (7.221):

~

HY (G ® Gy, 2 M) ——  @L, H*(G:;,2; M) @ Hom(G; ® Gz, M)

=1
gl’ﬁ,(c,e;c,) gl’ﬁ,cl ® 7ic, ®id

Hom (I'y(G1 ® G1), M) i @2, Hom (I'4(G:), M) @ Hom (G, ® G,, M).
(7.246)
The horizontal arrows in (7.246) that project onto the direct summands of the spaces
H*(G19G;,2; M) and Hom(T'4(G) ®G;3),M) areobtained from the inclusions in
(7.221). Thus, to every quadratic function § on G, ® G, , we associate unique ele-
ments 6; € Hom(T'y(G;); M) , defined by the restrictions of §, and some g = 7*(8) €
Hom (G; ® G, M), where 1 is given in (7.220), such that

0((91,92)) = 01 (91) + 02(92) + ¢ (91 ® 92) - (7.247)
If we set K¢ :=ker (S‘ o (74_1).) =im(D*) C Hom (T'4(G), M) the composition
K(GLQGz) = KGl @ KG, &) Hom (Gl ® Gg, M) (7248)

holds in the sense that Kg, are subspaces of Hom (I (G;) , M) in (7.246). To see this,

we define p € Hom ((G1 @ G;) ® (G1 @ G2), M) to be equal to ¢ on G; ® G, and zero
on all other G; ® G;. Then p((g1,92) ® (91,92)) = (91 ® g2), and (7.247) implies that
Hom (Gy ® Gz, M) C K06, S0, if § € K(,06) then (8 — D*(p)) = 56; € K(c06),
and therefore there is some p with 5 ((g1,92) ® (91,92)) = 61 (g1) + 02 (92). Setting g2 =0
yields 8, = D*(p) [ G1 ® G1 € Kg,, and (7.248) follows.
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The image of S* in H*(G; ® G3,1; M) is thus described by
5% 0 (v7!)" (Hom (T4 (G1 ® Gy), M)

D 5o (15!) (Hom(Ty(Gi), M)) = @@ Hom(T4(G:),M)/Kq, -

1=1,2 =1,2

(7.249)

The complete image of §* can now be easily determined by starting from (7.217) and

iterating (7.249). Note that D*Q* = 2, found from (7.223), implies
2Hom (T4(G), M) C Kg, (7.250)

so that all elements in imS* are of order two.

This observation leads us to consider cohomology with Z;-coeflicients. Since reduc-
tions of coeflicients strongly depend on the original group M, we shall avoid complications
by restricting our attention to the case M = R/Z (in which we are actually interested).

First, we remark that there is an involution, F, on A*G,2;R/Z) with

Ffir)) = [-£:7] - (7.251)

One immediately verifies that it maps cocycles to cocycles, that F§[A] = —§[)] and that
the induced map F is the identity on H*(G,2; M). It follows that 1~ F maps any cocycle

[f;7] to a coboundary. Since we have coefficients R/Z we can choose this as

(1 = F)(Ufir]) = 26[u],

where p € A*(G,1;R/Z). Another representative of the cohomology class of [f;r] is then
given by [f; 7] := [f,r] — 8[u], which, by the last formula, is fixed by F. This means that,

in every cohomology class, we have a representative with
2f=0mod1 and F=#. (7.252)

We denote the space of cocycles obeying (7.252) by Z},...(G,2;R/Z). The restricted
projection Z}  (G,2;R/Z) - H*(G,2;R/Z) is still onto, and its kernel is given by
Blm = Z}um N BY. Since F acts as —1 on the boundaries, the F-invariant set is
given by 2(B*G, 2; R/Z)), where we use the notation ,G = {g € G : g = 1}. But for [}],
with §[A] € B} (G, 2;R/Z), this implies 2[A] € Z3(G, 2;R/Z). Since by (7.230) we have
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that H3(G,2;R/Z) = 0, we can find some p € A*(G,2; R/Z), such that 2[)] = 26u. For
[M] = [A] — éu, we then have §[X'] = §[A] and X(g, k) € 3Z/Z. We conclude that

B (G, 2% R/Z) = 3(B*(G,2;R/Z)) = B*(G,2,12/Z) . (7.253)
Similar to S* in (7.238), we have a well defined suspension of cocycles

St Zhee(G, 5 R/Z) — 2°(G,1;12/2)

e (7.254)
[firl = f.
By (7.253), it has the property
Stymm (Blmn(G: 2 R/Z)) = B*(G,1;12/Z) .
Together with Z} / Bl = H*(G,2;R/Z) this induces a homomorphism
Soyam : HY(G,2,R/Z) - H* (G,1;}2/2) . (7.255)

The connection of g:ym and S* is obtained by considering the short exact sequence of
coefficients

0-12/Z2 S5 R/Z B R/Z -0 (7.256)

and the associated long exact sequence
~ H(G,R/z) 5 B°(G,12/2) 5 H%(G,R/Z) 3 HY(G,R/2), (7.257)

where § is the connecting homomorphism, and 7 and 2 the maps induced from (7.256).

We find the following commuting diagram

*

HY(G,2;R/Z) ——S——> H}G,1;R/Z)
N i (7.258)
u(6,1,12/2z)

For general abelian groups, working with this substitution of the coefficients tends to be
rather awkward. However, for cyclic groups, the decomposition of §* according to (7.258)

turns out to be pertinent. First, we observe that, for G = Z,, H*(G,R/Z) = 0 implies
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& =0 in the exact sequence (7.257), and 7 is injective. From (7.217) and (7.236) we find
that
H*(Za, 2 R/Z) = Zya oy (7.250)

and the generating quadratic function ,8,, is given by

y2

N ] .
90(]) - (20)0 mOd 1 ] VJ € Za . (7260)

Moreover, since Zs @ Z, = Z,, the bilinear functions are generated from
pi®j)=Tmodl, Vij€Z. (7.261)

By (7.244), the kernel of §* (which is, with injective 7, also the kernel of S, ) is given
by Z, and has generator (2,a)d, = D*(p). Hence

imS* =imS, . = Zo,) - (7.262)
Comparing this to
H*(Z,,1;12/) = Hom (2a,32/2) = Zs,,, (7.263)

which follows from H;(Z,,1) = 0, (7.178) and (7.227), we infer that ?:ymm is surjective,
and hence

imS* = im7 = ker2 = ,(H* (Za, ;R/Z)) . (7.264)

For odd orders a, the groups (7.263) and (7.264) are trivial and 8, = D*(p), so that the

representing cocycle in Z} . of the class of 6, is
7‘(1.,]) = P(z®])) Vi)jEZu;
f = 0.

For even order a =: 2a’, the groups (7.263) and (7.264) are Z; and the generator 6, is
mapped to the non-trivial element in H? (Za, 1; %Z/ Z).

(7.265)

We shall use the special dependence given in (7.258), with 2 mapping into and F:ymm
onto, in the way, that, for any representative f € Z3 (Za,l; %Z/Z) of the non-trivial

cohomology class, we can adjoin some (unique) 7 : G x G — R/Z, such that
(f:7r] € Z:‘ymm (Za,2;R/Z) and 1(j,7) = 6a(5).-
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In order to determine a cocycle f of this kind, we employ a chain contraction of the cochain
complex A*(Z,,1; M) onto the cochain complex M*(a,1; M) , where M*(a,1; M) =
Hom (My(a,1), M), M,(a,1) as in (7.179) and § = §*. The projection and injection are
I* and P*, from (7.184) and (7.185), and the homotopy is ®*, and we obtain a diagram

as in (7.186) with all arrows reversed.
The cohomology groups of Z, can be computed directly from M*(a, 1; M) as follows:
Since 8 is zero on Mzm41(a, 1), § vanishes on M*™(a,1; M), and we have
B¥™tYq ;M) = 0, (7.266)
Z*™(a,1;M) = Hom(Mam(a,1); M)=M. (7.267)

Furthermore, it follows from (7.179) that

B*(a,1;M) = a-Hom(Myy,(a,1);M)=aM, (7.268)
and
Z2* (e, 1; M) = .(Hom(Mam4i(a,1);M)) = M. (7.269)
Finally
H*™(a,1; M) = M/aM, (7.270)
and
H™ (g, ;M) = M. (7.271)

In particular, for odd dimensions, two cocycles are cohomologous only if they are equal.

Equation (7.271) confirms that H? (a, 1; %Z/Z) % (Z,) = Z; for even a, and the

non-trivial cocycle is

q: Msy(a,1) — 3Z/Z,
(7.272)

with  g(w;) = }modl.

Thus, a non-trivial cocycle f € Z3 (Za, 1; %Z/ Z) is given by

f=Pq), (7.273)

where P has been defined in (7.184). The explicit expression is then found from (7.184)

as

fG,5,k) = q(Pa([l5]k]))

= %ﬂ(i)'y(j,k) mod 1,

(7.274)
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for all 4,5,k € Z, , and with B, asin (7.180) and (7.181). To find the cocycle [f;7] €
2} (Za, 2; R/ Z) representing the class of the generator 4, € I‘;(%.,), we have to solve
the following set of equations for r : Z, x Z, — R/Z:

jz
r(7,7) = S modl,

2a
r(i,5) = r(5,9), (7.275)
and
r(3,7) +r(i, k) —r(i,5+ k) = 3B(i)7(j, k)mod 1.
Here we used that f is symmetric in the last two arguments and f = —f. One easily

verifies that

r(i, ) = (7.276)

ZCEGI |
is a solution, by viewing the left hand side of (7.276) as a 2-coboundary for fixed i
and using (7.182). In a more systematic approach, this particular cocycle can also be
obtained from the chain complex M,(a,2) that we mentioned previously as being ho-
mologically equivalent to A,(Z,,2). Starting from § € Z%(a,2; R/Z) C My(a,2), with
§(lwo | wo]) = 35 mod 1 and §([wy]) =3 mod 1, [f;r] is the same as (P#)‘(q). More

precisely we have

i
1l

r(i,5) = q(P*(lls)) = &(P(ED) | PG
fG,5,k) = G(P(LlIRD) = (PR,

which reproduces (7.274) and (7.276). We interrupt our line of arguments with a summary

(7.277)

1

on cohomology of cyclic groups.

Lemma 7.5.1 For any a € N, we have
H*(Za,2;R|Z) = Z3 0)a -

(Here (2,a) =1 ifais odd and (2,a) =2 ia is even.) A symmetric cocycle [f;r] €
Z i (Za, 2; R/ Z) with the property that [f;r] generates H*(Z,,2; R/Z), is given by
"Grd) = 0 G POBG) mod
(7.278)
f(,5,k)

523 PG, Ky mod
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for all i,5,k € Z,. For the suspension
S*: H*(Z,,2;R/Z) —» H*(Z.,;R/Z) = Z

we have

IR

imS* = (H*(Z.,1;R/Z)) Z(2,0)
and (7.279)
ker S* = 2H4 (Za)llR/Z) Z“'

1R

In particular, for even a, the cocycle f € Z3(Z,,1;R/Z) from (7.278) represents a non-
trivial cohomology class in H*(Z,,1;R/Z).

The technology presented so far allows us to generalize Lemma 7.5.1 to arbitrary finite
abelian groups

C=20,®...0L,. (7.280)

First, the quadratic forms of G are decomposed by iterating the lower horizontal map in
(7.246):
Hom (T4(G), R/Z) = @ Hom (T4 (Zo;) ,R/Z) ® @ Hom (Zo, ® Za;, R/Z) . (7.281)
=1 1<i<j<n
For any 8 € Hom (I'y(G),R/Z) and any g € G, given by g = g1 - .- gn, 9i € Z,,, We can use
(7.247) to write the components of § in (7.281) in the form

6(g) = EO (g:) + EP*J (9 ®95), (7-282)

I<J
where §; € Hom (T'4(Z,,),R/Z) is given by 8; = 8 [ Z,, and p;; € Hom (Z,'. Q L, R/Z)
by pi; (9: ® 9;) = 0(gi g;) — 0 (g:) — 0 (g;). More explicitly, we have

Hom (T'y(G),R/Z) = @ Z2o)e: ® D Zasay) (7.283)

1<i<j<n

in the sense that, for some given generators ¢; of Z,; C G,i=1,...,n, we have

hi T Tii
o(en...em)=Y —— v+ —Y _yv,modl, 7.284
( 1 ) ; (2,0,‘) a; z k] ( )

1<i<i<n (a:,8;)
where 7; € Z(3,4)q; and 7;; € Z(y;,q;)- The decomposition (7.248) together with the special

result (7.279) put us in the position to determine which of the functions § from (7.284) have
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bilinear extensions to G ® G, i.e., § € im D*, and are thus annihilated by the suspension
) ) ) y

map in (7.244). The condition is

0c K¢ iff (2, a.;) I T, Vi

I
—
R,

N (7.285)
From the two short exact sequences

0 — imD* — Hom(['4(G),R/Z) ——  Hom(ker D,R/Z) — 0

El'r: glﬁ E%—‘

5=

0 — kerS* — HYG,2;R/Z) —— imS*C H}G,;R/Z) — 0
(7.286)
we can derive the unique isomorphism g, which, together with (7.225), yields
imS* 2 ker D = ,G. (7.287)

For G as in (7.280) this group is Zs, 2) @ . .. ® Z(a, 2), and the map :* can be explicitly
given, once we pick o; = a;(¢;) as the generators of ker D, which are of order two, for

even g;, and zero, for odd a;. We have

7§

*(6) () = Za)

For the computation of representing cocycles for the associated cohomology classes we no-

mod 1. (7.288)

tice that by the commutativity of (7.246), the following short exact sequence is a canonical
presentation of H*(@,2;R/Z) in terms of cocycles and coboundaries, compatible with the

decomposition (7.281):

0~ DB (Z..,5R/2) < D2z*(Z.,3R/Z) & D Hom(Z, ®Za;,R/Z)
=1

=1 1<1<3<n
n n
B*(G,a;R/Z) Z2%G,a;R/Z)
H*G,a;R/Z) — 0

(7.289)
Here the surjection onto H*(G, a;R/Z) is given for the crossed terms by the identification

Hom(z,,,.®z.,,.,R/z) —  ZYG,%R/Z)

pij — [0; 0],
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where p € Hom(G ® G,R/Z) = @ Hom (Z,, ® Z,,,R/Z) is equal to f;; on the summand

with r = ¢ and s = j and zero for all other » and s.

Furthermore, the inclusion Z24(Z,,,2;R/Z) C 2*(G,2;R/Z) is naturally given by
(1r,#) : AY(Z,,,2;R/Z) — A%Y(G,2;R/Z), where 7¥ : A,(G,2) - A,(Z,,,2) is the chain

map obtained from the projection n; : G — Z,,, with

(ol 1 gal) = lmi(g) |- I mi(gn)]
g € G. Explicitly, [f;,r:] € Z2*(Z,,,2; R/Z) is identified with [f;7] € Z*(G,2;R/Z) by

(g, k) = ri(m(g), (k)
and (7.290)

flg:h, k) = fi(mi(g), m(R), 7i()) .
Exactness of (7.289) also implies that two cocycles with a decomposition of this form
are cohomologous iff their contributions in each Hom (Z,.. ® Zq;,R/ Z), 1<i1<j3<n,
are equal and the respective components in  Z*(Z,,,2;R/Z) have the same class
in the space H*(Z,;,2;R/Z), for all i =1,...,n. Suppose now we have a quadratic
function, 6, given by (7.284), with coeficients 7; € Z(,0,); and Tij € Z(q;,a;). Then we can
use the compatibility of (7.289) with (7.281), the canonical representatives for the mixed
terms and the explicit formulae for the cocycles (7.290), given in Lemma 7.5.1, to obtain

a representing cocycle for the class associated to 8. It is given by [f;r], where

P B ) = 3 B )

Tiy
+ —— y; p; mod 1
15.%5,. (ai,a;) "7 ’ (7.291)

and

feEr a0 a . a8 )

> s

1=1 (2’ '
The advantage of this normalization is that [f;r] € ker S* if f =0 (instead of just
f=68)).

ﬁ( i) ¥ (i, mi) mod 1.

Alternatively, we can find from these expressions representativesin Z2 (G, 2;R/Z),

defined in (7.252). They are obtained from [f;7] = [f, r] — §[A], with

At )= ) B (w) B (k)

1<i<j<n 2 (d,, J)
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so that

P ) = L A ()

) i

t Y ey (B) Bs) + B () B (k)

1<i<j<n (
and

f(fl .- :n) I-lx.“#,;’ ;n"-g'h 2(2 ﬂ(V:)‘Y(F’u"I)

] l

+ Y A Bw) () (7.292)

1<icien 2 (a0 a5)

E % 7( Vi, ,U':) 13(77,1) .

1<i<j<n 2 (a,,, a;)
Given these normal forms, we end here our discussion of the algebraic properties of the
cohomology groups H*(G,2;R/Z) and turn to their interpretation in the context of 6-

categories.

In general, if a cohomology group, H*¥(G,n; M), with k > n > 1, admits an inter-
pretation (e.g., in terms of a classification of certain algebraic objects), we expect that
there exists a similar interpretation of the group H**'(G,n + 1; M), which is related to
H*(G,n; M) by the suspension S* : H**'(G,n + 1; M) — H*(G,n; M), and, further, that
there is a connection between these interpretations which is parallel to S*. We already
encountered the example §* : H3(G,2; M) —» H*(G,1; M), where the suspension could be
interpreted as the inclusion of the group of abelian extensions of M over G into the group
of central extensions of M over G. A similar relation can be found for H*(G,1; R/Z) and
H*(G,2;R/Z).

The group H3(G, 1; R/Z) can be naturally interpreted as the classifying object of in-
equivalent, relaxed, monoidal C*-categories with fusion rule algebra & = N¢. Analogous
results have been obtained in slightly different contexts, with possibly nonabelian G, like
in the classification of WZW-actions with gauge group G [60], or in the guise of quasitrian-
gular quasi-Hopf algebras, 4 = C[G] ™ C(G), with certain restrictions [33]. Nevertheless
we shall recall the derivation in a purely categorial language. For a category of the type
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specified above, the composition of two irreducible objects is again irreducible, hence the

associativity isomorphism,
aghk € Mor(go(hok),(goh)ok) (7.293)

for irreducible g, h and k, is irreducible, too, and, as the arrow space in (7.293) is one-
dimensional, we can consider it to be a scalar. A realization as a linear map is obtained
if we choose a basis, T'gongn € Mor(g - h,go k), and let a act on these arrows by left

multiplication, i.e.
aghk (1g X Thoknk) Tooqhk)onk = #(g, b, ky g - b+ k)ik (Toohgh X 1k) Tonokghi, (7.294)
the @-matrices are numbers. We shall use the simpler notation
&g,k k,g- h-k)h = miflahk) (7.295)

Clearly the numerical data from (7.295) and a choice of basis determines a uniquely. In
order for a to determine a monoidal category, it has to satisfy the pentagonal equation,

meaning that the following diagram has to commute

Qg1,92,9309 Qg 092,93.94
)1 0(92 ° (93 ° 94)) _ (gl ° 92) ° (93 ° 94) I ((gl o 92) o 93) 044

llm X Qg;,03,94 Qgy,92,93 X 194[

ayl 192093,94
919((92 0 93) © g4) » (g10(g920493))09s.

(7.296)

In terms of f : G X G X G — R/Z, this is equivalent to

f(91,92,95-94) + f (91 93,93,94) = F(92,93,94) + f (91,92 93,94) + f (91,92,93) .

If we consider f as an element of A*G,1;R/Z) and compare this to (7.237), (7.296) is
reexpressed as

f € 2%G,1;R/Z). (7.297)

We may now ask when two categories C and C' with identical objects, ® = N¢, and defined
by cocycles f and f' are isomorphic. An isomorphism maps the spaces Mor(g o A, g - k)
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goh,gh

obviously has to exist A : G x G — R/Z with

onto each other. Thus if {I" } is the image in C of the basis chosen in C’ then there

gongh = € N Toop g (7.298)

and f' is the cocycle determined in the basis (7.298) instead of {['gongn}. From (7.294)
we see that they are related by

f(.g) h’ k) - fir(.g: h: k) = _A(g: h) - }‘(gky k) + A(h: k) + A(gx h- k)
(7.299)
= (6X)(g,h, k).
Thus f and f' define isomorphic categories iff
f-f € BYG,;R/Z). (7.300)

Hence the possible associativity arrows and thereby the possible inequivalent monoidal

categories with ® = N are identified with elements in H3(G, 1; R/Z).

An analogous interpretation can be found for H*(G, 2; R/Z) if we require that the
(relaxed) monoidal C*-categories, with & = N, in addition admit a braided structure.
We call a braided category of this type a f-category. The statistics operators of a -
category

€(g,h) € Mor(go h,hog) (7.301)

are determined, for irreducible objects g,h € G, and a fixed basis {T'yon g} , by some
r:Gx G — R/Z, so that

€(g9,h) Tgonng = €™ AT op g (7.302)

For general objects X and Y, £(X,Y) has to satisfy the isotropy and the hexagonal

equation, which can be summarized in the polynomial equations.

We shall use them here in the form of Theorem 2.3.4, where the R-matrices are
defined by

ag_k';,(lg X E(h, k)) a;'h,,‘ (Fgoh,g-h X lk) Fg-hok,g-h~k
(7.303)

= R(g, h, k,g -h- k):: (Fgoh,g-h X lh) rg-hok,g-h-k .
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Combining (7.294), (7.295) and (7.302) we find
R(g,h,k,g-h- k)::: — ¥ilr(hk)+f(g.kh)-f(g.hk)) (7.304)
From this, together with the ¢¥-matrices
@(g, by kyg - b k)bE = g7 @k (7.305)

we can reduce the first polynomial equation

RY(L-g, bkl g-h-E)SE RY (6, g,k,L- g )ik G(L-k,g,k, L g-h-k);5?
(7.306)
=@(L,g,h,L-g-h);aR* (4,9 - hk,L-g-h k)%,
to the condition

f(g,h,k) _f(g;k)h) +f(k:g)h) —’I‘(h,k) +T(g ' h)k) —T(g,k)

= (6f)(l)g) h) k) - (Sf)(l, 9, k’ h) + (6f)(l) k7 9 h)

(7.307)

on the functions f and —r. Since the pentagonal equation also holds for #-categories,
the right hand side of (7.307) vanishes by (7.297). We recognize the resulting equation
as the cocycle condition (7.240). Similarly, we obtain (7.241) from the second polynomial
equation. Thus, a pair of functions f and r defines via (7.295) and (7.302) a #-category
if and only if

[f;r) € 2%G,2;R/Z). (7.308)

Again [f;r] and [f';7'] define the same category iff they differ by a rescaling of the basis
as in (7.298). Besides (7.299), we obtain from (7.302)

r(g,h) —r'(g,k) = Mg, h) — Mh,9). (7.309)

Comparison with (7.239) then shows that the 6-categories constructed from [f;r] and

[f';r'] are isomorphic if and only if
(fir] = [f';v') € BYG, 2 R/Z). (7.310)

This establishes the interpretation of H*(G,2;R/Z) as the class of §-categories with
$ = N€,
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Notice that we have by (7.302)
(5,9) = I, (7311)

showing that r(g, g) is a basis-independent quantity. For a #-category the dimensions of
irreducible objects are all one, so that the statistical phase, 6(g), of an irreducible object g

is equal to its statistical parameter. Hence, we obtain from (7.311) the identification
6(g9) =r(g,9) mod 1. (7.312)
Let us also introduce the (basis-dependent) function v : G — R/Z by

1(g) =r(9,9)+r(9,97) = f (97",9,97") mod 1. (7.313)

We easily find that

¥(9) —y(g7") mod 1

and ¥(g)—1'(9) = A(9,97)A(g7",g) mod 1.

(7.314)

Hence, for elements g € 3G of order two, ¥(g) is an invariant and v(g) € 3Z/Z. In other
words: 7 distinguishes among the selfconjugate elements ;G the real (y(g) = 0) and the
pseudoreal (y(g) = ;) ones. Furthermore v : ;G — }Z/Z is a homomorphism.

For the following considerations let us denote by Cat (G) the class of §-categories
with & = N@. So far, we have achieved an identification of Cat (G) and H*(G, 2; R/Z) only
as sets. Apparently Cat (G) also carries a group structure induced by this correspondence

which we want to describe more directly.

To this end we define a composition of #-categories associated with two abelian

groups G and H.

Cat(G) x Cat (H) — Cat(Go H),
(7.315)

(Ce,Cy) — Cc®Ch.

The objects in Cg @ Cy are given by N¢ @ N# = N(GoH ) with composition

(91,h1)° (gz,hz) = (91 0ga,hi0 hz)
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and the arrows are given by

Mor ((gls hl) ) (92) hﬁ)) = Mor (glr 92) ® Mor (hly hZ) )
with correspondingly factorized arrows a and .

In the cohomological translation, this corresponds to the embedding of the pure
terms in (7.246), H*(G,2; M) ® H*(H,2; M) — H*(G @ H,2; M). If G contains a sub-

group G, with inclusion i : @ < G, then we have the natural map
i*: Cat (@) — Cat (G),
which restricts all arrows to the objects in N¢ and obviously corresponds to
i** . HYG,2;R/Z) — H*G,2;R/Z) .

Let us choose this injection to be diag : G — G @ G : g — (g, g) and consider the compo-
sition
Cat(G) x Cat(G) — Cat(GHG) — Cat (G)
(7.316)
(C&,C2) - CloC: — CL-C:=diag*(CLoC}).

This is by construction precisely the multiplication induced by H*(G,2;R/Z). Therefore
the correspondence between f-categories and group-cohomology is in fact a group homo-
morphism, once Cat (G) is endowed with the group structure given in (7.316). The unit
element in Cat (G) is the ordinary representation category of G, where the statistics oper-
ator is just the flip, and thanks to the special properties of H*(@G, 2;R/Z), especially that
im S* C 3(H*(G,1;R/Z)), the inverse, ', of a category C € Cat (G) can be obtained by
setting £'(g, k) = €(h, g)* and o' = a. (For general, monoidal C*-categories with & = N¢,
the definition of an inverse requires a choice of basis.) As the key observation of our
discussion on f-categories, let us record their correspondence with cohomology groups in

the following proposition:

Proposition 7.5.2 For C € Cat(G) and a given arrow-basis, let the R- and p-matrices
be defined as in (7.294) and (7.808). Then the assignment

(¢, R) — [firl,

272



specified in (7.295) and (7.804, yields an identification of C and its basis with a cocycle
in Z4(G,2;R/Z). The category C is trivial iff f;r] is a coboundary. The induced map

Cat(G) — HY(G,2;R/Z)

is an isomorphism of abelian groups, where the multiplication in Cat(G) is given by

(7.516).

The isomorphismexplained in Proposition 7.5.2 serves as a tool to translate the results on
the properties H*(G,2;R/Z) into the context of the group Cat (G). They are gathered

in the next proposition:

Proposition 7.5.3

1) For a 0-category C € Cat (G), the function 8¢ : G — R/Z; g — 0c(g), defined by the
statistical phases 0¢(g), is quadratic (see (7.242)) and yields an invariant for each C
which is separating in Cat (G). Conversely, to every quadratic function § € I‘@),
there ezists a unique category C € Cat (G) such that 8 = 6c. Hence

Cat (G) - T4(G): C — bc (7.317)
i3 a group-isomorphism.

11) Let G and H be finite abelian groups, Cg € Cat(G) and Cyx € Cat (H) two cor-
responding 8-categories, with statistical phase functions 6g and Oy , and g €

Hom(H ® G,R/Z) a bilinear function. Then there is a unique 6-category
C=Cc®,CycCat(Go H) (7.318)

called the sum of Cg and Cy with “statistical interaction” q, such that the objects
and arrows of C' are as in the sum (7.815), and
Q(g1,h1)(g2.h2),(93.hs) ‘= Cg1,ga,g5 @ Cthy hahs

but
£((91, k1), (92, ha)) 1= e 4h92) £ (g1, 93) @ € (ha, ) - (7.319)
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The statistical phases of C are given by

8c((g, h)) = 6c(g) + Ou(h) + q(h,g). (7.320)

Every 0-category C' € Cat (G @ H) is isomorphic to a category given in the form
(7.818), where ¢ € Hom(G ® G,R/Z) is unigque, and the categories Cc and Cy are
unique up to isomorphisms. If two §-categories C* € Cat (G ® H), i = 1,2, have
a presentation of the form (7.818), in terms of Cg € Cat (G), Ci; € Cat (H), and
¢ € Hom(H ® G,R/Z), the product in Cat (G @ H) can be ezpressed as

Ct-C? = (C& - C) Dla+an) (Chr - CH) - (7.321)

Also we have that
Ce By Cy=Cx Dqt Ce. (7.322)

Suppose C € Cat (G1 ® G; ® G3) is decomposed in two ways
(Ce, Bqiz Ca,) O(gas +a1s) Cas = Cé':'x ®(q{,+q{;) (ClGl D}, Céa) (7.323)

where (g23 + q13) € Hom (G3; ® (G1 ® G3),R/Z) is written as the sum of g3 €
Hom (G5 ® Gi,R/Z), i = 1,2, and similarly (gi; + qi3), then we have
@ o= 4
’ ? (7.324)
Ce; = Cg,.

Hence, for any C € Cat (é G.-), there is a unique, well defined presentation of C
i=1
as a sum of §-categories, C; € Cat (G;) , with statistical interactions given by g;; €
Hom (G; ® G;,R/Z), i < j, denoted by
i=1
such that the statistical phases are given by
0c(gr...92) =D 0c, (9)+ Y aij(gi %), (7.326)

=1 1<i<j<n

where g; € G;.
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i41) Let Cat°(G) be the set of monoidal C*-categories with & = N€ and
o : Cat (G) — Cat °(G) (7.327)

the identification of 6-category as a category in Cat °(G) by omission of the braided
structure, i.e., €. If Cat%(@) is equipped with the same multiplication (7.816), so
that o is a homomorphism, we have Cat°(G) = H¥(G,1;R/Z), and the unit ele-
ment, Co € Cat °(G), is characterized by the fact that there is an orthonormal basis

of arrows such that

Cghk = (Fgo;.'y.;. X 1;‘) Pg-hok,g-h-k F;o(h-k),g-h-k (lg X Fhok,h-k). , (7.328)

and it is realized by the ordinary representation category of G.

For a 0-category C € Cat (G) the corresponding category in Cat °(G) is trivial, i.e.,
o(C) = Co, iff Oc extends to a bilinear form p € Hom(G ® G,R/Z), meaning that
0c(9) = p(g ® g), or equivalently, iff ¢ vanishes on ker D = ;G, where D is given
in (7.229).

Further, we have that
26 = imo ¢ Cat%(Q) (7.329)

and clearly

0 (Co ®qCx) = o (Cc)® o (Cr) . (7.330)
w) If we define, for a 6-category C € Cat (G) the function on 3G given by
Yo =26c | 2G (7.331)
this is a character y¢ € ;G with
1e(9) = f(9,9,9) € 3Z/Z , (7.332)

for any g € 3G A selfconjugate object g € ;G is real if v¢(g9) = 0 and pseudoreal if
16(9) = 3.
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In part i) of Proposition 7.5.3 we merely put the isomorphism (7.236) into the language
of §-categories, using the identification of the statistical phases (7.312) with the quadratic
functions in (7.243).

Part ii) is an application of the Kiinneth formula (7.246), where the spin formula
(7.320) is a repetition of (7.247). In the construction of (7.319) we use that the rep-
resenting cocycle of the mixed term can be chosen in the form [0;p]. The direct sum
decomposition of the cohomology groups entails, as elementary consequences, equations

(7.321)-(7.324) which by iteration yield (7.325) and (7.326).

The map o, which is investigated in part iii), is, in cohomological terms, just the
suspension S* from (7.238). The kernel of o, 0~ ({Co}), is found from the exact sequence
(7.244) or (7.245), whereas the formula for the image (7.328) follows from (7.287). The
obvious relation (7.330) corresponds to (7.248). In part iv), the properties of 4 from
(7.313), evaluated on elements of order two, are summarized. Finally, we combine the
correspondence of Proposition 7.5.2 and formula (7.291) to provide a normal form of

f-categories, for a fixed choice of generators of the underlying group G.

Proposition 7.5.4 Let G be a finite abelian group with generators §;,1=1,...,n, such
that
G = Z«u(&l) D---D Zan(fn) . (7333)

Then

1) the group of 0-categories over G is given by

Cat (G) @Z(g a:)a; D @ Z(a..n,) , (7.334)

1<i<j<n

and, for a given category
C=(n,1<i<n, 7; 1<i<j<n) (7.335)
with 7; € Zg,a,)a; and 7i; € Z(a;,0;), the statistical phase function is given by

Oc (€7 ...68™) Z (2 u‘- + Y ﬁ viv;mod 1. (7.336)

’ ' ] 1<i<j<n
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The set ker o of categories which are trivial as monoidal C*-categories is character-
ized by the condition
(2,a) | 5, i=1,...,n. (7.337)

The tmage of o, i.e., the set of monoidal C*-categories that can be equipped with
a braided structure, is given by

G‘(Ca.t (G)) S Z(g'al) DD Z(z,a,.) . (7.338)

More ezplicitly, there are categories D; € Cat®(G), i=1,...,n, such that

{D:} ;= even @re independent generators of order two, and
U(C) = T1D1 DD TnDn (7339)
where C is as defined in (7.334) and the sum is as in (7.816).

