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Playing with Formulas

Differentiating Polynomials

How to make sense of
x2− a2

x− a
for x= a?

Of course, we just factor the numerator

and cancel x− a, so we get

(x2)′=
x2− a2

x− a
|x=a=

(x+ a)(x− a)

x− a
|x=a=2x,

and now we can differentiate x2.

With a bit more work we get

(x3)′=3x2, (x4)′=4x3,	 , (xn)′=nxn−1

This trick will work for any polynomial f(x)

because x− a divides f(x)− f(a), so

f ′(x)=
f(x)− f(a)

x− a
|x=a

We don’t have to divide polynomials because of...
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Differentiation Rules

• (f + g)′= f ′+ g ′

• (kf)′= kf ′ for any constant k

• (fg)′= f ′g+ fg ′

• (f(g(x))′= f ′(g(x))g ′(x)

Demonstrating these rules for polynomials

is a matter of simple algebra of course.

Roots

How to make sense of
x

√
− a

√

x− a
for x= a?

It’s the same problem that we started with,

turned upside down, so we know what to do.

x
√ − a

√

x− a
|x=a=

x
√ − a

√

( x
√ − a

√
)( x
√

+ a
√

)
|x=a

so we get ( x
√

)′=
1

x
√

+ a
√ |x=a=

1

2 x
√

It’s clear now that ( xn
√

)′=
1

n( x
n
√

)n−1

(powers upside down, again)
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Implicit Differentiation, Quotients

Another way to derive the formula for ( xn
√

)′ is

to rewrite y= xn
√

as yn=x, to differentiate this

equation to get nyn−1y ′=1 and to solve for y ′.

This trick, called implicit differentiation, makes

it easy to get (xm/n)′, (u/v)′ and even y ′

if y7+ y+ x=0, when we are at a loss

to derive a formula for y itself.

We are stretching it a bit here, of course, by

assuming that y ′ is defined, but it turnes out

O.K. if we don’t have to divide

by zero, as the implicit function theorem says.

An Application: a Holy Bucket.

A

H(t)

a v(t)

From energy conservation v= 2gH
√

,

from incompressibility AH ′=− eav,

where e is the efflux coefficient.
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sin and cos

O

B

Dy

A

C

t
cos(t)

sin(t)

t |CD|=|OA|

|CB|=|AB|

implies cos=−sin

implies sin=cos

|OB|=|BD|=1

x
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Areas, Newton-Leibniz by example

A(x)

y=1

x

x

y

A(x)= x, so A′(x)= 1.

A(x)

x

x

y

y=
x

A(x)=x2/2, soA′(x)=x.
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What about the other powers? Fermat’s idea:
y

x

BR BR BR BR BR B236 5 4. . . . . . . . BR

y=xk

A(B)=
B

k+1

k+1
, so A′(B)=Bk
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Archimedes approach:

O

A

B

C

D

E

F

G

1 2 3 4

2y=ax

x

y
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Uniform grid approach:
ky=x

.0            B/N     2B/N     3B/N  . . . . . . . . . . . . . B(N−1)/N    B

y

x

Antiderivatives and integrals

F ′= f⇔
∫

f(x)dx=F (x)+C

∫

xkdx= xk+1/(k+1)+C for k � − 1,

∫

cos= sin+C,

∫

sin=− cos+C, etc.
∫

a

b

f(x)dx=F (b)−F (a), f =F ′
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Integration rules, positivity, additivity.

Now what about
∫

dx/x?

∫

a

b

dx/x=
b0− a0

− 1+1
=

0

0
,

and we meet our old friend again.

But geometrically speaking, the area under 1/x
makes sense, we just have to figure out what
it is. To do it, we just look at the picture...

x

y

y=1/x

21 3 6

A(1,2)

A(3,6)=A(1,2)

A(1,2*3)=A(1,6)=A(1,3)+A(3,6)=A(1,2)+A(1,3)

...and see that it is some sort of a logarithm.
It is called the natural logarithm, so

∫

a

b

dx/x= ln(b)− ln(a),

∫

dx/x= ln(x)+C,

and (ex)′= ex (by implicit differentiation).
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Playing with Inequalities

Why a tangent looks like a tangent

After examining a few examples

y

x

a x

y=x3

x −a −3a (x−a)3 3

O

A

C
B

|BC| =   |OB| + |AC|  − |OB|

2

2 2

we arrive at the estimate
∣

∣f(x)− f(a)− f ′(a)(x− a)|6K(x− a)2

and call f ULD (uniformly Lipschitz differentiable).

It follows that
∣

∣

∣

∣

f(x)− f(a)

x− a
− f ′(a)

∣

∣

∣

∣

6K |x− a|,

and we conclude that |f ′(x)− f ′(a)|6 2K |x− a| ,
i.e. f ′ is Lipschitz.
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Increasing function theorem

f ′> 0 andA6B⇒ f(A)6 f(B)

We first assume that f ′> c > 0 and look at
the estimate defining ULD. We see that

06x− a6 c/K⇒ f(a)6 f(x),
and therefore f(A)6 f(B )because we can get
from A to B by taking steps shorter than c/K

(according to Archimedes).
Now for f ′> 0 (f + cx)′= f ′+ c> c,

and we can conclude that
f(B)− f(A)>− c(B −A) for any c > 0,

and therefore f(A)6 f(B). Q.E.D.
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Integrability of Lipschitz functions

and Newton-Leibniz

_
y = f(x)

Xa c

y = f(x)

y =f(x)_

Y

b

~
y=f(x)