There ezists a choice of arrows such that the R- and F-matrices are given as follows

. ” i ":"_ B(vi) v(pimi)
Ge(v,p,m, v+ p+ )i = (-1)= ©sd (7.340)

and

2xi (Z": z—‘)—,: — B(m)B(m)+ 3 Z—’—j:'“ #."h‘)
RE(v,p,m,v +p +n)§:¢:§ = ¢ \=ilhes 1gi<ign (%% (7.341)

Here we abbreviated v = £ ... €4 and used the functions B and vy defined in (7.180)

and (7.181). The remaining matrices are given by

Gu v+ p+ )i = @, mm v +p )t

and (7.342)

R-(V,#:W,V+#+’7)E:i:g R+(V,/£,17,V+[J+7])§:i:g-

|

For this normalization, ¢¢ is in {£1} and R} in (7.841) is independent of v. Fur-
ther, ¢¢ =1 holds if and only if C € kero. The normalization (7.340) provides
a homomorphism

o(C) — ¢c (7.343)
into the group of possible associativity structures of a category with a fixed basis,
which is a right inverse to the map assigning to each set of Yp-matrices the equiva-

lence class in Cat (G) of categories they define.
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iit) The composition of arrows depicted in (2.56), which appears in the aziom of conju-

gate elements, is given, in the normalization (7.840), by

(Tytogn X 1) @t ggms (1 X Tgogig) = €™ ¢ (g72,1) (7.344)
where
n T:
Y(¥)=) -——v; modl. (7.345)
)= % Ew

ve¢ only depends on o(C) and
o(C) — v € Hom(G, } Z/Z) (7.346)

18 a homomorphism.

If k; := f,(’_::)- denote the generators of the subgroup ;G = Z(3,0) ® ... ® L(2,0,), WE
have, with

e (k8 Ron) = (1) (7.347)

where p(a) =1, for a = 2 mod 4, and p(a) = 0 otherwise, that, for arbitrary C all
elements in 2G N 3G are real (¢ is zero), and, with H := 3G [2G N ;G, the map

-—

Cat(G) - H
C - 7

(7.348)

18 surjective.

In the first part of Proposition 7.5.4, the isomorphism (7.317) from Proposition 7.5.3 and
the formula for quadratic functions, (7.283) and (7.284), are combined, so that the con-
dition (7.337) corresponds to (7.285). In (7.340) and (7.341), we inserted the expressions
from (7.291) into (7.295) and (7.304), using that 2f = 0 mod 1 and that f is symmetric
in its last two arguments. In part iii), the function 7¢ from (7.313) has been evaluated,

yielding a basis-independent statement on the reality of selfconjugate elements.

Given the classification of and the normal forms for #-categories, we anticipate to
find some conceptual insights by addressing the question of duality. In fact, the duality

problem, as posed in Chapter 7.1, can be solved for #-categories in a straightforward
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manner. However, since we also included categories in our discussion that are not equiv-
alent to any strict monoidal category, it is necessary to extend the range of dual objects
from coassociative to quasi-coassociative Hopf algebras, first introduced by Drinfel’d. We
recall how the properties described in Chapter 4.1 have to be altered, in order to yield
the definition in [4]. In the first place, coassociativity (4.2) is abandoned and replaced by
the weaker condition (4.5), for some invertible element ¢ € KX®3. The latter is subject to

the pentagon equation

(1dR®id@A)$)(AR1d®id)(¢)=(10¢)(idRAR®d)($)($4®1). (7.349)

The Hopf-algebra axioms (4.6) and (4.7) remain valid. Also the commutation relation
(4.1) is assumed to hold, but the condition (4.9) becomes

(A ®1id)(R) $312 R13 i3 Raz b

(ldQAXR) = ¢ RizdnaRiad™!.

(7.350)

For quasi-coassociative Hopf algebras, the notion of equivalence is given by so-called twist-
transformations: For any invertible element F € K®?, another quasitriangular quasi Hopf

algebra is defined by the coproduct
AF(a) = FA(@)F' (7.351)
the R-matrix is then given by
RF =g(F)-R-F! (7.352)
and the coassociativity isomorphism by
$"=(1®F) (id® A)(F)-¢-(AQid) (F) - (F'®1) . (7.353)

On the dual space, K*, we still have a product induced by A for which, by lack of
associativity, basic properties, like the uniqueness of inverses, may fail to hold. However,
if we assume that two-sided inverses in K ® (K*)®" are unique then the antipode on K
is unique and antihomomorphic, although it is in general not anticobomomorphic. With

this assumption on X and KF, the twist transformations are not entirely arbitrary. The
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algebra can be equipped with a proper counit, EF, and an antipode, S¥, only if the

elements
1® E(F) and E®1(F) (7.354)
are central, and if
gr=m(1® S)(F) and pr=m(S®1)(F") (7.355)
are invertible and
PF " 4qF

is central. In this case we have
EF =E
and
SF(a) = qr S(a) g5’ - (7.356)

If a quantum category has integer dimensions we can always realize it, in the naive sense,
as the representation category of some semisimple quasi-Hopf algebra, K. The unitarity
constraints on the category then make it possible to choose K to be a quasitriangular,

quasicoassociative *-Hopf algebra.
The *-prefix signifies that K admits an antilinear antiinvolution, #, such that

Ax = *xQ*A
* QxR = R-1 (7.357)
*Q*kQ*p = ¢ L.

The twists are therefore restricted to those with
F*=F"!,

If the unitary representations of an algebra K of this kind obey the selection rules of

® = N then we have

K = C[G)=0(G),
A(a) = oQ®o, O'Gé (7.358)
and
o* = o7,
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The elements R € K®? and ¢ € K®* can be considered to be functions R € C(G x G)
and ¢ € C(G x G x G) on the discrete commutative space defined by the fusion rules.
Using (7.357) we can set

HgRh® k) = e 2 if(ahk) (7.359)

R(g®h) = e*r(oh) (7.360)

with functions f: G Xx G X G - R/Z and r: G x G — R/Z. Conversely, given func-

tions f and r we can express the elements of X by

1 , -
R = IFP E e?mr(guﬂ:) o1 (91) o2 (92) 01 Q o, (7361)
9€G,0:€G
and
1 ,
¢ = W Z e—z-n.f(gx.ga,ga) g (91) g, (92) o3 (gs) (25 ® oq ® o3 . (7,362)
9i€Go:€G

Thus all the conditions on R and ¢ to define a quasitriangular quasi-Hopf algebra can be

translated into conditions on 7 and f.

Since K is commutative and accidentally cocommutative and coassociative, the com-
mutation relations (4.1) and (4.5) are automatically true. Not surprisingly, the pentagon
equation (7.349) reduces to the cocycle condition (7.237) on f and the axioms (7.350)
turn out to be equivalent to equations (7.240) and (7.241). If we choose as a twist-
transformation

F(g®h) = e2™Mah) (7.363)

we find, for the functions f’ and 7’ that determine ¢ and R¥, that
(£ 7] = [f;r] = 6[A] € BYG, 2% R/Z).
The coproduct remains the same, since K is commutative

From this we infer a statement analogous to that of Proposition 7.5.2, namely
that (7.359) and (7.360) induce an isomorphism of H*(G,2;R/Z) onto the group of
twistinequivalent, quasitriangular, quasiassociative »-Hopf algebras, whose unitary repre-

sentations obey the fusion rules & = NC.
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A quadratic function # on G can be identified, setting
V(g) = e 3" | (7.364)

with some element V € K, which satisfies

A (VIVRVRV = (A(V)a (A(V)®1) (1@ A(V))
and (7.365)
S(V) = V,

and, conversely, if (7.365) holds for some V the function @ given in (7.364) is quadratic.
For the abelian algebra K we notice that m(R), given by

m(R) = e (7.366)

is a twist-invariant.The assertion for Hopf-algebras corresponding to Proposition 7.5.3
now reads as follows: If K is the x-Hopf algebra from (7.358) then, to every unitary
element V € K which obeys equations (7.365), there exists an ( up to twist-equivalence

unique ) quasitriangular quasi Hopf algebra structure (R, ¢) such that
V™! =m(R). (7.367)

We observe that V is precisely the central element of a ribbon-graph-Hopf algebra as
defined in (6.94) and (6.95). The element U = m(S ® 1)o(R) is then

Ug) = erles™) (7.368)
and

Glg)=(UV?) = &mra, (7.369)

with v defined in (7.313). Note that G is grouplike (i.e., vy is a homomorphism) if we are
in the coassociative case, ¢ = 1, or if we have chosen the normalization yielding (7.345).
The case where [f;r] € ker §* occurs iff K is twist equivalent to a properly coassociative,
quasitriangular Hopf algebra. The corresponding condition 8 € im D* simply means that,
for V € K, there exist some R € K®? such that the equations (4.9) hold for R, and V is
given in terms of R by (7.367). The group structure induced by H*(G, 2; R/Z) is just given
by the multiplication (¢1,R;) (2, Ra) = ($162, R1R3), and the direct sums from (7.246)
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correspond to the direct sums of the Hopf algebras, with ¢ and R defined analogous to
(7.319).

The description of the isomorphisms (7.236) in this language suggests that quasitri-
angular quasi Hopf algebras are the appropriate object for which a nonabelian general-
ization of (7.236) should exist. Thus, given some associative algebra K, with a list of rep-
resentations C, a fusion rule algebra & = N°, and some “quadratic” element V € K N X/,
one may hope to find conditions such that V determines, up to twist equivalence, a unique
structure (A, R, ¢) such that V is the twist-invariant ribbon-graph element of X. We shall

leave this as an open problem.
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Chapter 8

The Quantum Categories with a
Generator of Dimension less than

Two

8.1 Product Categories and Induced Categories

In the first part of this section we introduce the notion of product categories. We de-

fine an action of the group, H*(Grad(QObj), 2; U(1)), of 6-categories on the set of quan-

tum categories with object (fusion rule) algebra Obj. It is denoted C — (9, for ¢ €
H*(GradQbj, 2; U(1)), and C? is a diagonal subcategory in the product of C with the

respective 0-category.

Next, we define the class of fusion rule algebra homomorphisms to which the subse-
quent definition of induced categories applies, namely the irreducible, coherent or graded
homomorphisms, f : Obj; — Obj;. They are equivalently described by a subgroup of
invertible objects, ker f = f~1(1), whose action on the irreducible objects, J, C Obj,
by maultiplication is free and Obj,; is given by the orbits of ker f. For a given coherent
homomorphism, f : Obj; — Obj,, and a quantum category C,, with object algebra Obj,,
we show that there ezists a unique gquantum category Cy, with objects Obj,, such that f
extends to a compatible tensorfunctor. We say that C, s induced by C; and f.
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We prove that for a coherent homomorphism f : Obj; — Objy and o quanium
category C1 with objects Obj, there ezists o quantum category Cy with objects Objz such
that Cq is induced by Cy and f if and only if the subcategory associated to ker f is trivial
and the monodromies of elements in ker f with all other objects vanish.

The remainder of this section is devoted to the question for which categories Cp it
is possible to find e f-category, q € H4(Grad((')bj1, 2; U(1)), such that Cil s an in-
duced category with respect to some graded homomorphism f defined on Obj,. We find
the relevant obstruction to le in Hs(Grad((’)bj)/(ker f), 2 73). We derive ezplicit
ezpressions for the case where Grad(Obj) is a cyclic group.

In the previous chapters various results on fusion rule algebras have been obtained by
using the special properties of invertible elements of a category. More specifically, we
showed in section 3.3 that nontrivially graded, invertible elements allow us to describe
fusion rule algebras in terms of smaller ones. In section 7.3, we learned that this leads,
for the case of fusion rule algebras with generators of small dimensions, to the situation
where the generator is selfconjugate. Finally the categories that contain only invertible
objects have been characterized in section 7.4. The purpose of this chapter is to combine
and extend these techniques, in order to describe categories with nontrivially graded,
invertible elements in terms of simpler ones. This requires the definition of a number of
relations between categories, namely “subcategory®, “products of categories” and, most
important, “induced categories”. We start by explaining what we mean by a product
category. For two categories C1 and Cy with objects in Obj; and Objs, we introduce a
category, C1; ® C3, whose object set is NOb1X0bja ;e a general element has the form

DX € Obj; "X X; (X1, X2), and its sets of morphisms are given by

Mor (Z "X1X3(X1, Xz), Z m’Y1Yz(Y1’ Yz)) =

@ Hom¢ (Cnxlx2,CnY1Y3) ® Mory (X1,Y7) ® Mors(Xs,Ys)
X;,Y; € Obj; (8.1.1)

equipped with the obvious composition law. The tensor product for the objects is the
linear extension of (X1, X3) o (¥7,Y3) = (X1 o Y1, X3 0 ¥3), and the tensor product of
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morphisms is the one naturally induced from Vecc,C; and Cy. The special isomorphisms
¢ and « are obtained from ¢; and a; in C;, i = 1,2. One easily verifies from (8.1.1) that
there are isomorphisms among the objects, A+ B =~ A® B, (X,"1)+ (X,Y3) =
(X,Y19Y2) and (X1,Y) +(X2,Y) = (X; ® X3,Y). It is possible to define a quantum-
category, C1 @ C2, whose objects are the equivalence classes of C;® Ca, given by Obj; ®
Objy = NU1xJ2) of Obj; = N’ and for which there exists an injective tensor functor
C1 ® C3 — C1®C;y. In the language of structural data which we have used in previous

sections, the underlying fusion rule algebra for N(J1xJ2) j5 given by the constants

_ 1 2
N(ixiz)(jx.‘iz),(kxkz) = Ni1.‘i1,k1 Nizj:,kz’ (8.1.2)

accounting for the dimensions of

Mor((k1kz), (i132) 0 (j1j2)) = Mory(k1,i1051) ® Morg(kg,iz0d2).  (8.1.3)

The fusion matrices can be expressed as

F((i1,42), (41, 32), (k1. k2), (10, 12)) = To3(F (31,51, k1, 1) ® F(iz, j2, ko, o) Toz

@D Mor((s1,82), (j1,52) © (k1, k2)) ® Mor((ly, 1), (i1,32) (81, 52))

81352

- 92 Mor((s1,82), (i1,32) 0 (41, 72)) ® Mor((l1,12),(s1,582) 0 (kth)%S.lA)

where we used the identification (8.1.3) and the transposition, T3, of the second and
third factor of the resulting fourfold tensorproduct. Furthermore, the fundamental braid

matrices, with »(i,j,k) := R¥(1,1,4,k), take the following form

r((i1,42), (G1,d2), (K1, k2)) = 7(i1, 51, k1) ® r(iz, 32, k2) :

Hom((ky,k3), (i1,42) 0 (§1,42)) — Hom((ky,k2), (41,72) o (i1,42)) .
(8.1.5)

The intrinsic invariants of the product category, the statistical phases and the statistical

dimensions, are given by

dlirig) = diy di
O(irsig) = 63, + 6i; mod1. (8.1.6)
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Clearly the gradation of C; ® C3 is given by

grad : Jy x J; — Grad(C; ®C2) = Grad(C1) ® Grad(Cy)

(31,%2) — (g'radl(il), gradz(ig)) . (8.1.7)

For categories with invertible elements, we already used this structure: If 8; €
Hom(T4(J;),U(1)) are the statistical phases of C; and Cz, 61 + 62 € Hom(T4(J1 &
J2),U(1)) is the statistical phase of C; ® C;. The procedure of taking products of
categories is, of course, associative, i.e., (C; ® C2) ®C3 = C; ® (C2 ® C3).

The notion of a subcategory has already been used on various occasions in the previous
chapters. If J' C J is a subset of irreducible objects closed under tensor products, so
that Obj' = N ¢ Obj = N’ is a fusion rule subalgebra, then we find a subcategory,
C', by restriction of the objects to Obj' and the morphisms to those between elements
in Obj'. The braid- and fusion matrices are obtained by restricting their arguments to
Obj'.

Suppose C is a category with gradation Grad(C). Then we have a fusion rule algebra

monomorphism
¢:J — J x GradC) : j — (§, grad(j)),

identifying J as a fuison rule subalgebra of Jx Grad(C). Let ¢ € Hom(T'4( Grad(C)),
R/Z), defining a 6-category, cGrad(C), ¢ With object set NGad(C) and braid- and fusion
matrices given by [fg,7¢] € H% (Grad(C),2;R/Z), as in section 7.4. We then consider
the product category C ® Cgrq4(c),q With fusion rule algebra Jx Grad(C) which, by
the above inclusion ¢, contains a category C? with fusion rule algebra N/. For two
quadratic forms ¢; and g, on Grad(C), the category (C91)92 is the subcategory of (C ®
CGrad(c),q1) ® CGrad(C),qz» Whose irreducible elements are (j, grad(j), grad(s)), j € J.
By associativity of the category product and the fact that g «— g ® g defines the

inclusion of the subcategory, we have that

Cerad(C)(a1+a:) ™ CGrad(C)ar ® Carad(C)aa
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as in (7.369). This yields immediately the canonical isomorphism (C1)92 = C%1+43,
For the group of quadratic forms on the universal grading group of a fusion rule

algebra, this procedure defines, therefore, a free action, C — C9, on the set of categories

realizing this fusion rule algebra. The braid- and fusion matrices, r? and F9, of C? can

be given in terms of the original data as follows:
FI(3i, 5,k 1) = e~27fa(grad(3).grad(i)grad(k)) p(; j k 1),
"6, k) = e2riralored@arsdil (i, . k) (8.1.8)
and the statistical phases and dimensions of C? are found from

5 -4

]?

0;1- 6; + g(grad(j)) mod1, (8.1.9)

forall 7 € J. In this formula, one application of our manipulations becomes apparent:
Suppose H C J is a subgroup of the set of invertible elements, OQut(N’), and grad:H —
Grad(C) is injective. The restriction of the category to NH yields a f-category and
hence determines an element § € Hom (['4(H),R/Z), where, by assumption, I'4(H) is
a subgroup of I'y(Grad(C)). For coefficients R/Z, the character § can be extended to
I'4( Grad(C)), i.e., to a quadratic form, g, on Grad(C). If we started from C™? the
subcategory on H would be trivial, and, conversely, using that (C™7)? = C, we can
think of C as being included in the product of a category with the same fusion rules but
trivial statistical phases for the objects in H, with a #-category in which H is contained,
too, but which carries the statistical phases given for C. If H is a direct summand of
Grad(C) this f-category can be assumed to consist of H only.

Next, we explain an important tool for the analysis of the gradation reduction of cat-
egories analogous to that for fusion rule algebras, namely induced categorial structures.
To be more specific, we consider a fusion rule algebra epimorphism { : Obj; — Objs
and a category Cy with object set Obj;. A category C; with object set Obj; is then
called induced by ¢ and Cj if { extends to a tensor functor from C; to Cs.
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In the following discussion we shall find conditions on { such that a unique, induced
category C; exists for every category Cy, and we shall also determine those categories
C1 which are induced by some Cy, given {. The first simplification we make is to confine
our attention to “irreducible” fusion rule algebra homomorphisms, meaning that { shall
map irreducible objects to irreducible objects. In this case, ¢ : N71 —» N’2, is already
given by { : J; —» Ja. The structure of irreducible fusion rule algebra epimorphisms can

be conveniently described as in the next lemma.

LEMMA 8.1.1

Suppose { : J; — J exztends to an irreducible fusion rule algebra homomorphism, and

let
ker( == {oc € J; : {(0) = 1}. (8.1.10)
Then

(i) ker( is a subgroup of invertible objects.

(ii) The action of ker( on Jy by multiplication is free, and different orbits of ker( are
mapped to different objects in Js.

(iii} If R is a subgroup of invertible elements in o fusion rule algebra NT which acts
freely (by multiplication) on J, then the Perron-Frobenius algebra, N7 /NE, (see
section 8.2) is a fusion rule algebra, NU/R) where the irreducible objets, J/R, are
the orbits of R. The projection mg : J — J/R eziends to an irreducible fusion
rule algebra epimorphism.

(iv) For { as above, there ezists an injection i : Ji/ker { — Jo, eztending to a fusion

rule algebra monomorphism, such that

C =10 Wker(' (8.1.11)

Proof: We remark that, for fusion rule algebra homomorphisms ¢, with {(1) =1 and

¢(XV) = {(X)V - in particular, for irreducible ones and ones that extend to tensor

functors of categories — we have that {(X) is invertible (irreducible) only if X is already
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invertible (irreducible). To see this, we may write XY o X = Y + | X||?1, so that
X)Y 0 {(X) = ¢(Y) + |IX||21. If ¢(X) is invertible we have that ¢(Y) = 0 and
IX|l =1. Hence Y =0, and X is invertible. This immediately implies the assertion in
1). Also, if {(7) is irreducible and {(i) = {(7) then

1= KGI? = (G).CE) = (G oi) =
= Z Nivg = z Nisj =I{a € ker( : 7 = UOi}As’

o € ker( o € ker( 1.12)
where ¢ (the evaluation) is defined as in section 3.1.

This equation shows that two irreducible elements which are mapped by ( to the
same object differ by multiplication by an object in ker o, (the converse being trivially
true). Furthermore, the invertible object is unique, which implies statement ii).

In order to show iii), we use the definitions in Lemma 3.2.2, denoting by [j] € J/R
(or cilcJ ) the orbit of j € J under the action of R. For the dimensions we find,

with ¢ € R, j € J, that

d(a.oj) = dg d] =

S
I

: db]’ (8.1.13)
i.e., they depend only on orbits. Thus, the component of the dimension vector corre-

sponding to an orbit [j] is given by

bl = 3 a9 =diy Y 45, (8.1.14)

J€Cy) J€)
which has the norm ||dUl|| = d[;;/T R, since | C};; [=| R |-
For the constants in (3.24), we thus obtain
K = dj) (8.1.14a)
Using (8.1.13) and (8.1.14a) we see that the dimensions in (3.25) cancel and, by (3.29),

we obtain for the fusion rules of N/ /NE

N[ilb‘],[k] = Z Nijk (8.1.14b)
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for arbirtary representatives: € C[i]r Jj € C[j]. Since these are integers, N/ /NE = NU/R)
is a fusion rule algebra.
With (3.26) and (3.27), we also find the corresponding vectors in (R1)7
§Ul = I_;_I 3 ;= ¢ 08, j ey (8.1.14c)
J €Cy)
Clearly the projection g : J — J/R : j — [j] extends to an irreducible fusion rule

algebra epimorphism and ker 7z = R. The claim in iv) is a direct consequence of the

previous statements.

O
Given an exact sequence of irreducible homomorphisms,
. TR
0 >RSI T >0, (8.1.15)
7

where R consists only of invertible objects, we can describe J, in analogy to groups, as
an extension of J over R. For this purpose, we choose a map v : J — J, with mgoy = id

and y({1]) = 1. Then
T :J x R > J, defined by ([5],9) — 7([j]) o g, (8.1.16)

is one to one, since R acts freely on J. The “cocycle” of the extension is given by a map

AT N (ELELK) — Agge (8.1.17)
determined by
1@ o L) = D A © V(KD (8.1.18)
[k} eT

using the isomorphism I of (8.1.16).

For the objects in (8.1.17) we infer the relations

Ak = Ak (8.1.18a)

AGiva € B Ay, = 0, for [i] # 5], (8.1.18b)
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Appie = %: ARl © Akl = %: Aggp © Agmyge (8118

and, furthermore,
R (Aae) = Naue - 1- (8.1.18d)
The data needed for the extension of J over R can thus be viewed as N¥-valued (instead

of N-valued) fusion rules. Due to the ambiguity in our choice of v, we have a natural

notion of equivalence:
A ~ A' if and only if there exists amap o:J — R,
with
Ay = o) o o(li]) o o([B) ™! App) (8.1.18¢)
For example, the sequence (8.1.15) splits. In other words, J = J x R, as fusion rule
algebras, and i, 7 are the canonical maps, iff A =~ 1.

Conversely, given J and R, a “cocycle” A asin (8.1.17), obeying the relations (8.1.18a),
(8.1.18b) and (8.1.18c), defines a fusion rule algebra, J = J x4 R, which yields a se-
quence of homomorphisms as in (8.1.15), and the sequences for A and A' are isomorphic
if A= A'.

For an adequate definition of induced categories, it is necessary to impose an additional
requirement on the fusion rule algebra homomorphisms that shall be considered. In
order to arrive at such a definition, the following notion is useful: The free action of the
subgroup of invertible elements R on J is called coherent iff the objects Afjjr;) k] € NE,
as well as the objects A[i][j][k],[l] € NBin (8.1.18c), are of the form No, where N € N
and 0 € R.

By (8.1.18d), this implies the existence of invertible objects oLk € R, with

A = Nl ok (8.1.19)

and the constraints (8.1.18a)-(8.1.18¢c) reduce to

OGEGLIE = O] (8.1.20)
292



and

TGN © Lk = PR © CLlkL (8.1.21)
where the right hand side (the left hand side) of (8.1.21) is independent of [t] ([s], resp.),
as long as the fusion rules are obeyed. We say that an irreducible fusion rule algebra
homomorphism,  : J; — Jg, is coherent if ker{ has a free, coherent action on J;. We
wish to express this property in a second, different way:

For a given 7 : J — J, we introduce a function
Vg T x T = Oy
with (Cz) = WEI([’B]), as in section 3.2) by setting
Y (D7 (D) = opapi i © (kD). (8.1.22)
and requiring the covariance condition
1/)[k](a oi,p0j) = copo 1/1[,,](1',]'), Vo,n € R. (8.1.23)
These functions relate the fusion rules of J and J through the equation
Nij = Onpna) Vil ey (8.1.24)
It follows that the restriction
¢ : supp(ioj) — supp([i] o [j]) (8.1.25)
is injective. The fusion rule relations accompanying these functions are as follows:
Y (6,3) = dpy(d,9), (8.1.26)

and
Y (¥ (5,9), k) = ¥y G by (. k) = (i 5, k), (8.1.27)

where the objects in (8.1.27) are independent of [s] and [¢].
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In our applications we shall encounter only a special case of irreducible, coherent
homomorphisms, { : Ji — J2, namely graded ones. They are characterized by the
property that

grady : ker{ — Grad(NJl) (8.1.28)

is an injection, or, equivalently, that ( is a fusion rule algebra monomorphismif restricted
to the trivially graded subalgebra, (N71)g. It easily follows from (8.1.28) that graded,

irreducible fusion rule algebra homomorphisms are coherent, and

grady(opgr, ) = gredi(v(fi])) gradi(v([4)) gradi(v((k])) " . (8.1.29)

We note that, for any irreducible graded homomorphism (, there exists a unique group

homomorphism, (#, such that the diagram

7 ¢ Iy
gradll lgradz (8.1.30)
Ji J2
Grad(N )——»C# Grad(N"3)

commutes. Moreover, if { maps onto the trivially graded component (N]’ )o then we
have that

ker (# = gradj(ker (). (8.1.31)

Hence, for a graded g, we have the exact sequence

# )
0 —— R——Grad(N') —2 . Grad(v') ——0 (8.1.32)

With (8.1.15), it follows immediately that two graded extensions (8.1.15) are equiv-
alent if and only if the corresponding sequences (8.1.32) are equivalent. (In particular,
(8.1.15) splits iff (8.1.32) splits).

For irreducible, coherent fusion rule algebra homomorphism, the existence of corre-

sponding induced categories is guaranteed by the following proposition.
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PROPOSITION 8.1.2

Suppose that { : Objy — Objy is an irreducible, coherent fusion rule algebra homomor-

phism, and that Cy is a quantum category with object set Objs.

(1) Then there ezists a category Cy, unique up to natural isomorphism, whose object
set 1 Objy and for which { can be eztended to a tensor functor from Cy to Cs.
(ii) The O-subcategory of Ci, given by the fusion rule subalgebra NF€T¢ C Objy, is

trivial.

Proof.

We first comment on some properties of a general tensor functor, ({, F,C), extending
an irreducible fusion rule algebra homomorphism (. By F : Mori(X,Y) — Mora({(X),
¢(Y')), we denote the map between morphisms with the properties that F(llx) =
T;x) € Endy({(X)) and that, for the isomorphisms C(X,Y) € Mora({(X) o ((Y),
(X o)),

F(IoJ)C(X,Y) = C(X",Y") (FI)o F(J)), (8.1.33)

for arbitrary I € Mori(X,X') and J € Mor(Y,Y"). For the restrictions

F : D kecy Mori(k, X) — Mory([k],{(X)), (8.1.34)

and
F : D recy Mori(X,k) — Mory(¢(X), [F]), (8.1.35)

we note that the spaces on the left hand sides (right hand sides) of (8.1.34) and (8.1.35)
are dual to each other by multiplication on X (on {(X)). From the functoriality of
F and the fact that F(I}) = Ipy it follows that the maps in (8.1.34) and (8.1.35)
preserve the contraction and are thus injective. To the decomposition of the semisimple
algebras Endy(X) = @y ¢ 0pj, End(X)i and Endz({(X)) = @) e obj, End2(¢(X)))
into sums of simple algebras (e.aé. Mat Nx,k(c))! according to the channels k, we
can associate a partition of Iy and I (x) into minimal central projections, m;(X) €
End(X) and m3;(¢((X)) € Endy({(X)). Using the fact that the representation of
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End;(X) on the space @ Mor(k, X) by multiplication on X is faithful, we find from
injections (8.1.34) and (8.1.35) that

F: P kecy Endi(X)e — Endy({(X)) (8.1.36)

is an inclusion of algebras. For im F C Mory({(X),[k]), we also have that F(a)l =0
if a € Endy(X) and I € (imF)L C Mory([k],{(X)). But since we require that
F(Ix) = L¢(x), it follows that (im F)1 = 0. Hence the maps F in (8.1.34) and (8.1.35)
are, in fact, isomorphisms. The induced direct sum decomposition of Mors ([k], {(X))

is given by a refinement of the partition of unity,

(X)) = D ®m(X), (8.1.37)

ke

where we define (X ) = F(m(X)) € End2(¢(X)) Ok Counting ranks and dimensions

we recover the equation

Nexym = Do Nxp (8.1.38)

Similar to the “End-spaces”, the “Mor-spaces” can be decomposed according to chan-

nels given by k € J, and we have an injection

F @ kEC[k] MOTl(X,Y)k b MWZ(((X),C(Y))[IC] (8139)

for all X,Y € Obj;. As a consequence of semisimplicity, the image of the map in
(8.1.39) is given by

imF = {I € Morg({(X),{(Y)) : me(Y)] = Im(X), Vk € Cpy}-  (8.1.40)

The compatibility of these decompositions with the tensor product is expressed by the

formula

m(XoY) = Y wp(lX oY) C(X,Y)(R(X) o 7;(Y)) C(X,Y) 7,
i,] :¢[,,](i,j)=k
(8.1.41)
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where the functions ¥y : J x J — C} are defined in (8.1.22), (8.1.23), for coher-
ent homomorphisms. The image of the (4,j)-th projection in the sum (8.1.41) in its

representation on Mory([k],{(X o Y)) is given by the image of

Mory(i,X) ® Mory(j,Y) ® Mory([k], [i] o [j]) — Mory([k],{(X oY)

I®@J®K — FlIoJ)K (8.1.42)
and has dimension NX,iNY,jJ—V—[i]U],[k] = NX,iNY,]'Nij,xb[h](i,j)' Summation over 7 and j

yields NXoY,k = Eij NX,iNY,jNij,k = Zij NX,iNY,jN[{j[j],[k] 6k,‘¢[k](ij) as the total rank
of (X oY'). As for general tensor functors, the braid- and associativity isomorphisms

are related by

az (((X),¢(Y),¢(2)) =
= -1, ) 17 (a o o
= (C(X,Y) o T)C(X oY, Z) L F(a1(X,Y, 2)) C(X,Y o0 Z)(T C(Y’(g-)l)-‘ii’»)

and

e2(¢(X),{(Y)) = C(¥, X) ' F(ea(X,Y))C(X,Y). (8.1.44)

For the proof of existence and uniqueness of induced categories it is useful to introduce,
for a (not necessarily irreducible) fusion rule algebra homomorphism ¢ : Obj; — Obja,
the natural notion of a pulled back category, Cg, where C3 is an arbitrary braided tensor
category with object set Objp: The object set of Cg is given by Obj1, with the same
tensor product. The morphism spaces of Cg are defined in such a way that there are

isomorphisms:
D : Mor(X,Y) — Mory(((X),¢(Y)), VX,Y € Objy. (8.1.45)

The composition- and tensor-products of morphisms are defined to be the ones in-
duced by D, and the braid- and monoidal isomorphisms are given by sg(X YY) =
£2(¢(X),¢(Y)) and o§(X, Y, Z) := aa(¢(X),¢(Y),{(2)).
Note that, in contrast to the categories C; and Cy, there exist, in Cg , pairs of different
objects which are equivalent. More precisely, X = Y, in Cg, iff {(X) = ¢(Y) in Obja,
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since for such objects Mo'rg (X,X) = End(C(X)) contains the isomorphism D_l(]I((X)).
The equivalence classes of objects in Cg are identified with im { = Obj,.

The two categories are related by a tensor functor
(¢, D, 1) : C§ — Ca.
This allows us to factor any tensor functor, ({,F,C) : C; — C3, by the unique functor

(3d, F, E) :C1 — C(, such that the diagram

(id, F,C) _GdF0) ¢

a f& ﬁp 1) (8.1.46)

commutes.
To prove uniqueness, we show that, to every pair of categories, C; and Ci , with functors
(¢,F,C) and ({, F',C") to Cz, one can associate isomorphisms (id, G;, A) : C; — €] and

(id, G2, B) : Cg — Cg such that the following diagram commutes:

-~

(id, F,C)

¢

(id,gl,A)l _ |wes (8.1.47)
¢ (:d, F',C") Cg

For the endomorphism algebras in Cg we have the decomposition into simple subal-

gebras, Endg(X) = @ End<(X [k]’ induced by D, with minimal, central projec-
[k] €im(

tions wp (X) = -1 ('”[k] (¢(X))). The refinement of the partition of unity, analogous

to (8.1.37), is given by the projections @ (X) := .7-'(7rk(X)) = D H(F(X)) €

Endg(X)[k]. The equation (8.1.41) for products also holds true in Endg(X oY)y
We now first determine the functor (id, Ga, B) of Cg onto itself. A large class of such

functors, exhaustive for §-categories and most other examples in this work, is given by
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the “coboundaries” of a set of isomorphisms, U(X) € Endg(X ), X € Objy:

Go(I) = UY)IUX)™, I € Mor§(X,Y),
and

B(X,Y) := UXoY)UX) loUy) ™ (8.1.48)

One easily verifies (8.1.33), (8.1.43) and (8.1.44), with F = G5, C = B, { = id, g3 =

£ = Eg, as =a; = ag. As in (8.1.40), we have that

F(Mory(X,Y)) = {I € Mor§(X,Y) : #(Y)] = Ify(X), Yk € Cpy}
(8.1.49)
and similarly for f’(Mon(X, Y)). Since, for a given X € Objy and [k] € im ¢, 7 and
7, k€ Cx), form partitions of unity in Endg(X )] of equal rank, there exist invertible
maps U(X) such that

UX)m(X)U(X)™! = #(X), Vk € J1. (8.1.50)

For a functor (id, G2, B) defined, as in (8.1.48), for a collection of isomorphisms U(X)
satisfying (8.1.50), we immediately find from (8.1.49) that

Gy : F(Mory(X,Y)) = F(Mori(X,Y)),

i.e., that Gy provides an isomorphism between the images of F and F', for any given
pair X,Y € Obj;. This shows that the map G; : Mor;(X,Y) = Mor{(X,Y) is well
defined and unique if (8.1.47) is required to commute, in the sense of abelian categories.

In order to examine the tensor product structure, we consider the endomorphisms
a(X,Y) := UX oY) C(X,Y)UX) toU(Y) ! C'(X,Y)! (8.1.51)

in Endg(X 0Y). Using the decomposition (8.1.41) for #;(X oY) and 7 (X oY), it is

a straightforward computation to show that

a(X,Y) 7 (X oY) = #(X oY) a(X,Y). (8.1.52)
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Hence, by (8.1.49), there exists a unique isomorphism A(X,Y) € End{(X oY) such

that

F(AX,Y)) = a(X,Y). (8.1.53)

For the functor (id, Gy, A) : C; — C}, properties (8.1.33), (8.1.43) and (8.1.44) are then
verified by a computation, without difficulty. This proves the uniqueness of induced
categories. For the proof of existence, we again consider the pull back, Cg , of Ca with
respect to { : Obj; — Obj;. In our previous discussion, we remarked that, for the
minimal, central projections of Endg(X )= GB[k]Endg(X )[k]: we can express the rank in

terms of the multiplicities of X € Obj; by

rh(ag(X)) = ) Nxpg- (8.1.54)
k€Ch

An induced category C; can now be defined, for any partition of unity in Endg(X )[k]

as in (8.1.37), provided the projections, m(X), k € Ji, satisfy the condition
Tk(?l’k(X)) = NX,I: . (8155)

By (8.1.54), we can always find such a partition.

The morphism spaces of C; are then defined by
Mor(X,Y) := {I € Mor§(X,Y) : Im(X) = m(Y)I, Vk€Cp}.  (8.1.56)

They obviously close under the composition induced by Cg . The projections w}, yield a

direct sum decomposition,

Mor§(k, X) = Mora([k],¢(X)) = €D Mor(k,X),
ke,
which must be preserved by any morphism. Hence X = Y in C; iff dim(Mo'rl(k,X))
= dim(Mory(k,Y)) which holds iff Nx = Ny, Vk € J1,ie.,iff X =Y.
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For tensor products, the decomposition of M org(k,X 0Y) can be written as follows,

using a natural isomorphism, as in (8.1.42):

Morg(k,XoY) = Mory([k],{(X o Y))

= P Mora([i], (X)) ® Mory (3], {(Y)) ® Mory([k], [i] o [3])
[ €im¢
D Mori(i,X) ® Mory(j,Y) ® Mory (¥p)(3, ), 0 5)
iLjE€N
Mory(i,X) ® Mor1(j,Y) ® Mory(k',i 0 j),
k@’m f,j=¢[%j>=k' 1 1 1 (8.1.57)

N

IR

and the projection on the k’-th summand in (8.1.57) is given by

(X, Y) = m(X oY) ) m(X)omy(Y). (8.1.58)
3% (5,7)=k
Its rank is given by } ;i Nx ;Ny,;Nij i = Nxoyw. It is thus equal to the rank of
7 (X oY’). Hence there exist isomorphisms C(X, Y € Endg(X 0Y)(x], and therefore
isomorphisms C(X,Y) = & C(X,Y )y € End$(X oY), such that

C(X,Y)nd(X,Y)C(X,Y)™! = m(X oY), VEke€ Jy; (8.1.59)

compare to {8.1.41). Now we may define the tensor product of morphisms

1€ Mor1(X,X'), J € Mor(Y,Y"):
IoyJ := C(X",Y)Iol)C(X,Y)™ L. (8.1.60)

By (8.1.58) and (8.1.59), I oy J lies in Morj(X oY, X' 0 Y'), as defined in (8.1.56).
Furthermore, we define braiding and associativity isomorphisms in M o'rg(X oY ,YoX)
and in Mo'rg (Xo(YoZ),(X0Y)o Z) by setting

e1(X,Y) = C(Y,X) £(X,Y) C(X,Y)}, (8.1.61)
and

a1(X,Y,Z) := C(X oY, 2)(C(X,Y) o M)a$(X,Y, Z)(To C(Y, 2) 1) C(X,Y 0 Z)~L.
(8.1.62)
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From (8.1.59) we immediately find that
(X, Y)m(X oY) = mp(Y o X) ey (X,Y), 1ie, €(X,Y)€ Morj(XoY,Y 0 X),

using (8.1.26). Condition (8.1.27) is needed to prove an analogous property for a;. Using
(8.1.27) and applying (8.1.59) repeatedly, we find that the projections m ((X oY) 0 Z)
and 7 (X o (Y o Z)) are given by

m((XoY)oZ) = C(XoY, 2)(C(X,Y)oI)n)(X,Y | Z)(C(X,Y)  ol) C(XoY,Z) !,

(8.1.63)
with
X, Y |2) = Z Ty (X oY) 0 Z) mp(X) 0 ms(Y) 0 mj( Z),
V()=
and

7, (Xo(YoZ)) = C(X,YoZ)(LoC(Y, 2)) np(X | Y, Z)(ToC(Y, Z)" 1) C(X,Yo2) 7},
(8.1.64)
with
X |Y2) = ) w(X o(Y 0 2)) me(X) o mg(Y) o mi(Z).

T35
'I’[E] (rr")j)=k

Cleatly we have that o$(X,Y,Z)xd(X | Y,2) = =)(X,Y | 2)a$(X,Y, %), so that
a1(X,Y, Z)m (X o (Y 0 Z)) = mp((X oY) 0 Z) a1(X,Y, Z), and hence it follows that
a1(X,Y,2) € Mori{X o(Y 0Z),(X0Y)02).

On the category Cy constructed from these data, we have a tensor functor to Cy :
(¢,D,C) : ¢ — (g, (8.1.65)

where D is the restriction of the morphism map in (8.1.45) to the subspaces Mor)(X,Y’)
cCM arg (X,Y). This completes the proof of assertion 1) of Proposition 8.1.2.
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In order to prove part ii) of Proposition 8.1.2, i.e., triviality of the f-category associ-
ated with ker{ C J;, we establish an explicit relation among the braid-matrices of the
two categories. Recall that, for k # 1/;[k](i,j), we have that Mor;(k,i0j) = 0. Hence,

by (8.1.34), there is an isomorphism

B Mory(Wy(i,),i05) > Mora(K), 0 i),

I — CG,7) Y 7). (8.1.66)
For the braid matrices r, given by
r1(3,5,k) : Mor(k,ioj) — Mory(k,joi) : I — €1(3,5)1, (8.1.67)

and similarly for r3([i], 5], (k]), the following diagram commutes:

Mory(kyi0j) — 22 E) afor (k,j o4)
lH[';Z] - H[’:]l (8.1.68)
Morg([8), i o ) 2L UL D, aomyk], i )

Since r2(1,1,1) = r3([o], [0], [02]) = 1, it follows that r1(0,0,02) = e27¥(%) =1, for
all o € ker(. Here 0 is the quadratic form which, by Proposition 7.4.3, determines the
category of ker{ uniquely. Thus § = 0 mod 1, and this implies part ii) of Proposition
8.1.2.

O

As a supplement to our discussion of braid matrices presented in the proof of Propo-
sition 8.1.2, we wish to give the explicit relations between the fusion matrices F; and
Fy, for the case that C; is induced by Cs. Since the fusion rule algebra homomorphism
¢ : Obj; — Objy is assumed to be coherent, we have that Mori(l,iojok) = 0, for
i,7,k,1 € J1, unless | = 1/1[,](i,j,k). In this case, we infer from (8.1.34) that there are

two natural isomorphisms

P["Igik),P[(q‘J')k : Mor1(1,b[l](i,j,k),iojok) =, MOTz([l],[i]O[j]O[k]),

303



defined by

PER(1) = (L0 0 BY™) CGij o B)HA (D), (8.1.69)

and

‘”"(I) = (CG,5) o ) C(i 0§, k)~1F(I). (8.1.70)

We introduce the following notation for the usual isomorphisms decomposing the space

Mor(l,i o j o k) into the basic spaces Mor(k,i 0 j):

#i(jk) : @,Morl(s,jok)®Mo'r1(l,ioa) — Mory(l,iojok)

1®J - (Lol)J, (8.1.71)
and
p* - @ s Mory(s,i0j)® Mory(l,s0 k) — Mory(l,iojok)
1®J - (IoT)J. (8.1.72)
The isomorphisms ul (V%) and u{TUDH 4re defined similarly. The decomposed spaces

on the left hand sides of (8.1.71) and (8.1.72) associated with the two categories C; and
Cy can be related to each other directly by using the isomorphisms given in (8.1.66). By
(8.1.27), we can write, for I = ¢[l](i,j, k):

®2, EDMorl(a,jok)®M0r1(l,io.s)
8

@ M01'1 (¢[3](]; k))] ° k) ® MO‘I‘I (1/)[1] (111/)[3](.71 k)))l" o 1/)[3](.7 o k))
[s]eim{

ik o V] (GE)
D, 7,108,

org([s],[f] o [k or RURIE
[’S?MM 2([s], [7] o [k]) ® Mora([1], [3] o [s]) (8.1.73)

which provides an isomorphism that factors. On the decomposition given in (8.1.72)
H®? i5 defined in the same way. We consider the following diagram of isomorphisms,
assuming that [ = 1/;[” (1,7,k):
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—@Ma’rl(s,j ok) Fa(i, g, k. 1) 7®Mar1(s,ioj)
s QMory(l,ios) 5 QMori(l,s0k)
| #i(jk) #gij)k
Morl(l,io(jok)) 14,4, k) ,Mo'rl(l,(ioj)ok)
H®? pilik) pliik H®?

Mora ([, ] o (3] o (4])) —22ULILED a0, (i, (] o 1]) o [8])

#[;']([J'] (&) I‘g D k]
L P Mors((s], ] o (k) —2ELELELI  eNyason, (o), i o f5])
[ ®@Mora([l], ] o [s]) [ ®Mory([l],s] o [k])
(8.1.74)

Here the squares on top and at the bottom of the diagram commute as a consequence
of the definition of F-matrices. From (8.1.43) we find that the square in the center
commutes, where a) and a3 act on i0(jok) and [z] o ([§] o [k]), respectively. Commuta-
tivity of the squares on the left and on the right of (8.1.74) can be verified by a direct
computation. We summarize the resulting relations between the fusion matrices ¥} and

Fj in the formula
Fi(i,5,k,0) = (H®)! Fy((al, (4], (&), (1)) H®2. (8.1.75)
This formula is consistent with the relation following from (8.1.68), i.e.,
r1(5,7,k) = H Yro([i], [7), [k)) H. (8.1.76)

If we use bases in the spaces Mor;(k,i o j) obtained from some choice of bases in

Mory([k], [i] o [5]) by application of H, we infer from (8.1.75) and (8.1.76) that

Fi(ooi,pojvok,copovol)eont = Fi(i,j,k 1), (8.1.77)
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and

ri{(cot,poj, oopok) = r1(3,3,k), (8.1.78)

where o, p,v € ker{ (so that, by (8.1.23), [0 0] = [i]). In our analysis we have not, so
far, considered the special balancing elements ¢(X) € End(X), with (Y, X)e(XY) =
o(X o Y)o(X) ™! 0 o(Y)™!, which, in our context, are given by o(X) | Mory(k, X) =
2™k e Jy, for statistical phases (or spins) 6. If we consider balanced tensor
categories and tensor-functors between balanced tensor categories — which, in addition

obey F(a(X)) = o(¢(X)) - then all of the results above still hold. The condition
analogous to (8.1.77) and (8.1.78) is then given by

90‘0]' = 9_7, Vo € R, Vj € J;. (8.1.783)

The next question we wish to address is whether the triviality of the #-category of
ker( is also sufficient for a category C; to be induced by a category Cy, for a given
¢ : Obj; — Objy. As a first step, we show that in this case the equations (8.1.75) and

(8.1.76) can be solved on the level of structural data.

LEMMA 8.1.8

Suppose C1 is a quantum category, R C Obj; a subgroup of invertible elements with
a free and coherent action on Jy, and the 6-subcategory associated with R is trivial up
to isomorphism. Assume further that the balancing elements, 8;, of C1 are R-invariant,
i.e., equation (8.1.78a) holds. Then there ezist matrices Fy and r9 defined on vec-
tor spaces modelled on basic spaces Mory([i}, [7] o [k]) = CNU]»["M‘], as in (8.1.68) and
(8.1.74), bottom lines, and corresponding isomorphisms

HY

i) @ Mori(¥4(i i), i05) — cNbLB, (8.1.79)

such that equations (8.1.75) and (8.1.76) hold.
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Proof.

We first make a choice, corresponding to a map v : J; = Ji/R — J; : [k] —
v([k]), with 7g oy = idi,» of representatives in the classes of J;. We further intro-
duce W—[i]'[j]’[k]-dimensiona.l spaces Mory([k], [3] o [j]) with “canonical” elements I_I[k] €
Endy([k]).

The fact that the f-category associated to R is trivial implies, for the structural data,

that there exist numbers Ay, € C (of modulus one, for C*-categories) such that

Ag.uAgo
F]_(a', myv,oopno V)]Ia'op o Tpopor = i Al 4 Tuov 0 Tsopow,
App A oy
A
1‘1(0',[1,0' O“)]IO'O[J = 'Xgﬁ ]Ip.oa"
1214
Al,a = Ao‘,l =1. (8.1.80)

Hence, for 4,5 and k in R, we can solve egs. (8.1.75) and (8.1.76) by setting
Hf‘l']“(naoy) = dou Ijy), Vo,n€R, (8.1.81)

and

F((1), 3,2, 2]) = id, ro([1],(1],(1]) == id. (8.1.82)

Next, we attempt to find a convenient normalization of the maps
H G0 g2 pady (o0 pon(li])) — Bnda(li]), [1#M].  (81.83)
For a given choice of these maps, we define numbers

‘P[j](a:l‘)u)) ‘PL’](U:I")V) : EndZ([J]) - EndZ([J]) (8184)

by setting

(77 D+ g gresr D) By (5 0 y([j]), v, 0 0w 0 y(1i])

— o B o proov(li])imov
= ‘P[J](‘T,I‘:V)(H[l] ®HU] ); (8.1.85)
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and

(' ® 1" D) By (4,0 0 4([3]),0 0 w0 v 0 (1)

ot (o (EPENGD g grveeon(liy
ey k) ) ) (8.1.85a)

For arbitrary assignments aj;),b;) : R — C, U(1), resp., with a;(1) = bj;)(1) = 1,
(4] # 1, we define the maps HE;.TY(U])'“ and HO#Y (1)) of (8.1.83) as follows:

If we set

H[';,gb]),# (Luoy)) = agiy(e) T,
Hﬁiy(m) (Tpoy(s)) = bpiy(m) T, (8.1.86)

all other maps are uniquely determined by (8.1.85), with o = 1, provided we assume

that

Note that (8.1.87) is consistent with (8.1.86) for p = 1, or v = 1, because Fj(i,1,7,k) =

F1(3,7,1,k) = id. With this normalization, we consider the pentagon equation

(R (om0 0 poy(li) @ 1) (T® Fi (2([j]), 7 0 4,5 0 w0 w 0 4(15])) )
(Fl(a,u,v,o' opov)® 11),
= (1@ Fi(s o1([i]), w0 0 0w o 1([3])) ) TV

(Te A1), om0, a0 mow o (D)),

(8.1.88)

and conjugate it by H®3. Combining this identity with (8.1.82) and (8.1.87), we find

the resulting equation on Endy([5]) to be

eomy) = 1, (8.1.89)

and
‘Pb‘](aa H, V) =1,
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by a similar argument. Thus, if we put

B3], (1), (1), b)) = F2([1), 1), 15}, 4]) = id (8.1.90)

o
we have a solution for (8.1.75), provided either 1,5 € R or j,k € R. Denoting by Hﬁ?

and H%Y the isomorphisms defined by setting a;;1 = br.; = 1, we find that, in the general
7] & 5] = )

case,
grorihy _ o ov) eserli
Ul agye)
and
pvor(Ul) _ B on) gererli)
Hij TR Hij) - (8.1.91)

In order to determine the coefficients aj;(1) and by;(p) in such a way that eq. (8.1.90)
can be extended to F([1],[j], [1], [s]), we define numbers ¥;(o | , ), pjj(o,p) and

A[;)(o; 1) in Endy([5]) by setting

a1ty & w2 D) By (4,00 9(([51), 10w 0 0 0 4(14)))

= (o | ) (HEVUEDY g prmveror(li)
v v (g g 28.1.92)

and

O (o, (1), 7 0 o)) = oo ) B,

o psor((3) . ) = 5 pr (e
13 (g oy(lil),osmooon(li])) = Ayl k) Hy " (8.1.93)

In order to derive relations for the constants %y;] introduced in (8.1.92), we consider the

following two special cases of the pentagonal equation:

(Fu(e 1) o o woy(l)) @ 1) (T ® Fi(o, 0231, 0 0 o v o x(15)))
(R GG, o w0 (D) @ 1)
= (18 Fi(o o1(li]). v, 0 0w o x(14]) ) Thz

(H®F1(0,7(Li]),uou,aop,ouo'y([j]))), (8.1.0)
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and

(Fu(em i) o wor(li) @ 1) (T @ Fi(o,p ov(lil), v o 0 o w0 x((i1))
(Fu (w2, wmov o (i) © 1)
= (18 Fi(o 0o, 1(l),v 00 m 0w oy (li])) Tia

(1 Fi(o, v 0x(l3]), o 0 movon(li]))) -
Conjugating these equations by H®3 we find, using (8.1.90):
Y11 Lo m) Yy | oyv) = Y1 opov),
Y o) Y1 L pv) = Y51 [ oop,v). (8.1.95)

In particular, since the two equations defining ¢[j](p. | o, v} have to be compatible with

each other, we conclude that
Pp(11-0) € 22(R,U(Q1)), (8.1.96)

and, moreover, that every 'dJ[ﬂ(p | ,-) is a 2-boundary.

Next, we study the implications of the hexagonal equation

(r1 (w0 021D, 0 0 w0 7(13D) ® T) Fi (1,0 0 1([3]), %, 0 o w 0 (1))
(e or(li)),vo o on(li)) @1)
= Fi(oon(lil)mueonovor(li)) (T@r(voreo(li)),novosor(li)

Fy (1,0 07([3]), @ 0 o v 0 7([3]) (8:1.97)
which, upon conjugation with H®2, takes the form
P51, 0) Ypj1(o | 1, v) pps)(v o) = pij(pov, o). (8.1.98)

From (8.1.98) we see immediately that "l’[j](l | -,-) is a symmetric 2-cocycle and, there-

fore, lies in the kernel of the isomorphism

& : Z*(R,U(1)) - Hom(AR,U(1)), (8.1.99)
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as defined in (7.190). Hence, since Ezt(R,U(1)) = 0, we have that ¢[j](1 | --) €
B? (R,U(1)), i.e., there exists a function B : R— U(l): o ﬂ[j](a), such that

Bri(@) Bz (w) .

¢[J](1 | g, ”‘) = ﬁb](a 0“)

(8.1.100)

Denoting by 1#[2] and B9 the constants defined in (8.1.92) for the choice of isomorphisms
o
H as given in (8.1.91), we deduce from (8.1.92) the relation

a(sov)  by(v)bj(k)

P L py) = aiy(#)ag(v)  bjmov)

VL mw). (8.1.101)

Thus if we require the normalization to be of the form

(k) = &) b = BRmEs k), (8.1.102)
for some maps f[j] : R — U(1) and 5] € Hom(R, U(l)) = R, we obtain that ¢[j](1 ]

i,v) =1, and, by (8.1.95), 'q/)m(p. | o,) = 1. Therefore, setting

R(1],[5], 1), i]) = 4, (8.1.103)

this choice of H-isomorphisms provides a solution of (8.1.75), whenever i,k € R. Sup-
pose p’b'.](a, @) is the constant determined in (8.1.93) for the case { = 7 = 1. Then the

general form of P[] 18 described by

oo n) = (o) plly(a, 1) (8.1.104)

independent of {. Another special case of the hexagonal equation is given by

(7(o 02131, 7 0 7(UD) ® ) F(,0,2((31), 0 0 40 2([iD) ™ (o0 0 ) @ T)
= F(u (i) o,00n0() " (T8 7(osnov(lil) oo pon(lil))

F(o,my([§]), o 0 po (i) .
(8.1.105)

After conjugation with H®2, this equation becomes

P[j](a)]-) = p[j](a) 1), (8.1.106)
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ie., ppj) is independent of gx. Furthermore, we see that, since 'lﬁ[j](cr [ p,v) =1,
(8.1.98) implies that 0 — p(;j(s,1) is a homomorphism. We can therefore choose
(o) = p'j'(a,l)_1 € R, and hence p[j)(o,#) = 1. The fact that the balancing elements,

j > 0}, are invariant under the action of R yields the equation

r(o, 0y([4]), o 0 oy (L)) (1o (i), 7, 0 0 oy (1)) = 2™ et Ouorun—boourin) = 1,

(8.1.107)
so that, by conjugating with H, [’;.jw([j])’d and using (8.1.93), we find that
piijlom) = ppjjlop)™ = 1.
If we set
r2(0] (1L, 15]) = r2((1) 5, [5]) = 1 (8.1.108)

the H-isomorphisms determined so far also yield a solution to eq. (8.1.76), for i € R or
jE€R.

For a given choice of H[k]’ consistent with our normalizations for 1 € R or j € R, we
introduce invertible linear maps

R (I, Fa (M) € mnac(atora(e, 010)

uv, o

as the transforms of the F-matrices, i.e.,
(I?[".]"‘”(["D @ Hig" ") Fi (o, u 0 1({i), v o 1(Lil)y o 0 0 v 0 gy 3y 0 ([K))
([1][.7] [k]> ( H[ﬁ“]’v([t] wor(li]) Fereom m°’f(['°])), (8.1.109)

B, o

and
suoy([l)wor(li]) . mHoveopker((k]).o
(A4 ® Hy, )

I3 (# ov([il),v 0 v([j]), 9,0 0 pov o apyypy) ik © Y([FD))
R<[’][’] [kl) (& Lu,iw ‘o ;;[;;57(w>,aovov(u1))_ (8.1.110)

BV, o
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Here we are using the invertible objects o) (5] € R, defined, for a coherent action of
R, in eq. (8.1.19). Moreover, we are identifying Homc(Mora([k], [i] o [j]) ® Enda([k]),
Endy([i]) ® Mora([k], [i] o [§])) and Homc(Endy([j]) ® Mors([k], [i] o [5]), Mory([k], [i] 0
[1]) ® Enda([k])) with Endc(Mory([k], [i] o [f])) by using the canonical elements I} €

Endy([k]). The pentagonal equation for k:=v o [3](5],[] © v([k]),

(R o v(@m oo o)) ® 1) (1@ Fi(u,o o 7((l), v ov((i]), 0 0w k)
(PG, v o(li) o o k) @ 1)

- (1[®Fl(poa,“/([i]),VO‘r([J']),U°I‘°k))T12(1[®F1(”’”’V°k’#°a(g.’;?%’ll)

yields a factorization of FL of the form

() < A (T
Similarly, we find that
Fa ([1]#[11 ik]) _ Py ([iL[jl]: £k1> -1 Py ( l["z]l[]c]r ([)k']/ > (51113)

Finally, from the equation

(Fl (l‘» (1), (), 0 k’) ® ]I) (1[ ® Fi(u, k' ,v,povo k’))
(B G2y k) @ 1)

= (T8 Fy (s o 1(i), 1] v o v o ¥) ) Tra (T ® Fi (, (1), Wimeve ﬁll}

where k' = o(3)i5], (k] © 7([k]), we obtain the relation

() A OEAHE) a2 7).

(8.1.115)
so that eqs. (8.1.112) and (8.1.113) can be rewritten as
7 (“,M ;[»k]) _ A([ﬁg];,[ﬁv A([i][i];/[k]>_1’
FR([i]U],[k]) _ A([i][j],[k]) A([z’][iL['c])‘l_ (8.1.116)
wv,o wy ) \moow
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Replacing the isomorphisms, H [’ﬁ , by the maps
. 0 -1 .
Hﬁ'r([i]).no'r(b]) _ A([z][:];‘[kl) Hm‘r([%]),w'r(b])’ (8.1.117)

corresponds to replacing the “structure constants” ﬁL and FR by Fp ([i][j]’[k]) =

ov,

Fg(FIUhE) = 1, as follows from egs. (8.1.116), (8.1.117) and (8.1.109), (8.1.110).
Note that Ff = Fgp = T, and hence 4 = 1, when [i] = 1 or [j] = 1, so that the

isomorphisms determined previously remain unchanged in this case. Thus, setting

FZ([i]a[j])l)[k]) = FZ(I:[’:]: [J]![k]) = 1id, (8'1'118)

we have found a solution to (8.1.75) when either i or k are restricted to R. A complete

solution to (8.1.75) can be found by using the hexagonal equation

(r1(o 0 2(B), 10 7 0 9(E]) @ T) Fi (o 0 (), v 0 ([3]), 0 k)
(r1(v o v(l3) o v o (i) @ T)
= Fi(,00q(li]),voy([5])p o (I ri(k", p, p o k"))

Fi(o o y([i]), v o 7([i]), 1 0 ), (8.1.119)

with k" = govoapy;) ik 0 7([k])- With (8.1.108) and (8.1.118), we derive from (8.1.119)

the equation

(HE:]O’Y(B]).M ® Hﬁ;ao'r([ﬂ)»vov(m))p‘l (a o v([i]), &, v 0 v([3]), w0 k")
— grver(liD) o goor(liswever([i])
= Hy e Hy '

Setting

Fy(ld], 1,4, [k]) = id (8.1.120)

we thus find a solution to eq. (8.1.75) if only j is restricted to R.
In the remainder of the proof we show that, for the choice of H’s satisfying (8.1.108),
(8.1.118) and (8.1.120), we can find Fy’s that provide a complete solution of (8.1.75).
314



For this purpose, we define maps
By(i, 5.k, (1) : @D Mory([s], [5] o [E])@Mors([1], [i] o [4])
[s]

= €D Mory((s], i) o [i)) @ Ma(l], s] o [¥])
(o]
through the equation

Y1) (4,9),% .. . Yin(k)
(Hem™") Fl("f»k"/’m(* 3 8) gati)

o[ t ] .k
= Byli,5 kI (Hjf © [,]’ﬁ[‘l(’ )) (8.1.121)
with Fy(i,5,k,[I]) = id if i,j or k belongs to R.
Foro € R,t,5,k€ Jyand [l = 1,b[l](i,j,k), we may consider the following special case

of the pentagonal equation:

(DFi(eigooby) 8 1) (D T8 Fi(o, 9160, ko 01)) (Filis sk, ) @ T)
o]

ls]

= 1® Fy(o 04,5,k 00l)T 1® F(o,i,%,(j, k),001)).
(%9 ®Ffi(rotikoel) 12(%9 (75, 915G, k), )) (8.1.122)

The transformed equation for the Fy’s simply reads
By(i,5,k, (1)) = Fy(o 0i,j,k,[1). (8.1.123)

By considering the equations obtained by replacing (o, 1, 7, k) by (¢, 7, 7, k) and (3, 7, o, k),
we also find that

By(i,o 04,k ) = By(i,j, 00k, ll) = By, 5.k, 1),

for all o € R. Hence, one can assign, in a well defined manner, linear maps F, to every

quadruple of objects in J1/R such that

Byliyd ko)) = Fy(lil, 31 (KL 1): (8.1124)

These maps provide us with a general solution to (8.1.75). Similarly, we introduce
functions 72 by setting

H[],;]Tl(i,jnl’[k](i,j)) = (i, J,[k])H[k] (8.1.125)
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The hexagonal equation

(1‘1(0', k)d ok) & I[)Fl (0’,k,j,d°¢m(k,j)) (TI(J)k)"lb[I](er)) & ]I)
= Fl(k,tf,j,tf °¢'[I](k:])) (]I ®1‘1(0’ °j»k,001/’[1](k,j)))F1 (O',j,k,(f °¢[1](k,1))

yields the equation
723, k, 1)) = Ra(o 04, k, (1)), (8.1.126)

and an analogous equation, with k¥ and j exchanged, proves invariance under the action

by o € R on the second argument. Hence we can write

#2(3, 3, [k]) =: r2([d], [4], [k)), (8.1.127)

and ry is a solution to (8.1.76).
Finally, the assumed invariance of the “balancing phases” under o € R allows us to

define such phases on Jy/R by setting
6; =: f) modl. (8.1.128)

Clearly, for the structural data 7y, F; and 6 just comstructed, the pentagonal-,
hexagonal- and balancing equations can be derived directly from the corresponding
equations in Cj, via (8.1.75) and (8.1.76). This completes the proof of Lemma 8.1.3.

O

This result leads us to a formulation of the basic criterion for the existence of induced

categories.

PROPOSITION 8.1.4

Suppose that C1 is a quantum category with object set Obj1, and let R C Obj1 be a
group of invertible objects with free and coherent action on Jq, so that we have a fusion
rule algebra epimorphism 7R : Obj; — Obj; = NUY/B) | Then there ezists a category Cy
with object set Obj; such that Cy is the category induced by Cy and g if and only if the
following two conditions are met in Cy:
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(1) The 6-subcategory associated to R is trivial.

(i1) The balancing elements (statistical phases) are R-invariant, i.e.,

9]' = 9,,0]', VYo € R.