We can pick piecewise− linear f̄ and f
¯
,

f
¯

6 f 6 f̄ and f̄ − f
¯

6 4Lh, where h is

the mesh size and L is the Lipschitz
constant for f . Then the inequality

∫

a

b

f
¯

6

∫

a

b

f 6

∫

a

b

f̄

will define
∫

a

b
f uniquely. Positivity, additivity

follow from these ineqialities.
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We can now prove Newton-Leibniz
by integrating the inequality

|f(u)− f(b)|6L|u− b| from b to x to get

|
∫

x

f(u)du−
∫

b

f(u)du− f(b)(x− b)|6

6

∫

b

x

|f(u) − f(b)|du 6 L

∫

b

x

|u − b|du =
L

2
(x −

b)2,

which means exactly that
∫ x

f(u)du is a ULD

function of x and
d

dx

∫ x
f(u)du= f(x).
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Differentiation as factoring

For polynomials differentiation can be viewed as

factoring f(x)− f(a)=Q(x, a)(x− a), of
polynomials in 2 variables, x and a, f ′(x)=Q(x, x).
Similarly, uniform Lipschitz differentiation can be

viewed as factoring in the class of Lipschitz functions
of 2 variables. Indeed, when Q is Lipschitz,

|f(x)− f(a)−Q(a, a)(x− a)|=
|Q(x, a)−Q(a, a)| · |x− a|6L|x− a|2

In the other direction, assuming f ULD, and
defining Q(x, a)= (f(x)− f(a))/(x− a) for x� a

and Q(a, a)= f ′(a), we can see that

Q(x, a)=

∫

0

1

f ′(a+ t(x− a))dt, and

therefore is Lipschitz in x since f ′ is, but Q is

symmetric, so it’s Lipschitz in both variables.

An “elementary” proof that does not use integrals is
also available, but is a bit more complicated.

See the latest version of my article at

http://www.mathfoolery.com/Article/simpcalc-
v1.pdf

Interestingly, we can fit the classical differentiation
theory into this algebraic scheme too. We just
require Q(x, a) to be continuous in x at x= a.
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Other moduli of continuity

When the Lipschitz condition is too restrictive,

for example, to treat x3/2 as differentiable,

we can relax it, i.e., replace our basic estimate with

|f(x)− f(a)− f ′(a)(x− a)|6K |x− a|m(|x− a|),

where m is some modulus of continuity, i.e.,

continuous at 0,m(0)= 0, increasing and

subadditive i.e., m(x+ y)6m(x)+m(y),
for example, |.|α, with 0<α< 1.

The whole theory remains true, with some obvious

modifications. Now, for any uniformly continuous

function f defined on a closed finite interval there is
a modulus of continuity m such that

|f(x)− f(a)|6m(|x− a|).
Therefore, we don’t miss any of the classical theory

of continuously differentiable functions.
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Many variables

Similar to the case of 1 variable, we define the
derivative by uniform inequality.

|f(x+h)− f(x)− f ′(x)h|6K |h|m(|h|) (1)

where |.| is some norm.

Automatic continuity of the derivative

The automatic continuity of the derivative still
holds, but the proof is a bit more complicated. Here
is the idea. We can get from the point x to the point
x+h+ k either directly or go to x+h first and then
to x+ h+ k the total increment of f should be the
same. Now consider the approximations of these

increments by the differentials.

|f(x+h+ k)− f(x+h)− f ′(x+ h)k |6K |k |m(|k |)

| − f(x+h+ k)+ f(x)+ f ′(x)(h+ k)|
6K |h+ k |m(|h+ k |)

“Adding” these estimates and (1) together, and
using the triangle inequality and linearity of f ′, we

conclude that

|(f ′(x)− f ′(x+ h))k |6K(|h|m(|h|)+ |k |m(|k |)
+ |h+ k |m(|h+ k |))6 6Km(|h|)|k |

when |k |= |h| and m is increasing and subadditive.

So |f ′(x+h)− f ′(x)|6 6Km(|h|), and we are done.
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Differentiation as factoring

The trouble in many variables is that we can no
longer divide by x− a to define the difference

quotient. But the idea survives. In one direction,
the factoring f(x)− f(a)=P (x, a)(x− a) with
m− continuous P implies differentiability, since

|f(x)− f(a)−P (a, a)(x− a)|
= |(P (x, a) − P (a, a))(x − a)| 6 Lm(|x − a|)|x −
a|.

In the opposite direction, we can define the
difference quotient Q(x, a) as the average of f ′

over the segment [a, x], i.e.,

Q(x, a)=
∫

0

1
f ′(a+ t(x− a))dt

and observe that the argument we used to show
continuity of Q in case of one variable still applies.
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Conclusions

• Differentiation can be treated as factoring in
a certain class of functions. This idea is more
general and conceptually simpler than the
classical approach. It is also closer to modern
mathematics.

• This point of view makes it possible to do and
use calculus independently of its classical
foundations, i.e. real numbers, continuity and
limits, but in a mathematically rigorous way,
starting with simple examples.

• The proofs in this streamlined approach are
so simple that they can be done by the
students as problem sets. See a modest
example at my web page at
http://www.mathfoolery.com
/Problem_sets/hw.html

• Calculus of specific classes of functions, i.e.
Lipschitz, Holder etc. is more relevant to the
practical applications, i.e., numerical analysis.

• Calculus is not carved in stone, it is still alive
and growing.

• Mathematics is the art of problem solving,
not a dry set of formal rules.
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Many thanks for listening to me

See my preprint “You can simplify calculus”
(by Michael Livshits) at arxiv.org for more details.
Check my home page at www.mathfoolery.com

and click on My Calculus Project

Let us start the true calculus reform by rethinking
the subject and making it more understandable.

The slides for this talk are available online at
http://www.mathfoolery.com/talk-2010.pdf

More questions? Comments? Remarks?
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