Proof:
As a first step in constructing Cy we build a certain category C1, related to C; by a

tensor functor

(id, F,I) : C; —C;. (8.1.129)

The object set of C is the same as that of C;. However, two objects X and Y in C; are
equivalent (X = Y) iff 7g(X) = wg(Y), i.e., modulo equivalence, the object set of C;
is O—bjl.
From the building blocks
M([k], X) := D Mory(k,X) (8.1.130)
keCy,
we define the spaces of morphisms
Mory(X,Y) := €D Homc(M([k], X), M([k],Y)), (8.1.131)
(k]
equipped with the obvious composition of morphisms.
For I € Mor1(X,Y), we define the action of F(I) on M([k]X) into M([k]Y") by left
multiplication on X, i.e., for v = Ekec[k] vg € M([k], X), with v € Mory(k, X ), we set
F()(@) = Y Iv, Ivg€ Mor(kY). (8.1.132)
kEC[k]
In order to find the (unique) tensor product on C; such that a functor (8.1.129) exists,

we use the collection of isomorphisms

ey - @ M, X) @ M([j],Y) ® Mory([K], ] o [1])

liLlles /R
— M([k],X oY),
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which, for v; € Mor1(i,X) C M([i],X), v; € Mor1(5,Y) C M([j]Y) and w €
Mory([k], [4] o [5]), are given by

Loy —1
Tiby (v @2 @w) = (viow;)(H) (w)

€ MO’I‘l (’»b[k](":J))X ° Y) C M([k]’X ° Y) (8.1.133)

The tensor product of two morphisms I € Mor(X,X') and J € Mory(Y,Y’) is then
given by

(i, = rid (e rem. (8.1.134)

It is immediately clear from (8.1.133) that
F(IoJ) = FUIWF(J), (8.1.135)

for arbitrary I € Mor(X,X') and J € Mory(Y,Y"). If the isomorphisms in (8.1.133)
are chosen as proposed in Lemma 8.1.3 we conclude that Cj, equipped with the following

braiding and associativity isomorphisms
£1(X,Y) = F(ea(X,Y)),
a1(X,Y,2) := Flai(X,Y, 2)), (8.1.136)
is a quantum-category, and (id, F, 1) is a trensor functor. Since the pentagonal and

hexagonal equations follow easily from (8.1.136), we are left with proving the isotropy

equations
g1(X', Y (IsJ) = (Jol)e(X,Y), (8.1.137)
and
@ (X', Y', 2"\ (I5(J5K)) = ((IsT)eK) @(X,Y, Z), (8.1.138)
for I € Mor1(X,X'"), J € Mor (Y,Y') and K € Mory(Z,Z').
From the corresponding isotropy equations in C; and from relations (8.1.67) and

(8.1.68) we obtain that

er(X, Vs 0 ) () () = (v o) (HEE) ™ (rati) ), W),
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for v; € Mory(i, X), v; € Mory(5,Y) and w € Mory([k], [i] o [§]). Hence

a(XY)0Ry = T (D Tiz @ ra(lil 1, (1), (81.139)
(3051

where Ty5 : M([i], X) @ M([7],Y) — M([5],Y) ® M([i], X) is the flip of factors. From
(8.1.139) and the definition (8.1.134) of the tensor product &, we deduce (8.1.137).
Similarly, (8.1.75) and the commutativity of the top of the total square in (8.1.74)

imply that

a1(X,Y, Z) (v o (vj o o)) u'0R) (H®Z)71(z) =

((wi 0 v7) 0 wi )l (HE?) ™ (Fy(B), [, [¥], (=), (8.1.140)

for z € @) Morz([s],[5] o [k]) ® Ma([l],[i] o [s]). In terms of the isomorphisms I'

introduced in (8.1.132), this relation reads as follows:

& (X,Y, Z)r[’,‘i'“z (%9 1® r?:']z ® 11)

= ri’aoY,z (@ I‘E’f]'Y ®11®2)T34( @ 1% 9 Fy(i, [J'],[k],[l]))-
(o] [{]05]1k] (8.1.141)

From (8.1.141) we derive (8.1.138) in the same way as we found (8.1.137) from (8.1.139).
This establishes existence of a category C; and of a functor (8.1.129), with the property
that X = Y iff 7x(X) = np(Y).

For some choice of a map 7 : Obj; — Objy, with 75 0y = id, we then define Cy, as

an abelian category, to be the subcategory of C; with
Mory(X,Y) = Morq(v(X),+(Y)). (8.1.141a)

Furthermore, for each X with 7z(X) = X, we select a particular isomorphism Q(X) €
Mori(v(X),X), with Q(’y()_()) = 1. We define a functor between abelian categories,

(7R,G) : C1 — Ca, by setting

G(I) = QY)lI1Q(x), (8.1.141b)
319



for I € Mor1(X,Y). The tensor product of two morphisms I € Mory(X,X') and
J € Mory(Y,Y") is defined by

Top 7 := Q(v(X) o o(¥") " (ToN)Q((X) o (V). (8.1.141c)

Defining C(X,Y) € Endy(X oY) by

C(X,Y) = QX oY) HQ(X)3Q(Y))Q(+(X) o v(¥)), (8.1.141d)

then, for the functor

(WR)g)C) : 61 — c2) (811418)

the compatibility condition (8.1.33) is readily verified. For the braiding- and associa-

tivity isomorphisms defined by

e2(X,7) == Q(P) o v(X)) a1 (1(X),1(F)) Q(1(X) 0 7(7)),
and

a(X,Y,2) =
QU 0 7)o 7(2) ™ (Q(X) 0 7(7)) ~'oT) a1 (1(X), AT, 7(2))

(naQ(-,(Y),v(Z )))Q (1(X)ox(¥ 0 2)) (8.1.141f)

we also find relations (8.1.43) and (8.1.44). Thus (8.1.141e) is, in fact, a tensor functor of
quantum categories. Proposition 8.1.4 follows by considering the composition of tensor
functors

(WR,QOF,C) : 0 — Co.
O

Application of Proposition 8.1.4 requires that the subgroup, R = ker(, of invertible
elements has trivial categorial properties, in the very strict sense that the braided,
monoidal category associated to it is trivial, and all monodromies with other objects of
the total categories vanish. (This can be expressed here by the invariance of statistical
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phases.) In many situations, however, this information is not available, but only the
triviality of the monoidal category associated to R is known. The following discussion
is devoted to the question to what extent this suffices to conclude that, to a category C
with objects Obj, one can associate a category C with objects Obj = Obj/R such that
C is induced by C and 7p.

We first recall some notation and some simple facts that have been used earlier.

We assume that R C Obj is a subgroup of invertible objects with a free, coherent
action on the irreducible objects, J C Obj, of a rigid, braided, monoidal category, C.
We denote by

g : Obj — Obj = N, j — [, (8.1.142)

with J := J/R, the fusion rule algebra homomorphism onto the Perron-Frobenius fusion
rule algebra Obj, whose irreducible objects, J, are the orbits of R in J. There is a uni-
versal gradation, grad, assigning to each irreducible element an element of Grad(Obj),

see end of Chapter 3.3. Defining
Ry := {p€R : grad(p) = 1}, (8.1.143)

we have the following commutative diagram:

0 R« ., Obj "R, 0b; +0

= grad grad (8.1.144)

#
0— Ry —— BRI, Grad(0bj) —& ., Grad(0b;) — 0

in which the rows are exact sequences. We define
R := R/Ry = grad(R) C Grad(Obj). (8.1.145)

For any choice of 7, as in (8.1.15), the algebra Obj can be described by the fusion rules
of Obj and, with (8.1.18) and (8.1.19), by elements o[i)[5),[%] € R satisfying (8.1.20) and
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(8.1.21). To any map v : J — J, we associate a unique map 7 : J — R characterized by

i=aG)or(li), for jel, (8.1.146)

such that
n(poj) = pon(i), n(x(f]) =1, for peR,

and, furthermore,

(k)

TEGLE = m, whenever k€io0j. (8.1.147)

Our first result on induced monoidal categories is a simple modification of Proposition
8.1.2. The fusion rule algebra of a category without braided structure can be non-
abelian. For the notion of a coherent action of R on J to be meaningful, we shall then

have to assume that
poj = jou, for peR,jeJ. (8.1.148)

As a consequence, the Perron-Frobenius algebra Obj and the elements A, () are well

defined, and we impose conditions (8.1.19) and (8.1.21), but omit (8.1.20).

PROPOSITION 8.1.5

Suppose that ( : Objy — Objs is a coherent fusion rule algebra homomorphism; (Obj; is
possibly non-abelian). Assume that there is a semisimple, monoidal category, Ca, with

objects Objsy.

(i) Then there is @ monoidal category, Cy, unigque up to natural isomorphisms, such

that there exisis a tensor functor,
((,F.C): € — G (8.1.149)

compatible with the associativity constraint and extending (.

(i1) The monoidal subcategory associated with R is trivial.
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Proof: We can adapt the proof of Proposition 8.1.2 word by word, discarding the
definition of ¢ for the pull back category and omitting the definition in (8.1.61). This
will work, since these constraints were only used for the verification of the compatibility
condition (8.1.44) which can be ignored for a monoidal functor, as in (8.1.149).
Moreover, commutativity of the fusion rules, with the exception of condition (8.1.148),
has nowhere been used in the construction of the functor (8.1.149) and of the associativ-

ity constraint in the proof of Proposition 8.1.2. Part ii) of Proposition 8.1.5 is obvious.

O

Next, we wish to formulate a result analogous to that of Lemma 8.1.3, concerning
the dependence of the structure matrices on the action of R. Although the monoidal
subcategory corresponding to R is assumed to be trivial, it is, in general, not possible to
eliminate the R-dependence of the associativity constraint by an appropriate definition
of isomorphisms, H, [‘l’.j .

Yet, if we assume that the category is equipped with a braided structure, a convenient
general form of the #9- and Fy-matrices can be derived, following the lines of reasoning
in the proof of Lemma 8.1.3. But first we study an invariant for braided categories

which was already used extensively in Section 7.4.

LEMMA 8.1.6

Suppose R C J is any subgroup of invertible objects of a quantum category, C.

(i) Then there ezists an invariant of C, given by a character
m € Hom(R® Grad(0Ob5),U(1)), (8.1.150)
(R = Grad(R)) such that
&(0,5)e(, 0) = (grad(v), grad(j)) looj,

for ¢ € R, j € J. The restriction of i to R® R is symmetric.
(i) Let E :=i* (Hom(Grad(Obj)@, Grad(Obj), U(l))) be the subgroup of characters
defined in (8.1.150) with symmetric restriction to R® R, eztending symmetrically
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to bilinear forms on Grad(Obj). Here i* is the pull back of i : R® Grad(Obj) —
Grad(Obj)®s Grad(Obj). We denote by

[m] € Hom(R® Grad(Obj), U(1))/E (8.1.151)

the class of i in the quotient.

Then [m] is unchanged if C is replaced by CY, defined in (8.1.7) and (8.1.8), with
q€ Hom(I‘4(Grad(Obj)),U(1)). For any m' € [im] there ezists some g such
that m' is the invariant (8.1.150) of C1. If Grad(Obj) is cyclic then the r.h.s. of

(8.1.151) is trivial, and m = 0, for some C1.

Proof:

For each u € R and X € Obj, we define the endomorphism m(u, X) € End(X) by
e(X,p)e(p, X) = TIyom(p,X). (8.1.152)

Clearly m is isotropic, i.e., m(u,Y)I = Im(u, X), for any I € Mor(X,Y ). Using the

hexagonal equations,
a(p, X, Y)e(X oY, u)Ea(X,Y,u) = (e(X, )% o Ma(X,u, V)T o (Y, p)™),
with £(X,Y)~ = (e(Y, X)*+) !, we easily find that
m(p, X oY) = m(p,X)om(p,Y),

i.e., m(p, ) is a grading. We thus have that, for j € J, m(u,j) = 'ﬁl(p., grad(j))]IJ-, with

m(p, ) € Hom(Grad(Obj),U(1)). By a similar hexagonal constraint, we obtain that
m(u, X) m(v,X) = m(povy,X),

for X € Obj, and p,v € R. These properties of m, together with the symmetry obvious
from definition (8.1.152), imply the general form (8.1.150).
From (8.1.8) and (7.267) we have that, for any u € R and g € Grad(Obj),

mi(p,9) = m(p,g) bq(u,9),
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where §q(p,9) = q(rg)q(g9) q(r)!, and m9 is the invariant of C9. It is clear from
(7.295) that §q € E, so that [m?)] = [m]. Conversely, assume that 7= € E. Then we may

use a result from Section 7.4, namely that the map

Q : GR;G — Ty(G),

lg |~} — {gh}—{g} - {h}, (8.1.153)

with G®s G :=G®G/im(1-T)=G®G/([g| k] — [h] g]), as in (7.276), is injective.
Hence

Q* : Hom(T4(G),U(1)) —» Hom(G ®, G,U(1)),
is onto, and thus, given m € E, there exists a ¢ € Hom (I‘4 (Grad(Obj)), U(l)) , with
m(g, k) = Q*(g)(g,h) = q(g9,h) = g(gh)alg) a(h)~".

We have m = m9 iff

q(g) = d(n(g)) e(g), (8.1.154)

where 7 is the projection: Grad(Obj) - G := Grad(0bj)/R, ¢ € Hom(T4(G), U(1)),

and ¢ € Hom(G, Z3). The fact that the map
i : R® Grad(0bj) — Grad(Obj) ® Grad(Ob;j), (8.1.155)

induced by the inclusion R C Grad(Obj), is into, for a cyclic Grad(Obj), and that the
right hand side is already symmetric implies the last assertion in part ii) of Lemma
8.1.6. Note that, for general R and Grad(Obj), the group (8.1.151) is non-trivial, and
(8.1.155) may have a kernel.

We are now in a position to prove the following generalization of Lemma 8.1.3.

LEMMA 8.1.7
Suppose that C is a quantum category, with objects Obj, and R C Obj is a subgroup of
invertible elements with a free, coherent action on J C Obj. Assume, furthermore, that
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the category associated to R is trivial as a monoidal category. Denote by vy and Fy the

usual structure matrices of C and by

g : Obj — Obj

the fusion rule algebra homomorphism defined in (8.1.148). Finally, lety :J — J be

an arbitrary map with g oy = id from which : J — R and o[ k] ore defined as in

(8.1.146) and (8.1.147). Then

(i)

(ii)

there ezist vector spaces Mory([k], [i] o [5]) = cNELE and isomorphisms H[ilj' as
in (8.1.79), such that the matrices 7y and Iy, defined by (8.1.121) and (8.1.125),

satisfy the “gauge-constraints”

FBy(p,i, 5, [k]) = Fu(i,5,m,[k]) = 1, (8.1.156)
and
F2(v([i]), ) = 1, (8.1.157)

fori,j,k € J and p € R.

The residual “gauge freedom” preserving the constraints (8.1.156) and (8.1.157)
is generated through transformations of the R-category preserving (8.1.156), for
1,7 € R, by natural transformations of the Morg-spaces. More precisely, if HE}’C‘}
13 a set of isomorphisms consistent with (8.1.156) and (8.1.157) then any other

such set is given by

o\t L
(H) = 43 B33, (8.1.158)
where AE;:] € Endc(Mory([k], [i] o [5])) has the form
ij . . . (k)
Ay = w(@G) o o, ()@ (16, o, ) E(i)( 521') a{k]][’], (8.1.159)

with k = Yy (i,3), € : J — U(1) (or ©), aEZ]][j] € Ende(Mory([k], li] o [7])), and
w € Z*(R,1;U(1)).
326



(iii) If the “gauge constraints” are obeyed the Fy- and 79 matrices can be ezpressed by

matrices 1%2 and #9, whose indices only depend on the classes in Obj, and by
p = 7y [rxr € Hom(R® R,U(1)), (8.1.160)
as follows:

":2(.7.7 k) [l]) =

p(q(j),n(k))p(am[k],[q,n(k)n(j)“l)rﬁ(grad(n(j )),yrad('r([j]))) 72 (L3, [k](’s [lpi 1)

?2(’:).7-) k) [z]) =

= (D plopp e 7G)™) ® T,) Falll, i, 81, 1)

(@ 1n,,, ® p{o()s), 110 )))
= (D x, ® plogaa(0))) Fa(ll, ), (], 1)

(@ p(om 1) ™ @ T, (8.1.162)

The matrices 79 and Fy are unity if [i] = 1, [j] = 1 or [k] = 1, but, in general,
they do not satisfy the pentagon- and hezagon equations.
. Y
(iv) If Fé and 7y are the structure matrices in a new gauge, (H[';Z]) , as in (8.1.158),

then they are given by the same fomrulae (8.1.161) and (8.1.162), inserting

Pmv) = wEV’”) pp,v), (8.1.162a)
wlp, v
Pl kL) = ol ™) #a(0, ), 1) (aff ™) (8.1.162b)

Fo(l, 71, 1) = (D elempe cwmmeil @ )
"

I:‘;2([i]) [.7]) [k]) [l])
K] o ]\~
(%]9w("[i][s],[ll'"[J'][k],[-'l)“[a] o) (8.1.162¢)
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Proof:

(i) The proof of the first part of Lemma 8.1.7 is merely a recapitulation of those
arguments of the proof of Lemma 8.1.3 that do not require the triviality but only
the existence of a braided structure. As in (8.1.80) and (8.1.82), triviality of the
monoidal category associated to R implies that there exists H, ﬁ’]“ , 0,4 € R, such
that

Bo,mul) = 1,
for o,u,v € R. Imposing (8.1.86), ﬁ‘z(p,v,'y([j]),[j]) =1, and 13‘2(7(L7]),
1, v,[j]) = 1, we derive from the pentagonal constraint (8.1.88) the invariance

corresponding to (8.1.89) and (8.1.90), namely

By(p,v,3, 1) = Ba(G,mwli]) = 1, (8.1.163)
for p,v € R and j € J. We retain the “gauge freedom” expressed by (8.1.91).

From the pentagonal equations (8.1.94) the cocycle condition (8.1.96) for

Y L) = Fap,y(l), v [5])
is derived. Assuming only the existence of a braided structure, we find from
(8.1.97) the constraint (8.1.98), with pj;(p,0) = 7, (#,0 07([5]),[7]). Hence
¢[j](1 | -,) is symmetric and therefore a coboundary. Having a solution Bl o —
Bijj(o) to (8.1.100), we can therefore find a gauge such that 9p;(1 | -,-) = 1. This
implies, with (8.1.94) and (8.1.95), that

Fo(p,j, v, [5]) =1, (8.1.164)
for p,v € R and j € J; (compare to (8.1.103)). We see from (8.1.102) that
if we impose (8.1.163) and (8.1.164) and keep the H[‘;']”, for p,v € R, fixed,
then the remaining freedom in choosing H Si’ and H []]’]“ is given by the “gauge

transformations”

€(po7)

Hy — 5 HE,
H — (0) 5(2‘(;)’) Y, (8.1.165)
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where {:J — U(1) (or C) is any function, with { | R =1, and 7y; €
Hom(R,U(1)), with 71 = 1. For the #y-matrices with arguments in R the

transformation law then reads

#ay o [f]) — —— 7o ),
7(77(#)

213, [5) — 75(m) F2(n, 5, [5])- (8.1.166)
Considering (8.1.97) and an analogous equation for the inverse r-matrices, we see

that, in any gauge consistent with (8.1.163) and (8.1.164),

#2043, 1)), #2(-,5, 7)) € Hom(R,U(1)),

forall je J,ie,

712(.7')”' ov, [.7]) = ;‘2(]’)”‘1 []]) 1-:2(]-) v, [J])) (81167)

and similarly for #3(-, 7, [5])-

Setting ;) := 72 (+([51),, [5]), a transformation of the form (8.1.165) produces
the desired constraint (8.1.157), as follows from (8.1.166).

Imposing the normalization conditions discussed above, we next consider the spe-
cial Fy-matrices defined in (8.1.109) and (8.1.110). The pentagonal equations
(8.1.111) and (8.1.114) yield the relations (8.1.112), (8.1.113) and (8.1.115). Per-
forming a gauge transformation as in (8.1.117), we finally find a set of isomor-
phisms such that the Fy-matrices fulfill (8.1.156).

(i1) For a general gauge transformation

HW L, Ab g

(k] (k] “' k]’ (8.1.167a)

with AE;:i € GI(Mory([k], [i}o[j])), the conditions (8.1.156) and (8.1.157) yield the
constraints:
1Y k4 soi,j
A[k]®A[k] = A[k] ®A[k] (8.1.168)
i3 kp _ adp i,l0]
A[k]®A[k] = A[k] ®A[k] (8.1.169)
pa(l) _ 4D
- AR = A7, (8.1.170)
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where k = ¢[k](i: 7). The most general solution to these equations can be found
by first specializing to i € R or § € R and determining the form of A’[;’]J and Af)i‘
The result is

) J.u — w &(poJ)
A=A = @) ey

where w € ZZ(R,I;U(I)) (see Section 7.4) and § : J — U(1) (or C). Here we

(8.1.171)

may assume that £ | R = 1, since we can substitute ¢'(j) = f(j)({(n(j)))_l and
w' = w(6¢)~1 without changing A’G.’]j . Equations (8.1.168), (8.1.169) and (8.1.171)
give a complete description of how the transformations A[k] depend on the objects
i in an orbit [i] and j in an orbit [j]. This dependence can be absorbed into the
prefactor of a{ﬂ][ﬂ in (8.1.159), using identities (8.1.147) and w = 1.

(iii)) We assume that equations (8.1.156) and (8.1.157) hold true. The hexagonal equa-
tion (8.1.105) and the inverse version thereof provide us with the following formula

for the action of R:

;2(#’ 07,V [J]) = 112(/‘% v, [1]) iZ(j) v, [J])’

7‘:2(”1 K, [1]) ’:2(",.7'; [J]) . (81172)

712(”)/" °j, [J])

In particular (8.1.172) and (8.1.167) show that the restriction of 72 to R X Ris a
bihomomorphism, justifying our definition (8.1.160) of p.
We immediately find, with (8.1.157), (8.1.167) and (8.1.172), the general form

712(.7."/1 [.7]) P(ﬂ(j);u);
#2010, 1) = p(a(i)) m(grad(v), grad(x())-

(8.1.173)
If we insert (8.1.156) and (8.1.173) into the hexagonal equation (8.1.119) and use

(8.1.147) we arrive at

Fyi, p, 5, [k]) = Pl k) #) - (8.1.174)

The expressions (8.1.173) and (8.1.174) for 73- and Fy-matrices with arguments in

R enable us to find the general transformation properties of the structure matrices

330



under the action of R: The hexagonal equation preceding (8.1.126) yields

7:2(#0.7715)[1]) =
= ,n(k))m( grad(u), gra o5 ) 1 5k, [1]),
p(u,n(k)) (9 (1), g d(7([k])))P( kL #) - T20: ks 1) (8.1.175)

and, similarly, from the inverse hexagonal equation

F2(G mok,[l1) = p(n(3), )P (ops a1 #) 720, R, 1)) - (8.1.176)

The solution to (8.1.175) and (8.1.176) is given precisely by the expression in
(8.1.161), where 75 only depends on the classes of the objects i, j, k in Obj. The
dependence of the F’z-matrices on the first and third entry under the action of R
has already been determined in the proof of Lemma 8.1.3. With the help of the
pentagonal-equation (8.1.122), the invariance (8.1.123) was inferred, so that by

using a similar argument for the third index we can write
By(i, 5.k, 1) = F3(4), 5, (], 10) - (8.1.177)
The pentagonal-equations

(D F2Giomd o)) @ Twy ) B i 0, 1) (€D oy o, o) © T, )
= By(uoiss k1) (P In,,, ® Falim5,10)

and

(@ By(i,j,m(8) ® nN,k_,)ﬁz (i, 10 5, k, [1)) (@ By, k,[o]) T N‘,,,)
- (@ Iy, ® Fy(s,p,k, [z]))ﬁ*2 (5,7, 0 k, (1)) (8.1.178)
yield th; following formula for the action of R on the second index
B([i) o4, [k),[0) =
= (6‘9 P ) @ In,,, ) B (6, K], 1) (G? 1y, , ® p(ofasl 1))
= (GB 1x,, ® p(opsyag i #)) £ (i, 5. 8], 1) (EB Pk ) © Ty,

(8.1.179)
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The general solution to (8.1.177) and (8.1.179) is given by (8.1.162). Note that,
by (8.1.21), the two expressions given in (8.1.162) and (8.1.179), respectively, are
equivalent.

(iv) The gauge dependence given in (8.1.162a) is derived by applying a natural trans-
formation to the defining equation (8.1.160). By the very construction of the AE{],
this corresponds to adding a coboundary §w € B* (R,2;U(1)) to the f-category
associated with R C Obj. Formulae (8.1.162b) and (8.1.162c) are obtained by

applying a gauge-transformation
. .. > . _ G -1
Fz(i,j,k, [l]) = (@ A‘E;-i’ ® AE/;][-]( ,J),k) Fz(l,],k, [l])(@ A'E;f ® Am‘/’[ 16 k))
L [e

;Z(j)k) [l])

. . -1
Aﬁf 2205, k, [1])(Af;]’°) (8.1.180)

to the identities

Fa (G, 1), [K), 1))
#2(04, (K], )

By (y(B1), (L), (D), [41)
F2(v([7]), v([R]), [1]) - (8.1.181)

O

Until now, we have considered the general case of coherent fusion rule algebra homo-
morphisms. This structure has turned out to suffice to conclude the existence of induced
monoidal categories, in Proposition 8.1.5, and to derive the general dependence of the
structural data, braid- and fusion matrices, on the group action, (i.e., the action of R
on J C Obj) in Lemma 8.1.7. In order to give a characterization, analogous to the
one in Proposition 8.1.4, of those categories that are induced, as monoidal categories,
by smaller ones, we need to find more convenient expressions for the R-dependence of
r- and F-matrices from which the structural data of a smaller, braided, monoidal cat-
egory can be extracted. This problem can be subdivided, in a natural way, into two
steps: First, we discuss the action of the subgroup, Ry, of elements in R with trivial
grading (see (8.1.143) for the definition). Subsequently, we determine the dependence
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of the structural data of the reduced category on the action of the graded subgroup
R = R/Ry; (see (8.1.145)). The advantage of working with graded fusion rule algebra
homomorphisms is that formulae (8.1.162) simplify considerably. As a consequence, the
9- and F:"g-matrices will then satisfy pentagonal- and hexagonal equations, up to scalar
multiples. For the first step, we make use of Lemma 8.1.6 which implies that all mon-
odromies with entries in Ry vanish. (Note, however, that, since we have no evidence for
the existence of coherent, non-graded fusion rule algebras with Ry # 1, the following

discussion could turn out to be superfluous.)

LEMMA 8.1.8
Let C be a braided tensor category and R C Obj a subgroup of invertible objects with a

free, coherent action on J C Obj.

(i) The subgroup, Ry, of R defined in (8.1.143) also has a free, coherent action on J C
Obj. The Perron-Frobenius algebra, Obj' = Obj/Ry, contains R as a subgroup
of invertible objects with a free, graded action on J' = J/Ry. The situation is

summarized in the following commutative diagram:

TR
Obj "R 005 "R » Ob;
grad grad grad (8.1.182)

wﬁo Ty —
Grad(Obj) — Grad(0bj') ——=— Grad(Obj)

I ]

#
TR

(i1) The subcategory associated with Ry has abelian permutation group statistics. It

*

1s trivial as ¢ monoidal category. There is a “bosonic” subgroup Ra" C Ry, and

either RT = Ry or RO/RE)" & Zo, with the property that the braided tensor category

of R(T ts trivial, and C is induced, as a braided tensor category, by a category on

Obj" := Obj/Rb{'. Moreover, C is induced by a category on Obj' iff Ry = Rb".
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(iii) Let us suppose that C is induced, as a monoidal category, by 7 and a category C
with object set Obj. Let us assume, moreover, that C and C are equipped with a
braided structure. Then there ezists a braided, monoidal category C' with objects
Obj', such that C is induced, as a braided category, by C' and nR,, end C' is
induced, as a monoidal category, by C and T - In particular, we always have that
Ry = Rb". Up to automorphisms of C, the functor from C to C is therefore given
by the composition

(7R, 7%, 0°) ("2 7.0) & (8.1.183)

c »C!

where the first functor is compatible with the commutativity constraint. If C is
induced by C, as a braided category, then also C' is induced by C, as a braided

category, and the functor (m g, F,C) is compatible with the associativity constraint.

Proof:

(i) As a subgroup of a freely acting group, Rg clearly also has a free action on J.
Hence Obj' = Obj /Ry is a fusion rule algebra, and

TR, : Obj —» Obj' : j — {j}

is a fusion rule algebra homomorphism. Clearly, 7, maps invertible objects to
invertible objects, and the restriction, 7y : R - R C Obj', is the ordinary
projection amounting to taking the quotient by Ry. The fact that R acts freely
on J implies that R also acts freely on J'. Hence 7 is well defined, assigning
to {j} the class [j] = [{j}], (where, on the left, we may pick any representative
j € {7}). The composition of n with wp, is just np, as indicated in the top row
of (8.1.182).

Let us now suppose that we have chosen a map v : J — J, along with the
corresponding map 7 : J — R, and elements oLl k) € R. To any section
¥ : R — R, with TR, © ¥ = idg, we associate a choice of a map ¥ 0 J as
follows. It is clear that there is a unique map 7 : J' — R such that the diagram
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TR, TR, (8.1.184)

No————

oo

7

commutes, and that 7({s} o {5}) = {u} o 7({s}), for any u € R, with {u} the

corresponding element of R. We define

({5} = (@) o 7 (15} - (8.1.185)

For j € {j} = mp,(j), it then follows from

72, (Y’ ({51)) = 7({5}) o mry(v([{7}))
7Ry (1(3)) © wry (+([5]))

TR(3) = {5}

that 70 is an admissible selection of representatives in the classes of J'. Since
i = 1°() 0 7°({j}), and by (8.1.185) we find that the map 7° : J — Ry, with

ooj)=0o 7(j), is determined by

7(3) = 2°() o ¥ (@({5}))- (8.1.186)

From (8.1.185) or (8.1.186) we see that

AGHNRY = NEHie TG (8.1.187)

where we use the definitions of (8.1.18) and (8.1.19) with respect to Ry and ~°.

The invertible object o in (8.1.187) is given by

oy = YD) 0 v ({I) o (HRN) T ooy iy (8:1:188)

It follows immediately from this expresion that wp, is coherent whenever mp is

coherent.
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From (8.1.31), and since grad(Ry) = 1, we infer that rﬁo is an isomorphism.
Using the properties of 7, and the commutativity of (8.1.182) this proves that
the restriction

grad : R — Grad(Obj') (8.1.189)

is an injection. Hence 7 is a graded and thus coherent fusion rule algebra homo-
morphism. We remark that 7, as defined in (8.1.184), corresponds to the choice

of ¥:J — J' given by

A([5]) = 7R, (v([5])- (8.1.190)

The elements in R corresponding to this choice are given by

TR = TR (i) [k1)-

They can be uniquely determined from

grad (o) = 7, (97ad(v([D) grad(x(i))) grad(x(k)) ™),  (8:1.191)

using that (8.1.189) is injective. This proves part i) of Lemma 8.1.8.

(ii) From Lemma 8.1.6,i) we see that
e(0,X) = ¢(X,0)", for o €Ry. (8.1.192)

For X = p € Ry, this proves that the category determined by Ry has permutation
group statistics. For the quadratic function ¢(o)lsos := £(0,0), this implies,

using that g(op) ¢(a0) ! g(p)~! = (o, 1) e(ua):
g € Hom(Ry,Zs). (8.1.193)

Hence we can define a subgroup Rb" := ker q for which the associated f-category is
trivial. Let « be the non-trivial element in H om(Zg ®Za, U (1)), and consider the
function #3(u, o)a(g(r), ¢(c)) ~1 The logarithm of this function is skew symmet-
ric and vanishes on the diagonal. Hence #3(x, o)a(q(p), g(7)) ~! can be written as
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é(p,0)¢(o, 1)~ ! for some function ¢ : Ry x Ry — U(1)(C). Gauging the H[’;’]” with
¢, i.e., adding the coboundary §¢ € B* (Ro,2; U(1)) to the structure constants of

the f-category determined by R, we can achieve that

Fo(p o) = a(g(n),q(v))- (8.1.194)

With (8.1.193), this implies that 72 € Hom(Ro ® Ro,U(1)). Thus the monoidal
category determined by Rp is trivial. If we set R = Ra' in Lemma 8.1.7, iii) we
infer from equations (8.1.161) and (8.1.162), using that p = 73 [ xg,= 1 and
grad(n(j)) =1, for all j € J, that there is a choice of H’s such that 75 = #9
and 13'2 = F:' 2 are invariant under the action of Rg'. As described in the proof of

Proposition 8.1.4, this implies the existence of a braided category, C”, with objects
Obj" = Obj/R{ and a functor

(r},F.C) = c—C",

i.e., C is induced by C" and WEO. In C" we have that Ry = RO/RE)*, so that, for
g # 1, we conclude that Ry = Z,, where Rj is generated by a fermionic object o,
with £"(0,0) = -1

Since ¢ [g, is an invariant, we conclude that C is induced by a category on Obj'
onlyif g =1on Ry, i.e, Ry = Rg' . If this is the case the previous argument shows,
in particular, that C is induced by 7g, and a category on Obj'. This proves part
ii) of the lemma.

(ii1) Suppose that C is induced by C and 7g and that both, C and C, are equipped
with a braided structure. We then have a collection of isomorphisms, H, EI;J] :
Mory(k,i0j) — Mora([k], [i] o [7]), such that (8.1.75) holds. We may consider
the category C’, with objects Obj', which is induced by C and 7p- A choice of

R-invariant structure matrices, 1:"5, can be found for any collection

BN - Moy ((k}, 43} 0 {3)) 5 Mora(I{EN, HiN 0 [{5}),
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by use of (8.1.85). Setting

Hy = (H{t}{J}) HiJ : Mory(k,i0j) —» Morh({k}, {i}o j}),  (8.1.195)

we obviously have a solution to eq. (8.1.75), relating the structure matrices I}
and I";'é of C and C'. By the Rg-invariance of the I:"é—matrices, it follows from
(8.1.174) that, for #, defined by (8.1.76) in terms of the ri-matrices, one has that

7 ("'{;‘}{j},{k}»l‘) = 1. Hence, in particular, we conclude that

doinpy) = 1 (8.1.196)

However, (8.1.147), (8.1.193) and (8.1.196) imply that

i — q(@°G)) (8.1.197)

is a Zp-grading on Obj. By definition of Ry, this has to be trivial on Ry. This
means that ¢ [p,= 1, i.e., the subcategory Rg' of Ry is trivial as a braided category,
as well. Thus, there exists a unique braided monoidal category C' with objects
Obj' such that C is induced, as a braided category, by C' and ng,. This proves
(8.1.183), with (3, F,C) a functor compatible with the associativity constraint
and constructed from the isomorphisms H [{;‘]}{j}.

If we assume that C is induced by C, as a braided category, then we find structure-
matrices for C, C' and C such that, for suitable isomorphisms HY [k]’ the data (r1, F1)
of C and the data (73, Fz) of C are related by (8.1.75) and (8.1.76). Furthermore,
for suitable isomorphisms H;’kj}, the data (r1, F}) of C are related to the data
(i'z,ﬁ’é) by the same equations. It follows immediately that the isomorphisms
H[{']}{’} defined by (8.1.195) provide a solution to egs. (8.1.75) and (8.1.76) if
we insert the structure matrices of the categories C' and C. Using the arguments
of Proposition 8.1.4, this is seen to imply that we can choose (73, F,C) to be

compatible with the commutativity constraint. a
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If we assume that Ry does not contain a fermionic object, i.e, Ry = Rb*', then Lemma
8.1.8 shows that it is suffiicient to study graded fuison-rule algebra homomorphisms
(Ro = 1), in order to get a complete characterization of induced categories. In fact, in
most applications, we will have graded fusion rule algebra homomorphisms right from
the beginning.

The advantage gained from a graded action of R on J ist that, for a convenient
choice of 7, and by use of (8.1.29), the structure constants 7 and F5, as presented
in (8.1.161) and (8.1.162), will be proportional to 5 and 1272, and the corresponding
factors of proportionality do not depend on the arguments of 73 and £ but only on
their gradings. Let us recall some basic facts on graded fusion rule algebras and present
simplified versions of eqs. (8.1.161) and (8.1.162). If R has a graded action (8.1.144)

reduces to a pair of short exact sequences:

N
0 R« , i' R wJ +0
&~ grad grad (8.1.198)
0 R, Grad(Ob;) 1 Grad(0bj) ——0

[ |

¥

where the squares in the middle commute. Here we also require a section 9 : Grad(Obj)

— Grad(Obj), with wﬁm/; = 1d. With any such ¥ we can associate a symmetric cocycle
¢ € 2°(Grad(0%j),1; R),
by setting

grad ((g,k)) = $(9) ¥lg-h) ™" P(h), (8.1.199)

where we use exactness of the lower row in (8.1.198). The ambiguity in choosing P,
corresponding to multiplication by a function A : Grad(Obj) — R, implies that ¢ is
339



only given up to boundaries §A. As explained in the analysis following (7.287), the

possible ¢’s correspond to the classes
[§] € Ext(Grad(O%b5),R) C H? (Grad(0bj),1; R) (8.1.200)

which describe the possible extensions of R over Grad(0Ob7), given by Grad(Obj) and
the short exact sequence in (8.1.198).

The circumstance that, from two groups, R and Grad(0b%;), and an extension [¢], one
finds a new group, Grad(Obj), containing R and Grad(Obj)/R = Grad(Obj) motivates
the following generalization, where the gradation groups are replaced by fusion rule
algebras. We assume that Obj is a fusion rule algebra, R an abelian group and [¢] €
Ext(Grad(Obj), R). Then the algebra Ob; ©y¢) R is defined as follows: The objects are
of the form 3 ,c p(Xy, p), with (X +Y, u) = (X, p) + (Y, p), for X, X,Y € Obj. Thus
the irreducible objects are given by J = {(j, #)}jef,pER' The tensor product is defined
by

(3, )o(4,v) = (i oj,povo f(grad(i),grad(j))), (8.1.201)

where we have chosen some representative £ € [£].

Up to isomorphism, this fusion rule algebra is independent of the particular choice
of a representative in the class [¢], because (j,u) — (j,p o A(grad(j))) provides an
isomorphism from the algebra defined with the help of ¢ - §) to the algebra defined with
the help of §.

The universal grading is given by the group Grad(Obj) associated to the extension
[€] of R over Grad(Obj). An injection R —» Grad(Obj) and a choice of some section
¥ : Grad(Obj) — Grad(Obj) satisfying wgodp = id and eq. (8.1.199) determines the
grading to be given by

grad((§,n)) = ¥(grad(j)) o . (8.1.202)

The algebra Obj Qf] R contains R as a subgroup of invertible objects with a free, graded
action on J. The quotient of Obj @[f] R by R is precisely Obj, with a homomorphism
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TR given by

r((G,w) = 4. (8.1.203)

In fact, these properties determine the algebra Obj ©[€] R completely.

LEMMA 8.1.9

Assume that R C Obj is a subgroup of invertible objects with a free, graded action on

J. Let Obj := Obj/R be the Perron-Frobenius quotient by R, and denote by [¢] €

Ezt(Grad(Obj), R) the eztension of gradation groups induced by (8.1.182). Then the

following statements hold true:

(i)

(i)

For any ¥ € {Grad(Obj) — Grad(Obj)}, with wﬁ o = id, there is a unique

choice of @ map v: J — J, with mp oy = id, such that

¥(grad([i])) = grad(+(li))) , (8.1.204)

i.e., the right, outer square in (8.1.198) commutes. The corresponding map 7 :

J — R, and the group elements, i), (k] oTe given by
-1

grad(n(3)) = grad(s)(¥(srad (i)
ok = €(grad(lil), grad((i]), (8.1.206)

where ¢ € [¢] is the representative obtained from .

(8.1.205)

Furthermore,
Ob; = Obj @ R (8.1.207)
as a fusion rule algebra, i.e., Obj, R and [£] determine Obj completely. If, for

some £ € [¢], the tensor product Obj ©f¢) R is given by (8.1.201) then an ezplicit

tsomorphism of fusion rule algebras is given by

(Glw) — wor(li])
with inverse i — (1,9(), (8.1.208)

where v and 1 are the maps associated with ¢ and some section ¢ by (8.1.204)
and (8.1.205).
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Proof. i) We first consider the expression on the right hand side of (8.1.205). Using
that x% o = id, it follows that the expression lies in the kernel of 7%. Hence, by the
exactness of the lower sequence in (8.1.198), we find a function % : J — R such that
(8.1.205) holds. The covariance condition n(o 0 j) = o o 7(7) is obvious from (8.1.205).
Hence the map 7([j]) is well defined by setting j = 5(7) o 7([s]). Inserting ([f]) in
(8.1.205), we arrive at (8.1.204). Equation (8.1.206) is found by combining (8.1.29),
(8.1.199) and (8.1.204).

Part ii) of the lemma can be verified directly by using the results of part i).

a
We remark that the map 5 from J to R can be expressed in terms of the function
n' : Grad(Obj) — R, g — g(¥o wﬁ(g))—l (8.1.209)
as
n = 7 ograd. (8.1.210)

In the next lemma we evaluate the expressions for the structure matrices found in
Lemma 8.1.7, using the special forms of 4,7 and SAIOR0 given above. The problem of
extracting a braided tensor category with object set Obj from a category on Obj can

then be translated into a problem of group cohomology.

LEMMA 8.1.10
Suppose that R C Obj is as above and that C is a braided, monoidal category, with
objects Obj, whick is trivial on R as a monoidal category.

Let 9 : Grad(Obj) — Grad(Obj) be an arbitrary section and £ € Z2 (Grad(O—bj), 1;R)

the associated, symmetric cocycle. Then the following statements hold true:

(i) There ezist vector spaces Mory([k], [1] o [§]) = CN[i][j],[k], and isomorphisms H[',’j,
as in (8.1.79), such that the mairices 7o and Fy, defined by (8.1.121), can be
ezpressed by the phase factors p introduced in (8.1.160) and by matrices E o and
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79, in the following way:

FZ(i)j) ki [l]) =
= p(¢(grad(li]) o grad(()), grad([K])) - € (grad((j]), grad([k]) ', (7))
Fo(lil, 4], [#], 1)

(8.1.211)

fZ(Jvk)[l]) =
= p(n(3), (k) (¢ (Grad(i)), gmad([k))), n(k) - n(5) ) m(grad(n(3)); ¥ (grad((i])))
Fa((3), &1, ), (81.212)

where 0 is given in (8.1.205) and m in (8.1.150).

(ii) We define w € A5(Grad(0b;),2; M) (with M = C or U(1), and A*(G,n; M) as

in Chapter 7.8) by the following formulae:

w(lg1 192193 94]) = w¥91,92,93,94) :=

= p((g1- 92 93,94)€(92 - 93,94) ", €(92,93))

(8.1.213)
w(lg1 | g2llgs]) = w¥ (91,92 | 93) =

= i = = -1

= p(&(91 - 92, 93), £(91,92)) ™ (£ (91, 92), ¥(93)) (5.1.214)
‘”([93”91 |92]) = w_(g1,gz | g3) ==
= p(E(91 - 92,93), €(91,92)) " - (8.1.215)
Then w is a cocycle, i.e.,

w € Z° (Grad(0bj),2; M) . (8.1.216)

(iii) The reduced structure matrices obey the following modified categorial equations.
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Pentagonal equations:

@ Fo(fi), i), 18], o)) © Ty, ) (D T, @ Fo([i, ), 1, ()
[s] [s]

(€D Fa(13), (0, 1, ) @ Ty, )

[s]
= wgi, 95,90, 91) (P In,, ® Fo([s), [¥1, 1], 1)) To2 (€D s,
[s] (s}
® Fa([i], (4, [s], [t])) (8.1.217)
Hexagonal, +:
(6P 72l [R], 1) ® Tn,,,) F(fi), [k, ), () (ED #2(li], (), 1)) © Tv,,)
[ Y
= W+(gi) 9; l gk)_lﬁb([k]) [1']1 [J]) [t])(% ]IN;j., ® 7::2([1]: [k]: [t])) ﬁ‘Z([l]’ [J]x [(Igl’l[t2]%8)
Hexagonal, -:
(@ 7%2([k]) (3], [l])—l ® ]Isz,t)‘i:—.‘Z([i]) (%], 7], [ﬂ)(@ 732([’“]) 71, [l])_l ® ]INu,t)
U] U
= w(gi, 95 | w) Fa((R], i), 1), [t])(E[I]B Iy, ® F2((k], [1], (1)) Fa(lil, 4], [I(cz]z’.{t.]z)l'g)
Here we are using the abbreviations g; = grad([i]), etc..
(iv) For any A € A4(G1‘ad(Obj),2;M), we set
Fy(lil, i, (61, 11) = A(lgs | 95 | 9a]) Pa((il, 3], K1, 1),
ra(lal, G, (k) = Mlgallgs))72((al, 4], [KD) - (8.1.220)

Then the matrices Fy and vy satisfy the modified categorial relations (8.1.217),

(8.1.218) and (8.1.219), where w is replaced by
w = w(d))7t. (8.1.221)

Hence, the obstruction against finding a solution to the usual categorial equations

by rescalings, as in (8.1.220), lies in

H®(Grad(0bj),2; M) . (8.1.222)
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Proof.
The assertions made in Lemma 8.1.10 are verified by straightforward computations
which we will not reproduce here. Nevertheless, we shall assist the readers’ task with

the following remarks and formulae.

i) In order to obtain (8.1.211) and (8.1.212) we insert (8.1.206) into the relations (8.1.161)
and (8.1.162). Since 9[i]{],k} ©nly depends on the grading of its indices, and since the
grading of the summation indices in (8.1.162) is fixed by g;,g; and g;, the diagonal
matrices in (8.1.162) are, in fact, multiples of the identity which combine to the factor
in (8.1.211).

ii) The cocycle condition (8.1.216) is given by the following five equations:
0 4 =\ 1.
w® € Z*(Grad(0bj),1; M) , (8.1.223)

and

- -1
w®(g1, 92,93, 94)w’ (92, 91,93, 94) (92, 93, 91, 94)w° (92, 93,94, 91) " =

= w (93,94 | 91)  w (9293, 94 | 91)w (92,9394 | 91) v (92,93 | 91)
(8.1.224)

- -1
w0(91:927 93,94)(410(91,92,94,!]3) 1w0(gl,g4,gz,g3)w°(g4, g1,92,93) =

_ -1
= w¥(g1,92 | 9a)w¥ (91,9293 | 94) " w¥ (9192, 93 | 9a)w (92,93 | 94)
(8.1.225)

wt(g1,92 | g3)wt(g2,91 1 93)™" = w(g3,92 | 91)w (92,93 | 1) " (8.1.226)

w®(91, 92,93, 94)w"(g1, 93, 92, 94) 1w(93, 91,92, 94) -
0 0 ~1,.0
- w (91,93, 94, 92)w (93, 91,94, 92) w (93,94, 91, 92)
= wt(g1,92 | g3) (91,92 | 9a)7 -

- w (93,94 | 92)w (93,94 | 9192) W (93,94 | 91) -
(8.1.227)
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For the verification of (8.1.216) it is useful to observe that the special function w,

given in (8.1.213) - (8.1.215), has the symmetry properties

wi (91,92 193) = w¥(92,91 | 93)

w®(91,92,93,91) = «%91,93,92,94) = w°(94,92,93,91) -
(8.1.228)

Parts iii) and iv) simply follow by inserting formulae (8.1.211) and (8.1.212) into the
usual categorial equations and formulae (8.1.220) into the modified categorial equations
(8.1.217) - (8.1.219). The expressions for §) are given by (7.290), (7.293) and (7.294).
O
The strategy we are pursuing here for expressing categories with graded subgroups by
smaller ones involves the concept of induced categories, combined with the operation
C - (9 for g€ Hom (F4 (Grad(0Obj)), U(l)), described at the beginning of this chap-
ter. In the examples we are interested in, the categories associated with the subgroups of
invertible elements can be converted into categories with permutation statistics. Thus,
the remaining obstruction to trivialize such a category is the extendability of the rel-
evant quadratic forms, i.e., the signatures, to the entire universal grading group. As
a starting point to a more detailed analysis of this situation we make the following
definition:

Consider the map
i3 : R/2R — Grad(Obj)/2 Grad(Obj) (8.1.229)

defined by requiring commutativity of the diagram

R
0 +2R « 'R P —»R/2R +0

L

0 ———2 Grad(Obj) —— Grad(0bj) —E—» Grad(0bj)/2 Grad(Obj) ———0

(8.1.230)
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The groups in (8.1.229) contain only elements of prime order two and thus give rise
to vector spaces over the field Zy, (with scalar multiplication (g,g) — g°%,¢ € Zp). We
can therefore find a space complementary to the kernel, (R N 2Grad(Obj)) /2R, of iy.

Its preimage, R, in R is characterized by the properties

2RCRCR

R/2R = (R n 2Grad(0b5))/2R & R/2R. (8.1.231)

Definition.

We shall call a subgroup R C R satisfying (8.1.231) a maximal, signature-extendable

subgroup (for reasons that become clear below).

LEMMA 8.1.11
Let C be a braided, monoidal category with objects Obj, R C Obj a subgroup of invertible
elements with a free, graded action on Obj, and R C R a mazimal, signature-eztendable
subgroup thereof.

Assume that m € Hom(R ® Grad(Obj),U(1)) (see (8.1.150)) has a symmetric ez-
tension to Grad(Obj)®2, i.e., the class [m], as in (8.1.151), is trivial: [m] = 0.

Then we have the following results:

(i) There ezists a quadratic function q € Hom(I‘.;(Grad(Obj)),U(l)) such that C9
is induced, as a braided category, by some category E, with objects 5723 := Obj/R
and homomorphism, m .

(ii) The subgroup R : mg(R) = R/R, of invertible elements in Obj obeys
R  2(4(Grad(05}))) . (8.1.232)

Here, the quadratic form q can be chosen such that the subcategory of C associated
with R is trivial, as a monoidal category, and has permutation statistics. This

enables us to find, for some gauge, an element

p € Hom(R® R,Z,) . (8.1.233)
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Moreover, we have that

m=0 onC. (8.1.234)

Proof.

(i) We take it from Lemma 8.1.6 that there exists a quadratic function ¢° €

Hom (r4 (Grad(0b;)), U(l)) such that
ml =1, (8.1.235)

as defined in (8.1.152). In particular, the monodromies on R vanish, and hence

the quadratic function ¢°, given by ¢%(g) := p(g,9), 9 € R, satisfies

¢® € Hom(R,Zs) . (8.1.236)

The quadratic function §® can always be multiplied by an expression of the form

(8.1.154) without changing (8.1.235). Hence g can always be replaced by
g=¢q"¢1, (8.1.237)

with

£ € (Hom(Grad(Obj), zz)) ,
(i.e., € is extendable to Grad(Obj)). Next, we show that, for any given subgroup
R C R satisfying (8.1.231), we can find an ¢ such that R is in the kernel of the
quadratic form gq.
Since the map 13 in (8.1.229) gives rise to a linear map between vector spaces over

the field Z3, we can find a homomorphism
¥ : Grad(Obj)/2 Grad(Obj) — R/2R (8.1.238)

such that v o5 is the projection onto the summand R/ 2R in the decomposition

(8.1.231), i.e.,
$oiy I/pp = id. (8.1.239)
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Clearly, ¢° = ¢° o p®, for some §° € Hom(R/2R,U(1)).
Setting

e = ¢°ovopC, (8.1.240)
it follows from the equation e 0i = §° 0¥ 0 p€ 03 = §% 0 9 0 i3 0 pF and from

(8.1.239) that £ 0 i [ ;. Inserting this choice of ¢ into (8.1.237) we obtain that

gla= 1, (8.1.241)

in the category C?, with § = g% 1.

Thus, we can find a gauge in which

pi=falp =1, (8.1.242)

where the #2-matrices are the ones computed for C9. Together with (8.1.235), this
shows that the F- and #-matrices in (8.1.161) and (8.1.162) are R-invariant, and

hence C? is induced by some category C with objects 515 .

(ii) We remark that the direct sum decomposition in (8.1.231) is equivalent to the

conditions,

R N 2 Grad(Obj) = 2R

and R C R + 2 Grad(Obj) . (8.1.243)

If we take (8.1.243) modulo R and use the fact that Grad(0bj) = 7 ;(Grad(Obj))
we find that R C 2Grad((753 ). However, 2R C R also implies that 2R = {1}.
This, in summary, yields the inclusion (8.1.232). Of course, we still have that
#m = 0 for the category C, so that (8.1.233) follows by the same arguments as in

part i).

O

The special situation to which the study of braided, monoidal categories is reduced in

Lemma 8.1.11 allows us to find particularly simple representatives in the cohomology
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class of the cocycle introduced in Lemma 8.1.10 ii). To this end, we propose to make
choices 7, as in (8.1.198), such that the associated extension (see (8.1.199)) factorizes.

The relevant group-theoretical lemma in this context is the following one.

LEMMA 8.1.12

Let G be a finite, abelian group, and let R be a subgroup with
R C 2(4G) C oG. (8.1.244)

Define © and G by the short ezact sequence

0 VRt .G T .G +0 . (8.1.245)

Then there ezists a section v : G — G and presentations of the groups R and G

R ZZ(CI) D--- B Zz(ck) (8.1.246)

G

Zg(51) @ - @ Zoma (b)) & H (8.1.247)

with generators c1, - ,cy € R,b1,-- by € G, and H C G, such that the eztension
¢ € Ext(G,R) C H*(G,1;R) is given by

k
E(hB B, gt B) = [ PO (8.1.248)
i=1
Here
0 , 0<vyj+p; <2M,
) = . 8.1.249
75 k) {1 , vi + pj > 2. ( )
Proof.

The first step is to present G as a sum of cyclic groups, Zpy~, whose orders are powers
of primes. It is clear that any element of order two lies entirely in the direct sum of the

Zgn-subgroups. Hence we can write

G = Zym(B) @ - ® Zym (B) ® HO
(my-1) (m;-1)
z2((83) ) @@z ()P )
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for generators bg, e ,b? € G, and m; < my < --- < my. The subgroup 2(4G) is given
by the direct sum of cyclic subgroups with m; > 2. Given the generators b?, we can
define characters a; € Hom(32G,Z3) by setting a; ((bg)z(mj_l)) = (—-1)5-'1'. Their pull
backs are given by i*(a;) € Hom(R,Z3). Let j1,1 < ji <, be the smallest integer
such that i*(aj,) # 1, and let ¢; € R be such that i*(a;,)(c1) = —1. It follows that

)

(m;, —1 my—
R C zp(())? ) @ @z ((6))*™ ),

and that

(mjy—1)
i(e) = (8;)° ",

where bj, is of the form
0 l oyzi-2(™Tmi)
bjl = b_‘h H (bt) )
1>
for some z; € N . In particular, b;, has order 291, and we can replace ng by b;, as a

generator of G. Since R can be seen as a vector space over Zy, we can write
R = Zy(c1) @ ker(i*(aj,)) -

The image of R’ := ker(i*(a;,)) under i lies entirely in the subgroup of G generated by
bgl FRTREE b?. Repeating the above argument for the inclusion of R’ in this subgroup
we obtain generators cp,b;;, and so forth. If we add the cyclic groups with *(aj) =1

to HY and use that mj > 2 we find that the groups R and G of (8.1.244) have the

following presentations:

G = Zyny+1)(01) @ - D Zg(ny41y (b)) © H, (8.1.250)
and R has the form (8.1.246), with the property that the inclusion i : R — G is given
by

i(cj) = 827 (8.1.251)
The presentation (8.1.247) of G follows immediately, and the projection 7 : G - G is

given by setting n(b;) = b; and n(h) = h,for h € H.
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We now define a section ¥ : G — G, with 7 o ¥ = id, by setting

FE - B R) = B0 0, (8.1.252)
where f; : Zynj — Zyn;+1 is the function f;(v) = v, for v =0,.--,2"% — 1. In analogy

with eq. (7.235) for the quantities given in (7.233) and (7.234), we have that

5fj = 2™ ;. (8.1.253)
Hence the extension defined by
i(£(a,8)) = $(a) $(8) Y(a-b)~" (8.1.254)
is the one given in (8.1.248)
w

In the special situation described in Lemma 8.1.11. ii) it is possible to eliminate the
prefactors w® and w* in equations (8.1.217) and (8.1.218) by a substitution of the form
(8.1.220). Moreover, one can find a simple, factorized form of w™ in (8.1.219). This,
however, requires some basic knowledge of the group H5(G, 2) which has been computed

in [57]. The cycle

o) = 39lglgllg sl

= —lglglglgl + lgllglal ~ lg]gllg], (8.1.255)

for g € 3G, i.e., g2 =1, plays a crucial role in this analysis, since the homomorphism
A = Ty4(2G) — Hs(G,2) : {9} — ((9) (8.1.256)
describes the torsion-free part of the homology group. Furthermore, using that
Hom(Hs(G,2), M) = H¥G,2; M), for M = U(Q1),c,
¢ induces the dual homomorphism

A* : HYG,2; M) — Hom(T4(2G); M), (8.1.257)
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defined, for a cocycle w € Z2%(G,2; M), by

A*w)(g) = ©w9,9.9.9)  w(9,919)w(g,9]9) . (8.1.258)

We easily check that, for g € 3G, the expression (8.1.258) depends, in fact, only on the
cohomology class of w. Since, with the help of Lemma 8.1.12, we can find a decompo-
sition of G into cyclic groups for which the cocycle considered here factorizes, we only
need to know the groups Hg(Zgn, M). It has been shown in [57] that, for these groups
the map A defined in (8.1.256) is onto, and the kernel is generated by {gh} — {9} — {h}.
This shows that A*, as defined in (8.1.257), is injective, and its image is Hom( G, M).

Hence
H5(2gn,2, M) — 1,
w - Aw)2™Y), (8.1.259)

is an isomorphism. The non-trivial cohomology class can, for example, be represented
by the cocycle
WO =1 ) wt = 1,
w(5,k|1) = ezp (%’;—' l'y(j,k)), (8.1.260)
where j,k,l € Zgn, and 7 is as in (8.1.249), with n = n;. For the special cocycle in

Lemma 8.1.10, ii), the invariant
A*(w) € Hom(I‘4(2(Grad(657))), Zg)
is given by
A*(w)(9) = p(¢(9,9).€(0,9.)) " ({9, 9),%(9)), (8.1.261)

for g € 3Grad(Obj). In the case where 2R = 1 (i.e., R = 3R), we easily see that
2Grad(Obj) — R : g — £(g,9) is a homomorphism. If we assume, furthermore, that

m = 0, it follows that

A*(w) € Hom(2Grad(Obj), Zy) . (8.1.262)
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The results on H>(G,2; M) cited above, together with the normal form for extensions
given in Lemma 8.1.12, allow us to find a particularly simple representative in the

cohomology class of the cocycle w in Lemma 8.1.10 ii), assuming that the conditions
(8.1.232), (8.1.233) and (8.1.234) in Lemma 8.1.11, ii), hold. More precisely, we have

the following result:

LEMMA 8.1.18

Let C be a quantum category and R C Obj a graded subgroup of invertible objects with
RcC 2(4(Gmd(0bj))). (8.1.263)

Assume that all monodromies with objects in R vanish, i.e.,
m o= 1. (8.1.264)

Suppose that R and Grad(0b7) = Grad(Obj)/R are presented as in egs. (8.1.246) and
(8.1.247) of Lemma 8.1.12, and let ¢ € E:ct(Gra.d(O_bj),R) be the extension given
in (8.1.248). Let w € Z°(Grad(0b5),2; M) be the cocycle defined in terms of ¢ as
in Lemma 8.1.10, ii), for a choice of gauge of H{‘,;{ for which Fy(a,p,v,[1]) = 1, for

o,1,v € R, so that p € Hom(RQ R, U(l)). Let € € Z3 be the invariants given by
- (nj~1)
g = A*(w)((bj)2 7Y = plejrc5) - (8.1.265)
Then:

(i) The cocycle w is cohomologous to the cocycle & given by

o =1,
ot =1,
@ (a,b]c) = ezp(27ri Z 27" 7;(c) 7j(Wj(a),rj(b))) ,

ef =1 (8.1.266)

where the w;’s are the projections onto the cyclic factors in (8.1.247), i.e.,

LR Grad (Obj) — Zzn,-(iJj),
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and 7; 1s as in (8.1.249).

(ii) The F3- and ry-matrices defined in (8.1.220), where X € A4(Grad(53_-7'-),2;M) 13
such that © = w(&))_l, satisfy the usual pentagonal equations and also one of the
hezagonal equations. The only categorial equation that is modified is the second
hezagonal equation:

(€D r2(1%, [, (1)~ © T) By ([ (], 13, 1) (D (1], 5], 1) @ 1)
U U]

= ‘:’(gi) 95 | gk)F2([k]: ["]) [.7]) [t]) (? I® r2([k]’ [l]7 [t])-l)F2 ([’]: [J]: [k]’ [(%)1267)

(iii) Let Rt be the subgroup generated by {¢j : € = 1}. Then C is induced as a
braided, monoidal category by some category C, with object set Obj := Obj/RT,

and projection TR+,

Proof.

If m = 0 it follows that the quadratic function in Hom(T'4(R),U(1)) characterizing
the category Cp associated to R has values in Zj, so that Cg is trivial as a monoidal
category. Hence there exists a gauge in which Fy(o,u,v,[1]) = 1, for o,p,v € R, and,
as R ® R has only elements of order two, with p € Hom(R ® R,Zj3). Let ¢1,--- , ¢ be
the generators of R in the presentation (8.1.246) that are used for the factorized form,
eq. (8.1.248), of the extension. We define 8 € Hom(R ® R,Z3) C ZZ(R,I;U(I)) by

setting
oy p(ciycj) , for i < j,
Bleisei) = {1 , otherwise . (8.1.268)
If we perform a gauge transformation with
A = B(n(i) 0 &(g1,95),1(3)) B(n(3), €(91,95)), (8.1.269)

as in eq. (8.1.159), the braid matrix on R, p' := Bt3~1p, defined as in eq. (8.1.162a), is
diagonal in the generators cj, i.e.,
' bij
P (C,’,CJ') =€, (8.1.270)
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as follows by using that pp! = 7 = 1. We have that g’ [g+,g+= 1. By using that
m =1, we find from Lemma 8.1.7, iii), that, in this gauge, the Fy- and #y-matrices are
independent of the R*-action. This implies part iii) of Lemma 8.1.13. The cocycle
w' constructed from p' and ¢ differs from w, as determined by p and ¢, by a cobound-
ary. This can be seen from (8.1.162b) and (8.1.162c), where the gauge-transformation

(8.1.269) corresponds to rescaling the 79- and F5-matrices by some A1, with

Algllrl) = 1,
Mgl R|E) = Zgg:lfg::;g . (8.1.271)
We therefore have that
o' = w(éA)h. (8.1.272)

Inserting expression (8.1.248) for £ into the formulae for the cocycle w' in Lemma 8.1.10,

ii), and using the special form (8.1.270) of o', we find that

k
w’(91,92,93,94) = [ w?(mi(g1),7i(92),m;(g3),7j(ga)),

j=1
with
WOk, 1, m,n) = ¢ J[”' () (3 (et mim) =3 (H4mm) ] (8.1.273)
k
w (91,92 | 93) = J] i (mie1),mi(g2) | wj(g3)) ,
i=1
and
wE(k, 1| m) = 5_7[7j(k+l'm)7j(k'l)]. (8.1.274)

Thus w factorizes completely into cocycles over the cyclic subgroups, Zyn;, each of which

is cohomologous to the cocycle given in egs. (8.1.260) if ; = —1 and to the trivial cocycle

if £; = 1. Therefore w ~ w' ~ &, as defined in (8.1.266). This proves part i) of Lemma
8.1.13. The statement in part ii) is a direct consequence of Lemma 8.1.10, iv).

a

We already found that A*(w), as defined in eq. (8.1.261), is independent of the par-

ticular choice of gauge we have made. It is straightforward to check that A*(w) is also
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independent of the particular section 9 : Grad(Obj) — Grad(Obj), with a# o) =id,
we use to define the extension {. Thus A*(w) is a true invariant of the category C.
Furthermore, one easily verifies that A*(w) does not change if C is replaced by C?, for
some q € Hom (F4 (Grad(0%;j)), U(l)). In particular, if C is of the form C = (9, where
C is induced by some category on Obj, the obstruction A*(w) has to vanish.

We conclude this section with a summary of results for a cyclic grading group.

COROLLARY 8.1.14

Let C be a quantum category with objects Obj, and let R C Obj be a graded subgroup.
Assume that Grad(Obj) is cyclic, so that, for some numbers n,m € N, Grad(Obj) =

Znm(g) and R = Zpy(0), and grad : R — Grad(Obj) : o — g™.

(i) If AX(w) # 1, then m and n are even, i.e., m = 2m' and n = 2n'. In this case,
we conclude that
(a) there ezists a quadratic form q € Hom (r4 (Grad(Obj)),U(l)), and, defin-
ing R := Z,(0%) C Zm(0) = R, a quantum-category, C, on the objects
57)]' = Obj /R’ such that C = (9, where C is the category induced by C and
mg, and the monodromy mm vanishes on C. The subgroup, R = wr(R) =
73(5), of invertible elements in Obj is embedded into Grad(Obj) = Zn(3)
by grad(s) = 3.

(b) There ezists a gauge for the structure constants ofE such that

FZ(i)j) k) [l]) =
= (—1)7 (o7ed(i) [roc+asio0)-r(a90)] fy(ia), 1, k), 1)

fZ(jykv [l]) =

= (—1y7 (ored) (orad(h)) (_qyrosou) o (9red) ' (oradi) ) 311, ], ).
8.1.275)

Here ¥ € Z%(2n,1;2Z3) is as in eq. (7.234), and

ﬂ'(§V)= 1 , for n < v < 2n,
0 , for 0<v<mn.
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We denote by [j] € Obj = 6\1)3/1.2 the R-orbit of order two of j € Obj and
by g = grad((j]) the grading in Grad(0%]) = Zn(3), with § := 7%(3).

(c) The F- and #-matrices satisfy the modified categorial equations (8.1.217)
- (8.1.819), where the cocycle w € Z°(Zn,2;U(1)) is of the form given in
(8.1.273) and (8.1.27{), with v; replaced by v and €j = —1. There ezists
¢ function X € A*(Grad(0bj),2; U(1)) so that the ro- and Fy-matrices
defined by (8.1.220) satisfy the ordinary pentagonal equations for a monoidal

category on Obj and the hezagonal equations

(D (651, %1, 1) ® T) Fa((al, [k], 4], [21) (€D r2((), [K], (1) © 1)

Y U]
= FZ([k]) ["]) [.7]1 [t])(@ I® "‘2([11) [k], [t]))FZ([']: [.7]7 [kla [t])
U
(D ra((%1, 11, ()1 @ W) Fp((al, k1, ], [¢]) (€D ra([k), (3, )~ © 1)
U] U

= exp( % guy(as,09)) Fa(, i, ), 1) (D T © ro(lR), 10, 1))
Y

Fy([s], 51, [], [£]) -
(8.1.276)

(ii) If A*(w) = 1, then C = C9, where C is induced by some category with objects

Obj = Obj/R and projection wg.

We first remark that /& always has a symmetric extension, since, for a pair of cyclic

groups H C G, the induced map H®G — GG = G®,G is injective and all extensions

over U(1) are tivial. If the integer m is odd we have that R = 2R, and if n is odd we

find that i3, as defined in (8.1.229) and (8.1.230), is an isomorphism. In both cases

it follows that R is a maximal signature-extendable group. By Lemma 8.1.11, ii), the

category C is of the form described in part ii) of the corollary. In particular, we have

that A*(w) = 1.

In the case where both integers, n and m, are even one finds that i3 = 0, and the

maximal signature-extendable group is R = 2R. Using Lemma 8.1.11, i), we can
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describe C as C = (9, where € is induced by a category C with objects 553 = 0bj/R, and
projection wgr. If p € Hom(R ® R,Z3) is the basic braid matrix of C, see eq. (8.1.160),
and 5 € Hom(z2(5) ® Z9(7),Z3) the braid matrix of C then, since / = 0 in both

categories,

A*w)e (F¥) = A*(w)s (3™)
m' , am’)

= Ao

= §3,6) = A¥w)Ha"). (8.1.277)

Hence if A*(w)¢ =1 the same equation holds for A*(w)é-. It then follows from Lemma
8.1.13,iii) that Rt C R, i.e., Cisinduced by some category C on Obj = 5?_7/1.{ = Obj/R
and . This implies that € is induced by C and that R = T OTR, proving part ii) of
Corollary 8.1.14. If A%(w)(3") = Aé(w)(g"') = —1, then the formulae for the structure
constants, egs. (8.1.275) and (8.1.276), immediately follow from Lemma 8.1.10 and the
fact that w is cohomologous to the cocycle (8.1.260), where 2™ is replaced by n. The
section ¥ : Grad(0Obj) = Zn(3) — Grad(éT)j) = Zgn(g) for which the expressions in

(8.1.275) have been computed, is defined by
¥(g") = §%, with v =0, ,n—1. (8.1.278)

This completes the proof of the corollary.
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8.2 The A, - Categories and Main Results

In the first part of this section we present a classification of semisimple, monoidal as well
as quantum categories with A,- fusionrules. In particular, we show that the monoidal
categories are uniquely determined by the statistical dimension of the generating object, p,
and, for braided categories, by the eigenvalues of £(p,p). In both cases they are realized

by the category Rep(U,(sly)), as described in Chapter 7.1.

We show that in the case of Obj; = A, fusionrules the H*(Grad(Obj,), 2; Z,) -
obstruction discussed at the end of the previous chapter vanishes. This is used to show
that the quantum categories with Z, x Azn_y - and Z, x A,, - fusionrules are isomorphic to
subcategories of a product of a 8- category with group Z, and a Rep(U,(slz)) - category. The
quantum categories with 7,(Z,xAjn_1) - fusionrules are described in terms of the categories

they induce by the graded homomorphism f* : Zy, x Agn-1 —» Ta(Zy *x Azn_1) .

Combining these resultes with the restrictions on fusion rule algebras and statistical
dimensions obtained in Proposition 7.4.11 we arrive at the classification of C* - quantum

categories which are generated by an object of statistical dimension less than two.

In this section we shall be concerned with proofs of uniqueness of some simple
categories. Together with the existence guaranteed by the explicit constructions based
on quantum groups and f-categories, this allows us to give a classification of quantum

categories with a generator of dimension less than two.

We begin with a proof of existence and uniqueness for monoidal categories with
Ap-fusion rules, disregarding any braided structure. For this purpose, we need to gather

some basic facts concerning these categories.
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Suppose that C is a semi-simple, rigid, monoidal category with Aj1-fusion rules, for
k > 1. We denote the objects of C by py = 1,p1,... ,pPk, a5 in Lemma 7.3.2. i). We

choose a pair of morphisms ¥; € Mor(1,p; 0 p1) and 19]; € Mor(p; o p1,1) such that

@ o Daler,pr, 1)1 081) = (1od))alpr,p1,p) H(B101) = 1. (821)

We define a sequence of numbers d;,j = 0,1,...:

d =1, d =39,

and dj+1 + dj—l = dldj . (8.2.2)
For a given 191, we introduce two bilinear forms on one-dimensional spaces, as follows:

pj : Mor(pji1,pj0p1)® Mor(pj,pjt10p1) = C

18 J — (1o9)a(p;,p1,p1) YT 01)J (8.2.3)

and

g; : Mor(pj,pj110p1) ® Mor(pji1,pj0p1) = C

I1®J - (1o9)a(pji1,p1,01) (T 1), (8:2.4)

where j =0,1,... ,k—1.
We have the following results concerning these quantities.
LEMMA 8.2.1

Let C be a semi-simple, rigid, monoidal category with Agyi-fusion rules.
(i) The number dy (and thus every d;) is an invariant of C independent of the choice
of 91 and 191. There ezists some l € Zy(k+2) with (I, k + 2) =1 such that

Ir

k+2

dy = 2cos( ) = (2)¢, (8.2.5)

ixl

with ¢ = e***. Purthermore,
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for3=0,... ,k, and
deyr = 0.

(i1) Forj =0,1,... ,k~1, the bilinear forms in (8.2.5) and (8.2.4) are non-degenerate

and related by

diyq
Pi= 54 (8.2.6)
J
(i) If C is a C*-category, then
I =41 mod(k+2). (8.2.7)

Proof.

From the pentagon equation

a(pj o p1,p1,P1) a(pjs p1,p10p1) = (alpj, p1,p1) 0 1) apj, P10 p1,p1) (1 °a(P1,P1,P1))

and (8.2.1) we immediately derive the identity

1= ((15011) 081) alp; 0 p1, p1,01) " (alpj, p1,p1) 0 1) (1 081) 0 1). (8.2.8)
From the isomorphism p(lpj p1)p1, as defined in equ. (8.72), we find sequences of mor-

phisms I; € Mor(pjte,pjop1) and Jie Mor(pj,pjreop1), € =F1,forj=0,... k-1
when £ =1, and j =1,...k when £ = —1, such that
alpj,p1,p1)(10¥1) = ) (I5o1) JE, (8.2.9)
€

where we sum over ¢ = {£1} whenever the morphisms are defined. Inserting (8.2.8) we

find that

Lion = Y I (Lod!) alprie, p1,p1) (JE 0 1) (8.2.10)
€

which is just the partition of 1;,; € End(p;op1) into the minimal projections associated

to the channels p; ... Since I; is the corresponding injection, we obtain that

Live = (Lo9))alpjse,pr,p1) H(If0 1) If .
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In terms of the forms defined in (8.2.3) and (8.2.4) this is expressed as
1= ¢(JH 1) = p; (T30 I (8.2.11)

for j = 0,... ,k — 1. This equation already implies that none of the g;’s is degenerate

and that J J‘ ® I; # 0, whenever defined. For the map

Bj : Mor(pji1,pj0p1) = Mor(pj,pjr10p1)" = Mor(pji10p1,p1),

I~ pi(I,) = (todl)alej,pr,p) (T o1),
the inverse is explicitly given by
5710 = (Fol)alpjsr,prp)(109y). (8:212)
Similarly, the inverse of
q](I) = Qj(Il ) = (1 ° '9}{)0‘(Pj+11P1)P1)—1(I° 1)
is given by
G '(5) = (Fo1)alpj,p1,p1)(1031). (8.2.13)
If we apply (10 191) a(pj,pl,pl)"l to (8.2.9) from the left we obtain that
dl = pJ(I:-sJ;-) + qj—l(I_;'_)Jj_) ) (8'2'14)
for j=1,... ,k—1, and, in addition, that

di = po(If,J5), & = (I, ;) (8.2.15)

Since both forms, p; and q;-, are non-zero and lie in the same one-dimensional space,
there exist {; € C*, j = 0,... ,k — 1, such that p; = ¢; q;-. From (8.2.11), (8.2.14) and
(8.2.15) we find that

d = & = &,
and d = & + 51.-_11, (8.2.16)
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so that, by (8.2.2),
dj = &-1-... - &
The existence of a solution to (8.2.16) thus implies that

di # 0, for 7 =0,...,k, and dgyy = 0. (8.2.17)

It is straightforward to verify that (8.2.17) holds if and only if d; is of the form stated in
(8.2.5). The fact that d; is an invariant follows from (8.2.1) which constrains rescalings
to be of the form ¥; = /\191,151{ = %191, so that dy in (8.2.2) is unchanged. We therefore
have proven that p; and q§ are invariantly related to each other as in (8.2.6), with a
factor only depending on d;.

If we are considering a C*-category we can choose 9; and 9] such that
5 = aqntar) o]
With this normalization, we find that
g;(I*) = sgn(dy) p7H(I") . (8.2.17a)
For I € Mor(pj,p;y1 0 p1), we find from (8.2.17)

0<I'I

(NI, ) = &4 (157 (1Y)

&5 sgn(dy) ;(I) g;(D)*,

and hence

sgn(dy) = sgn(é;) = I%i+1)

Using the explicit expressions for d;, i.e., d; = (j +1)q, we see that (8.2.18) holds if and

(8.2.18)

only if I satisfies the constraint (8.2.7).
g
The relations found in Lemma 8.2.1, now serve us as a tool to consistently define

isomorphisms between the Mor(k,i o j)-spaces and the Mor'(k,i o j)-spaces, of two
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categories C and C' of this type, providing an equivalence of the F-matrices of C and

C'. In our next lemma we derive this equivalence for a certain type of associativity

constraint. This will be sufficient to prove the equivalence of the monoidal categories C

and C'.

LEMMA §.2.2

Suppose that C and C' are two monoidal categories with Ap 11 -fusion rules and with the

same value, dy, for the invariant dimension of the generator.

(i)

(i)

For any sequence of isomorphisms

Pi\P:
Hp "t 2 Mor(pja,p50p1) = Mor'(pjy1,pj0 p1),

with j = 0,... ,k—1, and H;l’pl(ll) = 11, there ezists a unique sequence of

isomorphisms

Pi+1,P
HY P Mor(pj,pj410p1) = Mor'(pj, piv10p1),

with j =0,... ,k— 1, such that, simultaneously,

pi(HN © HYYPY) = p; (8.2.19)
and
g (H " @ HERY) = g5 (8.2.20)

For these, we have that H{V'"*(#1) = 9.
For any given choice of isomorphisms H;'Pl, as in i), and with H;’l(lj) = 1j,

there ezists a unique completion of the choice of isomorphisms
HY : Mor(k,ioj) — Mor'(k,ioj)

such that the diagram
365



@Mor(a,j 0p1)® Mor(k,i oa)M@Mor(a,i 07)® Mor(k,s 0 p;1)
s 3

H®2 H®2

fre
€D Mor' (3,5 0 p1) ® Mor' (k,i 0 5) T2 2:PLR) (3 0101 (4,5 0 ) @ Mor' (K, 5 0 p1)
] 8
(8.2.21)

commutes, for all 1,5,k € J.

Proof.
It is clear that, by the non-degeneracy of p; and p;-, there exists a unique sequence of
Hg“’pl such that (8.2.19) holds. Since d; = d}, and thus d; = d;-, we immediately find

from (8.2.6) in Lemma 8.2.1 that (8.2.20) is automatically fulfilled. From (8.2.20),
q0(191)1) =1 ) (82213)

and H,'(1) = 1, we obtain that H{1*'(8;) = #}.

»P1

For a given choice of H, : we now show part ii) of the lemma. The proof will proceed

by induction in n. Assuming that we have defined
HYP ;. Mor(liopj) —» Mor'(Liop;),

for all  =0,...,n, and that

F(i,p;,p1,1
@Mor(a,pj 0p1) ®Mor(l,ioa)——M—’—pl—)>®Mor(a,i 0pj) ® Mor(l,s 0 p1)
3 3

62 H®2
FI ; . l
FCopioP), (13 por! (s, 0 p;) @ Mor' (1,50 1)
3
(8.2.22)

@Mor'(a,pj 0p1) ® Mor'(l,i 0 s)
s
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commutes, for j§ = 0,... ,n — 1, we can find unique isomorphisms, Hli’p"“, fori,le J,
such that (8.2.22) commutes for j = n.
To this end, we have to show that, independently of the choice of H;:'p"”, the diagram

for the restrictions to one summand on the left hand side:

F i’ ) 3 -
Mo"(Pn—l»Pn o Pl) ( P P1 Pt) > @o:::!:lMo"'(F’t-*-cxl o Pn)
®Mor(pt,i0 py-1) ®Mor(ptye,pt o p1)
H®2 g2 (8.2.23)
F'(i, pn, p1, .
MO"',(Pn—la Pn o p1) G, pmrp1, 1) ‘@ezilM"""(Pt+z,' ° pn)
®Mor'(pt,io0 pn_y) ®Mor'(pi—c, pt 0 p1)
commutes, whenever | = p; € i0p,_1,t = 0,... ,k. We show this by expressing

the matrix elements of these maps by matrix elements of F(i,p,_1,p1,p:) and the
isomorphisms ¢; and p; from Lemma 8.2.1 (which are mapped, under the action of H,

into q; and 13'1) In order to derive a useful relation, we consider the pentagonal equation

a(i, pn,p1 © p1)(1i 0 a(pn, p1,p1) 1) ali, pn o p1, p1) "

= a(” ° Pn,Pl,Pl)_l(a(i,Pn,Pl) o 11) : (8224)

Now, choose I € Mor(pt,i © pa_1), J € Mor(pn_1,pn 0 p1), L' € Mor(pie,pt 0 p1),
and K € Mor(i o pp, pyye), and multiply (8.2.24) with (((1,- o J)I) o 11)1:' from the
right and with K o ¢! from the left. This yields

K (1i0 [(1o9}) alpn, p1,01) (I 0 11)]) ai, prt, p1) (T 0 11)L/

= (Lpeye 09 elprte, p1,21) (K 0 11) @iy pn, p1)(15 0 )] 011) I,
(8.2.25)

using only the isotropy (8.1.38). The term in square brackets on the left hand side is

found to be §,—1(J) € Mor(pn © p1,pn—1), and the right hand side is identified with

one of the bilinear forms (8.2.3), or (8.2.4) between L' and the term in square brackets,
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depending on ¢ = +1. With an appropriate substitution of L', and using identity (8.2.6),

we obtain the following explicit formula: For £ =1,
L(K ° 11) a(irp‘mpl)(l ° J)I =

= dt_dtl K (10 gn1(7)) alis pn1,p) " (T 0 1) 7 (E) (82:26)

with L € Mor(pi41 © p1, pt), identifying, with 1; — 1 € C, both sides of (8.2.26) with

C-numbers. In terms of F-matrices, this equation can be rewritten as

(K® L, F(i,pn,p1,pt) I ®I) =

d‘djl (@ne1(1)® K, F(iy o1, p1,pt41) " T @ 57 (L))
(8.2.27)

where we view K € Mor(pi+1,i0 pn)* and L € Mor(p1,pt+10p1)".

Similarly, we find, for € = -1,

(K®L F(")PmPI:Pt)J®I> =
T ®qL
n—1 J K F" n—1,P1, L
- (Gn-1(J) ® (i, pn—1,p1,P1-1) T T ® G4 (L)) (8.2.28)

with K € Mor(pt~1,1i 0 pn)* and L € Mor(pt,pt—1 © p1)*. Note that the equations
(8.2.19) and (8.2.20) can also be expressed as

(Hp:+1np1)t e _1 (Hp;i:)_ (8.2.29)
and
(G & = g (HEM T, (8.2.30)

and that (8.2.22) commutes for j = n — 1, by our induction hypothesis. This allows
us to relate the matrix elements of F(i, pn, p1,pt) to the ones of F'(i, pn, p1, pt), using
formulae (8.2.27) and (8.2.28), and to prove commutativity of (8.2.23) whenever the
morphism spaces are non-empty.

Next, we assume that p; € i0pp, 1 and derive a second set of relations among F-matrix

elements. For this purpose we consider the pentagon equation

a(i, pn-1,p1 0 P1)(Li 0 @(pn_1,p1,P1) 1) ali,pn_1 0 p1,p1)"" =

= a(’ °Pn-1; Pl:Pl)_l (a(i»Pn—l,Pl) ° 11) . (8231)
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We choose I € Mor(ptte,i0pn), J' € Mor(pn, pn-1 © pt), and we multiply (8.2.31) by
Ko 191 from the left, and by (((1,' o J)I)o ll)L from the right.
This yields

K (Li0[(1n-1 0 #)a(pn1, p1,p1) 1 (7' 0 11)]) ali, pn, p1) 2T 0 1)L

= (Lo 9})aler, pr,p1) " ([(K 0 11)ali, p—1,p1)(Li 0 I')] 0 11)fs'.2.32)

Substituting J = pp_1(J') € Mor(pnop1,pn-1) = Mor(pn_1,pnop1)*, we obtain from

(8.2.32), in F-matrix language, the equation

<J®K: F(i)PB)PI)Pi)—1I® L} =
dit1

=4 (K ® ®(L), F(i,pn-1,P1,p+1)P5 21 (J) ® I), for e =1,

_dig _ , _—1 _

- T (K ®Pt~1(L))F(":Pn—lyPl»Pt-l)Pn—l(J) ® I)’ for e = -1,
(8.2.33)

for J@ K € Mor(pp—_1,pn© p1)* ® Mor(pt,i 0 pp—1)* and I, L arbitrary. By similar

arguments as for (8.2.23), we see that (8.2.33) implies the commutativity of

(F(i,PnaPI»Pt)_l)* . *
Mo"'(Pn—l;PnOPI)" ,®,MO1‘(8,1 OpJ)
®Mor(ps,i0pp1)* ®Mor(pt,s 0 p1)*

H*® H* H* @ H* (8.2.34)

F i, Pn, P1, Pt -1)* .
MO""(Pn—I;PnOPl)*' ( (G, pn ) ) '@JMOT’(","OP)')*
®M01"(pt,i 0 pn-1)* ®Mor'(pt, 80 Pl)*

Since the space @, Mor(s,i0p;)® Mor(pt, s0p1) is at most two-dimensional, the image

of Mor(pp+1,pn0p1) ® Mor(ps,i0ppy1) in it may be expressed as follows

Qn = F(i,pn,p1,pt)(Mor(pnt1,pn 0 p1) ® Mor(pt,i0 pni1))

= F(i,Pmm,Pt)((Mm‘(Pn—l,Pn0p1)* ® Mor(pt,i °Pn—1)*)-L)
1
= |(F(, pn, p1, o) ) (Mor(pn—1, pr o p1)* @ Mor(pt,io pn_1)?)| .
[(FG, o, 21,2 ™2)* (Mor(pn—1, pn 0 p1)* © Mor(p,i 0 pn1) )](8.2_35)
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From (8.2.35) and (8.2.34) we conclude that H®2 maps Q, onto Q). We may then

consider the following diagram:

: F(@ » P1, Pt
Mor(pn+1,pn 0 p1) ® Mor(pt,i0 pny1) (’p"gpl ?) G

HEmPL @ Hybrht ~|g®2  (8.2.36)

1 F i’ ) ]
Mor,(Pn+1;Pn°P1)®Mo1"(pt,1,opn+1) ( pngpljp) Qil

Since, for 1 <n < k and p; € 10 pp 41, all other isomorphisms between one-dimensional
spaces are already determined, there exists a unique H;;;p"+’ such that (8.2.36) com-
mutes. Combining the commutativity of (8.2.23) and (8.2.36), we obtain the commu-
tativity of (8.2.22), with j = n. Since F(3,1, p1,pt) = 1d, and since the isomorphisms
H: Pt are already defined, the claim for n = 1 is clear. For n = k, the commutativity
of (8.2.22) is identical to that of (8.2.23), since pi o p; = pg_1, and the induction can
be terminated without any further definitions of H’s . This completes the proof of the
lemma.
O
Incidentally, the uniqueness of the isomorphisms in Lemma 8.2.2., ii) allows us to
show that all natural transformations that leave the F-matrices of an Ay ;-category
invariant have to be trivial. More precisely, a natural transformation is defined by a set
of isomorphisms, hi’j, of the spaces Mor(k,i 0 j), 1,7,k € J, which, for Ap-fusion rules
with N;;p € {0,1}, can be given by C-numbers. A natural transformation leaves the

F-matrices invariant if
R®2F(i, 5, k1) = F(i,j,k,1) h®? (8.2.37)

and a family of natural transformations obeying (8.2.37), called trivial, is given by

(8.2.38)



for some function A : J — C. (We use the conventions h::’l = h}’i =1d, Ay =1). To
show that (8.2.38) holds in our example, we first find ), such that h'l’"P 1= A?,l. We

then define

n
A
Ao =[] F’i}-ﬁ for n =2,...,k. (8.2.39)

j=1
This implies equation (8.2.38), for ¢ = p,, j = p1 and k = p,y1. Since the maps
p; and g; also represent F-matrix elements, we have to satisfy (8.2.19) and (8.2.20)
hpn»pl

with pl, = A;lzpn and ¢}, = )‘;lzqn, yielding homifl Ron+tft = A,z,l and hence equation

(8.2.39), for i = ppy1, j = p1 and k = p,. By Lemma 8.2.2, the completion of the
hj-’pl’s compatible with (8.2.37) is unique, and hence the expression (8.2.38) is the only

one possible. This observation, made on the level of structural data, can be put into

the formal language of categories as follows:

C(X,Y) € End(XoY), with
(C(X,Y)o1)C(XoY,2)a(X,Y,Z) = o(X,Y,Z)C(X,Y 0 2)(10C(Y, 2)),

and C(X', Yoy

I0JC(X,Y), (8.2.40)

with I € Mor(X,X') and J € Mor(Y,Y"'), can be epxressed by a collection of iso-
morphisms, A(X) € End(X), which are isotropic, i.e., A(X')] = IA(X), for all I €
Mor(X,X'"):

C(X,Y) = AX oY) H(A(X) 0 A(Y)) . (8.2.41)

For a monoidal Ay-category, there exist exactly two solutions to (8.2.41) differing by
the Zy-grading of the Ap-fusion rules. We can interpret the expressions in (8.2.40) and
(8.2.41) as non-commutative generalizations of cocycle- and coboundary conditions, i.e.,
we can interpret (8.2.40) and (8.2.41) as triviality of a generalized second cohomology
group.

Lemma 8.2.1 and Lemma 8.2.2 now put us in a position to prove the first result on

the classification of categories.
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PROPOSITION 8.2.8

For everyl=1,... ,k+1, with (I,k+1) = 1, there ezists a semisimple, rigid, monoidal

category, unigue up to natural equivalence, with Apy;-fusion rules, such that

dy = ——2cos(k l: 2) . (8.2.42)

It is given by the semisimple quotient of the representation category of Ug(sla), with

ixl

+
g=-¢e *? It is isomorphic to a C*-category if and only if

le {Lk+1}. (8.2.43)

This s the complete list of monoidal categories with Api-fusion rules. Categories

corresponding to different values of I (i.e., different d) ) are inequivalent.

Remark: This result is generalized in [63], using the representation theory of Hecke
algebras. More precisely, it is shown that the monoidal categories with Uy(sln) - fu-
sionrules, with n > 2, are precisely the Uy(sly) - categories and that they are uniquely

determined by the statistical dimension of the fundamental representation.

Proof.
The first step in the proof of Proposition 8.2.3 is to extend the commutativity of (8.2.21)
to arbitrary representations and use this to prove uniqueness of an Ay ;-category, for

a given d;. For this purpose, we define

F"i,5,k,0) ;= (H®%)™ F'(3, 5,k ) H®?

: @D Mor(s,5 0 k) ® Mor(l,i05) — €D Mor(s,i 05) ® Mor(l,s o k),
s s (8.2.44)

where the F- and F'-matrices are the structural data of two categories C and C' with
the same d;, and H;;’j are the isomorphisms specified in Lemma 8.2.2. To show that
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F(i,5,k,1)

@Mor(a,jok)@Mor(l,ios) @Mor(s,ioj)@Mor(l,sok)
8 ]

H®2 H®2

1 ¥ .
EBMOT'(J,J' 0k)® Mor'(l,i0 s) M@ Mor'(s,ioj)® Mor'(l,s o k)
3 3
(8.2.45)

commutes is equivalent to showing F' = F"| by (8.2.44). By assumption, we have that

both maps, F and F", satisfy the pentagon equation, and, by Lemma 8.2.2, that

F”(i)j)pl)l) = F(i,jrpl)l) 3 (8246)

for all i, 5,1 € J. Substituting (8.2.46) into a pentagonal equation for F"/, we obtain

@ 1 ®F"(i:j:Pn+e:t) =
e==%1

Tn(@ 1 @ F(s,pn,p1,t)” 1)(GBF"(1 j,Pny9) ® 1)

ED I ® F(i,s,p1,1)) (@F(”P"’Pl”)®n) (8.2.47)

From (8.2.47) and the pentagonal equation for F' we see that if
F”(i)j)p‘m)l) = F("a]i Pm, l) (8248)

holds, for m = 1,... ,n, it also holds for m = n+ 1. Hence (8.2.48) follows by induction
which proves (8.2.45).

In order to construct the explicit functor of equivalence, (id, F,C) : C — C', we
proceed in the same fashion as in similar constructions in section 8.1. We first fix an

arbitrary set of isomorphisms
F : Mor(i,X) — Mo'(i,X). (8.2.49)

This extends by functoriality and, since Mor(X,Y) = @; Hom(Mor(i, X), Mor(i,Y)),
to a unique functor of abelian categories. Using that Mor(k, X oY) = B;; Mor(i, X)®
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Mor(3,Y)® Mor(k,ioj), as specified in (8.2.42), we can define C(X,Y) € End'(X oY)
uniquely by the formula

CX,Y)(F(D) o F())HY (R) = F((Io NHR), (8.2.50)
where [ € Mor(i, X), Je Mor(3,Y) and K € Mor(k,i o j). The compatibility with
tensor products of morphisms in (8.2.33) follows immediately from the form of (8.2.50),
using the fact that, by semisimplicity, it suffices to check (8.2.33) when it is multiplied
by some (F(I)o f(j))H;’J(f{) from the right. The verification of (8.2.43) is done
similarly, multiplying

(Fdyo (F(Jy o F(R) HIMS)) B*(T) (8:2:51)

from the right, with I € Mor(i, X),J € Mor(j,Y),K € Mor(k,Z), § € Mor(s,j o k),
and T' € Mor(t,i 0 5). Here we need to employ isotropy, eq. (8.1.38), of both a and o
and, furthermore, commutativity of (8.2.45).

We may now consider the monoidal representation category of Ug(slz), with ¢ =

ixl

+
e " I=1,.. k+1,(Lk+2) =1

We restrict the set of objects to those generated by the two-dimensional fundamental
representation with highest weight A = 1, i.e., to all integral highest weight representa-
tions, V)41, A = 0,1,... ,k, and to the indecomposabie projective modules W, € z,
as defined in section 5.3.

We pass from this category to its semi-simple quotient. Hence we have exactly k + 1
irreducible objects left over, and, by Theorem 5.3.1, these satisfy the A -fusion rules.
If we use {vg, v}, as a basis for the representation space V5 of highest weight A =1, as
in Proposition 5.2.1, and let {lp, 1} be its dual basis in V, with l;v; = §;;, the invariant

tensors ¥, and 191 are of the form

% = a(vo®v1 —qv1 ®vy) € Hom'U,(al,)(lx Va @ Va),

and

9 = Bhelh-g hol) e Homy (41,)(V2® V2,1) .

(8.2.52)
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From the equation
(Ted)w el = Wlen@w el = opt
we see that (8.2.1) is satisfied iff a = 871, so that
d = 990 = —(g+q7Y) = —(2). (8.2.53)

Comparing (8.2.53) to (8.2.5) in Lemma 8.2.1 (with d] — —dj, for I — k+2 — 1), we
see that, for all admissible values of dj, there exists a realization of an Ay ;-category
obtained from the representation category of some Ug(sly). Having proven uniqueness,
for each value of d, this completes the classification of monoidal A i-categories.
Finally, we wish to prove the result concerning a C*-structure. In Lemma 8.2.1 we
already found that I = 1 or k + 1 are the only compatible values. In order to see
that we can implement a C*-structure in both cases, we first show that there exists
an inner product on the Mor(k,i o j)-spaces such that the F-matrices define unitary
maps. We have proven in Lemma 6.3.3 that, for [ = 1, there exists an inner product
such that the braid matrices are unitary. From the hexagonal equations, as expressed
in Lemma 6.2.1, we see that the F-matrices can be written as products of unitary braid
matrices and are therefore unitary with repsect to the given inner product, too. This
system of F-matrices can be multiplied by the trivial 3-cocycle f € Z3(Z2,1;R/Z), as
described in (8.2.8), preserving the pentagonal equation and unitarity. For the invariant

d’l associated with these data, we find

1

. 1
7 = 2 F(22@) F(pipy,p1,01)} = — Flp1,p1,01,01) = I (8.2.54)
1

where a = grad(p;) is the non-trivial element in Zj3, so that d’1 is precisely the invariant

for I = k + 1, and the resulting structural data are equivalent to those of Ug(sly), with

o

+
g=—e

k+3

Once we have unitary F-matrices, we can implement a C*-structure as follows: We
define a positive definite inner product on each of the basic spaces, Mor(k, X), with
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k € J and X € Obj, and denote by *, with
* : Mor(k,X) — Mor(k,X)* = Mor(X,k), (8.2.55)

the associated involution. This involution extends uniquely to * : Mor(X,Y) —
Mor(Y, X), by (IJ)* = J*I*, yielding a C*-structure on C. We consider the map
P(X,Y) € End(X oY) defined by the equation

P(X,Y)Io)K = (K*(I*oJ*)", (8.2.56)

for I € Mor(i,X), J € Mor(j,Y) and K € Mor(k,i 0 j). It is immediate from
(8.2.56) that P(i,j) = W4, for i,j € J. For I € Mor(i',X), J € Mor(j',Y), and

K € Mor(¥',i 0 j'), we obtain the relation
(To D)o K)*'P(X,Y)I o J)K = 80655801, IN(J, ) (K, K), (8.2.57)

so that P(X,Y) > 0 as an element of the C*-algebra End(X oY). Hence there are
isomorphisms C(X,Y) € End(X,Y), with P(X,Y) = C(X,Y)*C(X,Y) and C(i,3) =
T;o5, for 1,5 € J. If we apply the natural transformation (id, I, C) to this category we

find that (8.2.56) holds with P = 1, and, by semi-simplicity, we conclude that
(Ao B)* = A*o B*, (8.2.58)

for any A € Mor(X,X') and B € Mor(Y,Y"). Since C(4,5) = 1, the F-matrices do
not change under this change of tensor product. Thus, if the inner product chosen on
Mor(k, X) coincides, for X = io0j, with the one determined previously, the F-matrices
are also unitary in the new category, based on (8.2.58). With these two ingredients, it
is now easy to show that a(X,Y, Z) is unitary, too.
From the explicit formula (5.23) for highest weight vectors in tensor products we see
that, for j; = js and 7 =0,
T, = (97 1®1)9), (8.2.59)
376



with g = (—q)™*, 5%(a) = gag™1,9) € Homy, (,1,)(1, Va41 ® Vay1) and T(v @ w) =

w @ v. For the element 9} € Homy, (,1,)(Vay1 ® Vat1,1), with

eshwiel) = Blenae,) = 1,, (8.2.60)
we find from (8.2.59) that
dy = 99y = tryy, (671 = (1P +1)g = A+1)—. (8.2.61)

Hence these quantities coincide with the ones defined by the recursion (8.2.2). This
could also be derived from the existence of a balanced, braided structure, and thus of
cyclic traces, compatible with the tensor product. It is of special interest to observe
that
dp_j = (-1)l+E+l g, (8.2.62)
inl
If we denote by Ck,l the category obtained from Uy(slz), with g = ¢ Hil=1,...,

k+1, (I,k+ 2) =1, the uniqueness assertion shows that there exists an isomorphism
(1‘d1 -7:1 C) : Ck,l - Ck’,l'

only if k = k' and I = I'. However, in order to prove that all Ck,1 are inequivalent, we

have to consider isomorphisms
(C,]:, C) . Ck,l — Ck',l’ (8.263)

where ¢ is an arbitrary fusion rule algebra isomorphism. Clearly, this is only possible

for k = k'. Also we need to have that dj = d’C(j)'

that d) = d’l, and hence I = I'. The isomorphism ( also has to preserve the Perron-

So if {(1) = 1 we also have

d}-)‘ F. _ dP' F.

Frobenius eigenvalue, , of the fusion rule matrix, i.e., ; ) This implies

P.F.
4
that {(7) € {j,k—3}. Moreover, ¢ has to preserve the gradation, i.e., {(j) = j mod2. For
odd k, {(j) = j is therefore the only possibility. For even k, we also have {(p;) = pi °pj,
as fusion rule algebra isomorphism. In the last case, { has to be odd. Hence, by (8.2.62),
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dj = dlk—l = d'((l)' Since the existence of (8.2.63) implies that d'((j) = d;, we find that
dll = dj, and thus I = I'. This proves that all categories Ci,1, for different pairs (k,1),
are inequivalent .
a
Next, we supplement the classification of monoidal categories with Ap-fusion rules by
an investigation of the possible braided structures for these categories. More precisely,
we show that if the fusion rule algebra Obj is generated by an irreducible object, p, with
pop=1+1, ¢ € J, then the obstruction possibly present in the modified hexagonal
equations and described by H® (Grad(Obj5),2;U(1)) vanishes. Furthermore, we show
that the possible fusion- and braid matrices for the fundamental object p can all be
obtained from Ug(sl). A general argument, often referred to as “cabeling”, then shows

that the entire braided category is isomorphic to the semisimple category obtained from

Uq(sly). The first result is obtained by solving a set of simple, algebraic equations.

LEMMA 8.8.4

Suppose C is a semisimple, monoidal category with objects Obj, and let p € J C Obj be

an irreducible object with

pop =1+ 19, (8.2.64)

where 1 € J. Denote by

F(p,p,p,p) : €D Mor(s,pop)®Mor(p,pos) — P Mor(s,pop)® Mor(p,s0p)

=1y s=1,9
(8.2.65)
the fundamental fusion matriz. Consider the modified hezagonal equations:
(D re.p,5) @ L) F(p,p,0,0) (D (p,p,8)@T) =
=19 =19
= F(p,p,p:p) (€D 1 ®7(3,0,0)) Flp,p,p:pP)
=1, (8.2.66)
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(D rleps) t @T) Flp,p.p,0) (D r(prp,8) ' @T) =

=19 =19

=GJ—F,)’ ][r,a,-lF,,;.
(PPPP)(E?M ®r(p,8,p)"") F(p,psp:P) (8.2.66a)

These equations have a solution with r(p,p,s) € End(Mor(s,p o p)), with v(s,p,p),
r(p,8,p)”! € Hom(Mor(p,s0p), Mor(p,pos)), and r(1,p,p)(1,) = (p,1,p)(1p) = 1,
if and only if
o = 1. (8.2.67)
Up to natural gauge transformations, the solution is uniquely determined by the invariant
t € C* defined by
(PP, %) =t 17! Upgon(p,pop) - (8.2.68)
A solution to the modified hezagonal equations ezists fort € C* iff t* £ —1. There exists

a gauge and a choice of basis tn the morphism spaces such that the matriz elements of

the v’s and F'’s are given by the following formulas: r(p, p, %) is given by (8.2.68), and

T(P)Pnl) = t31
T(’/’;P: P) = T(P,¢,P) = t4)
1
Fp,,,1=—Fp,,,¢=—-—,
(p,p P01 (b p,p,p) P
F(p,p,p,p)y =1,
a’nd F(p) P, P» p)}b = (3)t2 . (8269)

Proof.

We begin by recalling some properties of the linear transformation F(p, p,p, p) given
in (8.2.65). As before, we may use the canonical element 1, € End(p) to associate to
the matrix block (F(p,p,p, p))i a unique element in End(Mor(1,p o p)) and thus a
C-number. Rigidity, eq. (8.2.1), implies that this number is non-zero. Hence we can

define an invariant dj, € C* of the category C by the equation

& M tor(,0p) = (Florprp,p))y = (Flo,pip,p) ™)1 (8.2.70)
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where the second equality in (8.2.70) follows from (8.2.1). Concerning the bilinear form
p1, defined by

p1 : Mor(,pop) ® Mor(p,0p) — C

I®J = (189!) Flp,p,0.0) (I8 J),
(8.2.71)

as in (8.2.3), we know from the proof of lemma 8.2.1 that it is non-degenerate, with an
explicit inverse given by (8.2.12). This shows that the matrix block (F(p, p, p, p)—l)ib #

0, and hence the linear transformation

F(p,p,p,p)y : Mor(,p 0 p) ® Mor(p,p o ) —— Mor(1,p 0 p) ® End(p)
(8.2.72)
does not vanish. Furthermore, the isomorphism F(p, p, p, p) is constrained by the pen-

tagonal equation

(F(p,p,p,p)®]1)( @ H@F(p,s,p,l))(F(p,p,p,p)®n) =

s=1,9
= 1® F(s,p,p,1)) T 1Q F(p,p,3,1)) ,
(ﬁ?ﬁb (s,p,p,1)) T2 (’SR/’ PPy 8,1)) (82.73)

which, incidentally, also implies (8.2.70). We define isomorphisms &, : Mor(p,sop) —

Mor(p,p o 8) by setting

F(p,s,p,1) = 2:® ]IMor(l,pop) s (8.2.74)

so that &, = ]IEnd(p)' Furthermore, we define an isomorphism F € End(@, Mor(s,po
p) ® Mor(p, s o p)) by
F := F(p,p,p,p)(P1® &) . (8.2.75)
3

From the pentagonal equation (8.2.73) we conclude that

F2= @ x\T1, (8.2.76)
s=1,9

is diagonal with respect to the one-dimensional subspaces corresponding to the chan-
nels s = 1,9¥. Clearly we have that \; = 1, since F(1,p,p,1) = F(p,1,p,1) =
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F(p,p,1,1) = 1. Of course, the diagonal matrix (8.2.76) has to commute with the
F-matrix which by (8.2.72) is non-diagonal. We conclude that (8.2.76) has to be a

multiple of the identity, i.e., since A; = 1, we have that F2 =1, or

F(P;P: Prp)—l = (@ I® QS) F(p, P, P:P)(@ I® Q’) : (8.2.77)
Inverting eq. (8.2.66) and inserting (8.2.77) yields:
(Drip, 0.8y @ T) Flp,p,0,0) (D 7(pp,8) " @ 1)
= F(p,p,0,) (D 1® (25 7(s,,0) ' %)) Flp,p,p:p) -

If we compare this to (8.2.66a), we find that
o 7(5,0,0) = Bs 7(p,8,5) B . (8:278)

For s = 1, (8.2.78) implies (8.2.67), i.e., triviality of the H®(Grad(Obj),2;U(1))-
obstruction if p generates Obj. Conversely, for @~ = 1, and with egs. (8.2.77) and
(8.2.78), any solution to (8.2.66) turns out to also be a solution to (8.2.66a). Besides

the invariants (p, p, s) and d,, we introduce a fourth invariant, y € C*, by setting

Y Lpgor(p,pop) = ‘P,;l r(¥,p,p) = t(p,¥,p) By . (8.2.79)

With the diagonal matrices D,Q € End(@, Mor(s,p o p) ® Mor(p,s o p)) given by
D := diag(r(p,p,1), r(p,p,¥)) and Q := diag(l,y), we can write the hexagonal

equation as an equation between endomorphisms:
DFD = FQF. (8.2.80)

Using that F2 = 1, we infer from this equation that DQ commutes with F, and since
g

F is non-diagonal, DQ is a multiple of the identity, i.e.,

r(p,p,1) = yr(p,p,¥) - (8.2.81)
381



Using that F # +1I, we also find that

det(F) = -1 and tr(F) = 0. (8.2.82)
Hence, from (8.2.80),
det(D)? = —det(Q),
or y = —T(p,p,l)z T(P)P;¢)2 . (8283)

The general solution to (8.2.81) and (8.2.83) can be parametrized by a number ¢ € C*

with the property that

r(P)P)]') = t3) T(P)P)¢) = _t_ly

(¥, p,p)

I

~-t*0,, r(p,%,p) = —t4<1>;1. (8.2.84)

From (8.2.70) and (8.2.82) we find that
1
Fiy=—Fy = o (8.2.85)
P

If we take the trace on both sides of (8.2.80) we obtain, with (8.2.85) and F2 = 1, the

relation
1
7 (r(pp,1)? = r(p,p,%)%) =1 + y, (8.2.86)
p

which, by (8.2.84), yields the expression
dp = —(2)2 - (8.2.87)

For arbitrary ¥, € Mor(1, pop) and ¥,y € Mor(1,409), we next determine basis vectors
I € Mor(p,¥ op), J € Mor(p,rhoo ) and K € Mor(y,p o p) such that F(p,p,p,p)

has the matrix elements given in eq. (8.2.69), and, in addition, that

F(,p,p,1)) = F(p,¥,p,1)p = Flp,p,%,1)f = 1. (8.2.88)
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The morphisms I,J and K are unique up to a change of sign, I,J, K — —I,-J,-K.

We first determine K and I from the equations

F(¢;P)P)1)(K®19¢) =17,
FKQI) = —21—K®1+19,,®1,,. (8.2.89)
p

These equations have unique solutions K and I, up to a sign. The last matrix element

of F in the basis {#,® 1,, K ® I},

1
1 _ 2.
Fy =1 " (8.2.90)

is obtained from det(F) = —1. The condition that F(p,,p,1)5 = 1 means that
J = d4(1), (8.2.91)

which, together with (8.2.75), yields the formulas for the matrix elements of F(p, p, p, p)
given in the lemma. Using (8.2.91) in (8.2.84), we also find the formulas for the »-
matrices. Finally, the equation F(p,p, 1, 1)5 = 1 follows from (8.2.88). The fact that
these matrices provide a solution to the hexagonal equation (8.2.66) can be verified by
direct computation or by the observation that these data are identical to the ones for
Ug(slp),q = 2,
a
The observation, made in Lemma 8.2.4, that the braid- and fusion matrices of the
fundamental representation p coincide with those of Ug(slz) is, in fact, sufficient to infer
that the entire category is isomorphic to the one obtained from Ug(sl2). This insight is
based on the following cabeling argument which is an easy consequence of the hexagonal

equation.

LEMMA 8.2.5

Suppose C and C' are braided tensor categories for which there ezists an isomorphism

¢F.C:c - (8.2.92)
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between monoidal categories. Assume that T C J is a set of irreducible objects which

generate Obj and for which the equation
F(e@t,8)) = C(s,t) ' (C(2),¢(s)) C(t,8)~, VitseT, (8.2.93)

holds.

Then (8.2.92) is also an isomorphism between braided categories.

Proof.

In order to prove Lemma 8.2.5, we need to verify that
FE(X,Y)) = O(¥,X) & (¢(X), ((¥)) O(X, Y)Y (8.294)

holds for each pair, (X,Y), of objects. Since both isomorphisms, ¢ and €', are isotropic,
it follows that, for subobjects X C X and ¥ C Y, (8.2.94) holds for (X,Y) whenever it
is true for (X,Y). Conversely, if W = X @Y and (8.2.94) holds for (Z, X) and (Z,Y)

it also holds for (Z, W). If we apply F to the hexagonal equation

eXoY,Z) =

= a(Z,X,Y) " e(X, Z) 01) (X, Z,Y)(1 0 e(Y, 2)) «(X,Y, Z)7?
(8.2.94)

and use the fact that (¢, F,C) is a monoidal functor, so that ¢’ satisfies an equation
analogous to (8.2.94), we find that (8.2.94) holds for the pair (X oY, Z) if it holds
for (X,Z) and (Y,Z). Similarly, the pairs solving (8.2.94) close under taking tensor
products in the second arguments. Thus, if by assumption (t,s) is admissible, for
t,s € T, then we can build any object X from s € T by a succession of steps which
preserve the validity of (8.2.94). Hence (¢,Y) is admissible, for every t € T and Y € Obj.
Applying the same argument to the first argument, we can prove (8.2.94) for all pairs.
This completes the proof of the lemma.
0
Combining Proposition 8.2.3, Lemma 8.2.4 and Lemma 8.2.5, we arrive at the follow-
ing result on braided tensor categories with Ay,-fusion rules.
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PROPOSITION 8.2.6

For everyl € Zy(k42)» with (I,k + 2) = 1, there ezists a unique quantum category Ck,1

with Agyq-fusion rules (k > 1), and satisfying

1
r(p1,P1,p2) = exp (— omi Z(FE)) . (8.2.95)

It is isomorphic to the semi-simple category obtained from Ug(sly), with qt/? =

erp (27'i 4(kl+2))'

Two categories, Cy; and Cy y, are isomorphic as braided categories iff | = I'. They

are isomorphic as monoidal categories iff

I' = +1 mod2(k+2). (8.2.96)
The category Cy 1 is isomorphic to a C*-category iff
l=+1 mod(k+2). (8.2.97)

This is the complete list of quantum categories with Ay 1-fusion rules.

The category Cy | has the invariants

_ 27!'1.l ey _. 2710
r(pj,pj1) = ezp (m - 34 +2)) =: e, (8.2.98)

for 5 =0,...,k. The 6;’s are balancing phases for Cy;. The only further balancing

structure is given by the phases
J
99- = 6; + 2 modl. (8.2.99)

Proof.
From Lemma 8.2.4 (with p = p; and ¥ = p3) we know that, for some given r(p1, p1, p2)
= —t~1, the matrices F(p1,p1,p1,p1) and r(p1,p1,1) are uniquely determined up to

natural equivalence. In particular, for the invariant d; of Lemma 8.2.1, we have that

dy = — (2.
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The restriction on d; given in eq. (8.2.5) of that lemma is equivalent to the condition
(8.2.95) for the value of t. Hence, for any of these values of ¢, we find, according to
Proposition 8.2.3, a unique monoidal category. With given eigenvalues, »(p1, p1,1) and
r(p1,P1,p2), of €(p1,p1) € End(py 0 p1) = Cl @ C1, we see that (8.2.93) holds for
T = {p1}. Since p; generates all objects of the category we conclude from Lemma 8.2.5
that, for a given value of ¢, one can find at most one braided structure on the given
monoidal category. Thus, for a given r(p1,p1,p2) as in (8.2.95), there exists at most
one braided temsor category. Each of these possible categories does in fact exist and
can be obtained from the representation category of Ug(sly), for the given value of ql/ 2
This is easily verified by applying the transformation TR, (where R is the universal
R-matrix of Ug(slz)) to the highest weight vector ff/z ® 53/2 € Vi1 ® V] corresponding
to the eigenvalue ql/z, ie,t = ~—q1/2. This proves existence and uniqueness of the
categories Cy ;. In order to compute the invariants #(p;,p;,1) we simply compute the
eigenvalue of TR for the invariant vector Eé € V; ® Vj, given by
if2
==Y (—qut-mgedl! (8.2.100)
m=—j/2

(compare to (5.23) for highest weight vectors). Using the equation (a®1)d; = 1857 1(a)

and eq. (8.2.59) for an element g satisfying (6.94), we see that
TRY; = T(1®u)d; = (ug '@ M, ,

where u is as in the definition of a ribbon-graph Hopf-algebra; see (6.92) and (6.93).
It follows that the special central element v = ug™! acts on V; like r(pj,pj,1)1. By

(6.93), this implies that the phases §; given in (8.2.94) are indeed balancing, i.e., that

r(pi, pj, k) T(pj, pirpr) = 2T HOAG=6K)

If the braided category Cy  is a C*-category then the corresponding monoidal category
is a C*-category, too, and hence condition (8.2.43) of Proposition 8.2.3 must hold. If
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Ck, is a C*-category, as a monoidal category, then the projections in End(p; o p1)
have to be selfconjugate, and, using that | r(py,p1,1) |=| r(p1,p1,p2) |= 1, it follows
that £(p1, p1) is unitary. From the iterative construction of all the other isomorphisms
€(X,Y’) obtained from the cabeling formula (8.2.94) and orthogonal decompositions of
objects, we find that all ¢(X,Y) are automatically unitary. Thus, for the values of [
given in (8.2.97), which is consistent with (8.2.7) of Lemma 8.2.1, the category Cpisa
C*-category as a braided tensor category. This completes the proof of the proposition.

a

The example k = 1 has already been studied in section 7.4 by observing that the
Aj-algebra is just a Z-fusion rule algebra and by noting that #-categories are classified
by Hom(l".«,(Zz), U(l)) = Z4. A Z-algebra is also contained in Cyj, for a general
k > 1, which contains the invertible object pi. The structural data of the corresponding

subcategory are given by

kl
6 = — modl),
4
_ g1 _ ki
and Flpk, P, ok, k) = d” = (-1)7.

(8.2.101)
The results stated in Proposition 8.2.3 and Proposition 8.2.6 can be used to find all
the categories with Ap-fusion rules. To this end, we observe that Ay, = A, x Zy. The
corresponding graded projection (y, : Agn —» An, and the injection i : Ap & Agy, with
(n oi = id, are given in Lemma 7.3.4, ii). We have that ker({n) = {1, p2n_1}. Suppose
now that C is a (braided) monoidal category with Ap,-fusion rules. Then there is a unique
number [, I =1,...,2n (l € Zy(an+1)> with (I,2n + 1) = 1), respectively, such that C
and (, induce Ck,1 as a (braided) monoidal category, for k = 2n—1. The Zy-subcategory
of the induced category has to be trivial. Having the explicit data (8.2.101), and with

k = 2n — 1, this property can be expressed in terms of [ as follows:

l =0 mod2, for monoidal categories ;

Il =0 modd, for braided categories . (8.2.102)
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Conversely, if, for Cy,_1 1, the Zz-subcategory is trivial as a monoidal category, then we
can use formulae (8.2.11) and (8.2.12) for the dependence of the r- and F-matrices on
the Zp-action. Since Grad(Ap) = 1, we also have that y =1, £ =1, and 7: An — Aoy
is precisely the injection i of fusion rule algebras, and, finally, n(j) = pirad(j ) 1t
follows immediately from equ. (8.2.11) that Cy,,_1 ; is induced, as a monoidal category,
by some category with A,-fusion rules and (;. If, in addition, the Zj-subcategory of
Can—1,1 is trivial as a braided category it follows from equ. (8.2.12) that Cyp,_1 1 is also
induced as a braided category by some category C with An-fusion rules. We thus have
established a one-to-one correspondence between categories C with Ap-fusion rules and
categories Cap_1 With Az,-fusion rules, where I is constrained by (8.2.102). Clearly,
every category Cy, 1 contains a subcategory C with A,-fusion rules, as A, C Ag,. If
C2n—1,1 is also induced by some C, i.e., if there is a functor ((n, F,C): C — C!, then,
since the restriction of {, to A, C Ay, is the identity, the restriction of the functor to
C yields an isomorphism C = C'. Hence the A,-category associated to Can—1,, Where
I obeys (8.2.102), can be identified with the corresponding subcategory. We denote by
én,f the braided category with A,-fusion rules which induces C2n—1,4l" with I € Zony1,
(I,2n+1)=1and n =1,2,... . The relation between C—n,l- and CZn—1,4T can be written

compactly as

Con—1,4T = Cul ® Cayg=0, (8.2.103)

where the functor yielding (8.2.103) extends the isomorphism A3, = Ap x Zy. Any
monoidal category C with Ap-fusion rules induces a monoidal category Cy,,_1,; with
Ayp-fusion rules, where, by eq. (8.2.102), | = 27 mod4(2n + 1), with 7 € Zo(2n41)-
Following eq. (8.2.96) of Proposition 8.2.6, this category (viewed as a monoidal category)
is equivalent to the one with { = 2(7 +(2n+1)), so that I may always be chosen to be a
multiple of four, i.e., | = 4I. However, the category CZn—1,4f is induced by én,l_ also as a
monoidal category. By the uniqueness of inducing categories, this implies that = CTn,l-.
Hence all monoidal categories with A,-fusion rules can be obtained from a braided

monoidal category by omission of the braided structure. It is obvious from (8.2.103)
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that Cn,l' = C—n,l'” as (braided) monoidal categories, if and only if C,,,_; 47 = Con—1,45-
Proposition 8.2.6 implies that this is the case if and only if I = I', for the braided
situation, and I = 41 mod(2n+1) if we consider only the monoidal structure. Moreover,
(8.2.103) shows that C_",I- is a C*-category iff Cy,_, 47 is one. Finally, we remark that,

by the invariance of the Zs-action, the invariants of Czn—l, 4 satisfy
T(Pj:Pj;Pd) = T(P2n—1—j,P2n—1—j:Ps), for s = 0,2,...2min (jyzn -1- J) .

In particular, £(p;, p1) has the same spectrum as 5(P2(n—1):P2(n—1)): where py(,_1) is
the generator of A, with Perron-Frobenius dimension less than two. We summarize

these conclusions, derived from Proposition 8.2.6, in the following corollary.

COROLLARY 8.2.7

Let p be the canonical generator of the Ap-fusion rules, with pop=1+1.

(i) For everyl € Zyp 1, with (I,2n+ 1) = 1, there ezists a unigue quanium category,

CTn’l-, such that

o1
r(p,p,¥) = ezp (— 271 ot 1) . (8.2.104)

This gives the complete list of quantum categories with Ap-fusion rules. They are
C*-categories iff

[ =+n% mod(2n+1). (8.2.105)

For each C_n [» there is a unique set of balancing phases, b4, given by
2716, _ .
e = r(a,a,1); (8.2.105a)

e.g., €29 = exp(6mil/(2n + 1)).
(ii) Every rigid, monoidal category with An-fusion rules is obtained from o quan-
tum category by omission of the braided structure. We have that C—n,l' = C_n,l_” as

monoidal categories, iff

=27 mod(2n+1). (8.2.106)
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They are C*-categories iff (8.2.105) holds.
(iii) The category C—n,l- 1s isomorphic to the subcategory of the semisimple quotient of
the representation category of U,(sly), qi/? = ezp(2mil/(2n + 1)), generated by

the (2n — 1)-dimensional representation p = Va(n-1)-

At this point we have all the technical insights that allow us to classify all possible
quantum categories with untwisted fusion rule algebras given by Z, x A5, and Z, x Ao, 1
as subcategories of products of Ugy(slz)-categories and §-categories of cyclic groups. The

simplest result is the following theorem.

THEOREM 8.2.8

Let Zy x Ay = Zp X An, with r,n > 1, be the fusion rule algebra specified in eq. (7.127)
of Theorem 7.5.11.
For every I € Zgpi with (I,2n + 1) = 1 and every q € Hom(T4(z,),U(1)), we can
define a quantum category
Crr(liq) i= Cpg®Cpr (8.2.107)
with the fusion rules specified in the hypothesis.

(i) The categories Cp r(l,q) constitute the complete list of quantum categories with

Zp * Ap-fusion rules. If there is an tsomorphism of quantum categories
¢, F,C) : C_n,,.(l_, q) — (fn',-(i',q') (8.2.108)

then ¢ is uniquely determined by its restriction, (p: Z, = Zy, to the subgroup of
invertible objects. Furthermore,

=T

~i
I

and g =) (8.2.109)
(ii) There ezists an isomorphism of the form given in (8.2.108) between monoidal
categories if and only if
I =47 mod (2n + 1),
and 8% o (1,1)*(a)
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where S and 4 are as in section 7.4, and the monoidal structures,
im §* = 3(H¥ 2z, R/Z)) = 23y,

of the two categories are identified by the unique isomorphism between them.

(iii) The category Cnr(1,q) is C* iff
I =472 mod(2n+1). (8.2.111)

It 1s always balanced, and the possible balancing phases are given by Zs-gradings,
e € Hom(Zy,Z3), of the group of invertible elements. For an irreducible object

j € Ap and a 0 € Zy, they are given by

ezp(2mi Ofg’j)) = 7(4,7,1) q(o) (o) . (8.2.112)

Proof.

For the graded subgroup, R = Z,., of invertible objects we have that grad: R —
Grad(Obj) is an isomorphism, i.e., Grad(Obj) = 1. In particular, we have that the
obstruction A*(w) from equ. (8.2.61) is always trivial. Thus, if C is a category with
Zy * Ap-fusion rules it follows from Corollary 8.1.14, ii) that there exists a quadratic
function ¢ € Hom(T'4(z,),U(1)) such that C = €9, and C is induced by a category én,l_
with objects Obj = Obj/R = A, and a homomorphism g : Zp * Ap — Ay : (0,7) — 5.
From formulae (8.2.4) and (8.2.5) for the structure constants of a product of categories
we see that the r- and F-matrices of Cp »(I,q = 1) are invariant under the Z-action.
Hence Cnr(I,1) is also induced by 7 and a category on A, which, by comparison
of structural data, e.g., of v(p,p,¥), has to be C_n,l" By the uniqueness of induced

categories, it follows that € = Cn,r(1,1). Clearly, we have that

Cn,r(l_y 91)(12 = C_n,r(l_, q1- ‘12) . (8.2.113)

Hence, in particular, C is of the form (8.2.107). An isomorphism ¢ : Z, x Ap — Z X Ay
has to map the ungraded subalgebras A, onto each other. Since all objects in A,
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have different Perron-Frobenius dimensions, this map from A, to A, denoted by f, is
uniquely determined. Moreover, { has to map invertible objects to invertible objects.
Hence its restriction to Z,, {¢ : Z, — Z,, is a well defined group isomorphism. It follows
that, for j € A, and o € Z,, (((0,7)) = (¢olo), £(4)), i-e., ¢ is unique for a given (p.

For the canonical generator p of the ungraded Ap,-subalgebra satisfying pop =1+,
the fact that ({, F,C) is an isomorphism of braided categories implies that 7(p, p,¥) =
' (£(p), f(p), f(¥)) (see (8.2.104)), and hence that { = I'. Furthermore, the isomorphism
(8.2.108) imposes on the quadratic, invariant functions ¢ and ¢' the equation g(co) =
¢ (¢o(c)), for all invertible objects o, i.e., g = ¢3(g'). Conversely, if (8.2.109) holds we
have (according to section 7.4) an isomorphism ({p, Fop, Cp) : Cz, ¢ — Cy, ¢ Which, when
tensored with the identity on én,f’ yields the isomorphism (8.2.108) for the product
categories.

For the proof of part ii) of the theorem it is sufficient, as in the case of braided
categories, to show that there exist isomorphisms for the categories associated to the
trivially graded objects and for the categories associated to the invertible objects. As a
first condition we obtain eq. (8.2.106) of Corollary 8.2.7. If { : Z; — Z, is the restriction
of { to the invertible objects it induces an isomorphism, Cg# :im S*o 74‘1 (f‘4(Zr)) —
im S*o 7;1(f‘4(z,)), and the two categories are isomorphic iff (6# (S* ) 74_1(q)) =
S*o'y;l(q’). Since the group on which CS& is defined, is either {1} or Zy, it is independent
of (. Hence the requirement in (8.2.110) is also independent of (.

To prove part (iii) we remark that Cp, (1, q) is a C*-category if and only if én,l_ and
Cy, ,q are C*-categories. Since f-categories always carry a C*-structure, we are left with
condition (8.2.111), as in eq. (8.2.105) of Corollary 8.2.7,i). A set of balancing phases
of a product category is given by the product of balancing phases of the individual
categories, e.g., by the phases given in eq. (8.2.105a) of Corollary 8.2.7, i), for the én,f'
factor, and the quadratic function (7.296), for the C;_ g-factor. Taking into account that
distinct sets of balancing phases can only differ by Z;-gradings, we arrive at (8.2.112).

a
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Notice that the fusion rule algebra isomorphism
¢ : Zax An — Agn : (g,5) ¥ pioj (h=2n-1)
extends to an isomorphism of braided categories,

(C,}-,C) : CTn,Z(l—»Q) - C2n—1,l)
if and only if

I =22 mod(2n+1),

. 2n — 1) . .
and q(j) = ezp ((—4l12), i€ zy.

(8.2.114)

The basic strategy to describe the categories associated to the Z, * Ag,_1-fusion rules

relies on the fact that

i1 ZpxAgpo1 o Zor(g) X Azn—a

(ko) > (grad((k,p)), ) , (8.2.115)

is an inclusion of fusion rule algebras, see (7.255). Here grad((k,p)) = g2kte where
€ = 11if p is graded non-trivially, and ¢ = 0 otherwise. A large class of braided tensor
categories with Z, * Ag, 1 - fusion rules is therefore provided by the subcategories of
the product categories Cz,, ¢ ® Cz(n-—l),l . For a given ¢ € Hom(T4(2Z3,), U(1)), and
l € Zgy with (I,2n) = 1, we denote this subcategory by Cnr (I, q) . It is obvious from

the definitions that

Crr(lq1)? = Cnp(l, a1-92), (8.2.116)
for any pair q1,q2 € Hom(I'3(Z3,), U(1)). The subcategory associated to the
graded fusion rule subalgebra, Zr C Z, * A, is characterized by the restriction,
1*(¢9) € Hom(T4(z,), U(1)), of the qudratic function g, where i : Z, < Zp, is the
monomorphism obtained from (8.2.115).

Notice that, for a quadratic function w € Hom(T'4(2Z3), U(1)), given by
w(j) = ezp (27ri 21’2) (h=2n-2), (8.2.117)
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for some v € Z4 , we have by composition with the invariant (8.2.95)

w
(Cea)” = Copor(reay» (=2n-2). (8.2.118)
This isomorphism can be used to generate an equivalence of the higher graded categories.
To this end, we consider the following commutative diagram of inclusions, where we only

assign the fusion rule algebra monomorphisms to the arrows :

id ® (grad®,id
Cazrig @ Crz ® Cyn1)1 (o ).

CZ:, g ® C‘;('n—-l),l

§®id o
szn gr(w) ® C2(n—1),1 Cazqg ® C2(n—1),(t—2nr) (8.2.119)
1
i = (grad, p3) i = (grad, ps)
Cn,r(l b q : W*(w)) N = > Cﬂ,,r(l o 2n'r s q)

Here, 1 is as in (8.2.115), with py((k,p)) = p . Furthermore, the projection map,
® : Zpp —» Zy , yields the quotient by 2(22,.) > Z, , and we use the notation
5(g) := g ® n(g) . Using that n o grad = grad® o ps , we see that this diagram
commutes for the fusion rule algebra homomorphisms, and all but the bottom line can
be extended to inclusion functors of braided categories. Therefore, the two categories
in the bottom line are isomorphic to the same subcategory and thus isomorphic to each

other.

Further equivalences of categories can be obtained from the automorphisms of
Zp * Azp-1. The only non-trivial fusion rule algebra automorphism of Aj,_3 is given
by n which, in Lemma 7.3.4,i)a), is defined by

Tnlpj) = pjo (Pz(n—l))j (8.2.120)

We denote by ay : g — g¥, with (v,2r) = 1, the automorphisms of Z3, . The group

of automorphisms of Z, * Ay, 1 is then generated by 4, and &, which can be uniquely
defined by the commutative diagram
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Zp ¥ Agpy ————  Zg, X Agn1

Zy % Agny 2 Zp, X Agn1
with € = 0,1 and (v,2r) = 1. More explicitly, &, and 45 are defined by
_ v-—1
a((kps)) = (k+ (S5)gmad((kip), 5) »

n((k,p5)) = (E, m(p;)) , (8.2.122)

for k € Zp, pj € Agp-1 -
Generalizing formulae (8.2.104) we find, for j = 1,2,... ,k — 1, the values for the
invariants of Cp; (k = 2(n — 1))

I
a(k +2)

(pjspjrp2) = — ewp(27ri (2 +2 - 4)) (8.2.123)

from explicit computations of the spectrum of R = TR on Uy(slp)-representations. In

particular, for k = 2(n — 1), we have that

Lenl

™(Pr—1,Pk-1,p2) = —ezp(—2mi ) (8.2.124)
where e, € Zg,, with e?, = 1, is given by
1 if n is even
n = { 1+4n ifnisodd. (8.2.125)

This shows that there exist functors of braided categories extending vn between precisely

the following pairs :
('Ym]'-; C) : C2(n—1),l — C2(n—1),en-l . (8.2.126)

From the functors in (8.2.126) we obtain canonical isomorphisms between the categories
Cr.q® Cz(,.,_i),g and Cg, ,9®C2(n—1): enl, for fixed g, and thus, by completing the square

in (8.2.121), the isomorphisms

(’71;, f, C) H Cn,r(l, q) —; Cn,r(En M l, q) . (8.2-127)
395



In the same way we obtain the isomorphisms
(@, F,C) : Cnp(lyg) — Cnr(l,ai(9)) - (8.2.128)

With the definition of the Cp (I, q) -categories at our disposal, we are in a position to
describe the classification of categories which have the second type of untwisted A-fusion

rules, namely the Z, * Ay,_1 fusion rule algebras.

THEOREM 8.2.9

Let Zp % Agp—1, withr > 1, n > 2, be the fusion rule algebras specified in (7.130) and
(7.134) of Theorem 7.5.11. Denote by p the canonical generator with pop = o+,

where o is the wnvertible object of order r.

(i) All quantum categories with Zp x Ay, _; -fusion rules are isomorphic to Cn (1, q),
for some l € Zgy,, with (I,2n) = 1, and some ¢ € Hom(T4(2Z3,), U(1)). For a
gwen p, l and q are determined - up to the equivalence described in (8.2.119) - by

the formulae

r(pop,¥) = —eop(~2mi ) q(grad(p))

r(o,0,0%) = q(grad(p))4. (8.2.129)

The only isomorphisms between these categories are compositions of those given
in (8.2.119), (8.2.127) and (8.2.128), and, for n = 2 and r even, one further
Sfunctor.

(ii) The category is a C* - category if and only if
I = 41 mod(2n). (8.2.130)
There are two possible sets of balancing phases for Cyr(1,q):
ezp(27ri0(,,pj)) = ezp(2mi Sinj(j +2)) g(grad(s, p;)) ¢ (8.2.131)

with s € Zr, pj € Agn_1,5 =0,1,...,2(n—1), end e = £1.
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Proof.
The fusion rule algebra Z, * Ay, 1 has a graded subgroup, R := Z,(c), with generator
o = (1,1), which is included in Grad(Obj) = Zy.(g) (with generator g := grad(p) )

by the map o® — g2* . It defines the graded fusion rule algebra homomorphism

7R : Obj = Zrx Agn_y —» Obj = Obj/R = Ayq,_1,

(s, 05) — pj , (8.2.132)

so that Grad(Obj) = Z..

We consider a braided tensor category C with Zy * Ag,,_1 - fusion rules and compute
the invariant (depending on R) A*(w) € Hom(2Grad(Obj), Z3) . Corollary 8.1.14,i)
states that if A*(w) is non-trivial then » = 2r' is even, and we can find a monoidal
category on Aj, 1 and braid matrices +(z,7,k) such that the modified hexagonal
equations (8.2.76) hold. If we identify all representation labels in (8.2.76) with the
fixed Aj,_1- generator py,i.e., [i] = [j] = [k] = [t] = p1, we arrive at the equations
(8.2.66) and (8.2.66a) given in Lemma 8.2.4. Forn = 2,¢; = g; = g; = grad(p) = 1
(in additive writing), and 7(g;,g9;) = 1, we obtain for the prefactor in (8.2.66a) the
equation

w = -1

This contradicts the assertion (8.2.67) of Lemma 8.2.4. It follows that
A*w) =1 , (8.2.133)

for all braided tensor categories with Z; * As,_j- fusion rules. Hence, by Corollary
8.1.14, ii), there exists a quadratic function ¢ € Hom(I'4(Grad(Obj)), U(1)) such
that C = C9 , and C is induced by some category Cz(n_l),l with Asg,_1-fusion rules
and by wp. For the category, Cz, ¢=0 ® Cz(n—l),l , with Zg, X Ag,_1- fusion rules,
the subgroup G = {(0,1)}oez;,, = Z2, of invertible objects fullfills the hypotheses
of Proposition 8.1.4, since the braid matrices of tensor product of categories have no
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mixed terms, i.e., the monodromy, m € Hom(R ® Grad(Obj), U(1)), as defined in
Lemma 8.1.6, is trivial : 72 = 1. There therefore exists a category, C, with Agp_1-
fusion rules such that Cz, 4—0 ® Cz(n—l),l is induced by C and by the graded fusion
rule algebra homomorphism 7 : Zy, x A2n—1 — Aop-1 : §®p; — p;. By virtue
of the inclusion ig : Azpn_1 — Zzr X Agn_1 : pj — 1® pj, (1 = neutral element)
of fusion rule algebras, cz(n—l),l is a subcategory of Cyz,, ¢—0 ® Cz(n—1),1 , and since
ngoig = idy, _,,the composition of the corresponding functors yields = Cz(n—l),l .
The inclusion 1 : Zg, * Agp—1 < Zo, X A,—1, given in (8.2.115), then extends to an
inclusion of the braided tensor category Cn,r(l, ¢ =1) into Cz, g—0 ® Co(n-1), - Since
np = wg o, we find that, by composition of this inclusion with the functor onto
Co(n-1),0> Cn,r(1,1) is induced, as a braided tensor category, by Cy(n-1)y and 7pg.
From the uniqueness of induced categories we conclude that ¢ = Cn,r(1,1), and finally,
with (8.2.116), we find that
C = Cnr(liq)

proving the first assertion of the theorem. The invariants in (8.2.129) are simply those
inherited from Cy,,,q ® Cy(—1), - If we denote by r¢ and 7o the braid matrices of the

two factors, then (8.2.5) implies that

r(p,p,¥) = rq(grad(p), grad(p), grad(¥)) ro(vr(p), 7r(p), *r(¥)) ,

and r(o, 0, 02) = 1q (gra,d(u),grad(a),grad(cr)z) .

Hence, setting p1 = wg(p), p2 = wg(¥), grad(c) = grad(¥) = grad(p)?, and with
the help of formula (8.2.95), we obtain (8.2.129).

A generator p of the Z, ¥ Ag,,_; - algebra, in the sense of Theorem 7.3.11, is character-
ized by the facts that grad(p) is invertible in (i.e., a generator of) Grad(Obj) = Z,
and that d, = 2603(2—:-) . If n # 2 the only automorphism of Z, * A3,,_; which maps
such a generator to itself is the identity, since tensor products with p have at most two
irreducible summands and the equation pop = o+ implies that, since ¥ is not invert-
ible, o is mapped to itself. The only exception from this implication occurs for n = 2
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and r even. In this case, p3 € A3 isinvertible, and an automorphism { on Z* As,—1
can be defined from the equations (((s,p1)) = (s,p1) and {((s,a)) = (s,p20a), for

8 € Z, and a € {1,p3}. This fusion rule algebra homomorphism extends to a functor
((,F,C) : Copl(l,q) — Ca(-1,4), (8.2.134)

with
d (gra.d(p)) = — e::p(2m' %) q(g'rad(p)) s

for any even =, any odd ! € Z;g and any ¢ € Hom(T'4(Grad(0Obj)), U(1)).

Thus, a general automorphism { on Z, * Ag,_1 is, for n # 2, uniquely determined
by the image, {(p), of the generator p. Since the group {ay : v € Zap, (v,2r) =1} of
automorphisms on Z, % Ay,_; acts transitively on the invertible elements in the ring,
Grad(Obj) = Zy,., and each graded component contains at most two objects with
dimension 2cos(;—n) which are mapped onto each other by 7, , we see that the group
of automorphisms, defined in (8.2.121), acts transitively on the set of generators. This

proves that every automorphism on Zy * Ag,—1 is of the form (8.2.121) and, forn = 2

and r even, can also be composed with the special automorphism { defined above.

The categories Cp r(l,q) are those with a generator p and an invertible object o,

with pop = o + 1. Let us assume that there is an isomorphism
(C;-F) C) : Cn,r(z>9) _';_' C‘n,r(?’q’)

between two such categories. We can always write such a functor as a composition of
the functors given in equations (8.2.127), (8.2.128) and, for n = 2, (8.2.134) with a
further functor for which { maps the objects p and o - and thereby all elements of
Zp % Agp_y generated by p and o - onto each other. For the latter, it follows from
(8.2.129) that (g)* = (¢')*. A quadratic function § on the cyclic group Grad(Obj),
with g* = 1, is always of the form § = 7*(w), where w € Hom(T'4(Z3), U(1)) is as
in (8.2.117), and 7 : Zy, —» Zj is the quotient by 2(Z3,). Hence, for ¢ = g-7*(w), we

399



find from the first equation in (8.2.129) that I' = I + 2nT mod(8n). For any T € Z4,
we have already costructed the corresponding functors in (8.2.119). This completes the

proof of part i) of the theorem.

The proof of the second part of Theorem 8.2.9 uses the facts that an induced category
is a C*-category if and only if the inducing category is C* and that f-categories are
always C*-categories. This shows that it is sufficient to verify the existence of a C*-

structure on the Aj,_; - category. Condition (8.2.130) is thus the same as (8.2.97).

The balancing phases recorded in (8.2.131) are simply those inherited from the cate-
gory Czy, . ¢ ® Cz(n—l),l» multiplied with a Z3- grading, (s,p;) — ¢ , which accounts

for the only ambiguity in choosing the phases 0(2, pi) for a given braided tensor category

The remaining Ay, - categories we want to determine are those with
Ta(Zr * A2n_1) fusion rules, (see Sect. 3 for definition). The group R of invertible
elements for this algebra is Zy, and the induced grading, grad: R - Grad(Ob;), has
2R as a kernel .Thus, contrary to the previous cases, only the subgroups of R of odd
order are graded, and hence, for # = 277/, with ' odd, the order of Grad(Obj), where
Obj is the image of a graded homomorphism on Obj , is always a multiple of 2(P*1).

Fortunately, there is a second way to treat this situation:

We shall use the fact that there exists a graded homomorphism from an untwisted
fusion rule algebra with a higher grading onto the twisted algebra under consideration.
Before constructing this homomorphism, we must briefly recapitulate the definition of
Ta (Z,- * Obj) and the composition laws described in Definition 3.3.1. To this end we
recall some notations used to describe extensions of cyclic groups. We consider the short

exact sequence
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Pm,r

; ! . | (8.2.135)
0 —— Zm(u) s Zm(v) () >0

of cylic groups with specified generators, homomorphisms im »(u) = v" and wmr(v) =

¥, and where By, » is the section given by
By i Ze = Zpm % v, j=01,...,r—1, (8.2.136)
with 7 p 0 Bmr = id. Further, we define the map

Xm,;r ! Zmr — Zm

by imr(Xmr(9)) = ¢ (ﬂm,r (”mw(g)»_l (8.2.137)

When there is no confusion about the choice of generators we use an additive notation

with generator 1; e.g., equation (8.2.137) can be written as

j = ﬂm,r("rm,r(j)) + im,r(Xm,r(].)) mOd(mT))

for j = 0,..., mr —1. We also define the cocycle 74 € ZZ(Za(g), Z) by

. . P s 1, a<i+j<2a,
70(1).7) = 70.(9')9]) = { 0. 0<1 +J <a (82138)
with 4,7 = 0,1,...,e—1. Then
8Bme = ava  mod(am), (8.2.139)

(compare to (7.234) and (7.235)). For a fusion rule algebra (Obj,0), the composition,

0q, of 74(Obj) is given by
2 0q y = aTe(orad@)grad)) o 4 o 4 (8.2.140)

where <4 is defined with respect to a given generator, g, of Grad(Obj)= Z4(g), and
a € R = {0 : 000Y =1, grad(c) = 0}. The composition, oy, of the fusion rule

algebra Z, * Obj is given by

(k1,21) oy (k2,22) = (kl + ko +7a(grad(:r,1),grad(::2)), zy0 2:2) , (8.2.141)
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for k; € Z, and z; € Obj. We choose a generator, §, of Grad(Z, * Obj)= Zar(§)
such that
grad((k,z)) - g(ak+ﬁr,a(97‘ad(z)))_ (8.2.142)

The product, oy ,q, for 74 (Z-,- * Obj) is therefore given by

(k1,21) oy,a (k2,22) = (8.2.143)

- (kl + k3 + 7a(grad(z1), grad(zy)), ™ (grad(k;,2:),9rad(ks,21)) 0oz 0 32) )
Using the identity

7 Yar (grad(ky, z1), grad(ky, z3)) = (8.2.144)
= Boo,r(k1) + Boo,r(k2) + 7a(grad(a:1),grad(:cz))

= Boo,r (k1 + k2 + va(grad(z1), grad(z,)))
we showed in (3.48) that
Zp % 7a(Ob)) — Tar (Zr ¥ Obj) : (k,z) — (K, a Peor(k) 0 2) (8.2.145)
is a fusion rule algebra homomorphism. Furthermore, we have the isomorphism
Zom * (Zp % Obj) — Zgmr + Obj : (k,(I,2)) > (rk + Bmr(1),2),  (8.2.146)

for k € Zym, | € Z,, ¢ € Obj, which preserves the generators of the grading groups.

Suppose that a € ,R,, (i, aoa¥Y =1, grad(a) = 0 and a™ = 1). Then we

may consider the composition of homomorphisms

f* i Zme % Obj 2 (20 % Ob5) ——— Tam (Zm # (27 * OB5) )
r— Zpn + (7a (20 + OF;) ) 7a (20 * OF5) (8.2.147)
(j’ Z) — (rm,r(j)’ axm,'(j) o Z)

402



Here we use that the inverse of (8.2.146) maps (j,z) to (xm,,-(j), (rm,r(j),a:)) and
that the last epimorphism in (8.2.147) maps (k,l) to z. The fusion rule algebra

homomorphism f* is irreducible and graded, and its kernel is given by
ker f* = {(rl, a N}, = Zm. (8.2.148)

The existence of a graded homomorphism f* allows us to identify a category, C, with
Ta (Zr * Obj) - fusion rules with the category C with Zmr * Obj - fusion rules, that is
induced by C and f*. The family of all balanced, braided tensor categories C which
are of this form is characterized by conditions i) and i) of Proposition 8.1.4, where

R = ker f*.

We specialize this result to the case, where Obf = Ag,_1,a = 2, a = Pa(n-1) and

m = 2, i.e., we have

' Zgr ¥ Agney > Ta(Zr % Agn—1)

(s, ;) — (5, p;‘(’,',(_’i) °p;), (8.2.149)

with 5 = n3,(s), and

_J0, s=0,1,...,7-1,
x25(8) = | 4 s=rr+l,...,2r—1,

and the kernel of f* is given by

ker f* = {1, 5} = 7y, (8.2.150)
with X = (r, p2(n—1)) ,
and grad(X) = 2r mod(4r).

The conditions for Cy, 2,(l,¢) to be induced by some category on 74 (Z, * AZn—l) are,

according to Proposition 8.1.4 :

i) (5351 =1 (8.2.151)

and i‘i) 920_1' = 9]' modl, Vj € Zg, *x Agpn1 - ( )
8.2.152
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To check i), we compute, using (8.2.101),

r(X,5,1) = rq(grad(E),grad(E),l) ro([a],[E],l)

9(2r) ro(p2(n-1)» P2(n-1)>1)

- (_1)1',r(_1)l(n—1) =1,
(8.2.153)

)
where we define 7, € Zg, by q(j) = ezp(2mi, ;—) . Using that T o (s, pj) =
r
(a +r, P2(n—1)—j) , and applying formula (8.2.131) for the balancing phases, condition
(8.2.152) becomes :

-1 it1—
a(2r + grad(s, p;)) a(grad(s, p;)) ™" = (-1){G+7).
Expressing ¢ in terms of 7, € Zg,, this is equivalent to
(-1t = (—1)fGH-m) gor = 0,1,...,2(n—1),

which, for j = 0, is precisely the equation (8.2.153). Hence, with (I,2n) = 1, i.e.,

l = 1mod2, (8.2.151) and (8.2.152) are equvalent to

i) To =1 mod2

and i) r=n+1 mod2. (8.2.154)

It is remarkable that i1) of (8.2.154) is a condition on the fusion rule algebra only. The
first constraint is equivalent to the requirement that § € H om(Z4,. ® Zgp, U (1)) does
not degenerate on 2(24,.) , 1.e., that §g(2r,1) = —1. In particular, ) is independent of
the choice of generators and the natural Zj- ambiguity of the quadratic form. A form

with this property shall be called an odd quadratic form on Zg,. .

In order to describe the structure matrices, we introduce the choice map, in the sense

of equ. (8.1.5),

~* Ta(Zr * Azn__l) — Zgp * Aop_1

(3, pj) — (B2,r(3), pj)s (8.2.155)
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with f* o4* = id. The map 7n from equation (8.1.46) is then given by
N ¢ Zor* Agn_y — ker f* : (s, pj) — x2r(2) , (8.2.156)

which is of the form (8.2.10), i.e., ¥* is the choice defined by Lemma 8.1.9 for the section

¥ = Ba,2r - For an automorphism ¢ of the fusion rule algebra Zy, * Az, for which
(z) =%, (8.2.157)

we can define a unique automorphism, ¢, on 74 (zr* A2n—1) by requiring the following

diagram to commute :

Zop % Agn—1 ¢ » Zop * A2n—1
* i (8.2.158)
Ta (Zr * AZn—l) < Ta (Zr * A2n—1)

We easily check that (8.2.157) holds for the automorphisms ¥, and &, defined in

(8.2.122). The corresponding maps on 7o (Zr * Agn_1) are:

"iﬂ((a) pJ)) = (3) pP;° (p2(n—1))j) ’

. v—1 rad(s,p;
and ay((s,pj)) = (8 + (—2—-)7l'2,r(g’l‘ad(3)pj)))Pj ° (PZ(ﬂ—l))hy (g “ 'F(’:,8))2)159)

where
hy : Zgr = Zy : g = x2,2r(vB2,2:(9)) »

with (v, 2r) = (v,4r) = 1,8 € Z, and 7 = 0,1,...,2(n—1). Since the correspond-
ing automorphisms &# of the grading group, with &# = g¥, for g € Grad(Obj) =
Zar , generate again the entire group Aut (Grad(Obj )) , we have that the group of au-
tomorphisms generated by the elements in (8.2.159) acts transitively on the generators

of 14 (Z,. *AZn——l) . From this we conclude, by the same arguments as for the untwisted

algebras, that the automorphisms in (8.2.159) generate all automorphismsif n > 2.

For n = 2, categories exist only for odd r, in which case we find, with (3.48), that
Ta(Zr ¥ A3) = Zr * Ta(A3). However 74(A3) = Az, since p30 p; = p1, so that the
fusion rule algebras 7, (Z,. * A3) are, in fact, untwisted algebras.
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Having a one-to-one correspondence between the automorphisms of the fusion rule
algebras Zs,*Ag,_1 and 74 (Z,.*Az,,_l) , we can establish an analogous correspondence
between equivalences of categories associated to these fusion rule algebras. We denote
by én,r(l, q), with I € Zg,, (I,2n) = 1, ¢ € Hom(T'4(Z4r), U(1)), g = odd and

n = 7+ 1mod2, the category induced by Cn 2-(l,q) and f*: There is a functor
(f*, F*, C*) = Cpar(l,q) — Cnyr(l,q) . (8.2.160)

Suppose that ( is an isomorphism of the Zg, x Ay, ;- algebra which extends to a

functor

¢, F,C) : Cnar(l,q) — Cno2-(l,q), (8.2.161)

for some I' and ¢'. The corresponding isomorphism ¢ defined by (8.2.158), also extends
to a functor, (¢, , C), from én,,.(l,q) to some other category Cp »(I",¢") with fixed
generator. It follows from (8.2.158) that Cyo.(¥,7') is induced by én,r(l",q"), and
hence, by uniqueness of induced categories, we conclude that I = I, ¢ = ¢", and

there is a functor (f*, 7/, C') such that

(Y,

Cn,zr(l, 9) Cn,Zr(l,: ql)

(f*, 7,0C) (rs, 7, 0" (8.2.162)

Cnrltg) —& 59 ¢ g

In particular, we have the isomorphisms

(id, F,C) : Car(l,q) — Cnp(l+ 207, ¢ 73, (), (8.2.163)

where w is given in (8.2.117) and, as 6(7r;r,r(w))(2r,j) =1,Vj € Z4, q- ";r,r(w) is

odd if ¢ is odd. Moreover, from (8.2.127) and (8.2.128), we obtain the isomorphisms

(%=, ﬁ) é) : éﬂ,r(l» q) — é"‘;"(eﬂ lLq), (8.2.164)
and, for (v,2r) =1,
(&v, F, C) : Car(l,g) — Cnr(l, 3(q)) - (8.2.165)
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From the invariants 7(i,1,5), with Nj; ; = 1, defined for the category Cy 2r(l,q) we
obtain the corresponding invariants #(f*(i), f*(i), f*()) = r(3,4,5) on Cnr(l,q). If
the object p, satisfying pop = o+, denotes the fixed generator of 74 (Zr*Azn_l) then
p°? := 4*(p) is the fixed generator of Zy, * Ay, _1, and it satisfies p®o0 p® = 0% 4+ 9,
where f*(6°) = o and f*(¥°) = 4. Hence, the invariants defined in equation
(8.2.129) of Theorem 8.2.9 for the objects, p® and o¢°, yield invariants 7(p,p,¥) =
(0% p°% ¥°) and #(0,0,02) = r(c® 0° (0°)?). From this it follows, by the same
arguments as for Theorem 8.2.9, that for n > 2, the only isomorphisms among the
Cn,r(l, ) - categories are given by compositions of those given in (8.2.163), (8.2.164) and
(8.2.165). We thus obtain the following classification of categories with 7o (Zr* Agn_1) -

fusion rules.

THEOREM 8.2.10

Let 7o(Zr % Agn—1) , (r = 1,n > 2), be the fusion rule algebra specified in (7.131)
and (7.135) of Theorem 7.5.11. Denote by p the fized generator with the property that

pop = o+, where o is the invertible object of order 2r.

(i) There ezist quantum categories with 7o (Z,- * Agn_l) - fusion rules if and only if
r=n-1 mod(2). (8.2.166)

For 1 € Zg,, with (I,2n) = 1, and every odd q € Hom(l"4(Z4,), U(l)), there

ezists a quantum calegory, (fn,,.(l, q),such that

r(p,p,¥) = —exp(—2mi 8Ln) q(c)

and r(o,0,0%) = q(c)}, (8.2.167)

where ¢ := [ 2.(grad(p)) generates Zy,, and q is odd iff 5q(c?, ¢) = —1. This

category 1s induced by the category, C?,,,g,.(l, q) given in Theorem 8.2.9 and f*.

For n = 2 (r = 1 mod2), we have that -ra(Z,-*A;;) & ZpxAz. For n > 2, the

only isomorphisms between these categories are those given in (8.2.165), (8.2.164)
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and (8.2.165). Nome of these categories is equivalent to a category with ZrxAgn_1 -

fusion rules.

(ii) The category én,r(l, q) is isomorphic to a C* - category if and only if

Wy
]

+1 mod2n . (8.2.168)

There are two possible sets of balancing phases for én,r(l, q):

- !
ezp(27ri0(‘,,pj)) = € exp(2mi S—nJ(J +2)) ‘1(32,21- (grad(2, pj))> (8.2.169)

with 8 € Zp, pj € A2n_1,3 =0,1,...,2(n—-1), and e = %1.

If we combine the classification of categories in Theorems 8.2.8, 8.2.9 and 8.2.10 with
the description of possible fusion rule algebras given in Proposition 7.3.25, we finally
arrive at a characterization of braided, monoidal C*- categories that are generated
by a single object of statistical dimension less than two. It is remarkable to see that
the constraints imposed by the monodromies 7 € Hom(R® Grad(Obj), U(1)), as in
(8.2.150), with m(p, p) = &(p, p)?, are sufficient to single out precisely those fusion rules
for which quantum categories exist. Moreover, a comparison of (7.2.58) with (8.2.112)
and (8.2.131) and of (7.2.59) with (8.2.169), concerning the possible values of ! and ¢,
shows that all the statistical phases described in Proposition 7.3.25,ii), are realized in

some quantum category.

Notice that, by use of the isomorphisms (8.2.118) and (8.2.163), we may always shift
the parameter | € Zg,, with | = +1 mod2n, labelling C* -categories with Z;*Ag,_1 -
Or Tq (Z,. * A2n—1) - fusion rules, such that | = 1 mod8n. According to the result on
equivalences given in Theorems 8.2.9 and 8.2.10, an equivalence between two categories
with n > 2 and the parameter ! constrained in this way, mapping the distinguished
generators onto each other, exists if and only if the quadratic functions are the same,
and in this case the category is unique (up to isomorphism).
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We have to formulate the main result of this work for C*- categories only, since
Proposition 7.3.25 has been proven under the assumption that a C*- structure exists.
There is, however, little doubt that our classification can easily be extended to the

general, semisimple case.

THEOREM 8.2.11
Suppose C is an abelian, monoidal, rigid, braided, balanced C*- category. Assume,
further, that equivalent objects in the object set, Obj, of C are equal and that Obj -

as a fusion rule algebra - is generated by a single, irreducible object, p. Let
d(p) = A;l e~ 2% R

be the statistical dimension of the generator, where A, is the statistical parameter de-

fined by

Xp853,1p = (1p09;) alp,p,p")* (elprp) 0 1pv) alp,p,pY) (15 09))
with ¥, € Mor(1,popV). Let 6y be the balancing phase of the generator.

(i) The following are equivalent :

(2)
1 < {d(p)l < 2,

d(p) = :1:2605(%), N =4,5,...

Pop=¢7+¢ ;

where o and ¢ are irreducible, m(p,p) = €(p,p)? is not a multiple of the
identity, and o is invertible.

(d) (If C comes from a local quantum field theory )

pop=0a+y ,
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where o and v are irreducible; the projections in End((pop)op) given by

€1 eU(P)p)OIP »

e2 = a(p,p,p) (1,0 e5(p, p)) alp,p,p)*

where eg(p,p) € End(pop) is the projector corresponding to the subobject,

o, satisfy the Temperley - Lieb - equations,

Beieze; er ,

Beyerea = €3

with modulus, B, different from four (hence, 8 < 4 ).

(i1) If one of the conditions in 1) is fullfilled then the category C (without balancing)
18 equivalent to one of the following braided categories (defined with respect to the

fized generator p):

(a) For m,r € N, with n > 2, r > 1, and ¢ € Hom(T4(z), U(1)),
én,r(i'"'z: q),

which is defined and described in Theorem 8.2.8 as the product Cg, g ®én,:i:n’

. It has fusionrules

Z'r"“an )

as in (8.117) of Theorem 3.4.11.

(b) For n,r € N, with n > 2, r > 1, and ¢ € Hom(T4(22,), U(1)),
Cﬂ,f(il) q) ]

defined as a subcategory of Cz ¢ @ C2(n_1)’i1 by virtue of the inclusion in
(8.2.114) and described in Theorem 8.2.9. It has the fusionrules

Zp x Agpn—1
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(iii)

as in (3.120) and (3.124) of Theorem $.4.11.
(c) for n,r € N, with n > 3, r 2 1, r = n—1 mod(2), and q €
Hom(T'4(Z4r), U(1)), with ¢ odd,

Cnr(£1, q),

defined as the category inducing Cp2,(+1,q) by the graded morphism in
(8.2.147) and described in Theorem 8.2.10. It has fusionrules

Ta(Zr % A2n—1) ,

as in (8.181) and (3.125) of Theorem 3.4.11.
In o) and b) we include the possibility r = oo for a torsion free grading group,
with T4(Z) = Z. For each of these calegories balancing phases exist and are

uniquely determined up to Z - gradings.

The categories in i), for given n, r, ¢ and a given sign in the l-argument, are
inequivalent as braided categories with a dustinguished generator p, with the single

ezception of
(C: F, C) : CZ,r(ilx 9) — c2,r(:F17 q') ’

where ¢'(grad(p)) = - 1—‘:/%q(gra.d(p)). In any of the cases a), b) and c), the
group of the automorphisms Aut(Obj) of the fusion rules ( modulo the ezcep-
P.F. _
d;

tional one ) acts freely and transitively on the set of generators, {j :
|d(p)|, grad(j)generates Grad(Obj)}, and can be eztended to equvalences of cat-
egories. For case a) we have that Aut(Obj) = Aut(Grad(Obj)), and, for cases

b), with n > 2, and c), that Aut(Obj) = Z & Aut(Grad(Obj)) .
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Appendix A

Undirected Graphs with Norm not

Larger than Two

We give a list of all undirected, connected graphs with norm not larger than two. We
distinguish between bicolorable and non-bicolorable graphs and indicate the possible bicol-
orations by white and black vertices. By Kronecker’s theorem, the norm of such a graph is
2 cos (%), where N = 3,4,...,00 is the Cozeter-number of the graph and is given below
for graphs with norm less than two. The graphs with N = co for which there ezists a pos-
itive eigenvector with eigenvalue two are included. For each graph, the components of the
Perron-Frobenius vector, d_: are given by the numbers indicated at the vertices which are
ezpressed in terms of g-numbers (n)g := 9;"—__—‘11_:1:, with ¢ = e%, and N 1is the Cozeter num-
ber of the graph. The vector d is normalized such ihat its smallest component on the graph
is one, except when all vertices have edge degree two in which case we set d := (2,2,..).
The sites where the Perron-Frobenius vector attains its minimum are marked by a “*”, and
the number, g, of such sites is indicated, (for each coloration separately, in the bicolorable

case).
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A.1 Bicolorable, finite graphs

a) N <oo

A, n2>1:

A2n—1) n2 2:

Dg,.,n23:

D3n+1, n Z 2:

Es:

—_—————— e
(2)q (3)q

[ TR ; W S S
(2)q (3)q

r—O0—e—
(2)q (3)q

(2n-1q

_.o_*
(2n-2)q

e,
iz *

13

::%(Zn)q
(2n-1)q

(2)q(3) g

(2)q

al(Zn— Nq
(2)q (3)q {(2n-2)q

%(Zn-l)q

2'—(2n)q

O——%

(3)9_(4)9-(2)q

(2)q

413

N=2n+1,
go=1; 91_—'1 (Al)
N =2n,
go=2) gl=0 (AZ)
N =6,
go=3’ g =0 (AS)

N =4n -2,
$o=1,01=0 (A4)
N =4n,
%=1, 91=0 (A5)
N =12,

90=2,91=0 (A6)



(4)q =(8)q(2)q (6)q

B % )4 2=(6)q-(4)q N =18,
2)q (3)q ((2_))q=(7)q -(3)q go=1,0.=0 (A7)
q
(4)a ]
(5)q =(9)q-(3)q
Fo: % ”)’:2 =(7)q-(51qg N =30,
(2)(] (3)q (4)q t;))q._(e) (4)q go=1,9=0 (A8)
5
B30 - (61 +(4)q - (8)g
b) N =00
2 2 2
Agl): é.:zz ; Ag]"‘)_l,ﬂZZZ 2 2
9=0,0.=0 (49)
2 ® 2 0 » 2

Dy : ; DE),n>3: :
>2< $o=4 01=0 —O—d (A10)
Dg:|)+h n22: veo 9 =2,91=2 (All)
2 2 2 2 2
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E((sl) :

Egl) :

. 2

2 3 «

2
4
2 3 3 2
2
6
3 4 5 4
3

go=3,9=0 (Al2)

* g=2,g=0 (Al3)

9% =1,6=0 (Al4)
2

A.2 Bicolorable, infinite graphs (corresponding to

N = )

415

go=1,g1=0 (Al5)

9=2,g1=0 (A16)

9o = 0, o= 0 (A17)



A.3 Non-bicolorable, finite graphs

a) N<oo
4,122 k—o—o——o— N=2n+1,
(2)a (3)q (4)g  (n-1a ()4 g=1 (A19)
b) N =0
> 2 2
AR n>1: mz 9=0 (A20)
2 2
o0 ®

A: OO 2un22: O—e—0— o —o— g=0 (A21)
2 2 2 2 2 2

Ds: D.: oo o—O =2 (A22
? >20 :>222 22 =2 (A%)

A.4 Non-bicolorable, infinite graphs (N = co)

S
8

g=0 (A23)
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A.5 The higher graded fusionrule algebras

1) The fusion graph for algebra Dgl) ( Agx)) (u~2):

(A24)

(A25)
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Appendix B

Fusion Rule Algebra

Homomorphisms

B.1 47, : Ay, — An

418



B.2 a,? . Agn_3z — Doy,

419



B.3 0E6 . A11 - E6

420



B.4 O'DE : D16 — Eg

Cxﬁ’)—-o
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